
INFORMATION TO USERS

This manuscript bas been reproduced ftom the microfilm master. UMI

films the text directly ftom the original or copy submittoo. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

ftom any type ofcomputer printer.

The quality of this reproductioD is depeDdeDt UpoD tbe quality of the

cop1 submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversety affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will he notOO. Also, if

unauthorized copyright material had to he removed, a note will indicate

the deletioD.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper teft-band corner and

continuing nom left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is includOO in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographieaUy in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell et HoweI1lDfotma1ion Company

300 North Zeeb Raad, ADn Arbor MI 48106·1346 USA
313n61-4700 8001521-0600

(

DYNAMIC LOAD BALANCING FOR
CLUSTERED TIME WARP

by

Khalil M. El-Khatib

School of Computer Science

McGill University, Montreal

November 1996

A dissertation

submitted ta the Faculty of Graduate Studies and Reseach

in partial fulfillment of the requirements for the degrec of

MASTER OF SCIENCE

Copyright @1996 by Khalil M. EI-Khatib

1'-'1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wetlington Street
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wetlington
Ottawa ON K1 A 0N4
canada

Your. Vot,.,.~

aur liIe Not", référetJCII

The author bas granted a non­
exclusive licence aIlowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts trom it
May be printed or otherwise
reproduced without the author' s
penmSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29686-5

Canadl

(

(

Abstract

In this thesis. wc consider the problem of dynamic load balancing for paraUel

c1iscrete event simulation. We foeus on the optimistie synehronization protoeol, Time

Warp.

A distributed load balancing algorithm was developed, which makes use of the

active process migration in Clustered Time Warp. Clustered Time Warp is a. hybrid

synchronization protocol; it uses an optimistic approaeh between the c1usters and a

sequential approach within the c1usters. As opposed to the centralized algorithm de­

veloped by H. Avril for Clustered Time Warp, the presented load balancing algorithm

is a distributed token-passing one.

We present two metrics for measuring the load: processor utilization and processor

advance sinlulation rate. Different models were simulated and tested: VLSI rnodels

and queuing network models (pipeline and distributed networks). Rcsults show that

improving the performance of the system depends a great deal on the nature of the

simulated mode!.

For the VLSI model, we also examined the effeet of the dynamic load balancing

algorithm on the total number of processed messages per unit time. Performance

results show that dynamically balancing the load, the throughput of the simulation

was inlproved by more than 100%.

(

c

Résumé

Dans cette thèse, nous considerons le problème du balancement dynamique des

charges pour la simulation à évenement discrèts basée sur un principe de synchroni­

sation optimistique.

An algorithme distribué et basé sur le principe de migration des processus a été

développé pour le system TWR (Time Warp avec Regroupement). TWR est un

protocole de sYnchronisation hybride: il utilise une approache optimistique entre

les groupes de processors et une approache sequentielle à l'interieure des groupes.

Contrairement à l'algorithme centralisé developpé par H. Avril. notre a.lgorithme est

distribué et basé sur la distribution d'un jeton.

Différents modèles ont été simulés et testés: des circuits VLSI, pipelines cl'assemblage

et réseaux distribués. Les resultats obtenus ont montré que le balancenlent dynamique

des charges a permis d'accoitre considerablement la performance de la simulation.

11

(

(

ACKNOWLEDGMENTS
1 wish to place on record my profound sense of gratitude to my thesis advisor, Prof.

Carl Tropper, for his advice, guidance and encouragement throughout aIl phases of

this work.

1 owe an especial debt of gratitude to Dr. Azzedine Boukerche for the vivid

instructions and exchange of ideas. 1 have no doubt that this thesis is bettcr product

duc to his guidance.

1 aln very grateful to Herve Avril for his helpful discussions and help providing

the code for CTW.

A general thanks to aIl my fellow consultants at the School of Computer Science.

It is always a great pleasure working with them.

1 would like to thank aIl the system staff and especially Luc Boulianne, Matthew

Sams, and Kent Tse for keeping biernat up and running. Further thanks go ta aIl

people working in the administrative office at our schooI.

1 greatly appreciate the friendship 1 share with Rami Dalloul and Nada Tammirn

Da.lloul who have been with me every step of the way.

1 am greatful to Jacqueline Fai Yeung and Peter Alleyne for their patience and

unfailing assistance. 1 will never ever forget their help.

Last but not least, 1 remain grateful to my family whose moral support a.nd

encouragement were responsible for my sustained progress throughout the course of

this work.

III

(

Contents

1 Introduction 1

1.1 Parallel Discrete Event Simulation . 1

1.2 Parallel Logic Simulation. ... 3

1.2.1 Logic Simulation 5

1.2.2 Partitioning 6

1.2.3 Fine Computation Granularity . 7

1.2.4 Circuit Activity 7

2 Parallel Discrete Event Simulation 8

2.1 Introduction . .. 8

2.2 Optimistic Approach .. 9

2.2.1 Local Control Mechanism 9

2.2.2 Global Control Mechanism . · .. 10

2.3 Conservative Approach . 14

2.4 Load Balancing . . · .. 17

2.4.1 Static Load Balancing 17

2.4.2 Dynamic Load Balancing . 20

2.5 Clustered Time Warp (CTW) 26

2.5.1 Cluster Structure and Behavior 27

C 2.5.2 Variations of Clustered Time Warp · . 28

IV

(

2.5.3 Load Balancing for Clustered Time Warp . 29

Metrics and Aigorithm.

3.1 Metrics .

3.1.1 Processor Advance Simulation Rate (PASR)

3.1.2 Processor Utilization(PU) ...

3.1.3 Combination of PU and PASR

3.2 Algorithm

3.2.1 Pseudo Code

3

3.3 Design Issues

3.3.1 Token period, (3

3.3.2 Selecting the Clusters (Processes)

3.3.3 Number of Processors that can initiate migration

3D

3D

3D

32

33

33

34

36

36

37

37

4 Results and Discussion

4.1 Introduction.... ..

4.2 Experimental Results.

4.2.1 Increase in rollbacks

4.3 Pipeline Model .

4.4 Distributed Network model

5 Conclusion

v

38

38

39

44

44

48

51

(

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

A Time Warp process (A)

Process A after message with timestamp 142 was processed .

Rollback to time 135 ..

Deadlock Situation . .

Cluster Structure . .

Processors with different PASRs.

Il

Il

12

15

27

32

c

4.1 Simulation time for C2

4.2 Simulation time for C3

4.3 Peak memory consumption for C2

4.4 Peak memory consumption for C3

4.5 Throughput Graph for C2 •

4.6 Throughput Graph for C3 • •

4.7 Manufacture Pipeline Model .

4.8 Percentage Increase in the Number of Rollbacks .

4.9 Percentage Reduction of the Simulation Time

4.10 Distributed Network Model

4.11 Percentage of Reduction in the Simulation Time in the Presence of

Time- Varying Load..

vi

40

40

42

43

45

45

46

47

47

48

49

(

4.12 Percentage of Reduction in the Simulation Time in the Absence of

Time- Varying Load.. .. 50

VII

(

(

Chapter 1

Introduction

1.1 Parallel Discrete Event Simulation

Simulation is regarded as an indispensable tool for the design and verification of

complex and large systems. There is hardly a discipline or a science tbat does not

use simulation. Examples are queuing network simulation [Nico88] ~ VLSI simulation

[BaiI94]. and battlefield simulation [Reit90].

Discrete Event Simulation (DES) is a technique for the sinlulation of systems

which ca.n be nlodeled as discrete systems: the components of the system change

states at discrete points in time. For cxample, gates in alogie sirIlulation change

state frOID 1 to 0, or vice versa.

Continuous Simulations (CS) are used to simulate models in which components

change states in a continuous way with timc; examples are weather and liquid flow

simulation. Unlike discrete simulation, continuous simulation usually involves the use

of differential equations ta evaluate the change in the state valuc.

A simulated system is usually divided into entities which interact over time by

scheduling events for one other. An event describes a change in the state of a certain

entity or component in the mode!. Each event in the system is assigned a virtual time

1

c

stamp which represents the time at which the event would happen in thc rcal world.

For instance~ entities in a computer network sinlulation represent computer servers.

and events represent real messages sent over the network.

Originally~ simulations started on sequential machines. The simulated system is

modeled as follows: astate, which includes local variables. and an event queue~ which

contains the events scheduled for the system. The simulator model continuously

processes the event with the smallest time stamp, advances the simulation time. and

schedules events for the future.

Because of the rapid change in the size and complexity of the mode1s, ParaUel

Discrete Event Simulation (PDES) seems to be a promising tool to handle the de­

mands in the world of simulation. In PDES, different components of the model reside

in different machines. Each component has its own separate state and event queue.

The main problem for PDES is how ta satisfy the causality constraint: events that

depend on each other have ta he processed in (increasing) order of their tirncstamps.

Two rnain approaches ta avoicl causality errors have heen widely studied and

used: the conservative approach, introduced hy Chandy & Misra. [Chan79], and the

optimistic approach, pioneered by Jefferson [Jeff85]. The two approaches cliffer in

the way they deal with the causality issue. In a conservative simulation, the logical

process (LP) will process an event when it knows it is safe ta do so. An LP in an

optimistic simulation processes events as saon as they arrive. If it later receives aIl

cvent with a smal1er time stamp, it rolls back and restores an old correct saved statc.

Before resuming the simulation, the LP would cancel previously sent messages by

sending anti-messages that annihilate the originals.

The focal point of this thesis is the dynamic load balancing for Clustered Time

Warp (CTW) [Avri95]. CTW is a hybrid approach that uses Time Warp between

c1usters of logical processes and a sequential mechanism inside the clusters. Although

the prohlem of loacl balancing has been extensively studied over the past fcw years

[Hac87, Hac87, Wang85, Livn82, Zarg85], few results are directly relatecl to the area

2

(

(

of PDES. In this thesis, two metrics for dynamic load balancing are presented. A

distributcd dynamic load balancing algorithm is also constructed. Several associated

moclels are simulated to evaluate the performance of the algorithm and metrics.

1.2 Parallel Logic Simulation

Logic sinlulation is a standard technique for the design and verification of VLSI

systems before they are actually built. While the verification part can reducc the

cxpensive prototypes and debugging time~ the execution time requircd by simulation

exceeds clays and even weeks of CPU time for large circuits. Parallellogic simulation

provides an alternative solution that accounts for the rapid incrcasc in the size of

circuits.

Two traditional algorithms for parallel logjc simulation have been proposed in

the literature: (1) compile-mode~ and (2) centralized-time event-driven. In compile­

mode simulation (Wang87~ Wang90, Maur90], the system simulates aIl the clements

aftcr cach time unit. Scheduling and synchronization arc sinlplified in this approach

at the expcnse of run timc. The simplicity of this approach makes it fcasiblc for

direct implcIIlcntation in hardware. While the compile-mode algorithm can result in

high spccd-ups for active circuits, the synchronization timc is a hindrance for circuits

with low activity. Evcnt-driven simulation [Fran86, Smit87, Smit86, Sou188~ Wils86~

Wong86] providcs an alternative solution in which only elements whose input have

changed are simulated at each time step.

Compile-nlode and centralized-time event-driven arc both synchronous algorithms.

Asynchronous algorithms used in parallel discrete event simulations have exhibitcd

promises for parallei logic simulation.

Soule and Gupta (Sou192] discussed the effectiveness of Chandy-Misra-Bryant

(Chan79, Brya77] algorithm (CMB) for parallellogic simulation. For six benchmark

circuits, the authors reported an effective concurrency of 42-196. Effective concur-

3

(

(

rency is defincd as the amount of parallelism that is obtained when using arbitrary

nlany processors~ in the absence of synchronization and scheduling overheads. The

allthors noticed that using the CMB algorithm~ 50% to 80% of the total execution

time is spent on deadlock resolution. To resolve this issue~ the authors experimented

with many variations such as look-ahead, null messages~ clustering~and demand driven

scheme. Speed-ups of 16-32 were achieved on a 64-processor machine.

Su a.nd Seitz [Su89] studiedlogic simulation for nulI-message conservative simula­

tion. To reduce the overhead of null messages, two variations were examined: (1) lazy

null messages, and (2) clement grouping1. The authors used Intel iPSC machincs as

a testbed to measure the speed-ups of a 1376-gate multiplier network. Speed-ups of

approximately 2 and 10 were reported using 16-node iPSC/2 and 128-node iPSC/l

rcspectively.

Time-Warp techniques were also used for VLSI circuit simulation. Chung and

Chung [Chun89] impleIuented Time-vVarp on the Connectioll Machine. The authors

described the Lower Bound Rollback (LBR) technique to overcome storagc problcIllS.

The LBR of an LP is equal to the local virtual time of the LP if it does not have

incoming links. For an LP with incoming links, the LBR is set ta the minimum of

the local virtual time of the LP and of all of the LBRs of the incoming links. If the

LP is part of a cycle~ than the LBR is set to the G VT. Once the LBR is known,

cach LP can rcc1ainl aU the space used by events with timestamp up to the LBR,.

Two circuits from the ISCAS-85 benchmarks were simulated: a 16-bit combinational

nlultiplier (2406 gates) and 32-bit array multiplier(8000 gates). The authors reported

that, using the LBR technique, can reduce the storage up to 30% conlpared to the

original Time Warp depending on the simulated circuit.

Briner et al [Brin91} present another version of the Time-Warp for logic simula­

tion in that the algorithm uses incremental state saving to reduce the overhead of

lSalllC idea. as CTW, introduced. in section 2.5.

4

(

periodical1y checkpointing aIl events on a processor. The simulation mns on a BBN

GPIOOO machine, and it uses a lazy cancellation scheme. Even though the authors

reported an improvement in the performance of the simulation. they noticed that

circuit partitioning is important in order ta reduce rollbacks in the system.

Implementations for Time-Warp can also be found in [Baue91]. The simulator

was inlplcmcntecl on a Sequent, and also on a set of Sun Sparcstation 2'8. Speed-ups

from 2 ta 3 were reported using a 5-processor Sequent, and 5.2 to 5.7 using a network

of 8 Sun Sparcstations. Simulated circuits were selected from ISCAS-89 [BrgI89].

1.2.1 Logic Sim.ulation

VLSI circuits can be simulated at various levels, dcpending on the abstraction of the

sinlulated elernents. Each level emphasis certain aspects about the simulated circuit.

Four types of logÏc simulators are presented in [Horb86]:

• Switch leve1 simulators

The switch level simulator is a special type gate simulator which cao simulate

MûS circuits more precisely than the conventional gate level siIllulators.

• Gate level simulators

The simulated elements are such logie gates as AND, OR's and INVER.TER's.

Each clement has only one output terminal.

• Functional level simulators

The simulated elements are such functional primitive as latchcs, flip-flops. COUll­

ters and rcgisters. The clements rnay have more than one output terrninals.

• Register transfer level simulators

Register transfer level simulators provide the ability ta define the behavior of

the simulated circuits with register transfer language.

5

(

Each circuit element (gate) is represented by a logical proccss (LP). LPs are

connected with each other as determined by the circuit connection. Each LP has its

own code that simulates the function of the corresponding circuit element.

Because of the rapid increase in the size of VLSI circuits [Mukh86~ Term83]~ large

simulation times have become a serious problem. VLSI simulation poses many chal­

lenging problems for parallel discrete event simulation. The foHowing text describes

three major problems: circuit partitioning~ computation granularity and locality of

a.ctivity.

1.2.2 Partitioning

The distribution of LPs on the processors of a distributed computing system has a

great impact on the performance of the simulation. A parallel simulation with a

bael distribution IDight run slower than its equivalent seriaI simulation. VLSI circuits

a.re hard ta partition [Cart9L Spor93, Bai194] because of the lack of infornlation on

signal activity; partitioning can only he done based on the structural information of

the circuit

A number of the partitioning algorithms [Spor93, Bail94] attempt to balance the

load by assigning an equal number of components ta aH of the processors. This

technique ignores the fact that all parts of the circuit might not be active at the saIne

timc [Sou187].

Another approach ta partitioning is to minimize interprocessor comnlunication.

One approach is ta place frequently communicating components on the same processor

[Nand92]. Carothers et. al. [Caro95] showed that an increase in the communication

delays cao significantly reduce the performance of Time Warp for simulations with

large number of LPs and fine granular events such as logic simulation.

6

(

1.2.3 Fine Computation Granularity

The fine computation granularity of events is a serious problem for optimistic logic

simulation. The message service time at an LP is very small (e.g. evaluating the out­

put of an AND gate)~ which makes message cancellation difficult in case of rollback;

anti-messages cannot always annihilate previously sent messages quickly cnough~ pos­

sibly leading ta a cascaded rollback. Moreover, the number of events is in the hundreds

of thousands. A change in the state of agate, from high to low or vice versa~ will

create an event which might trigger thousands of other events. The large number of

events means that the size of the event heap, the state queue, the input queue and

the output queue are very large and any operation on thcse data structures beconlCs

corrcspondingly cxpensive.

1.2.4 Circuit Activity

VLSI circuits are known to have locality of activity property [Avri96. Bail94. 80uI92],

Le. onlya part of the circuit may be active at a given time, while the remaining parts

are idle. This property can cause a big difference in processor utilizations: sorne

proccssors might be very active while many others are idle.

7

(

(

Chapter 2

Parallel Discrete Event Simulation

2.1 Introduction

This chaptcr describes in section one and two the two major techniques for parallcl

simulation: the optimistic approach and the conservative approach. Section three

includcs a. gcneral description for load balancing. In section five, we introduce Clus­

tered Tinle Warp. Clustered Time Warp uses Time Warp synchronization in between

c1usters and a sequential mechanism within the c1ustcrs.

8

(

(

2.2 Optimistic Approach

In 1983. Jefferson (.Jeff83] proposed a new paradigm for synchronizing distributed

systems. This new paradigm~ known as virtual time~ provides a flexible abstraction

of l'cal time for distributcd systems.

Timc vVarp is introduced as an optimistic synchronization protocol which imple­

ments the virtual time paradigm. It uses mn time detection of errors causeel by

out of order execution of dependent simulator events. and recovery using a rollback

mechanism.

The following suhsections describc the two main components of Timc Warp: local

and global control mechanism. The local control mechanism is responsible for process

synclironization. The global controlmechanism deals with space rnanagement.

2.2.1 Local Control Mechanism

In Timc Warp~ cach message consists of six components: (1) the sender of the message

(2) the receiver (3) the virtual sent timc (4) the virtual rcceive time (also known as

timcstamp) (5) and an sign field used to indicate whcther the nlCssage is an ordinary

rnessage or and antimessage and finally (6) the event data.

Each process in Time Warp has its own local virtual time (LVT), which is the

timestamp of the next message waiting in the input queue. In addition, each process

keeps a virtual cIock that reads the local virtual time.

Each process has a single input queue in which aH arriving messages are stored in

increasing order of their timestamps. A process serves all of the messages residing in

its input queue in spite the fact that future messages might have lower tinlcstamps.

Sincc aIl the virtual docks in the system are not synchronizcd, it is possible for

a process ta receivc a message with a virtual time in the "pasf~. Such a message is

calleel a straggler. In order to maintain the causality constraint, the receiving proccss

has ta roll back to an earlier virtual time, cancelling aU work donc ·and sending " anti-

9

(

(

messages" to cancel aIl of the messages sent after the timestamp of the stragglcr.

In arder to rollback~ a process must~ from time ta time~ save its state in astate

queue. Whenever a process receives a straggler ~ a process uses the statc queue to

restore itself ta astate prior to the timestamp of the straggler.

An anti-message is a duplicate of the message, with a negative sign field. Each

time a process sends a message~ its anti-message is retained in the sencler~s output

queue. In the case a of roIlback~ aIl of the anti-messages with tirnestanlps highcr thall

that of the straggler are sent out.

Figures 2.1~ 2.2 and 2.3 show the structure and state of a process during three

consecutive snapshots. Figure 2.1 shows process A about to process the nlessage

with timestamp 142, corning from process D. After processing that message~ (figure

2.2). process A saves its state~ and changes its local virtual time ta 154. which is the

timestarnp of the next message waiting in the input queue. At this moment~ proccss

A receivcs a message (straggler) with timestamp 135. Figure 2.3 shows process A

after rolling back to a safe state: (1) the last state savcd before timestamp 135 was

restored; (2) antimessages in A's output queue that have a virtual timestamp larger

than 135 have been transmitted to their destinations.

2.2.2 Global Control Mechanism

During the sirIlulation, each process uses its memory for saving statcs~ storing input

nlessages and keeping copies of output messages. Since each process has a limited

memory, space has ta be reclaimed regularly for further use.

Global virtual time (GVT) was introduced by Jefferson[Jeff83], to help solve the

probleul of memory management:

The GVT at real time r is the minimum of aIl virtual times in aIl docks

at time r, and (2) of the virtual send times of aU messages that have been

sent but have not yet been processed at time r.

10

(

f
Sign

~'-2O"""'-49-f Receive Time

Output E F Receiver
Queue j 107 142 Send Time

1 A A Sender
l Data

Sign
Receive Time
Receiver
SendTime
Sender
Data

AA

154 162

A

..
142

A

(..

1 107 121

Input l' AQueue ~90_f1,,_"_0 U __134....... ,~1_S2-f_'48-f
A COB F

l t--""'4I--""'4 t-·u---tt----l

Local Virtual
rime

Current State

Process Name

Figure 2.1: A Time Warp process (A)

Sign
Receive Time
Receiver
Send Time
Sender
Data

+ +

107 121 142 154 162

A A A A A-90 110 134 152 148-A C 0 B F

Input [
Queue l

Local Virtual
Time

Process Name

Current State

r Sign
120 149 145 ReceiveTImerM OUtput ~
E F C Receivero 107 121 142 B . TI

~~~~e { 1~ 121 1~ .., E~'~:e Queue 107 142 145 SendTIme
A A A Sender

Data

( Figure 2.2: Process A after message with timestamp 142 was processed

Il



(

Local Virtual
Time

Process Name

Current State

Output r t--=-E-+-::+fl-~
Queue ~

1 A

l "'"-------.r---r....

Sign
Recelve Time
Recelver
Send Time
Sender
Oata

Sign
Receive Time
Recelver
Sand Time
Sender
Oata

c

Antimessages in
transit toward
receivers

Figure 2.3: Rollback to time 135

Once the GVT is computed, the system can gct riel off aIl but the last saved

state before GVT, since there might be no state saved exactly at GVT. Similarly, the

events prior ta the GVT in the LP input queue can all he removed. Gnly evcnts with

a timestamps smaller than the timestamp of the oldest kept state can he discarded.

This process is caIled fossil collection.

The task offinding the GVT in a distrihuted environnlent is not trivial. In a shared

nlcIllory rnultiprocessor environment, the GVT can he easily computed [Fuji89]; how­

ever, transient messages in a distributed system make GVT computation a difficult

problem. A transient message is a Inessage that has been sent from a source process

but has Dot yet arrived at the destination process.

A very simple way to find the GVT is to stop aU processes, compute the GVT,

and then resume the computation. The problem with this approach is the high

cast in time, especially when the number of processes is large, and when the GVT

computation is done frequently.

12



(

(

Sorne GVT algorithms [JefI83, Sama85] solve the problem of transient messages

by sending acknowledgment messages. However, sending acknowledgment messages

will result in a large increase in the network traflic. and might also degrade the

performance of the distributed simulation.

Lin and Lazowska [Lin89] proposed another algorithm for GVT computation,

in which an acknowledgment is sent for a group of messages, rather than for cach

rncssage. The authors reported a 50% decrease in network traffic~ compared to an

optimized version of Samadi's [Sama85] algorithm proposed by Bellenot [Be1l90].

As the number of processes in the simulation grows larger, seuding acknowlcdg­

rIlcnts beconlCs a serious impedirnent. In rcsponse to this problern, asynchronous

token passing aigorithms [Be1190, Conc91, Prei89] ha.ve been introduccd. Preiss's

[Prci89] algorithm, presented next, computes the GVT for nodes arranged on a. vir­

tuaI ring. The algorithms runs in two phases: the START and the STOP phase.

Let [STARTi7 STOPd denotes a real time interval for node i. Let j\;/VTi denote

the minimum of all timestarnps of all messages either in transient from node i at

time STARTi or sent during the timc interval [STARTi , STOPd. Let PVTi dcnotc

the smallest timestamp at tirne STOPi of alI objects simulatcd on node i. LVTi

represents the mininlum of MVTi and PVTi. Then an estimate of the GVT is the

minimum of aIl the LVTis. The aigorithm requires that aIl of the time intervals have

at Ieast a time point in common, during which aIl processors will be conlputing their

LVTis at the same time.

During the START phase, The START token starts at node 0, and circulatcs to

each Ilode on the ring. When a process receives the START token, it forwards it to

its neighbor, and then sets its STARTi to the receipt time of the tokcn.

When the START tokcn gets back ta node 0, it launches the STOP phase. Node

o will compute its LVTo, store it inside the token, and send the token. When a Dode

i receives the STOP token, it compares its LVTi to the GVT value in the token, and

the minimum value is kept in the token. When the token gets back to node 0, the

13



(

(

value stored inside the token is the smallest value of all of the LVTi ~ which denotes

the GVT. Another round is needed to pass the new GVT to aIl nodes.

2.3 Conservative Approach

vVhile optimistic simulation detects and recovers from causality error by rolling back

to astate just prior to the crror, a proeess in a conscrvative sirIlulation blocks so as

to avoid the possibility of any synchronization crror.

The channel clock value is defined as the timestamp of the last message received

along that channel; in case there is no message received along that channel~ the

channel dock value is set to o. Each process repeatedly selects the input channel

with the sDlallest dock value~ and serves the message waiting in that channel. If the

selectcd channel is empty, the process blacks since it does not know the timestarIlp

of the next message to arrive on that enlpty channel.

A deadlock can happen as a natural consequence of the blocking behavior. Figure

2.4 shows three processes in a deadlock situation. Peacock et. al. [Peac79] presented

a necessary and sufficient condition for deadlock ta occur:

A deadlock exists if and only if there is a cycle of empty channcls which

aIl have the same channel clock value, and processes are blocked because

of these chann€ls.

A number of approaches have been proposed ta solve the deadlock problem. The

first approach, presented independently by Chandy & Misra [Chan79] and Bryant

[Brya77], uses null messages to avoid deadlock. A nun message provides a lower

bound on the timestamp of the next incoming message. Each time a process consumes

a nlessage, it must send a message on each of its output channels. If the simulation

does not require a regular message on a channel, a nun message is sent in its place.

When a process receives a null message on one of its input channels, it guarantees

14



(

(

Figure 2.4: Dendlock Situation

that no nlessagc will arrive with a srnallcr timcstanlp than that of the Hull rnessagc.

The null ulCssage approach suffcrs from two drawbacks: the fine granularity of the

null rnessages and the minimum time stamp increment. For the simulation of systenls

of simple clements, such as logic gates, the timc required to evaluate the output of the

gate is sa small that it is comparable to the time rcquired ta process a null message.

In addition, the number of regular rnessages in logic simulation is in terms of millions,

and if for each message there is only one null Ulessage sent, this would double the

network traffic.

Ta reduce the problcm of network traffic introduced by the use of null messages,

Misra [Misr86] suggested that a process refrains for a period of time from sending a

null message, expecting that a real message will he sent over the same channel. After

a predetermined period of time a uull message can be sent in case no rcal rnessage is

sent. Misra [Misr86] also suggested the demand driven technique, in which a process

sends a rcquest to its predecessor for the lower bound on the timc of its next output

ulCssage.

Several versions of the previous algorithm have been suggested. Su and Seitz

[Su89] suggested a lazy message technique, in which severa! consecutive uuIl messages

are replaccd with one null message. Nicol [Nico88] proposed the use of a future List.

15



(

(

Each process~ making use of its input list, can estimate the lower bound on the

timestamp of the next message. This estimate, defined as lookahead depends on the

service time of the number of messages in the input queues.

Many empirical results [Nic088, Fuji89, Fuji88] have proved that a good perfor­

mance of the simulation depends on a good lookahead estimate. Intuitively. a good

lookahead reduces the processors blocking time. For cxample, if an LP has a dock

value t, and it has a lookahead 1. then this LP can predict that it will not receive any

further message with a timestamp less than t +1. The LP would be safe to proccss aIl

pending events with timestamp less than t + 1. The problem with using lookahead is

that it requires knowledge about the model, which is not possible sometimes without

a. pre-computation

While previous algorithms avoid deadlocks, others detect and break thenl. Un­

like the dcadlock avoidance approach, this approach does not prohibit cycles of zero

timestamp increment. The first such algorithm was presented in [Misr82]. The algo­

rithm uses diffusion computation to detect whether a givcn node is a part of a cycle

or a knot. The algorithm uses special messages, called probes, that are sent along the

outgoing edges of the nodes in the graph. The deadlock can be broken by observing

that the smallest timestamped message in the entire system is always saIe ta process.

The problem with this approach is that it is clifficult to decidc whcn such an aigorithrIl

should be cmployed: if the algorithm is used too frequently, thcn it [night degrade

the performance of the simulation. On the other hand, if a deadlock is not broken

quickly, the performance of the simulation will aiso deteriorate.

Lubachevsky [Luba88] proposed another alternative conservative scheme based on

the idea of bounded lag (BL). The BL algorithm uses a moving time window in which

onlyevents whose timestamp lies in the time window are eligible for processing.

The BL algorithm suffers from two problems: (1) the smallest timestamp of aIl

cvents in the system has ta be computed periodically and sent to ail processes which

adds synchronization overhead on the simulation; (2) the size of the time window

16



(

is critical to achieve good performance. Finding the adequate size of the window

requires knowledge about the application.

2.4 Load Balancing

In a distributed system, it. is likely that sorne processors are heavily loaded while

others arc lightly loaded or idle. Efficient utilization of parallei computer systems

requires that the job being executed he partitioned over the proccssors in an efficient

way.

lu the general partitioning problem, one is given a parallel computer systenl (with

a specifie intcreonneetion network) and a parallel job or task composed of nlodulcs

or units that communicate with each other in a spccified pattern. One is required to

map the modules into the processors in a way to minimize the total exccution time.

The mapping or assignrnent can he categorized as being either static or dynamic.

The static approach 1 assumes a priori knowledge of the execution time and cornnluni­

cation pattern of the simulation, and the task-to-processor rnapping is dccidecl ahcad

of run-time. The clynarnic approach, in contrast, moves jobs or modules between

processors nom time ta time, whenever this leads to improved efficiency.

In this section, a general review of the field of load balancing is presented with

emphasis on the work done in the context of PDES. The first subsection describes

sorne approaches and solutions to the problem of static partitioning. The second

subsection outlines sorne algorithms for dynamic load balancing.

2.4.1 Static Load Balancing

(

This subsection briefiy reviews sorne of the previous work donc on static load balanc­

ing. Aigorithms for this paradigm rely on a priori knowledge of the computation and

1Also known as static partitioning, compile time partitioning, and mapping problem [Tant85,

Bouk94].

17



(

(

conlmunication cost for each task in the system.

In terms of graph theory~ the problem can be described as follows:

Given a weighted graph G with costs on its edges, partition the nodes of

G into subsets no larger than a given maximum size, 50 as to rninimize

the total cost of the edges' cuts and the difference in the subset weights.

Weights on nodes and edges represent processing and communication cast.

Since the problem is known to be NP-complete [Gare79], heuristics [Bokh81,

Bokh87, Ni85] have been developed to obtain suitable partitions. Kernighan and

Lin [Kern70] proposed a 2-way partitioning algorithm with constraints on the subset

size: given a graph of 2n vertices (of equal size), the algorithm splits the graph into

two subsets of n vertices each with minimum cost on ail edges cut. The aIgorithm

starts with any arbitrary partition A, B of the graph and tries ta decrease the initial

external cost by a series of interchanges of subsets of A, and B. The extcrnal cost

defines the sum of connections between the two partitions. Using the 2-way partition

as a tool, the authors extended the technique ta perform a k-way partitions on a. set

of kn objects.

Bokhari [Bokh81] studied the mapping problem on a Finite Element Machine

(FEM).2 Starting with a. random initial mapping, the heuristic algorithln procceds by

sequences of pairwise interchange between processors till the best Inapping is found.

Wei and Cheng [Wei89] proposed a partitioning approach callcd the ratio eut. Their

algorithm runs by identifying c1usters in a circuit, and avoids any cut through these

clusters.

Most of the previous approaches ta the partitioning problem are suitable for rc­

stricted applications, but they don't quite satisfy the properties of parallel simulation

because of the synchronization constraint among processors. Static partitioning for

paralle1 simulation has recently became a focus of research.

2The Finite Element Machine is an array of processors used to solve structural problcms.

18



(

(

Nandy and Loucks [Nand92] presented a partitioning and mapping algorithnl for

conservative PDES. The objective of the algorithm is to reduce the communication

overhead and to evenly distribute the execution loa.d among aIl of the processors.

The algorithm starts with an initial random allocation of processes to clusters, and

then iterative1y maYes processes between c1usters until no further improvement can

be found (a local optimum). A process is moved if its reallocation does not violate the

size constraint of the processor. Using the proposed algorithm, three small circuits

were partitioned, mapped, and simulated on a network of transputers. Results showed

a 50% improvement in the simulation performance over random partitioning.

Rccently, Sporrer and Bauer [Spor93] have presented a hicrarchical partitioning

for the Time Warp simulation of VLSI circuits called the :: Corolla partitioning:~. The

objective of the algorithm is to minimize the number of interconnecting signais while

keeping the size of partitions nearly equal. The basic idea of the algorithm is to dc­

tect strongly connected regions and use them as indivisible cOlnponcnts, calleel petais.

for partitioning. The algorithm uses an hierarchical method which, in the first step.

creates a fine grained clustering of the circuit with a nlinimum nunlbcr of interconnec­

tions. regardless of the size of the partitions. In the second step: equal sized partitions

arc formcd at a coarse grained level based on the connectivity matrix. To cvaluate

the partitioning algorithm, comparison was donc with three other partitioning algo­

rithms (Fidu82, Hilb82, Smit87]. Six benchmark circuits were partitioned and rated

with four diffcrent algorithms. The simulation was run on a nctwork of SunSparc

2 workstations connected via Ethemet. The achieved speed ups wcre almost lincar

even for large numbers of partitions.

Another approach for static partitioning known as simulated annealing (SA) was

proposcd by Kirkpatrick et al (Kirp83]. The SA algorithm draws upon an analogy

with the behavior of a physical system in the presence of a heat bath. The algorithm

uses an. adaptive search schedule to find a good partition (near optimal). Starting

with an initial partition, the algorithm moves processes between processors until a

19



(

(

termination or equilibrium condition is met.

Recent work on partitioning using simulated annealing appeared in [Bouk94]. The

authors proposed an objective function ta evaluate the quality of the partitioning so­

lution generated by the algorithm. The objective function depends on inter-processor

communication, the distribution of loads, and the number of nuU messages between

processors. A set of experiments were conducted to fincl the impact of the partition­

ing algorithm on the performance of a conservative simulation using null nlessages.

The authors usecl an Intel iPSCji860 hypercube as a platform for the simulation. In

the experiments, a queuing network model in the form of a toms with FCFS service

distribution was used as a benchmark. Results showed a 25-35% reduction in the exc­

cution time of the simulation using the proposed algorithm over random partitioning

when 2 and 4 processors are used.

2.4.2 Dynamic Load Balancing

The literature is rich in general purpose dynamic load balancing algorithIIls [Lu86,

Iqba86, Ande87], but onlya handful of these algorithms apply to PDES.

In [Shan89], the author presents a simple dynamic load balancing for conscrvative

simulation. Three phases take place in his dynamic allocation scheme. In the first

phase. the process(es) which need allocation are identifiecl: thesc are the processes

whose service times faIl outside a predefinecl interval of service time. In the second

phase, process(es) which should he migrated are identified: processes identified in

phase one which have predecessors or successors on different processors are consid­

crecl for reallocation. The third phase is for identifying the processors to which the

process(es) are reallocated: processors containing successors or preclecessors for se­

lected proccsses will be chosen first. The algorithm was tested on two logical systems

(pipelines) on an iPSC Hypercube with 4 nocles. Experiments showed tbat whcn us­

ing the loarl balancing algorithm, the running time of the simulation is reduced only

20



(

c

when the system exhibits a non-uniform distribution of messages.

Boukerche and Das [Bouk97] presented adynamie load balancing algorithm for

conservative simulation using the Chandy-Misra[Chan79] Dull Inessage approach. Thcir

algorithm uses the CPU queue length as a metric~ that indicates the workload at each

processor. In their approach, a. Load Balancing Facility (LBF) is implemented in two

separate phases: load balancing and process migration. In the first step of the al­

gorithm, every processing element in the simulation sends the size of its CPU queue

length to a central processor in which processors are classified according to the devi­

ation of their respective queue lengths from the mean. The second step for the loael

balancer is to select the heavily overloaded processes from the heavily overloaded pro­

cessors. Experiments were conducted on an Intel Paragon A4. The authors chose an

N x N torus queuing network model with an FCFS service discipline as a benchnlark

in their experiments. Their results showed approximately a 25-30% reduction in the

simulation time using dynamic load balancing over a random static partitioning whcn

2 processors were employed. A reduction of 40% was observed when the numbcr of

processors incrCélSes from 4 to 8. Similarly~ the authors obscrved a. 50% rcduction in

the run timc when changing the Humber of processor from 8 to 16. The authors also

rcported a. reduction in the synchronization overhead a with dynamic load balancing:

whcn less than 4 processors are used, the reduction was approximately 25-30% in the

synchronization overhead. When 8 and 16 processors were used, the reduction was

10-40%.

Durdorf and Marti [Burd93] deal with the problem of dynamic load balancing for

the RAND Time Warp system. The system runs on a set of workstations sharcd with

othcr users, which creates a large variation in the loads depending on the number

of users and processes. Initially, the static balancer assigns objects to processors

according to the load, which is gathered by running a presimulation. During the

3Defined as the number of null messages processed by the simulation using the Chandy-Misra

mill-message approach divided by the number of real messages proccssed.

21



(

(

simulation, the balancer records the smallest simulation time of aIl objects on each

machine. To minimize rollbacks, the dynamic load balancer seeks to minimize the

variance between the objects' simulation times. The authors presented four schemes

for load balancing: three of them use Local Virtual Time (LVT) as a metric, and the

fourth uses the ratio of total processed messages to the total number of rollbacks.

The algorithm was implemented on a simulation of colliding shapes uloving in a

constrictcd space. Th.cy report that using the average of processed messages was not

feasible for their simulation, while the best results were achievecl when objects which

a.re furthest ahead are moved to machines which are furthest behind, and objects

which arc furthest behind are moved to machines which are furthest ahead. Results

using the dynamic load balancing strategy showed a five to 10 times performance

irnprovcment over simulation with only static balancing.

Schlagcnhaft et al [Sch195J describe a dynamic load balancing a.lgorithrn for Tirne

vVarp VLSI circuit simulation. The algorithm consists of three cornponcnts: (1) load

sensor; (2) load cvaluator~ and (3) load adaptor. The load sensor computes the

Virtual Tirne Progress (VTP) for cach simulation process. The VTP refiects how

fast a siululation process progresses in virtual time. The load sensor first calculates

the Integrated Virtual Time (IVT) at the end of each simulation stcp. The IVT of a

processor is defined as the average of all of thc virtual times of the clustcrs rcsiding

on that processor. The VTP during a time interval [Tl, T2] is then computed as the

change in the IVT per unit real time. The load evaluator decides whether to launch

proccss migration or not, depending on ratio between the actual and the predicted

VTP; if the ratio is big enough (migration is worthwhile), then load balancing is

initiated. Process migration is then controlled by the load adaptar. The authors

simulated one logjcal circuit (s13207 [BrgI89]) on two processors shared with other

users. Corolla partitions was used to partition the circuit into sUlall c1usters with

many of them mapped to each processor. The results showed that the aIgorithm

reduces the lag between the VTPs of the processors which resulted in an increase in

22



(

the advance of the GVT, and hence a 24% reduction in the simulation time.

Reither and Jefferson [Reit90] presented adynamie load balancing algorithm for

the Tirne Warp Operating System (TWOS). Theil' algorithm was tested on battlcfielcl

simulation in which objects are created and destroyed concurrcntly. For this imple­

mentation, dynamic load balancing was necessary in order to ensure good assignment

of the new abject ta processor, and ta balance the load after sorne abjects have been

clestroyed. In their si~ulation, the life span of an object is divided into phases. which

ca.n l'un on different processors. Each phase is responsiblc for handling an object 's

data and variables for one interval of virtual time. The algorithm tries to balance

the 10~l.d using an estimate of effective work, defined as the portion of the work that

will not be rolled back. The authors tested their algorithm on two simulation nlodels:

a military simulation and two-dimensional colliding pucks simulation. Theil' results

showed that speedups for the pucks simulation are equal to or less than the normal

speedups because of the relatively even balance of pucks. Because of the inhercnt im­

balance in the battlcfield simulation, the dynamic load balancing algorithm improvcd

the speedup by 25%.

Glazer and Tropper [Glaz93] introduccd the notion of a tirnc slice and simulation

a.dvance rate (SAR) in their work on dynamic load balancing. The purposc of the

dynamic load balancer was to reduce the number of rollbacks, and hence reduce the

simulation time. Ta this end, the SAR is computed at each processor and sent ta

one dedicated processor. The SAR is defined as the advance of the simulation dock

divided by the CPU time needed for the advance. The load of a process, derived from

its SAR, is a measure of the amount of CPU time it requires to advance its local

simulation dock by one unit. The length of the time slice for a process is deternlÎned

by its load: each process is given time slice proportional to the ratio of its load to

the mean of ail of the loads. To evaluate the performance of the algorithm, three

different simulation models were constructed, representing different classes of Inodels:

a pipeline model, an hierarchical network mode! and a distributed network model.

23



(

(

Expcriments were conducted on PARALLEX, an emulation of a parallcl sinltllation

on a uniproccssor machine. The authors reported a 16-33% decrease in rollbacks and

19-37% increase in the simulation rate when only 8 processors were used. Rcsults

showed better improvement when the number of processors was increased: 42-71%

and 47-49% decrease in the rollbacks when using 16 and 32 processors respectively,

in addition to 30-39% and 49-65% increase in the simulation rate.

Most recently. Carothers and Fujinloto [Caro96] proposcd a load distribution sys­

tem for background execution of Time Warp. The system is dcsigncd ta use the

Cree cycles of a collection of heterogeneous machines to run a Time Warp simulation.

Their load management policy consists of two components: the processor allocation

policy and the load balancing policy. The processor allocation policy is used to deter­

rnine the set of proccssors that can be used for a Time Warp simulation. This set is

computed dynanlically throughout the sinlulation. A processor is added or rcrnoved

from the set when an estimate for the Time Warp execution time on that processor

falls bclow or moves above certain thresholds. As in [Glaz93L the metric uscd was

the Processor Advance Time (PAT), which refiects the amount of real time uscd to

make a one unit advance in virtual time. Using the centrally collectcd PATs, the

load balancing policy tries to distribute the load evenly over aIl processors. An initial

impiementatioll of the algorithm was implemented on a set of ninc Silicon Gra.phics

rnachines, one of which was dedicated to dynamic load management. The Tirnc Warp

application usecl in the experiments is a simulation of a personal communication ser­

vices network. The authors experimented on two different parameters: timc-varying

external workloads, and changing the usable set of processors. In the first set of

experiments, half of the processors experienced a monotonie increase in the external

workload which results in c1uster migration into other processors. Rcsults showed an

improvement in the simulation tinle of up to 45%. To see how the system rcacts to

the change in the usable set of processors, a '~spike" workload was added to four of

the cight workstations. The authors observed a small improvement in the simulator

24



(

(

efficicncy and in the reduction of the simulation time. This minor improvemcnt was

believed to be the result of the extra overhead of considering inactive processors in

the computation of GVT. A dclay in the GVT computation would result in a merIlory

shortage on active processors sinee memory is not rcclaimcd fast cuough.

Avril and Tropper [Avri96] studied dynamic load balancing for Clustered Time

Warp. To measure the load, the authors defined the "load of a cluster1~ to be the

number of events which were processed by the cluster since the last loacl balance in

the simulation. The load of a processor is then computed as the SUffi of aIl of the

loads of aU of the c1usters residing on the proccssor. The authors dcscribe a triggering

technique based on the throughput4 of the system: the load balancing algorithm is

triggered only when overall incrcase in the throughput of the system becomes larger

than the cost (in terms of throughput) of moving the clusters. The algorithm was

implemented and its performance was measured using two of the largest benchmark

digital circuits of the rSCAS'89 series [BrgI89]. Results showed an improvcmcnt of

40-100% in the throughput of the system when dynamic load balancing was used.

The authors observed that minimizing interprocessor's cornmunications when rnoving

c1ustcrs rcduce the nurnber of rollbaeks, but does not improve the throughput.

"Defined as the number of non-rolled-back message events pcr unit time.

25



(

(

2.5 Clustered Time Warp (CTW)

An implementation of our algorithm for load balancing was developed for Clustered

Time Warp (CTW) [Avri95]. CTW is a hybrid algorithm which makes use of Time

Warp between c1usters of LPs, and a sequential algorithm within the cIuster.

Logic simulation has always been a challenge for Time Wal'p because of two pri­

ulary pl'oblems: memory management [Fuji89] and unstable behaviol' [Luba89]. The

Ulemol'Y management problem arises as the result of the large numbel' of LPs in the

simulation: a circuit can consist of hundreds of thousands of gatcs (LPs). Since each

LP must regularly save its state to overpass a rollback, it is possible that the simula­

tion might l'un out of memory. Fossil collection algorithm cannot reclainl spacc fast

enough for the siIIlulation to continue. Several schemes were developecl to solve this

problem including the use of the cancelback protocol and the use of artificial rollback

[.Jeff90].

Logic simulation also exhibits unstable behavior because of low conlputational

granularity: messages are small, and the service time is in terms of nano-seconds

(bit-wise operation); messages flow very quickly from one process to the other; an­

timessages cannot annihilate previously sent messages quickly enough, possibly lcad­

ing to cascacling rollbacks [Avri96].

To reduce memory consumption and to avoid cascacling rollbacks. CTWassernbles

ulany LPs into one cluster. Administration is executed on the c1ustcr level. rather

than on the LP level, which leads to a less scheduling overhead. Message cancellation,

executed on the level of c1usters, helps to avoid cascading rollbacks. Next section

describes the structure and the mechanism for CTW. The last section introduces

variations of CTW.

26



(

Cluster Envlronment...
Cluster
Output
Queue

c

State
Queue

Figure 2.5: Cluster Structure

2.5.1 Cluster Structure and Behavior

Each c1uster in Clustered Time Warp is autonomous: it receives messages, proccsses

cvents, saves states and messages, and roUs back in case of a stragglcr or anti-ruessagc.

A cluster consists of one or more LPs (gates), a Cluster Environnlcnt (CE), a. Time­

zone table, and a Cluster Output Queue (COQ). The COQ holds the output messages

of the c1uster and is used in case of rollback. The CE is the manager of the' Tinlezone

table and the COQ. Figure 2.5 shows the complete structure of a c1uster with four

LPs.

Initially, the c1uster timezone consists ouly of the interval [0, +00[, and is updatcd

over time. Whcn a c1uster receives an event with a timestamp t, it determines which

timezonc t fits into, and divides it into two timezones, [ti, t[ and [t , ti+d.

Each LP in the cluster keeps its Local Simulation Time5 (LST), as weIl as the time

of the last event it processed (TLE). 'Vhe~ the LP processes an event, it determines

if its timezone is different from the one of the TLE; if this is the case, then the LP

5Local Simwation Time is the same as local virtual time

27



(

(

saves its state.

When an LP tries ta send an event~ it checks the receiving LP; if this LP resides

on the same cluster, the message is inserted into the input queue of the receiving LP:

if not~ the message is handed ta the CE which takes care of forwarding the message

to the c1uster in which the rcceiving LP is located.

"Vhen a cluster receives a straggler with timestamp ts • the CE creates a new

timezone~ and rolls back aIl of the LPs with TLE greater than ts • After the rollback~

a ,~ coast forward" is executed at the LP level. The c1uster will hehave sinlilarly when

it receives an anti-message~except that it will not create a new timezone.

2.5.2 Variations of Clustered Time Warp

As rnentioned previously, when a c1uster receives a straggler or a.n antirncssage. it

roUs back ail of the LPs which have processed an event with a tirncstamp larger than

that of the straggler or the antirnessage. This includes also LPs which arc Ilot dircctly

affected by the rollback. The first variation of CTW [Avri95] was intcnded ta avoid

unnecessary rollbacks: only affected LPs will he rolled back.

In the new strategy, when a c1uster receives a straggler or an antimessage~ it

llpciates its timezone table, and forwards the event to the input queue of the rccciving

LP. In this way, only the receiving LP will he rolled back. This new scheme is callcd

Local Rollback, as opposed to Clustered Rollback.

A second variation of CTW deals with checkpoint timing. Instead of saving its

state when it enters a new timezone, an LP saves its statc cach time it receives a

message from an LP located in a different cluster. Even though the new scheme

clecreases the numher of states savecl, therc is an increase in the number of events

an LP has ta keep. These events are needed for coast forward, whcn an LP is roUed

back to astate prior to the GVT. This new schenle was callcel Local Checkpointing,

as opposed to Cluster Checkpointing for pure CTW.

28



(

c

Using the preVlOUS variations, three checkpointing algorithms were developed:

Clusterecl RoHback Cluster Checkpointing (CRCe), and Local Rollback Local Check­

painting (LRLC), Local Rollback Cluster Checkpointing (LRCC). These algorithms

exhibit a trade-off between memory and execution time. Experimenta.l results about

the performance of each algorithm is found in [Avri95].

2.5.3 Load Balancing for Clustered Time Warp

Clustered Time Warp supports process migration for dynamic load balancing [Avri96].

In the original implementation of Clustered Time Warp, a. process calleel the pilot is

dedicated ta collect load information from all of the proccssors; the load of cach

processor is piggybacked on the GVT token, and forwardcd ta the pilot. Depending

on the distribution of the loads, the pilot decidcs on changing the process to processor

ulapping.

Our eurrent implementation of load balancing uses a distributed algorithm, in

which thcre is no dedieated processor. A token is passed around on Cl. virtual ring ta

aH of the proccssors, and load balancing is donc when aIl loads arc insertec1 iuta the

token.

29



(

(

Chapter 3

Metrics and Aigorithm

This ehapter provides details of the metries and the algorithm for our dynanlic load

balancing algorithm. The following section describes the two rnctrics enlploycd. Sec­

tion two dcscribes the dynamie load balaneing algorithm in detai!. Section three

describes the design issues associated with the development of the algorithm.

3.1 Metrics

Dynamic load balancing requires both a metric to cleterminc the system load and

a mechanism for controlling process migration. Icleally, the metric should not only

be simple and fast to compute, but also effective. In this section, two such rnetries

arc suggested: Processor Utilization (PU), and Processor Advance Simulation Rate

(PASR.).

3.1.1 Processor Advance Simulation Rate (PA8R)

If several (simulation) processes are interconnectecl, a cliscrepancy in their respective

virtual docks can result in an increase in the numbcr of messages arriving in the

past, and cause rollbacks. When a process is rolled back from time ti to time tj, aU

30



(

c

work performed during this time period is discarded. System resources used during

the corresponding real time interval could have been productivcly employed by other

processes.

Controlling the rate at which processes advance their corresponding virtual times

will minimize the difference between the virtual docks, and as a consequence. reducc

the number of rollbacks which occur in the simulation.

The virtual time of a processor is defined as the minimum virtual time of all the

processes residing on that processor. A processor which h<l.8 no cvents to process sets

its virtual time to infinity.

For a. system simulated in the real time interval (tstart' tend) ~ the Processor Advancc

Simulation Rate (PASR) defines the rate of advancc in virtual time rela.tive to real

tirne. Let ti and t 2 be two l'cal time values, with t2 > t l . Define STt as the simulation

tinle at l'cal time t. Let tlST denote the change in the simulation time during the

time interval (t I , t2);

tl(ST)~; = STt2 - STt1 •

The PASR is defined as:

PASR = (~ST):~ •
t2- t l

A processor with a PASR higher than average is susceptible to being l'oUed back

because it is ahead of other processors in virtuai time. If it is slowed clown, the

frequency with which it is rolled back by other processors might well dccrcase. Figure

3.1 shows an example of two processors with different PASRs. A message m sent from

Pl to P2 will force P'2 to roll back to a virtual tinle previous to vtl, since the timestarnp

of m is vtI . P2 then has to cancel an the previous work done in the (t2, tt} l'cal tirnc

interva1. Hence, moving sorne load from processors with high PASRs ta others with

low PASRs should speed up the slow processors and slow down the fast ones.

31



(

c

Virtual
P2

Time
vt2

Pl

vt,

Real Time

Figure 3.1: Processors with different PASRs.

3.1.2 Processor Utilization(PU)

A Humber of researchers [Hac87, Tant85, Wang85] feel that it is best to nlaximize

the available parallelism in the system by keeping processor utilization as high as

possible. For systems where no a priori estimates of load distribution arc possible, only

actual progranl cxecution cao rcveal how much work has been assignecl to inclividual

proccssors.

Let us define effective utilization [Reit90] as the proportion of work donc by a.

processor which is not roHed back. Unfortunately, it is impossible for a processor ta

determine the effective utilization at a given point in the simulation since it might

rollback later and cancel aIl of the work that has been done. In [Reit90] an estimate

of the effective utilization is used for load computation. Consequently wc make use

of the processor utilization (PU), defined as the rat.io of the processor's cornputa.tion

time (in seconds) bctween t 1 and t2 to t2 - tl;

PU = computation time in (tl,h)
t'2 -tl

Processor utilization allows for the fact that messages in the system might he of

32



(

(

different size. and might require different service times. It also accollnts for the fact

that two processors might advance thcir virtual docks hy the sanle valuc~ evcn if the

cornputation time is different.

3.1.3 Combination of PU and PASR

A combination of the two metrics, p~~R' was also tested in our experiments. The

comhination was intended to increase the utilization of the processors. while main­

taining maximum advance simulation rate and nIinimizing the Ilunlbcr rollback.

3.2 Algorithm

A clifficulty in the load balancing of a distributed application is the absence of global

information on the load of the system. We employa (distributed) algorithm to collcct

the relevant infortnation about proccssors' loads in our load balancing algorithrn.

Our algorithm uses a token which circulates to each processor on a. logical ring

[TaneS1]. At each processor, the PASR, the PU and the P~~R ( aIl referrecl to as

LûAD later) are inserted into the token.

Assume that there are n processors in the system. Initial1y, the token is launchecl

by processor one (1). When it gets ta processor n, data from all of the processors will

he stored in the token. Processor n, called the host, will he able to identify overloacled

and underloaded processors. The token will remain in processor n for a period1 of

time after which it is launched again. After the next round, when the token rcaches

processor n -1, data from aIl of the processors will be contained in it. and hencc n-1

becomes then the next host.

At the end of each round, the host processor computes both the mean and the

standard deviation of aU of the LüADs. The new mean is then compared with the

1Wc dctermine this time period cxperimentally. See section 3.3.1 for a discussion.

33



(

(

Illean from the previous round (stored in the token). If the new mean is larger. this

indicates that the performance of the system is improving (increase in the PU or the

PASR). and the system is left intact. The hast sets a count-down timer which triggers

the token again after {3 2 GVT computations. If the new mean is smallcr than the

mean from the previous round! the host checks the standard deviatioll of the LOADs.

If the standard dcviation is found to be larger than a certain tolerance value. a:J. then

a new process to processor mapping is assumed to he necessa.ry. The host lllatches the

processor with largest load together with the least loaded one and sends a message

to the over-Ioaded processor with the name of the destination processor to which

it should transfcr sorne of its load. The load to he moved is equal to half of the

clifference in the loads hetween the two matched processors. The stéuldard deviation

of the loads is computed again! and another pair of processors is [natchcd. This

process is repeated until the standard deviation is less than the value 0'. When aIl

llligrations are completed! the host starts the tirner for the next round of the token.

3.2.1 Pseudo Code

This section presents the basic functions for the dynamic load balancing algorithme

The skeleton of the algorithm is prescnted next in a C-fornlat la.nguage.

function Serve-Token(token)

{

Insert processor's LOAD into the token.

if (token contains loads from aIl processors){

MeanLOAD = E~-, ~O.4.Di /* Il is the number of processors */
if(MeanLoAD ~ token.(previous MeanLoAD))

2Tbe value of the constant {J is determined expcrimentally (10 GVT computations).

J A value of 25% for cr was round feasihlc for our expcriments.

34



(

(

/* The perfonnancc of the system is improving */

Set-Timer( );

else {

StD= (standard deviatioll of LOADs);

if (StD < tolerance cr)

/* cr was taken to be .25, a value detennined experimentally*/

Set-Timer();

cIse {

matchProcessors() ;

while (processors are still transferring processes)

wait();/* Processor can proceed with other computations. */

Set-Timer();

}}}else

pass the token to the successor on the virtual ring;

}

function Set-Timer(); {

wait(,B computations);

Initialize (NewToken);

Scrve-Token(NewToken);

}

function matchProcessors()

{

StD = (standard deviation of LOADs);

while (StD ~ tolerance cr){

sourceProc=processor with the highest LüAD;

destinationProc=processor with the lowest LOAD;

35



(

(

loadToN[ove - LOAD(sourceProc)-LOAD(destinationProc).
- 2 ~

scnd-message(moveLoad,loadToMove,destinationProc);

update LüADs of sourceProc and destinationProc and recornpute StD:

}

}

3.3 Design Issues

Designing a proccss migration system involves resolving a Ilumbcr of issues such as

which c1uster to rnove: when the dynamic load halancing algorithm should he invokccl.

and what the maximum number of processors which are allowcd to transfer load (at

thc end of each round) should he. These issues are all interrelated. and their rcsollltion

also depends on the simulated model. Wc provide a discussion of these issues in the

following sections.

3.3.1 Token period, f3

The algorithnl periodically sencls out a token to collect the necessary inforrnation

from all of the processors, and at the end of cach round the host decidcs whether

a process migration is needed. The time interval {J between two consecutive token

rounds (token period) should be long enough to allow the system to stabilize after the

previous load balance, but should he short enough to prevent the system froID being

unbalanced for a lengthy period of time.

During the course of the experiments, a token period of 10 GVT4 computations

was employed. This value was found feasible for our models. This value is partially

detcrmined by the systems being simulated, in addition to the time it takes for a

4Thc GVT computation was initiated every 3 seconds

36



(

(

GVT computation: the longer it takes to compute the GVT~ the shorter the token

period should be.

A rclated issue is the determination of Q. Transfer of c1usters occurs only if the

difIerence of the standard deviations is less than Q. We used a value of Q = .25.

c1etermined experimentally.

3.3.2 Selecting the Clusters (Processes)

Thcre is a trade-ofI between achieving the goal of cornpletely balandng the load

and the coulmunication costs associated with migrating processes since transfcrring

c1usters takes time. When determining which c1uster to move~ our implculCntation

chooses the c1uster with the highest LOAD so as to mininlize the number of c1usters

Inoved~ assuming that the load of the c1uster does not exceed the intcnded loacl ta

move.

3.3.3 Number of Processors that can initiate migration

Theoretically, the load balancing algorithm should distribute the loads on aU of the

processors as uniformly as possible. However, migrations from too many processors

can cause the system to become unstable. In our experiments, wc observed that

approximately 30% of the processors can launch nligration at one time without jeop­

arclizing the stability of the system.

37



(

c

Chapter 4

Results and Discussion

4.1 Introduction

This chapter presents the simulated models~ experiments and results using the algo­

rithm and metrics presented in the previous chapter. The load balancing algorithm

was implemented on top of Clustered Time Warp. In our experiments~we made ex­

clusive use of the LRCC checkpointing technique which ofIers and intermediate choicc

in the rnemory vs execution time trade-off. The simulations wcre executecl on a BBN

Butterflyl GPIOOO, a sharccl memory nlultiprocessor machine. A set of nlodels~ bascd

011 VLSI circuits, assembly pipeline and distributed comrIlunication Ilctworks. wcre

simulated.

IThe Butterfly is an MIMD machine with 32 processor node. Each nodc has an MC68020 and

MC68881 processors with 4 megabytes of memory and a high-speed multistage crossbar switch which

interconnects the processors. The dock speed of eacb processor is 25 MHz.

38



(

c

Circuit Inputs Outputs Flip-Flop Number of gates

C2 838584 12 278 1.452 20.996

C3 838417 28 106 1,636 23,950

Table 4.1: Circuits from ISCAS 189

Two digital circuits frOID the ISCAS'89 [BrgI89] benchmark suite (Table 4.1) were

selectcd and simulated. The size of cach of these circuits is approximatcly 24.000

gatcs. The circuits were partitioned into 200 clustcrs each. using string partitioning

[Lcve82]. Clusters were nunlbered arbitrarily and were mappccl to processors as fol­

lows: if lV is the number of processors, and [{ is the numbcr of clusters (K > lV).

then the first ~ c1usters were assigned to processor numbcr L the second ~ c1usters

were assigned to processor number 2, and sa on so forth.

The data which was collected inc1udes the running time, peak memory usage. and

effective throughput. The performance of the algorithm was evaluatcd using betwcen

12 and 24 processors on the Butterfly.

4.2 Experimental Results.

Figures 4.1 and 4.2 show the simulation time for the two circuits C2 and Ca. plotted

against the number of processors. Results arc compared to the sinlulation without

load balancing. The same number of input vectors were used for aU of the sinnI1a.tions.

Figure 4.1 depicts the performance of the metrics and the algorithm for C2: 35-72%

rccluction in the simulation time when PU is used as a metric, 0-30% when PASR

is used and 0-40% when PU * plsR is used. As for C3 , the results are as follows:

2-21% when PU is used as a metric, (-5)-16% when PASR is used and 0-15% when

PU * plsR is used.

Wc attributc the difference in the percentage of rec1uction in the simulation time

39



(

c

Figure 4.1: Simulation time for C2

C3 B3 PU

E!:I PASR

1200 1 E!3 PU/PASR

Btl No L-B
1000 ...,

CI) 1

"C
c: 1

~ BOO 1
i 600 l

400 1
200 1

12 14 15 16 17 19 22 24
processors

Figure 4.2: Simulation time for C3

40



(

(

between the two Inetrics to the locality of activity. "Vhen the system exhibits a high

locality of activity~ PU will increase on sorne processors. UIlclerloacled processors can

quickly process the events generatecl by a more heavily loacled processor resulting in

the saUle PASR, but a different PU. This also explains why the improvements for C2

decline with an increase in the number of processors sinee the activity of the circuit

is spread out when using more processors.

To understand the difference operation of the load balancing algorithm between

C 2 a.nd G:J, and why dynamic load balancing might sometimes incrcase the running

time of the simulation (employing the PASR with Ca), wc looked at two other cle­

ments: peak mernory consumption and the effective throughput. The peak memory

consumption is the average of the peak memory consumption in aIl of the proces­

sors. On each processor, it represents the maximum amount of memory used over the

course of a. run of the simulation. The effective throughput is defined as the Ilumber

of non-rolled-back messages in the system per unit time.

Researchers on UlCIDOry cansumption far Time Warp [.Jeff85, Lin91, .Jcff90, Akyi92]

have pointccl aut that there is a time penalty associated with large space cOIlsumption.

and that it is possible far a simulation to run out of memory. Memory management is

time consuming; a heavily loaded pracessor must spend considerable time on memory

managculcnt.

By looking at figures 4.3 and 4.4, one can see that dynamic load balancing reduced

peak rnenlory consumption for G2 , but increased it for G:J• Circuit C2 has a highcr

locality2 of events than does C3 , hcnce moving c1usters and associated events from

the loaded processors in C2 decreases the peak memory consumption. As for G:J, the

activity of the circuit is much more distributed, and hence moving clusters might

create a memary problem.

2Au expcriwcntal study about tbe activity of the sallie two circuits cau he found in [Avri96].

41



(

C2

1800 ...,
E!3 PU

E!!3 PASR

~ PUIPASR

~ NoL-B

24221916 17
Processors

1514
600 ~---------------------

12

Figure 4.3: Peak memOr1.J consumption for G2

C3 ~ PU

H!3 PASR
1400

~ PU/PASR

E!!3 No L·S

m1200

>.
.Q ,

g1000 J
~

.5

f800 l
~ 600 1

.J
12 14 15 16 17 19 22 24

Processors

(
Figure 4.4: Peak memory consumption for G:J

42



(

C2 E!3 No L-B

~PU
700

650 781 976 1163 1353 1533
Simulation Time

457234
o~-------------------

38

Figure 4.5: Throughput Graph for O2

Wc also examined the effective throughput of the system. Figures 4.5 and 4.6

show the impact of the dynamic load bahulcing algorithm on the effective throughput

of the systenl during the simulation of C2 and C:1• The figures show a run of the sim­

ula.tion using the PU metric. Both figures show a noticeable increasc in the effective

throughput of the system. This increase is counter-balanced in Ca by an increase in

the memory consumption.

4.2.1 Increase in rollbacks

c

An increase in rollbaeks was observed (up to 20%) when load balancing was cmployed.

This inerease was expected sinee moving c1usters slowed clown the source and the des­

tination processors; when these processors resume computation they might weIl send

messages into the "past" of processors which were not involved in moving c1usters.

In addition, it is sometimes the case that the virtual time of the migrated c1uster is

snlaller than the virtual time of the receiving processor. This results from the fact

that the receiving processor is lightly loaded, and is aheacl in virtual time.

43



(

C3 ~ NoL-B

~PU
1200

196171106 137 159

Simulation Time
7645

0-'------------------------
13

Figure 4.6: Throughput Graph for G:J

4.3 Pipeline Model

c

A second model which was simulated is a manufacturing pipeline (figure 4.7) [Glaz93].

The moclel consists of thirty processes, including two sinks and two sources~ arranged

in nine stages. Each process was represented by a c!uster of 625 logical pracesses

conncctcd in a mesh topolagy~ and c!usters at the same stage were mappcd to the

same processor. Messages in the system flow from sources ta the sinks. fallowing

cLifferent paths. At each stage, the message is served and forwarded to the next stage,

until it gets to the sink, where it leaves the system. The service time distribution

is deterministic and the routing decision at each stage is governed by a uniform

distribution. The pipeline model exhibits a large number of rollbacks which are caused

by messa.ges starting at the same source, following clifferent patlls~ and arriving at

the same processor in a (possibly) different order from the one in which they were

generated.

Figures 4.8 and 4.9 show the results from the pipeline model. When dynamic load

balancing was used, the simulation showed an increase in the percentage of rollbacks,

44



(

Figure 4.7: Manufacture Pipeline Model

Pipeline Model

25

20

CD
~ lS-C
~
Q) 10

Q.

5

o
PU PASR PUIPASR

( Figure 4.8: Percentage Increase in the Number of Rollbacks

45



(

Pipeline Model

PU PASR

c
.2 -2
'0
;:,
'C
CDa: -4

ë
CD

~ -6-C
~
8? ·8

·10

Figure 4.9: Percentage Reduction of the Simulation Time

and an increase in the simulation time. Figure 4.8 shows that the number of rollbacks

increased by 20% when the PU metric was used, 18% when using the PASR and 17%

when a combination of the two metrics was used. The inerease in the percentage

of rollbacks results frOID the fact that moving c1usters from one stage (proccssor) ta

another will cause delay on sorne of the input links of the next stage (proeessor).

Figure 4.9 shows that the simulation time inereased by 8% when using clynamie

load balancing with the PU metrie, 0.5% when using the PASR mctric. Whcn using

the combination of the two metrics, the simulation time did not change. The increase

in the simulation time is explained by the increase in the number of rollbacks in the

system.

4.4 Distributed Network model

The final model is a distributed communication model (figure 4.10) . Two kinds of

experiments were conducted on the mode!. In the first experiment, messages are

46



(

Figure 4.10: Distributed Network ModeZ

uniformly distributed on the network. The second experiment moclelcd a na.tional

Coululunication network divided into four regions. In this mocleL we expcrinlCnted

with the reaction of dynamic load balancing ta a continuous change of loads on

the proccssors. During the course of the simulation, messages were concentrated on

different regions, one region at a time. For instance, at one point messages were

concentrated in region 1, and regions 2, 3 and 4 were lightly loaclecl. After a period

of time. region 2 became saturatecl with messages, and regions 1, 3 and 4 were lightly

loaclecl.

The siruulation runs on 10 processors, with 7-8 nocles mapped to each process,?r.

Interprocessor communication was minimized by mapping the connccted nodes to the

same processor. On each nocle a message is served, and with a probability of 30%,

is forwarded to a randomly selected neighbor. Nades have service times governed

by exponential distributions (with different means ), and the choicc of a neighbor to

which to forward the message is governed bya unifarm distribution.

The results in figures 4.11 and 4.12 shows a difference in the spceclup pcrccutagc

47



(

Dfstributec:l Communication Model

35 -
1

30 1
g25~
~ 1

~201
o ,

~15 ~

~ 10 J
~ 1

5 Î
o

PU PASR PUIPASR

Figure 4.11: Percentage of Reduction in the Simula­

tion Time in the Presence of Time- Varying Load.

Distributed Communication Model

o
PU PASR PUIPASR

(

Figure 4.12: Percentage of Reduction in the Simula­

tion Time in the Absence of Time- Varying Load.

48



(

(

betwcen the two experiments. Figure 4.11 shows a 30-35% reduction in the sinlulation

tinle when dynamic load balancing was employed with aIl metrics. This cornes baek

to the faet that, in the presence of time-varying load, the system is locally overloaded

with messages, and c1uster migration improves the performance of the simulation. A

rcc1uetion of only 10-20% was observed in the absence of time-varying load (figure

4.12).

49



(

(

Chapter 5

Conclusion

In this thcsis~ we examined two mctrics for dynamic load balancing: processor uti­

lization (PU) and processor advance simulation rate (PASR). A combination of the

two metrics was also tested. A distributed load balancing algorithm was devclopccL

in which a token circulating on a logical ring is used to collect the information about

the loads of proccssors, and infornl the processors about the ncw mapping. The algo­

rithnl runs in conjunction with Clustered Time Warp (CTW)[Avri95]. which allows

c1uster migration.

Ta observe the performance of the algorithm with each of the nletrics. several

rnoclels were constructed: VLSI models, an assembly pipeline model and a distributcd

comnlunication network model. Experiments were carried out on the BBN Butterfly

GPIOOO, a 32 nodc distributed memory multiprocessor. The simulation time~ memory

consumption and effective throughput were measured. The effective throughput is

the nunlber of non·rolled·back messages in the systenl per unit timc.

Results for the VLSI circuits showed that dynamic load balancing changes the

simulation time between (-5) and 71%. As for the pipeline model, the simulation

time increased by 0.5-8.0% when load balancing was employed. Load baléulcing cx­

hibited 10-33% improvement with the distributed network model. The PU metric

50



c

performed well for all models except for the pipeline mode!. Results also showcd that

the throughput of the system was improved by more than 100% for the VLSI mode!.

The PASR and P~~R yield the same improvement as the PU for the distributed net­

work model, and better results for the pipeline mode!. Perhaps the most important

conclusion of this thesis is ta point out that the dynamic load balancing depencls

strongly on the nature of the model which is being simulated.

A Ilurnber of extensions of this research suggest thenlselves. One is ta irIlplerIlcnt

the algorithm on a. distributed memory machine. It is possible that sanIe interesting

aspects do not reveal themselves on a shared memory machine, such as the inlpact of

the communication network connecting the processing elements.

Another extension relates to the use of string partitioning for the VLSI circuits ex­

amined. One might investigate the effect of different (initial) partitioning algorithms

on clynamic load balancing.

51



«

Bibliography

c

[Akyi92]

[Ande87]

[Avri95]

[Avri96]

[Avri96]

[Bail92]

Akyildiz, LF. and Chen, L. and Das, S.R. and others. "Pcrfornlance Anal­

ysis of Time Warp with Limited Memory, Proc. 1992 ACM Sigmetrics

Conf. on Measurement and Modeling of Computer Systems, pp. 213-224.

May 1992.

Ander, E., "A Simulation of Dynamic Task Allocation in a Distributcd

Computer System", Proceedings of the 1987 Winter Simulation Confer­

ence, pp. 768-776, 1987.

Avril. Herve and Tropper, Carl. ~'ClusteredTime Warp and Logic Sirrlula­

tion" , Proc. of the 9th Workshop On Pamllel and Distributed Simulation,

pp. 112-119, June 1995.

Avril, Herve and Tropper, Carl, "The Dynamic Load Balancing of Clus­

tcred Time Warp for Logic Simulation", Proc. of the 9th WO'rkshop On

ParaUel and Distributed Simulation, pp. 20-27, May 1996.

Avril, Herve, "Clustered Time Warp and Logic Simulation", PhD Thcsis.

School of Computer Science~ McGill University~ Montreal. Canada, 1996.

Bailcy, M. L., "How Circuit Size Affects Parallelism", IEEE Trans. Com­

put. Aided. Des. Integr. Circ. Syst.12, Vol. 12, pp. 1903-1912, 1992.

52



(

[Bail94] Bailey, M. L. and Briner, .J .V. and Chamberlain, R.D.,. ··Parallel Logic

Simulation of VLSI Systems", ACM Computing Surveys, Vol. 26. No. 3,

pp. 255-295, September 1994.

[Baue91] Bauer, H. and Sporrer, C. and Krodel, T.H., "On Distributed Logic Simu­

lation Using Time-Warp", Proc. of the international Conference on Very

Large Scale Integration VLSI, pp. 127-136, 1991.

[Be1l90] Bcllnot, S., "Global Virtual Time Algorithm", Distributed Simulation,

pp. 122-127, 1990.

[Bokh81] Bokhari, Sahid H., ·'On the Mapping Problem", IEEE Transactions on

Computers, Vol. 30, No. 3, pp. 207-214, March 1981.

[Bokh87] Bokhari, Sahid H., Assignment Problems in ParaUel and Distributed

Computing, Klewer Academie Publishcrs, Boston, 1987.

[Bouk94] Boukerche, Azedine and Tropper, Carl, ·'A Static Partitioning and Map­

ping Algorithm for Conservative", Proc. of the 8th Workshop on ParaUel

and Distributed Simulation, pp. 164-172, 1994.

[Bouk97] Boukerche, Azzedine and Das, Sajal, "Load Balancing for Conservative

Parallel Simulation", MASCOT, 1997.

[Brg189] Brglez, Franc and Bryan, David and Kozminski, Krzystof, ··Cornbina­

tional Profiles of Sequential Benchmark Circuits", Proceedings IEEE In­

ternational Symposium on Circuits and Systems (ISCAS), pp. 1929-1934,

1989.

(

~Brim91] Brimer, .J.V., "Fast Parallel Simulation of Digital Systems", Proc. of the

5th Workshop On Parallel and Distributed Simulation, pp. 71-77, 1991.

53



(

[Drin91]

[Brya77]

Briner, .J.V. and Ellis, .J.L. and Kedem, G., "Breaking the Barrier of

Parallel Simulation of Digital Systems, Proc. of the 26th ACM/IEEE

Design Automation Conference, pp. 223-226. 1991.

Bryant, R.E.. ~'Simulation of Packet CorIlmunication Architecturc Corn­

putcr Systems", Tech. Rep. MIT-LCS-TR-188, Massachusetts Institute

of Technology, 1977.

(

[Brya81] Bryant, R.E., "MOSSIM: A Switch-Level Simulator for MOS-LSr'. Pro­

ceedings of the 18th Design Automation Conference, 1981.

[Burd93] Burdorf, C. and Marti, ,l., "Load Balancing for TirIlC Warp on Multi-User

workstations", The Computer Journal, Vol. 36, No. 2, pp. 168-176. 1993.

[Caro95] Carothers, Christopher D. and Fujimoto, Richard M. and England. Paul.

"Effect of Communication Overhead on Timc Warp Performance: An

Experimcntal Study", Proc. of the 8th Workshop On ParaUel and Dis­

tributed Simulation, pp. 118-125, 1995.

[Car096] Carothers, Christopher D. and Fujimoto, Richard M.. "Background Ex­

ecution of Time Warp Programs, Proc. of the 9th Workshop On ParaUel

and Distributed Simulation, pp. 12-19, May 1996.

[Cart91] Cartcr, H. and Vemuri, R. and Wilsey, P.A. and others, "High Speed

Acceleration of VHDL Simulation, Synthesis, and atpg: Overview of the

quest Project", Spring 1991 VHDL Users' Group, pp. 85-90, April 1991.

[Cham94] Chamberlain, R.D. and Henderson, C.D., "Evaluating the Use of Prc­

Simulation of VLSI Circuits", Pme. of the 8th Workshop On Parallel

and Distributed Simulation, pp. 139-146, July 1994.

54



(

[Chan79] Chandy~ K. and Misra..J.~ "Distributed Simulation: A Case Study in

Design and Verification of Distributed ProgTams'~~ IEEE Transactions

on Software Engineering, September 1979.

[Chun89] Chung, M..J. and Chung, Y., "Data ParaUeI Sinlulation Using Time-vVarp

on the Connection Machine", Proc. of the 26th ACM/IEEE Design Au­

tomation Conference~ pp. 98-103~ 1989.

[Conc91] Concepcion, A.I and Kelly S.G.~ "Computing Global Virtual Tinle Using

the Multi-Ievel Token Passing Aigorithm" ~ Proc. of the 5th Workshop On

ParaUel and Distributed Simulation, pp. 63-68, 1991.

[Elma86] Elmagarmid, A.K., "A Survey of Distributed Deadlock Detection AIgo­

rithms". ACM SIGMOD Record, Vol. 15~ No. 3, pp. 37-45. September

1986.

[Fidu82] Fiduccia~ C. M. and Mattheyses, R.M., ~'A Linear-Time Heuristic for Im­

proving Network Partitions'~ ~ Proceedings of the 19th ACM/IEEE Design

Automation Conference DAC 82, pp. 175-181, 1982.

[Fran86] Frank, E.~ l'Exploiting Parallelism in Cl. Switch-Lcvel Simulation rvla­

chine", Proc. of the 23rd AGM/IEEE Design Automation Conference,

pp. 20-26~ 1986.

[Fuji88] Fujinloto, Richard M., "Lookahead in Parallel Discrete Event Simula­

tion" , Proceedings of the International Conference on Pamllel Processing,

pp. 34-41, 1988.

c
[Fuji89] Fujimoto, Richard M., l'Parallel Discrete Event Simulation" , Proceedings

of the 1989 Winter Simulation Conference~ pp. 19-28. 1989.

55



(

(

[Fuji89]

[Garc79]

[Glaz93]

[Gros88]

[Gros91]

[Hac87]

[Hac87]

[Hilb82]

Fujimoto, R.M.~ "Time Warp on a Shared Memory Multiprocessor~~~

Tech. Rep. TR-UUCS88-021a, Computer Science Department~ Univer­

sity of Utah~

.January 1989.

Garey~ M.R. and .Johnson, D.S., Computers and Intractability: A Guide

to the Theory of NP-completeness, W.H. Flcedman and Company, New

York, 1979.

Glazer, David W. and Tropper, Carl, "On Process Migration and Loacl

Balancing in Time Warp" ~ IEEE Trans. Parallel and Distributed Systems.

Vol. 4, No. 3~ pp. 318-327, March 1993.

Groselj, B. and Tropper, Carl, "The Time-of-NextEvent Algorithm~'.Pro­

ceedings of the 1988 Distributed Simulation Conference, SCS simulation

series, Vol. 19, No. 3. pp. 25-29, February 1988.

Groselj, B. and Tropper, Carl, ~'The Distributecl Simulation of Clustcrcd

Processes~~~ Distributed Computing~ Vol. 4, pp. 111-121, 1991.

Hac, A. and .Johnson, T . .J., "A Study of Dynamic Load Balancing in

a Distributed System~', ACM Symposium on Communications, Architec­

tures and P7'otocols, pp. 348-356, 1986.

Hac, A. and .Jin, X., "Dynamic Load Balancing in a Distributed System

Using a Sender-initiated Aigorithm", Proceedings of the IEEE-CS and

ACM SIGARCH Workshop on Instrumentation for Distributed Comput­

ing Systems, pp. 62-65, 1987.

Hilberg, W., Grundprobleme der Mikroelektronik, Oldenbourg Verlag,

Munchen, 1982.

56



(

[Horb86] Horbst~ E.~ Logic Design and Simulation~Elsevier Science Publishers B.V.

(North Holland). 1986.

[Iqba86] IqbaL A.M. and Saltz~ .J.H. and BokharL S.H., "A Comparative Anal­

ysis of Static and Dynamic Load Balancing Strategies~~. Proceedings of

the 1986 International Conference on Parallel Processing. pp. 1040-1-47~

1986.

[.Tcff83] Jefferson, D. and SowizraL H.. "'Fast Concurrent Silnulation Using the

Time Warp Mechanism, Part II: Global Control" . Tech. Rep. TR-83-204,

Rand Corporation, August 1983.

[.Teff85] Jefferson, D.R.. "'Virtual Time~', ACM Transactions on Programming

Languages and Systems, Vol. 7, No. 3. pp. 404-425~ July 1985.

[.Jeff90] Jefferson, D.R.. :"Virtual Time II: The Cancelback Protocol for Storagc

Management in Distributed Sinlulation~', Proc. of the 9th Ann. ACM

Symp. on Principles of Distributed Computation. pp. 75-90. August 1990.

[Kern70] Kcrnighan,B.W. and Lin, S., ~'An Efficient Heuristic Procedure for Par­

titioning Graphs~', Bell System Technical Journal, Vol. 49, No. 2, pp.

291-307, February 1970.

[Kirp83] Kirpatrick, S. and Gelatt~ C. D. and Vecchi, M.P. ~ ·'Optimization by

Simulated Annealing", Science, Vol. 220. No. 4598, May 1983.

[Leve82] Levendel, Y.H,. and Menon, P.R. and Soffa, S.H., "Special Purpose Com­

puter for Logic Simulation Using Distributed Processing", Bell System

Technical Journal, Vol. 61, No. 10, pp. 2873-2090, December 1982.

(
[Lin89] Lin, Yi-Bing and Lazowska, Edward D., "Determining the Global Virtual

Time in a Distributed Simulation", Tech. Rep. TR-90-01-02, Department

of Computer Science and Engineering, University of Washington,

57



(

(

Seattle~ Wa, December 1989.

[Lin91] Lin~ Y. B. and Preiss~ B.R., "Optimal Memory Management for Timc

Warp ParaUe1 Simulation:~, ACM Transactions on Modeling and Com­

puter Simulation, Vol. 1~ No. 4~ pp. 283-307, October 1991.

[Liu90] Liu, L.Z. and Tropper, Carl, ~'Local Deadlock Detection in Distributed

Simulation", Proceedings of the 1990 Distributed Simulation Conference,

SCS simulation series, Vol. 22. No. l, pp. 137-143, 1990.

[Livn82] Livney, M. and Melman, M., "Load Balancing in Honlogeneous Broadcast

Distributed System:' ~ Proc. of the ACM Computer Network Performance

Syposium, pp. 47-55, 1982.

[Lu86] Lu, H. and Garey, M.J., ~'Load-BalancingTask Allocation in Locally

Distributed Computer System", Proceedings of the 1986 International

Conference on Parallel Processing, pp. 1037-1039, 1986.

[Luba88] Lubachevsky, Boris D.. "Simulating Colliding Rigid Disks in ParaUcl Us­

ing Boundcd Lag Without Time Warpn. Distributed Simulation, SCS

Simulation Series, Vol. 22, No. 1. pp. 194-202, 1988.

[Luba88] Lubachevky, B., "Bounded Lag Distributed Discrete Event Simulation'~,

Proceedings of the 1988 Distributed Simulation Conference, ses s'lmula­

tion series, Vol. 19, No. 3, pp. 183-191, February 1988.

[Luba89] Lubachevsky, Boris D. and Schwartz, A. and Weiss, A., ~'Rollback SOUlC­

timcs Works.. .if Filtered", Proceeding of the 1989 Winter Simulation

Conference, pp. 630-639, December 1989.

[Maur90] Maurer, P.M. and Wang, Z., "Techniques for Unit-Delay Compiled Sim­

ulation", Proc. of the 27th ACM/IEEE Design Autornation Conference,

pp. 480-484, 1990.

58



(

[Misr82J Misra. .J. and Chandy, K.M., ~'A Distributed Graph Aigorithm: Knot

Detection~', ACM Transactions on Programming Languages and Systems.

Vol. 4. pp. 678-686, October 1982.

[Misr86] Misra, .T.V., ~"Distributed Discrete Event Simulation~', Computing Sur­

veys, Vol. 18, No. 1, pp. 39-65, March 1986.

[Mukh86] Mukherjee, A., "'Introduction to nMos and CMOS VLSI Systems Design~' .

Prentice Hall International Editions. 1986.

[Nand92] Nandy, Biswajit and Loucks, Wayne M., '-An Aigarithm for Partitioning

and Mapping Conservative Parallel Simulation anto Multicomputers'~,

PADS'92, pp. 139-146. 1992.

[Nata86J Natarajan, N.. ~"A clistributed Scheme for Dctecting Communication

Dcadlocks", IEEE Transactions on Software Engineering. Vol. SE-12,

No. 4, pp. 531-537, April 1986.

[Ni85] Ni, L. and et al., "A Distributed Drafting Aigorithm for Load Balancing'~,

IEEE Trans. Sof. Eng., Vol. Il, No. 10, 1985.

[Nico88] Nicol, D.M, "Parallel Discrete Event Simulation of FCFS Stochastic

Qucuing Nctworks", Proceeding of the AGM SIGPLAN Symposium on

Parallel Programming, Environments, Applications, and Languages. pp.

124-137, July 1988.

[Pcac79] Peacock, J.K. and Wong, J.W. and Manning E.G., '"Distributed Simula­

tion Using a Network of Processors", Computer Networks, Vol. 13, No.

1, pp. 44-56, February 1979.

(
[Prei89] Preiss, B.R., "The Yaddes Distributcd Discrete Event Simulation Speci­

fication Language and Execution Environment", Proceedings of the Mul­

ticonference on Distributed Simulation, pp. 139-144, 1989.

59



(

[Reit90] Reither, Peter L. and Jefferson, David, "Virtual Time Based Dynamic

Load Management in the Time Warp Operating Systeml~. 4th Workshop

on Parallel and Distributed Simulation, pp. 103-111. 1990.

[Sanla85] Samadi, B., '"Distributed Simulation, Algorithms and Performance Anal­

ysis~~, PhD Thesis, Computer Science Department, University of Califor­

nia, Los Angeles, 1985.

[SchI95] Schlagenhaft, Rolf and others, "DynanlÏc Load Balancing of a Multi­

Cluster Simulator on a Network of Workstations~', 9th Workshop on Par­

allel and Distributed Simulation, pp. 175-180, 1995.

[Shan89] Shanker, M. and et al., ··Adaptive Distribution of Model CorIlponcnts

Via Congestion", Proceedings of the 1989 Winter Simulation Conference.

1989.

(

[Smit86]

[Srnit87]

[Smit87]

[SouI87]

Smith, R.J., ~'Fundamentalof Parallel LogÏc Simulation", Proc. of the

23rd ACM/IEEE Design Automation Conference. pp. 2-12. 1986.

Smith. R. and Smith, J. and Smith, K., "Fastcr Architecture Simulation

Through Parallelism1
', Proc. of the 24th ACM/IEEE Design Automation

Conference, pp. 189-194, 1987.

Smith, Steven P. and Underwood, Bill and Ray Mercer, M.. ~'An Analysis

of Severa! Approaches to Circuit Partitioning for Parallel Logic Simula­

tion'~, Proceedings IEEE International Conference on Computer Design

ICCD 87, pp. 664-667, 1987.

Soule, L. and Blank,T., "Statistic for Parallelism and and Abstraction

Lcvels in Digital Simulation" ,Pme. of the 24rd ACM/IEEE Design Au­

tomation Conference, pp. 588-591, 1987.

60



(

c

[SouI88] Soule, L. and Blank,T., ~'Parallel Logic Simulation on General Purpose

Machinc'~, Proc. of the 23rd ACM/IEEE Design Automation Conference,!

pp. 166-171, 1988.

[Sou192] Soule, L. and Gupta, A., ~'An Evaluation of the Chandy-Misra-Bryant

Aigorithm for Digital Logic Simulation of VLSI-circuits" . Proc. of the 6th

Workshop On Parallel and Distributed Simulation, pp. 129-138. 1992.

[Spor93] Sporrer. Christian and Bauer, Herbert, ~~Corolla Partitioning for Dis­

tributed Logic Simulation of VLSI-Circuits'~, PADS'93, Vol. 23, No. 1.

pp. 85-92, 1993.

[Su89] Su. W.K. and Seitz, C.L., :'Variants of the Chandy-Misra-Bryant Dis­

tributed Discrete-Event Simulation Algorithm", Proc. of the 8th Work­

shop On Parallel and Distributed Simulation, pp. 38-43, 1989.

[Taue81] Tanenbaum, A., Computer Networks, Prentice Hall, Englewood Cliffs.

N.l, 1981 (second edition 1988).

[Tant85] Tantawi, A.N. and Towsley, D., ;'Optimal Static Load Balancing in Dis­

tributcd Computer Systems" , .Journal ACM, Vol. 32, No. 2, pp. 445-465,

1985.

[Term83] Terman, C..J., "Simulation Tools for Digital Design". PhD dissertation,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1983.

[Vlad80] Vladimirescu, A. and Liu, S., The Simulation os l\tfOS Integrated Cir­

cuits Using SPICE, Memo VCB/ERLM80/7, University of California,

Berkeley, 1980.

[Wang87] Wang, L.T. and Hoover, N. and Porter, E. and Zasio.J., ;';SSIM: A Soft­

ware Lcvelized Compiled-Code Simulator'~, Proc. of the 27th A CM/IEEE

Design Automation Conference, pp. 2-8, 1987.

61



(

c

[Wang85J Wang, Y.T and Morris, R. .J. T., "Load Sharing in Distributed Systems~~.

IEEE Transactions on Computers, pp. 204-217, 1985.

[Wang90J Wang, Z. and Maurer, P.M.. ~·LECSIM: A Levelized Event Driven Com­

piled Logic Simulator", Proc. of the 27th ACM/IEEE Design Automation

Conference, pp. 491-496, 1990.

[\Vei89J Wei, Yen-Chuen and Cheng, Chung-Kuan, '·Towards Efficient Hierarchi­

cal Designs by Ratio Cut Partitioning" l IEEE, pp. 298-301, 1989.

[Wils86] Wilson, A. l ~'Parallelization of an Event Driven Simulator on the Encore

Multimax.'~, Tech. Rep. ETR 86-005, Encore Computer, 1986.

[\Vong86] Wang, F., ;'Statistics on Logic Simulation'~, Proc. of the 23rd ACM/IEEE

Design Automation Conference, pp. 13-19, 1988.

[Zarg85] Zargham, M. and Pircell, R., "A ProtocoI for Load Balancing CSMA

Networks'~. IEEE Trans. Pamllel and Distributed Systems, 1985.

62



I l.0 :~ w
I~ : w. 11~12.2

~~ =

111.1 L~ ~120
11111 1.8

111111.25 11111.4 11111.6

1
1

- 150mm .-J-.....,

--......
J
1

.....

APPLIED ~ IMAGE 1_ .ne
~ 1653 East Main Street
~ Rochester, NY 14609 USA
~-= Phone: 7161482-0300
__ Fax: 716/288-5989

C 1993. AppIJed lma98, rne., AIl R1ghts ReseMld


