INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, scme
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

DYNAMIC LOAD BALANCING FOR
CLUSTERED TIME WARP
by
Khalil M. El-Khatib

School of Computer Science
McGill University, Montreal
November 1996

A dissertation
submitted to the Faculty of Graduate Studies and Reseach

in partial fulfillment of the requirements for the degreec of

MASTER OF SCIENCE

Copyright ©1996 by Khalil M. El-Khatib

ivl

National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre référence

Our fiig Notre référence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-29686-5

Abstract

In this thesis. we consider the problem of dynamic load balancing for parallel
discrete event simulation. We focus on the optimistic synchronization protocol, Time
Warp.

A distributed load balancing algorithm was developed, which makes use of the
active process migration in Clustered Time Warp. Clustered Time Warp is a hybrid
synchronization protocol; it uses an optimistic approach between the clusters and a
sequential approach within the clusters. As opposed to the centralized algorithm de-
veloped by H. Avril for Clustered Time Warp, the presented load balancing algorithm
is a distributed token-passing one.

We present two metrics for measuring the load: processor utilization and processor
advance simulation rate. Different models were simulated and tested: VLSI models
and queuing network models (pipeline and distributed networks). Results show that
improving the performance of the system depends a great deal on the nature of the
simulated model.

For the VLSI model, we also examined the effect of the dynamic load balancing
algorithm on the total number of processed messages per unit time. Performance
results show that dynamically balancing the load, the throughput of the simulation

was improved by more than 100%.

Résumé

Dans cette these, nous considerons le probléme du balancement dynamique des
charges pour la simulation & évenement discréts basée sur un principe de synchroni-
sation optimistique.

An algorithme distribué et basé sur le principe de migration des processus a été
développé pour le system TWR (Time Warp avec Regroupement). TWR est un
protocole de synchronisation hybride: il utilise une approache optimistique entre
les groupes de processors et une approache sequenticlle a l'intericure des groupes.
Contrairement & |’algorithme centralisé developpé par H. Avril. notre algorithme est
distribué¢ et basé sur la distribution d’un jeton.

Différents modéles ont été simulés et testés: des circuits VLSI, pipelines d’assemblage
et réseaux distribués. Les resultats obtenus ont montré que le balancement dynamique

des charges a permis d’accoitre considerablement la performance de la simulation.
P

ii

ACKNOWLEDGMENTS

I wish to place on record my profound sense of gratitude to my thesis advisor, Prof.
Carl Tropper, for his advice, guidance and encouragement throughout all phases of
this work.

I owe an especial debt of gratitude to Dr. Azzedine Boukerche for the vivid
instructions and exchange of ideas. I have no doubt that this thesis is better product
due to his guidance.

[am very grateful to Herve Avril for his helpful discussions and help providing
the code for CTW.

A general thanks to all my fellow consultants at the School of Computer Science.
It is always a great pleasure working with them.

I would like to thank all the system staff and especially Luc Boulianne, Matthew
Sams, and Kent Tse for keeping biernat up and running. Further thanks go to all
people working in the administrative office at our school.

I greatly appreciate the friendship I share with Rami Dalloul and Nada Tammim
Dalloul who have been with me every step of the way.

I am greatful to Jacqueline Fai Yeung and Peter Alleyne for their patience and
unfailing assistance. I will never ever forget their help.

Last but not least, I remain grateful to my family whose moral support and
encouragement were responsible for my sustained progress throughout the course of

this work.

iii

Contents

1 Introduction 1
1.1 Parallel Discrete Event Simulation 1
1.2 Parallel Logic Simulation 3

1.2.1 Logic Simulation 5
1.2.2 Partitioning L Lo 6
1.2.3 Fine Computation Granularity 7
1.24 Circuit Activity 7

2 Parallel Discrete Event Simulation 8
2.1 Imntroduction 8
2.2 Optimistic Approach 9

2.2.1 Local Control Mechanism 9
2.2.2 Global Control Mechanism 10
2.3 Conservative Approach0 ... 14
24 Load Balancing, 17
2.4.1 Static Load Balancing 17
24.2 DynamicLoad Balancing 20
2.5 Ciustered Time Warp (CTW) 26
2.5.1 Cluster Structure and Behavior 27
2.5.2 Variations of Clustered Time Warp 28

v

2.5.3 Load Balancing for Clustered Time Warp.

3 Metrics and Algorithm

5

3.1 Metrics e e e
3.1.1 Processor Advance Simulation Rate (PASR)
3.1.2 Processor Utilization(PU)
3.1.3 Combination of PUand PASR
3.2 Algorithm L
321 PseudoCode,
33 Designlssues
3.3.1 Tokenperiod, 8
3.3.2 Seclecting the Clusters (Processes)
3.3.3 Number of Processors that can initiate migration
Results and Discussion
4.1 Introduction
4.2 Experimental Results.
421 Increaseinrollbacks,
4.3 PipelineModel oo

4.4 Distributed Network model

Conclusion

.......................

29

30
30
30

33
33
34
36
36
37
37

38
38
39
44
44
48

51

List of Figures

2.1 A Time Warp process (A) 11
2.2 Process A after message with timestamp 142 was processed 11
2.3 Rollback to time 135 12
2.4 Deadlock Situation 15
2.5 Cluster Structure 27
3.1 Processors with different PASRs. 32
4.1 Simulation time forCo e 40
4.2 Simulation time for C3 e e 40
4.3 Peak memory consumption forCy e e e 42
4.4 Peak memory consumption forCy 43
4.5 Throughput Graph forCo 45
4.6 Throughput Graph forCy 45
4.7 Manufacture Pipeline Model 46
4.8 Percentage Increase in the Number of Rollbacks 47
4.9 Percentage Reduction of the Simulation Time 47
4.10 Distributed Network Model 48
4.11 Percentage of Reduction in the Simulation Time in the Presence of

Time-Varying Load. 49

4.12 Percentage of Reduction in the Simulation Time in the Absence of

Time-Varying Load.

vii

Chapter 1

Introduction

1.1 Parallel Discrete Event Simulation

Simulation is regarded as an indispensable tool for the design and verification of
complex and large systems. There is hardly a discipline or a science that does not
use simulation. Examples are queuing network simulation [Nico88]. VLSI simulation
[Bail94], and battlefield simulation [Reit90].

Discrete Event Simulation (DES) is a technique for the simulation of systems
which can be modeled as discrete systems: the components of the system change
states at discrete points in time. For example, gates in a logic simulation change
state from 1 to 0, or vice versa.

Continuous Simulations (CS) are used to simulate models in which components
change states in a continuous way with time; examples are weather and liquid flow
simulation. Unlike discrete simulation, continuous simulation usually involves the use
of differential equations to evaluate the change in the state valuc.

A simulated system is usually divided into entities which interact over time by
scheduling events for one other. An event describes a change in the state of a certain

entity or component in the model. Each event in the system is assigned a virtual time

stamp which represents the time at which the event would happen in the real world.
For instance, cntities in a computer network simulation represent computer servers,
and events represent real messages sent over the network.

Originally, simulations started on sequential machines. The simulated system is
modeled as follows: a state, which includes local variables. and an event queue, which
contains the events scheduled for the system. The simulator model continuously
processes the event with the smallest time stamp, advances the simulation time. and
schedules events for the future.

Because of the rapid change in the size and complexity of the models, Parallel
Discrete Event Simulation (PDES) seems to be a promising tool to handle the de-
mands in the world of simulation. In PDES, different components of the model reside
in different machines. Each component has its own separate state and event queue.
The main problem for PDES is how to satisfy the causality constraint: events that
depend on each other have to be processed in (increasing) order of their timestamps.

Two main approaches to avoid causality errors have been widely studied and
used: the conservative approach, introduced by Chandy & Misra [Chan79], and the
optimistic approach, pioneered by Jefferson [Jeff85]. The two approaches differ in
the way they deal with the causality issue. In a conservative simulation, the logical
process (LP) will process an event when it knows it is safe to do so. An LP in an
optimistic simulation processes events as soon as they arrive. If it later receives an
cvent with a smaller time stamp, it rolls back and restores an old correct saved state.
Bcefore resuming the simulation, the LP would cancel previously sent messages by
sending anti-messages that annihilate the originals.

The focal point of this thesis is the dynamic load balancing for Clustered Time
Warp (CTW) [Avri95]. CTW is a hybrid approach that uses Time Warp between
clusters of logical processes and a sequential mechanism inside the clusters. Although
the problem of load balancing has been_ extensively studied over the past few years

[Hac87, Hac87, Wang85, Livn82, Zarg85], few results are directly related to the area

of PDES. In this thesis, two metrics for dynamic load balancing are presented. A
distributed dynamic load balancing algorithm is also constructed. Several associated

models are simulated to evaluate the performance of the algorithm and metrics.

1.2 Parallel Logic Simulation

Logic simulation is a standard technique for the design and verification of VLSI
systems before they are actually built. While the verification part can reduce the
cxpensive prototypes and debugging time, the execution time required by simulation
cxceeds days and even weeks of CPU time for large circuits. Parallel logic simulation
provides an alternative solution that accounts for the rapid increase in the size of
circuits.

Two traditional algorithms for parallel logic simulation have been proposed in
the literature: (1) compile-mode, and (2) centralized-time event-driven. In compile-
mode simulation {Wang87, Wang90, Maur90], the system simulates all the elements
after each time unit. Scheduling and synchronization are simplified in this approach
at the cxpense of run time. The simplicity of this approach makes it feasible for
direct implementation in hardware. While the compile-mode algorithm can result in
high speed-ups for active circuits, the synchronization time is a hindrance for circuits
with low activity. Event-driven simulation [Fran86, Smit87, Smit86, Soul88, Wils86,
Wong86] provides an alternative solution in which only elements whose input have
changed are simulated at each time step.

Compile-mode and centralized-time event-driven are both synchronous algorithms.
Asynchronous algorithms used in parallel discrete event simulations have exhibited
promises for parallel logic simulation.

Soule and Gupta [Soul92] discussed the effectiveness of Chandy-Misra-Bryant
[Chan79, Brya77] algorithm (CMB) for parallel logic simulation. For six benchmark

circuits, the authors reported an effective concurrency of 42-196. Effective concur-

rency is defined as the amount of parallelism that is obtained when using arbitrary
many processors, in the absence of synchronization and scheduling overheads. The
authors noticed that using the CMB algorithm, 50% to 80% of the total execution
time is spent on deadlock resolution. To resolve this issue, the authors experimented
with many variations such as look-ahead, null messages, clustering, and demand driven
scheme. Speed-ups of 16-32 were achieved on a 64-processor machine.

Su and Seitz [Su89] studied logic simulation for null-message conservative simula-
tion. To reduce the overhead of null messages, two variations were examined: (1) lazy
null messages, and (2) element grouping!. The authors used Intel iPSC machines as
a testbed to measure the speed-ups of a 1376-gate multiplier network. Speed-ups of
approximately 2 and 10 were reported using 16-node iPSC/2 and 128-node iPSC/1
respectively.

Time-Warp techniques were also used for VLSI circuit simulation. Chung and
Chung [Chun89] implemented Time-Warp on the Connection Machine. The authors
described the Lower Bound Rollback (LBR) technique to overcome storage problems.
The LBR of an LP is equal to the local virtual time of the LP if it does not have
incoming links. For an LP with incoming links, the LBR is set to the minimum of
the local virtual time of the LP and of all of the LBRs of the incoming links. If the
LP is part of a cycle, than the LBR is set to the GVT. Once the LBR is known,
cach LP can reclaim all the space used by events with timestamp up to the LBR.
Two circuits from the ISCAS-85 benchmarks were simulated: a 16-bit combinational
multiplier (2406 gates) and 32-bit array multiplier(8000 gates). The authors reported
that, using the LBR technique, can reduce the storage up to 30% compared to the
original Time Warp depending on the simulated circuit.

Briner et al [Brin91] present another version of the Time-Warp for logic simula-

tion in that the algorithm uses incremental state saving to reduce the overhead of

ISame idea as CTW, introduced in scction 2.5.

periodically checkpointing all events on a processor. The simulation runs on a BBN
GP1000 machine, and it uses a lazy cancellation scheme. Even though the authors
reported an improvement in the performance of the simulation. they noticed that
circuit partitioning is important in order to reduce rollbacks in the system.
Implementations for Time-Warp can also be found in [Baue91]. The simulator
was implemented on a Sequent, and also on a set of Sun Sparcstation 2’s. Speed-ups
from 2 to 3 were reported using a 5-processor Sequent, and 5.2 to 5.7 using a network

of 8 Sun Sparcstations. Simulated circuits were selected from ISCAS-89 [Brgl89].

1.2.1 Logic Simulation

VLSI circuits can be simulated at various levels, depending on the abstraction of the
simulated elements. Each level emphasis certain aspects about the simulated circuit.
Four types of logic simulators are presented in [Horb86]:
e Switch level simulators
The switch level simulator is a special type gate simulator which can simulate
MOS circuits more precisely than the conventional gate level simulators.
e Gate level simulators
The simulated elements are such logic gates as AND, OR’s and INVERTER's.
Each element has only one output terminal.
e Functional level simulators
The simulated elements are such functional primitive as latches, flip-flops. coun-
ters and registers. The elements may have more than one output terminals.
o Register transfer level simulators

Register transfer level simulators provide the ability to define the behavior of

the simulated circuits with register transfer language.

5

Each circuit element (gate) is represented by a logical process (LP). LPs are
connected with each other as determined by the circuit connection. Each LP has its
own code that simulates the function of the corresponding circuit element.

Because of the rapid increase in the size of VLSI circuits {Mukh86, Term83]. large
simulation times have become a serious problem. VLSI simulation poses many chal-
lenging problems for parallel discrete event simulation. The following text describes
three major problems: circuit partitioning, computation granularity and locality of

activity.

1.2.2 Partitioning

The distribution of LPs on the processors of a distributed computing system has a
great impact on the performance of the simulation. A parallel simulation with a
bad distribution might run slower than its equivalent serial simnulation. VLSI circuits
are hard to partition [Cart91, Spor93, Bail94] because of the lack of information on
signal activity; partitioning can only be done based on the structural information of
the circuit

A number of the partitioning algorithms [Spor93, Bail94] attempt to balance the
load by assigning an equal number of components to all of the processors. This
technique ignores the fact that all parts of the circuit might not be active at the same
time [Soul87].

Another approach to partitioning is to minimize interprocessor communication.
One approach is to place frequently communicating components on the same processor
[Nand92]. Carothers et. al. [Caro95] showed that an increase in the communication
delays can significantly reduce the performance of Time Warp for simulations with

large number of LPs and fine granular events such as logic simulation.

1.2.3 Fine Computation Granularity

The fine computation granularity of events is a serious problem for optimistic logic
simulation. The message service time at an LP is very small (e.g. evaluating the out-
put of an AND gate), which makes message cancellation difficult in case of rollback;
anti-messages cannot always annihilate previously sent messages quickly cnough, pos-
sibly leading to a cascaded roliback. Moreover, the number of events is in the hundreds
of thousands. A change in the state of a gate, from high to low or vice versa. will
create an event which might trigger thousands of other events. The large number of
cvents means that the size of the event heap, the state queue, the input queuc and
the output qucue are very large and any operation on these data structures becomes

correspondingly expensive.

1.2.4 Circuit Activity

VLSI circuits are known to have locality of activity property [Avri96, Bail94. Soul92],
i.e. only a part of the circuit may be active at a given time, while the remaining parts
are idle. This property can cause a big difference in processor utilizations: some

processors might be very active while many others are idle.

Chapter 2

Parallel Discrete Event Simulation

2.1 Introduction

This chapter describes in section one and two the two major techniques for parallel
simulation: the optimistic approach and the conservative approach. Scction three
includes a general description bfor load balancing. In section five, we introduce Clus-
tered Time Warp. Clustered Time Warp uses Time Warp synchronization in between

clusters and a sequential mechanism within the clusters.

2.2 Optimistic Approach

In 1983. Jefferson [Jeff83] proposed a new paradigm for synchronizing distributed
systems. This new paradigm, known as virtual time, provides a flexible abstraction
of real time for distributed systems.

Time Warp is introduced as an optimistic synchronization protocol which imple-
ments the virtual time paradigm. It uses run time detection of errors caused by
out of order execution of dependent simulator events, and recovery using a rollback
mechanism.

The following subsections describe the two main components of Time Warp: local
and global control mechanism. The local control mechanism is responsible for process

synchronization. The globel control mechanism deals with space management.

2.2.1 Local Control Mechanism

In Time Warp, cach message consists of six components: (1) the sender of the message
(2) the receiver (3) the virtual sent time (4) the virtual receive time (also known as
timestamp) (5) and an sign field used to indicate whether the message is an ordinary
message or and antimessage and finally (6) the event data.

Each process in Time Warp has its own local virtual time (LVT), which is the
timestamp of the next message waiting in the input queue. In addition, cach process
keeps a virtual clock that reads the local virtual time.

Each process has a single input queue in which all arriving messages are stored in
increasing order of their timestamps. A process serves all of the messages residing in
its input queue in spite the fact that future messages might have lower timestamps.

Since all the virtual clocks in the system are not synchronized, it is possible for
a process to receive a message with a virtual time in the "past”. Such a message is
called a straggler. In order to maintain the causality constraint, the receiving process

has to roll back to an earlier virtual time, cancelling all work done -and sending " anti-

messages” to cancel all of the messages sent after the timestamp of the straggler.

In order to rollback, a process must, from time to time, save its state in a state
queue. Whenever a process receives a straggler. a process uses the state queue to
restore itself to a state prior to the timestamp of the straggler.

An anti-message is a duplicate of the message, with a negative sign field. Each
time a process sends a message, its anti-message is retained in the sender’s output
queue. In the case a of rollback, all of the anti-messages with timestamps higher than
that of the straggler are sent out.

Figures 2.1, 2.2 and 2.3 show the structure and state of a process during three
consecutive snapshots. Figure 2.1 shows process A about to process the message
with timestamp 142, coming from process D. After processing that message, (figure
2.2), process A saves its state, and changes its local virtual time to 154, which is the
timestamp of the next message waiting in the input queuc. At this moment, process
A receives a message (straggler) with timestamp 135. Figurc 2.3 shows process A
after rolling back to a safe state: (1) the last state saved before timestamp 135 was
restored; (2) antimessages in A’s output queue that have a virtual timestamp larger

than 135 have been transmitted to their destinations.

2.2.2 Global Control Mechanism

During the simulation, cach process uses its memory for saving states, storing input
messages and keeping copies of output messages. Since each process has a limited
memory, space has to be reclaimed regularly for further use.

Global virtual time (GVT) was introduced by Jefferson[Jeff83], to help solve the

problem of memory management:

The GVT at real time 7 is the minimum of all virtual times in all clocks
at time 7, and (2) of the virtual send times of all messages that have been

sent but have not yet been processed at time .

10

Local Virtual
Time

Process Name

Current State

107

State ﬁ o | [21 | [t

Queue | é

Begin Time
End Time

Figure 2.1: A Time Warp process (A)

Local Virtual
Time

Input

Queue
Process Name

Current State

107
121

142
+inf

Begin Time
End Time

Queue/ //'//Il /

107

State

r + + + + +
1 {107] 121 || taz || 154 || 162
Aveiee ruinein
0 |[110 |[134 §[152][148
Allclfolfel|lF

L
120 | 149
Output /) [E[F
107 | 142
Queue |
+ + + + +
107 {[121 |[142 || 154 |[t62
al[af[a]lal]]a
so |[110 || 13e | 152][148
L AllcifolellF
y
120 [149 [[145
Output / [[F 1
107 || 142 | 14s
Queue | -

Sign

Receive Time
Receiver
Send Time
Sender

Data

Sign

Receive Time
Receiver
Send Time
Sender

Data

Sign

Receive Time
Receiver
Send Time
Sender

Data

Sign

Receive Time
Receiver
Send Time
Sender

Data

Figure 2.2: Process A after message with timestamp 142 was processed

11

Local Virtual e - - Sign
Time 142 |] 154 | 182 Receive Time
ol ALA A A A Receiver
90 J] no}f124 i 134 || 152 || 48 | Send Time
]
Process Name Ale e jyolfsiF Sender
Data
Current State
- - - Sign
120 | ¢ 1 Receive Time
r e 107] Begin Time Output :7 IF 'q :eczi_\:fr
State { b] G ename Queue | ErHELE S

| A
Queue ! ———— - "f Data

Antimessages in
transit toward
receivers

Figure 2.3: Rollback to time 135

Once the GVT is computed, the system can get rid off all but the last saved
state before GVT, since there might be no state saved exactly at GVT. Similarly, the
events prior to the GVT in the LP input queue can all be removed. Only events with
a timestamps smaller than the timestamp of the oldest kept state can be discarded.
This process is called fossil collection.

The task of finding the GVT in a distributed environment is not trivial. In a shared
memory multiprocessor environment, the GVT can be easily computed [Fuji89]: how-
ever, transient messages in a distributed system make GVT computation a difficult
problem. A transient message is a message that has been sent from a source process
but has not yet arrived at the destination process.

A very simple way to find the GVT is to stop all processes, compute the GVT,
and then resume the computation. The problem with this approach is the high
cost in time, especially when the number of processes is large, and when the GVT

computation is done frequently.

12

Some GVT algorithms [Jeff83, Sama85] solve the problem of transient messages
by sending acknowledgment messages. However, sending acknowledgment messages
will result in a large increase in the network traffic. and might also degrade the
performance of the distributed simulation.

Lin and Lazowska [Lin89] proposed another algorithm for GVT computation,
in which an acknowledgment is sent for a group of messages, rather than for each
message. The authors reported a 50% decrease in network traffic, compared to an
optimized version of Samadi’s [Sama85] algorithm proposed by Bellenot [Bell90].

As the number of processes in the simulation grows larger, sending acknowledg-
ments becomes a serious impediment. In response to this problem, asynchronous
token passing algorithms [Bell90, Conc91, Prei89] have been introduced. Preiss's
[Prci89] algorithm, presented next, computes the GVT for nodes arranged on a vir-
tual ring. The algorithms runs in two phases: the START and the STOP phase.

Let [START;, STOP)] denotes a real time interval for node 7. Let MVT; denote
the minimum of all timestamps of all messages either in transient from node 7 at
time START; or sent during the time interval [START;, STOP,]. Let PVT; denote
the smallest timestamp at time STOP; of all objects simulated on node ¢. LVT;
represents the minimum of MVT; and PVT;. Then an estimate of the GVT is the
minimum of all the LVT;s. The algorithm requires that all of the time intervals have
at least a time point in common, during which all processors will be computing their
LV T:s at the same time.

During the ST ART phase, The START token starts at node 0, and circulates to
cach node on the ring. When a process receives the START token, it forwards it to
its neighbor, and then sets its START; to the receipt time of the token.

When the START token gets back to node 0, it launches the STOP phase. Node
0 will compute its LV Ty, store it inside the token, and send the token. When a node
t receives the STOP token, it compares its LVT; to the GVT value in the token, and
the minimum value is kept in the token. When the token gets back to node 0, the

13

value stored inside the token is the smallest value of all of the LVT;, which denotes

the GVT. Another round is needed to pass the new GVT to all nodes.

2.3 Conservative Approach

While optimistic simulation detects and recovers from causality error by rolling back
to a statc just prior to the error, a process in a conservative simulation blocks so as
to avoid the possibility of any synchronization error.

The channel clock value is defined as the timestamp of the last message received
along that channel; in case there is no message received along that channel, the
channel clock value is set to 0. Each process repeatedly selects the input channel
with the smallest clock value, and serves the message waiting in that channel. If the
selected channel is empty, the process blocks since it does not know the timestamp
of the next message to arrive on that empty channel.

A deadlock can happen as a natural consequence of the blocking behavior. Figure
2.4 shows three processes in a deadlock situation. Peacock et. al. [Peac79] presented

a necessary and sufficient condition for deadlock to occur:

A deadlock exists if and ounly if there is a cycle of empty channcls which
all have the same channel clock value, and processes are blocked because

of these channels.

A number of approaches have been proposed to solve the deadlock problem. The
first approach, presented independently by Chandy & Misra [Chan79] and Bryant
[Brya77], uses null messages to avoid deadlock. A null message provides a lower
bound on the timestamp of the next incoming message. Each time a process consumes
a message, it must send a message on each of its output channels. If the simulation
does not require a regular message on a channel, a null message is sent in its place.

When a process receives a null message on one of its input channels, it guarantees

14

ff

Figure 2.4: Deadlock Situation

that no message will arrive with a smaller timestamp than that of the null message.

The null message approach suffers from two drawbacks: the fine granularity of the
null messages and the minimum time stamp increment. For the simulation of systems
of simple elements, such as logic gates, the time required to evaluate the output of the
gate is so small that it is comparable to the time required to process a null message.
In addition, the number of regular messages in logic simulation is in terms of millions,
and if for each message there is only one null message sent, this would double the
network traffic.

To reduce the problem of network traffic introduced by the use of null messages.
Misra [Misr86] suggested that a process refrains for a period of time from sending a
null message, expecting that a real message will be sent over the same channel. After
a predetermined period of time a null message can be sent in case no real message is
sent. Misra [Misr86] also suggested the demand driven technique, in which a process
sends a request to its predecessor for the lower bound on the time of its next output
message.

Several versions of the previous algorithm have been suggested. Su and Seitz
[Su89] suggested a lazy message technique, in which several consecutive null messages

are replaced with one null message. Nicol [Nico88] proposed the use of a future list.

15

Each process, making use of its input list, can estimate the lower bound on the
timestamp of the next message. This estimate, defined as lookehead depends on the
service time of the number of messages in the input queues.

Many empirical results [Nico88, Fuji89, Fuji88] have proved that a good perfor-
mance of the simulation depends on a good lookahead estimate. Intuitively, a good
lookahead reduces the processors blocking time. For example, if an LP has a clock
value t, and it has a lookahead {, then this LP can predict that it will not receive any
further message with a timestamp less than ¢t +{. The LP would be safe to process all
pending events with timestamp less than ¢ + {. The problem with using lookahead is
that it requires knowledge about the model, which is not possible sometimes without
a pre-computation

While previous algorithms avoid deadlocks, others detect and break them. Un-
like the deadlock avoidance approach, this approach does not prohibit cycles of zero
timestamp increment. The first such algorithm was presented in [Misr82|. The algo-
rithm uses diffusion computation to detect whether a given node is a part of a cycle
or a knot. The algorithm uses special messages, called probes, that are sent along the
outgoing edges of the nodes in the graph. The deadlock can be broken by observing
that the smallest timestamped message in the entire system is always safe to process.
The problem with this approach is that it is difficult to decide when such an algorithm
should be employed: if the algorithm is used too frequently, then it might degrade
the performance of the simulation. On the other hand, if a deadlock is not broken
quickly, the performance of the simulation will also deteriorate.

Lubachevsky [Luba88) proposed another alternative conservative scheme based on
the idea of bounded lag (BL). The BL algorithm uses a moving time window in which
only events whose timestamp lies in the time window are eligible for processing.

The BL algorithm suffers from two problems: (1) the smallest timestamp of all
cvents in the system has to be computed periodically and sent to all processes which

adds synchronization overhead on the simulation; (2) the size of the time window

16

is critical to achieve good performance. Finding the adequate size of the window

requires knowledge about the application.

2.4 Load Balancing

In a distributed system, it is likely that some processors are heavily loaded while
others are lightly loaded or idle. Efficient utilization of parallel computer systems
requires that the job being executed be partitioned over the processors in an efficient
way.

In the general partitioning problem, one is given a parallel computer system (with
a specific interconnection network) and a parallel job or task composed of modules
or units that communicate with each other in a specified pattern. One is required to
map the modules into the processors in a way to minimize the total execution time.

The mapping or assignment can be categorized as being cither static or dynamic.
The static approach ! assumes a priori knowledge of the execution time and communi-
cation pattern of the simulation, and the task-to-processor mapping is decided ahead
of run-time. The dynamic approach, in contrast, moves jobs or modules between
processors from time to time, whenever this leads to improved efficiency.

In this section, a general review of the field of load balancing is presented with
cmphasis on the work done in the context of PDES. The first subsection describes
some approaches and solutions to the problem of static partitioning. The second

subsection outlines some algorithms for dynamic load balancing.

2.4.1 Static Load Balancing

This subsection briefly reviews some of the previous work done on static load balanc-

ing. Algorithms for this paradigm rely on a priori knowledge of the computation and

1Also known as static partitioning, compile time partitioning, and mapping problem [Tant85,

Bouk94].

17

communication cost for each task in the system.

In terms of graph theory, the problem can be described as follows:

Given a weighted graph G with costs on its edges, partition the nodes of
G into subsets no larger than a given mazimum size, so as to minimize
the total cost of the edges’ cuts and the difference in the subset weights.

Weights on nodes and edges represent processing and communication cost.

Since the problem is known to be NP-complete [Gare79], heuristics [Bokh8l,
Bokh87, Ni85] have been developed to obtain suitable partitions. Kernighan and
Lin [Kern70] proposed a 2-way partitioning algorithm with constraints on the subset
size: given a graph of 2n vertices (of equal size), the algorithm splits the graph into
two subsets of n vertices each with minimum cost on all edges cut. The algorithm
starts with any arbitrary partition A, B of the graph and tries to decrease the initial
cxternal cost by a series of interchanges of subsets of A, and B. The cxternal cost
defines the sum of connections between the two partitions. Using the 2-way partition
as a tool, the authors extended the technique to perform a k-way partitions on a set
of kn objects.

Bokhari [Bokh81] studied the mapping problem on a Finite Element Machine
(FEM).? Starting with a random initial mapping, the heuristic algorithm procceds by
sequences of pairwise interchange between processors till the best mapping is found.
Wei and Cheng [Wei89) proposed a partitioning approach called the ratio cut. Their
algorithm runs by identifying clusters in a circuit, and avoids any cut through these
clusters.

Most of the previous approaches to the partitioning problem are suitable for re-
stricted applications, but they don’t quite satisfy the properties of parallel simulation
because of the synchronization constraint among processors. Static partitioning for

parallel simulation has recently became a focus of research.

2The Finite Element Machine is an array of processors used to solve structural problems.

18

Nandy and Loucks [Nand92] presented a partitioning and mapping algorithm for
conservative PDES. The objective of the algorithm is to reduce the communication
overhead and to evenly distribute the execution load among all of the processors.
The algorithm starts with an initial random allocation of processes to clusters, and
then iteratively moves processes between clusters until no further improvement can
be found (a local optimum). A process is moved if its reallocation does not violate the
size constraint of the processor. Using the proposed algorithm, three small circuits
were partitioned, mapped, and simulated on a network of transputers. Results showed
a 50% improvement in the simulation performance over random partitioning,.

Recently, Sporrer and Bauer [Spor93] have presented a hierarchical partitioning
for the Time Warp simulation of VLSI circuits called the " Corolla partitioning™. The
objective of the algorithm is to minimize the number of interconnecting signals while
keeping the size of partitions nearly equal. The basic idea of the algorithm is to de-
tect strongly connected regions and use them as indivisible comnponents, called petals.
for partitioning. The algorithm uses an hierarchical method which, in the first step.
creates a fine grained clustering of the circuit with a minimum number of interconnec-
tions, regardless of the size of the partitions. In the second step, cqual sized partitions
arc formed at a coarse grained level based on the connectivity matrix. To evaluate
the partitioning algorithm, comparison was done with three other partitioning algo-
rithms [Fidu82, Hilb82, Smit87]. Six benchmark circuits were partitioned and rated
with four different algorithms. The simulation was run on a network of SunSparc
2 workstations connected via Ethernet. The achieved speed ups were almost linecar
even for large numbers of partitions.

Another approach for static partitioning known as simulated annealing (SA) was
proposed by Kirkpatrick et al [Kirp83]. The SA algorithm draws upon an analogy
with the behavior of a physical system in the presence of a heat bath. The algorithm
uses an adaptive search schedule to find a good partition (near optimal). Starting

with an initial partition, the algorithm moves processes between processors until a

19

termination or equilibrium condition is met.

Recent work on partitioning using simulated annealing appeared in [Bouk94]. The
authors proposed an objective function to evaluate the quality of the partitioning so-
lution generated by the algorithm. The objective function depends on inter-processor
communication, the distribution of loads, and the number of null messages between
processors. A sct of experiments were conducted to find the impact of the partition-
ing algorithm on the performance of a conservative simulation using null messages.
The authors used an Intel iPSC/i860 hypcrcube as a platform for the simulation. In
the experiments, a queuing network model in the form of a torus with FCFS service
distribution was used as a benchmark. Results showed a 25-35% reduction in the exe-
cution time of the simulation using the proposed algorithm over random partitioning

when 2 and 4 processors are used.

2.4.2 Dynamic Load Balancing

The literature is rich in general purpose dynamic load balancing algorithms [Lu86,
Iqba86, Ande87], but only a handful of these algorithms apply to PDES.

In [Shan89], the author presents a simple dynamic load balancing for conservative
sinulation. Three phases take place in his dynamic allocation scheme. In the first
phase. the process(es) which need allocation are identified: these are the processes
whose service times fall outside a predefined interval of service time. In the second
phase, process(es) which should be migrated are identified: processes identified in
phase one which have predecessors or successors on different processors are consid-
cred for reallocation. The third phase is for identifying the processors to which the
process(es) are reallocated: processors containing successors or predecessors for se-
lected processes will be chosen first. The algorithm was tested on two logical systems
(pipelines) on an iPSC Hypercube with 4 nodes. Experiments showed that when us-

ing the load balancing algorithm, the running time of the simulation is reduced only

20

when the system exhibits a non-uniform distribution of messages.

Boukerche and Das [Bouk97] presented a dynamic load balancing algorithm for
conservative simulation using the Chandy-Misra[Chan79] null message approach. Their
algorithm uses the CPU queue length as a metric, that indicates the workload at each
processor. In their approach, a Load Balancing Facility (LBF) is implemented in two
separate phases: load balancing and process migration. In the first step of the al-
gorithm, every processing element in the simulation sends the size of its CPU queue
length to a central processor in which processors are classified according to the devi-
ation of their respective queue lengths from the mean. The second step for the load
balancer is to select the heavily overloaded processes from the heavily overloaded pro-
cessors. Experiments were conducted on an Intel Paragon A4. The authors chose an
N x N torus queuing network model with an FCFS service discipline as a benchmark
in their experiments. Their results showed approximately a 25-30% reduction in the
simulation time using dynamic load balancing over a random static partitioning when
2 processors were employed. A reduction of 40% was observed when the number of
processors increases from 4 to 8. Similarly, the authors observed a 50% reduction in
the run time when changing the number of processor from 8 to 16. The authors also
reported a reduction in the synchronization overhead ® with dynamic load balancing:
when less than 4 processors are used, the reduction was approximately 25-30% in the
synchronization overhead. When 8 and 16 processors were used, the reduction was
10-40%.

Burdorf and Marti [Burd93] deal with the problem of dynamic load balancing for
the RAND Time Warp system. The system runs on a set of workstations shared with
other users, which creates a large variation in the loads depending on the number
of users and processes. Initially, the static balancer assigns objects to processors

according to the load, which is gathered by running a presimulation. During the

3Defined as the number of null messages processed by the simulation using the Chandy-Misra

null-message approach divided by the number of real messages processed.

21

simulation, the balancer records the smallest simulation time of all objects on each
machine. To minimize rollbacks, the dynamic load balancer seeks to minimize the
variance between the objects’ simulation times. The authors presented four schemes
for load balancing: three of them use Local Virtual Time (LVT) as a metric, and the
fourth uses the ratio of total processed messages to the total number of rollbacks.
The algorithm was implemented on a simulation of colliding shapes moving in a
constricted space. They report that using the average of processed messages was not
feasible for their simulation, while the best results were achieved when objects which
are furthest ahead are moved to machines which are furthest behind, and objects
which are furthest behind are moved to machines which are furthest ahead. Results
using the dynamic load balancing strategy showed a five to 10 times performance
improvement over simulation with only static balancing.

Schlagenhaft et al [Schl95] describe a dynamic load balancing algorithm for Time
Warp VLSI circuit simulation. The algorithm consists of three components: (1) load
sensor; (2) load cvaluator; and (3) load adaptor. The load sensor computes the
Virtual Time Progress (VTP) for each simulation process. The VTP reflects how
fast a simulation process progresses in virtual time. The load sensor first calculates
the Integrated Virtual Time (IVT) at the end of each simulation step. The IVT of a
processor is defined as the average of all of the virtual times of the clusters residing
on that processor. The VTP during a time interval [T}, 7%] is then computed as the
change in the IVT per unit real time. The load evaluator decides whether to launch
process migration or not, depending on ratio between the actual and the predicted
VTP; if the ratio is big enough (migration is worthwhile), then load balancing is
initiated. Process migration is then controlled by the load adaptor. The authors
simulated one logical circuit (s13207 [Brgl89]) on two processors shared with other
users. Corolla partitions was used to partition the circuit into small clusters with
many of them mapped to each processor. The results showed that the algorithm

reduces the lag between the VTPs of the processors which resulted in an increase in

22

the advance of the GVT, and hence a 24% reduction in the simulation time.

Reither and Jefferson [Reit90] presented a dynamic load balancing algorithm for
the Time Warp Operating System (TWOS). Their algorithm was tested on battlefield
simulation in which objects are created and destroyed concurrently. For this imple-
mentation, dynamic load balancing was necessary in order to ensure good assignment
of the new object to processor, and to balance the load after some objects have been
destroyed. In their simulation, the life span of an object is divided into phases. which
can run on different processors. Each phase is responsible for handling an object’s
data and variables for one interval of virtual time. The algorithm tries to balance
the load using an estimate of effective work, defined as the portion of the work that
will not be rolled back. The authors tested their algorithm on two simulation models:
a military simulation and two-dimensional colliding pucks simulation. Their results
showed that speedups for the pucks simulation are equal to or less than the normal
speedups because of the relatively even balance of pucks. Because of the inherent im-
balance in the battlefield simulation, the dynamic load balancing algorithm improved
the speedup by 25%.

Glazer and Tropper [Glaz93] introduced the notion of a time slice and simulation
advance rate (SAR) in their work on dynamic load balancing. The purposc of the
dynamic load balancer was to reduce the number of rollbacks, and hence reduce the
simulation time. To this end, the SAR is computed at each processor and sent to
onc dedicated processor. The SAR is defined as the advance of the simulation clock
divided by the CPU time needed for the advance. The load of a process, derived from
its SAR, is a measure of the amount of CPU time it requires to advance its local
simulation clock by one unit. The length of the time slice for a process is determined
by its load: each process is given time slice proportional to the ratio of its load to
the mean of all of the loads. To evaluate the performance of the algorithm, three
different simulation models were constructed, representing different classes of models:

a pipeline model, an hierarchical network model and a distributed network model.

23

Experiments were conducted on PARALLEX, an emulation of a parallel simulation
on a uniprocessor machine. The authors reported a 16-33% decrease in rollbacks and
19-37% increase in the simulation rate when only 8 processors were used. Results
showed better improvement when the number of processors was increased: 42-71%
and 47-49% decrease in the rollbacks when using 16 and 32 processors respectively,
in addition to 30-39% and 49-65% increase in the simulation rate.

Most recently. Carothers and Fujimoto [Caro96] proposed a load distribution sys-
tem for background execution of Time Warp. The system is designed to use the
free cycles of a collection of heterogeneous machines to run a Time Warp simulation.
Their load management policy consists of two components: the processor allocation
policy and the load balancing policy. The processor allocation policy is used to deter-
mine the set of processors that can be used for a Time Warp simulation. This set is
computed dynamically throughout the simulation. A processor is added or removed
from the set when an estimate for the Time Warp execution time on that processor
falls below or moves above certain thresholds. As in [Glaz93], the metric used was
the Processor Advance Time (PAT), which reflects the amount of real time used to
make a one unit advance in virtual time. Using the centrally collected PATs, the
load balancing policy tries to distribute the load evenly over all processors. An initial
implementation of the algorithm was implemented on a set of nine Silicon Graphics
machines, one of which was dedicated to dynamic load management. The Time Warp
application used in the experiments is a simulation of a personal communication ser-
vices network. The authors experimented on two different parameters: time-varying
external workloads, and changing the usable set of processors. In the first set of
experiments, half of the processors experienced a monotonic increase in the external
workload which results in cluster migration into other processors. Results showed an
improvement in the simulation time of up to 45%. To sce how the system rcacts to
the change in the usable set of processors, a ”spike” workload was added to four of

the eight workstations. The authors observed a small improvement in the simulator

24

efficiency and in the reduction of the simulation time. This minor improvement was
believed to be the result of the extra overhead of considering inactive processors in
the computation of GVT. A delay in the GVT computation would result in a memory
shortage on active processors since memory is not rcclaimed fast enough.

Avril and Tropper [Avri96] studied dynamic load balancing for Clustered Time
Warp. To measure the load, the authors defined the "load of a cluster” to be the
number of events which were processed by the cluster since the last load balance in
the simulation. The load of a processor is then computed as the sum of all of the
loads of all of the clusters residing on the processor. The authors describe a triggering
technique based on the throughput* of the system: the load balancing algorithm is
triggered only when overall increase in the throughput of the system becomes larger
than the cost (in terms of throughput) of moving the clusters. The algorithm was
implemented and its performance was measured using two of the largest benchmark
digital circuits of the ISCAS’89 scries [Brgl89]. Results showed an improvement of
40-100% in the throughput of the system when dynamic load balancing was used.
The authors observed that minimizing interprocessor’s communications when moving

clusters reduce the number of rollbacks, but does not improve the throughput.

*Defined as the number of non-rolled-back message events per unit time.

25

2.5 Clustered Time Warp (CTW)

An implementation of our algorithm for load balancing was developed for Clustered
Time Warp (CTW) [Avri95]. CTW is a hybrid algorithm which makes use of Time
Warp between clusters of LPs, and a sequential algorithm within the cluster.

Logic simulation has always been a challenge for Time Warp because of two pri-
mary problems: memory management [Fuji89] and unstable behavior [Luba89]. The
memory management problem arises as the result of the large number of LPs in the
simulation: a circuit can consist of hundreds of thousands of gates (LPs). Since each
LP must regularly save its state to overpass a rollback, it is possible that the simula-
tion might run out of memory. Fossil collection algorithm cannot reclaim space fast
enough for the simulation to continue. Several schemes were developed to solve this
problem including the use of the cancelback protocol and the usc of artificial rollback
[Jeffo0].

Logic simulation also exhibits unstable behavior because of low computational
granularity: messages are small, and the service time is in terms of nano-seconds
(bit-wise operation); messages flow very quickly from one process to the other; an-
timessages cannot annihilate previously sent messages quickly enough, possibly lead-
ing to cascading rollbacks [Avri96].

To reduce memory consumption and to avoid cascading rollbacks, CTW asscmbles
many LPs into one cluster. Administration is executed on the cluster level. rather
than on the LP level, which leads to a less scheduling overhead. Message canccllation,
executed on the level of clusters, helps to avoid cascading rollbacks. Next section
describes the structure and the mechanism for CTW. The last section introduces

variations of CTW.

26

Cluster Environment
(O.,(
[P amom2 1
'r‘"‘—h.hn —

R Cluster
: Output
W Queue

Timezone Tabie

miitmiome
— o D
Cluster
Input
Queue

Figure 2.5: Cluster Structure

2.5.1 Cluster Structure and Behavior

Each cluster in Clustered Time Warp is autonomous: it receives messages, processes
cvents, saves states and messages, and rolls back in case of a straggler or anti-message.
A cluster consists of one or more LPs (gates), a Cluster Environment (CE). a Time-
zone table, and a Cluster Qutput Queue (COQ). The COQ holds the output messages
of the cluster and is used in case of rollback. The CE is the manager of the Timezone
table and the COQ. Figure 2.5 shows the complete structure of a cluster with four
LPs.

Initially, the cluster timezone consists only of the interval [0, +00[. and is updated
over time. When a cluster receives an event with a timestamp ¢, it determines which
timezone ¢ fits into, and divides it into two timezones, [t;,t[and [t,t;1[.

Each LP in the cluster keeps its Local Simulation Time® (LST), as well as the time
of the last event it processed (TLE). When the LP proccsses an event, it determines

if its timezone is different from the one of the TLE; if this is the case, then the LP

5Local Simulation Time is the same as local virtual time

27

saves its state.

When an LP tries to send an event, it checks the receiving LP; if this LP resides
on the same cluster, the message is inserted into the input queue of the receiving LP:
if not, the message is handed to the CE which takes care of forwarding the message
to the cluster in which the receiving LP is located.

When a cluster receives a straggler with timestamp ¢, the CE creates a new
timezone. and rolls back all of the LPs with TLE greater than t,. After the rollback,
a "coast forward” is executed at the LP level. The cluster will behave similarly when

it receives an anti-message, except that it will not create a new timezone.

2.5.2 Variations of Clustered Time Warp

As mentioned previously, when a cluster receives a straggler or an antimessage. it
rolls back all of the LPs which have processed an event with a timestamp larger than
that of the straggler or the antimessage. This includes also LPs which arc not dircctly
affected by the rollback. The first variation of CTW [Avri95] was intended to avoid
unnecessary rollbacks: only affected LPs will be rolled back.

In the new strategy, when a cluster receives a straggler or an antimessage, it
updates its timezone table, and forwards the event to the input queuc of the receiving
LP. In this way, only the receiving LP will be rolled back. This new scheme is called
Local Rollback, as opposed to Clustered Rollback.

A second variation of CTW deals with checkpoint timing. Instead of saving its
state when it enters a new timezone, an LP saves its state cach time it receives a
message from an LP located in a different cluster. Even though the new scheme
decreases the number of states saved, there is an increase in the number of events
an LP has to keep. These events are needed for coast forward, when an LP is rolled
back to a state prior to the GVT. This new scheme was called Local Checkpointing,

as opposed to Cluster Checkpointing for pure CTW.

28

Using the previous variations, three checkpointing algorithms were developed:
Clustered Rollback Cluster Checkpointing (CRCC), and Local Rollback Local Check-
pointing (LRLC), Local Rollback Cluster Checkpointing (LRCC). These algorithms
exhibit a trade-off between memory and execution time. Experimental results about

the performance of each algorithm is found in [Avri95].

2.5.3 Load Balancing for Clustered Time Warp

Clustered Time Warp supports process migration for dynamic load balancing [Avri96].
In the original implementation of Clustered Time Warp, a process called the pilot is
dedicated to collect load information from all of the processors; the load of cach
processor is piggybacked on the GV'T token, and forwarded to the pilot. Depending
on the distribution of the loads, the pilot decides on changing the process to processor
mapping.

Our current implementation of load balancing uses a distributed algorithm. in
which there is no dedicated processor. A token is passed around on a virtual ring to
all of the processors, and load balancing is done when all loads are inserted into the

token.

29

Chapter 3

Metrics and Algorithm

This chapter provides details of the metrics and the algorithm for our dynamic load
balancing algorithm. The following section describes the two metrics ecmployed. Sce-
tion two describes the dynamic load balancing algorithm in detail. Scction three

describes the design issues associated with the development of the algorithm.

3.1 Metrics

Dynamic load balancing requires both a metric to determine the system load and
a mechanism for controlling process migration. Ideally, the metric should not only
be simple and fast to compute, but also effective. In this section, two such metrics
arc suggested: Processor Utilization (PU), and Processor Advance Simulation Rate

(PASR).

3.1.1 Processor Advance Simulation Rate (PASR)

If several (simulation) processes are interconnected, a discrepancy in their respective
virtual clocks can result in an increase in the number of messages arriving in the

past, and cause rollbacks. When a process is rolled back from time ¢; to time ¢;, all

30

work performed during this time period is discarded. System resources used during
the corresponding real time interval could have been productively employed by other
processes.

Controlling the rate at which processes advance their corresponding virtual times
will minimize the difference between the virtual clocks, and as a consequence. reduce
the number of rollbacks which occur in the simulation.

The virtual time of a processor is defined as the minimum virtual time of all the
processes residing on that processor. A processor which has no cvents to process sets
its virtual time to infinity.

For a system simulated in the real time interval (£54r¢, tend). the Processor Advance
Simulation Rate (PASR) defines the rate of advance in virtual time relative to real
time. Let ¢, and ¢ be two real time values, with o > ¢;. Define ST; as the simulation
time at rcal time t. Let AST denote the change in the simulation time during the
time interval (t,,t2);

A(ST) = STy, — ST,,.

The PASR is defined as:

PASR = &0

A processor with a PASR higher than average is susceptible to being rolled back
because it is ahead of other processors in virtual time. If it is slowed down, the
frequency with which it is rolled back by other processors might well decrease. Figure
3.1 shows an example of two processors with different PASRs. A message m sent from
P, to P, will force P; to roll back to a virtual time previous to vt;, since the timestamp
of m is vt,. P, then has to cancel all the previous work done in the (9, t;) real time

interval. Hence, moving some load from processors with high PASRs to others with

low PASRs should speed up the slow processors and slow down the fast ones.

31

A

Virtual
Time

Vtz I s a8 o Wm @b o WD VWD s @

>

Real Time

Figure 3.1: Processors with different PASRs.

3.1.2 Processor Utilization(PU)

A number of researchers [Hac87, Tant85, Wang85] feel that it is best to maximize
the available parallelism in the system by keeping processor utilization as high as
possible. For systems where no a priori estimates of load distribution arc possible, only
actual program execution can reveal how much work has been assigned to individual
Processors.

Let us define effective utilization [Reit90] as the proportion of work done by a
processor which is not rolled back. Unfortunately, it is impossible for a processor to
determine the effective utilization at a given point in the simulation since it might
rollback later and cancel all of the work that has been done. In [Reit90] an estimate
of the effective utilization is used for load computation. Consequently we make use
of the processor utilization (PU), defined as the ratio of the processor’s computation

time (in seconds) between t) and tp to to — ¢y;

__ computation time in (t;,t2)
PU = e

Processor utilization allows for the fact that messages in the system might be of

32

different size. and might require different service times. It also accounts for the fact
that two processors might advance their virtual clocks by the same value, even if the

computation time is different.

3.1.3 Combination of PU and PASR

A combination of the two metrics, ;’%‘3/7{, was also tested in our experiments. The

combination was intended to increase the utilization of the processors. while main-

taining maximum advance simulation rate and minimizing the number rollback.

3.2 Algorithm

A difficulty in the load balancing of a distributed application is the absence of global
information on the load of the system. We employ a (distributed) algorithm to collect
the relevant information about processors’ loads in our load balancing algorithm.

Our algorithm uses a token which circulates to each processor on a logical ring

[Tane81]. At each processor, the PASR, the PU and the 544 (all referred to as
LOAD later) are inserted into the token.

Assume that there are n processors in the system. Initially, the token is launched
by processor one (1). When it gets to processor n, data from all of the processors will
be stored in the token. Processor n, called the host, will be able to identify overloaded
and underloaded processors. The token will remain in processor n for a period! of
time after which it is launched again. After the next round, when the token reaches
processor n — 1, data from all of the processors will be contained in it, and hence n-1
becomes then the next host.

At the end of each round, the host processor computes both the mean and the

standard deviation of all of the LOADs. The new mean is then compared with the

!We determine this time period experimentally. See section 3.3.1 for a discussion.

33

mean from the previous round (stored in the token). If the new mean is larger. this
indicates that the performance of the system is improving (increase in the PU or the
PASR). and the system is left intact. The host sets a count-down timer which triggers
the token again after § 2 GVT computations. If the new mean is smaller than the
mean from the previous round, the host checks the standard deviation of the LOADs.
If the standard deviation is found to be larger than a certain tolerance value. o, then
a new process to processor mapping is assumed to be necessary. The host matches the
processor with largest load together with the least loaded one and sends a message
to the over-loaded processor with the name of the destination processor to which
it should transfer some of its load. The load to be moved is equal to half of the
difference in the loads between the two matched processors. The standard deviation
of the loads is computed again, and another pair of processors is matched. This
process is repeated until the standard deviation is less than the value o When all

migrations are completed, the host starts the timer for the next round of the token.

3.2.1 Pseudo Code

This section presents the basic functions for the dynamic load balancing algorithm.

The skeleton of the algorithm is presented next in a C-format language.

function Serve-Token(token)

{

Insert processor’s LOAD into the token.

if (token contains loads from all processors){

" LOAD; .
Meanipoap = EELR——— /* n is the number of processors */

if(Mean,pap > token.(previous Mean oap))

2The value of the constant 8 is determined experimentally (10 GVT computations).

3A value of 25% for a was found feasible for our experiments.

34

/* The performance of the system is improving */
Set-Timer();
else {
StD= (standard deviation of LOADs);
if (StD < tolerance «)
/* a was taken to be .25, a value determined experimentally*/
Set-Timer();
else {
matchProcessors();
while (processors are still transferring processes)
wait();/* Processor can proceed with other computations. */
Set-Timer();
}} telse
pass the token to the successor on the virtual ring;
}
function Set-Timer(); {
wait(8 computations);
Initialize (NewToken);

Serve-Token(NewToken);

function matchProcessors()

{
StD = (standard deviation of LOADs);

while (StD < tolerance «){
sourceProc=processor with the highest LOAD;

destinationProc=processor with the lowest LOAD;

35

loadToA/[ove — LOADjiourceProc)—L20AD(destmatxcmProc);

send-message(moveLoad loadToMove,destinationProc);

update LOADs of sourceProc and destinationProc and recompute StD:

3.3 Design Issues

Designing a process migration system involves resolving a number of issues such as
which cluster to move: when the dynamic load balancing algorithm should be invoked.
and what the maximum number of processors which are allowed to transfer load (at
the end of each round) should be. These issues are all interrelated. and their resolution
also depends on the simulated model. We provide a discussion of these issues in the

following sections.

3.3.1 Token period, 5

The algorithm periodically sends out a token to collect the necessary information
from all of the processors, and at the end of each round the host decides whether
a process migration is needed. The time interval § between two consecutive token
rounds (token period) should be long enough to allow the system to stabilize after the
previous load balance, but should be short enough to prevent the system from being
unbalanced for a lengthy period of time.

During the course of the experiments, a token period of 10 GVT* computations
was employed. This value was found feasible for our models. This value is partially

determined by the systems being simulated, in addition to the time it takes for a

*The GVT computation was initiated every 3 seconds

36

GVT computation: the longer it takes to compute the GVT, the shorter the token
period should be.

A related issue is the determination of a. Transfer of clusters occurs only if the
difference of the standard deviations is less than a. We used a value of a = .25,

determined experimentally.

3.3.2 Selecting the Clusters (Processes)

There is a trade-off between achieving the goal of completely balancing the load
and the communication costs associated with migrating processes since transferring
clusters takes time. When determining which cluster to move, our implementation
chooses the cluster with the highest LOAD so as to minimize the number of clusters
moved, assuming that the load of the cluster does not exceed the intended load to

move.

3.3.3 Number of Processors that can initiate migration

Theoretically, the load balancing algorithm should distribute the loads on all of the
processors as uniformly as possible. However, migrations from too many processors
can cause the system to become unstable. In our experiments, we observed that
approximately 30% of the processors can launch migration at onec time without jeop-

ardizing the stability of the system.

37

Chapter 4

Results and Discussion

4.1 Introduction

This chapter presents the simulated models, experiments and results using the algo-
rithm and metrics presented in the previous chapter. The load balancing algorithm
was implemented on top of Clustered Time Warp. In our experiments, we made ex-
clusive use of the LRCC checkpointing technique which offers and intermediate choice
in the memory vs execution time trade-off. The simulations were executed on a BBN
Butterfly! GP1000, a shared memory multiprocessor machine. A set of models, based
on VLSI circuits, assembly pipeline and distributed communication nctworks, were

simulated.

!The Butterfly is an MIMD machine with 32 processor node. Each node has an MC68020 and
MCG8881 processors with 4 megabytes of memory and a high-speed multistage crossbar switch which

interconnects the processors. The clock speed of each processor is 25 MHz.

38

Circuit Inputs | Outputs | Flip-Flop | Number of gates
C2 | s38584 12 278 1,452 20.996
C3 | s38417 28 106 1,636 23,950

Table 4.1: Circuits from ISCAS’89

Two digital circuits from the ISCAS’89 [Brgl89) benchmark suite (Table 4.1) were
selected and simulated. The size of each of these circuits is approximately 24.000
gates. The circuits were partitioned into 200 clusters cach. using string partitioning
[Leve82). Clusters were numbered arbitrarily and were mapped to processors as fol-
lows: if NV is the number of processors, and K is the number of clusters (K > N).
then the first % clusters were assigned to processor number 1, the second —‘\L clusters
were assigned to processor number 2, and so on so forth.

The data which was collected includes the running time, peak memory usage. and
cffective throughput. The performance of the algorithm was evaluated using between

12 and 24 processors on the Butterfly.

4.2 Experimental Results.

Figures 4.1 and 4.2 show the simulation time for the two circuits C» and Cj, plotted
against the number of processors. Results are compared to the simulation without
load balancing. The same number of input vectors were used for all of the simulations.
Figure 4.1 depicts the performance of the metrics and the algorithm for Cy: 35-72%
reduction in the simulation time when PU is used as a metric, 0-30% when PASR
is used and 0-40% when PU x Fﬁ is used. As for Cj, the results are as follows:
2-21% when PU is used as a metric, (-5)-16% when PASR is used and 0-15% when
PU % 52— is used.

PASR
We attribute the difference in the percentage of reduction in the simulation time

39

C2 BE PU

B4 pasrh
5000 = B8 puPAsR
F noLB
4000 -
[/
o i
g |
Q3000
m 1
(7] {
L2000 -
0 4
E |
“1000 g
|
o |
12 14 15 16 17 19 22 24
processors
Figure 4.1: Simulation time for C,
C3 = pPu
B~ pasR
1200 £ purPASR
B4 No LB
1000 -
[72]
ke
5
o 800 -
Q
[72)
c
= 600
S 5@
E
400 -
200 -
12 14 15 16 17 19 22 24

processors

Figure 4.2: Simulation time for Cy

40

between the two metrics to the locality of activity. When the system exhibits a high
locality of activity, PU will increase on some processors. Underloaded processors can
quickly process the cvents generated by a more heavily loaded processor resulting in
the same PASR, but a different PU. This also explains why the improvements for C,
decline with an increase in the number of processors since the activity of the circuit
is spread out when using more processors.

To understand the difference operation of the load balancing algorithm between
C, and C4y, and why dynamic load balancing might sometimes increase the running
time of the simulation (employing the PASR with Cj), we looked at two other cle-
ments: peak memory consumption and the effective throughput. The peak memory
consumption is the average of the peak memory consumption in all of the proces-
sors. On each processor, it represents the maximum amount of memory used over the
course of a run of the simulation. The effective throughput is defined as the number
of non-rolled-back messages in the system per unit time.

Researchers on memory consumption for Time Warp [Jeff85, Lin91, Jeff90, Akyi92]
have pointed out that there is a time penalty associated with large space consumption.
and that it is possible for a simulation to run out of memory. Memory management is
time consuming; a heavily loaded processor must spend considerable time on memory
management.

By looking at figures 4.3 and 4.4, one can see that dynamic load balancing reduced
peak memory consumption for Cy, but increased it for Cy. Circuit Cy has a higher
locality? of events than does Cj, hence moving clusters and associated cvents from
the loaded processors in Cy decreases the peak memory consumption. As for Cjy, the
activity of the circuit is much more distributed, and hence moving clusters might

create a memory problem.

2An experimental study about the activity of the same two circuits can be found in [Avri96].

41

0
N

1800

8

Memory in Kilobytes
8

8

8

g

g

0
w

&

R
8

g

Memory in Kilobytes

g

@
8

8

B pu

B B pasr

5 £ pu/PASR
B NoL-B

]

)

]

|

12 14 15 16 17 19 22 24

Processors

Figure 4.3: Peak memory consumption for C,

= PU

BH pasr
B B PurPASR
B9 NoL-B

12 14 15 16 17 19 22
Processors

Figure 4.4: Peak memory consumption for Cjy

42

24

C2 5 NoLB
’ B pu

600 -

t

ghpu
3

Py
3

Eﬂemctiv% Throu
8 8

8

[N S

o
8

781 976 1163 1353 1533

234 457 659 ' N
Simulation Time

Figure 4.5: Throughput Graph for C,

We also examined the effective throughput of the system. Figures 4.5 and 4.6
show the impact of the dynamic load balancing algorithm on the effective throughput
of the system during the simulation of Cy and C4. The figures show a run of the sim-
ulation using the PU metric. Both figures show a noticeable increase in the cffective
throughput of the system. This increase is counter-balanced in C3 by an increase in

the memory consumption.

4.2.1 Increase in rollbacks

An increase in rollbacks was observed (up to 20%) when load balancing was employed.
This increase was expected since moving clusters slowed down the source and the des-
tination processors; when these processors resume computation they might well send
messages into the ”past” of processors which were not involved in moving clusters.
In addition, it is sometimes the case that the virtual time of the migrated cluster is
smaller than the virtual time of the receiving processor. This results from the fact

that the receiving processor is lightly loaded, and is ahead in virtual time.

43

C3 £ NoL-B
BH py

1200 -
i

8

Effective Throughput
g 8

13 45 76 159 171 196

106 187
Simulation Time

Figure 4.6: Throughput Graph for Cj
4.3 Pipeline Model

A second model which was simulated is a manufacturing pipeline (figure 4.7) [Glaz93].
The model consists of thirty processes, including two sinks and two sources, arranged
in ninc stages. Each process was represented by a cluster of 625 logical processes
connccted in a mesh topology, and clusters at the same stage were mapped to the
same processor. Messages in the system flow from sources to the sinks. following
diffcrent paths. At each stage, the message is served and forwarded to the next stage,
until it gets to the sink, where it leaves the system. The service time distribution
is deterministic and the routing decision at cach stage is governed by a uniform
distribution. The pipeline model exhibits a large number of rollbacks which are caused
by messages starting at the same source, following different paths, and arriving at
the same processor in a (possibly) different order from the one in which they were
generated.

Figures 4.8 and 4.9 show the results from the pipeline model. When dynamic load

balancing was used, the simulation showed an increase in the percentage of rollbacks,

44

Figure 4.7: Manufacture Pipeline Model

Pipeline Model

25 -

20 -

Percentage
a
1

pry
o
1

(1]

PU PASR PU/PASR

Figure 4.8: Percentage Increase in the Number of Rollbacks

45

Pipeline Model

PASR

Percentage of Reduction

Figure 4.9: Percentage Reduction of the Simulation Time

and an increase in the simulation time. Figure 4.8 shows that the number of rollbacks
increased by 20% when the PU metric was used, 18% when using the PASR and 17%
when a combination of the two metrics was used. The increase in the percentage
of rollbacks results from the fact that moving clusters from one stage (processor) to
another will cause delay on some of the input links of the next stage (processor).
Figure 4.9 shows that the simulation time increased by 8% when using dynamic
load balancing with the PU metric, 0.5% when using the PASR. metric. When using
the combination of the two metrics, the simulation time did not change. The increase
in the simulation time is explained by the increase in the number of rollbacks in the

system.

4.4 Distributed Network model

The final model is a distributed communication model (figure 4.10) . Two kinds of

cxperiments were conducted on the model. In the first experiment, messages are

46

_——Region1 Region 2

\S

i,

Region 4

Region 3

o) _ J

Figure 4.10: Distributed Network Model

uniformly distributed on the network. The second experiment modeled a national
communication network divided into four regions. In this model. we experimented
with the reaction of dynamic load balancing to a continuous change of loads on
the processors. During the course of the simulation, messages were concentrated on
diffcrent regions, one region at a time. For instance, at one point messages were
concentrated in region 1, and regions 2, 3 and 4 were lightly loaded. After a period
of time. region 2 became saturated with messages, and regions 1, 3 and 4 were lightly
loaded.

The simulation runs on 10 processors, with 7-8 nodes mapped to cach processor.
Interprocessor communication was minimized by mapping the connected nodes to the
same processor. On each node a message is served, and with a probability of 30%,
is forwarded to a randomly selected neighbor. Nodes have service times governed
by exponential distributions (with different means), and the choice of a neighbor to
which to forward the message is governed by a uniform distribution.

The results in figures 4.11 and 4.12 shows a difference in the speedup percentage

47

Distributed Communication Modet

8 N

Percentage of Reduction
«n

PU PASR PU/PASR

Figure 4.11: Percentage of Reduction in the Simula-

tion Time in the Presence of Time-Varying Load.

Distributed Communication Model

Percentage of Reduction

PU PASR PU/PASR

Figure 4.12: Percentage of Reduction in the Simula-
tion Time in the Absence of Time-Varying Load.

48

between the two experiments. Figure 4.11 shows a 30-35% reduction in the simulation
time when dynamic load balancing was employed with all metrics. This comes back
to the fact that, in the presence of time-varying load, the system is locally overloaded
with messages, and cluster migration improves the performance of the simulation. A
reduction of only 10-20% was observed in the absence of time-varying load (figure

4.12).

49

Chapter 5

Conclusion

In this thesis, we examined two metrics for dynamic load balancing: processor uti-
lization (PU) and processor advance simulation rate (PASR). A combination of the
two metrics was also tested. A distributed load balancing algorithm was devcloped.
in which a token circulating on a logical ring is used to collect the information about
the loads of processors, and inform the processors about the new mapping. The algo-
rithm runs in conjunction with Clustered Time Warp (CTW)[Avri95]. which allows
cluster migration.

To observe the performance of the algorithm with each of the metrics. sceveral
models were constructed: VLSI models, an assembly pipeline model and a distributed
communication network model. Experiments were carried out on the BBN Butterfly
GP1000, a 32 node distributed memory multiprocessor. The simulation time, memory
consumption and effective throughput were measured. The effective throughput is
the number of non-rolled-back messages in the system per unit time.

Results for the VLSI circuits showed that dynamic load balancing changes the
simulation time between (-5) and 71%. As for the pipeline model, the simulation
time increased by 0.5-8.0% when load balancing was employed. Load balancing ex-

hibited 10-33% improvement with the distributed network model. The PU metric

50

performed well for all models except for the pipeline model. Results also showed that

the throughput of the system was improved by more than 100% for the VLSI model.

The PASR and Pig 7 yield the same improvement as the PU for the distributed net-
work model, and better results for the pipeline model. Perhaps the most important
conclusion of this thesis is to point out that the dynamic load balancing depends
strongly on the nature of the model which is being simulated.

A number of extensions of this research suggest themselves. Onc is to implement
the algorithm on a distributed memory machine. It is possible that some interesting
aspects do not reveal themselves on a shared memory machine, such as the impact of
the communication network connecting the processing elements.

Another extension relates to the use of string partitioning for the VLSI circuits ex-
amined. One might investigate the effect of different (initial) partitioning algorithms

on dynamic load balancing,.

51

Bibliography

[Akyi92]

[Ande87]

[Avri95]

[Avri96]

[Avri96]

[Bail92]

Akyildiz, L.F. and Chen, L. and Das, S.R. and others. “Performance Anal-
ysis of Time Warp with Limited Memory, Proc. 1992 ACM Sigmetrics
Conf. on Measurement and Modeling of Computer Systems, pp. 213-224.

May 1992.

Ander, E., “A Simulation of Dynamic Task Allocation in a Distributed
Computer System”, Proceedings of the 1987 Winter Simulation Confer-
ence, pp. 168-776, 1987.

Avril, Herve and Tropper, Carl, “Clustered Time Warp and Logic Simula-
tion”, Proc. of the 9th Workshop On Parallel and Distributed Simulation,
pp. 112-119, June 1995.

Avril, Herve and Tropper, Carl, “The Dynamic Load Balancing of Clus-

- tered Time Warp for Logic Simulation”, Proc. of the 9th Workshop On

Parallel and Distributed Stmulation, pp. 20-27, May 1996.

Avril, Herve, “Clustered Time Warp and Logic Simulation”, PhD Thesis.

School of Computer Science, McGill University, Montreal, Canada, 1996.

Bailey, M. L., “How Circuit Size Affects Parallelism”, IEEE Trans. Com-
put. Aided. Des. Integr. Circ. Syst.12, Vol. 12, pp. 1903-1912, 1992.

92

[Bail94]

[Baue91]

[Belt90]

[Bokh81]

[Bokh87]

[Bouk94|

[Bouk97]

[Brgl89]

‘Brim91]

Bailey, M. L. and Briner, J.V. and Chamberlain, R.D.,_“Parallel Logic
Simulation of VLSI Systems”, ACM Computing Surveys, Vol. 26. No. 3,
pPp. 255-295, September 1994.

Bauer, H. and Sporrer, C. and Krodel, T.H., “On Distributed Logic Simu-
lation Using Time-Warp™, Proc. of the international Conference on Very

Large Scale Integration VLSI, pp. 127-136, 1991.

Bellnot, S., “Global Virtual Time Algorithm”, Distributed Simulation,
pp- 122-127, 1990.

Bokhari, Sahid H., “On the Mapping Problem”, IEEE Transactions on
Computers, Vol. 30, No. 3, pp. 207-214, March 1981.

Bokhari, Sahid H., Assignment Problems in Parallel and Distributed

Computing, Klewer Academic Publishers, Boston, 1987.

Boukerche, Azedine and Tropper, Carl, “A Static Partitioning and Map-
ping Algorithm for Conservative”, Proc. of the 8th Workshop on Parallel
and Distributed Simulation, pp. 164-172, 1994.

Boukerche, Azzedine and Das, Sajal, “Load Balancing for Conservative

Parsllel Simulation”, MASCOT, 1997.

Brglez, Franc and Bryan, David and Kozminski, Krzystof, “Combina-
tional Profiles of Sequential Benchmark Circuits”, Proceedings IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pp. 1929-1934,
1989.

Brimer, J.V., “Fast Parallel Simulation of Digital Systems”, Proc. of the
5th Workshop On Parallel and Distributed Simulation, pp. 71-77, 1991.

53

[Brin91]

[Brya77]

[Brya81]

[Burd93]

[Caro95]

[Caro96]

[Cart91]

[Cham94]

Briner, J.V. and Ellis, J.L. and Kedem, G., “Breaking the Barrier of
Parallel Simulation of Digital Systems, Proc. of the 26th ACM/IEEE
Design Automation Conference, pp. 223-226. 1991.

Bryant, R.E.. “Simulation of Packet Communication Architecture Com-
puter Systems”, Tech. Rep. MIT-LCS-TR-188, Massachusetts Institute
of Technology, 1977.

Bryant, R.E., “MOSSIM: A Switch-Level Simulator for MOS-LSI”. Pro-
ceedings of the 18th Design Automation Conference, 1981.

Burdorf, C. and Marti, J.. “Load Balancing for Time Warp on Multi-User
workstations”, The Computer Journal, Vol. 36, No. 2, pp. 168-176. 1993.

Carothers, Christopher D. and Fujimoto, Richard M. and England, Paul.
“Effect of Communication Overhead on Time Warp Performance: An
Experimental Study”., Proc. of the 8th Workshop On Parallel and Dis-
tributed Stmulation, pp. 118-125, 1995.

Carothers, Christopher D. and Fujimoto, Richard M., “Background Ex-
ccution of Time Warp Programs, Proc. of the 9th Workshop On Parallel
and Distributed Simulation, pp. 12-19, May 1996.

Carter, H. and Vemuri, R. and Wilsey, P.A. and others, “High Speed
Acceleration of VHDL Simulation, Synthesis, and atpg: Overview of the
quest Project”, Spring 1991 VHDL Users’ Group, pp. 85-90, April 1991.

Chamberlain, R.D. and Henderson, C.D., “Evaluating the Use of Pre-
Simulation of VLSI Circuits”, Proc. of the 8th Workshop On Parallel
and Distributed Simulation, pp. 139-146, July 1994.

54

[ChanT79]

[Chun89]

[Conc9l]

[Elma86]

[Fidu82)

[Fran86]

[Fuji88g]

[Fuji89]

Chandy. K. and Misra, J., “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs”, IEEE Transactions
on Software Engineering, September 1979.

Chung, M.]. and Chung, Y., “Data Parallel Simulation Using Time-Warp
on the Connection Machine”, Proc. of the 26th ACM/IEEE Design Au-
tomation Conference, pp. 98-103, 1989.

Concepcion, A.I and Kelly S.G., “Computing Global Virtual Time Using
the Multi-level Token Passing Algorithm”, Proc. of the 5th Workshop On
Parallel and Distributed Simulation, pp. 63-68, 1991.

Elmagarmid, A.K., “A Survey of Distributed Deadlock Detection Algo-
rithms”, ACM SIGMOD Record, Vol. 15, No. 3, pp. 37-45. Scptember
1986.

Fiduccia, C. M. and Mattheyses, R.M., *A Linear-Time Heuristic for Im-
proving Network Partitions”, Proceedings of the 19th ACM/IEEFE Design
Automation Conference DAC 82, pp. 175-181, 1982.

Frank, E., “Exploiting Parallelism in a Switch-Level Simulation Ma-
chine”, Proc. of the 23rd ACM/IEEE Design Automation Conference,
pp- 20-26, 1986.

Fujimoto, Richard M., “Lookahead in Parallel Discrete Event Simula-
tion”, Proceedings of the International Conference on Parallel Processing,

pp- 34-41, 1988.

Fujimoto, Richard M., *Parallel Discrete Event Simulation”, Proceedings

of the 1989 Winter Simulation Conference, pp. 19-28, 1989.

55

[Fuji89]

[GareT9]

[Glaz93]

[Gros88]

[Gros91]

[Hac87]

[Hac87]

[Hilbs2]

Fujimoto, R.M., “Time Warp on a Shared Memory Multiprocessor”,
Tech. Rep. TR-UUCS88-021a, Computer Science Department, Univer-
sity of Utah,

January 1989.

Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide
to the Theory of NP-completeness, W.H. Freedman and Company, New
York, 1979.

Glazer, David W. and Tropper, Carl, “On Process Migration and Load
Balancing in Time Warp”, IEEE Trans. Parallel and Distributed Systems,
Vol. 4, No. 3, pp. 318-327, March 1993.

Groselj, B. and Tropper, Carl, “The Time-of-NextEvent Algorithm”™. Pro-
ceedings of the 1988 Distributed Simulation Conference, SCS simulation
series, Vol. 19, No. 3. pp. 25-29, February 1988.

Groselj, B. and Tropper, Carl, “The Distributed Simulation of Clustered
Processes”, Distributed Computing, Vol. 4, pp. 111-121, 1991,

Hac. A. and Johnson, T. J., “A Study of Dynamic Load Balancing in
a Distributed System”™, ACM Symposium on Communications, Architec-

tures and Protocols, pp. 348-356, 1986.

Hac, A. and Jin, X., “Dynamic Load Balancing in a Distributed System
Using a Sender-initiated Algorithm”, Proceedings of the IFEE-CS and
ACM SIGARCH Workshop on Instrumentation for Distributed Comput-
ing Systems, pp. 62-65, 1987.

Hilberg, W., Grundprobleme der Mikroelektronik, Oldenbourg Verlag,
Munchen, 1982.

96

[Horb86]

[Iqba86]

[Teff83]

[Teft85]

[Jeff90]

[Kern70]

[Kirp83]

[Leve82]

[Lin89]

Horbst, E., Logic Design and Simulation, Elsevier Science Publishers B.V.
(North Holland). 1986.

Igbal, A.M. and Saltz, J.H. and Bokhari. S.H., “A Comparative Anal-
ysis of Static and Dynamic Load Balancing Strategies™. Proceedings of
the 1986 International Conference on Parallel Processing. pp. 1040-1-47.
1986.

Jefferson, D. and Sowizral, H.. “Fast Concurrent Simulation Using the
Time Warp Mechanism, Part II: Global Control”. Tech. Rep. TR-83-204,
Rand Corporation, August 1983.

Jefferson, D.R.. “Virtual Time”, ACM Transactions on Programming
Languages and Systems, Vol. 7. No. 3, pp. 404-425, July 1985.

Jefferson, D.R.. “Virtual Time II: The Cancelback Protocol for Storage
Management in Distributed Simulation™, Proc. of the 9th Ann. ACM
Symp. on Principles of Distributed Computation, pp. 75-90, August 1990.

Kernighan,B.W. and Lin, S., “An Efficient Heuristic Procedure for Par-
titioning Graphs™, Bell System Technical Journal, Vol. 49, No. 2, pp.
291-307, February 1970.

Kirpatrick, S. and Gelatt, C. D. and Vecchi, M.P., “Optimization by
Simulated Annealing”, Science, Vol. 220, No. 4598, May 1983.

Levendel, Y.H,. and Menon, P.R. and Soffa, S.H., “Special Purpose Com-
puter for Logic Simulation Using Distributed Processing”, Bell System
Technical Journal, Vol. 61, No. 10, pp. 2873-2090, December 1982.

Lin, Yi-Bing and Lazowska, Edward D., “Determining the Global Virtual
Time in a Distributed Simulation”, Tech. Rep. TR-90-01-02, Department

of Computer Science and Engineering, University of Washington,

o7

[Lin91]

[Liu90]

[Livn82]

[Lu86]

[Luba88]

[Luba88]

[Luba89]

[Maur90]

Seattle, Wa, December 1989.

Lin, Y. B. and Preiss, B.R., “Optimal Memory Managecment for Time
Warp Parallel Simulation”, ACM Transactions on Modeling and Com-
puter Simulation, Vol. 1, No. 4, pp. 283-307, October 1991.

Liu, L.Z. and Tropper, Carl, “Local Deadlock Detection in Distributed
Simulation”, Proceedings of the 1990 Distributed Simulation Conference,

SCS simulation series, Vol. 22, No. 1, pp. 137-143, 1990.

Livney, M. and Melman, M., “Load Balancing in Homogeneous Broadcast
Distributed System”., Proc. of the ACM Computer Network Performance
Syposium, pp. 47-55, 1982.

Lu, H. and Garey, M.J., “Load-Balancing Task Allocation in Locally
Distributed Computer System”, Proceedings of the 1986 International
Conference on Parallel Processing, pp. 1037-1039, 1986.

Lubachevsky, Boris D., “Simulating Colliding Rigid Disks in Parallel Us-
ing Bounded Lag Without Time Warp”. Distributed Simulation, SCS
Simulation Series, Vol. 22, No. 1. pp. 194-202, 1988.

Lubachevky, B., “Bounded Lag Distributed Discrete Event Simulation”,
Proceedings of the 1988 Distributed Simulation Conference, SCS simula-
tion sertes, Vol. 19, No. 3, pp. 183-191, February 1988.

Lubachevsky, Boris D. and Schwartz, A. and Weiss, A., “Rollback Some-
times Works...if Filtered”, Proceeding of the 1989 Winter Simulation
Conference, pp. 630-639, December 1989.

Maurer, P.M. and Wang, Z., “Techniques for Unit-Delay Compiled Sim-
ulation”, Proc. of the 27th ACM/IEEE Design Automation Conference,
pp. 480-484, 1990.

58

[Misr82]

[Misr86]

[Mukh86]

[Nand92]

[Nata86)

[Ni85)]

[Nico88]

[Peac79]

[Prei89]

Misra, J. and Chandy, K.M.. “A Distributed Graph Algorithm: Knot
Detection”., ACM Transactions on Programming Languages and Systems.

Vol. 4, pp. 678-686, October 1982.

Misra, J.V., “Distributed Discrete Event Simulation”, Computing Sur-

veys, Vol. 18, No. 1, pp. 39-65, March 1986.

Mukherjee, A.. “Introduction to nMos and CMOS VLSI Systems Design™.
Prentice Hall International Editions, 1986.

Nandy, Biswajit and Loucks, Wayne M., “An Algorithm for Partitioning
and Mapping Conservative Parallel Simulation onto Multicomputers”,

PADS’92, pp. 139-146. 1992.

Natarajan, N.. “A distributed Scheme for Detecting Communication
Dcadlocks”. IEEE Transactions on Software Engineering. Vol. SE-12,
No. 4. pp. 531-537, April 1986.

Ni, L. and et al., “A Distributed Drafting Algorithm for Load Balancing”,
IEEFE Trans. Sof. Eng., Vol. 11, No. 10, 1985.

Nicol, D.M, “Parallel Discrete Event Simulation of FCFS Stochastic
Qucuing Networks”, Proceeding of the ACM SIGPLAN Symposium on
Parallel Programming, Environments, Applications, and Languages. pp.

124-137, July 1988.

Peacock, J.K. and Wong, J.W. and Manning E.G., “Distributed Simula-
tion Using a Network of Processors”, Computer Networks, Vol. 13, No.

1, pp. 44-56, February 1979.

Preiss, B.R.., “The Yaddes Distributed Discrete Event Simulation Speci-
fication Language and Execution Environment”, Proceedings of the Mul-

ticonference on Distributed Simulation, pp. 139-144, 1989.

59

[Reit90]

[Sama85]

[Schl95]

[Shan89]

[Smit86]

[Stnit87]

[Smit87]

[Soul87]

Reither, Peter L. and Jefferson, David, “Virtual Time Based Dynamic
Load Management in the Time Warp Operating System”. {th Workshop
on Parallel and Distributed Simulation, pp. 103-111. 1990.

Samadi, B., “Distributed Simulation, Algorithms and Performance Anal-
ysis”, PhD Thesis, Computer Science Department, University of Califor-

nia, Los Angeles, 1985.

Schlagenhaft, Rolf and others, “Dynamic Load Balancing of a Multi-
Cluster Simulator on a Network of Workstations™, 9th Workshop on Par-

allel and Distributed Simulation, pp. 175-180, 1995.

Shanker, M. and et al., “Adaptive Distribution of Model Componecnts
Via Congestion”, Proceedings of the 1989 Winter Simulation Conference.

1989.

Smith, R.J., “Fundamental of Parallel Logic Simulation™, Proc. of the

23rd ACM/IEEFE Design Automation Conference, pp. 2-12. 1986.

Smith, R. and Smith, J. and Smith, K., “Faster Architecture Simulation
Through Parallelism”, Proc. of the 2{th ACM/IEEFE Design Automation
Conference, pp. 189-194, 1987.

Smith, Steven P. and Underwood, Bill and Ray Mercer, M., “An Analysis
of Several Approaches to Circuit Partitioning for Parallel Logic Simula-
tion”, Proceedings IEEE International Conference on Computer Design

ICCD 87, pp. 664-667, 1987.

Soule, L. and Blank,T., “Statistic for Parallelism and and Abstraction
Levels in Digital Simulation”, Proc. of the 24rd ACM/IEEE Design Au-
tomation Conference, pp. 588-591, 1987.

60

[Soul88]

[Soul92]

[Spor93]

[Su89]

[Tanec81]

[Tant85]

[Term83]

[V1ad80]

[Wang87]

Soule, L. and Blank,T., “Parallel Logic Simulation on General Purpose
Machine”. Proc. of the 23rd ACM/IEEE Design Automation Conference,
pp- 166-171, 1988.

Soule, L. and Gupta, A., “An Evaluation of the Chandy-Misra-Bryant
Algorithm for Digital Logic Simulation of VLSI-circuits”. Proc. of the 6th
Workshop On Parallel and Distributed Simulation, pp. 129-138. 1992.

Sporrer. Christian and Bauer, Herbert, “Corolla Partitioning for Dis-
tributed Logic Simulation of VLSI-Circuits”, PADS’93, Vol. 23, No. 1.
pp. 85-92, 1993.

Su. W.K. and Seitz, C.L., “Variants of the Chandy-Misra-Bryant Dis-
tributed Discrete-Event Simulation Algorithm”, Proc. of the 3th Work-
shop On Parallel and Distributed Simulation, pp. 38-43, 1989.

Tanenbaum, A., Computer Networks, Prentice Hall, Englewood Cliffs.

NJ, 1981 (second edition 1988).

Tantawi, A.N. and Towsley, D., “Optimal Static Load Balancing in Dis-
tributed Computer Systems”, Journal ACM, Vol. 32, No. 2, pp. 445-465,
1985.

Terman, C.J., “Simulation Tools for Digital Design”, PhD dissertation,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1983.

Vladimirescu, A. and Liu, S., The Simulation os MOS Integrated Cir-
cuits Using SPICE, Memo VCB/ERLM80/7, University of California,
Berkeley, 1980.

Wang, L.T. and Hoover, N. and Porter, E. and ZasiolJ., “SSIM: A Soft-
ware Levelized Compiled-Code Simulator”, Proc. of the 27th ACM/IEEE
Design Automation Conference, pp. 2-8, 1987.

61

[Wang85]

[Wang90]

[Wei89)]

[Wils86]

[Wong86|

[Zarg85]

Wang, Y.T and Morris, R. J. T., “Load Sharing in Distributed Systems™.
IEEFE Transactions on Computers, pp. 204-217, 1985.

Wang. Z. and Maurer, P.M.. “LECSIM: A Levelized Event Driven Com-
piled Logic Simulator”, Proc. of the 27th ACM/IEEE Design Automation
Conference, pp. 491-496, 1990.

Wei, Yen-Chuen and Cheng, Chung-Kuan, “Towards Efficient Hierarchi-
cal Designs by Ratio Cut Partitioning”, IEEFE, pp. 298-301, 1989.

Wilson, A., “Parallelization of an Event Driven Simulator on the Encore

Multimax”, Tech. Rep. ETR 86-005, Encore Computer, 1986.

Wong, F., “Statistics on Logic Simulation”, Proc. of the 23rd ACM/IEEFE
Design Automation Conference, pp. 13-19, 1988.

Zargham, M. and Pircell, R., “A Protocol for Load Balancing CSMA
Networks”, [EEE Trans. Parallel and Distributed Systems, 1985.

62

IMAGE EVALUATION

A Y &
. 7 ; &9@ \ //0 |
Vo, e ﬁ% ® \ \\ &
P v v, L & N S
%\\ . %5 . //\\ muES ///Q\\ & Aaéq
/.//\\\ J/%\\ ,///\4\ &%%&0
A \
S A3 =) ol jisd] |
= Adga 055 1
n daa e Hig
& . = 3|° M
- 21 =l sl Al
g _— = = m g
—
Y|y \mﬁ% . ey,
Nl
S N

