
(

(

(

- ------- ----------- ---------------------

A MAN-MACHINE INTERFACE

FOR PC-CONTROLLED INJECTION MOULDING

BY

HARRY B. FUSSER

A thesis submitted to the Faculty of Graduate Studies

and Research in partial fulflllment (Jf the

requirements for the degree of

Masters of Engineering

Department of ChemicaJ Engineering

Mc:GiII University

Montre..l1 November 1991

Ich bin eiD Teil VOD dieser Kraft, die stets das BOse will und doch

(, das Gute schafft. ..

Joh8D11 WoU'gaog VOD Goethe(aus FAUST 1)

(

L

ABSTRACI

In parallel to the development of a PC-control system for injection moulding, a

workable user interface for man-machine communication wa..o;; developed

The hardware chosen for enhanced process control incl udes an IBM PCI AT, PS/2 modcl

70. A real-time muIti-task operating system, QNX 4.0 (Quantum Software Sys. Ud.) was

installed to run applications prC'grammed in the language C (WATCOM Sys. Inc.).

The interface was tailored to satisfy the nee<1s "r c".sual users (operators) and profes­

sional users (researchers). A top-down structure was adopted, comprising menus, warnings,

and directives.

The user interface includes three tasks to run ooncurrently, the main-task, the realrlime

machine-status display task, and the task to display the current barrel-heater temperatures. A

mere expedient for a future runtime version, a dummy task can be started to display sensor

locations and the machine in the four stages.

Four controller types, a digital PID and three discrete controllers, the total of cycles for

the machine to run, and operating modes can he specified by scrolling sub-menus.

Activation of menu items is similar to the principles of commerdal.;oft ware. Protection

agai1st typing errors and optional detection of range vicIations is provided. A full-sereen editor

for configuration param~ters or maximum and minimum values for each oft he set-u p parame­

ters is provided.

..
11

(

Ali data proœssed en the loading, editing, and saving level, are character strings that

will 00 converted to appropriate data types just before machine activation. n,e resulting

magnitudes are optionally checked for range violations (safety barrier).

Jnter-task communication isaccomplished by sharing global memorysegments\~tween

display ta.~ks and the tasks in charge for data acquisition and control.

The interface tasks do not exert a large claim on system resources due to printing and

rare sereen upgrading in text mode, declaring and referencing global variables, and inc1ul\'ing

user-defined header files illto the code of modules.

Future improvements should focus on changing the default scheduling policy by QNX

4.0 and on the development of a graph:cal user interface on a separate computer.

111

.-

Résumé

Un système de contrôle de procédé digital pour une madlinc de mO'.ll.lgc par inj\..~lion.

faisant usage d'un IBM PC/AT, PS-2 model70, ainsi qu'une interface hommc-madline Oht été

développés à McGill (1991).

Un système d'opération multitâcheQNX4.0(Quantum Software Sys. Ud.) fut instal1é

et rendit possible mise en action de plusieurs programmes écris en langage C (W ATCOM-C,

WATCOM Sys. Inc.).

L'interfac..e est conçue de telle manière qu'elle puisse satisfaire les besoins des opérateurs

et les besoins des chercheurs. La structure d'interface est composée d'une hiérarchie de menus,

d'avertissements, et d'instructions.

L'interface éveille trois procédures (tâches) qui sont executées simultanément: la tâche

paternelle, la tâche qui réalise l'indication du cycle présent et la phase à temps réel, et la tâ,;he

responsable d'indication des températures de fourreau. Une tâche provisoire fut conçue pour

indiquer l'implantation des captures installées et les quatres phases de la presse à injecter.

En utilisant un méchanisme de stléction établis à l'aide de menus, il est possible de

choisir entre quatres modes de contrôle, qui sont constitués par un régulateur de type PlO et

par trois autres types digitals.

L'activation des postes de menu est similaire à celle du logiciel commercial. Un

mécanisme de protection contre des fautes dactylographiques et une examination des valeurs

données, afin d'éviter qu'ils débordent les extrêmes des intervalles de limite, sont appliqués. Un

IV

Résumé (coot)

édi leu r à plein écréin peu t être activé pour spécifier des données de configuration ou des valeurs

dé limite pour chaque valeur donnée.

Toutes les données procédées par l'interface sont des données ASCII enchaînées, jusqu'à

cc qu'elles foient converties en types adéquats, avant que la presse à injecter soit mise en

marche. Si l'opérateur le désire, les valeurs dei donn~ seront vérifiées pour savoir si les

valeurs limites sont dépassées.

L'échange de donnée.ci entre les tâches du système entier se base sur la déclaration des

sections de mémoire (registre d'addresses de mémoire) globalei. que les procédures d'affichage,

de contrôle. et de collection de données partag~nt.

Les procédures d'interface ne consomment pas énonnement de resources de système,

parce que imprimer sur l'écran est effectué en mode d'édition de texte. De plus, comme les

variables dei programmes sont déclarées de teUe manière qu'eUes puissent être accessible

globalement, des déclarations répétées sont évitées. Une autre raison, pour laquelle les

procédures d'interface ne consomment pas énonnement de ressources de système, est que des

fichiers d'instruction début sont inclus dans les modules de code.

Des améliorations à venir appartiennent à une modification du principe d'allocation du

proces .. ~lIr central entre les procédures et au développement d'un interface homme-machine

efTectué en mode graphique, ce qui devrait être réalisé par gestion des travaux au complexe

d' ordinateurs.

v

ACKNOWLEQGElV ... EN'rs

1 would like to express my gratitude to my research supervisors, Prolcssor M.R . .<amal anJ

Professor W.I. Patte~.()n, for their gratitude, support. patience, and encouragements

throughout this project.

In addition, 1 wish to thank:

- The Department ofChemical Engineering of M~GilI University for teaching

and research assistantship granted to me during the course of my sludies.

- Mr. Furong Gao for his excellent introduction into the fields of real-time

programming of applications for multi-tasking operating systems.

- Dr, Robert Di Raddo for bis support to master disappointing situations regarding

the academic procedures at McGilI.

- Dr. Günter Lohfmk and my father Mr. Heinz FuBer for their insistence that

a withdrawal from the M.Eng program would he unwise.

Finally, 1 wish to thank ail my colleagues in the department for having helped create a very

stimulating social and professional environment in which to work.

1.

•

.

~ CONTENTS

"C-Programming of a Man-Machine Interface

for PC-Controlled Injection Moulding"

Subjcct: Page:

ACKNOWLEOOEMEN"rs

ABSTRACfS 11

LIST OF FIGURES xi

1. INTRODUCfION .. , ... ,.. 1

2. BACKGROUND 4

2.1 Process control technology for injection moulding and user
perspectives 4

(a) Processcontrol technology
'! (b) User perspectives
"

(

2.2 Real-time and multi-task computing for data acquisition
and control 8

2.2.1 Working principles & conceptual overview of
real-time multi-tasking operating systems 9

2.2.1.1 Real-time and multi-tasking features 9

2.2.1.2 Operating system constituents 11

(a) Process states
(b) System data structures
(c) Processor queue
(d) System layers and priority levels
(e) System kernel
(0 First-Ieyel interrupt hand1er (FLIH)
(g) The di~pa/cher
(h) Relationship betwren FLIH, dispatcher, and the processorqueue

2.2 1.3 Process manipulatIOn by sem,lrlwr~:-,: 1

(a) Blocking and unb/ocJ...mg
(b) Quewng and dcqueumg
(c) Processor allocation
(d) Mutual exclusion
(e) Task synchroni'>:llioI1

2.2.1.4 The basics of dynamic memory allocation 26

2.2.1.5 The 1/0 subsystem 29

2.2.1 6 Resource allocation & scheduling .. 33

(a) The deadJock problem
(b) ScheduJing mechanisms
(c) Sc.heduJing policies

2.2.2 Multi-task. programming prb.1ciples 43

(a) Task-creation primitives
(b) Inter-t3Sk communication primitives
(c) The basics ofmulti-Illsk programming for process control

2.2.3 Programming languages for real-time applications
and multi-tasking 49

2.3 Suitability of conunercial software for PC-controlled
injection moulding at McGill '................... 51

2.3.1 Real-time and multi-tasking operating systems .. "... 52

2.3.2 Re.ll-lUne programming languages 53-

2.3.3 Conclusion 55

2.4 System components for PC-controlled injection moulding
at McGilI(l99I) and limitations .. 55

2.4.1 Hardware components and constraints on memory size 55

2.4.2 Software and constraints on program development 57

vii

ft

Il
~.

3. MAJOR INTERFACE SPECIFICATIONS AND FEATURES ON THE
SYS1'I~M IJ~VEI~ 59

3.) f landling interface priority versus priorities of
control system and data acquifo.ition related tasks ... 61

3.2 Providing featurcs for professionaJ versus
casua) user~; ... 62

4. INTERFACE STRUcrURE AND FEATURES ON THE
USER LEVEL 64

4.1 Top-down menu levels .. 64

4.'2 Editor for defaul' set-up data mes and mini-max
data files 66

(4.3 Error checking and safety barrier ... 68

4.4 Background real-time machine-status display .. 70

4.5 Control-syst~m configuration-monitor and operating
options .. 73

S. SOURCE-CODE ARCHITECTURE 77

5.1 User-defined header files "colours.h, colours_fl.h, Cdec1.h, and shared.h" 77

5.2 Library object modules of "if40.lib" 79

5.3 Global, local, and system variables ... 81

5.4 Logical branching, returned values, and jump marks 83

6. CODING STRATEGY 87

viii

7. DEBUGGING AND RESUL TS 94

7. J Interpreting compiler and linker cn'or-messages 96

7.2 Interpreting run-time crrors (Operating System) 9X

7.3 Task simulation for detecting non-corrupting
logical errors ... , 99

8. CONCLUSIONS AND RECOMMENDATIONS ... 101

8.1 Conclusions .. 101

8.2 Recommendations 106

9. REFERENCES 108

10. APPENDIX .. 110

10.1 lliustration of menu layers 1 1 1

10.2 Flowcharts 1 - 7 .. 112-118

Il. DSnn S1A" DISKETIES (enclosed)

Diskette 1 (MS-DOS format):

- source code (ASCII) of interface modules: '* .c'

- executable me and object modules library (QNX 4.0 machine code):

- 'variable' - simulation task for control & data acquisition

related tasks.

- 'g40.lib' - object modules library for the module

'viewdat.c' (expedient for future runtime version). (cont.)

ix

{'

Diskcttc 2 (MS-DOS format):

- cxccutable files and object-modules lihrary 'if40.lib' (QNX 4.0 machine code):

(1) 'imm' - interface main task;

(2) 'statdip2' - real-time status display task;

(3) 'barrelternp' - display task for barrel heater
temperatures;

(4) 'variable' - simulation task for control & data
acquisition related tasks;

(5) 'if40.Iib' - object-modules library;

x

r

LIST OF FIGURES

1. Figure 1 : Example of a real-time system .. . X

2. Figure 2 : 1/0 sequence of a single-task operating system and a multi-tasking

operating system 10

3. Figure 3 : Process-state diagram 12

4. Figure 4 : Process structure and processor queue 13

5. Figure 5 : Layered structure of a real-lime (and multi-tasking) operating

system ... 14

6. Figure 6 : Interrupt identification by a skip chain 16

7. Figure 7 : Invoking an operation of the dispatcher 17

8. Figure 8 : Relationship between frrst-Ievel interrupt handler and dispatcher .. 20

9. Figure 9 lm 1 tat' f If 't" & If' 1" 24 : p emen Ion 0 wal signa

10. Figure 10 : Thrashing example 28

11. Figure 11 : Sketch of the 1/0 system components .. 32

12. Figure 12 : The deadlock problern in a multiprograrnming environment 34

13. Figure 13 : Task states, transition, and scheduler signais 36

14. Figure 14 : Scheduling model for a proressor-bound process (queuing) 38

15. Figure 15 : Scheduling model for an I/O-bound process 38

16. Figure 16 : General scheduling model involving a semaphore queue 39

Xl

LIST OF FIGURES (cont.)

17. Figure 17 : GanU chart of round-robin scheduling .. 41

18. Figure J8 : Quantum shrinkage and increase of task switching overhead 42

19. Figure 19 : Precedence graph for the "fork" construct 43

20. Figure 20 : Precedenœ graph for the "concurrent" statement 44

21. Figure 21 : A process hierarchy ... 44

22. Figure 22 : Segment sharing with difTerent access privileges 46

(

(
Xll

1. mtcod Dction

For reasons associated with higher productivity, efficient utilisation of natunù resources

and unifonn product quality, the use of microprocessor-based digital control continues to

expand in the process industries. On alllevels, the factors inhibiting compu ter applications for

process controllimits areconstantly dwindling. Processingspeed and capacity are increasing,

and interfaces to the real world arecontinually performing more complex 1/0 (input/output)

operations.

Thesecapabilities suggests the use of a computer as an intelligent tool to rnanipulate and

control the complex dynamic process of plastics injection-moulding . The configuration,

however, of any digital, computer-based process-control system in this context is not obvious.

This has led to extensive efforts aimed at c1arifying how best to employ digital technology ror

improving the performance of the injection moulding process.

In addition to overall system configuration and component selection, it is neœssary to

develop a user interface supporting man-machine communication and ease of control system

configuration. The objective ofthis work has been to design a user interface for application in

conjunction with a PC-control system for injection moulding. The primary and secondary

specifications that governed the user-interface design may he listed as follows.

f

j
"

(

L

2 1. Introductiop

(i) The interface must provide features required for three difTerent operating modes

(explained in section 2.] (b): "user perspectives"). These modes are:

(a)

(b)

(c)

LEVEL

- level 1/
operai.or level

- JeveJ 2/
professionaJ user
level

-level31
research level

SPECIFICATION

machine operations by default or
preset conditions

machine operations by explicit setup
specification

machine operations by explicit setup
specifications, data acquisition, and
control system configuration

(ii) The interface must exert a minimum c1aim on system resources (i.e. CPU time

or memory).

(iii) The user interface must be synchronized and must communicate efficiently with

the sub-systerns related to digital control and data acquisition.

(iv) The interface program must feature an open structure that is uncomplicated to

modify and to expand.

(v) The current machine-status and the barrel-heater temperatures must be displayed

in real-lime.

'..,

3

The secondary specifications, which were not considered to he as critical as the primaI)'

objectives, included the following:

(vi) Protection against typing errors and range violations rnust he providcd.

(vii) Parameter input and user commands must he menu-driven (top-down structure).

(viii) The program structure must incorporate logical branching for the real-lime display

of sensor readings (to he oeveloped in the future).

This thesis is divided into ten chapters. Chapter 2 supplies background informa tion, which

covers pr~ntrol technology for injection moulding and user perspectives, as weil as issues

affecting real-time multi-tasking operating systems. The chapter concludes with a description

of components selected to establish the PC-control system for injection moulding at McGiII

(1991). In chapter 3, interface features are specified. 80th chapters 2 and 3 deal with issues on

thesystemlevel. TheChapters: 4,5,6, and 7 deal with, source code architecture, oodingstrategy,

and debugging, respectively. Conclusions and recommendation~ concerning further work are

given in chapter 8. A dia gram depicting the interface menu levels and simplifted nowcharl~ for

the various menus are included in the appendix, chapter 10. The object-module listings (source

code), the executable interface programs, and the Iibrary 'if40.lib' are stored on the included

floppy diskettes. The C-code listings wereconverted from Q NX 4.0-f ormat to DOS/ASCII -f or­

mat and are saved on diskette 1 in ,ddition to the object modules library 'g40.1ib' and the

executable file 'viewdat' (QNX 4.0 machine code). Further exccutable files and the object

modules Iibraries 'if40.lib' (QNX 4.0 machine code) are stored on diskette 2.

ft

4

2. nacka:rouod

2.1 Process control tecbooloiY for injection wouJdina: and user perspectives

(a) PROCESS CONTROL TECHNOLOGY

Currently, high perfonnance injection moulding machines are equipped with a

numerical control system (CNC). In fact, there is a trend towards the establishment of

integrated systems for quality assurance (QAS), computer integrated manufacturing (CIM),

production and maintenance scheduling (PMS), and distributed computer control (master/slave

principle for supervisory control, Reiling, (1989), and Schwab, (1989».

Due to itscornplexity, a sufficiently accurate dynamic model for the injection moulding

proœss, which most control strategies would require, is not yet available. However, the

statistical evaluation of process data often ieads to valuable correlations between process

parameters and quality featmes of moulded parts. As long as a substantial progress in

modelling is missing, these correlations continue to build the backbone of (statistical) process

control (SPC) systems in injection moulding (Schwab, (1989».

It goes without saying that research in the field joins in following the industrial trends

mentioned above, and to a certain extent focuses on subjects beyond the industrial scope.

Industry has an interest in establishing (numerical) correlations between process parameters

and quality features to produce fewer faulty mouldings. Research activities airn at improving

physical models to better describe the nature of injection moulding for further advanced

technologies. These models need to he verified. Then, powerful process data acquisition

----------------------------------~-----

5 2. Uack.a:rournl

features of numerical controls would tremendously help test process-control based on an

improved moJel.

Often research engineel"S are to decide on whether to buy state-of-the-art machinery

(complete UJÙt) or to spend efforts on upgrading outdated machines (ad ding modular

components) altematively.

The fust alternative is to purchase a CNe injection-moulding machine forstudies orthe

injection-moulding process. Such a machine generally features a network of sensors, digital

circuitry including ADClDAC (analog to digital converters and vice versa), a single PLe

(programmable logic controller) unit or a larger number, programming interface. dl?ta-bus

interface, and a video system. These components are essentially required to perform QAS,

PMS,andCIMfoundinthemanufacturingenvironmentofthemodemfactory. Mostfeatures

of such a system are conceived to exchanging machine and process data (Jogging and loading)

between the machine, host computers (data bases), and operator tenninals. Aside from

specifying machine settings and the Jogging modes, adjustments to the PLe pro gram can be

made via terminaIs. Nonetheless, the PLC unit must he re-programmed otT-line to install a

different program for control. However, it is usually not possible to employ other control

strategies than SPC or digital PID control with PLCs. Finally, the usually significant

contribution to cost of the above hardwareeomponents ofCNC injection-moulding machines

is not negligible, sinee research budgets tend to be limited.

The second alternative for research in injection moulding is to construct a modular

process,eontrol and data-acquisition system that warrants greater flexibility regarding system

configuration at lower cost. High-end pers on al computers equipped with modem data-

(

(

6

acquisition boards (short conversion time) are aITordable and satisfy the requirements (refer

to sections 2.2-2.4 for details) of process-data acquisition and digital control. Moreover, it is

considered advantageous that control algorithms run on a PC can he changed easily, whereas

programming flexibility ofCNC-machines is more restricted. Wherecost factors are important

, and where it is intended to alter the system configuration frequently as weIl as to provide

various operating modes, this approach is suitable for upgrading conventiona.l injection­

moulding machines found in research laboratories.

Individual control of the injection-moulding phases is a significant topic of research into

processcontrol in tbeChemical Engineering atMcGill (1991). Secondly, a vllrietyofprojects

in a suite of on-going research requires experiments where the modified injection-moulding

machine at McGiIl bas to he operated in various configurations. Since these considerations as

weil as budget constraints coincide with the above arguments of the second alternative, a

versatile PC-supported digital control-system was designed and constructed at McGill

University (1991) bypassing analog controls of the injection-moulding machine.

(b) USER PERSPECTIVES

The search for optimum operating and configuration features of a PC-control system

for an injection-moulding machine depends on t~ree different perspectives: the manufacturing

aspects, the professional user needs, and the research perspective. A suitable user interface must

exhibit that these perspectives were taicen into consideration. Their implications on the design

of the user interface are summarized next.

7 2. Ua.ck.a:rouml

An those users whose main interest is producing a varying number of moulded parts

while accepting the default parameter-settings of the machine and control system are identified

as "opera tors". Considering manufacturing on the operator level, the constrainL'i on the

interface desi~ are as follows. The interface should "fail saCe" when required command

sequences are violated. System restart must he made possible without a need for invoking

housekeeping routines on the operating-system shell after a shutdown. lIO requests should he

menu·driven such that default settings or values are displayed (e.g. default fIle locations). If

low-Ievel menus suited to system configuration are entered accidentally, (automatic) entry

and/or range-error protection, if applicable, has to he provided. W ami,., gs and acoustic signaIs

are required if system corruption or logical deadlock is at stake. Sereen lay-out and colouring

should he chosen in a way that memorizing menu sequences is supported.

Research work would involve amodification of the system's default configuration. This

is the perspective of professional users. An alteration can pertain to a change of set-ur

parameters with the help oflow-level menus (e.g. for the fast ADC sampling-rate at injection).

On the research level, a professional user ("researcherlt
) would modify both parameter settings

for the process-control system and for machine set:up. ln addition to the set of constrainl'i

originating from the manufacturing perspective, menus for set-up parameters have to be

provided for professional users. Secondly, editing utilities ilave to be provided to satisfy

researcher needs (for various sets of set-up pararneters and range values). FinaHy, menus for

configuration need to beadded to those used by operators. Range-error and entry-error protec~

tion become a primary issue. Files holding minimum and maximum values for any given

parameter have to be created. Selecting di recto ries for storage of sampled-data files and

locations for range data files should be menu-driven. Ifmachine settings are to he tested that

are beyond present experience, range checking must be suppres.'iCd. Identification of

(

(

(

8 2. UaCkl:rOllDd

appropriate minimum and maximwn values for any given set of machine-parameter and

controJ-parameter settings represents a research project in itself.

2.2 Real-lime and mullj-lask compuline for data acquisition and control

The minimum hardware and software requirements for real-time data acquisition and

control are: a real-time dock, one or more digital to analog converters, an analog to digital

converter or a larger numher, and a real-time operating system. These must he considered

integral parts of any process-control system incorporating a PC. The relationship of these

components is depicted in Figure 1.

Fienre 1: Examplc of a Real Time System (Mellichamp,(l983»

----------------------------............ .
9 2. Jla.cka:round

2.2.1 Workin~ principles andconceptual oveniew ofreal-time multi-taskin~ operatin~ sy~lems

The following discussion gives a brief explanation of the characteristics of modem real­

time multi-tasking operating systems.

2.2.1.1 Real-rime and multi-taskjO& features

System resources are limited (e.g. amount of RAM, CPU processing capacity, size of

1/0 buffers). Thus, real-time operations and multi-tasking are based on sophisticated

mechanisms to obtain maximum perfonnance.

A real-time multi-tasking operating system services interrupt requests for real-time 1/0

or for task switching. Interrupt requests are issued either by peripheral devices, by the system

itself, by keyboard entry, or by user tasks (software interrupts, traps). Interrupt requests serve

tosuspend the processor's allocation to thecurrent process. Servicing the processinvolved wilh

the issue of the interrupt request is then accompli shed virtually at once by the CPU. This

ensures that unpredicted events in the outside world are acknowledged with almost no delaj

by the computer (real-time lIO) .

•

(
1

10 2. Back,&roupd

Overall execution lime, including ajob nùx of 1/0 bound and CPU bound processes, can

bc reduced whcn multi-tasking is applied (time advantage). Figure 2 illustra tes the principal

time advantage of multi-tasking compared to single-task operations. Aside from the acœlera­

tion of 1/0 for the obsolete devices such as teletypes and card-reade~, a reduction of total 1/0

time due to multi-tasking can also he achieved when modem devices such as tine printers and

plotters are applied. No matter what devices are involveJ, during most of the time 1/0 is

performed the CPU stays idle, waiting for the 1/0 data transfer (reading from and writing to

1/0 registers) to terminate. Il then resumes activities to properly conclude the 1/0 process. The

intermediate idleness of the CPU shrinks when multi-tasking is employed, since multiple 1/0

procedures can he initiated virtually at a tirne.

rMC ,.

'ASIC. '2

'ASIt "

A U!!Gc..r .. 'AS': O"-:'ATr"'fj SYST['"

,.oTE ON! fASa; AT A Tf"E tlreur's
(PU srA'S IOLe ",,(.. A TAS~ us '0. "0.

fASI. '1

rASC U

TASC "

... MUlTrrAsr: o~<IItATr...c; ~T'5T!~

NOU olNe TASC AT A Till! !.!CUTH
t'V 'lM(IS "V(N TO LCl"!A n'OOlfT rASa: ~~ A usa: WAtTS '01 1/0.

Fi&ure 2: VO Sequence of a Mulli-TasJàng Operating system
and a Single-Task Operating

~ CI'II .CT!VI TT

o :.'!VICE ACTJVITY

(Mellichamp,(1983»

11

If no VO operations are to he perfonned, it can still he dcsired thal tasks run only

during a defmed time interval which is smaller than total execution time. Starting and halting

tasks would then he the desired operating system feature leading to a hicrarchy of tasks

virtually run simultaneously.

Multi-tasking on single-processormachines isaccomplished bytime-slicing CPU-time.

Allocation ofthe CPU to a process is allowed only for a fraction (sliœ) ofits overall execution

time. Interrupts are used for internaI recognition of time-outs, and for switching CPU

allocation. The software entity that perfonns slicing or implements the switching policy is

referred to as a scheduler.

Several constituents of the operating system are involved with servicing interrupt

requests for real-time IJO and task switching. These constituents are discussed next.

2.2.1.2 Operatini system cODstitueDts

Sorne constituents of the operating system in low memory are used to store and retrieve

information about process states (in a multi-tasking environment). These are referred to as

system data-structures, and the processor queue. The entity known as kernel is the core of a

layered system structure, where each layer is serviœd dependent upon the priority assigned to

il. The kernel is itself subdivided and comprises three sub-sections: the first-Ievel interrupt­

handler (FLIH), the dispatcher, and the processor queue mentioned above. The activities of

these constituents (see sections 2.2.1.2 (c). (O. (g). and (h» result in a change of the state of one

or more processes present in the system (memory).

(

(

12 2. Backa:mllnd

(a) PROCESS STA TES

If the operating system is ta han die switching the central-processor between processes,

it has to keep track of the curreot stale of aIl processes. A process state May he new, ready,

active (or running), waiting (or blocked), or halted (slain). A process-state diagram is shown

in Figure 3 beJow.

Fipte 3: Process-State Diagram (petcrson,(l98S»

(b)SYSTEM DATA STRUCTURES

The operating system applies a descriptive method, which is updating a complex data

table in low memory, to keep informed about the overall state of process activities.

Infonnation about any process is saved in a process control-block (process descriptor). Il

contains the current status. other information, and specifications about the volatile environ­

mect of the process. This is the subset ofthe modifiable .:ihared facilities of the system accessible

to the process. The process descriptor of each Plocess is linked into a process structure, which

(acts as a description to a1l processes within the system. The central table is a data structure ta

L

f

~ . ,

13 2. Uack.UQund

serve as a means of access to all system structures. The central table bas a pointer to each data

structure and to other global information about the system.

(c) PROCESSOR QUEUE

Ali descriptors of runnable processes (in the ready state) are ordered by decreasing

priority in a circular table known as a queue, so that the most eligible pr~ (highest priorit y)

is at its head. This processor queue includes descriptors to member processes that are ready to

he allocated to the central processor. The linkage of the process structure and processor queue

is in Figure 4.

~~~+_ Prou" ~s(rIOlo' or DroCl'" 
J.=. on proc,"or Z 

PItO<:U1; ~us 
O(SC .... To- a Dt:SCltIPTO_ J 

Fipre 4: Proa:ss Structure IlDd Proœssor Queue (LiSLer.0988» 



( 

( 

i ( 

14 2. Back&fOnud 

(d) SYSTEM LA YERS AND PRIORITY LEVELS 

It is useful to visualize the structure of an operating system as the layered structure of 

concentric shells of an onion as shown in Figure S. 

Fipee S: Layr:md Structure ofa Real-T1DJe IUJd Mu/Ii­
TasldDg OperatiDg System (Listcr,(1988» 

Figure 5 helps to show bow time-sharing ofthe CPU depends on priority levels. Outside 

layers corr~pond to processes that are less time critical. They are given a low priority. In 

contrast, processes represented by inner layers run at higber prlority, which means tbey are 

considered tirst when allocating the CPU anew. 



15 

(e) THE SYSTEM KERNEL 

Themost inner layer is referred to as the system's nucleus or kemel. The highcsl i:riority 

forePU allocation isassigned to it. Thekemelisitselfdivided into three modules (subroutine;;) 

namely: the fl1"8t-level interrupt hand1er. the dispatcher (low-level scheduJer), and the module 

in charge for process manipulation. The latler provides two procedures( rou tines) w hich impIe­

ment the inter-process communication primitives "wait" and "signal" to he explained below 

(rder to section 2.2.1.3). These procedures are called via system caUs (traps) in the processes 

concemed. The kernel is small, usually around 6Kbytes, since processing speed is urgen t (negli­

gibJe overhead). The real-time features depend on the kernel's organisation and ils re1ated 

performance. At the kemellevel. it is required that two instructions are subsequently executed 

within a time interval of a fraction of a micro-second, whereas a time delay several orders of 

magnitude bigher (up to rnilliseconds) is acceptable for the higher layers. Any process 

performed on a bigher layer causes sorne activity of the kemel, particularly allocating the CPU 

to a process that requested to run (see (g), The dispatcher). It can thus he considered as a 

virtual CPU to any process or as a guard for the CPU. 

(1) THE FIRST-LEVEL INTERR UPT HANDLER(FLIH) 

The flfSt-level (meaning lowest system level ofhighest prie rit y) intern.pt handler is the 

part of the operating system which is responsible for responding to signaIs both from the 

outside world (interrupts) and from within the cornputing system itself(systern cali s/traps/so ft -

ware intemlpts). It should be distinguished from lIO device handlers and interrupt handlers 

included in application programs (higher level at lower priority). 



( 

-

16 

The function of the FLIH is twofold: 

(1) to determine the source of the interrupt; 
(2) to initiate service of the intetrupt; 

2. Backj:rouod 

The FLIH is always entered in supervisory mode, so that it has full access to the 

privileged instruction set (kemel procedures). Once invoked, the handler initiates saving of the 

program registers of the currently running process. Following the logic of a "skip chain", the 

handler next checks for the origin of the interrupt request. If a check results in a denial of an 

assumed source, the program œunter of the handler "skips" to the next logical statement 

(if(sourœ)then ... ) and the next source occurring in the skip chain is checked. This is continued 

uDtil the source can he identified. Then the interrupt service-routine appropriate to the source 

is initiated. Scheduling mechanisms fmaIly determine if the source process can run or has to 

wail. This is depicted in Figure 6. 

Moy'" { CiO'" Il, 
lIo,es.ore 

Error 1~llne 
lor 

..:nknoom Ift't'tllpl 

Filme 6; InlemJpt IdœtirlCation bya SLip Chain 

y Servlc, tOV1lne 
la' sou,e. 1 

y SeMC' nkI'lfte 
la. souret 2 

y StrVICt 'ou "ft. 
'Of' sou,c. ft 

(üstcr, (1 988» 



17 2 Uac.k.amnuw 

(g) THEDISPATCHER 

The function of the dispatcher is to allocate the central processor among the various 

processes in the system. It is sometimes called as the low-Ievel scheduler to difrcrcntiatc lt from 

the high-level scheduler (simply referred to as scbeduler, see sections 2.2.1.6 (b) and (c) about 

scheduling) which is ron at a lower priority. The dispatcher is entered whcnever the current 

process cannot continue, or whenever the processor might be bettcr employed in another 

process, i.e. after: 

(l) an extemal interrupt, which usually changes the 
status of sorne process; 

(2) a system call(trap), which suspends the current 
process; 

An illustration about this is given in Figure 7. 

OtsoelCft 

InierruClI 

Fipre 7: Invomg an Operaûon of the Dispatcher (Andrcws,(l983» 

In effect, the dispatcher is entered after all interropts. The initial operation of the 

dispatcher is to check if the current process is still the most suitable to run. If not, 

it invokes saving the volatile environment - which is the subset of the modifiable shared 



( 

( 

18 2. 8ack.~[Qund 

r acilities of the system acces.~ible to the process - of the CUITent process in its process descriptor. 

Then the volatile environment of the most suitable process is retrieved from its proœss 

descriptor. 

The operation encls by transferring control to the CPU to the newly selected process, at 

the location indicated by the restored program counter (Mellichamp, (1983), chapter 8; Lister, 

(1988); And!'ews, (1983». The most suitable process fO run is identified by its priority. The 

assignment of priorities to processes is not the function of the dispatcher. This is the 

responsibility of the high-Ievel scheduler described in section 2.2.1.5. As far as the dispatcher 

is concemed, the process priorities are given :\ priori. 

(h) RELA TIONSHIP be/Wt:el1 FLIH, DISPATCHER and PROCESSOR QUEUE 

The basic synchronisation mechanism between the above constituents involves a 

"semaphore" (see 2.2.1.3 for more details). A semaphore is a non negative integer number 

which cao either he incremented by one or decremented byone. It bas the functionality of a flag 

that con troIs access to certain system routines and memory locations. Before the corps of a 

procedure can he executed, initial logical statements check for the current value of the 

semaphore associated with tbis procedure. After the occurrence of interrupts semaphores are 

employed to either awaken a process (signal) or to keep it suspended (wait). 

The action taken by an interrupt routine to make a process runnable is twofold. Firstly, 

it must alter the status entry in the process descriptor, and secondly it must Iink the process 

( d~riptor into the processor queue al the positi.on indicated by its priority. This can he done 



19 2. Uack.&:rouQl.J 

byexecuting a "signal" operation on a semaphore. On the semaphore the proccss concerned 

has executed a "wait" operation. It is possible, that at a particular moment, a queue contains 

no processes. Rather than allowing a processor to loop within the dispatcher, it is convenient 

to introduce an extra process, caUed the nuU process, which has lowest priority and is always 

runnable. The nuU process may he nothing more than an idle loop, or it may perfonn sorne 

useful function such as executing processor test-programs. lts poSItion i.:, always the end orthe 

processor queue (see Figure 4). With a knowledge of the processor queue and the FLIH, the 

operation of the dispatcher can now he summarised as follows: 

(1) Is the current process on the processor still the first 
non-running process in the processor queue? If sa 
resume it. lf not, then do (2) - (4). 

(2) Save the volatile environment of the current proccss. 
(3) Restore tb.~ volatile environment of the first non-running 

process in the processor queue. 
(4) Resume running tbis process. 



( 

( 

( 

20 2. Backerougd 

According to the above, it can he said that the overall real-tirne operation of an 

operating system is a resuJt of the successfuJ activation of the interrupt mp.chanism itself, the 

first-Jevel interrupt handler, the interrupt service-routine, and the dispatcher, as indicated 

schematically in Figure 8. 

FUH 

1 
Service rourine 

l 
Dispatcher 

Save program counter 
Save other regtSters (optional) 
EnterFLIH 

Save program registers (if nof done above) 
Identify interrupt (aided by hardware) 
Entcr 50mc scl'V1ce routine 

Service intcrrupt, possibly altenng 
S~fUS oC 50me process 

Processqr switch necessary? U Mt, resume 
interrupted pracess 
Save volatde environment of current p~ss 
Restore volatile environment of tirst 
eligible process in processor queue 
TransCer control to new process 

Fipre 8: ReJatioDSbip between FLIH, and Dispatcber (Lister.(1988» 



21 

2.2.1.3 Process manipulation by semaphores 

A semaphore, s, can be understood as an unsigned integcr on which cithcr addition by 

one or subtraction by one is performed. Il should he emphasizcd that the assignmcnt: 

s:= s + 1; (2.2.1.3) 

is not the same as an increment operation on a semaphore. The ditTerence arises from the fael 

that operations on semaphores are arranged to he indivisible. Indivisibility ensures that only 

one process at a time can execute an operation on the semaphore. It is important that a 

semaphore is properly initialized to a non-negative numher. Hinary semaphores can as..')ume 

.. '» valuesofeitheroneorzero. Countingsemaphorescanassumeany non-negative integer, sothat 

its initial value can he grea ter than one. Dy perf orming logical opera tio ns on sema phores, which 

are attacbed to processes, the process states (sec section 2.2.1.2 (a): "process states") and the 

timing of instructions cao he manipulated without creating huge and lime consuming overhead. 

Themecbanisms to implement indivisibility are to "Iock" and to "unlock" the memory locatioll 

where the value of the semaphore 's' is stored. Two melhods are used: busy-waiting and 

interrupt inhibition. Bolh methods make use ofthe intenupt mechanism and difTer only slightly 

(Lister, (1988». These methods "lock" a semaphore before an operation bya process on it, and 

"unlock" it when the operation has tenninated. Semaphores are uscd to quickly implement: 

blocking, unblocking, queuing, unqueuing, processor allocation, mutual exclusion. and task 

synchronisation. 

" ' 

"" 



L 

22 2. Bachroupd 

(a) BLOCK/NG and UNBLOCK/NG 

Blocking and unblocking are based on the kernel operations "wait" and "signal" that 

were mentioned above. In particular, the operations on semaphores to be implemented are: 

wait(s) : wben s > 0 do: decrement s; 
signal(s): increment s; 

where 's' is the semaphore. The "wait" operation implies that processes are blocked when a 

semaphore has value 0 and freed when a "signal" operation increases its value to 1. One way 

to implement tbis, is to associate with each semaphore a semaphore queue. When a process 

{ performs an 'unsuccessful' "wait" operation (that is, it operates on a zero-value semaphore), 

it is added to the semaphore queue, and is made unrunnable. Conversely, when a "signal" 

operation is perfonned on a semaphore, sorne process can be taken otT the semaphore queue 

(unless empty), and he made runnable again. Therefore, the semaphore is implemented with 

two components: an integer and a queue pointer. Logically, this concept can be described as 

follows: 

( 

wait(s) : ü· .. 0 then s:= s - 1 
cise add process to semaphore queue and make 
unrunnable; 

signales) : if queue is empty tben s:= s + 1 
cise remove sorne process from semaphore queue 
and rnake runnable; 



23 2. Back&rQllQd 

The semaphore need not he incremented within "signal" if a process is to be freed, since 

the freed process would immediately have to decrement the semaphore aga in in completing its 

"wait" operation. Thus the "Iock" and "unlock" operations are not substitutes for "wait" and 

"signal", since the latter are suitable fer short delays whereas the lock/unlock operations 

consume considerably more tinte. Exclusive use of locklunlock can lead to "thrashing" in 

systems with Many tasks. Thrashing is the phenomenon where the supervisor spends much of 

itstimemanaging thetasksleaving little timefortheirexecution. However, the more processing 

capacity the central processor features the higher is the threshold nwnber oftasks toat can lead 

to noticeable thrashing. 

(h) QUEUING and DEQUEUING 

Semaphore queues that hold process descriptors indicating the "wait" stage of processes 

can be arranged in different forms. For most semaphores, a simple flfSt-in first-out queue is 

adequate, sinceit ensuresthatall blocked processes areeventually freed. In sorne cases, it may 

be preferable to order the queue on some other basis. 

(c) PROCESSOR ALLOCATION 

The "wait" and "signal" operations May alter the status of a process. the former by 

ma king it unrunnable and the latter doing the- opposite. An exit must therefore he made to the 

dispatcher for a decision on which process to run next. 



( 

( 

( 

24 2. BacklrollPd 

In cases where no process status bas changed (that is, a "wait" on a positive valued 

semaphore or a "signal" on a semaphore with an empty queue), the dispatcher will resume the 

current process, since it will still he the fll'St non-ronning process in the processor queue. 

The realisation orthe "wait" and "signal" operations that comprises the mechanisms of: 

locking, blocking, queuing, the opPOsites of which, and processor allocation is ilIustrated in 

Figure 9. 

Epre 9: ImpJemenlJltion of "Wait" and "Signal" (Lister,(1988» 

Mutual exclusion and task synchronisation are additional operations implemented by 

semaphores. The following paragraphs give a short description. 



, .... 

25 2. Backeround 

(d) MUTUAL EXCLUSION 

Non-shareable resources (e.g. files, some data in rnemory or peripherals) can be 

protected from simultaneous access by several processes. This is accomplished by preventing 

the processes fromconcurrently executing the code which access the resources. These fragments 

of code are referred to as critical sections, and mutual exclusion in the execution of critical 

sections can he regarded as rnutual exclusion in the use of resources. Exclusion can he achieved 

by the simple expedient of enc10sing each critical section by "wait" and "signal" opérations on 

a single semaphore whose initial value is 1. Thus, each critical section is programmed as 

('mutex' is the semaphore name): 

(e) TASKSYNCHRONISATION 

wait(mutex); 
critical section 

signal(mutex); 

In a multi-tasking environment, tasks depend on interrnediate results of other tasks, or 

system resources have to he allocated in a JogicaJ manner among multiple wks. Then, task 

synchronisation becomes a primary issue. Generally, the tasks aresaid to he asynchronous. An 

examplewill clarify thatexecution of"wait" and "signa}" on semaphoressynchronizes processes 

in a straightforward manner. Thesimplest fonnof synchronisation is when a process, A, should 

not proceed beyond a point, LI, until sorne other process, B, has reached L2. 



26 2. Baçk&rollpd 

Examples ofthis situation arise whenever A requires infonnation at point LI which is provided 

by B when it reaches L2. The synchronisation can he programmed as follows: 

Program for Process A 

LI: wait(proceed); 

1 

1 
1 
1 
1 

Program for Process B 

L2: signal(proceed); 

where 'proceed' is a semaphore with initial value O. It is clear that A cannot proceed beyond 

LI until B has executed the "signal" operation at L2. 

2.2.1.4 The basjcs of d)'llamjc memOl:Y allocation 

Aside from memory segmentation and paging systems (Peterson, (1985), and Lister, 

(1988», multiprogramming requires dynamic memory management. An 'important issue, 

thrashing common to multi-tasking is outlined below. This applies in particular if the size of 

working memory is limited. 

Many programs exhibit behaviour known as operating in context. ln any small time 

interval a program tends to operate within a particular logical module, drawing its instructions 

from a single procedure and its data from a single data area. The observation of this behaviour 

led to the postulation of the principle of locality (Denning, (1968». It states that program 

references tend to he grouped into smalliocalities of address space, and tbat these localities 

( tend to change only intennittently. Based on tlùs observation, the working set model of 



27 2. BackerouruJ 

program behaviour was developed. The working set model is an attempt to establish a 

framework of understanding the performance of paging systems in a multiprogramming 

environment. The competition for memory space between processes can in fact lead to 

behaviour which would not occur if each process ran separately. As the degree of 

multiprogramming rises, which is an increase of programs run concurrently, processor utilisat­

ion fll'St also rises, since the dispatcher always has a greater chance offinding a process to run. 

However, when the degree ofmultiprogramming exceeds a certain level, then it is found that 

there is a marked increase in the paging tramc hetween main and secondary memories accom­

panied by asudden decreasein processorutilisation. This phenomenon iscalled thrashing. The 

onlyconclusion to be drawn out ofthisis thateach processrequiresacertain numberofpagcs, 

called its working set, to he held in main rnemory before it can efTectively use the central 

processor. If less than this number are present then the process is continually interrupted by 

page faults that contribute towards thrashing. To avoid thrashing only the working set of pages 

must he loaded into memory. Dy inspecting the process's reeent history and a compliance with 

the principle of locality the working set, 'w', of a process at a time, 't', is identified to be: 

w(t,h)={page ilpage ieN & i appears in the last h references} 

(2.2.1.4) 

where 'h' is a parameter to indicate 'recentness' and 'i' is a non-negative integer (N comprises 

all integer nurnbers). 



28 2. Back&rougd 

The Jarger is 'h', the further one looks into the pasto Thrashing can he depicted graphically as 

shown in Figure 10. 

ProCUIOl' 

1I1I1"""Oft 
1 lit' c'",) 1 

100 ----.--------- •. ---:.:-= ... -_a-------

Fiprc 10: '11InsbiDgeumple 

Oevee 0' 
""'1t1~r09'ammlftlJ 

(Listcr, (1 988» 

The above figure shows that if the working set theorem is negelected aD tasks to be run 

( concurrently wi1l try to load as much code into memory as there is free memory available. 

{ 

The more tasks are added into the system the smaller is the number of pages of the added tasks 

that can he held in memory. At a threshold numberoftasks, the most recently started tasles will 

have to swap pages from and to backing store (e.g. disk), since memory capacity is Dot suffi­

cient to hold their entire working set. As a resuIt, the CPU is blocked due to an dispropor­

tionate increase of page traffic. 

As far as fetch and replacement policies are concerned, the significance of the wc, rking 

set lies in the following rule to which operating systems ohey: 

Run the process only ifits entire working set is in main mernory, and 
never remove a page which is part of the working set of sorne process. 

Once working memory is large enough to hold the entire instruction set of a process 

(real-timesystem), dynarnicmemory allocation becomesoblivious. Advanced systems perfonn 

memory compaction to reduce fragmentation (Mellicharnp, (1983». 



, 
i 
~ 
" , 

29 2. Pack,roupd 

2.2.1.5 The lIa subsystem 

In order to reduce overhead due to copying of the same set of instructions, a device 

independent 1/0 mechanism is supported by the operating system. It means that progrcU1lS do 

Dot operate on physical devices but on virtuaI devices known as streams. 

Device characteristics are encoded in device descriptors, where one descriptor exists for 

each deviœ in the system. These encoded devicc features are referred to by deviœ handlers, the 

routines which provide instructions to handle the devices. There are separate device handlers 

for each device but they show great similarities. Differences of operations are derived solely 

from parametric infonnation (read from the device descriptors !). Deviee handlers can make 

use of shareable programs. 

The overall IIO proœss can be summarised as the joint effort of a requesting proccss, 

the actual 1/0 procedure, the device handler, and an interrupt routin"". 

A typical 1/0 request from a process will be a cali to the operating system (trap) of the 

general fonn: 

where: 

DO-VO (stream.mode,amount,destination,semaphore) 

DO-VO is the name of a system 1/0 procedure; 
stream is the number of the stream on which 1/0 is to take 

place; 



l 

( 

f 

= 

30 

mode indicates the type of operation (data transfer or 
rewind) and the character code to be used; 

amount is the amount of data to he transferred if any; 
desûnation is the location into which (or from which) the 

transfer, if any, is to occur; 
semaphore is the address of a semaphore caIIed 'request 

serviœd' which is to be signalled when IIO is 
complete; 

2. Backa:colInd 

The 110 procedure is re-entrant, so that it may be used by several processes at once. lts 

function is to map the stream number to the appropriate physical device (keyboard, card 

reader, floppy drive, prin ter, terminal, disk), to check the consistency of the parameters 

supplied to it, and to initiate service of the request. 

When the checks have been completed the IIO procedure assembles the parameters of 

the request into an lia request block (IORB) which it adds to a deviœ request queue of similar 

blocks which represent other requests for use of the same device. These other requests May 

come from the same process, or, in the case of a shared device such as a disk, from othe .. 

processes. The device request queue is attached to the descriptor of the device concerned and 

is serviced by the device handler (Lister, (1988». 

Thedevice descriptors include a pointer to the process descriptors of the current process 

using the device. 

The device handler is responsible for servicing the request on a device request queue and 

for notifying the originating process when the service has been completed. lt operates in a 

continuo us cycle during which it removes an IORB from the request queue, initiates the 

corresponding liO operation. waits for the operation to he completed, and notifies the . 



31 

originating process. An input operation ,"'ycle may be listed as follows: 

repeat indermitely 
begin wait(request pending); 

pict an lORD from request queue; 
extract details of request; 
initiate 1/0 operation; 
wait(operation complete); 

Ü error theu plant error information; 
translate character(s) if necessary; 
transfer data to destination; 
signa1(rr.quest serviced); 
delete lORD; 

~od; 

2. Baçk'[QJlod 

'Request pending' is a semaphore which is contained in the device descriptor and is signalled 

by the 1/0 procedure each time it places an lORD on the request queue. 'Operation complete' 

is another semaphore that is signalled by the ÏDterrupt routine after an interrupt is generated 

forthisdevice. The semaphore 'requestserviced' ispassed to thedevice handlerasacomponent 

of the lORD. It is supplied by the process requesting 1/0 as a parameter of the [JO procedure. 



( 

{ 
" 

.-------------------------------------------------------------

32 2. Backlmpnd 

The synchronisation of the IJOoperation makes use of the mu tuaI exclusion, and block 

and unblock features. This mechanism is sho~n graphica1ly in Figure Il. 

uSU 

" .......... --

~ .."" ..... , 
" __ H'; .......... --. 

_'U'T'NG STS"" 

-1 
1 
1 
1 

'_"'_. 1 ..,.., 1' __ --".1 
t. ___ • 

- (,._"1 _ .... 11 

.. &1110""'" 
...... t .-vI, 'ee." •• ncl 

........ l/O; ._,,,,.,; _1_."" ..... I.,.,.t/M 
~'.I. ____ c.MtIIf'.,.", ,. ..... .,-

______ 'le. el , ..... reI 

__ -... s-. • ..,..,""",.. ......... 

Fjpre Il: Sketcb of the DO System CompoDel1ts (Lister, (1988» 

Il should he mentioned that bufTered 1/0 techniques are widely implemented to support 

multi-tasking on input and output. There are subtle ditTerences if the devices are considered 

shareable (e.g. disk) or non-shareable (e.g. line printer). The Jatter involves a spooler that 

manages storing of fIles on a bulk storage deviœs before submission to the device is perfomled 

(Peterson, (1985». 



33 2. Backj:mllpd 

2.2.1.6 Resource allocation and scbeduJin& 

In an environment in which resources are limited a 'grab it when you need it' method 

of acquisition is rarely feasible to satisfy the concurrent demands of aU processes in the system. 

Scheduling techniques are devised to share a limited set of resources among a number of 

competing processes. The objectives of these techniques are: 

(1) mutually e;:clude processes from unshareable resources; 
(2) prevent deadlock (see below); 
(3) ensure a rugh level of resource utilisation (e.g. prevent 

thrashing); 
(4) allow ail processes an opportunity of acquiring the 

resources they need within a 'reasonable' time; 

Deadlock and scheduling are described next. 

(a) THE DEADLOCK PROBLEM' 

In concurrent programming. a process sometimes must wait until a particular event 

O(~curs. If the event takes place and the waiting process is awakened, no problem arises. But if 

the event Dever occurs, the process will be blocked forever. A process is deadlocked wheh it is 

waiting for an event that can never oceur. In a simple example such a situation arises when two 

processes compete for allocating the same resources. Say a process, Pl, has a resource, RI, 

allocated while another resource, R2, is allocated to a process, P2. For further progress PI 

requests R2 keeping RI allocated. Process P2 still uses resource R2 and requests resource RI 

which is currently aUocated to process Pl. It is obvious that both processes "wait" fol' 



34 2. Back.rQupd 

appropriate resources to be released. The deadlock arises, sinee for both processes the release 

of the resource kept by the competing process is a necessary condition for continuation. An 

allocation and request structure, in the tonn of astate graph, illustrates a deadlock if it shows 

a cyclic pattern that resembles a tramc deadlock involving a square of perpendicular one-way 

roads. Figure 12, shown below, will clarify process deadlock. 

Ei&ur.ù2: TlM: Dt:adJock ProbJem iD Il Mulû-TasldDg EllJiroDl1Jt:tJI (pcterson,( 1985» 

The problem of deadlock May he solve<!, depending on the operaüng system at hand, 

by adopting one of the following strategies: 

(1) Plevent deadlock by ensuring at ail times that at least 
one of the four conditions above does not hold; 

(2) Detcct deadlock when it occurs and then try to recover; 
(3) Avoid deadlock by suitable anticipatory action; 

Excellent explanations can be found in literature (Lister, (1988), and Peterson, (1985». 



..... 

35 2. 8açhmuod 

Scheduling is supported by case sensitive mechanisms which are ruled by various 

scheduling policies. The mechanisms and policies are summarised in the following paragraphs. 

Software entities referred to aslong-term scheduler, medium-tenn, or short-tenn scheduler are 

integral parts of a complex system for scheduling. 

(b) SCHEDULING MECHANISMS 

The operating system's schedulers are in charge for introducing processes to the system, 

and withdrawing them according to: priorities, outside world events, and system-housekeeping 

requirements. These subjects are intimately related to resource allocation. In fact, decisions on 

scheduling and decisions on resourœ allocation are sa closely linked that responsibility for both 

is often delegated to a single system process. This is particularly true for the scheduJer 

mentioned earlier. The scheduler is more precisely referred to as high-level scheduler according 

to its priority or a long-term scheduler when processing time is emphasized. 

In a scheduling context, a process or task is a program in execution. As the program 

executes, the process changes state as a result of its inherent Jogic. The state of a 

process is defmed by its current activity. Scheduling decisions force a task to switch from one 

state to another . 



( 
36 2. Backlround 

A process is said to endure a transition between two succeeding states. A process in one 

orthe four states: ronning, ready, inactive, or suspended can he forced to 

resume one of the states that :is not the current state, which can graphica11y he depicted in a 

stale diagram, Figure 13. 

TASK II\.I.ID 
IIHI~f. "AITING 

Fjpre 13: Task States. TraDSitioa, IUld Scbtxlult:r SigDals (Mcllichamp,(l983» 

The scheduler makes use of the signalling mecbanism to initiate a state transition along 

a transition path. Signalling a task currently in the ready state, for instance, can subsequently 

set it inactive (shown as a zig-zag path in Figure 13). 

The kernel task referred to as dispatcher is in charge of actually allocating the CPU 

to processes requesting execution. With regard to ils priority it is called low-level scheduler or 

short-tenn scheduler when processing time is emphasized. If the short-time scheduler is not a 

,(" \cemel task, there is a subtle distinction hetween the dispatcher (fastest scheduling operatio~) 



...... 

37 2. Bachround 

and the short-term scheduler ron at a high priority but slower than the dispatcher. 

The primary distinction between the Iong-term sx:heduler and short-tenn scheduler is the 

frequency of execution. The short-term scheduler must select a new process for the CPU quite 

often, sometimes every 10 milliseconds. It must be very fast. As a rule of thumb for modem 

computers, it takes one millisecond to decide to execute a process for 10 milliseconds. Then 

1/( 10+ 1) -~Io of the CPU time is being wasted simply for scheduling the work. CPU consump­

tion for operating system related tasks is generally referred to as latency or latency time and is 

not negligible when high speed applications tasks are to be run. 

The long-term scheduler, on the other hand, executes much less frequently. It may be 

secondsorevenminutes between the arrivai ofnew jobs in the system. Thelong-term scheduler 

contraIs the degree ofmultiprogramming, which is the number of processes in main memory. 

Except from having moretime to decide on selectingjobs forexecution, it is also important that 

the long-term scheduler selects a good job-mix of I10-bound and CPU-bound jobs to keep 

CPU utilization balanced by preventing idleness or overflow. 

The CPU allocation to IJO-bound jobs and CPU-bound jobs unfolds periodical1y. A 

new process is added to the processor queue (ready queue) after a decision by the long-term 

scheduler was made. It is picked up by the short-term scheduJer once it has reached the 

position of the first non-running process in the ready queue. After being run for a time slice of 

CPU tinte, scheduling policies as implemented in the system force the process's pre-emption, 

since another process has acquired the position of the frrst non-runnable job in the system. If 

not yet completed, CPU-bound processes are generally placed back into the processor queue 

according to the scheduling policy. After sorne waiting time has elapsed it will be picked up by 



38 2. Bachroupd 

the dispatcher again to run another tinte slice or to run to completion. This is illustrated by the 

Figure 14 below. 
Porholly comp'f'l'd 

ptocnus 

P'OCUSfS ",clled 
PROCe!SSOR by dlsDOlctler r.~ _ ~~~~~~~ 

l'roc,nl'S QUEUE 

Fiprc 14: ScbeduliDg Modd for a Processor-Bound Proœss (Lister, (1988» 

Since the 1/0 subsystem maintains a device request queue for IIO request blocks, which 

is linked to the processor queue, IIO-bound jobs are tirst placed into the 1/0 request 

queue (waiting queue) arter having been initialized (assembling of 1/0 request block ... ). 

Partially completed, pre-empted, IIO processes are placed back into the processor queue 

according to the scheduling policy by the long-term scheduler to await the dispatcher's 

attention. This is illustrated in Figure 15 undemeath. 

Lonl·Tcrm 

L 
Short·Tcrm 

• ROGY Queue 

110 
W&1Unl 
QUNe(') 

Filure 15: Scbeduling Modd for llD Uo-Bound PJ:oc:e&y 

END 

(Peterson,(1985» 



.. -.. 

39 2. Baçk,around 

The general scheduling model of an operating system inc1udes a semaphore queue. 

Generally, CPU-bo~d processes, interrupted by a peripheral deviœ or in the case of a foreign 

resource request, can he blocked and di..'iCal'ded into a semaphore queue. This would occur 

according to the deadlock prevention scheme and scheduling policy. Figure 16 illustrates the 

general scheduling model. 

N •. .;.;.w_o.-/ 
PrOC:UIfS 

RU""dbl. 

ReQu,SI qronted 
TraM'" compl.t. 

Partoolly c:om94~'ed 
prOCfSSfS 

Fjpre 16: GeDeral ScbeduliDg Model mvolVÎl1g a St::m8pbon: 
Queue 

(c) SCHEDULING POLICIES 

(Lisler,(1988» 

Scheduling policies define decision making on topics which affect the positioning of 

process descriptors in ready queues, the order of process descriptors in semaphon~ queues and 

the updating frequency of the queues. A classification scheme for processes to be run must 

ensure that no ambiguous situations occur whenever the schedulers are invoked. In any event, 



40 2. Baçklroupd 

whatever scheduJing issue unfolds to the scheduJers, a decision about what process to make 

runnable next has to follow virtually immediately. Scheduling based on measurable quantities 

that are common to ail processes al ways leads to a clear decision by comparison. Efficient 

scheduJing policies undertaken by operating systems thus compare CPU utilization of 

individual processes. Themethods of comparison may difTer according to thescheduling policy 

employed. 

A cJoser examination of processes reveals lbat a process is a program in execution 

consisting of an altemating sequence ofCPU and 110 burs~ beginning andending with aCPU 

burst . Although they vary greatly from process to process and computer to computer, they 

tend to have an exponential distribution of number versus burst duration. There are a very 

( large number of very short CPU bursts and a small number of very long ones. An 1I0-bound 

program would typically have many short CPU bursts. A CPU-bound program might have a 

few very long CPU bursts. This distribution can be quite important in selecting an appropriate 

CPU scheduling algorithm. 

( 

Il ma y briefly he indicated that Gantt charts iIlustrate very well the resulting scheduling 

pattern for a givenjob arrivai-sequence and individual CPU burst-durations, which deteonine 

a scheduling algorithm. A measure, known as average tumaround time, provides a means to 

evaluate an algorithm's performance. Il is given by: 

1 n 

t = - E (ji,a- ji.J 
i=1 n 

(2.2.1.6) 

where 't' equals the average tumaround time, 'n' is the number of jobs, 'ji,a' indicates the job 



41 2. Back&[QIIlld 

arrivaI time, and lI' indicates its termination time. A simplistic evaluation scheme states that 

an algorithm is better suited to a mix of tasks the lower 't' tums out to he (minimization of total 

execution time). This is valid if a minimum tumaround time is sought for quick overall task 

execution, whereas the sequence of CPU time quantums aUocated to the tasks is irrelevant. 

Pre-emptive algorithms are developed such that a newly arri ved process in the processor 

queue will pre-empt the current process's CPU allocation if its priorit y runs higher. A non-pre­

ernptive CPU scheduling algorithm will simply put the new process at the head of the queue if 

its priority rons higher. In a time-sharing system this can he particularly troublesome. Il Is very 

important tbat each user or each task gets sorne share of the CPU at regular intervals. 

1be round-robin scheduling algorithm is designed especially for tirne-sharing systems. 

The Galltt-chart for which, Figure 17, is given as an example below. 
10h Burst Ti.m~ 

1 24 
2 3 
3 3 

If w~ use a bme quantum o( 4, the resuJbng round-robin scheduJe 1$: 

Job 
J 

• 7 .0 •• 18 ::2 26 JO 

Fipre 17: Gantt 0Jart for round-robiD Scbcduling (Peterson,( 1985» 

A small unit of time, called a time quantum or time slice, is defined. A time quantum 

is generally from 10 to 100 milliseconds. The ready queue is treated as a circular queue. 

The dispatcher goes around the ready queue, allocating the CPU to each process for a 



" 

\. 

n 

42 2. Backlrougd 

time interval up to a quantum in length. To implement round~robin scheduling, the ready 

queue is kept as first-in first-out queue, having the currently runningjob as the first entry in the 

queue. The dispatcher picks the first job from tbe ready queue, sets the timer to intemlpt after 

one quantum, and dispatches the process. One oftwo things will tben happen. The process may 

have a CPU burst less than the time quantum. In this case, the process itself releases the CPU 

voluntarily, by issuing an 1/0 request or terminating. Otberwise, if tbe CPU burst of the 

currently running process is larger than the time quantum, the interval will expire and cause an 

interrupt to the operating system. The registers for the interrupted process are saved in its 

process control block, and the process is put al the taiI of the ready queue. 

A trade-otT between a decreasing time quantum and the increase of required context 

switching sets a lower limit to quantum shrinkage. Figure 18 below shows the increase of con­

text switching by reducing the quantum. 

Job ume-IO Quantum Cunu." 

1 1 

SwllcnC$ 
12 0 

0 10 

1 
1 1 

6 

0 
6 

10 

1 1 1 

, 

1 1 1 1 1 1 1 1 
9 

2 J " 
, 6 7 • 9 10 

Epte 18: QUJUItum Sbritlkage and Inaease ofTask SwitdJiDg Ow:r.bead (Peterson.(l98S» 



-

'3 2. Back&roupd 

The average tumaround time does sensibly drop when too small a time slice is selected. 

On the other hand, if the time quantum is too large, round-robin degenerates to a first come, 

flI'St served processor queue. A suggested rule-of-thumb is that 80% of the CPU bursts should 

he shorter than the time quantum. 

2.2.2 Multi-task prQ~mmin& principles 

Multi-task programming is commonly accomplished by using task creation primitives 

and task communication primitives. Details conceming multi-task programming and grounds 

to apply it for PC supported digital control will he addressed thereafter. 

(a) TASK-CREATION PRIMITIVES 

Severallogical constructs forestablishing inter-task relationships are required. Each of 

those constructs can he illustrated by a precedence graph which shows the historical number 

and hierarchy of tasks preceding the ending of the graph. The "fork" primitive, as shown in 

Figure 19, allows a task to branch out into two concurrent taslcs. 

fiprc 19: Prr:a:dt:aœ Grapbfortbe "FORX"-CoDSInJcI (Pctcrson,(l98S» 

, 



44 2. Bachrollud 

The reverse logic is accomplished by the "join" construct which causes two preceding 

tasks to t.enninat.e while another task is started. A "concurrent stat.ement" causes one task to 

terminat.e while several subsequent tasb are being started that run virtually sirnultaneously. 

This can he derived from the Figure 20. 

FieUR 2Q: Prr:a:deDce Grapb for the CoDCum:t1t Statemt:Dt (Peterson,(I98S» 

It should be mentioned that a concurrent statement can always be simulated by 

considering only fork/joïn constructs. 

These constructs, supported by the operating system, are symbolised by a set of specific 

instructions (system caUs) rouud ïn a programming language. It allows a programmer to 

establish a program hierarchy. The subse'!uent sketch, Figure 2i, illustrates a program 

hierarchy. A, 8, C ... J are tasks currently in the system. 

CENTRAL 
TABLE 

o 
QU~;J 

Fipre 21: Prognun Hierarr:by 

SC"EDULE~ 

(Lister, (1988.» 



45 2. Uack~[QuDd 

The scheduler (refer to section above) is responsible for initiating new processes, and 

acts as the parent of aIl processes (tasks) introduced into the system. It is responsible for the 

welfare ofits ofTspring in that it govems policies ofresource allocation and influences the order 

in which processes are selected by the dispatcher. This parental role is not restricted to tilt: 

scheduler if multi-task programming is supporte<!. Other tasks are given capabilities to: 

(1) create subprocesses; 
(2) allocate to their subprocesses a subset of their own 

resoun:es (the resources are retumed when the 
subprocess terminales); 

(3) determine the relative priority of their subproces.."ieS; 

The creation of a hieruchy of processes is initiated by the logical order of the system caUs 

mentioned above. 

Forthese system functions, additional programming language instructions have to he 

provided. Multi-task programming features are strongly detennined by the operating system 

which is supposed to enforce and main tain the program hierarchy. 

(b) INTER-TASK COMMUNICATION PRIMITIVES 

Other groups of system caUs supported by the operating system handle inter-task 

communication. The very tirst technique available is sharing memory segments. The segment 

tables private to two processes include into particular segment descriptors the same base 

address of the memory space to he shared. 



( 

( 

( 

This is iIlustrated in Figure 22 below. 

SEGMENT TA!tt.E 
PROCE5S ... 

SEG"( IIIT TA8LE 
PROCE558 

46 

SHARfD 
BUFFER SEG"E"r 

RO = R.ad onl., 
wO= WnttO"ly 

Fipre 22: Segment Sbaring witb diffen:nt A~ Privileges 

2. BacklI'0llod 

(Lister,(1988» 

Moreover, the access rights, either "read Ollly" (RO) or "write only" (WO), are placed 

into the segment descriptors. In programming I~ !1guages this feature is managed by pointer 

arithmetic and requires deep knowledge about a computer's architecture. 

Direct communication is accomplished by referring to task names for sending and 

receiving messages. The "send" and "receive" primitives May he defmed as follows: 

send (P t message) : Send a message to process P. 
receivc (Q, message): Receive a message from process Q. 

This Hnk is bidirectional (symmetric) and affects exactly two communicating processes. It 

functions automatically, meaning the operating system establishes the link. 



47 2. Bachround 

Asymmetric communication allows a process to receive messages from any process by 

the following scbeme: 

send (P, message) : Send a message to process P. 
receive (id, message): Receive a message from any process; 

'id' is set to the name of the sending 
process; 

With ir:Jirect communication, the messages are sent to and received from mail boxes. 

The commun~.:ation primitives in tbis case have a syntax as follows: 

send (A, message) : Send a message to mailbox A: 
n:œive (A, message): Receive a message from mail box A; 

In this scheme, a communication tink is established only if the mailbox is being shared. 

Any tink may he associated with more than two processes. Furthermore, between each pair of 

processes there May be a number of ditTerent links, each corresponding to one mail box. The 

link May be either unidirectional or bidirectional. 

A link bas some capacity that determines the number of messages that can temporarily 

reside in it. This property can be viewed as a queue of messages attached to the link. A zero 

capacity queue (unbuffered sending) is established when waiting of messages is not tolerated 

(send blocking). In this case the sender must "wail" until the recipient receives the message. The 

two processes must be synchronized 



( 

( 

( 

48 2. Back,rQupd 

for a message transfer (a rendezvous is established). The communication primitives may look 

like: 

Process P executes: 

&end (Q, message); 
receive (Q, message); 

Process Q executej: 

œceivc (P ,message); 
send (P, "acknowledgemeIlt"); 

Once the queue bas finite Jength, it is said to have bounded capacity, ~;everal messages can 

reside in il. If the queue is not full when a new message is sent, it is place<l in the queue (either 

by copying the message or by keeping a pointer to it), and the sender call continue execution 

without waiting. If the Iink is full, the sender must be delayed until spa.œ is available in the 

queue. A queue is of unbounded capacity if there is virtually infmite space such that any 

number of messages can wait in il. The sender is never delayed in this c:ase. 

The messages sent or received can he of fIXed SÏ7.e, of variable sÏ71!, ~md can he typed. The 

latter is applicable to mailboxes declared in strongly-typed program languages. 

(c) BASICS of MULTI- TASK PROGRAMMING lOr PROCESS C01VTROL 

Process-control applications requiTe performance of several tasks. The basic control 

scheme incorporates the collection of process data through AOC channc~Js. The settings for 

final control elements according to a control algorithm are computed subsequently. Output 

data are finally sent lo one or more DAC channels. The operations abov(! (signal processing 

sequence in a feedback )oop for control) have to he repeated periodically to adjust data 

L_ 



,,-.. 

49 2. Back&ro1md 

acquisition and controller output (computer) te. the most recent state of the dynamic process 

to he controlled. The state parameters of dynamic processes vary as a function oftime. Timing 

has to he accurate and is best accomplished by an interrupt handler to service real-time dock 

interrupts. The handler signais a counter to decrement ils value (software limer). The same sel 

oftasks is called repeatedJy and has to stay residenl in memory 10 li mit overhead that would 

he incurred by swapping of code segments with bulk-storage devices. 

Multi-tasking is highly recommended, since it does not require an exact knowledge of 

the sequence and lime of events in advance. It may even he the only feasible approach for 

process control on a PC if processor idleness during 1/0 cannot he tolerated. The "wail" and 

"signal" operations on semaphores attached to lasks allow for event servicing by the time il 

occurs. The "send" and Itreceivelt primitives allow forexchange of data when available. As long 

as no event has occured thal would cause a blocked process ("wait" was performed on an 

appropriate semaphore) to he activated (involving the "signal" operation), the CPU is not 

paralysed by busy awaiting the next event to oceur. Moreover, the mix of 1/0 lasks (data 

acquisition tasks, output), and CPU-bound tasks (control algorithms) ensures efficient 

processor utilization. 

2.2.3 PrQpmmjD& lanpaKC) for multi-tMk and real-time applications 

The standard versions of the programming languages: APL, BASIC, PUJ, FORTRAN, 

COBOL, and C are not tailored to support multiprogramming and real-lime applications. The 

language C, however, includes system caUs for real-lime applications as a standard feature. 

Special versions of C do support multiprogramming. As for the other languages mentioned, 

upgraded versions are available incorporating features for both real-time operations and multi· 

tasking. 



50 2. Baçhmupd 

One group of programming languages is referred to as interpreter languages (APL, 

BASlq. Anothergroupisknownascompilerlanguages(COBOL,FORTRAN, PASCAL,C). 

The reaJ-time versions of the languages in widespread use are REAL-TIME BASIC and 

REAL-TIME FORTRAN. CONCURRENT PASCAL is due to ils object oriented program­

ming features a particular language mostly used for expert system design (Mellichamp, (1983». 

A third group oflanguages for special applications such as process control are known 

as table-driven languages. They are strongly dependent upon the central processor and 

hardware at hand. They are usually not portable across computers. 

As for the real-time vemons of BASIC and FORTRAN, as weil as for the language C 

f in general, all provide real·time macro commands. These macros, although syntactically 
1" 

difTerent, provide system caUs for: 

(1) Input/output 
(2) Task creation and deletion 
(3) lntertask communication 
(4) Overlay and special queuing 
(5) Usage of the clock 
(6) Task identification 
(7) Taskloperator communication 
(8) Operator/task interaction 

Especially real-time FORTRAN was developed according to the ISA standard S61.3 

(Instrument Society of America), where the standards specify the procedure groups: "executive 

interface routines", "process input/output routines", "bit string functions", "random file 

.[ handlers", and "task management routines". 

L 



..... 

51 2. Dachroupd 

Examining the features of several languages that proclaim supporting real-time and 

multi-task programming willlead to the conclusion that each system caU suggested by the ISA 

standard S61.3 bas a corresponding procedure provided by the language. 

However, subtle difTerences among the languages May he important for certain 

applications. This is discussed next. 

~.3 Suitability of Commercial Software for pc-cQntrolled iIijection-mouldjna at McGill 

The following constraints afTecting the design of a PC control system for injection 

moulding are known. Injection moulding requires fast processing speed of the control system 

to he established. Especially the injection pressure tises fast. 110 of data and computation of 

the control output bas to happen virtually instantaneously. A time-precise sequencing of the 

machine cycles is required. Various and numerous changes ofstate of the machine have to he 

serviœd virtually immediately. Temperature control, coolant flow-rate control, and injection­

pressure control May he performed simult:-neously. Control schemes are not straightforward 

and need to he frequently modified. Logging of data applies to multiple input cnannels. Ali 

features have to he configured user-interactively. 

This variety oftasks identified above, implies the establishment ofa program hierarchy 

composed of severa] modules. Virtually any level of the computer system has to be accessible 

to a system developer for customisation . 

For this purpose, a versatile multi-tasking operating system and a low-Ievel program 



( 52 2. Bachrollnd 

ming language for system development are necessary. There are some considerations as 

outlined on the following pages which deserve attention before making a choice . 

2.3.1 Real-time and multj-taskina Qperatjna systems 

QNX (version 2.1 & 4.0) and AMX for the INTEL 86-family of chips, as weil as PDOS 

for MOTOROLA 68000 16/32-bit-proœssor based systems were designed for real-time 

multiprogramming. Ail ofthem feature a small sized and thus rapid system kernel in charge for 

interrupt handling, dispatching (scheduling), task synchronisation (semaphores), task 

suspension, mess3ge passing and memory allocation. Additionally, buffered 1/0 is supported 

( and the 64K barrier of code size for large applications can be broken. since a full 32bit Ii.1emory 

addressing mechanism is supported on Intel 80386 and MC 68000 machines. Finally, all 

systems perform round-robin scheduling which can be stripped to fll'St-in first-out scheduling 

( 

on request. 

PDOS provides libraries for the languages: FORTRAN. BASIC and C, whereas QNX 

and AMX are restricted to the use of C for system development. 

It is not obvious that these systems difTer in performance. However, subtle 

difTerences might be detected when actually using the tools for system development. Secondly, 

syntactical difTerences for shell and language commands may influence the inclination toward 

a product. 

QNX was given preference. Firstly, this is because a UNIX-style shell is maintaine~, 



53 2. Backl:round 

which is considered to he a future system-shell standard on whatever machine (as defmed by 

the POSIX standard of IEEE). Secondly, C compilers are available for QNX, that for most 

functions, adhere to the ANS! standard released for the language C. Both features (If QNX will 

facilitate future migration of programs to other computers. 

It was not taken into account that QNX provides features to support a network of 

r.omputers(LAN). This featurecounts whenanypotential expansion ofthesingle PC (console) 

application to a workstation is intended to he developed. This May include one PC for 

graphical-display and user-interface purposes, and a second PC for control related tasks. 

If the PDOS operating system wereselected, the programming language of ch:>ice could 

either be real-time BASIC, real-lime FORTRAN or C. Execution of a program hierarchy 

written in BASIC would involve the BASIC interpreter, which stays resident in main memory, 

staternent by statement. Once a statement's execution were under way, interrupts would he 

disabled until completion, and enabled right after. An event that occurred in the meanwhile 

would have to he held pending untiJ serviced. Additionally, the scheduling mechanism reacting 

on interrupts would similarly be suspended. Th us, state changes of tasks could not he 

acknowledged, and no immediate scheduling decision could follow until the staternent were 

completelyexecuted. For applications that show fast changes of a process's state, this toggling 

between interpreter and scheduler cannot he tolerated, which means PC control would certainly 

fail ! Modularization of programs is strongly facilitated if global storage of data in a program 

is possible. Although BASIC does not support such a feature, the PDOS version has an 



" ., .. 
54 2. Backerollpd 

extension to the language for limited global storage. 

Compiled programs do not in voke an interpreter that links the required system routines 

to every statement at execution time. At run time compiled code is readily written in machine 

code. It is immediately executable. This enables faster processing compared to interpreting on 

one hand, and bas the advantage that interrupts are not disabled during execution of a 

statement. This can be considerably long when measured on a micro-processor time scale. 

Differences between real-time FORTRAN and C are by no means obvious and might 

not even exist if perfonnance is considered only. However, the syntax a programmer bas to 

complywithmayprovemoreconvenient.inthecaseofC. FORTRAN supports global storage 

{ of variables by means of the "COMMONIt statement, whereas C simply requires the variables 
';" 

affected to bedeclaredoutsideany function, including 'mainO'. On theotherhand, the system 

development features of C surmount the capacity of FORTRAN. 

Table driven languages simplify programming, since only little knowledge about 

language syntax is required. However, due to this ease of usage, interpreting overhead is 

incurred, which slows down execution. Thismight he a bottleneck for time-critical applications 

apart from the fact that no standards for table driven programs exist. Portability thus suffers, 

and migration to future hardware and software is virtually impossible. Table driven languages 

thus tend to he very machine specific. 



A 

55 2. Backa:fQUpd 

2.3.3 Conclusion 

As an overall conclusion, the decision of acquiring a QNX operating system and a C 

compiler for development of a system incorporating a 32bit Intel 80386 central processor ma y 

weil he justified considering the arguments above. This system is to achieve PC- control for 

injection moulding. Its potential performance and the requirements for large and time-critical 

applications, which fully apply to injection moulding, were proved to match weil. 

2.4 System eomponents for PC-controlled injection mouldioa at MeGj1I(1991) 
and limitations 

2.4.1 IBM & ANALOG DEVIeES hardware cQmpOnents and constraints on 
memorysjze 

A personal computer, IBM PS/2 Model 70, was chosen to perform both the control 

system tasles and the user-interface tasks. It wasoriginally equipped with 2 Mbytes ofmemory. 

Its memory (RAM) was extended to a total of 8 Mbytes, sinee the forecasted acqubition of 

large amounts of process data will require a suitabJy sized circular input butTer. 

Estimating memory requirements, at a sampJing rate of 1 ms one thousand readings will 

oceur per second. This is essentiaJly needed for pressure control during injection (less than 2s) 

that features a fast change ofmould pressure. Accounting for 16 input channels (see beJow), 

this resll~ts in 16 Kbytes of memory occupation per second. This amount, finally, has to be 

doubled for each integer read, yieJding 32 Kbytes per second of data to he read. 



( 56 2. BackarQllod 

ln the case cache-memory (read-ahead into input registers of RAM and write-after to 

disk) would be extended to 6 Mbytes, and assumed a complete machine cycle would last 20 

seconds, data of roughly 9 subsequent cycles could be stored. This applies if only capacity 

constraints were considered when sampling at a rate of lms. 

However, data acquisition at that speed will not he maintained for complete cycles. On 

one hand, dynamic memory management and task switching between interface and control 

algorithms could block both memory access and CPU time for considerable sliees oftime. On 

the other band, slower process dynamics during the remaining phases after injection do not 

require fastsampling. The fme tuning ofmemorymanagement, sampling rates, algorithms, and 

displays subjects to testing and migbt induce a modification of the system configuration. 

( Thecomputer's hard disk has acapacity of60 Mbytes. Graphic capabilities for terminal output 

are provided bya VGA card (640x480 resolution, 16 colours). 

( 

The data acquisition sub-system, including analog-to-digital and digital-to-analog 

conversion, is composed oftwo Analog Deviees RTI-220 boards and a single Analog Deviees 

R TI-2 t 7 board for digital input/output. The initiais abbreviate the notion of real-time interface. 

Each RTI-220 board provides 16 (channel 0 through channel 15) channels for analog input and 

has 4 analog output channels. Further technical details are contained in the manufacturer's 

reference manuals. 



57 2. Biichroupd 

2.4.2 QUANTUM. COMPUTER INNOYATIONS. WATCOM Software and cOQSlmjnts on 
llroaram deyelopmeot 

For establishing a preliminary version of the user interface and the data acquisition 

tasks the C-86 compiler and linker package for C-Ianguage applications wriUen by Computer 

Innovations was used. It was developed for application programs ron under QNX (sec helow) 

on PCs which incorporate a CPU of the INTEL 8086-family. Except for writing interrupt 

handlers, C-86 ofTers versatile routines for system configuration. 1 t8 low cost is one of the most 

striking features. Due to poor documentation, much coding required a trial-and-error 

approach. C-86 was used to develop a preliminary version of the user interface for QNX 2.15 

(see below). 

For real-time applications on PCs with lirnited resources, saving of memory and exe­

cutioo time matters a great deal. Reducing the size of machine code and optimizing il (e.g. 

expelling not alternating loop variables outside the loop) could he achieved at a later state of 

the project by harnessing the capabilities of WATCOM C, which is a compiler and linker 

package for applications 00 QNX 4.0. WATCOM C was the compiler used in the final stages 

of this project. 

QNX is a trademark of Quantum Software Systems Ltd. for its real-lime multi-lasking 

operating system. Both versions QNX 2.15 and QNX 4.0 were used to develop the user 

interface tasks to he round on the diskeUes included. Development was started with QNX 2.15 

but switched to QNX 4.0 which was recently released. EHpecially QNX 4.0 oITers a versatile 

system shell that closely matches the standard set by UNIX. This will count considerably once 

portability of the system to future platforms is considered. Currently, at University of 

Califomia at Berkeley, the development ofa real-time UNIX operating system is under way. 



( 

( 

( 

L 

58 2. Back&mnod 

is estirnated to continue atTecting PC levels. Sorne non UNIX related shell commands and 

system caUs do meet the POSIX standard instead. A timing advantage of Q NX 4.0 compared 

to QNX 2.15 could be dernonstrated on simulations, and thus justified the decision to finally 

migrate from version 2.15 to version 4.0. The reason, QNX 4.0 runs faster derives from a 

ditTerently organised system kernel (presumably, it only runs 16 routines written in assembler). 



59 

3. Miijo[ iptedace desip, specifications apd Cea,tures op the system leyel 

The tasks that make up the user interface, their identity (system character strings that 

serve as names), and their si~ in kilo-bytes of machine code (specific to QN X 4.0) are given in 

the table below. 

TASK SIZE (Kbytes) SPECIFICATION 

(1) 'irnrn' 219 (at runtirne) Interface Main Task 
(2) 'statdip2' 49 Status Display Task 
(3) 'viewdat' 64 Dummy Task for Sensor 

Reading Display 
(4) 'variable' 13 Simulation Task for Data 

Acquisition and Control 
Task~ 

(5) 'barreltemp' 2S Real-time Display of Barrel 
Heater Temperatures 

Ali tasks (modules) werecompiled in the medium memory mode, which reserves a single 

segment less than 64 Kbytes for data and several segments larger than 64 Kbytes for machine 

code. As a result, the interface related tasks do not exert a strong constnlint on system 

resources and should leave much of the CPU time free to otber tasks once the appropriate 

seheduling policy was adopted (see section 8.2). 

To keep memory occupation small and processing speed fast only so caUed terminal 

functions that directly access the console's video adapter were incorporated in the interface 

code. The sereen thus operates in text mode which is detennined by exclusively referencing the 

extended ASCII charactercode table, and by dividing the sereen into 80columns and 2S tines. 

Sereen input and output does not require major computation, since mere addresses of the 

ASCII data base and colour attributes (hexadecimal numbers) stored in the 



( 
... 

60 3. SpecificatioQs! System Leye] 

video registers are shifted back and forth. One screen requires 80 . 25 ·2 = 4 Kbytes of 

(virtual) memory (2 bytes per screen character. 80 chars. per line. 25lines). 

Given this relatively low claim on freememory. many screens and wamings were devised 

for both casual and professional usent Casuai users will fmd the system ready to use and are 

thus not likely to encounter messages that help a professional user fmd problems with the 

interface program-environment. Any potential usermight most frequently encounter messages 

which notify that a wrong key was pressed. In contrast to a casual user, a professional user 

could receive messages dealing with operating violations such as: 

(1) Timers are set to zero and the machine was requested to 
run; 

(2) AOC channels were œset to zero, such that no channel 
is currently specified; 

(3) Files to he loaded do not exist or the path specified is 
invalid; 

(4) Requests to exit without having saved the data; 
(5) Typing and range errors, which were detected by the 

error checking routine mentioned above; 
(6) If the menu driven set-up were forgone or a corrupt set-up 

data file was loaded, and the machine were requested to run; 
(7) Sending and receiving of messages and starting and 

halting of tasks failed; 
(8) A)locating memory if too many segments are occupied, which 

could occur upon subsequent caUs of the interface task; 

The specifications outlined thereafter pertain to the priority distribution among ail tasks 

to he run. Secondly, the interface features for difTerent types of users are explained in the 

( following paragraphs. 

L 



61 J. Specificatiopsl System LcycJ 

3.1 HandJio& interface priorit)' versus priorities ofcontrol system aod data-acQuisitioo related 

ta.sks 

It will flI'St be mentioned how scheduling works by default. QNX 4.0 otTers a choice of 

scheduling algorithms that can explicitly be specified at runtime. The default scheduling poHcy 

is referred to as "other mecbanism than round-robin or flfSt-in fust-out scheduling" [descending 

priority 'cheduling (priority decay)]. Once a task is created its process descriptor is placed al 

the tip of the ready queue. It is the next task to be ronning after the time slice for the 

currently ronning task has expired. The priority assigned to it will he reduced one step toward-; 

its base priority (lO by default out of a range from 1 to 29) if it was not reached yet. Assuming 

it was not reached, it will he placed back into the processor queue after the tirst time slice of 

allowable CPU time for it has expired. Due to its lower priority it might then not be the tirst 

non-runningjob in the queue. It was placed into the queue according to the order of current 

priorities of all the waiting processes in the queue. The bigher the priority of a process the closer 

its descriptor will be placed to the top. The more the task actually rons, the further its priority 

is lowered 50 that it fmally fmds its place in the rear of the queue, once its base priority was 

reached. 11lere, it will eventually have to wait for long depending on the number of concurrent 

tasks to be ron. This is a mechanism that allows for a propagation of tasks in the queue, and 

thus affects the sequence of CPU switching. 

At the present stage of the user interface and control tasks project four main tasks are 

to he ron concurrently. The interface main task will start a second task for real-time status 

display of the injection-moulding machine. Right before, a third task that starts ail future data 

acquisition and control tasks must have been started. This is up to the present simulated by a 

~ dummy task. Finally, the interface task will creak a fourth task that upgrades the lower screen, 



l 

62 3. ~icatiQQSI System Leye' 

monitoring the current barrel-heater temperatures. 

The present version of the user interface does not include complex features forchanging 

the scheduling policy to round-robin and omits the setting of individual p:riorities. However, 

when ail the control tasks cou Id finally he added to the system, W A TCOM C provides runtirne 

routines to adjust for an appropriate change (i.e. 'qnx _ scheduler()', and 'setpriorityO'). Code 

must he added to the interface main module ('iCstart.c') and to any other stand-alone task that 

may require a priority boost. As for the user interface, it is considered to provide the 

appropriate code in the shape of commented lines (, ...... expressions ...• "1) that have to he 

reactivated when required. 

Up to the present, the simulatjon of the control and data acquisition tasb did not lead 

to a bottleneck conceming CPU switching invoked by the scheduler. AlI computations at the 

simulation level tumed out to he quite simple (i.e. 8 concurrent floating point operations). 

Refer to section 8.2 where a change of the scheduling policy is outlined. 

3.2 Proyjdjoa reatures for professiona) versus casuaI users 

According to the production and research perspective (refer to section 2.1), changing 

the system configuration will either be requested or will he omitted by a user. 

Professional users might appreciate the following features. Menus are provided, by 

means of which parameters can easily he changed. For safety reasons, both typillg errors and 

range violations are immediately traced. Moreover, for transparency reasons, warnings are 

printed with directives to remove theerrorcause. Theerrorchecking routine detects space gaps, 



63 3. SpÇcjfiçaLÏQlllll System Leve. 

invalid characters inc1uding a decirnal point where an integer is required. and total gaps 

(spaces). It furthermore prints the maximum and minimwn allowable value on sereen whenever 

one was violated. Nothing has to be typed explicitly exœpt for flIenames. Options are provided 

and can always he scrolled by moving either the cursor upon items or by pressing the arrow 

keys. 

In order to facilitate the work and usage for casual users, aU that is left to do on a 

session is to load a set-up data flle and to press the k-ey <enter> to proceed to the monitor that 

awakens ail the other tasks and the machine action. Two keys only have to he pressed to bring 

the main menu back. Wrong keys pressed inadvertently will make an alarm ring to attract and 

guide the operator's attention. In the case acasual userchanged adefault set-up parameter and 

tried to get back to the main menu to proceed. a second-Ievel crror- checking routine would 

intervene if Olle oftheerrorconditions above held. It would block further progressing and force 

the operator ,to get back to the faulty item or to exit (safety barrier). 

For professional users the objective was to allow them to govem the system al basical1y 

alllevels. Errorcbecking (except for typing) can th us be switched off. Ali parameters including 

the minima and maxima can he edited using a. full-sereen editor. Ail pages are defined in a way 

that future additions can he made, to a certain extent, without rearranging the whole editoI. 

However, the editor is optional for set -up parameters, since ail sub-menus can he used to define 

a new set-up data me. Minima and maxima can only be defmed through means of the editor. 

An important interface design-objective pertains to a graphical display of scnsors. the 

locations of these sensors, and cr.rrent readings. The real-time display of current sensor 

readings on sereen is supposed to be a future feature. Accounting for future interface 

modifications, the logical branching for the display of sensor readings in the interface main­

menu was considered. 



• 

,~ 
\ , 

( 

i 

64 

4. lnteJÜcc structure and features OP the user Jeye1 

4.1 IQp-doWQ menu levels 

The menu structure common to commercial software was adopted. Starting with 

activating an item orthe main menu, othermenus would pop up on screen, monitoring another 

set of items which could similarly be activated. Generally, the highlighted leading characters 

of menu items could be typed in upper case or in lower case to invoke the appropriate 8Ub­

menu. AJtematively, a movable bar, inversely coloured than the Items, could be positioned on 

the items using the cursor keys. Pressing the key <ENTER> would then cause activation. This 

design principle is used throughout the interface leading to a hierarchical menu structure (see 

appendix, Illustration ofmenu levels {index FeO}). 

From within the main menu the fo))owing items can be activated: 

(1) A menu of options needed to load and edit a data file; 
(2) A menu of options to specify further menus needed for 

machine set-up; 
(3) The editor for set-up data and range data mes; 
(4) A task simulating graphies for display of sensor readings; 
(5) A monitor for control system configuration, machine 

activation and manual operation; 
(6) A menu to specify filenames, slaying the upper right 

clock, and to set the error checking mode; 



r 
'., 
\ 

f 

65 4. Sgc;cificaljQD:l1 User LeyeJ 

On the level of set-up parameters (see appendix, Flowchart 2 {index FC2} ) menus are provided 
to specify: 

(1) Timers for injection, holding, cooling and resetting 
the barrel; 

(2) ADC parameters, including sampling rates, AOC channels, 
and the ADC environment; 

(3) Controller parameters for standard PlO controllers, 
4 assumed; 

(4) Start cycle and stop cycle for ADC and recording; 
(5) Barrel heater set points, 4 are provided; 
(6) Several dununy parameters to be activated at a later 

stage of the project, i.e. variable and fixed set 
points, a factor to change the upgrading speed of the 
status display, and miscellaneous timers; 

The monitor for control-system configuration (see appendix, Flowchart 4 {index FC4}) 
pro vides options to specify: 

(1) The controller type, if PID, Oahlin, Vogel-Edgar or 
GAOlPatterson Attenuator; 

(2) The total number of cycles; 
(3) The operating mode; In manual mode a menu pops up that 

activates 7 function keys for invoking one of the desired 
machine actions at a time (open mould, close it, move 
barrel forward, retract barrel, advance screw, retract 
screw, and halt ail movements; after each cornmand the 
system will accept a strike of the spaœ 
bar to halt aIl movements (emergency abortion). 

(4) If and when to start the real-time status display 
task in full automatic mode; 



66 4. SpecificatioQsl User Leyel 

Other menus that involve the entry of filenames are the one providing options for 

loading a file (see appendix, Flowchart 1 {index FCI}) and the one for saving a file (see 

appendix, Flowchart 7 {index Fe7}). Bothrnenusarepopped uponscreenfollowingcallsfrom 

within the interface main menu or the editor main menu. Default fùenames can he changed by 

calling a particuJar menu (see appendix. Flowchart S {index FCS}) from within the interface 

main-menu (i.e. item 6, 'initial settings'). 

4.2 Editor for default set-up data files & mini-max data files 

The editor main-menu prompts the user to chose between editing a flle containing set-up 

( parameters or a file storing the appropriate minimum and maximum values (see appendix, 

Flowchart 3 {index FC3}). 

Whichever option is cbosen, the first menu to be active is the one to load a me that 

either exists or could be created ü not. [f it exists, the data could he loaded or an values could 

be reset. This happens in RAM only and nothing is wriUen to the file unless saving was 

invoked. Menus incJuding directives to guide the user through the file system will be popped 

up in descending size. The smallest window tbat is popped up at any given time is the only one 

activated. Upon completion of any command to be se)ected, these windows disappear in reverse 

order. 

For both types of data, several screen pages are provided that subsequentJy present the 

values to be specified. Pages can be switched back and forth while showing the most recent 

( values entered. When the last parameter on the last page is specified, the user is automatically 



67 4. SpecificatioQs! User Lcycl 

prompted to save aIl dataentered, to exit or to jump back to the interface main-menu. Only for 

the optional editing of range data files is typing error protection is provided. 

Corrupt data inadvertently included in set-up data files will he discovered at the safety 

barrier before calling the machine activation and operation monitor (i.e. main-menu item 5, 

'run & stop monitor). Appropriate messages indicate the menu location of the corrupt value, 

and the key to get there. 

It is always possible to reactivate the default value of a parameter that was either stored 

on an existing and loaded file or that is provided by the editor if no file was loaded. 

Furthennore. it is possible to step back through the pages, item by item, which will 

automatically reset the vaIu:=s encountered to default. In this case no menus, windows, or 

messages will he popped up. 

When editing and saving of a file was tenninated, a small window presents a directive 

and the options to either edit the same file starting at the first item, to edit another file of the 

same category, or to switch category and edit a particular file. 

It is al ways possible to leave the editor andjump back to the main menu from the tirst 

item on the first pages in both editing modes. 



68 4. Specifications! User Leyet 

4.3 Error checkioK 

Il was previously mentioned that errorchecking is provided. It occurs in two modes and 

on two levels \see appendix, F10wchart 6 {index FC6}). By default, the cheeking routine is 

bound to deteet both errors related to corrupt characters and violations of maximum and 

mi.ùmum allowable values of machine variables, for example barrel temperatures. 

The l1ag set to invoke this checking mode cao he deactivated from within the initial­

settings menu which is accessible via the interface main-menu (i.e. item 6). Range checking can 

thus either be on or otT. Whenever reaching tbis point of the interface, any user will be forced 

to use the down-arrow key to serol! at the item. Only this key will be accepted at this instance. 

( Arter having specified if checking for range violations is to be on or otT, appropriate funetion 

keys bring back the interface main-menu or exit. 

Il must be mentioned that ail parameters are character strings on all the levels pertaining 

to loading. editing and saving. Conversion to the appropriate types, which are either type 

integer or type 110at, is accomplished at a later stage. Logically, conversion will always be 

performed before the parameters are being stored intt' global memory. 

The steps that check for corrupt characters invoke functions that subsequently chop 

single characters otT the string. Each charaeter is then compared to a set of allowable 

characters. Spaces are cheeked conditionally, meaning that a warning is raised only if a space 

gap between two valid characters was encountered. Any error of the kind of invalid character 

causes a window to he popped up that includes a waming and a directive for further 

',,1 progressing. 



69 4. Specificationsl User Leycl 

In the case no invalid character of the string could be detected, it will he converted to 

either type float or type integer. The following steps detect if the converted value either exceeds 

the allowable maximum or faIls below the allowable minimum. If one of the error conditions 

holds a message will be printed on sereen in a small window. 

The second level of errorchecking is located ahead of the tirst level in the interface code 

sequence wbich was described above. Every parameter will he checked alike for corrupt 

characters and magnitudes if the flag for range checking was set. Assumed no set-up menu was 

previously called, which meansa set-up data ftlecould have been loaded and changes by typing 

were omitted, error checking at tbis level pro vides the only safety barrier before the machine 

can actually be run. In the opposite event, if set-up par ameters were modified after having bcen 

loaded or were altematively specified from scratch, range-errûr checking would he twofold. 

However, if the checking for range violation was deactivated, at least corrupt characters 

would be 80ught after by the error checking routine. Again, this would affect both levels in the 

case parameters were typed or modified from within set-up menus. 

ln general, this error checking mode can never he deactivated, since it pro vi des the on 1 y 

protection against invalid conversions from type character to type float or integer due to 

corrupt characters. 

Furthennore. the loading and saving routines invoked by the set-up menus or by the 

editor provide writing or reading checks of the strings stored on file. On writing or reading 

errorofan item, a window would he popped up on sereen, indicating either reading orwriting 

error. A reading error prompts the user to jump back to the Joad-options menu to induce a 



," 

70 4. SpecificatioQs! User Leye1 

change of the fùename. It is Iikely that inappropriate fùes are requested to be read. Error on 

saving an item equally causes a warning to he printed. In both cases, exiting the program is 

optional. 

FinaHy, aH C-Ianguage functions that affect the allocation of memory and the 

initialisation of either global or local pointers invoke a waming to he printed if they did not 

complete correctly. One case that is likely to oceur during testing is the attempt to subsequently 

start the user-interface task. If the cache memory is too large and other memory segments were 

not freed, which can oceur if other tasb were still resident in memory, it is likely that no free 

RAM remains to hold the code for the interface task. A message will notify the user that no 

memory is available and exit. With the help of system routines (i.e. 'sin' and 'slay') this problem 

can he c1eared. 

4.4 Back&round real-lime machine-status display 

After the machine activation and operation monitor wasactivated from the main menu, 

the real-time status display task will be created ('statdip2'). 

It tirst receives a message of glo bal pointers which address memory locations of timing 

counters for each of the stages. According to the time elapsed during each of the stages, the 

contents will be counted upwards by the tasks in charge for data acquisition and control. The 

display task will read these memory locations in a timed manner which is achieved by attaching 

a QNX timer. The reading rate is currently set to 5 milliseconds and can presentIy only he 

changed by modifying its source code. At a la ter stage of the project it is proposed a factor 



71 4. Specificationsl User Leycl 

to be specified in a menu to customize this rate. 

Thedisplaytaskreceivesasecondmessage.containingargumentsthatspecifythescreen 

position, the time intervals orthe four stages, and the cfJlour attributes. By changing initiali· 

sationofthesevalues, whichhappens within theinterfacc! main-module ('iCslart.c'), theslalus 

display can he customized. 

Once the sending and receiving of the two m~ges was accomplished. the status dÎ!;play 

task runs concurrently in the background with the intf!l'face task. As was mentione<! before. 

scheduling is perfonned according to a policy that diŒers from round-robin and tirst-in tirst­

out scheduling. 

Currently, the lime of each machine stage is displayed as a bar of a certain length which 

represents its portion of total cycle time. Each orthe four ditTerently coloured bars are logicany 

divided ioto S smaller fractions. Whenever the CPU is ready 10 pay attention to the display 

lask, it flI'St reads the memory segment holding an identifier of the current stage. Afterwards. 

it reads the appropriate stagecounter which holds an integer according to the lime' ~Iapsed. The 

next step that follows is the comparison of that counter with a marginal integer number that 

iodicates the total stage time. Aœording to the ratio orthe current counter and the marginal 

integer, the field will be reprinted stepwise in a colour which ditTers from the original one. For 

sirnplicity, say that each step corresponds to 20% of total stage time, which amounts to one 

field character. Assume the total field length wem 5 characters. If then 20% of the stage lime 

elapsed corresponding to a counter/margin ratio of 0.2, the first field character would be 

reprinted in a colour say from highlighted y/!llow to blinking red. The remaining field 

characters would he reprinted accordingly as more time elapsed. 



72 4. SpccjljçatjoPs/lJ;ser Leye! 

The field lenglhs vary, since the lirneintervals fordifTerent set-upschange. For the cases 

that the field lengths difTer from a total of 5 characters, a routine finds out the number of 

characters available to represent or leave out the five succeeding steps of 20% of total stage 

time. AlI these computations afTected are undertaken once on task creation. It means that 

when the machine actually runs, the display task does not claim CPU time for any computa­

tions except for the few statements atTecting the field reprinting mechanism. 

Once a new stage of the machine is entered, the who le corresponding field is first 

highlighted. Time proportionate reprinting of the five field sections occurs next as described 

above. 

( Thedisadvantage ofthismethod, which has itscause in thesomewhatarbitrary division 

orthe fields into 5 fractions, manifests as a red blinking colour bar that moves from left to right 

across the fields in a discontinuous manner. 

The advantage, however, is short computation al any given time. Only a few characters 

are 10 be printed on screen. Repeating the most important constraint imposed on the interface 

deveJopment, it was necessary to leave as much CPU lime free as possible. On the other hand, 

this technique required a more complicated and thus bigger code. 

Ali the other information, which is the display of the stage time intervals, the CUITent 

stage, the current operating mode, and the total cycle time is printed once. This is not subject 

to updating, and thus is not time-critical. 



------------------------------- - - -- - ----- -- - - - -- ----

73 4. SpççjOqtjoos/ User I..cycl 

4.5 Cootrol-S):stem coofilPWtioo-monito[ and operatins options 

A menu which was previously referred to as run-and-stop monitor (see appendix, 

F10wchart 4 {index FC4}) for the machine will he printed on screen once all parameter 

conversions from type string to type noat or integer were successfully accomplished. The sarety 

barri~r must have been successfully passed. 

A program module, called 'fw _do .c', provides the source code. In the beginning, kernel 

functions will he executed that subsequenUy serve to create ail tasb that make up the system. 

Control system configuration and the setting of the machine's operating mode are 

required to he specified by scrolling options displayed in particular fields on the screen. 

Currently, only the controller type can he specified. Typing is involved to specify the total 

numher of cycles the machine is requested to run. If the flag for checking range violations was 

set (default), both typing errors and magnitudes of the converted value will be traœd by the 

error-checking routine (refer to section 4.3). 

At tbis point of execution, a function will he called (Le. module 'Cfromui.c') that 

allocates and initializes global memory segments for parameters to he share<! with the control 

system and data acquisition related tasks. The idea is that the exchange of data subject to 

changes made by the user during a session with the system is done without the obligation to 

send and receive messages. Otherwise synchronisation between the tasb. which ischallenging, 

would he required, since the exact time for data transfer is undetennined. Global memory has 

the advantage that tasles can refer to the data stored following the rule "grab it when you need 

it". Send and receive bloc king is not involved, and so facilitates time sharing among the tasb. 



74 4. SpedOçatiopsl]Je LcycJ 

However, one single send and rcœption of these global pointers to the appropriate wb is 

required at the starting point ofexecution. Bach task that bas to share global data with otber 

tasles needs to know the memory locations. This cannot he avoided. 

Aner the initialization of the global pointers, the curreot values ofthe parameters to he 

shared are assigned to them by means of the redirection operation in C (asterisk: 

·pointer=value). 

The following code sections are concemed with sending and receiving ofmessages. This 

module, 'fw _ do.c', wiU l'eCeive a structure (i.e. struct glob3, defmed in 'shared.h') that con tains 

global pointers to the stage counters (see section 4.4 above). This structure was sent by the 

( control system and data acquisition related tasles, which aUocated the global segments. The 

initialisation of the pointers holding the addresses of which preceded. For identification as the 

target task to whicb tbis structure was sent, the interface task bas to attacb a name, which is 

"ui" to abbreviate tbe notion of user interface. 

Subsequently, thestructureglob3, which wasjustreceived, will besentto both thestatus 

display task('statdip2') and to thetaskin charge for monitoring thecurrent barrel-heatertem­

peratures ('barreltemp'). In addition, the structure 'g1ob4' will be sent to the latter task by the 

module 'fw_do.c'. 

By means of checking the flags 'send_W' (m represent symbols indicating whicb 

structure was sent), sending and receiving of messages is accomplished once for any given 

session. So is the creation of aU tasles that make up the system (see below). As for the present 

( state of the interface, only those parameters can be modified that are accessible via tbis 
" 



75 4. S_""lignal UI« UU' 

monitor. Thesc are the identu1el'S for the controllers. the total cycle time, 

tbe oPerating modes, the parameters that represent the manual operating commands, and the 

parameter to indicate starting and stopping of the machine. 

Leaving the monitor will invoke the operating system shell to slay all tasks that are not 

related to the interface task. The flags 'send_m' will then he reset. Any subsequent entry into 

the monitor will cause the same statements to be executed as descrihed above. Sending and 

receiving of the global structures, as weil as succeeding task creation is invoked again. 

In the case manual operating mode was chosen, the upper half of the sereen will he 

reserved for a special menu that displays key defmitions and directives needed for manual 

operation. Each command executed will cause a coloured bar to jump back onto the command 

field to haIt the machine. Subsequently pressing the key <ENTER>, or altematively the space 

bar orthecharacter <H> in loweror upper case, would cause the identifier for machine halting 

to be written into global memory (Le. by the redirection assignment: 

·fromui.ip_startstop=stop). ItismeaI\t that this location isoftenchecked bythecontrol system 

and data acquisition tasks to invoke machine halting. 

Pressing another key brings back the sub-menus for controller specification, total 

number of cycles, and the operating modes (i.e. fuIJ-automatic mode, man ua) mode, or serni­

automatic mode). 

Operation in full-automatic mode prompts the user to start the machine by pressing a 

key. Subsequently hitting the space bar causes the identifier 'stop' to he written to global 

memory. This corresponds to the mechanism described above for halting the machine in 



( 

76 4. SFjOc;atjQu/ll- L:ycl 

manuaJ operation. However, no special key is required to bring back the sub-mc:nus for 

controller types, cycles, and modes. This follows automaticaz!j after the space bar was bil For 

redundancy and thus safety reasons, a special function k"y, <FIO>, invokes exactly the same 

action. 

This mechanism, i.e. the reprinting and reactivating of aU sub-menus when apprc'priate 

keys were pressed, aUows for switching the operating mode and control strategies for mns 

govemed by the same set-up. 

ln general. once the operating mode was specified. ail the other tasks wou Id be created 

and run in the background from then on. 



J .. 

77 

S. Source cOde: arcbite:ctuR 

S.l User-defmcd headcr files' "colours.h. fl_colours.h, Cdecl.h and shared.h" 

Both the interface and the display programs are broken down into several modules. A 

listing of the modules is obtained byehecking the contents of the diskette tUached. The files 

featuring the extension ".h" are user-defined header mes that are included in sorne of the 

modules. 

The me "eoloul'S.b" eontains a variety of èlsplay attributes for screen characters which 

are referenced whenever a terminal function prints on screen. 

Anotherfilecalled "colours_fl.h" isquite similarto theone mentioned above. Itequally 

con tains a set of display attributes. The difTerence. however, arises from the setting of the flag 

to flush the terminal funetions arter output. It was found that due to multi-task printing on 

screen this is a requirement to achieve concurrent printing. Only the chi Id tasks that will he 

created at a later state need to refer to these attributes. Many of the printing routines will have 

bœn ealled already by the parent task. 

Forthis project, the display tasks, i.e. 'statdip2', 'barreltemp', and 'viewdat', include the 

header file "eoloursJ1.h". 

The parent task, which is called 'imm', also refers to the header file "coloul'S_fl.h" at the 

point where the display attributes for the status display task are initialized (see module 

'if _ start.c'). 



( 

78 S. Saurge; Code Struçtun; 

ln the view of the C·language, all modules are basically functions tbat are called either 

within the main module called 'if start.c' or within other modules (nested programming). The 

module names and the corresponding function names coïncide. Instead of explicitly declaring 

the funetions (modules) referenced at the top of the caning modules, the header flle "e dec1.h" 

is inc1uded in all of them. At compile lime, the C-compiler will compare any functioD 

declaration with the syntax ofthe function defmition placed in the appropriate module, i.e. the 

variable Iist that incJudes the storage cJass for aU input and output parameters. Errors which 

emerge from funetion 110 violations can thus he detected and avoided at compile time. 

The header me called "shared.h" serves to be the declaration ofstructures referenced by 

more thanjust one module. Instead ofrepeating the declarations, the compiler's needs can be 

satisfied by including this header fi~f;. This contributes to reducing source-code s~ and 

editing time. A structure is generaLy considered a new type. Variables can he declared of such 

a type, 'struct name' •• 18 commonJy as il works with other types, namely: integer. float. and 

character. One line only is required for declaration, even if the structure declaration itself 

exceeds more than a screen page. 

On the other hand, it helps avoid confusion of structure members which would he not 

easy to detect. The file "shared.h" incluJes the declaration of four structures named 'g1obl', 

'glob2', 'glob3', and 'glob4'. AlI ofthem will he sent a..~ messages to display tasks from within 

the interface module called 'fw_do.c' (see section 4.5). 

The structure 'glob3' is received from the task 'variable'. Right aller, structure 'globl' 

is sent to the task 'variable' by the module 'fw_do.c' of the task 'imm'. 'Glob3' is then sent to 

( the task 'statdip2' and the task 'barreltemp' by the task 'imm'. The latter task a1so reœives the 



79 s. Sgura; Code Slructum 

structure' glob4'. The structures' glob l', ' glob3', and' glob4' include global pointers to shared 

parameters. Structure 'glob2' doesnotinclude parameters to besharedglobally, and isalso sent 

to the status display task 'statdip2' by the task 'imm'. It contains arguments for customized 

printing of the display. 

S.2 Libruy object modules of 'if40 lib' 

Ali modules tbat make up the interface tasks and the status display task arc merged 

together into a Iibrary me. Throughout the interface program, function names coincide with 

the module name that holds the function deflnition, i.e. the routine 'function_name()' isdefmed 

in a file caUed 'function_name.c'. 

Except for the module 'Ctimesdisp.c' the C-routines were compiled in the medium 

memorymode(compiler switch: -mm,seeWATCOM C-compiler user'sguide). This indicates 

that code of the resulting executable flle exceeds the size of 64 Kbytes, whereas a data segment 

of 64 Kbytes is sufficient to hold ail data the interface handles. TIte routine 'Ctimesdisp()' 

dermed in the module 'Ctirnesdisp.c' is caIJed within 'statdip2.c'. Both modules are SInall in 

size. The files 'Ctimesdisp.c' and 'statdip2.c' were therefore compiled in the small memory 

mode (switch: -ms). 

To obtain a listing of the object files that are merged into the library 'if40.Jib' the 

W ATCOM library manager provides a tool to save the listing on fIle. The command wouJd he: 

wlib -l='namc' iC40.lib. 



( 

~., 

80 s. Sgurq; Code Structpre 

Using the shell command: 

more 'Dame' Iless 

would result in a pagewise print-out which is useful for screening. The library 'if40.lib' bas to 

be linked ta the interface main module called 'iCstart.c' and to the status-display main-module 

called 'statdip2.c'. The commands ta he type<! cou Id foUow the syntax given thereafter: 

cc -1 -0 imm -mm ü_start.c -lif40.lib 

and 

cc -1-0 statdip2 -ms statdip2.c -IiC40.lib. 

To replace a modified and compiled module one would have to type: 

.lib ü40.lib +- (or -+) Dame.O. 

A new module could he added or erased by typing: 

.lib ü40.lib +name.o for adding 

and 

.lib if40.lib -Dame to delete the module. 



81 s. Sourq:: Code Structure 

The library itself was created using the command provided by the compiler interface: 

cc -A iC40.1ib ·.0 

This would cause the creation of the library 'if40.lib' by including al1 object mes in the current 

directory. If a module were changed, it would have to replace its previous version stored in the 

library. For relinking the updated library to the main modules one would have the option to 

type: 

cc -1 -0 imm -mm iC_start.o -lif40.lib 

or 

ce -g -0 statdip2 -ms statdisp2.0 -lif40.lib. 

5.3 Global. loca], and system variables 

The flI'St code section of the interface main-module called 'if_start.c' declares a set of 

variables. The whole set of variables is declared outside the main module which assigns global 

storage class to it. 

The groups of global variables can be listed as foJ]ows: 

(1) Set-up parameters of type integer or float 
(2) Pointers to strings for set-up parameters (not 

converted) 
(3) Pointers to buffers for default parameter strings 



1-

82 S. Sgurœ Code SlrnGture 

(4) Minimum. and maximum values of type integer and float 
CS) Pointers to strings for minimum and maximum values 

(not converted) 
(6) Pointers to strings for default minimum and maximum 

values 
(7) Global pointers to parameters to be shared among tasks 
(8) Arrays of pointers to strings for menu items 
(9) Pointers to screen (page) butTers 

(10) Variables used as fiags (logical execution control) 
(11) Identitiers for machine mode, stage, controUer type, 

ADC channels, and ADC environment 
(12) Unsigned integers for butTer sizes 

By checking the list of external declarations included at the beginning of t.he modules, 

it is straightforward to trace back the locations where the variables are declared. 

Some orthe modules declare a few local variables which are only referenced from within 

the same module. This mostly affects auxiliary variables, as for example integers for loop 

counts. 

Task identification isachieved by hamessing the QNX functions tbat provide names for 

tasks. A task that attaches a name can he identified within the system by other tasks that search 

for tha~ name. Names are strings and are known Ils system variables. They do not serve any 

other runction than task identitication. A task that is able to locate anotlter task by its name 

will receive a process identitication-numher by the routine 'qnx_nameJocateO' in retum. 

This process-id is required to allow the locating task to send a message to the identified 

process. On the other hand, a receiving task can obtain the identification of a sending task by 

10cating its name. 



( 

83 S. SQurœ Code StmctUR 

The following names are currently being attached b~' the tasb: 

(1) "variable" by the task 'variable' 
(2) "display" by the task 'statdip2' 
(3) Hui" by the task 'imm' 
(4) "barreltemp" by the task 'barreltemp' 

• control and ADC tasks 
• status display 
-= interface task 
• temperature display 

5.4 LoiÏcal branchina. retumed values. and jure" marks 

The control flow through the program is directed by means oflogical operations which 

identify retumed values of either C keyboard-functions or interface routines. Dy means of the 

'goto' and 'switch' statements in C, program continuation can he directed to any statement 

within the same module. The sucœss of a stack-pointer long-jump invoked by a 'goto'­

statement requires the proper dermition of a label or jump mark. 

Labels and 'goto' statements are widely used in the int:rface pro gram. Especiallyafter 

a menu item was selccted or a function kt.'Y was pressed, a jump to the caU statement of a 

specific function is required. At pomts whe~'e user input is required, the returned values are 

chccked by a set of if-statements. If none of the conditions hold, a jump back to the input 

routine is invoked. This prevents the program from dealing corruptly with an undefmed 

condition at input. Forcing the program to jump back to the previously caUd routine upon an 

unidcntified retum is maintained throughout the interfaœ program. 

Once the routine 'termJoadO' was caIled, which initiali2a the structure 'tenD_state' and 

( switches off echoing on input, pressing of a function key causes the return of a 16 bit integer 



r 
1 

84 s. SgUrge; Code Struçtum 

number. The dermitions of the keys are located in the 'qnxterm.h' header me. 

Identification of activated menu items is aceomplished difTerently. Menu items are 

defmed as elements of pointer arrays of type character. Each element is a pointer to such a 

menu item, which ir.astring. Thefunc~ion that performsselection retumsa pointer ta the menu 

item selected. Subsequently, a string fWlction compares the string to which the returned pointer 

points with each of the menu items maintained by that particular Menu. In the case the 

comparison is successful, meamug the string to which the ret\lfIled pointer points, and the 

menu item selected match, a 'goto' -statemen L will be executed. This invokes a jump ta the 

program location which is preceded by the 'goto'-label. 

The user interface main-module, which is 'iCstart.c', contains a great deal oflabels and 

'goto'- statements. They oceur in the order of menus and routines to be ca lied to run the 

machine during a given session. The sequence is as follows: 

(1) label "malI": location where 'CmallocQ' is called to 
allocate memory for the numerous strings; 

(2) label "mscr": location where 'w _mainO' is called, which 
prints the main menu on screen; 

(3) label "cum" : location where 'curs_mainO' is activated 
for main menu item selection; 

(4) label "ini" : location where 'CinisetO' is called to 
specify default me names and error checking mode; 

(S) label "Ioad": location where 'fJoadO' is activated to 
load a flle; 

(6) label "mdr' : location where 'CmakedefdatQ' is called, 
which invokes the editor for set-up data and range data mes; 

(7) label "vdr' : location where task 'viewdat' is created 
(8) labet "sser": location where 'w_setup_mainO', which is the 

set-up main menu, is called: 



85 5. Saura: Coda Struetum 

(9) label "eus" : location where 'curs_setupO' is called to 
activa~ item selection; 

(10) label "tim" : location where 'w_timersO' is called to 
specifyall stage time intervals; 

(11) label' CI.dc" : location where 'w_AOCmainO' is called to 
pop up ADC main menu; 

(12) label"rates": location where 'w _ADCO' is called to specüy 
slow and fast sampling rates for each of the stages; 

(13) label "chan": location where selection of fast or slow AOC 
channels is accomplished; 

(14) label"schan": location where 'fw_schannelsO' is called to 
specify slow ADC channels; 

(15) label"fchan"; location where 'fw_fchannelsQ' is called to 
specify fast AOC channels; 

(16) label "op" : location where 'w_ADCopsQ' and 'curs_AOCopsQ' 
is called to set AOC environment; 

(17) label "vfsp": location where 'W_VarflXO' is called to 
specüy fixed and variable set points; 

(18) label "spb" : location where 'w_bheatersQ' is called to 
specify barrel heater set points; 

(19) label "cp" : location where 'w_controlO' is called to 
specüy PlO controller parameters; 

(20) label "rsll 
: location where 'w _runstop()' is called to 

specify miscellaneous timers and cycle numbers for timing 
purposes; 

(21) label "save": location where 'tsave()' is called to 
invoke saving of data; 

(22) label "conv": location where 'tconvertallO' is caIled 
which causes all parameters strings to he converted from 
ASCII to integer or Ooat; 

(23) label"cconv": location where 'CconvertO' is callee! which 
converts stage time intervals to unit y in th'! case a value 
he!ow 1 is specified (display); 

(24) label "rscr": location where 'fw_doO' is called which 
is the monitor for control system configuration and 
operating options; 

(25) label "oir' : location where the clock is created if previously 
killed and the screen buffer is rel~; 



86 S. Sgnrœ Code StruçtURl 

In general, the control flow ofmost operations pe'''fonned within the interface program 

and its modules is channell.ed through the main module and branched from there (if-then 

statements). 



87 

6. Codinl strate" 

Not an design objectives were known in detail at the time coding was to ~ performed. 

Details were added, modified or erased in the course of the project's development. However, 

the major design objectives were defmed. 

Initially, the hierarchy oftop-down menu leve)s was establisheù on paper. AlI the menu 

items to be specified that were known in the beginning 'i'ere listed and grouped together. Sorne 

considerations about col ours led to the conclusion that menus belonging to the sanie level 

within the pro gram hierarchy wOùld have to have a sim.ilar la)' -out. As a result, the total 

number of menus, the number of dilferent styles, and the numbe' of menu items per menu 

could he stated. 

The decision to handle parameters on all menu levels as ASCn strings derives from 

further considerations pertaining to interface IIO. Especially explicit typing of values and 

pathnames was intended to be perfonned by invoking the editing C-rt\Utine 'tenn_fieldO'. 

Activation offunction keys was to be accomplished by referencing the 'teon _keyO' C-routine. 

Both decisions helped identify the type and number of variables needed for set-up parameter 

specification and minimum/maximum data. 

A strategy to best perform saving and restoring of screens and windows was equally 

sought at an preliminary stage orthe project. The strategy chosen is described below. 

A decision was made to stick to formatted me liO of the strings. This was considered 

l' an advantage, since shen commands (Le. 'more' and 'less') could he activated fOL checking of 



......... 

88 6. Cndjo. Stnte" 

the me contents. 

Sorne efforts were spent on fmding out the number and sco~ of each task to be run for 

user-machine communication. Thecoutrol system and data acq~isit1on related tasks were said 

to be simulated in order to provide independency for interface program development. 

Conc1uding prelirninary studies, issues afTecting the program hierarchy, data inheritanœ 

of modules, the most suitable storage class of variables, inclusion of user-defined header mes, 

and control flow mechanisms to he implemented within the program were tackled. 

ln general, actual coding was involved in aIl subsequent steps of program development. 

Attention was fll'St given to the creation of the interface task. The display task; and the 

simulation for the control system and data acquisition related tasks were coded afier a 

workable version of the interface program was available. 

The basic logic of some menus was programmed and compiled first. In a succeeding 

step, the 'if40.lib' library was created to include these modules which existed as temporary 

primitive versions. 

For initial testing, the interface main-module was defmed next and was lin1ced to the 

library if40.lib. In the course of program devetopment. variables afTecting the creation and 

coding of new modules were subsequently declared and added to the main module. 

For continuing testing, this required upgrading the library, recompiling the main 

module and relinking it to the library resulting in a new executable me. Further features were 



• 

89 6. CodiDI Strateg 

incorporatcd into the interface program by stepwise enlarging the code size and complexity of 

the main module and the remaining interface modules. 

Editor commands werewidely used to extend the modules with functional code sections 

that feature similar performance but at different locations on the screen (in the menu). 

Those menu modules. the names of which include a 'w' for 'window', were first edited. 

For simplification of a menu's function, a single item was initially included per menu to 

facilitate testing. 

ln the following stcp, the basic logie for menu item selection was defmed. This involved 

supporting the movement of a bar which is inversely coloured than the menu items. 

Customizing the selection mecbanism for the main menu and the set-up menu was undertaken 

thereafter. 

Code affccting the specification of parameters was programmed next. Ali menus were 

completed by adding all appropriate items. This step involved the initialization ofpointers to 

strings tbat hold the parameter specifications (strings) and the default strings for il. 

It was round that both groups of pointers have to he of the same storage class. i.e. of 

global storage class. 

In the subsequent stcp, efforts werespent on fmding amechanism to loadand save data. 

This included the creation of a file-system environment that would aIlow for pathname 

{ specification as weil as provide editi,Ylg utilities and a set of warnings and directives for error 



90 6. Cgdjo. SI[JtcD 

handling. This is ta a void me opening fallures as a consequence of wrong pathnames or non· 

existent mes, and reading or writing fallures. A probable instant of the latter case would occur 

if names for range data and set-up data were confused. A different fonnat pertains to both file 

categories. A technique had to be determined that would master the specification and display 

of default fllenames considering that the patb and the fllenamc of the lalest me loaded ~hould 

be displayed on subsequent calls of the loading and saving routine. This was finally accom­

pbshed using tv/o global string bufTers of26 characterseach that hold a default filename and 

the name for the specified file. Arter tennination of the loading routine the filenarne specified 

is copied into the buffer for the default filename. The saving routine can reference the same 

bufTers when activated, since both bufTers (pointers) are global, and will thus inherit the name 

specifications made at flle loading time. 

The need for a provision of default filenames assigned to set-up data files, range data 

mes, and ADC data files emerged upon completion orthe loading and saving roùtines. This 

induced the creation of a module that provides specification options for default filenarnes. 

Even these strings were decided to be of global storage c1ass, such that their defmition in the 

main module's leading section could he modifie<! if desired. This requires re-compilation and 

relinking of the 'if_start.c' module to the library for another executable interface file. 

Further a!tention to coding was by then given to the editor, since all parameters for 

which range checking had to he provided were known. The idea emerged that pagewise editing 

utilities for ail parameters could speed up both set-up data and range-data me creation. 

This resulted in an editor supporting two ediJng modes, one for set-up data specifications 

(strings) and a second one for minimum/maximum data specifications (strinbS). Saving and 

restoring of pages was an issue that required careful pointer dermitions. Il was found that 



91 6. CQdiu.1 StratCIJ 

global pointers (i.e. char _far ·pointer_to.J)age_i) to butTers for the saved screen pages best 

support page switching. 

AlI issues pertaining to errorchecking we~ then addressed following the programming 

. of the editor. Sorne considerations about a suitable mechanism emerged while usinS: the 

interface programme<! at its then present state. Error cbecking bad to be accomplished on two 

levels and in two modes (see section 5.3). A safety barrier prior to activation of the run-and­

stop morutar had to be established in the evc:nt the use of set-up menus for parameter 

specification were omitted. Secondly, errors would have to be detccted immediately after a 

menu item was specified. This led to the creation of the error checking routine and the 

detemùnation of the syntax for its call. Ail input parameters are of global storage class. At a 

( certain point in the program where checking bas to be performed. ail ofthem need be initialized 

by locaUy appropriate values. 

The application of error checking could then be extended to cover editing in the range­

data mode. However, it was considered to be sufficient that only the validity of characters 

would be checked. 

It would not bave made sense to provide magnitude checking for minimum and 

maximum data. Above all, tbis in'terface level was designed folJowing the assumption that 

research uscrs only would malee use of the editing utility. 

At tbis point of tbe interface development, tbe transition to the programming of the 

display tasb, as weil as tbe control system and data-acquisition simulation-task was 

( undertaken. A great deal of efforts was spent on parametersharing among the tasb embedded 



92 6. Codjol Stntcl)' 

in the pro gram hierarchy. The technique found W2.S the declaration of pointers to globally 

accessible memory segments. On the level of the interface program a routine had to be created 

that would perform pointer deflOition and initialization. It set"med fa vo urabI: to include a user 

defllled header me that would store the declaration of a structure comprising these global 

pointers. It was anticipated that the simulation task would need to reference the same structure 

at the time it was to be coded. 

As aste.p to temporary in,~rface-task completion, a routine wascoded that perfonns the 

function of the safety barrier. No matter if a check of parameter specifications were already 

accomplished, aIl parameters that need he shared among tasks (see helow) would be checked 

for charaeter validity Urst and magnitude second. Th~" syntax developed for local error 

checking was adopted to assemble the overall code of this routine. 

At this point a workable version of the status-display task was heing coded eoncurrently 

and independentJy from the interface task. 

It was evideut that synchronisation of the simulation task and the already existing 

interface and status display tasks had to he achieved. Particularly version 4.0 of QNX requires 

the sending and receiving ofmessages for task communication. Task identification was found 

to be best accomplished by harnessing the naming and narne location utilities of QNX. On the 

interface level this required a module that starts ail the other tasks of the overall system, and 

that arranges and coordinates the sending and receiving of messages among the tasks (refer to 

'fw_do.c'). Sending wassupposed to supplythetaskswithall global pointers toshareddata(see 

section 2.5 for details). One message-sending method considered was to send display attribut.es 

over to the status-display task. Roughly versions of tbis module and the simulation task were 



93 6. CQcUgl Stratcg 

frrst established. The inclusion of the status-display task was excluded for the time beil' g. In 

subsequent ref'ming steps the command sequence was c-stablished that would accomplish: .:ask 

creation, sync;hronisation, and communication of all tasks. 

Finally, customizing the barrel-heater temperature-display task and the switching of 

operating modes within the user interface received further attention. It was made sure that aIl 

crucial background tasks would he created befnre the operating mode can be switched from 

full-automatic to manuai mode. This method had to he provided to allow switching of 

operating modes and control strategies alternately without previously terminating and 

subsequently restarting tasks that ron in the background. This ensures that the machine can be 

operated in both full-automatic and manual mode while sustaining the m&.chine settings and 

~ configuration. 
~ 

{ 



94 

7. DebUIVDI apd results 

The activation of debugging tools for application programs required the in terprctation 

of error messages as well as wamings issued by the compilers and linkers used for program 

deveiopment The user manuals for the above software include listings that give a short 

explanation for potential error causes that can he associated with the messages printed on 

screen. The variety of errors encountered can he broken down into the groups of compiling 

errors, linking errors, and runtime errors that are common to the subsequent steps of pro gram 

development, which are: compiling, linking, and ronning. Compiling errors were detected first 

before the recognition of linking errors and the latter runtime errors. Corrections to the code 

were made immediately after the completion of one ofthese steps failed to issue compiling and 

linking commands recurrently. 

The multi-tasking features of the operating system QNX allow for user-computer 

int~raction on several virtual consoles (screens and keyboards). Concurrent applications can 

thus he ~xamined simultaneously by switching these virtual consoles. IIO activities of several 

applications would be 0 bservable virtually at a time on virtual screens which are priva te to each 

application. 

The debugging tools shipped with the versions 2.15 and 4.0 of QNX ('SIO' and 

WVIDEO, respectively) harness tbis feature. Ouring a debugging session of an application, one 

virtual screen displays the source code orthe examined application, highlighting the statement 

to be executed next. The results of the execution of a statement are printed on a second virtual 

screen when IIO is involved. It is possible to toggle between these screens frequently. 



95 7. DchuIIÏOII: RGSUlg 

Sina: transmission and reception of messages influence execution of a single program 

run in the context of a task hierarchy, it was necessary to perform concurrent debugging of an 
the tasks that communicate with each other. The advantage ofthis technique is that program 

execution unfolds stepwise, since the debugging routine hascomplete control overmemory and 

program counters so that il halts execution at the latest executed statement of a program. It can 

thus exactly he detennined at what location ofthe code and which task caused corruption. lbis 

concurrent debugging of programs that run simultaneously in the background required a 

modification of the system configuration mes (sec user manuals for console driver adjustments). 

To start a debugging session including the interdependent tasks: 'imm', 'statdip2', and 

'variable', a total of seven virtual screens had to he managed by the operating system. Two 

( virtual screcns were reserved for source code and 1/0 results of each of these tasles as described 

aoove. The seventh virtual screen was set active to caU system routines needed for operating 

system and task-status checks. Forexample, upon completion of astatement in one of the three 

tasks, the 'sendO' procedure in another task could have failed causing the task involved to he 

"blocked". This would he printed explicitly on the seventh virtual console arter execution of the 

system routine 'sin'. It was possible to toggle frequently between ail seven virtual screens. 

( 

This method proved very efficient to trace errors based on corrupted memory addresses 

invalid messages and logical deadlock of the sequence of task creation and communication. 

However, a great deal of efforts was spent ta run the debugging routine on single erroneous 

programs (tasks). This required the activation of three virtual consoles: one for execution of 

operating system routines and their 1/0 performance, one for the display of the program's 

source code by the debugging routine, and one for the 1/0 activities of the examined program. 



96 

The most critica1 and tricky errors encountered after it was attempted to compile the 

source code of an application, after a trial to link related object modules to make an executable 

flle, or after attempts to start the application from the shell are described next. 

7.1 IntecpretioK compiler and liokec error-messaiC$ 

The compilation of an erroneous source me led to printing of a list of error messages. 

This required an immediate interpretation of a possible cause and editing of the source flle to 

correct it. In practice, the switching between virtual screens proved to be 3I'Catly convenient for 

editing and iterative steps to compile a source me because of the following: on the ficst virtual 

sereen, all the error messages could he listed and held, while editing could be perfonned on a 

second virtual screen with the help of a full-sereen editor. Frequent attempts to re-compile such 

an erroneous application required Frequent toggling betwecn virtual consoles. Due to the 

bufTering ofkeyboard input, the commands to initiate re--compiling ,ould be repe3te~ simply 

by pressing the arrow-keys, while the full keyboard dermition for the editor was sustained on 

the other virtual console. It was therefore not necessary to repeat time-consuming typing of the 

same command seqences. 

It was considered that one single coding error cm cause several error messages to he 

printed that are not ultimately related to this coding error. This occurs due to propagation of 

tbis errorthrough the compiling procedures. In fact, one coding errorafTects ail interdependent 

routines of the compiler which thus fail and cause additional error messages to he printed in 

the order these routines areexecuted. Thus, the fust message printed wasacknowlcdged. Based 

..... on the errorcause it suggested, the source code orthe program was corrected using the editor. 



( 

( 

97 7. DebnlliAI" BAults 

The most tricky errors on the compiler level are references in the source code to invalid 

memory addresses or computations involving such invalid addresses. Thesecannot be detected 

by the compiler, sincc only a check of code syntax and variable declarations are performed. 

Actual values of variables inc1uding memory addresses are not verified by the compiler. 

Moreover, no messages arc printed tbat can serve as a hint that program execution is at stake 

~bould linking he successfull and the executable fûe is attempted to run. Operations on invalid 

addresses certainly result in a fatal error at runtime which forces the operating system to 

terminate the application. 

Likewise, sorne errors related to both compiling and linking do not cause messages to 

be printed immediately. This particularly pertains to the option ofchoosing a memory model 

for the object file to he generated by the compiler. WATCOM C oiTers a choice of memory 

models ranging from small to huge portions of memory to he aUocated to an application 

program. This influences the amount ofmemory address space to be occupied by both data and 

code (sec manual). The purpose SClUght by WATCOM was to olTer program developers an 

opportunity to optimize the c1aim on free memory of lpplications. The choice of the memory 

model for a program at compile-time can interfere at linking-time with the models chosen for 

object libraries or other object fûes to he linked. Themodels of ail constituents of an executable 

program must he consistent. Even if compiling of a source me was successfuJ and no error 

messages were printed by the compiler, the linter can respond printing error messages when 

memory models of the object files to be linked mismatch. In tbis case, references to invalid 

memory locations are made by some sections in the object flIes. 

Il was attcmpted to link the 'if40.lib' object library to the main module object file 

'iCstart.o'. Inconsisten,~ies hetween the claim on free memory for theexecutable faIe 'imm' to 



98 7. DcbulliPI" RCSUIIi 

be generated and the sma11 memory models chosen for the object modules in 'if40.lib' and for 

'iCstart.o' led to linker error-messages. The strategy pursued arter fmt occurrence of similar 

problems involved the compilation of all modules in large memory mode. This mode is defmed 

to claim both for executable code and data memory segments larger than 64 Kbytes. Mter 

linking was successfully accomplished, it was possible to check for the size of the executable 

mes created with the help of system routines. More information about the task's claim on 

memory could be obtained by actually running the task at hand on one virtual console, and 

then screening memcry occupation on the second screen. The infonnation printed could then 

be used to accommodate the memory layout chosen for the exp-cutable me 'imm'. AlI modules 

were re-compiled using a smaller memory model. In the case of the interface task 'irnrn'. it was 

possible to switch the memory model from large to medium, which still refers to code larger 

than 64 Kbytes but claims only a single segment smaller than 64 Kbytes for data. 

7.2 Intecpretina run-time errQrs 

Runtime errors oftwo categories were mainly encountered. One type of error did resull 

in immediate program termination and the printing of a system error-message. The other type 

did not immediately terminate the application. The latter initially resulted in an undefmed 

printing on screen. Upon pressing ofkeys, the application would terminate, causing the sarne 

system error-message to be printed as in the fonner case. 

The reason for runtime errors of the fU'St type are references to memory addresses that 

are invaHd. Runtime errors of the second type can be explained by assuming that a shüt of 

memory addresses bas oœurred arter thecompletion of an illegal operation. The mostcommon 



( 

99 

coding errors encountered with regard to a similar shift were expressions that assigned a value 

of a global variable c:o a local variable. This phenomenon particularly held for glo bal character 

strings and local strings. Therefore, corrupted and undefmed printing was detected. To an 

extend that cannot fully he explained, 8uch a :ihifting occ~ once a child task was created 

from within a parent task. It is plausibl..: that addresses of global variables are protecte~ such 

that they cannot he shifted, whereas the addresses oflocal variables are not protected. They can 

tbus shift wben sorne system activity affects partitioning ofmemorysuch as the loading oftasks 

into RAM. The shifting of addresses could be observed employing the above debugging 

technique with multiple screens. 

Sorne runtim.e errors had in common that task creation and message transfer was not 

completed successfully. To send a message to a task that tenninated before or awaiting a 

message from a task that tenninated in the meanwhùe causes the retum of -1 to the system 

routines 'SendQ' or 'ReceiveO'. This flag could he used in the interface programs to initiate 

printing of a message on screen if -1 was detected. However, these messages are user-defined. 

The system itself does not issue sueh messages. 

7.3 Task simulation for dctc:ctin, oon-coauptin, lop;al eqO[$ 

It was previou81y mentioned that once a workable intermediate version of the interface 

task was available, tests were conducted. Tasks were created for testing that were used as 

expedients to represent later runtime versions of these tasb. Most of the modules that were 

s\1bsequendy added to the interface were tested independentJy from other modules. Instead of 

(' keeping t.he corps of the interface main module 'it start.c', a module called 'test.e' was created 



100 

tbat had only the global parameters of'ü_start.c' copled into it. These are referenced by the 

modules. The cali to a new module was in most cases the only Une held in the body of 'test.e'. 

This provided a direct means to detect logical errors in conj~Ulction with the debugging routine 

and the muIti-screen technique. 

To simulate the runtime version of the task 'variable' a provisory version was created 

registering the same name 'variable'. The simulating version accomplishes short hand what 

would be the case at runtime provided by the runtime version. To summarise, naming and 

locating names of other tasks. inter-tas!: communication between these tasks. as weil as 

memory allocation for shareable global storag.: was simulated. Upgrading the locations 

referred to as cycle-time counters for each of the four machine phases was achieved by ronoing 

aninfmite loopwhich wassubsequently halted bycalls to aC-language function CsleepO') that 

suspends execution. 



( 

( 

101 

8. Conclusions and Rc;çommendatioDS 

The conclusions given below focus on the methodical approach that led to the current 

workable version of the user interface for the PC-control system for injection moulding at 

McGill (1991). Upon closing this thesis, recommendations for further work are given that are 

to anticipate improvements concerning the development of the user interface towards a 

professional version. 

8.1 ConcJusions 

The development of the user interface was an attempt to establish a custom system of 

software constituents tailored to predefmed specifications. The pool of commercial software 

for program development was readily available from the start. Likewise, the computing 

facilities on which the interface program had to he created and was to be installed were ready 

for use. Furthermore, the user interface for PC controlled injection moulding was consid,. 'ed 

necessary asa result ofplans to proceed in an on-going project concemed with the development 

of the control system. The method estimated best suited to master the interface development 

facins the aboveconditions was to subdivide the work to he done into a suite of phases namely: 

phase 1: acquisition of knowledge 
phase II: defmition of interface specifications 
phase III: programming and iterative revisions 
ph2se IV: fmal testing and inclusion into the overal) system. 



102 1. CgPSJp.jQDI. Rcçommcpd,tiOp. 

It was evident that the lion's part of work had to emphasize on the acquisition of 

preliminary knowledge on a multitude of levels. The typical measures undertaken during the 

phases and the identified problem areas on which special efforts were spent are given in greater 

detail below: 

(i) PHASE 1 - Acquisition of knowledge 

Injection moulding 

The injection moulding machine was inspected flISt and its operation was studied carefully. 
Information about process specifies were obtained by studying manuals and technical 
descriptions for injection moulding. 

Problem areas 

It wasnot possible to operate the machine without guidance to gain first band knowledge. 
Modem injection moulding machines could not he examined to estimate a potential 
variety of functions that could alsa be more complex than those seen. 

Operating system 

The manuals were inspected carefully and demonstration programs wel'e executed. 
Equally, it was trie<! to perfonn the installing procedure from the beginning. 
Shell commands were executed and the results were memorized. The configuration 
features were manipulated to identify subtle differences and to gain more 
i.t1sight of the management of system constituents such as memory management 
scheduling and the me system. 

Problem areas 

It required extensive reading to understand the interaction of the components. The 
reference manuals can only he understood if the organisation of a modem PC is 



-, 
• ,~ 

( 

103 a. Conclusion" Rg;ommendat;ou 

undcrstood in detail. This required referencjng appropriatc literature which was difficult 
to fmd due to the high degree ofrecentness concerning the development of the the INTEL 
386 CPU and muJti-tasking operating systems. Limitations of the IIO procedures and 
memory protection are complex and crucial issues that need he understood to establish a 
program hierarchy. Manuals do not provide useful technical infonnation. Most details 
conccming computers were assumed to be known by a potential user of QNX. 

The C language 

Knowledge about the syntax was obtained through literature. Second, TURBO C was 
installed on a DOS operated PC tbat provides an excel1ent tutorial to introduce 
programming in C. Advanced issues were tackled arter the basics were understood. 
Many small programs were written and tested. A great deal of efforts was spent 
on developin:~ modular programs inc1uding global variables. 

Problem aRas 

Operations on variables oftype pointer (variable addresses) ":vere identified to be themost 
diIDcult topic in C. This requires knowledge of the organisation of memory in a PC and 
protection mechanisms of certain address spaces. Bitwise operations required deep 
knowledge of binary algebra. 

Tht: PC control system 

Observation ofthecurrent proceedings and research meetings led to a briefunderstanding 
ofwhat wassought to beaccomplished. An illustration ofthemanytasks to beperformed 
on the PC was very helpful to cstimate the complexity of the system where the interface 
has to fit in. The principle foundations of digital process control was obtained through 
course work and studies in the field of process control tbcory. 

ProbJem mas 

( It was difficult to state in great detail what features the user interface bas to provide for 



104 8. Cqpçlu.iOp A Rcçgmmcpd,'jQU 

the control system. The anticipation of future requirements was challenging sinee too 
many unknowns were identified. Many present developments an: considered provisory and 
,ue apt to Cundamental changes in the future. 

(ü) PHASE fi - DeflnitiOD oC interface specifications 

The primary interface specifications could be identified onco: the design objectives for 
the control system wereunderstood. In addition, the knowledge of commercial sofiware 
and the menu mechanisms led to the intention to incorporate similar features into the 
interface. 

ProbJem areas 

It was more complicated to fmd an optimal modular structure of the interface modules. 
The specification of hidden interface features affecting coding, compiling (the choice of 
memory models for modules), and linking required the development of a number of 
preliminary versions that were tested and analyzed. A great deal of alternatives can Ile 
conceived regarding the choice of memory ~odels and the number or tasks that make up 
the interface program. It seems to be not obvious which alternative to consider best suited. 

(üi) PHASE ID • programming and iterative revisioDS 

Since the evident and hidden specifications were known at this point of the interface 
development, coding unfoldcd to he straightforward in the beginning. Initial coding was 
rather directed to the defmition oflogical branching including than to the perfection of 
displays and menus. Repeated improvements of the display and menu features led to 
substantial improvements step by step. Complications arose when it was decided to modify 
the structure of the intermediate version of the pro gram. Some of the modules present in 
the fmal version weresubsequently added which required often elaborate reamngements 
of the code. Errors were thus introduced that had to he identified and corrected. This was 
more challenging the biner the volume of code had grown. 



( 

( 

lOS 8. Conclusion et Rc:c;ommcndatjop. 

ProbJcm ateM 

To undcrstand the operations and options of the compiler and linker prove<! to he more 
problematic than to understand the peculiars of the language C. Too Many options and 
not transparent documentation led to a decision to apply trial-and~or. Through 
conducting compiling and linking experiments ~ would clarify and the solution sought 
could he implemented. Especially QNX specific functions for task creation and 
inter-task c-:.œnunication required a strong amount of efforts since programming 
examples were scarce in the documentations. Some hard-headed errors led to contacting 
the leChnical service of Quantum Software. Verbal consultations proved to he only parOy 
helpful. 

(iv) PHASE IV - Final testinl and inclusion mto the overall system 

This stcp involved the linking of the workable version of the user interface to the network 
of tub related to data acquisition and process control. This was done by installing the 
interface mes on tbe harddisk orthe PC to host the system. Since QNX maintains a UNIX 
style me system with owner and user rigb~ care had to he taken to change the file fiags 
accordingly. When logged into the system as super-user this was a straightforward 
operation. In addition, the directory specifications in the user interface files had to he 
checked to matcb the assumptions made by the control and data acquisition tasb. 
Execution of the interface task and the activation of the above task network initially 
caused corruption due to a confusion ofmcmory addresses or a corrupt logical sequence 
of task creation and communication primitives. 

ProbJcm areas 

Since the hardware components on the machine were not completely installed to test the 
machine, missing activities on the screen could not easily bc identifJed as coding mors. 
Non-functioning hardware could have also been a probable cause. The synchronisation 
of all tasks rcquired a triaJ-and-error approach based on incidence since the complexity 
of the overall system is not transparent. It was not possible to test the interface program 
without the specialist in charge for the control task network and vice versa. This might 
prove a bottlcneck if indcpendent steps are to bc taken to develop both the interface and 
the control task network further. 



106 8. ConçlusiOQ" Rq;ommc;pdatjOQ' 

8.2 Recommendatioos 

At the present stage of the project it is more than likely that fme-tuning of the program 

hierarchy has to he performed. This might require a change of the order of appearance of t11e 

task creation macros in the module 'fw _ do.c'. Defore modifications are tackled, it ou ght to he 

very clear what effect this is supposed to achieve. To avoid memory shifting and subsequent 

corruption, it must be made sure that an aJteration does not assign vaIues of a global variable 

to a local one. If8O, the variable affected should be declared within themaïn module 'iCstart.c' 

to joïn the group of other global variables. As for debugging, the virtual-screen technique 

dcscribed in section 7. should he applied. 

In case CPU utilisation of the user interface related task tums out to inhibit proper 

operation of the data acquisition and control algorithm tasks f1I'St an adjustment of the 

scheduling policy could he made. Dest suited is a technique that involves explicitly reducing the 

prioritics orthe interface tasks while explicitly boosting the priorities oCthe control system and 

data acquisition related ~ks. A second approach could rely on switching of scheduling to 

round-robin. TheequallydistributedallocationofCPU-timeslicesamongalltasksrnightcause 

an improvement. It is likely that the interface task as the parent oC aU tasks is given to 

much CPU time when default scheduling is applied. 

ln the worst case a second machine can he used for display purposes. QNX 4.0 is 

designed to maintain a PC network. In that event one should aJso consider the purchase of 

QNX WINDOWS which is supposed to provide real-lime graphics display. The structure of 

the current interface could serve as a pattem to logically implement a similar interface on the 



{ 

{ 
... 

107 1. CoPÇJu3iOD" RccgmmcpdatjOD' 

second machine, although display qlJality could he a great deal improved. Icons such as clocks 

and scales can be inc1uded which otTers an excellent means to replace the status display task 

which was considered as a CPU-time-saving expedient. 

Ifrea1-time printing ofsensor readings is mandatory there might he no alternative other 

than to use a second PC for the display. Toomanyupdated parameters will have to beprinted 

which limits CPU allocation to the control algorithms and the data acquisition tasks. 

The current version of the interface could have minor enhancements, e.g. units of 

measure ought to he displayed they are decided. 



108 

7. References 

Andrews, G.R., and Schneider, F.B. 
Concepts and notations for concurrent programming 
Computing Surveys, 15, 3-43 (1983) 

Denninq, R.C. 
The working set model for program behaviour 
Comm. ACM, 11, 323-33 (1968) 

Habermann, A.N. 
Prevention of system deadlock 
Comm. ACM, 12, 373-7 (1969) 

Lister, A.M., and Eaqer, R.D. 
Fundamentals of Operating System, 4th Edition, 
MacMillan Eduacation Ltd. (1988) 

Mellichamp, Duncan A. 
Real-rime Computing 
With Applications to Data Acquisition and Control 

VNR-Van Nostrand Reinhold Company (1983) 

Peterson, James L., and Silberschatz, Abraham 
Operating System Concepts, 2nd Edition 
Addison-Wesley Publishing Company (1985) 

Reilinq, A. 
PDA-MDA-DNC: An overal1 concept for injection moulding 
German Plastics 79 (1989)1, pp. 29/33 



109 

Schwab, E. 
Agreement on Uniform Interfaces ta the Master Computer 
German Plastics 7~ (1989)11, pp. 1133/1134 

Tokheim, Roger L. 
Theary and Problems of Micropracessor Fundamentals 
Schaum' s Outline Series 

McGraw-Hill Book Company (1983) 



110 

10. APPENDIX 

10.1 DlustratiOD ofmenu leveJs 

10.2 Flowchans 

-

J 



,~ 

Sl8IEIlUS FOR 
SEla. PARAM. 
U/-•• (2/-. 

DRU - LllftLB 

.~ ,.....--_ .. 

Fen 

SUBMENUS 
FOR 
SlAGES, 
SEISOIS , 
CUlREI' 
READINGS 

IIARNINGS & 
DIRECilVES 

(S.2) --

, 
~, 



112 

Flowchart 1 

,- .lULUI.., rLOWCDa' JO. 
LQaD OftlOlll Ulla -, e 

YI, 
110 

NO 

LOMII /USt/NAU'/"'.' 'II 

, .. 

1 :- 1 : 

fIl 

..... 



( 

( 

113 

Flowchart 2 

'* lZUWI'I.D l'z,ollCDM' roll IftVP 1u.aD'f •• DIfU 
CaDC-Iuu:aRU) *' 

STAIT 

CALL 'f.I8"I.()' 

Ils 

/ 

READ: MENU ITEM 'ROM KEY.DARO 

aUIU IIlMU ITIM "CM 
ICITIOAJD 

NO 

~ITE: SILECTED SUI'MENU 
,a. 'ARAMETEU 

110 

YU 

NO 



114 

FIQychart 3 

,. I!lOUrXBD l'LOWCJWt't roll IDrlOlt l'Oll 
IftVlt M'tA 1'%1.1 1 RUCD DA'tA l'%LI ., 

StAU 

RIAD; MEIIJ ITEII ·CUIIlE­
DATA F1L1 

n, 

--------, 
1 
1 
1 
1 

STOP 

NO 

---------_ .. --- ------ - - --

/ 



( 

( 

115 

Flowcbart 4 

'* IDDLI.laD rUlWCIU'r ra .. QOHftOL ItlUll 
CO"XGOM'fIOli DHU *' 

STAIT 

RIAl!: "(NU ITEM ·KW , STOP IQIITOII" 

r - - - --~---... 
1 

CALL (Infer~l) SUI'MENU 
'01 MAIlUAL OPEIA TI 0lIl 

110 

TES 

NO 

110 

/:'::::--:-:-:-:-: __ ----~, 11 calAf. P.acESS 1 
Ialtl: All SIIAIIID 'AIIAMITUS T CClllTlOl TAsr 1 

CLOIAL MEMDA' DATA ACGUISITtOM 
fASC 

CALL ('nternal) 
MODE sua-lIE., 

RElURII 

TU 

, . ------



116 

Flowcbart 5 

SURT 

r-----
1 

TES 

........ 

IUD: KEY 

e 

NO 

rLOAD flU SPltlfiEO 
Ar 'ATII 'QI UIU,I 

DATA 



117 

Flowchart 6 

NO TES 

NO 

RnUlt1l 

( 

CDMMENTED \/ARNING 

YU 

.. ni: ClJMIITID \/A ... I"G 

( 
'f". 



r 
( 

Flowchart 7 

IIIIITE: nEM 1 TO 
FILE S'(C/FIED If 
p~th_ 

CHECX fOI! 1111 T IIiC 
EIIOI 

"ITE: SU.· .. NU 

e 



( 

NaIB 

The procedure for making new executable mes arter modifications were made to the source 
code are as follows: 

(1) Rename the modules 't.c'. The module nam~ and the function 
declarations in the header files 'graphs.h' and 'Cdecl.h' must 
match precisely. This affects expanding the names of the mes 
converted to DOS format (ASCII). The characters: 'f, 'w', and 
'fw' have to he separated from the remaining character string 
by a short case character, '_'. 

For exarnple, the file 'fdec1.h' round on diskette 1 must he 
renamed to yield 'Cdecl.h'. The fllenarne 'btemp' of a flle 
found on r..iskette 2 must be expanded to yield 'barreltemp' and 
soon. 

Use the QNX functions 'more' or 'Iess' to view the contents of 
the above header mes and the appropriate source code me 
("t.c") for the correct names. 

(2) For application of the W ATCOM compiler and linker on QNX, the 
files "t .c" and lit .h" round on diskette 1 must be converted to 
QNX 4.0 specifie format. Use the QNX function 'textto -1 -z' 
for the job. 


