{ A MAN-MACHINE INTERFACE

FOR PC-CONTROLLED INJECTION MOULDING

BY
HARRY B. FUSSER

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the
requirements for the degree of

Masters of Engineering

Department of Chemical Engineering

McGill University

(Montreal November 1991

-

Ich bin ein Teil von dieser Kraft, die stets das Bose will und doch

{ das Gute schafft...

Johann Wolfgang von Goethe (aus FAUST I)

L

ABSTRACT

In parallel to the development of a PC-control system for injection moulding, a

workable user interface for man-machine communication was developed

The hardware chosen for enhanced process control includes an IBM PC/AT, PS/2 model
70. A real-time multi-task operating system, QNX 4.0 (Quantum Softwarc Sys. Ltd.) was

installed to run applications pregrammed in the language C (WATCOM Sys. Inc.).

The interface was tailored to satisfy the needs ¢ c~sual users (operators) and profes-
sional users (researchers). A top-down structure was adopted, comprising menus, warnings,

and directives.

The user interface includes three tasks to run concurrently, the main-task, the real-time
machine-status display task, and the task to display the current barrel-heater temperatures. A
mere expedient for a future runtime vcrsion, a dummy task can be started to display sensor

locations and the machine in the four stages.

Four controller types, a digital PID and three discrete controllers, the total of cycles for

the machine to run, and operating modes can be specified by scrolling sub-menus.

Activation of menu items s similar to the principles of commercial software. Protection
against typingerrorsand optional detection of range viclations is provided. A full-screen editor
for configuration paramsters or maximum and minimum values for each of the set-up parame-

ters is provided.

it

',&@*.s

All data processed on the loading, editing, and saving level, are character strings that
will be converted to appropriate data types just before machine activation. Tl.e resulting

magnitudes are optionally checked for range violations (safety barrier).

Inter-task communication isaccomplished by sharing global memorysegments between

display tasks and the tasks in charge for data acquisition and control.
The interface tasks do not exert a large claim on system resources due to printing and
rare screen upgrading in text mode, declaring and referencing global variables, and including

user-defined header files into the code of modules.

Future improvements should focus on changing the default scheduling policy by QNX

4.0 and on the development of a graphical user interface on a separate computer.

iii

Résumé

Un systéme de contrdle de procédé digital pour une machine de moulage par injection,
faisant usage d’'un IBM PC/AT, PS-2 model 70, ainsi qu’une interface homme-machine ont été

développés a McGill (1991).

Unsystére d’opération multitiche QNX 4.0 (Quantum Software Sys. Ltd.) fut installé
et rendit possible mise en action de plusieurs programmes écris en langage C (WATCOM-C,
WATCOM 8ys. Inc.).

L’interface est congue de telle maniére qu’elle puisse satisfaire les besoins des opérateurs
et les besoins des chercheurs. La structure d’interface est composée d’une hiérarchie de menus,

d’avertissemenis, et d’instructions.

L’interface éveille trois procédures (tiches) qui sont executées simultanément: la tiche
paternelle, la tiche qui réalise P’indication du cycle présent et la phase a temps réel, et la tiche
responsable d’indication des températures de fourreau. Une tiche provisoire fut congue pour

indiquer I'implantation des captures installées et les quatres phases de la presse 2 injecter.

En utilisant un méchanisme de séléction établis 4 'aide de menus, il est possible de
choisir entre quatres modes de contrdle, qui sont constitués par un régulateur de type PID et

par trois autres types digitals.

L’activation des postes de menu est similaire a celle du logiciel commercial. Un
mécanisme de protection contre des fautes dactylographiques et une examination des valeurs

données, afind’éviter qu’ils débordent les extrémes des intervalles de limite, sont appliqués. Un

v

Résumé (conl.)

¢éditeur & plein écran peut étre activé pour spécifier des données de configuration ou des valeurs

de limite pour chaque valeur donnée.

Toutes les données procédées par I'interface sont des données ASCII enchainées, jusqu’a
ce qu’elles soient converties en types adéquats, avant que la presse a injecter soit mise en
marche. Si I'opérateur le désire, les valeurs des données seront vérifiées pour savoir si les

valeurs limites sont dépassées.

L’échange de données entre les taches du systéme entier se base sur la déclaration des
sections de mémoire (registre d’addresses de mémoire) globales, que les procédures d’affichage,

de contrdle, et de collection de données partagent.

Les procédures d’interface ne consomment pas énormement de resources de systéme,
parce que imprimer sur 1’écran est effectué en mode d’édition de texte. De plus, comme les
variables des programmes sont déclarées de telle maniére qu’elles puissent étre accessible
globalement, des déclarations répétées sont évitées. Une autre raison, pour laquelle les
procédures d’interface ne consomment pas énormement de ressources de systéme, est que des

fichiers d’instruction début sont inclus dans les modules de code.

Desaméliorations a venir appartiennent a une modification du principe d’allocation du
processeur central entre les procédures et au développement d’un interface homme-machine
effectué en mode graphique, ce qui devrait étre réalisé par gestion des travaux au complexe

d’ordinateurs.

g, 6«

ACK.NOWLEDGEMENTS

I would like to express my gratitude to my research supervisors, Prolessor M.R. Kamal and
Professor W.I. Patterson, for their gratitude, support, patience, and encouragements

throughout this project.

In addition, T wish to thank:

- The Department of Chemical Engineering of McGill University for teaching
and research assistantship granted to me during the course of my studies.

- Mr. Furong Gao for his excellent introduction into the fields of real-time
programming of applications for multi-tasking operating systems.

- Dr. Robert Di Raddo for his support to master disappointing situations regarding
the academic procedures at McGill.

- Dr. Giinter Lohfink and my father Mr. Heinz Fu8er for their insistence that

a withdrawal from the M.Eng program would be unwise.

Finally, I wish to thank all my colleagues in the department for having helped create a very

stimulating social and professional environment in which to work.

CONTENTS

"C-Programming of a Man-Machine Interface
for PC-Controlled Injection Moulding"

Subject:

L. INTRODUCTION ...ttt s srcine s sssssesnns
2. BACKGROUND ...ttt srassass

2.1 Process control technology for injection moulding and user

PETSPIBCLIVESooiiieimiiiionerieetiiaetesseeereessasecssessnessssasitensesesssesenessstsnsasasnans

(a) Process control technology
(b) User perspectives

2.2 Real-time and multi-task computing for data acquisition

ANA CONMIOL ...ttt aeeeessosesttsesas s sssesssssresasssrasesssssessesannnsnssnnns

2.2.1 Working principles & conceptual overview of

real-time multi-tasking operating SyStemsccooueveeverrirereesecrseeseens
2.2.1.1 Real-time and multi-tasking featurescccovvvreevrininecvrininnnnens

2.2.1.2 Operating system CONSULUENLSccccerveerrseerces verervrrseerneessersvaesssnns

(a) Process states

(U) System data structures

(c) Processor queue

(d) System layers and priority levels

(e) System kernel

(0) First-level interrupt handler (FLIH)
(g) The dispatcher

(h) Relationship between FLIH, dispatcher, and the processor queue

vi

R

2.2 1.3 Process manipulation by semaphores

(a) Blocking and unblocking
(b) Queuing and dequeuing
(c) Processor aflocation

(d) Mutual exclusion

(e) 7Task synchronisation

2.2.1.4 The basics of dynamic memory allocationc.c...covevvveiviiie e
2.2.1.5 The I/O SUBSYSIEMccooieiiiiiiee et

2.2.1 6 Resource allocation & schedulingccccoevivivvnniiniceceineien

(a) The deadlock problem
(b) Scheduling mechanisms
(c) Scheduling policies

2.2.2 Multi-task programming priaciplescooeveeiviierienienienieeeee e

(a) Task-creation primitives
(b) Inter-task communication primitives
(c) The basics of multi-task programming for process control

2.2.3 Programming languages for real-time applications

and Multi-taskingccccceeriiiiivieiier et et b e

2.3 Suitability of commercial software for PC-controlled

injection moulding at MCGIillcccoeoiiiiiriiiiiiecrre e
2.3.1 Real-time and multi-tasking operating SyStemsc.ccccccceeeeecveenruencnens
2.3.2 Real-time programming languagescoccevvererreninnencenseensees cereeee

2.3 3 CONCIUSION ... e e e st eseasemms e essamtmeesaasenaneesasaesannen

2.4 System components for PC-controlled injection moulding

at McGill(1991) and HMItAtioNSccceveevieiiieiericccieie e vcree e e e srbe e
2.4.1 Hardware components and constraints on memory SIizec...cccceoveuens

2 4.2 Software and constraints on program developmentcc.cccecvvenenene.

vii

ﬁ—-—“

21

............ 26

29

............ 55

3. MAJOR INTERFACE SPECIFICATIONS AND FEATURES ON THE
SYSTEM LEVEL ... s e

3.1 Handling interface priority versus priorities of
control system and data acquisition related tasksc.ccccvicvnireiniinineciinecnnee

3.2 Providing features for professional versus
CASUAL USEIE .ottt e e e s ee e s sttt et s e e e s e rst s nesesoeseraraesssrnnnsansen

4. INTERFACE STRUCTURE AND FEATURES ON THE
USER LEVEL ittt vttt ebr e vt e s s e e b e s

4.1 Top-down MenU IEVEISccoeeemererereecreeeieeiee e ase e seereessseassnssnsaes
4.2 Editor for defaul! set-up data files and mini-max
ALA FHES ..ottt ser et r s e e e s e e ce e e e s e bt e e eraa b s e b e s saesenenees s eb bt s
{ 4.3 Error checking and safety barmier ...
4.4 Background real-time machine-status displayccccceeveeecrnnrnnninneenniiecreseens

4.5 Control-systzm configuration-monitor and operating
OPLIOMScveeieeecciereieeieeeeereesreesteseeasesssesessassesssansessesensnsssnssnesensteassseessssnassnresannesssns

5. SOURCE-CODE ARCHITECTUREcctinmricrincnininnsrnnsnnnesesisasnnes

5.2 Library object modules of "if40.11b™ccovreeiiieeereeeee e saesanaeenen
5.3 Global, local, and system variablesccccoeveiiniinericiiririirir e eeccrerecee see s naees

5.4 Logical branching, returned values, and jump marksccccceeveereeencnierinennnnen

6. CODING STRATEGY ...ttt stessnsesssssovssns

_‘swﬂr.‘..

viii

5.1 User-defined header files "colours.h, colours_fl.h, f decl.h, and shared.h"

59

62

7. DEBUGGING AND RESULTS o i e e e e e 94
7.1 Interpreting compiler and linker Crror-messagescocceeeveevieiniins ceerreeereees coee o 96
7.2 Interpreting run-time errors (Operating SYStem)c.ccoouevviieeirnirciineeannees e . N
7.3 Task simulation for detecting non-corrupting

1OZICAL EITOTS ...iiiiiiiet ciciies et et e et o .99

8. CONCLUSIONS AND RECOMMENDATIONSocooiinieiiniiiene, 101
8.1 CONCIUSIONSuvvvieeeriieiieieirarieeesiteresereseessressareecassnsaesesssssenas s sunseesmesssaeesessssniensiensens 101
8.2 ReCOMMERAALIONSeeeeveeiierieeeieeicrieeeieeeseeressenee e sneesesuessesaneessesasesreseeesnecnseessensas 106

0. REFERENUCES ... itiiriiiiriieerierereeiersiseressserananensassssaeessssmsanmnnnsseseeeemneereenes 108

10. APFENDIXooioiiiiiicieieeire e sireestaeessisseeseeseessessesssssssmteseseessessesssssrssnsesnssnnsnnns 110
10.1 Hlustration of MeNU IAYErscccovvieicieiriiiiiiiiiie e e 111
10.2 FIOWChATES 1 = 7 oo ceceetecceicerriree s setets e st e srnsesr s ente e s e snae s 112-118

11. DSDD 5%" DISKETTES (enclosed)

Diskette 1 (MS-DOS format):
- source code (ASCII) of interface modules: *.c’
- executable file and object modules library (QNX 4.0 machine code):
- ’variable’ - simulation task for control & data acquisition
related tasks.
-’40 lib’ - object modules library for the module
’viewdat.c’ (expedient for future runtime version). (cont.)

ix

Diskette 2 (MS-DOS format):
- exccutable files and object-modules library ’if40.1ib’ (QNX 4.0 machine code):

(1) "imm’ - interface main task;
(2) ’statdip2’ - real-time status display task;

(3) ’barreltemp’ - display task for barrel heater

temperatures;

(4) ’variable’ - simulation task for control & data
acquisition related tasks;

(5) ’if40.lib’ - object-modules library;

l

10.

11.

12.

13.

14.

15.

16.

. Figure 1

Figure 2

Figure 3
Figure 4

Figure $S

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16

LIST OF FIGURES
page
: Example of a real-time systemcooeeiiiiiiiiiiii e .8

: I/O sequence of a single-task operating system and a multi-tasking

OPETALING SYSIEIMooveriiirrieieeereransenseseeetreressaaeeseessneernssesesnssensns 10
: Process-state diagramccoceuveuriivnecmneieinniininneesieesreenisieensenseeeses 12
: Process structure and processOor qQUEUEccccoeeeveuevecenerareaeraneeees 13

: Layered structure of a real-time (and multi-tasking) operating

SYSIEIMciiiiiiiiiineerirrnine et e sssasecntesaenaessssassansessessansssnsnterssssnsnnannsees 14
: Interrupt identification by a skip chainccocovevicvnniicnncinnn 16
: Invoking an operation of the dispatchercocoveevvcerivevenrcennennnee 17

: Relationship between first-level interrupt handler and dispatcher .. 20

: Implementation of "wait" & "signal”ccoovnieireecrinnienincnin 24
: Thrashing eXamplecccoveeeeiiivinneeeccneiirenes ccemrreenereieraeeenene 28
: Sketch of the I/O system componentsccccuereeeeeenernirnnnenecene 32

: The deadlock problem in a multiprogramming environment 34

: Task states, transition, and scheduler signalsc.coceeeeeenneens 36

: Scheduling model for a proressor-bound process (queuing) 38

: Scheduling model for an [/O-bound processcooccoveevceeerenas 38

: General scheduling model involving a semaphore queue 39

Xi

17.

18.

19.

20.

21.

22.

Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

: Gantt chart of round-robin schedulingccccccocccerenieecrcereecnnnnnne 41

: Quantum shrinkage and increase of task switching overhead 42
: Precedence graph for the "fork" constructcecevveeirvvinnciinnnn 43
: Precedence graph for the "concurrent” statementccccceuuunee. 4
: A process hierarchycccceiiinrsnneiniicisnnssisnineeessennse 4
: Segment sharing with different access privilegesccccoeruennnae. 46

Xii

1. Introduction

For reasons associated with higher productivity, efficient utilisation of natural resources
and uniform product quality, the use of microprocessor-based digital control continues to
expand in the process industries. On all levels, the factorsinhibiting computer applications for
process control limits are constantly dwindling. Processing speed and capacity are increasing,
and interfaces to the real world are continually performing more complex I/O (input/output)

operations.

Thesecapabilities suggests the use of acomputer asan intelligent tool to manipulate and
control the complex dynamic process of plastics injection-moulding . The configuration,
however, of any digital, computer-based process-control system in this context is not obvious.
This has led to extensive efforts aimed at clarifying how best to employ digital technology for

improving the performance of the injection moulding process.

In addition to overall system configuration and component selection, it is necessary to
develop a user interface supporting man-machine communication and ease of control system
configuration. The objective of this work has been to design a user interface for application in
conjunction with a PC-control system for injection moulding. The primary and secondary

specifications that governed the user-interface design may be listed as follows.

(i) The interface must provide features required for three different operating modes

(explained in section 2.1 (b): "user perspectives"). These modes are:

(a)

(b)

©

LEVEL SPECIFICATION

-level 1/ machine operations by default or
operaior level preset conditions

- level 2/ machine operations by explicit setup
professional user specification
level

-level 3/ machine operations by explicit setup
research level specifications, data acquisition, and

control system configuration

(ii) The interface must exert a minimum claim on system resources (i.e. CPU time

or memory).

(iii) The user interface must be synchronized and must communicate efficiently with

the sub-systems related to digital control and data acquisition.

(iv) The interface procgram must feature an open structure that is uncomplicated to

modify and to expand.

(v) The current machine-status and the barrel-heater temperatures must be displayed

in real-time.

3 1. Introduction

The secondary specifications, which were not considered to be as critical as the primary

objectives, included the following:
(vi) Protection against typing errors and range violations must be provided.
(vii) Parameter input and user commands must be menu-driven (top-down structure).

(viii) The program structure must incorporate logical branching for the real-time display

of sensor readings (to be developed in the future).

This thesisis divided into ten chapters. Chapter 2 supplies background information, which
covers process-control technology for injection moulding and user perspectives, as well as issues
affecting real-time multi-tasking operating systems. The chapter concludes with a description
of components selected to establish the PC-control system for injection moulding at McGill
(1991). In chapter 3, interface features are specified. Both chapters 2 and 3 deal with issues on
thesystemlevel. The Chapters: 4,5,6, and 7 deal with, source codearchitecture, coding strategy,
and debugging, respectively. Conclusions and recommendations concerning further work are
given in chapter 8. A diagram depicting the interface menu levels and simplified flowcharts for
the various menus areincluded in the appendix, chapter 10. The object-module listings (source
code), the executable interface programs, and the library ’if40.1ib’ are stored on the included
floppy diskettes. The C-code listings were converted from QN X 4.0-format to DOS/ASCII-for-
mat and are saved on diskette 1 in < ddition to the object modules library *g40.1ib> and the
executable file *viewdat’ (QNX 4.0 machine code). Further executable files ana the object

modules libraries ’if40.1ib’ (QNX 4.0 machine code) are stored on diskette 2.

(a) PROCESS CONTKOL TECHNOLOGY

Currently, high performance injection moulding machines are equipped with a
numerical control system (CNC). In fact, there is a trend towards the establishment of
integrated systems for quality assurance (QAS), computer integrated manufacturing (CIM),
production and maintenance scheduling (PMS), and distributed computer control (master/slave

principle for supervisory control, Reiling, (1989), and Schwab, (1989)).

Due toitscomplexity, a sufficiently accurate dynamic model for thic injection moulding
process, which most control strategies would require, is not yet available. However, the
statistical evaluation of process data often ieads to valuable correlations between process
parameters and quality features of moulded parts. As long as a substantial progress in
modelling is missing, these correlations continue to build the backbone of (statistical) process

control (SPC) systems in injection moulding (Schwab, (1989)).

It goes without saying that research in the field joins in following the industrial trends
mentioned above, and to a certain extent focuses on subjects beyond the industrial scope.
Industry has an interest in establishing (numerical) correlations between process parameters
and quality features to produce fewer faulty mouldings. Research activities aim at improving
physical models to better describe the nature of injection moulding for further advanced

technologies. These models need to be verified. Then, powerful process data acquisition

features of numerical controls would tremendously help test process-control based on an

improved moJel.

Often research engineers are to decide on whether to buy state-of-the-art machinery
(complete unit) or to spend efforts on upgrading outdated machines (adding modular

components) alternatively.

Thefirst alternative isto purchasea CNCinjection-moulding machine for studies of the
injection-moulding process. Such a machine generally features a network of sensors, digital
circuitry including ADC/DAC (analog to digital converters and vice versa), a single PLC
(programmable logic controller) unit or a larger number, programming interface, dz2ta-bus
interface, and a video system. These components are essentially required to perform QAS,
PMS, and CIM found in the manufacturing environment of the modern factory. Most features
of' such a system are conceived to exchanging machine and process data (logging and loading)
between the machine, host computers (data bases), and operator terminals. Aside from
specifying machine settings and the logging modes, adjustments to the PLC program can be
made via terminals. Nonetheless, the PLC unit must be re-programmed off-line to install a
different program for control. However, it is usually not possible to employ other control
strategies than SPC or digital PID control with PLCs. Finally, the usually significant
contribution to cost of the above hardware components of CNC injection-moulding machines

is not negligible, since research budgets tend to be limited.

The second alternative for research in injection moulding is to construct a modular
process-control and data-acquisition system that warrants greater flexibility regarding system

configuration at lower cost. High-end personal computers equipped with modern data-

acquisition boards (short conversion time) are affordable and satisfy the requirements (refer

to sections 2.2-2.4 for details) of process-data acquisition and digital control. Moreover, it is
considered advantageous that control algorithms run on a PC can be changed easily, whereas
programming flexibility of CNC-machines is more restricted. Where cost factorsareimportant
, and where it is intended to alter the system configuration frequently as well as to provide
various operating modes, this approach is suitable for upgrading conventional injection-

moulding machines found in research laboratories.

Individual control of the injection-moulding phases is a significant topic of research into
process control in the Chemical Engineering at McGill (1991). Secondly, a variety of projects
in a suite of on-going research requires experiments where the modified injection-moulding
machine at McGill has to be operated in various configurations. Since these considerations as
well as budget constraints coincide with the above arguments of the second alternative, a
versatile PC-supported digital control-system was designed and constructed at McGill

University (1991) bypassing analog controls of the injection-moulding machine.

(b) USER PERSPECTIVES

The search for optimum operating and configuration features of a PC-control system
foraninjection-moulding machine depends on three different perspectives: the manufacturing
aspects, the professional user needs, and the research perspective. A suitable userinterface must
exhibit that these perspectives were taken into consideration. Their implications on the design

of the user interface are summarized next.

~e

All those users whose main interest is producing a varying number ol moulded parts

while accepting the default parameter-settings of the machine and control system are identified
as "operators". Considering manufacturing on the operator level, the constraints on the
interface design are as follows. The interface should "fail safe" when required command
sequences are violated. System restart must be made possible without a need for invoking
housekeeping routines on the operating-system shell after a shutdown. I/O requests should be
menu-driven such that default settings or values are displayed (e.g. default file locations). If
low-level menus suited to system configuration are entered accidentally, (automatic) entry
and/or range-error protection, if applicable, hasto be provided. Warnings and acoustic signals
are required if system corruption or logical deadlock is at stake. Screen lay-out and colouring

should be chosen in a way that memorizing menu sequences is supported.

Research work would involve amodification of the system’s default configuration. This
is the perspective of professional users. An alteration can pertain to a change of set-up
parameters with the help of low-level menus (e.g. for the fast ADC sampling-rate at injection).
On the research level, a professional user ("researcher”) would modify both parameter settings
for the process-control system and for machine set-up. In addition to the set of constraints
originating from the manufacturing perspective, menus for set-up parameters have to be
provided for professional users. Secondly, editing utilities nave to be provided to satisfy
researcher needs (for various sets of set-up parameters and range values). Finaliy, menus for
configuration need to beadded to those used by operators. Range-errorand entry-error protec-
tion become a primary issue. Files holding minimum and maximum values for any given
parameter have to be created. Selecting directories for storage of sampled-data files and
locations for range data files should be menu-driven. If machine settings are to be tested that

are beyond present experience, range checking must be suppressed. Identification of

appropriate minimum and maximum values for any given set of machine-parameter and

control-parameter settings represents a research project in itself.

22 Realdi | multitas) ine for d ;]

The minimum hardware and software requirements for real-time data acquisition and

control are: a real-time clock, one or more digital to analog converters, an analog to digital

converter or a larger number, and a real-time operating system. These must be considered

integral parts of any process-control system incorporating a PC. The relationship of these

components is depicted in Figure 1.

TERMINAL

LOMPUTER

REAL-TIME
CLOCK

|

]

g

DIGITAL InPUT

ANALOG TO

DIGIIAL Ouveyrt OLCITAL CONV.

oIGITAL TO
ANALOG CONV

i

’ 1

w

PROCES®T

Figure 1: Example of a Real Time System

(Mellichamp,(1983))

v g e T eaG

e

9 2. Background

2.2.1

The following discussion gives a brief explanation of the characteristics of modern real-

time multi-tasking operating systems.

2.2.1.1 Real-Time and multi-tasking features

System resources are limited (e.g. amount of RAM, CPU processing capacity, size of
I/O buffers). Thus, real-time operations and multi-tasking are based on sophisticated

mechanisms to obtain maximum performance.

A real-time multi-tasking operating system services interrupt requests for real-time I/0
or for task switching. Interrupt requests are issued either by peripheral devices, by the system
itself, by keyboard entry, or by user tasks (software interrupts, traps). Interrupt requests serve
tosuspend the processor’s allocation to thecurrent process. Servicing the processinvolved with
the issue of the interrupt request is then accomplished virtually at once by the CPU. This
ensures that unpredicted events in the outside world are acknowledged with almost no delay

by the computer (real-time I/O).

v

Overall execution time, including a job mix of /O bound and CPU bound processes, can

be reduced when multi-tasking is applied (time advantage). Figure 2 illustrates the principal
time advantage of multi-tasking compared to single-task operations. Aside from the accelera-
tion of 1/0 for the obsolete devices such as teletypes and card-readers, a reduction of total /O
time due to multi-tasking can also be achieved when modern devices such as line printers and
plotters are applied. No matter what devices are involved, during most of the time I/O is
performed the CPU stays idle, waiting for the I/O data transfer (reading from and writing to
I/0 registers) to terminate. It then resumes activities to properly conclude the I/O process. The
intermediate idleness of the CPU shrinks when multi-tasking is employed, since multiple /O

procedures can be initiated virtually at a time.

reAD vaite
TAsK ¢1 @cuos @ orsx
[]
PAINT
Task 12 recervee
.
suUNT |
rask 3 teLervee

- — CLAPSED TiImE R e s

A _SINGLE-TASK OPSRATING SYSTEM

Hove ONKE TASK AT A TimE EXECUTES
CPU STAYS I0LE WHEN A TASK WAITS FOR (/0.

PERE CPU ACTIVITY

D DEVICE ACTIVITY

TasSK €1

N 5%
|
nint |
TAsK 42 @ TeLeTYrE
L]
. []
]
PRINT

e OLAPSED TIME e

A MULTITASE QPERATING STSTEW

NOTE ONE TASK AT A TINE exECUTES
CPY TIME 1S GIVEN TO LOWER FRIORITY TASK WHEN A TASK WAITS #OR [/0.

Figure 2: /O Sequence of a Multi-Tasking Operating system
and a Single-Task Operating (Mellichamp,(1983))

11 2. Background

If no I/O operations are to be performed, it can still be desired that tasks run only
during a defined time interval which is smaller than total execution time. Starting and halting
tasks would then be the desired operating system feature leading to a hierarchy of tasks

virtually run simultaneously.

Muiti-tasking on single-processor machines is accomplished by time-slicing CPU-time.
Allocation of the CPU to a process is allowed only for a fraction (slice) of its overall execution
time. Interrupts are used for internal recognition of time-outs, and for switching CPU
allocation. The software entity that performs slicing or implements the switching policy is

referred to as a scheduler.

Several constituents of the operating system are involved with servicing interrupt

requests for real-time I/O and task switching. These constituents are discussed next.

2.2.1.2 Operating system constituents

Some constituents of the operating system in low memory are used to store and retricve
information about process states (in a multi-tasking environment). These are referred to as
system data-structures, and the processor queue. The entity known as kernel is the core of a
layered system structure, where each layer is serviced dependent upon the priority assigned to
it. The kernel is itself subdivided and comprises three sub-sections: the first-level interrupt-
handler (FLIH), the dispatcher, and the processor queue mentioned above. The activities of
these constituents (see sections 2.2.1.2 (c), (f), (g), and (h)) result in a change of the state of one

or more processes present in the system (memory).

e

(1) PROCESS STATES

If the operating system is to handle switching the central-processor between processes,
it has to keep track of the current state of all processes. A process state may be new, ready,
active (or running), waiting (or blocked), or halted (slain). A process-state diagram is shown

in Figure 3 below.

Figure 3: Process-State Disgram (Peterson,(1985))
(b) SYSTEM DATA STRUCTURES

The operating system applies a descriptive method, which is updating a complex data
table in low memory, to keep informed about the overall state of process activities.
Information about any process is saved in a process control-block (process descriptor). It
contains the current status, other information, and specifications about the volatile environ-
mertof the process. Thisis the subset of the modifiable shared facilities of the system accessible
to the process. The process descriptor of each piocess is linked into a process structure, which

acts as a description to all processes within the system. The central table is a data structure to

T

T TS AT BTk e gk o PEAS ALt

13 2. Background

serve as a means of access to all system structures. The central table has a pointer to each data

structure and to other global information about the system.

(c) PROCESSOR QUEUE

All descriptors of runnable processes (in the ready state) are ordered by decreasing

priority in a circular table known asa queue, so that the most eligible process (highest priority)
is at its head. This processor queue includes descriptors to member processes that are ready to
be allocated to the central processor. The linkage of the process structure and processor queue
is in Figure 4,
STeaone
o
ractss 1 N\
CURNENT Process descriotor of process
SROCLSY 7 onprocessor 2
C,.S:N(N\' Procesy des<npior of process
0CESS & on pracessar A
\—'\.\J j
C;'fla‘v’é.. cescmTOR 2 cSomeTon) “ocicmeion
- L3
¢
BN [usmnamsnadLE AUnhs BLE ULl
Figure 4: Process Structure and Processor Queue (Lister, (1988))

(d) SYSTEM LAYERS AND PRIORITY LEVELS

It is useful to visualize the structure of an operating system as the layered structure of

concentric shells of an onion as shown in Figure 5.

MANAGEMENT

PROCESS
MANIPY~
LATION

DISPATCHER

Figure S: Layered Structure of 2 Resl-Time and Multi-
Tasking Operating System

(Lister,(1988))

Figure 5 helps to show how time-sharing of the CPU depends on priority levels. Outside

layers correspond to processes that are less time critical. They are given a low priority. In

contrast, processes represented by inner layers run at higher priority, which means they are

considered first when allocating the CPU anew.

-

15 2. Background

(e) THE SYSTEM KERNEL

Themost inner layer is referred to asthe system’s nucleus or kernel. The highest priority
for CPU allocation isassigned to it. The kernel isitself divided into three modules (subroutines)
namely: the first-level interrupt handler, the dispatcher (low-level scheduler), and the module
in charge for process manipulation. The latter provides two procedures(routines) which imple-
ment the inter-process communication primitives "wait" and “signal” to be explained below
(refer to section 2.2.1.3). These procedures are called via system calls (traps) in the processes
concerned. The kernel is small, usually around 6K bytes, since processing speed is urgent (negli-
gible overhead). The real-time features depend on the kernel’s organisation and its related
performance. At the kernel level, it is required that two instructions are subsequently executed
within a time interval of a fraction of a micro-second, whereas a time delay several orders of
magnitude higher (up to milliseconds) is acceptable for the higher layers. Any¥ process
performed on a higher layer causes some activity of the kernel, particularly allocating the CPU
to a process that requested to run (see (g), The dispatcher). It can thus be considered as a

virtual CPU to any process or as a guard for the CPU.

() THE FIRST-LEVEL INTERRUPT HANDLER(FLIH)

The first-level (meaning lowest system level of highest pricrity) inter:upt handler is the
part of the operating system which is responsible for responding to signals both from the
outside world (interrupts) and from within the computing system itself (system calls/traps/soft-
ware interrupts). It should be distinguished from I/O device handlers and interrupt handlers

included in application programs (higher level at lower priority).

e
¢

iy

16 2. Background

The function of the FLIH is twofold:

(1) to determine the source of the interrupt;
(2) to initiate service of the interrupt;

The FLIH is always entered in supervisory mode, so that it has full access to the
privileged instruction set (kernel procedures). Once invoked, the handler initiates saving of the
program registers of the currently running process. Following the logic of a "skip chain", the
handler next checks for the origin of the interrupt request. If a check results in a denial of an
assumed source, the program counter of the handler "skips" to the next logical statement
(if(source)then...) and the next source occurring in the skip chain is checked. This is continued
until the source can be identified. Then the interrupt service-routine appropriate to the source
is initiated. Scheduling mechanisms finally determine if the source process can run or has to

wait. This is depicted in Figure 6.

Moy be SAVE
done by PROGRAM
harawore REGISTERS

Service routine
for source 1

Service routine
for source 2

Skip
chain

Service routing
for source n

Erroe toutine

or
onknown intercupt

Figure 6: Interrupt Identification by a Skip Chain (Lister,(1988))

-y

17 2 Backerouud

(g) THE DISPATCHER

The function of the dispatcher is to allocate the central processor among the various
processes in the system. It is sometimes called as the low-level scheduler to differentiate it from
the high-level scheduler (simply referred to as scheduler, see sections 2.2.1.6 (b) and (¢) about
scheduling) which is run at a lower priority. The dispatcher is entered whenever the current
process cannot continue, or whenever the processor might be better employed in another

process, i.e. after:

(1) an external interrupt, which usually changes the
status of some process;

(2) a system call(trap), which suspends the current
process;

An illustration about this is given in Figure 7.

)

Owspaten Supervisor call

(reser)

interrunt

Figure 7: Invoking an Operation of the Dispatcher (Andrews,(1983))

In effect, the dispatcher is entered after all interrupts. The initial operation of the
dispatcher is to check if the current process is still the most suitable to run. If not,

it invokes saving the volatile environment - which is the subset of the modifiable shared

facilities of the system accessible to the process - of the current process in its process descriptor.

Then the volatile environment of the most suitable process is retrieved from its process

descriptor.

The operation ends by transferring control to the CPU to the newly selected process, at
the location indicated by the restored program counter (Mellichamp, (1983), chapter §; Lister,
(1988); And.ews, (1983)). The most saitable process to run is identified by its priority. The
assignment of priorities to processes is not the function of the dispatcher. This is the

responsibility of the high-level scheduler described in section 2.2.1.5. As far as the dispatcher

is concerned, the process priorities are given a priori.

(h) RELATIONSHIP between FLIH, DISPATCHER and PROCESSOR QUEUE

The basic synchronisation mechanism between the above constituents involves a
"semaphore” (see 2.2.1.3 for more details). A semaphore is a non negative integer number
which can either be incremented by one or decremented by one. It has the functidnality ofaflag
that controls access to certain system routines and memory locations. Before the corps of a
procedure can be executed, initial logical statements check for the current value of the
semaphore associated with this procedure. After the occurrence of interrupts semaphores are

employed to either awaken a process (signal) or to keep it suspended (wait).

The action taken by an interrupt routine to make a process runnable is twofold. Firstly,
it must alter the status entry in the process descriptor, and secondly it must link the process

descriptor into the processor queue at the position indicated by its priority. This can be done

19 2. Background

by executing a "signal" operation on a semaphore. On the semaphore the process concerned
has executed a "wait" operation. It is possible, that at a particular moment, a queue contains
no processes. Rather than allowing a processor to loop within the dispatcher, it is convenient
to introduce an extra process, called the null process, which has lowest priority and is always
runnable. The null process may be nothing more than an idle loop, or it may perform some
useful function such as executing processor test-programs. Its position i, always the end of the
processor queue (see Figure 4). With a knowledge of the processor queue and the FLIH, the

operation of the dispatcher can now be summarised as follows:

(1) Is the current process on the processor still the first
non-running process in the processor queue ? If so
resume it. If not, then do (2) - (4).

(2) Save the volatile environment of the current process.

(3) Restore the volatile environment of the first non-running
process in the processor queue.

(4) Resume running this process.

According to the above, it can be said that the overall real-time operation of an

operating system is a result of the successful activation of the interrupt mechanism itself, the

first-level interrupt handler, the interrupt service-routine, and the dispatcher, as indicated

schematically in Figure 8.

Interrupt mechanism

v
Service routine

Disp&cher

Save program counter
Save other registers (optional)
Enter FLIH

Save program registers (if not done above)
Identify interrupt (aided by hardware)
Enter some service routine

Service interrupt, possibly altering
status of some process

Processqr switch necessary? If not, resume
interrupted process

Save volatile environment of current process
Restore volatile environment of first

eligible process in processor queue

Transfer control to new process

Kigure 8: Relationship between FLIH, and Dispatcher

(Lister, (1988))

2.2.1.3 Process manipulation by semaphores

A semaphore, s, can be understood as an unsigned integer on which either addition by

one or subtraction by one is performed. It should be emphasized that the assignment:

ss=s+1; (2.2.1.3)

is not the same as an increment operation on a semaphore. The difference arises from the fact
that operations on semaphores are arranged to be indivisible. Indivisibility ensures that only
one process at a time can execute an operation on the semaphore. It is important that a
semaphore is properly initialized to a non-negative number. Binary semaphores can assume
valuesof either one or zero. Counting semaphores can assume any non-negative integer, so that
itsinitial value canbe greater than one. By performing logical operations on semaphores, which
are attached to processes, the process states (see section 2.2.1.2 (a): "process states") and the
timing of instructions can be manipulated without creating huge and time consuming overhead.
The mechanisms to implement indivisibility are to "lock" and to "unlock"” the memory locatioq
where the value of the semaphore ’s’ is stored. Two methods are used: busy-waiting and
interrupt inhibition, Both methods make use of the interrupt mechanism and differ only slightly
(Lister, (1988)). These methods “lock" a ssmaphore before an operation by a processon it, and
"unlock" it when the operation has terminated. Semaphores are used to quickly implement:
blocking, unblocking, queuing, unqueuing, processor allocation, mutual exclusion, and task

synchronisation.

22 2. Background

(3) BLOCKING and UNBLOCKING

Blocking and unblocking are based on the kernel operations "wait" and "signal" that

were mentioned above. In particular, the operations on semaphores to be implemented are:

wait(s) : when s >0 do: decrement s;
signal(s) : increment s;

where ’s’ is the semaphore. The "wait" operation implies that processes are blocked when a
semaphore has value 0 and freed when a "signal” operation increases its value to 1. One way
to implement this, is to associate with each semaphore a semaphore queue. When a process
performs an "unsuccessful’ "wait" operation (that is, it operates on a zero-value semaphore),
it is added to the semaphore queue, and is made unrunnable. Conversely, when a "signal"
operation is performed on a semaphore, some process can be taken off the semaphore queue
(unless empty), and be made runnable again. Therefore, the semaphore is implemented with
two components: an integer and a queue pointer. Logically, this concept can be described as

follows:

wait(s) :if»Othens:=s-1
else add process to semaphore queue and make
unrunnable;

signal(s) : if queue is empty then s:=s + |
else remove some process from semaphore queue
and make runnable;

The semaphore need not be incremented within "signal” if a process is to be freed, since

the freed process would immediately have to decrement the semaphore again in completing its
"wait" operation. Thus the "lock" and "unlock” operations are not substitutes for "wait" and
"signal”, since the latter are suitable for short delays whereas the lock/unlock operations
consume considerably more time. Exclusive use of lock/unlock can lead to "thrashing” in
systems with many tasks. Thrashing is the phenomenon where the supervisor spends much of
its time managing the tasks leaving little time for their execution. However, the more processing
capacity the central processor features the higher is the threshold number of tasks that can lead

to noticeable thrashing.

() QUEUING and DEQUEUING

Semaphore queues that hold process descriptors indicating the "wait" stage of processes
can be arranged in different forms. For most semaphores, a simple first-in first-out queue is
adequate, since it ensures that all blocked processes are eventually freed. In some cases, it may

be preferable to order the queue on some other basis.

(c) PROCESSOR ALLOCATION

The "wait" and "signal" operations may alter the status of a process, the former by
making it unrunnable and the latter doing the opposite. An exit must therefore be made to the

dispatcher for a decision on which process to run next.

24 2. Background

In cases where no process status has changed (that is, a "wait" on a positive valued
semaphore or a "signal” on a semaphore with an empty queue), the dispatcher will resume the

current process, since it will still be the first non-running process in the processor queue.

The realisation of the "wait* and "signal” operations that comprises the mechanisms of:

locking, blocking, queuing, the opposites of which, and processor allocation is illustrated in

Figure 9.
FIND DEQUEUE
PROCESS pROCESS
DESCRIPTOR DESCRIP TOR|
] H
REMOVE FROM ADD TO
PROCESSOR PROCESSOR
QUEVE QUEUE
apo 1o
SEDOAAPSgRE
= UNLQCK]
(EXIT TO)
DISPATCHER
EXIT TO
DISPATCHER
- - L ' - " . * ' 3
Figure 9: Implementation of "Wait” and "Signal (Lister,(1988))

Mutual exclusion and task synchronisation are additional operations implemented by

semaphores. The following paragraphs give a short description.

o s n e S s

(d) MUTUAL EXCLUSION

Non-shareable resources (e.g. files, some data in memory or peripherals) can be
protected from simultaneous access by several processes. This is accomplished by preventing
the processes from concurrently executing the code which access the resources. Thesefragments
of code are referred to as critical sections, and mutual exclusion in the execution of critical
sections can be regarded as mutual exclusion in the use of resources. Exclusion can be achieved
by the simple expedient of enclosing each critical section by "wait" and "signal” operations on
a single semaphore whose initial value is 1. Thus, each critical section is programmed as

(’mutex’ is the semaphore name):

wait(mutex);
critical section
signal(mutex);

(¢) TASK SYNCHRONISATION

In amulti-tasking environment, tasks depend on intermediate results of other tasks, or
system resources have to be allocated in a logical manner among multiple wasks. Then, task
synchronisation becomesa primary issue. Generally, the tasks aresaid to beasynchronous. An
example will clarify that execution of "wait" and "signal" on semaphores synchronizes processes
in a straightforward manner. The simplest form of synchronisation is when a process, A, should

not proceed beyond a point, L1, until some other process, B, has reached L2.

26 2. Backgrouand

Examples of thissituation arise whenever A requires information at point L1 which is provided

by B when it reaches L2. The synchronisation can be programmed as follows:

Program for Process A Program for Process B

L1: wait(proceed); L2: signal(proceed);

where ’proceed’ is a ssmaphore with initial value 0. It is clear that A cannot proceed beyond

L1 until B has executed the "signal" operation at L2.

2.2.1.4 The basics of dynamic memory allocation

Aside from memory segmentation and paging systems (Peterson, (1985), and Lister,
(1988)), multiprogramming requires dynamic memory management. An important issue,
thrashing common to multi-tasking is outlined below. This applies in particular if the size of

working memory is limited.

Many programs exhibit behaviour known as operating in context. In any small time
interval a program tends to operate within a particular logical module, drawing itsinstructions
from a single procedure and its data from a single data area. The observation of this behaviour
led to the postulation of the principle of locality (Denning, (1968)). It states that program
references tend to be grouped into small localities of address space, and that these localities

q’ tend to change only intermittently. Based on this observation, the working set model of

27 2. Background

program behaviour was developed. The working set model is an attempt to establish a
framework of understanding the performance of paging systems in a multiprogramming
environment. The competition for memory space between processes can in fact lead to
behaviour which would not occur if each process ran separately. As the degree of
multiprogramming rises, which is an increase of programs run concurrently, processor utilisat-
ion first also rises, since the dispatcher always has a greater chance of finding a process to run.
However, when the degree of multiprogramming exceeds a certain level, then it is found that
there is a marked increase in the paging trafTic between main and secondary memories accom-
panied by a sudden decreasein processor utilisation. This phenomenon iscalled thrashing. The
only conclusion to be drawn out of this is that each process requires a certain number of pages,
called its working set, to be held in main memory before it can effectively use the central
processor. If less than this number are present then the process is continually interrupted by
page faults that contribute towards thrashing. To avoid thrashing only the working set of pages
must be loaded into memory. By inspecting the process’s recent history and a compliance with

the principle of locality the working set, 'w’, of a process at a time, ’t’, is identified to be:

w(t,h)={page i|page ieN & i appears in the last h references}
(2.2.1.4)

where ’h’ is a parameter to indicate ’recentness’ and ’i’ is a non-negative integer (N comprises

all integer numbers).

28 2. Background

The larger is ’h’, the further one looks into the past. Thrashing can be depicted graphically as

shown in Figure 10,

Processor |
uliiroton |
{per cent) |
100 ~=~=s=rmoccan= ressssorSane -
Oegree of
. muitiprogramvring
Figure 10: Thrashing example (Lister, (1988))

The above figure shows that if the working set theorem is negelected all tasks to be run
{ concurrently will try to load as much code into memory as there is free memory available.
The more tasks are added into the system the smaller is the number of pages of the added tasks
that can be held in memory. At a threshold number of tasks, the most recently started tasks will
have to swap pages from and to backing store (e.g. disk), since memory capacity is not suffi-

cient to hold their entire working set. As a result, the CPU is blocked due to an dispropor-

tionate increase of page traffic.

As far as fetch and replacement policies are concerned, the significance of the wcrking

set lies in the following rule to which operating systems obey :

Run the process only if its entire working set is in main memory, and
never remove a page which is part of the working set of some process.

i, Once working memory is large enough to hold the entire instruction set of a process
(real-time system), dynamic memoryallocation becomesoblivious. Advanced systems perform

memory compaction to reduce fragmentation (Mellichamp, (1983)).

v .

29 2. Background

2.2.1.5 The IO subsystem

In order to reduce overhead due to copying of the same set of instructions, a device
independent I/O mechanism is supported by the operating system. It means that programs do

not operate on physical devices but on virtual devices known as streams.

Device characteristics are encoded in device descriptors, where one descriptor exists for
each device in the system. These encoded device features are referred to by device handlers, the
routines which provide instructions to handle the devices. There are separate device handlers
for each device but they show great similarities. Differences of operations are derived solely
from parametric information (read from the device descriptors !). Device handlers can make

use of shareable programs.

The overall I/O process can be summarised as the joint effort of a requesting process,

the actual I/O procedure, the device handler, and an interrupt routine,

A typical I/O request from a process will be a call to the operating system (trap) of the
general form:

DO-1/0 (stream,mode,amount,destination,semaphore)

where:

DO-I/0 is the name of a system I/O procedure;
stream is the number of the stream on which I/O is to take
place;

Jﬂp{.‘r‘ﬂ

30 2. Background

mode indicates the type of operation (data transfer or
rewind) and the character code to be used,;

amount is the amount of data to be transferred if any;

destination is the location into which (or from which) the
transfer, if any, is to occur;

scmaphore is the address of a semaphore called "request
serviced’ which is to be signalled when /O is
complete;

The I/O procedure is re-entrant, so that it may be used by several processes at once. Its
function is to map the stream number to the appropriate physical device (keyboard, card
reader, floppy drive, printer, terminal, disk), to check the consistency of the parameters

supplied to it, and to initiate service of the request.

When the checks have been completed the /O procedure assembles the parameters of
the request into an /O request block (IOR B) which it adds to a device request queue of similar
blocks which represent other requests for use of the same device. These other requests may
come from the same process, or, in the case of a shared device such as a disk, from othe:
processes. The device request queue is attached to the descriptor of the device concerned and

is serviced by the device handler (Lister, (1988)).

Thedevice descriptors include a pointer to the process descriptors of the current process

using the device.

Thedevice handler is responsible for servicing the request on a device request queue and
for notifying the originating process when the service has been completed. It operates in a
continuous cycle during which it removes an IORB from the request queue, initiates the

corresponding I/O operation, waits for the operation to be completed, and notifies the

. m T TeA YRR R IR MR T (VT s TR ET

P et Tl

31 2. Background

originating process. An input operation cycle may be listed as follows:

repeat indefinitely

begin wait(request pending);
pick an IORB from request queue;
extract details of request;
initiate I/O operation;
wait(operation complete);

if error then plant error information;
translate character(s) if necessary;,
transfer data to destination;
signal(request serviced);
delete iORB;

cad;

’Request pending’ is a semaphore which is contained in the device descriptor and is signalled
by the I/O procedure each time it places an IORB on the request queue. ’Operation complete’
is another semaphore that is signalled by the interrupt routine after an interrupt is generated
for this device. The semaphore ’request serviced’ is passed to the device handler asacomponent

of the IORB. It is supplied by the process requesting I/O as a parameter of the I/O procedure.

32 2. Background

Thesynchronisation of the I/O operation makes use of the mutual excl usion, and block
and unblock features. This mechanism is shown graphically in Figure 11.
useEn OPERATING SYSTEM
l.uuum' 10 ODewica 1 nterrupt
Precon Procedure Heondler Routine
DOLO {(streem, mede, Wiy dewce, "‘"-'d {roguest
amgunt, dashinaimn performerrar chechs, 1 sandingl:
somaphers), maemdie (OS] h mek JIORD trom
H Pisce [OAS emdovce requast Queve, lecute device
: roguest queve, 1 wntiets 1/0; descripler;
: sigeal (roguest pending),| vt (apw‘-hﬂ ognel (o_nnm-
g it - parfermarrer "
5 chechs;
1 porform Muss-
: hseping,
O L | R R T L-'d'l.l (request
serviced); serviced)i
tont uv:r locatien, | delate IOAR,
{) Operaling sysiem
beundery - Flow of contrel

- e e Semaphare SYACATOAISETION

Figure 11: Sketch of the /O System Components (Lister,(1988))

It should be mentioned that buffered I/O techniques are widely implemented to support
multi-tasking on input and output. There are subtle differences if the devices are considered
shareable (e.g. disk) or non-shareable (e.g. line printer). The latter involves a spooler that
manages storing of files on a bulk storage devices before submission to the device is performed

(Peterson, (1985)).

-+ -

-

33 2. Background

2.2.1.6 Resource allocation and scheduling

In an environment in which resources are limited a *grab it when you need it’ method
of acquisition is rarely feasible to satisfy the concurrent demands of all processes in the system.
Scheduling techniques are devised to share a limited set of resources among a number of

competing processes. The objectives of these techniques are:

(1) mutually exclude processes from unshareable resources;

(2) prevent deadlock (see below);

(3) ensure a high level of resource utilisation (e.g. prevent
thrashing);

(4) allow all processes an opportunity of acquiring the
resources they need within a 'reasonable’ time;

Deadlock and scheduling are described next.

(a) THE DEADLOCK PROBLEM:

In concurrent programming, a process sometimes must wait until a particular event
occurs. If the event takes place and the waiting process is awakened, no problem arises. But if
the event never occurs, the process will be blocked forever. A process is deadlocked when it is
waiting for an event that can never occur. Ina simple example such a situation arises when two
processes compete for allocating the same resources. Say a process, P1, has a resource, R1,
allocated while another resource, R2, is allocated to a process, P2. For further progress Pl
requests R2 keeping R1 allocated. Process P2 still uses resource R2 and requests resource R 1

which is currently allocated to process P1. It is obvious that both processes "wait" for

34 2. Background

appropriate resources to be released. The deadlock arises, since for both processes the release
of the resource kept by the competing process is a necessary condition for continuation. An
allocation and request structure, in the form of a state graph, illustrates a deadlock if it shows
acyclic pattern that resembles a trafTic deadlock involving a square of perpendicular one-way

roads. Figure 12, shown below, will clarify process deadlock.

Allacsuon

Request Alocanon

Figure 12: The Deadlock Problem in a8 Multi-Tasking Environment (Peterson,(1985))

The problem of deadlock may be solved, depending on the operating system at hand,
by adopting one of the following strategies:

(1) Prevent deadlock by ensuring at all times that at least
one of the four conditions above does not hold;

(2) Detect deadlock when it occurs and then try to recover;

(3) Avoid deadlock by suitable anticipatory action;

Excellent explanations can be found in literature (Lister, (1988), and Peterson, (1985)).

e

A he ey A - TR TR

AT O T

35 2. Background

Scheduling is supported by case sensitive mechanisms which are ruled by various
scheduling policies. The mechanisms and policies are summarised in the following paragraphs.
Software entities referred to aslong-term scheduler, medium-term, or short-term scheduler are

integral parts of a complex system for scheduling.

(b) SCHEDULING MECHANISMS

The operating system’s schedulers are in charge for introducing processes to the system,
and withdrawing them according to: priorities, outside world events, and system-housekeeping
requirements. These subjects are intimately related to resource allocation. In fact, decisions on
scheduling and decisions on resource allocation are so closely linked that responsibility for both
is often delegated to a single system process. This is particularly true for the scheduler
mentioned earlier. The scheduler is more precisely referred to as high-level scheduleraccording

to its priority or a long-term scheduler when processing time is emphasized.

In a scheduling context, a process or task is a program in execution. As the program
executes, the process changes state as a result of its inherent logic. The state of a

process is defined by its current activity. Scheduling decisions force a task to switch from one

state to another.

36 2. Background

A process is said to endure a transition between two succeeding states. A processin one
of the four states: running, ready, inactive, or suspended can be forced to
resume one of the states that is not the current state, which can graphically be depicted in a

state diagram, Figure 13.

CXECUTING STA™E
CONE TASK Ome.Y)

TASK TASK

Loses CAtNS
RIORITY)
taor l'l’M’
NY 7‘5“
TASK
Kl asx
CREATEO
Task
it
TASK
Smml
TASK RiLLED
INACTIVE STATE jeag—RILE WAITING ___] gyspenoe0 STATL
RO) Cany TASKS)

Figure 13: Task States, Transition, and Scheduler Signals (Mellichamp,(1983))

Thescheduler makes use of the signalling mechanism to initiate a state transition along
a transition path. Signalling a task currently in the ready state, for instance, can subsequently
set it inactive (shown as a zig-zag path in Figure 13).

The kernel task referred to as dispatcher is in charge of actually allocating the CPU
to processes requesting execution. With regard to its priority it is called low-level scheduler or
short-term scheduler when processing time is emphasized. If the short-time scheduler is not a

kernel task, there is a subtle distinction between the dispatcher (fastest scheduling operation)

e

37 2. Background

and the short-term scheduler run at a high priority but slower than the dispatcher.

The primary distinction between the long-term scheduler and short-term scheduler is the
frequency of execution. The short-term scheduler must select a new process for the CPU quite
often, sometimes every 10 milliseconds. It must be very fast. As a rule of thumb for modern
computers, it takes one millisecond to decide to execute a process for 10 milliseconds. Then
1/(10+1) «9% of the CPU time is being wasted simply for scheduling the work. CPU consump-
tion for operating system related tasks is generally referred to as latency or latency time and is

not negligible when high speed applications tasks are to be run.

The long-term scheduler, on the other hand, executes much less frequently. It may be
seconds or even minutes between the arrival of new jobs in the system. The long-term scheduler
controls the degree of multiprogramming, which is the number of processes in main memory.
Except from having more time to decide on selecting jobs forexecution, it isalso important that
the long-term scheduler selects a good job-mix of ’O-bound and CPU-bound jobs to keep

CPU utilization balanced by preventing idleness or overflow.

The CPU allocation to I/O-bound jobs and CPU-bound jobs unfolds periodically. A
new process is added to the processor queue (ready queue) after a decision by the long-term
scheduler was made. It is picked up by the short-term scheduler once it has reached the
position of the first non-running process in the ready queue. After being run for a time slice of
CPU time, scheduling policies as implemented in the system force the process’s pre-emption,
since another process has acquired the position of the first non-runnable job in the system. If
not yet completed, CPU-bound processes are generaily placed back into the processor queue

according to the scheduling policy. After some waiting time has elapsed it will be picked up by

38 2. Background

the dispatcher again to run another time slice or to run to completion. Thisis illustrated by the

Figure 14 below.

Partially compleled
processes

Processes picked
- PROCESSOR by disparcher CENTRAL Comoieted
processes QUEUE PROCESSORS processes

Figure 14: Scheduling Model for a Processor-Bound Process (Lister,(1988))

Since the I/0 subsystem maintains a device request queue for I/O request blocks, which
is linked to the processor queue, I/O-bound jobs are first placed into the /O request
queue (waiting queue) after having been initialized (assembling of I/O request block ...).
Partially completed, pre-empted, I/O processes are placed back into the processor queue
according to the scheduling policy by the long-term scheduler to await the dispatcher’s

attention. This is illustrated in Figure 15 underneath.

Long-Term Shoct-Term

——————— END
Ready Queue } l *@ >

ey

/0
@ Waiung -
Quede(s)

Figure 15: Scheduling Model for an I/O-Bound Process (Peterson,(1985))

e,

-

The general scheduling model of an operating system includes a semaphore queue.

Generally, CPU-bound processes, interrupted by a peripheral device or in the case of a foreign
resource request, can be blocked and discarded into a semaphore queue. This would occur

according to the deadlock prevention scheme and scheduling policy. Figure 16 illustrates the

general scheduling model.
Partally completed
processes
Runnabie Running
New PROCESSCR CENm Completed
processes QUEUE PROCESSORS processes

Processes picked
by aispatcher

Resource reques!
1/0 tronsfer

Request gronted
Tronsier complete

Bloched

SEMAPHORE
QUEUES

Figure 16: General Scheduling Model involving 3 Semaphore
Queue (Lister,(1988))
(c) SCHEDULING POLICIES

Scheduling policies define decision making on topics which affect the positioning of
process descriptors in ready queues, the order of process descriptors in ssmaphore queues and
the updating frequency of the queues. A classification scheme for processes to be run must

ensure that no ambiguous situations occur whenever the schedulers areinvoked. Inany event,

40 2. Background

whatever scheduling issue unfolds to the schedulers, a decision about what process to make
runnable next has to follow virtually immediately. Scheduling based on measurable quantities
that are common to all processes always leads to a clear decision by comparison. Efficient
scheduling policies undertaken by operating systems thus compare CPU utilization of
individual processes. The methods of comparison may differ according to the scheduling policy

employed.

A closer examination of processes reveals that a process is a program in execution
consisting of an alternating sequence of CPU and I/Q bursts, beginning and ending with a CPU
burst . Although they vary greatly from process to process and computer to computer, they
tend to have an exponential distribution of number versus burst duration. There are a very
large number of very short CPU bursts and a small number of very long ones. An I/O-bound
program would typically have many short CPU bursts. A CPU-bound program might have a
few very long CPU bursts. This distribution can be quite important in selecting an appropriate
CPU scheduling algorithm.,

It may briefly be indicated that Gantt chartsillustrate very well the resulting scheduling
pattern for a given job arrival-sequence and individual CPU burst-durations, which determine

a scheduling algorithm. A measure, known as average turnaround time, provides a means to

evaluate an algorithm’s performance. It is given by:

In
t=— -Z'G"" i) (2.2.1.6)
n"

where 't’ equals the average turnaround time, 'n’ is the number of jobs, ’j;,’ indicates the job

-

_——

41 2. Background

arrival time, and’j;’ indicates its termination time. A simplistic evaluation scheme states that
analgorithm is better suited to a mix of tasks the lower’t’ turns out to be (minimization of total
execution time). This is valid if a minimum turnaround time is sought for quick overall task

execution, whereas the sequence of CPU time quantums allocated to the tasks is irrelevant.

Pre-emptive algorithms are developed such that a newly arrived process in the processor
queue will pre-empt the current process’s CPU allocation if its priority runs higher. A non-pre-
emptive CPU scheduling algorithm will simply put the new process at the head of the queue if
its priority runs higher. In a time-sharing system this can be particularly troublesome. It is very

important that each user or each task gets some share of the CPU at regular intervals.

The round-robin scheduling algorithm is designed especially for time-sharing systems.

The Gantt-chart for which, Figure 17, is given as an example below.
!2_!: Burst Time

1 24
2 3
3 3

If we use a tme quantum of 4, the resultng round-robin schedule 1s:

Jod Job Job Job Job Job Job Job
1 2 3 I 1 1 ! !
4 7 10 14 18 22 26 30
Figure 17: Gantt Chart for round-robin Scheduling (Peterson,(1985))

A small unit of time, called a time quantum or time slice, is defined. A time quantum

is generally from 10 to 100 milliseconds. The ready queue is treated as a circular queue.

The dispatcher goes around the ready queue, allocating the CPU to each process for a

42 2. Background

time interval up to a quantum in length. To implement round-robin scheduling, the ready
queue is kept as first-in first-out queue, having the currently running job asthe first entry in the
queue. The dispatcher picks the first job from the ready queue, sets the timer to interrupt after
one quantum, and dispatches the process. One of two things will then happen. The processmay
have a CPU burst less than the time quantum. In this case, the process itself releases the CPU
voluntarily, by issuing an I/O request or terminating. Otherwise, if the CPU burst of the
currently running process is larger than the time quantum, the interval will expire and cause an
interrupt to the operating system. The registers for the interrupted process are saved in its

process control block, and the process is put at the tail of the ready queue.

A trade-off between a decreasing time quantum and the increase of required context
switching sets a lower limit to quantum shrinkage. Figure 18 below shows the increase of con-

text switching by reducing the quantum.

Job ume = 10 . Quantum Countext
Switches
12 0
0 10
6 1
0 10

Figure 18: Quantum Shrinkage and Increase of Task Switching Overhiead (Peterson,(1985))

£3 2. Background

The average turnaround time does sensibly drop when too small a time slice is selected.
On the other hand, if the time quantum is too large, round-robin degenerates to a first come,
first served processor queue. A suggested rule-of-thumb is that 80% of the CPU bursts should
be shorter than the time quantum.

2.2.2 Multi-task programming principles

Multi-task programming is commonly accomplished by using task creation primitives
and task communication primitives. Details concerning multi-task programming and grounds

to apply it for PC supported digital control will be addressed thereafter.

(3) TASK-CREATION PRIMITIVES

Several logical constructs forestablishing inter-task relationships are required. Eachof
those constructs can be illustrated by a precedence graph which shows the historical number
and hierarchy of tasks preceding the ending of the graph. The "fork" primitive, as shown in
Figure 19, allows a task to branch out into two concurrent tasks.

Fork

&) (s

Figure 19: Precedence Graph for the "FORK "-Construct (Peterson,(1985))

44 2. Background

i\

The reverse logic is accomplished by the "join" construct which causes two preceding
tasks to terminate while another task is started. A "concurrent statement” causes one task to
terminate while several subsequent tasks are being started that run virtually simultaneously.
This can be derived from the Figure 20.

Figure 20: Precedence Graph for the Concurrent Statement (Peterson,(1985))
;’ It should be mentioned that a concurrent statement can always be simulated by
considering only fork/join constructs.

These constructs, supported by the operating system, are symbolised by a set of specific
instructions (system calls) found in a programming language. It allows a pi'ograxnmer to
establish a program hierarchy. The subsequent sketch, Figure 21, illustrates a program
hierarchy. A, B, C ... J are tasks currently in the system.

CENTRAL

TABLE
e~ SCHEDULER
-;‘;RugYURE / Fess

(L pid /

QUEUE

e N e
d Figure 21: Program Hierarchy (Lister,(1988))

45 2. Background

The scheduler (refer to section above) is responsible for initiating new processes, and
acts as the parent of all processes (tasks) introduced into the system. It is responsible for the
welfare of its offspring in that it governs policies of resource allocation and influences the order
in which processes are selected by the dispatcher. This parental role is not restricted to the

scheduler if multi-task programming is supported. Other tasks are given capabilities to:

(1) create subprocesses;

(2) allocate to their subprocesses a subset of their own
resources (the resources are returned when the
subprocess terminates);

(3) determine the relative priority of their subprocesses;

The creation of a hierarchy of processes is initiated by the logical order of the system calls

mentioned above.

For these system functions, additional programming language instructions have to be
provided. Multi-task programming features are strongly determined by the operating system
which is supposed to enforce and maintain the program hierarchy.

(b) INTER-TASK COMMUNICATION PRIMITIVES

Other groups of system calls supported by the operating system handle inter-task
communication. The very first technique available is sharing memory segments. The segment
tables private to two processes include into particular segment descriptors the same base

address of the memory space to be shared.

46 2. Background

This is illustrated in Figure 22 below.

SEGMENT TAMRE
PROCESS 4

RO {LEnGTn{BasE

SHARED
BUFFER SEGMENT

SEGMENY TAGLE
PROCESS 8

EI'LENGYN [BASE £ = Reod onty
LMM WO = Write onily
Figure 22: Segment Sharing with different Access Privileges (Lister, (1988))

Moreover, the access rights, either "read osiy" (RO) or "write only" (WO), are placed
into the segment descriptors. In programming - aguages this feature is managed by pointer

arithmetic and requires deep knowledge about a coinputer’s architecture.

Direct communication is accomplished by referring to task names for sending and

receiving messages. The "send" and "receive” primitives may be defined as follows:

send (P, message) : Send a message to process P.
receive (Q, message): Receive a message from process Q.

This link is bidirectional (symmetric) and affects exactly two communicating processes. It

functions automatically, meaning the operating system establishes the link.

-

47 2. Background

Asymmetric communication allows a process 1o receive messages from any process by

the following scheme:

send (P, message) : Send a message to process P.

receive (id, message): Receive a message from any process;
’id’ is set to the name of the sending
process;

With ir.direct communication, the messages are sent to and received from mailboxes.

The commun_cation primitives in this case have a syntax as follows:

send (A, message) : Send a message to mailbox A;
receive (A, message): Receive a message from mailbox A;

In this scheme, a communication link is established only if the mailbox is being shared.
Any link may be associated with more than two processes. Furthermore, between each pair of
processes there may be a number of different links, each corresponding to one mailbox. The

link may be either unidirectional or bidirectional.

A link has some capacity that determines the number of messages that can temporarily
reside in it. This property can be viewed as a queue of messages attached to the link. A zero
capacity queue (unbuffered sending) is established when waiting of messages is not tolerated
(send blocking). In this case the sender must "wait" until the recipient receives the message. The

two processes must be synchronized

48 2. Background

for a message transfer (a rendezvous is established). The communication primitives may look

like:

Process P executes: Process Q executes;:
send (Q, message); receive (P,message);
receive (Q, message); send (P,"acknowledgement");

Once the queue has finite length, it is said to have bounded capacity, several messages can
reside in it. If the queue is not full when a new message is sent, it is placed in the queue (either
by copying the message or by keeping a pointer to it), and the sender can continue execution
without waiting. If the link is full, the sender must be delayed until space is available in the
queue. A queue is of unbounded capacity if there is virtually infinite space such that any

number of messages can wait in it. The sender is never delayed in this case.

The messages sent or received can be of fixed size, of variable size, and can be typed. The

latter is applicable to mailboxes declared in strongly-typed program languages.

(©) BASICS of MULTI-TASK PROGRAMMING for PROCESS CONTROL

Process-control applications require performance of several tasks. The basic control
scheme incorporates the collection of process data through ADC channels. The settings for
final control elements according to a control algorithm are computed subsequently. Output
data are finally sent to one or more DAC channels. The operations above (signal processing

sequence in a feedback loop for control) have to be repeated periodically to adjust data

3

49 2. Background

acquisition and controller output (computer) to the most recent state of the dynamic process
to be controlled. The state parameters of dynamic processes vary as a function of time. Timing
has to be accurate and is best accomplished by an interrupt handler to service real-time clock
interrupts. The handler signals a counter to decrement its value (software timer). The same set
of tasks is called repeatedly and has to stay resident in memory to limit overhead that would
be incurred by swapping of code segments with bulk-storage devices.

Multi-tasking is highly recommended, since it does not require an exact knowledge of
the sequence and time of events in advance. It may even be the only feasible approach for
process control on a PC if processor idleness during I/0 cannot be tolerated. The "wait" and
"signal" operations on semaphores attached to tasks allow for event servicing by the time it
occurs. The "send” and "receive” primitives allow for exchange of data when available. Aslong
as no event has occured that would cause a blocked process ("wait" was performed on an
appropriate semaphore) to be activated (involving the "signal” operation), the CPU is not
paralysed by busy awaiting the next event to occur. Moreover, the mix of I/O tasks (data
acquisition tasks, output), and CPU-bound tasks (control algorithms) ensures efficient

processor utilization.

2.2.3 Programming languages for multi-task and real-time applications

The standard versions of the programming languages: APL, BASIC, PL/1, FORTRAN,
COBOL, and Care not tailored to support multiprogramming and real-time applications. The
language C, however, includes system calls for real-time applications as a standard feature.
Special versions of C do support multiprogramming. As for the other languages mentioned,
upgraded versionsareavailable incorporating featuresfor both real-time operations and multi-

tasking,

Y

50 2. Background

One group of programming languages is referred to as interpreter languages (APL,
BASIC). Another groupisknown ascompiler languages(COBOL, FORTRAN, PASCAL,C).
The real-time versions of the languages in widespread use are REAL-TIME BASIC and
REAL-TIME FORTRAN. CONCURRENT PASCAL is due toits object oriented program-
ming features a particular language mostly used forexpert system design (Mellichamp, (1983)).

A third group of languages for special applications such as process control are known
as table-driven languages. They are strongly dependent upon the central processor and

hardware at hand. They are usually not portable across computers.

As for the real-time versions of BASIC and FORTRAN, as well as for the language C
in general, all provide real-time macro commands. These macros, although syntactically

different, provide system calls for:

(1) Input/output

(2) Task creation and deletion

(3) Intertask communication

(4) Overlay and special queuing
(5) Usage of the clock

(6) Task identification

(7) Task/operator communication
(8) Operator/task interaction

Especially real-time FORTRAN was developed according to the ISA standard S61.3
(Instrument Society of America), where the standards specify the procedure groups: "executive
interface routines”, "process input/output routines”, "bit string functions", "random file

handlers”, and "task management routines".

51 2. Backgrouand

Examining the features of several languages that proclaim supporting real-time and
multi-task programming will lead to the conclusion that each system call suggested by the ISA
standard S61.3 has a corresponding procedure provided by the language.

However, subtle differences among the languages may be important for certain
applications. This is discussed next.

2.3 Suitability of C. ial Sof for PC lled iniection-mouldi MeGill

The following constraints affecting the design of a PC control system for injection
moulding are known. Injection moulding requires fast processing speed of the control system
to be established. Especially the injection pressure rises fast. /O of data and computation of
the control output has to happen virtually instantaneously. A time-precise sequencing of the
machine cycles is required. Various and numerous changes of state of the machine have to be
serviced virtually immediately. Temperature control, coolant flow-rate control, and injection-
pressure control may be performed simult~neously. Control schemes are not straightforward
and need to be frequently modified. Logging of data applies to multiple input channels. All

features have to be configured user-interactively.
This variety of tasks identified above, implies the establishment of a program hierarchy
composed of several modules. Virtually any level of the computer system has to be accessible

to a system developer for customisation.

For this purpose, a versatile muiti-tasking operating system and a low-level program

52 2. Background

ming language for system development are necessary. There are some considerations as

outlined on the following pages which deserve attention before making a choice .

2.3.1 Real-time and multi-tasking operating systems

QNX (version 2.1 & 4.0) and AMX for the INTEL 86-family of chips, as well as PDOS
for MOTOROLA 68000 16/32-bit-processor based systems were designed for real-time
multiprogramming. All of them feature a small sized and thus rapid system kernel in charge for
interrupt handling, dispatching (scheduling), task synchronisation (semaphores), task
suspension, message passing and memory allocation. Additionally, buffered /O is supported
and the 64K barrier of code size for large applications can be broken, since a full 32bit raemory
addressing mechanism is supported on Intel 80386 and MC 68000 machines. Finally, all
systems perform round-robin scheduling which can be stripped to first-in first-out scheduling

on request.

PDOS provides libraries for the languages: FORTRAN, BASIC and C, whereas QNX

and AMX are restricted to the use of C for system development.

It is not obvious that these systems differ in performance. However, subtle
differences might be detected when actually using the tools for system development. Secondly,
syntactical differences for shell and language commands may influence the inclination toward

a product.

QNX was given preference. Firstly, this is because a UNIX-style shell is maintained,

e

S3 2. Background

which is considered to be a future system-shell standard on whatever machine (as defined by
the POSIX standard of IEEE). Secondly, C compilers are available for QNX, that for most
functions, adhere to the ANSI standard released for the language C. Both features of QNX will
facilitate future migration of programs to other computers.

It was not taken into account that QNX provides features to support a network of
computers (LAN). This feature counts when any potential expansion of the single PC (console)
application to a workstation is intended to be developed. This may include one PC for

graphical-display and user-interface purposes, and a second PC for control related tasks.

2.3.2 Real-time programming languages

Ifthe PDOS operating system were selected, the programming language of choice could
either be real-time BASIC, real-time FORTRAN or C. Execution of a program hierarchy
written in BASIC would involve the BASIC interpreter, which stays resident in main memory,
statement by statement. Once a statement’s execution were under way, interrupts would be
disabled until completion, and enabled right after. An event that occurred in the meanwhile
would have to be held pending until serviced. Additionally, the scheduling mechanism reacting
on interrupts would similarly be suspended. Thus, state changes of tasks could not be
acknowledged, and no immediate scheduling decision could follow until the statement were
completely executed. Forapplications that show fast changes of a process’s state, this toggling
between interpreter and scheduler cannot be tolerated, which means PC control would certainly
fail | Modularization of programs is strongly facilitated if global storage of data in a program
is possible. Although BASIC does not support such a feature, the PDOS version has an

R

54 2. Background

extension to the language for limited global storage.

Compiled programs do not invoke an interpreter that links the required systemroutines
to every statement at execution time. At run time compiled code is readily written in machine
code. It is immediately executable. Thisenables faster processing compared to interpreting on
one hand, and has the advantage that interrupts are not disabled during execution of a

statement. This can be considerably long when measured on a micro-processor time scale.

Differences between real-time FORTR AN and C are by no means obvious and might
not even exist if performance is considered only. However, the syntax a programmer has to
comply with may prove more convenient in the case of C. FORTR AN supports global storage
of variables by means of the "COMMON?" statement, whereas C simply requires the variables
affected to be declared outside any function, including ’‘main()’. On the other hand, the system

development features of C surmount the capacity of FORTRAN.

Table driven languages simplify programming, since only little knowledge about
language syntax is required. However, due to this ease of usage, interpreting overhead is
incurred, which slowsdown execution. Thismight beabottleneck for time-critical applications
apart from the fact that no standards for table driven programs exist. Portability thus suffers,
and migration to future hardware and software is virtually impossible. Table driven languages

thus tend to be very machine specific.

55 2. Background

2.3.3 Conclusion

As an overall conclusion, the decision of acquiring a QNX operating system and a C
compiler for development of a system incorporating a 32bit Intel 80386 central processor may
well be justified considering the arguments above. This system is to achieve PC- control for
injection moulding. Its potential performance and the requirements for large and time-critical

applications, which fully apply to injection moulding, were proved to match well.

2.4.1 IBM & ANALOG DEVICES hardware components and constraints on
. .

A personal computer, IBM PS/2 Model 70, was ckiosen to perform both the control
system tasks and the user-interface tasks. It was originally equipped with 2 Mbytes of memory.
Its memory (RAM) was extended to a total of 8 Mbytes, since the forecasted acquisition of

large amounts of process data will require a suitably sized circular input buller.

Estimating memory requirements, at asamplingrate of 1 msone thousand readings will
occur per second. This is essentially needed for pressure control during injection (less than 2s)
that features a fast change of mould pressure. Accounting for 16 input channels (see below),
this resuits in 16 Kbytes of memory occupation per second. This amount, finally, has to be
doubled for each integer read, yielding 32 Kbytes per second of data to be read.

-

56 2. Background

In the case cache-memory (read-ahead into input registers of RAM and write-after to
disk) would be extended to 6 Mbytes, and assumed a complete machine cycle would last 20
seconds, data of roughly 9 subsequent cycles could be stored. This applies if only capacity

constraints were considered when sampling at a rate of 1ms.

However, data acquisition at that speed will not be maintained for complete cycles. On
one hand, dynamic memory management and task switching between interface and control
algorithms could block both memory access and CPU time for considerable slices of time. On
the other hand, slower process dynamics during the remaining phases after injection do not
require fast sampling. The fine tuning of memory management, sampling rates, algorithms, and
displays subjects to testing and might induce a modification of the system configuration.
Thecomputer’s hard disk hasacapacity of 60 Mbytes. Graphiccapabilities for terminal output
are provided by a VGA card (640x480 resolution, 16 colours).

The data acquisition sub-system, including analog-to-digital and digital-to-analog
conversion, is composed of two Analog Devices RTI-220 boards and a single Analog Devices
RTI-217 board for digital input/output. The initials abbreviate the notion of real-time interface.
Each RTI-220 board provides 16 (channel 0 through channel 15) channels for analog input and
has 4 analog output channels. Further technical details are contained in the manufacturer’s

reference manuals.

37 2. Background

2.4.2QUANTUM, COMPUTER INNOVATIONS, WATCOM Software and constraints on
program development

For establishing a preliminary version of the user interface and the data acquisition
tasks the C-86 compiler and linker package for C-language applications written by Computer
Innovations was used. It was developed for application programs run under QNX (see below)
on PCs which incorporate a CPU of the INTEL 8086-family. Except for writing interrupt
handlers, C-86 offers versatile routines for system configuration. Itslow cost is one of the most
striking features. Due to poor documentation, much coding required a trial-and-error
approach. C-86 was used to develop a preliminary version of the user interface for QNX 2.15

(see below).

For real-time applications on PCs with limited resources, saving of memory and exe-
cution time matters a great deal. Reducing the size of machine code and optimizing it (e.g.
expelling not alternating loop variables outside the loop) could be achieved at a later state of
the project by harnessing the capabilities of WATCOM C, which is a compiler and linker
package for applications on QNX 4.0. WATCOM C was the compiler used in the final stages
of this project.

QNXiis a trademark of Quantum Software Systems Ltd. for its real-time multi-tasking
operating system. Both versions QNX 2.15 and QNX 4.0 were used to develop the user
interface tasks to befound on the diskettes included. Development was started withQNX 2.15
but switched to QNX 4.0 which was recently released. Especially QNX 4.0 offers a versatile
system shell that closely matches the standard set by UNIX. This will count considerably once
portability of the system to future platforms is considered. Currently, at University of

California at Berkeley, the development of a real-time UNIX operating system is under way.

is estimated to continue affecting PC levels. Some non UNIX related shell commands and

system calls do meet the POSIX standard instead. A timing advantage of QNX 4.0 compared
to QNX 2.15 could be demonstrated on simulations, and thus justified the decision to finally
migrate from version 2.15 to version 4.0. The reason, QNX 4.0 runs faster derives from a

differently organised system kernel (presumably, it only runs 16 routines written in assembler).

i

NI S RIS R Y e -

o o ool

The tasks that make up the user interface, their identity (system character strings that

serve as names), and their size in kilo-bytes of machine code (specific to QNX 4.0) are given in

the table below.

(1)
03
3)

4

&)

TASK SIZE (Kbytes) SPECIFICATION
imm’ 219 (at runtime) Interface Main Task
‘statdip2’ 49 Status Display Task
viewdat” 64 Dummy Task for Sensor

Reading Display

’variable’ 13

"barreltemp’ 25

Simulation Task for Data
Acquisition and Control
Tasks

Real-time Display of Barrel
Heater Temperatures

All tasks (modules) were compiled in the medium memory mode, which reservesa single

segment less than 64 Kbytes for data and several segments larger than 64 Kbytes for machine

code. As a result, the interface related tasks do not exert a strong constraint on system

resources and should leave much of the CPU time free to other tasks once the approprate

scheduling policy was adopted (see section 8.2).

To keep memory occupation small and processing speed fast only so called terminal

functions that directly access the console’s video adapter were incorporated in the interface

code. The screen thus operates in text mode which is determined by exclusively referencing the

extended ASCII charactercode table, and by dividing the screen into 80 columns and 25 lines.

Screen input and output does not require major computation, since mere addresses of the

ASCII data base and colour attributes (hexadecimal numbers) stored in the

60 3. Specifications/ System Level

video registers are shifted back and forth. One screen requires 80 - 25 - 2 = 4 Kbytes of

(virtual) memory (2 bytes per screen character, 80 chars. per line, 25 lines).

Given thisrelatively low claim on free memory, many screens and warnings were devised
for both casual and professional users. Casual users will find the system ready to use and are
thus not likely to encounter messages that help a professional user find problems with the
interface program-environment. Any potential user might most frequently encounter messages
which notify that a wrong key was pressed. In contrast to a casual user, a professional user

could receive messages dealing with operating violations such as:

(1) Timers are set to zero and the machine was requested to
run;
(2) ADC channels were reset to zero, such that no channel
is currently specified;
(3) Files to be loaded do not exist or the path specified is
invalid;
(4) Requests to exit without having saved the data;
(5) Typing and range errors, which were detected by the
error checking routine mentioned above;
(6) If the menu driven set-up were forgone or a corrupt set-up
data file was loaded, and the machine were requested to run;
(7) Sending and receiving of messages and starting and
halting of tasks failed;
(8) Allocating memory if too many segments are occupied, wkich
could occur upon subsequent calls of the interface task;

The specifications outlined thereafter pertain to the priority distribution among all tasks
to be run. Secondly, the interface features for different types of users are explained in the

following paragraphs.

61 3. Specifications/ System Leve)

tasks

It will first be mentioned how scheduling works by default. QN X 4.0 offers a choice of
scheduling algorithms that can explicitly be specified at runtime. The default scheduling policy
is referred to as "other mechanism than round-robin or first-in first-out scheduling” {descending
priority ~cheduling (priority decay)]. Once a task is created its process descriptor is placed at
the tip of the ready queue. It is the next task to be running after the time slice for the
currently running task has expired. The priority assigned to it will be reduced one step towards
its base priority (10 by default out of a range from 1 to 29) if it was not reached yet. Assuming
it was not reached, it will be placed back into the processor queue after the first time slice of
allowable CPU time for it has expired. Due to its lower priority it might then not be the first
non-running job in the queue. It was placed into the queue according to the order of current
priorities of all the waiting processesin the queue. The higher the priority of a process the closer
its descriptor will be placed to the top. The more the task actually runs, the further its priority
is lowered so that it finally finds its place in the rear of the queue, once its base priority was
reached. There, it wiil eventually have to wait for long depending on the number of concurrent
tasks to be run. This is a mechanism that allows for a propagation of tasks in the queue, and

thus aifects the sequence of CPU switching.

At the present stage of the user interface and control tasks project four main tasks are
to be run concurrently. The interface main task will start a second task for real-time status
display of the injection-moulding machine. Right before, a third task that startsall future data
acquisition and control tasks must have been started. This is up to the present simulated by a

dummy task. Finally, the interface task will create a fourth task that upgrades the lower screen,

62 3. Specifications/ System Leve)

monitoring the current barrel-heater temperatures.

The present version of the user interface does not include complex features for changing
the scheduling policy to round-robin and omits the setting of individual priorities. However,
when all the control tasks could finally be added to the system, WATCOM C provides runtime
routines to adjust for an appropriate change (i.e. qnx_scheduler()’, and’set_priority()’). Code
must be added to the interface main module Cif _start.c’) and to any other stand-alone task that
may require a priority boost. As for the user interface, it is considered to provide the
appropriate code in the shape of commented lines (/***... expressions ...***/) that have to be

reactivated when required.

Up to the present, the simulation of the control and data acquisition tasks did not lead
to a bottleneck concerning CPU switching invoked by the scheduler. All computations at the
simulation level turned out to be quite simple (i.e. 8 concurrent floating point operations).

Refer to section 8.2 where a change of the scheduling policy is outlined.

3.2 Providing features for professional versus casual users

According to the production and research perspective (refer to section 2.1), changing
the system configuration will either be requested or will be omitted by a user.

Professional users might appreciate the following features. Menus are provided, by
means of which parameters can easily be changed. For safety reasons, both typing errors and
range violations are immediately traced. Moreover, for transparency reasons, warnings are

printed with directives to remove the error cause. Theerror checking routine detects space gaps,

63 3. Specifications/ Systcm Leve)

invalid characters including a decimal point where an integer is required, and total gaps
(spaces). It furthermore prints the maximum and minimum allowable value on screen whenever
one wasviolated. Nothing has to be typed explicitly except for filenames. Options are provided
and can always be scrolled by moving either the cursor upon items or by pressing the arrow

¢ keys.

In order to facilitate the work and usage for casual users, all that is left to do on a
session is to load a set-up data file and to press the key <enter> to proceed to the monitor that
awakens all the other tasks and the machine action. Two keys only have to be pressed to bring

: the main menu back. Wrong keys pressed inadvertently will make an alarm ring to attractand
guide the operator’sattention. Inthe case acasual user changed a default set-up parameter and
tried to get back to the main menu to proceed, a second-level error- checking routine would
intervene if one of theerror conditions above held. It would block further progressing and force

the operator to get back to the faulty item or to exit (safety barrier).

For professional users the objective was to allow them to govern the system at basically
all levels. Error checking (except for typing) can thus be switched off. All parametersincluding
the minima and maxima can be edited using a full-screen editor. All pages are defined in a way
that future additions can be made, to a certain extent, without rearranging the whole editor.
However, the editor is optional for set-up parameters, since all sub-menus can be used to define

a new set-up data file. Minima and maxima can only be defined through means of the editor.

An important interface design-objective pertains to a graphical display of sensors, the
locations of these sensors, and current readings. The real-time display of current sensor
readings on screen is supposed to be a future feature. Accounting for future interface
modifications, the logical branching for the display of sensor readings in the interface main-

menu was considered.

e e ————

4. Interface structure and features on the user level

4.1 Top-down menu levels

The menu structure common to commercial software was adopted. Starting with
activating anitem of the main menu, other menus would pop up on screen, monitoring another
set of items which could similarly be activated. Generally, the highlighted leading characters
of menu items could be typed in upper case or in lower case to invoke the appropriate sub-
menu. Alternatively, a movable bar, inversely coloured than the items, could be positioned on
the items using the cursor keys. Pressing the key <ENTER > would then cause activation. This
design principle is used throughout the interface leading to a hierarchical menu structure (see

appendix, Illustration of menu levels {index FCO0}).

From within the main menu the following items can be activated:

(1) A menu of options needed to load and edit a data file;

(2) A menu of options to specify further menus needed for
machine set-up;

(3) The editor for set-up data and range data files;

(4) A task simulating graphics for display of sensor readings;

(5) A monitor for control system configuration, machine
activation and manual operation;

(6) A menu to specify filenames, slaying the upper right
clock, and to set the error checking mode;

65 4. Specifications/ User Leve)

Onthe level of set-up parameters (see appendix, Flowchart 2 {index FC2}) menus are provided
to specify:

(1) Timers for injection, holding, cooling and resetting
the barrel;

(2) ADC parameters, including sampling rates, ADC channels,
and the ADC environment;

(3) Controller parameters for standard PID controllers,
4 assumed;

(4) Start cycle and stop cycle for ADC and recording;

(5) Barrel heater set points, 4 are provided;

(6) Several dummy parameters to be activated at a later
stage of the project, i.e. variable and fixed set
points, a factor to change the upgrading speed of the
status display, and miscellaneous timers;

The monitor for control-system configuration (see appendix, Flowchart 4 {index FC4})
provides options to specify:

(1) The controller type, if PID, Dahlin, Vogel-Edgar or
GAO/Patterson Attenuator;

(2) The total number of cycles;

(3) The operating mode; In manual mode a menu pops up that
activates 7 function keys for invoking one of the desired
machine actions at a time (open mould, close it, move
barrel forward, retract barrel, advance screw, retract
screw, and halt all movements; after each command the
system will accept a strike of the space
bar to halt all movements (emergency abortion).

(4) If and when to start the real-time status display
task in full automatic mode;

A

- et
E

[W ey BB L

P

66 4. Specifications/ User Leve)

Other menus that involve the entry of filenames are the one providing options for
loading a file (see appendix, Flowchart 1 {index FC1}) and the one for saving a file (see
appendix, Flowchart 7 {index FC7}). Both menus are popped up on screen following calls from
within the interface main menu or the editor main menu. Default filenames can be changed by
calling a particular menu (see appendix, Flowchart S {index FC5}) from within the interface

main-menu (i.e. item 6, ’initial settings’).

4.2 Editor for default set-up data files & mini-max data files

The editor main-menu prompts the user to chose between editing a file containing set-up
parameters or a file storing the appropriate minimum and maximum values (see appendix,

Flowchart 3 {index FC3}).

Whichever option is chosen, the first menu to be active is the one to load a file that
either exists or could be created if not. If it exists, the data could be loaded or all values could
be reset. This happens in RAM only and nothing is written to the file unless saving was
invoked. Menus including directives to guide the user through the file system will be popped
up in descending size. The smallest window that is popped up at any given time is the only one
activated. Upon completion of any command to be selected, these windows disappear in reverse

order.

For both types of data, several screen pages are provided that subsequently present the
values to be specified. Pages can be switched back and forth while showing the most recent

values entered. When the last parameter on the last page is specified, the user is automatically

67 4. Specifications/ User Leve)

prompted to saveall data entered, to exit or tojump back to the interface main-menu. Only for

the optional editing of range data files is typing error protection is provided.

Corrupt data inadvertently included in set-up data files will be discovered at the safety
barrier before calling the machine activation and operation monitor (i.e. main-menu item 5,
’run & stop monitor’). Appropriate messagesindicate the menu location of the corrupt value,

and the key to get there.

It is always possible to reactivate the default value of a parameter that waseither stored
on an existing and loaded file or that is provided by the editor if no file was loaded.
Furthermore, it is possible to step back through the pages, item by item, which will
automatically reset the valuzs encountered to default. In this case no menus, windows, or

messages will be popped up.

When editing and saving of a file was terminated, a small window presents a directive
and the options to either edit the same file starting at the first item, to edit another file of the

same category, or to switch category and edit a particular file.

It is always possible to leave the editor and jump back to the main menu from the first

item on the first pages in both editing modes.

68 4. Specifications/ User Level

4.3 Error checking

It was previously mentioned that error checking is provided. It occurs in two modes and
on two levels (see appendix, Flowchart 6 {index FC6}). By default, the checking routine is
bound to detect both errors related to corrupt characters and violations of maximum and

minimum allowable values of machine variables, for example barrel temperatures.

The flag set to invoke this checking mode can be deactivated from within the initial-
settings menu which is accessible via the interface main-menu (i.e. item 6). Range checking can
thus either be on or off. Whenever reaching this point of the interface, any user will be forced
to use the down-arrow key to scrol! at the item. Only this key will be accepted at this instance.
After having specified if checking for range violations is to be on or off, appropriate function

keys bring back the interface main-menu or exit.

It must be mentioned that all parameters are character strings on all the levels pertaining
to loading, editing and saving. Conversion to the appropriate types, which are either type
integer or type float, is accomplished at a later stage. Logically, conversion will always be

performed before the parameters are being stored intc global memory.

The steps that check for corrupt characters invoke functions that subsequently chop
single characters off the string. Each character is then compared to a set of allowable
characters. Spaces are checked conditionally, meaning that a warning is raised only if a space
gap between two valid characters was encountered. Any error of the kind of invalid character
causes a window to be popped up that includes a warning and a directive for further

progressing.

69 4. Specifications/ User Leve)

In the case no invalid character of the string could be detected, it will be converted to
either type float or type integer. The following steps detect if the converted value either exceeds
the allowable maximum or falls below the allowable minimum. If one of the error conditions

holds a message will be printed on screen in a small window.

The second level of error checking is located ahead of the first level in the interface code
sequence which was described above. Every parameter will be checked alike for corrupt
characters and magnitudes if the flag for range checking was set. Assumed no set-up menu was
previously called, which means a set-up data file could have been loaded and changes by typing
were omitted, error checking at this level provides the only safety barrier before the machine
canactually be run. In the opposite event, if set-up parameters were modified after having been

loaded or were alternatively specified from scratch, range-error checking would be twofold.

However, if the checking for range violation was deactivated, at least corrupt characters
would be sought after by the error checking routine. Again, this would affect both levels in the

case parameters were typed or modified from within set-up menus.

In general, this error checking mode can never be deactivated, since it provides the only
protection against invalid conversions from type character to type float or integer due to

corrupt characters.

Furthermore, the loading and saving routines invoked by the set-up menus or by the
editor provide writing or reading checks of the strings stored on file. On writing or reading
error of an item, a window would be popped up on screen, indicating either reading or writing

error. A reading error prompts the user to jump back to the load-options menu to induce a

70 4. Specifications/ User Level

change of the filenan:e. It is likely that inappropriate files are requested to be read. Error on
saving an item equally causes a warning to be printed. In both cases, exiting the program is

optional.

Finally, all C-language functions that affect the allocation of memory and the
initialisation of either global or local pointers invoke a warning to be printed if they did not
complete correctly. Onecase that is likely to occur during testing is the attempt to subsequently
start the user-interface task. If the cache memory is too large and other memory segments were
not freed, which can occur if other tasks were still resident in memory, it is likely that no free
RAM remains to hold the code for the interface task. A message will notify the user that no
memory is available and exit. With the help of system routines (i.e. ’sin’ and ’slay’) this problem

can be cleared.

4.4 Background real-time machine-status display

After themachine activation and operation monitor wasactivated from the main menu,

the real-time status display task will be created (’statdip2’).

It first receives a message of global pointers which address memory locations of timing
counters for each of the stages. According to the time elapsed during each of the stages, the
contents will be counted upwards by the tasks in charge for data acquisition and control. The
display task will read these memory locations in a timed manner which is achieved by attaching
a QNX timer. The reading rate is currently set to S milliseconds and can presently only be

changed by modifying its source code. At a later stage of the project it is proposed a factor

71 4. Specifications/ User Leve)

to be specified in a menu to customize this rate.

Thedisplay task receives a second message, containing argumentsthat specify thescreen
position, the time intervals of the four stages, and the colour attributes. By changing initiali-
sation of these values, which happens within the interface main-module ('if_start.c’), thesiatus

display can be customized.

Once the sending and receiving of the two messages was accomplished, the status display
task runs concurrently in the background with the interface task. As was mentioned before,
scheduling is performed according to a policy that differs from round-robin and first-in first-

out scheduling.

Currently, the time of each machine stage is displayed asa bar of a certain length which
representsits portion of total cycle time. Each of the four differently coloured barsare logically
divided into S smaller fractions. Whenever the CPU is ready to pay attention to the display
task, it first reads the memory segment holding an identifier of the current stage. Afterwards,
it reads the appropriate stagecounter which holds an integer according to the time ~lapsed. The
next step that follows is the comparison of that counter with a marginal integer number that
indicates the total stage time. According to the ratio of the current counter and the marginal
integer, the field will be reprinted stepwise in a colour which differs from the original one. For
simplicity, say that each step corresponds to 20% of total stage time, which amounts to one
field character. Assume the total field length were S characters. If then 20% of the stage time
elapsed corresponding to a counter/margin ratio of 0.2, the first field character would be
reprinted in a colour say from highlighted yellow to blinking red. The remaining field

characters would be reprinted accordingly as rnore time elapsed.

72 4. Specifications/ User Leve)

Thefield lengths vary, since the time intervals for different set-ups change. For the cases
that the field lengths differ from a total of 5 characters, a routine finds out the number of
characters available to represent or leave out the five succeeding steps of 20% of total stage
time. All these computations affected are undertaken once on task creation. It means that
when the machine actually runs, the display task does not claim CPU time for any computa-

tions except for the few statements affecting the field reprinting mechanism.

Once a new stage of the machine is entered, the whole corresponding field is first
highlighted. Time proportionate reprinting of the five field sections occurs next as described

above.

Thedisadvantage of this method, which hasits cause in the somewhat arbitrary division
ofthe fieldsinto S fractions, manifests asa red blinking colour bar that moves from left to right

across the fields in a discontinuous manner.

Theadvantage, however, is short computation at any given time. Only a few characters
are o be printed on screen. Repeating the most important constraint imposed on the interface
development, it was necessary to leave as much CPU time free as possible. On the other hand,

this technique required a more complicated and thus bigger code.

All the other information, which is the display of the stage time intervals, the current
stage, the current operating mode, and the total cycle time is printed once. This is not subject

to updating, and thus is not time-critical.

73 4. Specifications/ User Leve)

4.5 Control-S feuration-moni . : :

A menu which was previously referred to as run-and-stop monitor (see appendix,
Flowchart 4 {index FC4}) for the machine will be printed on screen once all parameter
conversions from typestring to type float or integer were successfully accomplished. The safety
barriér must have been successfully passed.

A program module, called 'fw_do.c’, provides the source code. In the beginning, kernel

functions will be executed that subsequently serve to create all tasks that make up the system.

Control system configuration and the setting of the machine’s operating mode are
required to be specified by scrolling options displayed in particular fields on the screen.
Currently, only the controller type can be specified. Typing is involved to specify the total
number of cycles the machine is requested to run. If the flag for checking range violations was
set (default), both typing errors and magnitudes of the converted value will be traced by the

error-checking routine (refer to section 4.3).

At this point of execution, a function will be called (i.e. module 'f_fromui.c’) that
allocates and initializes global memory segments for parameters to be shared with the control
system and data acquisition related tasks. The idea is that the exchange of data subject to
changes made by the user during a session with the system is done without the obligation to
send and receive messages. Otherwise synchronisation between the tasks, which ischallenging,
would be required, since the exact time for data transfer is undetermined. Global memory has
the advantage that tasks can refer to the data stored following the rule "grab it when you need

it". Send and receive blocking is not involved, and so facilitates time sharing among the tasks.

74 4. Specifications/ User Level

However, one single send and reception of these global pointers to the appropriate tasks is
required at the starting point of execution. Each task that has to share global data with other

tasks needs to know the memory locations. This cannot be avoided.

Afer the initialization of the global pointers, the current values of the parameters to be
shared are assigned to them by means of the redirection operation in C (asterisk:

*pointer=value).

The following code sections are concerned with sending and receiving of messages. This
module, "fw_do.c’, will receive a structure (i.e. struct glob3, defined in ’shared.h’) that contains
global pointers to the stage counters (see section 4.4 above). This structure was sent by the
control system and data acquisition related tasks, which allocated the global segments. The
initialisation of the pointers holding the addresses of which preceded. Foridentification as the
target task to which this structure was sent, the interface task has to attach a name, which is

“ui" to abbreviate the notion of user interface.

Subsequently, the structure glob3, which was just received, will besent to both thestatus
display task (‘statdip2’) and to the task in charge for monitoring the current barrel-heater tem-
peratures (‘barreltemp’). In addition, the structure "glob4’ will be sent to the latter task by the

module 'fw_do.c’.

By means of checking the flags 'send 777" (?7? represent symbols indicating which
structure was sent), sending and receiving of messages is accomplished once for any given
session. So is the creation of all tasks that make up the system (see below). As for the present

state of the interface, only those parameters can be modified that are accessible via this

75 4. Specifications/ User Lavel

monitor. These are the identifiers for the controllers, the total cycle time,

the operating modes, the parameters that represent the manual operating commands, and the

parameter to indicate starting and stopping of the machine.

Leaving the monitor will invoke the operating system shell to slay all tasks that are not
related to the interface task. The flags ’send_77?" will then be reset. Any subsequent entry into
the monitor will cause the same statements to be executed as described above. Sending and

receiving of the global structures, as well as succeeding task creation is invoked again.

In the case manual operating mode was chosen, the upper half of the screen will be
reserved for a special menu that displays key definitions and directives needed for manual
operation. Each command executed will cause a coloured bar to jump back onto the command
field to halt the machine. Subsequently pressing the key <ENTER >, or alternatively the space
bar or the character <H> inlower or upper case, would cause the identifier for machine halting
to be written into global memory (i.e. by the redirection assignment:
*fromui.ip_startstop=stop). Itismeant that thislocation is often checked by the control system

and data acquisition tasks to invoke machine halting.

Pressing another key brings back the sub-menus for controller specification, total

number of cycles, and the operating modes (i.e. full-automatic mode, manual mode, or semi-

automatic mode).

Operation in full-automatic mode prompts the user to start the machine by pressing a
key. Subsequently hitting the space bar causes the identifier ’stop’ to be written to global

memory. This corresponds to the mechanism described above for halting the machine in

76 4. Spccifications/ User Level

manual operation. However, no special key is required to bring back the sub-menus for
controller types, cycles, and modes. This follows automatica:iy after the space bar washit. For
redundancy and thus safety reasons, a special function key, <F10>, invokes exactly the same

action.

This mechanism, i.e. the reprinting and reactivating of all sub-menus when appropriate
keys were pressed, allows for switching the operating mode and control strategies for runs

governed by the same set-up.

In general, once the operating mode was specified, all the other tasks would becreated

and run in the background from then on.

77

5. Source code architecture

5.1 User-defined header files: "colours.h, fl_colours.h, f_decl.h and shared.h"

Both the interface and the display programs are broken down into several modules. A
listing of the modules is obtained by checking the contents of the diskette attached. The files
featuring the extension ".h" are user-defined header files that are included in some of the

modaules.

The file "colours.h" contains a variety of cisplay attributes for screen characters which

are referenced whenever a terminal function prints on screen.

Another file called "colours_fl1.h" is quite similar to the one mentioned above. Itequally
contains a set of display attributes. The difference, however, arises from the setting of the flag
to flush the terminal functions after output. It was found that due to multi-task printing on
screen this is a requirement to achieve concurrent printing. Only the child tasks that will be
created at a later state need to refer to these attributes. Many of the printing routines will have

been called already by the parent task.

Forthis project, the display tasks, i.e. 'statdip2’, "barreltemp’, and 'viewdat’, include the

header file "colours_fLh".

The parent task, which is called 'imm’, also refersto the header file "colours_fl.h" at the
point where the display attributes for the status display task are initialized (see module

if_start.c’).

78 S. Source Codg Structure

In the view of the C-language, all modules are basically functions that are called either
within the main module called ’if start.c’ or within other modules (nested programming). The
module names and the corresponding function names coincide. Instead of explicitly declaring
the functions (modules) referenced at the top of the calling modules, the header file "f_decl.h”
is included in all of them. At compile time, the C-compiler will compare any function
declaration with the syntax of the function definition placed in the appropriate module, i.e. the
variable list that includes the storage class for all input and output parameters. Errors which

emerge from function /O violations can thus be detected and avoided at compile time.

The header file called "shared.h” serves to be the declaration of structures referenced by
more than just one module. Instead of repeating the declarations, the compiler’s needs can be
satisfied by including this header fi's. This contributes to reducing source-code size and
editing time. A structure is general.y considered a new type. Variables can be declared of such
a type, 'struct name’, .1s commonly as it works with other types, namely: integer, float, and
character. One line only is required for declaration, even if the structure declaration itself

exceeds more than a screen page.

On the other hand, it helps avoid confusion of structure members which would be not
easy to detect. The file "shared.h” includes the declaration of four structures named ’globl’,
"glob2’, 'glob3’, and "glob4’. All of them will be sent as messages to display tasks from within

the interface module called 'fw_do.c’ (see section 4.5).

The structure "glob3’ is received from the task *variable’. Right after, structure "glob1’
is sent 10 the task 'variable’ by the module *fw_do.c’ of the task "imm’. ’Glob3’ is then sent to

the task 'statdip2’ and the task 'barreltemp’ by the task ’imm’. The latter task also receives the

79 5. Source Code Structure

structure 'glob4’. The structures "glob!’, 'globd’, and *glob4’ include global pointers to shared
parameters. Structure 'glob2’ does notinclude parametersto be shared globally, and isalso sent
to the status display task 'statdip2’ by the task 'imm’. It contains arguments for customized
printing of the display.

>

52 Ll b; fules of "if40 ik’

All modules that make up the interface tasks and the status display task are merged
together into a library file. Throughout the interface program, function names coincide with
the module name that holds the function definition, i.e. the routine 'function_name()’ is defined

in a file called *function_name.c’.

Except for the module ’f_timesdisp.c’ the C-routines were compiled in the medium
memory mode (compiler switch: -mm, see WATCOM C-compiler user’s guide). This indicates
that code of the resulting executable file exceeds the size of 64 Kbytes, whereas a data segment
of 64 Kbytes is sufficient to hold all data the interface handles. The routine ’f_timesdisp()’
defined in the module ’f_timesdisp.c’ is called within ’statdip2.c’. Both modules are small in
size. The files ’f_timesdisp.c’ and ’statdip2.c’ were therefore compiled in the small memory

mode (switch: -ms).

To obtain a listing of the object files that are merged into the library 'if40.lib’ the
WATCOM library manager provides a tool to save the listing on file. The command would be:

wlib -1="name’ if40.lib.

80 5. Source Code Structure

Using the shell command:
more 'name’ |less
would result in a pagewise print-out which is useful for screening. Thelibrary ’if40.1ib’ has to
belinked to the interface main module called 'if_start.c’ and to the status-display main-module
called ’statdip2.c’. The commands to be typed could follow the syntax given thereafter:
cc -g -0 imm -mm if _start.c -1if40.lib
and
cc -g -0 statdip2 -ms statdip2.c -1if40.1ib.

To replace a modified and compiled module one would have to type:

wlib if40.lib +- (or -+) name.o.

A new module could be added or erased by typing:

wlib if40.1ib +name.o for adding
and

wlib 1f40.1ib -name to delete the module.

- 81 5. Source Code Structure

The library itself was created using the command provided by the compiler interface:

cc -A if40.1ib *.0

This would cause the creation of the library ’if40.1ib’ by including all object files in the current
directory. If a module were changed, it would have to replace its previous version stored in the

library. For relinking the updated library to the main modules one would have the option to

type:

cc -g -0 imm -mm if_start.o -1if40.1ib
or

cc -g -0 statdip2 -ms statdisp2.0 -1if40.lib.

5.3 Global, local, and system varables

The first code section of the interface main-module called ’if_start.c’ declares a set of
variables. The whole set of variables is declared outside the main module which assigns global

storage class to it.

The groups of global variables can be listed as follows:

(1) Set-up parameters of type integer or float
(2) Pointers to strings for set-up parameters (not
- converted)
(3) Pointers to buffers for default parameter strings

o kgt e

S~ I

g AT

—ERR A T TN RN T T

82 S. Source Code Structure

(4) Minimum and maximum values of type integer and float
(5) Pointers to strings for minimum and maximum values
(not converted)

(6) Pointers to strings for default minimum and maximum
values

(7) Global pointers to parameters to be shared among tasks
(8) Arrays of pointers to strings for menu items
(9) Pointers to screen (page) buffers
(10) Variables used as flags (logical execution control)
(11) Identifiers for machine mode, stage, controller type,
ADC channels, and ADC environment
(12) Unsigned integers for buffer sizes

By checking the list of external declarations included at the beginning of the modules,

it is straightforward to trace back the locations where the variables are declared.

Some of the modules declare a few local variables which are only referenced from within

the same module. This mostly affects auxiliary variables, as for example integers for loop

counts.

Taskidentification isachieved by harnessing the QNX functions that provide names for
tasks. A task that attaches a name can beidentified within the system by other tasks that search
for thai name, Names are strings and are known as system variables. They do not serve any
other function than task identification. A task that is able to locate another task by its name

will receive a process identification-number by the routine 'qnx_name_locate()’ in return.

This process-id is required to allow the locating task to send a message to the identified
process. On the other hand, a receiving task can obtain the identification of a sending task by

locating its name.

83 5. Source Code Structure

The following names are currently being attached by the tasks:

(1) "variable" by the task 'variable’ = control and ADC tasks
(2) "display” by the task ’statdip2’ = status display

(3) "ui” by the task ‘imm’ « interface task

(4) "barreltemp” by the task ’barreltemp’ = temperature display

5.4 Logical branching, returned values, and jurmrp marks

Thecontrol flow through the program is directed by means of logical operations which
identify returned values of either C keyboard-functions or interface routines. By means of the
’goto’ and "switch’ statements in C, program continuation can be directed to any statement
within the same module. The success of a stack-pointer long-jump invoked by a ’goto’-

statement requires the proper definition of a label or jump mark.

Labels and 'goto’ statements are widely used in the intzrface program. Especially after
a menu item was selected or a function key was pressed, a jump to the call statement of a
specific function is required. At points where user input is required, the returned values are
checked by a set of if-statements. If none of the conditions hold, a jump back to the input
routine is invoked. This prevents the program from dealing corruptly with an undefined
condition atinput. Forcing the program to jump back to the previously called routine uponan
unidentified return is maintained throughout the interface program.

Once the routine "term_load()’ was called, which initializes the structure 'term_state’ and

switches off echoing on input, pressing of a function key causes the return of a 16 bit integer

P

oL 7

84 5. Source Code Structure
number. The definitions of the keys are located in the 'qnxterm.h’ header file.

Identification of activated menu items is accomplished differently. Menu items are
defined as elements of pointer arrays of type character. Each element is a pointer to such a
menu item, which iz a string. Thefunction that performs selection returisa pointer to the menu
item selected. Subsequently, astring fuinction compares the stringto which the returned pointer
points with each of the menu items maintained by that particular menu. In the case the
companison is successful, meaning the string to which the returned pointer points, and the
menu item selected match, a *goto’-statemen: will be executed. This invokes a jump to the

program location which is preceded by the ’goto’-label.

The user interface main-module, which is 'if_start.c’, contains a great deal of labels and
'goto’- statements. They occur in the order of menus and routines to be called to run the

machine during a given session. The sequence is as follows:

(1) label "mall"; location where ’f_malloc()’ is called to
allocate memory for the numerous strings;

(2) label "mscr"; location where *w_main()’ is called, which
prints the main menu on screen;

(3) label "cum" : location where ’curs_main()’ is activated
for main menu item selzction;

(4) label "ini" : location where 'f_iniset()’ is called to
specify default file names and error checking mode;

(5) label "load": location where ’f_load()’ is activated to
load a file;

(6) label "mdf" : location where ’f_makedefdat()’ is called,
which invokes the editor for set-up data and range data files;

(7) label "vdf* : location where task ’viewdat’ is created

(8) label "sscr™: location where *w_setup_main()’, which is the
set-up main menu, is called;

85 S. Source Code Structure

(9) label "cus” : location where "curs_setup()’ is called to
activa.¢ item selection;

(10) label "tim" : location where 'w_timers()’ is called to
specify all stage time intervals;

(11) label * o.dc" : location where 'w_ADCmain()’ is called to
pop up ADC main menu;

(12) label"rates™: location where 'w_ADC()’ is called to specify
slow and fast sampling rates for each of the stages;

- (13) label "chan": location where selection of fast or slow ADC
channels is accomplished;

(14) label"schan”: location where fw_schannels()’ is called to
specify slow ADC channels;

(15) label"fchan": location where *fw_fchannels()’ is called to
specify fast ADC channels;

(16) label "op" : location where 'w_ADCops()’ and 'curs_ADCops()’
is called to set ADC environment;

(17) label "vfsp": location where 'w_varfix()’ is called to

- specify fixed and variable set points;
| (18) label "spb" : location where *w_bheaters()’ is called to
specify barrel heater set points;

(19) label "cp" : location where 'w_control()’ is called to
specify PID controller parameters;

(20) label "rs" : location where 'w_runstop()’ is called to
specify miscellaneous timers and cycle numbers for timing
purposes;

(21) label "save": location where ’f_save()’ is called to
invoke saving of data;

(22) label "conv™: location where ’f_convertall()’ is called
which causes all parameters strings to be converted from
ASCII to integer or float;

(23) labei"cconv": location where ’f_convert()’ is called which
converts stage time intervals to unity in the case a value
below 1 is specified (display);

(24) label "rscr”: location where 'fw_do()’ is called which
is the monitor for control system configuration and
operating options;

, (25) label "of™ : location where the clock is created if previously
{ killed and the screen buffer is released;

86 S. Sonrce Code Structure

In general, the control flow of most operations pe~formed within the interface program
and its modules is channelled through the main module and branched from there (if-then

statemeants).

87
6. Coding strategy

Not all design objectives were known in detail at the time coding was to br: performed.
Details were added, modified or erased in the course of the project’s development. However,

the major design objectives were defined.

Initially, the hierarchy of top-down menu levels was established on paper. All the menu
items to be specified that were known in the beginning +vere listed and grouped together. Some
considerations about colours led to the conclusion that menus belonging to the same level
within the program hierarchy would have to have a similar lay-out. As a result, the total
number of menus, the number of different styles, and the number of menu items per menu

could be stated.

The decision to handle parameters on all menu levels as ASCTI strings derives from
further considerations pertaining to interface [/O. Especially explicit typing of values and
pathnames was intended to be ;Serformed by invoking the editing C-ruutine 'term_field()’.
Activation of function keys wasto be accomplished by referencing the term_key()’ C-routine.
Both decisions helped identify the type and number of variables needed for set-up parameter

specification and minimun/maximum data.

A strategy to best perform saving and restoring of screens and windows was equally

sought at an preliminary stage of the project. The strategy chosen is described below.

A decision was made to stick to formatted file /O of the strings. This was considered

an advantage, since shell commands (i.e. 'more’ and 'less’) could be activated fo. checking of

:

¢

88 6. Coding Strategy

the file contents,

Some efforts were spent on finding out the number and scop< of each task to be run for
user-machine communication. The control system and data acquisitiun related tasks were said

to be simulated in order to provide independency for interface program development.

Concluding preliminary studies, issues affecting the program hierarchy, data inheritance
of modules, the most suitable storage class of variables, inclusion of user-defined header files,

and control flow mechanisms to be implemented within the program were tackled.

In general, actual coding wasinvolved in all subsequent steps of program development.
Attention was first given to the creation of the interface task. The display tasks and the
simulation for the control system and data acquisition related tasks were coded after a

workable version of the interface program was available.

The basic logic of some menus was programmed and compiled first. In a succeeding
step, the ’if40.lib’ library was created to include these modules which existed as temporary

primitive versions.

For initial testing, the interface main-module was defined next and was linked to the
library if40.lib. In the course of program development, variables afTecting the creation and

coding of new modules were subsequently declared and added to the main module.

For continuing testing, this required upgrading the library, recompiling the main

module and relinking it to the library resulting in a new executable file. Further features were

89 6. Coding Stratcgy

incorporated into the interface program by stepwise enlarging the code size and complexity of

the main module and the remaining interface modules.

Editor commands were widely used to extend the modules with functional code sections

that feature similar performance but at different locations on the screen (in the menu).

Those menu modules, the names of which include a 'w’ for 'window’, were first edited.
For simplification of a menu’s function, a single item was initially included per menu to

facilitate testing.

In the following step, the basic logic for menu item selection was defined. Thisinvolved
supporting the movement of a bar which is inversely coloured than the menu items.
Customizing the selection mechanism for the main menu and the set-up menu was undertaken

thereafter.

Code afTecting the specification of parameters was programmed next. All menus were
completed by adding all appropriate items. This step involved the initialization of pointers to
strings that hold the parameter specifications (strings) and the default strings for it.

It was found that both groups of pointers have to be of the same storage class, i.e. of

global storage class.

Inthe subsequent step, efforts werespent on finding a mechanism to load and save data.
This included the creation of a file-system environment that would allow for pathname

specification as well as provide editing utilities and a set of wamnings and directives for error

90 6. Coding Sirategy

handling. This is to avoid file opening failures as a consequence of wrong pathnames or non-
existent files, and reading or writing failures. A probable instant of the latter case would occur
if names for range data and set-up data were confused. A different format pertains to both file
categories. A technique had to be determined that would master the specification and display
of default filenames considering that the path and the filename of the latest file loaded should
be displayed on subsequent calls of the loading and saving routine. This was finally accom-
plished using {wo global string buffers of 26 characters each that hold a default filename and
the name for the specified file. After termination of thelnading routine the filename specified
is copied into the buffer for the default filename. The saving routine can reference the same
buffers when activated, since both buffers (pointers) are global, and will thus inherit the name
specifications made at file loading time.

The need for a provision of default filenames assigned to set-up data files, range data
files, and ADC data files emerged upon completion of the loading and saving routines. This
induced the creation of a module that provides specification options for default filenames.
Even these strings were decided to be of global storage class, such that their definition in the
main module’s leading section could be modified if desired. This requires re-compilation and

relinking of the ’if_start.c’ module to the library for another executable interface file.

Further attention to coding was by then given tc the editor, since all parameters for
which range checking had to be provided were known. Theidea emerged that pagewise editing
utilities for all parameters could speed up both set-up data and range-data file creation.
This resulted in an editor supporting two ediiing modes, one for set-up data specifications
(strings) and a second one for minimum/maximum data specifications (strinys). Saving and

restoring of pages was an issue that required careful pointer definitions. It was found that

91 6. Coding Strategy

global pointers (i.e. char _far *pointer_to_page_i) to buffers for the saved screen pages best
support page switching.

All issues pertaining to error checking were then addressed following the programming

" of the editor. Some considerations about a suitable mechanism emerged while using the

interface programmed at its then present state. Error checking had to be accomplished on two
levels and in two modes (see ssction 5.3). A safety barrier prior to activation of the run-and-
stop monitor had to be established in the event the use of set-up menus for parameter
specification were omitted. Secondly, errors would have to be detected immediately after a
menu item was specified. This led to the creation of the error checking routine and the
determination of the syntax for its call. All input parameters are of global storage class. Ata
certain point in the program where checking has to be performed, all of them need be initialized
by locally appropriate values.

The application of error checking could then be extended to cover editing in the range-
data mode. However, it was considered to be sufficient that only the validity of characters
would be checked.

It would not have made sense to provide magnitude checking for minimum and
maximum data. Above all, this interface level was designed following the assumption that
research users only would make use of the editing utility.

At this point of the interface development, the transition to the programming of the
display tasks, as well as the control system and data-acquisition simulation-task was
undertaken. A great deal of efforts was spent on parameter sharing among the tasks embedded

P

T e Lol IR ISNC I N

92 6. Coding Stratcgy

in the program hierarchy. The technique found wazs the declaration of pointers to globally
accessible memory segments. On the level of the interface program a routine had to be created
that would perform pointer definition and initialization. It seerned favourable to include a user
defined header file that would store the declaration of a structure comprising these global
pointers. It wasanticipated that the simulation task would need to reference the same structure

at the time it was to be coded.

Asastep to temporary interface-task completion, a routine wascoded that performs the
function of the safety barrier. No matter if a check of parameter specifications were already
accomplished, all parameters that need be shared among tasks (see below) would be checked
for character validity first and magnitude second. The syntax developed for local error

checking was adopted to assemble the overall code of this routine.

At this point a workable version of the status-display task was being coded concurrently

and independently from the interface task.

It was evident that synchronisation of the simulation task and the already existing
interface and status display tasks had to be achieved. Particularly version 4.0 of QNX requires
the sending and receiving of messages for task communication. Task identification was found
to be best accomplished by harnessing the naming and name location utilities of QNX. On the
interface level this required a module that starts all the other tasks of the overall system, and
that arranges and coordinates the sending and receiving of messages among the tasks (refer to
fw_do.c’). Sending wassupposed to supply the tasks with all global pointersto shared data (see
section 2.5 for details). One message-sending method considered was to send display attributes

over to the status-display task. Roughly versions of this module and the simulation task were

. .

93 6. Coding Strategy

first established. The inclusion of the status-display task was excluded for the time beirg. In
subsequent refining steps the command sequence was cstablished that would accomplish: task

creation, synchronisation, and communication of all tasks.

Finally, customizing the barrel-heater temperature-display task and the switching of
operating modes within the user interface received further attention. It was made sure that all
crucial background tasks would be created before the operating mode can be switched from
full-automatic to manual mode. This method had to be provided to allow switching of
operating modes and control strategies alternately without previously terminating and
subsequently restarting tasks that runin the background. This ensures that the machine can be
operated in both full-automatic and manual mode while sustaining the machine settings and

configuration.

94

7. Debugging and results

Theactivation of debugging tools for application programs required the interpretation
of errcr messages as well as warnings issued by the compilers and linkers used for program
development The user manuals for the above software include listings that give a short
explanation for potential error causes that can be associated with the messages printed on
screen. The variety of errors encountered can be broken down into the groups of compiling
errors, linking errors, and runtime errors that are comumon to the subsequent steps of program
development, which are: compiling, linking, and running. Compiling errors were detected first
before the recognition of linking errors and the latter runtime errors. Corrections to the code
were made immediately after the completion of one of these steps failed to issue compiling and

linking commands recurrently.

The multi-tasking features of the operating system QNX allow for user-computer
interaction on several virtual consoles (screens and keyboards). Concurrent applications can
thus be 2xamined simultanecusly by switching these virtual consoles. I/O activities of several
applications would be observable virtually at a time on virtual screens which are private to each

application.

The debugging tools shipped with the versions 2.15 and 4.0 of QNX ('SID’ and
WYVIDEOQ, respectively) harness this feature. During a debugging session of an application, one
virtual screen displays the source code of the examined application, highlighting the statement
to be executed next. The results of the execution of a statement are printed on a second virtual

screen when [/O is involved. It is possible to toggle between these screens frequently.

95 7. Debugging & Results

Since transmission and reception of messages influence execution of a single program
run in the context of a task hierarchy, it was necessary to perform concurrent debugging of all
the tasks that communicate with each other. The advantage of this technique is that program
execution unfolds stepwise, since the debugging routine hascomplete control overmemoryand
program counters so that it halts execution at the latest executed statement of a program. [tcan
thusexactly be determined at what location of the code and which task caused corruption. This
concurrent debugging of programs that run simultaneously in the background required a
modification of the systern configuration files (see user manuals for console driver adjustments).

To start a debugging session including the interdependent tasks: ’imm’, ’statdip2’, and
’variable’, a total of seven virtual screens had to be managed by the operating system. Two
virtual screens were reserved for source code and I/O results of each of these tasks as described
above. The seventh virtual screen was set active to call system routines needed for operating
systemand task-status checks. Forexample, upon completion of a statement in one of the three
tasks, the ’send()’ procedure in another task could have failed causing the task involved to be
"blocked”. This would be printed explicitly on the seventh virtual console after execution of the

system routine 'sin’. It was possible to toggle frequently between all seven virtual screens.

This method proved very efficient to trace errors based on corrupted memory addresses
invalid messages and logical deadlock of the sequence of task creation and communication.
However, a great deal of efforts was spent to run the debugging routine on single erroneous
programs (tasks). This required the activation of three virtual consoles: one for execution of
operating system routines and their /O performance, one for the display of the program’s
source code by the debugging routine, and one for the I/O activities of the examined program.

RS

96 7. Dehugging & Rexults

The most critical and tricky errors encountered after it was attempted to compile the
source code of an application, after a trial to link related object modules to make an executable

file, or after attempts to start the application from the shell are described next.

7.1 Interpreting compiler and linker error-messages

The compilation of an erroneous source file led to printing of a list of error messages.
This required an immediate interpretation of a possible cause and editing of the source file to
correct it. In practice, the switching between virtual screens proved to be greatly convenient for
editing and iterative steps to compile a source file because of the following: on the first virtual
screen, all the error messages could be listed and held, while editing could be performed on a
second virtual screen with the help of a full-screen editor. Frequent attempts to re-compile such
an erroneous application required frequent toggling between virtual consoles. Due to the
buffering of keyboard input, the commands to initiate re-compiling could be repeated simply
by pressing the arrow-keys, while the full keyboard definition for the editor was sustained on
the other virtual console. It was therefore not necessary to repeat time-consuming typing of the

same command segences.

It was considered that one single coding error can cause several error messages to be
printed that are not ultimately related to this coding error. This occurs due to propagation of
thiserror through the compiling procedures. Infact, one coding erroraffects all interdependent
routines of the compiler which thus fail and cause additional error messages to be printed in
the order these routines areexecuted. Thus, the first message printed wasacknowledged. Based
on the error cause it suggested, the source code of the program was corrected using the editor.

97 7. Debugging & Results

The most tricky errors on the compiler level are references in the source code to invalid
memory addresses orcomputations involving such invalid addresses. Thesecannot be detected
by the compiler, since only a check of code syntax and variable declarations are performed.
Actual values of variables including memory addresses are not verified by the compiler.
Moreover, no messages are printed that can serve as a hint that program execution is at stake
should linking be successfull and the executable file is attempted to run. Operations on invalid
addresses certainly result in a fatal error at runtime which forces the operating system to

terminate the application.

Likewise, some errors related to both compiling and linking do not cause messages to
be printed immediately. This particularly pertains to the option of choosing a memory model
for the object file to be generated by the compiler. WATCOM C offers a choice of memory
models ranging from small to huge portions of memory to be allocated to an application
program. This influences the amount of memory address space to be occupied by both data and
code (see manual). The purpose scught by WATCOM was to offer program developers an
opportunity to optimize the claim on free memory of applications. The choice of the memory
model for a program at compile-time can interfere at linking-time with the models chosen for
object libraries or other object files to be linked. The models of all constituents of an executable
program must be consistent. Even if compiling of a source file was successful and no error
messages were printed by the compiler, the linker can respond printing error messages when
memory models of the object files to be linked mismatch. In this case, references to invalid

memory locations are made by some sections in the object files.

It was attempted to link the 'if40.1ib’ object library to the main module object file

'if_start.o’. Inconsistencies between the claim on free memory for the executable file *imm’ to

s

98 7. Debugging & Reaults

be generated and the small memory models chosen for the object modules in 'if40.1ib" and for
if_start.o’ led to linker error-messages. The strategy pursued after first occurrence of similar
problems involved the compilation of all modules in large memory mode. This mode is defined
to claim both for executable code and data memory segments larger than 64 Kbytes. After
linking was successfully accomplished, it was possible to check for the size of the executable
files created with the help of system routines. More information about the task’s claim on
memory could be obtained by actually running the task at hand on one virtual console, and
then screening memory occupation on the second screen. The information printed could then
be used to accommodate the memory layout chosen for the executable file 'imm’. All modules
were re-compiled using a smaller memory model. In the case of the interface task 'imm’, it was
possible to switch the memory model from large to medium, which still refers to code larger

than 64 Kbytes but claims only a single segment smaller than 64 Kbytes for data.

7.2 Interpreting rup-time errors

Runtime errors of two categories were mainly encountered. One type of error did result
in immediate program termination and the printing of a system error-message. The other type
did not immediately terminate the application. The latter initially resuited in an undefined
printing on screen. Upon pressing of keys, the application would terminate, causing the same

system error-message to be printed as in the former case.

The reason for runtime errors of the first type are references to memory addresses that
are invalid. Runtime errors of the second type can be explained by assuming that a shift of

memory addresses has occurred after the completion of anillegal operation. Themost common

99 7. Debugging & Remlts

coding errorsencountered with regard to a similar shift were expressions that assigned a value
of aglobal variable (0 alocal variable. This phenomenon particularly held for global character
strings and local strings. Therefore, corrupted and undefined priniing was detected. To an
extend that cannot fully be explained, such a shifting occured, once a child task was created
from within a parent task. It is plausibls that addresses of global variables are protected, such
that they cannot beshifted, whereas the addresses of local variables arenot protected. Theycan
thusshift when some system activity affects partitioning of memorysuch as theloading of tasks
into RAM. The shifting of addresses could be observed employing the above debugging

technique with multiple screens.

Some runtime errors had in common that task creation and message transfer was not
completed successfully. To send a message to a task that terminated before or awaiting a
message from a task that terminated in the meanwhile causes the return of -1 to the system
routines 'Send()’ or "Receive()’. This flag could be used in the interface programs to initiate
printing of a message on screen if -1 was detected. However, these messages are user-defined.

The system itself does not issue such messages.

7.3 Task simulation for detecti e logical

It was previously mentioned that once a workable intermediate version of the interface
task was available, tests were conducted. Tasks were created for testing that were used as
expedients to represent later runtime versions of these tasks. Most of the modules that were
subsequently added to the interface were tested independently from other modules. Instead of
keeping the corps of the interface main module 'if_start.c’, amodule called "test.c’ wascreated

-

100 7. Iachugging & Results

that had only the global parameters of ’if_start.c’ copied into it. These are referenced by the
modules. Thecall to a new module was in most cases the only line held in the body of "test.c’.
This provided a direct means to detect logical errors in conjiunction with the debugging routine

and the multi-screen technique.

To simulate the runtime version of the task ’variable’ a provisory version was created
registering the same name ’variable’. The simulating version accomplishes short hand what
would be the case at runtime provided by the runtime version. To summarise, naming and
locating names of other tasks, inter-task communication between these tasks, as well as
memory allocation for shareable global storage was simulated. Upgrading the locations
referred to ascycle-time counters for each of the four machine phases was achieved by running
aninfinite loop which wassubsequently halted by calls to a C-language function (’sleep()’) that

suspends execution.

RS
¥ ,

101

8. Conclusions and Recommendations

The conclusions given below focus on the methodical approach that led to the current
workable version of the user interface for the PC-control system for injection moulding at
McGill (1991). Upon closing this thesis, recommendations for further work are given that are
to anticipate improvements concerning the development of the user interface towards a

professional version.

8.1 Conclusions

The development of the user interface was an attempt to establish a custom system of
software constituents tailored to predefined specifications. The pool of commercial software
for program development was readily available from the start. Likewise, the computing
facilities on which the interface program had to be created and was to be installed were ready
for use. Furthermore, the user interface for PC controlled injection moulding was conside ‘ed
necessary asa result of plans to proceed in an on-going project concerned with the development
of the control system. The method estimated best suited to master the interface development

facing the above conditions wasto subdivide the work to be doneinto a suite of phases namely:

phase [acquisition of knowledge

phase II: definition of interface specifications

phase III: programming and iterative revisions

phase IV: final testing and inclusion into the overall system

102 8. Conclusion & Recommendations

It was evident that the lion’s part of work had to emphasize on the acquisition of
preliminary knowledge on a multitude of levels. The typical measures undertaken during the
phases and the identified problem areas on which special efforts were spent are given in greater
detail below:

(i) PHASE I - Acquisition of knowledge

Injection moulding

The injection moulding machine was inspected first and its operation was studied carefully.
Information about process specifics were obtained by studying manuals and technical
descriptions for injection moulding.

Problem areas

It wasnot possible to operate the machine without guidance to gain first hand knowledge.
Moderm injection moulding machines could not be examined to estimate a potential
variety of functions that could alsc be more complex than those seen.

Operating system

The manuals were inspected carefully and demonstration programs wete executed.
Equally, it was tried to perform the installing procedure from the beginning.

Shell commands were executed and the results were memorized. The configuration
features were manipulated to identify subtle differences and to gain more

insight of the management of system constituents such as memory management
scheduling and the file system.

Problem areas

-~ It required extensive reading to understand the interaction of the components. The
referer.ce manuals can only be understood if the organisation of a modern PC is

P,

103 8. Conclusion & Recommendations

understood in detail. This required referencing appropriate literature which was difTicult
to find due to the high degree of recentness concerning the development of the the INTEL
386 CPU and multi-tasking operating systems. Limitations of the I/O procedures and
memory protection are complex and crucial issues that need be understood to establish a
program hierarchy. Manuals do not provide useful technical information. Most details
concerning computers were assumed to be known by a potential user of QNX.

The C language

Knowledge about the syntax was obtained through literature. Second, TURBO C was
installed on a DOS operated PC that provides an excellent tutorial to introduce
programming in C. Advanced issues were tackled after the basics were understood.
Many small programs were written and tested. A great deal of efforts was spent

on developir: 3 modular programs including global variables.

Problem areas

Operations on variables of type pointer (variable addresses) “vereidentified to be the most
difficult topic in C. This requires knowledge of the organisation of memory in a PC and
protection mechanisms of certain address spaces. Bitwise operations required deep
knowledge of binary algebra.

The PC control system

Observation of the current proceedings and research meetings led to a brief understanding
of what wassought to be accomplished. Anillustration of the many tasks to be performed
on the PC was very helpful to estimate the complexity of the system where the interface
has to fit in. The principle foundations of digital process control was obtained through
course work and studies in the field of process control theory.

Problem areas

It was difficult to state in great detail what features the user interface has to provide for

S

L

104 : 8. Conclusion & Recommendations

the control system. The anticipation of future requirements was challenging since too

many unknowns were identified. Many present developments are considered provisory and
are apt to fundamental changes in the future.

(ii) PHASE II - Definition of interface specifications

The primary interface specifications could be identified onc= the design objectives for
the control system were understood. In addition, the kncwledge of commercial software

and the menu mechanisms led to the intention to incorporate similar features into the
interface.

Problem areas

It was more complicated to find an optimal modular structure of the interface modules.
The specification of hidden interface features affecting coding, compiling (the choice of
memory models for modules), and linking required the development of a number of

preliminary versions that were tested and analyzed. A great deal of alternatives can be
conceived regarding the choice of memory models and the number or tasks that make up
theinterface program. It seems to be not obvious which alternative to consider best suited.

(iii) PHASE 111 - programming and iterative revisions

Since the evident and hidden specifications were known at this point of the interface
development, coding unfolded to be straightforward in the beginning. Initial coding was
rather directed to the definition of logical branching including than to the perfection of
displays and menus. Repeated improvements of the display and menu features led to
substantial improvements step by step. Complications arose when it was decided to modify
the structure of the intermediate version of the program. Some of the modules present in
thefinal version were subsequently added which required often elaborate rearrangements
of the code. Errors were thus introduced that had to be identified and corrected. This was
more challenging the bigger the volume of code had grown.

1085 8. Conclusion & Recommendations

Problem areas

To understand the operations and options of the compiler and linker proved to be more
problematic than to understand the peculiars of the language C. Too many options and
not transparent documentation led to a decision to apply trial-and-error. Through
conducting compiling and linking experiments issues would clarify and the solution sought
could be implemented. Especially QNX specific functions for task creation and
inter-task cc.amunication required a strong amount of efforts since programming
examples were scarce in the documentations. Some hard-headed errorsled to contacting
the technical service of Quantum Software. Verbal consultations proved to be only partly
helpful.

(iv) PHASE IV - Final testing and inclusion into the overall system

Thisstep involved the linking of the workable version of the user interface to the network
of tasks related to data acquisition and process control. This was done by installing the
interface files on the harddisk of the PC to host the system. Since QNX maintains a UNIX
style file system with owner and user rights, care had to be taken to change the file flags
accordingly. When logged into the system as super-user this was a straightforward
operation. In addition, the directory specifications in the user interface files had to be
checked to match the assumptions made by the control and data acquisition tasks.
Execution of the interface task and the activation of the above task network initially
caused corruption due to a confusion of memory addresses or a corrupt logical sequence
of task creation and communication primitives.

Problem areas

Since the hardware components on the machine were not completely installed to test the
machine, missing activities on the screen could not easily be identified as coding errors.
Non-functioning hardware could have also been a probable cause. The synchronisation
of all tasks rcquired a trial-and-error approach based on incidence since the complexity
of the overall system is not transparent. It was not possible to test the interface program
without the specialist in charge for the control task network and vice versa. This might
provea bottleneck if independent steps are to be taken to develop both the interface and
the control task network further.

106 8. Conclusion & Recommendations
8.2 Recammendations

At the present stage of the project it is more than likely that fine-tuning of the program
hierarchy has to be performed. This might require a change of the order of appearance of the
task creation macros in the module ’fw_do.c’. Before modifications are tackled, it ought to be
very clear what effect this is supposed to achieve. To avoid memory shifting and subsequent
corruption, it must be made sure that an alteration does not assign values of a global variable
toalocal one. If so, the variable affected should be declared within the main module 'if_start.c’
to join the group of other global variables. As for debugging, the virtual-screen technique
described in section 7. should be applied.

In case CPU utilisation of the user interface related task turns out to inhibit proper
operation of the data acquisition and control algorithm tasks first an adjustment of the
scheduling policy could be made. Best suited is a technique that involves explicitly reducing the
priorities of the interface tasks while explicitly boosting the priorities of the control system and
data acqui.sition related tasks. A second approach could rely on switching of scheduling to
round-robin. Theequally distributed allocation of CPU-time slicesamong all tasks might cause
an improvement. It is likely that the interface task as the parent of all tasks is given to

much CPU time when default scheduling is applied.

In the worst case a second machine can be used for display purposes. QNX 4.0 is
designed to maintain a PC network. In that event one should also consider the purchase of
QNX WINDOWS which is supposed to provide real-time graphics display. The structure of

the current interface could serve asa pattern to logically implement a similar interface on the

A
:

» Y

107 8. Conclusion & Recommendations
second machine, although display quality could be a great deal improved. Icons such asclocks
and scales can be included which offers an excellent means to replace the status display task

which was considered as a CPU-time-saving expedient.

Ifreal-time printing of sensor readings is mandatory there might be no alternative other
than to use a second PC for the display. Too many updated parameters will have to be printed
which limits CPU allocation to the control algorithms and the data acquisition tasks.

The current version of the interface could have minor enhancements, e.g. units of

measure ought to be displayed they are decided.

-

108

Andrews, G.R., and Schneider, F.B.
Concepts and notations for concurrent programming

Computing Surveys, 15, 3-43 (1983)

Denning, R.C.
The working set model for program behaviour

Comm. ACM, 11, 323-33 (1968)

Habermann, A.N.
Prevention of system deadlock

Comm. ACM, 12, 373-7 (1969)

Lister, A.M., and Eager, R.D.
Fundamentals of Operating System,
MacMillan Eduacation Ltd. (1988)

4th Edition,

Mellichamp, Duncan A.

Real-Time Computing
With Applications to Data Acquisition and Control

VNR-Van Nostrand Reinhold Company (1983)

Peterson, James L., and Silberschatz, Abraham

Operating System Concepts, 2nd Edition
Addison-Wesley Publishing Company (1985)

Reiling, A.
PDA-MDA-DNC: An overall concept for injection moulding

German Plastics 79 (1989)1, pp. 29/33

109

Schwab, E.
Agreement on Uniform Interfaces to the Master Computer

German Plastics 79 (1989)11, pp. 1133/1134

Tokheim, Roger L.
Theory and Problems of Microprocessor Fundamentals
Schaum’s Qutline Series

" McGraw-Hill Book Company (1983)

- b

110

10. APPENDIX

10.1 Ilustration of menu levels

10.2 Flowcharts

PR

FILE LOADING
nEWS (0/1)

LOAD OPTIONS
nEws (1)

SETUP MAIN
MEN! [0/2)

SUBMENUS FOR
SETUP PARAN.
{i/x1, (2/x3

INTERFACE
MAIN-MENU

\

SAVE OPTIONS
Kew

EDITOR MAIN
NENU [0/3)

EDITOR LOAD
OPTIONS
\

— READINGS

VARNINGS &
DIRECTIVES (S)

\

~

DUMMY MATN MEWS
FOR DATA DISPLAY
10/41

| S ——————

FCo

ERROR CHECKING

SYSTEM CONFIGURATION 1

10/5}

ENVIRONMENT MAIN
NEW! [0/6)

OPERATING
MODES

SUBMENU
FOR INTER-
FACE ENV.
CONFIG.

REAL-TINE
STATUS

WARNINGS &
DIRECTIVES
(5.2)

\

112

Elowcharxt 1

/* SIMNPLIFIRD FLOWCEART FOR
LOAD OPTIONS MENU ®/

// wife:

NTERFACE
L L]

h 4
/ READ: WENORY [TEM *LOAD® /
FROM KEYBOAAD

/

RANGE CHECKING OW ?

YES

]

-1 LOAD: JUSR/NARRY/MeixY

$ FILE FOUuND

#

[unn:: LoD oeTIoNS NeWs

READ:

FILENANE

Yes

CTUSR/MARRY /mx

INCREASE FILE
ralnTER

(e e gl o)

>

{

(

113

Flowchart 2

/% SINPLIFIRD FLOWCHART FOR SETUP PARANERTER NENU
(ADC=PARAMRTRRE) ¢/

7 AiTE eTERAcE wew /
v

Z

READ: WENU I1TEX “SETUP™
FROM KEYRGARD

/

CALL *1_save()*

BACK TO INTERFACE

i
Y

/mm serw i e
v

s/

7 e e mwew S

MAIN NEW 7

NO

FOR PARAMETERS

// READ: MEMU ITEM FROW KEYBOARD /

/ READ:

PARAMETERS FROM
NUMERIC KFYPATH

/ WRITE: SELECTED SUB-MENU

--weceqy

INPUT AND/OR RANGE
ERROR CHECKING

.- -

v

[o wanng

URITE: JYEM AT CURRENT CURSOR
POSITION

[
4 v

)\

ERROR CHICKING

x 7

v
/ READ: KEY 7§ / WRITE: ECHO INPUT /

YES

SACK TO ADC
MAIN MELU ?

N

SToe

UARNING /

SACK YO INTEPFAC
HATYH NENG ?

BACK 10 EDITOR

114
Elowchart 3
/% SINPLIFIRD FLOWCHART FOR EDITOR FOR
SETUP DATA FILE & RANGR DATA FIIR o/
L
/ VAITE: INTERFACE MAIN usw7
v
/ READ: MEWU LTEM -cnun-]
DATA FILE
ida
CALL *f_toad ()
- WRITE: PAGE 1

E E W W MR M M WA m N wm G WAL A W WE s e W W e

B

115

Elgwchart 4

/% SIMPLIPIRD FLOWCHART FOR CONTROL SYSTEX

CONFPIGURATION MENU ¢/

/um!g INTERFACE MALN WENU 7
v
/.(m: MENU LTEM “RUN & STOP MONITOR™ /

r---

l RANGE ERROR CHECKING J

N\

READ: KEYS

READ CYCLES ?

2

WRITE: CONTROLLER 10ENTIFIER TO
GLOBAL MEMORY

]

#

— e e wm e e e mime m—— vem e e —— e —

YES

CALL (internal) SUB-MENU

l
!
| NO
|

INPUT AND/OR RANGE
ERROR CHFCKING

oK ?
YES

SAVE DATA ?

READ MQDES ?

YES

$ NOOE MAUAL MaoE ? FOR MANUAL OPERATION / WRITE: CYCLES ON SCREEN
L—-__, WAITE: CYCLES TO GLOSAL
‘ HEMORY
KILL STATUS DISPLAY v
TASK ,
ves
vES SYITCH SUS-HENY 1
“ly > /e xers
>
GC
;
PROCESS CONTR
CREATE REAL TIME STATUS # DATA Acwun?:ur:::x‘
DISPLAY TASK ALREADY RUNNING 7
ves o
NO ’~
CREATE PROCESS L NO
oALL (i L
13 haoe MRITE: ALL SHARED PARAMETERS 1 CONTROL TASK & #g‘a‘)ﬁf&’
CLOBAL MEMORY OATA ACQUISITION
AUTORATIC MODE TASK
vES

/ WRITE: MOOE ON SCREEN

L.

116
Elgwchart 5
/* SIMPLIFIRD FLOWCHART FOR INTERFACE ENVIRONMENT NENG @/
. ®

1/ WITE: WTERACE WAIN ow

[o ars

WRITE: MEMU SINITIAL s:mucs-/

'

—

e

READ: KEVS CALL SHELL TO
SLAY CLOCK
vES f
NANGE RANGE CHECKING MODE
AMD FILE LOCATIONS 7 SET fLAG

clock_slays = 0 cloch_stays e ;

!
WRITE: SUB-MENU FOR INTERFACE
ENVIRONMENT
t
]
1
I

BACK TO INTERFACE
MATN HENU ?

NO

CNECK FLAG
oad_mmx » 0 7

renge_mode ;= renge _ON ;

/““” A ™ / ANGE CHECKING ON 7

|
]
/am: PATH § / ‘_‘ range_mode :s range_OFF ;]

RANGE OATA FILE
FOUND ?

VARNING

L‘Puu doay * 15 l

SET FLAG
load_swx o+;

v

LOAD FILE SPECIFIED
AT PATH FOR RANGE
DATA

I

2
,m\

Elowchart 6

/% SIMPLIFIED FLOWCHART FOR ERROR CERCKING &/

sTanr

¥ NO CHECK FLAG ves
rengs_mods » range_OM
stop
CHECK PLAG YES
load _wmm > 0 ? YES
'
NO
No : exIy 7
k]
N0
MINIMAX FILE FOUND ? N m
YES T
B . i |
NG

LOAD FILE AT PATH FOR
RANGE DATA FiLE YES
(defeult: /usr/herry/mmxt)

[CALL 'w_setup_main()! J
(nevure 1o 'u_unp_uinm i

—

t READ: INPUT PARAMETERS:
TYPE MINTMUM, MAXINUN &

ASSIGN CONVERTED VALUE TO PARAMETER STRING
PARAMETER

READ: KEYS

l CHECK FOR SPACE wJ
Qew&u (] 'u__unp_ming

ves

WITE: COwENTED waking Ly, wead: xevs L |

P @ e
QIYUIN () ‘u_utw_u‘n(m

V4 L

[CHECK FOR MOY VALID CHARACTERS]

-
‘ RETURN TO 'u_ntw_u‘ﬂ())

WRITE: COMMENTED \Mllllﬁjl

NOT VALIO CNARACTER FOUND ?

COMPARE WITN APPROPRIATE
“;M ‘ RETURN TO *w_setup_main()® >

YES

CONVERT STRING TO
APPROPRIATE TYPE

CNECK FLAG
conge_sode » range_ON

RETURN

418

Elowchart 7

/* SINPLIFIRD FLOWCHART FOR BAVING o/

/mm: SAVE OPTIONS HENU 7

GEWI» 70 ‘u_setup_mein()*

(lilml 10 tw_maing)*

WRITE: ITEX § TO
FILE SPECIFIED BY
p_pathname

CHECK FOR URITING
ERROR

YES

NG

SACK TO INTERFACE
MALN NEW 7

i

save > Yumir ?

YES

NO

ERROR

NO

READ: KEVS %{um:)y —

k)

YES

7

"{ NOTE

The procedure for making new executable files after modifications were made to the source
code are as follows:

(1) Rename the modules **.c’. The module names and the function
declarations in the header files 'graphs.h’ and ’f_decl.h’ must
match precisely. This 2ffects expanding the names of the files
converted to DOS format (ASCII). The characters: ', 'w’, and
fw’ have to be separated from the remaining character string
by a short case character, ’_’.

For example, the file *fdecl.h’ found on diskette 1 must be
renamed to yield ’f_decl.h’. The filename 'btemp’ of a file
found on diskette 2 must be expanded to yield ‘barreltemp’ and
SO on.

(Use the QNX functions 'more’ or ’less’ to view the contents of
the above header files and the appropriate source code file
("*.c") for the correct names.

(2) For application of the WATCOM compiler and linker on QNX, the
files "*.c" and "*.h" found on diskette 1 must be converted to
QNX 4.0 specific format. Use the QNX function ’textto -1 -2’
for the job.

