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Abstract

Sequential data refers to information that is ordered into sequences, such as time series,

natural language, and DNA sequences [Sammut and Webb, 2010]. This type of data is

prevalent in many real-world machine learning applications, such as predicting the tem-

perature of the next hour, classifying different text sources, or navigating a robot.

One approach to modeling sequential data is through the use of State Space Models

(SSMs). These models handle sequential data that involve latent variables or parameters

that describe the system’s evolving state. The concept of state space was first introduced

in [Kalman, 1960] and refers to the set of all possible configurations of a system.

Efficient state representations are crucial in SSMs, as they impact various aspects of

the performance of the models. Sample efficiency is of particular importance in modern

machine learning, especially when data is scarce. Model efficiency, in other words, the

expressiveness of the model, can also play a role, as a more expressive model allows for

more efficient learning and inference. Representation efficiency, or the informativeness

of the state representations for the final task, is also important in supervised learning, as

incorporating the target signal into the state representation can avoid redundancy and

improve learning efficiency. In addition, many machine learning applications must pro-

cess data streams in real time, making it critical for SSMs to adapt efficiently to the change

of dynamics of the data over time.

In this thesis, we will focus on constructing and learning SSMs that consider efficient

state representations, taking into account the aforementioned factors.
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Abrégé

Les données séquentielles font référence à des informations ordonnées en séquences, telles

que des séries temporelles, du langage naturel et des séquences d’ADN [Sammut and

Webb, 2010]. Ce type de données est courant dans de nombreuses applications d’apprentissage

automatique du monde réel, telles que la prédiction de la température de la prochaine

heure, la classification de différentes sources de texte ou le guidage d’un robot dans la

navigation.

Une approche pour modéliser les données séquentielles est l’utilisation de Modèles

d’Espace d’État (MEE). Ces modèles gèrent les données séquentielles qui impliquent des

variables ou des paramètres latents qui décrivent l’état évolutif du système. Le concept

d’espace d’état a été introduit pour la première fois dans [Kalman, 1960] et fait référence à

l’ensemble de toutes les configurations possibles d’un système.

Les représentations d’état efficaces sont cruciales dans les MEE, car elles ont un impact

sur différents aspects des performances du modèle. L’efficacité de l’échantillonnage est

particulièrement importante dans l’apprentissage automatique moderne, surtout lorsque

les données sont rares. L’efficacité du modèle, c’est-à-dire l’expressivité du modèle, peut

également jouer un rôle, car un modèle plus expressif peut nécessiter moins de paramètres

et permettre un apprentissage et une inférence plus efficaces. L’efficacité de la représentation,

ou l’informativité de la représentation de l’état pour la tâche finale, est également impor-

tante dans l’apprentissage supervisé, car l’incorporation du signal cible dans la représentation

de l’état peut éviter la redondance et améliorer l’efficacité de l’apprentissage. De plus, de

nombreuses applications d’apprentissage automatique doivent traiter des flux de données
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en temps réel, ce qui rend critique que les MEE s’adaptent efficacement à la dynamique

des données au fil du temps.

Dans cette thèse, nous nous concentrerons sur la construction et l’apprentissage de

MEE qui considèrent des représentations d’état efficaces, en tenant compte des facteurs

mentionnés précédemment.
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Chapter 1

Introduction

Many modern data science and machine learning applications, such as reinforcement

learning, language modeling, and time series predictions, involve the process of mod-

eling sequences. State space methods, leveraging models like weighted finite automata,

recurrent neural networks, and Markov decision processes, are one of the most classic

methods for such tasks. These methods often learn a model that maintains a state repre-

sentation through time, which stores sufficient knowledge for predicting the future and

outputs the final prediction via a function of the representation. Crucially, how to obtain

these state representations efficiently and effectively becomes the most important prob-

lem in terms of sequential modeling with state space models. In this thesis, we investigate

different approaches to represent the state in an efficient way that suits modern machine

learning scenarios.

Contribution to original knowledge Efficiency comes in various forms. One of these

forms is the representation efficiency w.r.t. the task. For example, in reinforcement learn-

ing, many state space models, such as predictive state representations (PSRs), learn the

state representations in an unsupervised fashion. Such a learning paradigm disconnects

the reward information from the learning of the environment model and can consequently

lead to representations that are sample inefficient and time-consuming for the final plan-
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ning task. One question one might ask is whether is it possible to connect these previously

separated phases and to what extent would this connection bring any benefit.

In Chapter 3, we show that it is possible to make such a connection and propose a

novel model that unifies the learning and planning phases of partially observable Markov

decision processes and leverage the spectral learning algorithm to recover the model.

In doing so, we empirically show on two domains that our approach is more sample

and time efficient compared to classical methods as well as deep reinforcement learning

methods. Our algorithm is closely related to the spectral learning algorithm for PSRs and

offers appealing theoretical guarantees and time complexity. This work was published in

Artificial Intelligence and Statistics Conference (AISTATs) 2020 [Li et al., 2020a].

Sample efficiency plays an important role in machine learning tasks. It is crucial es-

pecially when learning under small sample size restrictions or noisy datasets. Weighted

finite automata (WFAs) can expressively model functions defined over sequences of dis-

crete symbols. WFAs are often learned using the classic spectral learning algorithm [Hsu

et al., 2009, Bailly et al., 2010, Balle and Mohri, 2012], which has proved to be sample effi-

cient and enjoys various other properties such as consistency, and minimality. However,

WFAs can only work with discrete input variables, while many real-world applications

involve modeling sequences of continuous vectors.

In Chapter 4, we extend the classic WFAs models and the spectral learning algorithm

to work with a continuous input space (CWFAs). Moreover, we present connections be-

tween WFAs, recurrent neural networks, and tensor networks, which are often used in

quantum physics and numerical analysis. This work was first published at AISTATs

2019 [Rabusseau et al., 2019]. We then extended this conference version by including

the connection with tensor networks and published the journal version of this work in

the Machine Learning journal 2022 [Li et al., 2022b].

Another type of efficiency that one cares about is model efficiency, namely a more

compact and expressive state representation for state space models. Although spectral

learning and WFAs offer appealing learning properties, their expressivity is still limited
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as they are inherently linear models, which often results in large, sometimes infinite, state

representation sizes. Given the recent successes of nonlinear models in machine learn-

ing, it is natural to wonder whether extending WFAs to the nonlinear setting would be

beneficial.

In Chapter 5 and Chapter 6, we present nonlinear extensions of WFAs and CWFAs,

as well as the corresponding spectral learning algorithms. In these two works, we im-

prove the expressivity of the WFAs and CWFAs and give rise to a more compact and

expressive state representation. Chapter 5 was published in AISTATs 2018 [Li et al., 2018]

while Chapter 6 was published in the LearnAut workshop in 2022 [Li et al., 2022a] at the

International Colloquium on Automata, Languages and Programming (ICALP).

Many contemporary applications have a preference for a form of modeling in which

the model updates and makes predictions while receiving new data inputs. This approach

is frequently referred to as ”online learning from data streams”. The effectiveness of such

learning tasks, particularly with regard to state space models, depends on the ability of

the state representations to efficiently adapt to shifts in the distribution that frequently

occur in the sequential modeling of data streams.

In Chapter 7, with a more application-oriented flavor, we present the final contribu-

tion of this thesis: the Recurrent Real-valued Neural Autoregressive Density Estimator

(RRNADE), a flexible density-based model for online classification and density estima-

tion that automatically adapts to distribution shifts. We show that RRNADE is strictly

more expressive, in terms of density estimation, than Gaussian HMMs both theoretically

and empirically. We also show the advantages of using RRNADE for online classification

problems of streaming data through various experiments. This paper is currently in the

process of being submitted to Transactions on Machine Learning Research (TMLR)

Contribution of Authors

• Chapters 1 and 2 are written specifically for this thesis.

3



• Chapter 3 is based on conference paper (AISTATs) [Li et al., 2020a] coauthored by me

and Bogdan Mazoure, and supervised by Guillaume Rabusseau and Doina Precup.

The idea of unnormalized Q function was developed by me and Bogdan. Bogdan

conducted experiments on the S-Pocman environment and wrote the corresponding
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Chapter 2

State Space Models

One classic approach of solving problems that involve modeling system dynamics is state

space models (SSMs). The core idea of SSMs is to describe the system as an evolution of

a series of unobservable variables or parameters, the so-called states. These models are

widely applied in areas like time series prediction and classification, natural language

processing, reinforcement learning, etc. The basic approach to state space modeling as-

sumes that the development over a certain ordering of a system is determined by an

unobserved sequence of vectors h1, · · · ,hn ∈ Rk, that are associated with a sequence of

observed vectors x1, · · · , xn ∈ X, with some output series y1, · · · , yn ∈ Y, where X de-

notes the input space and Y denotes the output space. The dynamics of the state vectors

are governed by a transition function g : Rk ×X → Rk. Generally speaking, a state space

model takes the following form of computation:

ht = g(ht−1, xt) + ϵt (2.1)

yt = ψ(ht) + ηt (2.2)

where ϵt and ηt are random noises and ψ : Rk → Y is the output function. A linear SSM

is an SSM where g and ψ are linear functions and X, Y are vector spaces. Typically, an
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SSM starts with an initial state h0 and computes the hidden states and outputs recursively

based on equations 2.1 and 2.2.

There have been many developments in various types of state space models. In classic

computer science, SSMs like Finite State Machines (FSMs), or Finite State Automata (FSAs)

are widely used in compiling theory and grammatical inference. In modern machine

learning, FSMs are also used for sequential density estimation and inference, as well as

extended for problems in reinforcement learning. Recurrent neural networks (RNNs) and

their variants have been popular choices for natural language processing problems. In

this chapter, we will mainly be reviewing these two types of SSMs, i.e. finite state au-

tomata and recurrent neural networks and their variants.

2.1 Finite State Automata (FSAs)

An automaton is a simple machine used to recognize patterns with input taken from some

character set (or alphabet). Given an alphabet Σ, automata are used to model functions

over strings, i.e.

f : Σ∗ →Y,

whereY is the set of outputs. To achieve this, automata maintain a set of states, which can

be described as instantaneous descriptions of the evolving system. If we assume that a

state gives all the relevant information to determine how the system can evolve from that

point on, then modeling the dynamics can be reduced to modeling the changes of states,

which is defined as transitions in automata. Based on different properties of the states set,

transitions, and output space, we have various types of automata. If the set of states is

finite, we call the corresponding automaton a finite automaton. Examples of deterministic

finite automata, nondeterministic finite automata and weighted finite automata can be

found in Figure 2.1. In this section, we will review a series of finite automata.
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Figure 2.1: Examples of finite state automata. From left to right: DFA*, NFA†, and WFA‡.

2.1.1 Deterministic Finite Automata (DFAs)

A deterministic finite automaton (DFA) is a finite state machine that accepts or rejects

strings of symbols and only produces a unique computation (or run) of the automaton for

each input string. It computes a function that maps strings to Boolean values. Formally

speaking,

Definition 1. A DFA of size k is a structure:

M = ⟨S,Σ, δ, s, F ⟩,

where:

• S is a finite set of states and |S| = k

• s ∈ S is the initial state

• Σ is the alphabet

• δ : S× Σ→ S is the transition function

• F ⊆ S is a set of accepting states (final states)

*DFA credit: https://en.wikipedia.org/wiki/Deterministic_finite_automaton
†NFA credit: https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
‡WFA credit: https://borjaballe.github.io/emnlp14-tutorial/
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Additionally, we can extend the transition function δ into its multi-step version (over

Σ∗): δ∗ : S×Σ∗ → S, such that for some state q ∈ S, the empty string λ, some string x ∈ Σ∗

and some character a ∈ Σ, we have:

δ∗(q, λ) = q

δ∗(q, xa) = δ(δ∗(q, x), a)

Definition 2. A string x is said to be accepted by an automata M if δ∗(s, x) ∈ F and rejected

if δ∗(s, x) /∈ F .

Let B be the set of Boolean values B = {0, 1}. Denote the function fM : Σ∗ → B as the

function realized by the automaton M . Given a string x ∈ Σ∗, the function over strings

realized by a DFA is defined as the following:

fM(x) =

 1 δ∗(s, x) ∈ F

0 δ∗(s, x) /∈ F
(2.3)

In fact, every finite automaton defines a function over strings. However, the reverse

case is not always true. For a function fM , if it can be realized by some finite automaton

M , we call fM a rational function. In the following text, without specifying, we will always

use fM to denote a rational function realized by a finite automaton M .

2.1.2 Nondeterministic Finite Automata (NFAs)

A Nondeterministic Finite Automaton (NFA) is a mathematical model for computation

and a crucial idea in the theory of computation and automata. It is a type of finite au-

tomaton that allows multiple possible computations for a single input symbol, making

its computationally non-deterministic. NFAs offer multiple transition paths for a given

input, enabling more flexible computations. This concept is widely utilized in computer

science, serving as a foundation for the design and analysis of algorithms, including com-
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pilers, lexical analyzers, and pattern recognition systems. As a building block for more

intricate computational models, NFA is an important tool for comprehending the theo-

retical foundations of computer science. Formally speaking, NFAs have the following

definition

Definition 3. An NFA of size k is a five-tuple:

N = ⟨S,Σ,∆, s, F ⟩

where:

• S, Σ and F follow the definitions in definition 1

• ∆ is the transition function ∆ : S× Σ→ 2S, where 2S denotes the power set of S

• s is the initial state

The behavior of a NFA is determined by the input symbols and the transition function.

For a given input string x = x1, · · · , xn, the NFA computes a set of possible computations,

each represented as a sequence of states from s to a state in F . The NFA accepts the input

string x1, · · · , xn if there exists a computation such that the sequence of states ends in an

accepting state. Define ∆∗ : S × Σ∗ → 2S and let ∆∗(q, x) be the set of all states reachable

from state q by consuming the string x. Then the function computed by an NFA is:

fN(x) =

 1 ∆∗(s, x) ∩ F ̸= ∅

0 otherwise
(2.4)

where ∆∗(q, λ) = {q} and ∆∗(q, xσ) =
⋃

q′∈∆∗(q,x) ∆(q′, σ), for all x ∈ Σ∗, σ ∈ Σ.

2.1.3 Weighted Finite Automata (WFAs)

Weighted finite automata (WFAs) are finite state machines that extend traditional finite

automata with the ability to assign weights or costs to transitions between states. The
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weights can represent a wide range of information, such as the likelihood of a transition

occurring, the cost of processing a symbol, or the confidence of a prediction. WFAs can

be used to model and solve a variety of computational problems, such as language recog-

nition, string matching, and optimization. Formally speaking, a WFA is defined as the

following:

Definition 4. A WFA of size k is a tuple A = ⟨Σ,α,ω, {Aσ}σ∈Σ⟩, for the set of real numbers

R †:

• Σ is an alphabet

• α ∈ Rk is the initial states weights

• ω ∈ Rk is the final states weights

• Aσ ∈ Rk × Rk is the transition weights for each σ ∈ Σ

• k is the number of states

A WFA computes a function fA : Σ∗ → R defined for each word x = x1x2 · · ·xn ∈ Σ∗

by

fA(x) = α⊤Ax1Ax2 · · ·Axnω

Let Ax = Ax1Ax2 · · ·Axn , we have fA(x) = α⊤Axω as its simplified form.

In fact, WFAs are closely related to many models that we are familiar with, such as

stochastic finite automata (SFAs), observable operator models (OOMs), hidden Markov

models (HMMs), as well as predictive state representations (PSRs). In the following sec-

tions, we will introduce these models.
†In the literature WFAs are usually defined over a semiring. In the context of machine learning, how-

ever, a field algebra structure provides more useful convenience. Normally we set this field to be the real
numbers R.

10



2.1.4 Stochastic Languages and Probabilistic Finite Automata

A stochastic language defines a distribution over all possible strings given an alphabet Σ.

Formally we have the following definition.

Definition 5. A function f : Σ∗ → R is a stochastic language if
∑

x∈Σ∗ f(x) = 1 and ∀x ∈ Σ∗,

0 ≤ f(x) ≤ 1.

Stochastic language modeling has been applied to many fields. Apart from speech

recognition, language models are also essential for optical character recognition [Mori

et al., 1992] and language translation [Berger et al., 1994]. Statistical techniques related to

those used in language modeling can also be applied to language understanding [Pierac-

cini et al., 1993].

One can find a subclass of WFA such that the realized functions are stochastic lan-

guages. This subclass of WFA is referred to as stochastic WFA (SFA). In other words,

given a WFA A and its function fA, if
∑

x∈Σ∗ fA(x) = 1 and fA(x) ≥ 0 for all x ∈ Σ∗, then

A is an SFA. A stochastic language is rational if it can be realized by an SFA.

However, it turns out the learning algorithm we will discuss later does not always

return a valid SFA. In fact, even checking if a WFA is stochastic is an undecidable prob-

lem [Denis and Esposito, 2008]. Although we can still approximate a stochastic language

using the algorithm to construct a WFA, the learned WFA can produce some unexpected

values for a stochastic language (negative values or values larger than one). Alternatively,

one can consider methods that will produce a WFA that is stochastic by construction, for

example, a probabilistic automaton (PFA).

Definition 6. A PFA of size k is a tuple:

Mp = ⟨Σ,α, {Aσ}σ∈Σ,ω⟩

where:

• Σ is an alphabet
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• α ∈ Rk
+

‡ is the initial states probability

• ω ∈ Rk
+ is the final states probability

• Aσ ∈ Rk
+ × Rk

+ is the transition probability for each σ ∈ Σ

•
∑

i αi = 1

•
∑

σ∈Σ
∑k

j=1(Aσ)i,j + ωi = 1 for i = 1, 2, · · · , k

•
∑k

j (Aσ)i,jωj > 0 for σ ∈ Σ and i = 1, 2, · · · , k

Given a string x = x1x2 · · ·xn ∈ Σ∗, a PFA computes the function of

fMp(x) = α⊤Ax1Ax2 · · ·Axnω.

One can immediately see that a PFA defines a distribution over Σ∗, thus a stochastic lan-

guage. We can also find the interpretation of the model’s parameters: α can be interpreted

as probabilities of starting in each state, {Aσ}σ∈Σ define a collection of transition proba-

bilities between states, while ω defines the corresponding stopping probabilities for each

state.

2.2 Stochastic Processes, HMMs and OOMs

In this subsection, we will discuss hidden Markov models (HMMs), stochastic processes,

and observable operator models (OOMs). It turns out that HMMs are equivalent to PFAs

with no final states and OOMs are a generalization of HMMs.

2.2.1 Hidden Markov Models (HMMs)

The theory of hidden Markov models (HMMs) were developed in the 60s [Baum and

Petrie, 1966], and it soon became popular in many applications, including speech recog-

‡R+ denotes the set of non-negative real numbers
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nition [Huang et al., 1990], financial mathematics [Elliott et al., 2002], astronomy [Berger,

1997], biological sequence analysis [Durbin et al., 1998, Li et al., 2013].

Definition 7. Let ht denote the state at time step t, and xt denote the observation at time step t.

An HMM with k states can be defined as a tuple:

Mh = ⟨S,Σ,T,O, π⟩

• S is a set of possible states of size k.

• Σ is an alphabet containing all the possible observations.

• T ∈ Rk×k is the state transition probability matrix: Ti,j = P(ht+1 = j|ht = i).

• O ∈ R|Σ|×k is the observation probability matrix: Oi,j = P(xt = i|ht = j).

• µ ∈ Rk is the initial state distribution: πi = P(h0 = i).

An HMM defines a probability distribution over sequences of hidden states (ht) and

observations (xt). In an HMM, we assume that the underlying process follows the Markov

property. That is, the current state ht only depends on the previous state ht−1. Formally

speaking, we have P(ht|ht−1, · · · , h1) = P(ht|ht−1).

There are three basic problems we need to solve for any HMM:

• Evaluation problem: Given the observation sequence x1x2 · · ·xn and the model Mh,

how do we efficiently compute the probability P(x1x2 · · ·xn)?

• Inference problem: Given the observation sequence x1x2 · · ·xn and the modelMh, how

do we choose a corresponding state sequence h1h2 · · ·hn which best explains the

observations?

• Learning problem: How do we adjust the model parameters, more precisely T,O, π

to maximize the likelihood of the observations.
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There have been many solutions to these three problems. Among them, the classical

solutions are the forward algorithm [Juang and Rabiner, 1991] for the evaluation prob-

lem, Viterbi algorithm [Viterbi, 1967] for the inference problem and the Baum-Welch al-

gorithm [Baum and Eagon, 1967] for the learning problem.

Intuitively from their definitions, HMMs and PFAs share some similarities. In fact, for

any σ ∈ Σ let us define Oσ = diag(Oσ,1,Oσ,2, · · · ,Oσ,k), then define

Bσ = TOσ

then we have

P(x1x2 · · · xn) = µ⊤Bx1Bx2 · · ·Bxn1k

where 1k is an all-ones vector of size k. One can observe that this form of an HMM

is very similar to a WFA and a PFA. In fact, [Dupont et al., 2005] shows that for any

HMM, there exists an equivalent PFA with no final probabilities. Note the terminology

”no final probabilities” does not mean ω = 0k, but means the automaton has no final

states, i.e. they will continue evolving forever. To evaluate the probability of a sequence,

however, we do need to sum up all the possible sequences of states weighted by their

probabilities. Moreover, by leveraging the transformation from a PFA into an HMM, we

have the following theorem:

Theorem 1 ([Dupont et al., 2005]). HMMs are equivalent to probabilistic finite automata with

no final probabilities.

2.2.2 Stochastic Processes and Observable Operator Models

A stochastic process is a mathematical model that describes a time-evolving sequence of

random variables. It can be thought of as a collection of random variables defined over

a common index set, typically the set of natural numbers or real numbers. The value of a

stochastic process at any given time point is a random variable and the values at different
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time points are assumed to be dependent. The behavior of the process is determined by

its probability distribution over the possible sequences of values over time. Stochastic

processes are widely used in various fields, including finance, physics, and engineering,

to model phenomena that exhibit random behavior over time. In this chapter, our focus

will be solely on discrete-time and discrete-valued stochastic processes, meaning that the

index set is the set of natural numbers and each random variable has a discrete value.

Formally, we have the following definition.

Definition 8. Given an alphabet Σ, a (discrete-time and discrete-valued) stochastic process is a

function f : Σ∗ → [0, 1] such that f(λ) = 1 and f(x) =
∑

σ∈Σ f(xσ) for all x ∈ Σ∗ and σ ∈ Σ.

Modeling an arbitrary stochastic process has been shown difficult for HMMs [Thon

and Jaeger, 2015], as the state process might not be Markovian. To tackle this problem, the

observable operator models (OOMs) [Jaeger, 1997] as a concise algebraic characterization

of stochastic processes. Compared to HMMs, OOMs concentrate on the observations

themselves, considering the model trajectory as a sequence of linear operators rather than

of states.

Definition 9 ([Thon and Jaeger, 2015]). An observable operator model (OOM) is a linear SSM

M such that fM is a stochastic process. The rank of an OOM is defined to be the size of the state

vector of M .

One can check that any HMM can be converted into an OOM and this conversion can

yield an OOM of a smaller size than the HMM [Jaeger, 2000]. Moreover, there are exam-

ples of OOMs of finite rank that cannot be modeled by any HMM with a finite number

of states [Thon and Jaeger, 2015] such as the ”probability clock” problem [Jaeger, 1998].

Therefore, OOMs are strictly more expressive than HMMs and are indeed a generaliza-

tion of HMMs.
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2.3 Markov Decision Processes and Predictive State Repre-

sentations

In this subsection, we will discuss WFAs constrained on another type of dynamical sys-

tem: controlled processes. One of the most famous models of such a system is the Markov

Decision Process (MDP), which is a popular model in reinforcement learning. MDPs of-

ten model fully observable environments, where the agent can directly observe the state.

However, in many real-world examples, partial observability is often assumed, where

the agent only obtains partial information about the environment. Partially Observable

Markov Decision Processes (POMDPs) were developed for this case, as well as a more

general model, Predictive State Representations (PSRs).

2.3.1 Controlled Process

Controlled processes are mathematical models that capture the behavior of systems that

can be impacted by external control variables. These control variables are utilized to mod-

ify the system’s behavior with the aim of achieving a specific objective, such as stability,

optimization, or regulation. A discrete-valued controlled process Sc with actions from A

and observations from O is a stochastic process governed by actions.

Definition 10. A (discrete-valued discrete-time) controlled process with action set A and obser-

vation set O is a function fc : (A ×O)∗ → [0, 1] such that

• fc(λ) = 1

• ∀x ∈ (A ×O)∗, ∀a ∈ A, we have fc(x) =
∑

o∈O fc(xao)

For controlled processes, intuitively, we can consider there are two stochastic pro-

cesses f o and fa, for observations and actions respectively. Then one can view fc as the

probabilities of a sequence of observations given a sequence of actions, that is,

P(o1o2 · · · on|a1a2 · · · an).
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Following the correlation between OOMs and stochastic processes, the so-called input-

output OOMs (IO-OOMs) [Jaeger, 1998] are linear SSMs that computes controlled pro-

cesses. In addition, predictive state representations (PSRs) [Littman and Sutton, 2002] are

equivalent to IO-OOMs. In the next subsections, we will introduce MDPs, POMDPs, and

PSRs.

2.3.2 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) [Bellman, 1957b] are the core models for solving re-

inforcement learning (RL) tasks. Typically, a reinforcement learning task consists of an

agent and an environment. At any point in time, the agent is in a given state of the envi-

ronment. The agent then proceeds to interact with the environment via actions to obtain

or infer information of the environment. The agent obtains a reward after accomplishing

certain tasks in the environment. An MDP provides a mathematical tool to describe the

environment and how the agent interacts with it. Formally speaking:

Definition 11. An MDP of size k is a tuple ⟨S,A,P,R,µ⟩ where

• S: set of states, |S| = k;

• A: set of actions;

• Psas′ = P(St+1 = s′|St = s, At = a) : S×A ×S→ [0, 1] is the transition tensor;

• Rsa = R(s, a) : S×A → R is the reward matrix;

• µ = P(s0) : S→ [0, 1] is the initial state distribution.

The goal of an RL task is often to learn a policy that governs the actions of the agent

to maximize the accumulated discounted rewards (return) in the future. A stochastic policy

in an MDP environment is defined as Π ∈ [0, 1]S×A. Π operates at the state level. At

each timestep, the optimal action is selected probabilistically with respect to Π given

the state of the current step. The agent then moves to the next state depending on the
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corresponding transition matrix indexed by a and collects potential rewards from the

state.

2.3.3 Partially Observable Markov Decision Processes (POMDPs)

In MDPs, we assume that the environment is fully observable. This means that at any

time, the agent can directly obtain the state it is currently in. However, in many real-life

applications, such as robot navigation and the game of poker, this is not possible. One

generalization of MDPs is to assume partial observability instead, which gives rise to the

model of Partially Observable Markov Decision Processes (POMDPs). Under POMDP, the

underlying dynamics are still governed by MDPs, but the agent cannot directly observe

the state. Instead, the agent obtains observations which are determined by the state (and

the action) at the corresponding time step. Formally, we have:

Definition 12. A POMDP of size k is a tuple ⟨S,A,O,P,R,O,µ⟩ where

• S: set of states, |S| = k;

• A: set of actions;

• O: set of observations;

• Psas′ = P(St+1 = s′|St = s, At = a) : S×A ×S→ [0, 1] is the transition tensor;

• Osao = P(Ot = o|St = s, At = a) : S×A ×O is the emission tensor;

• Rsa = R(s, a) : S×A → R is the reward matrix;

• µ = P(s0) : S→ [0, 1] is the initial state distribution.

As the agent cannot directly observe which state it is at, one classic problem in POMDP

is to compute the belief state b(h) ∈ Rk knowing the past trajectory h. Formally, given

h = a1o1 · · · anon ∈ (A × O)∗, we want to compute b(h)⊤ = [P(s1|h), · · · ,P(sk|h)]⊤.

This can be solved with a forward method similar to HMM [Juang and Rabiner, 1991].
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Let Õao = diag(Os1,a,o,Os2,a,o, · · · ,Osk,a,o), M̃a = diag(Πs1,a,Πs2,a, · · · ,Πsk,a) and denote

Eao = M̃aP:,a,:Õao, where P:,a,: ∈ RS×S is a matrix where (P:,a,:)ij = Piaj, ∀i, j ∈ S. It

can be shown that b(h)⊤ = µ⊤Ea1o1 · · ·Eanon and b(λ) = µ⊤, where λ denotes the empty

string.

Similarly to the MDP setting, the state-level policy for POMDPs is defined by Π ∈

[0, 1]S×A, where Πs,a = P(a|s). However, due to partial observability, the agent’s true

state cannot be directly observed. Nonetheless, any state-level policy implicitly induces

a probabilistic policy over past trajectories, defined by Π(a|h) =
∑

s∈S P(s|h)Πs,a for each

h ∈ (A ×O)∗. Similarly, every state-level policy induces a probabilistic distribution over

trajectories. With a slight abuse of notation, denote the probability of a trajectory h under

the policy Π by PΠ(h). Here, we assume Π is induced by a state-level policy Π and define

PΠ(h) = b(h)⊤1, where 1 is an all-one vector. To make clear the notations, we will use

π : Σ∗ → A for deterministic policies in the later chapters.

2.3.4 Predictive State Representations (PSRs)

Predictive State Representations (PSRs) are a representation of POMDPs that uses a pre-

diction of the future state of the system, based on past observations and actions, to make

decisions. PSRs are compact representations of POMDPs that can be used to efficiently

solve decision-making problems. One important notion for PSRs is the concept of history

and test. This is similar to the notion of prefixes and suffixes in the context of WFAs,

which we will introduce shortly. In the following definitions, we will define history and

test, as well as the core test set. We will then give the definition of PSRs.

Definition 13. Given a set of actions A and a set of observations O, denote the set of sequences

(A ×O)∗ by Σ∗
c . Then the set of history is defined by R = {s : s = x1 · · · xi, ∀x ∈ Σ∗

c and i =

1, · · · , |x|}, where |x| denotes the length of the sequence x. Similarly, the set of test is defined

by S = {s : s = xi · · ·x|x|, ∀x ∈ Σ∗
c and i = 1, · · · , |x|}. For a history r ∈ R, an extended

history of r given some action a ∈ A and its corresponding observation o ∈ O is rao.
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Definition 14 ([Littman and Sutton, 2002]). Given a subset of the tests set of size k: q ⊂ S,

then we have the vector fq(·) = [P(q1|·),P(q2|·), · · ·P(qk|·)]⊤. The set q is a core test set of

size k if and only if for any r ∈ R, it forms a sufficient statistic for r, i.e., there exists a collection

of functions ζq : Rk → R for any q ∈ S such that:

P(q|r) = ζq(fq(r)) ∀r ∈R

In this thesis, we will only consider the linear case, that is, the function ζq is a linear function. We

call {ζq|q ∈ S} prediction functions.

Definition 15. A linear predictive state representation (PSR) of size k is a tuple ⟨A,O,q,L, l1⟩:

• A is a set of actions.

• O is a set of observations.

• q ⊆ S is a set of core tests of size k.

• L ∈ RS×q is a set of linear prediction functions (matrix).

• l1 = fq(λ) is the initial vector, where λ denotes the empty sequence. For r ∈R and q ∈ S

It can be checked that given an arbitrary POMDP, one can construct a PSR from the

POMDP that produces the same probability distribution over histories as the POMDP

model. Moreover, the constructed PSR is no more complex than the POMDP in terms of

its size [Littman and Sutton, 2002, Singh et al., 2004]. This means that PSRs are at least

as expressive as POMDPs. In addition, the following theorem [Thon and Jaeger, 2015]

shows that PSRs are a special case of WFAs.

Theorem 2 ([Thon and Jaeger, 2015]). Let a linear PSR consisting of k core tests qi ∈ S,

prediction functions L and an initial state l1. Then an equivalent WFA A = ⟨α, {Aσ}σ∈Σ,ω⟩ is

obtained by setting α = l1, ω =
∑

o∈O Lao,: and Aσ = [L⊤
σq1,:

,L⊤
σq2,:

, · · · ,L⊤
σqk
, :]⊤
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Learning a PSR can be divided into two stages. First, the discovery problem: choose

a sufficient set of test q; second, the learning problem: learn PSR parameters. For the

discovery problem, one can simply solve it in a greedy fashion, that is grouping all the

linearly independent q ∈ S to create the core test set q.

Although this algorithm gives a good solution to the discovery problem of PSRs, when

the size of the set S is too big, it can be time-consuming. Furthermore, in many real-

world scenarios, noise in the data can pose additional challenges to this approach. It

is easy to see that by using this greedy algorithm, one is essentially selecting the basis

for the test space. Therefore, instead of explicitly finding the basis, transformed predictive

state representations (TPSRs) [Rosencrantz et al., 2004, Boots et al., 2011] offer an alternative

solution. TPSRs implicitly estimate a linear transformation of the PSR via subspace-based

approaches. This approach drastically reduces the complexity of estimating a PSR model

and has shown many benefits, such as consistency and sample efficiency in various RL

domains [Boots et al., 2011, Singh et al., 2004].

Indeed, this approach is able to obtain a small transformed space of the original PSRs,

however, it still faces scalability issues. Typically, one can obtain an estimate of TPSR by

performing truncated SVD on the estimated system-dynamics matrix [Singh et al., 2004],

which is indexed by histories and tests. The scalability issue arises in complex domains,

which require a large number of histories and tests to form the system-dynamics matrix.

As the time complexity of SVD is cubic in the number of histories and tests, the compu-

tation time explodes in these types of environments.

Compressed predictive state representations (CPSRs) [Hamilton et al., 2013] were in-

troduced to circumvent this issue. The main idea of this approach is to project the high di-

mensional system-dynamics matrix onto a much smaller subspace spanned by randomly

generated bases that satisfy the Johnson-Lindenstrauss (JL) lemma [Johnson and Linden-

strauss, 1984]. The projection matrices corresponding to these bases are referred to as JL

matrices. Intuitively, JL matrices define a low-dimensional embedding which approxi-

mately preserves Euclidean distance between projected points. More formally, given a
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matrix H ∈ Rm×n and JL random projection matrices Φ1 ∈ Rm×d1 and Φ2 ∈ Rn×d2 , the

compressed matrix Hc is computed by:

Hc = Φ⊤
1HΦ2

where Hc is the compressed matrix. The choice of random projection matrix is rather em-

pirical and often depends on the task. Gaussian matrices [Baraniuk and Wakin, 2009] and

Rademacher matrices [Achlioptas, 2003] are common choices for the random projection

matrices that satisfy JL lemma. Asides from these classic choices, hashed random pro-

jections, although do not satisfy the JL lemma, have also been shown to preserve certain

kernel functions and perform extremely well in practice [Weinberger et al., 2009, Shi et al.,

2009].

2.4 Spectral Learning Algorithm for WFAs

Spectral learning is a powerful and widely-used class of algorithms for learning models

from data, particularly in the context of sequential data. This approach has been success-

ful in various fields, including natural language processing, recommendation systems,

and state space modeling. In state space modeling, spectral learning algorithms are par-

ticularly useful for learning the underlying structure of systems that evolve over time and

involve latent variables or parameters, such as HMMs [Hsu et al., 2009] and PSRs [Singh

et al., 2004, Boots et al., 2011]. The resulting models can then be used for tasks such as

prediction, filtering, and smoothing of the system. The name ”spectral” comes from the

fact that these types of algorithms often leverage singular value decomposition (a type of

spectral decomposition) on a given matrix that describes the system dynamics. One of

the natural choices of such a matrix is the so-called Hankel matrix for WFAs. In fact, given

a WFA A realizing a function f , we can always obtain its corresponding Hankel matrix

Hf . However, is the reversed case also true, i.e. given a Hankel matrix Hf of a function

22



f , can one always find a WFA realizing f? In this section, we will tackle this problem by

introducing the duality result from [Fliess, 1974, Carlyle and Paz, 1971, Hsu et al., 2009,

Bailly et al., 2010, Balle Pigem et al., 2013].

2.4.1 Functions over Strings and Hankel Matrices

Previously, we have introduced the notion of functions over strings, i.e. f : Σ∗ → Y to

the output space Y. In this section, we will constrain Y to be the set of real numbers, i.e.

f : Σ∗ → R. One useful definition for the discussion of the remaining thesis is the rank of

the function.

Definition 16. The rank of a function over strings: f : Σ∗ → R is defined as the minimal number

of states of a WFA that computes the function f . If f is not rational, then rank(f) =∞.

The Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a function f : Σ∗ → R is the bi-infinite

matrix with entries (Hf )u,v = f(uv) for all words u, v ∈ Σ∗, where uv is the concatenation

of the prefix u and the suffix v. We can see Hf as a matrix indexed by prefixes and suffixes.

To see this, let us denote the one-hot encoding for the prefix u and suffix v by u ∈ BΣ∗ and

v ∈ BΣ∗ , respectively, then we have (Hf )u,v = u⊤Hfv.

The Hankel matrix is a redundant way to represent the function. Observe that for any

u and v, (Hf )u,v has appeared |uv|+1 times in the matrix. Despite that the Hankel matrix

is a redundant way to represent the function, for a Hankel matrix Hf , it fully characterizes

its corresponding function f in the sense that for any u, v ∈ Σ∗, one can always find the

value of f(uv) in Hf .

In practice, it is common to only consider finite sub-blocks of the bi-infinite Hankel

matrix. As the Hankel matrix is indexed by prefixes and suffixes, we can therefore extract

the rows indexed by a set of prefixes U and the columns indexed by a set of suffixes V to

form up a sub-block HB ∈ RU×V, where B is called a basis B = (U,V). By definition,

we have (HB)u,v = (Hf )u,v = f(uv), for u ∈ U and v ∈ V. In addition, since HB is a

sub-block of Hf , we have rank(HB) ≤ rank(Hf ). We are especially interested in the full
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rank case where rank(HB) = rank(Hf ). We call the basis of such sub-blocks complete for

the function f , and the sub-block is a complete sub-block of Hf .

2.4.2 Duality between minimal WFA and Hankel matrix

In this subsection, we will show that there exists a connection between the rank factor-

ization of Hf and the minimal WFA A computing f , for a rational function over strings

f , and its Hankel matrix Hf . This relation is the core motivation of the spectral learning

algorithm that we will be presenting later. To start off, we have the following theorem

illustrating the connection between the size of A and the rank of the Hankel matrix Hf .

Theorem 3 ([Carlyle and Paz, 1971, Fliess, 1974]). A function f : Σ∗ → R can be computed

by a WFA iff rank(Hf ) is finite and in that case rank(Hf ) is the minimal number of states of any

WFA A such that f = fA

The above theorem shows a strong relationship between Hankel matrix and WFA.

More specifically, for a basis B if rank(HB) = rank(Hf ), then we will be able to find

the required number of states for a WFA by looking at the rank of the Hankel matrix.

Moreover, one can leverage HB to recover the WFA realizing f , which is at the core of the

spectral algorithm.

One initial observation is that a WFA A naturally induces a factorization of Hf . Given

a WFA A = ⟨α, {A}σ∈Σ,ω⟩ and the Hankel matrix Hf corresponding to the function f

that A realizes, define P ∈ RΣ∗×k,S ∈ Rk×Σ∗ , where Pu,: = α⊤Au and S:,v = Avω for

u, v ∈ Σ∗. One can easily check that Hf = PS. This factorization also holds for the

sub-block of Hf , i.e. given a basis B = (U,V), we can construct PB,SB in the above

fashion so that HB = PBSB. This rank k factorization HB = PBSB can also be seen

as finding a low dimensional representation (PB)u,: ∈ Rk for each prefix u, from which

the original Hankel representation (HB)u,: can be recovered using the linear map S (indeed

(HB)u,: = (PB)u,:SB). In the following text, we will use the notation H as the complete

sub-block matrix HB to simplify the notation. Besides of the sub-block matrix H, we are
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also interested in the series of matrices Hσ, where (Hσ)u,v = f(uσv) = Huσ,v, and σ ∈ Σ.

By a similar construction, one can verify that Hσ = PBAσSB.

This observation naturally poses a question: is the converse also true? That is, given

a rank factorization of a complete sub-block of Hf , can we find a WFA that computes the

function f? The answer is indeed positive and we have the following theorem.

Theorem 4 ([Balle Pigem et al., 2013]). Let H be a sub-block of Hf and rank(H) = rank(Hf ),

let H = PS be a rank factorization. Then a WFA A = ⟨α, {Aσ}σ∈Σ,ω⟩ is a minimal WFA

computing f , where α⊤ = Pλ,:, ω = S:,λ and Aσ = P†HσS
†, and † denotes Moore–Penrose

pseudoinverse.

This theorem shows the duality between rank factorization of complete sub-blocks of

Hankel matrix and the corresponding minimal WFA of f . In addition, one can check that

all minimal WFA for a function f can be transformed between each other via some change

of basis [Balle et al., 2014a]. This theorem gives rise to the spectral learning algorithm of

WFA which leverages a decomposition of the Hankel matrix.

2.4.3 Spectral Learning Algorithm for WFAs

The spectral learning algorithm, relying on the matrix factorization, can be derived from

the proof of Theorem 4. Suppose f : Σ∗ → R is an unknown function of finite rank k

and we want to compute a minimal WFA for this function. For a basis B = {U,V},

assume that we are given an estimate Ĥ of the hankel matrix H ∈ RU′×V′ and its sub-

blocks (Ĥσ)σ∈Σ, where U′ = {λ} ∪ U and V′ = {λ} ∪V. Then, we only need one rank

factorization of Ĥ to be able to apply the algorithm.

Recall that the rank k compact SVD of Ĥ ∈ RU′×V′ is given by the expression Ĥ =

UDV⊤, where U ∈ RU′×k and V ∈ RV′×k are left and right singular vectors, the diagonal

matrix D ∈ Rk×k contains all the corresponding singular values.

Now that we have obtained the rank factorization of Ĥ, we can give the spectral learn-

ing algorithm for WFAs. The algorithm is illustrated in Algorithm 1. One side note is that
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this spectral learning method is essentially the same as [Bailly et al., 2009] as well as [Hsu

et al., 2012], where [Bailly et al., 2009] proposed a principal component analysis based

method from a language learning perspective, while [Hsu et al., 2012] proposed the algo-

rithm for HMMs.

The spectral learning algorithm enjoys various nice properties. First and foremost,

the solution offered by the spectral learning algorithm is a closed-form one. With only

the rank as the hyperparameter, the tuning process of the spectral algorithm is greatly

simplified compared to iterative methods. Secondly, if we have the exact complete sub-

block of the Hankel matrix Hf and the function f is rational, then the WFA returned by the

spectral algorithm is guaranteed to be the minimal WFA that computes the function [Balle

et al., 2014a]. In other words, one cannot find another WFA with a smaller state size

that computes the same function. It has also been shown there is a strict convergence to

the ground truth model with an increasing amount of samples (consistency) [Balle et al.,

2014b]. Last but not least, various PAC bounds are derived, often polynomial w.r.t. the

lengths of the sequences [Hsu et al., 2009, Balle and Mohri, 2012], showing the sample

efficiency of the method.

Algorithm 1 Spectral Learning Algorithm for WFAs

Input:
A collection of the estimated sub-blocks of the Hankel matrix of the function f:
(Ĥσ)σ∈Σ and Ĥ.

Output:
A WFA A = ⟨α, {A}σ∈Σ,ω⟩

1: Perform compact SVD on Ĥ:
Ĥ = UDV⊤

2: Recover the WFA realizing the function f :

α̂ = (UD)λ,:

ω̂ = V⊤
:,λ

Âσ = (UD)†ĤσV
⊤

3: return Â = ⟨α̂, {Â}σ∈Σ, ω̂⟩
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2.4.4 Hankel Matrix Construction

By definition, one can fill the whole Hankel matrix with the corresponding function val-

ues. However, in practice, for an arbitrary function f : Σ∗ → R, it is hard to obtain a good

estimation of a complete sub-block HB. This comes in two-folds: First, the basis B is not

trivial to find; second, there might be missing values in the sub-block due to the lack of

data.

Finding the basis is of great importance as one cannot recover the function through the

spectral learning method if the basis is not complete. A common choice is the basis of the

form U = V = Σ≤l for some l > 0 [Hsu et al., 2009], where Σ≤l = {w|w ∈ Σ∗, |w| ≤ l}. One

other approach is to choose a basis that contains the most frequent elements observed in

the samples [Balle et al., 2014a]. This can be either strings, prefixes, suffixes or substrings.

Another way is to use the largest Hankel matrix possible given the input data by building

a basis with every prefix and suffix seen in the sample [Bailly et al., 2009]. Note that this

approach can be unfeasible due to the amount of prefixes and suffixes being too big.

For a stochastic WFA, we are indeed modeling a stochastic language, i.e. f defines a

distribution over strings. Then under this scenario, the Hankel matrix construction and

the missing values are easy to deal with. By using the empirical frequencies of the strings

appearing in the dataset as estimates, we can approximate the true Hankel matrix. Given

a set of strings W = {w1, w2, · · · , wn}, we can estimate the Hankel matrix by:

(ĤB)u,v =
#(uv appears inW)

n

In this case, even when there are missing values in the estimated Hankel matrix, since the

increasingly large samples yield uniformly convergent estimates for these probabilities, it

can be safely assumed that the probability of any string from B not present in the samples

is zero. In fact, it has been shown that this estimate is very close to the true Hankel matrix

given enough samples. For ĤB, the following condition holds with high probability [Hsu
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et al., 2009]:

∥HB − ĤB∥F ≤ O(
1√
n
),

where n is the number of i.i.d. strings from some distribution over Σ∗.

For a WFA that computes an arbitrary function, however, it is difficult to apply this

treatment. The values assigned by the WFA to an unseen example is unknown. In ad-

dition, one cannot expect that a sample set would contain values of the target function

for all the strings in B, especially under this setting we cannot simply assign zero to the

missing values. To tackle this problem, [Balle and Mohri, 2012] proposed a method based

on matrix completion. The core idea is to use a constrained matrix completion method to

recover the Hankel matrix that has many missing values. Then decompose the recovered

Hankle matrix and proceed with the spectral learning routine.

2.5 Recurrent Neural Networks

While linear state space models, such as weighted finite automata, have shown promise

in modeling sequential data, their limitations become apparent as the complexity of the

data increases. As a result, researchers have turned to more expressive models, such

as recurrent neural networks (RNNs), which have the ability to capture complex temporal

dependencies in data. These models have gained popularity in many machine learning

applications, including natural language processing, speech recognition, and computer

vision, due to their ability to effectively model sequential data. In fact, WFAs and RNNs

can be seen as two ends of the spectrum in terms of their expressiveness and complexity.

On the one hand, WFAs provide a compact and interpretable representation of sequen-

tial data that is linear and can be learned efficiently using spectral learning algorithms

and comes with theoretical guarantees. On the other hand, RNNs are highly expressive

and can capture complex nonlinear dependencies in sequential data, but can be difficult

to train and interpret. In addition, due to the strong non-convexity, it is difficult to ob-

tain theoretical results in RNNs learning. Understanding the connection between these
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two types of models can lead to new insights into the nature of sequential data and the

development of more effective learning algorithms. Later in Chapter 4, we will further

showcase this connection.

Formally speaking, RNNs are a class of neural networks designed to handle sequen-

tial data. An RNN takes as input a sequence (of arbitrary length) of elements from an

input space X and outputs an element in the output space Y. Thus an RNN computes a

function from X∗, the set of all finite-length sequences of elements of X, toY. In most ap-

plications, X is a vector space, typically Rd. When the input of the problem is sequences

of symbols from a finite alphabet Σ, then the so-called one-hot encoding is often used to

embed Σ into R|Σ| by representing each symbol in Σ by one of the canonical basis vectors.

Definition 17. Let X and Y be the input and output space, respectively. A recurrent model

with n states is given by a tuple R = (g, ψ,h0) where g : X × Rn → Rn is the recurrent

function, ψ : Rn → Y is the output function and h0 ∈ Rn is the initial state. A recurrent

model R computes a function fR : X∗ →Y defined by the (recurrent) relation:

fR(x1x2 · · · xk) = ψ(hk) where ht = g(xt,ht−1) for 1 ≤ t ≤ k

for all k ≥ 0 and x1, x2, . . . , xk ∈ X.

Many architectures of recurrent neural networks have been proposed and used in

practice. The difference of many kinds of recurrent models often resides in the transi-

tion functions. In this section, in addition to the first-order (vanilla) RNN, we will cover

three variants of the recurrent model, namely the second-order recurrent neural networks

(2-RNNs), the long short-term memory networks (LSTMs) as well as the gated recurrent

unit networks (GRU), where each of these models has its own different transition func-

tion.

Definition 18. A first-order RNN (or vanilla RNN) with n states (or, equivalently, n hidden

neurons) is a recurrent modelR = (g, ψ,h0) with input space X = Rd and output spaceY = Rp.
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It computes a function fR : (Rd)∗ → Rp defined by fR(x1, . . . ,xk) = ψ(hk), where the recurrent

and output functions are defined by

ht = g(xt,ht−1) = zrec(Uxt +Vht−1) and yt = ψ(ht) = zout(Wht).

The parameters of a first-order RNN are:

• the initial state h0 ∈ Rn,

• the weight matrices U ∈ Rn×d, V ∈ Rn×n and W ∈ Rp×n,

• the activation functions zrec : Rn → Rn and zout : Rp → Rp.

For the sake of simplicity, we omitted the bias vectors usually included in the defini-

tion of first-order RNN. Note however that this is without loss of generality when zrec is

either a rectified linear unit or the identity (which will be the cases considered in this the-

sis). Indeed, for any recurrent model with n states R = (g, ψ,h0) with input space X = Rd

and output space Y = Rp defined by

ht = g(xt,ht−1) = zrec(Uxt +Vht−1 + b) and ψ(ht) = zout(Wht + c)

one can append a 1 to all input vectors, x̃t = (xt 1)
⊤, and define a new recurrent model

with n + 1 states R̃ = (g̃, ψ̃, h̃0) with input space X = Rd+1 and output space Y = Rp

defined by

h̃t = g(x̃t, h̃t−1) = zrec(Ũx̃t + Ṽh̃t−1), ψ(h̃t) = zout(W̃h̃t) and h̃0 = (h0 1)
⊤

computing the same function.

In contrast to first-order RNNs, second-order RNNs (2-RNNs) [Giles et al., 1990, Pol-

lack, 1991, Lee et al., 1986] leverage not only the additive relation between the state and

input but also the multiplicative one as well. Second-order recurrent architectures have
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been successfully applied more recently, such as in e.g. [Sutskever et al., 2011] and [Wu

et al., 2016]. We now give the formal definition of 2-RNNs.

Definition 19. A second-order RNN (2-RNN) with n states is a recurrent modelR = (g, ψ,h0)

with input space X = (Rd)∗ and output space Y = Rp. It computes a function fR : (Rd)∗ → Rp

defined by fR(x1, . . . ,xk) = ψ(hk), where the recurrent and output functions are defined by

ht = g(xt,ht−1) = zrec(h
⊤
t−1(

∑
i

(xt)iA:,i,:)) and yt = ψ(ht) = zout(Wht).

The parameters of a second-order RNN are:

• the initial state h0 ∈ Rn,

• the weight tensor A ∈ Rn×d×n and output matrix W ∈ Rp×n,

• the activation functions zrec : Rn → Rn and zout : Rp → Rp.

A linear 2-RNN R with n states is called minimal if its number of states is minimal (i.e. any

linear 2-RNN computing fR has at least n states).

In the remaining of the thesis, we will define a second-order RNN using its parame-

ters, i.e. R = (h0,A,W, zrec, zout). In the particular case where the activation functions

are linear (i.e. equal to the identity function), we will omit them from the definition, e.g.

R = (h0,A,W) defines a linear second-order RNN.

The recurrent activation function zrec of a RNN is usually a componentwise non-linear

function such as a hyperbolic tangent or rectified linear unit, while the output activation

function often depends on the task (the softmax function being the most popular for clas-

sification and language modeling tasks).

One can see that the difference between first-order and second-order RNN only lies

in the recurrent function. For first-order RNN, the pre-activation at = Uxt + Vht−1 + b

is a linear function of xt and ht−1, while for second-order RNN the pre-activation at =

h⊤
t−1(

∑
i(xt)iA:,i,:) is a bilinear map applied to xt and ht−1 (hence the second-order denom-

ination).
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It is worth mentioning that second-order RNN are often defined with additional pa-

rameters to account for first-order interactions and bias terms:

ht = g(xt,ht−1) = zrec(h
⊤
t−1(

∑
i

(xt)iA:,i,:) +Uxt +Vht−1 + b).

The definition we use here is conceptually simpler and without loss of generality (sim-

ilarly to the omission of the bias vectors in the definition of first-order RNN). Indeed,

when zrec is either the identity or a rectified linear unit, one can always append a 1 to all

input vectors and augment the state space by one state to obtain a 2-RNN computing the

same function. It follows from this discussion that 2-RNN are a strict generalization of

vanilla RNN: any function that can be computed by a vanilla RNN can be computed by a

2-RNN (provided that all input vectors are appended a constant entry equal to one).

One of the most benefits of RNNs structure is to allow the use of contextual infor-

mation when mapping between input and output sequences. However, for traditional

RNNs, due to vanishing (exploding) gradient problems that often occur during training,

the range of context that can be accessed by the model is often limited. Typically, the

weights of the network receive an update proportional to the partial derivative of the er-

ror function with respect to the current weight. In some cases, the gradient update will

be vanishingly small, effectively preventing the weight from changing its value, or explo-

sively large, leading to out-of-bounds prediction (NaNs). Through introducing the con-

cept of gating mechanism, Long Short-Term Memory (LSTM) architecture [Hochreiter and

Schmidhuber, 1997] is able to alleviate this issue and show great success in numerous se-

quential prediction and classification tasks. In essence, the gating mechanism selectively

passes or retains information during training through the use of the Hadamard product.

Definition 20. A long short-term memory networks (LSTM) with n hidden states is a recur-

rent model R = (g, ψ,h0) with input space X = (Rd)∗ and output space Y = Rp. It computes

a function fR : (Rd)∗ → Rp defined by fR(x1, . . . ,xk) = ψ(hk), where the transition function
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g : Rn × Rd → Rn is defined by:

Forget Gate : ft = zrec(Wfxt +Ufht−1 + bf ) (2.5)

Input Gate : it = zrec(Wixt +Uiht−1 + bi) (2.6)

Output Gate : ot = zrec(Woxt +Uoht−1 + bo) (2.7)

Cell Gate Input : c̃t = zcell(Wcxt +Ucht−1 + bc) (2.8)

Cell Gate : ct = ft ⊙ ct−1 + it ⊙ c̃t (2.9)

Hidden State : ht = g(xt,ht−1) = ot ⊙ zout(ct) (2.10)

where ⊙ denotes Hadamard product, Wf ,Wi,Wo,Wc ∈ Rn×d, Uf ,Ui,Uo,Uc ∈ Rn×n and

bf , bi, bo, bc ∈ Rn. Typically, zrec is chosen to be a sigmoid function while zcell, zout are chosen to

be hyperbolic tangent functions.

A gated recurrent unit (GRU) was proposed in [Cho et al., 2014] to make each recurrent

unit adaptively capture dependencies of different time scales [Chung et al., 2014]. GRUs

are very similar to LSTMs, with the difference that GRUs remove separate memory cells.

Definition 21. A gated recurrent unit network (GRU) with n hidden states is a recurrent

model R = (g, ψ,h0) with input space X = (Rd)∗ and output space Y = Rp. It computes a

function fR : (Rd)∗ → Rp defined by fR(x1, . . . ,xk) = ψ(hk), where the transition function

g : Rn × Rd → Rn is defined by:

Update Gate : ut = zrec(Wuxt +Uuht−1 + bu) (2.11)

Reset Gate : rt = zrec(Wrxt +Urht−1 + br) (2.12)

Candidate Vector : ĥt = zout(Whxt +Uh(rt ⊙ ht−1) + bh) (2.13)

Output Vector : ht = g(xt,ht−1) = ut ⊙ ĥt + (1− ut)⊙ ht−1 (2.14)

where Wu,Wr,Wh ∈ Rn×d, Uu,Ur,Uh ∈ Rn×n and bu, br, bh ∈ Rn. Typically, zrec is chosen

to be sigmoid function while zcell, zout are chosen to be hyperbolic tangent function.
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Chapter 3

Efficient Planning under Partial

Observability with Unnormalized Q

Functions and Spectral Learning

The general formulation of State Space Models (SSMs) involves two stages: the transi-

tion between states and the final output emission through an output function of the fi-

nal state representation. A key objective in learning a good state representation in SSMs

is to achieve a representation that captures sufficient information about the system dy-

namics, such as temporal dependencies and memories, in a manner that makes the final

output function simple and easy to optimize. In model-based reinforcement learning,

many SSMs, such as Predictive State Representations (PSRs), learn the state representa-

tions in an unsupervised manner and then use the learned model to plan and form a

policy. However, this learning paradigm can lead to difficulties in obtaining an infor-

mative representation, as it disconnects the reward information from the learning of the

environment model, resulting in an inefficient planning phase. In this chapter, we ad-

dress this issue by connecting the learning and planning phases using the unnormalized

Q function (UQF) and propose a spectral learning algorithm for the UQF. This chapter is

based on my publication [Li et al., 2020a].
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3.1 Introduction

A common assumption in reinforcement learning (RL) is that the agent has the knowledge

of the entire dynamics of the environment, including the state space, transition probabil-

ities, and a reward model. However, in many real world applications, this assumption

may not always be valid. Instead, the environment is often partially observable, meaning

that the true state of the system is not completely visible to the agent. This partial ob-

servability can result in numerous difficulties in terms of learning the dynamics of the

environment and planning to maximize returns.

Partially observable Markov decision Processes (POMDPs) [Sondik, 1978, Cassandra

et al., 1994] provide a formal framework for single-agent planning under a partially ob-

servable environment. In contrast with MDPs, agents in POMDPs do not have direct

access to the state space. Instead of observing the states, agents only have access to obser-

vations and need to operate on the so-called belief states, which describe the distribution

over the state space given some past trajectory. Therefore, POMDPs model the dynam-

ics of an RL environment in a latent variable fashion and explicitly reason about uncer-

tainty in both action effects and state observability [Boots et al., 2011]. Planning under a

POMDP has long been considered a difficult problem [Kaelbling et al., 1998]. To perform

exact planning under a POMDP, one common approach is to optimize the value function

over all possible belief states. Value iteration for POMDPs [Sondik, 1978] is one particular

example of this approach. However, due to the curse of dimensionality and the curse

of history [Pineau et al., 2006], this method is often computationally intractable for most

realistic POMDP planning problems [Boots et al., 2011].

As an alternative to exact planning, the family of predictive state representations (PSRs)

has attracted many interests. In fact, PSRs are no weaker than POMDPs in terms of their

representation power [Littman and Sutton, 2002], and there are many efficient algorithms

to estimate PSRs and their variants relying on likelihood based algorithms [Singh et al.,

2003, 2004] or spectral learning techniques [Boots et al., 2011, Hamilton et al., 2013]. How-
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ever, to plan with PSRs is not straightforward. Typically, a two-stage process is applied

to discover the optimal policy with PSRs: first, the model that describes the environment

needs to be estimated. This includes learning a PSR model in an unsupervised fashion,

and a reward function based on the learned model. After this stage, a planning method

is used to discover the optimal policy. Several planning algorithms can be used for the

second stage of this process. For example, in [Boots et al., 2011, Izadi and Precup, 2008],

point based value iteration (PBVI) [Pineau et al., 2003] is used to obtain an approximation

of the value function and hence the optimal policy; in [Hamilton et al., 2014], the authors

use the fitted-Q method [Ernst et al., 2005] to iteratively regress Bellman updates on the

learned state representations, thus approximating the action value function.

However, despite numerous successes, this two-stage process still suffers from signif-

icant drawbacks. To begin with, the PSRs parameters are learned independently from

the reward information, resulting in a less efficient representation for planning. Secondly,

planning with PSRs often involves multiple stages of regression, and these extra steps of

approximation can be detrimental for obtaining the optimal policy. Last but not least, the

planning methods for PSRs are often iterative methods that can be very time consuming.

In this work, we propose an alternative to the traditional paradigm of planning in

partially observable environments. Inspired by PSRs, our method leverages the spectral

learning algorithm for subspace identification, treating the environment as a latent vari-

able model. However, instead of explicitly learning the dynamics of the environment,

we learn a function that is proportional to the action value function, which we call un-

normalized Q function (UQF). In doing so, we incorporate the reward information into

the dynamics in a supervised learning fashion, which unifies the two stages of the clas-

sic learning-planning paradigm for POMDPs. To some extent, our approach effectively

learns a goal-oriented representation of the environment and therefore is more sample

efficient compared to the classic methods. Our algorithm relies on the spectral learning

algorithm for weighted finite automata (WFAs), which are an extension of PSRs that can

model not only probability distributions but arbitrary real-valued functions. Our method
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inherits the benefits of spectral learning: it provides a consistent estimation of the UQF

and is computationally more efficient than EM-based methods. Furthermore, planning

with PSRs usually requires multiple steps and is often based on iterative methods, which

can be time consuming. In contrast, our algorithm directly learns a policy in one step,

offering a more time efficient method. In addition, we also adopt matrix compressed sens-

ing techniques to extend this approach to complex domains. This technique has also been

used in PSRs based methods to overcome similar problems [Hamilton et al., 2014].

We conduct experiments on partially observable grid world and S-PocMan environ-

ment [Hamilton et al., 2014] where we compare our approach with classical PSR based

methods. In both domains, our approach is significantly more data-efficient than PSR

based methods with considerably smaller running time.

3.2 Methodology

In this section, we will introduce our POMDP planning method. The main idea of our

algorithm is to directly compute the optimal policy based on the estimation of unnormal-

ized Q function that is proportional to the action value function. Moreover, the value of

this function, given a past trajectory, can be computed via a WFA and it is then straight-

forward to use the classical spectral learning algorithm to recover this WFA. Unlike tradi-

tional PSR methods, our approach takes advantage of the reward information by integrat-

ing the reward into the learned representations. In contrast, classical PSRs based methods

construct the representations solely with the environment dynamics, completely ignoring

the reward information. Consequently, our method offers a more sample efficient repre-

sentation of the environment for planning under POMDPs. In addition, our algorithm

only needs to construct a WFA and there is no other iterative method involved. There-

fore, compared to traditional methods to plan with PSRs, our algorithm is more time

efficient. Finally, with the help of compressed sensing techniques, we are able to scale our

algorithm to complex domains.
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3.2.1 Unnormalized Q function

The estimation of the action value function is of great importance for planning under

POMDP. Typically, given a probabilistic sampling policy Π : A × Σ∗ → [0, 1], where

Σ = A ×O, the action value function (Q function) of a given trajectory h ∈ Σ∗ is defined

by:

QΠ(h, a) = EΠ(rt + γrt+1 + · · ·+ γirt+i + · · · |ha)

where |h| = t and rt is the immediate rewards collected at time step t.

Given a POMDP ψ = ⟨T,O, r,A,O,S,µ, γ⟩, denote the expected immediate reward

collected after h by R̃(h), which is defined as:

R̃(h) = Es∈S(rs|h) =
∑
s∈S

rsP(s|h)

The action value function can then be expanded to:

QΠ(h, a) = EΠ(rt + γrt+1 + · · ·+ γirt+i + · · · |ha)

=
∑
z∈Σ∗

∑
o∈O

γ|z|R̃(haoz)PΠ(haoz|ha)

=

∑
o∈O
∑

z∈Σ∗ γ|z|R̃(haoz)PΠ(haoz)

PΠ(ha)

=

∑
o∈O
∑

z∈Σ∗ γ|z|R̃(haoz)PΠ(haoz)/Π(a|h)
PΠ(h)

:=
Q̃Π(h, a)

PΠ(h)

where we will refer to the function Q̃Π(h, a) as the unnormalized Q function(UQF). It is

trivial to show that given the same trajectory h:

Q̃Π(h, ·) ∝ QΠ(h, ·)
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Therefore, we have argmaxa∈A Q
Π(h, a) = argmaxa∈A Q̃

Π(h, a) and we can then plan ac-

cording to the UQF instead of QΠ.

3.2.2 A spectral learning algorithm for UQF

In this section, we will present our spectral learning algorithm for UQF. First, we will

show that the value of a UQF given a past trajectory can be computed via a WFA. Let us

denote
∑

z∈Σ∗ γ|z|R̃(hz)PΠ(hz) by Ṽ Π(h), we have:

Q̃Π(h, a) =

∑
o∈O Ṽ

Π(hao)

Π(a|h)

Assume the probabilistic sampling policy Π is given, then we only need to compute the

value of the function Ṽ Π(hao). As a special case, if Π is a random policy that uniformly

select the actions, we can replace the term Π(a|h) by 1 without affecting the learned policy.

It turns out that the function Ṽ Π can be computed by a WFA. To show that this is

true, we first introduce the following lemma stating that the function R̃(h)PΠ(h) can be

computed by a WFA B:

Lemma 1. Given a POMDP ψ = ⟨T,O, r,A,O, S,µ, γ⟩ of size k and a sampling policy Π

induced by Π ∈ [0, 1]S×A, there exists a WFA B = ⟨β, {Bσ}σ∈Σ, τ ⟩ with k states that realizes

the function g(h) = R̃(h)PΠ(h), where Σ = A ×O and h ∈ Σ∗.

Proof. Let si denote the ith state and let

Õao = diag(Os1,a,o,Os2,a,o, · · · ,Osk,a,o),

M̃a = diag(Πs1,a,Πs2,a, · · · ,Πsk,a).

We can construct a WFA B = ⟨β⊤, {Bσ}σ∈Σ, τ ⟩ such that: β⊤ = µ⊤, Bσ = Bao =

M̃aT:,a,:Õao, τ = r. Then by construction, one can check that the WFA B computes

the function g, which also shows that the rank of the function g is at most k.
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In fact, we can show that the function Ṽ Π can be computed by another WFA A, and one

can easily convert B to A.

Theorem 5. Given a POMDP ψ of size k, a sampling policy Π and a WFAB = ⟨β⊤, {Bσ}σ∈Σ, τ ⟩

realizing the function g : h 7→ R̃(h)PΠ(h) such that the spectral radius ρ(γ
∑

σ∈Σ Bσ) < 1,

the WFA A = ⟨β⊤, {Bσ}σ∈Σ, (I − γ
∑

σ∈Σ Bσ)
−1τ ⟩ of size k realizes the function Ṽ Π(h) =∑

z∈Σ∗ γ|z|R̃(hz)PΠ(hz).

Proof. By definition of the function Ṽ Π, we have:

Ṽ Π(h) =
∑
z∈Σ∗

γ|z|R̃(hz)PΠ(hz)

=
∑
z∈Σ∗

γ|z|β⊤BhBzτ

= β⊤Bh(
∑
z∈Σ∗

γ|z|Bz)τ

= β⊤Bh(
∞∑
i=0

(γ
∑
σ∈Σ

Bσ)
i)τ

= β⊤Bh(I− γ
∑
σ∈Σ

Bσ)
−1τ

Here we applied Neumann identity:
∑∞

i=0T
i = (I − T)−1, which holds when ρ(T) < 1.

Therefore, the WFA A = ⟨β⊤, {Bσ}σ∈Σ, (I− γ
∑

σ∈Σ Bσ)
−1τ ⟩ realizes the function Ṽ Π.

Note the condition on the spectral radius implies that the function Ṽ needs be bounded.

This condition is in fact very easy to satisfy as in RL we typically assume that the value

function V (h) =
∑

z∈Σ∗ γ|z|R̃(hz)P(z|h) is bounded.

Therefore, in order to compute the function Q̃Π, we only need to learn a WFA that

computes the function g. Following the classical spectral learning algorithm, we present

our learning algorithm of POMDP planning in Algorithm 2. In fact, it has been shown

that the spectral learning algorithm of WFAs is statistically consistent [Balle et al., 2014a].

Therefore our approximation of the function Q̃Π is consistent with respect to sample sizes.
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Algorithm 2 Spectral algorithm for UQF
Input: A set of actions A, a set of observations O, discount factor γ, a probabilistic

sampling policy Π, training trajectories D and their immediate reward y, rank of the
truncated SVD k.

Output: A new deterministic policy function πnew : Σ∗ → A.

1. For a prefix u and a suffix v, we estimate its value in the Hankel matrix as Ĥu,v =∑|D|
i=0 Iuv(Di)yi/|D|, where |D| is the cardinality of the training set D, Σ = A ×O.

2. Perform truncated SVD of rank k on the estimated Hankel matrix: Ĥ ≃ UDV⊤

3. Recover the WFA B = ⟨β⊤, {Bσ}σ∈Σ, τ ⟩ realizing the function g(h) = R̃(h)P(h):
β⊤ = (UD)λ,:, τ = V⊤

:,λ, Bσ = (UD)+ĤσV
⊤

4. Convert the WFA B to A = ⟨α⊤, {Aσ}σ∈Σ,ω⟩, which realizes the function Ṽ Π, fol-
lowing Theorem 5, we have α⊤ = β⊤, Aσ = Bσ, and ω = (I− γ

∑
σ∈Σ Bσ)

−1τ .

5. Return A new deterministic policy function πnew, such that given h ∈ Σ∗, πnew(h) =

argmaxa∈A

∑
o∈O α⊤AhAaoω

Π(a|h)

3.2.3 Scalable learning of UQF

Now we have established the spectral learning algorithm for UQF. However, similar to

the spectral learning algorithm for TPSRs, one can immediately observe that both time

and storage complexity are the bottleneck of this algorithm. For complex domains, in

order to obtain a complete sub-block of the Hankel matrix, one will need large amount

of prefixes and suffixes to form a basis and the classical spectral learning will become

intractable.

By projecting matrices down to low-dimensional spaces via randomly generated bases,

matrix compressed sensing has been widely applied in matrix compression field. In fact,

previous work have successfully applied matrix sensing techniques to TPSRs [Hamilton

et al., 2013] and developed an efficient online algorithm for learning TPSRs [Hamilton

et al., 2014]. Here, we adopt a similar approach.

Assume that we are given a set of prefixes U and suffixes V and two independent

random full-rank Johnson-Lindenstrauss (JL) projection matrices ΦU ∈ RU×dU , and ΦV ∈

RV×dV , where dU and dV are the projection dimension for the prefixes and suffixes. In this
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Algorithm 3 Scalable spectral algorithm for UQF
Input: A set of actions A, a set of observations O, discount factor γ, a probabilistic

sampling policy Π, training trajectories D and their immediate reward y ∈ R|D|, the rank
of the truncated SVD k, a set of prefixes U, a set of suffixes V, mapping functions for both
prefixes and suffixes, ϕU , ϕV , and the corresponding projection matrix ΦU.

Output: A new deterministic policy function πnew : Σ∗ → A.

1. Compute the compressed estimation of Hankel matrices:

ĉU =
∑|D|

i=0

∑
u∈U Iv(Di)yiϕU(u)

ĈUV =
∑|D|

i=0

∑
u,v∈U×V Iuv(Di)yi(ϕU(u)⊗ ϕV (v))

2. Perform truncated SVD on the estimated Hankel matrix with rank k: ĈUV ≃ UDV⊤

3. Recover the WFA B = ⟨β⊤, {Bσ}σ∈Σ, τ ⟩ realizing the function g(h) = R̃(h)P(h):

β⊤ = e⊤UD, τ = D−1U⊤ĉU

Bσ =

|D|∑
i=0

∑
u,v∈U×V

Iuσv(Di)yi[D
−1U⊤ϕ(u)⊗V⊤ϕ(v)]

where e is a vector s.t. e⊤Φ⊤
U = (1, 0, · · · , 0)⊤

4. Following Theorem 5, convert the WFA B to A = ⟨α⊤, {Aσ}σ∈Σ,ω⟩.

5. Return A new deterministic policy function πnew defined by πnew(h) =

argmaxa∈A

∑
o∈O α⊤AhAaoω

Π(a|h)

work, we use Gaussian projection matrices for ΦU and ΦV, which contain i.i.d. entries

from the distribution N(0, 1/dU) and N(0, 1/dV), respectively.

Let us now define two injective functions over prefixes and suffixes: ϕU : U→ RdU and

ϕV : V → RdV , where for all u ∈ U and v ∈ V, we have ϕ(u) = Φu,: and ϕ(v) = Φv,:. The

core step of our algorithm is to obtain the compressed estimation of the Hankel matrix,

denoted by ĈU,V associated with the function R̃(h)P(h) for all h ∈ Σ∗. Formally, we can
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Figure 3.1: Experiments on three grid world tasks. The plots show the accumulated dis-

counted rewards (returns) over 1,000 test episodes of length 100. The discount factor for

computing returns is set to 0.99

obtain ĈU,V by:

ĈU,V = Φ⊤
UHΦV

=

|D|∑
i=0

∑
u,v∈U×V

Iuv(Di)yi(ϕU(u)⊗ ϕV (v))

where D is the training dataset, containing all sampled trajectories, y is the vector of

immediate rewards. Then, after performing the truncated SVD of ĈU,V ≃ UDV⊤ of rank

k, we can compute the transition matrix for the WFA by:

Bσ = (UD)+ĈUσVV

=

|D|∑
i=0

∑
u,v∈U×V

Iuσv(Di)yi[(UD)+ϕ(u)⊗V⊤ϕ(v)]

We present the complete method in Algorithm 3. Instead of iterative sweeping through

datasets like most planning methods do, one can build an UQF in just two passes of data:

one for building the compressed Hankel, one for recovering the parameters. More pre-

cisely, let L denote the maximum length of a trajectory in the dataset D, then the time

complexity of our algorithm is O(L|D|) [Hamilton et al., 2014], and there is no extra plan-

ning time needed. In contrast, fitted-Q algorithm alone requires O(TL|D|log(L|D|)) only
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for the planning stage, where T is the expected number of the fitted-Q iterations. There-

fore, in terms of time complexity, our algorithm is linear to the number of trajectories,

leading to a very efficient algorithm.

3.2.4 Policy iteration

Policy iteration has been widely applied in both MDP and POMDP settings [Bellman,

1957a, Sutton et al., 1998], and have shown benefits from both empirical and theoretical

perspectives [Bellman, 1957a]. It is very natural to apply policy iteration to our algorithm,

since we directly learn a policy from data. The policy iteration algorithm is listed in

Algorithm 4. Note that for re-sampling, we convert our learned deterministic policy to a

probabilistic one in an ϵ-greedy fashion.

Algorithm 4 Policy iteration for UQF
Input: An initial deterministic policy π, ϵ-greedy factor ϵ, a decay rate for ϵ-greedy

η > 1, number of policy iterations n, number of trajectories N .
Output The final policy function πfin : Σ∗ → A.

1. Convert the deterministic policy π to a probabilistic policy Π in an ϵ-greedy fashion:
at each step, with probability 1 − ϵ select the optimal action according to π, with
probability ϵ select a random action.*

2. Sample N trajectories based on policy Π

3. Execute Algorithm 2 or Algorithm 3 and obtain the corresponding new policy πnew.

4. πnew → π, ϵ/η → ϵ

5. Repeat all the above for n times.

6. Return The final policy function πfin = πnew

*Note for the first iteration, one can set ϵ = 1, resulting in a pure random sampling policy.
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3.3 Experiments

To assess the performance of our method, we conducted experiments on two domains:

a toy grid world environment and the S-Pocman game [Hamilton et al., 2014]. We use

TPSR/CPSR + fitted-Q as our baseline method. Our experiments have shown that indeed,

in terms of sample complexity and time complexity, we outperm the classical two-stage

algorithms.

3.3.1 Grid world experiment

The first benchmark for our method is the simple grid world environment shown in

Fig. 3.1. The agent starts in the tile labeled S and must reach the green goal state. At each

time step, the agent can only perceive the number of surrounding walls and proceeds

to execute one of the four actions: go up, down, left or right. To make the environment

stochastic, with probability 0.2, the execution of the action will fail, resulting instead in

a random action at the current time step. The reward function in this navigation task

is sparse: the agent receives no reward until it reaches the termination state. We ran

three variants of the aforementioned grid world, each corresponding to a different start-

ing state. As one can imagine, the further away the goal state is from the starting state,

the harder the task becomes.

We used a random policy to generate training data, which consisted of trajectories of

length up to 100. To evaluate the policy learned by the different algorithms, we let the

agent execute the learned policy for 1,000 episodes and computed the average accumu-

lated discounted rewards, with discount factor being 0.99. The maximum length for test

episodes was also set to 100. Hyperparameters were selected using cross-validation (i.e.

the number of rows and columns in the Hankel matrices, the rank for SVD and γ). As

a baseline, we use the classical TPSRs and CPSRs as the learning method for the envi-

ronment, and fitted-Q algorithm as the planning algorithm, as well as a deep Q-network

(DQN). We use a three layers MLP of size 50*128*128 to approximate the Q function and
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Figure 3.2: S-PocMan domain

Adam optimizer with 10−4 learning rate. The DQN is fitted on 10 consecutive observation

vectors (number of walls around agent, same as all other methods) and tested with 1,000

test episodes of maximum length 100, as to reproduce the same experimental setup as the

other methods. We performed a hyperparameter search for all baseline methods using

cross validation. In addition, we report the rewards collected by a random policy as well

as the optimal policy for comparison.

Results on this toy domain (see Figure 3.1) highlight the sample and time efficiency

achieved by our method. Indeed, our algorithm outperforms the classical CPSR+fitted-Q

method in all three domains, notably achieving better performance in small data regime,

showing significant sample efficiency. Furthermore, it is clear that our algorithm reaches

consistently to the optimal policy as sample size increases. In addition, our methods are

much faster than other compared methods. For example, for the experiment with 800

samples, to achieve similar results, our method is approximately 100 times faster com-

pared to CPSR+fitted-Q. As expected, DQN requires a lot more data to achieve competi-

tive results on the partially observable grid world domain than the spectral approaches.

46



Table 3.1: Training time for one policy iteration and averaged accumulated discounted

rewards on S-PocMan trained on 500 trajectories.

Method
Fitted-Q
Iterations Time (s) Returns

UQF - 2 -92

400 489 -101CPSR
100 116 -109
50 60 -150
10 15 -200

3.3.2 S-PocMan domain

For the second experiment, we show the results on the S-PocMan environment [Hamilton

et al., 2014]. The partially observable version of the classical game Pacman was first in-

troduced by Silver and Veness [Silver and Veness, 2010] and is referred to as PocMan. In

this domain, the agent needs to navigate through a grid world to collect food and avoid

being captured by the ghosts. It is an extremely large partially observable domain with

1056 states [Veness et al., 2011]. However, Hamilton et al. showed that if one were to treat

the partially observable environment as if it was fully observable, a simple memoryless

controller can perform extremely well under this set-up, due to extensive reward infor-

mation [Hamilton et al., 2014]. Hence, they proposed a harder version of PocMan, called

S-PocMan. In this new domain, they drop the parts of the observation vector that allow

the agent to sense the direction of the food and greatly sparsify the amount of food in the

grid world, therefore making the environment more partially observable. In this experi-

ment, we only used the combination CPSR+fitted Q for our baseline algorithm, as TPSR

can not scale to the large size of this environment. Similarly to the grid world experiment,

we select the best hyperparameters through cross validation. The discount factor for com-

puting returns was set to be 0.99 in all runs. Table 3.1 shows the run-time and average

return for both our algorithm and the baseline method. One can see that UQF achieves

better performance compared to CPSR+fitted-Q. Moreover, UQF exhibits a significant re-

duction in running time: about 200 times faster than CPSR+fitted-Q. Note that building

CPSR takes similar amount of time to our method, however, the extra iterative fitted-Q

47



planning algorithm takes considerably more time to converge, as our analysis showed in

section 3.3.

3.4 Conclusion

In this chapter, we propose a novel learning and planning algorithm for partially observ-

able environments. The main idea of our algorithm relies on the estimation of the un-

normalized Q function with the spectral learning algorithm. Theoretically, we show that

in POMDP, UQF can be computed via a WFA and consequently can be provably learned

from data using the spectral learning algorithm for WFAs. Moreover, UQF combines the

learning and planning phases of reinforcement learning together, and learns the corre-

sponding policy in one step. Therefore, our method is more sample efficient and time

efficient compared to traditional POMDP planning algorithms. This is further shown in

the experiments on the grid world and S-PocMan environments.

Future work includes exploring some theoretic properties of this planning approach.

For example, a first step would be to obtain convergence guarantees for policy iteration

based on the UQF spectral learning algorithm. In addition, our approach could be ex-

tended to the multitask setting by leveraging the multi-task learning framework for WFAs

proposed in [Rabusseau et al., 2017]. Readily, since we combine the environment dynam-

ics and reward information together, our approach should be able to deal with partially

shared environment and reward structure, leading to a potentially flexible multi-task RL

framework.
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Chapter 4

Connecting Weighted Automata, Tensor

Networks and Recurrent Neural

Networks through Spectral Learning

The spectral learning algorithm of Weighted Finite Automata (WFAs) is known for its de-

sirable properties, including minimality, consistency, and sample efficiency. However, it

is limited to modeling functions over discrete input variables, or strings. Many real-world

applications of sequential data require modeling functions of series of continuous vectors.

To handle such tasks, Recurrent Neural Networks (RNNs) and gradient descent are often

used. Nevertheless, unlike spectral learning for WFAs, gradient descent for RNN models

can struggle with overfitting in the low data regime due to the highly nonlinear formu-

lation of the RNN structure. Additionally, it is challenging to obtain theoretical results

for RNN learning using gradient descent due to the non-convexity of the functions. The

question arises whether it is possible to extend WFAs to handle continuous input vari-

ables and develop a spectral learning algorithm for them. Furthermore, it is of interest to

explore any connections between this extended WFA and existing RNN models.

In this chapter, we present connections between three models used in different re-

search fields: weighted finite automata (WFA) from formal languages and linguistics,
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recurrent neural networks used in machine learning, and tensor networks which encom-

pass a set of optimization techniques for high-order tensors used in quantum physics

and numerical analysis. We first present an intrinsic relation between WFA and the ten-

sor train decomposition, a particular form of tensor network. This relation allows us

to exhibit a novel low-rank structure of the Hankel matrix of a function computed by a

WFA and to design an efficient spectral learning algorithm leveraging this structure to

scale the algorithm up to very large Hankel matrices. We then unravel a fundamental

connection between WFA and second-order recurrent neural networks (2-RNN): in the

case of sequences of discrete symbols, WFA and 2-RNN with linear activation functions

are expressively equivalent. Leveraging this equivalence result combined with the clas-

sical spectral learning algorithm for weighted automata, we introduce the first provable

learning algorithm for linear 2-RNN defined over sequences of continuous input vectors.

This algorithm relies on estimating low-rank sub-blocks of the Hankel tensor, from which

the parameters of a linear 2-RNN can be provably recovered. The performances of the

proposed learning algorithm are assessed in a simulation study on both synthetic and

real-world data. This chapter is based on my publication [Li et al., 2022b].

4.1 Introduction

Many tasks in natural language processing [Devlin et al., 2018], computational biology [Tang

et al., 2019], reinforcement learning [Kapturowski et al., 2019], and time series analy-

sis [Connor et al., 1994] rely on learning with sequential data, i.e. estimating functions de-

fined over sequences of observations from training data. Weighted finite automata (WFA)

and recurrent neural networks (RNN) are two powerful and flexible classes of models

which can efficiently represent such functions. On the one hand, WFA are tractable, they

encompass a wide range of machine learning models (they can for example compute

any probability distribution defined by a hidden Markov model (HMM) [Denis and Es-

posito, 2008] and can model the transition and observation behavior of partially observ-
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able Markov decision processes [Thon and Jaeger, 2015]) and they offer appealing theo-

retical guarantees. In particular, the so-called spectral methods for learning HMMs [Hsu

et al., 2009], WFA [Bailly et al., 2009, Balle et al., 2014a] and related models [Glaude and

Pietquin, 2016, Boots et al., 2011], provide an alternative to Expectation-Maximization

based algorithms that is both computationally efficient and consistent. On the other hand,

RNN are remarkably expressive models — they can represent any computable func-

tion [Siegelmann and Sontag, 1992], given infinite precision arithmetic — and they have

successfully tackled many practical problems in speech and audio recognition [Graves

et al., 2013, Mikolov et al., 2011, Gers et al., 2000], but their theoretical analysis is difficult.

Even though recent work provides interesting results on their expressive power [Khrulkov

et al., 2018, Yu et al., 2017] as well as alternative training algorithms coming with learning

guarantees [Sedghi and Anandkumar, 2016], the theoretical understanding of RNN is still

limited.

At the same time, tensor networks are a generalization of tensor decomposition tech-

niques, where complex operations between tensors are represented in a simple diagram-

matic notation, allowing one to intuitively represent intricate ways to decompose a high-

order tensor into lower-order tensors acting as building block. The term tensor networks also

encompasses a set of optimization techniques to efficiently tackle optimization problems

in very high-dimensional spaces, where the optimization variable is represented as a ten-

sor network and the optimization process is carried out with respect to the building blocks

of the tensor network. As an illustration, such optimization techniques make it possible

to efficiently approximate the leading eigen-vectors of matrices of size 2N × 2N where N

can be as large as 50 [Holtz et al., 2012]. Tensor networks have emerged in the quantum

physics community to model many-body systems [Orús, 2014, Biamonte and Bergholm,

2017] and have also been used in numerical analysis as a mean to solve high-dimensional

differential equations [Oseledets, 2011, Lubich et al., 2013] and to design efficient algo-

rithms for big data analytics [Cichocki et al., 2016]. Tensor networks have recently been

used in the context of machine learning to compress neural networks [Novikov et al.,
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2015, 2014, Ma et al., 2019, Yang et al., 2017], to design new approaches and optimiza-

tion techniques borrowed from the quantum physics literature for supervised and unsu-

pervised learning tasks [Stoudenmire and Schwab, 2016, Han et al., 2018, Miller et al.,

2020], as new theoretical tools to understand the expressiveness of neural networks [Co-

hen et al., 2016, Khrulkov et al., 2018] and for image completion problems [Yang et al.,

2017, Wang et al., 2017] among others.

In this work, we bridge a gap between these three classes of models: weighted au-

tomata, tensor networks and recurrent neural networks. We first exhibit an intrinsic

relation between the computation of a weighted automata and the tensor train decom-

position, a particular form of tensor network (also known as matrix product states in the

quantum physics community). While such a connection has been sporadically noticed

previously, we demonstrate how this relation implies a low tensor train structure of the

so-called Hankel matrix of a function computed by a WFA. The Hankel matrix of a func-

tion is at the core of the spectral learning algorithm for WFA. This algorithm relies on the

fact that the (matrix) rank of the Hankel matrix is directly related to the size of a WFA

computing the function it represents. We show that, beyond being low rank, the Hankel

matrix of a function computed by a WFA can be seen as a block matrix where each block

is a matricization of a tensor with low tensor train rank. Building upon this result, we

design an efficient implementation of the spectral learning algorithm that leverages this

tensor train structure. When the Hankel matrices needed for the spectral algroithm are

given in the tensor train format, the time complexity of the algorithm we propose is expo-

nentially smaller (w.r.t. the size of the Hankel matrix) than the one of the classical spectral

learning algorithm.

We then unravel a fundamental connection between WFA and second-order RNN (2-

RNN): when considering input sequences of discrete symbols, 2-RNN with linear activation

functions and WFA are one and the same, i.e. they are expressively equivalent and there

exists a one-to-one mapping between the two classes (moreover, this mapping conserves

model sizes). While connections between finite state machines (e.g. deterministic finite
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automata) and recurrent neural networks have been noticed and investigated in the past (see

e.g. [Giles et al., 1992, Omlin and Giles, 1996]), to the best of our knowledge this is the

first time that such a rigorous equivalence between linear 2-RNN and weighted automata

is explicitly formalized. More precisely, we pinpoint exactly the class of recurrent neu-

ral architectures to which weighted automata are equivalent, namely second-order RNN

with linear activation functions. This result naturally leads to the observation that linear

2-RNN are a natural generalization of WFA (which take sequences of discrete observations

as inputs) to sequences of continuous vectors, and raises the question of whether the spec-

tral learning algorithm for WFA can be extended to linear 2-RNN. The third contribution

of this chapter is to show that the answer is in the positive: building upon the classi-

cal spectral learning algorithm for WFA [Hsu et al., 2009, Bailly et al., 2009, Balle et al.,

2014a] and its recent extension to vector-valued functions [Rabusseau et al., 2017], we pro-

pose the first provable learning algorithm for second-order RNN with linear activation functions.

Our learning algorithm relies on estimating sub-blocks of the so-called Hankel tensor,

from which the parameters of a 2-linear RNN can be recovered using basic linear alge-

bra operations. One of the key technical difficulties in designing this algorithm resides

in estimating these sub-blocks from training data where the inputs are sequences of con-

tinuous vectors. We leverage multilinear properties of linear 2-RNN and the tensor train

structure of the Hankel matrix to perform this estimation efficiently using matrix sensing

and tensor recovery techniques. In particular, we show that the Hankel matrices needed

for learning can be estimated directly in the tensor train format, which allows us to use

the efficient spectral learning algorithm in the tensor train format discussed previously.

We validate our theoretical findings in a simulation study on synthetic and real world

data where we experimentally compare different recovery methods and investigate the

robustness of our algorithm to noise. We also show that refining the estimator returned

by our algorithm using stochastic gradient descent can lead to significant improvements.
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Summary of contributions. We present novel connections between WFA and the tensor

train decomposition (Section 4.3.1) allowing us to design an highly efficient implementation

of the spectral learning algorithm in the tensor train format (Section 4.3.2). We formalize a

strict equivalence between weighted automata and second-order RNN with linear activation func-

tions (Section 4.4), showing that linear 2-RNN can be seen as a natural extension of (vector-

valued) weighted automata for input sequences of continuous vectors. We then propose

a consistent learning algorithm for linear 2-RNN (Section 4.5). The relevance of our contri-

butions can be seen from three perspectives. First, while learning feed-forward neural

networks with linear activation functions is a trivial task (it reduces to linear or reduced-

rank regression), this is not at all the case for recurrent architectures with linear activation

functions; to the best of our knowledge, our algorithm is the first consistent learning al-

gorithm for the class of functions computed by linear second-order recurrent networks. Second,

from the perspective of learning weighted automata, we propose a natural extension of

WFA to continuous inputs and our learning algorithm addresses the long-standing limitation

of the spectral learning method to discrete inputs. Lastly, by connecting the spectral learning

algorithm for WFA to recurrent neural networks on one side, and tensor networks on the

other, our work opens the door to leveraging highly efficient optimization techniques for

large scale tensor problems used in the quantum physics community for designing new

learning learning algorithms for both linear and non-linear sequential models, as well as

offering new tools for the theoretical analysis of these models.

Related work. Combining the spectral learning algorithm for WFA with matrix com-

pletion techniques (a problem which is closely related to matrix sensing) has been theo-

retically investigated in [Balle and Mohri, 2012]. An extension of probabilistic transduc-

ers to continuous inputs (along with a spectral learning algorithm) has been proposed

in [Recasens and Quattoni, 2013]. The model considered in this work is closely related to

the continuous extension of WFA we consider here but the learning algorithm proposed

in [Recasens and Quattoni, 2013] is designed for (and limited to) stochastic transducers,
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whereas we consider arbitrary functions computed by linear 2-RNN. The connections be-

tween tensors and RNN have been previously leveraged to study the expressive power of

RNN in [Khrulkov et al., 2018] and to achieve model compression in [Yu et al., 2017, Yang

et al., 2017, Tjandra et al., 2017]. Exploring relationships between RNN and automata has

recently received a renewed interest [Peng et al., 2018, Chen et al., 2018, Li et al., 2018,

Merrill et al., 2020]. In particular, such connections have been explored for interpretabil-

ity purposes [Weiss et al., 2018, Ayache et al., 2018] and the ability of RNN to learn classes

of formal languages has been investigated in [Avcu et al., 2017]. Connections between

the tensor train decomposition and WFA have been previously noticed in [Critch, 2013,

Critch and Morton, 2014, Rabusseau, 2016]. However, to the best of our knowledge, this is

the first time that the tensor-train structure of the Hankel matrix of a function computed

by a WFA is noticed and leveraged to design an efficient spectral learning algorithm for

WFA. Other approaches have been proposed to scale the spectral learning algorithm to

large datasets, notably by identifying a small basis of informative prefixes and suffixes

to build the Hankel matrices [Quattoni et al., 2017]. The predictive state RNN model in-

troduced in [Downey et al., 2017] is closely related to 2-RNN and the authors propose

to use the spectral learning algorithm for predictive state representations to initialize a

gradient based algorithm; their approach however comes without theoretical guarantees.

Lastly, a provable algorithm for RNN relying on the tensor method of moments has been

proposed in [Sedghi and Anandkumar, 2016] but it is limited to first-order RNN with

quadratic activation functions (which do not encompass linear 2-RNN).

4.2 Preliminaries

In this section, we first present basic notions of tensor algebra and tensor networks before

introducing second-order recurrent neural network, weighted finite automata and the

spectral learning algorithm. We start by introducing some notations. For any integer k

we use [k] to denote the set of integers from 1 to k. We use ⌈l⌉ to denote the smallest
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integer greater or equal to l. For any set S, we denote by S∗ =
⋃

k∈N S
k the set of all finite-

length sequences of elements of S (in particular, Σ∗ will denote the set of strings on a finite

alphabet Σ). We use lower case bold letters for vectors (e.g. v ∈ Rd1), upper case bold

letters for matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order tensors

(e.g. T ∈ Rd1×d2×d3). We use ei to denote the ith canonical basis vector of Rd (where the

dimension d will always appear clearly from context). The d × d identity matrix will be

written as Id. The ith row (resp. column) of a matrix M will be denoted by Mi,: (resp.

M:,i). This notation is extended to slices of a tensor in the straightforward way. If v ∈ Rd1

and v′ ∈ Rd2 , we use v ⊗ v′ ∈ Rd1·d2 to denote the Kronecker product between vectors,

and its straightforward extension to matrices and tensors. Given a matrix M ∈ Rd1×d2 , we

use vec(M) ∈ Rd1·d2 to denote the column vector obtained by concatenating the columns

of M. The inverse of M is denoted by M−1, its Moore-Penrose pseudo-inverse by M†,

and the transpose of its inverse by M−⊤; the Frobenius norm is denoted by ∥M∥F and the

nuclear norm by ∥M∥∗.

4.2.1 Tensors and Tensor Networks

We first recall basic definitions of tensor algebra; more details can be found in [Kolda

and Bader, 2009]. A tensor T ∈ Rd1×···×dp can simply be seen as a multidimensional

array (Ti1,··· ,ip : in ∈ [dn], n ∈ [p]). The mode-n fibers of T are the vectors obtained by

fixing all indices except the nth one, e.g. T:,i2,··· ,ip ∈ Rd1 . The nth mode matricization of

T is the matrix having the mode-n fibers of T for columns and is denoted by T(n) ∈

Rdn×d1···dn−1dn+1···dp . The vectorization of a tensor is defined by vec(T) = vec(T(1)). In the

following T always denotes a tensor of size d1 × · · · × dp.

The mode-n matrix product of the tensor T and a matrix X ∈ Rm×dn is a tensor denoted

by T ×n X. It is of size d1× · · · × dn−1×m× dn+1× · · · × dp and is defined by the relation

Y = T ×n X ⇔ Y(n) = XT(n). The mode-n vector product of the tensor T and a vector

v ∈ Rdn is a tensor defined by T •n v = T ×n v⊤ ∈ Rd1×···×dn−1×dn+1×···×dp . It is easy to
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Figure 4.1: Tensor network representation of a vector v ∈ Rd, a matrix M ∈ Rm×n and

a tensor T ∈ Rd1×d2×d3 . The gray labels over the edges indicate the dimensions of the

corresponding modes of the tensors (such labels will only be sporadically displayed when

necessary to avoid confusion).

check that the n-mode product satisfies (T ×n A) ×n B = T ×n BA where we assume

compatible dimensions of the tensor T and the matrices A and B.

Tensor network diagrams allow one to represent complex operations on tensors in a

graphical and intuitive way. A tensor network is simply a graph where nodes repre-

sent tensors, and edges represent contractions between tensor modes, i.e. a summation

over an index shared by two tensors. In a tensor network, the arity of a vertex (i.e. the

number of legs of a node) corresponds to the order of the tensor: a node with one leg

represents a vector, a node with two legs represents a matrix, and a node with three legs

represents a 3rd order tensor (see Figure 4.1). We will sometimes add indices to legs of

a tensor network to refer to its components or sub-tensors. For example, the following

tensor networks represent a matrix A ∈ Rm×n, the ith row of A and the component Ai,j

respectively:

A
m n

Ai Ai j

Connecting two legs in a tensor network represents a contraction over the correspond-

ing indices. Consider the following simple tensor network with two nodes:

A xm n

The first node represents a matrix A ∈ Rm×n and the second one a vector x ∈ Rn. Since

this tensor network has one dangling leg (i.e. an edge which is not connected to any

other node), it represents a vector. The edge between the second leg of A and the leg of x

corresponds to a summation over the second mode of A and the first mode of x,. Hence,
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vu = ⟨u,v⟩ A x = Ax A B = AB A = Tr(A)

T

v

= T •2 v T B= T ×3 B T

T

= ∥T∥2F

Figure 4.2: Tensor network representation of common operation on vectors, matrices and

tensors.

the resulting tensor network represents the classical matrix-product, which can be seen

by calculating the ith component of this tensor network:

A xi =
∑

j Aijxj = (Ax)i

Other examples of tensor network representations of common operations on vectors, ma-

trices and tensors can be found in Figure 4.2.

Given strictly positive integers n1, · · · , nk satisfying
∑

i ni = p, we use the notation

(T)⟨⟨n1,n2,··· ,nk⟩⟩ to denote the kth order tensor obtained by reshaping T ∈ Rd1×···×dp into a

tensor* of size

(

n1∏
i1=1

di1)× (

n2∏
i2=1

dn1+i2)× · · · × (

nk∏
ik=1

dn1+···+nk−1+ik).

For example, for a tensor A of size 2×3×4×5×6, the 3rd order tensor (A)⟨⟨2,1,2⟩⟩ is obtained

by grouping the first two modes and the last two modes respectively, to obtain a tensor

of size 6 × 4 × 30. This reshaping operation is related to vectorization and matricization

by the following relations: (T)⟨⟨p⟩⟩ = vec(T) and (T)⟨⟨1,p−1⟩⟩ = T(1).

A rankR tensor train (TT) decomposition [Oseledets, 2011] of a tensorT ∈ Rd1×···×dp con-

sists in factorizingT into the product of p core tensorsG1 ∈ Rd1×R,G2 ∈ RR×d2×R, · · · ,Gp−1 ∈

RR×dp−1×R,Gp ∈ RR×dp , and is defined† by

Ti1,··· ,ip = (G1)i1,:(G2):,i2,: · · · (Gp−1):,ip−1,:(Gp):,ip (4.1)

*Note that the specific ordering used to perform matricization, vectorization and such a reshaping is
not relevant as long as it is consistent across all operations.

†The classical definition of the TT-decomposition allows the rank R to be different for each mode, but
this definition is sufficient for the purpose of this chapter.
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G1 G2 G3 G4 G5T =

Figure 4.3: Tensor network representation of a tensor train decomposition.

for all indices i1 ∈ [d1], · · · , ip ∈ [dp] (here (G1)i1,: is a row vector, (G2):,i2,: is an R × R

matrix, etc.). We will use the notation T = JG1, · · · ,GpK to denote such a decomposition.

A tensor network representation of this decomposition is shown in Figure 4.3. The name

of this decomposition comes from the fact that the tensor T is decomposed into a train

of lower-order tensors. This decomposition is also known in the quantum physics com-

munity as Matrix Product States [Orús, 2014, Schollwöck, 2011], where this denomination

comes from the fact that each entry of T is given by a product of matrices, see Eq. (4.1).

While the problem of finding the best approximation of TT-rank R of a given tensor is

NP-hard [Hillar and Lim, 2013], a quasi-optimal SVD based compression algorithm (TT-

SVD) has been proposed in [Oseledets, 2011]. It is worth mentioning that the TT decom-

position is invariant under change of basis: for any invertible matrix M and any core

tensors G1,G2, · · · ,Gp, we have

JG1, · · · ,GpK = JG1 ×2 M
−⊤,G2 ×1 M×3 M

−⊤, · · · ,Gp−1 ×1 M×3 M
−⊤,Gp ×1 MK.

This relation appears clearly using tensor network diagrams, e.g. with p = 4 we have‡:

G1 G2 G3 G4 G1 I G2 I G3 I G4

=

=
G1 M−1 M G2 M−1 M G3 M−1 M G4

=
G1×2M

−⊤ G2×1M×3M
−⊤G3×1M×3M

−⊤ G4×1M

‡Note that the colors of the nodes do not bear any meaning and are simply used as visual clues to help
parse the diagrams.
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4.2.2 Vector-valued Weighted Automata and Spectral Learning

Vector-valued weighted finite automata (vv-WFA) have been introduced in [Rabusseau et al.,

2017] as a natural generalization of weighted automata from scalar-valued functions to

vector-valued ones.

Definition 22. A p-dimensional vv-WFA with n states is a tuple A = (α, {Aσ}σ∈Σ,Ω) where

α ∈ Rn is the initial weights vector, Ω ∈ Rp×n is the matrix of final weights, and Aσ ∈ Rn×n is

the transition matrix for each symbol σ in a finite alphabet Σ. A vv-WFA A computes a function

fA : Σ∗ → Rp defined by

fA(x) = Ω(Ax1Ax2 · · ·Axk
)⊤α

for each word x = x1x2 · · ·xk ∈ Σ∗.

We call a vv-WFA minimal if its number of states is minimal, that is, any vv-WFA

computing the same function as at least as many states as the minimal vv-WFA. Given a

function f : Σ∗ → Rp, we denote by rank(f) the number of states of a minimal vv-WFA

computing f (which is set to∞ if f cannot be computed by a vv-WFA).

The spectral learning algorithm is a consistent learning algorithm for weighted finite

automata. It has been introduced concurrently in [Hsu et al., 2009] and [Bailly et al.,

2009] (see [Balle et al., 2014a] for a comprehensive presentation of the algorithm). This

algorithm relies on a fundamental object: the Hankel matrix. Given a function f : Σ∗ → R,

its Hankel matrix H ∈ RΣ∗×Σ∗ is the bi-infinite matrix defined by

Hu,v = f(uv) for all u, v ∈ Σ∗

where uv denotes the concatenation of the prefix u and the suffix v. The striking relation

between the Hankel matrix and the rank of a function f has been well known in the

formal language community [Fliess, 1974, Carlyle and Paz, 1971] and is at the heart of the

spectral learning algorithm. This relation states that the rank of the Hankel matrix of a

function f exactly coincides with the rank of f , i.e. the number of states of the smallest
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WFA computing f . In particular, the rank of the Hankel matrix of f is finite if and only

if f can be computed by a weighted automaton. An example of a function which cannot

be computed by a WFA is the indicator function of the language anbn (on the alphabet

Σ = {a, b}):

f(x) =


1 if x = anbn for some integer n

0 otherwise.
(4.2)

The spectral learning algorithm was naturally extended to vector-valued WFA in [Rabusseau

et al., 2017], where the Hankel matrix is replaced by the Hankel tensor H ∈ RΣ∗×Σ∗×p of a

vector-valued function f : Σ∗ → Rp, which is defined by

Hu,v,: = f(uv) for all u, v ∈ Σ∗.

The relation between the rank of the Hankel matrix and the function f naturally carries

over to the vector-valued case and is given in the following theorem.

Theorem 6 (Rabusseau et al. [2017]). Let f : Σ∗ → Rd and let H be its Hankel tensor. Then

rank(f) = rank(H(1)).

The vv-WFA learning algorithm leverages the fact that the proof of this theorem is

constructive: one can recover a vv-WFA computing f from any low rank factorization

of H(1). In practice, a finite sub-block HP,S ∈ RP×S×p of the Hankel tensor is used to

recover the vv-WFA, where P, S ⊂ Σ∗ are finite sets of prefixes and suffixes forming a

complete basis for f , i.e. such that rank((HP,S)(1)) = rank(H(1)). Indeed, one can show that

Theorem 6 still holds when replacing the Hankel tensor by such a sub-block HP,S . The

spectral learning algorithm then consists of the following steps:

1. Choose a target rank n and a set of prefixes and suffixes P, S ⊂ Σ∗.

2. Estimate the following sub-block of the Hankel tensor from data:

• HP,S ∈ RP×S×p defined by (HP,S)u,v,: = f(uv) for all u ∈ P, v ∈ S.
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• HP ∈ RP×p defined by (HP )u,: = f(u) for all u ∈ P .

• HS ∈ RS×p defined by (HS)v,: = f(v) for all v ∈ S.

• Hσ
P,S ∈ RP×S×p for each σ ∈ Σ defined by (Hσ

P,S)u,v,: = f(uσv) for all u ∈ P, v ∈

S.

3. Obtain a (approximate) low rank factorization of the Hankel tensor (using e.g. trun-

cated SVD)

(HP,S)(1) ≃ PS(1)

where P ∈ RP×n and S ∈ Rn×S×p.

4. Compute the parameters of the learned vv-WFA using the relations

α⊤ = vec(HS)
⊤(S(1))

†

Ω = P−1HP

Aσ = P†Hσ
(1)(S(1))

† for each σ ∈ Σ.

This learning algorithm is consistent: in the limit of infinite training data (i.e. the Han-

kel sub-blocks are exactly estimated from data), this algorithm is guaranteed to return a

WFA that computes the target function f if P and S form a complete basis. That is, the

algorithm is consistent if the rank of the sub-block (HP,S)(1) is equal to the rank of the

full Hankel tensor, i.e. rank((HP,S)(1)) = rank(H(1)). More details can be found in [Balle

et al., 2014a] for WFA and in [Rabusseau et al., 2017] for vv-WFA. Using tensor network

diagrams, steps 3) and 4) of the spectral learning algorithm can be represented as follows:

HP,S

P p

S
≃

P
P n

S
p

S

α
n =

HS
p
(S(1))

†

† n

S

Ω pn =
P†

†n P
HP

p
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Aσ

nn =
P†

†n P
Hσ

P,S
p
(S(1))

†

† n

S

It is worth noting that the recurrent and output functions of a 2-RNN can be repre-

sented by the following simple tensor networks:

ht = zrec

n ht−1 A

xt

n n

d

 yt = zout

p
ht W

n p



The difference between WFA and RNN can be summarized by the fact that the recur-

rent and output functions of a WFA are linear, whereas they are non-linear maps for RNN.

In essence, one could say that RNN are non-linear extensions of WFA. In Section 4.4,

we will formalize this intuition by proving the exact equivalence between the classes of

functions that can be computed by WFA and second-order RNN with linear activation

functions.

4.3 Weighted Automata and Tensor Networks

In this section, we present connections between weighted automata and tensor networks.

In particular, we will show that the computation of a WFA on a sequence is intrinsically

connected to the matrix product states model used in quantum physics and the tensor

train decomposition. This connection will allow us to unravel a fundamental structure in

the Hankel matrix of a function computed by a WFA: in addition to being low rank, we

will show that the Hankel matrix can be decomposed into sub-blocks which are all ma-

tricizations of tensors with low tensor train rank. We will then leverage this structure to

design an efficient spectral learning algorithm for WFA relying on efficient computations

of pseudo-inverse of matrices given in the tensor train format.
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4.3.1 Tensor Train Structure of the Hankel Matrix

For the sake of simplicity, we will consider scalar valued WFA in this section but all the

results we present can be straightforwardly extended to vv-WFA. LetA = (α, {Aσ}σ∈Σ,ω)

be a WFA with n states. Recall that A computes a function fA : Σ∗ → R defined by

fA(x1x2 · · ·xk) = α⊤Ax1Ax2 · · ·Axk
ω

for any k ≥ 0 and x1, x2, · · · , xk ∈ Σ. The computation of a WFA on a sequence can be

represented by the following tensor network:

f(x1x2 · · · xk) =
α Ax1 Ax2

· · ·
· · ·Axk−1 Axk ω

By stacking the transition matrices {Aσ}σ∈Σ into a third order tensor A ∈ Rn×Σ×n

defined by

A:,σ,: = Aσ for all σ ∈ Σ,

this computation can be rewritten into

f(x1x2 · · ·xk) =
α A

x1

A

x2

· · ·
· · · A

xk−1

A

xk

ω

This graphically shows the tight connection between WFA and the tensor train de-

composition. More formally, for any integer l, let us define the lth order Hankel tensor

H(l) ∈ RΣ×Σ×···Σ by

H(l)
σ1,σ2,··· ,σl

= f(σ1σ2 · · ·σl) for all σ1, · · ·σl ∈ Σ. (4.3)
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Then, one can easily check that each such Hankel tensor admits the following rank n

tensor train decomposition:

H(l) =
α A A

· · ·
· · · A A ω

l times

=
A •1 α A

· · ·
· · · A A •3 ω

= JA •1 α,A, · · · ,A,A •3 ωK

It follows that the Hankel matrix of a recognizable function can be decomposed into

sub-blocks which are all matricization of Hankel tensors with low tensor train rank. To

the best of our knowledge, this is a novel result that has not been noticed in the past. We

conclude this section by formalizing this result in the following theorem.

Theorem 7. Let f : Σ∗ → R be a function computed by a WFA with n states and let H ∈ RΣ∗×Σ∗

be its Hankel matrix defined by Hu,v = f(uv) for all u, v ∈ Σ∗. Furthermore, for any integer l, let

H(l) ∈ RΣ×Σ×···×Σ be the lth order tensor defined by H(l)
σ1,σ2,··· ,σl

= f(σ1σ2 · · · σl).

Then, the Hankel matrix H can be decomposed into sub-blocks, each sub-block being the matri-

cization of a tensor of tensor train rank at most n. More precisely, each of these sub-blocks is equal

to (H(l))⟨⟨k,l−k⟩⟩ for some values of l and k, and each Hankel tensor H(l) has tensor train rank at

most n.

Proof. For each m, k ∈ N, let H(m,k) ∈ RΣm×Σk denote the sub-block of the Hankel matrix

with prefixes Σm and suffixes Σk. It is easy to check that the Hankel matrix H ∈ RΣ∗×Σ∗

can be partitioned into the sub-blocks H(m,k) for m, k ∈ N:

H =


H(0,0) H(0,1) H(0,2) H(0,3) · · ·

H(1,0) H(1,1) H(1,2) H(1,3) · · ·

H(2,0) H(2,1) H(2,2) H(2,3) · · ·
...

...
...

... . . .


.
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Now, by definition of the tensors H(l), we have H(m,k) = (H(m+k))⟨⟨m,k⟩⟩. Moreover, let

A = (α, {Aσ}σ∈Σ,ω) be a WFA with n states computing f and let A ∈ Rn×Σ×n be the

3rd order tensor defined by A:,σ,: = Aσ for each σ ∈ Σ. For any m, k ∈ N and any

σ1, · · · , σm+k ∈ Σ, we have

H(m,k)
σ1,··· ,σm+k

= ((H(m+k))⟨⟨m,k⟩⟩)σ1···σm,σm+1···σm+k

= f(σ1, σ2, · · · , σm+k)

= α⊤Aσ1Aσ2 · · ·Aσm+k
ω

= α⊤A:,σ1,:A:,σ2,: · · ·A:,σm+k,:ω

= JA •1 α,A, · · · ,A,A •3 ωKσ1,··· ,σm+k
.

It follows that

H(m,k) = (H(m+k))⟨⟨m,k⟩⟩ = (JA •1 α,
m+k−2 times︷ ︸︸ ︷
A, · · · ,A,A •3 ωK)⟨⟨m,k⟩⟩

and thus that each sub-block H(m,k) is a matricization of a tensor of tensor train rank at

most n.

4.3.2 Spectral Learning in the Tensor Train Format

We now present how the tensor train structure of the Hankel matrix can be leveraged

to significantly improve the computational complexity of steps 3 and 4 of the spectral

learning algorithm described in Section 4.2.2. These two steps consist in first computing

a low rank approximation of the Hankel sub-block

HP,S ≃ PS
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before estimating the parameters of the WFA using simple pseudo-inverse and matrix

product computations

α⊤ = h⊤
SS

†, ω = P−1hP and Aσ = P†Hσ
P,SS

† for each σ ∈ Σ

where the Hankel sub-blocks are defined by

(hP )u = f(u), (hS)v = f(v), (HP,S)u,v = f(uv) and (Hσ
P,S)u,v = f(uσv)

for all σ ∈ Σ, u ∈ P, v ∈ S. Note that we again focus on scalar-valued WFA for the sake

of clarity (i.e. A = (α, {Aσ}σ∈Σ,ω)) but the results we present can be straightforwardly

extended to vector-valued WFA. Using tensor networks, these two steps are described as

follows:

HP,S

P S ≃
P

P n
S
S

α
n =

hS

S
S†

† n
ω

n =
P†

†n P
hP

Aσ

nn =
P†

†n P
Hσ

P,S

S
S†

† n

We now focus on the case where the basis of prefixes and suffixes are both equal to

the set of all sequences of length l for some integer l, i.e. P = S = Σl. A first important

observation is that, in this case, the Hankel sub-block HP,S is a matricization of the 2l-th

order Hankel tensor H(2l) ∈ RΣ×···×Σ defined in Eq. (4.3):

HP,S = (H(2l))⟨⟨l,l⟩⟩.

Indeed, for u = u1u2 · · ·ul ∈ P = Σl and v = v1v2 · · · vl ∈ S = Σl we have

(HP,S)u,v = f(uv) = f(u1u2 · · ·ulv1v2 · · · vl) = H(2l)
u1,u2,··· ,ul,v1,v2,··· ,vl .
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Using the same argument, one can easily show that hP = hS = vec(H(l)). Lastly, a similar

observation can be done for the Hankel sub-blocks Hσ
P,S for each σ ∈ Σ: all of these sub-

blocks are slices of the Hankel tensor H(2l+1). Indeed, for any u = u1u2 · · ·ul ∈ P = Σl

and v = v1v2 · · · vl ∈ S = Σl we have

(Hσ
P,S)u,v = f(uσv) = f(u1 · · ·ulσv1 · · · vl) = H(2l+1)

u1,··· ,ul,σ,v1,··· ,vl

from which it follows that

Hσ
P,S =

(
(H(2l+1))⟨⟨l,1,l⟩⟩

)
:,σ,:

for all σ ∈ Σ.

Thus, in the case where P = S = Σl, all the sub-blocks of the Hankel matrix one

needs to estimate for the spectral learning algorithm are matricization of Hankel tensors

of tensor train rank at most n (where n is the number of states of the target WFA). Let us

assume for now that we have access to the true Hankel tensors H(l), H(2l) and H(2l+1)

given in the tensor train format (how to estimate these Hankel tensors in the tensor train

format from data will be discussed in Section 4.5.3):

H(l) = JG(l)
1 , · · · ,G

(l)
l K

H(2l) = JG(2l)
1 , · · · ,G(2l)

2l K

H(2l+1) = JG(2l+1)
1 , · · · ,G(2l+1)

2l+1 K

where all tensor train decompositions are of rank n. We now show how the tensor train

structure of the Hankel tensors can be leveraged to significantly improve the computa-

tional complexity of the spectral learning algorithm. Recall first that in the standard case,

this complexity is in O (n|P ||S|+ n2|P ||Σ|) (where the first term corresponds to the trun-

cated SVD of the Hankel matrix, and the second one to computing the transition matrices

Aσ), which is equal to O
(
n|Σ|2l + n2|Σ|l+1

)
when P = S = Σl. In contrast, we will show
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that if the Hankel tensors are given in the tensor train format, the complexity of the spec-

tral learning algorithm can be reduced to O (n3l|Σ|).

First observe that the tensor train decomposition of the Hankel tensor H(2l) already

gives us the rank n factorization of the Hankel matrix HP,S = (H(2l))⟨⟨l,l⟩⟩, which can easily

be seen from the following tensor network:

H(2l) =

G
(2l)
1 G

(2l)
2

· · ·
· · · G(2l)

l G
(2l)
l+1

· · ·
· · ·G(2l)

2l−1G
(2l)
2l

P S

n n n

More formally, this shows that HP,S = PS with P = (JG(2l)
1 , · · · ,G(2l)

l , IK)⟨⟨l,1⟩⟩ and S =

(JI,G(2l)
l+1, · · · ,G

(2l)
2l K)⟨⟨1,l⟩⟩. The remaining step of the spectral learning algorithm consists

in computing the pseudo-inverse of P and S and performing various matrix products

involving the Hankel sub-blocks hP , hS and Hσ
P,S for each σ ∈ Σ. Observe that all the

elements involved in these computations are tensors of tensor train rank at most n (or

matricizations of such tensors). It turns out that all these operations can be performed

efficiently in the tensor tensor train format: the pseudo-inverses of P and S in the tensor

train format can be computed in time O (n3l|Σ|) and all the matrix products between P†

and S† and the Hankel tensors can also be done in timeO (n3l|Σ|). Describing these tensor

train computations in details go beyond the scope of this chapter but these algorithms

are well known in the tensor train and matrix product states communities. We refer the

reader to [Oseledets, 2011] for efficient computations of matrix products in the tensor train

format, and to [Gelß, 2017] and [Klus et al., 2018] for the computation of pseudo-inverse

in the tensor train format.

We showed that in the case where P = S = Σl, the time complexity of the last two steps

of the spectral learning algorithm can be reduced from an exponential dependency on l to

a linear one. This is achieved by leveraging the tensor train structure of the Hankel sub-

blocks. However, recall that the spectral learning algorithm is consistent (i.e. guaranteed
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to return the target WFA from an infinite amount of training data) only if P and S form

a complete basis, that is P and S are such that rank((HP,S)(1)) = rank(H). In the case

where P = S = Σl, this condition is equivalent to rank((H(2l))⟨⟨l,l⟩⟩) = rank(H). But it

is not the case that for any function computed by a WFA, there exists an integer l such

that P = S = Σl form a complete basis. Indeed, consider for example the function f on

the alphabet {a, b} defined by f(x) = 1 if x = aa and 0 otherwise. One can easily show

that there exists a minimal WFA with 3 states computing f . However, it is easy to check

that rank((H(2l))⟨⟨l,l⟩⟩) is equal to 1 for l = 1 and to 0 for any other value of l. This implies

that not all functions can be consistently recovered from training data using the efficient

spectral learning algorithm we propose.

Luckily, this caveat can be addressed using a simple workaround. For any function

f : Σ∗ → R, one can define a new alphabet Σ̃ = Σ∪ {λ}where λ is a new symbol not in Σ

which will be treated as the empty string. One can then extend f to f̃ : Σ̃∗ → R naturally

by ignoring the new symbol λ, e.g. f̃(λabλc) = f(abc). Let H ∈ RΣ∗×Σ∗ , H̃ ∈ RΣ̃∗×Σ̃∗ ,

H(2l) ∈ RΣ×···×Σ and H̃
(2l) ∈ RΣ̃×···×Σ̃ be the Hankel matrix and tensors of f and f̃ . Then,

one can show that if f can be computed by a WFA with n states, there always exists an

integer l such that rank((H̃
(2l)

)⟨⟨l,l⟩⟩) = rank(H) = n. Indeed, in contrast with the Hankel

tensor H(2l) which only contains the values of f on sequences of length exactly 2l, the

Hankel tensors H̃
(2l)

contains the values of f on all sequences of length smaller than

or equal to 2l. One potential workaround would consist in estimating the Hankel sub-

blocks of f̃ from data generated by f and perform steps 3 and 4 of the spectral learning to

recover the parameters of a WFA computing f̃ . The transition matrix associated with the

new symbol λ can be discarded to obtain the parameters of a WFA estimating f (note that

since the spectral learning algorithm is consistent, the transition matrix associated with

the new symbol λ estimated from data is guaranteed to converge to the identity matrix as

the training data increases).

In practice, to estimate a Hankel tensor of length L, one could append every sequence

in the dataset that is of length L or smaller than L with λ until it reaches length L and
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then perform the standard Hankel recovery routine. It is worth mentioning that we did

not have to use this workaround for any of the experiments presented in Section 4.6.

More importantly, one can show that if the parameters of a 2-RNN are drawn randomly

then the workaround discussed above is not necessary (i.e., one can consistently recover

a random 2-RNN from data using the learning algorithm we propose), which is shown in

the following proposition.

Proposition 1. Let A = ⟨α,A,ω⟩ be a 2-RNN with n states whose parameters are randomly

drawn from a continuous distribution (w.r.t. the Lebesgue measure) and let H ∈ RΣ∗×Σ∗ be its

Hankel matrix. Then, with probability one, rank((H(2l))⟨⟨l,l⟩⟩) = rank(H) for any l such that

|Σ|l ≥ n (where H(2l) is as defined in Eq. (4.3)).

Proof. Let Fl ∈ RΣl×n and Bl ∈ Rn×Σl be the forward and backward matrices of the ran-

dom 2-RNN, that is the rows of Fl are α⊤A:.u1,: · · ·A:.ul,: for u1 · · ·ul ∈ Σl and the columns

of Bl are A:.v1,: · · ·A:.vl,:ω for v1 · · · vl ∈ Σl. Let l be any integer such that |Σ|l ≥ n. We first

show that both Fl and Bl are full rank with probability one. Observe that det(F⊤
l Fl) is a

polynomial of the 2-RNN parameters α,A. Since a polynomial is either zero or non-zero

almost everywhere [Caron and Traynor, 2005], and since one can easily find a 2-RNN

such that det(F⊤
l Fl) ̸= 0 (using the fact that |Σ|l ≥ n), it follows that det(F⊤

l Fl) is non-

zero almost everywhere. Consequently, since the parameters α and A are drawn from a

continuous distribution, det(F⊤
l Fl) ̸= 0 with probability one, i.e. Fl is of rank nwith prob-

ability one. With a similar argument, one can show that Bl is of rank n with probability

one.

To conclude, since (H(2l))⟨⟨l,l⟩⟩ = FlBl, both Fl and Bl have rank n, and |Σ|l ≥ n, it

follows that (H(2l))⟨⟨l,l⟩⟩ has rank n with probability one.
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4.4 Weighted Automata and Second-Order Recurrent Neu-

ral Networks

In this section, we present an equivalence result between weighted automata and second-

order RNN with linear activation functions (linear 2-RNN). This result rigorously formal-

izes the idea that WFA are linear RNN.

Recall that a 2-RNN R = (α,A,Ω) maps any sequence of inputs x1, · · · ,xk ∈ Rd to a

sequence of outputs y1, · · · ,yk ∈ Rp defined for any t = 1, · · · , k by

yt = z2(Ωht) with ht = z1(A •1 ht−1 •2 xt) (4.4)

where z1 : Rn → Rn and z2 : Rp → Rp are activation functions. We think of a 2-RNN

as computing a function fR : (Rd)∗ → Rp mapping each input sequence x1, · · · ,xk to the

corresponding final output yk. While z1 and z2 are usually non-linear component-wise

functions, we consider here the case where both z1 and z2 are the identity, and we refer to

the resulting model as a linear 2-RNN.

Observe that for a linear 2-RNN R, the function fR is multilinear in the sense that, for

any integer l, its restriction to the domain (Rd)l is multilinear. Another useful observation

is that linear 2-RNN are invariant under change of basis: for any invertible matrix P, the

linear 2-RNN M̃ = (P−⊤h0,A ×1 P×3 P
−⊤,PΩ) is such that fM̃ = fM .

One can easily show that the computation of the linear 2-RNN R = (α,A,Ω) boils

down to the following tensor network (see proof of Theorem 8):

fR(x1,x2, · · · ,xk) =
α A

x1

A

x2

· · ·
· · · A

xk

Ω

This computation is very similar, not to say equivalent, to the computation of a WFA

A = (α, {Aσ}σ∈Σ,Ω). Indeed, as we showed in the previous section, by stacking the

transition matrices {Aσ}σ∈Σ into a third order tensor A ∈ Rn×Σ×n the computation of the
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WFA A can be written as

f(σ1σ2 · · · σk) =
α Aσ1 Aσ2

· · ·
· · ·Aσk−1 Aσk Ω

=
α A

σ1

A

σ2

· · ·
· · · A

σk−1

A

σk

Ω

Thus, if we restrict the input vectors of a linear 2-RNN to be one-hot encoding (i.e. vectors

from the canonical basis), the two models are strictly equivalent.

These observations unravel a fundamental connection between vv-WFA and linear 2-

RNN: vv-WFA and linear 2-RNN are expressively equivalent for representing functions

defined over sequences of discrete symbols. Moreover, both models have the same capac-

ity in the sense that there is a direct correspondence between the hidden units of a linear

2-RNN and the states of a vv-WFA computing the same function. More formally, we have

the following theorem.

Theorem 8. Any function that can be computed by a vv-WFA with n states can be computed by

a linear 2-RNN with n hidden units. Conversely, any function that can be computed by a linear

2-RNN with n hidden units on sequences of one-hot vectors (i.e. canonical basis vectors) can be

computed by a WFA with n states.

More precisely, the WFA A = (α, {Aσ}σ∈Σ,Ω) with n states and the linear 2-RNN M =

(α,A,Ω) with n hidden units, where A ∈ Rn×Σ×n is defined by A:,σ,: = Aσ for all σ ∈ Σ, are

such that fA(σ1σ2 · · ·σk) = fM(x1,x2, · · · ,xk) for all sequences of input symbols σ1, · · · , σk ∈

Σ, where for each i ∈ [k] the input vector xi ∈ RΣ is the one-hot encoding of the symbol σi.

Proof. We first show by induction on k that, for any sequence σ1 · · · σk ∈ Σ∗, the hidden

state hk computed by M (see Eq. (4.4)) on the corresponding one-hot encoded sequence

x1, · · · ,xk ∈ Rd satisfies hk = (Aσ1 · · ·Aσk
)⊤α. The case k = 0 is immediate. Suppose the

result true for sequences of length up to k. One can check easily check that A •2 xi = Aσi
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for any index i. Using the induction hypothesis it then follows that

hk+1 = A •1 hk •2 xk+1 = Aσk+1
•1 hk = (Aσk+1

)⊤hk

= (Aσk+1
)⊤(Aσ1 · · ·Aσk

)⊤α = (Aσ1 · · ·Aσk+1
)⊤α.

To conclude, we thus have

fM(x1,x2, · · · ,xk) = Ωhk = Ω(Aσ1 · · ·Aσk
)⊤α = fA(σ1σ2 · · · σk).

This result first implies that linear 2-RNN defined over sequences of discrete symbols (us-

ing one-hot encoding) can be provably learned using the spectral learning algorithm for WFA/vv-

WFA; indeed, these algorithms have been proved to compute consistent estimators. Let

us stress again that, contrary to the case of feed-forward architectures, learning recurrent

networks with linear activation functions is not a trivial task. Furthermore, Theorem 8

reveals that linear 2-RNN are a natural generalization of classical weighted automata

to functions defined over sequences of continuous vectors (instead of discrete symbols).

Therefore, we will also refer to the linear 2-RNN as continuous weighted finite automata

(CWFAs) in the remaining of the thesis. The above observations spontaneously raise the

question of whether the spectral learning algorithms for WFA and vv-WFA can be ex-

tended to the general setting of linear 2-RNN, namely, CWFA; we show that the answer

is in the positive in the next section.

4.5 Spectral Learning of Continuous Weighted Automata

In this section, we extend the learning algorithm for vv-WFA to linear 2-RNN, thus at the

same time addressing the limitation of the spectral learning algorithm to discrete inputs

and providing the first consistent learning algorithm for linear second-order RNN.
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4.5.1 Recovering 2-RNN from Hankel Tensors

We first present an identifiability result showing how one can recover a linear 2-RNN

computing a function f : (Rd)∗ → Rp from observable tensors extracted from some Han-

kel tensor associated with f . Intuitively, we obtain this result by reducing the problem to

the one of learning a vv-WFA. This is done by considering the restriction of f to canonical

basis vectors; loosely speaking, since the domain of this restricted function is isomorphic

to [d]∗, this allows us to fall back onto the setting of sequences of discrete symbols.

It is not straightforward how the notion of Hankel matrix can be extended to a function

f : (Rd)∗ → Rp taking sequences of continuous vectors as input. One natural way to

proceed is to consider how f acts on sequences of vectors from the canonical basis. Given

a function f : (Rd)∗ → Rp, we define its Hankel tensor Hf ∈ R[d]∗×[d]∗×p by

(Hf )i1···is,j1···jt,: = f(ei1 , · · · , eis , ej1 , · · · , ejt),

for all i1, · · · , is, j1, · · · , jt ∈ [d], which is infinite in two of its modes. It is easy to see that

Hf is also the Hankel tensor associated with the function f̃ : [d]∗ → Rp mapping any

sequence i1i2 · · · ik ∈ [d]∗ to f(ei1 , · · · , eik). Moreover, in the special case where f can be

computed by a linear 2-RNN, one can use the multilinearity of f to show that

f(x1, · · · ,xk) =
d∑

i1,··· ,ik=1

(x1)i1 · · · (xl)ik f̃(i1 · · · ik).

This gives us some intuition on how one could learn f by learning a vv-WFA computing

f̃ using the spectral learning algorithm. That is, assuming access to the sub-blocks of the

Hankel tensor H for a complete basis of prefixes and suffixes P, S ⊆ [d]∗, the spectral

learning algorithm can be used to recover a vv-WFA computing f̃ and consequently a

linear 2-RNN computing f using Theorem 8.

We now state the main result of this section, showing that a (minimal) linear 2-RNN

computing a function f : (Rd)∗ → R can be exactly recovered from sub-blocks of the
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Hankel tensor Hf . For the sake of clarity, we present the learning algorithm for the

particular case where there exists an L such that the prefix and suffix sets consisting of all

sequences of length L, that is P = S = [d]L, forms a complete basis for f̃ (i.e. the sub-block

HP,S ∈ R[d]L×[d]L×p of the Hankel tensorHf is such that rank((HP,S)(1)) = rank((Hf )(1))).

As discussed in Section 4.3.2, such an integer L does not always exist even when the

underlying function f can be computed by a linear 2-RNN. However, the workaround

described at the end of Section 4.3.2 can be used here as well to extend this theorem to the

case of any function f that can be computed by a linear 2-RNN.

The following theorem can be seen as a reformulation of the classical spectral learning

theorem using the low rank Hankel tensors H(l) introduced in Section 4.3.1. In the case of

a continuous function f : (Rd)∗ → R, for any integer l, the finite tensor H(l)
f ∈ Rd×···×d×p

of order l + 1 is defined by

(H
(l)
f )i1,··· ,il,: = f(ei1 , · · · , eil) for all i1, · · · , il ∈ [d].

Observe that for any integer l, the tensor H(l)
f can be obtained by reshaping a finite sub-

block of the Hankel tensor Hf .

Theorem 9. Let f : (Rd)∗ → Rp be a function computed by a minimal linear 2-RNN with n

hidden units and let L be an integer such that

rank((H
(2L)
f )⟨⟨L,L+1⟩⟩) = n.

Then, for any P ∈ RdL×n and S ∈ Rn×dLp such that

(H
(2L)
f )⟨⟨L,L+1⟩⟩ = PS,

the linear 2-RNN R = (α,A,Ω) defined by

α = (S†)⊤(H
(L)
f )⟨⟨L+1⟩⟩, Ω⊤ = P†(H

(L)
f )⟨⟨L,1⟩⟩
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A = ((H
(2L+1)
f )⟨⟨L,1,L+1⟩⟩)×1 P

† ×3 (S
†)⊤

is a minimal linear 2-RNN computing f .

Proof. Let P ∈ RdL×n and S ∈ Rn×dLp be such that (H(2L)
f )⟨⟨L,L+1⟩⟩ = PS and let R⋆ =

(α,A,Ω) be a minimal linear 2-RNN computing f . Define the tensors

P⋆ = JA⋆ •1 α⋆,A⋆, · · · ,A⋆︸ ︷︷ ︸
L−1 times

, InK ∈ Rd×···×d×n

and

S⋆ = JIn,A⋆, · · · ,A⋆︸ ︷︷ ︸
L times

,Ω⋆K ∈ Rn×d×···×d×p

of order L+1 and L+2 respectively, and let P⋆ = (P⋆)⟨⟨l,1⟩⟩ ∈ RdL×n and S⋆ = (S⋆)⟨⟨1,L+1⟩⟩ ∈

Rn×dLp. Using the identity H
(l)
f = JA •1 α,A, · · · ,A︸ ︷︷ ︸

l−1 times

,Ω⊤K for any l, one can easily check

the following identities (see also Section 4.3.1):

(H
(2L)
f )⟨⟨L,L+1⟩⟩ = P⋆S⋆, (H

(2L+1)
f )⟨⟨L,1,L+1⟩⟩ = A⋆ ×1 P

⋆ ×3 (S
⋆)⊤,

(H
(L)
f )⟨⟨L,1⟩⟩ = P⋆(Ω⋆)⊤, (H

(L)
f )⟨⟨L+1⟩⟩ = (S⋆)⊤α.

Let M = P†P⋆. We will show that α = M−⊤α⋆, A = A⋆×1M×3M
−⊤ and Ω = MΩ⋆,

which will entail the results since linear 2-RNN are invariant under change of basis. First

observe that M−1 = S⋆S†. Indeed, we have P†P⋆S⋆S† = P†(H
(2L)
f )⟨⟨L,L+1⟩⟩S

† = P†PSS† =

I where we used the fact that P (resp. S) is of full column rank (resp. row rank) for the

last equality.
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The following derivations then follow from basic tensor algebra:

α = (S†)⊤(H
(L)
f )⟨⟨L+1⟩⟩ = (S†)⊤(S⋆)⊤α = (S⋆S†)⊤ = M−⊤α⋆,

A = ((H
(2L+1)
f )⟨⟨L,1,L+1⟩⟩)×1 P

† ×3 (S
†)⊤

= (A⋆ ×1 P
⋆ ×3 (S

⋆)⊤)×1 P
† ×3 (S

†)⊤

= A⋆ ×1 P
†P⋆ ×3 (S

⋆S†)⊤ = A⋆ ×1 M×3 M
−⊤,

Ω⊤ = P†(H
(L)
f )⟨⟨L,1⟩⟩ = P†P⋆(Ω⋆)⊤ = MΩ⋆,

which concludes the proof.

Observe that such an integer L exists under the assumption that P = S = [d]L forms a

complete basis for f̃ . It is also worth mentioning that a necessary condition for rank((H(2L)
f )⟨⟨L,L+1⟩⟩) =

n is that dL ≥ n, i.e. L must be of the order logd(n).

4.5.2 Hankel Tensors Recovery from Linear Measurements

We showed in the previous section that, given the Hankel tensorsH(L)
f ,H(2L)

f andH
(2L+1)
f ,

one can recover a linear 2-RNN computing f if it exists. This first implies that the class of

functions that can be computed by linear 2-RNN is learnable in Angluin’s exact learning

model [Angluin, 1988] where one has access to an oracle that can answer membership

queries (e.g. what is the value computed by the target f on (x1, · · · ,xk)?) and equivalence

queries (e.g. is the current hypothesis h equal to the target f?). While this fundamental result

is of significant theoretical interest, assuming access to such an oracle is unrealistic. In

this section, we show that a stronger learnability result can be obtained in a more realis-

tic setting, where we only assume access to randomly generated input/output examples

((x
(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i)) ∈ (Rd)∗ × Rp where y(i) = f(x

(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ).
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The key observation is that such an example ((x
(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i)) can be seen as a

linear measurement of the Hankel tensor H(l). Indeed, let f be a function computed by a

linear 2-RNN. Using the multilinearity of f we have

f(x1,x2, · · · ,xl) = f

(∑
i1

(x1)i1ei1 ,
∑
i2

(x2)i2ei2 , · · · ,
∑
il

(xl)ileil

)

=
∑

i1,··· ,il

(x1)i1 · · · (xl)ilf(ei1 , · · · , eil)

=
∑

i1,··· ,il

(x1)i1 · · · (xl)ilH
(l)
i1,··· ,il

= H
(l)
f •1 x1 •2 · · · •l xl

= (H(l))
⊤
⟨⟨l,1⟩⟩(x1 ⊗ · · · ⊗ xl)

where (e1, · · · , el) denotes the canonical basis of Rl. It follows that each input/output

example ((x
(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i)) constitutes a linear measurement of H(l):

y(i) = (H(l))
⊤
⟨⟨l,1⟩⟩(x

(i)
1 ⊗ · · · ⊗ x

(i)
l ) = (H(l))

⊤
⟨⟨l,1⟩⟩x

(i)

where x(i) := x
(i)
1 ⊗ · · · ⊗ x

(i)
l ∈ Rdl . Hence, by regrouping N output examples y(i) into

the matrix Y ∈ RN×p and the corresponding input vectors x(i) into the matrix X ∈ RN×dl ,

one can recover H(l) by solving the linear system Y = X(H(l))⟨⟨l,1⟩⟩, which has a unique

solution whenever X is of full column rank. This simple estimation technique for the

Hankel tensors allows us to design the first consistent learning algorithm for linear 2-

RNN, which is summarized in Algorithm 5 (with the ”Least-Squares” recovery method).

More efficient recovery methods for the Hankel tensors will be discussed in the next sec-

tion. The following theorem shows that this learning algorithm is consistent. Its proof

relies on the fact that X will be of full column rank whenever N ≥ dl and the components

of each x
(i)
j for j ∈ [l], i ∈ [N ] are drawn independently from a continuous distribution

over Rd (w.r.t. the Lebesgue measure).
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Theorem 10. Let (h0,A,Ω) be a minimal linear 2-RNN with n hidden units computing a func-

tion f : (Rd)∗ → Rp, and let L be an integersuch that rank((H(2L)
f )⟨⟨L,L+1⟩⟩) = n.

Suppose we have access to 3 datasets

Dl = {((x(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i))}Nl

i=1 ⊂ (Rd)l × Rp for l ∈ {L, 2L, 2L+ 1}

where the entries of each x
(i)
j are drawn independently from the standard normal distribution and

where each y(i) = f(x
(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ).

Then, if Nl ≥ dl for l = L, 2L, 2L + 1, the linear 2-RNN M returned by Algorithm 5 with

the least-squares method satisfies fM = f with probability one.

Proof. We just need to show for each l ∈ {L, 2L, 2L + 1} that, under the hypothesis of

the Theorem, the Hankel tensors Ĥ
(l)

computed in line 4 of Algorithm 5 are equal to the

true Hankel tensors H(l) with probability one. Recall that these tensors are computed by

solving the least-squares problem

Ĥ
(l)

= argmin
T∈Rd×···×d×p

∥X(T)⟨⟨l,1⟩⟩ −Y∥2F

where X ∈ RNl×dl is the matrix with rows x
(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
l for each i ∈ [Nl]. Since

X(H(l))⟨⟨l,1⟩⟩ = Y and the solution of the least-squares problem is unique as soon as X is

of full column rank, we just need to show that this is the case with probability one when

the entries of the vectors x
(i)
j are drawn at random from a standard normal distribution.

The result will then directly follow by applying Theorem 9.

We will show that the set

S = {(x(i)
1 , · · · ,x

(i)
l ) | i ∈ [Nl], dim(span({x(i)

1 ⊗ x
(i)
2 ⊗ · · · ⊗ x

(i)
l })) < dl}

has Lebesgue measure 0 in ((Rd)l)Nl ≃ RdlNl as soon as Nl ≥ dl, which will imply that

it has probability 0 under any continuous probability, hence the result. For any S =

{(x(i)
1 , · · · ,x

(i)
l )}Nl

i=1, we denote by XS ∈ RNl×dl the matrix with rows x(i)
1 ⊗x

(i)
2 ⊗ · · ·⊗x

(i)
l .
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One can easily check that S ∈ S if and only if XS is of rank strictly less than dl, which

is equivalent to the determinant of X⊤
SXS being equal to 0. Since this determinant is a

polynomial in the entries of the vectors x(i)
j , S is an algebraic subvariety of RdlNl . It is then

easy to check that the polynomial det(X⊤
SXS) is not uniformly 0 when Nl ≥ dl. Indeed,

it suffices to choose the vectors x
(i)
j such that the family (x

(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
l )Nl

n=1 spans

the whole space Rdl (which is possible since we can choose arbitrarily any of the Nl ≥ dl

elements of this family), hence the result. In conclusion, S is a proper algebraic subvariety

of RdlNl and hence has Lebesgue measure zero [Federer, 2014, Section 2.6.5].

A few remarks on this theorem are in order. The first observation is that the 3 datasets

DL, D2L and D2L+1 do not need to be drawn independently from one another (e.g. the

sequences in DL can be prefixes of the sequences in D2L but it is not necessary). In par-

ticular, the result still holds when the datasets DL, D2L and D2L+1 are constructed from a

unique dataset

S = {((x(i)
1 ,x

(i)
2 , · · · ,x

(i)
T ), (y

(i)
1 ,y

(i)
2 , · · · ,y

(i)
T ))}Ni=1

of input/output sequences with T ≥ 2L + 1, where y
(i)
t = f(x

(i)
1 ,x

(i)
2 , · · · ,x

(i)
t ) for any

t ∈ [T ]. Observe that having access to such input/output training sequences is not an un-

realistic assumption: for example when training RNN for language modeling the output

yt is the conditional probability vector of the next symbol. Lastly, when the outputs y(i)

are noisy, one can solve the least-squares problem ∥Y−X(H(l))⟨⟨l,1⟩⟩∥2F to approximate the

Hankel tensors; we will empirically evaluate this approach in Section 4.6 and we defer its

theoretical analysis in the noisy setting to future work.
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Algorithm 5 2RNN-SL: Spectral Learning of linear 2-RNN

Input: Three training datasets DL, D2L, D2L+1 with input sequences of length L, 2L and

2L + 1 respectively, a recovery method, rank R, noise tolerance parameter ε (for

Nuclear Norm) and learning rate γ (for IHT/TIHT/SGD).

1: for l ∈ {L, 2L, 2L+ 1} do

2: Use Dl = {((x(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i))}Nl

i=1 ⊂ (Rd)l ×Rp to build X ∈ RNl×dl with rows

x
(i)
1 ⊗ x

(i)
2 ⊗ · · · ⊗ x

(i)
l for i ∈ [Nl] and Y ∈ RNl×p with rows y(i) for i ∈ [Nl].

3: if recovery method = ”Least-Squares” then

4: H(l) = argmin
T∈Rd×···×d×p

∥X(T)⟨⟨l,1⟩⟩ −Y∥2F .

5: else if recovery method = ”Nuclear Norm” then

6: H(l) = argmin
T∈Rd×···×d×p

∥(T)⟨⟨⌈l/2⌉,l−⌈l/2⌉+1⟩⟩∥∗ subject to ∥X(T)⟨⟨l,1⟩⟩ −Y∥ ≤ ε.

7: else if recovery method = ”IHT” or recovery method = ”TIHT” then

8: Initialize H(l) ∈ Rd×···×d×p.

9: repeat

10: (H(l))⟨⟨l,1⟩⟩ ← (H(l))⟨⟨l,1⟩⟩ + γX⊤(Y −X(H(l))⟨⟨l,1⟩⟩)

11: H(l) ← project(H(l), R) (using either SVD for IHT or TT-SVD for TIHT)

12: until convergence

13: else if recovery method = ”SGD” or recovery method = ”ALS” then

14: Initialize all cores of the rank R TT-decomposition H(l) = JG(l)
1 , · · · ,G

(l)
l+1K.

// Note that H(l) is never explicitly constructed.

15: repeat

16: for i = 1, · · · , l + 1 do

17: G
(l)
i ←


G

(l)
i − γ∇G

(l)
i
∥X(JG(l)

1 , · · · ,G
(l)
l+1K)⟨⟨l,1⟩⟩ −Y∥2F for SGD

argmin
G

(l)
i

∥X(JG(l)
1 , · · · ,G

(l)
l+1K)⟨⟨l,1⟩⟩ −Y∥2F for ALS

18: end for

19: until convergence

20: end if

21: end for
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22 Let (H(2L))⟨⟨L,L+1⟩⟩ = PS be a rank R factorization, then return the linear 2-RNN
(h0,A,Ω) where

h0 = (S†)⊤(H
(L)
f )⟨⟨L+1⟩⟩, Ω⊤ = P†(H

(L)
f )⟨⟨L,1⟩⟩

A = ((H
(2L+1)
f )⟨⟨L,1,L+1⟩⟩)×1 P

† ×3 (S
†)⊤

4.5.3 Leveraging the low rank structure of the Hankel tensors

While the least-squares method is sufficient to obtain the theoretical guarantees of Theo-

rem 10, it does not leverage the low rank structure of the Hankel tensors H(L), H(2L) and

H(2L+1). We now propose several alternative recovery methods to leverage this struc-

ture, in order to improve both sample complexity and time complexity. The sample ef-

ficiency and running time of these methods will be assessed in a simulation study in

Section 4.6 (deriving improved sample complexity guarantees using these methods is left

for future work).

We first propose two alternatives to solving the least-squares problem Y = X(H(l))⟨⟨l,1⟩⟩

that leverage the low matrix rank structure of the Hankel tensor. Indeed, knowing that

(H(l))⟨⟨⌈l/2⌉,l−⌈l/2⌉+1⟩⟩ can be approximately low rank (if the target function is computed by

a WFA with a small number of states), one can achieve better sample complexity by tak-

ing into account the fact that the effective number of parameters needed to describe this

matrix can be significantly lower than its number of entries. The first approach is to refor-

mulate the least-squares problem as a nuclear norm minimization problem (see line 6 of

Algorithm 5). The nuclear norm is the tightest convex relaxation of the matrix rank and

the resulting optimization problem can be solved using standard convex optimization

toolbox [Candes and Plan, 2011, Recht et al., 2010]. A second approach is a non-convex

optimization algorithm: iterative hard thresholding (IHT) [Jain et al., 2010] (see lines 7-

12 of Algorithm 5). This optimization method is iterative and boils down to a projected

gradient descent algorithm: at each iteration, the Hankel tensor is updated by taking a
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step in the direction opposite to the gradient of the least-squares objective, before being

projected onto the manifold of low rank matrices using truncated SVD. More precisely,

first the following gradient update is performed:

(H(l))⟨⟨l,1⟩⟩ ← (H(l))⟨⟨l,1⟩⟩ − γ∇(H(l))⟨⟨l,1⟩⟩
∥X(H(l))⟨⟨l,1⟩⟩ −Y∥2F

= (H(l))⟨⟨l,1⟩⟩ + γX⊤(Y −X(H(l))⟨⟨l,1⟩⟩)

where γ is the learning rate. Then, a truncated SVD of the matricization (H(l))⟨⟨⌈l/2⌉,l−⌈l/2⌉+1⟩⟩

is performed to obtain a low rank approximation of the Hankel tensor.

Both the nuclear norm minimization and the iterative hard thresholding algorithm

only leverages the fact that the matrix rank of (H(l))⟨⟨⌈l/2⌉,l−⌈l/2⌉+1⟩⟩ is small. However, as

we have shown in Section 4.3.1, the Hankel tensor H(l) exhibits a stronger structure: it is

of low tensor train rank (which implies that any of its matricization is a low rank matrix).

We now present three methods leveraging this structure for the recovery of the Hankel

tensors from linear measurements. The first optimization algorithm is tensor iterative

hard thresholding (TIHT) [Rauhut et al., 2017] which is the tensor generalization of IHT.

Similarly to IHT, TIHT is a projected gradient descent algorithm where the projection

step consists in projecting the Hankel tensor onto the manifold of tensors with low tensor

train rank (instead of projecting onto the set of low rank matrices): after the gradient

update described above, a low rank tensor train approximation of the Hankel tensor H(l)

is computed using the TT-SVD algorithm [Oseledets, 2011].

Even though TIHT leverages the tensor train structure of the Hankel tensors to obtain

better sample complexity, its computational complexity remains high since the Hankel

tensor H(l) needs to alternatively be converted between its dense form (for the gradient

descent step) and its tensor train decomposition (for the projection steps). Observe here

that the size of these two objects significantly differs: the full Hankel tensor H(l) has

size dlp whereas the number of parameters of its tensor train decomposition is only in

O (ldR2 + pR), where R is the rank of the tensor train decomposition. Similarly to the effi-
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cient learning algorithm in the tensor train format presented in Section 4.3.2, the recovery

of the Hankel tensors can be carried out in the tensor train format without never hav-

ing to explicitly construct the tensor H(l). We conclude by presenting two optimization

methods to recover the Hankel tensors from data directly in the tensor train format. For

both methods, the Hankel tensor H(l) is never explicitly constructed but parameterized

by the core tensors G1, · · · ,Gl+1 of its TT decomposition:

H(l) = JG1, · · · ,Gl+1K.

Both methods are iterative and will optimize the least-squares objective with respect to

each of the core tensors in turn until convergence. The first one is the alternating least-

squares algorithm (ALS), which is one of the workhorse of tensor decomposition algo-

rithms [Kolda and Bader, 2009]. In ALS, at each iteration a least-squares problem is solved

in turn for each one of the cores of the TT decomposition:

Gi ← argmin
Gi

∥X(JG1, · · · ,Gl+1K)⟨⟨l,1⟩⟩ −Y∥2F for i = 1, · · · , l + 1.

The second one consists in simply using gradient descent to perform a gradient step with

respect to each one of the core tensors at each iteration:

Gi ← Gi − γ∇Gi
∥X(JG1, · · · ,Gl+1K)⟨⟨l,1⟩⟩ −Y∥2F for i = 1, · · · , l + 1

where γ is the learning rate. Both methods are described in lines 15-19 of Algorithm 5.

Combining these two optimization methods with the spectral learning algorithm in the

tensor train format described in Section 4.3.2 results in an efficient learning algorithm to

estimate a linear 2-RNN from training data, where the Hankel tensors are never explicitly

constructed but always manipulated in the tensor train format.

To conclude this section, we briefly mention that the ALS and gradient descent al-

gorithms can straightforwardly be adapted to perform optimization with respect to mini-
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batches instead of the whole training dataset. This allows us to further scale the algorithm

to large training sets.

4.6 Experiments

In this section, we perform experiments on two toy examples to compare how the choice

of the recovery method (LeastSquares, NuclearNorm, IHT, TIHT, ALS and Gradient

Descent) affects the sample efficiency of Algorithm 5, and the corresponding computa-

tion time. We also report the performance obtained by refining the solutions returned

by our algorithm (with both TIHT and ALS recovery methods) using stochastic gradi-

ent descent (TIHT+SGD, ALS+SGD). In addition, we perform experiments on a real world

dataset of wind speed data from TUDelft, which is used in [Lin et al., 2016]. For the real

world data, we include the original results for competitive approaches from [Lin et al.,

2016].

4.6.1 Synthetic data

We perform experiments on two toy problems: recovering a random 2-RNN from data

and a simple addition task. For the random 2-RNN problem, we randomly generate a

linear 2-RNN with 5 units computing a function f : R3 → R2 by drawing the entries of all

parameters (h0,A,Ω) independently from a normal distribution N(0, 0.2). The training

data consists of 3 independently drawn sets Dl = {((x(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ),y(i))}Nl

i=1 ⊂ (Rd)l×

Rp for l ∈ {L, 2L, 2L + 1} with L = 2, where each x
(i)
j ∼ N(0, I) and where the outputs

can be noisy, i.e. y(i) = f(x
(i)
1 ,x

(i)
2 , · · · ,x

(i)
l ) + ξ(i) where ξ(i) ∼ N(0, σ2) for some noise

variance parameter σ2. For the addition problem, the goal is to learn a simple arithmetic

function computing the sum of the running differences between the two components of

a sequence of 2-dimensional vectors, i.e. f(x1, · · · ,xk) =
∑k

i=1 v
⊤xi where v⊤ = (−1 1).

The 3 training datasets are generated using the same process as above and a constant
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1:2:

Figure 4.4: Average MSE as a function of the training set size for learning a random linear

2-RNN with different values of output noise.

entry equal to one is added to all the input vectors to encode a bias term (one can check

that the resulting function can be computed by a linear 2-RNN with 2 hidden units).

Figure 4.5: Average MSE as a function of the training set size for learning a simple arith-

metic function with different values of output noise.

We run the experiments for different sizes of training data ranging from N = 20 to

N = 5, 000 (we set NL = N2L = N2L+1 = N ) and we compare the different methods in

terms of mean squared error (MSE) on a test set of 1, 000 sequences of length 6 generated

in the same way as the training data (note that the training data only contains sequences

of length up to 5). The IHT/TIHT methods sometimes returned aberrant models (due to

numerical instabilities), we used the following scheme to circumvent this issue: when the

training MSE of the hypothesis was greater than the one of the zero function, the zero

function was returned instead (we applied this scheme to all other methods in the exper-
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iments). For the gradient descent approach, we use the autograd method from Pytorch

with the Adam [Kingma and Ba, 2014] optimizer with learning rate 0.001.

Results

The results are reported in Figure 4.4 and 4.5 where we see that all recovery methods lead

to consistent estimates of the target function given enough training data. This is the case

even in the presence of noise (in which case more samples are needed to achieve the same

accuracy, as expected). We can also see that TIHT and ALS tend to be overall more sample

efficient than the other methods (especially with noisy data), showing that taking the low

rank structure of the Hankel tensors into account is profitable. Moreover, TIHT tends to

perform better than its matrix counterpart, confirming our intuition that leveraging the

tensor train structure is beneficial.

We also found that using gradient descent to refine the learned 2-RNN model often

leads to a performance boost. In Figure 4.6 and Figure 4.7 we show the advantage MSE

obtained by fine-tuning the learned 2-RNN using gradient descent. We use Pytorch to im-

plement the fine-tuning process with the Adam optimizer with a learning rate of 0.0001.

Fine-tuning helps the model to converge to the optimal solution with less data, result-

ing in a more sample-efficient approach. Lastly, we briefly mention that on these two

tasks, previous experiments showed that both non-linear and linear recurrent neural net-

work architectures trained with the back-propagation algorithm performed significantly

worse than the spectral learning based learning algorithm we propose (see Rabusseau

et al. [2019]), where we experiment with LSTM of both linear and nonlinear (tanh) ac-

tivation function. The LSTM with linear activation function always underperforms the

nonlinear counterpart, where all our methods show significantly better sample efficiency

than nonlinear LSTM. The structure of the LSTM is of one layer with 20 hidden units

(tanh activation for nonlinearity) and a fully-connected output layer. The training is done

using Adam optimizer with a learning rate of 0.001.
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Figure 4.6: Performance comparison between vanilla methods and fine-tuned methods

on Random 2-RNN problem.

Figure 4.7: Performance comparison between vanilla methods and fine-tuned methods

on Addition problem.

Running time analysis

By directly recovering the Hankel tensor in its tensor train form, ALS and SGD signifi-

cantly reduces the computation time needed to recover the Hankel tensor. In Figure 4.8a,

we report the computation time of the different Hankel recovery methods for Hankel ten-

sors with various length (L). The experiment is performed with 1,000 examples for the

addition problem and all iterative methods (excluding OLS) are stopped when reaching

the same fixed training accuracy. In the figure, there is a clear reduction in computation

time for both ALS and SGD compared to other methods, which is expected. More specif-

ically, these methods have much smaller computation time growth rate with respect to

the length L compared to the matrix-based methods. This is especially beneficial when
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dealing with data that exhibits long term dependencies of the input variables. In compar-

ison to the Hankel tensor recovery time, the spectral learning step takes significantly less

time, typically within a second. However, one important note is that if the length L gets

larger, directly performing spectral learning on the matrix form of the Hankel tensor may

not be possible due to the curse of dimensionality. Therefore, under this circumstance,

one should directly perform the spectral learning algorithm in its tensor train form as

described in Section 4.3.2.

To demonstrate the benefits of performing the spectral learning algorithm in the TT

format (as described in Section 4.3.2), we perform an additional experiment showing that

leveraging the TT format allows one to save significant amount of computation time and

memory resources in the spectral learning phase, especially when the corresponding Han-

kel tensor is large (i.e. large length and input dimension). In Figure 4.8b we compare the

running time of the spectral learning phase (after recovering the Hankel tensors) in the

matrix and TT formats, where the latter leverages the TT structure in the spectral learning

routine. We randomly generate 100,000 input-output examples using a Random 2-RNN

with 3 states, input dimension 5 and output dimension 1. We use ALS to recover the Han-

kel tensors in the TT format and compare the running time of the spectral learning in the

TT format with the time needed to perform the classical spectral learning algorithm af-

ter reshaping the Hankel tensors in matrices (note that the time needed to convert the TT

Hankel tensors into the corresponding Hankel matrices is not counted towards the matrix

spectral learning time). In Figure 4.8b, we report the time needed to recover the Hankel

tensors from data (Hankel ALS) and the time to recover the WFA in both the matrix and

TT formats. One can observe that although classic matrix-based spectral learning is sig-

nificantly faster than the TT-based one when the length is relatively small, the running

time of the matrix method grows exponentially with the length while the one of the TT

method is linear. For example, when the length equals to 12, TT spectral learning is more

than 1,000 times faster than the classic spectral learning. This computation time gap sig-

nificantly shows the benefit of leveraging TT format in the spectral learning phase. One
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(a) Computation time comparison between dif-

ferent Hankel recovery methods on addition

problem with 1,000 data. Computation time is

capped at 10,000 seconds for all methods (the

red dashed line).

(b) Computation time comparison between TT-

spectral learning and classic matrix based spec-

tral learning on Random 2-RNN problem with

100,000 examples. The ground truth 2-RNN

has 3 states, with input dimension 5 and out-

put dimension 1.

Figure 4.8: Running time comparison

remark is that other types of Hankel tensor recovery methods that we mentioned (i.e.

TIHT, IHT, LeastSquares and NuclearNorm) fail to scale in this setup, due to excessive

memory required by these algorithms in preparing the training data.

In addition, directly recovering the Hankel tensors and performing spectral learning

in the TT format also helps drastically reduce the memory resources. As an illustration,

we compare the size of the Hankel matrix in the TT format and the matrix format in Ta-

ble 4.1. As one can see the size of the matrix version of the Hankel grows exponentially

w.r.t the length while the TT Hankel size grows linearly. This also echoes with the com-

putation time for these two methods.

Length 4 6 8 10 12 14
TT Hankel Size (GB) 2.68e-06 4.69e-06 6.70e-06 8.71e-06 1.07e-05 1.27e-05
Matrix Hankel Size (GB) 1.40e-05 3.49e-04 8.73e-03 2.20e-01 5.40e-01 136

Table 4.1: Memory size of the Hankel tensor H(ℓ) for the random 2-RNN problem (see

Figure 4.8b) in both TT and matrix formats.
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4.6.2 Real world data

In addition to the synthetic data experiments presented above, we conduct experiments

on the wind speed data from TUDelft §. For this experiment, to compare with existing

results, we specifically use the data from Rijnhaven station as described in Lin et al. [2016],

which proposed a regression automata model and performed various experiments on

the wind speed dataset. The data contains wind speed and related information at the

Rijnhaven station from 2013-04-22 at 14:55:00 to 2018-10-20 at 11:40:00 and was collected

every five minutes. To compare with the results in [Lin et al., 2016], we strictly followed

the data preprocessing procedure described in the chapter. We use the data from 2013-04-

23 to 2015-10-12 as training data and the rest as our testing data. The chapter uses SAX as

a preprocessing method to discretize the data. However, as there is no need to discretize

data for our algorithm, we did not perform this procedure. For our method, we set the

length L = 3 and we use a window size of 6 to predict the future values at test time. We

calculate hourly averages of the wind speed, and predict one/three/six hour(s) ahead, as

in [Lin et al., 2016]. In this experiment, our model only predicts the next hour from the

past 6 observations. To make k-hour-ahead prediction, we use the forecast of the model

itself as input and bootstrap from it. For our methods we use a linear 2-RNN with 10

states. Averages over 5 runs of this experiment for one-hour-ahead, three-hour-ahead,

six-hour-ahead prediction error can be found in Table 4.2, 4.3 and 4.4. The results for RA,

RNN and persistence are taken directly from [Lin et al., 2016], where the RNN structure is

selected to be LSTM with 3 layers and 15 hidden neurons with ReLu activation function.

The results of this experiment are presented in Table 4.2-4.4 where we can see that

while TIHT+SGD performs slightly worse than ARIMA and RA for one-hour-ahead pre-

diction, it outperforms all other methods for three-hours and six-hours ahead predic-

tions (and the superiority w.r.t. other methods increases as the prediction horizon gets

longer). One important note is that although ALS and ALS+SGD is slightly under-performing

§http://weather.tudelft.nl/csv/
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compared to TIHT and TIHT+SGD, the computation time has been significantly reduced

for ALS by a factor of 5 (TIHT takes 3,542 seconds while ALS takes 804 seconds).

Table 4.2: One-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT
+SGD ALS ALS

+SGD
Regression
Automata ARIMA RNN Persistence

RMSE 0.573 0.519 0.586 0.522 0.500 0.496 0.606 0.508
MAPE 21.35 18.79 22.12 19.01 18.58 18.74 24.48 18.61
MAE 0.412 0.376 0.423 0.388 0.363 0.361 0.471 0.367

Table 4.3: Three-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT
+SGD ALS ALS

+SGD
Regression
Automata ARIMA RNN Persistence

RMSE 0.868 0.854 0.875 0.864 0.872 0.882 1.002 0.893
MAPE 33.98 31.70 34.67 32.13 32.52 33.165 37.24 33.29
MAE 0.632 0.624 0.648 0.628 0.632 0.642 0.764 0.649

Table 4.4: Six-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT
+SGD ALS ALS

+SGD
Regression
Automata ARIMA RNN Persistence

RMSE 1.234 1.145 1.283 1.128 1.205 1.227 1.261 1.234
MAPE 49.08 44.88 47.65 45.03 46.809 48.02 47.03 48.11
MAE 0.940 0.865 0.932 0.869 0.898 0.919 0.944 0.923

4.7 Conclusion and Future Directions

We proposed the first provable learning algorithm for second-order RNN with linear ac-

tivation functions: we showed that linear 2-RNN are a natural extension of vv-WFA to

the setting of input sequences of continuous vectors (rather than discrete symbol) and we

extended the vv-WFA spectral learning algorithm to this setting. We also presented novel

connections between WFA and tensor networks, showing that the computation of a WFA

is intrinsically linked with the tensor train decomposition. We leveraged this connection
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to adapt the standard spectral learning algorithm to the tensor train format, allowing one

to scale up the spectral algorithm to exponentially large sub-blocks of the Hankel matrix.

We believe that the results presented in this chapter open a number of exciting and

promising research directions on both the theoretical and practical perspectives. We first

plan to use the spectral learning estimate as a starting point for gradient based methods

to train non-linear 2-RNN. More precisely, linear 2-RNN can be thought of as 2-RNN

using LeakyRelu activation functions with negative slope 1, therefore one could use a

linear 2-RNN as initialization before gradually reducing the negative slope parameter

during training. The extension of the spectral method to linear 2-RNN also opens the

door to scaling up the classical spectral algorithm to problems with large discrete alpha-

bets (which is a known caveat of the spectral algorithm for WFA) since it allows one to

use low dimensional embeddings of large vocabularies (using e.g. word2vec or latent

semantic analysis). From the theoretical perspective, we plan on deriving learning guar-

antees for linear 2-RNN in the noisy setting (e.g. using the PAC learnability framework).

Even though it is intuitive that such guarantees should hold (given the continuity of all

operations used in our algorithm), we believe that such an analysis may entail results of

independent interest. In particular, analogously to the matrix case studied in [Cai et al.,

2015], obtaining optimal convergence rates for the recovery of the low TT-rank Hankel

tensors from rank one measurements is an interesting direction; such a result could for

example allow one to improve the generalization bounds provided in [Balle and Mohri,

2012] for spectral learning of general WFA. Lastly, establishing other equivalence results

between classical classes of formal languages and functions computed by recurrent archi-

tectures is a worthwhile endeavor; such equivalence results give a novel light on classical

models from theoretical computer science and linguistics while at the same time sparkling

original perspectives on modern machine learning architectures. A first direction could

be to establish connections between weighted tree automata and tree-structured neural

models such as recursive tensor neural networks [Socher et al., 2013b,a].
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Chapter 5

Nonlinear Weighted Finite Automata

Spectral learning and WFAs present several attractive features in their learning proper-

ties. However, as previously noted, their expressivity is limited as they are linear models.

This limited expressivity often results in a large or infinite state representation size, which

can negatively impact computation and learning efficiency. In the next two chapters, we

will delve into the methods of incorporating nonlinearities into WFAs and their continu-

ous counterparts.

In this chapter, we present the Nonlinear Weighted Finite Automata (NL-WFAs) model.

The inspiration behind NL-WFAs stems from the realization that the low-rank factoriza-

tion of the Hankel matrix in the spectral learning algorithm is equivalent to an encoder-

decoder neural network with linear activation functions. To incorporate nonlinearities,

we use a nonlinear encoder-decoder to decompose the Hankel matrix and then proceed

with the remaining steps of the spectral learning process. The transition functions are

learned through the use of gradient descent. The expressive power of NL-WFA and the

proposed learning algorithm are assessed on both synthetic and real world data, showing

that NL-WFA can lead to smaller model sizes and infer complex grammatical structures

from data. This chapter is based on my publication [Li et al., 2018].
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5.1 Introduction

Although WFA have been successfully applied in various areas of machine learning, they

are inherently linear models: their computation boils down to the composition of linear

maps. Recent positive results in machine learning have shown that models based on com-

posing nonlinear functions are both very expressive and able to capture complex struc-

tures in data. For example, by leveraging the expressive power of deep convolutional

neural networks in the context of reinforcement learning, agents can be trained to outper-

form humans in Atari games [Mnih et al., 2013] or to defeat world-class go players [Silver

et al., 2016]. Deep convolutional networks have also recently led to considerable break-

throughs in computer vision [Krizhevsky et al., 2012], where they showed their ability to

disentangle the complex structure of the data by learning a representation which unfold

the original complex feature space (where the data lies on a low-dimensional manifold)

into a representation space where the structure has been linearized. It is thus natural to

wonder to which extent introducing non-linearity in WFA could be beneficial. We will

show that both these advantages of nonlinear models, namely their expressiveness and

their ability to learn rich representations, can be brought to the classical WFA computa-

tional model.

In this chapter, we propose a nonlinear WFA model (NL-WFA) based on neural net-

works, along with a learning algorithm. In contrast with WFA, the computation of an

NL-WFA relies on successive compositions of nonlinear mappings. This model can be seen as

an extension of dynamical recognizers [Moore, 1997] — which are in some sense a non-

linear extension of deterministic finite automata — to the quantitative setting. In contrast

with the training of recurrent neural networks (RNN), our learning algorithm does not

rely on back-propagation through time. It is inspired by the spectral learning algorithm

for WFA, which can be seen as a two-step process: first, find a low-rank factorization of

the so-called Hankel matrix leading to a natural embedding of the set of words into a low-

dimensional vector space, and then performing regression in this representation space
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to recover the transition matrices. Similarly, our learning algorithm first finds a nonlin-

ear factorization of the Hankel matrix using an auto-encoder network, thus learning a

rich nonlinear representation of the set of strings, and then performs nonlinear regression

using a feed-forward network to recover the transition operators in the representation

space.

Related works. NL-WFA and RNN are closely related: their computation relies on the

composition of nonlinear mappings directed by a sequence of observations. In this pa-

per, we explore a somehow orthogonal direction to the recent RNN literature by trying to

connect such models back with classical computational models from formal language the-

ory. Such connections have been explored in the past in the non-quantitative setting with

dynamical recognizers [Moore, 1997], whose inference has been studied in e.g. [Pollack,

1991]. The ability of RNN to learn classes of formal languages has also been investigated,

see e.g. [Avcu et al., 2017] and references therein. It is well known that predictive state

representations (PSRs) [Littman and Sutton, 2002] are strongly related to WFA [Thon and

Jaeger, 2015]. A nonlinear extension of PSR has been proposed for deterministic con-

trolled dynamical systems in [Rudary and Singh, 2004]. More recently, building upon

reproducing kernel Hilbert space embedding of PSR [Boots et al., 2013], non-linearity is

introduced into PSR using recurrent neural networks [Downey et al., 2017, Venkatraman

et al., 2017]. In addition to the RNNs based models, [Hefny et al., 2015] proposed a two-

stage regression framework as well as a nonlinear extension. Then, by leveraging this

two-stage framework with inference machine [Sun et al., 2016] proposed another differ-

ent approach to tackle nonlinear dynamics.

One of the main differences with these approaches is that our learning algorithm does

not rely on back-propagation through time and we instead investigate how the spectral

learning method for WFA can be beneficially extended to the nonlinear setting. However,

although bearing some similarities, the major difference between our work and theirs

is that we want to build a nonlinear model for sequential data while they focus on fil-

tering and prediction tasks (the model is not the actual goal). Moreover, they focus on
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continuous dynamical systems, which are also the major focus for [Downey et al., 2017,

Venkatraman et al., 2017], but we are mostly interested in discrete tasks. Although it is

true that the factorization step in our learning algorithm is related to the S1A and S1B

stages in [Hefny et al., 2015], the regression step of our method (which is at the core of

the NL-WFA model) cannot be seen as an instantiation of that framework. In addition, it

is not clear how performing non-linear regression in S1A and S1B in [Hefny et al., 2015]

would result in a nonlinear computational model.

5.2 Nonlinear Weighted Finite Automata

The WFA model assumes that the transition operators Aσ are linear. It is natural to won-

der whether this linear assumption sometimes induces a too strong model bias (e.g. if

one tries to learn a function that is not recognizable by a WFA). Moreover, even for rec-

ognizable functions, introducing non-linearity could potentially reduce the number of

states needed to represent the function. Consider the following example: given a WFA

A = ⟨α,α∞, {Aσ}⟩, the function (fA)
2 : u 7→ fA(u)

2 is recognizable and can be computed

by the WFA A′ = ⟨α′,α′
∞, {A′

σ}⟩ with α′ = α ⊗ α, α′
∞ = α∞ ⊗ α∞ and A′

σ = Aσ ⊗ Aσ,

where ⊗ denotes Kronecker product. One can check that if rank(fA) = k, then rank(fA′)

can be as large as k2, but intuitively the true dimension of the model is k using non-

linearity*. These two observations motivate us to introduce nonlinear WFA (NL-WFA).

5.2.1 Definition of NL-WFA

We will use the notation g̃ to stress that a function g may be nonlinear. We define a NL-

WFA Ã of with k states as a tuple ⟨α, G̃λ, {G̃σ}σ∈Σ⟩, where α ∈ Rk is a vector of initial

weights, G̃σ : Rk → Rk is a transition function for each σ ∈ Σ and G̃λ : Rk → R is a

*By applying the spectral method on the component-wise square root of the Hankel matrix of A′, one
would recover the WFA A of rank k.
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termination function. A NL-WFA Ã computes a function fÃ : Σ∗ → R defined by

fÃ(x) = G̃λ(G̃xt(· · · G̃x2(G̃x1(α0)) · · · ))

for any word x = x1x2 · · ·xt ∈ Σ∗. Similarly to the linear case, we will sometimes use

the shorthand notation G̃x = G̃xt ◦ G̃xt−1 ◦ · · · ◦ G̃x1 . This nonlinear model can be seen

as a generalization of dynamical recognizers [Moore, 1997] to the quantitative setting. It

is easy to see that one recovers the classical WFA model by restricting the functions G̃σ

and G̃λ to be linear. Of course, some restrictions on these nonlinear functions have to be

imposed in order to control the expressiveness of the model. In this paper, we consider

nonlinear functions computed by neural networks.

5.2.2 A Representation learning perspective on the spectral algorithm

Our learning algorithm is inspired by the spectral learning method for WFA. In order to

give some insights and further motivate our approach, we will first show how the spectral

method can be interpreted as a representation learning scheme.

The spectral method can be summarized as a two-stage process consisting of a factor-

ization step and a regression step: first, find a low rank factorization of the Hankel matrix

and then perform regression to estimate the transition operators {Aσ}σ∈Σ.

First, focusing on the factorization step, let us observe that one can naturally embed

the set of prefixes into the vector space RS by mapping each prefix u to the corresponding

row of the Hankel matrix Hu,:. However, it is easy to check that this representation is

highly redundant when the Hankel matrix is of low rank. In the factorization step of

the spectral learning algorithm, the rank k factorization H = PS can be seen as finding

a low dimensional representation Pu,: ∈ Rk for each prefix u, from which the original

Hankel representation Hu,: can be recovered using the linear map S (indeed Hu,: = Pu,:S).

We can formalize this encoder-decoder perspective by defining two maps Ψp : P 7→ Rk

and Ψs : Rk 7→ RS by Ψp(u)
⊤ = Pu,: and Ψs(x)

⊤ = x⊤S. One can easily check that
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Ψs(Ψp(u))
⊤ = Hu,:, which implies that Ψp(u) encodes all the information sufficient to

predict the value f(uv) for any suffix v ∈ S (indeed f(uv) = Ψp(u)
⊤S:,v).

The regression step of the spectral algorithms consists in recovering the matrices Aσ

satisfying Hσ = PAσS. From our encoder-decoder perspective, this can be seen as recov-

ering the compositional mappings Aσ satisfying Ψp(uσ)
⊤ = Ψp(u)

⊤Aσ for each σ ∈ Σ.

It follows from the previous discussion that non-linearity could be beneficially brought

to WFA and into the spectral learning algorithm in two ways: first by using nonlinear

methods to perform the factorization of the Hankel matrix, thus discovering a potentially

nonlinear embedding of the Hankel representation, and second by allowing the compo-

sitional feature maps associated with each symbol to be nonlinear.

5.3 Learning NL-WFA

Introducing non-linearity can be achieved in several ways. In this paper, we will use

neural networks due to their ability to discover relevant nonlinear low-dimensional rep-

resentation spaces and their expressive power as function approximators.

5.3.1 Nonlinear factorization

Introducing non-linearity in the factorization step boils down to finding two mappings

Ψp and Ψs such that Ψs(Ψp(u)) = Hu,: for any prefix u ∈ P. Briefly going back to the linear

case, one can check that if H = PS, then we have Hu,: = Hu,:S
+S for each prefix u, imply-

ing that the encoder-decoder maps satisfy Ψp(u)
⊤ = Hu,:S

+ and Ψs(x)
⊤ = x⊤S. Thus the

factorization step can essentially be interpreted as finding an auto-encoder able to project

down the Hankel representation Hu,: to a low dimensional space while preserving the

relevant information captured by Hu,:.

How to extend the factorization step to the nonlinear setting should now appear

clearly: by training an auto-encoder to learn a low-dimensional representation of the
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Figure 5.1: Factorization network and transition network: grey units are nonlinear while

white ones are linear.

Hankel representations Hu,:, one will potentially unravel a rich representation of the set

of prefixes from which an NL-WFA can be recovered.

Let ϕ̃ : RS 7→ Rk and ϕ̃′ : Rk → RS be the encoder and decoder maps respectively. We

will train the auto-encoder shown in Figure 5.1 (left) to achieve

ϕ̃′(ϕ̃(Hu,:)) ≃ Hu,:.

More precisely, if H ∈ Rm×n, the model is trained to map the original Hankel representa-

tion Hu,: ∈ Rn of each prefix u to a latent representation vector in Rk, where k ≪ n, and

then map this vector back to the original representation Hu,:. This is achieved by mini-

mizing the reconstruction error (i.e. the ℓ2 distance between the original representation

and its reconstruction). Instead of linearly factorizing the Hankel matrix, we use an auto-

encoder framework consisting of two networks, whose hidden layer activation functions

are nonlinear†.

More precisely, if we denote the nonlinear activation function by θ, and we let A,

B, C, D be the weights matrices from the left to the right of the neural net shown in

Figure 5.1 (left), the function f̂ : Rn → Rn computed by the auto-encoder can be written

as

f̂ = ϕ̃′ ◦ ϕ̃ : (H)⊤u,: 7→ θ(θ(θ(H⊤
u,:A)⊤B)⊤C)⊤D

†We use the (component-wise) tanh function in our experiments.
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where the encoder-decoder functions ϕ̃ : Rn → Rk and ϕ̃′ : Rk → Rn are defined by

ϕ̃(x)⊤ = θ(θ(x⊤A)⊤B) and ϕ̃′(h)⊤ = θ(h⊤C)⊤D for vectors x ∈ Rn,h ∈ Rk and n is the

number of suffixes.

It is easy to check that if the activation function θ is the identity, one will exactly re-

cover a rank k factorization of the Hankel matrix, thus falling back onto the classical

factorization step of the spectral learning algorithm.

5.3.2 Nonlinear regression

Given the encoder-decoder maps ϕ̃ and ϕ̃′, we then move on to recovering the transition

functions. Recall that we wish to find the compositional feature maps G̃σ : Rk → Rk for

each σ satisfying Ψp(uσ) = G̃σ(Ψp(u)) for all u ∈ P. Using the encoder map ϕ̃ obtained in

the factorization step, the mapping Ψp can be written as Ψp(u) = ϕ̃(Hu,:).

In order to learn these transition maps, we will thus train one neural network for each

symbol σ to minimize the following squared error loss function

∑
u∈P

∥G̃σ(ϕ̃(Hu,:))− ϕ̃(Huσ,:)∥2.

The structure of the simple feed-forward network used to learn the transition maps is

shown in Figure 5.1 (right). Let E,F be the two weights matrices, the function ĝ : Rk → Rk

computed by this network can be written as

ĝ : h⊤ 7→ θ(θ(h⊤E)⊤F)

We want to point out that both hidden units and output units of this network are nonlin-

ear. Since this network will be trained to map between latent representations computed

by the factorization network, the output units of the transition network and the units cor-

responding to the latent representation in the factorization network should be of the same

nature to facilitate the optimization process.
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5.3.3 Overall learning algorithm

Let (P,S) ⊂ Σ∗ × Σ∗ be a basis of suffixes and prefixes such that λ ∈ P ∩S. Let (P′,S)

be its p-closure (i.e. P′ = P ∪PΣ) and let m = |P′|, n = |S|. For reasons that will be

clarified in the next section, we assume that P is prefix-closed (i.e. for any x ∈ P, all

prefixes of x also belong to P). The first step consists in building the estimate H ∈ Rm×n

of the Hankel matrix from the training data (by using e.g. the empirical frequencies in the

train set), where the rows of H are indexed by prefixes in P′ = P ∪PΣ and its columns

by suffixes in S. The learning algorithm for NL-WFA then consists of two steps:

1. Train the factorization network to obtain a nonlinear decomposition of the Hankel

matrix H through the mappings ϕ̃ : Rn → Rk and ϕ̃′ : Rk → Rn satisfying

ϕ̃′(ϕ̃(Hu,:)) ≃ Hu,: for all u ∈ P ∪PΣ. (5.1)

2. Train the transition networks for each symbol σ ∈ Σ to learn the transition maps

G̃σ : Rk → Rk satisfying

G̃σ(ϕ̃(Hu,:)) ≃ ϕ̃(Huσ,:) for all u ∈ P. (5.2)

The resulting NL-WFA is then given by Ã = ⟨α0, G̃λ, {G̃σ}σ∈Σ⟩where α = ϕ̃(Hλ,:) and

G̃λ is defined by

G̃λ(x) = λ⊤ϕ̃′(x) for all x ∈ Rk

where λ is the one-hot encoding of the empty suffix λ.

5.3.4 Theoretical analysis

While the definitions of the initial vector α0 and termination function Gλ given above

may seem ad-hoc, we will now show that the learning algorithm we derived corresponds

to minimizing an error loss function between fÃ(u) and the estimated value Hu,λ over all
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prefixes in P. Intuitively, this means that our learning algorithm aims at minimizing the

empirical squared error loss over the training set P ⊂ Σ∗. More formally, we show in the

following theorem that if both the factorization network and the transition networks are

trained to optimality (i.e. they both achieve 0 training error), then the resulting NL-WFA

exactly recovers the values given in the first column of the estimate of the Hankel matrix.

Theorem 11. If the prefix set P is prefix-closed and if equality holds in Eq. (5.1) and Eq. (5.2),

then the NL-WFA Ã = ⟨α0, G̃λ, {G̃σ}σ∈Σ⟩, where α = ϕ̃(Hλ,:) and G̃λ : x 7→ λ⊤ϕ̃′(x), is such

that fÃ(u) = Hu,λ for all u ∈ P.

Proof. We first show by induction on the length of a word u = u1u2 · · ·ut ∈ P that

G̃u(α0) = G̃ut(G̃ut−1(· · · G̃1(α0) · · · )) = ϕ̃(Hu,:).

If u = σ ∈ Σ, using the fact that λ ∈ P we have G̃σ(α0) = G̃σ(ϕ̃(Hλ,:)) = ϕ̃(Hσ,:)

by Eq. (5.2). Now if u = u1u2 · · ·ut ∈ P, we can apply the induction hypothesis on

u1u2 · · ·ut−1 (since P is prefix-closed) to obtain G̃u(α0) = G̃ut(G̃u1···ut−1(α0)) = G̃ut(ϕ̃(Hu1···ut−1,:)) =

ϕ̃(Hu,:) by Eq. (5.2).

To conclude, for any u ∈ P we have fÃ(u) = G̃λ(G̃u(α0)) = G̃λ(ϕ̃(Hu,:)) = λ⊤ϕ̃′(ϕ̃(Hu,:)) =

Hu,:λ = Hu,λ by Eq. (5.1).

Intuitively, it follows that the learning algorithm described in Section 5.3.3 aims at

minimizing the following loss function

J(ϕ̃, ϕ̃′, {G̃σ}σ∈Σ) =
∑
u∈P

(λ⊤ϕ̃′(G̃u(ϕ̃(Hλ,:))−Hu,λ)
2

=
∑
u∈P

(fÃ(u)− f̂(u))
2
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where f̂(u) is the estimated value of the target function on the word u, and where the

NL-WFA Ã is a function of the encoder-decoder maps ϕ̃, ϕ̃′ and of the transition maps G̃σ

as described in Section 5.3.3.

Even though Theorem 11 seems to suggest that our learning algorithm is prone to

over-fitting, but this is not the case. Indeed, akin to the linear spectral learning algorithm,

the restriction on the number of states of the NL-WFA (which corresponds to the size of

the latent representation layer in the factorization network) induces regularization and

enforces the learning process to discriminate between signal and noise (i.e. in practice,

the networks will not achieve 0 error due to the bottleneck structure of the factorization

network).

5.3.5 Applying non-linearity independently in the factorization and

transition networks

We have shown that non-linearity can be introduced into the two steps of our learning

algorithm. We can thus consider three variants of this algorithm where we either apply

non-linearity in the factorization step only, in the regression step only, or in both steps. It

is easy to check that these three different settings correspond to three different NL-WFA

models depending on whether the termination function only is nonlinear, the transition

functions only are nonlinear, or both the termination and transition functions are nonlin-

ear. Indeed, recall that that a NL-WFA Ã is defined as a tuple Ã = ⟨α, G̃λ, {G̃σ}σ∈Σ⟩. If no

non-linearity are introduced in the factorization network, the termination function will

have the form

G̃λ : x 7→ λ⊤ϕ̃′(x) = λ⊤D⊤C⊤x

(using the notations from the previous sections), which is linear. Similarly, if no non-

linearity are used in the transition networks, the resulting maps G̃σ will be linear.

One may argue that only applying non-linearity in the termination function G̃λ would

not lead to an expressive enough model. However, it is worth noting that in this case, after
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Figure 5.2: Pautomac score for the Dyck language experiment for different model

sizes (trained on a sample size of 20,000).

the nonlinear factorization step, even though the transition functions are linear, they are

operating on a nonlinear feature space. This is similar in spirit to the kernel trick, where

a linear model is learned in a feature space resulting from a nonlinear transformation of

the initial input space. Moreover, if we go back to the example of the squared function

(fA)
2 for some WFA A with k states (see beginning of Section 5.2), even though (fA)

2 may

have rank up to k2, one can easily build a NL-WFA with k states computing (fA)
2 where

only the termination function is nonlinear.

5.4 Experiments

We compare the classical spectral learning algorithm with the three configurations of our

neural networks based NL-WFA learning algorithms: applying non-linearity only in the

factorization step (denoted by fac.non), only in the regression step (denoted by tran.non),

and in both phases (denoted by both.non). We will perform experiments on a grammatical

inference task (i.e. learn a distribution over Σ∗ from samples drawn from this distribution)

with both synthetic and real data
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5.4.1 Metrics

We use two metrics to evaluate the trained models on a test set: Pautomac score and word

error rate.

• The Pautomac score was first proposed for the Pautomac challenge [Verwer et al.,

2014] and is defined by

Pauto(M) = −2
∑

x∈T P∗(x) log(PM (x))

where PM(x) is the normalized probability assigned to x by the learned model and

P∗(x) is the normalized true probability (both PM and P∗ are normalized to sum to 1

over the test set T ). Since the models returned by both our method and the spectral

learning algorithm are not ensured to output positive values, while the logarithm

of a negative value is not defined, we take the absolute values of all the negative

outputs.

• The word error rate (WER) measures the percentage of incorrectly predicted sym-

bols when, given each prefix of strings in the test set, the most likely next symbol is

predicted. To calculate WER, we are using the prefix version of the Hankel matrix.

In the next subsection, we will discuss how to obtain WER for our models.

5.4.2 Calculating Word Error Rate

Word error rate reports the element-wise letter prediction error percentage. Given a pre-

dictor M : Σ∗ 7→ σ, and a test word x = x1, x2, · · · , xn of size n, the calculation of the word

error rate can be performed in the following procedure:

1. Use the empty word as the first input, and get the prediction x̂1 = M(λ).

2. Use the word x1 as the input to predict x2: x̂2 = M(x1)

3. Use the word x1, x2 as the input to predict x3: x̂2 = M(x1, x2)
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Figure 5.3: Word error rate for the Dyck language experiment for different model

sizes (trained on a sample size of 20,000).

4. Keep adding the letter to the input word and get new predictions.

5. The word error rate can be computed by:

∑n
i=1 1(x̂i ̸= xi)

n

Then the problem is how to derive a predictor using the automaton model. For a linear

automaton, we will do so by maintaining a vector v as the model receiving letters. For a

word x = x1, x2, · · · , xn, if the model has already received the prefix u = x1, · · · , xt, then

we will have:

vu =
α⊤Au

α⊤Au(I−
∑

σ∈ΣAσ)−1ω

To predict the next letter xt+1, we will obtain the score Sσ corresponding to each of the

letter σ ∈ Σ by:

Sσ = v⊤
u Aσ(I−

∑
σ∈Σ

Aσ)
−1ω

We will compare all the scores obtained, and pick the letter with the highest score to

be the prediction for the next symbol.

It is easy to check, for a word x, the probability of u being a prefix is P(uΣ∗) =

α⊤Au(I −
∑

σ∈Σ Aσ)
−1ω. Then the probability of u specifically followed by the letter σ
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can be computed by α⊤AuAσ(I−
∑

σ∈ΣAσ)
−1ω. In fact Sσ = P(uσΣ∗)

P(uΣ∗)
, which is the condi-

tional probability that u will be followed by σ given u has appeared.

However, this treatment is only true if Aσ is a matrix, while for tran.non and both.non,

we have nonlinear transition functions. To solve this problem, we introduce the prefix

version of the Hankel matrix, defined as Hp
u,v = P(uvΣ∗) for the function fp(x) = P(xΣ∗).

For linear case, assume Hp = PpSp is a rank factorization, define the automaton Ap =

⟨αp,Ap
σ,ω

p⟩, where α = Pp
λ,:, Aσ = (pp)+Hσ(S

p)+ and ωp = Sp
:,λ. Then due to the duality

between WFA and Hankel matrix, Ap is the minimal WFA for fp. We can then compute

the score for predicting the next letter:

Sσ =
αp⊤Ap

uA
p
σω

p

αp⊤Ap
uωp

Therefore to calculate the score function for an NL-WFA, naturally, we can work with

the prefix version of the Hankel matrix using our method. Namely, we first obtain a pair

of encoder-decoder functions Φp and Φ′
p using Hp so that Φ′

p(Φp(H
p)) = Hp. Next we

solve the regression problem using Hp
σ, i.e. G̃σ(Φp(H

p)) = Φ′
p(H

p
σ). In the end, we obtain

a NL-WFA Ã = ⟨α, G̃λ, {G̃σ}σ∈Σ⟩, where α = Φp(λ) and G̃λ(x) = Φ′
p(x):,λ. Given this

NL-WFA, we modify the score function as:

Sσ =
G̃λ(G̃σ(G̃u(α)))

G̃λ(G̃u(α))

Notice we use the exact same algorithm as before. The only difference is that we

replace the classical Hankel matrix with the prefix version.

In the experiments, in order to calculate WER, we use the prefix version of the Hankel

matrix for both the spectral learning method as well as our methods.

5.4.3 Synthetic data: probabilistic Dyck language

For the synthetic data experiment, we generate data from a probabilistic Dyck language.

Let Σ = {[, ]}, we consider the language generated by the following probabilistic context
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free grammar

S → SS with probability 0.2

S → [S] with probability 0.4

S → [ ] with probability 0.4

i.e. starting from the symbol S, we draw one of the rules according to their probabil-

ity and apply it to transform S into the corresponding right hand side; this process is

repeated until no S symbol is left. One can check that this distribution will generate bal-

anced strings of brackets. It is well known that this distribution cannot be computed by

a WFA (since its support is a context free grammar). However, as a WFA can compute

any distribution with finite support, it can model the restriction of this distribution to

words of length less than some threshold N . By using this distribution for our synthetic

experiments, we want to showcase the fact that NL-WFA can lead to models with better

predictive accuracy when the number of states is limited and that they can better capture

the complex structure of this distribution.

In our experiments, we use empirical frequencies in a testing data set to estimate the

Hankel matrix HB ∈ R1000×1000, where the p-closed basis B is obtained by selecting the

1, 000 most frequent prefixes and suffixes in the training data. We first assess the ability of

NL-WFA to better capture the structure in the data when the number of states is limited.

We compared the models for different model sizes k ranging from 1 to 50, where k is the

number of states of the learned WFA and NL-WFA. For the latter, we used a three hidden

layers structure for the factorization network where the number of hidden units are set to

2k, k and 2k. For the transition networks, we use a neural network with 2k hidden units‡.

We used Adamax [Kingma and Ba, 2014] with learning rates 0.015 and 0.001 respectively

to train these two networks.
‡These hyperparameters are not finely tuned, thus some optimization might potentially improve the

results.
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Figure 5.4: Average Pautomac score for learning the Dyck language with different sample

sizes.

All models are trained on a training set of size 20, 000 and the Pautomac score and

WER on a test set of size 250 are reported in Figure 5.2 and 5.3 respectively. For both

metrics, we see that NL-WFA gives better results for small model sizes. While NL-WFA

and WFA tend to perform similarly for the Pautomac score for larger model sizes, NL-

WFA clearly outperforms WFA in terms of WER in this case. This shows that including

non-linearity can increase the prediction power of WFA by discovering the underlying

nonlinear structure and can be beneficial when dealing with a small number of states.

We then compared the sample complexity of learning NL-WFA and WFA by training

the different models on training set of sizes ranging from 200 to 20, 000. For all models

the rank is chosen by cross-validation. In Figure 5.4 and Figure 5.5, we show the perfor-

mances for the four models on a test set of size 250 by reporting the average and standard

deviation over 10 runs of this experiment. We can see that NL-WFA achieve better results

on small sample sizes for the Pautomac score and consistently outperforms the linear

model for all sample sizes for WER. This shows that NL-WFA can use the training data

more efficiently and again that the expressiveness of NL-WFA is beneficial to this learning

task.
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Figure 5.5: Average word error rate for learning the Dyck language with different sample

sizes.

5.4.4 Synthetic data: Pautomac Chanllenge

In this experiment, we still use empirical frequency to estimate the sub-block of Hankel

matrix HB. Especially, for computational efficiency, we use the first 1000 most frequent

prefixes and suffixes from the training set to construct our basis B. The number of hidden

units of both ϕ and ϕ′ is set to 2000. For the size of the model, while for the transition

function, the number of hidden units is two times the model size, where the model size

ranges from 1 to 500 and this is set to be the number of states for spectral learning. We

have also tried a different number of sample sizes from 1500 to 20000, and the size of the

test set is 1000.

The dataset we used is from Pautomac challenge [Verwer et al., 2014]. We will also

use the Pautomac score for the metric. We should keep in mind that all the datasets from

Pautomac are generated from linear models, thus using nonlinear models to approximate

might suffer from the intrinsic characteristics.

The datasets we use for this experiment are pautomac2 and pautomac3. For pau-

tomac2, the result is shown in Figure 5.6 . From the figure we observed that when the

sample size is relatively small, such as 1500 and 5000, without a large enough number

of states, the original linear spectral learning will be outperformed by our methods, and

when sample size increases, even with extreme small model size, nonlinear models still
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Figure 5.6: log(Perplexity) of Pautomac2 dataset based on a different number of states and

sample size. The data is generated from an HMM with 63 states and 18 actions (letters).

show reasonable perplexity, indicating their superiority over the linear model. This thus

gives us a confirmation that applying non-linearity can give us major advantages when

dealing with a smaller number of states and insufficient data.

We have already covered the explanation of potential model size reduction when one

applies non-linearity in the model in the Kronecker product example. Although the tran-

sition functions can appear to be linear, they may have nonlinear lower dimensional rep-

resentation. Therefore, by using a nonlinear model, one can discover this underlying

relationship and thus potentially reduce the model size.

On the other hand, for small sample sizes, spectral learning tends to have worse per-

formance than our model, especially with small model size. This could potentially result

from the expressiveness of the neural network as it can aggregate useful information from

what the linear model deems to be noise. To be more specific, let us look at the graph with

1500 training samples. When we increase the number of states for spectral learning, it
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Figure 5.7: log(Perplexity) of Pautomac3 dataset based on different number of states and

sample size. The data is generated from a PFA with 25 states and 4 actions (letters).

starts to perform well, and specifically, there is a significant improvement from 200 states

to 300, indicating some of the states it believes useless turn out to carry very important

information for the reconstruction of the model.

Nevertheless, this result is for a relatively more complex model in terms of the number

of states and actions it has. When dealing with a simpler model, such as pautomac3, our

experiment shows that non-linearity in this case could be detrimental. From Figure 5.7,

we can see that in every sample size spectral learning outperforms our models. This is

actually not surprising, as the underlying structure of the model is easier to capture and

is essentially linear. However, more interestingly, we have seen the overfitting behavior

that we did not see in the previous experiment, due to the simplicity of the underlying

model. In general, nonlinear factorization suffers mostly from overfitting as shown in the

graph, while nonlinear regression and applying non-linearity in both cases are less prone

to overfitting and are relatively steady even compared to spectral learning.
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5.4.5 Real data: Penn treebank

The Penn Treebank [Taylor et al., 2003] is a well-known benchmark dataset for natural lan-

guage processing. It consists of approximately 7 million words of part-of-speech tagged

text, 3 million words of skeletally parsed text, over 2 million words of text parsed for pred-

icate argument structure, and 1.6 million words of transcribed spoken text annotated for

speech disfluencies. In this experiment, we use a small portion of the Treebank dataset:

the character level of English verbs which was used in the SPICE challenge [Balle et al.,

2017]. This dataset contains 5,987 sentences over an alphabet of 33 symbols as the training

set. It also provides two test sets of size 750. We used one of the test sets as a validation

set and then tested our models on the other.

For this experiment, the Hankel matrix HB is of size 3000 × 300 where the prefixes

and suffixes have been selected again by taking the most frequent in the training data.

We used a five layers factorization network where the layers are of size 4k, 2k, k, 2k and

4k respectively, where k is the number of states of the NL-WFA. The structure of the

transition networks is the same as in the previous experiment. For all models, the rank is

selected using the validation set.

In the experiments, we compare the performance of NL-WFA with recurrent neural

networks (RNNs), HMM (Using the Baum-Welch algorithm) and linear spectral learning.

For RNNs, we use a three-layers LSTM networks with 128 units for each layer. We use

RMSprop with 0.001 learning rate to optimize on the categorical entropy. The results are

reported in Table 5.1 and Table 5.2. We can see that from the language modeling per-

spective (Pautomac score), our model (both.non) outperforms all the baselines for every

sample size. While from prediction perspective, RNNs are the best model given enough

data. However, with data being insufficient (sample size smaller than 3000), our method

(fac.non) performs the best. This indicates our model’s strong ability in modeling the

distribution, as well as relatively good performance in prediction task, especially when

dealing with small sample sizes. In addition, it is known that classical spectral learning

method may give negative values even under the probabilistic setting, which can com-
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Table 5.1: Log Pautomac Score For Real Data

Sample Size SP EM RNN Fac.non Tran.non Both.non
1000 9.098 4.252 4.765 8.005 3.480 2.937
2000 4.995 3.723 4.6053 4.874 3.374 2.923
3000 4.532 3.570 4.398 4.431 3.423 2.894
4000 4.235 3.542 4.244 4.166 3.198 2.880
ALL 4.234 3.496 4.191 4.144 3.098 2.748

Table 5.2: WER For Real Data

Sample Size SP EM RNN Fac.non Tran.non Both.non
1000 0.8432 0.808 0.806 0.7630 0.8834 0.8630
2000 0.8342 0.793 0.788 0.7332 0.8762 0.8435
3000 0.8195 0.781 0.736 0.7134 0.8679 0.8212
4000 0.8141 0.776 0.692 0.6935 0.8563 0.8098
ALL 0.8033 0.753 0.669 0.6831 0.8441 0.7910

promise the validity of the predicted distribution. However, we noticed that this issue

has been significantly alleviated for our methods. This result further strengthens our con-

clusion on the language modeling aspect.

5.5 Discussion

We believe that trying to combine models from formal languages theory (such as weighted

automata) and models that have recently led to several successes in machine learning (e.g.

neural networks) is an exciting and promising line of research, both from the theoretical

and practical sides. This work is a first step in this direction: we proposed a novel non-

linear weighted automata model along with a learning algorithm inspired by the spectral

learning method for classical WFA. We showed that non-linearity can be introduced in

two ways in WFA, in the termination function or in the transition maps, which directly

translates into the two steps of our learning algorithm.

In our experiment, we showed on both synthetic and real data that (i) NL-WFA can

lead to models with better predictive accuracy than WFA when the number of states is

limited, (ii) NL-WFA are able to capture the complex underlying structure of challenging
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languages (such as the Dyck language used in our experiments) and (iii) NL-WFA exhibit

better sample complexity when learning on data with a complex grammatical structure.

In the future, we intend to investigate further the properties of NL-WFA from both the-

oretical and experimental perspectives. For the former, one natural question is whether

we could obtain learning guarantees for some specific classes of nonlinear functions. In-

deed, one of the main advantages of the spectral learning algorithm is that it provides

consistent estimators. While it may be difficult to obtain such guarantees when consid-

ering functions computed by neural networks, we believe that studying the case of more

tractable nonlinear functions (e.g. polynomials) could be very insightful. We also plan

on thoroughly investigating connections between NL-WFA and RNN. From the practical

perspective, we want to first tune the hyper-parameters for NL-WFA more extensively

on the current datasets to potentially improve the results. In addition, we intend to run

further experiments on real data and on different kinds of tasks besides language mod-

eling (e.g. classification, regression). Moreover, due to the strong connection between

WFA and PSR, it will be very interesting to use NL-WFA in the context of reinforcement

learning.
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Chapter 6

Sequential Density Estimation via

Nonlinear Continuous Weighted Finite

Automata

The goal of this chapter is to investigate the possibilities of introducing nonlinearities

into WFAs with continuous input space (CWFAs/linear 2-RNN) and to propose a spec-

tral learning like algorithm to recover such WFAs. In this chapter, through the application

of sequential density estimation, we illustrate that one can leverage a nonlinear feature

map and a nonlinear output function to improve the expressivity of CWFAs. The choices

of these functions correlate to the predefined tasks. In the scope of this chapter, we will fo-

cus on density estimation and propose the RNADE-NCWFA model. We present the spe-

cific form of the feature mapping as well as the output function for estimating the density

function of a Gaussian HMM. Combining gradient descent and the spectral learning algo-

rithm, we propose a spectral learning based method for the learning of RNADE-NCWFA.

This chapter is based on my publication [Li et al., 2022a].

118



6.1 Introduction

One of the major applications of WFA is to approximate probability distribution over

sequences of discrete symbols. Although the WFA model has been extended to the con-

tinuous domain [Li et al., 2020b, Rabusseau et al., 2019] as the so-called linear 2-RNN

model (or continuous WFA model), approximating density functions for sequential data

under continuous domain using this model is not straight-forward, as the model does not

guarantee to compute a density function by construction. Moreover, due to the linearity

of the model, the continuous WFA model (CWFA) is not expressive enough to estimate

some of the common density functions over sequences of continuous random variables

such as a Gaussian hidden Markov model.

In recent years, neural networks have been widely applied in density estimation and

have been proven to be particularly successful. To estimate a density function via neural

networks, the neural density estimator need to be flexible enough to represent complex

densities but have tractable inference functions and learning algorithms. One particular

example of such models is the class of autoregressive models [Uria et al., 2016, 2013],

where the joint density is decomposed into a product of conditionals, and each condi-

tional is approximated by a neural network. One other type of method is the so-called

flow-based methods (normalizing flows) [Dinh et al., 2014, 2016, Rezende and Mohamed,

2015]. Flow-based methods transform a base density (e.g. a standard Gaussian) into the

target density by an invertible transformation with tractable Jacobian. Although these

methods have been used to estimate sequential densities, the sequences often come as

fixed lengths. It is often unclear how to generalize these methods to account for varying

lengths of the sequences in the testing phase, which can be important for some sequential

tasks, such as language modeling for NLP tasks. Weighted finite automata, on the other

hand, are designed to carry out such tasks under the discrete setting. The question is,

how to generalize WFA to approximate density functions over continuous domains?
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In this chapter, by extending the classic CWFA model with a (nonlinear) feature map-

ping and a (nonlinear) termination function, we first propose our nonlinear continuous

weighted finite automata (NCWFA) model. Combining this model with the RNADE

framework [Uria et al., 2013], we propose RNADE-NCWFA to approximate sequential

density functions. The model is flexible as it naturally generalizes to sequences of varying

lengths. Moreover, we show that the RNADE-NCWFA model is strictly more expressive

than the Gaussian HMM model. In addition, we propose a spectral learning based al-

gorithm for efficiently learning the parameters of an RNADE-NCWFA. For the empirical

study, we conduct synthetic experiments using data generated from a Gaussian HMM

model. We compare our proposed spectral learning of RNADE-NCWFA with HMM

learned with the EM algorithm, RNADE with LSTM, and RNADE-NCWFA learned with

stochastic gradient descent. We evaluate the models’ performance through their log like-

lihood over sequences of unseen length, meaning the testing sequences are longer than

the training sequences, to observe the model’s generalization ability. We show that our

model outperforms all the baseline models on this metric, especially for long testing se-

quences. Moreover, the advantage of our model is more significant when dealing with

small training sizes and noisy data.

6.2 Related Works

In this section, we will first present some recent methods of density estimation. Then

we will cover more details on the real-valued neural autoregressive density estimator

(RNADE) [Uria et al., 2013], which is the inspiration for this work.

6.2.1 Density Estimation

In recent years, neural networks have been widely applied in density estimation and

have been proven to be particularly successful. To estimate a density function via neural

networks, the neural density estimator need to be flexible enough to represent complex
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densities but have tractable inference functions and learning algorithms. One particular

example of such models is the class of autoregressive models [Uria et al., 2016, 2013],

where the joint density is decomposed into a product of conditionals, and each condi-

tional is approximated by a neural network. One other type of method is the so-called

flow-based methods (normalizing flows) [Dinh et al., 2014, 2016, Rezende and Mohamed,

2015]. Flow-based methods transform a base density (e.g., a standard Gaussian) into the

target density by an invertible transformation with tractable Jacobian. Although these

methods have been used to estimate sequential densities, the sequences often come as

fixed lengths. It is often unclear how to generalize these methods to account for the

varying length of the sequences in the testing phase, which can be important for some

sequential tasks, such as language modeling for NLP tasks. Weighted finite automata,

on the other hand, are designed to carry out such tasks under the discrete setting. The

question is, how to generalize WFA to approximate density functions over continuous

domains?

6.2.2 Real-valued neural autoregressive density estimator (RNADE)

RRNADE is a generalization of the original neural autoregressive density estimator (NADE) [Uria

et al., 2016] to continuous variables. The core idea of RNADE is to estimate the joint den-

sity using the chain rule and approximate each conditional density via neural networks,

i.e.

p(x1, · · · , xn) =
n∏

i=1

p(xi|x<i) with p(xi|x<i) = pM(xi|θi), (6.1)

where x<i denotes all attributes preceding xi ∈ R in a fixed ordering, pM is a mixture of

m Gaussians with parameters θi = {βi ∈ Rm,µi ∈ Rm,σi ∈ Rm}. Moreover, we have:

pM(xi|θi) =
∑m

j=1 β
j
iN(xi|µj

i ,σ
j
i ), where βj

i denotes the jth element of βi, same for µj
i and

σj
i and N(xi|µj

i ,σ
j
i ) denotes the Gaussian density with mean µj

i and standard deviation

σj
i evaluated at xi. Note that βi,µi,σi are functions of x<i. These functions are often
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chosen to be various forms of neural networks. In the classic setting, RNADE with m

mixing components and k hidden states has the following update rules:

hi = gi(hi−1), βi = softmax(Vβ
i hi−1 + bβi ) (6.2)

µi = Vµ
i hi−1 + bµi , σi = exp(Vσ

i hi−1 + bσi ), (6.3)

where Vβ
i ,V

µ
i and Vσ

i are m× k matrices, bβi , b
µ
i and bσi are vectors of size m, and gi is an

update function for the hidden state which is time step dependent (see [Uria et al., 2013]

for more details on the specific update functions used in the original RNADE formula-

tion). The softmax function [Bridle, 1990] ensures the mixing weights β are positive and

sum to one and the exponential ensures the variances are positive. RNADE is trained to

minimize the negative log likelihood: L(x1 · · ·xn, θi) = −
∑n

i=1 log(pM(xi|θi)) via gradient

descent.

6.3 Methodology

To approximate density functions with CWFA, we need to improve the expressivity of

the model and constrain it to compute a valid density function. In this section, we first

introduce nonlinear continuous weighted finite automata. Then, we present RNADE-

NCWFA for sequential density approximation, which combines CWFA with the RNADE

framework. In the end, we show that RNADE-NCWFA is strictly more expressive than

Gaussian HMM and present our spectral learning based algorithm for learning RNADE-

NCWFA.

6.3.1 Nonlinear Continuous Weighted Finite Automata (NCWFAs)

To leverage CWFAs to estimate density functions, we first need to improve the expres-

sivity of the model. We will do so by introducing a nonlinear feature map as well as a
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nonlinear termination function. We hence propose the nonlinear continuous weighted

finite automata (NCWFA) model as the following:

Definition 23. A nonlinear continuous weighted finite automaton (NCWFA) is defined by a

tuple Ã = ⟨α, ξ, ϕ,A⟩, where α ∈ Rk is the initial weight, ϕ : Rd → Rd′ is the feature map,

ξ : Rk → Rp is the termination function and A ∈ Rk×d×k is the transition tensor. Given a

sequence x1, · · · ,xl, the function that the NCWFA Ã computes is:

h0 = α, ht = A •1 ht−1 •2 ϕ(xt), fÃ(x1, · · · ,xl) = ξ(hl). (6.4)

One immediate observation is that we can exactly recover the definition of a CWFA

by letting ϕ(xi) = xi and ξ(h) = h⊤Ω.

6.3.2 Density Estimation with NCWFAs

The second problem to tackle is that we need to constrain the NCWFA so that it can

tractably compute a density function. In this section, we will leverage the RNADE method

to propose the RNADE-NCWFAs model. The proposed model is flexible and can com-

pute sequential densities of arbitrary sequence length. Moreover, we will show that this

model is strictly more expressive than the classic Gaussian HMM model.

Recall the core idea of RNADE is to estimate the joint density using the chain rule

as in Equation 6.1. Instead of approximating the conditionals via the classic RNADE

treatment as in Equations 6.2, we use an NCWFA Ã = ⟨α, ξ, ϕ,A⟩, i.e., p(xi|x<i) =

fÃ(x1, · · · ,xi). One key difference with the classic RNADE model is that the state update

function is independent of the time step, allowing the model to generalize to sequences

of arbitrary lengths. However, an NCWFA does not readily compute a density function,

as the function does not necessarily integrate to one and the output is non-negative. To

overcome this issue, we adopt the approach used in RNADE by constraining the output
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of the NCWFA to be a mixture of Gaussians with diagonal covariance matrices:

ϕ(xi) = tanh(x⊤
i W), hi = A •1 hi−1 •2 ϕ(xi), βi = softmax(Vβ

i hi−1 + bβi ) (6.5)

Mi = Vµ •1 hi−1 +Bµ, Σi = exp(Vσ •1 hi−1 +Bσ) (6.6)

ξ(xi,hi−1) =
m∑
j=1

βj
iN(xi|Mj

i , diag(Σ
j
i )), fÃ(x1, · · · ,xl) = ξ(xl,hl−1) (6.7)

where h0 = α,Vµ ∈ Rk×m×d,Vσ ∈ Rk×m×d,Bµ ∈ Rm×d,Bσ ∈ Rm×d, µj
i = (Mi):,j ∈

Rd,Σj
i = (Σi):,j ∈ Rd. diag is defined to be diag(Σj

i ) = (Σj
i ⊗ 1) ◦ I, where ◦ denotes the

Hadamard product, 1 ∈ Rd is an all one vector and I ∈ Rd×d is an identity matrix. For

simplicity, we let d′ = d and approximate each conditional via a mixture of Gaussian with

a diagonal covariance matrix. This can be changed to a full covariance matrix, should

the corresponding assumption (positive semi-definite) of the matrix is satisfied. Note this

simplification does not affect the expressiveness of the model, as a GMM with a diagonal

covariance matrix is also an universal approximator for densities and can approximate a

GMM with a full covariance matrix [Benesty et al., 2008], given enough states. Under this

definition, it is easy to show that
∏l

i=1 fÃ(x≤i) computes the density of the sequence x≤l,

where x≤l denotes x1, · · · ,xl. We will refer to this NCWFA model with RNADE structure

as RNADE-NCWFA of k states and m mixtures. Note although the definitions of βi, Mi

and Σi takes specific forms, in practice, one can use any differentiable function of hi to

compute βi, Mi and Σi, so long as βi sums to one and Σi is positive.

One natural question to ask is how expressive this model is. We show in the following

theorem that RNADE-NCWFA is strictly more expressive than Gaussian HMMs, which

is well known for sequential modeling [Bilmes et al., 1998].

Theorem 12. Given a Gaussian HMM with k states η = ⟨µ,T, O⟩, where O : Rk × Rd → R+

is the Gaussian emission function, µ ∈ Rk is the initial state distribution and T ∈ [0, 1]k is the

transition matrix, there exists a k states k mixtures RNADE-NCWFA Ã = ⟨α, ξ, ϕ,A⟩ with full

covariance matrices such that the density function over all possible trajectories generated by η can
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be computed by Ã: pη(o1 · · ·on) =
∏n

i=1 fÃ(o≤n) for any trajectory o1 · · ·on. Moreover, there

exists an RNADE-NCWFA Ã such that no Gaussian HMM model can compute its density.

Proof. For the Gaussian HMM η, given an observation sequences o1 · · ·on, its density

under η is:

pη(o1 · · ·on) = O(m⊤,o1)O(m
⊤T,o2) · · ·O(m⊤Tn−1,on),

where O(h,o) =
∑k

i=1 hiN(o|µ,Σ) for some mean vector µ and covariance matrix Σ. Let

α = m, A:,i,: = T for i ∈ [k], ϕ(x) = [ 1
k
, 1
k
, · · · , 1

k
]⊤ and ξ = O. Note it reasonable to let

ξ = O, since as long as we let βi = α⊤Ti−1, β0 = α⊤, µi = µ and Σi = Σ, following

equations 7.2, then for any h ∈ Rk,o ∈ Rd, we have ξ(h,o) = O(h,o). Then under this

parameterization, we have A •2 ϕ(oj) = T. Then the RNADE-NCWFA computes the

following function:

fÃ(o1, · · · ,oi) = ξ((A •1 α⊤ •2 ϕ(o1))
⊤(A •2 ϕ(o2)) · · · (A •2 ϕ(oi−1)),oi)

= ξ(α⊤Ti−1,oi) = O(m⊤Ti−1,oi)

Therefore, we have:

pη(o1 · · ·on) = O(m⊤,o1)O(m
⊤T,o2) · · ·O(m⊤Tn−1,on)

= fÃ(o1)fÃ(o1,o2) · · · fÃ(o1, · · · ,on) =
n∏

i=1

fÃ(o≤n)

For the proof of the second half of the theorem, consider a shifting Gaussian HMM,

where the mean vector of the Gaussian emission is a function of the time steps, i.e., µ =

q(i), where i = 1, 2, · · · . For simplicity, assume the shifting Gaussian HMM is for one

dimensional sequences and has one mixture. In addition, let q(i) = i and assume the

variance is 1. Then the emission function can be written as Ot(o) = N(o|t, 1). Then the

density of a sequence o1, · · · , on under this shifting Gaussian HMM ηs is:

pηs(o1, · · · , on) = O1(o1)O
2(o2) · · ·On(on).
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We show that this density cannot be computed by a Gaussian HMM of finite states. If pηs

can be computed by a Gaussian HMM, then for the mean vector µ there exists an initial

weight vector m, a transition matrix T satisfying the following linear system:



m⊤µ = 1

m⊤Tµ = 2

...

m⊤Tn−1µ = n

...

This linear system is, however, overdetermined, as µ is a vector of finite size, while there

are infinite linearly independent equations to satisfy. Therefore, a Gaussian HMM of finite

states cannot compute the density function of a shifting Gaussian HMM.

We now show such density can be computed by a RNADE-NCWFA. Let α⊤ = [1, 1],

and A:,i,: =

1 1

0 1

, µi = ⟨hi−1, [0, 1]⟩, ϕ(o)⊤ = [0.5, 0.5], Σi = 1. Then we have:

fÃ(o1, · · · , oi) = ξ((A •1 α⊤ •2 ϕ(o1))⊤(A •2 ϕ(o2)) · · · (A •2 ϕ(oi−1)), oi)

= ξ(α⊤Ti−1, oi) = ξ([1, i], oi) = N(oi|i, 1)

Therefore:

pηs(o1, · · · , on) = N(o|1, 1)N(o|1, 2) · · ·N(o|1, n)

= fÃ(o1)fÃ(o1, o2) · · · fÃ(o1, · · · , on) =
n∏

i=1

fÃ(o≤n)

Therefore, for the given shifting Gaussian HMM density, it can be computed by an RNADE-

NCWFA, but cannot be computed by a Gaussian HMM with finite states.
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Note that a CWFA cannot compute the density function of a Gaussian mixture. Indeed,

the function computed by a CWFA on a sequence of length 1 is linear in its input, whereas

an RNADE-NCWFA associates such an input to a Gaussian density.

To learn RNADE-NCWFA, we want to maximize the likelihood given some train-

ing set Dl = {x1
≤l, · · · ,xN

≤l} of length-l sequences of d dimensional vectors, i.e., xn
≤l =

xn
1 , · · · ,xn

l , where each xn
i ∈ Rd. More specifically, we want to minimize the negative log

likelihood function: L(Ã,D) = −
∑N

i=1

∑l
j=1 log(fÃ(x

i
≤j)). One straightforward solution

is to use gradient descent to optimize this loss function. However, as pointed out in [Ben-

gio et al., 1994], due to repeated multiplication by the same transition tensor, gradient

descent is prone to suffer from the vanishing gradient problem and to fail in capturing

long-term dependencies. One alternative is the classic spectral learning algorithm for

WFAs. Recall that the spectral learning method for CWFA requires first learning Hankel

tensors of length L, 2L, and 2L+1 and then performing a rank factorization on the learned

Hankel tensor to recover the CWFA parameters (see [Li et al., 2020b]). However, due to

the nonlinearity added to the model, namely the feature map ϕ and the termination func-

tion ξ, spectral learning alone will not be enough. To circumvent this issue, we present

an algorithm jointly leveraging gradient descent and spectral learning. The idea is to first

learn the Hankel tensors of various lengths and the function ϕ and ξ using gradient de-

scent. Then we use the spectral learning algorithm to recover the transition tensor and

the initial weights.

Let δ and ω denote the parameters of the mappings ϕ and ξ, respectively (see Eq. 6.5-

6.7), and let H(l)

Ã
= JG(l)

1 , · · · ,G
(l)
l K be the TT form of the Hankel tensor, where G(l)

1 ∈ Rd×k

and G
(l)
i ∈ Rk×d×k for i = 2, · · · , l. The spectral learning method for RNADE-NCWFAs

first involves an approximation of the Hankel tensor via minimizing the following loss

function:

L(δ, ω,G
(l)
1 , · · · ,G

(l)
l , Dl) = −

N∑
i=1

l∑
j=1

log
[
ξ
(
ψ(xi

≤j)
⊤(JG(l)

1 , · · · ,G
(l)
j K)⟨⟨j,1⟩⟩

)]
(6.8)
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where ψ(x≤j) = ϕ(x1) ⊗ · · · ⊗ ϕ(xj). In this process, we have obtained the Hankel ten-

sors and the parameters of the termination function and the feature map. Then, one can

perform a rank factorization on the learned Hankel tensor and recover the rest of the pa-

rameters for the RNADE-NCWFA, namely α,A. The detailed algorithm is presented in

Algorithm 6.

6.4 Experiments

For the experiments, we conduct a synthetic experiment based on data generated from a

random 10-states Gaussian HMM. We sample sequences of lengths 3, 6, and 7 from the

HMM. To evaluate the model’s performance on its generalization ability to an unseen

length of sequences, we sample 1,000 sequences from length 8 to length 400 from the

same HMM for the test data. To test the model’s resistance to noise, we inject the training

samples with Gaussian noise of different standard deviations (0.1 and 1.0) with 0 means.

For the baseline models, we have HMM learned with the expectation maximization

(EM) method, as it can compute the density of sequences of any length by design. We

also modified the RNADE model by replacing the hidden states update rule 6.2 with

an LSTM structure to give the RNADE model the ability to generalize to sequences of

arbitrary length, regardless of the length of the training sequences. We refer to this model

as RNADE-LSTM.
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Algorithm 6 NCWFA-SL: Spectral Learning of RNADE-NCWFA

Input: Three training datasets DL, D2L, D2L+1 with input sequences of length L, 2L and

2L + 1 respectively, an encoder ϕδ, a termination function ξω and TT-parameterized

Hankel tensors H(L)

Ã
, H(2L)

Ã
and H

(2L+1)

Ã
, learning rate γ, desired rank R

1: while Model not converging do

2: for l ∈ {L, 2L, 2L+ 1} do

3: Update δ, ω,G
(l)
1 , · · · ,G

(l)
l via gradient descent by minimizing the loss func-

tion 6.8

4: for θ ∈ {δ, ω,G(l)
1 , · · · ,G

(l)
l } do

5:

θ ← θ − γ∇θL(δ, ω,G
(l)
1 , · · · ,G

(l)
l , Dl)

6: end for

7: end for

8: end while

9: Let (H(2L)

Ã
)
⟨⟨L,L+1⟩⟩

= PS be a rank R factorization.

10: Return the RNADE-NCWFA Ã = ⟨α, ξω, ϕδ,A⟩where

α = (S†)⊤(H
(L)

Ã
)
⟨⟨L+1⟩⟩

, A = ((H
(2L+1)

Ã
)
⟨⟨L,1,L+1⟩⟩

)×1 P
† ×3 (S

†)⊤

For our model, by following Algorithm 6, we have the method RNADE-NCWFA

(spec). Alternatively, although we have mentioned that training the (RNADE-)NCWFA

model through pure gradient descent method can have many issues, we also list this

approach of training RNADE-NCWFA as one of the baselines, referred to as RNADE-

NCWFA (sgd). For all the training processes, if gradient descent is involved, we always

use Adam optimizer [Kingma and Ba, 2014] with 0.001 learning rate with early stopping.

For HMM as well as RNADE-NCWFA models, we set the size of the model to be 10

(ground truth of the random HMM). For RNADE-LSTM, we set the size of the hidden
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states to be 10. We present the trend of the averaged log likelihood ratio with the ground

truth likelihood, i.e. log(predicted likelihood
ground truth

) w.r.t. length of the sequences over 10 seeds in Fig-

ure 6.1 and a snapshot of the log likelihood for each model of 400 length testing sequences

in Table 6.1.

Table 6.1: Comparison of model performance in terms of average log likelihood (in NAT).

Different models are compared under different training sizes and levels of noise injected.

The reported likelihood (mean (standard deviation)) is evaluated on test sequence of

length 400.

Training Size 100 500 1000
Noise Std 0 0.1 1 0 0.1 1 0 0.1 1
HMM (EM) -615.26 (2.57) -616.88 (3.40) -638.44 (7.50) -601.15 (0.20) -601.18 (0.17) -628.75 (1.51) -600.70 (0.12) -600.69 (0.12) -628.91 (1.13)
RNADE-LSTM -604.71 (3.36) -604.10 (2.29) -641.72 (7.17) -600.86 (0.15) -600.85 (0.23) -628.28 (3.56) -601.01 (1.34) -600.67 (0.24) -628.45 (1.56)
RNADE-NCWFA (spec) -600.96 (0.42) -601.06 (0.24) -621.75 (2.71) -600.73 (0.18) -600.67 (0.067) -622.10 (1.44) -600.50 (0.49) -600.53 (0.07) -621.91 (1.13)
RNADE-NCWFA (sgd) -604.11 (2.13) -603.29 (1.69) -633.96 (14.6) -600.81 (0.20) -600.91 (0.46) -631.80 (5.53) -600.51 (0.06) -600.52 (0.08) -629.11 (1.65)
Ground Truth -600.40 -600.40 -600.40 -600.40 -600.40 -600.40 -600.40 -600.40 -600.40

From the experiment results, we can see that RNADE-CWFA (spec) consistently has

the best performance across all training sizes and levels of noise injected. More precisely,

this advantage is more significant when given small training sizes and (or) the data is

injected with high noise. Moreover, the spectral learning algorithm shows stable train-

ing results as the standard deviation of the log likelihood (ratio) is the lowest among all

methods. This is especially the case when not enough training samples are provided. In

addition, one can see that this advantage is consistent with all test sequence lengths we

have experimented.

6.5 Conclusion and Future Work

In this chapter, we propose the RNADE-NCWFA model, an expressive and tractable

WFA-based density estimator over sequences of continuous vectors. We extend the no-

tion of continuous WFA to its nonlinear case by introducing a nonlinear feature mapping

function as well as a nonlinear termination function. We then combine the idea from

RNADE to propose our density estimation model RNADE-NCWFA and its spectral learn-

ing based learning algorithm. In addition, we show that theoretically, RNADE-NCWFA
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Figure 6.1: Log likelihood ratios between the tested models and the ground truth likeli-

hood. We show the trend w.r.t. the length of the testing sequences under different sample

sizes (columns) and standard deviations of the injected noise (rows).

is strictly more expressive than the Gaussian HMM model. We show that, empirically,

our method has great capability of generalizing to sequences of varying length, which is

potentially not the same as the training sequences. For future work, we are looking into

more experiments on real datasets and comparing them with more baselines. Moreover,

we did not add a nonlinear transition for the NCWFA model as it would imply that the

Hankel tensor will be of infinite tensor train rank, hence making the spectral learning al-

gorithm intractable. We will be looking into the possibilities of adding this nonlinearity

into the NCWFA model and have a working algorithm for it. In addition, we would like

to examine more closely in terms of the expressivity of the RNADE-NCWFA.
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Chapter 7

Recurrent Real-valued Neural

Autoregressive Density Estimator for

Online Density Estimation and

Classification of Streaming Data

In the previous chapter, we introduced the RNADE-NCWFA, a nonlinear extension of

WFAs in the continuous domain that combines the NCWFA model with RNADE for

sequence density estimation. In this chapter, we expand on this idea by replacing the

NCWFA model with a variety of recurrent neural networks. Moreover, we shift our focus

to a more practical task than the previous ones: online density estimation and classifica-

tion for data streams.

Data streams have become increasingly popular in recent machine learning advance-

ments, and they are characterized by being long-lasting, non-stationary, and subject to

underlying distribution changes over time. To model such data with SSMs, the state rep-

resentation needs to adapt to these changes in a timely fashion. To address this challenge,

we propose the recurrent real-valued neural density estimator (RRNADE), a recurrent

real-valued neural autoregressive density estimator that leverages RNNs and RNADE.
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The RRNADE is a flexible method for online modeling of data streams that can accommo-

date per-sample updates and adapt to changes in the data stream distribution, providing

an efficient state representation for these tasks.

7.1 Introduction

Many tasks in classic supervised machine learning, such as regression and classification,

involve processing batched data in an offline fashion: the data, often coming as input-

output pairs, is stored first and then used to learn a predictive model for future unseen

data. However, many modern applications favor the form where the model update and

predict while receiving new data entries. This form is often referred to as learning from

data streams. The problem of learning from data streams is closely related to the problem

of continual or incremental learning [Losing et al., 2018, Zenke et al., 2017, Lopez-Paz and

Ranzato, 2017], which have recently received increasing interest in the machine learning

community

There are three major issues when learning from data streams: memory constraints,

concept drifts as well as temporal correlations. The sheer amount of data many modern

applications process daily makes it infeasible to store all data and perform offline updates

of the model [Naeem et al., 2022]. In addition, certain data sources do not allow the indef-

inite hold of the data due to potential privacy regulations [Forti, 2021]. Therefore, when

learning data streams, it is often assumed that the model only has access to the recent his-

tory. Furthermore, concept drifts and temporal correlations are also common challenges

when learning from data streams. Under the offline setting, data is often assumed to have

the i.i.d. assumption, i.e. each data entry is independently drawn from the identical dis-

tribution. However, under the streaming data setting, the independent assumption can

be violated, causing temporal correlations in the data, while the violation of the identical

assumption can lead to the concept drift problem, which often refers to changes in the
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underlying distribution. These issues often invalidate the model learned from historical

data, resulting in further deterioration of its performance.

Density estimation is one of the core tasks in the field of unsupervised learning, branch-

ing out to many applications such as classification and clustering. Under the offline set-

ting, Real-valued Neural Autoregressive Density Estimator (RNADE) leverages a neural

network parameterized Gaussian mixture model to estimate the density function of real-

valued vectors. It is then interesting to explore the possibility of extending RNADE to

its online form, namely, the model needs to be updated as new data arrives and we only

have a limited amount of history stored in memory. In this chapter, we show that the

answer is in the positive. Concretely, our contributions are as follows:

1. We propose the Recurrent Real-valued Neural Autoregressive Density Estimator (RRNADE),

a versatile density estimator for online learning of data streams.

2. Moreover, we propose an RRNADE based Bayes classifier for the online classifica-

tion of streaming data.

Our model uses a recurrent module to maintain a set of sufficient statistics for the future

and capture the potential temporal properties of the data. In addition, it also uses a neu-

ral network parameterized Gaussian mixture model as the density module to compute

the conditional density function of the current input given the previous data. We theo-

retically show that RRNADE is strictly more expressive than Gaussian hidden Markov

models [Bilmes et al., 1998]. We present empirical results demonstrating the ability of

RRNADE to adapt to concept drifts and approximate density functions with sequential

relations. Moreover, we conduct extensive experiments on various benchmarks of online

classification and show that RRNADE outperforms all the compared methods on almost

every dataset. In addition, we further demonstrate the importance of both the recurrent

module and the density module in the ablation study.

Related Works For online density estimation on streaming data, many of the existing

works focus on the adoption of the kernel density estimation (KDE) method [Procopiuc
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and Procopiuc, 2005, Heinz and Seeger, 2008, Kristan et al., 2011, Boedihardjo et al., 2008].

These estimators often rely on maintaining and updating (though merging) a specific

number of kernels while incorporating new instances, while in different fashions. In ad-

dition to these methods, KDE-Track [Qahtan et al., 2016] leverages an adaptive resam-

pling strategy to deal with concept drifts and improve the estimation accuracy of the

KDE-based methods. Another recent method, adaptive local online kernel density esti-

mator (ALoKDE) [Chen et al., 2021], leverages a statistical test for concept drift detection

to adapt fast to the concept drift. All these methods can be modified to a classification

method via a Bayes classifier.

For online classification on streaming data, there are a number of methods that are

direct adaptations of the original offline version to its online case. For example, the online

SVM (OSVM) [Li and Yu, 2015], the adaptive random forest (ARF) [Gomes et al., 2017a],

can be categorized to this type of methods. In addition, [Liang et al., 2006, Cauwenberghs

and Poggio, 2000, Lu et al., 2014] also belong to this class of methods. Other methods

like [Bifet and Gavalda, 2007, Bifet et al., 2013] leverage an adaptive window size of the

past, [Losing et al., 2016] takes advantage of the short-term and long-term memories,

while [Gomes et al., 2017b, Polikar et al., 2001] use ensemble method to further improve

the results. Another large class of online classification methods is the prototype-based

classifiers, such as incremental learning vector quantization (ILVQ) [Losing et al., 2015],

generalized LVQ [Sato and Yamada, 1995], robust soft LVQ [Heusinger et al., 2019], and

the sparse prototype online kernel density estimator (SPOK) [Coelho and Barreto, 2022].

7.2 Online learning for streaming data

In this chapter, we focus on online density estimation and classification for streaming

data. Formally, for the density estimation task, let S = {x1, · · · ,xn, · · · } be a sequential

data stream governed by some distribution ft(·), where xt ∼ ft and the subscript denotes

the timestamp of the data entry, and ft : Rd → R+
0 denotes the distribution at time step t.
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We are then interested in finding an accurate approximation of the density function f at

each time step. For a C classes classification task, let yt ∈ {1, · · · , C} be the label at time

t and SL = {(x1, y1), · · · , (xn, yn), · · · } be a sequence of input label pairs. Moreover, the

label yt is drawn from the distribution qt while xt is drawn from the distribution f yt
t , i.e.

xt ∼ f yt
t where f yt

t (xt) = p(xt|yt) denotes the input distribution of class yt at time step t.

In this setting, we are interested in predicting the correct label at each time step t. As we

are approaching these tasks in the streaming setting, it is infeasible to store all the data

one have seen so far. Therefore, for both of these tasks, we constrain ourselves to only

have access to a short window of data at each time step, e.g. xt−l, · · · ,xt, where l is the

window size and controlled to be a relatively small number.

One of the most challenging problems in learning from data streams is concept drift.

Concept drift occurs when the underlying distribution ft changes over time. This change

can be abrupt, happening when data changes significantly and occasionally [Iwashita and

Papa, 2018]. Alternatively, distribution shifts can occur gradually, when the data values

slowly but constantly change over time. For classification tasks, concept drifts can occur

not only in f yt
t but also in qt. For example, in video frames classification, the goal is

to classify different objects that appear in the current frame. In this case, a shift in the

camera angle will result in a concept drift in the label’s distribution, i.e., qt. This shift can

occur abruptly (due to a sudden movement of the camera) or gradually (due to a steady

movement of the camera), resulting in different types of concept drift.

7.3 Methodology

In this section, we introduce the Recurrent Real-valued Neural Autoregressive Density

Estimator (RRNADE): a versatile model for density estimation and classification of stream

data.

136



+

Figure 7.1: The Recurrent Real-valued Neural Autoregressive Density Estimator for on-

line density estimation (left) and online classification (right), where the window size is l.

Blue, orange and green boxes denote input data, functions and outputs, respectively.

7.3.1 Recurrent Real-valued Neural Autoregressive Density Estimator

(RRNADE) for Online Density Estimation

It is natural to wonder if it is possible to use RNADE for online density estimation. There

are two major issues for this adaptation: 1) the original RNADE model has one set of

parameters per feature, which would lead to an infinite amount of parameters to estimate

for indefinite lengths of the stream, and 2) the offline stochastic gradient descent routine

needs to be adjusted to its online setting.

To tackle the first problem, instead of approximating the conditionals p(xi|x<i) via

the classic RNADE treatment (see Eq. 6.2 and Eq. 6.3), we use a recurrent model R =

⟨g, ξ,h0⟩ to model the conditionals: p(xi|x<i) = fR(x1, · · · ,xi). In contrast with RNADE,

using a recurrent model allows us to make the state update function independent of the

time step, enabling RRNADE to generalize to sequences of arbitrary lengths. Inspired

by RNADE, we constrain the output of the recurrent model to be a mixture of Gaussians

with diagonal covariance matrices. We now formally introduce the Recurrent Real-valued

Neural Autoregressive Density Estimator (RRNADE) model:

Definition 24. A Recurrent Real-valued Neural Autoregressive Density Estimator (RRNADE)

with k states and m components is a tuple R = ⟨g, ϕ,h0, ξ⟩ , where h0 ∈ Rk is the initial state,

g : Rk × Rd′ → Rk is the recurrent module, ξ : Rk × Rd → R+
0 is the density module and
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ϕ : Rd → Rd′ is the input encoder. An RRNADE computes a function fR : (Rd)∗ → R+
0

*. Given

a sequence x1, · · · ,xn, fR computes in the following fashion:

hi = g(hi−1, ϕ(xi)), βi = softmax(Vβhi−1 + bβ) (7.1)

Mi = Vµ •1 hi−1 +Bµ, Σi = exp(Vσ •1 hi−1 +Bσ) (7.2)

ξ(hi−1,xi) =
m∑
j=1

βj
iN(xi|Mj

i , diag(Σ
j
i )), fR(x1, · · · ,xn) = ξ(hn−1,xn) (7.3)

where Vµ ∈ Rk×m×d,Vσ ∈ Rk×m×d,Bµ ∈ Rm×d,Bσ ∈ Rm×d, Vβ ∈ Rm×k, bβ ∈ Rm, Mj
i =

(Mi)j,: ∈ Rd,Σj
i = (Σi)j,: ∈ Rd, diag(Σj

i ) denotes the diagonal matrix having the components of

Σj
i on the diagonal and V •1 h denotes the mode-1 product defined by (V •1 h)j,k =

∑
i Vi,j,khi.

For the simplicity of later sections, we denote R(h,ξ) by the RRNADE with the ini-

tial vector h and the termination function ξ. More specifically, the notation ht denotes

the hidden state at time step t after observing the sequence x1, · · · ,xt under the updat-

ing rule 7.1 of RRNADE. As outlined by Equation 7.3, RRNADE models the conditional

density of the current input data, given the history, as a Gaussian mixture. Similar to

the previous chapter, we let d′ = d and approximate each conditional via a mixture of

Gaussian with a diagonal covariance matrix. Same as before, this can be changed to a

full covariance matrix under appropriate assumptions and is still an universal approxi-

mator for density functions. Denote the sequence xi, · · · ,xj by x[i,j] with a special case

x[i,i] = xi and j ≥ i ∈ Z+. With our aforementioned notations, Πl
i=1fR(ht)

(x[t+1,t+i]) com-

putes p(xt+1, · · · ,xt+l|x≤t)

We show in the following theorem that RRNADE is strictly more expressive than

Gaussian HMMs, which are well known for sequential modeling [Bilmes et al., 1998].

Theorem 13. Given a Gaussian HMM η with k states, there exists a k states k mixtures RRNADE

R with full covariance matrices such that the density function over all possible trajectories sam-

*(Rd)∗ denotes the set of all possible sequences of arbitrary length constructed with d dimensional real-
valued vector at each time step.
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pled by η can be computed by R: pη(x1 · · ·xn) =
∏n

i=1 fR(x≤n) for any trajectory x1 · · ·xn.

Moreover, there exists an RRNADE R′ such that no Gaussian HMM can compute its density.

Note that NCWFA is a special case of RRNADE, therefore the proof follows the same

as the one of Theorem 12. For the second problem, by design, RRNADE approximates a

conditional density function of the current input given the history. In the offline setting,

one can learn such RRNADE via gradient ascent of the likelihood of the sequence, i.e,

maximizing the likelihood function: Loffline(x1, · · · ,xn) = p(x1, · · · ,xn) = Πn
i=1fR(x≤i). In

the online setting, we assume that we have access to the past data entries from a window

of size l, i.e., xt−l, · · · ,xt, at each time step t. One solution would be to maximize the

likelihood over the entire window, i.e. L(xt+1, · · · ,xt+l|x≤t) = Πl
i=1fR(ht)

(x[t+1,t+i]).

However, this procedure falls short when concept drift occurs. For example, if the data

has abrupt drifts (infrequent), then choosing l could be a dilemma: to capture and adapt to

this concept drift fast, l is preferable to be small to provide a significant gradient update,

which, however, prevents the model from learning temporal dependencies in the data.

To address this issue, we propose to optimize for the weighted sum of the loglikelihood,

where the weights are adjusted after each time step with the gradient update. This way,

not only can we capture temporal dependencies up to the window size l, but the weighted

sum enables us to adjust how fast RRNADE adapts to potential concept drifts in the data.

Formally, we maximize the following likelihood function:

Lonline(xt+1, · · · ,xt+l|x≤t) = Πl
i=1fR(ht)

(x[t+1,t+i])
qi , (7.4)

where −1 ≤ qi ≤ 1 are the weights. The core idea of this procedure is to obtain and

maintain a set of sufficient statistics for the future. At the time t = l, the model starts

with the hidden state h0. After updating the parameters by maximizing the likelihood

Πl
i=1fR(h0)(xi)

qi , the internal state of RRNADE is then updated to h1 = g(h0,x1). At the

next time step, t = l + 1, the first observation x1 is discarded but h1 still represents suffi-

cient statistics of all past observations, including x1. The parameters are then optimized to
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maximize the likelihood Πl+1
i=2fR(h1)(x[2,i])

qi . This process then iterates over the future time

steps, carrying the sufficient statistics forward (i.e., at a future time step t, even though

only the past l observations are stored in memory, ht−l captures sufficient statistics of all

past observations). Note we only have l number of scalar qi to optimize for. These weights

are shared across all the time steps.

The training procedure is detailed in Algorithm 7, and a graphical illustration is pre-

sented on the left side of Figure 7.1. Note that except the weights assigned to each con-

ditional, all the parameters are shared for each time step, therefore, the space complexity

is O(kmd + l) where l is the desired window size. We use L and L to denote the likeli-

hood function and the log likelihood function, respectively. In our experiments, we select

l using validation over the first n data points. For practical online learning, this can be

done by training several RRNADE models in parallel and selecting the one with the best

overall performance after training and predicting the validation sequence.

7.3.2 RRNADE for Online Classification

One straightforward application of approximating densities is online classification. Recall

that RRNADE approximates the conditional density of the current input given the history,

i.e., fR(x[t−l,t]) ≃ p(xt|x<t). For the online classification problem, we are interested in the

conditional probability of the current label given the history, i.e. p(yt|x1 · · ·xt). Using

Bayes rule: p(yt|x1 · · ·xt) ∝ p(yt)p(xt|x<t, yt) ≃ p(yt)fR(x[t−l,t]) One approach would be

to train C different RRNADE models, one for each class: fRc(x[t−l,t]) ≃ p(xt|x<t, yt = c),

where Rc denotes the RRNADE model for class c. However, as we are learning online,

each gradient update is often of high variance. This approach introduces too many model

parameters, which will further increase the model’s variance, resulting in a suboptimal

performance. To reduce the number of parameters, we propose to share the recurrent

module of all RRNADE models, while keeping the density module specific to each class.
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RRNADE’s prediction at time t is thus given by

ŷt = argmax
c

[p(yt = c)fRc(x[t−l,t])] (7.5)

For the choice of the prior distribution p(yt), we recommend using a uniform distribu-

tion as extra effort needs to be taken to mitigate the shift in the true prior distribution

caused by concept drifts in the data. We defer the study of estimating proper prior for

data streams with concept drifts to the future work. We present RRNADE for online clas-

sification in Algorithm 7 and a graphical illustration of the model is presented on the right

side of Figure 7.1.

7.4 Experiments

In this section, we present empirical results on RRNADE for online density estimation

and classification. For density estimation, we experiment with synthetic data to evaluate

RRNADE’s ability of adapting to concept drifts and to verify Theorem 13. For classifica-

tion, we conduct experiments on both synthetic as well as real world streaming data and

compare them with multiple density based and non-density based online classification

methods. Finally, we show an ablation study to further showcase the significance of both

the density module and the recurrent module of the RRNADE. We experimented with

three different variants of the RRNADE model. By using LSTM, GRU, and 2RNN for

the recurrent module, we have RRNADE-LSTM, RRNADE-GRU, and RRNADE-2RNN,

respectively. In all experiments, we use Adam optimizer [Kingma and Ba, 2014].
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Algorithm 7 RRNADE for Online Density Estimation and Classification

1: INPUT: Input data stream S = {x1, · · · ,xn, · · · } for density estimation, or SL =

{(x1, y1), · · · , (xn, yn), · · · } for C classes classification; window size l; a randomly ini-

tialized RRNADE: R(h0, ξ1); for classification, extra C−1 density modules ξ2, · · · , ξC .

2: for t = l, l + 1, · · · , n, · · · do

3: Compute the log likelihood for each input (and for each class):

Lc
j (xj|x[t−l,j−1]) = log(fR(ht−l,ξc)(x[t−l,j])) for j = t− p+ 1, · · · , t

4: if running density estimation task then

5: Compute the weighted sum of the log likelihood:

Lonline(xt−l+1, · · · ,xt) =
∑t

i=t−l+1 qiL
1
i (xi|x[t−l,i−1])

6: Perform gradient ascent update to R(ht−l, ξ1), w.r.t. Lonline.

7: Obtain the conditional density estimation at time step t:

p(xt|x<t) ≃ fR(ht−l)(xt−l+1, · · · ,xt)

8: else if running classification task then

9: Compute the predicted class distribution:

P j
C(yt = c) =

exp(Lc
j )∑C

i=1 exp(L
i
j )

10: Obtain the predicted label at the current time step:

ŷt = argmaxc P
t
C(yt = c)

11: Perform gradient descent update to R(ht−l, ξ1), ξ2, · · · , ξC w.r.t. the categorical

cross entropy:

1
l

∑t
j=t−l+1 qjCCE(P j

C , yt)

12: end if

13: Update ht−l to ht−l+1 via the transition function g of R(ht−l):

ht−l+1 = g(ht−l,xt−l+1)

14: end for
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Figure 7.2: Top row (left to right): Log likelihood of (1a) Gaussian with abrupt drift. (1b)

Gaussian with gradual drift. (1c) Gaussian HMM. Bottom row: Snapshots of learned den-

sity at corresponding time steps of Gaussian with abrupt drift, the red curve represents

the ground truth density function.

Table 7.1: Averaged online AUC score of RRNADE over 5 seeds (standard deviation in

the brackets), compared with [Chen et al., 2021]

AUC ALoKDE oKDE odKDE LAIM KDE-Track RRNADE-2RNN RRNADE-LSTM RRNADE-GRU RNADE
Sea 83.11 78.74 75.13 77.17 81.29 88.12 (1.9) 87.42 (3.6) 88.88 (2.6) 83.31 (5.1)

Hyperplane 83.44 82.36 82.36 75.56 82.8 93.12 (2.9) 93.14 (4.2) 94.32 (3.1) 88.45 (3.8)
Mixed drift 90.12 88.16 70.43 55.65 88.48 98.13 (1.2) 97.66 (1.1) 96.11 (1.9) 83.4 (6.5)

Transient chessboard 79.6 77.4 77.08 77.18 77.98 89.16 (3.6) 86.39 (2.8) 91.34 (3.2) 79.21 (5.4)
Weather 76.81 68.43 66.26 73.47 76.1 85.23 (6.4) 86.67 (3.3) 84.14 (2.2) 71.42 (7.3)

Electricity 52.51 51.57 42.45 43.25 44.06 92.14 (4.5) 90.68 (5.3) 91.01 (6.7) 61.53 (6.8)
Cover type 97.31 57.86 96.67 93.04 96.04 98.01 (1.1) 96.13 (1.8) 90.79 (2.7) 57.13 (6.7)
Poker hand 91.01 88.36 82.92 82.19 91.01 94.39 (2.8) 96.24 (3.4) 93.15 (2.9) 80.31 (5.6)

Rialto 92.67 70.55 87.71 83.49 82.37 99.11 (0.9) 98.13 (1.5) 94.35 (0.8) 70.21 (6.9)

7.4.1 Density Estimation

To evaluate the performance on density estimation, we first conduct experiments on

learning drifting Gaussian to examine RRNADE’s ability of adapting to concept drifts.

We generate samples from a shifting Gaussian with random initial mean and variance 1.

Recall there are two major types of concept drifts, abrupt and gradual drift. For the abrupt

drift, the mean is increased by 2 every 100 time steps, while for the gradual drift, the mean

is increased by 0.01 every time step. For the model hyperparameters of RRNADE, we set

the number of components to 10, the window size is set to 1, the number of hidden states

of the recurrent module is set to 5 and we use a one layer fully connected neural network

with 5 neurons to be the input encoder ϕ.

The results are displayed in Figure 7.2. In Figure 7.2 (1a) and (1b), we show the log

likelihood of the Gaussian density function with abrupt and gradual drift on its mean.

From the figures, we can see that all three different variants of RRNADE are able to learn
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Table 7.2: Averaged online accuracy of RRNADE over 5 seeds with standard deviations,

compared with [Losing et al., 2018]

Accuracy ISVM LASVM ILVQ SGD NB RRNADE-2RNN RRNADE-LSTM RRNADE-GRU RNADE
Electricity 0.843(0.02) 0.771 (0.03) 0.732(0.02) 0.826(0.02) 0.613(0.02) 0.864 (0.02) 0.878(0.01) 0.858 (0.01) 0.615 (0.05)
Inter RBF 0.754(0.03) 0.512 (0.03) 0.772(0.02) 0.415(0.03) 0.301(0.01) 0.901 (0.02) 0.922 (0.02) 0.924(0.03) 0.452 (0.06)

Moving RBF 0.699(0.02) 0.348 (0.02) 0.771(0.01) 0.415(0.02) 0.182(0.01) 0.744 (0.01) 0.739 (0.02) 0.772(0.01) 0.301 (0.08)
Cover Type 0.936(0.01) 0.886 (0.03) 0.876(0.02) 0.942(0.01) 0.552(0.01) 0.960(0.01) 0.929 (0.02) 0.951 (0.02) 0.736 (0.07)

Border 0.982(0.01) 0.976 (0.03) 0.927(0.03) 0.358(0.03) 0.935(0.01) 0.955 (0.05) 0.957 (0.02) 0.943 (0.03) 0.711 (0.05)
Overlap 0.820(0.01) 0.788 (0.03) 0.810(0.01) 0.685(0.02) 0.682(0.01) 0.754 (0.01) 0.734 (0.01) 0.770 (0.01) 0.475 (0.03)
Outdoor 0.843(0.02) 0.823 (0.02) 0.832(0.02) 0.18(0.01) 0.652(0.01) 0.958 (0.03) 0.963(0.02) 0.942 (0.02) 0.703 (0.08)

COIL 0.755(0.01) 0.663 (0.02) 0.795(0.01) 0.091(0.00) 0.711(0.02) 0.851(0.03) 0.859 (0.01) 0.832 (0.02) 0.647 (0.04)

Table 7.3: Averaged online accuracy of RRNADE over 5 seeds with standard deviations,

compared with [Coelho and Barreto, 2022]

Accuracy L++.NSE DACC LVGB KNNs KNNwa SAM SPOK RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU RNADE

CoverType 0.850 0.899 0.909 0.958 0.932 0.952 0.883 0.960 (0.01) 0.929 (0.02) 0.951 (0.02) 0.736 (0.07)
Electricity 0.728 0.831 0.832 0.713 0.739 0.825 0.742 0.864 (0.02) 0.878 (0.01) 0.858 (0.01) 0.615 (0.05)
Outdoor 0.422 0.644 0.601 0.86 0.837 0.888 0.810 0.958 (0.03) 0.963 (0.02) 0.942 (0.02) 0.703 (0.08)

Poker Hand 0.779 0.790 0.864 0.829 0.721 0.816 0.731 0.847 (0.02) 0.851 (0.02) 0.840 (0.01) 0.707 (0.05)
Rialto 0.596 0.711 0.604 0.772 0.750 0.814 0.618 0.887 (0.05) 0.936 (0.04) 0.915 (0.04) 49.66 (0.02)

Weather 0.771 0.732 0.781 0.785 0.769 0.783 0.741 0.786 (0.00) 0.790 (0.01) 0.783 (0.01) 70.12 (0.03)

the density function and adapt to both of these drifts. The black boxes in (1a) indicate the

first two abrupt drifts (time steps 100 and 200) of the Gaussian distribution, where visible

drops of model performance are observed. Moreover, the adaptation speed increases

w.r.t. the time step. The bottom row of Figure 7.2 shows the learned Gaussian at various

time steps. We observe that, at time step 210 the mean of the mixture model has not been

correctly adjusted after 10 time steps of adaptation, while at 410, the model has already

adapted to the drift that occurred at time step 400.

To verify Theorem 13 and show RRNADE can approximate density functions of data

streams with sequential features. We generate 1,000 examples from a random Gaussian

HMM of 3 states. In this experiment, we set the hyperparameters to be the same as in

the above experiment except for l = 5. In Figure 7.2 (1c), we show the learning curves

w.r.t. log likelihood on all three variants. Here we can see all three variants are able to

approximate the density function that the HMM emits at each time step. Note there is

also a gradual concept drift with the HMM data, as the density function at each time is

a mixture of a set of Gaussians, where the mixing weights are the state distributions that

the HMM maintains.
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7.4.2 Classification

In this subsection, we present experimental results for online classification on various

classic benchmarks of online classification and compare RRNADE to both density-based

and non-density-based methods. The results of these methods are obtained from the cor-

responding papers, and to ensure fairness, we conduct data preprocessing and evaluation

procedures in the same way as mentioned in each of these papers.

We validate on the first 1,000 examples or the first 10% of the data (whichever is

smaller) to select the number of mixture components, the number of hidden states, and

the window size l, where l is set to be no larger than 10. The input encoder is still a

one-layer fully connected neural network with the number of neurons being one of the

hyperparameters as well. This validation routine is consistent with all three papers we

compare with.

First, we compare with several density-based classifiers listed in [Chen et al., 2021].

Note that ”Cover type,” ”Poker hand,” ”Transient chessboard,” ”Rialto,” and ”Mixed

drift” are originally multi-class data streams. Following the same procedure as in [Chen

et al., 2021], we generate their binary versions by extracting the two largest classes from

each data stream, respectively. The AUC scores on various datasets are presented in Ta-

ble 7.1. From this table, we can see that all RRNADE variants consistently outperform the

other methods. In addition, in many datasets, such as ”Electricity,” ”Hyperplane,” etc.,

we outperform the best compared method by a significant margin.

Second, we compare with multiple non-density-based classification methods in both [Coelho

and Barreto, 2022] and [Losing et al., 2018]. The running average of the classification ac-

curacy is reported in Table 7.3 and Table 7.2, respectively. We can see that in almost every

dataset, we achieve competitive results, if not significantly better. For synthetic datasets,

”Inter RBF” has various Gaussians replacing each other every 3000 samples, representing

an abrupt concept drift, while ”Moving RBF” is constructed such that Gaussian distri-

butions with random initial positions, weights, and standard deviations are moved with

constant speed, representing a gradual concept drift. Here we can see that on both of
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Table 7.4: Properties for all experimented datasets.

Data stream Data stream type #inst. #feat. #class. Drift type
Sea Artificial 50,000 3 2 Abrupt
Hyperplane Artificial 200,000 10 2 Gradual
Mixed Drift Artificial 177,117 2 15 Mixed
Transient Chessboard Artificial 50,994 2 8 Reoccurring
Moving RBF Artificial 200,000 10 2 Gradual
Electricity Real World 45,312 5 2 Unknown
Cover Type Real World 495,141 54 7 Unknown
Poker Hand Real World 765,952 10 4 Unknown
Rialto Real World 16,450 27 10 Unknown
Border Real World 5,000 2 3 Unknown
Overlap Real World 4,950 2 4 Unknown
Outdoor Real World 4,000 21 40 Unknown
COIL Real World 7,200 21 100 Unknown
Weather Real World 18,159 8 2 Unknown

these datasets, we outperform other methods, further showcasing RRNADE’s ability to

adapt to concept drift. For real-world data, ”Weather,” ”Electricity,” ”Outdoor,” ”COIL,”

and ”Rialto” are all data streams with sequential dependencies. Here we can also see that

on these datasets, RRNADE outperforms other compared methods. A summarization of

all datasets can be found in Table 7.4

Last but not least, in addition to the compared baselines in the corresponding papers,

we have also included the original RNADE method as a baseline. As can be observed

from the tables, RNADE performs poorly under the online streaming setting. This further

strengthens our motivation of incorporating recurrent units into the RNADE model for it

to handle online streaming tasks.

7.4.3 Ablation Study

In this ablation study, we investigate the significance of RRNADE’s two components,

namely the density module ξ and the recurrent module g. We compare RRNADE against

three baselines: RRNADE without the recurrent module (NR), RRNADE without the

density module (ND), and RRNADE without both modules (NRND). For NR, we re-
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Figure 7.3: The three baseline models NR (left), ND (middle), NRND (right).

place RRNADE’s recurrent module with a two-layer fully connected neural network that

only takes the data at the current and previous time steps as input. For ND, we replace

RRNADE’s density module with a two-layer fully connected neural network, while for

NRND, a two-layer neural network is used to map from the current input step to its label.

To correspond to the three variants of RRNADE, ND also has three different recurrent

units, namely GRU, LSTM, and 2RNN. A graphical illustration of the baseline models

can be found in Figure 7.3. We select the hyperparameters using validation in the same

way as mentioned before, and present the results in Table 7.5.

The results show that RRNADE outperforms all baselines on all examined datasets.

In some datasets, such as ”Moving RBF” and ”Inter RBF”, both the density module ξ

and the recurrent module g are required for the model to achieve the best performance.

However, on other datasets such as ”Rialto”, the absence of the recurrent module alone is

detrimental, while for datasets like ”Overlap”, the density module is of great importance.

The recurrent module captures the temporal relations in the data, which are key to

predicting the correct label in some cases. The top figure of Figure 7.4 shows the learning

curves of the three variants of RRNADE and NR on the ”Rialto” dataset. We can see that

NR converges slower and to a worse solution compared to RRNADE, due to the fact that

the label has a specific ordering that is hard to capture without the recurrent module.
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Accuracy RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU NR NRND ND

-LSTM
ND

-2RNN
ND

-GRU
Border 0.96 (0.05) 0.96 (0.02) 0.94 (0.03) 0.90 (0.03) 0.80 (0.02) 0.81 (0.02) 0.80 (0.02) 0.81 (0.01)

Overlap 0.75 (0.01) 0.73 (0.01) 0.77 (0.01) 0.75 (0.03) 0.65 (0.02) 0.64 (0.01) 0.65 (0.02) 0.66 (0.02)
Inter RBF 0.90 (0.02) 0.92 (0.02) 0.92 (0.03) 0.87 (0.02) 0.46 (0.05) 0.87 (0.09) 0.66 (0.08) 0.79 (0.04)

Moving RBF 0.74 (0.01) 0.74 (0.02) 0.77 (0.01) 0.51 (0.02) 0.42 (0.01) 0.59 (0.03) 0.44 (0.02) 0.58 (0.04)
Outdoor 0.96 (0.03) 0.96 (0.02) 0.94 (0.02) 0.95 (0.01) 0.31 (0.02) 0.42 (0.02) 0.45 (0.03) 0.39 (0.02)
Weather 0.79 (0.00) 0.79 (0.01) 0.78 (0.01) 0.78 (0.01) 0.78 (0.01) 0.79 (0.01) 0.78 (0.01) 0.79 (0.0)

Rialto 0.89 (0.05) 0.94 (0.04) 0.92 (0.04) 0.82 (0.04) 0.73 (0.01) 0.92 (0.04) 0.83 (0.05) 0.93 (0.03)

Table 7.5: Comparison of RRNADE with three baselines NR, ND, NRND.

In addition, RRNADE-LSTM seems to be converging slower compared to the other two

variants. This could be because LSTM is more complex than 2RNN and GRU therefore

needs additional iteration to converge.

On the other hand, the use of the density module provides a proper inductive bias in

some cases, which accelerates the convergence and improves the final solution. For ex-

ample, both ”Inter RBF” and ”Moving RBF” are generated from Gaussians with concept

drifts, so they benefit greatly from the density module. We also train the NRND model on

the ”Overlap” dataset offline using gradient descent with batch size 1, without random

permutation of the data. Note that under this training routine, the first epoch is equiva-

lent to learning under the streaming setting. The bottom figure of Figure 7.4 shows the

learning curves of the first 10 epochs for this trained NRND model, as well as for NR and

RRNADE-GRU. As the number of epochs increases, NRND slowly reaches the perfor-

mance of NR. However, in the first epoch, i.e., the online setting, we can see that methods

with the density module improve much faster.

7.5 Conclusion

In this chapter, we propose the Recurrent Real-valued Neural Autoregressive Density

Estimator (RRNADE), which is an extension of the classic RNADE model to its online

setting. The core idea behind RRNADE is to use a recurrent function (recurrent module)

to maintain a set of sufficient statistics for the future and approximate the conditional

density function using a mixture of Gaussian (density module) that is parameterized by
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Figure 7.4: Comparison of RRNADE with three baselines NR, ND, NRND.

neural networks. We prove that RRNADE is strictly more expressive than the Gaussian

hidden Markov model, which is a classic model for learning sequential data. To use

RRNADE on online density estimation and classification of data streams, we propose

learning algorithms. In our empirical studies, we conduct experiments on synthetic data

to show that RRNADE can learn the density function parameterized by a Gaussian HMM

and efficiently adapt to concept drifts. For classification tasks, we compare RRNADE with

various methods on multiple synthetic and real-world datasets, and our results demon-

strate that RRNADE outperforms all other methods on almost every dataset. In our ab-

lation study, we further showcase the importance of both the recurrent module and the

density module, where the recurrent module helps capture the sequential dependencies

of the data stream, while the density module aids in online optimization. For future work,

we would like to investigate a more adaptive way of estimating the prior, since we use a

uniform distribution as the prior for RRNADE on classification tasks. Additionally, as our

model is a density model, it would be interesting to investigate the possibility of online

clustering.
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Chapter 8

Discussion and Conclusion

In this thesis, we explore various approaches to enhance the effectiveness of state rep-

resentations in state space models (SSMs) under different settings. The thesis begins by

introducing some well-known SSMs, including finite state automata and recurrent neural

networks. We focus on weighted finite automata (WFAs) and the classic spectral learning

algorithm for estimating them from data. Building upon this, we extend WFAs to operate

in continuous input spaces and unveil relationships between WFAs, second-order RNNs,

and tensor networks from different fields. We show that WFAs are equivalent to linear

2-RNNs and uniform matrix product states in quantum physics when continuous input

variables are given. Furthermore, we propose a spectral learning algorithm to recover

the corresponding WFAs, which preserves some of the key characteristics of the original

method. To achieve a more expressive and compact state representation, we introduce

nonlinearities to WFAs with both discrete and continuous input variables. For classic

WFAs, we use a nonlinear encoder-decoder framework to replace the low-rank decompo-

sition of the Hankel matrix and solve the transition function, parameterized with a neural

network, as a regression task. For WFAs with continuous input (i.e., linear 2-RNNs), we

employ a nonlinear feature mapping and a nonlinear output function to obtain nonlinear

continuous WFAs. The spectral learning algorithm then involves estimating the corre-

sponding Hankel tensor via gradient descent and recovering the transition tensor of the

150



nonlinear continuous WFAs using tensor algebra. Note that besides the fact that NL-

WFA deals with discrete input variables while NCWFA deals with continuous ones, the

difference between NL-WFA and NCWFA also lies in other aspects. Although the learn-

ing algorithm of NL-WFA, i.e., the rank factorization on the Hankel matrix of finite rank,

constrains the learned NL-WFA to be a more compact representation of another WFA, the

definition of NL-WFA is quite general. In our formulation, NL-WFA is a nonlinear RNN

for discrete variables while NCWFA is a CWFA (linear 2-RNN) with a nonlinear output

function. Aside from WFAs, we also explored other forms of SSMs in this thesis. In Chap-

ter 3, we introduced the unnormalized Q function as a tool for combining the learning and

planning phases of POMDPs, using a spectral learning algorithm to obtain an informa-

tive state representation for the given task. In the final chapter, we proposed the recurrent

real-valued neural autoregressive density estimator (RRNADE), which utilizes recurrent

neural networks and RNADE [Uria et al., 2013] to compute density functions. The design

of the learning algorithm for RRNADE allows the state representation to adapt effectively

to account for concept shifts in the data stream setting.

8.1 Limitations

The spectral learning algorithm typically involves two stages: constructing and decom-

posing the Hankel tensor and recovering the model parameters via regression. However,

these stages can pose significant challenges, particularly with respect to the curse of di-

mensionality. In this thesis, we explored several techniques to address these issues. For

example, in UQF, we applied compressed sensing to reduce the size of the Hankel ma-

trix, while for WFAs with continuous input space, we leveraged the tensor train format

of the Hankel tensor to significantly reduce its size and complexity of the decomposition

and regression steps in the spectral learning algorithm. Nonetheless, some challenges

remain unsolved. For instance, what if the ground truth SSM has a nonlinear transi-

tion function? Although our nonlinear WFA can solve this problem by using a nonlinear
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encoder-decoder to decompose the Hankel matrix and a neural network to parameterize

the transition function, this approach may not work if the ground truth transition function

is highly nonlinear, resulting in a Hankel matrix (tensor) of infinite (TT) rank. Therefore,

the rank of the Hankel matrix (tensor) we constructed with limited prefixes and suffixes

will never be the same as the true rank, hence breaking the fundamental theorem of the

spectral learning algorithm.

Another issue in learning WFAs and related linear/multi-linear SSMs is numerical

stability. In practice, compounding the transition matrix/tensor can lead to vanishing or

exploding state representations, making learning and inference challenging, especially for

WFAs with continuous inputs. Although constraining the norm of the state in gradient-

based methods can help, empirical results suggest that such constraints can hurt the per-

formance of the learned model. A more systematic approach may be necessary to address

this issue.

8.2 Future Directions

In this section, we will outline some interesting problems to work in the future. We will

also briefly describe some ideas for these problems.

8.2.1 Hankel Function

One of the future directions, following the previous subsection, is to investigate if it is

possible to perform spectral learning like algorithms for SSMs with nonlinear transition

functions. One interesting angle might be rethinking the Hankel structures. For the classic

WFAs with discrete inputs, we use prefixes and suffixes to index the rows and columns

and construct the Hankel matrix. For WFAs with continuous inputs, we construct the

high-dimensional Hankel tensor. The one-on-one correspondence is that the size of WFAs

is the same as the rank of the Hankel matrix or the tensor train rank of the Hankel tensor.

For SSMs with nonlinear transition functions, these constructions fall short due to the
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potential infinite matrix (TT) rank. How to resolve this issue could be an interesting future

direction. Below we will outline the sketch of one potential solution for this problem,

which is the concept of Hankel function.

In the spectral learning for classic WFAs, the algorithm starts with the construction

of the Hankel matrix, i.e. a matrix that is indexed by prefixes and suffixes. We can view

this matrix as a mapping, i.e.: H : Σ∗ × Σ∗ → Rp. In the Hankle tensor construction

of the linear 2-RNN in section 4.5.3, we leveraged the TT form of the Hankel tensor and

use the spectral learning method to recover the transition tensor. In this process, we are

essentially distilling a uniform transition tensor from the L different tensor cores of the

TT representation of the Hankel tensor, where L is the length of the sequences. These

observations inspire us to extend the notion of Hankel matrix to Hankel function, which

maps sequences of vectors (strings under the discrete setting) to the output space, with

the use of L different transition functions.

Assume we want to estimate an NCWFA with a nonlinear transition function. Recall

the definition for NCWFA mentioned in Definition 23, an NCWFA with a linear transition

function is defined by Ã = ⟨α, ξ, ϕ,A⟩, where α ∈ Rk is the initial vector, ξ : Rk → Rp

is the output function, ϕ : Rd → Rd* is the encoding function and A ∈ Rk×d×k is the

transition tensor. For an NCWFA with a nonlinear transition function, instead of the

tensor A, we have the recurrent function g : Rk × Rd → Rk. Formally, an NCWFA with a

nonlinear transition function is a tuple Ã′ = ⟨α, ξ, ϕ, g⟩, which computes the function

fÃ′(x1, · · · ,xn) = ξ(g(ϕ(xn),h
′
n−1)),

where h′
t = ϕ(xt,h

′
t−1) and h′

0 = α, for a sequence x1, · · · ,xn. Assume we are given data

generated from Ã′, namely (x1, · · · ,xn,y) and y = fÃ′(x1, · · · ,xn). Let gt : Rk ×Rd → Rk

be the transition function at time step t, we want to compute the functionHn : (Rd)n → Rp

such that Hn(x1, · · · ,xn) = ξ(gn(ϕ(xn),hn−1)) = y, where ht = gt(ϕ(xt),ht−1) and the

*For simplicity we set the encoding dimension to be d as well
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initial weight vector h0 = α ∈ Rk. We refer to the function Hn as the Hankel function of

length n, mapping from the space of sequences of vectors (Rd)n to some output space Rp.

Note when gt = g for t = 1, · · · , n, we recover exactly the form of fÃ′ .

The learning of the Hankel function can then leverage the classic gradient descent

method to minimize the distance between the output of the model and the true target.

For an input sequence and output vector pair: (x1, · · · ,xn,y), we want to minimize the

following loss function:

LH(x1, · · · ,xn,y) = ∥Hn(x1, · · · ,xn)− y∥2 (8.1)

= ∥Hn(x1, · · · ,xn)− fÃ′(x1, · · · ,xn)∥2 (8.2)

In the above optimization, we solve for ϕ̂, α̂, ξ̂ and gt for t = 1, 2, · · · , n. What is left to

be recovered for the NCWFA is the nonlinear transition function g. We want to solve for

this function such that for an input-output pair (x1, · · · ,xn,y), we have

ξ̂(ĝ(ϕ̂(xn),h
′
n−1)) = y.

Notice that given Hn, we can obtain an encoding of any prefix up to length n of the

input sequences, namely, we have Φm
p (x1, · · · ,xm) = gm(ϕ(xm),hm−1), for any m ≤ n.

Recall the encoder-decoder perspective of the spectral learning algorithm we mentioned

in Chapter 5 at section 5.2.2, during the regression step of the spectral learning algorithm,

we are essentially solving for a function ĝ : Rk × Rd → Rk such that it minimizes the

following loss function:

LR(x1, · · · ,xn) =
n−1∑
m=1

∥ĝ(Φm
p (x1, · · · ,xm), ϕ̂(xm+1))− Φm+1

p (x1, · · · ,xm+1)∥2 (8.3)

Our idea then is to minimize the above loss function to solve for the transition function g

of the NCWFA. To conclude, we obtain estimations for the encoder ϕ, initial vector α and

the output function ξ in the step of learning the Hankel function by minimizing the loss
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in Eq 8.1. Then we learn an estimate of the transition function g by minimizing the loss

in Eq 8.3. Some interesting further directions stemming from this idea could be: theoret-

ically, assuming all minimization reaches to zero training error, could we still obtain the

results of minimality and consistency that the classic spectral learning algorithm enjoys?

Empirically, the above routine can be applied to other SSMs as well, such as various types

of RNNs. Evaluating this alternative method of learning or initializing an RNN could

also be an interesting direction of research.

8.2.2 Transition for Multimodal Data

In the linear 2-RNN model, the transition tensor is a third-order tensor where one of the

dimensions is for the input variables at each time step. This construction potentially faces

a scalability issue where we are dealing with multimodal data, namely for data with dif-

ferent data types. For example, video data can be considered as an example of sequential

multimodal data, where each time step consists of two types of input data: sound and

image, each representing a modality. The scalability issue arises especially when we are

interested in the multiplicative relations of the different modalities of the inputs. In this

scenario, a simple concatenation of the data on different modalities will fail to capture the

multiplicative structure between these modalities. Often, one straightforward solution is

to use the outer product of the input variables among all the modalities. This solution,

however, will suffer from the curse of dimensionality due to the outer product, which

leads to the exponential size of the input vector w.r.t. the number of modalities. Take

multi-agent reinforcement learning as an example, each agent has its observations and

actions as its own modality, assume to be both of size d. Then in an n-agents multiagent

system, the transition tensor is of the size O(dn), which makes it difficult for both learning

and inference. To solve this issue, one idea could be leveraging various tensor decomposi-

tion forms of the transition tensor to directly learn and infer with the decomposed form of

the transition tensor, which circumvents the scalability issue. One future direction of this
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could be investigating the impact of different tensor decomposition forms on the model

performance. Let us briefly investigate some possible choices and their formulations.

Figure 8.1: Tensor train representation of the transition tensor T

As we have discussed in previous chapters, the key idea of tensor train decomposition

is to decompose the tensor into an ordered contraction of a series of small tensor cores.

An important property is that, for higher-order tensors, TT decomposition provides a

space-saving representation while preserving the expressivity. In Figure 8.1, we present

the tensor train representation of the transition tensor T for an SSM with 3 modalities in

the input data, where the initial state vector is α, xj
i denotes the input of the i-th modality

at time step j. In this formulation, the size of the transition tensor T is linear w.r.t. the

number of modalities, which significantly reduces the memory cost. One thing important

is that, by using this form of decomposition, we enforce a notion of distance among all the

modalities as the contraction of the TT form has to follow the order of the TT cores. As a

result, we might enforce an incorrect inductive bias on the correlations between different

modalities.

Figure 8.2: Left: Tensor diagram representation of tucker decomposition of a third order

tensor X. Right: Tucker representation of the transition tensor T.

Tucker decomposition [Tucker, 1966] is a multilinear extension of the matrix singular

value decomposition (SVD) that factorizes a higher-order tensor into a core tensor multi-

156



plied by a matrix along each mode. Figure 8.2, we present a tensor diagram illustration

of the Tucker decomposition of a third-order tensor X. The core tensor Tc encodes the

higher-order relationships among the modes. The matrix factors G1, G2, and G3 capture

the mode-specific information, which can be interpreted as the projection of the origi-

nal tensor onto each mode. Tucker decomposition has been widely used in the machine

learning community, for its ability to reveal underlying patterns and reduce the dimen-

sionality of high-dimensional data. Figure 8.2 shows the Tucker decomposition of the

transition tensor T. The intuition here is different from the tensor train decomposition

in the sense that the Tucker core Tc in this formulation can capture all the correlations

of each modality through contractions, given enough size. Therefore, there is no sense

of distance, as the contractions between the matrix factors and the core tensor are per-

mutation invariant, which allows for all possible interactions among all the modes. One

drawback of such a structure is that the size of the Tucker core Tc is exponential to the

number of modalities, which is infeasible when dealing with data with many modalities.

Figure 8.3: Left: Tensor diagram representation of tensor wheel decomposition of the

tensor X. Figure credit [Wu et al., 2022]. Right: Tensor wheel representation of the

transition tensor T.

Another interesting form of decomposition is the tensor wheel decomposition [Wu

et al., 2022]. A tensor diagram representation of the tensor wheel decomposition is shown

in Figure 8.3, where C is referred to as the core factor and the remaining tensor cores are
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referred to as the ring factors. Building upon tensor ring decomposition [Zhao et al., 2016],

tensor wheel decomposition enjoys the nice property of core-connected invariance, which

means that tensor wheel topology can comprehensively establish all possible mode inter-

actions of a high-order tensor through the connection of the core factor. Figure 8.3 shows

the decomposition of the transition tensor T in its tensor wheel format. The system

starts with the initial state distribution α′ = α⊗ α⊗ α. Combining with the ring factors

G1,G2,G3 and the core factor α′, assuming proper contractions between the input vari-

ables and the ring factors are done, we have a tensor wheel decomposition. As the tensor

wheel topology allows contraction in any order, due to the core-connected invariance, this

format, compared to the previous tensor train format, can capture the correlation between

arbitrary pairs of modalities (factors). However, similar to the Tucker decomposition, the

core factor is of exponential size w.r.t. the number of modalities, which could be the bot-

tleneck. Nevertheless, because of the connections in the neighboring ring factors, which

establish a connection for a higher characterization capacity and reduce the loadings of

the core factor, the core factor of the tensor wheel decomposition tends to be smaller com-

pared to the one in Tucker [Wu et al., 2022]. Thus, this construction could be smaller than

the Tucker structure, and to a certain degree, alleviate the curse of dimensionality in the

core factor.

These are three variants of potential decompositions and the structure of the transition

tensor when dealing with multimodal data. As we have shown, each has its own advan-

tages and disadvantages. To investigate which form of decomposition to use for what

type of data could be an interesting future topic. Moreover, here we are just presenting

the potential structures of the decomposed transition tensor, how to learn these forms ef-

ficiently, particularly using a spectral learning algorithm, could also be very interesting.

Last but not least, we only considered three specific forms of decomposition of the tran-

sition tensor, are these predefined topologies optimal? Is there a way to automatically

discover the optimal decomposition structure of the transition tensor?
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Figure 8.4: The Chomsky Hierarchy. (Figure credit [Fitch, 2014])

8.2.3 Continuous UQF

One last future direction that builds on Chapter 3 is to extend the notion of unnormalized

Q functions to environments with continuous observation and action spaces. Briefly, this

can be achieved by first obtaining the density of the action-observation sequences using

any density estimation method, multiplying it with the immediate rewards, and learning

the continuous WFA that computes the function p(x)r(x) using the spectral learning algo-

rithm. The challenge lies in converting this WFA to obtain the UQF, as the summations in

the discrete setting become integrals. Finally, planning with the learned UQF under con-

tinuous action space can be accomplished with linear programming. This extension can

have important applications in various fields, such as robotics and autonomous vehicles.

8.3 Concluding Remarks

Recently, transformers [Vaswani et al., 2017] have emerged as a highly efficient architec-

ture for processing large volumes of sequential data. While originally designed for natu-

ral language processing, transformers have since been applied to a diverse range of tasks

159



and demonstrated potential in areas such as computer vision and speech recognition. It

seems that the numerous successes of transformers have rendered SSMs irrelevant in the

community. However, as a fundamental tool for extracting temporal relations in sequen-

tial data, SSMs still play an important role in modern machine learning. For example,

automata, as a well-studied model, provide a convenient tool for evaluating the expres-

sivity of the model, such as the Chomsky hierarchy [Chomsky, 1956] (Fig 8.4). Studies

have been conducted to comprehend the expressivity of transformers by leveraging the

theory of automata [Liu et al., 2022, Bhattamishra et al., 2020]. Additionally, recent re-

search on state space models, such as [Gu et al., 2020, 2022], utilizing a specific structure

of the transition matrices, have managed to achieve superior results compared to trans-

formers in the domains studied. All these recent advances shed a light on the importance

of SSMs. Moving on forward, further understanding and establishing the relationships

between various types of SSMs from different fields, i.e. automata, RNNs, differential

equations, tensor networks, etc, should be a fundamental step to further advance the

field of SSMs.
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Stéphane Ayache, Rémi Eyraud, and Noé Goudian. Explaining black boxes on sequential

data using weighted automata. In Proceedings of ICGI, pages 81–103, 2018.
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Lecoeuche. Application of an incremental svm algorithm for on-line human recog-

nition from video surveillance using texture and color features. Neurocomputing, 126:

132–140, 2014.

Christian Lubich, Thorsten Rohwedder, Reinhold Schneider, and Bart Vandereycken. Dy-

namical approximation by hierarchical tucker and tensor-train tensors. SIAM Journal

on Matrix Analysis and Applications, 34(2):470–494, 2013.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei

Song. A tensorized transformer for language modeling. In Advances in Neural Informa-

tion Processing Systems, pages 2229–2239, 2019.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A Smith, and Eran Ya-

hav. A formal hierarchy of rnn architectures. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 443–459, 2020.
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