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ABSTRACT 

Consumer' s demand for more natural and high quality food products products, 

presenting health benefits, has increased over the years. Besides the nutritional aspects, 

an appealing appearailce and texture is also required. Cloudiness or opacity (cloudy 

appearance) is an important citrus drinks property (orange, lime, lemon, etc.), since it 

gives natural fruit juice appeal. This property can be achieved through addition of 

clouding agents, which also help in uniform distribution of flavors throughout the liquid 

beverage. A common problem in the beverage industry is producing cloud or flavor 

emulsions that remain stable over the desired shelf life. Beverage cloud emulsions are oil­

in-water emulsions to provide cloudiness and are prepared in a concentrated form, but 

diluted prior to the consumption. 

Optical and rheological properties of beverage cloud emulsions as a function of 

water-phase and oil-phase concentrations were investigated. The specific gravit y of 

phases, particle size distribution and creaming stability of prepared emulsions in diluted 

forms were evaluated. The rate of cloud emulsion creaming by determining the rheology 

of water phase, difference in specific gravities of the phases and drop let properties of the 

emulsion in presence and absence of weighting agents (sucrose acetate isobutyrate and 

brominated vegetable oil) or/and xanthan gum was studied. Flow and dynamic 

rheological properties of single-phases and emulsions containing modified starch and 

arabic gum as surface active hydrocolloids as well as xanthan and tragacanth as 

stabilizers gums were investigated. Finally, stability of cloud emulsions in orange juice 

drink was examined. 

Oil-phase concentration had a significant effect (P < 0.05) on increasing the 

opacity of emulsion. Raise in viscosity of emulsions was more pronounced as oil 

concentration increased and shear thinning behavior of oil added emulsions was 

associated with drop let flocculation. Creaming in acidified sugar solution of Il °Bx and 

pH 3 was observed when the oil-phase specifie gravit y decreased and sedimentation 

occurred at the lower viscosity of water phase. Addition of xanthan gum into the water 

phase decreased the flow behavior index (n) form 0.88 down to 0.31 and increased elastic 
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modulus (G') over 20 times at elevated frequency (00 = 50 radis) and perk up the stability 

of the emulsion. 

The xanthan gum added emulsion indicated smaller average particle size and 

demonstrated 14 and 5 times slower separation compared to the emulsions without or 

with the addition of weighting agents respectively. Starch-xanthan stabilized emulsion 

and associated water phase at 1.5:1 surface active gum to oil ratio demonstrated 

viscoelastic behavior (G'~ G ') with lower droplets coalescence and creaming rates, 0.013 

nm/day and 0.02 percent backscattering/day respectively. Conversely, arabic-xanthan 

stabilized emulsion at 1: 1 gum to oil ratio showed the highest rate of droplets coalescence 

at 0.057 nm/day and greater degree of creaming at 0.61 percent transmission/day. While 

creaming were associated with arabic gum stabilized emulsions, after 3 month storage, 

modified starch illustrated appropriate shelf stability with no sign of creaming in orange 

juice drink. 
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RÉSUMÉ 

Les consommateurs exigent, de plus en plus, des aliments naturels possédant des 

propriétés nutritionnelles. L'opacité ( apparence opaque) est une caractéristique 

importante des boissons à base d'agrumes (orange, pamplemousse, citron, .. ), car elle 

assure une apparence naturelle aux jus de fruits. Cet attribut visuel peut être obtenu grâce 

à l'incorporation d'agents opalescents à base d'huile végétale, tout en assurant une 

distribution uniforme des saveurs dans les boissons. 

Un des problèmes commun de l'industrie des boissons est la production des émulsions à 

base d'huiles essentielles (saveurs) ou végétales (agents opalescents), lesquels doivent 

rester stables durant la période prédéterminée du produit sur les tablettes. Les émulsions 

à base d'opalescents pour les boissons sont des émulsions huile dans l'eau pour générer 

l'opacité. Elles sont préparées sous forme de concentré pour être ensuite diluées avant 

leur consommation. 

Les propriétés optiques et rhéologiques de ces émulsions de boisson ont été examinées en 

fonction des concentrations des phases aqueuses et huileuse. La densité des phases, la 

distribution de tailles des particules dispersées et la stabilité au crémage des émulsions 

diluées ont été étudiées. La cinétique de crémage des émulsions a été étudiée l'étude 

combinée de la rhéologie de la phase aqueuse, la différence de densité des phases et les 

propriétés des gouttelettes d'huile de l'émulsion avec ou sans agents de poids 

(isobytyrate d'acétate de sucrose, huile végétale bromée). Les propriétés rhéologiques 

d'écoulement et dynamiques des phases individuelles et des émulsions contenant de l' 

amidon modifié ou de la gomme arabique comme hydrocolloides tensio-actifs et les 

gommes trac acanthe et xanthan comme agents stabilisants ont été examinées. La stabilité 

physique de ces émulsions opalescentes dans des boissons a été également quantifiée. 

La concentration de la phase huileuse a eu un effet significatif (P < 0.05) sur 

l'augmentation de l'opacité de l'émulsion. L'augmentation de la viscosité des émulsions 

était plus prononcée avec l'augmentation de la concentration de l'huile et le 

comportement rhéofluidifiant de l'huile ajouté à l'émulsion était associé avec la 

floculation des gouttelettes. Le crémage dans une solution de sucre acidifié de Il °Brix 
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"et pH 3.0 était noté lorsque la densité de la phase huileuse diminuait et le phénomène de 

sédimentation apparaissait avec la diminution de la densité de la phase aqueuse. 

L'addition de la gomme xanthan dans la phase aqueuse diminuait l'indice d'écoulement 

(n) de 0.88 à 0.31 et, en parallèle augmentait le module (G') de 20 fois à des fréquences 

élevées (00 = 50 rads/s) et ainsi favorise la stabilité de l'émulsion. 

Les émulsions contenant de la xanthan possédaient des tailles de particules réduites et des 

cinétiques de séparation de 14 et 5 fois plus lentes que les émulsions contenant aucun ou 

avec agents de poids, respectivement. Les émulsions à base de xanthan et d'amidon et les 

phases aqueuses correspondantes dans des proportions de 1.5: 1 pour gommes 

tensioactives et! huile démontraient des comportement viscoélastiques (G' IG"). De plus, 

le phénomène de coalescence était minimisé et la cinétique de crémagede 0.013 nmljour 

et 0.02 backscattering (%)/jour, respectivement. Quant aux émulsions à base de xanthan 

et gomme arabique dans des proportions 1: 1 pour gomme et huile, une cinétique accrue 

de la coalescence des gouttelettes était notée à 0.057 nmljour ainsi qu'un crémage 

prononcée à 0.61 transmission (%)/jour. Le crémage apparaît essentiellement associé 

avec l'utilisation de la gomme arabique, après 3 mois d'entreposage, l'amidon modifié, 

quant à lui, résultait en une excellente stabilité physique sans aucun signe visible de 

crémage dans les boissons à base d'agrumes. 
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CHAPTERI 

INTRODUCTION 

Consumer demand for more natural and high quality food products, presenting 

health benefits, has increased over the years. Besides the nutritional aspects, an appealing 

appearance and texture along with positive sensorial and rheological characteristics are 

also desired. As a result of this trend, the use of natural ingredients and those which do 

not compromise public health safety, are on the rise, while the synthetic ingredients are 

generally perceived as undesirable as they may be harmful and sorne are considered to be 

responsible for allergenic and intolerance reactions. 

Cloudiness or opacity (cloudy appearance) is an important property in citrus 

beverages (orange, lime, lemon, etc.), since it gives natural fruit juice appeal. This 

property can be achieved through addition of clouding agents, which also help in uniform 

distribution of flavors in the liquid beverage. Cloud effect is due to interaction and 

diffusion of light by suspended oil droplets known as "beverage cloud emulsion". These 

emulsions are dispersions of one liquid phase in the form of fine droplets in a second 

immiscible liquid phase. The immiscible phase is usually oil and the continuous phase is 

water, so these emulsions can be classified as oil-in-water emulsions. Depending on the 

type of dispersion and when water becomes the dispersed phase, the emulsion is 

classified as water-in-oil emulsions (i.e., butter), Sorne other typical food emulsions are 

mild cream, ice cream, margarine, salad dressing, and meat emulsions (Barbosa-Canovas 

et al., 1996). 

Beverage emulsions, the traditional oil-in-water emulsions, have similar 

composition, preparation procedures, and physiochemical properties as compared to other 

typical food emulsions. Beverage emulsions are either flavor emulsions to provide flavor, 

cloudiness and color as in certain formulae or cloud emulsions to provide only cloudiness 

to the beverages such as fruit drinks, punches and sodas (Garti et al., 1991; Chanamai and 

McClements 2000; Chanamai and McClements 2001; Tan, 2004). 

The oil phase (internaI or dispersed phase) consists of sorne combination of 

vegetables oil, flavor oil, weighting agent, and antioxidants whereas the water phase 
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(extemal or aqueous phase) consists of water, various types of hydrocolloids, citric acid, 

preservative, emulsifier, sweetener, and salts (Trubiano, 1995; Chanamai and 

McClements 2000; Tan 2004). 

Tan (2004) and Buffo and Reineccius (2002) described the beverage emulsions 

as a unique class of emulsions which are consumed in a highly diluted form rather than in 

their original concentrated form. These emulsions are first prepared as a concentrate and 

are later diluted to produce the fini shed beverage. In addition to providing cloudiness and 

flavor, the physical stability of these emulsions in both concentrated and diluted forms is 

of critical importance. 

It has been reported (Tan 2004) that the stability of emulsion in the concentrated 

form is much easier to achieve than in the diluted form. The reason is the higher viscosity 

of the concentrate due to the high concentration of hydrocolloids which act as stabilizers. 

This effect will decrease when the emulsion concentrate is dispensed in a second water 

phase (i.e, fruits drinks). For a beverage emulsion, therefore, the most critical criterion of 

stability is its stability in the fini shed beverage (diluted form). 

Creaming or ringing, a common deterioration sign for beverage emulsions, is the 

formation of a whitish ring around the neck of the container. Oiling-off which is the 

formation of shiny oil slick on top of the product is also considered a quality defect. Both 

defects have been related to a range of physiochemical mechanisms that take place within 

the beverage emulsion. Gravitational separation, flocculation and coalescence are the 

results of these mechanisms. Lifting and striation are two others phenomena related to 

creaming. Lifting occurs when the emulsion in the bottle of beverage lifts up from the 

bottom and shows a clear layer ofliquid below. Striation occurs when the emulsion in the 

bottle shows two or more distinctive layers of different degree of cloudiness (Tan, 2004; 

McClements, 2005). 

The origin and nature of these instability mechanisms are categorized as: 

Gravitational separation: This is due to the fact that the oil droplets in an emulsion have 

a density different from that of the liquid which surrounds them and so a net gravitational 

force acts upon them (Dickinson 1992). If the droplets have a lower density than the 

surrounding liquid, they have a tendency to move upward which is referred to as 

creaming. Conversely, if they have a higher density than the surrounding liquid they tend 
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to move downward which is referred to as sedimentation (Chnamai and McClement, 

2000a; Chnamai and McClement, 2001; Tan, 2004; McClements, 2005, Taherian et al., 

2006). The densities of most edible oils are lower than that of water and so there is a 

tendency for oil to accumulate at the top of an emulsion and water at the bottom. 

Gravitational separation could also enhance flocculation and coalescence by causing 

droplets to come into close contact for extended period. 

A rare situation which can be found in beverage is sedimentation or downward 

creaming, unless the added amount of weighting agents (density adjuster) increases the 

density of oil fraction to make density gradient, Poil - pwater. to become a positive value 

(Taherian et al., 2006). It also happens when the weighting agents separate from the oil 

droplets and become precipitated in the beverages. 

Flocculation: This results from the existence of attractive forces between the oil droplets. 

There are no changes in basic droplet size or distribution but the buildup of aggregates of 

droplets within the emulsion (Tadros and Vincent 1983). 

The forces which draw these droplets together to form aggregates are primarily 

the long-range London-van der Waals forces and electrostatic forces around the droplets 

(Tan, 2004). In the case of beverages, when the intermediate droplets concentration is 

low and flocs do not substantially interact with one another, flocculation tends to increase 

the creaming velo city because the flocs have a larger effective size than the individual 

droplet and because the density difference between the flocs and the surrounding liquid is 

reduced. In concentrated emulsion, before introducing to the final beverage solution, the 

viscosity may increase when flocculation occurs. In the fini shed beverage system, the 

droplet concentration is so low that the flocculation is often reversible. The aggregates 

can be readily redispersed because the interaction forces between the droplets are week. 

Flocculation, however, accelerates the rate of gravitational separation in beverage 

emulsion which is undesirable because it reduces the shelf life (Tan and Holmes, 1988; 

Tan, 2004; McClements, 2005). 

Coalescence: This is the process whereby two or more oil droplets merge together to 

form a larger droplet. In this stage, there is localized distribution of sheathes around the 

neighboring droplets of the aggregates and this results in a change in the initial drop let 

size distribution. Coalescence thus involves the elimination of the thin liquid film of the 
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water phase which separate two droplets in contact in an aggregate or a close-packed 

array (Tan, 2004; McClements, 2005; Tadros and Vincent, 1983). Coalescence causes 

emulsion droplets to cream or sediment more rapidly because of the increase in their size. 

The use of a proper hydrocolloid in water phase could prevent the emulsion to reach this 

stage. The reason is that the hydrocolloid, such as gum arabic, has a good film-forming 

ability and will form film around the oil droplets in addition to providing viscosity in the 

water phase (Tan, 1998; Tan, 2004). 

The rate of creaming could also be enhanced by other factors such as: oil droplet 

viscosity, polydispersity, electrical charge and zeta potential, parti cl e Slze 

characterization, surface activity and emulsion rheology. 

Stokes' law indicates that the velo city at which droplet moves is proportional to 

the square of its radius. Therefore the stability of an emulsion can be enhanced by 

reducing the droplet size. This is especially true for beverage emulsions which have to be 

stable in both concentrated and diluted forms. Consequently, the size distribution of the 

droplets has a great effect on stability of emulsions. For beverage emulsions, the 

determination of particle size distribution could serve two purposes; first estimation of 

the quality of the emulsion concentrates, and second prediction of the stability of the 

emulsion in the fini shed product. For example, in a beverage a particle of 0.1 /-lm in 

diameter will travel upward 100 times more slowly in the bottle than a particle of 1.0 /-lm 

in diameter (Tan and Wu Rolmes, 1988). 

The interfacial region which separates the oil from the aqueous phase has also a 

direct influence on the bulk physiochemical and sensory properties of food emulsions, 

including their formation, stability, rheology and flavor. The surface active molecules 

such as proteins, polysaccharides, alcohols and surfactants which can accumulate at the 

interface are able to alter the properties of the emulsions. These surface-active molecules 

are able to adsorb to the surface of the emulsion droplets and form a protective membrane 

that prevents them from aggregating (flocculating and/or coalescing) with one another. In 

addition, an emulsifier reduces the oil-water interfacial tension, thereby facilitating the 

disruption of emulsion droplets during homogenization (Walstra, 1993 and Walstra 2003; 

McClements, 2005). 
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Rheology of emulsion and its water phase is one of the most important study 

which helps to understand the physical stability of emulsion. Although the oil is 

responsible for providing the opacity in beverages, one of the main reasons why the oil is 

used in the form of emulsion rather than in its original state is that a much wider range of 

rheological characteristics and consistencies can be achieved with an emulsion. The water 

phase of an emulsion contains polysaccharide which could provide specific rheological 

properties affecting stability of the emulsion. For instance, many hydrocolloids used to 

prepare emulsion are shear-thinning, that is, they have a high viscosity at low shear rates, 

and the viscosity decreases dramatically as the shear rate is increased. This property is 

important because it means that the droplets are prevented from creaming, but that the 

food emulsion still flows easily when poured from a container. 

While substantial work has been done on studying emulsions and factors that 

influence their stability, the process of making emulsions is still treated more as an art 

than a science. Product and legal constraints put severe limits on the materials that can be 

used to insure emulsion stability, particularly regarding the introduction of weighting 

agents into the oil phase (Buffo et al., 2001). Weighing agents (density-adjusting agents) 

are lipophilic compounds with specific gravit y greater than 1. Sucrose acetate isobutyrate 

(SAIB), Ester Gum (EG), and brominated vegetable oil (BVO) are most widely used 

weighting agents. These products have limitation of use because of perceived health risk 

disadvantage, rosin-like taste and prone to oxidative instability (F AO/WHO joint reports, 

1970, 1975, 1996 and 1997). 

Thus, the stability concem of beverage emulsions is a chronic problem faced by 

the flavor and beverage industries. The main focus of this research is characterization of 

rheology of beverage emulsions for achieving better stability of these products without 

relying on the use ofweighting agents both in the concentrated and diluted forms. 

The specific objectives are detailed below: 

1. To investigate the effect of added oil and modified starch on the opacity, specific 

gravit y, rheological and droplets properties of the oil and water phases, alone and in 

form of emulsions, in the presence of weighting agents. The aim is to find out the 
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relationship between investigated properties and stability of emulsions In 

concentrated and diluted forms, 

II. To compare the physical properties of emulsions with and without the weighting 

agents, and find alternative replacements for the health restricted weighting agents. 

With this regards, improve the rheological properties of water phase via addition of 

high shear thinning and elastic xanthan gum and examine the consequent shelf 

stability 

III. To explore the contribution of the rheological and surface properties of water 

phases to the stability of emulsion in concentrated and diluted forms (simulated 

juice drink) in the absence of weighting agents. In addition, to study the resulting 

emulsion systems over a period of two weeks to identify the changes in rheological 

and particle size properties associated with storage stability, and 

IV. To evaluate the ability offormulated emulsions to confer cloudiness and stability in 

orange drink in the absence of weighting agents. The aim is to use combinations of 

naturally occurring components and to overcome health restrictions on the 

formulation ofbeverages. 
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2.1 Food emulsions 

Definition 

CHAPTER2 

LITERATURE REVIEW 

Emulsions (oil/water or water/oil) can be defined as macroscopic dispersions of 

two immiscible liquids, one of which forms the continuous phase of the system and the 

other the dispersed phase. In most foods, the diameters of the droplets usua1ly lie 

somewhere between 0.1 and 100 micron (Dickinson, 1992, McClements, 2005). 

The emulsions used in the agri-food sector are among the most complex. They are 

also the most difficult to stabilize. Foods exhibit an infinite number of microstructures in 

the various compositions of proteins, carbohydrates, fats and lipids. Research is 

increasingly focussing on the impact of the principles of the science of colloids and 

surfaces on the technical problems inherent to the agri-food sector. 

Amphiphilic molecules play a key role in the stabilization of many food colloids. 

It is therefore essential to properly understand the interface behaviour of these molecules 

to ensure the stability of foods. Surfactants and emulsifiers are used in a wide range of 

food products to play very specific functions in order to stabilize emulsions. Examples 

inc1ude improving the stability of emulsions to minimize agglomeration and stabilize 

aerated systems, modifying the texture and consistency of fat-based products by altering 

the polymorphism behaviour of fats and the structure of crystals, improving shelf life 

against the retrogradation of starch products by forming complexes with amylose, the 

formulation of beverage emulsions to ensure the distribution of flavour and opalescence 

in beverages, etc (Marangoni, 2002; Bais et al., 2005; Valdez et al., 2005, 

Paraskevopoulou et al., 2005). 

Emulsions are considered macroscopic dispersions of two immiscible liquids, one 

of which forms the continuous dispersing phase of the system and the other, the dispersed 

phase. A distinction is made between oil-in-water (O/W) emulsions, where water is the 

continuous phase, such as beverage emulsions, and water-in-oil (W 10) emulsions, where 

oil is the continuous phase, such as margerin. 
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Emulsions are forrned by the action of emulsifying agents, which create a layer at 

the interface, reducing the interfacial tension between two irnrniscible liquids. 

Emulsifying agents include low-molecular weight surfactants, such as ionic and non-ionic 

molecules, and macromolecules, such as proteins, carbohydrates and other polyrners. 

The oil content of emulsions ranges from 0.5% (skim milk) to 80% (mayonnaise). This 

explains why the methods used to stabilize emulsions can vary from one product to 

another. Three concepts of stabilization are generally recognized: 1) steric stabilization, 

including the physical characteristics at the interface, referred to in the literature as the 

"skin effect," 2) charge stabilization or the "zeta potential," including the surface charge 

of a dispersed medium, which will result in an electrostatic repulsion and, finally, 3) the 

contribution of rheology control through the viscosity of the continuous phase, or the 

"liquid effect." 

Sorne products (W/O emulsions) are stabilized by steric and viscous effects to 

prevent gelation and crearning; while liquid or semi-solid salad dressings (O/W 

emulsions) are stabilized against coalescence by the use ofhydrocolloids and proteins to 

forrn an effective coyer or steric membrane and to control rheological behaviour. For 

each product, a very specific emulsion is therefore required to ensure its physical 

stabilization (Diftis et al., 2005). 

Other much more complex types of emulsions, such as multiple emulsions, i.e., a 

double emulsion in which water is the continuous phase and a W 10 type emulsion is the 

dispersed phase, are also stabilized in the food sector (Stang, 1996). An example of a 

W 10/W emulsion would be low-fat mayonnaise, where the fats of an O/W emulsion are 

partially replaced by water (Matsumoto, 1986). 

Regarding the immiscibility of these two components, an emulsion is a 

therrnodynamically unstable system. Emulsification therefore involves adding a certain 

amount of energy to the system to create interfaces between the two media while, over 

time, the system tends to return to its therrnodynamically stable state. 

In order to successfully carry out the emulsification process, it IS therefore 

necessary to: 
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a) implement a mechanism for creating an interface by providing a certain 

quantity of energy to the emulsion by means of mixers, homogenizers and 

colloid mills. 

b) slow down the reverse process as much as possible, since once mechanical 

mixing stops, the droplets will tend to rise to the surface by gravit y, unless 

surface-active agents or emulsifiers are incorporated in the mixture. 

Theoretically, the energy neCessary to create an interface is given by Friberg, (1976) 

E=yxflS and flS = 6V 
d 

(1) 

where y is the interfacial tension, LIS is increase in surface area, V is volume of the 

emulsified liquid and d is the droplet diameter. 

The interfacial tension depends heavily on the type of present components 

(dispersed and dispersing medium, emulsifier, macromolecules, etc.). The energy E is, 

therefore, inversely proportional to the diameter ofthe droplets. However, it is recognized 

that the energy that must be provided for the emulsion is significantly higher than that 

indicated by the formula since other factors such as the type of mechanical agitation 

(colloid mill versus homogeniser for example), the difference in density between the two 

immiscible liquids and the viscosity of the continuous phase have a significant impact on 

the energy required (Friberg, 1976; McClements 2005). 

2.2 Emulsion stability 

Definition 

Emulsion stability is a measure of the rate at which an emulsion creams, 

flocculates or coalesces. The rate of these changes can be measured by determining the 

rheology of component phases, oil droplet particle size and distribution and density 

difference of water and oil phases. A stabilizer can be defined as single or mixed 

chemical component that conf ers long-term stability on emulsions. Stabilisers may 

operate by acting as emulsifiers or as texture modifiers (Huang et al., 2001 and 

McClements, 2005). Emulsifiers are surface-active ingredients that adsorb to the surface 
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of emulsion droplets and prevent them from aggregating. Texture modifiers are 

ingredients that increase the viscosity of the continuous phase of emulsions so as to slow 

down the gravitational separation of the droplets. Polysaccharides are widely used as 

thickening, emulsifying and stabilizing agents in the beverage cloud emulsions for their 

biocompatibility, biodegradability, and non-toxicity. Polysaccharides are natural 

polymers which can display different behaviors once dissolved in water owing to their 

molecular structure. In particular, their mechanical properties are influenced by the 

polysaccharide backbone and its si de subunits. The type of bond between sugar rings can 

result in random coil shapes (such as dextran solutions), semi-flexible chains (such as 

cellulose derivative solutions), or interrupted helical structures such as amylose (Lapasin 

and S. Priel, 1995; Morris et a1., 1996). 

Polysaccharides (hydrocolloid gums) are mostly hydrophilic polymers, which do 

not exhibit significant surface activity (Dickinson and Stainsby, 1998). However, as a 

stabilizer in food emulsions, sorne gums were found to migrate slowly to the air-water 

and oil-water interfaces and exhibit sorne surface and interfacial activities (Garti, 1999). 

These researchers have further suggested that hydrocolloid gums, although water-soluble, 

rigid and very hydrophilic, can precipitate/adsorb onto oil droplets and sterically stabilize 

emulsions against flocculation and coalescence. Polysaccharides are frequently employed 

to stabilize aqueous suspensions or O/W emulsions, and. There are different mechanisms 

by which these polymers can stabilize an emulsion. Thus, the formation of an extended 

hydrogel network reflects into high viscosity of the continuous phase at low shear, thus 

slowing down the droplet motion (Whistler, 1993); such a polymeric structure surrounds 

the oil droplets, ensuring effective steric hindrance of their coalescence (Whistler 1993, 

McClements 1999). Another contribution to the stabilization is provided by non­

adsorbing depletion mechanism, due to the pronounced hydrophilicity, low flexibility, 

and low surface activity of these polymers (McClements, 1999 and Garti et al., 1999). 

Finally, due to the presence of sorne impurities, such as hydrophobie groups or proteinic 

moieties, an additional stabilizing effect can derive from the formation of a viscoelastic 

adsorbed layer (Garti et al., 1999). 

Polysaccharides and surfactants act through different stabilization methods once 

added to the continuous phase of an emulsion, so that simultaneous use of these additives 
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should improve the stability of these systems. Moreover, surfactants are also employed as 

rheology controllers of the polysaccharide hydro-gel, in order to tune the viscoelastic 

properties of the system and obtain the desired mechanical characteristics for the final 

product. Nevertheless, when all these additives are employed together, incompatibilities, 

preferential adsorption of one additive respect to the others (Wilde, 2000; McClements 

2005), or the formation of polysaccharide-surfactant complexes can have a detrimental 

effect on the stability of the emulsion, inducing phase separation (Wilde, 2000). To 

obtain an emulsion with good mechanical and stabilizing properties, it is necessary to 

consider all these aspects and, consequently, the choice of the constituent components 

should be made carefully (Dickinson, 2003). 

2.3 Surface activity 

The interface of each droplet has free surface energy (Chanamai, 2000; 

McClements, 1999; Dickinson, 1992; Krog, 1977). A system is thermodynamically 

stable when this free surface energy is at a minimum. Reduction of the interfacial area, 

decreasing this free surface energy, is therefore an impulsive phenomenon (Wastra, 

1996). Any reduction in the total interfacial area will result in fusion of the droplets until 

complete separation of the two phases occurs. This is the destabilization of an emulsion. 

An emulsion is therefore a system where the number and arrangement of the droplets 

change during storage. Sorne emulsions (such as cake batter) have a limited lifespan, 

while others (such as salad dressings, beverage emulsions, etc.) must remain stable for 

months. Stability therefore implies that there are few structural changes. Rence, this is an 

objective to be attained through an in-depth knowledge of colloidal dispersions, more 

specifically the role and functional properties of stabilizers and emulsifiers (Garti and 

Rerchman, 1993; Parker, 1991). 

As mentioned earlier, three main factors can be distinguished that will influence 

the stability of an emulsion: the charge effect, the steric effect and the viscosity effect. 

The viscosity effect refers to the viscosity contribution of the continuous phase; a very 

viscous solution can reduce the number and energy of collisions between drop lets and 

thereby inhibit the kinetics of coalescence. In the case of an oillwater emulsion, the 

difference in density between the continuous and dispersed phases can be minimized by 
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using oil whose density is similar to or higher than water in order to reduce the vertical 

creaming movement. 

In addition, in an emulsion, the dispersed particles will have a surface charge, the 

zeta potential, which will permit electrostatic repulsion between particles. This repulsion 

will also decrease the kinetics of coalescence of the particles. The potential energy of this 

repulsion depends on the magnitude of the surface charge and also on the ionic strength 

of the continuous phase. The presence of proteins at the surface can alter the surface 

charge. However, the zeta potential is not equal to the sum of the net charge of the 

proteins and uncovered oil particles (Riddick, 1968). 

It should be noted that the value of the oil/water interfacial tension can also 

indicate the elasticity or rigidity of the surface, which will affect the contact angle 

between the colliding particles. The magnitude of this angle can give us an indication of 

the tendency of the particles to coalesce during a collision, since a small contact angle 

corresponds to a high interfacial tension and vice versa (Friberg, 1978). 

The reduction of interfacial tension by the presence of a surface active molecule is 

referred as surface pressure which is (McClements, 2005): 

ff = r o/w - r surface active molecule (2) 

where Yo/water is the interfacial tension of a pure oil-water interface and Ysurface active molecule is 

the interfacial tension in the presence of emulsifier. Therefore an increase in surface 

pressure could be related to the activity of surface active molecule presented at the 

emulsion. 

2.4 Factors influencing emulsification 

At the interface between the two immiscible phases, the molecules are subject to 

unequal forces. A strong tension is therefore created, which is called the interfacial 

tension. During the formation of the dispersed system, it is necessary to increase the 

interfacial area. Emulsification is a pro cess whereby large droplets are broken into small 

droplets in order to reduce the interfacial tension. To reduce the size of a droplet 
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diameter, the mechanical stress to be applied must exceed the pressure of the droplet. 

Hence, the smaller the droplet, the more difficult it is to break. 

As discussed previously, several factors will influence the quantity of energy to be 

applied for achievement of the desired size. In addition to the viscosity parameters of the 

continuous phase and the differences in density of the two phases, these factors may also 

include the volume of the dispersed phase, the rate of adsorption of the oil, the 

temperature (an increase will reduce the viscosity of the oil), the pH and the ionic 

strength of the aqueous phase, the type of oil (melting point and hydrophobicity), the 

concentration and type of emulsifying agents and their emulsifying properties (Wastra, 

1987; Dickinson, 1992). 

2.5 Emulsion instability mechanisms 

The destabilization of an emulsion occurs according to different pro cesses of 

varying importance that influence each other and occur more or less simultaneously 

(Fennema, 1996). 

2.5.1 Molecular diffusion and disproportionation 

The majority of surfaces or interfaces found in the food emulsions are curved 

rather than planer. The curvature of an interface alters its characteristics in a number of 

ways. According to Hunter (1986), the interfacial tension tends to cause an emulsion to 

shrink in size so as to reduce the unfavourable contact area between the oil and water 

phases. As the droplet shrink' there is an increase in its internaI pressure because of the 

compression of the water molecules. Eventually, equilibrium is reached where the inner 

stress due to the interfacial tension is balanced by the outer stress associated with 

compressing the bonds between the liquid molecules inside the droplet. This depends on 

the diffusion of the molecules of the dispersed phase from small drop lets to large 

droplets, from high pressure to lower pressure. The internaI pressure of the drop lets or 

bubbles increases with decreasing droplet size according to the Laplace equation 

(McClements, 2005): 
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(3) 

where y is interfacial tension and r is droplet radius. 

The pressure, and consequently the solubility of the dispersed material, is higher 

for smaller droplets. This is more specifically referred to as Ostwald ripening. This 

process will continue until the fine droplets disappear. The rate of diffusion depends on 

the solubility of the dispersed phase in the continuous phase (Halling, 1981; Acton et al., 

1971). In addition, the solubility of the dispersed phase in the continuous phase will 

increase with the volume of the dispersed phase. For example, the water solubility of oil 

increase as the radius of an oil droplet decreases (Dickinson 1992, McClements, 2005): 

~=exp( 2yv J 
S rRTK 

(4) 

where S is the water solubility of the oil in the droplet, S* is the water solubility of bulk 

oil, v is the molar volume of the oil, r is droplet radius, R is the gas constant and T K is 

temperature (Kelvin). 

This will also result in accelerated molecular diffusion of the dispersed phase in 

the surrounding medium and/or accelerated diffusion of relatively small droplets into 

relatively large droplets (Princen, 1979). This process is influenced by the solubility of 

the dispersed phase in the continuous phase and also by whether or not surfactants are 

present. By lowering the interfacial tension, surfactants decrease the pressure differential, 

which has the effect of reducing the tendency to diffusion. Surfactants can also play a 

role by sterically preventing the molecules in the dispersed phase from crossing the 

interface (Friberg, 1976). 

Owing to the very low solubility of oil in water, this destabilization process is 

very limited. This explains why the destabilization process, Le., creaming, flocculation 

and coalescence, are the main causes of destabilization of an O/W emulsions. However, a 

better understanding of the origin and nature of these instability mechanisms would 
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enable beverage manufacturers to develop products with enhanced shelf lives. Pursuing 

the sources of instability aspects is discussed: 

2.5.2 Creaming (ringing) 

In creaming, the two liquids separate under the action of gravity. The best-known 

example of this de-emulsification process is that of milk in cre am and in skim milk. 

Creaming is not a breaking of the emulsion, but rather a separation of the emulsion into 

two emulsions, one which is richer in the dispersed phase and another which is poorer in 

the dispersed phase than the original emulsion. The oil droplets then form a dense layer at 

the surface of the emulsion without change in droplet size. This process is the result of 

the difference in density between the oil and the aqueous phase. The rate of ringing or 

crearning of an oil droplet in sugar solution may be determined by equating the force of 

gravitation with the opposing hydrodynarnic force as given by Stokes' law (Chanarnai. 

and McClements, 2000; Chanamai. and McClements 2000a; Chanamai and McClements 

2001; Tan, 2004; McClements 2005; Taherian et al., 2006): 

(5) 

where UStoke is the rate of crearning or sedimentation, g is the acceleration of gravit y, r is 

the oil drop let radius, poil is the density of the oil phase, Pw is the density of the water 

phase, and 1Jw is the viscosity of the water phase. 

The sign of UStoke determines whether the particle move upward (+) or downward 

(-). An example of the use of Stokes' law is formulation of soft drink with orange flavor 

emulsion. Typically orange oils have a density of 0.85 g 1 cm3
, and the sugar solution in 

the soft drink has a density of 1.04 g / cm3 for a 10% sugar solution or 1.048 g / cm3 for a 

12% sugar solution. Applying these density data to Stokes' law the resulted UStoke carries 

a negative sign, which indicate the emulsion will ring. 
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The Stoke equation a1so demonstrates that the more the drop1ets are uniform, the 

slower the creaming process. This phenomenon is very pronounced if the two phases 

have very different densities where the dispersing or continuous medium is very fluid. 

However, this equation applies on1y in the case of the motion of a single drop1et. 

Since most food emu1sions are po1ydispersed (i.e., they contain a series of particles of 

different sizes), a more appropriate mathematica1 treatment must therefore be used to 

address the different creaming kinetics for each drop1et. 

In this review, l wi11limit myse1f to mentioning that this 1aw provides the same 

conclusions as Stokes' 1aw with respect to the effect of the reduction in drop1et size and 

the increase in viscosity of the continuous phase on the kinetics of separation. We must 

a1so consider the flow of the liquid in the opposite direction and, especially, 

hydrodynamic interactions between the drop1ets, and the different sedimentation rates 

depending on the size of particles that promote collisions. This creaming process occurs 

for O/W emu1sions of 10w volume ratio or "rjJ' (volume percent of the dispersed phase). 

The drop1ets can thus rise to the surface of the continuous phase. In the opposite case 

(high~, it is instead the dispersing phase that flows around the drop1ets; this is then 

referred to as drainage. 

2.5.3 Flocculation 

F10ccu1ation refers to the aggregation of drop1ets in three-dimensiona1 clumps, 

under the influence of attractive forces, without altering the original size of the drop1ets, 

i.e., all the drop1ets retain their integrity and remain individua1 entities. This phenomenon 

occurs when there is not a sufficiently large differentia1 in the densities of the immiscib1e 

liquids or when the viscosity of the medium is too high to cause sedimentation. The 

drop1ets can nonethe1ess aggregate due to Brownian motion. 

Friberg (1976) estimated that in an oil/water emu1sion (1 : 1), the time to reduce the 

number of droplets by half is 1 second, in the absence of an energy barrier of 

approximate1y 25 kT (k: Boltzmann's constant, T: abso1ute temperature). To significantly 

extend she1f life (for examp1e from six months to a year), this barrier must be adjusted 

(Parker, 1987). 
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Halling (1981) reported that the DLVO theory, from the names ofits main authors 

(Desjaguin, Landau, Verwey and Overbeek), provides a more detailed explanation ofthis 

energy barrier concept. Indeed, the stability of colloidal dispersions depends on two types 

of long-distance interactions between dispersed particles, namely the Van der Waals 

attraction and the electrostatic repulsion between the electrical double layers of the same 

sign. 

To preserve the stability of an emulsion, the repulsive forces must therefore be as 

strong if not stronger than the Van der Waals forces in order to keep the droplets apart. 

In an emulsion, this role can be performed by the action of ionic emulsifiers such as 

proteins and other compounds. In addition, the electrical charges on the droplets in the 

emulsions are generated by ionization, absorption or frictional contacts. In the absence of 

emulsifiers, only frictional contacts are capable of charging the droplets. Note that in an 

O/W type emulsion, since the water has a higher dielectric constant than the oil, the water 

will be positively charged and the oil negatively charged. Charges of the same sign at the 

surface of the droplets will cause repulsion between them (Dickinson and Stainby, 1982). 

In addition, the larger the droplets, the stronger the Van der Waals attractive 

forces will be. The DL VO theory combines the repetitive effect of the electrical double 

layer with the Van der Waals attraction in a two-dimensional mathematical model which 

explains the stability of emulsions in terms of an energy barrier that must be overcome to 

prevent physical instability (Friberg, 1976; Parker, 1986). The sum of these two energies 

yields the total energy of interaction between the particles, which depends primarily on 

the distance between the particles. The DLVO theory is further discussed in section 2.6.7 

(Electrical charge and zeta potential). 

As flocculation proceeds, there is a decrease in the total number of particles 

(monomers + aggregates) in the emulsion, which can be described by the following 

equation (McClements, 2005): 

dnr =-~FE 
dt 2 

(6) 
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where dnrfdt is the flocculation rate, nT is the total number of particles per unit volume, t 

is the time, Fis the collision frequency, and E is the collision efficiency. 

In the case of emulsions containing liquid partic1es, it is also important to take 

into account for the energies of short-distance interactions such as the chemical bonds 

between interface molecules in the form of ionic, covalent or hydrogen bonds, physical 

attachments of molecules by dipolar interaction, hydrophobic bonds formed by the 

association of two non-hydrated species in a aqueous medium, etc. Certain factors 

affecting flocculation must be delayed by a high viscosity and a strong electrostatic 

charge. The type and concentration of the surfactant, the presence of electrical charges at 

the interface (ionic surfactant) and the electronic forces of attraction and repulsion 

represent cases of repulsion between partic1es. In cases where the surfactant has excess 

long-chain molecules in continuous medium, bonds between drop lets may also be formed 

(Nielloud, 2000; Dickinson, 1982). 

2.5.4 Coalescence 

Brownian coalescence corresponds to the collision of small droplets that will 

c1ump together following creaming or flocculation (Wastra, 1993). Breaking due to the 

thermodynamically spontaneous coalescence of the droplets resuIts in the formation of 

increasingly large droplets until the two phases separate; the surface of the interface is 

then at a minimum. In this case, the droplets must remain. in contact for a certain time, 

hence a simple collision due to Brownian motion is not sufficient to ensure re-dispersion 

of the partic1es. In order to minimize this phenomenon, use of a surfactant to reduce the 

interfacial tension is recommended. This leads to a smaller decrease in the free energy 

resulting from the reduction in surface area caused by coalescence. The dynamic surface 

properties also play an important role, hence when two droplets clump together, integrity 

is ensured by the dynamic surface properties; for example, there is a positive correlation 

between the shear resistance of a film and its stability (Dickinson and Stainby, 1982). 

Flocculation, disproportion, coalescence and creaming are phenomena which can 

occur simultaneously (Krog, 1977) and result in coalescence, which is undoubtedly the 

most serious problem of destabilization of an emulsion, namely the formation of two 

separate layers. Any increase in collision speeds, flocculation, and reduction in the 
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mechanical integrity of the interfacial surface will have the effect of altering the kinetics 

of coalescence. 

2.6 Factors affecting emulsion stability 

Numerous factors will affect the movements of particles and more specifically the 

kinetics of creaming or sedimentation. Dickinson (1988) described the major factors with 

their relative impact on creaming, flocculation, coalescence and rheology. 

2.6.1 The physical nature of the interfacial film 

The oil droplets in the dispersed phase are in constant motion due to Brownian 

motion and creaming effects. Consequently, collisions between dispersed droplets are 

frequent. If the interfacial film between the two droplets is broken during these collisions, 

the droplets will then coalesce and form large particles. This reduces the free energy of 

the system. It is therefore essential that the interface be characterized by a film of high 

elasticity. Purified surfactants generally produce interface films that are loosely packed 

and hence not too strong mechanically. This explains why the combination of two or 

more surfactants produces more stable emulsions. 

2.6.2 The steric or electrical barrier 

As discussed earlier, the presence of a surface charge on the droplets constitutes 

an electrical barrier. In emulsions prepared with non-ionic surfactants, the charge on the 

oil droplet may be generated by absorption of the ions of the continuous phase or by 

friction contacts between the droplets and the continuous phase. The presence of the 

surfactants' lateral chains can modify the behaviour of the droplets in proximity. In this 

way, steric hindrance can prevent the coalescence of the particles of the dispersed phase. 

Note also that the oil can acquire charges through the ionization of local groups at the 

surface, such as the use of gum arabic, which has COO - groups, as an encapsulant. 

2.6.3 Viscosity and rheological behaviour 

Three categories of studies are of vital importance when we consider food 

emulsions: a) formation of the emulsion, b) stability of the emulsion, and c) use of this 
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emulsion for a given product. Viscosity is an essential parameter in each of these cases. 

When an emulsion is produced by homogenization, then the viscosity, initially of the 

dispersed phase (oil) and subsequently of the total emulsion, controls the efficiency of 

droplet rupture. In addition, kinetic stability also depends on viscosity, since higher 

values delay coalescence. 

A high-viscosity vegetable oil initiates the rupture of the oil droplets very 

significantly, while any increase in the viscosity of the continuous phase reduces the 

efficiency of droplet rupture, although to a lesser degree (Pandolfe, 1981). 

The rheological properties of an O/W interfacial film are far from being a 

negligible factor: droplet deformation is controlled by this interfacial membrane, which 

also controls the rheology of the emulsion (Chen et al., 1993; Oosterbroek et al., 1981). 

The viscosity of an emulsion depends on the concentration of the dispersed phase, 

particle size distribution and particle-particle interactions. The latter are a function of 

pHlionic strength, temperature as weIl as the nature of the continuous phase (Princen, 

1983). In addition, it appears that this interaction can be addressed, at least partiaIly, by 

measuring the contact angle between adjacent films. Any increase in the viscosity of the 

continuous phase by the addition of gums to the continuous phase will reduce particle 

motions, resulting in fewer collisions. 

2.6.4 Oil droplets viscosity 

Unlike a rigid droplet, the liquid within a droplet can move when a force is 

applied to the surface of the droplet. This reduces the frictional forces that opposes the 

movement of a drop let and increase the creaming velocity as (Dickinson and Stainsby 

1982): 

u-u 3(17oil+17w) 
- Stokes (3 2) 

170il + 17w 
(7) 

If the viscosity of the droplet is much less than that of the water phase (lloil « llw) 

the creaming rate is 1.5 times faster than that predicted by Stokes' law. Conversely, when 
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the viscosity ofthe oil droplet is much greater than that of the water phase (l1oil » llw) the 

rate of creaming will be the same as Stokes' law (McClements, 2005). 

Since Stokes' law has been used to calculate the velocity of an isolated rigid 

spherical particle in an ideal liquid, it is then necessary to consider the droplet acting as 

rigid spheres by surrounding them with viscoelastic interfacial layer which prevents the 

fluid within them from moving (Walstra 1993). 

2.6.5 Particle size distribution 

According to Stokes' law, the formation of small droplets in an emulsion 

promotes stability since the kinetics of emulsion predicts that small particles take more 

time to increase in volume. Particle size distribution is also important. The smaller this 

distribution, the more stable the emulsion will be, since large particles have more limited 

interfacial surfaces per unit of volume than small dispersed particles. When an emulsion 

has large and small particles, a "bimodal" uniform size distribution prevails; the largest 

particles tend to grow at the expense of the smallest, owing to the increase in 

thermodynamic stability. The determination of particle size distribution could serve two 

proposes; first estimation of the quality of the emulsion concentrates, and second 

prediction of the stability of the emulsion in the finished product (Dickinson and 

McClements, 1995). 

The most commonly used technique for the characterization of food emulsions is 

laser light scattering, but this is only suitable for very dilute systems (~<O .05 wt %) and 

dilution of more concentrated emulsions may disrupt delicate aggregates. Nuclear 

magnetic resonance has been used to characterize concentrated food emulsions but the 

apparatus is expensive and difficult to operate (Dickinson and McClements 1995, 

Coupland and McClements, 2001). 

2.6.6 Polydispersity 

Refer to droplet sizes range which mostly depends upon the concentration of 

droplets. In dilute system such as beverage emulsions the average creaming velocity can 

be estimated from the mean droplet radius (Tan and Wu Bolmes 1988). 
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2.6.7 Electrical charge and zeta potential 

The potential energy barrier for charged oil droplets in water arises from 

electrostatic interactions between the droplets. According to the DL va theory 

(Washington, 1990; Salou et al., 1998; Ichikawa and Nakajima, 2004; Ichikawa et al., 

2006) the barrier height is determined by the van der Waals force and the electrostatic 

force. The latter force is the sum of the Maxwell's electric field stress and the osmotic 

pressure. The van der Waals force and the Maxwell's stress are always attractive, whereas 

the osmotic pressure is usually repulsive. 

Although the DL va theory is a fundamental theory for explaining the stability of 

charged colloidal and emulsion particles in water, it has been reported (Ichikawa et al., 

2004, Ichikawa and Nakajima, 2004) the theory has not been firmly applied to emulsion 

systems. McClements, (2005) stated that the DL va theory does not take into account the 

short-range repulsive interactions, such as polymeric steric, hydration and thermal 

fluctuation, which arise between droplets when they come close together. 

The difficulty in the application arises from the correct estimation of surface 

electrostatic potentials of approaching particles. As a result, it predicts that two liquid 

droplets would coalesce at close separations because of the large attraction between them. 

Figure 2.1 shows the change of surface charges and surface potentials during the 

approach oftwo-charged spheres in water. 

Fig. 2.1. Schematic representation ofthe changes of surface charges and potentials during 

the approach oftwo-charged particles (Adopted from: Ichikawa et al., 2004) 
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If the surface charges are moved freely like conduction electrons on metallic 

spheres, the migration of surface charges completely compensates the potential gradient 

on the surfaces. The surface potentials are, therefore, kept uniform and constant during 

the approach. If the migration of surface charges is completely prohibited, the surface 

potentials continuously increase with decreasing separation distance and become infinite 

at zero separation distance. The situation for emulsion droplets may lie somewhere 

between the two extreme cases (Ichikawa et al., 2004). In practice, many of emulsifiers 

used in food emulsions are capable of stabilizing the drop lets through combination of 

electrostatic and short-range repulsive interactions McClements, 2005). 

Emulsions containing charged droplets tend to move more slowly than uncharged 

particles. The reasons are first, repulsive electrostatic interactions between similarly 

charged droplets which do not allow them to get as close together as uncharged drop let 

and second, the cloud of counter-ions surrounding a droplet moves less slowly than the 

droplet itself. 

The potential arises from the presence of charges in particles and the medium at 

the zone of shear called 'zeta potential'. 

Zone of 

t + + + 
t + 

+ t + 
+ + + + 

+ + + + + 
~ Reoulsio 

Figure 2.2. Zeta potential is a measure of the magnitude of the repulsion or attraction 

between particles. 
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Zeta potential of less than -15 mv usually represents the onset of flocculation. 

Hydrocolloids present in water phase have different zeta potential (eg., gum arabic zeta 

potential = -23 mv). However, one cannot categorically state that an emulsion will or will 

not be stable at a given zeta potential as sorne other factor such as density difference 

between the two phases and the droplet size should be taken into consideration (Tan and 

Wu Holmes 1988). Addition of mineraIs couid aiso have a major effect on zeta-potential. 

For instance, mineraIs increase the ionic strength of the aqueous phase, which reduces the 

e1ectrostatic repulsion between droplets through e1ectrostatic screening. Sorne mineraIs 

bind to oppositely charged groups on the surface of emulsion droplets, decreasing the 

magnitude of their Zeta-potential and thereby reducing the electrostatic repuision 

between droplets (Hunter 1986). Ion binding can increase the short-range hydration 

repulsion between droplets because of the additional energy required to disrupt the sheath 

of water molecules associated with them. At sufficiently high concentrations mineraIs 

cause alterations in the structural organization of the water molecules, which alters the 

strength of the hydrophobic interactions between non-polar groups (Kulmyrzaev et al., 

2000). It should be noted that zeta potential reflects both the e1ectrolytes presence in the 

system and the dissociated ions accompanying the original colloid partic1es. Addition of 

cation electrolytes could neutralize the zeta potential and cause aggregation to occur due 

to the van der Waal's-london forces (McClements, 2005). 

2.6.8 Phase volume ratio of the dispersed phase 

Any increase in this value is accompanied by an expansion of the interfacial film. 

This has the effect of increasing the instability of the system. If the volume of the 

dispersed phase exceeds that of the continuous phase, the emulsion will invert. The 

addition of an emulsifying agent can then be considered to remedy this problem and 

maintain the desired type of emulsion. 

For instance, in one emulsion, there are one thousand dispersed partic1es of 1 

micron diameter, and one particle of 10 micron diameter. By population, this 10 micron 

partic1e is only 0.1 percent ofthe total population. When expressed in volume percentage, 

this 10 micron partic1e having 50 percent of the total dispersed volume as the volume of 

one thousand 1 micron partic1e is equal to thsat of the one 10 micron partic1e. In the 
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beverage if this 10 micron particle floats to rhe surface and ring, it is almost a negligible 

number in the total population, because it is only 1 in 1001 particles or 0.1 percent of the 

total population rings. But, in ters of volume, it is 50% of the total oil volume in the ring. 

It is a serious problem (Tan and Holmes, 1988). 

2.6.9 Temperature 

Any change III the temperature of an emulsion will cause changes in the 

interfacial tension between the two films, the viscosity of the two phases and the 

interfacial film and also the relative solubility of the surfactants in the two phases. The 

effects of temperature must therefore be rigorously controlled during the preparation and 

analysis of emulsions. Emulsifying agents are generally more effective near the point of 

minimum solubility in the solvent in which they will be dissolved, since it is at this point 

that they have greater surface activity (Nielson, 1958). Any increase in temperature can 

reduce the viscosity of the oily phase (the surfactant will then move more quickly at the 

interface) as weIl as increase the solubility of the surfactant in the oil. 

Temperature control is also a major parameter for preventing protein denaturation. 

In addition to temperature, environmental factors also play an important role. These 

include pH and ionic strength, which influence the charge as well as the conformation of 

the proteins, and hence their emulsifying properties (Dickinson, 1987). 

2.6.10 Emulsifying agents (surfactants or surface-active agents or stabilizers) 

There are several types of surface-active agents that can be used to stabilize 

emulsions Dickinson, 1988). The main surfactants include anionic surfactants that have 

negative charges (carbohydrates), cationic surfactants that have positive charges (amine 

salts), non-ionic surfactants, with no apparent charges, such as monoglycerides, sugars, 

alcohols, phenols, glycols and zwitterionic surfactants that have positive or negative 

charges such as proteins. Hence, these surfactants simultaneously possess certain "polar" 

hydrosoluble characteristics due to the carboxyl and hydroxyl groups and certain "non­

polar" fat-soluble characteristics of the hydrocarbonated chains. It is energetically 

favourable for these molecules to orient themselves at an oil/water interface rather than 

remain in one phase or the other (Doublier, 1989). 
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In this review, we will focus mainly on the emulsifiers of importance in the 

beverage field, namely vegetable oils and their hydrophobicity, proteins and gums 

(Grovens, 1999). 

These surfactants generally act at the level of short-distance interactions by 

modifying the physical state of the oil/water interfaces. Macromolecules can be used, as 

well as finely divided solid partic1es, to modify the mechanical properties of the 

interfaces. Generally, surface-active agents completely adsorbed at the level of the 

interfaces are used because of their amphiphilicity. To be effective, they must have the 

following characteristics: 

a) Good surface activity in order to effectively reduce the interfacial tension in the 

system used. More specifically, they must have a tendency to migrate to the 

interface rather than remain discrete in one of the two phases. A balance of 

lipophilic and hydrophilic components is therefore required and any excess 

solubility in either of the two phases will make them less effective (Chen et al., 

1993), 

b) They must form a condensed protective film at the interface. This film will be 

formed either by one agent or a combination of surface-active agents. This 

condensed film increases elasticity at the interface and, consequently, emulsion 

stability. This kinetics of migration is heavily dependent on the phase that 

contains the surfactant and also on the temperature and viscosity of the solvent 

(Halling, 1981). 

To succeed in preparing emulsions that have different proportions of water and 

fats, the emulsifiers must exhibit variable solubilities in the two solvents and the choice 

of emulsifier depending on the type of emulsion is based on the HLB or hydrophilic­

lipophilic balance system. Theoretically, the HLB values of the main emulsifiers range 

from 1 to 20. The lower value of HLB corresponds to the more lipophilic emulsifier. 
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2.7 Commercial oils and their hydrophobicity 

Oils are hydrophobie by nature. However, sorne lipids are not completely non­

polar. The effect ofthe carboxyl groups of the fatty acids in terms ofhydrophobicity, for 

example, is greatly reduced by the length of the non-polar hydrocarbonated chains. 

The presence of monoglycerides which can crystallize and behave like solid 

particles is an example of stabilization of solid particles. For an oil/water interface, this 

solid stabilizer will be even more effective to the extent that it will form a 90° angle with 

the interface. The interfacial energy due to the presence of a solid particle at the interface 

is given by the equation (Friberg, 1988): 

w = JZr2r{1 + cosB) (8) 

where r is particle radius, y is surface tension and e is the contact angle. We can 

therefore conclude that W will be almost nil for e equal to 90°, which corresponds to the 

maximum stability. 

Commercial oils contain different lipid species (Myers, 1989). The triglycerides 

of oil represent approximately 90% of the hydrophobie core of the oil droplet used for the 

formation of an emulsion. These triglycerides therefore play a structural role in 

maintaining droplet integrity and also contribute to the rheological properties of the 

emulsion. Phospholipids (3-9%), for their part, form an outer shell of the polar material 

separating the triglycerides from the aqueous environment (Friberg, 1978). This layer 

located at the oillwater interface is mainly involved in oil/surfactantlemulsifier 

interactions. Consequently, the characteristics of the phospholipid phase are of vital 

importance for the stability of an emulsion. Sterols/sterol esters (0.3 to 0.4%), 

monoglycerides and diglycerides, fatty acids and hydrocarbons and a small percentage of 

unidentified lipids complete the distribution of oil components. Of these latter 

components, sterol esters and monoglycerides also play an important role. An oïl drop let 

in an emulsion therefore contains several types of lipids. In the case of corn oil, for 

example, these lipids arrange themselves in the droplets according to their relative 

hydrophobicity, with the most active surface groups at the surface of the droplet near the 
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aqueous phase. The presence of phospholipids and sterols at the interface will constitute 

films whose nature depends on the arrangement of the molecules relative to one another. 

In terms of relative importance to the stability of an emulsion, phospholipids are 

the predominant species: 

a) They have a greater surface activity and reduce the interfacial tension more than 

triglycerides, i.e., a lower interfacial tension that is accompanied by smaller 

droplet size distribution, which increases the viscosity of the emulsion and hence 

its stability. 

b) They can form liquid crystalline phases or a condensed film called multilayer. 

In fact, certain oil-emulsifier-water mixtures (trinary) can constitute crystalline 

mesophases at the interface. These different phase transitions of emulsifier-water 

mesophase due to the solubilization of soybean oïl correspond to very different 

organized structures and physical states (Doublier, 1989). This is the phenomenon 

of mesomorphism. 

The stability of an emulsion will therefore depend greatly on the structure of the 

interfacial film (liquid crystalline interfaces) and also on the concentration of 

phospholipids and sterols, which varies from one oïl to another, and hence on the 

hydrophobicity of the oil. The type of mesophase will therefore determine the stability of 

the emulsion or more specifically the lipid-emulsifier interactions since the rheological 

properties of the interface (viscosity and elasticity) will vary according to the physical 

state of the mesophase (Krog, 1976). 

These lipid-emulsifier interactions are altered by these crystalline phases of the 

phospholipids; hence in the case of lipid-protein interactions, the type of mesophase will 

dictate the force of the interactions with the proteins. Similar behaviour is noted between 

phospholipids and non-protein emulsifiers (ionic and non-ionic surfactants, 

monoglycerides, carbohydrates, etc.) and their impact on the properties of the emulsion 

(i.e., rheological characteristics of the droplet surface). Thus, the gel and lamellar 

mesophase phases of the phospholipids have different properties of permeability, 

molecular motion, and degree of hydration and protein bonds. These differences can 

therefore have a dramatic effect on the emulsifying function of emulsifiers containing 

phospholipid crystals. Several lipids inherent to oil, particularly monoglycerides and 
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sterol esters, can exist in different mesophase forms that will be defined by water content, 

choice of temperature, etc. (Krog, 1975). In addition to existing in the form of different 

types of lyotropic, thermotropic and other mesophases (Friberg, 1998), several lipids 

therefore exhibit the phenomenon of polymorphism, i.e., structural changes induced 

under the influence of heat in the absence of solvents. This is the case of pure 

triglycerides, sterol esters, etc. and very often, different polymorphic crystalline forms are 

noted for a given molecular species. This polymorphic behaviour is explained by 

variations in the angle of inclination of the hydrocarbon chains; the chains are 

successively displaced relative to the adjacent chains and the inclination angle is 

increased or decreased. Thus, for triglycerides, the two most common packing 

arrangements correspond to the crystalline forms of the orthorhombic and triclinic type. 

These two forms have very different characteristics (Krog, 1975). 

Consider an oily phase composed of natural food oil; if the oil that contains a 

prerequisite quantity of phospholipids is exposed to appropriate conditions, a liquid 

crystalline phase will then be obtained at the oil-water interface. A known method for 

obtaining these crystalline phases is to use an exogenous ionie surfactant to emulsify the 

dispersed phase. The ionic surfactant contributes to the surface charges, which are 

accompanied by a compression of the electrical double layer. Since the phospholipids are 

now more spaced out because of the added charges, a new liquid crystalline phase can be 

formed at the oil/water interface with a high capacity to solubilize the water. It is this 

emulsifier-water interaction that will place a decisive role in obtaining double layer 

planar packing, thus forming a protective emulsifier layer at the interface (Sj6blom et al., 

1996, Friberg et al., 1997). 

It worthily noted that the exogenous and endogenous emulsifier mixtures such as 

phospholipids can have a major effect on the rheological properties of an emulsion. In 

addition, the viscosity of an emulsifier in the crystalline phase form can be up to 

100 times higher than the viscosity of an emulsifier that does not have crystalline 

properties, thereby improving the stability of an emulsion by giving it a more rigid 

surface, which will inhibit the phenomenon of coalescence. Aiso note that the 

polymorphic forms of triglycerides have very different densities (Flack, 1976). 
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2.8 Proteins as emulsifying agents 

As discussed earlier, emulsification properties inc1ude the capacity to disperse two 

immiscible phases and maintain them in a dispersed state (Dickinson, 1992; Angelo, 

1989; Bennett et al., 1968). These two functional characteristics of proteins are weIl 

correlated with steric parameters and various measurements of hydrophobicity (Kato and 

Nakai, 1980). 

It is possible to link the structure of a protein and its emulsifying properties 

(Utsumi et al., 2002; Salgado et al., 2005), namely: 

- primary structure/hydrophobicity and ability to form an emulsion; 

tertiary structure/surface hydrophobicity and formationlstabilization of 

emulsions. 

These emulsifying properties could be attributable to the protein's ability to 

modify its structure for the stabilization of the interface created (Dickinson, 1987). This 

structure, which will vary depending on the conditions of the medium at the time of 

emulsification, is a key factor, but its ability to adapt to new conditions (pH, ionic 

strength, temperature) is equally important. 

In an oil-in-water emulsion, at the presence of emulsifier (proteins), the direct 

contact between oil and water molecules is replaced by contact between the nonpolar 

segments of the emulsifier and oil molecules and between the polar segments of the 

emulsifier and water molecule. This in turn causes a decrease in free energy and hence 

decreases in interfacial tension. Therefore a decrease in surface tension could be related 

to the activity of surface active molecule presented at the emulsion (McClement, 2005). 

The intermolecular forces that will contribute to the viscoelasticity of the film at 

the interface, i.e., to the proteinlprotein and proteinlinterface associations, are attributable 

to the combination of ionic bonds, Van der Waals forces and hydrophobie interactions 

(Dickinson, 1992 and 1987). We can then refer to surface gelification and protein 

denaturation (Dickinson, 1992). 

Each amino acid differs from the others because of the R group. It is this group 

that determines the relative hydrophobicity, polarity and charge of the amino acids. The 

interactions between these groups, namely hydrogen bonds, ionic bonds (i.e., electrostatic 

attraction of opposite charges), hydrophobie interactions between non-polar groups and 
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disulfide bonds, help to stabilize the three-dimensional structure of the protein 

(Lehninger, 1975). 

The charge of the proteins is important in terms of electrostatic interaction. At the 

isoelectric point (IP), this net charge is nil; as pH increases, the net charge becomes more 

negative, and vice versa with a reduction in pH. The pH has a pronounced effect on 

charge and zeta potential, thus for serum bovine albumin, the zeta potential at pH 3.64, 

4.96 and 6.55 will be 67.3, -7.1 and -51.5 mV respectively (Myers, 1989). 

Ionic strength influences protein solubility, the quantity of bound water as well as 

the hydrophobic and electrostatic interactions. The chloride ions of sodium chloride are 

more easily bound to protein than sodium ions; consequently, above the IP, protein 

swelling can occur because of the bond between the water (instead of the Na+) and the 

negative charges on the protein (Fennema, 1996). Hydrophobicity is an important factor 

in protein conformation and functionality. Bigelow (1969) determined the hydrophobicity 

of the various proteins by measuring the hydrophobicity of each amino acid. While the 

majority of the hydrophobic groups are buried within the protein molecule, a few are 

located at the surface, partially or totally exposed to the aqueous medium (Klotz, 1970). 

These surface groups are important for oillwater interface interactions (Keshavarz and 

Nakai, 1979). 

There is a relationship between interfacial tension, the emulsifying activity of the 

protein and its hydrophobicity. During proteinlinterface interactions, i.e., denaturation of 

the surface, additional hydrophobic groups are exposed to the surface. This will have the 

consequence ofincreasing the emulsifying activity (Kato and Nakai, 1980). 

In the case of proteins, there is an adsorption phenomenon at the interfaces. The 

presence of these macromolecules will therefore limit the flocculation and coalescence of 

the emulsified drop lets. These macromolecules appear to form a skin at the surface of the 

droplets during adsorption. Non-globular proteins, such as P casein for example (reliable 

structuring without SS bonds) are adsorbed at low concentrations at the water-oil 

interface according to the linear chains-loops-ends model and are thus described as 

flexible proteins. However, if these globular pro teins are adsorbed at the interface, they 

can retain part of their secondary and tertiary structure (Friberg, 1998). 

31 



This model is therefore not adapted for aIl proteins (Dickinson, 1992). During the 

emulsification process, the protein diffuses at the O/W interface and spreads out there, to 

eventually form a continuous and cohesive film around the fat particles. The hydrophobie 

regions then orient themselves toward the polar phase, while the polar segments associate 

with the aqueous phase. This bridging at the interface can lead to denaturation of the 

protein, due to the unfolding of the tertiary structure (Erdem, 2006)., which improves 

surfactant power. Since most proteins are hydrophilic in nature, partial denaturation with 

unfolding of the tertiary structure will improve the surface properties since the 

hydrophobie residues are no longer buried within the molecule, which exposes the 

bonding sites (Kato and Nakai, 1980; Wastra, 1987; Wastra and Fennema 1996). 

To exhibit emulsifying properties, proteins must therefore diffuse rapidly at the 

interface, unfold there and orient themselves in such a way as to reduce the tension 

generated by the interface of the hydrophobie and hydrophilic components. In addition, 

the adsorbed proteins must interact cooperatively to form a protective film around the fat 

droplets, which will have sufficient integrity and elasticity to ensure stabilization. 

Depending on the tertiary and quatemary structure of the protein, different degrees of 

molecular unfolding (changes in conformation in certain segments of the protein) can 

occur, giving rise to different interfacial structures. 

Proteins are used in food emulsions to ensure better kinetic stability. This 

improvement is apparently attributable to an increase in viscosity of the continuous phase 

(possibly electrical charges on the dispersed phase and particularly rheological properties 

on the membrane or interfacial skin formed by the denatured proteins at the surface). 

The method of homogenization will also affect the role of the proteins. For 

instance, high pressure will alter protein denaturation, which will facilitate emulsification. 

Temperature is another important factor, since it controls protein behaviour and more 

specifically hydrophobie interactions. Consequently, a complex behaviour can be 

obtained depending on the relative proportion of hydrophobie and hydrophilic residues in 

the protein and their arrangement in the three-dimensional structure (Keshavarz and 

Nakai, 1979). 
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2.9 HydrocoUoid gums 

Hydrocolloid gums (polysaccharides) are mostly hydrophilic polymers, which do 

not exhibit significant surface activity (Dickinson and Stainsby, 1998). However, as a 

stabilizer in food emulsions, sorne gums were found to migrate slowly to the air-water 

and oil-water interfaces and exhibit sorne surface and interfacial activities. It has been 

further suggested that hydrocolloid gums, although water-soluble, rigid and very 

hydrophilic, can precipitate/adsorb onto oil droplets and sterically stabilize emulsions 

against flocculation and coalescence (McClements, 2005). 

The contribution of polysaccharide (hydrocolloid gums) to the stability of food 

emulsions has also been traditionally related primarily to their rheological effects on the 

continuous phase. In most of the cases the stability of emulsions prepared with 

hydrocolloid gums was considered to be a non-adsorbing 'depletion stabilization'. 

Hydrocolloid gums are known to have significantly less surface activity in comparison to 

proteins (Dickinson and Stainsby, 1998). This inferiority is related to their pronounced 

hydrophilicity, low flexibility and monotonic repetition of the monomer units in the 

backbone (Huang et al., 2001). A hydrocolloid gum may show considerable surface 

activity, only if it contains auxiliary hydrophobic groups (methyl, acetyl, etc.) or if it is 

contaminated either with proteineous moieties attached to the biopolymer or with 

glycolipids (Dickinson and Stainsby, 1992). 

Certain hydrocolloids are high-molecular weight polysaccharides which are used 

to stabilize droplets against the phenomenon of coalescence by interacting with the water, 

ions and other polymers and groups located at the interfaces (Dickson, 1988; Grovens, 

1999). In addition, they are rarely used alone as emulsifying agents because of their weak 

surface activity (Wilson et al., 2000; Shukla et al., 1981; Tan, 1988). 

Gum arabic and modified starch are mainly used in beverage emulsions for 

flavour microencapsulation (Kim et al., 1996). If the proportions of essential or vegetable 

oil with these two gums are respected (i.e., 1: 1 to 4: 1), this will facilitate the formation of 

a viscoelastic interfacial film. This film will permit encapsulation of the oils and hence 

retention of the flavours for a long period (Garti and Reichman, 1993). 

These two gums in synergy with gums such as xanthan, guar, pectin, carrageenan 

and others as stabilizing agents will promote the elasticity and pseudoelasticity of 
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emulsions, two rheological attributes that are desirable for the physical stability of the 

emulsion and hence will minimize the phenomenon of coalescence of the particles, which 

will tend to remain isolated from each other. Vnder any physical influence (pressure, 

vibration, etc.), the elasticity of the particles is desirable since it ensures their stability (as 

opposed to a particle that is too rigid and becomes more susceptible to rupture). 

Arabic gum, the dried exudates from certain species of the acacia tree, is one of 

the most widely used biopolymer on an industrial scale. It is considered to be unequalled 

in many of its properties including the ability to form stable emulsions over a wide pH 

range and in the presence of electrolytes. Gum arabic is a complex mixture of 

polysaccharide, protein and arabino galacto protein species. Many studies have been 

performed on its structure and functionality in an effort to understand its excellent 

emulsification properties (Jayme et al, 1999). Therefore, gum arabic not only enhances 

the viscosity of the aqueous medium like most other polysaccharide gums but also forms 

a thick macromolecular layer around the emulsion droplets resulting in good steric 

stabilization. However, it is a poor emulsifier compared with food proteins and the 

amount required to make a stable emulsion corresponds to 1: 1 w/w gum to oil while one 

tenth ofthis amount is necessary in the case ofprotein (Dickinson et al., 1991) 

Maltodextrins, low converted products of starch hydrolysis, is used in various 

emulsions to provide desirable viscosity, texture, mouthfeel and stability. Maltodextrins 

are defined as starch hydrolysis products with dextrose equivalent less than 20. Dextrose 

equivalent (DE value) is measure of reducing power of starch derived oligosaccharides 

expressed as percentage ofD-glucose on dry matter ofhydrolysate and is inverse value of 

average degree of polymerisation (DP) of anhydro glucose units. As products of starch 

hydrolysis maltodextrins contain linear amylose and branched amylopectin degradation 

products, therefore they are considered as D-glucose polymers joined by u-(1,4) and u­

(1,6) linkages. Starch degradation products in maltodextrins extend from oligomeres to 

macromolecules and different DE value maltodextrins have different physicochemical 

properties like solubility, freezing temperature, viscosity etc (Dokic et al., 1998). 

Maltodextrins can form weak gels that are results of interactions between amylose 

fractions characterised by helical regions and branched and linear chains of amylopectin 

molecules. Maltodextrins with lower dextrose equivalent show higher tendency to form 
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gels due to higher percentage of long oligosaccharide chains. As maltodextrins have 

ability to form gels, they could be used in producing emulsions as texture modifiers, 

bulking agents and particularly in food emulsions to certain extent for substitution of fat. 

Still in formulations of emulsions many factors and influences should be taken into 

consideration from emulsification conditions to interactions that may take place between 

components III emulsions. Under certain conditions they could result III 

stabilisationldestabilisation of emulsions (Kasapis et al., 1993). AlI the mentioned effects 

of maltodextrins can be supposed to strongly influence emulsification of oil in combined 

emulsifier/maltodextrin solution in water and droplet size and rheological properties of 

final emulsions. 

Covalent interactions between polysaccharides and proteins adsorbed at the O/W 

interface can also be evidenced by measurements of surface rheology. For instance, the 

addition of propylene glycol alginate (PGA) to sodium caseinate on a n­

hexodecane/water interface demonstrates that when PGA is introduced in the aqueous 

phase after formation of the emulsion, the rate of increase in surface viscosity is 

significantly higher compared to that observed for caseinate alone (Sharma, 1981; 

Hennock et al., 1984). This is caused by the accumulation of PGA at the interface, which 

apparently forms a secondary layer complexed to the adsorbed caseinate by means of 

electrostatic interactions between the polysaccharide and the protein, which has a positive 

charge at pH levels below the isoelectric point (Dickinson, 1992). 

2.10 Rheology of food emulsions 

The science of rheology has many applications in the fields of food acceptability, 

food processing, and food handling. A number of food processing operations depend 

heavily upon rheological properties of the product at an intermediate stage of 

manufacture because this has a profound effect upon the quality of the finished product 

(Barbosa-Canovaset et al., 1996 and Boume, 2002). Rheological properties of food 

systems are also the key factor for improving food quality and stability as weIl as 

development of new product. Foods, however, are complex materials structurally and 

rheologically and, in many cases, they consist of mixtures of solids as weIl as fluid 

structural components (Finney, 1972). For example, the rheology of bread dough, milk 
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crud, and meat emulsions are important aspects in the manufacture of high-quality bread, 

cheese, and sausage products (Boume, 2002). Unique rheological properties of various 

foods have been reported and summarized in many publications (Tempel, 1963; Cross, 

1965; Krumel and Sarkar, 1975; Steffe et al., 1986; Rao and Steffe, 1992; Steffe, 1992; 

Lapasin and Priel, 1995; Mason et al., 1996; Nielsen, 1998; Larson, 1999; Chen et al., 

1999; Marcotte et al., 2001a and 2001b; Boume 2002; Buffo and Reineccius, 2002; 

Klinkesom et al., 2004; McClements 2005; Taherian et al., 2006). 

Rheology concems the flow and deformation of substances and, in particular, to 

their behavior in the transient area between solids and fluids. Moreover, rheology 

attempts to define a relationship between the stress acting on a given material and the 

resulting deformation and/or flow that takes place. Rheological assessment becomes 

extremely crucial when the sensitive ingredients (edible oils, nutraceutical, probiotiques, 

vitamins and aroma components) are incorporated in to a food system. It is as well 

concemed with how all materials respond to applied forces and deformations. Basic 

concepts of stress (force per area) and strain (deformation per length) are keys to all 

rheological evaluations. Stress (0) is always a measurement of force per unit of surface 

area and is expressed in units of Pascals (Pa). The direction of the force with respect to 

the impacted surface area determines the type of stress. Normal stress occurs when the 

force is directly perpendicular to a surface and can be achieved during tension or 

compression. Shear stress occurs when the forces act in parallel to a surface. On the other 

hand, strain represents a dimensionless quantity of relative deformation of a material. The 

direction of the applied stress with respect to the material surface will determine the type 

of strain. Normal strain (e) occurs when the stress is normal to a sample surface. Foods 

show normal strain when compressed (compressive stress) or pulled apart (tensile stress) 

(Niel sen, 1998). 

Rheological properties are determined by measuring force and deformation as a 

function of time. The science of rheology can be applied to any product and in fact was 

developed by scientists studying printing inks, plastic, rubber, and similat material and 

they can be measured either fundamentally or empirically (Boume, 2002). The difference 

between fundamental and empirical rheological methods is that, unlike the latter, the 

former accounts for the magnitude and direction of forces and deformations, placing 
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restrictions on acceptance of sample shapes and compositions. Fundamental tests have 

the advantage of being based on known concepts and equations of physics. Empirical 

methods are often used when sample composition or geometry is too complex to account 

for forces and deformations. These methods are of value if they correlate with a property 

of interest, whereas fundamental tests determine true physical properties. Boume (2002) 

has classified the application of rheology in the three major categories of food 

acceptability: 

• 

• 

• 

Appearance. Because certain structural and mechanical properties of sorne foods 

can be determined by appearance; for example how weIl maple syrup pours from 

the bottle and coyer the pancake. 

Flavor. The manner of food breakdown in the mouth can affect the rate of release 

of flavor components. 

Touch. We hold foods in the hand and from the sense of deformability and 

recovery after squeezing frequently obtain sorne idea of their texturaI quality. 

Indeed the main tool available for consumer to judge the quality and select the 

food products is to measure texture and rheology by using the senses. Emulsions are 

mixtures of two immiscible fluids consisting of droplets of one phase dispersed into the 

other. They are metastable systems and tend to come back to their equilibrium state of 

biphasic mixture. They belong to the class of non equilibrium systems and are subjected 

to aging and slow destruction (Larson, 1999). The shelf life of many food emulsions 

depends on the rheological characteristics of the component phases, for example, the 

creaming of oil droplets in oil-in-water emulsions is strongly dependent on the viscosity 

of the aqueous phase (McClements, 2005). The rheological behavior of emulsion systems 

depends on the liquid fraction of the dispersed phase. At low volume fraction, the 

droplets are Brownian and the emulsion is Newtonian with a viscosity close to that of the 

continuous phase. 

There are 5 major aspects which determine emulsion rheology (Tan, 2004; McClement, 

2005): 

Rheology of component phases: The viscosity of an emulsion is directly 

proportional to the viscosity of the water phase, and so any alteration in the rheological 
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properties of water phase has a corresponding influence on the rheology of whole 

emulsion. 

Oil phase volume fraction: The viscosity of an emulsion increases with oil phase 

volume fraction in a linear manner. 

Droplet size: The mean droplet Slze and polydispersity have a significant 

influence on the rheology of concentrated emulsion (McClements, 2005). The effect of 

both droplet size and droplet size distribution on the rheology of an emulsion depends 

upon oil phase volume fraction and the nature of colloidal interaction. At the same 

volume fraction, polydispersed emulsion has a lower viscosity than monodispersed 

emulsion. 

Colloidal interactions: Colloidal interaction govem whether emulsion droplets 

aggregate or remain as separate forms, as well as determine the characteristics of any 

aggregate formed. The rheological properties of an emulsion depends upon the relative 

magnitude of attractive (van der Waals, hydrophobic and depletion) and repulsive 

(electrostatic, steric and thermal flocculation) interactions between the droplets. These 

properties can be control by manipulating the colloidal interactions between the droplets. 

For instance, the viscosity of emulsion has been increased due to addition ofbiopolymers 

which causes increase in: depletion attraction, bridging and flocculation. (McClements, 

2005). 

Particle charge: When a charged droplet move through a fluid the cloud of 

counter-ions surrounding it become distorted and causes an attraction between charged 

droplets and cloud counter-ions. This attraction opposes the movement of the droplet and 

causes an increase in viscosity. 

The influence of particle packing (Volume ratio or the ratio of droplet volume to 

the emulsion volume) on the rheology of colloidal dispersion containing rigid spherical 

particles has also been categorized by McClement (2005): 

• In dilute system where the volume ratio (4) is less than 0.05 the emulsion is a fluid 

with a relatively low viscosity that is dominated by the viscosity ofthe continuous 

phase. 

• In concentrated system where 0.05 < ~ < 0.49 the emulsion is still fluid with a 

viscosity that become increasingly high as the particle concentration increases. 
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• In partially crystalline system where 0.49 < ~ < 0.54 the particle separate into two 

distinct phases of crystalline (closely packed) and liquid (loosely packed). 

• In glassy system where 0.58 < ~ < 0.64 the particles can be considered to be 

trapped and emulsion can exhibit both solid-like and liquid-like behaviors. Acting 

like a solid at low shear stresses and a fluid once a critical yield stress has been 

exceeded. 

• In crystalline system where ~ > 0.64 the emulsion behave like an elastic solid. 

Fluid emulsion, however, could range from low viscosity emulsion such as milk 

to high viscosity emulsion such as mayonnaise. The rheological properties of liquid 

emulsion could be characterized as follow: 

• Newtonian or ideal liquid emulsions: the liquid flow as long as the stress is 

applied and the viscosity is independent of shear rate and of the length of timethat 

liquid is sheared. The shear stress is proportional to the rate of shear and 

therefore: 

T7' • Shear Stress (J' 
y lS cos lty = or 17 = -

Shear Rate . 
(9) 

r 

• Non-Newtonian liquid emulsion: the viscosity of emulsion depends upon applied 

shear rate (Time Independent) and/or time over which shear stress is applied 

(Time Dependent). 

The time-independent liquid emulsions are c1assified as: 

1. Shear thinning or pseudoplastic fluid emulsion where the apparent viscosity of 

emulsion decreases as shear rate increase. 

2. Shear Thickening or Dilatants fluid where the apparent viscosity of emulsion 

increases as shear rate increase. In both cases the viscosity at any given shear rate 

can be calculated by: 
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· (n-1) 

l]=mr (10) 

The constants m and n refer to consistency coefficient and flow behavior index 

respective1y. 

The time-dependent liquid emulsions are classified as; 

1. Thixotropic where the apparent viscosity of fluid decreases with time at 

application of constant shear rate. 

2. Rheopeptic where the apparent viscosity of fluid mcreases with time at 

application of constant shear rate. 

Plastic behavior 

Plasticity is also another type of rheological behavior of food emulsion where the 

semi-fluid emulsion (mayonnaise) has elastic properties below a certain applied stress 

which is known as Yield Stress and flows when this stress exceeded. The plastic property 

is also classified as 1) Bingham or ideal plastic in which the fluid exhibit Newtonian 

behavior above the yield stress and 2) Non-ideal plastic in which the fluid exhibit non­

Newtonian behavior (ie, pseudoplastic, dilatant, thixotropic and rheopeptic) above the 

yie1d stress. 

Viscoelasticity 

This type of emulsions exhibit both viscous and e1astic behaviors at the same 

time. On the other word, when a force is applied to a viscoelastic emulsion it does not 

instantaneously adopt its new dimensions nor does it instantly retum back to its original 

no deformed state when the force removed. The rheological properties of viscoelastic 

materials, therefore, are consisting of e1astic and viscous components and are 

characterized as: 

G* = G' +iG" (11) 

where G' is known as storage and G" as loss modulus. 
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The viscoelastic properties can be determined by the sinusoidal method: the value 

of G', the real component of the complex modulus, also called conservative modulus, 

translates the elastic component of the behaviour, and G", referred to as dissipative 

modulus, and translates the elastic component. The larger the values of G', the more 

physically stable the emulsion. With respect to pseudoelasticity, which is determined by 

the flow mode, the smaller the value of n, the more pseudoplastic the system; this is then 

referred to as laminar flow. 

Generally, a high value of G' combined with a low value of n yields the most 

physically stable emulsion (Chanamai and Clements, 2000). 

These adjustments of the values G' and n can be achieved by ajudicious choice of 

stabilizers (xanthan, carrageenan, guar gum, etc.) and emulsifying agents (protein, gum 

arabic, PGA, etc.) (Yilmazer et al., 1991; Hennock et al., 1984; Coia and Stauffer, 1987). 

Several studies have characterized rheological properties of food emulsions with 

steady state shear viscosity. Chanamai and McClements, (2000) described that the 

apparent viscosity of concentrated emulsions (<1> > 20%) containing smaller droplets was 

significantly greater than emulsion containing larger droplets and decreased with 

increasing shear rate while the apparent viscosity of dilute emulsions (<1> < 20%) was 

relatively independent of the applied shear stress. Suzuki et al 1991 and Klinkesorn et al 

2004 , studied the rheology and stability of corn oil-in-water emulsions and explained 

that the apparent viscosity of emulsions are affected by volume concentration of the 

dispersed phase, nature of emulsifying agent, emulsifying conditions and above the 

critical flocculation concentration , emulsions are highly viscous with strong shear 

thinning behavior. 

The effect of oil phase concentration on emulsion rheology has been described by 

Bames, (1994) and Mason et al. (1996). When the volume fraction ofthe dispersed phase 

is increased, droplets come into contact and their interfaces are deformed. When 

subjected to small strain rates, they can support an additional interface deformation and 

thus store energy, which results in an elastic response. At higher strain rates, they finally 

flow irreversibly. The transition between these two regimes occurs at a critical stress ôo, 

called the yield stress. Below the yield stress ôo, the shear rate is zero. The emulsion do es 
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not flow and its rheological response is purely elastic. Above Do, droplets rearrange 

irreversibly and the emulsion starts to flow. 

The behavior of the flow in the surrounding area of the yie1d stress is still not 

c1early understood. The inception of the flow could be seen as an abrupt transition 

between a solid-like state that remains jammed and does not flow, and a liquid-like state 

that flows, following a Bingham-fluid behavior. Another description of the transition is 

characterized by the existence of an inhomogeneous flow resulting from the coexistence 

of both solid-like and liquid-like states in a defined range of shear rates. Moreover, the 

existence of slippage of the emulsion at the walls can complicate the analysis of the 

rheological data (Barnes, 1995). 

It is of particular importance to mention that the partic1es in a food emulsion are 

fluid and deformable and because various types of attractive and repulsive forces act 

between the droplet will not necessarily follow the above critical volume fractions. But 

from an industrial point of view, determining the partic1e-partic1e interaction potential in 

concentrated suspensions from rheological data is useful for two main reasons, (a) 

prediction of how partic1e size, concentration or ionic strength influence the rheological 

functions and; (b) the possibility of on-line characterization (Bedi et al., 2002). Buffo and 

Reineccius, 2002, stated that the rheology of concentrated beverage emulsions, where the 

concentration of oil phase is around 5%, can be confidently modeled through the Einstein 

equation or its exponential expansion. 

In Einstein equation for relation between viscosity of a rigid spheres suspension to 

its composition it has been assumed that the liquid is Newtonian, the particles are rigid 

and spherical, there is no partic1e-partic1e interaction, there is no slip at partic1e-fluid 

interfase and the partic1e motion effects are not important. 

1] = 1]1 (1 + 2.5fjJ) (12) 

where '111 is the viscosity of the externa1 phase (water phase) and $. is the volume fraction 

of internaI phase ( oil phase). 
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Nevertheless, the Einstein equation gives excellent agreement with experimental 

measurement for suspensions of particle concentrations of about 5% or ~ < 0.05 and 

could be used in case ofbeverage emulsions (McClements, 2005). 

2.11 Beverage emulsions 

Emulsions used for beverages serve to incorporate flavours based on essential 

oils, and vegetable oils as opalescent agent as well as fat-soluble colours, e.g., p-carotene 

(Jasentullyana et al., 1988; Kaufman, 1984). 

These O/W type emulsions contain a dispersed phase or oily phase (essential oil, 

vegetable oil and weighting agents (BVO, SAIB, ester gum) and a continuous phase 

(water, gum arabic or modified starch, citric acid, preservatives and colours). Each 

ingredient has its own function: citric acid for adjusting the pH and optimizing the 

bacteriostatic activity of the preservatives, colours for the esthetic aspect, gum arabic or 

modified starch as stabilizing and/or emulsifying agents, weighting agents for adjusting 

the density of the essential and vegetable oils as flavours and opalescent agents, 

respectively (Tan, 1988). 

During preparation of the dispersed phase, the proportion of weighting agents, 

soluble in the oils, is governed by the permissible standards for beverages in Canada, for 

example, 15 ppm BVO (density 1.23-1.33 glcc), 300 ppm SAIB (density 1.146 glcc). 

Beverage emulsions (O/W) are no exception to the rule. They are prepared in the 

form of concentrates and subsequently diluted in beverages. These emulsions provide the 

reconstituted beverages with opacity, flavour, colour and even fat-soluble vitamins. They 

must possess long-term stability in concentrate form as weIl as when diluted in the 

beverage. In addition, they can be stored for a period of several months before being 

incorporated in the beverage, at low concentrations, i.e., less than 2% w/w. (Tan and 

Holmes 1988 and Tan, 2004). 

2.11.1 Phase components of beverage cloud emulsion 

Beverage cloud emulsions are composed of two immiscible phases namely oil 

phase (internaI phase or dispersed phase) and water phase (external phase or aqueous 

phase). 
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2.11.1.1 Oïl phase 

One of the most important ingredients in beverage emulsion is the oil component. 

It is the oil which provides significant part of opacity in beverage cloud emulsions, with 

cloudiness. It has been reported that that vegetable oils at concentration of 9% 

weight/weight (w/w) is able to provide desirable cloudiness to citrus beverages (Taherian 

et al., 2006). The ingredients use to form oil phase are: 

• Oils: pure and deodorize oil (canola, coconut, corn oils) are used to provide 

cloudiness appearance in beverage cloud emulsions. Edible waxes and terpene 

hydrocarbon are also used as oil phase in cloud emulsion (Tan, 2004; Kaufi:nan 

and Garti, 1984). 

• Weighting agents: or density adjusters are oil soluble materials which has a 

significantly higher specifie gravit y than that of vegetable oils. This materials 

should not contribute to the odour or color of fini shed product and the level of 

usage should be approved by regulatory agency of the country in which the 

product is to be consumed (Tan, 2004). Brominated Vegetable Oil (BVO), 

Sucrose Acetate Isobutyrate (SAIB), Ester gum and Damar gum are the mostly 

used weighting agent in beverage industries. 

2.11.1.2 Water phase 

Water: the water phase is the major component of cloud emulsion which 

comprises the amount of 60-80% of the formulation. The quality of water is an important 

issue in which the carbonate hardness or alkalinity should not exceed from 50 mg of 

CaC03 per litter. The water phase components are: 

• Hydrocolloids: water soluble polysaccharides are served as stabilizer, viscosity 

adjuster, film formation, steric hindrance and electrostatic interaction (Dickinson, 

2003; Tan, 2004, McClements, 2005). The widely used hydrocolloids in cloud 

beverage emulsions are; gum Arabie, Modified Food Starch, gum Tragacanth, 

Propylene Glycol Alginate, Xanthan gum, Pectin, Gellan gum, Guar gum and 

Carboxymethylcellulose. Several hydrocolloid gums have been studied and their 

activities and specifications have been reported by a number of authors (Tse and 

44 



Reineccius, 1995; McClements, 1999; Tan, 1998; Tan and Wu Holmes, 1988; 

Chanamai and McClements, 2001; Turbiano, 1995; Glicksman M., 1969; Sharma 

s.e., 1981; Light , 2002; Acton and Saffle, 1972) 

The basic mechanisms for emulsion stabilization by hydrocolloid are: 

../ Viscosity effect 

../ Steric hindrance 

../ Electrostatic interaction 

Hydrocolloids serve as the stabilizer in the cloud emulsions. When a proper 

hydrocolloid is used in the water phase the breakdown of the emulsion will seldom reach 

at coalescence stage. The reason is film forming ability of hydrocolloid around drop let of 

oil particles. To perform as an effective stabilizer for beverage emulsion the hydrocolloid 

must have the following properties (Tan, 2004 and Taherian et al., 2006): 

../ Readily soluble with high solubility in cold water 

../ Low viscosity in water (to coyer the droplet surfaces by a sufficiently high 

concentration ofhydrocolloid) 

../ High emulsifying property 

../ Will not thicken or gel on aging 

Hydrocolloids are selected based on their effectiveness to act as either stabilizer 

or surface active hydrocolloids as are listed below: 

Thickener and stabilizers hydrocolloids 

1. Microbial Food Gum 

~ Xanthan Gum: Commercial xanthan gum is a yellowish powder completely 

soluble in cold and hot water, producing relatively high viscosity opaque solutions 

at low concentrations. Xanthan gum gives citrus and fruit-flavored beverages 

enhanced mouthfeel with full-bodied taste and good flavor release. 

1. Marine Colloids 

~ PGA (Propylene Glycol Alginate) LV (Low Viscosity): PGA can act as an 

emulsifier in citrus punches to avoid separation and rise of flavor oils to the top of 

the container. It possesses good stability at pH from 3 to 4 and at room 
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temperature. It is readily soluble in hot and cold water due to their large 

concentration of carboxylate anions. PGA dose not experience gelation until the 

pH is below 3.0. Recommended use is 0.1 % t02.5%. 

2. Plant Seed Gums 

~ Guar Gum: Powdered guar gum hydrates weIl in co Id water and fine grind will 

hydrate faster than intermediate and coarse grinds. Viscosity of guar gum 

increases arithmetically in solution ofup to 0.5%, but in excess of 0.5% increases 

exponentiaIly. Guar gum exhibits synergism when mixed with xanthan gum. This 

property makes it very useful in food system, since the functional properties of 

both gums are enhanced and a broader range of applications is therefore possible. 

~ Tara gum: Similar to guar gum, tara gum is also galactomannans extracted by 

grinding the endosperm portions of the seeds of the legume plants Caesapinia 

spinosa. The property of this gum has been studied in resent studies 

(Sittikiyothin et al., 2005). 

Surface active hydrocolloids 

1. Plant Gum Exudates 

~ Gum Arabic: Gum Arabic is highly soluble in cold water and solubility increasing 

as the temperature increases. Because of its effective emulsifying properties, gum 

Arabic has been effectively used in the formulation of oil-in-water (Cloud) 

emulsions. Gum Arabic has a broad range of compatibilities and can be used in 

combination with most gums, starches, carbohydrates and proteins. It is 

incompatible with sodium alginate and gelatin. 

It has also shown promise as a stabilizer for cloud and flavor emulsions in 

beverages. 

2. Modified Food Starches 

~ Purity Gum Be: This Type of starch is a white bland tasting, odourless powder. It 

is cold water soluble (dissolve better at 35 OC) and the solution is low viscosity. 
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~ Purity gum 2000: This Type of starch is a white bland tasting, odorless powder. It 

is cold water soluble and the solution is very low viscosity. At concentration less 

than 20%, its solution has a viscosity about equal to that of gum Arabic at the 

same concentration. 

Acids 

Acids are used in cloud emulsion to lower the pH, provide the taste and lower the 

chance of contamination. Citric acid is used most commonly in beverage cloud emulsion 

because of its close flavour to citrus fruits. Other acids such as phosphoric acid, malic 

acid, tartaric acid, acetic acid and lactic are seldom used in cloud emulsions. 

Preservatives 

The sodium salt of benzoic acid is often used as preservative for cloud emulsion. 

This salt is water soluble and could be more effective at pH lower than 4.5 (Tan, 2004). 

2.11.2 Stability problems of a beverage emulsion 

Emulsions, inboth the concentrated and diluted forms, must remain stable for an 

extended period of time. Because of the low density of vegetable and essential oils, a 

poorly controlled preparation of the emulsions will result in physical instability problems, 

which will be manifested by creaming (ring around the neck ofthe bottle), flocculation or 

coalescence. 

a) Creaming: When creammg occurs, two liquids separate under the action of 

gravit y; an emulsion then separates into two emulsions; one which will be richer 

in the oily phase than the original emulsion, and the other, conversely, will be 

richer in the aqueous phase. During creaming, the oil-rich emulsion will form a 

crearny layer containing essential oils and/or vegetable oils at the surface of the 

beverage. In sorne cases, when the bottles are stored in a vertical position, without 

agitation, in the refrigerator at 4 oC, Brownian motion and thermal convection of 

the emulsion particles will be responsible for striation, i.e., the formation of 

severallayers exhibiting different appearances of opacity. 
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b) Flocculation: Flocculation occurs when the oil droplets of the dispersed phase 

form aggregates without coalescence. At this stage, the droplets still maintain 

their original identity. The forces that bring the droplets together are mainly 

associated with the Van der Waals and electrostatic forces. These aggregates 

behave like single large droplets; the creaming rate is accelerated in systems in 

which there is a sufficient di fferenti al in density of the aggregates of the 

continuous phase. In concentrates, an increase in viscosity of the emulsion can 

then be observed when flocculation occurs. Even if the flocculation changes, the 

physical properties of the emulsion and particle size distribution remain 

unchanged. In the beverage itself, the concentration of droplets is so low that 

flocculation is reversible; the aggregates can easily be redispersed when the 

interactions between droplets are weak. 

c) Coalescence: This can be described as the localized rupture of the envelopes of 

the droplets comprising the aggregates, thus the oil droplets will come together to 

form a larger droplet. This results in a reduction in the number of oil droplets and 

eventually in breaking of the emulsion. Adding a hydrocolloid to the aqueous 

phase will prevent this breaking since certain gums such as gum arabic and 

modified starch have the potential to form a film around the oil droplets, as weIl 

as increase the viscosity to the aqueous phase. 

2.11.3 Stabilization of a beverage emulsion 

As discussed earlier, any instability of this emulsion results in the formation of a 

ring around the neck of a beverage bottle. Certain considerations must be studied to 

ensure their long-term stabilization: 

a) Stokes' law 

The kinetics of creaming or of sedimentation are determined by Stokes' 

law. This law stipulates that if the density of the oil is lower than that of the 

beverage, the value of UStoke will be negative and hence creaming will occur 

(section 11.3.1.2). In the opposite case, sedimentation will occur. Take the case of 
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an orange emulsion that will be incorporated in a beverage. Essential oil of 

orange has a density of 0.85 glcm3 and the final beverage has a density of 1.048 

glcc (12° Brix). Applying Stokes' law, the value of UStoke will have a negative 

sign, the formation of a ring will then be observed during storage in the 

reconstituted beverage. The kinetics of creaming UStoke will therefore be directly 

proportional to the difference between the density of the dispersed phase and the 

continuous phase as weIl as the radius (r2) of the droplet. It will also be inversely 

proportional to the viscosity of the aqueous phase. These observations can be 

expressed numericaIly; hence, in a beverage where the particle size is 0.1 ,um in 

diameter, the parti cl es will migrate 100 times more slowly than 1.0,um particles. 

When UStoke is 1ess than 1 mm per day, creaming can be considered negligible 

relative to Brownian motion. 

In order to adjust the density of the oils, the Pearson mIe is generally used to 

minimize the Archimedes effect. 

Component Density Density Proportion (by volume) 

g-cm3 (beverage g-cm3) 

vegetable oil 0.84 31 (oil) 

weighting agents 1.33 18 (w.a.) 

Figure 2.3. Application of Pearson square method for adjustment of the density of the oil 

phase. 

b) Adsorption at the interfaces 

The gum arabic or modified starch commonly used in this type of emulsion 

produces a film at the oil interface. This interfacial film may be viscoe1astic and 
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after a few days of maturity may form a solid film, possibly a multi-Iayer film 

(Shorton, White, 1963; Chanamai, 2000). These authors pointed out that the film 

formed by gum arabic had a thickness of O.l,um and exhibited elastic 

characteristics. In addition, the use of this gum increased the weight of the oil 

droplet and therefore its density. 

The formation of an interfacial film by hydrocolloids such as gum arabic is 

intended to stabilize the emulsion by preventing the phenomenon of coalescence. 

The layer of gum adsorbed on the surface promotes drop let separation to 

minimize the Van der Waals attractive force. When an emulsion is stabilized 

sterically by polymers such as gum arabic, this improves the physical stability of 

the final product. Note also that gum arabic does not have the polar and non-polar 

groups typical of emulsifiers that are adsorbed at the interface of the oil droplets, 

but nonetheless acts in the same way, although to a lesser degree. 

c) Electrostatic interaction 

Oil droplets can acquire an electrical charge through ionization of the charged 

groups adsorbed at the surface. For instance, the carboxyl group (COO l of gum 

arabic provides a negative charge to the droplets. The adsorption and dissolution 

of ions in the aqueous phase can also be a source of e1ectrical charge. Since 

anions have a greater tendency to be adsorbed than cations (since the latter are 

normally more hydrated, they will remain in the continuous phase). The 

mechanism of friction is also a factor; in this case, any substance that has a high 

dielectric constant will be positively charged in the presence of another substance 

with a low dielectric constant. In the case of an O/W emulsion, since water has a 

higher dielectric charge, the oil drop lets will therefore have a negative charge. 

Ion distribution is modified in the proximity of an electrically charged surface in 

contact with an aqueous solution of electrolytes. The counter-ions (opposite 

charges) are attracted preferentially to the surface and the co-ions (ions of same 

charge) tend to be repelled. 

The system composed by the charged surface and the zone of unequal distribution 

of co-ions and counter-ions near the surface is called the electrical double layer. 
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This double layer is therefore composed of two distinct regions: an internaI 

immobile region (the Stem layer) where the ions are strongly adsorbed and a 

mobile external region (the diffuse layer) composed of ions distributed according 

to the balance between kinetic and potential electrical energy (Dickinson, 1992). 

The zeta potential corresponds to the electrical potential, at the "shear surface" 

between the surface of the charged particle and the dispersing aqueous phase. It is 

determined by particle electrophoresis. This parameter can be used to predict 

emulsion stability; according to Peddick (1968), a minimum zeta potential of - 40 

mV would ensure physical stability because of the mutual repulsion between the 

particles. Any increase in this value, e.g., - 60 to - 100 mV, would increase the 

stability of a dispersed system. It should also be noted that although gum arabic 

has a zeta value of - 23 mV, other factors such as the density differential between 

the particles can also intervene to ensure stabilization. 

The value of the zeta potential reflects the presence of the electrolytes in the 

system as well as of the ions in the particles. The presence of the electrolytes will 

mainly influence the stability of the emulsion in the beverage (diluted form). In 

the case where a cationic electrolyte is added to an emulsion containing 

negatively charged particles, the electrolyte will be adsorbed and thus will 

neutralize the zeta potential to cause an aggregation of the particles. This will 

mainly influence the stability of the emulsion in the diluted form (the beverage), 

since the concentration of gum arabic is very low. 

Ion valence has a pronounced effect on zeta potential; trivalent ions (AI+3
) will be 

10 to 100 times more influential than divalent ions (Ca++) at equal concentrations 

(Tan, 1988). This observation supports the use of treated water for the formulation 

of emulsions and beverages. 

d) Oil partide size 

Stokes' law demonstrates that there are several ways of inhibiting the kinetics of 

creaming in a diluted emulsion: reducing droplet size, reducing the density 

differential between the continuous and dispersed phases, and increasing the 

viscosity of the continuous phase. 
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The particle size distribution profile can be detennined using a Coulter counter. 

This is therefore a key method for predicting the physical stability of a diluted 

emulsion. Generally, the smaller the particle size, the greater number of particles 

available to distribute the flavour unifonnly: a large number of particles will 

provide greater opacity in a beverage (Melillo, 1977). 

Note that it is preferable to express the results by volume since this clearly 

distinguishes the quantity of droplets by volume. For example, an emulsion containing 

1,000 droplets of l/-lm and 1 droplet of 10 /-lm, by population, this 10 /-lm occupies only 

0.1 % of the total population and by percent volume; 10 /-lm droplets occupy 50% of the 

dispersed volume since the volume of 1,000 1 /-lm droplets is equivalent to that of the 

10 /-lm droplet (Johnson, 1982). 
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PREFACE TO CHAPTER 3 

The opalescent agents or cloud emulsions are added to fruit beverages to provide 

the similar appealing appearance as fruit juice. Weighting agents or density adjusters are 

also added to the oïl phase to obtain the desired stability. 

While the focus of the most studies have been the stability of cloud emulsions by 

varying the concentrations of different weighting agents or their effects on stability, this 

the first time that the physical properties of cloud emulsions in the presence of weighting 

agents at restricted level of use has been investigated. 

The study was conducted by preparing two series of emulsions, one varied in 

starch concentrations and the other in oil concentrations. The vegetable oil was loaded 

with the identical amount of weighting agents for both series. In starch added emulsions, 

the amount of oil is constant for each emulsion and the only variable is the concentration 

of starch. This amount of oil was calculated base on 1) Pearson Square Method to obtain 

a density of 1.04 for the oil phase and 2) the more important, the amount of SIAB and 

BVO allowed in the beverages (300 and 15 p.p.m. respective1y). 

In oil added emulsions where both level of starch and weighting agents are 

constant, due to a decrease in the density of the oil phase, as the oil level increases the 

creaming values increases accordingly. We found that the oil concentration is readily 

responsible for providing the opacity to the emulsion and hence the final product. The 

relation between opacity and oil concentrations was also found and carried out through all 

investigations for the next chapters. 

The results of this research was presented at different conferences and published 

in Journal of Food Engineering (Taherian et al., 2006). The experimental works, data 

analysis and writing the paper were carried out by the candidate under supervision of 

Professor H.S. Ramaswamy. Dr. P. Fustier was engaged in technical and resources 

support as well as scientific advices. 
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CHAPTER3 

EFFECT OF ADDED OIL AND MODIFIED STARCH ON RHEOLOGICAL 

PROPERTIES, DROPLET SIZE DISTRIBUTION, OPACITY AND STABILITY 

OF BEVERAGE CLOUD EMULSIONS 

3.1 ABSTRACT 

Optical and rheological properties of beverage cloud emulsions as a function of 

water-phase and oil-phase concentrations were investigated. The specifie gravit y of 

phases, particle size distribution and creaming stability of prepared emulsions in diluted 

forms were evaluated. Combinations of emulsions with added starch (3.74-18.7% w/w, 

with oi1 at 3.74% w/w) and oi1 (7.48-18.7% w/w with starch at 11.2% w/w) were used. 

The specifie gravit y of oil phase was adjusted using a constant combination of weighing 

agents [sucrose acetate isobutyrate and brominated vegetable oil] and different level of 

coconut oil. Oil-phase concentration had a significant effect (P < 0.05) on increasing the 

opacity of emulsion. Increase in modified starch concentration for aU water phases 

decreased the flow behavior index while oil phase at any given concentration of coconut 

oil contributed to a Newtonian behavior. Increase in viscosity of emulsions was more 

pronounced as oil concentration increased and shear thinning behavior of oil added 

emulsions was associated with droplet flocculation. Creaming in acidified sugar solution 

of 11°Bx and pH 3 was observed when the oil-phase specifie gravit y decreased and 

sedimentation occurred at the lower viscosity of water phase. Examination of dynamic 

rheological properties of emulsions revealed that aU oil added emulsions showed viscous 

behavior with the delta degree (G"/G') greater than 74 at maximum frequency level (50 

rad/sec) and decreased along with increasing the oil level. The solid or elastic behavior 

was related to those emulsions that exhibited sedimentation with the delta degree lower 

than 35. 
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3.2 INTRODUCTION 

Emulsion stability is an important quality criterion and ringing (creaming) a major 

quality defect in citrus drinks and beverages. Beverage emulsions are primarily used to 

give opacity to clear beverages or to enhance their juice-like appearance. These 

emulsions are different from other food emulsions in that they are consumed in a highly 

diluted form. The low concentration of droplets in diluted beverage emulsions «0.3 wt 

%) accounts for their slightly turbid or "cloudy" appearance and their viscosities are 

similar to that of the aqueous solution that surrounds the droplets (McClements, 1999, 

Chanamai and McClements, 2001). 

Oil phase is the flavor oil, terpenes or a vegetable oil and water phase is a solution 

of highly functional hydrocolloids, such as specialty food starch or gum Arabic 

(Trubiano, 1995). Modified food starches are the most widely accepted alternative to gum 

Arabic for use as the beverage emulsion stabilizer. They are a group of specially designed 

starch derivatives with balanced lipophilic and hydrophilic groups on the starch 

molecules (Tan, 1997). Purity gum (National Starch, Bridgewater, NJ. U.S.A.), used in 

this study, is an octenyl succinate derivative of waxy-maize which consists primarily of 

amylopectin that has been chemically modified to contain non-polar side-groups and has 

a surface activity almost as high as gum arabic (Chanamai and McClements, 2001). The 

concentration of modified starch in cloud emulsion is an important consideration and 

should be sufficiently high in order to coyer the oil droplets (McClements, 1999). 

However, these types of oil in water (o/w) emulsions are inherently unstable due 

to the difference in specific gravit y between the oil droplets and the water medium 

(Hemandez et al., 1991). The specific gravit y of citrus drink usually varies from about 

1.038 to 1.054 and depends on the emulsion refractive index. Even though vegetable oil 

can be emulsified and uniformly dispersed, the large difference in the specific gravit y 

between the two (oil and aqueous) phases can cause the deterioration of beverage 

emulsion and gives rise to "ringing" and "oiling-off'. Ringing or the formation of a 

whitish "ring" around the neck of the container and "oiling-off' or the formation of shiny 

oil slick on the top of the product are the result of gravitational separation, flocculation, 

and coaleascence (Tan 1997, 1998; McClements, 1999; Chanamai and McClements, 
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2000). Stoke's law (Equation 1) has been employed to express the velocity ofringing and 

sedimentation (Tan, 1997 and McClements, 2000): 

UStokes= _ 2gr
2 

( Pl - P2) 

9Th 
(1) 

where U is the creaming velocity, 112 is the viscosity of water phase, r is the partic1e 

radius, g is acceleration due to gravit y, Pl is the density of oil phase, and P2 is the density 

of water phase. 

Therefore, reducing partic1e size along with increasing density of oil droplet and 

viscosity of water phase can enhance the stability of beverage emulsion. Specific gravit y 

of vegetable oil can be adjusted by addition of weighting agents or density adjusting 

agents in order to maintain a stable dispersion of the oil (Tan, 1997; McClements, 1999; 

Chanamai and McClements, 2000; Huang et al., 2001). 

Several studies have characterized rheological properties of food emulsions with 

steady state shear viscosity. Chanamai and McClements (2000) described that the 

apparent viscosity of concentrated emulsions (~ > 20%) containing smaller droplets was 

higher than that of emulsion containing larger drop lets and decreased with increasing 

shear rate while the apparent viscosity of dilute emulsions (<1> < 20%) was relatively 

independent of the applied shear stress. Buffo and Reineccius (2002) stated that the 

rheology of concentrated beverage emulsions (<1> ~ 5%) can be confidently modeled 

through the Einstein equation or its exponential expansion. Suzuki et al (1991) and 

Klinkesorn et al. (2004) studied the rheology and stability of corn oil-in-water emulsions 

and explained that the apparent viscosity of emulsions are affected by volume 

concentration of the dispersed phase, nature of emulsifying agent and emulsifying 

conditions, and above the critical flocculation concentration emulsions are highly viscous 

with strong shear thinning behavior. 

Nevertheless, there has not been that much attention given to change in dynamic 

rheological properties of beverage emulsions which can give a more complete rheological 

description. On the other hand, sorne of the ingredients such as brominated vegetable oil 

(BVO) and sucrose-diacetate-hexa-isobutrate (SAIB), widely used as weighting agents, 
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are being withdrawn or limited to certain levels and/or certain countries. The permitted 

level of use in different countries has been reported to be 15 ppm for BVO and 50 to 500 

ppm for SAIB (Turner, 1972; Kufman and Oarti, 1984; Tan and Wu Holmes, 1988; Oarti 

et al., 1991; Tan, 1997). The cloud emulsions must also contribute to the opacity of the 

formulated citrus drink without affecting the stability of the cloud, color, taste or odor of 

the fini shed product. These requirements, together with restrictions on the choice of 

weighting agents, are difficult to meet and there is a need for further investigation of 

factor affecting cloud emulsions stability. 

Therefore, the objective of this study was to examine the opacity, droplet size and 

distribution, as weIl as flow and dynamic rheological properties of both the oil and water 

phases alone and in combination, in form of emulsions, at different level of gum and oil 

concentrations. The outcomes were then related to the stability of emulsions prior to and 

after dispersion in simulated beverages (acidified sugar syrup). 

3.3 MATERIALS AND METHODS 

3.3.1 Materials 

Commercially available coconut oil, brominated vegetable oil (BVO) and sucrose 

acetate isobutyrate (SAIB) were obtained from Univar and Daminco Inc., PQ, Canada 

and modified starch (Purity Oum Be) was obtained from National Starch and Chemical 

(Bridgewater, NJ). Food grade citric acid was used to adjust the acidity in an prepared 

emulsions. 

3.3.2 Preparation of emulsions 

Different water phase starch based preparations were made by mixing modified 

starch at various levels (3.74-18.7% w/w) in double-distilled water. The mixtures were 

kept 24 h at room temperature to allow full hydration and then stirred until complete 

dissolution. Using a 50% (w/w) solution of citric acid, pH of each water phase adjusted at 

3 prior to any examination. The oil phases were prepared by dispersing a measured 

amount of BVO and SAIB (to give 15 ppm and 300 ppm, respectively in the final 
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product) into different level of coconut oil and stored at room temperature for 24 h to 

assure entire removal of air bubbles before any test. The oil phase was added to the water 

phase starch base at a fixed level of coconut oil (3.74% w/w). In addition, different oil 

phase emulsions were also prepared by blending varied quantities of oil phase (3.74-

18.7%, w/w) with a 11.2% (w/w) water phase starch base. Oil droplets sizes were 

reduced using first Polytron laboratory scale homogenizer (Kinematica, Kriens-Luceme, 

Switzerland) at highest speed for 3 min. Further reduction of particles size was obtained 

with the aid of high pressure homogenizer (Emulisiflex-C5, Avestin, ON, Canada) at 

3500 psi over one pass. 

3.3.3 Particle size distribution 

The particle size distribution of emulsion was determined by the integrated light 

scattering technique using a ZetaSizer 4 (Malvem Instruments Ltd., Malvem, UK). The 

emulsions were analyzed right after preparation in duplicate. The instrument used the 

method of photon correlation spectroscopy (PCS) to measure particle size in constant 

random thermal, or Brownian, motion. This motion causes the intensity of light scattered 

from the particles to vary with time. Large particles move slowly than small ones, so that 

the rate of fluctuation of the light scattered from them is also slower. PCS uses the rate of 

change of these light fluctuations to determine the size distribution of the particles 

scattering light. The particle diameter range and number of photon counts per second 

[Emission strength or kilo Count per second (kCps)] were evaluated at room temperature 

when the volume fraction of oil in the diluted emulsion was about 1: 1000 for aIl the 

cases. 

3.3.4 Evaluation of opacity and specifie gravity 

Emulsions were diluted (1: 1 000) for measurement of absorbance at 660 using a 

Beckman DU 640 Spectrophotometer. Opacity was then calculated from the absorbance 

at 660 nm (Kaufman and Garti, 1984 and Garti et al., 1991). Number of photons count 

per second (kCps) obtained from ZetaSizer was also used as a measure of opacity and 

outcomes form both instruments were correlated. Specific gravit y of each constituent 

alone and together was evaluated at the existing concentrations using a 25 ml specific 
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gravit y bottle [Fisherbrand, Ottawa, Canada]. 

3.3.5 Flow and dynamic rheological measurements 

Measurement of rheological parameters such as flow behavior index (n), 

consistency coefficient (m) and shear viscosity (lly) as well as storage modulus (G'), loss 

modulus (G") and delta degree (G"/G') were carried out using an AR2000 Rheometer 

(TA Instrument, New Castle, DE, U.S.A.). The instrument was equipped with a 60 mm 

cone of 2° and solvent trap. Flow curves (shear stress vs. shear rate) were determined at 

increasing shear rates (0.1-100 S-I) within 3 min. 

The apparent viscosity of oil phase and water phase alone, and together in form of 

emulsions at fixed (<1> ~ 0.04) and varied leve1 of volume ratio (<1> ~ 0.08-0.2) was 

measured as a function of shear rate (r). Experimental flow curves were compared to 

Power's law model, which is the typical equation to characterize shear thinning fluids: 

1] =m r (n-l) (2) 

where n <1 for a shear-thinning fluid and n = 1 for a Newtonian fluid. The variations of 

consistency coefficient (m) and flow behavior (n) were then determined at five level of 

starch and four level of oil concentrations. 

For dynamic oscillatory evaluation a frequency sweep from 1 up to 50 radians per 

second was carried out where the oscillation stress was fixed at 1 Pascal (obtained from 

the development of stress sweep in the linear region). AlI the flow and dynamic 

rheological parameters are the mean of six measurements per duplicates emulsions. 

3.3.6 Emulsion stability 

Creaming and sedimentation values were calculated from the ratio of cream and 

sediment volumes over total volume of emulsion samples up on standing. Duplicate 

samples containing 60 ml of prepared emulsion were stored in 100 ml Wainthropp tube 

for 48 h at 25 ± 1°C. The results were expressed as percentage of the total height of the 
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emulsions in the tube (HE): Creaming Index = 100 x (He/HE) and Sedimentation Index = 

100 x (Hs/HE) (Radford et al., 2004 and Klinkesom et al., 2004) 

Gravit y creaming of emulsion samples was also monitored visually after dilution 

into the simulated beverage (acidified sugar syrup with 11°Bx at pH 3) over a period of 

1-5 weeks. Glass bottles of 330 ml were filled with simulated beverages containing 2% 

of emulsion of known composition. The filled bottles were then pasteurized at 90°C for 

12 min and stored at room temperature. Samples were graded as + and ± when creaming 

was observed after 1 and 3 weeks respectively. The stable emulsions with no sign of 

creaming after 5 weeks were rated negative. Monitoring was performed in duplicate with 

a total of 6 bottles for each prepared emulsion. 

3.3.7 Statistical analysis 

The effect of oil and starch concentration on the opacity of emulsions was 

statistically tested using the regression and ANOVA - two-factors with replication, and 

the means were compared at a significant level of 5%. Statistical analysis was done using 

Microsoft Excel and experiments were performed in duplicate. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Starch and oU effects on particle sÏze distribution and opacity of emulsions 

The effect of starch and oil concentration on particle size distribution was 

investigated for five concentrations of starch and four concentrations of coconut oil, 

where each one experienced the identical method of preparation. The results for 

emulsions prepared with maximum starch and oil concentrations, are shown in Figures 

3.1 a and 3.1 b, respectively. It can be seen clearly that neither of the emulsions could be 

considered as mono-dispersion; i.e., the droplets were not of the same size. Since the 

droplet size varied, an average droplet size was considered to compare the changes in 

particle size for aIl emulsions. Figure 3.2 compares the contribution of starch and oil at 
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various levels of concentrations to the opacity of prepared emulsions. Figure 3.3 

demonstrates that variation in starch concentration resulted in relatively smaller affects on 

both the average particle size and concentration (number of counts). Number of counts is 

a measure of the intensity of the scattered light (photon emission strength) and is directly 

related to the opacity of emulsion. It also appears that the starch concentration build-up 

was able to increase the coating of the droplets as count per second did not change to the 

same extent as of average particle size. Both Figure 3.2, as a function of absorbance at 

660 nm and Figure 3.3, as a function of kilo count per second, demonstrate the agreement 

in term oftheir contribution trend to the opacity. While increases in opacity ofboth series 

of emulsions were linear, the oil concentration contributed significantly (P < 0.05) to 

increase the opacity to the emulsion as compared to that of added starch. By comparing 

the slopes of the absorbance at 660 nm versus oil and starch concentrations in emulsions, 

it can be realized that oil contributed 4.3 times more opacity than starch with correlation 

coefficients of 0.99 and 0.91, respectively. Similar comparison for opacity change as a 

function of kilo count per second showed a greater contribution by oil compared to the 

starch with correlation coefficients of 0.97 and 0.98, respectively. 

3.4.2 Influence of starch and oH concentrations on creaming and sedimentation 

stability 

The representative results conceming both stability and specific gravit y for nine 

formulated emulsions containing starch and oil at various levels are presented in Table 

3.1 and 3.2. The selection of starch concentrations, for starch added emulsions, was based 

on the weight ratio of gum/oil at five levels where the specific gravit y and amount of oil 

phases were constant at 1.04 and 3.74 % (w/w). The specifie gravit y was adjusted by 

combining 50.53 % (w/w) oil with 47.1 % (w/w) SAIB and 2.41 % (w/w) BVO at 

specifie gravities of 0.950, 1.146 and 1.24 respectively. This proportion was derived from 

accepted level of BVO and SAIB after dilution in final drink (15 and 300 ppm) and 

calculated by the use ofPearson's square method [Equation 3 (Melillo, 1977)]: 

p=~(1.04-E) (3) 
1.04 G - E 
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Table 3.1. Comparison of emulsion properties as a function of starch concentration. 

Properties 
Starch Concentration 

3.74% 7.48% 11.22 % 14.96 % 18.70 % 

Oil phase Specifie g 1.04 ± 0.02 1.04 ± 0.02 1.04 ± 0.02 1.04± 0.02 1.04 ± 0.02 

Water phase Specifie g 1.023 ± 0.02 1.032 ± 0.01 1.045 ± 0.01 1.068 ± 0.01 1.093 ± 0.01 

Mean Partic1e size (nm) 456 ± 5.06 465 ± 3.70 540 ± 6.20 581 ± 0.95 606 ± 6.45 

Opacity (660 nm) 0.33 ± 0.006 0.35 ± 0.003 0.38 ± 0.008 0.49 ± 0.002 0.50 ± 0.004 

Creaming (%) 0.00 0.00 0.00 0.00 0.00 

Sedimentation (%) 0.97 ± 0.08 0.76 ± 0.07 0.00 0.00 0.00 

Ringing in bottle 
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Table 3.2. Comparison of emulsion properties as function of oil concentration. 

Properties 
Oil Concentration 

7.48% 11.22 % 14.96% 18.70 % 

Oil phase Specifie g 0.990 ± 0.05 0.974 ± 0.02 0.969 ± 0.02 0.965 ± 0.06 

Water phase Specifie g 1.053 ± 0.01 1.059 ± 0.01 1.061 ± 0.03 1.063 ± 0.02 

Mean Particle size (nrn) 556 ± 7.10 580 ± 0.45 620 ± 7.35 767 ± 0.15 

Opacity (660 nrn) 0.64± 0.02 0.80 ± 0.01 0.99 ± 0.03 1.06 ± 0.02 

Creaming (%) 4.56 ± 0.36 6.90 ± 0.71 8.23 ± 0.66 9.30± 0.63 

Sedimentation (%) 0.00 0.00 0.00 0.00 

Ringing in bottle ± + + ++ 
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where P is the weight fraction of weighting agent (weight of weighting agent/weight of 

oil mixture), G is specific gravit y of weighting agent, E is specific gravit y of oil and 1.04 

is the desired specifie gravit y for our case. 

The oil concentrations, for added oil emulsions, were selected to be equal to that 

of starch concentrations for the first series. The water phases contained the identical 

amount of starch (11.2 % w/w) at which no sedimentation was observed for starch added 

emulsions (Table 3.2). Creaming and sedimentation values were then monitored by visual 

observation after 48 h storage at the room temperature and priOf to the high pressure 

homogenization. The reason for measuring the creaming and sedimentation at this step 

was to obtain a rapid response to the degree of stabilization of emulsion in concentrated 

forms. Huang et al. (2001) reported that concentrated emulsions with small droplets (high 

pressure homogenized), which normally does not show any sign of instability during long 

term storage, could be evaluated by centrifugation assay. 

However, this centrifugation method was not successful in this study; hence the 

stability assay was done priOf to high pressure homogenization. This observation also 

confirmed the significant effect of particle size on stability of beverage cloud emulsions 

in concentrated form. Nevertheless, for the starch added emulsions no indication of 

creaming was found and sedimentation occurred when the density of the oil phase was 

higher than that of the water phase. For oil added emulsions (Table 3.lb), conversely, 

creaming was associated with aIl prepared emulsions indicating that stability of 

concentrated beverage emulsions are significantly affected by difference in specific 

gravit y ofboth oil and water phases. 

In order to examine the stability of emulsions in diluted form, certain amounts of 

each homogenized emulsion was diluted in acidified sugar solution where the level of 

BVO and SAIB in solution did not exceed from 15 ppm and 300 ppm, respectively. The 

acidified sugar solution was at 11°Bx with pH of 3 and specific gravit y of 1.04. As 

illustrated in Table 3.1, for starch added emulsions, no sign of instability (ringing or 

sedimentation) was accompanied with any diluted emu1sion indicating if the specific 

gravit y of emulsion is equal to that of water phase and the average particle size are less 

than one micron the desired level of stability could be achieved. However, as it was 

mentioned earlier, starch added emulsions had significantly lower contribution to the 
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opacity of final drink and use of starch at a level of more than 14% may not be feasible 

for industrial preparation. Table 3.2 summarizes the creaming stability associated with 

the oil added emu1sions in diluted form. As the specific gravit y differences between the 

oil and water phases increased presences of whitish cream (ringing) was, accordingly, 

more pronounced in diluted forms. 

3.4.3 Flow and dynamic properties 

Flow characteristics 

Table 3.3 compares the flow properties of emulsions and related phases at 

selected concentrations of starch. The determination coefficients (R2
) for aU measurement 

were more than 0.97 (not shown), indicating a high level of relation between measuring 

points. Increase in starch concentration contributed to change the flow behavior of water 

phase from Newtonian to slightly shear thinning (n = 0.99 to 0.85), while the oil phase 

and oil emulsions contributed to build up of Newtonian viscosity (Figures 3.4 and 3.5). 

Higher consistency coefficient and apparent viscosity of water phase (m.W.ph and llapp.w.ph) 

and emulsion (m.Em and llapp.Em) at low shear rate (0.ls-1
) was due to increase in starch 

concentrations. This effect was consistent across the whole shear rate as shown in Figure 

3.4. Table 3.4 and Figure 3.6 compare the flow properties and viscosity of both phases 

and emulsions, for oil added emulsions, at low and across the whole shear rate range, 

respectively. Slight and sharp increase in consistency coefficients of water phase and 

emulsions (m.W.phand m.Em) were related to the replacement ofwater with oil in emulsion 

formulations. Conversely, oil phase consistency coefficient decreases as a result of 

increase in oil and decrease in weighting agents (BVO and SAIB) concentrations as 

illustrated in Figure 3.5. The dependence of viscosity of oil phase on concentration of 

coconut oil in oil phase can be explained by a power type relationship: 

'loi/phase =a Ch (4) 

where a and b are empirical constant at 53.70 and -1.65 respectively. 

Figure 3.6 compare the shear dependency ofviscosity at selected shear rate range 
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Table 3.3. Flow properties of oil and water phases alone and together in form of 
emulsions as a function of starch concentrations. 

Properties 
Starch Concentration 

3.74% 7.48% 11.22 % 14.96 % 

nW.ph 0.99 ± 0.006 0.95 ± 0.004 0.90 ± 0.01 0.87 ± 0.01 

nO.ph 1.00 ± 0.002 1.00± 0.002 1.00 ± 0.002 1.00 ± 0.002 

nEm 1.00 ± 0.004 0.98 ± 0.003 0.98 ± 0.005 0.98 ± 0.003 

mW.ph (mPa) 3.22 ± 0.06 6.66 ± 0.32 18.1 ± 0.21 39.3 ± 0.30 

mO.ph (mPa) 74.6 ± 3.53 74.6 ± 3.53 74.6 ± 3.53 74.6 ± 3.53 

mEm (mPa) 3.62 ± 0.04 8.55 ± 0.28 24.0 ± 0.31 56.0 ± 0.40 

llapp.w.ph 0.1 S-I (mPa.s) 3.30 ± 0.09 7.48 ± 0.40 22.8 ± 0.78 53.0 ± 1.62 

llapp.o.ph 0.1 S-I (mPa.s) 74.6 ± 3.53 74.6 ± 3.53 74.6 ± 3.53 74.6 ± 3.53 

llapp.EmO.1 S-I (mPa.s) 3.62 ± 0.04 8.95 ± 0.3 25.1± 0.62 58.7 ± 1.05 

llrelativeO.1 S-1 (mPa.s) 1.10±0,02 1.20 ± 0,04 1.10 ±0,03 1.12 ± 0,03 
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Figure 3.4. Apparent viscosity of emulsions at selected starch concentration as an 
influence of shear rate. 
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Table 3.4. Flow properties of oil and water phases alone and together in form of 
emulsions as a function of oil concentrations. 

Properties 
Oil Concentration 

7.48% 11.22 % 14.96% 18.70 % 

llw.ph 0.89 ± 0.01 0.86 ± 0.02 0.84 ± 0.02 0.82 ± 0.02 

llo.ph 1.00 ± 0.001 1.00 ± 0.002 1.00 ± 0.002 1.00 ± 0.001 

llEm. 0.94 ± 0.01 0.84 ± 0.01 0.80 ± 0.03 0.70 ± 0.04 

mW.ph (mPa) 20.4 ± 0.54 24.5 ± 0.58 25.5 ± 0.17 26.3 ± 0.86 

mO.ph (mPa) 55.9± 0.74 39.7 ± 0.12 31.4 ± 1.8 28.6 ± 0.20 

mEm. (mPa) 32.3 ± 0.84 69.3 ± 1.21 107±2.14 447 ± 4.32 

llapp.W.ph 0.1 S-1 (mPa.s) 26.5 ± 1.57 33.9 ± 2.34 37.4± 1.48 39.7 ± 0.54 

llapp.O.ph 0.1 S-1 (mPa.s) 55.9± 0.74 39.7 ± 0.12 31.4 ± 1.8 28.6 ± 0.20 

llapp.Em 0.1 S-1 (mPa.s) 37.0 ± 1.74 100 ± 2.33 170 ± 1.89 892 ± 7.50 

llrelativeO.1 s-1 (mPa.s) 1.40 ± 0.15 2.70 ± 0.13 4.54 ±0.14 22.4 ± 0.12 
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for oil added emulsion. The flow behavior index decreased when oil concentration 

increased in oil phase indicating a pronounced shear thinning effect at higher 

concentration of oil phase. This phenomenon has been explained to be related to droplet 

flocculation through domination of the attractive forces over repulsive forces which in 

tum become greater than the thermal energy of the system (McClements, 1999). Small 

hydrodynamic forces at low shear rate are not able to disrupt the flocs and as an effect of 

increasing the shear rate the hydrodynamic forces will dominate and disrupt the flocs 

causing a reduction in viscosity (Sherman, 1983; McClements, 1999). 

The relative viscosity of emulsions was also calculated in order to examine the 

influence of droplets on emulsion rheology: 

17app.Em. 
17 app. relative = 

17app.W.ph 

(5) 

where llapp.Em is the apparent viscosity of the emulsion at a particular shear rate and 

llapp.W.ph is the viscosity of the water phase at the same shear rate. 

The relative viscosity for starch added emulsions was slightly higher than unit y as 

could be expected for a non-flocculated oil-in-water emulsion. This is in consistent with 

Einstein equation 

17relative = 1 + 2.5 rjJ (6) 

which is approximate1y 1.10 for starch added emulsions since <j>;:::: 0.04 (Sherman, 1983; 

McClements, 1999; Klinkesom et al., 2004). 

For oil added emulsions, on the other hand, the relative viscosity at low shear rate 

was greater than unit y and increased along with increasing the oil concentration. 
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However the relative viscosity decreased by increasing the shear rate, which in tum can 

be attributed to progressive disruption of the flocs when the shear rate was increased. 

Increase in relative viscosity of an emulsion has been related to droplet flocculation for 

the reason that the effective volume fraction (<Peff: is related to the size of floc and the 

fractal dimension) of the particles in the system is increased due to the presence of the 

continuous phase (water phase) trapped between the droplets in the flocs (McClements, 

1999; Klinkesom et al., 2004). The results for both series of emulsions hence are in 

agreement with the creaming stability outcomes in concentrated and diluted forms as 

explained earlier. 

Dynamic characteristics 

Dynamic measurement was conducted to obtain a better description of rheological 

properties of emulsions under studied. To insure storage modulus (G') and loss modulus 

(G") are reliable and accurate a stress sweep test was first conducted. This way the linear 

region, where the dynamic parameters (G', G" and phase shift angle ô) are independent of 

the magnitude of applied stress, was investigated and proper measuring parameters were 

selected. The focus in this study was to compare the phase shift angle or delta degree of 

starch and oil added emulsions. The use of phase shift angle or delta degree (ô) in 

viscoelastic systems is based on the measurements of G' and G" modulus. Thus in a 

purely viscous system (i.e., water) Ô is 90 0, and subsequently G' = 0 and G" = G*, where 

G* is the complex modulus. Eventually, if the system is purely elastic Ô is 0 0, and 

subsequently G' =G* and G" = O. 

Figures 3.7 and 3.8 demonstrate the effect of starch and oil concentrations on 

frequency dependence of phase angle (b) of emulsions at constant level of oil and starch 

respectively. Figure 3.7 indicates that the b is not only frequency dependent, but also 

dependent on concentration of starch; it decreases as a function of the frequency and 

increases as a meaning of starch concentration. The appropriate way to describe this 

occurrence is to look at both specifie gravit y and viscosity of the oil phase reported 

earlier. As shown, the b of emulsions at low concentration of starch (3.74% and 7.48%) 

and elevated levels of frequency is much lower than 45°, suggesting that solid like elastic 

behavior dominates these samples over liquid like viscous behavior. These emulsions, as 
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described earlier, indicated sedimentations in concentrated form since the specific gravit y 

of the oil phase was higher than the water phase. Increasing the starch concentration 

lowered the specific gravit y and viscosity differences between the oil and water phases. 

Consequently, the loss modulus (G") dominated the elastic modulus (0') and the delta 

degree (0) increased. The 0 of the oil add emulsions slightly decayed with increasing the 

oil concentration over the whole frequency range and accompanied the domination of the 

viscose over the elastic behavior (G" > G' > 45°). Thus, high concentration of weighting 

agents in oil phase, for starch added emulsions, was accountable for solid like behavior of 

droplets and sedimentation in concentrated form. However, at elevated concentrations of 

both starch and oil added emulsions, liquid like behaviors were identical; indicating 

increase in starch concentration alone cannot be considered as a factor for cloud emulsion 

stability. Starch concentration, on the other hand, had minor effect on the opacity of cloud 

emulsion and with the limitation in use of weighting agents modification of rheological 

properties of water phase may be an alternative to increase the stability of the cloud 

emulsion. 
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3.5 CONCLUSIONS 

Increase in oil concentration affected the opacity and showed that oil content is 

readily responsible for the opacity of emulsions and hence the final product. At the 

constant level of weighting agents (BVO and SAIB), the specific gravit y of oil phase 

decreased when the oil concentration increased and resulted in augmentation of the 

creaming values accordingly. When the specifie gravit y of oil phase was adjusted at 1.04, 

none of the starch added emulsions indicated creaming, and sedimentation occurred when 

the specifie gravit y of the oil phase was higher than that of the water phase. Addition of 

weighting agents, however, is restricted and practically the density of oil phase cannot be 

adjusted at the elevated oil level. Increase in starch concentration cannot, adequately, 

increase the cloudiness of emulsion. As a result, shear thinning behavior of emulsions 

was associated with creaming and solid like behavior with sedimentation. Modified 

starch was able to provide polymeric steric hindrance to the oil droplets, but did not 

contribute to the elasticity of covered droplets at any selected concentration. 
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PREFACE TO CHAPTER 4 

As detailed in Chapter 3 the oil was readily responsible for providing the opacity 

to the final beverage. It was also found that there is a linear relation between opacity and 

oil concentration. As also mentioned, cloud emulsion are added to the beverage to 

provide suitable opacity. 

Therefore, in this chapter we used the obtained results to first find out the oil 

concentration which could provide the identical appealing appearance as natural fruit 

juice. The physical properties of emulsions in presence and nascence of restricted level of 

weighting agents and/or xanthan gum, at the identicallevel of oil concentration, were 

then investigated. 

The results ofthis study were presented injoined conference of AAFC-CIFST on May 

2006. 

A manuscript has been submitted for publication: 

Taherian A.R., Fustier P., and Ramaswamy R.S., 2006. Stability and rheological 

properties ofbeverage cloud emulsions formed by modified starch: effects of added 

weighting agent, and xanthan gum. Journal of Food Process Engineering (Accepted 

October 2006, In Press) 

Writing the paper, experimental work and data analysis were completed by the 

candidate under supervision ofProfessor H.S. Ramaswamy. Dr. P. Fustier support the 

technical resources and provided scientific advices. 
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CHAPTER4 

EFFECTS OF ADDED WEIGHTING AGENT AND XANTHAN GUM ON 

STABILITY AND RHEOLOGICAL PROPERTIES OF BEVERAGE CLOUD 

EMULSIONS FORMULATED USING MODIFIED STARCH 

4.1 ABSTRACT 

Stability of beverage emulsion is measured by the rate at which the emulsion 

creams, flocculates or coalesces, and is generally dependent on rheology of water phase, 

difference in specifie gravities of the two phases and droplet size/distribution of the 

emulsion. Effect of weighting agents (sucrose acetate isobutyrate and brominated 

vegetable oil) and xanthan gum on modified starch based emulsions were evaluated in 

this study. Emulsion were formed by addition of 9% coconut oil, in presence or absence 

of weighting agents, into the water phase containing modified starch at 10, 12 or 14% 

without or with the addition of 0.3% xanthan gum. Stabilities of emulsions were 

evaluated both in the concentrated form used for storage and dilute form used in 

beverages. Addition of xanthan gum into the water phase decreased the flow behavior 

index (n) form 0.88 down to 0.31 and increased elastic modulus (G') over 20 times at 

elevated frequency (co = 50 radis) and elevated the stability of the emulsion. The xanthan 

gum added emulsion had smaller particle size and demonstrated 14 and 5 times slower 

phase separation compared to the emulsions without or with the addition of weighting 

agents, respectively. When elastic modulus was larger than viscous modulus (G' > GU), 

the emulsions demonstrated greater stability. In dilute beverage solutions, creaming was 

observed in the absence of xanthan gum. 
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4.2 INTRODUCTION 

Beverage emulsions are classified as oil-in-water emulsions and are prepared by dispersing 

flavor or vegetables oils in water phase containing various types of hydrocolloid, acid, 

preservative, and coloring. Stability of cloud or flavor emulsions for a desired period of 

time is a common issue in the beverage industry. Ringing is a frequent defect in beverage 

cloud emulsions mostly caused by gravitational separation, flocculation, and coalescence 

(Tan & Wu, 1988; Chanamai & McClements, 2001; Tan, 2004; McClements, 2005; 

Taherian et al., 2006). Finished beverages are prepared by dilution of the concentrated 

beverage emulsion in acidified sugar solutions. The emulsion in both concentrated and 

diluted forms must be stable at least for 6 months as required by beverage industry (Tse 

and Reineccius, 1995 and Tan , 2004). 

Stoke's law states that the velocity at which a droplet moves is directly proportional to the 

square of its radius and density difference of oil and water phases, and inversely 

proportional to the viscosity ofwater phase. McClements (2005) demonstrated that Stoke's 

law is applicable to beverage emulsions since the oil phase has a much higher viscosity 

than the water phase ('72/'71 > 5). The stability of beverage emulsions is therefore highly 

dependent on the specific gravit y, droplet size and distribution and the rheological 

characteristics of component phases (Tan & Wu, 1988; Chanamai & McClements, 2000; 

Buffo and Reineccius, 2002; McClements, 2005; Taherian et al., 2006). 

The water phase of beverage emulsions contains hydrocolloids which could provide 

specific rheological properties for achieving stability of the emulsion. Hydrocolloids such 

as amphiphilic gum arabic or hydrophobically modified starch serve as the surface active 

gums in the cloud emulsions. These hydrocolloids have the ability of film forming around 

droplet of oil particles and their usage could prevent the breakdown of the emulsion due 

to steric stabilization thereby delaying the coalescence (Acton & Saffle, 1972; Tan & 

Wu, 1988; Turbiano, 1995; Chanamai & McClements, 2001; Huang et al., 2001; Tan, 

2004; Taherian et al., 2006). To be an effective steric stabilizer for beverage emulsions, 

the hydrocolloid must have low viscosity in water to coyer the droplet surfaces by a 

sufficiently high concentration of hydrocolloid, capacity to lower the tension at the oil-
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water interface, and should not thicken or gel on aging (Glicksman, 1969; Krumel & 

Sarkar, 1975; Sharma, 1981; Dickinson, 2003; Tan, 2004; McClements, 2005). 

Our previous study (Taherian et al., 2006) demonstrated that modified starch can provide 

polymeric steric hindrance to the oil droplets. This starch is the octenyl succinate derivative 

of waxy-maize and consists primarily of amylopectin that has been modified to contain 

nonpolar side-groups. These side-groups anchor the molecule to the droplet surface, while 

the hydrophilic starch chains stick out into the aqueous phase and protect droplets against 

aggregation through steric repulsion (Trubiano, 1995; Chanamai & McClements 2001; 

Tesch et al., 2002). This starch, however, did not contribute to the elasticity of covered 

droplets at any selected concentration (Taherian et al., 2006). 

It has also been known that the oil concentration is responsible for providing the opacity in 

beverages (Garti et al., 1991 and Taherian et al., 2006), and the oil is used in the form of 

emulsion rather than in its original state to provide a wider range of rheological 

characteristics in an emulsion (Garti & Reichman, 1993; Valdez et al., 2005, McClements, 

2005). 

Many hydrocolloids used to stabilize emulsion are shear-thinning, and generally have a 

high viscosity at low shear rates which decreases dramatically as the shear is increased. 

This property is important because it means that the droplets are prevented from creaming, 

but the food emulsion still flows easily when poured from a container (van den Tempel, 

1963). With this regards, stabilization effect ofxanthan gum has been the subject of several 

studies (Yilmazer & Kokini, 1991; Yilmazer et al., 1991; Pettitt et al., 1995; Xie & 

Hettiarachchy, 1997; Bryant & McClements, 2000; Ye et al., 2004) 

Commercial xanthan gum is a yellowish powder completely soluble in cold and hot water, 

producing relatively high viscosity opaque solutions at low concentrations. Xanthan gum 

strongly affects solution rheology because of its unique ordered structure. Ma and Barbosa­

Canovas (1997) found solid-like behavior (G' or storage modulus, predominated over 

liquid-like behaviour, G" or loss modulus) for xanthan solutions under small amplitude 

oscillation rheometry. Kaufman & Garti (1984) described that xanthan gum gives citrus 

and fruit-flavored beverages enhanced mouthfeel with full-bodied taste and good flavor 
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re1ease. It has also shown promise as a stabilizer for cloud and flavor emulsions in 

beverages. 

Weighting agents are used in these beverage emulsions to increase the density of oil phase. 

In our previous study (Taherian et al., 2006), brominated vegetable oil (BVO) and sucrose 

acetate isobutyate (SAIB) were used as weighting agents at a restricted level of 15ppm and 

300 ppm in fini shed beverage (maximum permitted), respective1y. The study showed that 

addition of weighting agents at these restricted levels, the density of oil phase could not be 

raised to the desired level. Little published information is available on stability ofbeverage 

cloud emulsion in the absence of weighting agents. Furthermore, the effect of dynarnic 

rheology of component phases on the stability of beverage emulsions has not been weIl 

researched. Therefore, the objective of this study was to understand the role of added 

xanthan gurn and/or weighting agent on the stability of modified starch based beverage 

cloud ernulsions. 

4.3 MATERIALS AND METHODS 

4.3.1 Materials 

Modified starch (Purity Gum Be) and Xanthan gum (TIC PRETESED® 

TICAXAN®) were obtained from National Starch and Chernical (Bridgewater, NJ) and 

Nealanders Inc. (Montreal, PQ), respectively. Commercial brands of coconut oil, 

brominated vegetable oil (BVO) and sucrose acetate isobutyrate (SAIB) were obtained 

from Univar and Darninco Inc. (Boucherville, PQ). Adjustrnent of acidity was done by 

food grade citric acid. 

4.3.2 Preparation of emulsions 

The modified starch (10, 12 and 14 % weight/weight, w/w) and xanthan gum (0.3 

%w/w) were dissolved separately in de-ionized water and stored ovemight for complete 

hydration. Using a 50% (w/w) solution of citric acid, pH of each starch solution was 

adjusted to 3 prior to any examination. Oil phases were prepared by either dispersing a 

measured arnount of BVO and SAIB (to give 15 ppm and 300 ppm, respectively in the 

final product) into 9 %w/w of coconut oil, or similar amount of oil without addition of 
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weighting agents. Crude emulsions were formed by stirring the oil phase into the starch 

solution for 15 min. The solution of xanthan gum was then added to the emulsions which 

did not contain weighting agents foIlowed by a 3 min pre-homogenization at highest 

speed using Polytron laboratory scale homogenizer (Polytron, PT 10-35, Kinematica, AG 

Ltd. Switzerland). Oil droplet size was further reduced with the aid of high pressure 

homogenizer (Emulisiflex-C5, Avestin, Ottawa, ON) at 3500 psi over 2 passes. 

Emulsions were prepared in duplicates and tested three times immediately after 

preparation. 

4.3.3 Particle size distribution 

An integrated light scattering technique was used to determine particle size 

distribution of emulsions employing a ZetaSizer 4 (Mal vern Instruments Ltd., Malvern, 

UK). This instrument used the method of photon correlation spectroscopy (PCS) to 

measure particle size in constant random thermal, or Brownian, motion. This motion 

causes the intensity of light scattered from the particles to vary with time. Large particles 

move slowly than smaIl ones, so that the rate of fluctuation of the light scattered from 

them is also slower. PCS uses the rate of change of these light fluctuations to determine 

the size distribution of the particles scattering light. Samples of emulsions were analyzed 

in duplicate right immediately preparation when the volume fraction of oil in the diluted 

emulsion was about 1: 1 000 for aIl the cases. The partic1e diameter range and emission 

strength [number of photon counts per second expressed as kilo-count per second (1 kCps 

= 1000 Cps)] as weIl as polydispersity (width of distribution) were evaluated at room 

temperature. 

4.3.4 Evaluation of opacity degree and selection of oïl concentration 

Opacity was evaluated based on the method described by Kaufinan and Garti 

(1984) and Garti et al., (1991). For selection of oil concentration, fresh orange juice with 

no pulp was purchased from local market and its opacity degree was measured from the 

absorbance at 660 nm using a spectrophotometer (Cary, 300-Bio, UV-Visible 

Spectrophotometer, Varian, Australia). The results obtained were then compared to the 

opacity of simulated citrus drinks containing 2 % weight/weight (w/w) of emulsions at 3 
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different levels of oil concentrations (4, 9 and 14% w/w). Both fresh orange juice and 

simu1ated beverage (pH 3, 11 0Bx and 2% w/w emu1sion of 9 % w/w oil and 14% w/w 

modified starch) indicated closest absorbance values of 0.87 and 0.86 respectively. 

4.3.5 Specifie gravity 

Method of evaluation of specifie was described in Chapter 3. 

4.3.6 Emulsion stability 

Instrumental test 

Prior to the high pressure homogenization, and right after pre-homogenization step, 

6 ml of sample from each preparation was poured into a flat-bottom cylindrical glass jar 

(100 mm height, 16 mm internaI diameter) and the back scattering oflight was measure in 

an optical scanning instrument (Quick Scan, Coulter Crop., Miami, FL). The back 

scattering of monochromatic light (}" = 850 nm) from the emulsions was measured as a 

function of their height in order to quantify the creaming rate. Gravitational creaming 

values were calculated from the height of the interfaces between the opaque droplet-rich 

layer and the transparent droplet-depleted layer as a function of time. Creaming was then 

expressed as slope of abso1ute thickness of layers over time. 

Observation 

After dilution of emulsion into the simulated beverage (acidified sugar syrup with 

11 0Bx at pH 3), gravit y creaming of emulsion samples was also monitored visually over a 

period of 1-5 weeks. Glass bottles of 330 ml were filled with simulated beverages 

containing 2% of emulsion of known composition. The filled bottles were then 

pasteurized at 90°C for 12 min and stored at room temperature. Samples were graded as 

+ and ± when creaming was observed after 1 and 3 weeks, respectively. The stable 

emu1sions with no sign of creaming after 5 weeks were rated negative. Monitoring was 

performed in duplicate with a total of 6 bott1es for each prepared emulsion. 
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4.3.7 Flow and dynamic rheological measurements 

The rheological properties of emulsions were determined using a stress-controUed 

rheometer (AR2000 Rheometer, TA Instrument, New Castle, DE) fitted with a stainless 

steel 60 mm cone of 2° and solvent trap. The measurement temperature was kept at 22 oC 

using a circulating bath and a controUed peltier system. The emulsion was loaded to the 

rheometer immediately after being prepared. Steady-state flow parameters inc1uding 

flow behavior index (n), consistency coefficient (m) and shear viscosity (lly) were 

determined at increasing shear rates (0.1-100 S-I) within 3 min. 

The apparent viscosity of oil phase and water phase alone, and together in form of 

emulsions at fixed volume ratio (<l> ~ 0.09) was measured as a function of shear rate (r). 

Experimental flow curves were compared to Power-law model, which is the typical 

equation to characterize shear thinning fluids: 

17 =m r(n-l) (1) 

where n <1 for a shear-thinning fluid and n = 1 for a Newtonian fluid. The variations of 

consistency coefficient (m) and flow behaviour (n) were then determined for each 

component phase and through the steps of preparation. 

The dynamic oscillatory evaluation a frequency sweep from 1 up to 50 radians per 

second was also carried out where the oscillation stress was fixed at 1 Pascal (obtained 

from the development of stress sweep in the linear region). The dynamic properties such 

as storage modulus (G'), loss modulus (G") and delta degree (G"/G') were also examined 

for each sample. AU the flow and dynamic rheological parameters are the mean of six 

measurements per duplicates emulsions. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Particle properties and opacity of emulsions 

Typical partic1e size distribution for weighting agents added emulsions containing 

10,12 and 14% modified starch (Purity gum Be) with a constant volume ratio (rp~ 0.09) 

are shown in Figure 4.la, 4.1b and 4.lc. It can be seen c1early that the emulsions in any 
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given concentration of modified starch are not mono-disperse, which means, aIl droplets 

are not homogeneous or of the same size. Since the results were consistent for all prepared 

emulsions, the average particle size (Z-average size) , polydispersity index (PDI) and 

emission strength were considered for further quality comparison. Z-average size (also 

known as the cumulants mean) is the result of cumulants analysis and the fit of a 

polynomial to the log of the normalized correlation function (ZetaSizer 4, User Manual): 

(2) 

where G(t) is the measured correlation point, B is the baseline and a, b, c are the 

coefficients of the cumulants fit. Poly-dispersity index (the coefficient of the squared term, 

c, when scaled as 2c1b2
) is a measure of the width of the distribution, and emission strength 

is a measure of the intensity of the scattered light and directly related to the opacity of the 

emulsion. 

Table 4.1 compare the particle properties and opacity of the emulsions. The first 

information which can be drawn is a slight increase in average particle size when 

increasing the starch concentration. This is due to the presence of hydrophobic si de chains 

on the octenyl-succinate starch molecule which can adsorb to the interface ofwater and oil 

(Tesch et al, 2002). It is also consistent with our previously reported data where we 

indicated this type of modified starch was able to increase the coating of the droplets as the 

oil concentration was constant for aIl the cases (Taherian et al., 2006). In this Table, the 

opacity of emulsions is demonstrated as emission strength and absorbance at 660 nm. The 

overaIl average particle sizes are smaller for xanthan added emulsion compared to the 

others. It is worthy to note that addition of xanthan into the emulsion was after the pre­

homogenization step and prior to high pressure homogenization to allow modified starch 

for the identical film forming around the particles, suggesting that the starch coating 

enhances the steric repulsion effects between the droplets. The lower average particle size 

and poly-dispersity as well as higher opacity of xanthan added emulsions could be thus 

related to the reversible shear thinning viscosity of these emulsions which help for a better 

distribution of oil droplets and prevention of droplet coalescence after removal of applied 

shear by high pressure homogeniser. A study by Yilmazer et al. (1991) indicated that the 
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Table 4.1. Effect of added xanthan gum and weighting agents on particle properties and 

opacity of emulsions at different starch concentrations. 

Emulsion containing 10 wt % modified starch 

Starch alone Xanthan added Weighting agents added 

Average partcle size (nm) 51O.20±5.10 

Opacity (kCps) 314.52±0.65 

Polydispersity (index) 0.43±0.05 

Opacity (660 nm) 0.69±0.01 

Emulsion containing 12 wt % modified starch 

Average particle size (/lm) 630.30±5.100 

Opacity (kCps) 322.71±0.90 

Polydispersity (index) 0.41±0.06 

Opacity (660 nm) 0.74±0.04 

Emulsion containing 14 wt % modified starch 

Average partcle size (/lm) 780±3.80 

Opacity (kCps) 345.43±0.60 

Polydispersity (index) 0.398±0.04 

Opacity (660 nm) 0.83±0.03 

90 

400±3.80 

509.60±0.80 

0.29±0.02 

0.76±0.02 

420.80±3.80 

546.40±0.30 

0.24±0.01 

0.82±0.02 

480±2.80 

551.28±0.40 

0.211±0.03 

0.89±0.05 

430±4.20 

431.92±0.89 

0.31±0.03 

0.62±0.02 

460. 50±4.1 0 

482.80±0.80 

0.32±0.03 

0.69±0.03 

500±4.20 

508.60±0.70 

0.318±0.03 

0.71±0.03 



emulsion stabilized with 0.4% xanthan gum had the predominance of smaller particles. The 

results are also in agreement with Pettitt et al. (1995) who reported smaller particle size for 

emulsions containing 0.33% xanthan gum compared to the emulsion made without xanthan 

gum (3)Jm vs 10.17 )Jm). The higher opacity of xanthan can also be related to the 

formation of aggregates by xanthan gum which promoted the scattered light (Bryant and 

McClements, 2000). 

4.4.2 Stability of emulsions 

Investigations of gravitational stability of prepared emulsions were carried out on pre­

homogenized concentrated emulsions for a rapid response to the degree of stabilization. 

The backscattering of the light from concentrated emulsions was measured as a function of 

their height over a period of 5 days. The stability of emulsions in diluted forms, however, 

was premeditated after dilution of 2% homogenized emulsion in simulated beverage 

following by pasteurization and upon standing at room temperature. 

Gravitational stability of beverage cloud emulsions in both concentrated and diluted 

in acidified sugar solution are presented in Table 4.2. Additions of weighting agents to the 

oil phase reduced the specific gravit y difference between water phase and oil phase from 

0.15 to 0.12. This change had a slight effect on gravitational separations as weighting 

agents added emulsions indicated creaming after three weeks in acidified sugar solutions. 

Figure 4.2 illustrates the typical backscattering profiles for emulsions with or without 

weighting agents and xanthan gum at identical starch concentrations. Depletion 

flocculation of starch coated oil drop let occurs in beverage emulsions due to close distance 

of droplets which results the aggregation of droplets and increase in creaming velo city. The 

profiles show thicker aggregates for emulsions prepared with or without weighting agent 

addition compared to the one containing 0.3% xanthan gum. Figure 4.2c also indicates a 

jump in the plateau value of the backscattering from the day zero which may be related to 

rapid rate of aggregation in the first 24 h. By computing the absolute thickness of each 

aggregate the creaming velocity profile was then compared. Figure 4.3 shows the time 

evolution of the backscattering for emulsions at 3 different starch concentrations. Since 

14% starch indicated slower aggregation (shallower slope), stability comparison was 
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Table 4.2. Gravitational separation of diluted emulsions as functions of starch 

concentrations, weighting agents and xanthan gum. 

Emulsions 

10% Starch 

12% Starch 

14% Starch 

14% Starch + Weighting agents 

14% Starch + Xanthan 

Emulsions 

Oil phase Waterphase 
Specifie gravit y Specifie gravit y 

0.96 ± 0.03 1.04 ± 0.04 

0.96 ± 0.03 1.06 ± 0.02 

0.96 ± 0.03 1.11 ± 0.63 

0.99 ± 0.06 1.11 ±0.63 

0.96± 0.03 1.05 ± 0.54 
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conducted at the same concentration. At this concentration of starch, however, the film 

forming around the oil droplets is thicker and it is believed that the specific gravit y of oil 

phase is greater (Trubiano, 1995). 

The time evolution of the backscattering for emulsions with or without weighting 

agents and xanthan gum are compared in Figure 4.4. The xanthan added emulsion indicated 

14 and 5 times slower separation compared to emulsions without or with addition of 

weighting agents, respectively. The inhibition of creaming in presence of xanthan gum can 

be attributed to immobilization of the starch-coated oil droplets in a weak gel-like network 

as been described by Dickinson (2003). 

The stabilization effect of xanthan gum has been attributed to its molecule structure 

by Xie and Hettiarachchy (1997) who studied the emulsification properties of soy protein 

isolate in presence ofxanthan gum. The molecule has a cellulosic backbone that is rendered 

water soluble by the presence of trisaccharide side chain attached to every second glucose 

residue in the main chain. The authors concluded that xanthan gum contributed to the 

emulsion stability by its adsorption at the oil/water interface which demonstrates the 

protective effect on soy protein isolate. 

Figure 4.5 also represent the gravitational separation of emulsions in both 

concentrated and diluted forms after 3 month storage. Visible serum separations are 

exhibited for both emulsions with or without weighting agents at identical starch 

concentration of 14%. In the case of weighting agent added emulsions the serum was 

slightly cloudy, indicating the presence of a small residual amount of oil droplets. There 

was no sign of separation or creaming for xanthan added emulsion containing 14% of 

starch in the long run. 

4.4.3 Rheological properties 

Flow characteristics 

In our previous study on beverage cloud emulsions (Taherian et al., 2006), we 

investigated the rheological perception of starch and oil added emulsions in presence of 

accepted level of weighting agents. We found that octenyl-succinate starch was able to 
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Figure 4.5. Gravitational separation of emulsions containing 14% starch in concentrated 
and diluted forms after 3 month upon standing at room temperature. 
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provide polymerie steric hindrance to the oil droplets, but did not contribute to the elasticity 

of covered droplets at any selected concentration. Here we attempt to study the effect of 

addition of a highly shear thinning and elastic hydrocolloid as an alternative to replace the 

weighting agents. 

At the start, the flow behaviour of each component phase was evaluated. Table 4.3 

shows the Power-Iaw parameters and indicates a major decrease of flow behaviour index 

for water phase (nW.ph) after addition of 0.3% of xanthan gum. The consistency coefficients 

of water phase also shifted up with the addition of xanthan gum. Both oil phases with or 

without addition of weighting agents indicated N ewtonian behavior (n O.ph = 1) with an 

increase in consistency coefficient (m O.ph). 

The shear rate dependence of viscosities of water phases and resultant emulsions 

are shown in Figure 4.6. The apparent viscosities of both water phases and emulsions 

decreased with increasing shear rate indicating shear thinning behaviors. There was a slight 

decrease for flow behavior index of emulsions in the absence of xanthan gum compared to 

the related water phase, and xanthan added emulsions indicated inverse behavior. This 

could be explained by breakage of flocculated droplets through the application of shear for 

unstable emulsions. The shear thinning behavior of emulsions, however, has been widely 

reported for suspensions containing rigid particles and for poly-disperse emulsions 

(Chanamai and McClements, 2000). This could also confirm the thick coating of the starch 

surrounding the oil droplets. 

The influence of droplets on emulsion rheology was also examined by computing 

the relative viscosity: 

'lapp. Em. 
'l app. relative = 

'lapp. W.ph 

(3) 

where llapp.Em is the apparent viscosity of the emulsion at a specifie shear rate and llapp.W.ph 

is the viscosity of the water phase at the same shear rate. The relative viscosity for 

xanthan added emulsion, weighting added emulsion and emulsion prepared with starch 

alone containing 14% starch, at the shear rate of 0.1 S-I, were found to be 1.38,2.39 and 
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2.25, respectively. The relative viscosity of emulsions prepared without addition of 

xanthan gum, however, decreased significantly at the higher shear rates, with the cross 

over point occurring at an apparent relative viscosity of 1.7 and shear rate of 1.0 S-I. 

Considering Einstein equation for non-flocculated oil in water emulsions: 

17relative = 1 + 2.5 rjJ (4) 

the relative viscosity should be close to 1.23 since the volume ratio (rjJ ~ 0.09) was 

consistence for aU prepared emu1sions. The xanthan added emulsion, with a relative 

viscosity ratio of 1.38, was the closest one which could fit the characteristic of a non­

flocculated emulsion. This could also mean the Einstein equation is not really appropriate 

for these emulsions. Taylor in 1932 (Pal, 2000) corrected Einstein equation taking in to 

account the internaI dissipation within the droplets as: 

= 17app.Em. = 1 + [2 + 5.0P] 
17 app. relative 2(1 ) rjJ 

17 app. W.ph + P 
(5) 

where p is the ratio of oil phase viscosity over water phase viscosity of the system. The 

results using this equation indicated lower and more converging values of relative viscosity 

for all samples (1.09-1.16) but not really representing the true value of o/w emulsions used 

in this study. Klinkesom et al., 2004; McClements, 2005 attributed this decrease to 

progressive disruption of the flocs when the shear rate was increased. A study by Yi1mazer 

et al., (1991) on stabilization effect of xanthan gum on o/w emulsions indicated a litt1e 

change for viscosity of xanthan added emulsion over period of study. They suggested 

distribution of oil droplets did not change with aging time. Long term stability of xanthan 

added emulsion could, therefore, be related to immobilization of partic1e due to unvarying 

high viscosity and the absence of flocculated particles. 

Dynamic characteristics 

The dynamic rheo10gical parameters (G', G" and phase lag angle 0) of components 
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phases and emulsions were evaluated in the linear viscoelastic region. The rheological 

parameters were first measured as a function of stress amplitude at a fixed frequency. After 

establishment of linear viscoelastic region, measurements were then made at fixed stress 

amplitude (1 Pa) as a function of frequency. 

Figure 4.7 shows the frequency dependence of storage modulus (G') and loss 

modulus (0') for the hydrocolloid solutions which formed the water phases of the 

emulsions. The starch concentration was maintained at 14% for all water phases and 

similar water phases were used to prepare emulsions with or without addition of weighting 

agents. 

For aU the cases the modules (G' and 0') increased with increasing frequency. For 

water phase without addition of xanthan gum the loss modulus (0') fell above the storage 

modulus (G'), but for xanthan gum added water phase G' was higher than G". This 

indicates the predominant elastic behavior of the xanthan added water phase over the water 

phase prepared with starch alone which shows superior viscous behavior (G" > G'). 

Addition ofxanthan increased the elastic attribute ofwater phase over 20 times (form 0.52 

Pa to 10.42 Pa) and controlled the size of aggregates. Increase in elastic modulus as a result 

of frequency development has been related to the closer packing of micro-gelled colloidal 

particles leading to greater friction forces between the droplets subjected to shear (V aIdez 

et al., 2005). 

Although the viscosity and elasticity of emulsion prepared with the addition of 

xanthan gum was considerably higher than the other emulsions, the highly shear thinning 

behavior of xanthan gum solution at selected concentration caused a slight increase in 

residence time of emulsion inside the homogeniser. This caused the formation of smaUer 

particle as was indicated earlier. Dickinson (2003) reported that once an emulsion of small 

droplets has been formed, the molecular characteristics of the adsorbed biopolymer as a 

strong barrier play the dominant role in long term stability of emulsion and consideration of 

surface activity or interfacial tension gradients are no longer relevant. 

Figure 4.8 signifies that elastic properties of xanthan added water phase remained 

after addition of oil phase and formation of emulsion. This suggested that addition of 

xanthan increased the elastic component of the interfacial film and introduced a strong 

barrier to drainage and coalescence of oil droplets. There was a slight increase in elastic 
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and viscous modulus of emulsions prepared with addition of weighting agents. This minor 

increase was due to high viscosity of added weighting agents which had a minor impact in 

stability of prepared emulsion. The phase angle (6) development of water phases and 

emulsions was also measured (Figure 4.9). This measurement confirms the domination of 

elastic characteristic by xanthan added emulsion as both water phase and emulsion 

indicated lower phase angel compare to the others. AlI these characteristics are obvious 

evidence that indicate the formation of micro-gel network for xanthan added emulsion 

since the phase angle was below 45° as frequency increased. The results are, therefore, in 

agreement with long term stability ofxanthan added emulsions as mentioned earlier. 

4.5 CONCLUSION 

This study indicated that modification of rheological characteristic of continuous 

aqueous phase can play an important role in relation to the storage stability of beverage 

emulsions. Highly shear thinning and elastic properties of xanthan gum, even at very low 

concentration, is able to provide a micro-gel network and influences the state of 

flocculation and prevents coalescence of the droplets. In particular, for a beverage emulsion 

to possess an acceptable stability, the system must acquire a solid-like character, in the 

sense that G' > G" for water phase. Octenyl-succinate starch also showed superior potential 

as an emulsifier. It was able to adsorb at interfaces, provided a thick coating and thus 

enhanced stabilizing of the droplets against gravitational separation and creaming. Xanthan 

gum added emulsions had a small volume-surface mean particle size and a narrow size 

distribution. As weIl xanthan gum was found to be an excellent alternative to replace 

weighting agents which have restricted level of use due to the health disadvantages. 
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PREFACE TO CHAPTER 5 

In Chapter 3 the relation between oil concentration and opacity and emulsion was 

found and in Chapter 4 the results were then used to investigate the physical stability of 

emulsions in presence and absence of weighting agents. It was demonstrated that addition 

of weighting agents at restricted level failed to provide desirable stability, whereas 

replacing the weighting agent with micro-gel forming xanthan gum illustrated a 

promising stability. 

In this Chapter 5, we examined the rheological properties and stability of different 

surface active and stabilizer gums at found level of oil concentration. The aim was to 

provide a rheological model for selection of surface active and stabilizer hydrocolloid 

gums concentrations in order to obtain desirable stability in practical application. 

Part of this research was presented in 2005, scientific conference series of Food 

Research and Development Center of Agriculture and Agri-Food Canada, St-Hyacinthe, 

Quebec. A manuscript has also been submitted for publication: 

Taherian A.R. Fustier P. and Ramaswamy H.S., 2006. Steady and dynamic shear 

rheological properties, and stability of non-flocculated and flocculated beverage cloud 

emulsions. Journal of Food Properties (Submitted, August 2006). 

Writing the paper, conducting the experimental work and analyzing the data were 

performed by candidate under supervision ofProfessor H.S. Ramaswamy. 

106 



CHAPTER5 

STEADY AND DYNAMIC SHEAR RHEOLOGICAL PROPERTIES, AND 
STABILITY OF NON-FLOCCULATED AND FLOCCULATED BEVERAGE 

CLOUD EMULSIONS 

5.1 ABSTRACT 

Rheological properties of single-phase, and emulsions containing modified starch 

and gum arabic as surface active hydrocolloids as weIl as xanthan and tragacanth gums as 

stabilizers were evaluated under steady and dynamic shear testing conditions using a 

control stress rheometer. Emulsions were formed 9% and 14% gum concentrations with 

oil concentration maintained at 9% thus giving al: 1 and 1.5: 1 surface active agent to oil 

ratio, respectively. The rates of droplet coalescence and creaming, for a total of 8 

emulsions, as a function storage time before and after dilution in a simulated fruit 

beverage were then investigated. Steady shear (flow curve) was weIl described by the 

Carreau model at shear stress ranging from 0.01 up to 100 Pa. 

AlI prepared water phases indicated a zero-shear viscosity plateau followed by 

shear thinning behavior with flow behavior index (n) ranging from 0.51 to 0.79 for 14% 

starch-O.3% xanthan and 14% gum arabic-0.8% tragacanth stabilized emulsions, 

respectively. The water phase flow property data were well fitted by the Einstein equation 

and its expansions. The dynamic rheological properties of water phase and emulsions 

were also evaluated for G'(w) and G"(w) from 1 to 50 rad/s. Similar curves were obtained 

with varying degrees of deviations (G' from G') for different emulsions. Starch-xanthan 

emulsion and associated water phase at 1.5:1 agent to oil ratio demonstrated viscoelastic 

behavior (G~ G') with lower droplet coalescence and creaming rates. On the other hand, 

gum arabic-xanthan emulsion at 1: 1 agent to oil ratio showed the highest rate of droplet 

coalescence and a greater degree of creaming. 

It was speculated that the lower stability of gum arabic-xanthan emulsion could be 

related to the denaturation of proteinaceous part in the gum and loss of emulsification 

capacity due to lower pH and pasteurization. 
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5.2 INTRODUCTION 

A stable beverage emulsion is characterized by long term stability in the diluted 

form, or absence of ringing resulting from raised coalesced droplets around the neck of the 

beverage bottle. Since ban and/or restriction on use of density adjusting weighting agents in 

1970 for producing cloud or flavor emulsions, their stability over the desired shelf life has 

become a common problem in the beverage industry (Trubiano, 1995; Tan & Wu, 1988; 

Chanamai & McClements, 2001; Tan, 2004; McClements, 2005; Taherian et al., 2006). 

Beverage cloud emulsions are oil-in-water emulsions comprising ofvegetable oil to 

provide opacity, and in the oil phase are a combination of weighting agents to increase the 

oil phase density. The water phase is formed by water and amphiphilic polysaccharides to 

reduce surface tension and grant steric stabilization, added stabilizer gums prolong the 

stability and control rheological properties and citric acid is used to adjust the acidity. 

Several studies conceming emulsion stability have indicated that the use of a 

proper polysaccharide in the water phase could prevent the breakdown of the emulsion 

and it will seldom reach the coalescence stage (Glicksman, 1969; Sharma, 1981; Buffo et 

al., 2001; Tan, 2004). Furthermore, to perform as an effective stabilizer for beverage 

emulsion, the surface active hydrocolloids must be readily soluble in cold water, and 

should have a low viscosity in water (to coyer the droplet surfaces by a sufficiently high 

concentration of hydrocoIloid), a high emulsifying power, and should not thicken or gel 

on agmg. 

Gum arabic, which has been known as the most hydrocolloid emulsifier, is highly 

soluble in cold water and its solubility increases at higher temperatures. Because of its 

effective emulsifying capacity and the weIl known film forming ability gum Arabic has 

been widely used in the soft drink industry for emulsifying flavour oils under acidic 

conditions. It is mainly produced from the species Acacia Senegal, and Acacia Seyal 

produces the rest. The surface activity is due to the branched arabino-galactan blocks 

attached to a polypeptide backbone. Chanamai and McClements (2002) reported that the 

hydrophobic polypeptide chain anchor the molecules to the droplet surface and the 

hydrophilic arabino-galactan blocks extend into the solution, providing stability against 

droplet aggregation by steric stabilization and electrostatic repulsion. Buffo et al. (2001) 

and Dickinson (2003) indicated that gum Arabic is an indisputable emulsifier that grants 
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functionality not by modifying the rheology of the water phase but by leading the 

formation of a macromolecular stabilizing layer around the oil droplets. Despite its 

functionality, gum arabic is a fairly expensive ingredient and there have been many 

attempts for its replacement by hydrophobically modified starch or other gums. 

In this study we used a modified starch (Purity gum; National Starch, Bridgwater, 

NJ) known as octenyl-succinated starch or OSA. It is made by esterification of starch with 

anhydrous octenyl-succinic acid under alkaline conditions (Tesch et al., 2002). It consists 

primarily of amylopectin that has been modified to contain non-polar side-groups. These 

side-groups anchor the molecule to the droplet surface, while the hydrophilic starch chains 

stick out into the aqueous phase and protect droplets against aggregation through steric 

repulsion. The Purity gum is mildly anionic in aqueous solutions and has a surface activity 

that is almost as high as gum arabic (Chanamai and McClements 2001). 

Therefore, polysaccharides such as amphiphilic gum arabic or hydrophobically 

modified starch serve as the surface active and steric stabilizer in the cloud emulsions while 

xanthan and tragacanth gums could control the rheologïcal properties of the emulsions (Tan 

& Wu, 1988; Chanamai & McClements, 2001; Tan, 2004; Sahin and Ozdemir 2004; 

Paraskevopoulou et al., 2005). 

Xanthan gum is a microbial exocellular polysaccharide approved by FDA for use in 

food. Tragacanth gum, a Persian gum, is a complex mixture of polysaccharides, mostly 

poly-D-galacturonic acid and bassorin. A part of it is miscible and a part forms a gel of 

exceptional quality. Both xanthan and Tragacant gums have been recognized as cold water 

soluble gums with good stability to salt and acid (Coia and Stauffer, 1987; Tischer et al., 

2002). 

Several studies have attempted to correlate the rheological properties and stability 

of emulsions (Quemada and Berli, 2002; Bais et al., 2005; Pal, 2000). Tempel and Van 

Den, (1963) reported that many hydrocolloids used to stabilize emulsion are shear-thinning, 

that is, they have a high viscosity at low shear rates which decreases dramatically as the 

shear rate is increased. This property is important because it means that the droplets are 

prevented from creaming, but that the food emulsion still flows easily when poured from a 

container. They have also indicated that information about the size of the aggregates and 

109 



the strength of the bonds between flocculated droplets can be determined from steady state 

flow tests over a large range of shear rates. Xie and Hettiarachchy (1997) studied the effect 

of xanthan gum on emulsifying properties of soy protein isolate. They mentioned that 

xanthan gum contributed to the emulsion stability by its adsorption at the oil-water 

interface which resulted in decreasing the surface tension as weIl as formation of liquid 

crystalline lamellae in the water phase to trap the oil droplets in the micro-gel matrix. A 

study by Chen and Dickinson (1999) on effect of emulsifiers on the viscoelastic properties 

ofheat-set whey protein emulsion gel revealed that by decreasing the mean droplet size the 

adsorbed polymer stabilizing layer gives rise to an effectively larger volume fraction and 

produce a gel of higher elastic modulus. Buffo and Reineccius (2002) indicated that an 

appropriate stability of concentrated beverage emulsion could be achieved by adjusting the 

viscosity of the system through the hydrocolloid concentration. Dickinson (2003) pointed 

out that emulsions with low volume fraction (5-10%) favor the destabilization by 

flocculation when the aqueous phase contains a non-gelling hydrocolloid or gelling 

hydrocolloids at a concentration below the gelation threshold. Paraskevopoulou et al. 

(2005) studied the stability of olive oil - lemon juice emulsion stabilized by xanthan gum 

as stabilizer and gum arabic and propylene glycol alginate as emulsifiers, and emphasized 

the importance of continuous phase rheology in determining the rheological and creaming 

behavior of emulsions. Batista et al. (2006) studied the rheological properties of added 

lutein and phycocyanin in colored oil-in-water emulsions and highlighted the contribution 

of each component on the quality of formed emulsions. 

The production of high quality food emulsions, consequently, depends on the 

knowledge of the contribution of the components both individually and in combination on 

the properties of the end product (McClements, 2005). 

So far most studies on stabilizing beverage emulsions have aimed at using different 

weighting agents; but those dealing with the shelf life of beverage emulsions without 

weighting agents are limited. The objective ofthis study was to investigate the effect of the 

viscosity modifiers (starch and gum) and surface active agents (emulsifiers) on the 

rheology and stability of beverage emulsions both in the concentrated and dilute 

(simulatedjuice drink) forms in the absence ofweighting agents. 
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5.3 EMULSION RHEOLOGY 

Beverage emulsions are considered to be low internaI phase emulsions containing 

deformable partic1es which could exhibit shear-thinning and viscoelastic properties. The 

droplets of emulsions carry two opposing effects under a steady shear flow. The tirst one 

is viscous stress, 1] w r , that has a tendency to elongate the droplet and the second one is a 

physical stress, Œ / R, that tends to maintain the droplet in a spherical shape. The 

equilibrium shape of drop let is, therefore, the ratio of the two stresses which is refered to 

as cappilary number (N Ca, the capillary number represents the relative effect of viscous 

forces and surface tension acting across an interface between two immiscible liquids) 

(Pal, 2000a; Pal, 2003): 

N ca = '7w r RI Œ (1) 

where '7w is the water phase viscosity, r is the shear rate, R is the droplet radius, and (J 

is the interfacial tension. 

Reynolds number is the ratio of inertial forces to viscous force and for beverage 

emulsions, oil-in-water, (Pal, 2000a): 

(2) 

where NRe,p is the partic1e Reynolds number and Pw is water phase density. 

According to Pal (1998) and Pal (2000b), the relative viscosity, '7" of emulsions 

can be expressed in the form of a rheological equation when Coulombic and van der 

Waals interactions are negligible: 

(3) 
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where ljJ is volume fraction of oil phase. The relative viscosity (17r) can be calculated 

from the ratio of the emulsion viscosity (17Em) over water phase viscosity (17w): 

17r = 17Em 
17w 

and K is the ratio of the oil phase viscosity to that of the water phase viscosity: 

where 17 ail is the viscosity of oil phase. 

K = 170il 
17w 

(4) 

(5) 

The viscosity of covered oil droplets in beverages is much greater than that of the 

water phase (Yfoil > > Yfw) and the droplets are nearly spherical (McClements, 2005). Under 

such conditions and under creeping flow, both Capillary and Reynolds numbers are low 

(N Ca ~ 0 and NRe"p ~ 0), and the relative viscosity for unflocculated beverage emulsions 

can be expressed as: 

17r = f(K,ljJ) (6) 

The functional form of Equation 6 was tirst presented by G.!. Taylor (Pal, 2000bY: 

17 = 17Em =1+ (5K +2) ljJ 
r 17w 2(K + 1) 

(7) 

This equation is valid for very dilute emulsions where the interaction of adjacent 

droplets is low, but may not be applicable to the beverage emulsions when the 

hydrodynamic interaction is considerable. 

For dilute suspensions of rigid spherical partic1es, the Einstein equation [Eq.(6)] 

and its expansions have been wide1y used (Sherman, 1983; Pal and Rhodes, 1989; 

Quemada and Berli, 2002; Buffo and Reineccius, 2002; Starov and Zhdanov, 2003; 

Klinkesom et al., 2004; McClement, 2005; Taherian et al., 2006): 
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(8) 

This equation covers suspensions containing continuous phase (water phase) of 

Newtonian behavior and rigid partic1es. 

For the dilute suspensions of fluid spherical partic1es the modified Einstein 

Equation is given by (McClement, 2005) 

77Em = 77w[1 +(77w + 2. 5770
il Jrp] 

77w + 770il 

(9) 

For concentrated suspensions of non-flocculated partic1es and in the absence of 

long-range colloidal interactions the following two equations have been given to define 

the relative viscosity of concentrated beverage emulsions: 

(10) 

The value of the constants a, b, c, and ... can be determined either experimentally 

or theoretically. The values a and b for rigid partic1es were established as 2.5 and 6.2, 

respectively (Buffo and Reineccius, 2002; McClements, 2005) and 

(11) 

where rpc is an adjustable parameter related to the volume fraction at which the spheres 

become c10sely packed and [77] is the intrinsic viscosity. If the flocs are assumed to be 

approximately spherical, then [77] = 2.5 and rpc = 0.65 (Buffo and Reineccius, 2002; 

McClements, 2005). 
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The effective volume fraction ( CPeff ) of a fractal floc, on the other hand, is related 

to the size of the floc and the fractal dimension (Buffo and Reineccius, 2002; 

McClements, 2005): 

(12) 

where R is the floc radius and r is the droplet radius. In the presence of long-range 

repulsive interactions (electrostatic, steric) where the droplets are prevented to become 

close together and collide which results in increasing the effective volume fraction of the 

droplets - a modified Dougherty and Krieger equation has been suggested (Buffo and 

Reineccius, 2002): 

(13) 

where the 8 is half the distance of closest separation between the droplets and for steric 

stabilization which is approximately equal to the thickness of adsorbed layer. 

Buffo et al. (2002) reported that determination of layer thickness based on 

viscosity is prone to error due to different degree of poly-dispersity and packing density 

at the oil/water interface among the samples, as weIl as dissimilar electrolyte contents 

which can reduce the effective volume fraction. Later, Buffo and Reineccius (2002) 

justified the assumption of layer thickness to be one eighth of the particle radius: b =r/8 

and oeff = 2.688. Therefore, 

1'7 = (1- 4 12,,-)-1.125 
"lEm 17w . op (Model I) (14) 

In term of complex shear modulus (G*) and in the linear viscoelastic region, the 

following equation is suggested by Pal (2000c) and Pal (2002): 
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[ 
3] 1 +-q) 

G* = G* 2 
w 1- q) 

where G: is the complex shear modulus ofwater phase and G* defined as 

G* =G' + }G" 

where G' is the storage modulus, G" is the loss modulus and} is the eomplex number. 

For a dilute suspension of solid spherieal particle, the eomplex shear modulus 

(G*) in the linear viseoelastie region is given by (Pal, 2002): 

Equation 17 is known as Palieme model (Pal, 2000e and Pal, 2002) and His given by 

where G;il is the eomplex shear modulus of the oil phase. 

(15) 

(16) 

(17) 

(18) 

For dilute suspensions of rigid spherieal particles (G;jf ~ 00), H is unit y and 

Equation 17 is given by 

(19) 

Pal (2002) developed another equation for suspensions of rigid particles as 
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(20) 

Considering oil particles are rigid (G;u ~ (0): 

(Model II) (21) 

In the present study, the theoretieal models of emulsion viseosity for eoneentrated 

beverage emulsions eonsisting of different surface active hydroeoUoids and identieal 

volume ratio were compared. The complex shear moduli of emulsions were also 

compared to Equation (21). 

5.4 MATERIALS AND METHODS 

5.4.1 Materials 

Coconut oil was obtained from Univar and Daminco Ine. (Boueherville, Quebec) 

and modified starch (Purity Gum 2000) from National Stareh and Chemieal (Bridgewater, 

NJ). Spray dried arabie and xanthan gums (TIC PRETESED® XANTHAN 200) were 

provided by Nealanders Inc. (Montreal, Quebee). Tragacanth gum was kindly granted by 

Hydroteeh Ine. (Teheran, Iran). Food grade eitrie acid and potassium sorbate were used to 

adjust the acidity and reduce the chance of contamination in aU prepared emulsions. 

5.4.2 Preparation of emulsions 

Modified starch and gum arabic as surface active emulsifying agents and xanthan 

and tragacanth as stabilizing agents were dissolved separately in distilled water and 

stored ovemight for completing hydration. After hydration, the appropriate amount of 

citric acid in form of 50% solution and potassium sorbate solution were added to the 

emulsifying solutions. After addition of a constant amount of coconut oil 9% 

weight/weight (w/w based on final preparation) into the emulsifier solutions, each sample 
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was stirred for 15 min. The surface active agent concentrations were based on 1: 1 and 

1.5:1 agent/oil ratio, thus the batches were 9 and 14% agent with 9% oil (all w/w basis 

final weight). The solution of stabilizer gums were, then, added to the dispersion and 

followed by a 3 min homogenization at high speed using Polytron laboratory scale 

homogenizer (Polytron, PT 10-35, Kinematica, AG Ltd. Switzerland). Further size 

reduction was obtained by using a laboratory scale high pressure 

homogenizer (Emulisiflex-C5, Avestin, Ottawa, ON) at 3500 psi and 2 passes. 

5.4.3 Particle size distribution 

The mean particle size and particle size distribution of prepared emulsions were 

determined using an integrated light scattering technique (ZetaSizer 4, Malvem 

Instruments Ltd., Malvem, UK). Concentrated beverage emulsions were diluted 1: 1 000 

using DI water to prevent multiple scattering effects (Klinkesom et al., 2004) and placed 

in specified glass cuvette for size measurement. The instrument used the method of 

photon correlation spectroscopy (PCS) to measure particle size in constant random 

thermal, or Brownian, motion. This motion causes the intensity of light scattered from the 

particles to vary with time. Large particles move slowly than small ones, so that the rate 

of fluctuation of the light scattered from them is also slower. PCS uses the rate of change 

of these light fluctuations to determine the size distribution of the partic1es scattering 

light. Determination of size was done in duplicate at room temperature and right after 

preparation of each emulsion. 

5.4.4 Surface tension 

The Du Nouy nng method was used to determine the surface tension of 

hydrocolloid gum solutions (Huang et al., 2001). A Fisher Surface Tensiomat (Fisher 

Scientific, Sainte-Foy, Quebec) was employed and the force acting on the ring was 

measured as it was moved upward form 3 mm below the surface of gum-air interface. 
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5.4.5 Opacity, specifie gravity and volume fraction 

Opacity of diluted emulsions (1: 1 000) was measured at 660 nm visible range 

usmg a spectrophotometer (Cary, 300-Bio, UV-Visible Spectrophotometer, Varian, 

Australia). Specifie gravit y of components phases were evaluated at the prepared 

concentrations using a 25 ml specific gravit y bottle [Fisherbrand, Ottawa, Canada]. The 

volume fraction of each emulsion was determined based on following expression: 

tjJ = Sgw -SgEm 

Sgw -Sgoil 
(22) 

where Sgw is the specifie gravit y of water phase, SgEm the specific gravit y of emulsion 

and Sgouthe specifie gravit y of oil phase. 

5.4.6 Rheological Tests 

Using a control-stress rheometer (AR2000 Rheometer, TA Instrument, New 

Castle, DE) equipped with a stainless steel 60 mm cone of 2° and solvent trap. The 

measurement temperature was constant at 22 OC using a circulating bath and a controlled 

peltier system. Flow and dynamic tests were conducted at the ranges of 0.001-100 Pa and 

1-50 rad/sec (using constant stress value of 1 Pa, find from linear viscoelastic region) 

respectively. Hydrocolloid gums after 24 h hydration and emulsions immediately after 

being prepared were subjected to rheological measurements. 

5.4.7 Physical stability 

Instrumental Test 

Homogenized emulsion was diluted in acidified sugar solution 2% (w/w) , bottled and 

pasteurized (12 min at 95 OC) for stability studies. The pasteurization time was found by 

installing a semi-rigid thermocouple with the tip 10cated at 1: 1 0 of height of the bott1e 

from the bottom. An aliquot of 6 ml of each pasteurized sample was poured into a flat­

bottom cylindrical glass tube (100 mm height, 16 mm internaI diameter) and subjected to 

an optical scanning screening (Quick Scan, Coulter Crop., Miami, FL). The transmission 

of monochromatic light (À = 850 nm) from the diluted emulsion was measured as a 
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function of their height in order to quantify the creaming rate. Creaming rate was then 

calculated from the height of the interfaces between the opaque droplet-rich layer and the 

transparent droplet-depleted layer as a function of time. Creaming rate was expressed as 

slope of absolute thickness of layers per unit time. 

Observation in boUles 

The 2% (w/w) diluted emulsion (simulated beverage) after preparation, bottling 

and pasteurization for 12 min at 95°C was stored at ambient temperature. The creaming 

stability was monitored in duplicate with a total of 6 bottles for each prepared emulsion. 

The samples with presence of whitish rings on the neck of the bottles after a period of 

one week were graded as +, and ± when creaming was observed after 3 weeks. Simulated 

beverages containing 2% of emulsions with no sign of creaming after 5 weeks were 

considered stable with negative sign. 

5.4.8 Statistical analysis 

The rate of coalescence of emulsion was statistically tested using the regression 

and ANOVA - two-factors with repli cation, and the means were compared at a significant 

level of 5%. Statistical analysis was done using Microsoft Excel and experiments were 

performed in duplicate 

5.5 RESUL TS AND DISCUSSION 

5.5.1 Flow properties 

The selection of concentration for stabilizing agents was based on primary steady 

shear rheology of xanthan and tragacanth gums at different concentrations. Xanthan gum 

at 0.3% and Tragacanth gum at 0.8% indicated the comparative consistency coefficients 

at 886 and 883 mPa, respectively. Xanthan gum, however, had a lower flow behavior 

index at 0.28±0.02 compared to that of tragacanth gum at 0.53±0.03. Since the 

measurements were carried out at shear rate that were sufficiently lower than the high 

shear rate plateau (1]00 ~ 0), the modified Carreau equation was used to compare the 

flow properties of different emulsions (Carreau, 1972) 
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(23) 

where 170 is the limiting viscosity for the first Newtonian region, r is the shear rate, Ji, is 

the time constant calculated from reciprocal of the shear rate at which the zero shear rate 

component and power-Iaw component of flow curve intersect and n is the flow behavior 

index. 

The emulsions flow curves for 1: 1 and 1.5: 1 surface active agent/oil are shown in 

Figures 5.1 (a, b, c and d) and Figure 5.2 (a, b, c and d) respectively. Both figures 

represent a shear thinning behavior with a zero-shear rate limiting viscosity (170) at very 

low shear rate (r). The flow curves were identical for the three measurements and a time 

period of two weeks after preparation. The zero-shear rate limiting viscosity slightly 

increased for aIl the emulsions after two weeks, corresponding to the upper limit of the 

linear viscoelastic range of the emulsion (Table 5.1). Increase in viscosity of emulsions 

containing tragacanth and xanthan gums as a function of storage time has also been 

reported by Coia and Stauffer (1987). They assumed that the initial viscosity resulted 

from the hydration of amorphous region of tragacanth gum containing the crystalline 

bodies in their solid state. The crystalline bodies that were soluble and more hydrophobie, 

and could migrate to the interfacial area producing a film around the droplet. The 

remaining crystalline bodies were unable to migrate the continuous phase and upon 

standing slowly hydrated producing additional viscosity. It is also possible that increase 

in zero-shear viscosity partially corresponded to higher degree of flocculation, thus, more 

stress needed to breakdown the flocs. 

The zero-shear viscosity is related to application of shear stresses within the 

Newtonian plateau producing small deformations which were within the linear 

viscoelastic range. As a result, the viscosity measured at equilibrium flow corresponded 

to the Newtonian compliance and as long as the applied shear stress was within the linear 

viscoelastic range of the emulsion, the measured equilibrium viscosity was constant. 

Buffo and Reineccius (2002) and McClements (2005) also indicated that at low shear 

rates the hydrodynamic forces are not large enough to disrupt the flocs which then act 
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Figure 5.1. Steady-state flow curves for a) 9% arabic and 0,8% tragacanth gums, b) 9% 
arabic and 0.3% xanthan gums, c) 9% modified starch and 0.8% tragacanth gums and d) 
9% modified starch and 0.3% xanthan stabilized emulsions. 
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Figure 5.2. Steady-state flow curve for (a) 14% arabic and 0,8% tragacanth gums, (b) 
14% arabic and 0.3% xanthan gums, (c) 14% modified starch and 0.8% tragacanth gums 
and (d) 14% modified starch and 0.3% xanthan stabilized emulsions. 
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Table 5.1. Zero-shear viseosity and flow behavior index of emulsions as a funetion of 
storage time. 

Emulsions 170 170 170 n n 

(mPa.s) (mPa.s) (mPa.s) (slope) (slope) 

day-1 day-7 day-14 day-1 day-7 

a) 483.2±3.8 495.5±6.8 601.3±11.5 0.77±0.01 0.75±0.01 
b) 1911.8±16.7 2532.2±9.2 2895.5±8.5 0.66±0.02 0.61±0.01 
e) 2917.6±9.8 3503.3±23.5 4749.3±18.9 0.68±0.01 0.63±0.01 
d) 8478.9±31.8 11991±40.2 16862±14.5 0.58±0.01 0.54±0.01 

*** 
e) 524.3±11.7 580±9.3 631.8±12.9 0.79±0.02 0.78±0.00 
f) 2252.8±17.8 2532±24.7 3053.0±19.6 0.68±0.02 0.61±0.01 
g) 3054.1±12.3 4771.8±18.7 6861.3±25.5 0.78±0.001 0.70±0.001 
h) 31038.8±76.6 33329.2±65.2 39558.1±44 0.51±0.00 0.49±0.01 

a) 9% Arabie + 0.8% Tragaeant + 9% Coeonut oil, b) 9% Arabie + 0.3% Xanthan + 9% 
Coeonut oil, e) 9% Stareh + 0.8% Tragaeanth + 9% Coeonut oil, d) 9% Stareh + 0.3% 
Xanthan + 9% Coeonut oil, e) 14% Arabie + 0.8% Tragaeant + 9% Coeonut oil, f) 14% 
Arabie + 0.3% Xanthan+ 9% Coeonut oil, g) 14% Stareh + 0.8% Tragaeanth + 9% 
Coeonut oil, h) 14% Stareh + 0.3% Xanthan + 9% Coeonut oil. 
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like particles with fixed size and shape, resulting in a constant viscosity. This increase 

was more pronounced for emulsions formed by modified starch (purity gum 2000) -

tragacanth gum as well as arabic - xanthan gum combinations which could be related to 

the higher degree of flocculation. As the shear rate is increased and the values of stress 

exceeded the linear range, the hydrodynamic forces become large enough to deform and 

disrupt the flocs, which elongate and align with the shear field, and a rapid dec1ine in 

equilibrium viscosity occurs. The shear thinning index (n) indicated a decrease after two 

weeks storage time period for all emulsions, the magnitude was different. This decrease 

was again more articulated for emulsions prepared with modified starch and tragacanth 

gum and/or arabic and xanthan gum at selected concentrations. The shear thinning region 

has been reported to be a consequence of a dramatic shear induced structural breakdown, 

related to the mechanism of oil droplet deflocculation (McClements, 2005; Batista et al., 

2006). Both findings, therefore, describe the lower stability of these emulsions compared 

to those prepared with modified starch and xanthan and/or gum arabic and tragacanth 

gum combinations. 

The experimental flow curves consisting of apparent viscosity as a function of 

shear stress were also compared with Buffo and Reineccius model (Mo deI I, Eq. 14). 

This model assumed the reduction of effective volume fraction due to different packing 

density of gums at the oil/water interface and similar electrolyte content. Since we used 

the combination of surface active and stabilizer gums, accounting for both hydrodynamic 

and colloidal interactions, the viscosity was predicted by inc1uding additional volume 

fraction term using extended Einstein equation as: 

(24) 

The flow curves for day 1 and 14 along with model predicted values (Equation 

24) are shown in Figure 5.3 (a, b, c and d) for stable emulsions and Figure 5.4 (a, b, c, 

and d) for unstable emulsions. The values of a were found to be 2, 1.8, 1.4 and 0.6 for 

14% starch-0.3% xanthan, 14% arabic-0.8% tragacanth, 14% Arabic-O.3% xanthan and 

14% starch-0.8% tragacanth, respectively. The values of b were constant at 6.2 for all 

predictions. As illustrated Model I over-predict the viscosity of emulsions, while all flow 
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curves illustrate an excellent fit for predicted model. Stable emulsions after 14 days 

storage (Figures 5.3 band d) indicate minor deviations from predicted flow curves. The 

unstable emulsions (Figure 5.4 b and d) illustrate this deviation along with an increasing 

zero-shear viscosity. Unstable emulsions, hence, indicated greater extent of flocculation 

associated with holding the particle together, increasing the resistance to rupture and 

dramatic decrease of viscosity when the flocs became elongate and aligned with the shear 

field. 

5.5.2 Dynamic properties 

In order to determine the linear viscoelastic region, the rheological parameters 

* [storage modulus (G'), loss modulus (G") and complex modulus (G)] were first 

measured by conducting a stress sweep test at a fixed frequency. The stress of 1 Pa was 

then obtained from linear region and kept constant during course of measurements. The 

frequency development of the viscoelasticity of emulsions containing an even amount of 

surface active agents 1:1 or 1.5:1 gum/oil, on day 1 and day 14, are shown in Figures 5.5 

(a, b, c and d) and Figure 5.6 (e, f, g and h), respectively. The storage modulus (G') and 

loss modulus (G") for aIl emulsion systems showed very similar monotonic development 

at low frequency while emulsions prepared with modified starch and xanthan gum 

increased to a greater extent at elevated frequency (Figure 5.5d and Figure 5.6h). 

For emulsions prepared with gum arabic or starch and tragacanth, there appeared 

to be a more divergent behavior among the loss moduli with increasing frequency. It is 

interesting to note that, with the exception of emulsion formed by 14% modified starch 

and 0.3% xanthan, the loss modulus increased after 14 days of storage while the storage 

modulus decreased slightly. This means that viscous component become more prominent 

after storage and is in agreement with the earlier results for zero-shear viscosity in steady­

state flow tests. Comparing both figures, it can also be noted that the emulsions stabilized 

by tragacanth gum illustrated a lower storage moduli as compared to emulsions stabilized 

by xanthan gum. The diversity between storage modulus (G') and loss modulus (G') for 

emulsions containing tragacanth gum are also more pronounced (Figures 5.5a and 5.5c 

and Figures 5.6e and 5.6g). 
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In our primary tests, xanthan gum did not reduce the surface tension of water 

while tragacanth gum resulted in decreasing the surface tension in a great extent (from 

72.5 dyne/cm to 53 dyne/cm). Possibly, the el asti city of the covered oil droplets 

suspended in water phase dominated the measured viscoe1asticity and, therefore, masked 

the viscoelastic effects of added tragacanth. For emulsions formed by modified starch and 

xanthan, the mechanical behavior was that of a viscoelastic liquid, where G' 2: GU through 

the entire frequency range (Figure 5.5d and Figure 5.6h). Nonetheless, in the case of 

arabic and tragacanth gums, a weak-ge1 structure was observed where GU> G' and both 

moduli increase with frequency under almost the same gradient. AlI these features are 

unambiguous evidence that gel-network is being set up in modified starch coconut oil 

xanthan stabilized emulsions. Consecutively, the corresponding frequency developments 

of emulsions stabilized with arabic and tragacanth gums showed lower value of the 

viscoelastic moduli as compared to those of modified starch and xanthan gum stabilized 

emulsions. It should also be noted that the change in both moduli as influenced by storage 

time is lower for arabic and tragacanth gum stabilized emulsions (Figure 5.5a and Figure 

5.6e) as compared to arabic and xanthan stabilized emulsions (Figure 5.5b and Figure 

5.6t). 

As pointed out earlier, in concentrated beverage emulsions, the colloidal 

interactions have been reported to be of short-range significance (Buffo et al., 2001; 

Buffo and Reineccius, 2002. In this situation, the particles begin to interact with each 

other through a combination of hydrodynamic and colloidal interactions. Hydrodynamic 

interactions result from the relative motion of neighboring parti cl es and alter the viscosity 

of the system. In order to account for the effect of these interactions, the additional 

volume fraction should be added (McClements, 2005), therefore the Einstein equation 

can be extended as 

(25) 

where a and b were found to be 4.5 and 6.2, respectively, for 14% starch-0.3% xanthan 

and 10 and 6.2, respective1y for 14% arabic-0.8% tragacanth stabilized emulsions. 

Figures 5.7a and b compare experimental data of 14% starch-O.3% xanthan gum 

and 14% Arabic-0.8%tragacanth gum stabilized emulsions, respectively, with the 
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complex shear modulus, Equation (21), developed by Pal (2002) and predicted model 

(Equation, 25) suggested in this study. Equation (21) is referred as Model (II) in both 

figures. These two emulsions indicated good stability after dilution in simulated citrus 

beverage with no sign of ringing after 5 weeks. The experimental data consisting of 

complex modulus of emulsions as a function of oscillation frequency are plotted and 

compared with both Pal and predicted models. As illustrated, the Pal model under­

predicted the complex modulus and the deviation increased with increasing frequency. It 

should be noted that this model represented a good fit only at low value of dispersed 

phase volume fraction for suspension of spherical glass beads in purified 

carboxymethylcellulose (CMC) Pal (2002). In our case, although the volume ratios of aIl 

prepared emulsions were lower than 0.1 (0.099 for 14% starch-0.3% xanthan stabilized 

emulsion and 0.091 for 14% arabic-0.8% tragacanth stabilized emulsion), the covered 

droplets did not act as glass beads. Figures 5.7a and 5.7b also indicate that increase in 

el asti city of covered droplets could reduce this divergence. 

The differences in viscoelastic properties of the emulsions referred to in this study 

were related to the arabic-tragacanthe, starch-tragacanth, arabic-xanthan and starch­

xanthan combinations. Hydrophobic interactions between the oil and proteins in 

tragacanth and arabic gums as well as the modified starch at the interface may account 

for the relaxation and overall viscoelastic properties. However, they cannot be considered 

as being the only responsible mechanisms controlling the degree of the aggregation of the 

emulsion droplets as reported by Valdez et al. (2005). Dramatic reduction of 

emulsification capability of gum arabic has been reported at low pH (Garti and 

Reichman, 1993). Even though xanthan gum did not impart in reduction of surface 

tension but it was the most effective gum in controlling the rheological properties. 

5.5.3 Stability of emulsions in concentrated and diluted form 

The stability of emulsions in diluted form against oil droplet coalescence was 

determined by following the change with time of the average droplets size and droplet 

aggregation rate. The rate of coalescence of emulsion droplets (De) mainly followed the 

first-order kinetics (Sherman, 1983; Ye et al., 2004; Paraskevopoulou et al., 2005): 
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(26) 

where No and Nt are the numbers of drop lets per unit volume of emulsion initiaIly and 

time t, respectively, and De is the rate droplets coalescence. In term of average droplets 

size, the Equation is given as (Sherman, 1983): 

InDt = ln Do + DJ 
3 

(27) 

where Do and Dt are the mean drop let sizes initiaIly and at time t, respectively. Therefore 

De was determined by plotting 3(ln (D/Do) versus time (t). 

The results for emulsion droplet size, rate of coalescence of emulsion droplets, 

opacity and ringing in bottle for aIl prepared emulsions are tabulated in Table 5.2. The 

extent of droplet coalescence is associated with creaming (ringing in bottle). The rate of 

coalescence also indicated a high coorelation coefficient (0.97) when were ploted versus 

creaming rate. Emulsion stabilized by arabic-xanthan combinations indicated that the rate 

of coalescence in both concentrated and diluted forms were significantly different 

(p<0.05). Modified starch-tragacanth stabilized emulsions also demonstrated a lower 

stability compared to arabic-tragacanth and modified starch- xanthan stabilized 

emulsions. Increase in concentration of gum arabic in arabic-xanthan emulsions did not 

improve the emulsion stability, and additional concentration of modified starch in starch­

tragacanth emulsions had a slight effect on stability improvement, possibly, due to 

increase in water phase viscosity. Arabic-tragacanth emulsions, despite of low viscosity 

of their water phases, were also among the most stable emulsions. The highest rate of 

coalescence was associated with arabic-xanthan emulsions and the lowest rate of 

coalescence was associated with the modified starch-xanthan emulsions. 

In order to find an explanation for aIl these occurrences, the previously reported 

data by Garti and Reichman (1993) would be useful. They reported that "the gum arabic 

behaves as a typical surface active protein and anchors strongly to the oil phase via its 

proteinaceous part of the molecule. When the proteinaceous part is removed, denatured, 

or deactivated, the gum tends to lose its surface activity and emulsification capacity". It is 

also worthy to mention that the rheological testes on arabic gum solution indicated lower 
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Table 5.2. Comparison of partic1e size growth, volume ratio, opacity and stability in 
simulated beverages for prepared emulsions. 

Emulsions Average partic1e size, *Dt (nm) De Opacity Ringing 

Day-1 Day-7 Day-14 nmlday 660nm in bottle 

9%A+0.8%T 756.2±11.7 797.4±5.6 835.6±4.1 0.023 0.71±0.01 ± 

9%A+ 0.3%X 772.9±8.3 930.8±12.2 993.6±0.9 0.057 0.65±0.02 + 

9%S+0.8%T 354.6±5.6 380.7±2.l 412.4±5 0.035 0.24±0.01 + 

9%S +0.3%X 377.9±5.6 389.1±2.3 409.8±8.5 0.019 0.45±0.01 

14%A+0.8%T 614.6±7.2 633.7±13.7 667.7±6.1 0.019 0.93±0.07 

14%A+0.3%X 717.1±2.5 782.0±3.l 895.7±10.2 0.052 0.76±0.02 + 

14%S + 0.8%T 366.5±6.3 388.4±4.9 417.6±4.0 0.030 0.25±0.01 + 

14%S + 0.3%X 378.8±1.8 389.9±2.3 401.1±3.9 0.013 0.56±0.01 

*Do is Dt at day 1 
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viscosity and practically Newtonian behavior at the selected concentrations. The 10wer 

stability of arabic-xanthan emulsions may, therefore, be due to the 10ss of emulsification 

capacity of arabic gum as the influence of acidity and pasteurization temperature. Since 

xanthan gum as well did not indicate any surface activity, the only stabilization effect is 

due to the viscosity and, hence, emulsion will separate rapidly. The results are also in 

agreement with Chanamai and McClements (2001) who studied the depletion 

flocculation of beverage emulsions by gum arabic and modified starch. They reported 

that emulsions containing gum arabic are more susceptible to depletion flocculation 

compare to emulsions containing modified starch. They also reported that gum arabic has 

a greater aqueous phase effective volume than modified starch due to higher molecular 

weight and more open structure of arabic gum. 

In the case of arabic-tragacanth emulsions, although the emulsions had an 

identical type of preparation, tragacanth gum is more surface active and is more resistant 

to acid and heat treatment. Therefore, the greater stability of these emulsions may be due 

to the residual surface activity contributed by tragacanth gum. Gum arabic stabilized 

emulsions also added greater opacity to the simulated beverage emulsions compared to 

modified starch stabilized emulsions. 

The rate of creaming (aggregation) for emulsion at low and elevated 

concentrations of arabic and modified starch stabilized emulsions are illustrated in Figure 

5.8 and Figure 5.9 respectively. As the rates of aggregations are the highest for arabic­

xanthan emulsions, the results are in excellent agreement with previously mentioned 

coalescence rate. Once again, the modified starch-xanthan emulsion at elevated 

concentration of modified starch indicated the lowest aggregation rate and, hence, the 

most stable emulsion in both concentrated and diluted forms. 

Figure 5.10 and Figure 5.11 illustrate shelf stability of pasteurized simulated 

citrus beverages containing 2% emulsions after 12 weeks storage at room temperature for 

1:1 and 1.5:1 agent to oil combinations, respectively. As it can be observed that the 

ringing and aggregation are associated mostly with arabic-xanthan emulsions and slightly 

with modified starch-tragacanth emulsions at low and elevated surface active gum 

concentrations. Since the separation of starch-tragacanth stabilized emulsion was also 
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Figure 5.10. Shelf stability of pasteurized simulated eitrus beverages eontaining 2% 
emulsions, stabilized by 1) 9% Arabie and 0.3% Xanthan, II) 9% Stareh and 0.3% 
Xanthan, III) 9% Arabie and 0.8% Tragaeanth, IV) 9% Stareh and 0.8% Tragaeanth, after 
12 weeks storage at room temperature. 
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Figure 5.11. Shelf stability of pasteurized simulated eitrus beverages eontaining 2% 
emulsions, stabilized by V) 14% Arabie and 0.3% Xanthan, VI) 14% Stareh and 0.3% 
Xanthan, VII) 14% Arabie and 0.8% Tragaeanth, VIII) 14% Stareh and 0.8% Tragaeanth, 
after 12 weeks storage at room temperature. 
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observed in the concentrated fonn, the instability may be is due to the incompatibility or 

coacervation of these two hydrocolloids. As Dickinson (2003) stated the thennodynamic 

incompatibility implies the separation of emulsion into two distinct aqueous phases, one 

rich in protein and other rich in hydrocolloid. The observations, therefore, are in a good 

agreement with the results obtained by both rheological assessment and particle 

properties examinations. 

5.6 CONCLUSIONS 

This study demonstrated that both modified starch-xanthan and arabic-tragacanth 

gum combinations could be used to fonn highly stabilized beverage cloud emulsions. In 

the considered concentration range, the rheological properties of modified starch-xanthan 

gum combination were able to provide a gel matrix and highly stable emulsion. Arabic­

tragacanth stabilized emulsions demonstrated rheological properties with fewer changes 

in shear thinning behavior after storage. The rheology of aIl prepared emulsions can be 

confidently modeled through the Einstein equation or its exponential expansion. The 

predicted model for complex shear modulus also weIl fitted with experimental data. 

With the exception of arabic-xanthan emulsions which demonstrated the lowest 

stability, the creaming stability and rheology of beverage emulsions were affected by 

increasing surface active gum concentration. As a first approach, we venture to suggest 

that the lower stability of arabic-xanthan emulsions may be due to the loss of 

emulsification capacity of arabic gum as an influence of acidity and pasteurization 

temperature. In the case of arabic-tragacanth emulsions, the greater stability could be 

observed due to higher surface activity and higher stability to acid and heat by tragacanth 

gum. From practical point of view, the results provide useful infonnation for achieving 

reasonable stability and opacity for concentrated emulsion and fruit beverages. 
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PREFACE TO CHAPTER 6 

In this chapter we investigated the shelf stability of emulsions in orange beverage. 

The reformulation of emulsions was based on the obtained results from previous chapter 

for the most and the least stable emulsions. 

The aims were first to confirm our previous results and, second to approach our 

main goal of replacement of health restricted weighting agents with natural and food 

grade ingredients for industrial practices. 

Part of this research was presented in conference of Encapsulation et enrobage, La 

Fondation des Gouverneurs (CRDA), St-Hyacinthe, Quebec, 1 février 2006 and Joint 

Conference of AAFC-CIFST, Montreal, Quebec, 2006. This research was presented at 

Food Safety and Nutrition Conference (AAFC Annual Meeting for Food Safety and 

Nutrition) October 2006, Ottawa, Ontario. 

The experimental work and data analysis were carried out by the candidate under 

supervision of Professor H. S. Ramaswamy. Dr. P. Fustier supported the resources and 

provided scientific advices. 
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CHAPTER6 

STABILITY OF CLOUD EMULSIONS IN ORANGE BEVERAGE 

6.1 ABSTRACT 

Orange beverage emulsions were prepared using gum arabic and two types of 

modified starches (Purity Gum Be and Purity Gum 2000) as emulsifying agents at 1: 1 

and 1.5:1 agent/oil concentrations. A constant amount ofvegetable oil was added to each 

gum solution followed by addition of even amounts of xanthan gum as stabilizers. 

Rheological properties, turbidity and droplet properties of each prepared emulsion 

were examined using TA-Rheology Instrument equipped with a 60 mm and 2° cone, 

turbidity-meter and light scattering respectively. After addition of 2% (w/w) emulsions in 

orange beverage, containing 10% orange juice, creaming stability of emulsions were 

tested instrumentally and via visual observation in pasteurized glass bottle. 

AIl surface active agents were able to reduce the surface tension at the oil-water 

interface. Emulsion prepared with modified starch (Purity Gum Be) at 1.5:1 (gumloil) 

resulted in a higher e1asticity compared to the other emulsions (G' Be > G' 2000 > G' Arabie). 

Both types of modified starches (Putity Be and 2000) emulsions resulted in a greater 

stability than gum arabic emulsions. While creaming was associated with emulsions 

formed with 1: 1 gumloil for both Purity 2000 and gum arabic emulsions, after 3 month 

storage at room temperature, Purity Gum Be emulsions at both low and elevated 

concentrations provided appropriate stability with no sign of ringing in orange beverage. 
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6.2 INTRODUCTION 

There is a constant increase in market demand for convenience, valuable and 

nutritional juices and drinks. Among them orange beverages in the form of RTD (ready­

to-drink), frozen concentrated, powder and shelf-stable concentrated (premix) should be 

mentioned. The classification of fruit juice, or flavor-based drinks and products, can 

include many products such as concentrated fruit juices, squashes, R TD (ready-to-drink) 

beverages, sodas and low-calorie drinks, as weIl as powder mix preparations. 

The cloudy appearance of orange beverage is related to addition of clouding 

agents (emulsions) and maintaining the stability of emulsion is of great importance. Garti 

et al., (1991) reported that the clouding agent must contribute to the opacity of the 

formulated orange soft drink without affecting the stability of the cloud (no creaming, 

ringing or separation), color, taste or odor of the fini shed beverage. 

A stable beverage emulsion is, therefore, characterized by long term stability, in 

diluted form, with absence of ringing resulting from raised coalesced drop lets around the 

neck of the bottle. After the year 1970, due to branding and restriction in use of density 

adjuster (weighting agents), producing a cloud or flavor emulsion that remain stable over 

the desired she1f life has became a common problem in the beverage industry (Trubiano, 

1995; Tan & Wu, 1988; Chanamai & McClements, 2001; Tan, 2004; McClements, 2005). 

The major components of citrus beverage cloud emulsions in the oil phase are 

vegetable oils to provide opacity and a combination of weighting agents to increase their 

density. The water phase is formed by water and amphiphilic polysaccharides to reduce 

surface tension and grant steric stabilization, stabilizer gums to prolong the stability and 

control rheological properties and citric acid to adjust the acidity. The stability of beverage 

emulsions as affected of added proteins has been studied by several authors and surface 

activity of protein has been well defined (Inklaar and Fortuin, 1969; Titus and Mickle, 

1971; Tornberg and Hermansson, 1977; Fang and Dalgieish, 1996; Cornee et al., 1998; 

Demetriades and McClements, 1999) and has been discussed in the previous chapters. The 

reological properties of added stabilizer gum has a significant effect on stability of final 

diluted emulsion and has been also discussed by several authors (Sherman; 1963; 

Glicksman 1983; Barnes et al., 1989; Kokini and Fischbach, 1989; Harris, 1990; Nshinari 
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and Doi, 1992; Lopes da Silva et al., 1992; Rao and Cooley, 1993; Ma and Barbosa­

Canovas, 1995; Ma and Barbosa-Canovas, 1996; Ye et al., 2004). 

Among the hydrocolloids, gum arabic and modified starch have been known for 

their surface activity and emulsifying properties with similarity to proteins. Oum arabic has 

been recognized as a hydrocolloid emulsifier. It is highly soluble in cold water and the 

solubility increases with temperature. Because of its effective emulsifying properties and 

the weIl known film forming ability, gum arabic has been widely used in the soft drinks 

industry for emulsifying flavor oils under acidic conditions. It is mainly produced from the 

species Acacia Senegal. The surface activity is due to the branched arabino-galactan blocks 

attached to a polypeptide backbone (Chanamai and McClements, 2002). Oum arabic is an 

important emulsifier that grants functionality not by modifying the rheology of the water 

phase but also by leading to the formation of a macromolecular stabilizing layer around the 

oil droplets (Buffo et al., 2001; Dickinson, 2003). Despite its functionality, gum arabic is a 

fairly expensive ingredient and there have been many attempts for its replacement by 

hydrophobically modified starch or other gums (Dickinson, 2003). 

The octenyl-succinate starch known as OSA starch (Purity gum; National Starch, 

Bridgwater, NJ.) is made by esterification of starch and anhydrous octenylsuccinic acid 

under alkaline condition (Tes ch et al., 2002). Purity gum is mildly anaionic in aqueous 

solutions and has a surface activity that is almost as high as gum arabic (Chanamai and 

McClements 2001). 

Commercial xanthan gum is a yellowish powder completely soluble in cold and 

hot water, producing relatively high viscosity opaque solution at low concentrations. 

Xanthan gum gives citrus and fruit-flavored beverages an enhanced mouthfeel with full­

bodied taste and good flavor release. It has also shown promise as a stabilizer for cloud 

and flavor emulsions in beverages (Kaufinan and Oarti 1984; Alan Imeson, 1992). 

Rheological properties of xanthan gum are the most important determinant of the 

behavior ofthis gum in its final application (Born et al., 2005). 

Oum arabic, modified starches and xanthan gum added emulsions are evaluated in 

this study for their ability to confer and stabilize cloudiness in orange beverage in the 

absence of weighting agents. Such combinations of naturally occurring components will 

help overcome health restrictions on the formulation ofbeverages. 
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6.3 MATERIALS AND METHODS 

Canola oil, spray dried gum arabic, liquid fructose, orange oil, ascorbic acid and 

xanthan gum (TIC PRETESED® TICAXAN 200) were obtained from Nealanders 

(Montreal, Quebec). Modified starches (Purity Oum Be and Purity Oum 2000) were 

obtained from National Starch and Chemical (Bridgewater, NJ). A commercially 

available concentrated orange juice was obtained from a local source. Food grade citric 

acid and potassium sorbate were used to adjust the acidity and reduce the chance of 

contamination in an O/W emulsions. Fat soluble ~-Carotene was provided by Roche 

Vitamin and Fine Chemicals (Nutley, New Jersy). 

6.3.1 Preparation of emulsions 

Preparations of emulsions have been described in previous chapt ers and 

procedures used were same in this study. 

6.3.2 Preparation of juice drink 

Preparation ofbeverages involved first the addition of dry materials into the water 

(citric acid was added in the end) and then the liquid ingredients. Orange oil was added to 

concentrated orange juice and homogenized (accounting for 10% orange juice, 11°Bx and 

200 ppm orange oil). The combination was then added to acidified sugar solution and 

loaded with 2% weight/weight (w/w) of prepared emulsions (3x6 bottles for first 

replicate). Each forrnulated beverage was stirred for 15 min using magnetic stirrer. After 

preparation, the beverages were bottled and pasteurized for 12 min in boiling water. A 

total of 36 bottles were prepared in duplicate and stored. 

6.3.3 Opacity and stability tests 

These tests have been detailed in previous chapters. 

6.3.4 Zeta potential and particle size distribution 

Particle size distribution was measured as described in previous chapters. The 

same instrument equipped with ZET51 04 capillary cell was use to measure zeta potential. 
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The instrument uses electrophoresis technique in which the movement of colloidal 

parti cl es is measured when they are placed in an electric filed. The measurement can be 

used to deterrnine the sign of the charge on the particles and also their electrophoretic 

mobility, which is related to the surface charge and zeta potential. The instrument is 

equipped with laser velocimeter to measure the particle velo city at the stationary layer 

(where the particles move with a velocity which is due solely to their own charge). 

6.3.5 Turbidity 

The turbidity of orange juice drinks were evaluated with a turbidimeter (HACH, 

2100 Turbidimeter, Loveland, Colo). The equipment was first calibrated using standard 

solution for calibration at 1000 and 2000 NTU. 

6.3.6 Rheologieal examinations 

Measurement of rheological pararneters such as flow behavior index (n), 

consistency coefficient (m) and viscosity were carried out using TA Instrument, ARlOOO 

Rheometer equipped with 60 mm cone of 2°. The measurements were conducted at 22 oc 
and shear rate from 0.1 up to 200/s. Viscoelastic pararneters such as storage modulus (G') 

and loss modulus (G") and delta degree of each prepared emulsion were also evaluated. 

For these measurements, dynamic rheology tests were employed with an oscillation stress 

of 1 Pa (obtained from linear region of stress sweep test) while varying the frequency rate 

from 1 up to 25 rad/s. 

6.4. RESULTS AND DISCUSSION 

Two types of commercial OSA starch (Purity Gum Be and Purity Gum 2000) and 

spray dried gurn arabic at 1.5: 1 and 1: 1 gurnioil were used to prepare emulsion. The main 

difference between two types of modified starch is the viscosity of hydrated solution. 

Purity Gum Be at the same concentration had a higher viscosity compare to Purity Gum 

2000. 

Table 6.1 and Table 6.2 summarize the relevant properties of emulsions prepared 

at 1:land1.5:1gum/oil. The results in the tables demonstrate that Purity Be (modified 
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Table 6.1. Physieal properties of emulsions at 1: 1 gum/oil. 

Properties Arabie Purity Be Purity 2000 

+ Xanthan + Xanthan + Xanthan 

Turbidity of 2% emulsion in orange drink 2879±15 2469±12 2284±19 

(NTU) 

Zeta potentials (mv) -47.9±1.2 -29.2±0.7 -29.1±0.5 

Average size (nm) 974±16 504±11 715±8 

App. Viseosity at O.lIs (mPa.s) 741±18 2623±24 1678±26 

Power law index (n) 0.78±0.01 0.53±0.01 0.57±0.02 

Creaming (3 month) + ± 
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Table 6.2. Physieal properties of emulsion prepared at 1.5: 1 gumloil. 

Properties Arabie PurityBe Purity 2000 

+ Xanthan + Xanthan + Xanthan 

Turbidity of 2% emulsion in orange drink 2982±19 2510±17 2431±11 

(NTU) 

Zeta potentials (mv) -48.5±1.2 -29.9±1.2 -29.7±1.3 

Average size (nm) 1056±26 422±8 569±14 

App. Viseosity at O.lIs (mPa.s) 1812±15 3512±28 2568±31 

Power law index (n) 0.89±0.01 0.52±0.02 0.56±0.02 

Creaming (3 month) + ± 
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starch) gives emulsions of higher viscosity and lower power law flow behavior index as 

compared to Purity 2000 (modified starch) and gum arabic. The degree of shear thinning 

(n, power law index), for both types of modified starch, slightly decreased with 

increasing gum concentrations. Arabie gum, on the other hand, indicated a more 

Newtonian behavior even at higher level of gum concentrations. The solutions of gum 

arabic in water, at both concentrations, were practically Newtonian (n= 0.94) and shear 

thinning behavior of the emulsions was due to the addition of xanthan gum which was 

pseudoplastie (n=0.31). Arabie gum-xanthan emulsions also showed higher turbidities, at 

both concentrations, compared to modified starehes-xanthan emulsions, which is due to 

their larger average particle size. 

It has been reported (Jayme et al., 1999) that stabilization of dispersion oeeurs via 

two main meehanisms that depend upon the surface association of the polymer and 

particle. The first is sterie stabilization whieh results from macromolecules adsorbed to 

the particle surface. As two such particles approach each other, the osmotic pressure 

between them increases due to the spatial confinement of the adsorbed pol ymer molecule 

and manifested as a repulsive interaction. The second is electrostatic stabilization which 

arises from the mutual repulsion between both particles electrical double layer and is 

effective over distances comparable to the van der Waal's attraction. 

Although it has been reported (Tan and Wu Holmes, 1988) that zeta potential of 

less than -15 mv represent the onset of floeeulation and zeta potential of as low as -40 mv 

could form stable emulsion, one cannot categorically state that an emulsion will or will 

not be stable only on the basis of zeta potential. The low stability of gum arabic-xanthan 

emulsions in orange beverage, therefore, refers to other factors rather than zeta potential. 

Figure 6.1 illustrates the frequency development of storage modulus for 1: 1 

gum/oil (9% modified starches-0.3% xanthan and 9% gum arabic-O.3% xanthan 

emulsions). Storage modulus (G') for aIl systems showed very similar monotonie 

development at lower frequeney while emulsion prepared with modified starches 

increased to a greater extent at higher frequency levels. The surface active hydrocolloids 

that are able to form a dense elastic barrier can provide more stable emulsion. This means 

that the modified starches covered droplets carry the greater elasticity compare to that of 

the arabic gum. 
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Figure 6.1. Frequency dependence of storage modulus (G') for 1: 1 gumloil emulsions. 
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Frequency development for emulsions at 1.5:1 gumloil (14% modified starches 

0.3% xanthan and 14% arabic gum-O.3% xanthan emulsions) is shown in Figure 6.2. As 

illustrated the difference between storage modulus (G') at elevated concentration of 

surface active hydrocoUoids is more pronounced. 

Gums (polysaccharides), in almost aU uses, exist in an environment rich in water 

molecules. Thus, although polysaccharides must interact appropriately and beneficiaUy 

with proteins, lipids, and other environmental molecules commonly found in foods, they 

must primarily and continuously react with water molecules. By such interactions 

polysaccharides perform their useful functions, which are those of providing viscosity, 

el asti city, solution stability, suspendability, emulsifying action, and gelatin (Glicksman 

1982). Therefore, the mechanism by which modified starches and gum arabic impart 

stability to emulsions is via an electro-steric mechanism, but the steric contribution is 

dominant. 

Results for creaming velo city of 2% (w/w) emulsions in the orange drink at 1: 1 and 

1.5:1 gumloil are shown in Figures 6.3 and 6.4. The rate of creaming velo city are 0.68, 0.34 

and 0.17 percent transmission/day for arabic-xanthan, starch2000-xanthan and starch Be­

xanthan stabilized emulsions at 1: 1 gumloil, respectively. With the exception of arabic­

xanthan emulsions, the creaming velo city decreased as the gumloil increased. The rate of 

creaming velocity for arabic-xanthan, starch 2000-xanthan and starch Be-xanthan at 1.5:1 

gumloil were found to be 1.9, 0.24 and 0.05 percent transmission/day, respectively. 

Increase in creaming velocity of gum arabic-xanthan at elevated concentrations was also 

associated with a decrease in elasticity and pseudoplastisity. 

Shelf stabilities of 2% (w/w) emulsions in orange drink after pasteurization and 

upon standing for 3 months are shown in Figure 6.5 for 1: 1 gum/oil and Figure 6.6 for 

1.5: 1 gumloil). The results confirm our data for rheological and creaming velocity profile 

assessments. As illustrated starch Be-xanthan emulsions at both low and elevated 

concentrations indicate higher shelf stability compared to the other prepared emulsions. 
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Figure 6.2. Frequency dependense of storage modulus (G ') for 1.5: 1 gum/ oil emulsions. 
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Figure 6.5. Shelf stability of 1: 1 gum/oil ernulsions in orange juice drink upon standing at 

roorn ternperature for 3 rnonth. 
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Figure 6.6. Shelf stability of 1.5: 1 gum/oil emulsions in orange juice drink upon standing at 

room temperature for 3 month. 
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6.5 CONCLUSIONS 

The zeta potential assessment showed that gum arabic emulsions bear a higher 

degree of surface charge compared to the starch stabilized emulsion. Starch-xanthan 

combinations could provide a viscous and elastic barrier around oil droplets. Since the 

steric stabilization was dominant, it was concluded that the type of hydrocolloid, 

concentration and combination are responsible for rheological properties of emulsions 

and hence stability of cloud in orange juice drink. Modified starch (Purity Gum Be) at 14 

% (w/w) in combination with 0.3% xanthan (w/w) yielded the greatest stability in 

pasteurized orange juice drink. 

The results of this study could be useful for industrial practices in order to 

produce suitable quality juice drink and will help to overcome health restrictions on the 

formulation ofbeverage. 

157 



CHAPTER 7 

GENERAL CONCLUSIONS, CONTRIBUTION TO KNOWLEDGE AND 

RECOMENDATIONS 

Beverage emulsions are oil/water emulsions and primarily used to give opacity to 

clear beverages or to enhance their juice-like appearance. These emulsions are different 

from other food emulsions in that they are consumed in a highly diluted form. Beverage 

emulsions are thermodynamically unstable and tend to breakdown during storage. 

Breakdown pro cesses of beverage emulsions include gravitational separation, 

flocculation and coalescence. The rate at which a beverage emulsion breaks down, 

flocculates or coalesces, and the mechanism by which this process occurs depends on its 

composition and microstructure, as weIl as on the environmental conditions it 

experiences during its lifetime (e.g., processing temperature, mechanical agitation and 

storage condition). 

Stability of emulsions IS highly affected by certain physicochemical 

characteristics of polymeric emulsifier (gums) added into the water phase. In addition to 

the presence of the segments which bind strongly to the oil droplet surface the 

concentration of gums should be sufficiently high in order to coyer the oil droplet surface 

and form a thick layer. 

In this study the physical properties of water and oil phases as functions of added 

starch and oil were first examined. Increase in oil concentration affected the opacity and 

showed that oil content is highly responsible for the opacity of emulsions and hence in 

the final product. At the constant level of weighting agents (BVO and SAIB), the specifie 

gravit y of oil phase decreased when the oil concentration increased and resulted in 

augmentation of the creaming values accordingly. When the specifie gravit y of oi! phase 

was adjusted to 1.04, none of the starch added emulsions indicated creaming, and 

sedimentation occurred when the specific gravit y of the oil phase was higher than that of 

the water phase. 

In the second step, we studied the rate of emulsion breakdown by determining 

the rheology ofwater phase, difference in specifie gravities of the two phases and droplet 
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properties of the emulsion in presence and absence of weighting agents (sucrose acetate 

isobutyrate and brominated vegetable oil) with and without added xanthan gum. This 

study indicated that modification of rheological characteristic of continuous aqueous 

phase can play an important role in relation to the storage stability ofbeverage emulsions. 

Highly shear thinning and elastic properties of xanthan gum, even at very low 

concentration, was able to provide a micro-gel network and influence the state of 

flocculation to prevent coalescence of the droplets. In particular, for a beverage emulsion 

to possess an acceptable stability, the system must acquire a solid-like character, in the 

sense that G' > GU for water phase. As well xanthan gum was found to be an excellent 

alternative to replace weighting agents which have restricted level of use due to the health 

disadvantages. 

We continued our investigation in third step by conducting a study on flow and 

dynamic rheological properties of individual phases and emulsions containing modified 

starch and arabic gum as surface active hydrocolloids as well as xanthan and tragacanth 

as stabilizer gums. The results obtained demonstrated that both modified starch-xanthan 

and arabic-tragacanth gum combinations could form highly stabilized beverage cloud 

emulsions. The modified starch-xanthan gum emulsions were able to provide a gel matrix 

and highly stable emulsions. Arabic-tragacanth stabilized emulsions demonstrated 

rheological properties with fewer changes in shear thinning behavior after storage time 

periods. The flow and dynamic rheological properties of aIl prepared emulsions were 

confidently modeled through the Einstein equation or its exponential expansion. The 

developed model for complex shear modulus also well fitted with experimental data. 

The creaming stability of developed beverage emulsions was finally investigated 

in a simulated orange beverage in order to apply the outcomes of our investigations to an 

industrial practice. Gum arabic, modified starches and xanthan gum added emulsions 

were evaluated in this study for their ability to confer and stabilize cloudiness in orange 

beverage in the absence of weighting agents. Starch-xanthan combinations could provide 

a viscous and elastic barrier around oil droplets. Since the steric stabilization was 

dominant, it was concluded that the type of hydrocolloid, concentration and combination 

are responsible for rheological properties of emulsions and hence stability of cloud in 
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orange beverage. Modified starch (Purity Gum Be) at 14 % (w/w) in combination with 

0.3% xanthan (w/w) yielded the greatest stability in pasteurized orange juice drink. 

The results of this study are useful for industrial practices in order to pro duce 

suitable quality juice drink and will help to overcome health restrictions on the 

formulation ofbeverage. 

CONTRIBUTION TO KNOWLEDGE 

1. After the year 1970, due to banning and restriction in use of density adjusting 

agents (weighting agents), producing cloud or flavor emulsions that remain stable 

over the desired shelf life has become a common problem in the beverage 

industry. Moreover, consumer's knowledge increasingly developed within the 

years, asking for more healthy food products. 

In response to consumer demand for natural and food grade ingredients 

and to solve an industrial quality problem, new cloud emulsions were developed 

through a series of investigations. 

2. A comprehensive study was carried out to understand the effects of polymer and 

oil concentrations on stability and rheology of cloud emulsions. This study was 

conducted in presence of weighting agents within the restricted level of use. The 

focus was on three major aspects affecting shelf stability of cloud emulsions: 

density difference between oil and water phases, particle size distribution and 

flow and dynamic rheological properties of phases and emulsions. Looking for 

desirable opacity, the use of weighting agents at restricted level failed to stabilize 

the emulsion at elevated concentration of oil. However, the desirable 

concentration of oil to provide the identical opacity, as natural juice, was found 

and the result was carried out through out of the rest of our research. 

3. By employing the desirable level of oil, the physical stability of emulsions in 

presence and absence of weighting agents and/or xanthan gum was then 

investigated in detail. The main focus was to understand the role of added xanthan 

gum and weighting agents on the stability of beverage cloud emulsions pre-
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stabilized by modified starch using rheological properties and specifie gravities of 

component phases and particle size distribution of prepared emulsions. 

This study enabled us to find out that highly shear thinning and elastic 

properties of xanthan gum, even at very low concentration, was able to pro vide a 

micro-gel network and influence the state of flocculation to prevent coalescence 

of the droplets. As weIl xanthan gum was found to be an excellent alternative to 

replace weighting agents which have restricted leve1 of use due to the health 

disadvantages. 

4. Investigation went deeper by employing different surface active gums and 

stabilizers in the next phase ofthe study. From practical point ofview, the results 

provided useful information for achieving reasonable stability and opacity for 

concentrated emulsion and fruit beverages. 

5. Gum arabic, modified starches and xanthan gum added emulsions were then 

evaluated for their ability to confer and stabilize cloudiness in orange beverage in 

the absence of weighting agents. Such combinations of naturally occurring 

components assisted to overcome health restrictions on the formulation of 

beverages. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

Scope of the CUITent research could be expanded by: 

1. Employing other hydrocolloids (Pectin, Tara gum, Mesquite gums etc) to stabilize 

cloud emulsions and study their individual and combination effects on stability. 

2. Preparation and processing of emulsions by application of different preservation 

method such as URT, URP and freezing. 

3. Evaluating the compatibility of stabilizer and surface active gum. 

4. Evaluating the surface and interfacial property of both oil and water phase in 

beverage emulsions. 

5. Evaluating the rheological properties of water phase and emulsion to find a more 

versatile model. 
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