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Abstract

We present a Deep Reinforcement Learning based approach for the task of

real time machine translation. In the traditional machine translation setting,

the translator system has to ‘wait’ till the end of the sentence before ‘commit-

ting’ any translation. However, real-time translators or ‘interpreters’ have to

make a decision at every time step either to wait and gather more information

about the context or translate and commit the current information. The goal of

interpreters is to reduce the delay for translation without much loss in accuracy.

We formulate the problem of online machine translation as a Markov De-

cision Process and propose a unified framework which combines reinforcement

learning techniques with existing neural machine translation systems. A train-

ing scheme for learning policies on the transformed task is proposed. We empir-

ically show that the learnt policies can be used to reduce the end to end delay

in translation process without drastically dropping the quality. We also show

that the policies learnt by our system outperform the monotone and the batch

translation policies while maintaining a delay-accuracy trade-off.
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Résumé

Nous présentons une approche basée sur l’apprentissage par renforcement

profond pour la tâche de traduction automatique en temps réel. Dans le cadre

traditionnel de la traduction automatique, le système de traduction doit ‘atten-

dre’ jusqu’à la fin de la phrase avant de ‘valider’ toute traduction. Cependant,

les traducteurs en temps réel ou les ‘interprètes’ doivent décider à chaque mo-

ment s’ils doivent attendre et recueillir plus d’informations sur le contexte ou

traduire et valider l’information disponible actuellement. Le but des interprètes

est de réduire le délai de traduction sans perte de précision.

Nous formulons le problème de traduction automatique ‘simultanée’ comme

processus de décision markovien et proposons un cadre unifié qui joint des

techniques d’apprentissage par renforcement avec des systèmes neuronaux exis-

tants de traduction automatique. Un schéma d’entraînement pour les politiques

d’apprentissage sur la tâche transformée est proposé. Nous montrons empirique-

ment que les politiques apprises peuvent être utilisées pour réduire le retard de

bout en bout dans le processus de traduction sans pour autant réduire radi-

calement la qualité. Nous montrons également que les politiques apprises par

notre système surpassent les politiques monotones de traduction et celles de

traduction par lots tout en maintenant un compromis entre précision et retard.
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1
Introduction

A desirable trait of an intelligent system will be its ability to communicate with

humans. Humans communicate with each other primarily through the means of a

language. However, there is no universal language and humans in different parts of

the world have developed many different languages (there are roughly 7000 languages

in the modern society (Anderson, 2004)). In order for machines to communicate with

humans across the world, not only should they understand different languages, they

should also have the ability to translate the information from one language to another.

The field of training the machines to translate from one language to the other is called

Machine Translation. The trained machines can also help humans to communicate

with humans who speak other languages by removing the need to learn their language

first or relying on an intermediary.

While a lot of work had been done to improve the quality of the translation systems

over the past few decades (Sheridan, 1955, Brown et al., 1993, Och and Ney, 2003,

Bahdanau, Cho, and Y. Bengio, 2014, Sutskever, Vinyals, and Le, 2014, Wu et al.,

2016), the entire process is not human-like. So far, machine translation is only being

done at sentence level, where every text is split into multiple sentences, each of which

is treated independently. However, this is not the case in reality as humans neither

process the meaning of text nor translate at the sentence level. Humans are able to

capture the complex relationships and organization of various components within the

1
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sentences (Koehn, Och, and Marcu, 2003, Och and Ney, 2003) as well as between a

sequence of sentences (Mann and Thompson, 1988).

Online machine translation (or Real-time MT) is defined as producing a partial

translation of a sentence before the entire input sentence is completed. It is often

used in interactive multi-lingual scenarios, such as diplomatic meetings, where the

translators or ‘interpreters’ have to produce a coherent partial translation before the

sentence ends with minimum effect on the actual speed of conversation. Interpreters

have to make complex decisions in real-time to either wait for more words to gather

information about the context or translate the current partial context. This task

becomes even more difficult when the source and target languages have different

word orders like English (Subject-Verb-Object) and German (Subject-Object-Verb)

(Grissom II et al., 2014).

Reinforcement Learning (RL) is a paradigm associated with sequential decision

making. It provides a framework to train an agent that has to take a series of decisions

(actions) to maximize some long-term goal. RL has been shown to be successful in

a variety of tasks such as learning in games (Tesauro, 1995), networking (Boyan and

Littman, 1994), inventory management (Crites and Barto, 1996, Simao et al., 2009)

and robotics (Peters, Vijayakumar, and Schaal, 2003, Abbeel et al., 2007).

Deep Learning (DL) is a framework for learning good representations for a task.

Given an objective, using Deep Learning we can hope to learn good representations

which help to achieve that objective with minimal domain knowledge in an end-

to-end learning fashion. As a result, Deep Learning has helped machine learning

achieve state-of-the-art performance on a variety of tasks such as image classification

(Krizhevsky, Sutskever, and G. E. Hinton, 2012), machine translation (Wu et al.,

2016) and speech processing (G. Hinton, Deng, et al., 2012).

Deep Reinforcement Learning (DRL) combines Deep Learning with Reinforcement

Learning. Reinforcement Learning helps with temporal decision making and provides

the objective while Deep Learning provides a mechanism for learning representations
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to achieve that objective. This allows the system to learn the optimal behavior directly

from the raw input in an end-to-end manner. This combination has allowed to build

agents that can perform better than humans on tasks which were previously considered

very challenging (V. Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015, Silver et al., 2016).

1.1 Problem Statement and Objectives

Returning to the problem of machine translation, we consider a scenario where the

text is being revealed one word at a time and we want a system that produces the

translation in real-time. One way to address this task is to wait until the end of the

input sentence before translating anything, but it adds a delay to the entire procedure

and does not provide a natural element. The other option is to translate every word

as it is being revealed, but the quality of translation produced will potentially be

affected as word level translation systems cannot capture the relationships across

different elements of a sentence. They also cannot be applied to cases where the

sentence structure differs vastly.

We are interested in building a system that is able to make decisions regarding

when to wait and gather more information about the input sequence or to start trans-

lating the current given sequence. The goal is to reduce delay in translation process

without drastically dropping the quality. We want the framework to be flexible enough

to generalize to new language translation tasks with minimal human supervision. We

also want the system to exhibit a trade-off in delay and quality that can be controlled

by the user. This allows the user to change the behavior of the real-time translation

system depending on the kind of task at hand.
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1.2 Contributions

Prior work in simultaneous machine translation is dominated by rule and parse-based

approaches (Ryu, Matsubara, and Inagaki, 2006, He et al., 2015) or word segmenta-

tion based approaches (Oda et al., 2014). Our work is built on the earlier work by

Grissom II et al. (2014), where they cast real-time machine translation as reinforce-

ment learning task. However, their work only deals with verb final sentences and is

limited to smaller datasets.

We extend the work by Grissom II et al. (2014) and present a framework which

uses the existing neural machine translation systems to function as a simultaneous

machine translation system. Our framework combines the tasks of learning translation

and decision-making into a single architecture. This eliminates the need of any feature

engineering and allows the model to be applied to real-time translation tasks in other

languages with minimal previous knowledge.

Our results show that we can effectively trade-off translation accuracy and delay

using RL approach on English to French, English to German and Japanese to En-

glish benchmark datasets. The work presented in this thesis has been published in

the Abstraction in Reinforcement Learning Workshop, International Conference on

Machine Learning (Satija and Pineau, 2016). In the thesis, we go into more detail

on the individual components of the system. We also change and simplify the reward

function formulation and present a more thorough analysis of the results.

The work is limited to texts, i.e., we do not experiment in audio or speech. We

also ignore the computational delay in translating and generating a word. The work

is highly dependent on the amount of training data available and models are likely to

not perform well on the smaller datasets.
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Source ich bin mit dem Zug nach Ulm gefahren.
Word-level I am with the train to Ulm traveled.
Sentence-level (. . . . . . wait till end . . . . . . ) I traveled by train to Ulm.
Optimal I (. . . . . . waiting . . . . . . ) traveled by train to Ulm.

Table 1.1: An example inspired by Grissom II et al., 2014 which demonstrate the
difference between various type of translation procedures on an example from German
to English.
The top row ("source") represents the original sentence in German.
The second row ("Word-level") represents a word level translation system which pro-
duces the translation of a word immediately, without any delay.
The third row ("Sentence-level") represents a sentence level translation system which
waits till the end of sentence before producing a translation.
The last row ("Optimal") represents how a human translator generates a translation,
producing the translation of the first word immediately (ich → I) but then deciding
to wait till encountering the final verb before resuming the translation.



2
Supervised Learning

The goal of this chapter is to familiarize the reader with the essential machine learning

techniques on which the work is built. For more thorough introduction to Machine

Learning (ML) we advise the reader to look up textbooks by Bishop (2006) and

Murphy (2012).

The core machine learning problems and algorithms can be broadly divided into

three categories, based on the kind of information available at the time of learning:

• Supervised learning

In this scenario, the algorithm has access to labelled observations in the form of

<observation, label> pairs. The labels are given by an expert (usually humans)

who is assumed to know the correct solutions. The goal of the learning problem

is to learn this mapping of observations to labels. Example of these class of

problems are face recognition (Taigman et al., 2014), cancer detection (Cruz

and Wishart, 2006), machine translation (Koehn, 2009), etc.

The amount of labelled data we have plays an important role in deciding the

complexity of the learning problem. If one has close to an infinite amount

of data, then it is possible to learn the most probable label for each of the

observation in the observation space. At the same time, when there is limited

data the need to exploit the pattern in the data becomes even more prominent.

• Reinforcement learning

6
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In this scenario, the learning agent (or algorithm) can interact with its envi-

ronment and the environment provides a sequence of observations and a signal

in the form of a numerical value (reward/penalty). The goal of the learning

problem is to learn a behaviour which maximizes the total reward the agent can

acquire from the environment.

Most of the sequential decision making problems, where an algorithm has to

take a series of decisions (actions) to maximize the long-term goal, fall into this

category. Some example applications of the problems in this domain are game

playing agents (V. Mnih, Kavukcuoglu, Silver, Graves, et al., 2013) and trading

agents (Lee, 2001).

• Unsupervised learning

In this setting the agent does not get any feedback from the environment or has

access to any labelled data. The learning problem is to discover some intrinsic

structure in the data. Examples include problems like clustering, dimension-

ality reduction (Tenenbaum, De Silva, and Langford, 2000, G. E. Hinton and

Ghahramani, 1997).

The rest of this chapter is focused on introducing the supervised learning methods

and techniques that will be used extensively in the subsequent chapters and as such

are necessary to understand this work.

2.1 Preliminaries

The basic mathematical notation used exhaustively in rest of the work is as follows:

• N denotes the set of natural numbers: N : {0, 1, 2, . . . }.

• R denotes the set of real numbers.
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• Any vector denoted by v represents a column vector. vT represents the transpose

of a vector. A vector in d-dimensional vector space will be denoted by v ∈ Rd.

• If f = f(θ, x), i.e. f is a function of x and θ, then ∂
∂θ
f denotes the partial

derivative with respect to θ.

• If f = f(θ0, θ1, θ2, . . . , θn), then the gradient represents a vector containing all

the partial derivatives i.e.

∇f(θ0, θ1, θ2, . . . , θn) =< ∂f

∂θ0
,
∂f

∂θ1
, . . . ,

∂f

∂θn
>

• If P is a probability distribution then X ∼ P means that X is a random variable

sampled from P .

• Indicator event Ω will be denoted by I{Ω}, i.e. I{Ω} = 1, when Ω is true and

I{Ω} = 0 when Ω is false.

• ∼ refers to the sampling operation. Eg. x ∼ N (0, I) means that x is sampled

from a normal distribution with mean 0 and fixed identical co-variance (I).

2.2 Basic methods

As mentioned earlier, for supervised learning problems we have <observation, label>

pairs and we want to learn a mapping between them. More formally, let X denote

the observation or input space. If the input space is d-dimensional then a point

input space is denoted by x ∈ Rd. Often the dimension of the input space is also

referred as its feature space. Similarly, let Y denote the label or target space. The

amount of <input, target> the algorithm has access to is called a dataset, denoted

by D ⊂ X × Y . The goal in supervised learning is to find a function that learns the

mapping from input to target space, f : X → Y . Sometimes this is also called the

predictor or hypothesis. If Y can take values in R then the problem is referred to as
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regression and if Y can only take values within a finite discrete set then the problem

is referred to as classification. Note that in this scenario we assume that samples

are independent and identically distributed (i.i.d.). With this assumptions there is

no relation between the elements of the dataset (except that they are drawn from the

same underlying distribution).

A function f : X → Y with parameters w can be denoted by either f(x;w). When

w ∈ Rc, y ∈ Rt and x ∈ Rd and f(x;w) is a linear function, we have:

f(x;w) = b+ w1 ∗ x1 + . . .

This can also be represented in matrix form as f(x;w) = xW + b, where x repre-

sents the n× d matrix and W is a d× t matrix and b ∈ Rt.

2.2.1 Learning Objective

In order to quantify how well the function is able to learn this mapping we need to

define a surrogate loss (or cost function). This loss function is used in the optimization

procedure to select the hypothesis function which has the minimum loss on the dataset.

One of the commonly used loss function is the Least Mean Squares (LMS):

J(θ) = 1
N

∑
i

||yi − (xiW + b)||2.

In the above equation N represents the number of samples in the dataset and θ

represents all the parameters of the function, in this case W and b.

2.2.2 Optimization of Linear Functions

When the size of the dataset is small we can solve for the exact solution directly

by equating the gradient of the loss to zero with respect to the parameters. The

computational complexity is polynomial in the size of the dataset. When the error

cannot be solved in closed form (or is computationally expensive), but we can compute
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∇J easily, we can use a gradient descent optimization procedure (Arfken, 1985). The

main idea here is to treat the gradient as the slope of the loss function and move

direction towards the negative slope with the aim to reach the minima, where the

slope will be 0. We start with randomly initialized parameters and in each iteration

we move towards the minima with some small step size (or learning rate α). The

optimization procedure is shown in algorithm 1:

Input: learning rate: α, threshold: ε, initial parameters: w0

Output: last value of w

while
∥∥∥wk+1 − wk > ε

∥∥∥
1
do

wk+1 = wk − α∇J(wk)
end

return wk+1

Algorithm 1: Gradient Descent optimization procedure

Note that we are chasing the minima of the function here with respect to where

we start the procedure. If the function is convex, the procedure will converge to the

global minima if the learning rate satisfies the Robbins-Monroe conditions (Robbins

and Monro, 1951). Other often used optimization methods are Newton’s method and

second order methods like Newton-Rhapson method (Luenberger, Ye, et al., 1984).

The gradient descent optimization can also be applied for non-convex functions,

but there is no guarantee that the procedure will always converge to the global min-

ima. It is possible for the optimization procedure to converge to the local minima as

different start parameters may give different solutions. One of the strategies to avoid

selecting a local minima is to do many runs with different initial parameters and then

select the parameters which have the smallest loss.
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2.2.3 Probabilistic View of Linear Methods

We now assume that the labels, yi, are generated from a hypothesis h(x; θ), where:

yi = h(xi; θ) + εi

where,

εi ∼ N (0, σ)

xi ∼ P (X). (i.i.d. assumption)

The goal of the learning algorithm is to find the hypothesis (which is defined by

parameters θ) that is able to explain the observed data most likely. Let the space of

hypothesis be H, that is defined by the all the valid configurations of θ, then the most

probable hypothesis is:

h∗ = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h) (bayes rule and P(D) is independent of h)

= arg max
h∈H

P (D|h). (if all hypothesis are equally likely a priori)

This is also known as Maximum Likelihood Estimation (MLE) (Fisher,

1925). The probability on the right hand side can be written as:

L(h) = P (D|h) = P (< x1, y1 >,< x2, y2 >, . . . |h).

This function is called the likelihood, which we now want to maximize. As the

xi’s are independent and identically distributed, we have

L(h) =
∏
i

P (< xi, yi > |h)

=
∏
i

P (yi|xi;h)P (xi).
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xx

y

εw

Figure 2.1: Probabilistic View

The right hand term is a product of probabilities, which is hard to optimize, so

we apply the log operation on both side and reduce it to a sum:

logL(h) =
∑
i

logP (yi|xi;h) +
∑
i

logP (xi).

The second term in the equation is independent of h and does not affect the

optimization, so we can remove that. The final maximization objective becomes:

logL(h) =
∑
i

logP (yi|xi;h).

P (yi|xi;h) can be modelled in different ways: one can assume it fits in a fam-

ily of distributions (with parameters h) or can be assumed it is some mixture of a

deterministic function and random noise.

2.2.4 Over-fitting

Over-fitting is the phenomena when the hypothesis function is powerful enough to fit

the given dataset but does not generalize to other samples generated from the same
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underlying distribution. It can also be thought as if the learner is memorizing the data

samples. One of the ways to evaluate the performance of a learned hypothesis with

respect to loss function on a dataset, is to divide the original dataset into two parts:

the training set, on which we will learn the function’s parameters and the other,

test set, which we will use to measure how well our learned function generalizes to

the samples which it did not have access in training phase. If the learnt function

is over-fitting, then on the training set the error will be low but on the test set the

error will be high. If the function has less capacity and it is not able to learn on

training set then we refer to it as under-fitting. One of the ways to fix is to further

divide the training dataset into two sets: training and validation. The error on the

validation set is used as an estimate of the error on the test set. The goal is to find

a hypothesis such that it has the least error on both the training and validation set.

This procedure is also called cross-validation.

2.2.5 Bias and Variance

The expected mean squared error, when x ∼ P (X) and h ∈ H, can be written as:

EP [(y − h(x))2|x] = EP [(h(x)2 + y2 − 2h(x)y|x]

= EP [h(x)2|x] + EP [y2|x]− EP [2h(x)y|x].

If the data is being generated from a true function f(x) with some added noise

ε ∼ N (0, 1), then Ep[y|x] = EP [f(x) + ε] = f(x). Let h̄(x) = EP [h(x)|x] denote the

mean prediction of h. Then we have:

EP [(h(x))2|x] = EP [(h(x)− h̄(x))2|x] + EP [(h̄(x))2]

EP [y2|x] = EP [(y − f(x))2|x] + EP [f(x)2].

Using all the above three terms together, we get:
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EP [(y − h(x))2|x] = EP [(h(x)− h̄(x))2|x] + EP [(h̄(x))2]− 2h̄(x)f(x)

+ EP [(y − f(x))2|x] + EP [f(x)2]

= EP [(h(x)− h̄(x))2|x] + EP [(y − f(x))2|x] + (f(x)− ¯h(x))2.

The first term EP [(h(x) − h̄(x))2|x], represents the error due to the prediction

of mean hypothesis from the current hypothesis trained on a sample of X ∼ P and

represents the variance of the hypothesis. This represents that error which can be

caused due to changing the configuration of the dataset (if it is too high, that means

the learned function only works for the current batch of data and fails to generalize

to unseen samples).

The second term EP [(y−f(x))2|x] is the inherent noise present in the true function

generating the data. Most of the times that is usually a property of the dataset and

can not be avoided.

The third term (f(x) − h̄(x))2 is the bias associated with the class of functions

with respect to the true function. If the bias is high it generally means that the

current hypothesis class is too simple with respect to the true function.

On a related note, over-fitting can be associated with having high variance but

low bias, and under-fitting can be characterized by having high bias but low variance.

2.3 Non-linear function approximators

In general the relation between X and Y might not be linear in nature. We will now

look into methods which assume fθ(x) is a non-linear mapping. One of the ways

to achieve such mapping is to pass the original x through a series of K non-linear

transformations defined by φk (φk is also sometimes referred as basis functions in

the literature, Bishop, 2006). We can then apply the linear methods defined above

on this non-linear transformation of x, defined by the vector < φ0(x), . . . , φk(x) >.
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The basis functions are given as input to the learning algorithm (can also be thought

of as feature engineering) by the human. A natural step to extend this approach

is to introduce parametric basis functions and include them also as the part of the

learning problem. In the most simplest terms, neural networks can be thought of as a

sequential application of such parametric basis functions, where after each application

of component basis function we get a more rich and non-linear feature vector (also

referred as layer), which is fed into the next basis function, until the end where we

have regression or classification loss. In the next section, we will go into more detail

of the each component of the neural networks and talk about the techniques and

developing methods which are referred to as Deep Learning (LeCun, Y. Bengio, and

G. Hinton, 2015).

2.3.1 Neural Network

Multi-Layer Perceptron by Rosenblatt (1958) introduced Perceptron that forms the

basic component of the artificial neural network1. A perceptron is a simple binary

classifier with the form:

h(x;w) = sgn(b+ wTx) =


+1, if (b+ wT ≥ 0

−1, otherwise.

The perceptron has a linear decision boundary and thus even using a linear com-

bination of multiple such perceptrons we can only have linear decision boundaries. In

order to get nonlinear decision boundaries we can use a network of perceptron where

a layer (a set of perceptron units) feeds its output to the next layer, with the logistic

loss at the end (in case of classification). However, the gradient based optimization
1The name neuron and neural network because the inspiration stems from neuroscience
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Figure 2.2: A Feed-forward Neural Network with one hidden layer
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methods cannot be as the function is now non-differentiable (because of the step func-

tion, sgn). We now review a modified version of perceptron, which is is also called

the artificial neuron (or network unit):

h(x;w) = g(b+ wTx).

Here, g() is a differentiable function and is called the activation function (w

is called the connection weights and b is neuron’s bias). In the original Multi Layer

Perceptron, layers of perceptron units with sigmoid non-linearity as the activation

function, were stacked to create a network. In general, an intermediate layer (some-

times called as hidden layer), in a neural network with L layers can be defined

as:

hk(x) = g(W khk−1(x) + bk) (∀k ∈ [1, L])

h0(x) = x (input layer)

hL+1(x) = l(WL+1hL(x) + bL+1) = f(x). (output layer)
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In the above formulation, for the last layer (output layer), we typically have a

more specific activation function. For eg, in the case of multi-class classification, l is

usually substituted with the softmax function, which helps to convert the output to

probabilities which can then be easily combined with the final loss function.

This kind of network architecture, where output of one hidden layer acts as the

input for the next layer, is called as feed-forward neural networks. If all units in

a layer feed into the all the units of the next layer, then the architecture is called as

fully connected feed-forward neural network. Such multi-layered models are termed

under Deep Learning (LeCun, Y. Bengio, and G. Hinton, 2015, Ian Goodfellow and

Courville, 2016) (as the number of hidden layers increases, the network also becomes

deeper).

2.3.2 Activation Functions

The most commonly used activation functions are:

• Sigmoid (LeCun, Bottou, et al., 1998)

A sigmoid activation (or non-linearity) squashes the output of a neuron between

0 and 1. It is defined as:

σ(x) = sigmoid(x) = 1
1 + exp(−x) .

It is monotonically increasing and always positive. The partial derivative of the

sigmoid function is:

σ′(x) = ∂σ(x)
∂x

= σ(x)(1− σ(x)).

• tanh (Collobert, 2004)

The hyperbolic tangent (or tanh) is also monotonically increasing but instead
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bounds the output between −1 and 1.

tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) = exp(2x)− 1

exp(2x) + 1

tanh′(x) = ∂tanh(x)
∂x

= (1− tanh(x)2).

• ReLU (Glorot, Bordes, and Y. Bengio, 2011)

The rectified linear unit (or ReLU is monotonically increasing and bounded

below by 0 but has no upper bound. Using ReLUs has shown to result in sparse

activations (Glorot, Bordes, and Y. Bengio, 2011).

ReLU(x) = max(0, x)RELU ′(x) = ∂ReLU(x)
∂x

=


+1, ifx > 0

0, otherwise.

• softmax

We mentioned it briefly earlier that softmax is typically used as the output ac-

tivation for the multi-class classification problems. A softmax activation results

in multiple output where each output is strictly positive and sums to 1. Here,

input x is a vector with K classes (< x1, . . . , xk >), then:

softmax(x) =
[

exp(x1)∑
k exp(xk)

. . .
exp(xK)∑
k exp(xk)

]
.

This has a nice interpretation where each class output can be considered as a

probability for a class.

It is worth mentioning the Universal approximation theorem (Hornik, 1991) here,

which states that a single hidden layer neural network with a linear output unit can

approximate any continuous function arbitrarily well, given enough units. The result

is also true for all the above activation functions.
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Figure 2.3: Most popular activation functions. From left to right: hyperbolic tangent
(tanh), sigmoid (σ) and Rectified Linear Units (ReLU). Note that the y-axis are
different for each function.

2.3.3 Learning in Neural Networks

The entire neural network can be thought of as a single function with parameters W

denoting the weights and biases of all the neurons in the network. Since, the network

is differentiable we can apply the gradient based update rule to learn the networks

however since there are complex dependencies between different neurons we just can-

not the partial derivative w.r.t. each neuron. Back-Propagation (Rumelhart, G. E.

Hinton, Williams, et al., 1988) makes it possible to update each neuron’s parameters,

by taking advantage of the structure of the network, and computing gradient effi-

ciently by applying the chain rule iteratively from last to first. The chain rule, simply

states that if a variable z is dependent on variable y, which is in-turn dependent on

variable x, then the partial derivative of z w.r.t. x, can be expressed as:

∂z

∂x
= ∂z

∂y
× ∂y

∂x
.

Consider a loss function L, we can now calculate the gradient of each layer’s

parameters (denoted by hi), by just applying the chain rule recursively, starting from

the last layer. We first take the gradient of the loss w.r.t. to last layer, ∂L
∂hL

, directly

as there are no dependencies no any other variables. For the second last layer, we

can get the gradient as ∂L
∂hL

∂hL

∂hL−1
. Note that, we have already calculated the first

term in the previous computation, and over here we are just adjusting the gradient

to only account for the effect of the current layer. In this way, we can propagate
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the gradient with respect to the loss function backwards through the network in a

computationally efficient manner, hence the name, back-propagation. Once, we have

the gradient for each layer, ∂L
∂hi

, we can apply the gradient descent to update the

parameters independently.

2.3.4 Stochastic Gradient Descent

We earlier talked about Gradient Descent, but in that case we were taking the gradient

w.r.t. all the samples in our dataset and then updating the weights. This kinds of

gradient descent algorithm is called Batch Gradient Descent. As, one might think

this kind of update rule becomes highly computationally inefficient as we move to

bigger datasets.

On the other end of this spectrum, we can take the gradients, with respect to just

a single sample and use to it update the parameters. This is known as Stochastic

Gradient Descent (SGD) (LeCun, Bottou, et al., 1998). SGD is quite inexpensive

compared to the batch and is still valid because of the i.i.d. assumption, as each

sample is representative of the dataset and can provide a sample of the right signal

for weight update. However, there will be now higher variance in the gradients over

the updates, which can cause the weights to take a longer time to converge. As a

result, there exists another update rule, which instead of doing updates on either

single data-point or the entire dataset, samples k data-points form the dataset, and

updates the parameters based on this mini-batch. This is known as Mini Batch

Gradient Descent (G. Hinton, Srivastava, and Swersky, 2012).

As the number of parameters increases, the effectiveness of the above gradient

update algorithms decreases as they do not take into account any information about

the previously calculated gradients. The popular adaptive learning update rules which

are essential for training deep networks are:

• Momentum
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The core idea of momentum (Polyak, 1964) is that each parameter should pre-

serve the sense of which direction is being updated in and should not deviate

drastically from it, from one update to the next. More formally, each parame-

ter maintains a momentum variable (which is initialized to 0), and updates its

weight now as a exponential moving average of the momentum and the gradient.

µ0 = 0

µt = β∇θL+ (1− β)µt−1

θt = θt−1 − αµt.

Here, β, denotes the decay of the effect of the momentum.

• RMSProp

In RMSProp (Tieleman and G. Hinton, 2012) the gradients are normalized by

the square root of the exponential moving average of the squared gradients.

µ0 = 1

µt = β(∇θL)2 + (1− β)µt−1

θt = θt−1 − α
∇θL√
µt + ε

.

Here, beta is the decay parameter as in the above case, and ε is a very small

number (close to 0), added to prevent the denominator going to 0.

• Adam

In Adam (Kingma and Ba, 2014), the idea is similar to RMSprop, however

instead of exponential moving average we use the cumulative sum.

µ0 = 1

µt = (∇θL)2 + µt−1

θt = θt−1 − α
∇θL√
µt + ε

.
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2.3.5 Computation Graphs

A computational graph (Pollack, 1990) is a way to formalize the structure of a

set of computations, such as those involved in mapping inputs and parameters to

outputs and loss. Each node in the graph represents a variable. The variable can be

a constant, scalar, vector, matrix or tensor. An operation is a function of one or more

variables and returns a single output variable. Operations link the nodes in the graphs

and are denoted by directed edges. For eg, if a variable y is the result of application

of operation z to a variable x, then this can be represented as directed edge from x

to y, with the label z, x z−→ y. A complex function can be described as a graph by

composing many operations together, with the input nodes having no incoming edges

(start of the computation) and the output nodes containing no outgoing edges (end

of the computation).

In a Feed-forward network each layer can be considered as the node in the compu-

tation graph with the last layer being the final output node that computes the function

represented by the network. A forward pass computes the output of the given input

and goes from bottom to top (input nodes to output nodes). The backward pass

computes the gradient given the loss for learning. This is back-propagation and goes

from top to bottom. In this pass the gradient of each layer is reverse-composed to

compute the gradient of the whole model by automatic differentiation 2.

2.4 Deep Learning

Deep learning refers to the machine learning methods that are based on learning

data representations. A Deep Neural Network (DNN) is a feed-forward neural

network with multiple hidden layers between the input and output layers. As with the

feed-forward networks a DNN can also capture complex non-linear relationships and
2A good introduction to computational graphs and back-propagation can be found here:

http://colah.github.io/posts/2015-08-Backprop/
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given enough capacity, has the ability to represent any function. The extra layers in a

DNN enable composition of features from lower layers, potentially modeling complex

data with fewer units than a similarly performing shallow network (Y. Bengio et al.,

2009).

In the next sections, we cover the topics that are relevant to this work with re-

gard to deep learning techniques and architectures, but we advise the reader consult

the Deep Learning textbook (Ian Goodfellow and Courville, 2016), for a thorough

introduction and review of these techniques.

2.4.1 Auto-Encoders

Auto-encoders (Vincent et al., 2008), provide a way to learn some compressed

representation of the data, where the network should learn to map the input data on

some smaller dimensional manifold, from which it can reconstruct the original data.

Essentially, an auto-encoder is a feed-forward neural network which consists of two

functions:

• Encoder: The first part of the auto-encoder, is a feed-forward neural network

which maps fenc : X → H, where dimensionality of H is lower than X . This

function essentially encodes (or compresses) the information about the original

data sample in a lesser space.

• Decoder: The second part, is a function fdec : H → X which learns to decode

the representation in H to the original space.

The loss function in this case is the reconstruction error between the original

sample x and the reconstructed sample x̂ (it can be either mean square error for real

valued data or cross-entropy for binary data). Both encoder and decoder can be feed-

forward networks with multiple hidden layers. An interesting aspect of auto-encoders

is that, once we have successfully learnt an encoding of the input distribution, we can



CHAPTER 2. SUPERVISED LEARNING 24

take the learned encoder and reuse it as the initial layer for the subsequent tasks.

Since the encoder is able to project the input data to a lower dimensional space, it

should be easier for the rest of the network to work with this already learned lower

dimensional representation (Rasmus et al., 2015, Y. Bengio, Courville, and Vincent,

2013).

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks or (RNNs, Rumelhart, G. E. Hinton, Williams, et al.,

1988) are neural networks for processing sequential data. Unlike Feed-forward net-

works, which are cyclic, RNNs have (at least one) cyclic path or dependencies between

the units. As we are now dealing with sequences, the data has a temporal dimension

to it. The dataset X is now composed of i.i.d. sequences, where each sequence can

have a variable length and consists of dependent datapoints, denoted by xt. As we are

dealing with a sequential task, we need a mechanism to keep track of the sequence we

have observed so far, some sort of memory or register. One of the ways to keep the

information about the previous observations is use the notion of parameter sharing

across time. This not only helps to generalize across different length sequences but

also becomes important when a specific piece of information can occur at any position

within the sequence. As a result, the state of RNN can be defined using the following

equation:

ht = f(ht−1, xt; θ).

The state ht is the value of the hidden units of the network and can also be thought

of as some non-linear function of the observations so far, ht = F (x0, x1, . . . , xt). The

recurrent nature of the RNNs also makes them powerful generative models. They

can also be thought of as directed graphical models which are conditioned on their

observations. Some examples of design architectures for recurrent neural networks

include:
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• RNNs that produce output at each time step and have recurrent connections

between hidden units with adjacent time steps only. Eg, a sequence labelling

task, where each element of the sequence needs to be assigned a label, can be

modelled efficiently using this type of RNN architecture.

• RNNs that read the entire sequence and produces output only at end (eg for

sequence classification tasks).

• RNNs that read the entire sequence and then generate a new sequence which is

conditioned on the entire previous sequence. These are also called a Sequence-

to-sequence models and used in extensively machine translation. More details

about such architecture is covered in Chapter 4.

2.4.3 Back Propagation Through Time

The parameter sharing across hidden units in time makes the computational graph

cyclic in nature as the output of the recurrent operation is the input node itself, both

being the state of the RNN. Assuming the length of a sequence is τ , we can unfold

the graph in time, by expanding the recurrent equation:

ht = f(ht−1, xt; θ)

= f(f(ht−2, xt−1; θ), xt; θ)
...

= f(f(. . . (f(h0, x1; θ)), . . . , xt−1; θ), xt; θ).

This new unfolded graph can now be considered as a fixed length directed acyclic

graph. Gradients can now be obtained by applying chain rule on unrolled graph and

back-propagated through time (BPTT, Rumelhart, G. E. Hinton, Williams, et

al., 1988). (Williams and Zipser, 1989b). Assuming length of the sequence is τ , the

forward pass does computation forward in time, t = 0→ τ , and the back-propagation

goes backwards in time, t = τ → 0 .



CHAPTER 2. SUPERVISED LEARNING 26

The above method becomes ineffective for very long sequences or in the case of

online learning, where there is just a stream of incoming data without any end. In

such scenarios, we divide the sequence in chunks of a fixed size, k, and perform

forward and backward pass only on those chunks. It is not equivalent to considering

them as independent sequences because the hidden layers between the chunks are still

dependent on the previous chunks. Since the gradients are not allowed to go backwards

all the way, this is also referred as Truncated Back Propagation Through Time

(Williams and Peng, 1990). There are other ways to the update weights in RNNs,

most notably, Real Time Recurrent Learning (RTRL) (Williams and Zipser, 1989b).

The optimization is still based on the Maximum Likelihood objective (just like

in the case of a feed-forward network). However, in cases where the hidden step

at time-step t is dependent on the previous label/prediction yt, we employ a proce-

dure called Teacher Forcing (Williams and Zipser, 1989a). During training, the

actual label from the previous time-step yt−1 is fed to hidden state ht, however dur-

ing test/generation time the prediction from the previous time-step ŷt−1 is fed the

hidden state. This can in practice lead to compounding errors and is an active area

of research resulting in few techniques such as Scheduled sampling (S. Bengio et al.,

2015) to counter it.

One of the bigger challenges of optimizing RNNs is the vanishing gradient prob-

lem, i.e., the back-propagated gradients in RNNs tend to either vanish (→ 0) or

explode (→ ∞) as the sequence length increases (Y. Bengio, Simard, and Frasconi,

1994). This makes optimization in RNNs significantly harder than regular deep net-

works (we cannot have layer-wise re-normalization as the parameters are shared). The

vanishing gradient problem arises because the gradient at any step is a multiplicative

function of the gradient of the time-steps in the future (because of the chain rule). A

number of techniques have been advised to prevent this, the major ones being:

• Gradient clipping: This is a technique to avoid exploding gradients (Pascanu,
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Mikolov, and Y. Bengio, 2013) by defining a upper bound on the gradient value

according to some threshold defined as a hyper-parameter. A common way to

perform gradient clipping is to normalize the gradients of a parameter vector

when its L2 norm exceeds a certain threshold, gradients(clipped) = gradients ×
threshold
‖gradients‖2

• Gated Loops: These includes introducing specialized gated units, like Long-

Short Term Memory (LSTMs, Hochreiter and Schmidhuber, 1997) and Gated

Recurrent Units (GRUs, Cho, Van Merriënboer, Gulcehre, et al., 2014), as a

mechanism that learns the control on the information flow through the RNN

state.

• Skip connections: The idea is to add direct connections from variables from the

past to variables in the present (T. Lin et al., 1996). This helps to retain more

information across time-steps and capture longer dependencies.

2.4.4 Gated Recurrent Units

LSTMs (Hochreiter and Schmidhuber, 1997) introduce the notion of gates for RNNs,

where a gate creates a control over the paths through which the gradients can flow

over time, conditioned on a context. The gates control the state of the RNN, and

determine, for any given context, if the information from the corresponding time-step

is worth adding to the current state or not. In simplest terms, gates have explicit

control units which work to create paths through which relevant gradient can be

propagated. These control units over the hidden state can also be thought of as update

or write operations over the state. LSTMs have shown to be successful in preserving

long-term dependencies across varieties of tasks (Ian Goodfellow and Courville, 2016).

In this work, instead of working with LSTMs, we work with a simpler variant of

LSTMs called the Gated Recurrent Unit or GRU (Cho, Van Merriënboer, Gulcehre,

et al., 2014). A GRU has two main gates, update gate, ut, to update (replace or copy)
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the state of the cell and reset gate, rt, to select which parts of the state get used to

compute the next target state. Both the gates are conditioned on the input (xt) and

the hidden state (ht). The gates are defined as follows:

ut = σ(bu +Wuht + Uuxt)

rt = σ(br +Wrht + Urxt).

In the above equations bu,Wu, Uu represents the weights of the update gate and

similarly br,Wr, Ur represent reset gate parameters. The cell state is updated using

both the update and reset gates simultaneously, within a single operation as:

ht = ut−1ht−1 + (1− ut−1)σ(b+ Uxt−1 +Wrt−1ht−1).

The first term in the above equation selects which part of the previous state to

preserve. The second term selects the parts to be overwritten and updates them

according to another non-linearity based on the region of hidden state selected by the

reset state and the input.

The reason we chose to work with GRUs instead of LSTMs is because GRUs have

fewer parameters compared to the LSTMs which in turn leads to fewer computations.

Unlike LSTMs, in GRUs we directly update the hidden state, which also results in

fewer computations. All these factors can lead to a higher training speed without

having much impact in loss of information.

2.4.5 Dropout

Srivastava et al., 2014 introduced the idea of dropout as a regularization technique to

prevent the neural networks from over-fitting. The core idea of dropout is to hamper

the ability of a neural network to memorize (over-fit perfectly without learning any

generalizable representation) by stochastically dropping the activation of hidden units.

Each unit’s activation is set to 0 with some probability p. This forces the hidden unit
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Figure 2.4: GRU gating architecture. r and z are the reset and update gates, and
h and h̃ are the current activation and the candidate activation. IN refers to the
current input to the cell and OUT refers to current prediction. Figure taken from
Chung et al., 2014

.

to take into account another hidden unit’s information and adapt according to that.

Each layer within a network can have a different dropout probability at the training

time. Although this adds some redundancy in the network, as now it has to be more

robust, but at the same time it also prevents any dependency on some specific units

and forces the network to learn a more distributed representation.

2.4.6 Automatic Differentiation

Automatic differentiation packages provide a programming framework which allow

us to represent a network as a symbolic computation graph. The module can then

take the gradient with respect to a loss function automatically by applying back-

propagation. We use Theano (Bergstra et al., 2010, Bastien et al., 2012) in this work,

but there now exists other popular frameworks such as TensorFlow (Abadi et al.,

2016) and Torch (Collobert, Kavukcuoglu, and Farabet, 2011). Most of time when we

are optimizing the neural networks, we end up doing essentially a lot of matrix mul-

tiplications. CPUs (Central Processing Unit) are fast and good for sequential tasks,
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however we can parallelize most of these matrix multiplications on a specialized hard-

ware such as GPU (Graphical Processing Unit). It has been shown that using a GPU

with specialized library can lead up to 50− 100× boost for training deep networks3.

An added advantage of using these libraries is that they provide an abstraction over

lower level hardware libraries such as CUDA (Nvidia, 2010) and CuDNN (Chetlur

et al., 2014).

3https://github.com/jcjohnson/cnn-benchmarks
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Reinforcement Learning

Reinforcement Learning (RL) refers to the learning problem where an agent should

learn a behaviour to optimize some numerical performance measure that expresses

the long term goal. The predictions of the agent also have the effect of changing the

future state of the environment (the observed data). Thus, there is a temporal relation

between the observed data which is turn dependent on the learner’s predictions.

A typical RL setting is depicted in figure 3.1. At any given time-step, t, the agent

(also called learner or controller) is in some state of environment (or system) which

it can observe, st, and interact with by taking an action at. Once the agent takes the

action it receives feedback from the environment in terms of numerical value called

reward, rt. The environment then makes a transition to a new state, st+1, and the

cycle is repeated until some terminal state is reached. The task is to learn to interact

with the environment in a way that maximizes the total reward over time.

In this chapter we will only cover the necessary RL algorithms that the reader

needs to know to understand this work. For a proper introduction and extensive

understanding we advise the reader to refer to the textbooks by Sutton and Barto

(1998) and Szepesvári (2010)1.
1The notation used in this chapter is borrowed from http://videolectures.net/

deeplearning2017_pineau_reinforcement_learning/ and http://videolectures.net/
deeplearning2017_abbeel_policy_search/
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Figure 3.1: RL framework

3.1 Markov Decision Process

We assume the environment is stochastic and has markovian property, i.e. the distri-

bution over the future states depends only on the current state and action. Markov

Decision Processes (MDPs, Bellman, 1957) provide a framework to model such kind

of stochastic problems. A MDPM is defined by:

• S: the set of states (can be infinite).

• A: the set of actions which the agent can take (can be infinite).

• R(s, a): the reward function (r : S ×A → R) which determines the reward that

the agent gets on executing action a in state s.

• P(s, a, s′): the transition function which defines the probability of next state, s′,

when the agent is in state s and takes action a, i.e. P (s′|s, a). It is also called

the dynamics model of the environment.

• γ: the discount factor, γ ∈ [0, 1], which tells how much importance is given to

the rewards in the future vs the present.
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• µ(s): the initial state distribution, p(s0), in which the agent can be at time-step

t = 0.

Because of the markovian property:

P (st|st−1, at−1) = P (st|st−1, at−1, . . . , s1, a1, s0).

A state is said to be terminal if the MDP ends when the agent lands in that

state. If such terminal states are present, the MDP (or task) is said to be Episodic.

In the absence of terminal states, the task is referred to as Continuing (or continual

learning). A sequence of < state, action, reward > tuples is described as Trajectory,

τ . The goal of the problem is to maximize the total reward over the trajectory.

The discount factor can be thought of as the probability of the agent dying, i.e.,

with (1 − γ) probability the episode can end or the agent dies. The case γ = 1

denotes that all the rewards (short-term or long-term) have equal importance because

the agent never dies and thus every reward is equally important. When γ is close to

0, then the agent pays more importance to short-term rewards as there is a larger

probability it might die in the future. The goal of the problem is to maximize the

total reward over the trajectory.

3.2 Policies

The behavior of the agent is defined by a policy, π, which represents the distribution

over actions the agent can take in a given state.

π(a|s) = P (at = a|st = s).

If the agent samples the action from this distribution then the agent is said to be

following a stochastic policy. If the policy is deterministic, i.e., the agent will always

take a particular action in a particular state, then the policy can also be thought of

as function that maps states to actions, π : S → A. If Π represents the set of all
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possible policies, then the goal is to find the policy which gets the maximum total

reward among all the possible policies.

3.3 Value Functions

In order to evaluate how good a particular state is under a policy, we define the value

function (V π : S → R), which represents the expected return when the policy is

followed from that state:

V π(s) = Eπ[rt + rt+1 + · · ·+ rT |st = s].

The cumulative expected reward is also sometimes called the return. Since the

policy does not change over the course of the trajectory, the value function can be

recursively defined using Bellman’s equation (Bellman, 1957):

V π(s) = Eπ[rt] + γ
∑
s′
P (s′|s, π(s))V π(s′)

=
∑
a∈A

π(s, a)R(s, a) + γ
∑
a∈A

π(s, a)
∑
s′∈S
P(s, a, s′)V π(s′)

=
∑
a∈A

π(s, a)
R(s, a) + γ

∑
s′∈S
P(s, a, s′)V π(s′)

 .
The state-action value function (Qπ : S × A → R is also defined in a similar

way, but assumes that a particular action is taken at the first state.

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′)

[∑
a∈A

π(s′, a′)Qπ(s′, a′)
]
.

The optimal value, V ∗(s), of state s ∈ S gives the highest achievable expected

return when the process is started from the state s. In similar fashion, one can

also define the optimal state-action value, Q∗(s, a), which defines the maximum

expected return possible if the process starts at state s, and the first action chosen is
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a. They are connected as follows:

V ∗(s) = sup
a∈A

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′)V ∗(s′).

The optimal value function is:

V ∗(s) = sup
π∈Π

V π(s).

An action which maximizes Q(s, .) for some s is called greedy with respect to Q in

state s. A policy that selects greedy actions with respect to Q in all states is defined

as a greedy policy with respect to Q. A policy which selects the greedy action w.r.t.

Q with probability (1− ε) and selects a random action with probability ε in all states

is called an ε-greedy policy. Any policy that achieves V ∗ is called the optimal

policy.

Note that a greedy policy with respect to Q∗ is optimal. Similarly, knowing

V ∗,R, γ,R, we can get the optimal policy, π∗:

π∗(s) = arg max
a∈A

(R(s, a) + γ
∑
s′∈S
P(s, a, s′)V ∗(s′)).

The next obvious question is how to get the optimal V ∗ or π∗. From the recurrent

nature of the Bellman equation mentioned above, one can directly try to forumlate

it as a dynamic programming problem (Bellman, 1957). Two of the popular dynamic

programming based MDP solver algorithms are Value Iteration and Policy Iter-

ation. For actual details and theoretical results of these methods (and more such

techniques for solving the MDPs) we advise the reader to refer to the textbook by

Puterman, 2014.

3.4 Learning Value Functions

The classical MDP solver algorithms assume that we know the transition and reward

functions for the process. However in many domains, the agent does not have access
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to the underlying dynamics of the environment. We want the agent to explore the

environment, adjust its behavior to exploit the environment in order to maximize the

reward. We still want to use the notion of value functions and policy in order to define

the behavior and utility, but now we want to learn them without any information

about the environment. Since there is not any information about the environment,

exploration plays an important role and the agent needs to include it along with the

exploitation objective. A typical agent behavior can be described as a continuous

loop of acting based on current estimates, observing the outcomes and updating the

current beliefs based on the observation.

3.4.1 Monte Carlo Methods

The value function is defined as the expectation of returns when the process is started

from a given state. One way to estimate this value is to compute the average over

multiple runs starting from the given state by using the Monte Carlo (MC, Metropolis

and Ulam, 1949) estimates of the independent runs to estimate the value function. If

U(st) is the empirical estimate of the value function, then the value function estimator

can be updated in a gradient based iterative update rule style as:

V k+1(s) = V k(st) + α(U(st)− V k(st)).

One of the major limitation of the MC methods is that the variance of the returns

can be very high because of sampling which leads to poor estimates. These methods

also cannot be applied in a closed loop system (i.e. task needs to be episodic). Though

MC methods provide an unbiased estimate but most of the times it is characterized

by high variance.

3.4.2 Temporal Difference Learning

Temporal Difference Learning (Sutton, 1988) provides an alternate view of learning

value functions using predictions of estimates as targets during the training as a form
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of bootstrapping. Using the Bellman equation, we can write the value function at

time-step t, when the agent goes from state s to st+1 by taking at ∼ π(at|st) and

observes reward, rt, and next state, st+1 as:

V π(st) = rt + γV π(st+1).

Since we are now estimating both V π(st) and V π(st+1), there will be some estima-

tion error on both sides of this equation. We denote this difference between values of

states corresponding to successive time steps as the Temporal Difference (TD) error

(δt). The error is only considered over next immediate step predictions, and as a

result it is also known as the TD(0) error.

δt = |rt + γV π(st+1)− V π(st)|.

As the error depends on the estimated value function, the algorithm uses boot-

strapping, using its predicted estimates to improve the estimate predictor. The main

difference with the MC style learning is that now the agent can now also optimize to

minimize the TD error in addition to just estimating the value function. The new

update rule takes a form similar to:

V k+1(st) = V k(st) + αδt, ∀t = 0, 1, . . .

There also exists a multi-step version of TD learning, called TD(λ), which unifies

both TD(0) and MC methods (Sutton, 1988).

3.4.3 Function Approximation

Until now, we made no assumptions on the structure of value function or policy,

as we were in a tabular setting, i.e., we were calculating the value and policy for

each state and action and storing it in memory. When the number of states is too

big (or continuous), it becomes impossible to keep track of every possible state and

update them. In such a scenario, instead of tracking values for each state, we can
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learn a parametric function to give an approximate estimate of the true value function

(V π(s) ≈ V π(s; θ)). The function used for modelling can be either linear or non-linear.

3.4.4 Q - Learning

Q-Leaning (Watkins and Dayan, 1992) is a method to directly estimate the opti-

mal state-action values using the TD error. On observing transitions of the form

< st, at, st+1 >, the TD error variant for Q-Learning is defined as:

δt = rt + max
a∈A

γQ(st+1, a)−Q(st, at).

Note that over here the samples are collected under some policy, but we are evalu-

ating the state-action values using a greedy policy. This type of setting, when we are

learning about one policy (greedy w.r.t. optimal Q-values), while following another

(often more exploratory scheme) is called off-policy learning.

The update rule for the Q-values takes the form:

Qk+1(st, at) = Qk(st, at) + α(δt), ∀t = 0, 1, . . .

In the above equation, α denotes the learning rate and δt denotes the TD error for

Q-value estimates as defined above.

3.4.5 Deep Q-Learning Network

Q-Learning can be used with non-linear function approximation by having a paramet-

ric estimate of the optimal state-action value function (Q(s, a; θ) ≈ Q∗(s, a)). Deep

Q-Networks (DQNs, V. Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015) combine deep

learning based function approximator with a variant of Q-Learning to successfully

learn policies directly from the pixel space and achieve human level control on Atari

games (Bellemare et al., 2013). V. Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015 use
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a neural network with parameters θ to estimate the optimal state-value function and

referred to it as Q-Network2.

Unlike in the regular supervised training for learning for deep networks, now our

data is temporally correlated. It does not follow the i.i.d. assumption anymore and as

a result we cannot use the methods from the supervised learning setting anymore with-

out employing some additional techniques. One of the ways to break the correlation

in the observations is to use Experience Replay (L.-J. Lin, 1993). For experience

replay, the agent’s experiences at each time step, et =< st, at, rt, st+1 >, are stored in

a fixed size memory D, also called the experience buffer. During learning, samples (or

mini-batches) of experiences are uniformly sampled from the the experience buffer.

Another technique used in DQNs is the target networks (sometimes also referred

as frozen networks). The term rt + maxa′ Q(st+1, a
′), in the TD error is called the

target. Compared to the supervised learning case, where the targets are fixed, the

targets in this case depend on the network weights. As a result, the parameters

from the previous iteration are held fixed for the target estimation when optimizing

the current Q-network. The target network are only periodically updated, thereby

reducing the correlations in the targets.

The Q-learning update at an iteration i can be represented as minimizing the TD

error, which results in the following loss function:

Li(θi) = E(s,a,r,s′)∼U(D)

[
(r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi))2

]
.

In the above equation θi represents the parameters of the Q-network at iteration

i, and θ−i represents the parameters of the target network. The target parameters

are updated with Q-network parameters every fixed number of steps and are held
2 In their work, they used Convolutional Neural Networks (CNNs, LeCun, Bottou, et al., 1998)

as the function approximator. CNNs are translation-invariant neural networks to learn the spatial
features in the images. Since we are not using CNNs in this work, we will not be going into much
detail. A nice introduction to CNNs can be found here: http://cs231n.github.io/convolutional-
networks/
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constant between the updates. The gradient of the above loss then becomes:

∇θi
Li(θi) = E(s,a,r,s′)∼U(D)

[
(r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi))∇θi

Q(s, a; θi)
]
.

The algorithm for Q-learning with experience replay and target networks is de-

scribed in Algorithm 2.

Initialize Replay buffer D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for episode=1, . . . ,M do

Get the initial state the agent is in, s1

for t = 1, . . . , T do

With probability ε select a random action at

else, at = arg maxaQ(st, a; θ)

Execute at and observe st+1 and rt

Store (st, at, rt, st+1) in D

Sample mini-batch of experiences (sj, aj, rj, sj+1) from D

Set yj =


rj, if episode ends at j + 1

rj + γmaxa′ Q̂(sj+1, a
′; θ−), otherwise.

Perform gradient descent with the loss (yj −Q(sj+1, aj; θ))2 with respect

to θ

Every K steps, update θ− = θ

end

end
Algorithm 2: Deep Q-learning with experience replay and target networks
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3.5 Learning Policies

Sometimes, we might be directly interested in learning an optimal policy without the

need for learning a V or Q function first and then selecting actions based on that3. If

the policy is parameterized by θ (often as a stochastic function, fθ : S → A, denoted

by πθ(a|s)), we are interested in finding the parameters which maximize the expected

return.

max
θ
J(θ) = max

θ
E[
∑
t

rt|πθ]

where,

at ∼ πθ(st)

rt = R(st, at).

This can also be thought of as searching for the optimal policy in the family of

policies characterized by θ, and hence such methods are also called Policy Search

methods.

3.5.1 Likelihood Ratio Policy Gradient

Unlike supervised learning, we cannot take the gradient of the objective directly with

respect to policy parameters as the final objective is not deterministic because of the

sampling operation. REINFORCE or Likelihood ratio policy gradient (Williams,

1992) is a policy search method which allows to compute an unbiased estimate of the

gradient and uses it for searching for the policy in the direction of the objective. Let

τ denote the trajectory (of length T ) which the agent takes under the policy πθ, the
3 In some scenarios, learning a policy might be easier than learning the value function. In case

of Q function this is true when the action space is very big (continuous). V function on the other
hand does not provide direct information about actions.
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objective can be written as:

J(θ) = E
[
T∑
t=0
R(st, at);πθ

]

=
∑
τ

P(τ ; θ)R(τ).

Taking gradient with respect to θ :

∇θJ(θ) = ∇θ

∑
τ

P(τ ; θ)R(τ)

=
∑
τ

∇θP(τ ; θ)R(τ)

=
∑
τ

P(τ ; θ)∇θP(τ ; θ)
P(τ ; θ) R(τ)

=
∑
τ

P(τ ; θ)∇θ logP(τ ; θ)R(τ).

The Monte Carlo estimate of the gradient for m trajectories under policy πtheta

can be written as:

∇θJ(θ) ≈ 1
m

m∑
i=1
∇θ logP(τ (i); θ)R(τ (i)).

For a trajectory i, the gradient with respect to the dynamics model can be repre-

sented as:

∇θ logP(τ (i); θ) = ∇θ log
[∏
t

P(s(i)
t+1|s

(i)
t , a

(i)
t )πθ(a(i)

t |s
(i)
t )
]

= ∇θ

[∑
t

logP(s(i)
t+1|s

(i)
t , a

(i)
t ) +

∑
t

log πθ(a(i)
t |s

(i)
t )
]

= ∇θ

∑
t

log πθ(a(i)
t |s

(i)
t ).

The final gradient estimate over m samples now becomes:

∇θJ(θ) ≈ 1
m

m∑
i=1

(∑
t

∇θ log πθ(a(i)
t |s

(i)
t

)(∑
t

r
(i)
t

)
.

The gradient now does not depend on either the reward function or the dynamics

function. This means that we do not need to any make assumption about R (it

can be non-differentiable or discontinuous) and we can still use the observed rewards
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directly. Since the gradient is multiplied with the observed rewards, it can also be

seen as if the gradient is scaled with the value of the rewards observed over a path.

This increases the probability of trajectories that have positive rewards and vice versa

for negative rewards. Note that this method just changes the likelihood ratio of the

paths observed according to rewards obtained over them, hence the name.

3.5.2 Variance Reduction

The gradient estimate defined above is unbiased but has high variance because the

estimate is collected over multiple trajectories and over all the time-steps within a

trajectory. The variance further increases as the length of the trajectory increases or

the action space increases. This is because the effect of a particular action or trajectory

on the expected gradient will decrease as the number of possibilities increases. For

example, if the reward from the environment is always positive, then the algorithm will

try to increase the probabilities of any path which has non-zero reward. One way to

reduce the variance of the estimator is by introducing a control variate (Greensmith,

Bartlett, and Baxter, 2004). Williams, 1992 introduced a simple control variate in

the form of baseline b:

∇θJ(θ) ≈ 1
m

m∑
i=1
∇θ logP(τ (i); θ)(R(τ (i))− b)

where,

b = E[R(τ)]

≈ 1
m

m∑
i=1
R(τ (i)).

As long as ∇θb = 0, the gradient estimates remain unbiased. Therefore we can

use any function which is not dependent on the actions. For eg, value function is also

another popular choice of baseline, which results in:

b(st) = E[rt + rt+1 + rt+2 + · · ·+ rT ].
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Now, the gradient has the termR(st, at)−b(st), which increases the log probability

of an action with regards to how much better its returns are compared to the expected

return. The final REINFORCE algorithm is given in Algorithm 3.

Initialize policy πθ with random weights θ

Initialize baseline b

for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy (πθ)

for each time-step t do

compute return, Rt = ∑T
t′=t γ

t′−trt′ at

compute return with baseline, Ât = Rt − b(st)

end

Update the baseline by minimizing ‖b(st)−Rt‖2 averaged over all time

steps and trajectories

Update the policy by using the policy gradient estimate, ∇θ log πθ(at|st)Ât

averaged over all time steps and trajectories

end

Algorithm 3: REINFORCE (Williams, 1992)

There are other policy gradient methods which have not considered in our work,

most notably the Actor Critic methods (Sutton and Barto, 1998), which learn policies

like REINFORCE but also maintain another estimator for the value function using

TD learning.
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Machine Translation

The task of building a system that can translate from one language to the other is

called Machine Translation (MT). Machine Translation started in the 1950s with the

word-to-word replacement using bilingual dictionaries (Sheridan, 1955). By 1990s,

corpus-based MT systems were being developed which use a dataset containing par-

allel sentences of sentence pair in both the languages (Brown et al., 1993) to learn the

statistical translation models without using bilingual dictionaries or pre-defined set of

rules. In the machine learning context, we are interested in a system that can learn

a mapping of sentences from a source language to a target language. The dataset

for learning consists of sequences in source language mapped to sequences in target

language:

D = {(X(1), Y (1)), . . . , (X(N), Y (N))}

where, ∀i

X(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)
T (i)}

Y (i) = {y(i)
1 , y

(i)
2 , . . . , y

(i)
T ′(i)}.

Vocabulary V of a language is a set of all words defined in the language. The

total number of words in a language is denoted by the size of the vocabulary, |V |.

Each element in a sequence for a language (xj) can only take one value from that

language’s vocabulary Vx. Each sequence in the dataset represents a sentence in the

45
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corresponding language. An element in a vocabulary (each word) can be defined by

a unique identifier which is called token. Words are converted to labels or tokens in

a pre-processing step and a dictionary of token to word mapping and vice versa is

maintained.

As there can be many valid translations for a given sentence, the function we are

interested in learning should return a probability distribution over sentences. The

function should be able to handle sequences of variable length as the sentences in

the source and target languages can be of different lengths. To denote the end of

sequence, an end of sequence token (<eos>) is also added to all sequences as another

pre-processing step.

4.1 Language Modelling

Language Modeling (LM) refers to building a model that can estimate how likely is

a given sentence. Given a dataset of sentences, a Natural Language Model learns the

statistics of how likely a sequence of words are to go together. This allows the model

to generate sentences that have similar structure as the training dataset. Given a

sentence (x1, x2, . . . , xT ), we are interested in estimating the probability distribution

over this sentence.

4.1.1 N-gram language models

As the set of number of unique sentences possible is exponential in the size of the

vocabulary, a valid assumption would be to consider that a current word is only

dependent on the previous words, i.e.,

p(x1, x2, . . . , xT ) =
T∏
t=1

p(xt|xi<t).

Classical statistical language models employ the n-th order Markovian assumption,

i.e., the current word is only dependent on the past n words in the sequence (Rosenfeld,
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2000). This allows us to write the probability of a sentence as:

p(x1, x2, . . . , xT ) =
T∏
t=1

p(xt|xt−1, . . . , xt−n).

Due to the markov assumption these kind of language models are also known as

n-gram language models. Consider a 2-gram language model, where the assumption

is that the current word is dependent on only the previous two words. In order to

build such a model, we need to first collect the statistics of all the triplets of the words

occurring together in the dataset and store them. The biggest disadvantage of these

models is that as n increases, the data sparsity problem becomes accute. Another

disadvantage is that these models often fail to generalize because they treat each word

as a separate entity and as such cannot consider relations between similar words.

4.1.2 Neural Language Model

The core idea of a Neural Language Model (Y. Bengio, Ducharme, et al., 2003, Morin

and Y. Bengio, 2005, A. Mnih and G. E. Hinton, 2009) is to use a parametric estimator

along with distributed representations of words (Mikolov et al., 2013). Instead of

treating each word as a unique labelled entity, the goal is to learn a distributed vector

representation that captures syntactic and semantic word relationships and use them

for predicting the probability of the next word.

p(xt|xt−1, . . . , xt−n) = f(xt|xt−1, . . . , xt−n; θ).

Each word in the n-gram context is represented in a one-hot encoding vector,

xi ∈ R|V|, where V is the size of the vocabulary. This one-hot representation is then

passed through an embedding layer, which is essentially a matrix that projects the

one-hot representation in a low-dimensional continuous space (θemb ∈ Rdemb×|V |). This

continuous representation is then passed as input to non-linear hidden layers, which in

the end produce the probabilities over the vocabulary using the softmax activation.

The entire network is differentiable and can be trained using back-propagation to

minimize the cross-entropy loss.
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The Markovian assumption is still a limiting factor in the above case, where we

are taking n previous words and concatenating them for generating the next word

probability. In order to remove the markovian assumption, Y. Bengio, Ducharme,

et al., 2003 propose using an RNN to map a variable length context to a fixed smaller

dimensional space. If the input to the RNN is a sequence of words, the state of the

RNN at time-step t should be able to capture the information until that time-step,

which can be used to build a language model as follows:

p(xt+1|x1, . . . , xt) = f(ht; θout)

where,

ht = g(ht−1, xt; θrec).

Here g is a non-linear activation function like tanh and f is the softmax activation

function. The parameters of the entire network are [θemb, θrec, θout]. The entire network

consists of three components:

• Embedding Layer, θemb : Transforms the one-hot encoded words into contin-

uous smaller dimensional space for learning distributed representations.

• Encoder, θrec : This component encodes the information about the sequence so

far by updating the state of the RNN. The state acts as a memory and should

be able to capture any relevant information from the previous time-steps.

• Decoder, θout : This part of the network uses the state of the RNN to learn

the probability distribution over the next word. The next word can be sampled

from this learnt distribution.

Given a set of N sentences {(x(1)
1 , . . . , x

(1)
T (1)), . . . , (x(N)

1 , . . . , x
(N)
T (N))}, with lengths

{T (1), . . . , T (N)}, the optimization objective is to maximize the negative log-likelihood
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or minimize the cross-entropy loss:

min J(θemb, θrec, θout) = min
θemb,θrec,θout

1
N

N∑
i=1
− log p(x(i)

1 , . . . , x
(i)
T (i))

= min
θemb,θrec,θout

1
N

N∑
i=1

T (i)∑
t=1
− log p(x(i)

t |x
(i)
<t).

The entire network is fully differentiable and the weights can be learned with

stochastic mini-batch gradient descent.

4.2 Neural Machine Translation

Given a set of parallel sentences in different languages x(1), . . . , x(n) and y(1), . . . , y
(n)

where x(i)s is in the source language and y(i) is in the target language, Machine

Translation can be seen as a language model that is conditioned on an additional

sentence in other language.

p(y(i)
1 , . . . , y

(i)
t , x

(i)
1 , . . . , x

(i)
T ) = p(y(i)

t |y
(i)
<t, x

(i)
1 , . . . , x

(i)
T ).

Earlier statistical MT models were trained in a similar way to the statistical lan-

guage models and suffered from similar issues: translation model was limited to marko-

vian assumption and was often not generalizable.

Neural Machine Translation (NMT) takes the motivation from neural language

models to create an end-to-end translation system which can model the entire MT

process with just the parallel corpora with minimal domain knowledge (Kalchbrenner

and Blunsom, 2013, Sutskever, Vinyals, and Le, 2014, Cho, Van Merriënboer, Gul-

cehre, et al., 2014). The core idea of the NMT system is to have a encoder which learns

the representation for the source sentence h, based on which the decoder generates

the translation, one target word at a time.

p(y(i), x(i)) = p(y(i)
t |y

(i)
<t, h

(i))

= f(y(i)
<t, h

(i); θ).
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Borrowing the notation from Cho, 2015, the entire neural network can be described

into two major components: Encoder and Decoder.

4.2.1 Encoder

The Encoder is a parametric non-linear recurrent function for learning the representa-

tion of sentences in the source language in a small continuous space. The input to the

encoder is a one-hot encoding of the words, which are passed to the embedding layer

(similar to NLG models, section 4.1.2) to produce a continuous state representation

of words:

st = W T
embxt (Wemb ∈ R|V |×d)

= femb(xt;Wemb).

The word embeddings are then passed as an input to the RNN, which updates its

hidden state recursively as:

ht = fenc(ht−1, st;Wenc).

The hidden state the RNN can be considered as a representation for the sentence

and as such is also called summary vector. Sutskever, Vinyals, and Le, 2014 showed

that the summary vectors preserve the underlying semantics and syntax structure

by projecting the state of the RNNs for different sentences in 2D space and showing

similar sentences are grouped together in the summary space (Figure 4.1).

4.2.2 Decoder

The decoder is also a parametric non-linear recurrent function, which is used to com-

pute the next word probability distribution given the summary vector and the target

words generated so far. The hidden state of the decoder is updated as:

zt′ = fdec(zt′−1, ut′−1, hT ;Wdec).
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Figure 4.1: 2D PCA projection of the hidden state of the encoder after processing
the phrases as shown in Sutskever, Vinyals, and Le, 2014. The phrases are clustered
according to similar semantic and syntactic structure.

Here, ut′ represents the target word generated at time t′.

p(ut′|u<t′) = fgen(zt′ ;Wgen)

ut′ ∼ p(ut′|u<t′).

The probabilities are calculated using the softmax activation. One of the ways to

generate the target sentence is to directly sample words from the resulting probability

distribution and consider this sampled target word as input to the decoder for the

next time step. This approach is also known as Sampling based generation (Cho,

Van Merriënboer, Gulcehre, et al., 2014). In order to get good translations, we need to

sample repeatedly and choose the target sequence with the highest probability. Esti-

mating the probability of each generated sentence can be computationally exhaustive

and at the same time suffer from high variance.

An alternate technique is to consider all the possible target sentences which can

be generated and computing the log-probability of each the sentence starting from

the first word probability distribution. This approach is computationally intractable

as it grows exponentially with the size of vocabulary along the length of the sentences

(|V |T ). Therefore, an approximate search over the space of candidates is done based

on the log-probability. One of the ways is to use a Greedy Decoding (Cho, 2015),
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where at each time step the word with highest log-probability is selected, conditioned

on previous generated words:

ut′ = arg max
w′∈V

log p(ut′ = w′|u<t′).

Instead of doing greedy decoding for the most probable word at every time step,

Beam Search keeps several hypothesis candidates ("beams") in the memory and

chooses the best hypothesis based on highest log-probability. If there are K beams (or

candidate sentences), then for each candidate, the next target is generated conditioned

on the beam which results in K × |V | new possible candidates. Among these new

candidates only the top K candidates are retained based on log-probabilities (Cho,

2015). Beam search typically gives better translations compared to greedy search as

it performs a broader search over the space of possible candidates at the cost of higher

computation time.

4.2.3 Automatic Evaluation Metric

Though Maximum Likelihood Estimation is used to train the MT system, the evalu-

ation of such system on unseen sentence pairs is often done with approximate trans-

lation quality metrics, most notably BLEU (Papineni et al., 2002). This is because

there can be many valid translations to a given sentence. Unlike classification, there is

no absolute measure for the quality of the sentence generated. The main idea behind

BLEU is to calculate the ratio between the n-grams in translation generated by the

MT system and the n-grams in the actual human translations. If D represents the

dataset, and S is the set of all unique n-grams in one sentence in D, then n-gram

precision of a translation, pn, is :

pn =
∑
S∈D

∑
n-gram∈S ĉ(n-gram)∑

S∈D
∑

n-gram∈S c(n-gram)
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where,

c(n-gram) = count of n-gram

cref (n-gram) = count of the n-gram in reference training sentences

ĉ(n-gram) = min(c(n-gram), cref (n-gram)).

There is an additional penalty to account for the length of the translation, called

Brevity Penalty (BP ). If c is the length of the candidate translation and r is the

length of the corresponding translation in the training set:

BP =


1, if c ≥ r

exp(1−r)/c, otherwise.

The final BLEU score is the product of the Brevity penalty multiplied with the

geometric mean of N-grams1:

BLEU = BP · exp(
N∑
n=1

wn log pn).

The core appeal of the BLEU score lies with its simplicity and correlation to the

human scores. One of the caveats for using BLEU is that increase in BLEU score

does not necessarily indicates improvement in translation quality (C.-Y. Lin and Och,

2004). Though there exist alternative metrics to BLEU such as METEOR (Denkowski

and Lavie, 2014), BLEU is still used widely in the MT community.

4.3 NMT with Attention

The major limitation of the architecture described in the previous section 4.2, is that

the model aims to encode the meaning of the entire sentence into a single vector, the

state of the encoder. This problem becomes more prominent as the length of sentences

increases (Cho, Van Merriënboer, Bahdanau, et al., 2014, Sutskever, Vinyals, and Le,
1(N is usually 4)
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2014). Bahdanau, Cho, and Y. Bengio (2014) proposed a new architecture with the

following two major techniques to exploit a variable-length context representation

that learns better translations over longer sequences.

4.3.1 Bi-directional Encoder

Instead of encoding the sentence to a single vector as in the previous section 4.2,

the source sentence is encoded as a set of state vectors for each time-step from two

recurrent networks. If the length of a sequence is T , the first recurrent network reads

the sentence in left to right manner, from t = 0→ T , and generates the state for each

time-step −→ht . This is the same as the NMT encoder described in the above section 4.2.

The second recurrent network reads the sentence backwards, i.e., from t = T → 0,

and generates the state for each step, ←−ht . For each time step, the final state is the

concatenation from the forward and backward RNNs, ht:

ht =


−→
ht
←−
ht


The state at every time-step now has the context about the entire sentence with

emphasis around the current word. This is because the forward RNN’s hidden state,
−→
ht , contains information from beginning of the sentence to the current time-step and

the backward RNN’s state, ←−ht , contains information from end of sentence to the

current time-step. The concatenated state, ht, is called the context-dependent word

representation as it is encoding both the representation of the entire sentence and the

current word. Such an architecture, where there is a forward and backward RNN, is

also called a bi-directional RNN.

4.3.2 Attention based Decoding

The state of the decoder (zt′) contains information about the target words generated

so far. As all the encoder’s context vectors cannot be given as input to the decoder for
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each time-step, a score to decide how relevant each context vector is for translating the

next word is calculated. The score for context vector hj is based on the previous state

of the decoder zt′−1 (which contains information about the target words generated

up to time-step t′ − 2), the previously generated target word ut′−1, and the context

vector itself.

ej = fscore(zt′−1, ut′−1, hj) (j = 0, 1, . . . , T )

After calculating the scores for each hj, the score is then normalized with a softmax

function:

αj = exp(ej)∑T
i=1 exp(ei)

.

The normalized score is called attention score, as it measures which context

vectors the decoder is paying attention to. The final context vector is the weighted

sum of the encoder’s context vectors:

ct =
T∑
j=1

αjhj.

This final context vector is used to update the hidden state of the decoder and

generate the next word:

zt′ = fdec(zt′−1, ut′−1, ct;Wdec).

The final architecture with both the above techniques is able to discover the word

and phrase mappings between two languages. Using a NMT with attention mechanism

is able to achieve an improvement of up to 60% BLEU score compared to a regular

NMT without attention (Bahdanau, Cho, and Y. Bengio, 2014).



5
Real time machine translation

Online Machine Translation (or real-time translation) is defined as producing a partial

translation of a sentence before the entire input sentence is completed. As mentioned

briefly in the Introduction, the aim is to build a translation agent that can reduce the

delay in the translation process by making decisions as to when to wait and gather

more information about the input sequence or to start translating the current given

sequence. Instead of using heuristics such as waiting till the end of the input sentence

before generating the translation or translating each word as it is observed, the goal is

to take into account the temporal nature of the problem and learn behaviors that can

trade-off between translation quality and delay. Prior work in simultaneous machine

translation is dominated by rule and parse-based approaches (Ryu, Matsubara, and

Inagaki, 2006) or word segmentation based approaches (Oda et al., 2014). We extend

the work by Grissom II et al. (2014) and convert the task into a Markov Decision

Process so that the methods from the RL literature can be applied directly to learn

optimal policies.

5.1 MDP formulation

In this section the real-time machine translation task is formulated in a Reinforcement

Learning setting, by defining an environment, states, actions and a reinforce reward

56
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or feedback from the environment.

5.1.1 Environment

In a traditional machine translation setting, the entire sentence is available to the

system for translation but in a real-time setting the source emits only one word

at a time. The environment acts as the source and provides a word in the source

language at each time-step, denoted by, x1, . . . , xt. The agent has to make a decision

regarding which action to take and gets a feedback accordingly in the form of a reward

(described in the next sections: 5.1.4, 5.1.3). At next the time-step, the environment

emits another word from the source sentence sequence, xt+1. Once the environment

emits the last word from the original sentence sequence xT it reaches a terminal state

and episode ends. The environment then starts another episode and begins emitting

words from a new sentence.

5.1.2 States

The state of the agent represents its current view of the environment. It is a function

of the observed word sequence x1, . . . , xt and the translation emitted so far y1, . . . , yt′ .

Formally, current state of the agent can be represented as the concatenation of the

following vectors:

• The current context of the encoder of NMT system. It is essentially a represen-

tation of the observed words x1, . . . , xt in the source language.

• The current decoder-context conditioned on the translation emitted so far. This

is a representation of the current translation y1, . . . , yt′−1 in the target language.

• The last word emitted by the agent yt′ in the target language.
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5.1.3 Actions

At any particular time-step, the agent must decide whether to wait for more informa-

tion or to generate the translation. The following two actions are defined to capture

such behaviour:

• WAIT

This action represents that the agent is not ready to translate yet and hence

must "wait". On executing this action, the agent does not produces any output.

This allows the agent to receive more input so if it decides to translate later,

the translation is based on more information.

• COMMIT

This action defines that the agent will generate a word in the target language

and update the translation. On executing this action, the agent produces the

next translation word yt′+1 which is generated from the decoder of the NMT

system using the current state. This takes advantage of the NMT system and

gives the agent the ability to both translate from the existing input sequence as

well as predict the next word in the output sequence.

5.1.4 Reward Function

At the end of each episode, the agent gets a reward based on the BLEU (Papineni et

al., 2002)1 score of the translation it produced with respect to the reference translation.

Two additional modifications are made to the above reward function formulation :

• First, in the above formulation the agent does not have any penalty for taking

WAIT actions. This can lead to a pathological behaviour where the agent waits

till the very end of the source sentence and then start generating the translation.
1The implementation of BLEU used in this work is taken from the NLTK(Bird, Klein, and Loper,

2009) package: http://www.nltk.org/_modules/nltk/align/bleu.html

http://www.nltk.org/_modules/nltk/align/bleu.html
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In order to prevent this behaviour, we give a small constant negative reward

(penalty) to the agent, denoted by β, whenever the agent takes a WAIT action.

• Another issue with the current reward function is that even when the agent

starts producing poorer translations, it will only receive the feedback for them

at the end of the sequence. We use the partial BLEU score to address this issue.

Let S be the score function for a partial translation, Xt the sequentially revealed

source words x1, x2, ..., xt from time step 1 to t , and Ŷt the partial translations

ŷ1, ŷ2, ..., ŷt′ till time-step t. Each incremental translation Ŷt has a BLEU score

with respect to a reference Y . The partial BLEU score for time-step t is defined

as,

S(Xt, Ŷt) = BLEU(Ŷt, Y )− BLEU(Ŷt−1, Y )

Using the partial reward at each time-step instead of awarding the whole score

at the last step does not change the optimal policy (Ng, Harada, and S. Russell,

1999). This formulation provides training signal for the agent at each time-

step and ensures that the agent knows it is drifting towards producing poorer

translations.

Therefore, if the agent takes the WAIT action, it gets a penalty denoted by β.

When the agent chooses the COMMIT action, it gets the partial BLEU score depend-

ing on the difference of current translation and previous time-step’s translation.

5.2 Learning

The problem is now transformed into a classical RL setting where the agent can

interact with the environment at every time-step, receive a feedback reward, and the

goal is to maximize the expected return. In the new formulation, the state space

is very large (the hidden states of the encoder and decoder concatenated with the
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word embedding of the last generated word) but the action space is extremely small

(two actions: WAIT and COMMIT). As a result, Deep Reinforcement Learning based

algorithms such as DQNs (V. Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015) and Deep

Policy Gradients (Lillicrap et al., 2015) can be used to learn policies that maximize

the expected return.

5.2.1 Learning a Q Network

Policies are learned using Q-learning with function approximation in the same manner

as described in Section DQN (3.4.5). The NMT provides the state representation

which is fed into the DQN. A high-level architecture of the system is represented in

Figure 5.1

Figure 5.1: Architecture of the SMT system

The training is done in two phases. In the first phase, the aim is to learn a good

batch translation system (a regular NMT system) using a bilingual corpus. This pre-
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trained NMT system can now be used to get feature representation for the states. As

described in section 5.1.2 the state of an agent includes context from encoder, context

from decoder and the last emitted word. These are concatenated together to form a

feature vector represented as st.

In the second phase the parameters of the DQN are learned to maximize the

expected return using Q-Learning. Given a source sentence, at time-step t the state

representation from the NMT system st is fed as input to the DQN which produces the

Q-values for the available actions for that state. The agent follows the greedy policy

with respect to the Q-values and selects the action, at, with the largest return and

executes that. It gets a corresponding reward, rt from the environment and also the

next word from the source sequence, which changes the state to st+1. This transition

of < st, at, rt, st+1 > is stored in an experience buffer. The agent keeps on executing

in such manner until it reaches the terminal state (the end of sentence, represented

by <eos> token). Once the agent reaches the terminal state, WAIT is no longer an

available action and hence it performs a series of COMMIT actions until it produces

the <eos> token for the target sentence, at which stage the episode ends.



6
Empirical Evaluation

6.1 Setup

To empirically study the proposed real-time translation model, we ran experiments

on three different language translation tasks: translating sentences from English to

French (En→Fr), translating sentences from English to German (En→De) and trans-

lating sentences from Japanese to English (Jp→En)1.

For En→Fr and En→De translation tasks, the datasets consisting of bilingual par-

allel sentences are taken from the WMT 2014 translation task2. The Europarl parallel

corpus (Koehn, 2005) is used as the training set for training the NMT system as well

as the RL agent. The Europarl parallel corpus is extracted from the proceedings of

the European Parliament. We use the news-test-2014 development dataset as the val-

idation set and evaluate the models on the news-test-2011 dataset from WMT 2014

task. Both news-test-2014 and news-test-2011 consist of approximately 3000 sentence

pairs which were not present in the training data.

The dataset, for Jp→En translation task, is taken from the Kyoto Free Translation

Task (Neubig, 2011). The dataset consists of parallel sentences of Wikipedia articles

related to Kyoto3. Details for each dataset can be found in Table 6.1.
1We chose the above language pairs to test our results to cover a variety of language pairs with

different syntactic structure.
2http://www.statmt.org/wmt14/
3The dataset is already partitioned into train, validation and test sets by the Kyoto Free Trans-
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Table 6.1: Dataset details
Language pair Sentences Source language words Target language words
English→French 2M 50M 51M
English→German 1.9M 47M 44.5M
Japanese→English 440k 12M 11.5M

Table 6.2: NMT network parameters

Parameter Value
Source-vocabulary size 30,000
Target-vocabulary size 30,000

Word embedding dimension 1024
Optimizer Adam

Learning rate 0.0001
GRU state dimension 500

Training Epochs 5000

Each word in the dataset is given a unique identifier, also called the token. Words

are converted to tokens using the tokenizing script provided by the Moses Statistical

MT system (Koehn, Hoang, et al., 2007). After the tokenization the size of the

vocabulary is fixed due to the computationally intensive nature of the softmax over

vocabulary operation in the NMT system. If |V | denotes the size of vocabulary, then

only |V | most frequent words in the language are selected4. Any word not in the

vocabulary is replaced by a special token,<UNK>, denoting an unknown word. To

denote the end of sentence, an end of sequence token (<eos>) is also added to all

sequences as another pre-processing step. We do not apply any other special pre-

processing to the data.

The network architecture and other major parameters for training our NMT sys-

tem and DQN are described in Table 6.2 and Table 6.3 respectively.
lation Task organizers.

4Most NMT system limit their vocabularies to be the top 30K-80K most frequent words in each
language.
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Table 6.3: DQN network parameters

Parameter Value
Discount factor (γ) 0.99

Hidden units (Layer 1 - Layer 2- Layer 3) 512 - 64 - 2
Replay memory size 1000000

Optimizer RMSProp
Learning rate 0.00025

Training Epochs 300
Training steps per epoch 25000

Target network update frequency 1000
Exploration end rate 0.1

Exploration decay steps 200000
Wait Penalty (β) -0.005

6.2 Results

We now present the results of the proposed real-time translation system. We compare

the policies learnt by our system against monotone and batch translation policies.

Batch translation is defined as when the agent waits till the end of sentence before

starting to translate (traditional machine translation). This can be reproduced by

the agent via taking a sequence of WAIT actions until all input is observed and then

taking a sequence of COMMIT actions. A monotone translation is one where the

agent translates each word as soon as it is observed. The agent can reproduce this

by taking a COMMIT action at every time-step. Note that for language pairs which

have different word orders, the monotone translation will potentially provide a poorer

translation. The policy learnt by the agent in the RL framework will be referred to

as Adaptive policy.

Quantitative results comparing the expected return by different policies can be

found in Table 6.7. However, the notion of comparing policies based on the expected

return is not fair as the reward function is biased against batch and monotone policies.

An alternate way to interpret the results can be to compare the trade-off between

delay and translation quality for different policies. We define the following metrics to

capture the quality and delay:
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• Quality

The translation quality of the generated sentences is denoted by calculating the

BLEU score on the entire evaluation dataset.

• Delay

Delay can be represented by the number of time-steps when agent is laying idle

and is not producing any translation. Thus, we can define delay as average

number of WAIT actions the agent takes.

The results based on the new metrics for two different values of WAIT action

penalty (β) are shown in the Figure 6.1. The learning curve during the training for a

sample run is shown in Figure 6.2.

Some examples of the translation generated by the agent are demonstrated in

the tables: Table 6.4, Table 6.5 and Table 6.6. In these tables, rows represent the

progression in time, with the top row representing t = 0, the second row denoting

time-step t = 1 and so on. The first column shows the source sentence observed

by the agent (Input) and the translation produced by the agent (Translation). The

second column shows the action taken by the agent at that corresponding time-step

(Action). The reference translation used for calculating the BLEU score is shown in

the last row as Original translation.

6.3 Analysis

In this section, we examine some examples to gather insights into the behavior of the

system. We can make a few observations from the plot of delay vs translation quality

(Figure 6.1) :

• The batch policy (which waits till the end of entire input sequence) has much

higher delay but also has the best translation score. This is expected behaviour
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Table 6.4: Example of a translation generated by the trained agent for
English→French translation task.

Observed sentence and translation Action
Input: The
Translation: La COMMIT

Input: The European
Translation: La Commission COMMIT

Input: The European Union
Translation: La Commission WAIT

Input: The European Union must
Translation: La Commission WAIT

Input: The European Union must be
Translation: La Commission WAIT

Input: The European Union must be able
Translation: La Commission WAIT

Input: The European Union must be able to
Translation: La Commission européenne COMMIT

Input: The European Union must be able to act
Translation: La Commission européenne WAIT

Input: The European Union must be able to act UNK
Translation: La Commission européenne doit COMMIT

Input: The European Union must be able to act UNK .
Translation: La Commission européenne doit WAIT

Input: The European Union must be able to act UNK . <eos>
Translation: La Commission européenne doit pouvoir agir de façon UNK . Sequence of COMMITs

Original translation: L’ Union européenne doit pouvoir UNK de façon UNK .

as the batch policy has access to the entire input sequence and thus has the

highest potential to produce the best translation.

• The monotone policy (which translates at each time-step) has no delay but has

the worst translation quality when compared to other policies. Again this is

perhaps not surprising as the agent is forced to produce a translated word at

each time-step and thus has to make translations without entire knowledge of

the sequence which results in poorer quality.

• The policies learnt by the agent have less delay than the batch but better trans-

lation quality than the monotone policy and by setting the value for the WAIT

penalty we can control the trade-off between delay and accuracy.

• The gap between monotone and batch translation scores is dependent on word-

order for language pairs. The gap is largest for Japanese → English task and
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Table 6.5: Example of a translation generated by the trained agent for
Japanese→English translation task.

Observed sentence and translation Action
Input: 真宗
Translation: WAIT

Input: 真宗 佛光
Translation: WAIT

Input: 真宗 佛光 寺
Translation: Shinshu COMMIT

Input: 真宗 佛光 寺 派
Translation: Shinshu sect COMMIT

Input: 真宗 佛光 寺 派 （
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は
Translation: Shinshu sect WAIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ）
Translation: Shinshu sect Bukko-ji COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と
Translation: Shinshu sect Bukko-ji school COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は
Translation: Shinshu sect Bukko-ji school is COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、
Translation: Shinshu sect Bukko-ji school is a COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土
Translation: Shinshu sect Bukko-ji school is a Pure COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土 真宗
Translation: Shinshu sect Bukko-ji school is a Pure Land COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土 真宗 の
Translation: Shinshu sect Bukko-ji school is a Pure Land sect COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土 真宗 の 一派
Translation: Shinshu sect Bukko-ji school is a Pure Land sect school COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土 真宗 の 一派 。
Translation: Shinshu sect Bukko-ji school is a Pure Land sect school , COMMIT

Input: 真宗 佛光 寺 派 （ しんしゅう ぶ っ こうじ は ） と は 、 浄土 真宗 の 一派 。 <eos>
Translation: Shinshu sect Bukko-ji school is a Pure Land sect school , one of the Jodo Shinshu ( the True Pure Land Sect of Buddhism ) . Sequence of COMMITs

Original translation: The Bukko-ji ( UNK ) School of Shin Sect is a school of Jodo Shinshu ( the True Pure Land Sect of Buddhism ) .

smallest for English → French translation task.

6.3.1 Comparison with random policies

We compare the policies learnt by the agent in the previous section with the ran-

dom policies. In Figure 6.3, random policies are represented as solid lines and the

probability for a WAIT action increase from left to right on the x-axis. Since, there

are two actions, this corresponds to probability of COMMIT action decreasing from

left to right. At the far left we have a policy with <probability(WAIT)=0, prob-

ability(COMMIT)=1>, that is equivalent to the monotone policy. On the extreme

right, we have policy with <probability(COMMIT)=0, probability(WAIT)=1> which

is the same as the batch policy. In the middle of the x-axis, we have a policy with

<probability(COMMIT)=probability(WAIT)=0.5>.
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Table 6.6: Example of a translation generated by the trained agent for
English→German translation task.

Observed sentence and translation Action
Input: It
Translation: Er COMMIT

Input: It is
Translation: Er ist COMMIT

Input: It is precisely
Translation: Er ist eben COMMIT

Input: It is precisely for
Translation: Er ist eben f‘ĳr COMMIT

Input: It is precisely for this
Translation: Er ist eben f‘ĳr WAIT

Input: It is precisely for this reason
Translation: Er ist eben f‘ĳr WAIT

Input: It is precisely for this reason that
Translation: Er ist eben f‘ĳr WAIT

Input: It is precisely for this reason that the
Translation: Er ist eben f‘ĳr WAIT

Input: It is precisely for this reason that the idea
Translation: Er ist eben f‘ĳr WAIT

Input: It is precisely for this reason that the idea of
Translation: Er ist eben f‘ĳr diesen COMMIT

Input: It is precisely for this reason that the idea of a
Translation: Er ist eben f‘ĳr diesen WAIT

Input: It is precisely for this reason that the idea of a review
Translation: Er ist eben f‘ĳr diesen WAIT

Input: It is precisely for this reason that the idea of a review of
Translation: Er ist eben f‘ĳr diesen WAIT

Input: It is precisely for this reason that the idea of a review of the
Translation: Er ist eben f‘ĳr diesen Grund COMMIT

Input: It is precisely for this reason that the idea of a review of the financial
Translation: Er ist eben f‘ĳr diesen Grund der COMMIT

Input: It is precisely for this reason that the idea of a review of the financial UNK
Translation: Er ist eben f‘ĳr diesen Grund der Idee COMMIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is
Translation: Er ist eben f‘ĳr diesen Grund der Idee WAIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not
Translation: Er ist eben f‘ĳr diesen Grund der Idee WAIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer ‘Ĳberpr‘ĳfung der UNK nicht im Moment . WAIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being considered
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer COMMIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being considered at
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer ‘Ĳberpr‘ĳfung COMMIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being considered at present
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer ‘Ĳberpr‘ĳfung WAIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being considered at present .
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer ‘Ĳberpr‘ĳfung WAIT

Input: It is precisely for this reason that the idea of a review of the financial UNK is not being considered at present . <eos>
Translation: Er ist eben f‘ĳr diesen Grund der Idee einer ‘Ĳberpr‘ĳfung der UNK nicht im Moment . sequence of COMMITs

Original translation: Aus diesem Grund wird UNK eine UNK der UNK UNK noch nicht UNK .

Table 6.7: Quantitative results on English→German

Policy Average Reward
Monotone 0.5498
Batch 0.5847
Learnt 0.6123
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Figure 6.1: Delay vs Translation Quality for En→Fr, En→De and Jp→En translation
tasks for two different Wait penalty (β). WAIT=-0.005 represents the RL agent
trained on β = −0.005 and vice versa.

From the above plot (Figure 6.3), we can observe that the policy learnt by the

agent is as good as a random policy. Moreover, random policies are also able to achieve

delay-accuracy trade-off. A possible hypothesis is that taking a few WAIT actions

allows the agent to have a preview of next words in the sequence for the remaining

episode. For example, after taking 5 WAIT actions, the agent now always observes at

least 5 more words in the source sequence. This can also be seen as the inability of

the agent to catch up to the source sentence as the agent can only generate one word

at every time-step.

We expected the random policies to not perform well on Japanese to English trans-

lation task as this pair of languages has a very different syntax order. However, we

found the results to be similar in the sense that random policies work as well as the

learnt policies. An interesting observation worth mentioning is that the learnt policy

is not purely random in nature, for example, the policy learns the set of Japanese
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characters that are supposed to appear together (such as kanjis for dates and num-

bers). This results in a learnt policy that waits for the phrase before generating the

translation. A random policy cannot capture this behavior but still empirically shows

the same performance as the learnt policy.
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Figure 6.2: Learning Curves during training for English→German translation task for
the validation set. The x-axis represents the training epochs. The top plot denotes
the expected reward which the agent is trying to maximize using RL. The middle
plot denotes delay (average number of WAIT steps). The bottom plot denotes the
translation quality (BLEU score).
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Figure 6.3: Policy comparison with random policies. The solid lines represent random
policies.



7
Conclusion and Future work

In this work, we present for the first time, a unified framework for real-time machine

translation task that combines translation and decision-making into a single archi-

tecture. We have empirically demonstrated that our agent is able to learn better

policies than the standard batch and monotone policies on two language pairs. We

also demonstrated that the policies learnt in this framework exhibit a delay-accuracy

trade-off. The framework is generalizable as it can be extended to any language pair

without any prior knowledge. Any advances to the existing NMT systems in the

future can be easily integrated in the system.

The presented framework has many challenges and possible avenues of improve-

ments. The foremost task that needs to be understood is the behavior of random

policies as mentioned in Section 6.3.1. Since our work, there has already been a rise

in work on real-time machine translation (Gu, Neubig, et al., 2017, Cho and Esipova,

2016), that proposes alternate metrics for evaluating the performance on real-time ma-

chine translation task. However, none of them compare the performance to random

policies baselines. The relation between random policy and reward penalty needs to

be studied in more detail. Also, we have not completely explored other Reinforcement

Learning methods for this task, particularly the family of on-policy methods.

In the present framework, the agent can only perform primitive actions. One of the

limitations of the current actions is that the agent needs to make decisions at the word

73
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level. The agent should ideally also have actions like COMMIT-PHRASE that can be

used to generate entire phrases. This can be done in either a neural language model

based decoding style (Gu, Cho, and Li, 2017) or using hierarchical reinforcement

learning algorithms such as the options framework (Sutton, Precup, and Singh, 1999).

Recent work by Gu, Neubig, et al. (2017) builds upon the approach mentioned in this

work and introduces a greedy decoder based COMMIT action mechanism that can

consecutively decode multiple steps and generate an entire phrase. This allows the

agent to generate variable length translations on taking COMMIT action and not lag

behind the source sentence. However, they do not give any comparisons with the

random policy based baselines.

One of weaknesses of the current approach is that the NMT system is trained on

sentence level but then it is employed for decision making for incomplete sentences.

One way to address this is to fine-tune the NMT system on either phrases or incom-

plete sentences. Another way to address this can be to construct task specific datasets

for real-time machine translation. The data from human translators (Shimizu et al.,

2014) can be helpful to fine tune the translation system and learn further strategies

for real-time translation. However, much less data of this type is available.

An important aspect that needs to be studied is the impact of the reward formu-

lation on the task. The current system heavily depends on the reward formulation

and penalty for WAIT action. Instead of manually specifying the reward and penalty,

another area of interest will be to learn better reward function directly from human

translators’ data. This should be possible using the techniques from the Inverse Re-

inforcement Learning literature (Ng, S. J. Russell, et al., 2000). The translation data

can also be seen as demonstrations by the humans, and as such it should also be

possible to use Imitation Learning (Argall et al., 2009, Billard et al., 2008) in this

domain.

This work is a first small step towards building a fully generalizable and usable real-

time machine translation system. There are shortcomings in the present framework
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that need to be addressed before it can be used in any real setting. In spite of that,

we demonstrate that it is possible to build end-to-end online translation system using

reinforcement learning. As the research in NMT systems, online translation evaluation

metrics and datasets, and reinforcement learning advances, our framework can also

improve.
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