
INFORMAnON TO USERS

This manuscript has been reproduced tram the microfilm master. UMI films the

text directly from the original or copy submilled. Thus, sorne thesis and

dissertation copies are in typewriter face, while others rnay be from any type of

computer plinter.

The qualïty of thla rwprocIuction is _pendent upon the qUll11ty of the copy

submitted. Broken or indistinct print. coIonId or poor quaIity ilusb8tionS and

photographs, print bleectlhrough, substandafti margins, and improper alignrnent

can adversely affect reproduction.

ln the unlikely event th8t the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material hac:t te be removed, a note will inc:lieate the deletiOn.

Oversize materials (e.g.• maps. drawings, charts) are reproduc8d by sectioning

the original. begiming al the upper Ieft-hand corner and continuing from 18ft ta

right in equal sections with small overtaps.

Photographs incIuded in the original manusaipt have been reproduced

xerographically in this copy. Higher quality 6- x gr black and white photographie

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI direclly ID arder.

Bell & HoweIllntonnatïon and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48108-1346 USA

UMI
e

800-521-œoo

•

•

Continuons Function Identification

with Fuzzy Cellular Automata.

Bohdana Ratitch

School of Computer Science

McGill University, Montreal

May, 1998

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of

the degree of Master of Science.

Copyright @Bohdana Ratitch 1998.

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie SeNices

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du canada
Acquisitions et
services bibliographiques

395. rue Wellington
Qtlawa ON K1A 0N4
canada

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, 1030, distnbute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts trom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distnbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fotmat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

O~12-44255-1

Canadrl

•

•

Abstract

Thus far, cellular automata have been used primarily to model the systems consist­

ing of a number of elements which interact with one another only locally; in addition

these interactions can be naturally modeled with a discrete type of computation. In

this thesis, we will investigate the possibility of a cellular automata application to a

problem involving continuous computations, in particular, a problem of continuous

function identification from a set of examples. A fuzzy model of cellular automata

is introduced and used throughout the study. Two main issues in the context of this

application are addressed: representation of real values on a cellular automata struc­

ture and a technique which provides cellular automata with a capacity for learning.

An algorithm for encoding real values into cellular automata state configurations

and a gradient descent type learning algorithm for fuzzy cellular automata are pro­

posed in this thesis. A fuzzy cellular automaton learning system was implemented

in a software and its performance studied by means of the experiments. The eifects

of severa! system's parameters on its performance were examined. Fuzzy cellular

automata demonstrated the capabilities of carrying out complex continuous compu­

tations and performing supervised gradient based learning.

•

•

Résumé.

Les automates cellulaires ont jusqu'ici été utilisés essentiellement pour modéliser

des systèmes consistants en éléments qui communiquent les uns avec les autres de

façon locale. De plus, ces communications peuvent être modélisées naturellement

à l'aide de calculs discrets. Dans cette thèse nous nous intéressons à la possibilité

d'appliquer les automates cellulaires à un problème inpliquant des calculs continus,

et particulièrement au problème d'identification d'une fonction continue à partir

d'ensemble d'exemples. Un modèle d'automate cellulaire "flou" (fuzzy) est introduit

et utilisé tout au long de notre recherche. Deux questions sont d'un intérêt partic­

ulier dans le contexte de ce problème: la représentation des valeurs continues dans la

structure d'un automate cellulaire, et l'élaboration d'une technique d'apprentissage

applicable aux automates cellulaires. Un algorithme pour encoder des valeurs contin­

ues dans les automates cellulaires est proposé, ainsi qu'un algorithme d'apprentissage

de type "gradient descent". Un prototype basé sur un automate cellulaire flou a été

implementé en logiciel, et sa performance a été étudiée au moyen d'essais. Les effets

de plusieurs des paramètres du système sur sa pedormance ont été étudiés. Les au­

tomates cellulaires flous ont démontré leur capacité à exécuter des tâches complexes

de calcul continu, et à. accomplir des tâches d'apprentissage supervisé.

1

•

•

Acknowledgments.

In the first instance it is my pleasure to express my deepest gratitude to my

thesis supervisor Denis Térien. His guidance and opinions have assisted me through

my entire research work and have in great measure made this thesis possible. His

constant encouragement and support have helped me tremendously in my integra­

tion into the Canadian academic and research community. In addition [extend

my sincerest appreciation and gratitude to Gordon Broderick from Noranda Tech­

nology Center_ This thesis has greatly henefited not only from his expertise but

also from our frequent discussions which were a constant source of inspiration and

encouragement.

To Ricard Gava.1da 1 am very grateful for bis many va.1uable ideas and comments.

1 would also like to acknowledge Hector Budman for the interesting and helpful

discussions.

To Jean Sebastien Bolduc 1 extend myexpression of thankfulness for his coop­

eration and support in the many situations of our lives as fellow students.

1 am grateful to my husband, Andrij Serbyn, for bis editorial assistance and

especially for his patience, encouragement and belief in me.

Many thanks to all the professors and instructors whose knowledge 1 was able to

share while taking courses 30t McGill's School of Computer Science and particularly

to 3011 the members of our school staff for their work which provided an excellent

environment and atmosphere conducive for study and research.

1 am grateful to Noranda Inc. for the financial support provided for this research.

2

•
Contents

1 Introduction.

2 Cellular Automata.

6

Il

2.1 The Origin of Cellular Automata. Il

2.2 Classical Model

2.3 Various Models of Cellular Automata..

. 13

. 16

2.4 Cellular Automata as a Universal Madel of Computation. 21

2.5 Applications of Cellular Automata. 24

3 Fuzzy Theory. 29

3.1 Motivations of Fuzzy Set Paradigme • 29

3.2 Fuzzy Sets and Standard Fuzzy Operations. .. 32

4 Learning Process. 36

•
4.1 Learning Paradigms. .. 36

4.2 Connectionist Systems: Leaming Algorithms and Training Paradigms. 38

3

• 4.2.1

4.2.2

Types of Learning. . . .

Training Paradigms.

38

42

4.3 Identification of Cellular Automata. Review of the Existing Approaches. 45

5 Problem of Estimating an Unknown IUnction.

5.1

5.2

Problem Statement.. .

Search for a Solution..

52

. 52

. • 55

5.3 Objectives of Function Identification Through Supervised Learning. . 58

5.4 Selected Methods of Function Estimation. 61

6 Fuzzy Cellular Automata.

6.1 Definition of a Fuzzy Cellular Automata Model.

6.2 Discussion on the Form of the Transition Function.

7 Learning with IUzzy Cellular Automata.

7.1 Problem Statement .

7.2 Sketch of the Learning Algorithm..

7.3 Learning Aigorithm.

7.4 Stopping Criterion. . .

8 Encoding Real Values into CA Configurations.

67

67

68

71

71

72

73

77

79

9 Experiments and Results.

•
9.1

9.2

Objectives of the ExperiInents.

Experimental Designs and Discussion of the Results.

4

83

83

84

•

•

10 Conclusion.

A Approximations Found by Fuzzy Cellular Automata.

5

100

107

•

•

Chapter 1

Introduction.

Cellular automata represent one of the computational models which has been at­

tracting the attention of researchers in theoretical computer science as weIl as of

scientists in other disciplines, who applied it in numerous ways. Cellular automata

have proven to possess the capahilities of a universal machine which is an important

feature, at least from a theoretical perspective. Being applied to various practical

problems, cellular automata also exhibit very useful and interesting characteristics.

The most notable of them are massive parallelism, locality of cellular interactions

and simplicityof basic components. Cellular automata perform computations in a

distributed fashion on a spatial grid. In this they differ from a. standard approach

to parallel computations whereby a problem is split into independent sub-problems

later to be combined in order to yield a final solution. Cellular automata suggest

a new approach in which a complex global behavior cao he modeled by non-linear

spatially extended local interactions.

Thus far, cellular automata have heen used primarily ta model the systems con­

sisting of a number of elements obeyjng identical laws of local interactions (e.g.

problems of fluid dynamics, crystal growth, tissue engineering, socio-environmental

problems, etc.). In other words, information about these systems could he easily

mapped onta cellular automata's discrete computational space. The possibilities to

6

•

•

apply cellular automata to other systems and prohlems, that do not possess this

characteristic, have not yet heen well explored. It is an accepted point of view that

cellular automata provide a natural and efficient tool for discrete types of compu­

tations. But computationai capahilities of cellular automata in a hroader sense,

including continuons computations, still require additional study.

The wide applicahility of cellular automata is limited hecause the methodologies

for designing cellular automata, intended to solve specifie pre-defined tasks, are

still underdeveloped. Such designing techniques would be extremely useful since

there exist many prohlems for which local interactions, that would drive cellular

automata to solve these problems, are not known in advance. Sorne work has already

been done in this area, mainly using genetic algorithms to evolve cellular automata

transition ruIes. Sorne algorithms were proposed to derive the transition rules on

the basis of available history of the cellular automata global states. To the best

of our knowledge, only one different approach has been considered: reinforcement

learning for probabilistic cellular automata [41], [11]. Successful results of these

studies suggest that other learning concepts, that were developed in different areas

of machine leaming, can aIso be efficiently applied to cellular automata.

The present study pursued two main objectives:

• To validate the capacity of cellular automata to perform complex continuous

computations. The successful results in this aspect hroaden the area of poten­

tial applications for cellular automata.

• To assess cellular automata abilities and efficiency in gaining knowledge in a

process of learning. Development of new learning techniques, designed specif­

ically for cellular automata, facilitates their application in those areas where

such an application is theoreticalIy possible, but an exact description of a

suitable cellular automaton is not known.

To achieve the above stated objectives, cellular automata were applied to a prob­

lem of function identification. The problem of function identification is undergoing

7

•

•

constant development in severa! scientific domains. This problem involves approx­

imation or modeling of an unknown function using a set of available input-output

pairs of this function. The function identification problem has become especially

acute in today's information loaded society. Technology has developed various means

of data acquisition and storage, whereas the techniques for processing available in­

formation and converting it into useful knowledge are still far behind. An ability to

model and predict different natural and man-made systems and processes is highly

desirable in many spheres of science and industry. Newapproaches to function iden­

tification has recently arisen in the field of artificial intelligence. Artificial neural

networks are the most popular amongst them and have already proved to be quite

successful. But a search for new computational models and algorithms capable of

performing the identification task is still very active. Cellular automata have never

been applied yet in the context of this problem, but their powerful computational

features suggest the possibility of their good performance in this area.

The idea of cellular automata application to the problem of function identification

involves two major issues: knowledge representation and acquisition. If real valued

functions are to be approximated by cellular automata models, real values have to be

represented in sorne way on a cellular discrete structure. Once this issue is resolved,

specifie techniques to generalize knowledge, present in a set of known input-output

pairs, have to he designed specifical1y for a cellular automata type of computation.

In other words, the methods that would enable a cellular automaton to learn an

unknown function from a set of examples have to he discovered or existing learning

algorithms must be adapted to the cellular automata mode!.

Most function identification approaches relyon parametric models, i.e. computa­

tional models used to approxirnate functions are assumed to have sorne (pre-defined)

general form within which a model that approximates a specifie function is defined

by a specifie set of parameters' values. One of the popular techniques to determine

these specifie values makes use of the gradient based optimization methods. In the

present study, we explored the question of how these ideas, successful in applications

8

•

•

to other computational models, could be incorporated into the context of cellular

automata.

We draw the reader's attention to chapters 2 through 5 where the background

material and work associated with the matters explored in this thesis are presented.

Chapter 2 is devoted to a cellular automata model of computation, its origin, char­

acteristics and applications. The basics of fuzzy set theory are presented in Chapter

3. Learning paradigms used in today's machine learning theory are discussed in

Chapter 4. Special attention will be paid to connectionist learning systems since the

concepts employed in this field seem to be very suitable for the applications in the

context of cellular automata learning. A review of the existing studies on cellular

automata identification (learning) can also he found in Chapter 4. A problem of

function identification is addressed in Chapter 5. In this chapter, a problem state­

ment and review of the selected methods are presented. The remaining chapters of

this thesis are devoted to our own research work and the results obtained in con­

sequence of it. We will brieflyacquaint a reader with the main issues addressed in

these chapters.

The original model of cellular automata assumes that their basic components

(or cells) are involved only into local logical computations, which are simple and

fast. This is a valuable feature of cellular automata and we wanted to preserve it

as much as possible. In order to enable cellular automata to acquire knowledge

from examples it was necessary to pick out sorne of the defining elements of the

cellular automata model, an exact description of which should be determined in the

process of leaming. The best choice seemed to fall on a cellular automaton state

transition rule, which carnes out most of the responsibility for the computations of

an automaton. A gradient descent based technique, that was meant to be employed

on the learning stage, would require a cellular automaton's transition rule to he

differentiable. Taking all this into consideration, we found that the requirement of

differentiability can be compromised while preserving local logical computations in

the framework of fuzzy set theory. Following this idea, a definition of a fuzzy cellular

9

•

•

automata model will be proposed (see Chapter 6), in which a state transition rule

assumes a fonn of parametric, differentiable fuzzy logic function. A gradient descent

type learning algorithm was designed for this model to enable function identification

based on a fuzzy cellular automaton leaming system (see Chapter 7).

The issue of encoding real values into the cellular automaton state configurations

is addressed in this thesis. An encoding problem is extremely important in this

case, as it can directly influence both the precision of data representation and the

complexity of a leaming task. An encoding method was designed and is presented

in Chapter 8.

It often happens in the field of machine learning that learning algorithms are

difficult to analyze theoretically and proofs of their convergence or accuracy are dif­

ficult (if possible at aIl) to obtain. In this case, the system's performance can be

assessed through empirical methods. Behavior of a fuzzy cellular automaton learn­

ing system and a learning algorithm designed for it was studied in detail through

a series of experiments. The system'8 performance appeared to be influenced by

the parameters that define a structure of cellular automata as well as by a learn­

ing rate parameter which is an attribute of a learning algorithm itself. Effects of

these parameters are described in Chapter 9. The new learning system was tested

on a variety of continuous functions and the observations concerning the system's

performance are presented in this chapter as welle

The results obtained in this study are summarized in Chapter 10. They are

positive and encourage further research in this direction. They demonstrate that

cellular automata are capable of attaining good performance when applied to the

problems involving continuous computations, specificaily the problem of continuous

function identification. Cellular automata once more demonstrated to be extremely

interesting both from theoretical and applied points of view. The results of this study

reinforce the idea that new applications for cellular automata should he sought and a

variety of practical prohlems can benefit from their powerful computational features .

10

•

•

Chapter 2

Cellular Automata.

2.1 The Origin of Cellular Automata.

For the first time the idea of an automaton organized on a regular structure appeared

in the studies of automata by von Neumann. Sorne of his work was published during

his life [49] ,[47], while some was left in manuscripts, later to be edited and completed

by Artur W. Burks in [13]. The development of von Neumann's theory of automata

was motivated by his desire to improve the understanding of the natura! systems

(natural automata) as well as analog and digital computers (artificial automata).

The main questions that he was concemed with were the following [13]:

1. Logical universality:

• When is a class of automata logically universal?

• Is any single automaton logically universal?

This question had been answered by Turing, who showed that there is a univer­

saI Turing machine, which can perform any given computation. Then questions

analogous to logical universality were posed about construction:

Il

•

•

2. Constrnctibility:

• Can an automaton be constructed by another automaton?

• What class of automata can he constructed by a single specific automa­

ton?

3. Constrnction universality:

• Is any single automaton construction universal?

4. Self-Reproduction:

• Is there a self-reproducing automaton?

• Is there an automaton which can bath reproduce itself and perform other

tasks?

As a basis for his constructing automaton, Von Neumann used a simple automa­

ton that possesses two stable states: excited and quiescent, corresponding to basic

logical values of true and false . This was an extremely simplified model of a bio..

logical neuron and was called an idealized neurone He wanted ta model the growth

of neurons (excitable cells) by the transformation of unexcitable cells into excitable

ones. Idealized neurons with their two states can handle only logical functions,

but construction also requires other opera.tions ta acquire and combine elements of

which the constructed automaton is composed. Rence, to accomplish construction,

von Neumann introduced special stimuli which cause transitions from the unex­

citable state ta different species of excitable states. Von Neumann's automaton had

a set of 29 states.

Von Neumann wanted the space, in which he would carry out ms construc­

tions, ta have a high degree of regularity. He required functional homogeneity and

isotropy 1 and selected a 2-dimensional space. Due to the difliculties of modeling

lThe space is isotropie if it has the same properties in aU directions. In the diserete case,

functional isotropy means that eacb cell is connected to each of its immediate neighbors in the

same way.

12

•

•

automata construction in continuous space, he decided to work with discrete space.

In summary, his constructing automaton is a 2-dimensional, reguIar, cellular struc­

ture which is functiona1ly homogeneous and isotropic. Von Neumann developed a

transition rule for a set of 29 states such that the state of a ceU at time t +1 depends

only on its own state and the states of its four immediate neighbors at time t.

Ail of von Neumann's questions about automata construction and computation

have been answered affinnatively and constructively by means of his 29-state cellular

automaton. This automaton was shown to he computation-universal, construction­

universal and self-reproducing. In this cellular structure, self-reproduction is a spe­

cial case of construction, and construction and computation are similar activities.

Von Neumann's universal computer-constructor was later simplified by Codd ln

1968, who used an 8-state, 5-neighbor cellular automaton.

A cellular model of computation was aIso considered in the work of Ulam. In

[70] he formulated a matrix problem arising out of the cellular mode!. In [69] and

[68], Ulam studied the growth of figures in cellular automata with simple transition

rules. He also studied the evolution of successive generations of individuals with

simple properties, each generation producing its successor according to a simple but

non-linear recursive transformation.

Since that time cellular automata have been used in numerous areas to study

different phenomenological aspects of the world. We will discuss various applications

of cellular automata in more details in Section 2.5.

2.2 Classical Model

Cellular automata (CA) represent a model of computation that is based on discrete

systems. Their computations evolve in discrete time and discrete space. A CA

model is defined by four basic components: a discrete CA lattice of elementary

automata, a neighborhood template (or simply neighborhood), a set of states that

13

•

•

each automaton can take and, finally, a fonction that provides rules for local state

transitions of automata.

A CA lattice is a d-dimensional array (d > 1) of elementary CA elements called

cells. Every cell is identified by a tuple (il, i2 , ••• , itl) of integer indices, which repre­

sent cell 's position on the lattice. We will denote a CA lattice by L, and a cell that

belongs to it X(ilt i2,•••,i..> E L,.

During CA computation (evolution), each celi can communicate with certain

other ceUs. For any given cell, the set of eeUs, with whieh it directly communi­

cates during CA computation, is defined by the neighborhood template. Usually the

neighborhood is specified by its radius r. This means that any ceU y, that lies at a dis­

tance of not more than r eells from eeU x, is a neighbor of x. AIso, a neighborhood can

be defined by a specific template. For example, U(Xij) = (Xi-l,j, Xi+l,j, Xi,j-17 xi,j+d.

This is a template for the neighborhood in a 2-dimensional cellular automaton. The

neighbors in a template can be indexed, such that u(x) = (YI, ..., Yk), where k denotes

the size of a neighborhood.

At any given time of computation, each CA cell is in sorne state. A non-empty

finite set of cell states is denoted by Q and its cardinality by 1Q 1= q. The state of

cell x at time twill be denoted by x(t).

An evolution of a cellular automaton eonsists in transitions of cell states in

discrete time steps at each site of a CA lattiee. The rules for local transitions are

given by a local transition function f. Each eeU x computes its next state, sayat

time t + 1, aceording to this fonction, whieh is a function of the CUITent state of eeU

x as weIl as states of x's neighbors:

xCi + 1) = f(u(x(t»)) = f(Yl(t), ... , Yk(t)),

where x(t+1) is a state of celI x at time t+1 and u(x(t» = (Yl(t), ... , Yk(t» are states

of x's neighbors, which includes x(t) as weIl. u(x(t)) is also called the neighborhood

14

•

•

configuration of celI x at time t. Thus, the local transition function is a mapping

f : Qk -., Q. 1t can be described by a formula or table, or any other suitable

method. Cells are assumed to change their states synchronously at each time step.

Description of cell states on the entire CA lattice at a gjven time step is called a

cellular automaton configuration.

Thus cellular automata can he defined by a tuple (.c, Q, TL, f), where .c, Q, 'U

and f define the CA lattice, the set of celI states, the neighborhood template and

the local transition function respectively, as discussed above.

The systematic study of cellular automata was initialized by Wolfram. He stud­

ied the relationships between CA and different dynamical systems and suggested a

classification of CA behavior in this context. According to [77] there are four classes

of cellular automata, whose behavior can he compared with the similar behavior of

the dynamic systems (gjven in parenthesis):

L Class 1: Automata that evolve to a unique, homogeneous state after a finite

number of global celi state transitions (limit points).

2. Glass Il: Automata which evolve to a set of simple separated stable or periodic

structures (iimit cycles).

3. Glass III: Automata whose evolution yields chaotic aperiodic patterns (chaotic

behavior of the and associated with strange attractors).

4.. Glass IV: Automata that evoLve to complex patterns with propagative localized

structures, sometimes long-lived (very long transients with no apparent ana/Dg

in continuous dynamic systems).

Empirical methods are the only feasible means hy which any classification of

cellular automata can be performed; as it was shown in [21] and [66] it is impossible

to decide ta which class a given cellular automaton belongs. Classification of CA is

15

•

•

done by means of empirical observations of CA evolution (space-time patterns) in

quiescent background and constant-size windows of observability (circular CAs 2).

ln [21], a scheme, very similar to Wolfram's but more formal, was suggested.

Cellular automata are classified in this study according to the evolution of finite

configurations 3 even if the computations on all possible configurations are of interest.

ln this scheme, four classes are defined as a hierarchy: each class contains alliower

classes as subsets. It has been proved that for the first three classes this classifica.tion

coincides with Wolfram's on aU linear totalistic 4: cellular automa.ta with two states

and the radius of a neighborhood equal to two.

Other classification schemes include classification according to mean field approx­

imations [31], [30], two classification schemes for 3-dimension semitotalistic cellular

automata by Bays [8] and dynamic systems classification by Gilman [29], [28].

2.3 Varions Models of Cellular Automata.

The model of cellular automata described in the previous subsection is the most ba­

sic one. There are also different modifications of the above mode!. They can include

asynchrony of cell state transitions, dependence of cellstate transitions on the neigh­

borhood configurations at several earlier steps, the probabilistic or fuzzy nature of

a transition function, delayed transitions and varying neighborhood templates. We

will briefiy present these possible modifications of the classical CA model, mostly

after [1]:

2 A circuJar CA is a cellular automata in which the leftmost and rightmost cells are the neighbors

of each other.
3 A configuration with all but finitely Many cells in the stable state s is called a finite configu-

ration with respect to s, where astate s is stable if the condition /(s, s, ... , s) = s holds and / is CL

transition function.
4A cellular automata is called totalistic if its transition function has a form /(Z1' ... , Zk) =

<P(Zl + ... + Zk), where Zi E Q, i E {l, ... , k} and <P is sorne function.

16

•

•

1. Non-uniform Cellular Automata.

In a non-uniform cellular automaton, different ceUs may use different transition

functions to determine their next state. The model's complexity increases in

this case, 50 a natural question arises whether the non-uniformity adds any ad­

ditional computational power to CA. As was indicated in [62], non-uniformity

brings sorne difference to very simple cellular structures. For example, 2­

state, 5-neighbor uniform CA are not computationally universal, wllereas non­

uniform CA are. However, for most uniform cellular spaces, universality cau be

attained, thus non-uniformity does not increase the power of the CA model in

this respect. Actually, it is easy to simulate a non-uniform cellular automaton

by a uniform one, encoding different transition rules as one big rule. Nev­

ertheless, experimental results in [62] demonstrate that non-uniformity may

reduce connectivity requirements, namely smaller neighborhoods can be used

to perform more complex tasks.

2. Non-stationary Cellular Automata.

Non-stationarity in CA model means that a transition function varies with

time. CeUs of a non-stationary cellular automaton transit to their next state

according to the rule f(u(x(t), t), where function f depends not ooly on neigh­

borhood configuration, but aIso on time. The transition function is a mapping

f : Qk x T ~ Q, where T is a set of time steps.

3. Asynchronous Cellular Automata.

In this model of cellular automata, ceUs make their transitions to the next state

asynchronously. We can define two subclasses of the asynchronous cellular

automata class Ar and An. A celI of a cellular automaton belonging to class

AI calculates its next state depending on the neighborhood configuration at

time t, makes a transition to tms state and remains in it for sorne number of

time steps, caIculated according to the function {(u(x(t)). In the class An,

every cell calculates its next state at time t, but makes a transition to it only

at time step t + c5(u(x(t»)). Both functions eand c5 are mappings Qk ~ D,

17

•

•

where D is a set of delays, D = {O, 1,2, ... , h}, with h being a maximal delay.

4. Cellular Automata with Memory.

A transition function of a cellular automaton with memory depends not onlyon

the neighborhood configuration at time step t, but on those at sorne earlier time

steps. Transition function has thus the form f(u(x(t)), u(x(t - 1)), ... , u(x(t­

i))), where i is a capacity of cell memory.

Different combinations of the above modifications can he accommodated in one

cellular automata mode!. In addition they cao. be combined with the modifi­

cations presented next. The following is an example of snch a combination.

5. Probabilistic Cellular Automata.

Probabilistic cellular automata accommodate both the classical cellular au­

tomata theory and the theory of Markov processes locally interacting in dis­

crete time. Let us consider a class of probabilistic asynchronous cellular

automata PAp and its snbclasses. Class P Ap can be defined by a tuple

(.c, Q, D, u, 1r, 6), where .c, Q and u are the same as before.

• For any neighborhood configuration w E Qk and every ceU state a E Q

there exists a conditional probability 1r(w, a) ora Local transition of a cell

x into a state a when its neighborhood u(x) currently has configuration

w. Thus, 1r is a probability distribution function of cell state transitions:

-rr : Qk X Q ~ [0,1], where [0,1] is the unit real interval, Vw E Qk, Va E

Q, -rr(w,a) > 0, LaeQ 1r(w, a) = 1.

• This model is asynchronous and belongs to the class An. This means

that at a time step t, a cell x calculates its next state, but it doesn't

necessarily make a transition to it at the time step t + 1. It may delay

its transition for some number of time steps. D is a set of delays of cell­

state transitions as explained previously. Furthermore, the actual delay is

determined in a probabilistic fashion. Cell x implements a transition after

delay b with conditional probability 6(u(x(t», b). Thus 6 is a probability

18

•

•

distribution function of transition delays: b Qk X D ~ [0,1], Yw E

Qk, Yb E D, 5(w, b) > 0, LbED b(w, b) = 1.

Class P Ap forros a hierarchy of classes (including P Ap itself), presented in Ta­

ble 2.1, where f and d are the deterministic functions for cell-state transitions

and delays of transitions respectively. In this table 1'S stands for probabilistic

synchronous, PA - probabilistic asynchronous with deterministic delays, 'DAp

- deterministic asynchronous with probabilistic delays, and P A p - probabilistic

asynchronous with probabilistic delays.

Table 2.1: Classes of Probabilistic Cellular Automata Hierarchy

Subclass Characterization

PS 1r : Qk X Q ~ [0,1], Vw E Qk, Va E Q, 1r(w, a) > 0, LaEQ 1r(w, a) = 1

PA 1r : Q" x Q -+ [0,1], Vw E Q", Va E Q, 1r(w, a) > 0, LaEQ 1r(w, a) = 1

d: Q" ~ D

VAp f:Q"~Q

b : Q" x Q ~ [0,1], 'lw E Q", Va E Q, b(w, a) > 0, EaEQ b(w, a) = 1

PAp 1r : Q" X Q ~ [0,1], Vw E Q", Va E Q, 1r(w, a) > 0, LaEQ 1r(w,a) = 1

5 : Q" x D ~ [0,1], Vw E Q", Vb E D, b(w, b) > 0, EbED 5(w, b) = 1

The definitions presented in Table 2.1 serve as examples of how the proba­

bilistic features can he introduced into different parts of a cellular automata

model- in our case, a cell state transition function and/or a transition delay

mode. This flexibilityof the model's definition may help cellular automata

to adequately reflect different kinds of uncertainty present in the phenomena

which cellular automata are designed to mode!.

6. Fuzzy Cellular Automata.

Fuzzy theory was introduced to automata theory more than twenty years ago

in [75]. Other studies of fuzzy automata were conducted in [45], [74]. The

work in [51] and [59] dealt with fuzzy automata huilt on the basis of neuron­

like elements. Let us define a class of fuzzy asynchronous cellular automata as

19

•

•

a tuple (/:', Q, D, u, Il), where Q is a finite non-empty set of fuzzy cell states.

Let Qk be a set of all the possible fuzzy configurations of a neighborhood

of the size k. Then, Il : Qk x Q x D -+ [0,1] is such a mapping that for

b E D, Il(u(x(t», x(t + b» is a grade of transition of cell x from state x(t)

at time step t to state x(t + b) at time step t + b when the neighborhood

configuration of cell x at time t is u(x(t)). Furthermore, cell x stays in state

x(t) in the time interval [t, t + b - 1].

We will discuss fuzzy cellular automata in more details in Chapter 6.

7. Hierarchical Cellular Automata.

A hierarchical cellular automaton is a finite sequence of finite l-dimensional

deterministic cellular automata Uo, Ut, ... J.,{p, where cellular automaton Ui is

controlled by cellular automaton Ui+l for i = 0,1, ... , p - 1 and an automaton

Up has no supervisor and evolves in the usual way. Let li+l be the size of

the cellular automaton Ui+l. Then the configuration of the cellular automaton

Ui+l' Ci+l E Qli+l, defines the transition rule for the automaton Ui. Thus, li+l =

qki where q = IQI, and k i is the size of the neighborhood of the automaton Ui.

AIl possible neighborhood configurations of the automaton Ui are arranged in

the lexicographie list and each of them is identified with the unique integer

from the set {1, ..., qki } using an isomorphism v : Qki +1 +-+ {l, ..., qki }. In other

words, an isomorphic function 11 assigns a unique index to each neighborhood

configuration of the automaton Ui. H the neighborhood state configuration of

cell x of the automaton Ui is Ui(x) then this cell makes a transition to astate

Ci+l,j, where j = V(Ui(X» E {1, ..., /i+l}.

8. Structurally Dynamic Cellular Automata.

Structura.lly dynamic cellular automata. were suggested in [35] introducing the

idea that the lattice structures can be dynamica.lly coupled to the cel! states.

Every cel! in such an automaton evolves accordingly to the rule x(t + 1) =
f(v(u(x(t - 1»», i.e. the next state of a cel! is determined by the state

of the neighborhood which in its turo is caleulated from the neighborhood

20

•

•

configuration at time t -1. Representatives of this class can also accommodate

probabilistic, fuzzy and other features.

As one can see, cellular automata model of computation allows a cich variety of

feat ures which can help it to adapt to specifie computational needs.

2.4 Cellular Autom.ata as a Universal Model of

Computation.

When we say that cellular automata are capable of universal computation, we mean

that their computational power is equivalent to that of a universal Turing machine

[34]. The first cellular automaton, capable of universal computation was described

by von Neumann. Von Neumann's universal computer-constructor was simplified by

Codd in [19] who gave a description of a 2-dimensional, 8-state, 5-neighbor univer­

sal cellular automaton. The cellular automaton, known as a "game of life", which

involves 2-dimensional, 2-state and 9-neighbor cellular space, was proven to support

universal computation with finite initial configurations [9]. In [5], 2-dimensional 2­

state and 3-state automata, both 5-neighbor, were described and proved to support

universal computation with infinite and finite initial configurations respectively. One

dimensional cellular automata have also been shown to support universal computa­

tion [64]. We will briefly il1ustrate this case.

One-dimensional cellular automata are capable of universal computation if for

each Turing machine M, we can construct a I-dimensional cellular automaton whose

transition rule depends on M and which simulates M in the following sense. An

input string w recorded on a tape of a Turing machine M, can be encoded into

an initial configuration w' of the cellular automaton. Computation of the cellular

automaton starting from the initial configuration w' encodes step by step the com­

putation of M started with w on the tape. The program of M can he encoded

21

•

•

inta the cellular automaton transition rule. We will briefly show how l-dimensional

cellular automata can simulate the computation of a Turing machine.

We will refer ta a Turing machine with a set B of n states and an alphabet A

of cardinality m as (m, n) Turing machine. A program of a Turing machine can he

specified by a state table of size m x n. Each entry of this table (ti,j) has a form

a~X qj: if the head of the Turing machine reads a symbol ai E A on a tape and

the Turing machine is currently in astate qj E B, then the Turing machine writes

a symbol a~ E A on a tape, the head moves in direction X E {Right, Leit} and

Turing machine transits to astate qj E B.

Theorem [64]. An arbitrary (m, n) Turing machine M can be simulated by a

I-dimensional, (m + 2n)-state, 3-neighbor cellular automaton CA with the neigh­

borhood template U(Xi) = (Xi-\, Xi, xi+d in at most two times real time.

The idea of the proof of this theorem is the following. The m states of CA

correspond to the symbols of M's alphabet. Each square on a Turing machine tape

is encoded by a CA celI, which takes astate corresponding to a symbol recorded on

that square. Each state q E B of M has two corresponding CA states (q and qL)'

An initial state of M is encoded by a cell immediately to the left of the cell encoding

the first symbol of the input string on M's tape. Similarly, at further steps of the

computation, the state of M is always encoded by a celI immediately to the left to

the one encoding the symbol read by M at this step. Let us denote a cell currently

encoding M's state - s, a cell to the left of it - p and a celi to the right - h. The CA

transition function leaves the states of aIl ceUs unchanged except the states of the

ceUs p, h and s. Assume that CUITent CA configuration is ...SOSIQS2S3 ••• , i.e. M is

in astate q and M's head is reading the symbol S2' Assume that according to M's

state table, M should write symbol s~ on the tape, move the head right and transit

to astate q'. Then the CA will make a transition:

•• •SOSIqS2S3••• time step t

, ,. t 1
•••sOSt52Q 53••• tlme step +

22

•

•

In the case of the left move of the head, the CA will make two transitions:

",SOSIQS2S3'" time step t

". 1•••SOSIQLs2S3••• tlme step t +
". 2•••Soq SIS2S3 ••• tlme step t +

The CA transition function is derived from M's state table to enable the simulation

of l\1's computation as described above.

The simulation of a Turing machine computation by cellular automata can be

done in many ways. For example there is l-dimensional, 4-neighbor (m + n)-state

cellular automaton with the neighborhood template U(Xi) = (Xi-b Xi, Xi+h Xi+2)

which simulates (m, n) Turing machine in real time [64].

If the simulation of a Turing machine by cellular automata is done for a universal

Turing machine, one can obtain a universal cellular automata. As indicated in [20],

a cellular automaton CAu is strongly universal if any cellular automaton CA with

local rule f : Qk -+ Q and any initial configuration W over Q can be encoded into

an initial configuration of CAu so that each cell of the simulated CA is encoded as

a block of cells of CAu, where each of these blocks also encodes the local rule f. In

[3] such an automaton with 14 states was described.

From a theoretical point of view, it is indeed interesting and important that

cellular automata are capable of universal computation. But this property seems to

be less relevant for a researcher who aims for applications of cellular automata to

the practical problems arising from natural and man-made systems. As we could see

earlier, universal computation in cellular automata arises ooly for sorne specifical1y

designed initial configurations. In practice there are efficient ways to model natura!

processes with cellular automata other than to program. cellular automata designed

for universal computation, to perform a specifie practical task. Thus, the expediency

and efficiency of cellular applications to varions specifie problems should be assessed

despite of the fact of cellular automata's ability to perform universal computation.

23

• 2.5 Applications of Cellular Automata.

•

The most popular approa~ to modeling of various natura! systems involves the us­

age of differentia! equations. A theory of differential equations has been developing

for many years and has become a very important area of mathematics that provides

a framework for systems' studying in many other disciplines. But alternative ap­

proaches to modeling nature are also considered, amongst which cellular automata

offer many interesting features.

There are numerous complex natural phenomena whose macroscopic behavior is

still not well studied despite of the fact that the microscopic laws underlying their

nature are known and are often quite simple. A simple example of such a phe­

nomenon can be the formation of a snowflake: though the laws of thermodynamics,

on the micro level, are well understood the prediction of a snowflake's pattern is an

extremely difficult problem. From this perspective, cellular automata computations

exhihit a similar characteristic - generation of complex behavior hy the cooperative

effects of many simple components. This feature of cellular automata as computa­

tionaI devices provides a tool by which methodologjes and results from computa­

tionaI theory can he directly applied to such sciences as physics, biology, sociology,

medicine etc., and vice versa. For example, classification of cellular automata by

Wolfram [77] already establishes connections between properties of a cellular au­

tomata computational model and those of natura! or man-made dynamic systems.

Cellular automata have been extensively studied and used as models of a variety

of physica! systems. As illustrated in [71], one may distinguish three approaches to

using cellular automata to simuiate physics.

1. Cellular automata as computational too/s. Hardware implementations of cel­

lular automata can he viewed as another alternative ta special purpose machines

and general purpose computers. They can he seen as general-purpose machines for

discrete problems of local interactions. The validityof the simulation by cellular au­

tomata of space-discrete systems (lattices) depend on the effect of discretizing time

24

•

•

and state variables of the simulated system. Cellular automata find their most nat­

uraI applications in those areas of physics where a discretization of space is a feature

of a physical system itself, rather than an inevitable feature of numerical simulations.

An example of snch a physical system can he crystals with their lattice-vibration

independent properties. Cellular automata are equally naturally applicable to simu­

late those physical systems for which spatial discretization has been made an integral

part of an established theoretical mode!. An example can be a lattice-gas molecular

dynamics. In these cases, cellular automata attempt ta match simulated system's

structure and topology. The analogy is particularly apparent for dynamic models.

In fact, many numerical results in the study of percolation, nuc1eation, condensa­

tion, coagulation and transport properties in molecular dynamics are obtained by

simulating time evolution of systems [71]. Many of these simulations were conducted

by the means of cellular automata or their generalizations. For static models, on

the other hand, the correspondence is less immediate because cellular automata deal

with "initial condition" problems, and in the c1assical mechanical theories, there is

no natura1 microscopie dynamics. But cellular automata can aIso he useful if they

reproduce the successive steps of sorne iterative method, where the automaton's time

plays a role of an iteration index rather than the physical time.

2. Cellular automata as lully discrete dynamic systems. A given cellular automata

defines its own discrete universe. It turns out that many of these cellular au­

tomata universes have properties that are most often seen in the theoretical physics.

Amongst them - the appearance of complex phenomena and large-scale correlations

resulting from very simple short range interactions. This approach demonstrates a

power and generality of concepts which, though conceived for a physical problem,

can he applied and defined in the contexts totally unrelated to physics. Cellu­

lar automata indieate that these concepts have a broader scope because they are

ultimately based on principles of computational and informational nature. Thus,

discrete dynamie systems attempt not to simulate specifie physieal phenomena, but

rather to embody general physical ideas.

25

•

•

3. Cellular automata as original models for actual physical phenomena. This is

the most ambitious approach in using cellular automata to simulate physics, which

suggests that cellular automata cao compete with existing continuum models. But

so far nobody came across a cellular automaton that can pretend to he an original

model of a physical system or phenomenon.

These approaches have an important common feature. They provide a third

alternative to models that are solvable exactly (by analytical means) but are very

stylized, and models that are more realistic but cao he soIved approximately only

(by numerical means). Cellular automata have enough expressive power to repre­

sent phenomena of arhitrary complexity and at the same time they cau be simulated

exactly by hardware cellular automata devices. This introduces a third class - ex­

actly computable models. There is no attempt to solve any given equation, cellular

automata is not involved in any kind of numerical processing, they perform only sim­

ple space-dependent logical decisions. This third class aims at digital non-numerical

simulations of physical phenomena.

Cellular automata are also used as models of biological systems and provide a

mathematical basis for investigation of complex behavior of living organisms. As

discussed in Section 2.1, the cellular automata model was original1y invented in

order to study self-reproduction, a property often considered as being definitive

for living systems. A majorityof complex biological systems cannot be precisely

quantified [25], and detailed models are extremely diflicult to obtain. Often snch

models lead to formidable numerical prohlems. One technique accepted in biology

ta overcome this problem is to mimic the physical laws by a series of simple rules

that cao be computed quickly and in parallel. This idea immediately suggests a

iltilization of cellular automata. The most valuable feature that cellular automata

offer to biology and medicine researchers is the ability to model spatial and temporal

pattern formations. The most popular cellular automata models used in biology

are deterministic cellular automata, "Iattice gas" models of cellular automata and

"solidification" models.

26

•

•

Deterministic cellular automata are often treated as tools ta mimic partial defer­

ential equations. In this context theyare often applied to model waves in excitable

and oscillatory media (nerve and muscle ceIls [61], cardiac function [60], chemical

reactions) as weIl as predator-prey models [58] and spatial pattern formation [65J.

Lattice gas models are the systems that consist of a discrete spatial grid on which

particles move and interact. These systems are usually driven by random events.

This kind of cellular automata can be used to model self-organization of ants' traits,

fibroblast aggregation and topographie neural maps [25].

A "solidification" model is sunHar to a lattice gas model, except that there are

sorne special, "bound" states, and once a partic1e is in a bound state, it can never

move or disappear. This type of model is useful in modeling phase-transitions and

precipitation processes (e.g. formation of vascular networks [16], growth of immotile

colonies of bacteria under the conditions of nutrient limitations [42]).

In [25], cellular automata are viewed as an important and useful tool in biological

research, but considered to be still insufficient for derivation of sorne absolutely

general results. The reason for this is that it is in very rare cases that sorne particular

behavior of cellular automata can be proven. Normally, the only available technique

to verify sorne property is to run a simulation, which is not a good strategy when

sorne generalized conclusions are expected.

Cellular automata appear to be useful for modeling of various socio - environ­

mental systems. Often, a macroscopic approach to a modeling task like this is not

sufficient, since local spatial and organizational details are extremely important in

order to comprehend the overall dynamics of such systems. Cellular automata offer

a natural way to model basic elements of the systems' space (or basic components)

by cellular automata cells and reproduce their interactive behavior in time through

a cellular automata computation. In [24], cellular automata were applied to a prob­

lem of forecasting sociû-economic and environmental e1fects of climate change on an

island. Fuzzy cellular automata was used to predict wind driven wild land fires in

27

•

•

[46]. Rules and strategies of technological competition within social networks were

studied with the help of cellular automata in [22]. Economy, as a dynamic system,

was modeled by means of cellular automata in [4] and [50]. Urban planning henefited

from the use of cellular automata as well [7], [52], [76].

In all the cases of cellular automata applications discussed above, the underly­

ing mIes of local interactions between the system's components (and thus cellular

automata cells modeling them) were known but macroscopic (global) behavior of a

system needed to be studied. However, knowledge of locallaws is not always avail­

able. In tms case various techniques from machine learning cao he used to identify

these local roles. This subject will be discussed in more details in Section 4.3.

As it was pointed out previously, cellular automata seem to he best applied

to systems which possess an intrinsic property of a discretized space and when a

correspondence between system's components and a. cellular automata structure is

natural and apparent. But is this a limit of cellular automata applications? The

ability of cellular automata to represent knowledge of a different kind still has to

he investigated and the efficiency of such representation be evaluated and compared

with other techniques. If this evaluation turns out to he positive, cellular automata

with their characteristics of fast parallel computational devices can offer a powerful

alternative to existing digital computers and computational models currently used

in artificial intelligence.

28

•

•

Chapter 3

Fuzzy Theory.

3.1 Motivations of Fuzzy Set Paradigme

The traditional point of view of the earlier science expressed a helief that uncertainty

is absolutely undesirable for science and it should he avoided by all means. According

to the alternative (modem) view, uncertainty is not onlya reality that science can

not avoid, but rather it is one that can have a great utility.

Until recently, there were two approaches used in science: analytic methods based

on the calculus and statistical methods based on the probability theory. The former

methods are applicable to problems that involve a rather small number of variables

that are related to each other in some predictable way. Statistica1 methods, on

the contrary, require a large number of variables and a high degree of randomness.

These two types of methods cover two extremes of problems usually encountered in

practice. They were referred to by Warren Weaver in [73] as problems of organized

simplicity and disorganized complexity. He also pointed out that these problems

constitute only a tiny fraction of all systems problems. The majority of problems

exist between these two extremes; they often include non-linear systems with large

numbers of components involved in rich interactions. These interactions are usually

29

•

•

nondeterministic but not as a result of randomness that could yield meaningful sta­

tistical averages. These problems are called problems of organized comp/exity. Such

problems often dea! with modeling of different systems or phenomena, be it natura!

or man-made. These models are used to make predictions or retrodictions about the

systems, control sorne phenomena, etc. In constructing a model, one would almost

always face the presence of uncertainty. But it is not always an undesirable obsta­

cle; in general, allowing more uncertainty tends to reduce complexity and increase

credibility of the resulting model [37]. The challenge is then to estimate an optimal

Level of allowable uncertainty.

The emergence of the new concept of a fuzzy set in [78] refiected the recognition

of the opinion that uncertainty is an important issue and a useful feature in model­

ing. It was motivated by the necessity to deal with the gap which existed between

mathematical models and their empirical interpretations in most of real-life phe­

nomena. This gap became especially apparent in snch areas as biology, medicine,

cognitive and the social sciences. As was pointed in [10]: "It is a paradox, whose

importance familiarity fails to diminish, that the most highly developed and useful

scientific theories are ostensibly expressed in terms of objects never encountered in

experience."

There are many features that make the paradigm of fuzzy theory very useful,

amongst which are the following, as indicated in [37]:

1. Fuzzy sets allow us to express irreducible observation and measurement un­

certainties and make them intrinsic to empirical data. These uncertainties

are processed together with fuzzy data, and the results obtained are more

meaningful from a practical point of view than those obtained by processing

standard data.

2. As was indicated previously, uncertainty introduces a tool for reducing the

complexity and computational cost of a problem.

30

•

•

3. Fuzzy sets have a capability of expressing meanings of linguistic concepts. This

additional expressive power allows us to deal with problems that require the

use of natural language.

4. Fuzzy theory can better capture human common-sense reasoning, decision

making and other aspects of human cognition.

The relationship between probahility theory and fuzzy set theory is a very con­

troversial issue in uncertainty modeling and information sciences. Fuzzy sets and

probability measure are considered to he distinct [23], but their opposing points of

view on uncertainty modeling can he reconciled, ta some degree, by means of pos­

sibility theory. Both possibility theory and probability theory are special branches

of evidence theory, which is based on basic two measures - belief and plausibil­

ity. tvleasures employed in possibility theory - possibility and necessity - are special

cases of belief and plausibility, and are defined only for the families of nested sets.

Probability theory coincides with evidence theory only for abjects for which belief

and plausibility measures are equal. Probability measure is defined only for objects

which are singletons.

Possibility, necessity and probability measures do not overlap with one another

[37], except for one very special case: one element of the universal set is assigned

the value of ail three measures equal to l, with ail other elements being assigned

the values of ail measures equal to o. This case represents availability of the perfect

evidence. There are many interpretations of probability theory as weil as possibility

theory. Sorne of them suggest absolutely no connection between two theories but

sorne do. For example, possibility theory may be interpreted in terms of interval­

valued probabilities: possibility measure is considered as an upper probability es­

timate and necessity measure as a lower probability estimate [37], [23], [57J. This

point of view opens a bridge between two theories. Sïnce possibility theory can

also he defined in terms of fuzzy sets [37J, the bridge is also estahlished between

probahility theory and fuzzy sets theory.

31

•

•

The difference in mathematical properties of the measures used. in probability

and possibility theories make each of them suitable for modeling certain types of

uncertainty [37]. For example, probability theory is an ideal tool for formalizing

uncertainty in situations where class frequencies are known or where evidence is

based on outcomes of a sufficiently long series of independent random experiments.

Possibility theory, on the other hand, is good for formalizing incomplete informa­

tion expressed in tenns of fuzzy propositions. The motivation to study probability­

possibility relationships has arisen not only out of desire to compare two points of

view on uncertainty, but also from certain practical problems. Examples of such

problems are: constructing a membership grade function of a fuzzy set from sta­

tistical data, constructing a probability measure from a given possibility measure

in the context of decision making or systems modeling, combining probabilistic and

possibilistic information in expert systems or transforming probabilities to possi­

bilities ta reduce computational complexity. Ta deal with these problems, various

probability-possibility transformations have been suggested in the literature [37],

[23], [39], (38].

3.2 Fuzzy Sets and Standard Fuzzy Operations.

A fuzzy set is a class that admits the possihility of the partial membership of abjects.

Fuzzy sets were first introduced in [78] as sets with boundaries that are not precise.

The membership in a fuzzy set is not a matter of affirmation or denial, but a matter

of degree. A fuzzy set can he defined mathematically by assigning to each possible

abject in the universal class a value representing its grade of membership in the fuzzy

set. This grade represents the degree to which that individual element is similar to

the concept represented by the fuzzy set.

Given a set of objects X, any arbitrary fuzzy set A E X is defined by its mem­

bership function PA : X -.. [0,1]. For each object x E X, the membership function

32

•

•

indicates the degree of membership of the object x in the fuzzy set A, with 1 rep­

resenting full membership and 0 - non-mernbership. Sometimes the identifiers of a

fuzzy set and its membership function are not distinguished. A fuzzy set defined

in this way is the most basic and common type of fuzzy sets and is often called

an ordinary fuzzy set. Membership functions can have different fOIms, which are

determined by particular applications. They can be continuous as well as discrete,

in which case they can be represented by a table of values or rules.

One of the generalizations of the above definition involves fuzzy sets whose ele­

ments are ordinary fuzzy sets. They are known as level2 fuzzy sets. Their rnem­

bership functions have the form l'A : F(X) ---+' [0,1] where F(X) denotes the fuzzy

power set of X (the set of al! ordinary fuzzy sets of X). Level 2 fuzzy sets allow us to

deal with situations in which elements in X can not be specified precisely, but only

by other fuzzy sets, that express propositions of the form "x is close to r" where r

can he defined exactly. Level 2 fuzzy sets can he generalized into higher level fuzzy

sets recursively.

Fuzzy sets can aIso represent linguistic concepts (e.g. low, medium and high

temperature). Such sets are often used to define the states of sorne variables. In this

case a variable is called a fuzzy variable and its states are defined by mernbership

functions of the corresponding fuzzy sets. The useful property which fuzzy variables

possess is that they enable gradual transition between states and consequently can

tolerate to sorne degree observation and rneasurement uncertainties. Traditional

variables do not have this property. Because of this, fuzzy variables can be more

useful in real-life applications, where sorne level of uncertainty almost always exists.

Given two fuzzy sets, A and B, whose membership functions are denoted by

the same identifiers as the corresponding sets, we can define standard fuzzy set

33

• operations:

(A UB)(x) = max(A(x), B(x» - standard union

(An B)(x) = min(A(x), B(x» - standard intersection (3.1)

-'A(x) = 1 - A(x) - standard complement

Fuzzy sets can be formed of other fuzzy sets by application of the above operations.

One can see that if in classical sets membership grades are restricted to 0 and 1

only, then the standard fuzzy operations are identical to the standard set operations.

Standard fuzzy operations are not the only possible generalization of classical set

operations. Functions that play a role of fuzzy intersections have a. general name

t-norms , and fuzzy unions - t-conorms. Standard fuzzy intersection (min operator),

applied to any fuzzy sets, produces the largest resulting fuzzy set as compared to

those produced by other t-norms. The standard fuzzy union, on the other hand,

produces the smallest fuzzy set amongst the results of other t-conorms [37].

One useful property of standard fuzzy operations is their ability to prevent com­

pounding of errors of operands. If e is a maximumerror wIDch is present in member­

ship grades A(x) and B(x), then the error of the results of standard fuzzyoperations,

applied to A(x) and B(x), remains e.

One can represent standard fuzzy operations in a different but equivalent form.

Consider the fol1owing:

1
max(a,b) = 2"(a + b+ 1 a - b 1) (3.2)

Indeed, if a > b, 1a - b 1= a - b and max(a, b) = l(a + b+ a - b) = a. If a < b,

1a - b 1= b - a and max(a, b) = l(a + b+ b - a) = b.

•
Similarly we can represent

min(a,b) = ~(a + b-I a - b 1)

34

(3.3)

• Severa! fuzzy sets (two or more) can be comhined to produce a new single fuzzy

set. This can he done hy means of aggregation operations. Any aggregation opera­

tion on n fuzzy sets (n > 2) is defined by a function of a form:

h : [0, l]n ~ [0,1] (3.4)

When function h is applied to fuzzy sets Al, A2 , ••• , Am which are defined on object

class X, then an aggregate fuzzy set A, produced by h, can he defined as:

A(x) = h(At(x), A2(x), ..., An(x» (3.5)

•

Function h operates on the membership grades of the fuzzy sets Ab A2 , ••• , An.

Intuitively, a meaningful aggregation function h should satisfy at least the fol­

lowing three axioms:

Axiom hl. h(O, 0, ...,0) =°and h(l, 1, ...1) = 1 (boundary conditions).

Axiom h2. For any pair (al, a2, ... , an) and (bl,~, , bn) of n-tuples such that

ai, bi E [0,1], i E {l, 2, ..., n}, if ai < bi for ail i E {l, 2, , n}, then h(ab a'2, ... , an) <

h(bl , b2 , ••• , bn); that is h is monotonie increasing in ail its arguments.

Axiom h3. h is a continuous function.

It is easy to see that standard fuzzy intersection and union satisfy axioms hl-h3

and can he used as aggregation operations. Due to the associativity of min and

max operators, their definitions can he extended to any finite number of arguments.

Consider operations mineS) and max(S), where S = {SI,S2' .•. ,sn}. Then, Vs; E S,

max(S) = max(max(S \ s;), Si)

mineS) = min(min(S \ Si), s;}

and max(S \ Si) and mineS \ Si) can he calculated recursively.

35

•

•

Chapter 4

Learning Process.

4.1 Learning Paradigms.

There are a lot of notions associated with the term "learning". In our study, we will

mean by learning a process by which free parameters of an artificial system (com­

puter program) that learns are updated as a result of the interaction with. the envi­

ronment whose behavior the artificial system attempts to mode!. A learning system

can be required to perform. different tasks, such as function approximation, predic­

tion, association, pattern classification, control, acquiring rules for expert systems,

integral reasoning etc. One can identify four major paradigms being investigated in

today's machine learning domain [14]:

• Inductive Learning. This method of learning induces a general concept

description from a sequence of instances of the concept and sometimes known

counterexamples of the concept.

• Analytic Learning. This paradigm of learning is based on analytic leaming

from few exemplars (often a single one) plus a rich underlying domain the­

ory. The methods included in this paradigm are deductive. They utilize past

36

•

•

problem solving experience (the exemplars) to guide which deductive chains

to perform when new problems have to be solved, or to formulate new search

rules that enable more efficient application of domain knowledge. Analytic

methods focus on improving the efficiencyof a system without sacrificing the

accuracy of generality. Representatives of the analytic learning are methods

of explanation based learning, multi-Ievel chunking, iterative macro-operators

and derivational analogy.

• Genetic Algorithms. Genetic algorithms have been inspired by a. direct

analogy to mutations in biological reproduction (cross-overs, point mutations,

etc.) and Darwinian natura! selection (survival of the fittest in each ecologjcal

niche). Variants of concept description correspond to individuals of the species

and recombinations of these concepts are tested against an objective function

to determine which to preserve in the gene pool. In principle genetic algorithms

encode a parallel search through concept space, with each process attempting

coarse-grain bill climbing.

• Connectionist Learning. Connectionist learnîng systems are parallel dis­

tributed systems, of which artificial neural networks are the main represen­

tatives. In the process of learning, connectionist systems are presented with

training sets of representative instances of sorne concept (possibly with some

noise) and they learn to recognize these and other instances of the concept.

Learning consists in readjusting weights - free parameters of a system - via

different lea.rning algorithms.

In very simplified and generalized terms, one may say the following [14]. Connec­

tionist approaches are superior for learning in unstructured continuous domains, if a

large number of training examples is available. At the opposite end of the spectrum,

analytic methods are best for wel1-structured knowledge-rich domains that require

deep reasoning and multi-step inference even if few training examples are present .

Inductive and genetic methods are useful for the applications in the center between

37

•

•

those two extremes. Of coarse, there are many tasks that may he approached by

more than one method and there are complex tasks where multiple forms of learning

should coexist.

4.2 Connectionist Systems: Learning Algorithms

and Training Paradigms.

The concepts that constitute the basis of the learning algorithms for connectionist

systems are of the great interest for our study. They can potentially be applied to the

learning with cellular automata, which cao he considered as a kind of connectionist

systems. In this subsection we will focus our attention on the most important

approaches used in the connectionist learning.

In this section we will use the term "artificial learning" system (or simply "learn­

ing system") referring to a connectionist learning system.

A type of learning is determined by the manner in which the free parameters

of an artificial system are updated. A prescribed set of well-defined rules by which

this updating is driven is called a learning algorithme We will discuss four main

types of learning: error-correction learning, Hebbian learning, competitive learning

and Boltzmann learning. Another factor that determines the learning process is the

manner in which an artificial system interacts with the environment and is called a

training paradigme We will mention three training paradigms: supervised learning,

reinforcement learning and self-organized (unsupervised) learning [32].

4.2.1 Types of Learning.

• Error - Correction Learning.

Let d(i) denote some desired response (or target response) of an artificial

38

• system at time l. Let the corresponding value of the actual response of the

artificial system be denoted by y(i). This response y(l) is produced as a result

of presentation of an input (stimulus) vector x(l) to the input of the artifi­

cial system. The input x(i) and desired response d(i) constitute a particular

example presented to the artificial system at time i, and such examples are

generated by an environment whose behavior one wants to model with the ar­

tificial system. Typically, the actual response y(i) is different from the desired

one and one can define the error between the target response and the actual

one:

e(i) = y(i) - dei) (4.1)

The goal of the error correction learning is to minimize a cost function w hich is

based on the error (4.1). Once a cost function is selected, an error - correction

learning becomes an optimization problem with respect to free parameters of

the artificial system. A popular choice of the cast function is mean-square-

error:

l = E[~e2(i)] (4.2)

where E is the statistical expectation operator. The difliculty of this optimiza­

tion procedure lies in the fact, that statistical characteristics of the underlying

pracess are not known. Ta overcome this difliculty we aim for an approximate

solution of the optimization problem by using an instantaneous value of (4.2)

as a cost function:

(4.3)

•

A plot of the cost function versus free parameters of an artificial system is

referred to as an error surface. Thus, the objective of the error-correction

learning is to start from an arbitrary point on the error surface (determined

by the initial values of free parameters) and move toward a minimum in a

step-by-step fashion.

• Hebbian Learning.

Hebbian learning is based on Hebb's postulate of learning and is sa named in

39

•

•

honor of the neurosychologist Hebb. This postulate says[32]: "When an axon

of a cell A is near enough to excite a ceU B and repeatedly or persistently takes

part in firing it, some growth process or metabolie changes take place in one

or both ceUs such that A's efficiencyas one of the cells firing B, is increased."

This postulate was stated in a neurobiological context. The notion of the

synapse can be extended to the transmission site through which information­

baring signals are transmitted in time and space. The Hebbian synapse is

a synapse whose strength is increased if the activities on bath sides of this

synapse are positively correlated and is weakened if these activities are not

cOITelated or negatively cOITelated. The mechanism, that is responsible for

the change in strength of the Hebbian synapse, depends on the exact time of

occurrence of the pre- and postsynaptic activities. This mechanism is highly

local since the activities used ta determine the change in the synapse's strength

are only those that are local (adjacent) to the synapse. The occurrence of the

change in a Hebbian synapse always depends on the activity levels on both

sides of the synapse.

• Competitive Learning.

In an artificial learning system based on competitive learning, the output el­

ements compete among themselves ta be activated, with the result that only

one output element, or one element per group, is active at anyone time. The

output elements that win the competition are called winner-takes-all elements.

Competitive leaming forms a basis for self-organizing feature maps. In such

systems, elements are placed at the nodes of a lattice that is usually one- or

two-dimensional; higher dimensions are a.lso possible but not common. The

elements become selectively tuned to various input patterns or classes of input

patterns in the course of a competitive learning process. The locations of the

elements sa tuned tend to become ordered with respect to each other in such a

way that a meaningful coordinate system for different input features is created

over the lattice. A self-organizing feature map is therefore characterized by

40

• the formation of a topographie map of the input patterns, in which the spatial

locations of the elements in the lattice correspond to intrinsic features of the

input patterns.

• Boltzmann Learning.

The Boltzmann learning rule is a stochastic procedure derived from information­

theoretic and thermodynamic considerations. In a Boltzmann machine, the

elements - neurons - constitute a recursive structure and operate in binary

manner: they can he either in the state "on" denoted by "+1" or in state

"off" denoted by "-1". The machine is characterized by an energy function:

1E = --~ ~ W'·S ·S·
2 LJ LJ 11 J 1

i i,j~i

(4.4)

where Si is the state of neuron i, and Wij is a synaptic weight connecting neuron

i to neuron j. This machine operates by choosing a neuron at random - say,

neuron j - at sorne step of the learning process and flipping the state of neuron

j from state Si to state (-Si) at sorne temperature T with probability

1
W(s· ~ -s-) = ----~-

1 1 1 + exp(_ ~l)

(4.5)

•

where ~Ej is the energy change resulting from snch a flip. Note, that T is not a

physical temperature but a pseudotemperature. The neurons of the Boltzmann

machine are partitioned into two groups: visible and hidden. Visible are those

neurons that provide an interface between the machine and the environment.

Hidden neurons always operate freely. The Boltzmann machine has two modes

of operation: clamped condition , in which all the visible neurons are clamped

onto specifie states determined hy the environment; free-running condition ,

in which all neurons (visible and hidden) are allowed to operate freely.

Let pt denote the correlation between the states of neurons i and j conditional

on the network being in its clamped condition. Let pji denote the unconditional

correlation between the states of neurons i and j (when the machine operates

in the free-running condition). Then, according ta the Boltzmann learning

41

• rule, the change applied to the synaptic weight Wji is defined by

~Wii = fJ(pti - pji), i f:: j.

where fJ is a leaming rate parameter.

4.2.2 'l'raining Paradigms.

(4.6)

•

• Supervised Learning.

An essential feature of supervised learning is the presence of an external

teacher. A teacher possesses knowledge about an environment in the form.

of the input-output examples. When the teacher and an artificial system are

bath exposed to sorne input vector of the environment, the teacher is able

to provide the learning system with desired (target) responses for that input

vector. The learning system's parameters are adjusted under the influence

of bath the input vector and the error signal (defined in (4.1». These ad­

justments are carried out in a step-by-step fashion, such that knowledge is

gradually transferred from the teacher ta the artificial system. This form of

supervised learning is the error-correction learning. The values of the free pa­

rameters of the artificial system constitute a point on an error surface and at

each learning step they are updated such that their values move in the direc­

tion towards a minimum of the error surface. This is done by means of the

information regarding the gradient of the error surface. The negative gradient

of the error surface at any of its points is a vector that points in the direction

of the steepest descend. In fact, in the case of the supervised learning from

examples the artificial system uses instantaneous estimates of the gradient

vectors, where example indices substitute those of the time. In this case an

operating point (a point on the error surface induced by the current values

of free parameters) performs a random walk in the space of free parameters'

values.

42

• Supervised leaming can be pedormed in an on-line or off-line manner. In

the off-lïne case, a separate computational facility is used to design a leaming

system. Once a desired pedormance is achieved, the design is "frozen" and

after this the artificial system operates in a static manner. In the on-tine case,

a leaming procedure (algorithm) is implemented as a part of the artificial

system itself and learning is conducted in real time which results in a dynamic

behavior of the artificial system.

The disadvantage of supervised leaming (in both on-tine and off-line cases) is

that it cannat learn new strategies which are not covered in the set of training

examples.

• Reinforcement Learning.

Reinforcement leaming is conducted on-line with an objective to learn an

input-output mapping through the process of trial and error and is designed

such that a scalar performance index called a reinforcement signal is maxi­

mized.

Consider a learning system interacting with an environment which is described

by a dynamic process with a finite set of states X. At time steps n = 0,1,2, ...

the process is in states x(n) EX. The learning system cau undertake sorne

actions from the set A. It perfonns an action a(n) E A after observing the

state of the process x(n), which causes the process to transit to sorne state

x(n + 1). After this, the learning system receives a reinforcement signal r(n +
1), which serves as an indication of the correctness of the action performed

by the learning system. It can be positive (reward), negative (punishment) or

zero. The objective of the learning system is to find a poliey for selecting a

sequence of actions that is optimal in sorne statistical sense. Assuming that

the process is initially in state x(O) = x , a measure of the Learning system's

performance is defined by the evaluation function

• ex>

J(x) = E[E ,-kr(k + l)lx(O) = xl
k=o

43

(4.7)

•

•

where the expectation operator E is taken with respect to the policy used ta

select actions by the leaming system. The summation term is called the cumu­

lative discounted reinforcement. The factor 0 $ ï < 1 is called the discount­

rate parameter. By adjusting this parameter we cao control the extent to

which the learning system is concerned with the long-term versus short-term

consequences of its actions. The basic idea behind reinforcement learning is to

learn the evaluation function J(x), so as to predict the cumulative discounted

reinforcement received in the future.

In reinforcement learning, the information contained in a reinforcement signal

evaluates behavior of the learning system but does not indicate if the improve­

ment is possible and how the system should change its hehavior to improve

performance. To obtain this information, the learning system probes the en­

vironment through the use of trial and error and delayed reward.

• U nsupervised Learning.

In unsupervised or self-organized learning there is no externat teacher to ob­

serve and guide the learning process. In other words, there are no specifie

examples to he leamed by an artificial system. The system does not receive

any external feedhack concerning its performance, which is specifie to the task

that the system learns or the training data that it uses. A task-independent

measure of the quality of representation, that the system is required to learn

is used and free parameters of the artificial system are optimized with respect

to this measure. Once the learning system has become tuned to the statistical

regularities of the input data, it develops the ability to forro internai represen­

tations for encoding features of the input, hopefully in more explicit or simple

form. It is hoped that the transformed version of the sensory input would

be easier to interpret so that correct responses could be associated with the

system's representation of the environment more quickly. The representatives

of this paradigm are Hebbian and competitive learning discussed previously.

44

• 4.3 Identification of Cellular Automata. Review

of the Existing Approaches.

•

As discussed in Section 2.5, cellular automata are not only a subject of theoretica!

research, they have already proven to he useful in many applied areas. However,

as indicated in [44}, in spite of the interesting and powerful features of cellular a.u­

tomata, their wide applicability as computational models has been limited because

of the difficulty (and Iack of the research) to design (program) cellular automata to

perform specific tasks. The problem of identification (design) of cellular automata,

capable of useful computation, has already been addressed by sorne researchers. In

the rest of this section we will mention severa! interesting studies concerning this

problem. We do not intend to give a detailed description of the methods already de­

veloped in this area, but rather outline applications where learning cellular automata

were used and learning strategies employed to train them.

In a classical sense, cellular automata are considered to be autonomous systems.

This means that they do not have any external inputs, Le. their evolution (com­

putation) is based on state transitions starting from sorne initial configuration of

internaI states on CA lattice. Any extemal influence on such systems is impossible,

it is only possible to observe an evolution of cellular automata configurations in a

sequence of discrete time steps. Similarly, there are many natura! systems which

are autonomous and can be modeled with cellular automata. Amongst them, there

are such systems for which the local rules of interactions between cells of modeling

cellular automata are not known and only snapshots of the CA configurations cao

be obtained from observations of the natural systems. In this case, identification

of cellular automata transition rules can be very useful and in fact can be done

providing that there are a sufficient number of snapshots of CA configurations.

The methodology to solve the problem of cellular automata identification from

the fixed snapshots of successive CA configurations have been introduced in [I}. In

45

•

•

this approach, a set of cell states is assumed to be known but a size of the neighbor­

hood and a transition rule of a cellular automaton must be identified. In addition,

the goal is to obtain a minimal description of a cellular automaton (with respect

to the size of the neighborhood) which simulates a system of interest. The au­

thor in [1] presents the algorithms for identification of cellular automata belonging

to aIl classes introduced in Section 2.3 ét..nd analyzes complexities of these algo­

rithms. The idea, that constitutes the basis of the identification algorithm for a

deterministic cellular automaton, consists in constructing a table, representing a

transition ruIe for the cellular automaton. This table consists of the strings of the

form < ail' ... , aikl,Bi >, i E {I, ... , 2k }, where k is a size of the neighborhood. The

tuples < ail' ..•, ai" >, i E {I, , 2k
} correspond to all possible neighborhood config-

urations and each ,Bi, i E {I, , 2k } represents the next state to which a cell should

transit when its neighborhood state configuration is Oil' •.. , aile. Such a table is con­

structed while scanning through provided snapshots of successive CA configurations.

At the beginning, the size of the neighborhood is assumed to be minimal (k = 3).

The neighborhood state configuration of each celI is read from the CA configura­

tion C(t), t E {I, ...,p}. It is concatenated with the cell's next state, obtained from

the CA configuration C (t + 1) and the resulting string < ail' ... , ai" l,Bi > is added

to the table. H the string, corresponding to the same neighborhood configuration

< ail' ... , Oik l.Bi > is already present in the table, the states ,Bi and Pi are compared.

If they are different, it is concluded that the size of the neighborhood is too small

to adequately describe the computation in the gjven CA configurations. It is in­

creased and the table construction starts from the beginning. If the states ,Bi and .Bi
are equal, nothing is added to the table and scanning of the CA configurations pro­

ceeds. In the case of the probabilistic and fuzzy cellular automata, the frequencies of

transitions of celIs with neighborhood configuration state ail' ... , Qile , i E {I, ... , 2k
}

to state {3j,j E {I, ... , IQI} are calculated and based on this, transition probabilities

and fuzzy grades are derived.

In [2], a hierarchy of synchronous stationary cellular automata is established:

46

•

•

totalistic CA C deterministic CA C probabilistic CA C fuzzy CA. Algorithms (based

on the same idea as previously discussed) are presented for two types of fuzzy cellular

automata. If an identified cellular automaton appears to belong to the class, lower in

the hierarchy than fuzzy CA, an identified fuzzy transition rule can be transformed

(simplified) after the identification phase.

In [1], the applications of this identification technique are discussed in the con­

texts of discrete motion, cryptography, distributed intelligence, reaction-diffusion

media, interacting populations and design of molecular computers. The discussion

about these potential application areas in [1] has a rather illustrative manner and

we are not aware of any instances where this technique has been implemented to

solve practical problems. Nevertheless, the author presents a thorough analysis of

the complexity of the proposed algorithms which indicates that they can be used as

a feasible tool to solve certain cellular automata identification problems.

There may be an interpretation of computation in the context of cellular au­

tomata which is alternative to that wmch views CA as autonomous systems. In

this case [44}, a transition rule is interpreted as a "program", capable of performing

a particular task. An initial configuration of a cellular automaton is considered to

be an "input", and the cellular automaton runs for some specified number of time

steps or until it reaches some goal pattern (possibly a fixed point). In this case,

intermediate CA configurations (between initial and goal) may be Dot known and

identification techniques, different from those discussed previously, should he used.

In [44}, [43], a uniform one-dimensional binary circular cellular automaton was

designed to perform a density classification task: decide whether or not an initial

configuration consists of more that hal! ones. If so, the desired behavior of the

cellular automaton was to relax after a certain number of time steps to a fixed point

pattern of all ones, otherwise - all zeros. For identification of cellular automata

capable of performing this task a genetic algorithm with mutation and crossover was

employed. The population of transition rules (thus CAs) was generated and evolved

with application of genetic operators. The rule for a cellular automaton with the

47

•

•

size of the neighborhood equal to 7 was found which could correctly classify about

95% of the initial configurations.

In [63] the same task was required to be performed by a cellular automaton,

but in this case, by a non-uniform one. A genetic algorithm with mutation and

crossover was also used as a tool to identify a cellular automaton. If the population

of non-uniform CA had to be evolved, the search space would be much larger than

in the case of the uniform cellular automata. This problem was approached in [63]

by a.pplication of a. local evolutionary process: the evolution took place at each

cell locally. Fitness of a transition rule was evaluated for each cell, not globally

for the entire CA. In this case in order ta obtain a better rule for a particular

cell, genetic operators were applied orny to the fitter rules of the ceUs which were

neighboring with that particular cell. Successful results were also obtained in this

study. It was demonstrated that a non-uniform cellular automaton can attain high

performance (94% correctIy classified initial configurations) with the minimal size of

the neighborhood (k = 3), in which case it outperformed the best uniform cellular

automaton with the same size of the neighborhood. This result provides support to

the hypothesis that non-unïform cellular automata reduce connectivity requirements

as compared to uniform ones.

In recent years, one-dimensional3-neighbor linear non-uniform cellular automata1

(LNCA) have been proposed as an alternative to linear feedback shift registers in

such applications as test pattern generation, pseudorandom number generation,

cryptography, error correcting codes, signature analysis etc. LNCA are a special

form of linear finite state machines (LFSMs). Every LFSM is uniquely represented

by a transition matrix, which in turn has a characteristic polynomial. Characteris­

tic polynomials represent certain properties of LFSMs. Finding a particular type of

LFSM (e.g. particular LNCA) with a specifie polynomial is a problem of interest in

VLSI. In [15] an algorithm for identification of cellular automata, that have gjven

characteristic polynomials, is presented. This algorithm is based on a correspon-

1A transition function of a linear cellular automaton involves only addition modulo 2 operation.

48

•

•

dence between CA characteristic polynomial computations and Euclid's greatest

common divisor algorithm.

Based on the interpretation of cellular automata computations as input-output

mappings, cellular automata. were applied to the problems of image recognition [55].

Probahilistic cellular automata (PCA) are used for this task. Each cell of a prob­

abilistic cellular automaton corresponds to a pixel on an image. Some number of

n feature detectors" are associated with each cell, producing outputs in the range

[0,1] which represents the confidence of each feature detector in the presence of its

feature in the corresponding point of the image. The feature detectors' outputs

define the configurations of features at each pixel, which are state variables of PCA

dynamics. This dynamics is defined on PCA configurations by a Markov process,

which provides the proba.bilities of transitions from one PCA configuration to an­

other. The automaton is allowed to evolve for sorne number of time steps hefore it

cornes to its final configuration, representing the detected features of the image. A

function that defines the probabilities of state transitions for the probabilistic cellu­

lar automaton is defined as a function of sorne parameters J'['f where ik, ï are sorne

features and d E {l, ... , k} is an index of a cell in a neighborhood. These param­

eters can he viewed as the weights of the connections between a given cell and its

neighbors. A positive large value of a parameter Jr indicates that having a feature

Î at a cell d in the neighborhood of a cell m strongly supports the hypothesis of

having a feature Q at the cell m. These parameters are identified in the process of

learning. The cost function that is being minimized in the learning process consists

of the SUffi of correlation between the obtained and desired states of the cells in the

final configuration. The results of the learning process were successful and learning

appeared to he faster compared to the Boltzmann machine method.

In a [53] probabilistic cellular autornaton was used to solve a combinatorial prob­

lem: partition a weighted graph into s subgraphs such that the weight of edges be­

tween subgraphs are minimized and subgraphs are balanced. In the context of this

application, each cell corresponds to a vertex of a graph and s cell states correspond

49

•

•

ta subgraphs into which the given graph should he partitioned. The fact that a cell

is in sorne state i E {l, ..., s} indicates that a corresponding vertex belongs to the

suhgraph i. The actions performed by the cellular automaton via state transitions,

are those that move a vertex from one subgraph to another. This constitutes the

computation of the cellular automaton which is performed in a probabilistic man­

ner. The probabilities of state transitions are determined in the process of leaming

via reinforcement technique. The computation of such a. cellular automaton also

depends on the neighborhood template which is determined in the learning process

using a genetic algorithm with mutation and crossover operators.

A probabilistic non-uniform cellular automaton has been applied to the problem

of controlling unstable systems [41], [54], [11]. A special prohabilistic scheme was

introduced to encode the states of a system, being controlled, into the CA initial

configurations. An encoded system's state constitutes an input to a CA based con­

troller, which computes a control action to he applied to the system depending on

its state. A method to decode the a control action frOID a CA final configuration had

been also designed. Since both system states and control actions are usually real val­

ued variables, the mapping of their values into the discrete CA lattice is not apparent

and special encodingfdecoding schemes have to be used. Learning in a probabilis­

tic cellular automaton based control1er is accomplished in [54] by modifying the

probability distribution function of cell state transitions to appropriately refiect the

environmental performance feedhack - reinforcement signal. The cost function that

is minimized in the process of learning refiects a probability that the learning cellular

automaton will receive penalty - negative reinforcement from the environment. A

stochastic gradient descent method for minimization of the cast function is discussed

in this study. This learning algorithm is shown to be convergent with specifie con­

ditions imposed on learning rate parameter. However, the simpler implementation

of stochastic reinforcement learning algorithm is proposed in [41] and tested on the

problems of controlling pendulum [41], [11], double pendulum [41] and continuous

stirred tank reactor problem [11]. For all three applications, successful solutions

50

•

•

have been found and a cellular automaton based controller with a relatively simple

structure was able to perform a control task in simulation experiments.

The area of leaming systems based on cellular automata. is still in its infancy as

compared to, for example, artificial neural networks. Nevertheless, studies already

conducted in this field demonstrate that cellular automata can be "trained" to per­

form specified tasks using various techniques from machine learning. The efficiency

of learning cellular automata devices in various applications will have to be studied

more extensively and compared with other artificiaI intelligence approaches.

51

•

•

Chapter 5

ProblelD of Estimating an

U nknown Function.

5.1 Problem Statement.

A prohlem of predictive/estimating learning is very simple to formulate. Knowledge

about a system is given by several (possibly many) measurable quantities, called

variables. The variables are divided into two groups: input and output variables.

The goal of the learning is to develop a computational relationship between the

inputs and the outputs (formulai algorithm) for estimating the values of output

variables given only the values of input variables.

Consider, as an example of a system of interest, a manufacturing process. The

input variables would be the various parameters that control the process (e.g. chem­

ical concentrations, processing time, etc.). The output variable would be the quality

of the final product. The goal in this case would he to estimate the quality, given the

values of the input parameters, without actually running the manufacturing process.

Realizing this goal could bring considerable finandal benefits.

52

• Thus, a. learning system is a computer program that constructs a rule for es­

timating the values of output variables of a real system, given the values of input

variables of this system. In contrast to expert systems, which attempt to organize

the knowledge of human experts in a. particular field, predictive/estimating leaming

systems attempt to build useful estimating rules purely by processing data obtained

in the past: cases for which the values of both input and output variables have

been determined. A generic learning system does not contain any domain specifie

knowledge; all useful information is assumed to he contained in past data.

Both the input and output variables can be of two fundamental types: real and

categorieal. A real valued variable assumes vaIues over sorne subset of real tine RI.

These values have an order relation and distance defined between any two values.

For categorical variables, the values are certain labels (e.g. brand names, type of

disease, nationality etc.). Ifa eategorical variable assumes only two values, they then

eau be mapped to the real values of 0 and 1 and this variable can he further treated

as a. real one without loss of generality. When a categorical variable assumes more

than two (say P) values, then it cao be converted into P real valued variables (which

assume the values of 0 and 1) - one real variable for each categorical value. This

technique is referred to as "dummy variables" in statistics. Categorical outputs

oceur often and represent an important class of problems referred to as pattern

recognition in engineering and classification/discriminant analysis in statistics. The

dummy variable technique cao always be used in these cases and from a theoretical

point of view, it is sufficient to consider only real valued outputs.

A general mathematical model of an input/output mapping under the study is

(5.1)

•
Here Yk is the k th output variable and 9k is a (real) single valued deterministic

function of a.ll possible (observed and unobserved) inputs that contribute to the

change of the values of Yk, where Xl, .•• , X n refer to observed inputs and Zt, ••. , Zm

- unobserved ones. Uncertainty, present because of the unobserved inputs, can he

53

• represented by a statistical model

Yk = fk:(zt, ... , xn.) + fil:, k = 1, ... , K (5.2)

where fil: is a function of the observed inputs only and an additional random compo­

nent fil: is added to refiect the fact that the observed inputs do not uniquely specify

the output value.

The fundamental models (5.1) and (5.2) can he formed for each of the outputs

of a system and treated as separate problems:

(5.3)

This is the most common way to proceed in the cases of multi-output systems,

however sorne strategies that exploit association hetween outputs were aIso proposed

[18].

The goal of any learning approach is to obtain a useful approximation j(Xb ••• , Zn)

of the target function f(xt, ... , zn.) (5.3). Supervised learning methods atternpt to

learn an input/output relationship by examples through a teacher. Teacher observes

a system under study measuring the values of both (observed) input and correspond­

ing output variables. Doing this repeatedly, the teacher collects L training samples

- input-output values.

(5.4)

•

The observed input values of the system, Xi, are aIso the inputs to the artificial

learning system that produces an output !(Xi) in response to these inputs. Then the

teacher provides an error between the artificial and real systems' outputs !(xd - Yi

and the artificial system modifies the input/output relationship j(x) in accordance

with this error. Thus, supervised learning is employed in function estimation. The

hope is that in the process of learning, the artificial system will he able to generalize

the information contained in the training samples and after the completion of the

learning process, it will be able to produce the satisfactory estimates of the target

function for the inputs not contained in the training set.

54

• 5.2 Search for a Solution.

As one can see, the problem of supervised learning is very simple to state, but thus

far an absolutely general useful solution to it has not been found. The main source

of difficulty is a finite size of a training set in all practical applications. In the case

of a training set of a finite size L, the supervised learning problem consists in finding

a solution to
L

- ~ 2f(x) = ming(X) ~[Yi - g(Xi)J
i=l

(5.5)

and the solution is not unique. There are in fact an infinite number of functions that

cau interpolate L data points yielding the minimum value for the criterion function

(5.5). If the noise is absent (E = 0 in (5.3)) then a target function f(x) will he

arnongst the solutions. If the noise is present, none of the solutions of (5.5) will be

exactly f(x). Thus (5.5) represents an ill-posed problem; in both noisy and noiseless

cases, there is no unique solution.

In order to obtain some useful results for finite size L, one must restrict the eligi­

ble solutions of (5.5) to sorne set, smaller than all possible functions. This restriction

is imposed by a user based on considerations outside the training data. This is usu­

ally done implicitly by the choice of a learning method. However, this approach

does not make the problem less ambiguous. Imposing a particular restriction may

lead to finding a unique solution for (5.5), but then there is an infinite number of

restrictions, each of which yields some solution; the multiplicity of solutions has

been only transferred to a different mechanism.

Many of the weIl known learning methods restrict their solution spaces to a

particular class of functions characterized by a set of parameters {WI' ... , WN}

•
and

j(x) = h(xlwl' ..., WH)

55

(5.6)

(5.7)

•

•

for sorne particular setting of the parameter values (uh, ..., WN). The problern in

(5.5) becomes:

L

(wt, ... , WN) = argmin{WlJ...,uiN> E[Yi - h(xlwl' ..., WN)]~ (5.8)
i=l

with j(x) = h(xlWI, ..., WN). If {h(xl WI , ••• , WN)} is a class of continuous functions

and parameters themselves take on continuous real values, then the solution to (5.8)

can he obtained hy numerica.l optimization techniques.

One method to further restrict the possible solutions to (5.8), very popular in

the neural networks community, is to define a particular path (" curve") through

the N-dimensional parameter space, and restricting solutions to those that lie on

the specified path. One way to specify this path is through a set of differential

equations c:
51 ,j = 1, ... , N, where [(Wh ••• , WN) is another specified function of the

atll]

parameters - a cast function. In addition, it is necessary to specify a starting point

for the parameters - (w~O), ... , w~». Then, for example, the gradient of the function

[(Wl, ••• , W N) determines the particular path. Begjnning at the starting point of the

parameters, a small step is taken in the direction of the negative gradient of the

cost function. The gradient is evaluated in a new point so obtained and a new

step is taken along a new gradient direction. These steps are continued until the

gradient becomes zero, indicating a local minimum of [(wt, ... , WN) or until sorne

other stopping criteria are satisfied.

The described method is a first order optimization technique applied to a cost

function with respect to the free parameters of the leaming system. There are many

possibilities for selection of a cost function, the mean-squar-error being the most

popular one:
1 L

eav = 2L E e2(l) (5.9)
l=l

where L is the number of training examples used in the learning process. In this case

the gradient is calculated after aIl training examples were presented to the learning

system and only then do the adjustments of the free parameters take place. This

56

•

•

training mode is known as a batch mode. Alternatively, one may use a pattern-by­

pattern mode of training, in which case free parameters of the artificial system are

updated after the presentation of each training example. The cost function used in

this case is
1

e(i) = 2e2(i) (5.10)

at presentation of the eth training example. A learning process designed to follow a

certain path consists of many presentations of the training set. One presentation of

the entire training set is called an epoch. In the pattern by pattern training mode,

the arder of presentation of training examples is often randomized from one epoch

ta the next. This randomization tends to make a search in the parameter space

stochastic over the training epochs. One of the reasons that favors this approach is

that it may help to escape a local minimum of the cost function. But at the same

time a good local minimum cao be missed because of the mutua! interference of the

parameters' changes (caused by different patterns). Subsequent gradient directions

may interfere: minimization in a direction a followed by minimization in a direction

b does not imply that the function is minimized on the subspace generated by a and

b. Minimization along the direction b may in general "spoil" minimization along the

direction a. This is why the minimization iterations (epochs) have to be performed

a number of times much larger than the number of free parameters.

The concept of non-interfering directions is the basis of another method for

optimization - conjugate gradient method [6]. Assume that last step of minimization

has been performed in the direction Pi and a new point in the parameter space has

been obtained. At this point a new minimizing direction Pi+l is chosen such that it is

perpendicular to the previous one - pi, and the previous minimization is not spoiled.

For a quadratic function, the conjugate gradient method is guaranteed to converge

in at most (N + 1) function and gradient evaluations. For a general function it is

necessary to iterate the method until a suitable approximation to the minimum is

obtained. In practice, the number of steps is much smaller than that required for

minimization by steepest descent method.

57

•

•

The conjugate gradient method is a second-order optimization technique (uses

second-order derivatives). Other second-order methods include those based on New­

ton 's method. Amongst these methods are: method of line searches, model-trust­

region methods, secant methods, Gauss-Newton method, Levenberg-Marquardt method

etc. The difficulty in applying of these methods lies in the necessity to calculate the

Hessian matrix (matrix of second-order partial derivatives) which can he very large

and extremely difficult to calculate analytically. In this case the analytic Hessian

matrix has to he approximated, but it is important that the approximations used

maintain the symmetry and positive-definiteness properties of the Hessian. This can

be achieved, for example, by application of the Choletsky factorization technique

[27]. Most of the second order methods require a large amount of computation per

iteration (of order O(N2) or O(N3» and thus are more suitable for problems with

limited number of free parameters (N < lOû). However these methods not only

speed-up the convergence of the optimization procedure but also ma.ke the learn­

ing algorithm more robust with respect to sorne parameters of the algorithm (e.g.

learning rate parameter). In addition, application of these methods usually leads to

the solutions with higher degree of precision.

5.3 Objectives of Function Identification Through

Supervised Learning.

There are two distinct objectives that can he attained hy the application of su­

pervised learning: estimation and interpretation. In the case of estimation, it is

expected that in the future new observations of the input variables will he encoun­

tered but no corresponding output values will be available and a mechanisrn for their

estimation would be extremely useful. In this case, a primary goal of a learning sys­

tem is the accuracy of the estimates.

Another reason for applying supervised leaming is interpretation. In this case, an

58

•

•

approximating function /(x) is produced with the goal to get an understanding and

insight into the mechanism that produced the data; no future data for estimation

is necessarily envisioned. For example, one may be interested to know which of

the input variables are the most relevant, what is the dependence of the output

on the most relevant input variables etc. Such information can be very useful in

understanding how the system works and perhaps how it can be improved. In this

case, accuracy is not the only goal for the learning system. The ability of the artificial

system to present the knowledge, gained in the process of learning, in the way in

which a person can understand and interpret this knowledge is of main importance.

The major successful methods for supervised learning differ greatly in the extent to

which they can achieve this goal and only a few provide highly interpretable results.

The problem of a computer learning has been initially studied in the fields of

applied mathematics (function approximation), statistics (regression and classifica­

tion) and engineering (pattern recognition). Later this problem became one of the

research subjects of artificial intelligence (machine learning) and biologically moti­

vated methods for data modeling - connectionist learning systems (CLS). Statistics

is one of the oldest disciplines to study data based learning and has developed nu­

merous approaches and theories to solve this learning problem. CLS, on the other

hand, is one of the most recent popular techniques, whose theoretical background

is not yet developed as much as that of statistics. The objectives and methodolo­

gies employed by these two fields are rather different. 1t is important to he aware

of these differences when making an attempt to compare the efliciencies of various

methods. Some basic differences of statistical and connectionist learning approaches

to function estimation were summarized in [18]:

• Madel complexity. CLS usually have higher complexity (number of free pa­

rameters) than statistical methods.

• Goals of modeling. In statistics the usual goal is interpretability, which favors

structured models (i.e. classification trees and liner regression). In CLS re-

59

•

•

search the primary goal is generalization/estimation, and CLS usually have

little, if any, interpretability. However, for many high-dimensional problems

even structured models are very difficult to interpret.

• Batch versus pattern-by-pattern processing. Most statistical methods utilize

the whole training set before making any adjustments to the model they pro­

duce (hatch mode), whereas CLS methods favor iterative processing of training

samples (pattem-by-pattern mode). These methods require multiple presen­

tation of the same training data to a learning system and is usually slower

than statistical methods.

• Computational complexity and usability. Since statistical methods extract in­

formation from the entire training set, they tend to be more computationally

complex and diflicult ta use by non-experts in statistics. CLS methods on the

other hand are computationally simpler and understood more easily by novice

users.

• Robustness and quality of estimates. CLS appear to he more robust than sta­

tistical ones with respect to the tuning of the learning algorithm's or model's

parameters. Another important aspect is the quality of estimates providing

their confidence intervals. Confidence intervals are routinely provided in sta­

tistical methods but not in CLS. Because of the "black box" structure of CLS,

the quality of the solution can not be guaranteed.

• Search for the best method. Most statistical and CLS methods are asymp­

totically good, Le. they can guarantee good estimates when the number of

training samples grows very large. Unfortunately, real problems provide only

finite and usually sparse data sets for learning. In this case, asymptotic perfor­

mance is irrelevant and no single method dominates all others for all possible

data sets. The real research goal is not to find the best method, but to char­

acterize the classes of functions (together with sorne assumptions about the

noise, smoothness etc.) for which a given method works best.

60

• 5.4 Selected Methods of Fonction Estimation.

Most of the learning methods can he viewed as dictionary methods. A dictio­

nary method uses a set of predefined functions - a dictionary {b(xl"'Y)}-y, where

Î = {il, ..., "'YN} is a set of parameters that characterize and uniquely index func­

tians in the dictionary. The goal of function estimationfapproximation in this case

is to find a suhset of functions from the dictionary {b(xl"'Ym)}~=1 whose linear com­

bination
M

tex) = E ~b(xrÎm) (5.11)
m=1

most accurately approximates the target function f(x). The number of functions

M is considered to be either fixed or serves as a model selection parameter.

A dictionary is said to he complete with respect to a class of the target functions

if any target function in this class can he exactly represented by the entire dictionary:
00

f(x) = E ~h(xlim)
m=l

(5.12)

•

for sorne set of coefficients {a~}f. The corresponding method is said to he a uni­

versai approximator for that class of target functions.

The methods described in the following are universal approximators for the class

of continuous target functions. The methods discussed below differ primarily in

their chaice of the dictionary. Thus, each of the rnethods is especially effective for

the functions of the class that can he efficiently represented by the functions in the

dictionary. By efficient representation we mean that it involves a relatively small

number of functions from the dictionary. No method thus is superior to all others

over ail target functions.

The methods discussed below represent only a small part of those that have been

developed so far, however they are amongst the most popular ooes. Many of the

other existiog methods can he regarded as variations on the methods discussed here.

A thorough comparative study of the methods belonging ta the groups discussed

above cao be found in [17].

61

• 1. Projection Pursuit and Feed-Forward Neural Networks.

The dictionaries of these methods consist of the functions of the form.

(5.13)

•

where -ytx = Li=l 'YjXj is the linear combination of the input variables. In the

case of neural networks, the most popular choice of a single-variable function

sO is a. sigmoid function (e.g. logistic, arctangent etc.). The simplest model

of the neural network is a three-layer feed-forward neural network. The mst

layer consists of the elements (neurons) that correspond to the input variables;

the second (hidden) layer consists of the neurons that compute the dictionary

functions, and finally the output la.yer computes the linear combination of

the outputs of the neurons in the hidden layer and represents the output.

Additional hidden layers can he added ta the network as well, whose neurons

compute the functions of the same dictionary as the mst hidden layer. Adding

an additional layer to the network enlarges the dictionary hy involving more

parameters. The effect of this on the performance of the network depends on

how well the resulting dictionary suits the target function.

In the case of projection pursuit, a function sO is more flexible; it has the

forro sa('Yo + -yf X) , where 0: = (O:17 ••. 'O:p) are additional parameters that

characterize a wide class of single argument functions. These parameters are

identified in the process of learning (simultaneously with parameters (i, -yo»

to best fit the training data. This increases the number of functions in the

dictionary and thus the projection pursuit method has less bias concerning the

representation of a target function.

2. Radial Basis Functions.

The dictionary for this method is comprised of the functions of the form;

(5.14)

The parameters that characterize the functions of this dictionary are the n ele­

ments of the vector t e RB and n(ni1
) parameters associated with nonnegative

62

• definite matrix H E JlRxn. A popular choice for the single variable function

r(z) is the Gaussian function r(z) =exp(-z2). This dictionary thus has n(~+3)

parameters and is rather large. Its size cao be reduced by placing additional

constraints on the matrix H. Often it is required that the matrix H be a

multiple of the n x n identity matrix H = p2 ln.. This reduces the number of

parameters to n + 1.

3. Recursive Partitioning Tree-Structured Methods.

The methods of this family have dictionaries of the Corro.

{l(x E R)}R

where 1(v) is an indicator function of the logical argument v

(5.15)

(5.16)
{

1 if v is true
I(v) =

o otherwise

The symbol R here represents sorne subregion R E Ir and is characterized

by a set of parameters (e.g. a hyper-rectangle). In recursive partitioning

the subregions are disjoint such that for any set of input values x, only one

indicator function is nonzero. In this case,

x E Rm =* CCx) = am (5.17)

•

where {Rm}r represent the entries for which the indication function is true.

The approximation function is thus a piecewise constant function.

The corresponding optimization problem is combinatorial rather than numer­

ical. If M is relatively large it is a formidable problem and it is solved with

greedy optimization strategies based on recursive partitioning. We will briefly

describe one method employed in [12] (CART method). The initial region Ro

consists of the entire input space. This region is optimally divided ioto two

regions RI and R2 by a split on the input variable Xv at a split point t. The

values of v E {l, ... , n}, where n is the number of variables, and t are chosen

such that when the indicator function l(x E Ho) is replaced by two functions

63

• [(x E RI) and I(x E R2) in (5.11) the best fit to the data is achieved. Each of

these newly created regions RI and R2 is split agame This recursive procedure

is repeated until a large number of the regjons are created. These regjons are

then optimally combined with their adjacent regions to form a smaller set to

he used in the approximation. Usually this recombinational process is based

on some model selection method - a method intended to select the model with

the least complexity for the required accuracy (e.g. cross-validation).

The piecewise nature of the resulting approximation function limits their ac­

curacy on the continuous smooth target functions. However, one area where

recursive partitioning methods tend to dominate all others is in interpretabil­

ity. The recursive partitioning can be represented graphically as a binary tree.

The leaves of this tree are associated with the final partition and are labeled by

the approximating values am. The internai nodes are labeled by the splitting

variables Xv and the split points t. Thus this binary tree contains all the in­

formation associated with the approximation in an easy interpretable graphic

forme

4. Tensor Product Methods.

The functions included into the dictionaries of these methods are of the fotm

n

{II ?/J(xiii;) lc'Yl,...'Yn}
;=1

(5.18)

•

Each of these functions is a tensor product of functions of a single variable ­

one of the inputs, and is characterized by one or more parameters ii. Constant

functions ?/J(Xilio) = 1 associated with one or more input variables are allowed

in the product. In this case the dictionary cao he expressed in an equivalent

form
K

{II ?/J(xv(k)lik)}(K,{v(k),'ltlf=l (5.19)
k=l

where K is the number of non-constant factors and is one of the parameters

characterizing a function in the dictionary.

64

• The goal of the tensor product methods is to select the products (5.19) with

a relatively small number of factors. The choice of the input variable set

{v(k) }~l and corresponding parameter values {/A:}f incorporates the mecha­

nism of recursive partitioning methods. However, tensor product methods em­

ploy continuous and more flexible functions t/J(Xv(A:) hA:) than those employed in

recursive partitioning methods. This allows more accurate approximations of

continuous functions. One choice for functions t/J(Xv(k) lIA:) can be spline func­

tians. In addition individual factors can be functions from different parametric

spaces. This enables tensor product methods to handle input variables of dif­

ferent types - real valued and categorical - more naturally. Tensor product

methods are aIso known ta deaI well with the missing valued inputs.

5. Fuzzy Approximating Systems.

Fuzzy systems are widely used for the function identification problem in today's

research. One of the approaches [72] involving fuzzy modeling can be aIso

considered as a dictionary method. In tms case, fuzzy systems have a form of

series expansions of fuzzy basis functions, wmch are algebraic superpositions

of fuzzy membership functions. The dictionary of tms method consists of the

functions of the forro:

where

.(_) _ j (l(xi - Xi)2).' { M}/LAi x, - ai exp -2' ~ ,} El, ... ,,

(5.20)

(5.21)

•

and a{, xi and u1 are sorne real valued parameters. The functions IlA-! are
l

membership functions of fuzzy sets defined on the space of input variables.

The most important advantage of using fuzzy basis functions is the possibility

to include linguistic fuzzy rules, obtained from the human experts, into the

training data. These linguistic rules have a great value [72] since they often

contain information which is not present in the training input-output pairs.

Using a fuzzy expansion, one can combine two sets of fuzzy basis functions

65

•

•

- one derived from input-output pairs and the other obtained from linguistic

rules - into one fuzzy expansion.

Other important properties associated with approximation methods include train­

ing (computational) speed and the ease of use. Specifie implementations of the meth­

ods almost always include sorne "tuning" of parameters ta improve the performance

of a method for a particular application. Some of these parameters can he really

crucial for the effieieneyof an algorithm. Thus, often there is no way ta separate the

power of a method from the expertise of a user. In this context the robust meth­

ods are those that are not very sensitive to the parameter settings. Tree-structured

methods, adaptive splines and to sorne degree projection pursuit methods are more

robust than the others.

66

•

•

Chapter 6

Fuzzy Cellular Automata.

6.1 Definition of a Fuzzy Cellular Automata Model.

A fuzzy cellular automaton (FeA) can he defined by a tuple (t" Q, u, f), where

• 1:, is a d-dimensional finite lattice on M cells, d > 1, M > 2.

• Q = {T, F} is a set of fuzzy states that each cell in J:, can take. Each cell x

actually can take a value c in the unit interval [0,1); then the degree to which

a cell x is in states T and F can he calculated with the membership functions

f-LT(X) = c and PF(X) = 1 - c respectively.

• u is a neighborhood template of cardinality k. The number of possible (fuzzy)

neighhorhood state configurations is thus 2k • Let us denote a fuzzy neighhor­

hood state configuration by ai = (ail, ... , aik) E {T, F}k, i E {l, ..., 2k}. Fix

a cell x and let its neighborhood consist of ceUs u(x) = (YI, ... ,Yk), where Yj

currently has value Cj. Then the state configuration of the neighborhood u(x)

is in a fuzzy state Qi to the degree calculated with a membership function

(6.1)

67

• of the corresponding set ai- This intuitively corresponds to the conjunction

of the fuzzy conditions "cell Yi is currently in state Qij", and formally to the

aggregation operation on le fuzzy sets Qi; by means of the standard fuzzy

intersection. Of course in the classical case, Jlcz, would take the value 1 ior

exactly one ai and value °everywhere else.

• fis a (fuzzy) transition function, f : [0, l]k -. [0,1] detennining the next state

of a cell x given the state configuration of its neighhorhood. According to this

function, the next state of the cell x will he T to the degree calculated \Vith

the membership function

(6.2)

•

where the Wi'S are free parameters in the interval [0,1]. This intuitively corre­

sponds to taking a (weighted) disjunction of the fuzzy conditions "the neigh­

borhood of cell x is currently in configuration cre".

Function fis considered to he defined if its free parameters Wi are defined.

6.2 Discussion on the Form of the Transition

Function.

According to the generic idea of a. CA computation, a cell makes a transition to

the next state on the basis of the current state of its neighborhood. For each of

the possible neighborhood state configurations, there should be a designated state

to which a cell should make a transition at the next time step. In the fuzzy model

of CA, where cells can take values c E [0,1], a neighborhood configuration of any

given cell matches aIl of the possible neighborhood state configurations {T, F}k, but

to different degrees. Intuitively, a transition function of a fuzzy cellular automaton

should aggregate these degrees and thus it may be an aggregation operation (3.4)

applied to the values Jlcz" i E {l, ... , 2k
}. At the same time, the choice of the next

68

• state of a cell should be mostly determined by the fuzzy neighborhood state con­

figuration \Vith the maximum degree /I.(ii. Clearly, in this case, such a transition

function should be nondecreasllig with respect to the values of Jlai. More than that,

it should satisfy the following two properties for aIl i E {l, ..., n = 2k
}:

where hi(ai) = h(O,,ai, ...,O), and ai and bi are sorne values of f.lCZi. Although

in the context of our application it is practically impossible for all values /l.ai' i E

{1, ... , n = 2k } to be equal to 0 or 1 at the same time, we rnay assume that at

these extreme cases the function satisfies Axiom hl. Based on these properties and

also requiring the transition function to he continuous, we can formally derive the

form of the aggregation operation by means of which our transition function can be

represented. The following theorem can he found in [37].

Theorem. Let h : [0, l]n ~ [0, 1] be a continuous function that satisfies Axiom

hl, Axiom h2 and properties (6.3) and (6.4). Then,

(6.5)

where Wi E [0,1] for all i E {l, ..., n}.

Proof: First observe that h(a}, a2, ... , an) = h(max(at, 0), max(O, a2), ..., max(O, an».

Then by property (6.3) we can obtain h(at, a2, ... , an) = max(h(a}, 0, ...,0), h(O, a2, ... , an».

By induction we cao replace h(O, a2, •.. , an) with max:(h(O, a~h 0, ... , 0), h(O, 0, a3, ..., an».

Repeating the same replacement we eventually obtain

h(ab a2, ... , an) = max[h(ah 0, ...,0), h(O, a2, 0, ...0), ..., h(O, 0, ..., an)] =
max[ht(at}, h2(a2), ... , hn(an)].

(6.6)

•
It remains to prove that hi(ai) = mîn(wi,ai) for all i E {l, ... , n = 2k

}. Since the

function h is continuous and nondecreasing, so is each hi(ai). Also hi(O) = 0 by

Axiom hl. Let hiC1) = Wij then the range of hi is [0, Wi]. For any ai E [0, Wi],

69

•

•

there exists bi sucb that ai = hi(bd and hence, hi(ai) = hi(hi(bd) = hi(bd = ai =
min(Wi,ai) by (6.4). Also for anyai E (Wi, Il,wi = hi(l) = hi(hi(l)) = hi(Wi) ~

hi(ad < h(l) = Wi and consequently, hi(ai) = Wi = min(wi,ai).

This theorem gives us exactly the form of the transition function defined in the

previous section.

70

•

•

Chapter 7

Learning with Fuzzy Cellular

Automata.

7.1 Problenl Statement.

There is a real-valued concept (function) C : [0,1] -+ [0,1] that has to be identified

(or estimated). The information about this concept is available in the form of a

finite set of input - output pairs, Tr(C), which is called a training set: TreC) =

{(Input(1), Output(l» , ... , (Input(L), Output(L»)}. The objective of identification through

supervised learning is to create an artificial model of the concept C. During the

learning process, the artificial learning system should generalize the information in

Tr(C), such that it will represent general knowledge about the concept. In other

words, after learning is completed, the model, when presented with an input Input,

which does not belong to Tr(C), will be able to produce an output Output, that

will match the concept 's response to Input with some accuracy E.

A tool, that we will use to acquire and represent the knowledge about the concept,

is the l-dimensional fuzzy cellular automaton (FCA) defined in the previous chapter.

We will consider the neighhorhood template u(x) to he known a priori. A local

71

• transition function, that will make the FCA model a given concept, is not known

and has to be identified in the process of learning. Each input value of the concept

is encoded into the FCA initial configuration by sorne method (a possible methods

of encoding will be discussed in Chapter 8). Having been presented an input value,

i.e. set to an initial configuration encoding an input value, the FCA then performs

T > 1 global transitions. T is set to some constant value at the beginning of

the computation. It is one of the tunable parameters of the system which can

influence the ability of the FCA to represent certain continuous functions. After T

global transitions, an output value is decoded from the FCA output configuration

as follows:
1 M

Y = M E cp(xm(T))
m=l

(7.1)

where M is a number of cells in the FCA and xm(T) E [0,1] is a value assumed by

a cell m after the transition T, and

1
Cp?(x) = 1 + exp(-u(x - 0.5»

(7.2)

•

The objective of the learning process is to identify a local transition function j,

such that the fuzzy cellular automaton with this transition rule will model a given

concept. Recall that a fuzzy transition function (6.2) is defined if the parameters

Wi, i = 1, ... , 2k are defined. Therefore, our learning algorithm will search the pa­

rarneter space for suitable values of these parameters. No a priori knowledge about

these values is assumed to be available.

7.2 Sketch of the Learning Algorithm.

A learning process is conducted in an iterative manner. At the beginning of learning,

values of the free parameters Wi, i = 1, ..., 2k are randomly initialized in the interval

[0,1]. We are provided with a set of training examples Tr(C) of size L, which

represent input-output pairs of the target concept C. At each iteration i, (l =

72

• 1, ... , L), an input - output pair (Input(l), Output(l» is selected from the training set

Tr(C) and the input is presented to the FCA. The input value 1nput(l) is encoded

into an initial FCA configuration and the FCA makes T > 1 global transitions.

An output value is decoded using (7.1) and (7.2). This value is compared with the

actual concept's output Output(l) and an error is obtained as €(l) = y(l) - Output(l).

This error is used to update the values of parameters Wi, i = 1, ... , 2k after each

presentation of a training example - a pattem-by-pattem training mode is utilized.

The learning process consists of multiple epochs (presentations of entire training set

to the FCA) and proceeds until the average squa.red error over the entire training set

converges to sorne minimum value (a stopping criterion is introduced later). During

each epoch, training examples are drawn from the same training set Tr(C) but

presented to an FCA in a different (random) order.

7.3 Learning Algorithm.

Let us consider one iteration of the learning algorithm, say i. An input value 1nput(l)

was presented to the FCA and it produced an output value y(i). The history of the

FCA transitions is recorded and presented as follows:

x~(O)

x<:J(1)

x11)(T) x~l) (T) xC:; (T)

The FCA evolved to the output configuration in T time steps - in T transitions. As

previously mentioned, we will compute an error between an FCA's output and an

actual concept's output as

• Let us define a cost function

€(l) = y(l) _ Output(l)

73

(7.3)

(7.4)

• where E is the statistical expectation operator. We do not have any information on

the probability distribution of ê(l), thus we can only use an instantaneous estimate

of the cost function:

(7.5)

where W{i) is a vector of values of the free parameters at the beginning of the

iteration l. The objective of the learning process is to minimize the cost function

(7.5) with respect to the parameters Wi, i = 1, ..., 2k
• We will use the steepest descent

optimization technique to conduct minirnization. The negative gradient of the cost

function points in the direction of its steepest descent. At each iteration l of the

algorithm (presentation of a training example), we will calculate a gradient vector

of the cast function (with respect to free parameters) at the CUITent operating point

as defined by the current values of free parameters w~l), i E {l, ..., 2k }. We will use

this gradient vector to update the free parameters as follows:

(l+l) = (i) _ âI(w(l» . E {1 2k }
W l W I TI Ô ' Z , ••• ,

Wi

where 0 < TJ < 1 is a learning rate parameter.

(7.6)

Let us find a gradient vector of the cost function. Applying the chain rule we

cau find partial derivatives:

•

ÔI(W(i» _ âI(w(l») Ôé(l) ôy(i)

aWi - âé(i) By(l) ÔWi

for each i E {l, ..., 2k
}. Each term of (7.7) can be found as follows:

âI(w(l) _ (l)

Ôé(l) - ê

âe(l)

ôy(l) = 1

74

(7.7)

(7.8)

(7.9)

(7.10)

• where
Ô'P(x~)(T» _ 0" exp(-O'(x!,?(T) - 0.5»

ôx - [1 + exp(-O'(x~(T) - 0.5»))2
(7.11)

We will denote hy u!,?(t) the neighhorhood configuration of a celI Xm. after tran­

sition t. Each x~)(T) can he represented as:

x~(T) = f(u~)(T -1» = f(x~~(T - 1), ...,x~~(T -1» (7.12)

where x~) (T - 1),j E {l, ..., k} are the values of those ceUs that belong to the
J

neighhorhood of the cell Xm. after transition T - 1. Applying the chain rule again

we can find:
ôx~)(T) = t ôf(u~(T -1» ôx~~(T - 1)

ÔWi i=l ôXmJ ÔWi
(7.13)

ar~)(T-l)
where ~tui can he found by analogy to (7.13). In this way, we obtained a

recursive function:

ôx~~,>(T - t) __ ~ ôf(u~)(T - t - 1» ôx~~(T - t - 1)
L- (7.14)

ÔWi j=l ÔXmJ ÔWi

for 0 < t < T - 1, m E {l, ..., M}.

Let us consider the base case of this recursion (t = T - 1):

ôx!,?(I) _ ôf(u~)(O»

ÔWi - ÔWi

Let us define sets PI and pjs):

where IlOti is defined in (6.1) and

(7.15)

(7.16)

•
Theo, using this notation, the local transition function f cao he represented as

follows:

75

•
for sorne i E {l, ...2k }. Then, applying the chain rule again we obtain:

8 max[max[J1I}(u~)(O))],min(wÇl) ,~Q. {~{O)m•• x
8 min

• [(l) (l)e]8mm tu; '~Q;(um. 0»
8 W à

(7.18)

We can find partial derivatives for the min and max operators, using their rep­

resentations (3.3) and (3.2). However, in arder to do this, we have ta define addi­

tionally the derivative of the absolute value function Ixl at the point x = o. We will

consider it to he equal ta o. Taking this into account, we can find partial derivatives

as follows:
ômax(a,b) ômin(a, b) 1 - sgn(a - b)

ôb - ôa -
2

where

1 for x > 0

sgn(x) = 0 for x = 0

-1 for x < 0

Thus,

8/(;::(0» = t{l - sgn(max[Pp)(u~)(O»l- min[w~t),Paà(U~)(O»])}x

{1 - sgn(w~l) - JLari(U~)(O»)}

(7.19)

(7.20)

(7.21)

•

It remains to find aJ(~~:-t-l)),j E {l, ... , k} in (7.13). Although it is possi-
J

ble ta find this derivative aualytically, it would take a relatively large amount of

computation to find it exactly hy analytical formula. In order ta reduce compu­

tational demauds of the algorithm, this derivative cau he approximated hy finite

difference. This will, of course, introduce some numerical error, but we consider it

ta he talerable in this context. Let us denote

76

• Using this notation, we can approximate the partial derivative as follows:

8f(u~)(T - t -1» _ f([u~)(T - t -1)J6.,) - f(u~)(T - t -1)
8x

mJ
- ~h

(7.22)

Both partial derivatives in (7.14) have been found and the gradient vector of the

cost function can be calculated. This completes the description of an iterative step

of the learning algorithm.

7.4 Stopping Criterion.

The learning algorithm described in the previous section has not been shown to

converge in general. Thus, some criteria for stopping its operations should he de­

fined. Since the suggested learning algorithm is essentially a minimization algorithm

applied to the cost function, a reasonable stopping criterion can be based on some

unique properties of a local or global minimum of a function. It is important to

notice that the cost function (7.5) used in the pattem-by-pattem training mode ac­

counts for the error of the CUITent training example only. To get an indication of the

general performance of a learning system, one should take into account the eITors of

the system for the entire training set and strive for a minimum of the function that

does just this. We will define a generalized cost function (or mean-square-error):

Iav(w) = .!:- Ê[e(l)]2
!L l=l

and use it to formulate a stopping criterion for the learning algorithm.

(7.23)

•

A necessary condition for a point to be a minimum of sorne function is that

the gradient vector of the function at this point be zero. Based on this property,

a stopping criterion for the backpropagation a1gorithm was suggested in [40]: the

algorithrn is considered to have converged when the Euclidean norm of the gradient

vector of (7.23) reaches a sufficiently small threshold. The drawback of this criterion

is that for successful trials, learning times may he very long [32J.

77

•

•

Another property of a minimum that can be used. is that a function is stationary

at a minimum point. A criterion based on this property can he formulated as follows:

the algorithm is considered to have converged when the absolute rate of change in

the generalized cost function per epoch is sufliciently small. A variation of this

criterion is to require that the value of the generalized cost function he equal or less

than a sufficiently small threshold.

A hybrid criterion was suggested in [40]: the algorithm terminates with param­

eter vector Wfinal when either Ifg(W6nal) n< E, where g(w) is the gradient vector of

the generalized cost function, or [tlv(Wfinal) < T, where T and E are sufficiently small

thresholds. This stopping criterion is used in our implementation and is checked

after each learning epoch.

78

•

•

Chapter 8

Encoding Real Values ioto CA

Configurations.

A cellular automaton by nature is a discrete system, which performs its computation

in space and time which are both discrete. This feature of cellular automata, while

being useful and naturally applicable to many problems, raises questions about their

applicability to problems which involve continuous computation and especially those

that do not have an intrinsic feature of distributed space. Obviously continuous

function identification is such a problem.

Though an intuitive reaction may suggest that cellular automata are not appro­

priate to carry out continuous computations, a discussion in [67] by Toffoli presents

a more optimistic view of this problem. According to it, a notion of continuous

computation can be introduced even in a classical binary cellular automaton. One

can consider the mean density 5v over a certain volume, i.e. the fraction of cells

in that volume that are in state "1". While the states of the cells are discrete and

binary, 6 will always he sorne number between 0 and 1. As the volume increases,

the values of 6 will move up and clown the unit interval in a smoother and smoother

fashion, so that in the limit one can speak of a continuous function.

79

•

•

\Ve will adapt this idea that an information about a real value can he represented

by a collection of CA ceUs, where the precision of this information depends on the

size of this collection. We will base our encoding scheme on this idea.

Being a distributed system, a cellular automaton represent and process infor­

mation in a distributed manner, whereby cells share their knowledge arnongst each

other during the CA evolution. The result produced by the cellular automaton rep­

resents a collective decision of aIl cells, which they made on the basis of common

but distributed knowledge. In a deterministicuniform cellular automaton, which we

consider in this study, all cells obey the same rules of state transitions and, in the

context of our problem of function identification, aU cells work collectively on one

global problem. In this case, it would be reasonable to ensure that at the beginning

of the CA evolution, aIl cells possess the information about an input of approxi­

mately the same quality. One mayargue that information would be propagated to

all cells evenly in any case after a. certain number of CA transitions. But we suppose

that a "fair" initial presentation of initial knowledge to all cells can save the time

needed for propagation of this initial information throughout the CA lattice and the

automaton can immediately start collective problem solving.

The information, immediatelyavailable to a given cell, is that which is present

in a neighborhood of this celi. Thus, we would consider a method of input encoding

to be "fair" if every neighborhood of the CA lattice represents knowledge of about

the same quality. Taking this into consideration, let us introduce one of the possible

methods of encoding a. real value into a configuration of a l-dimensional cellular

automaton. We will discuss this method first in the context of classical CA with

binary states (Q = {O, l}) and then we will generalize it for an application ta fuzzy

cellular automata.

As assumed previously, the input values v lie in the unit interval [0, 1]. We will

initialize cells' states such that the portion of cells initialized ta state "1" in every

given neighborhood on L, is as close to v as possible. One can roughly implement

80

• this by using the following rule:

Xi = { 1, if (i mod k) < LkvJ
0, otherwise

where v is an input value, and k is the size of the neighborhood.

(8.1)

Due ta the fact that we use the fioor operator - lkvJ- the overall portion of ones

in the CA initial configuration may appear to be less than v. In this case we can do

a little refinement. The number of ones that still should he added can be found as

follows:
M

b = -(kv - lkvJ)
k

(8.2)

Then this number of additional ones should be evenly distributed on L, by flipping

every ~ zero state on L,. z is a number of cells initialized to zero state after the

rough method (hy (8.1» and it is equal ta:

M
Z = T(k -l(kv)J) (8.3)

•

Thus by (8.2) and (8.3) every ~--llt:2)~ zero state in the initial configuration of the

cellular automaton should be changed to state "1".

Similar method can be used to encode input values into initial configurations of

fuzzy CA. In this case, ceUs that should be initialized to one, according to the above

algorithm, will he assigned a random value Xi E (i + f:, 1] and those that should he

assigned zero - a random value Xi E [O,! - El, with some value Eto avoid ambiguity

at !.

Clearly, the encoding accuracy in this scheme is dependent on the neighborhood

size: larger neighborhood sizes permit more a.ccurate encoding. At the same time,

an increase of the neighborhood size makes local computations of a cellular automa­

ton more intense and complex. AIso, what is even more important, a number of free

parameters, that have to be learned, increases exponentially. This makes a solution

space larger which, although can reduce the model's bias, makes the learning task

81

•

•

more complex and requires more computational time. A fixed neighhorhood size im­

poses a limit on the encoding accuracy and therefore on the function approximation

accuracy.

It should also he noted that not the entire space of the possible cellular automa­

ton's configurations is empLoyed in the encoding, that is a mapping of real values

onto a set of cellular automaton's configurations is not surjective. In this sense, our

encoding scheme does nat explore ail the potential power of the cellular automata

structure. Nevertheless it possesses other qualities (discussed earlier in this chapter)

which, we believe, are important if a uniform model of cellular automata is meant

ta compute continuous mappings.

82

•

•

Chapter 9

Experiments and Results.

9.1 Objectives of the Experiments.

To the best of our understanding, this study is the first attempt to use cellular

automata in the context of function identification from a set of input-output pairs.

Thus far, no learning algorithms were developed for this purpose. Even the capacity

of cellular automata to compute and represent knowledge about continuous func­

tions has never been previously assessed. The present work cao be considered as a

feasibility study and because of this reason we nave decided to start with a relatively

simple task - identification of univariate continuous functions.

As was pointed out initially, an absolutely general solution strategy to the prob­

lem of function identification has not yet been found. AlI approaches used today

be they in statistics, applied mathematics or artificial intelligence have limitations.

These limitations depend on the intrinsic capabilities of the models employed in

each method to represent certain functions, and none of the existing methods can

be claimed to be good or bad in general [17]. Based on this point of view, we set out

our main objectives to validate an ability of cellular automata to perform complex

continuons computation, study the behavior of a new learning system and compare

83

•

•

its efficiency in approximating different types of continuous functions. We focused

our analysis of a new learning approach, presented in this work, on the following:

1. The ability of the proposed algorithm to perform a learning task and make an

underlying fuzzy cellular automata model generalize knowledge represented in

a set of training examples.

2. The effect of the parameters, that determine a structure of a cellular automa­

ton, on the performance of a learning system.

3. The effect of a learning rate parameter 11 in (7.6) on the algorithm's perfor-

mance.

4. The efficiency of a fuzzy cellular automata model in approximating continuous

functions of different types.

Performance of a fuzzy cellular automaton learning system was studied by means

of experiments. In the rest of this section we will present the methodology employed

in our experiments together with the results and observations obtained from these

experiments with respect to the objectives stated above.

9.2 Experimental Designs and Discussion of the

Results.

As mentioned in Section 9.1, there is no analysis available regarding the ability of

a cellular automaton based model to represent continuous functions. Consequently,

the first step was to verify the correctness and ability of a new learning algorithm

to perform. supervised learning. To distinguish the aspects of learning and knowl­

edge representation capabilities, we first tested our a1gorithm. using test functions

computed by another cellular automaton with known values of free parameters. In

84

•

•

this case we could he sure that a fuzzy cellular automaton was capable of computing

these functions and performance of the learning aIgorithm itself could he validated.

A set of experiments were conducted in which bath a fuzzy cellular automaton, that

generated a test function (target FeA), and a leaming FCA had the same size of

a cellular lattice, M, neighborhood size, k, and a number of transitions T which

both automata were allowed to perfonn before an output value was decoded from a

cellular automaton configuration.

In the case of this test, the leaming task appeared to he quite easy for- a fuzzy

cellular automaton system. It was consistently able to find a satisfactory approxima­

tion of a target functioD (approximation with a value of mean-square-error (MSE)

over the entire training set less that 0.001). The average number of learning epochs

that it took a learning FCA to identify a target function was five with a number

of training examples presented at each epoch equai to 40 (see Table 9.1). Learning

examples in this and all other tests were uniformly distributed over the real unit

interval [0,1]. Since computational capabilities of fuzzy cellular automata are not

an issue in this context, one can see that the learning algorithm itself is functional

and fast. An example of a test function generated hy a fuzzy cellular automaton

and its approximation cau he found in Figure 9.1.

Table 9.1: Test!.

1 Exper. #~ # epochs 1 MSE 1

1 65 3 1 3 0.0006

2 100 5 1 6 0.0006

3 65 3 2 9 0.0009

4 65 3 3 2 0.0004

Target and learning FCA have the same values of parameters.

The first attempt of understanding the influence of such parameters as neighhor­

hood size, k, and numberof a.llowed transitions, T, on the computational capabilities

85

•

•

Figure 9.1: FCA Generated Test Function ".-.-." and Its Approximation"-".

0.9r---..,---.--.....,....-__._-----.--....---__-_._-.....,....----,

Parameters of both target and learning FCA are the same: M = 65; k = 3i T = 1.

of fuzzy cellular automata was done through the two following tests.

In Test 2, lattice and neighborhood sizes of a target and learning FCA were set to

he equal, but a number of transitions T - different. First, a value of the parameter T

of a target FCA was set to 1 and that of a learning FCA varied frOID 2 to 5 (see Table

9.2). In this test, only a learning FCA with T = 2 was able to find a satisfactory

approximation. In ail other cases, the learning algorithm did Dot converge and the

resulting models had a very low accuracy. This outcome suggests that with an

increase of the T parameter, representational/computational capabilities of fuzzy

cellular automata decrease. When we mention computational capabilities of FCA,

we refer only to those that are relevant and specifie in the context of our problem,

that is an FCA ability to compute complex continuous functions. Indeed, graphs of

functions computed by FCA with T > 2 show that these functions are almost linear

and more than that they tend to be close to constant functions. A range of these

functions does Dot exceed an interval [0.4, 0.6] most of the time. fi one observes time

evolution of such a fuzzy cellular automatoD, one immediately notices that there are

just a few (2 to 4) distinct cell states present in a cellular automaton configuration

after transition 3. In addition the cellular automaton reaches a steady point in its

86

• evolution or exhibits a shift-like hehavior after a small number of transitions.

Table 9.2: Test 2.

IExper.#~ # epochs 1 MSE 1

•

1 65 3 2 5 0.0009

2 65 3 3 did not converge 0.0164

3 65 3 4 did not converge 0.0230

4 65 3 5 did not converge 0.0571

Target and learning FCA have the same values of parameters M and k.

T = 1 for a target FCA.

A few more experiments were conducted, in which the value T of a target FCA

was set to 3 and that of a learning FCA varied from 1 to 5 (see Table 9.3). In all these

cases, fuzzy cellular automata found successful approximations. This supports the

conclusion that fuzzy cellular automata with smaller values of T (especially less than

3) have stronger computational powers. Starting from T = 3, additional increases

of T do not significantly alter the situation any further.

Table 9.3: Test 2 (continued).

1 Exper. #~ # epochs 1 MSE

5 65 3 1 4 0.0006

6 65 3 2 10 0.0005

7 65 3 3 4 0.0009

8 65 3 4 24 0.0009

Target and learning FCA have the same values of parameters M and /c.

T = 3 for a target FCA.

In Test 3, a neighhorhood size was set to he different for the target and leaming

87

•

•

FCA with the other parameters being equal. Neighborhood size of the target FCA

was set to 6 and that of the learning FCA varied from 3 ta 8. Two series of such

experiments were conducted, one with the value of T equai to 1 and the other with

T = 3. This test demonstrated that the neighborhood size aIso affects computational

capabilities of fuzzy cellular automata (see Table 9.4). A learning FCA with a size

of a neighborhood smaller than that of a target FCA (k < 6), was not able to

find a satisfactory approximation. In the case of T = 3, a learning FCA with the

neighborhood size equal to 5 (still smaller than that of a. target FCA) was however

able find a satisfactory model. According to the conclusions of Test 2, a test function,

computed by a. target FCA with T = 3, was simpler than in the case T = 1 and the

neighborhood size prohably had a less significant effect.

Table 9.4: Test 3.

1 Exper. #~ # epochs 1 MSE 1

1 65 3 1 72 0.0088

2 65 5 1 17 0.0016

3 65 7 1 13 0.0009

4 65 8 1 10 0.0009

1 65 3 3 24 0.0103

2 65 5 3 8 0.0009

3 65 7 3 5 0.0008

4 65 8 3 6 0.0008

Target and learning FCA have the same values of parameters M and T.

k = 6 for a target FCA.

Thus, computational capabilities of fuzzy cellular automata seem to increase

with an increase of the neighborhood size. It was also presumed that size of a

cellular automaton lattice, M, cao affect the performance of a learning system. It

was also noticed that a learning rate parameter Tl in (7.6) had sorne influence on

88

• the properties of the learning algorithm. To examine these effects, we ernployed a

statistical technique - response surface modeling with regression analysis. There were

two responses of the learning system that we were interested in: speed of convergence

and accuracy of obtained function approximations. A number of leaming epochs

served as an indicator of the convergence speed, and mean-square-error (7.23) of a

final model identified by a fuzzy cellular automaton - as an indicator of the modeI's

accuracy. Parameters M, k and 7] were considered to be the factors in:B.uencing

response variables. A function that represents a relationship between these factors

and a response variable is called a response function. Naturally we do not know a

true form of this function and have to model it by sorne means. For this purpose

we used regression analysis from statistics. It was assumed that a response function

in our case was more complex than a. linear one, and we decided to use a. quadratic

model of a response surface:
ppp p

y = f30 + E f3iXi + E f3iiX?+ E E f3ijXiXj
i=l i=l i=l j=1

(9.1)

•

where Xl, X 2 , ••• , X p are the influencing factors, Y is a response variable and f3o, f3i, f3ii' f3ij,

i,j E {l, 2, ...,p} are the unknown parameters that we will have to estimate.

A design of experiments, by which the observed values of a response are collected

for estirnating the parameters in a second-order model (9.1), is called a second order

design. There are several different methodologies of the second-order designs. In

our study we used Central Composite Design with orthogonal and uniform preci­

sion properties [36]. According to this methodology, a set of the parameter values

combinations is designed and experiments are conducted using these cornbinations.

After the response values are collected from these experiments, regression analysis

is applied in order to estimate the parameters of (9.1). We performed two sets of

such experirnents to obtain the surface models for a speed of convergence response

and two sets - for an accuracy response variable. In the early stages of working

with a new lea.rning system, it was noticed that sorne target functions were easier

for fuzzy cellular automata to learn than others. For sorne functions, the learning

algorithm always managed to find satisfactory rnodels. We selected two functions

89

•

•

such as these and used them as the test functions in the experiments designed for

modeling of the convergence speed response (Tests 4 and 5). For two other sets of

experiments (Tests 6 and 7), where an objective was to model the approximation

accuracy, more difficult functions, from fuzzy cellular automata point of view, were

used. In these cases, the learning algorithm often converged at some local minimum

of the error surface, producing the approxima.tions with different levels of accuracy.

Experimental settings and results are liste<! in Table 9.5. In ail further experi­

ments, cellular automata with T = 1 were used, since we expected the most sophis­

ticated computational capahilities from snch a setting. These data ware processed

with the "Design-Expert" software package, which performed regression analysis

and produced quadratic models of the response surfaces. It should also he noted

that there were several experimental outcomes that were not well predicted by the

response surface models and they seemed to significantly differ from the overall he­

havior of the learning system. This suggests that response functions may have even

more complicated forros than a quadratic one, and for specifie target functions there

may be sorne especially good or bad combinations of parameter values. But these

cases are rare and general trends in the behavior of the learning system can still be

discovered. The obtained quadratic response surface models explain hetween 60 and

80 percent of the response value variations caused hy the studied factors M, k and

TJ. The remaining portion of the variations can also he attributed to the random

factors, present in the learning process. One of them is a. random initiation of the

free parameters. The performance of a learning system cao depend on how close an

initial operating point (initial values of free parameters) happens to he to a good

minimum of the error surface. The fact that the training examples are presented

to a learning system in a different (random) order at each learning epoch, makes

a walk of the free parameters' values stochastic in a parameters' space. This can

additional1yaffect the learning system's performance which may not be adequately

captured by a relatively simple and deterministic model of a response surface. How-

90

•

•

Table 9.5: Tests 4-7. Experimental Settings and Results.

Exper. # M k " Number of epochs MSE

Test 1 Test 2 Test 3 Test 4

Yi 1'2 ~ }4

1 65 3 0.2 341 9 0.0075 0.0023

2 65 3 0.5 1000 2 0.0070 0.0041

3 65 7 0.2 19 41 0.0010 0.0009

4 65 7 0.5 41 23 0.0011 0.0008

5 65 3 0.2 60 12 0.0073 0.0027

6 150 3 0.5 1000 3 0.0077 0.0087

7 150 7 0.2 36 37 0.0009 0.0008

8 150 7 0.5 30 4 0.0009 0.0009

9 150 5 0.1 114 32 0.0010 0.0014

10 108 5 0.6 24 10 0.0015 0.0009

Il 108 2 0.35 1000 30 0.0036 0.0051

12 IDS 10 0.35 23 15 0.0009 0.0009

13 108 5 0.35 10 12 0.0012 0.0007

14 36 5 0.35 17 10 0.0008 0.0013

15 178 5 0.35 16 13 0.0009 0.0008

16 108 5 0.35 14 12 0.0009 0.0009

17 lOS 5 0.35 18 16 0.0012 0.0016

18 108 5 0.35 42 22 0.0008 0.0011

19 108 5 0.35 23 25 0.0008 0.0015

20 108 5 0.35 13 9 0.0016 0.0008

ever, the obtained response surface models can provide us with a reasonable insight

into the influence of the learning system's parameters on the learning process.

In a case of a Test 4, where the speed of convergence was of interest, a modelof

91

• the response surface appeared. to depend only on the neighborhood size parameter,

k:

l'i = 1151.6 - 382.8555k + 32k2

Figure 9.2: Results of Test 4.
R8apon8e V.ri.,. Y1: • of Learning Epac:hL

6OO.....----~------.r----"""'T'""---r__--""""T""--___.,

(9.2)

300

200 .

100

3 4 8

•

As can be seen from Figure 9.2 , convergence speed increased as the neighborhood

size increased up to k = 6 and then started to decrease again. The reason for this,

in our opinion, is that as k increases , the computational capabilities of a learning

FCA increase and a learning system can learn better and faster. However, with an

increase of a neighborhood size, the complexityof the learning task increases (since a

number of free parameters to be learned increases and is equal to 2k) which requires

more training. Because of this, after a certain point (in this case k = 6) a further

increase of a neighborhood size contributes more to the learning complexity than to

the FCA computational capabilities.

A model of a response function for the Test 5 shows that a speed of convergence

is influenced by all three factors (M, k, 1J):

Y2 = 2.00384-19.0733611+0.3M+5.75731k+l0-s M 2 +O.0613Mk-O.006M2 k (9.3)

Figure 9.3 depicts a dependence of the convergence speed on the values of pa­

rameters k and M when 11 is fixed to 0.35. In this case, we can see that the best

performance is achieved for the smalI sizes of a neighborhood and cellular automata

92

• Figure 9.3: Results of Test 5.
R. III Il~ Van.bte Y2: • or u.mmg lEpocha

70

60

..... ~

2

k
o 8

M

=.:..20

~: ~ ...:•. '

lattice, which is somewhat contradictory to the results of the previous test. But

this cau be explained by the fact that the test function used in this experiment is

much easier for the fuzzy cellular automaton than the one used in a Test 4. Because

of this, the learning FCA can approximate this target function with a small neigh­

borhood. As was pointed out previously, the learning task is less complex in the

case of a smaller neighborhood size and requires less learning epochs. A tendency

of increasing the convergence speed with a decrease of the neighborhood size shows

up, however, only for small and medium lattice sizes. As a number of cells increases

further, a learning system benefits from the increase of a neighborhood size and

a good performance can be obtained again with large neighborhoods and lattices.

An effect of the lattice size's change on the system's performance is rather small for

small neighborhoods, but becomes more significant as a neighborhood size increases.

In this test, fuzzy cellular automata seem to favor the combinations where either

both sizes are small, or both - large. Probahly a certain ratio of two sizes provides

the best performance of an FCA system.

•
Figures 9.4 and 9.5 illustrate an effect of a learning rate parameter 11 on the

convergence speed. In this case, for all values of k and M, the convergence speed

improves as 11 increases.

Response variables in the tests 6 and 7 represent an accuracy of a final approxi-

93

•

•

Figure 9.4: Results of Test 5.
R~v~ Y2:. of~ l:poc:M

....... -

Figure 9.5: Results of Test 5.
~ v...... Y2:. of Leamlng Epoctw

.ra

mation produced by a learning system. The model of the response surface, induced

from the experimental data of the Test 6, shows that only factors k and M influence

the response variable:

Y3 = 10-6 (3500 + 184k + M + 0.4M2
- 22k2

- 0.19Mk - O.051M2k) (9.4)

Figure 9.6 illustrates that the accuracy of an identified model of a target function

improves with an increase of the neighborhood size. This observation is consistent

with the previous conclusions that an increase of the neighborhood size makes fuzzy

cellular automata capable of more complex computations. This effect becomes more

significant as a lattice size increases. The magnitude of an effect of the parameter M

94

•
0.014

0.012

0.01

0.008

0.006

0.004

0.002

o
2

Figure 9.6: Results of Test 6.

k

200

on the accuracy response increases with the decrease of the neighborhood size and

for small values of k, large values of M have a negative effect on the approximation

accuracy.

Figure 9.7: Results of Test 7.
Reaponae Varteb_ Y4: MSE

1.4

1-2

0.8

0.6

0.4

0-2

k

8

o

•

A model of a response function for the Test 7 shows that the parameter Tl influ­

ences an accuracy of approximation as weil:

Y4 = lO-S(llO+O.lM +6.35k+l00071+0.0001k2 -140k1]+8.61M11-0.12Mk) (9.5)

The results presented in both Figures 9.7 and 9.8 support the conclusion that an

increase of the neighborhood size has a positive effect on the accuracy of approxi­

mations. With respect to the parameter M, one can make certain observations from

95

•

•

Figure 9.8: Results of test 7.
R...-.-V~ Y4: MSE

6

5

4

3 2

2

0
0.6

eta

Figure 9.7 which are not absolutely consistent with the conclusions of the previous

test regarding this parameter. But in this test, a target function was generated bya

known FCA with the same lattice size as that of a learning FCA. In this case, it was

a neighborhood size that played a more important role. Increasing the lattice size,

probably did not add any significant additional complexity to a target function, but

was somewhat helpful to the leaming FCA for ail values of k.

Figure 9.8 illustrates that the learning rate parameter, 1], has different eifects

on the accuracy depending on the neighborhood size. For small neighborhoods, an

increase of Tf has a significant negative eifects on the response value, whereas for the

large neighborhood sizes, performance of the algorithm is less sensitive to the values

of Tf but improves with the increase of 1].

A fuzzy cellular automaton learning system was tested on a variety of continuous

functions in order to assess its efficiency in learning different kinds offunctions. Table

9.6 lists the test functions along with the values of MSE which were achieved during

the experiments. (Note that approximation was considered to be satisfactory when

MSE < 0.001 and the algorithm terminated if this condition was met.) Table 9.6

represents the results in the order of ascending MSE values. Figures that illustrate

graphs of the test functions together with their corresponding approximations can

he found in the appendix.

96

• Table 9.6: Real Valued. Funetions Used in the Experiments.

1 Function Type 1 Funetion ~ MSE 1

•

Polynomial y(x) = 1.5x2
- 1.35x + 0.75 5 0.0001

Exponential y(x) = l~O exp(0.5x2
) exp(O.8(x - 2)(x - 3» 5 0.0001

Unimodal y(x) = ïexp(xsin(5x» 5 0.0002

Polynomial y(x) = 2x3
- 0.8x2 - 0.8x + 0.6 5 0.0004

Polynomial y(x) = 2x" - 0.8x3
- 0.8x2 + 0.2x + 0.2 5 0.0004

Bimodal y(x) = kexp(xsin(lOx» 5 0.0005

Bimodal y(x) = tsin(10x) + 3x2 + 2x 5 0.0006

Low-frequeney Harmonie y(x) = ~sin(5x) + 0.5 7 0.0009

High-frequeney Harmonie y(x) = ~(sin(30x) exp(5x) +sin(x» + 0.5 8 0.0027

High-frequeney Harmonie y(x) = ksin(13x)(3 + sin(3x + 1» 8 0.0036

High-frequeney Harmonie y(x) = k(l + sin(15x»(3 + sin(7x + 1» 8 0.0051

Highly Non-smooth y(x) = ~ sin(10x2 + cos(25x» + 0.5 8 0.0055

As we can see from Table 9.6, the learning system was most suceessful with such

target funetions as polynomials, exponential, himodal, unimodal and law-frequency

harmonie functions. Next on the scale was a harmonie funetion with an increasing

frequency and amplitude. The most difficult funetions for a fuzzy cellular automaton

system were high-frequency harmonic and highly non-smooth functions. It was also

noticed that for "easier" funetions, the learning algorithm converged faster and good

approximations could he found with the smaller neighborhood sizes.

These "easier" functions have a eommon feature of a relatively high degree of

smoothness and a small number of modal points. It appears that a range of the fune­

tion's values has an impact on the ability of a leaming system to identify this given

function. When the same test functions were slightly scaled down, the algorithm

was able to find more accurate approximations than before scaling.

97

•

•

In many cases, the approximation accuracy worsens at the end of the unit interva!

- [0,1] - as compared to the rest of the interval. This problem, as weil as the one

with an effect of a function values range, from our point of view, can be partially

attributed to the imperfection of the encoding/decoding scheme used to represent

real valued inputs/outputs on a cellular automata lattice. Accuracy of this encoding

decreases within [0.9, 1] portion of the unit interval. Initially, we used simply an

average of the cells' states in an output configuration as a decoding function . In

this case, the range of the function, computed by fuzzy cellular automata with the

random settings of free parameters, did not span outside [0.03,0.65]. In our opinion,

part of a reason is in the usage of the standard fuzzy intersection - minimum operator

- in a transition rule of a fuzzy cellular automaton. In the case of a fuzzy transition

function (6.2), this operator does not favor the cell's values close to 0 or especially

1 and consequently the average of the celi values in an output configuration is not

likely to fall into these extremes. To make up for this shortcoming in the context of

our application, we used a sigmoid function on the decoding step (7.1). A sigmoid

function, close to a threshold, would he able to solve a range problem. On the other

hand, the doser a shape of this function is to a threshold, the faster its derivative

vanishes to o. This would complicate and slow down the learning algorithm since

the values of the free parameters' updates which are made at each learning iteration

depend on the values of this derivative and would vanish to 0 as welle An acceptable

choice was to use a sigmoid with a shape that could compromise two problems.

This is why a range problem was not solved completely and fuzzy cellular automata

found it to be more difficult to approximate those parts of the real functions where

fnnctions' values are close to 0 or 1.

Another option would be to force the values assumed by cells at the initial

cellular automata configurations, wIDch encode input values, to he closer to 0 and

1. We implemented and tested an encoding scheme which used only binary values

as opposed to random values in [0,1] (see Chapter 8). This approach appeared to

he helpful for a function's range problem (see figure A.14). It also has the following

98

•

•

"side-effect" .

A function, computed by a fuzzy cellular automaton, where input values are

encoded with the arbitrary real numbers in [0,1], has a rather large number of small

local fluctuations (a function zigzags with a small amplitude). When only binary

values are used for encoding, FCA-computed functions become smoother (compare

figures A.lO and A.ll with figures A.13 and A.14). An application of thh encoding

scheme does not improve the overalllearning abilities of a fuzzy cellular automaton

system, however, smoothness of the approximation modeIs is normally a desrrable

feature[18] .

99

•

•

Chapter 10

Conclusion.

This thesis sets out to study a cellular automata model of computation from the

perspective of its applicability to the problems involving continuous computations

as weil as its lea.rning capabilities. This thesis contains background material on

celhùar automata, fuzzy set theory, leaming paradigms and a function identification

problem. Existing research related to these areas has also been discussed. In this

study, a cellular automata model was used as a tool in the continuons function

identification problem. The research community understands very weIl that cellular

automata are extremely difficult to analyze theoretically and often their properties

can not be derived or proven by analytical means. Due to this fact, the efficiency

of a cellular automata application to the function identification problem, considered

in this thesis, was assessed by empirical means. A learning system based on a fuzzy

cellular automaton was implemented in software and tested by means ofexperiments.

This work together with the results obtained are summarized as follows.

1. Cellular automata and continuous computations.

Cellular automata represent a model which was originally introduced and used

primarily for a discrete type of computations. In the present study they were

successfully applied ta a new problem involving continuous computations - the

100

•

•

problem of continuons function identification. This study demonstrated that

cellular automata are capable of computing complex continuous mappings.

2. Cellular automata as learning systems.

Several studies have already been conducted in an attempt to design cellu­

lar autornata able to perform. sorne useful predefined tasks when no a priori

knowledge about their transition functions was available. This study once

more demonstrated that cellular automata models can be used as knowledge

representation and acquisition tools, and they can he designed (or trained)

for a particular application nsing various machine learning techniques. We

designed a gradient descent type learning algorithm for a cellular automaton

based learning system intended for continuous function identification problem.

3. Fuzzy model of cellular automata.

Fuzzy model of cellular automata was introduced which enabled to combine

cellular automata. property of locallogical computations with the requirements

of continuity of a state transition function introduced by a gradient based

learning approach.

4. Mapping real values onto cellular automata structure.

An encoding scheme was proposed which allowed us to map real values onto a

cellular automata discrete structure. The main feature of this encoding scheme

consists in that, when an input value is encoded ioto a cellular automaton

initial configuration, each cell has an immediate access (through its neighbor­

hood) to the knowledge of an input value of about the same quality. Yet any

cell by itself does not have complete information about an input value and

this information is distributed across an eotire cellular automa.ton lattice. The

fact that each neighborhood has initial information of about the same quality,

in our opinion, provides cellular automata with an opportunity to proceed to

the collective problem solving at once, omitting an information propagation

phase, which would prohably be necessary in the case of uniform cellular au­

tomata. 1t should be noted however that the encoding accuracy depends on

101

•

•

the size of a neighborhood: the larger a. neighborhood is, the more accurate

encoding is possible. At the same time, an increase of the neighhorhood size

introduces additional complexity into a learning task. A dependence hetween

the encoding accuracy and complexity of the learning could he an impediment

in practical applications where highly accurate approximations are required

but computational resources are limited. We intend to look for a solution to

this prohlem in our future work.

5. Learning algorithm.

A proposed learning algorithm is based on a gradient descent optimization

technique and was designed specifical1y for a cellular automata type of compu­

tation. If cellular automata were simulated on a parallel machine, the learning

algorithm could he efficiently executed in parallel as weIl. The proposed learn­

ing algorithm proved to he functional and capable of making an underlying

fuzzy cellular automata model to generalize knowledge present in a training

data set. The algorithm was shown to he quite robust with respect to the only

"tuning" parameter attributed to the algorithm itself - a learning rate param­

eter Tl. There is a very small effect of this parameter on the performance of a

learning system:

• for large neighhorhood sizes (k > 5), an increase of Tl has a positive effect

on the system's performance;

• in the case of highly non smooth target functions, for small neighbor-hood

sizes an increase of Tl negativelyaffects the system's performance.

However in general, the algorithm converges and can perform an identification

task successfully with the default value Tl = 0.35.

6. EfFects of cellular automata parameters on the performance of a

learning system.

An effect of the parameters that define a structure of cellular automata -

102

•

•

lattice size, M, and neighborhood size, k - on the performance of a fuzzy

cellular automaton learning system was studied.

• Neighborhood size.

Neighborhood size is the most influencing parameter of the learning sys­

tem. It has an effect both on the convergence speed of the algorithm

and the approximation accuracy of the models, identified by the learning

system:

- the capabilities of fuzzy cellular automata ta compute complex con­

tinuous mappings increase with an increase of the neighborhood size;

- an increase of the neighborhood size enables us ta obtain more accu­

rate approximations.

- as the computational abilities of fuzzy cellular automata increase

with an increase of the neighborhood size, the learning system cau

incorporate and gain knowledge faster. But at the same time, as

k increases, a number of free parameters that have ta be learned

increases as weIl which requires more training. For a given continuons

function, that has to be identified, there probably is a threshold where

an increase of k adds more ta the learning task camplexity than ta the

learning abilities of the system. When accuracy of an approximation

is a main goal of the function identification task and a leaming time is

not a crucial factor, the learning system can benefit from an increase

of k .

• Cellular automaton lattice size.

A size of a cellular automaton lattice, M, has a less significant effect on

the system's performance, as compared to the effect of the neighborhood

size. It is rather a combination of values of these two parameters that has

an effect. Cellular automata with small neighborhood sizes do not benefit

from large lattice sizes but for large neighborhood sizes, an increase of

M has a positive effect. Thus, a value of M should he in sorne way

103

•

•

proportional to the neighborhood size for the system to perform weIl.

7. Approximation abilities of a learning system.

The fuzzy cellular automaton learning system was tested on a variety of uni­

variate continuous functions. The system clearly demonstrated an ability to

perform a function identification task. It was more efficient in approximating

snch functions as exponential, polynomials, unimodal, bimodal and low fre­

quency harmonie functions. Highly non smooth and high frequency harmonie

functions were more challenging for the leaming system. We believe that the

difliculty of the fuzzy cellular automaton leaming system to accurately ap­

proximate higWy-non smooth functions should he attrihuted primari1y to the

imperfection of an encoding scheme and not to the cellular automata mode1

itself. Limited encoding accuracy makes it more difficult for cellular automata

to adapt and react to very rapid and frequent changes of functions' values. We

feel that the abilities of cellular automata based systems to perform complex

continuous computations and 1earn from examples depend tremendously on

the efliciency of the representation of real values hy cellular automata config­

urations.

8. No a priori knowledge required for the design.

An important feature of a fuzzy cellular automaton learning system is that its

structure is rather simple and does not require almost any a priory design de­

cisions. As discussed in section 9.2, a neighhorhood size is the most important

parameter and its effect on the performance of the learning system is quite

straightforward. A suitable value of this parameter can he easily found for

a particular target function such that it is large enough ta ensure a satisfac­

tory level of approximation accuracy but not too large to exceed the availahle

computational resources.

This study confirmed that powerful features of cellular automata, already demon­

strated on the numerous discrete problems, cao he successfully employed in the

104

•

•

applications involving continuous computations. A diversity of cellular automata

computational abilities can be of a great utility to the problems which combine

both continuous and discrete features. A research in the field of function identifica­

tion prohlem can he enriched by a new approach, involving a powerful and versatile

computational modeL

Successful outcomes of this study encourage further research in this field and first

of all prompt an application of a fuzzy cellular automaton learning system to more

complex identification problems. It would be a good idea to conduct experiments

with high-degree polynomials to estimate the relationship between the "smoothness"

of the target functions (number of modal points) and the structural requirements of

a cellular automaton hased learning system.

A cellular automaton learning system should certainly be applied to problems

that involve identification of mu1tivariate functions. Such an application demands

an encoding scheme for representation of multiple inputs on a cellular structure.

Regarding this issue either the encoding scheme proposed in this study has to be

generalized for a multiple input case or a new scheme has to be invented. In any case,

the problems that were encountered while using the present encoding scheme should

be carefully considered and solved. There are two important issues that should

be taken into account in this context. First, the dependence of the neighborhood

size on the number of inputs should he avoided by any means or reduced to a

minimum. The reason for such a requirement is that as the size of the neighborhood

increases, the local computations at each site of a cellular lattice become more intense

and complex which dirninishes one of the most valuable characteristics of cellular

automata - simplicity of basic components. Second, an attempt should he made to

efficiently use the entire space of the cellular automata state configurations in an

encoding mechanism.

The above considerations as well as many others may suggest the use of differ­

ent models of cellular automata. For example, a non-uniform model may facilitate

105

•

•

applications of some position-based encoding schemes and help to reduce connec­

tivity requirements. It would certainly he very interesting to perform identification

of sorne real-life processes. A large number of such processes are stochastic which

suggests an application of a probahilistic model of cellular automata. Many com­

plex processes can be decomposed into sequences of simpler ones. Each of them can

he modeled by a cellular automaton hased system whereas aIl these systems can be

reunited in the frame of hierarchical cellular automata. As was discussed in Chapter

2, a cellular automata model can accommodate numerous modifications equipping

it with many interesting and valuable features which certainly cao be useful in many

applications.

As this study demonstrated, a fuzzy model of cellular automata is an interesting

tool that facilitates the introduction of continuous computations and learning capa­

hilities into the cellular automata mode!. In our opinion it is worthwhile to study

this model in more details. The transition function of the fuzzy cellular automaton

designed in this work is constructed from standard fuzzy operations. However, as

was pointed out in Chapter 3, there are other functions that cao play the role of the

intersection, union and complement for fuzzy sets. It would be interesting to make

use of these operations in the design of a transition function. Amongst the objec­

tives of the new design should certainly he a solution ta two prohlems encountered

in this study. One of them is the decreasing capahility of fuzzy cellular automata ta

compute complex continuous mappings as the numher of transitions in CA evolu­

tion increases. The other one concems the ability of a fuzzy cellular automaton to

compute the values of continuons functions near the borders of the unit interval.

And finally one of the most interesting and challenging tasks would he the design

of new learning techniques for the cellular automata model. Techniques already

developed for connectionist systems can he adopted to cellular automata and new

learning concepts should he sought.

106

•
Appendix A

Approximations Found by Fuzzy

Cellular Automata.

Figure A.1: Test function: y(x) = 1.5x2 - 1.35x + 0.75.
0.9r-----r--~-~__r-~--r-__r-__r_-~___.

0.85

1

1,
1

•

0.40 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Target function: ".-.-.-"; approximation: "-"

107

• Figure A.2: Test function: y(x) = l~O exp(O.5x2)exp(0.8(x - 2)(x - 3».
1~-"'"T"""---"--..---~-....,...----r--~-"""T"""----r-----r

0.1

-._- -_--::~.1

00L..-_....IO.~1--0.J,..2--0......3--0...4--0..L...s----'O.-6--0......7--0......8-~O.':-9_-....1

Target function: ".-.-.-"; approximation: "-"

Figure A.3: Test function: y(x) = ~ exp(x sine5x)).
1~-"'"T"""---"--r---~-....,...--'~-~---r---'----'

.-"-....

Target function: ".-.-.-"; approximation: "-"•
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

108

• Figure A.4: Test function: y(x) = 2x3 - 0.8x2 - 0.8x + 0.6.
1r----r---r---.......--r----r---r---...,-----,r----r--......,

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rp fun· "" .. ".Larget ctlon: .-.-.-; apprmomatlon: "

Figure A.5: Test function: y(x) = 2x4
- 0.8x3

- 0.8x2 + 0.2x + 0.2.
0.8r----r---r----r---,----r----,,---...,-----,r----,---......,

Target function: ".-.-.-"; approximation: "-"•

0.7

0.6

0.5

0.4

0.3

0.2 .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

,
1,,

1,
1

1

1

1

1

0.9

109

• Figure A.6: Test function: y(x) = ~exp(xsin(10x)).

0.8r-----r--"T"'----,----r----r---r---r----,----r---.,

\

\

\

\

\

\

\

\

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Target function: ".-.-.-"; approximation: "-"

Figure A.7: Test function: y(x) = ~ sin(10x) + 3x2 + 2x.
1

." - ---

Target function: ".-.-.-"; approximation: " "

0.90.80.7

1

1

1

1

1

1

1

1

1

1

1

0.60.50.40.30.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0" 0.10

•
110

• Figure A.8: Test function: y(x) = ~ sine5x) + 0.5.

0.1 0.2 0.3 0.4 0.5 0.8 0.9

Target function: ".-.-.-"; approximation: " "

Figure A.9: Test function: y(x) = ~ (sin(30x) exp(5x) + sinex)) + 0.5.
0.8,----,..---r---,-----y----r----r----r---r---.------.

Target function: ".-.-.-"; approximation: "•

0.7

0.6

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

, \, \

l ',,
t
\

1

1,
\,,
1

0.9

"

111

t
t

J

t

0.90.80.70.60.50.40.30.20.1

0.3

0.2

0.4

0.5

0.1

Figure A.IO: Test function: y(x) = ksin(13x)(3 + sin(3x + 1)).
1...--'""""1':.....-::',,-.---.,r----r---~--..,.--_r_--~-__r--_r_-____.,•

Target function: ".-.-.-"; approximation: " "

Figure A.Il: Test function: y(x) - k(l + sin(15x»(3 + sin(7x + 1».

approximation: "-"Target function: ".-.-.-";

1,,
1,

0.4 i ,
'.

1

1
0.3 ,

1

0.2 1

1

t
0.1 1

." 1

00 0.1 0.2 0.3 0.4 0.5 0.& 0.7 0.8 0.9

•
112

• Figure A.12: Test function: y(x) = l sin(10x2 + cos(25x» + 0.5.
0.9~----r--......---r---"""'-~---r--"'"T"""--"""'-~--"""

0.1 0.2 0.3 0.4 0.5 0.& 0.7 0.8 0.9

Target function: ".-.-.-"; approximation: " "

Figure A.13: Test function: y(x) = ksin(13x)(3 + sin(3x + 1».

0.1 0.2 0.5 0.8 0.9

•
Target function: ".-.-.-"j approximation: "-".

CeUs assume values {O, I} only in an initial configuratopn, encoding a real value.

113

•

Figure A.14: Test function: y(x) = l(1 + sin(15x))(3 + sin(7x + 1)).
,

\

•

ty\ t fun t" ,," . t· "".l.arge c Ion: .-.-.-; approXIma Ion: -"

eeUs assume values {O, 1} only in an initial configuratopn, encoding a. real value.

114

•

•

Bibliography

[lJ Adamatzky, A., "Identification of Cellular Automata.", Bristol, USA,

1994.

[2] Adamatzky, A., "Identification of Fuzzy Cellular Automata.", Av­

tomatika i Vychislitelnaja Tehnika, 1991, No.6, pp. 75-80 (in Rus­

sian).

[3J Albert, J. and Culik, 1., K., "A Simple Universal Cellular Automaton

and its One-way and Totalistie Version", Complex Systems 1, 1987,

p. 1.

[4) Albin, P.S., "Microeconomie Foundations of Cyclical Irregularities or

'Chaos''', Mathematical Social Sciences, 1987, Vol 13(3), June, pp

185-214.

[5) Banks, E.R., "universality in Cellular Automata." , In IEEE Ilth An­

nual Symposium on Switching and Automata Theory, 1970, Santa

Monica, California, pp 194-215.

[6) Battiti, R., "First- and Second Order Methods for Learning: Between

Steepest Descent and Newton's Method." , Neural Computation, 1992,

Vol. 4, pp. 141-166.

[7) Batty, M., "Cellular Automata and Urban Form: a Primer.", Journal

of the American Planning Association, Spring 1997, Vol.63, pp 266­

173.

115

•

•

[8] Bays, C., "Classification of Semitotalistic Cellular Automata in Three

Dimensions.", Complex Systems, 1988, 2, p. 235.

[9J Berlekamp, E., Conway, J.H., and Guy, R., "Winning Ways for Your

Mathematical Plays.", 1982, Academie Press, New York.

[10] Black, M., "Vaugeness: an Exercise in Logical Analysis.", Philosophy

of Science, 1937, 4(4), pp.427-455. (Reprinted in Inter. J. of General

Systems, 17(2-3), 1990, pp.107-128).

[11] Bolduc, J.-S., Broderick, G. and Thérien, D., "From Stability to

Tracking: Robustness of Cellular Automata Based Controllers." , Pro­

ceedings of the 1997 IEEE International Conference on Intelligent

Processing Systems, Vol. l, pp 619-624.

[12] Breiman, L., Friedman, J.H., Olshen, R. A. and Stone, C.J., "Classi­

fication and Regression Trees.", 1984, Wadsworth, Belmont, CA.

[13] John von Neumann, "Self-Reproducing Automata.", edited and com­

pleted by Arthur W. Burks, 1966.

[14J "Machine Learning: Paradigms and Methods." edited by Carbonell,

J.G., 1990, The MIT Press.

[15] Cattell, K. and Muzio, J. C., "Synthesis of One-Dimensional Linear

Hybrid Cellular Automata.", IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol.15, No3, March 1996,

pp 325-335.

[16] Chaplain, M. A. J. and Anderson, A. R. A., "Mathematical Modeling,

Simulation and Prediction of Turnor Induced Angiogenesis." , Invasion

and Metastasis, 1996, Vol. 16 (4-5), pp 222-234.

116

•

•

[17] Cherkassky, V. and Muller, F., "Comparison of Adaptive Methods for

Function Estimation from Samples.", IEEE Transactions on Neural

Networks, Vol. 7, No. 4, July, 1996, pp 969-984.

[18] "From Statistics to Neural Networks. Theory and Pattern Recognition

Applications." Edited by Vladimir Cherkassk-y, Jerome H. Friedman

and Harry Wechsler, 1994.

[19] Codd, E.F., "Cellular Automata", 1963, Academie Press, New York.

[20] Culik, L, K., Hurd, t.P. and Yu, S., "Computation Theoretic Aspects

of Cellular Automata", Physica D, 1990, Vol. 45, pp 357-378.

[21] Culik, I.K. and Yu, S., "Undecidability of CA Classification Schemes",

Complex Systems 2, 1988, p. 177.

[22] Drazin, R. and Rao, H., "Simplicity and Complexity in Cellular Au­

tomata Models of Technological Change.", Technology Studies, 1996,

Vol. 3 (1), pp 44-49.

[23] Dubois, D. and Prade, H., "Fuzzy Sets and Probability: Misunder­

standings, Bridges and Gaps.", Proc. Second IEEE Intem. Conf. on

Fuzzy Systems, San Francisco, 1993, pp. 1059-1068.

[24] Engelen, G., White R., Uljee, 1. and Drazan, P., "Using Cellular Au­

tomata for Integrated Modeling of Socia-Environmental Systems.",

Environmental Monitoring and Assessment, Vol. 34, 1995, pp 203­

214.

[25] Ermentrout, G.B. and Edelstein-Keshet L., "Cellular Automata Ap­

proaches to Biological Modeling.", J. theor. Biol., Vol. 160, 1993, pp

97-133.

117

•

•

[26] Gardner, M., "The Fantastic Combinations of John Conway's New

Solitaire Game "life"" , Scientific American, 1970, Vol. 223, no. 4, pp

120-123.

[27] Gill, P.E., Murray, W. and Wright, M.H., "Practical Optimization.",

1991, Academie Press, London.

[28] Gilman, R., "Periodic Behavior of Linear Automata." in Dynamical

Systems, cd. J.C. Alexander, Springer Lecture Notes in Mathematics

1342, Springer, Berlin, 1988, p. 216.

[29] Gilman, R., "Classes of Linear Automata.", Ergodic Theor. Dynam.

Systems 7, 1987, p. 105.

[30] Gutowitz, H.A., "A Hierarchical Classification of Cellular Automata" ,

Physica D, 45, 1990, pp 136-156.

[31] Gutowitz, H.A., Victor, J.D. and Knight B.W., "Local Structure The­

ory for Cellular Automata.", Physica D. 28, 1987, p 18.

[32] Haykin, S., "Neural Networks. A Comprehensive Foundation.", 1994,

Macmillan College Publishing Company.

[33] Hakman, A. Wan, "Modeling Stock Markets by Probabilistic I-D Cel­

lular Automata.", Intern. J. Computer Math., Vol. 53, 1994, pp 167­

176.

[34] Hopcroft, J.E. and Ullman, J.D., "Introduction to Automata Theory

Languages and Computation.", 1979, Addison-Wesley, Redwood City,

CA.

[35] nachinsky, A., "Topological life games 1", Preprint, State University

of New York, Stony Book, 1986.

[36] Khuri, A.I. and Comell, J.A., "Response Surfaces. Designs and Anal­

ysis.", 1996, New York.

118

•

•

[37] Klir, G. J. and Bo Yuan, "Fuzzy Sets and Fuzzy Logic. Theory and

Applications.", 1995, Prentice Hall P T R, New Jersey.

[38] Klir, G.J. and Parviz, B., "Probability-possibility Transformations: a

Comparîson", fut. J. General Systems, 1992, Vol. 21 pp. 291-310.

[39] Klir, G.J., "A Principle of Uncertainty and Information Invariance.",

fut. J. of General Systems, 1990, Vol. 17, No 2-3, pp. 249-275.

[40] Kramer, A.H., and Sangiovanni-Vincentelli, A., "Efficient Parallel

Leaming Algorithm for Neural Networks.", In Advances in Neural

Information Processing Systems 1., (D.S. Touretzky ed.), 1989, pp

40-48, Morgen Kaufmann, San Mateo, CA.

[41] Lee, Y.C. et al, "Adaptive Stochastic Cellular Automata: Theory.",

Physica D, Vol. 45, 1990, pp 159-180.

[42] Medvinskii, A.B., Lysochenko, LV., Tikhonov, D.A., Tsyganov, V.V.

and Ivanitskii, G.R., "Aperoidic Structures in Motile CeU Societies:

Mathematic Simulation.", Biofozika 42(2), 1997, pp. 439-448 (in Rus­

sian).

[43] Mitchell M., Crutchfield, J. P. and Hraber, P. T., "Evolving Cellu­

lar Automata to Perform Computations: Mechanisms and Impedi­

ments." , Physica D, 1994.

[44] Mitchell, M. and Hraber, P. T., "Revisiting the Edge of Chaos: Evolv­

ing Cellular Automata to Perform. Computations." , Complex Systems,

Vol. 7, 1993, pp 89-130.

[45] Mizumoto, M., Tojoba, T. and Tanaka, T., "Sorne Considerations on

Fuzzy Automata", J. Comput. Systems Sei., Vol. 3, 1969, pp 409-22.

119

•

•

[46] Mraz, M., Zimic, N., Virant, J., "Predicting Wind Driven Wild Land

Fire Shape Using Fuzzy Logic in Cellular Automata." , Proceedings of

the Joint Conference on Intelligent Systems, 1996, pp 408-412.

[47] John von Neumann, "The Computer and the Brain", 1958.

[48] John von Neumann, "Probabilistic Logic and the Synthesis of Reliable

Organisms from Unreliable Components." , in Collected Works 5.329­

378, 1952.

[49] John von Neumann, "The General and Logical Theory of Automata",

in Collected Works 5.288-328, 1951.

[50] Nowak, A., Zienkowski, L. and Urbaniak, J., "Modeling Changes

in Eastern and Central Europe.", Institute Studiow Spolecznych U

Warszawski, 1994.

[51] Olej, V., Chmumy, J. and Lehotsky, M., "Fuzzy Automaton Based

on Fuzzy Neurons", in NEURONET '90. Proc. Int. Symp. Neural

Networks and Neural Computing, Prague, pp 264-6.

[52] Portugali, J. and Benenson, L, "Artificial Planning Experience by

Means of Heuristic Cell-Space Model: Simulating International Mi­

gration in the Urban Process.", Environment and Planning A, Vol.

27, Oct., 1995, pp 1647-65.

[53] Qian, F. and Hirata, H., "A Parallel Learning Cellular Automata

for Combinatorial Optimization Problems." , Proceedings of the IEEE

Conference on Evolutionary Computation, 1996, pp 553-558.

[54] Qian, S. et al., "Adaptive Stochastic Cellular Automata: Applica­

tions.", Physica D, Vol. 45, 1990, pp 181-188.

120

•

•

[55] Raghavan, R., "Image Recognition, Learning and Control in a Cellular

Automata Network.", SPIE Vol. 1469 Applications of Artificial Neural

Networks II, 1991, pp 89-101.

[56] Rosenfeld, A., "Parallel Image Processing Using Cellular Arrays.",

Computer, Vol. 16, 1983, p.14.

[57] Shafer, Go, "A Mathematical Theory of Evidence", 1976, Princeton

University Press, Princeton, N.J.

[58] Sherratt, J.A., Eagan, B.T. and Lewis, M.A., "Oscillations and Chaos

behind Predator-Prey Invasion: Mathematical Artifact or Ecological

Reality?" , Philosophical Transactions of the Royal Society of London

Biological Sciences, 352(1349), 1997, pp 21-38.

[59] Shine, L.C. and Grondin, R.O., "On Designing Fuzzy Learning

Neural-Automata" in Proc. IEEE First Int. Conf. Neural Networks,

Vol. 2, pp 299-307.

[60] Siregar, Po, Sinteff, J.P., JuIen, N. and Lebeux, P., "Spatio-Temporal

Reasoning for l\iIulti-Scale Modeling in Cardiology.", Artificial Intelli­

gence in Medicine, 1997, May; 10(1), pp 41-57.

[61] Siregar Po, Sinteff J.P., Chanine, M. and Lebeux, Po, "A Cellular

Automata Model of the Heart and its Coupling with a Qualitative

Model.", Computers and Biomedical Research, 1996, Juno 29(3), pp

222-246.

[62] Sipper, M., "Evolution of Parallel Cellular Machines. The Cellular

Programming Approach.", Lecture Notes in Computer Science, 1997.

[63] Sipper, Mo, "Co-evolving Non-uniform Cellular Automata to Perform

Computations.", Physica D, 1996, pp 193-208.

121

•

•

[64] Smith, A.R., "Simple Computation Universal Cellular Spaces.", Jour­

nal of AC~I, VoL 18, 1971, pp 339-353.

[65] Smolle, J., Hofmann-Wellenhof, R., Fink-Puches, R. and Auersperg,

N., " Assessment of Tumor Cell Cohesion in Vito Using Pattern inter­

pretation by Cellular Automata.", Analytical and Quantitative Cy­

tology and Histology, 1996 Jun. 18(3), pp 199-204.

[66] Sutner, K., "The Computational Complexityof Cellular Automata" ,

Proceedings of Fundamenta1s of Computationa1 Theory, Lecture

Notes in Computer Science (Springer, Berlin, 1984), pA5!.

[67] Toffoli, T., "Cellular Automata as an Alternative to (Rather than

an Approximation of) Differentiai Equations in Modeling Physics." ,

Physica 100, 1984, pp.117-127.

[68] Ulam, S. M., "Electronic Computers and Scientific Research.", in

"The Age of Electronics", edited by Overhage, C. F. J., 1962, pp

95-108.

[69] Ulam, S. M., "On Sorne Mathematical Problems Connected with Pat­

tern of Growth of Figures.", in "Mathematical Problems in the Bio­

logical Sciences.", Proceedings of Simposia in Applied Mathematics,

1962, Vol. 14, Providence, Rhode Island, pp 215-224.

[70] Ulam, S. M., "A Collection of Mathematical Problems.", 1960, New

York.

[71] Vichniac, G. Y., "Simulating Physics with Cellular Automata.", Phys­

ica lOD, 1984, pp 96-116.

[72] Wang, L. and Mendel, J.M., "Fuzzy Basis Functions, Universal Ap­

proximation, and Orthogonal Least-Squares Learning.", IEEE Trans­

actions on Neural Networks, Vol. 3, No. 5, September, 1992, pp 807­

814.

122

•

•

[73] Weaver, W., "Science and Complexity.", American Scientist, 36(4),

1948, pp.536-544.

[74] Wechler, W., "The Concept of Fuzzyness in Automata and Language

Theory.", 1978, Berlin: Akademie Verlag.

[75] Wee, W. G. and Fu, K.S., "A Formulation of Fuzzy Automata and

its Application as Model of Leaming Systems", IEEE Trans. Systems

Man. Cyber., Vol.5, 1969, pp 215-23.

[76J White, R. and Engelen, G., "Cellular Automata and Fractal Urban

Form: a Cellular Modeling Approach to the Evolution of Urban Land­

Use Patterns.", Environment and Planning A, Vol 25, Aug. 1993, pp

1175-99.

[77] Wolfram, S., "universality and Complexity in Cellular Automata",

Physica D 10 (1984) p.L

[78] Zadeh, L. A. , "Fuzzy Sets", Information and Control, Vol. 8(3), 1965,

pp. 338-353.

123

