
INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others may be

from any type ofcomputer printer.

The quality of tbis reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send {Th.fi a complete

manuscript and there are missing pages, these will be noted. AIso, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-band corner and

continuing from left to right in equal sections with small overlaps. Each

original is aIso photographed in one exposure and is included in reduced

fonn at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI direct1y to

order.

DMI
A Bell & Howell Information Company

300 North Zeeb Road, ADn AIbor MI 48106-1346 USA
313n61-4700 800/521..()6()()

;
.;

SPOTT:
A REAL-TIME, DISTRIBUTED AND SCALABLE ARCHITECTURE

FOR AUTONOMOUS MOBILE ROBOT CONTROL

John S. Zelek

Centre for Intelligent Machines

Department of Electrical Engineering

McGill University

1996

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

© JOHN ZELEK, 1996

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
canada

The author has granted a nOD­
exclusive licence allowing the
National Libr3l)' of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
penmsslon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-30432-9

Canad~

-

....

AB5TRACT

Abstract

A mobile robot control architecture called SPOTT L is proposed and implemented as a

real-time system of concurrently executing and co-operating modules. What distinguishes

SPOTT from other behavioral architectures is that it is able to guarantee task completion

for navigational tasks under many different scenarios. SPOTT provides a bridge for linking

behavioral (Le., reactive) and symbolic control and has actually been interfaced with the

logical reasoning system called COCOLOG. One of the roles of the symbolic reasoner is to

help guarantee task completion in the situations where SPOTT is llot able to solely do so.

In essence. SPOTT is a real-time AI system which is responsible for dynamically adapting

to changing environmental circumstances in order to successfully execute and complete a

set of navigational tasks for an autonomous mobile robot.

SPOTT consists of a behavioral controBer, a local dynamic path planner, and a global

path planner~ as weB as a map database and a graphical user interface. The behavioral

control formalism is called TR+ and is based on an adaptation and extension of the Teleo­

Reactive (TR) formalism. TR+ rules make decisions which affect actuator control and map

database maintenance. A dynamic local path planner continually polIs the map database

in order to navigate around newly eneountered obstacles. The local dynamic path planner

is based on a potential field method using harmonie functions. whieh are guaranteed to

have no spurious local minima. The global planning module advises the local planning

module in order to position and project the global goal onto the local border. A real-time

and paraBel implementation of SPOTT using a nlessage passing software package called

PYM has been developed and tested across a collection of ten to fifteen heterogeneous

workstations. Navigational experiments have consisted of moving the robot in an office and

laboratory environment to known spatial locations with no or a partial a priori map.

1A System which integrates Potential fields for planning On·line with TR+ program control in order to suc­
cessfully execute a general suite of Task commands.

Il

Résumé

Une architecture de commande de robot mobile nommée SPOTT est proposée dans ce

manuscrit. La réalisation de cette architecture consiste en un système temps-réel composé

de modules coopérant et s'exécutant en parallèle. SPOTT peut garantir l'achèvement

d'une tâche de navigation donnée dans des situations très variées; ceci le distingue d'autres

architectures réactives. SPOTT permet également d'utiliser conjointement des techniques

de contrôle réactif et symbolique, et est actuellement interfacé avec COCOLOG utilisé

ici comme moteur d'inférences logiques. Ce moteur d'inférence garantie l'achèvement

des tâches lorsque SPOTT ne peut le faire de lui-même. Essentiellement, SPOTT est un

système d'lA qui peut s'adapter dynamiquement aux changements de l'environnement pour

compléter les tâches de navigation nécessaires à un robot mobile.

SPOTT contient un système de commande réactif, un planificateur de trajectoires

locales dynamiques, un planificateur de trajectoires globales, ainsi qu'une base de données

cartographiques et une interface graphique. Le formalisme réactif TR+ provient d'une

adaptation et d'une extension du formalisme Téléo-Réactif (TR). Les règles TR+ prennent

des décisions qui agissent sur les contrôleurs du robot et le maintien de la base de donnée

cartographique. Le planificateur de trajectoires locales vérifie continuellement la base de

données cartographiques pour modifier la trajectoire du robot lorsque de nouveaux obstacles

sont découverts. Ce planificateur utilise une technique se servant de champs de potentiels et

de fonctions harmoniques qui garantie une solution sans minimums locaux. Le planificateur

de trajectoires globales projète le but global de la trajectoire sur la bordure locale et avise le

planificateur local. Une implémentation parallèle temps-réel de SPOTT, utilisant le logiciel

de communication inter-procédés PYM, a été élaborée. Un réseau hétérogène de 10 à 15

ordinateurs est utilisé pour l'expérimentation. Les expériences de navigation consistent à

déplacer le robot dans un environnement de laboratoire ou de bureau à un point donné, et

ceci avec ou sans données cartographiques a priori.

iii

-

-

Dedication

This dissertation is dedicated to

my wife

Laura

for her support along the waYr

and

my parents

Joseph and Maria Zelek

for encouraging me tD pursue my doctorale.

DEDieATION

IV

-

ACKNOWLEDGEME~TS

Acknowledgements

ft;[y thanks are due to

Professor Martin Levine

for his insights and guidance, as weil as providing me with

the opportunity to explore this avenue of research:

to

Professor Gregory Dudek,

Mike Kelly, and Kenong Wu

for their inspiration through numerous philosophical discussions~'

to

Don Bui. and Paul MacKenzie

for the use of and consultation about their sensor algorithm implemenlations:

to

Marc Bolduc, Thierry Baron,

Nicholas Roy, and Michael Daum

for their technical assistance at various stages;

and ta

all the people l have crossed paths with

during my stay at the

Centre for Intelligent Machines.

[would aIso Iike to express my gratitude to the various funding agencies that have supported my work over the years.

SpecificaIly, to NSERe for their assistance through a graduate scholarship. This research was partially supported by

the Natural Science.! and Engineering Research Council and by the National Centres of Excellence Program through

[RIS (ln.!titute for Robotic.! and Intelligent Sy.!tems). [n particular, this research is part of the Dynamic Rea.!oning,

Navigation and Sen.!ing for Mobile Robot.! project under the 15DE (lntegrated Systems in Dynamic Environments)

theme.

v

TABLE OF CONTENTS

Abstract .

Résumé .

Dedication

Acknowledgements

LIST OF FIGURES

LIST OF TABLES .

CHAPTER 1. Introduction

1. Types of Navigational Tasks

2. The SPOTT Robot Control System.

3. Claims of Originality

4. Reader~s Guide ...

CHAPTER 2. Background.

1. Review of Behavioral Robot Architectures

2. Interfacing to a Robot Control Architecture

2.1. Role of the Operator

2.2. The Complexity of the Environment

2.3. The Mobile Robot

2.3.1. Vision ...

2.3.2. Acoustic (Sonar)

2.3.3. Laser Rangefinders

2.3.4. Other Types of Sensors

3. Robot Control Issues .

3.1. Mobile Robot Navigational Problems

TABLE OF CONTENTS

11

iii

iv

v

x

xiv

1

6

8

12

14

15

16

23

23

24

25

27

27

28

29

31

32

VI

3.1.1. Path Planning .

3.1.2. Path Execution

3.1.3. Robot Position Estimation

3.1.4. Map Building

3.2. Real-time AI

4. The SPOTT Robot Control System .

CHAPTER 3. Control: Teleo-Reactive+ Programs

1. Teleo-Reactive Programs

1.1. TR Program Syntax

1.2. Graph Representation

1.3. TR Program Interpretation and Execution

lA. Circuit Semantics

1.5. TR Program Examples

1.6. Advantages and Disadvantages of the TR formalism

1.6.1. Advantages . .

1.6.2. Disadvantages.

2. Teleo-Reactive+ Programs

2.1. TR+ Syntax

2.2. TR+ Programs for Robot Control

TABLE OF CONTENTS

33

33

34

35

36

38

40

41

43

44

46

48

50

53

53

53

55

61

62

CHAPTER 4. Path Planning

1. Path Planning Approaches

2. Dynamic Path Planning Problem

3. Path Planning Using PotentiaI Fields.

3.1. Biological Inspiration

3.2. Formulating a Potential Function .

3.3. Summation of Potentials Approach .

4. Harmonie Functions as Potential Fonctions

4.1. Computing Harmonie Functions

4.1.1. Number of Iterations Reduced by Methods-of-Relaxation

4.1.2. A Good Initial Guess.

5. Trajectory Generation Using Harmonie Fonctions

6. Guaranteeing Proper Control

7. Why is the Potential Field a Local Path Planner?

74

78

80

82

82

82

83

87

87

90

95

98

101

104

vii

-

8. Global Path Planning .

9. Local and Global Path Planner Interaction.

9.1. Four Typical Scenarios.

9.2. Reachability .

9.3. Aigorithm: Projection of Global Goal onto Local Border.

10. Future Research Issues .

CHAPTER 5. A Task Command Language Lexicon

1. Verbs .

1.1. Motion Verbs . .

1.2. Vision Verbs ..

2. Spatial Locations and abject Descriptions

3. Prepositions.................

3.1. Quantifying Prepositional Expressions

3.1.1. Directional and Distal Prepositions .

3.1.2. Trajectory Prepositions

4. The Task Command ...

CHAPTER 6. Implementation

1. ParaUelism with PVM

2. The SPOTT System ..

2.1. Graphical User Interface.

2.1.1. Drawing Graphs with Dotty .

2.2. Using the GUI as SPOTT's Main Controller

2.3. Local Path Planning ..

2.4. Map Database

2.5. The TR+ Interpreter

2.5.1. Programming TR+ Programs

2.6. RoboDaemon .

3. Reasoning System Interface

4. Modularity and Portability .

CHAPTER 7. Experiments ...

1. Message-Passing Costs on a Network

2. Local Path Planning

3. Perception .

TABLE OF CONTENTS

106

110

110

116

117

122

123

126

126

126

128

131

134

136

140

143

145

147

151

154

157

158

163

165

169

170

171

173

175

176

178

182

187

viii

•.. 3.1. Mapping Using Sonar . . .

3.2. Localization Using Sonar .

3.3. Mapping Using QUADRIS

4. Navigational Experiments

5. Off Site Experiment

6. Lessons Learned. . . .

CHAPTER 8. Conclusions.

1. Contributions

2. Robot Control Issues

3. Future Research Possibilities .

4. Summary

REFERENCES.

TABLE OF CONTENTS

187

190

191

194

200

205

207

209

211

213

216

217

..

APPENDIX A. Harmonie Function Computability

1. Neumann Boundary

2. Dirichlet Boundary .

APPENDIX B. TR+ Conditions and Actions Implemented as Part of SPOTT

1. Conditions..

2. Actions ..

3. Variables.

225

226

227

229

229

232

233

lX

-
LIST OF FIGURES

LIST OF FIGURES

1.1 The SPOTT System 4

1.2 Types of Navigational Tasks 6

1.3 What SPOTT Can and Cannot Do 7

lA System Overview 11 9

2.1 Classical Robot Control Architecture 15

2.2 Brooks' Subsumption Architecture 17

2.3 Brooks' Proposed Hierarchy of Behaviors 18

2.4 Traditional vs. Behavioral Robot Control Architecture 19•.. 2.5 Behavioral Architecture Example 20

2.6 Three-Layered Hierarchical Architecture 21

2.7 Interfaces to a Robot Control Architecture 23

2.8 Environmental Complexity . 25

2.9 Mobile Robot Sensors. ... 26

3.1 K-B Model of an Embedded Agent 43

3.2 A TR Tree ... 45

3.3 A TR Program 46

3.4 A TR Sequence Created From a TR Tree . 47

3.5 The Main Program and a Subroutine Program . 48

3.6 Implementing a TR Sequence as a Circuit 49

3.7 A TR Tree for Controlling a Thermostat 50

3.8 A Simple TR Tree for Controlling a Robot 51

3.9 Circuit Semantics for a Simple Robot Controller . 52
~

x

LIST OF FIG URES

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

A TR+ Parallel Action and the Associated Circuit Semantics

TR extended vs. TR+ Trees for ANDing Conditions

A Simple TR+ Program for Navigation to a Specified Location

A Typical TR+ Program for Mobile Robot Navigation ..

The lVlain Routine for a More Complicated TR+ Program

TR+ Subroutines Responsible for lVlaintaining the Potential Field .

TR+ Subroutines for Mapping.

TR+ Subroutines for Setting the Goals for Navigation

TR+ Subroutines for Performing Reactivity ...

TR+ Subroutines for Deciding Search Strategies.

TR+ Subroutine for Performing Room Search ..

TR+ Subroutine for Performing Intelligent Teleo-Operation

TR+ Subroutine for Performing Random Search .

Path Planning Within SPOTT ..

Dynamic Path Planning Problem

Summation of Potentials: Close Objects

Maximum Summation of Potentials: Close abjects

Potential Field Using Neumann boundary conditions.

Potential Field Using Dirichlet boundary conditions.

Iteration Kernel and Resistive Grid

Types of Changes to the Obstacle and Goal Configuration

Quick Calculation of Trajectory

Multi-Resolution Potential Fields

Sliding Local Path Planner ..

CAD Map of CIM

Abstract Graph of CAD Map

Calculating Distances for Global Path Planning

Local and Global Path Planner Interaction: First Typical Case

Local and Global Path Planner Interaction: Second Typical Case

57

60

63

66

67

67

68

69

70

71

72

73

73

75

81

84

85

90

91

92

97

99

103

105

106

107

109

112

113

xi

LIST OF FIGURES

20 Models for Representing the Spatial Area Defining the Destination 128

Geons. 129

Spatial Expression Regions Defined as Goals for Path Planning 137

Directional Preposition Definitions 138

Distance Preposition Definitions . . . 139

Trajectory Preposition Bias on Steepest Gradient Descent 141

Trajectory Preposition Definitions. 142

The Task Command Lexicon . . . 144

-

..

4.17

4.18

4.19

4.20

4.21

4.22

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

7.4

7.5

7.6

Local and Global Path Planner Interaction: Third Typical Case .

Local and Global Path Planner Interaction: Fourth Typical Case

Reachability and Blocking Constraints .

Goal Projection: Goal in Same Node but not in the Potential Field

Goal Projection: Locally Unreachable Goal .

Goal Projection: General Case .

A Hypothetical "Parallel Virtual Machine:'

Implementation Modules .

SPOTT's Graphical User Interface

SPOTT's GUI State Transition Diagram

Potential Field rvIaster-Slave Configuration .

SPOTT and the Implementation of the Map Oatabase

TR+ Programming With TR+edit ...

Integration of COCOLOG with SPOTT

PYM Bandwidth Fluctuation Tests ...

Potential Field Computation Times Versus Grid Size

Computation Times for a Single Iteration ...

Relation of Initial Guess to Convergence Rate

Sonar Mapping in Open Spaces ..

Sonar Mapping in Narrow Hallways .

114

115

118

120

120

121

149

153

156

162

164

168

171

174

180

184

185

186

188

189

xii

Example of an Execution During the IRIS-PRECARN Demonstration 202

7.7...
7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

A.1

.....

..

Good Locations to Perform Localization

The QUADRIS System ..

QUADRIS Range Data.

Dynamic Mapping and Trajectory Determination

Autonomous Navigation with No A Priori Map .

Autonomous Navigation with a Partial A Priori Map

Projection Onto a Point or a Line

Map of the Demonstration Environment

Sonar Reflections

Potential Function Extent

LIST OF FIGURES

190

191

192

195

196

197

199

201

203

226

xiii

...

LIST OF TABLES

LIST OF TABLES

3.1 Truth Table for the AND Binary Logical Operators 58

3.2 Truth Table for the OR Binary Logical Operators 59

3.3 Truth Table for the Unary Logical Operators ... 59

5.1 The Minimal Spanning Set of English Prepositions ... ,. 132

7.1 PYM Bandwidth Tests At Peak and Low Periods 179

XIV

.....

CHAPTER 1. INTROOeCTION

CHAPTER 1

Introduction

There is a variety of potential applications for mobile robots in such diverse areas as forestry~

space, nuclear reactors, environmental disasters~ industry, and offices. Tasks in these en­

vironments are hazardous ta humans~ remotely located. or tediolls. Potential tasks for

autonomous mobile robots include maintenance~ delivery~ and security surveillance~ which

aIl require sorne farm of intelligent navigational capabilities. A mobile robot will be a useflll

addition ta these domains only when it is capable of functioning robustly under a wide va­

riety of environmental conditions and able ta operate without human intervention for long

periods of time. The environments in which mobile robots must function are dynamic~ un­

predictable and not completely specifiable by a map beforehand. In arder for a mobile robot

ta successflllly complete a set of tasks. it must dynamically interact with the environment

and adapt ta changing circumstances.

Specifically, this thesis is concerned with a robot control architecture for autonomous

mobile robot navigation in an office and laboratory environment. The only prior knowledge

that the robot may have of its environment is a map of the permanent unchanging structures

(Le., walls), as would be presented by an architectural CAD map. The robot control

architecture needs to make timely decisions based on the sensed data in arder ta continually

plan and execute robot motions in arder ta complete the requested task. Biological creatures

apparently execute many tasks in the world by using a combination of routine skills without

doing any extensive reasoning. In recent years researchers have used this as a guide to

formulate behavioral architectures for robot control.

~lost of the proposed approaches are variations of the subsumption architecture as

introduced by Rodney Brooks (1986) at MIT. This technique was in sharp contrast to

the traditional robot architecture approach in which complex models of the environment

1

...
• 1

CHAPTER 1. INTRODUCTION

were built before planning and executing actions. Original1y, the behavioral approach de­

emphasized model building to the extreme by having no internaI model of the environment

at aIl. However~ recent behaviorai architectures do have internaI models (Gat et aL 1994:

Mataric, 1992). Behavioral architectures also possess many sensor-action streams which

are executed in paral1el while the traditional approach has only a single processing stream.

The biggest advantage of behavioral architectures is that they are readiIy responsive ta

environmentai changes. However, they have not scaled weil to more complex problems

involving symbolic reasoning.

A small community of robotics researchers is moving towards a three layered hier­

archicai robot control architecture (Hexmoor & Kortenkamp, 1995). The lowest layer is a

reactive control system, such as the subsumption architecture (Brooks, 1986). which is read­

ily responsive to different sensed stimuli. The top layer is a traditional symbolic planning

and modeling system, referred to as a deliberate layer. Sorne of the responsibilities of the

symbolic layer include managing the consistency and integrity of world model information,

and abstracting new information, as well as validating control issues such as controllability.

reachability, and observability. The middle layer, which bridges the reactive and symbolic

layers, has not yet been clearly specified. Cognitive psychologists have also noticed different

layering based on time scales in human behavior (Hexmoor & Kortenkamp. 1995), as shown

by the four distinct layers proposed by Newell (1990): (1) biological (on the order of 1 ta

10 msec); (2) cognitive (on the order of 100 msec to 10 sec); (3) rational (on the order of

minutes to hours); and (4) social (on the order of days to months). Time scale is one way of

differentiating the reactive and symbolic layers. The reactive layer is in a real-time feedback

control 10op, while the symbolic layer is engaged with events that occur at slower intervals.

This emphasizes the importance of the two layers being able to function independently of

each other. The reactive (Le., behavioral) layer should be able to guarantee task completion

for at least sorne set of tasks without dependence on the symbolic layer.

There are two ways in which current research has categorized the role of the crucial

middle layer. In the first approach, the middle layer is defined as a sequencing layer (Firby,

1987; GaL 1992; Georgeff & Lansky, 1987; Simmons, 1994). The sequencing transforms a

procedurallist of task commands into an executable set of reactive skills. The latter react

ta environmental changes, but are not goal-drivcn. There is no guarantee that the goal l

will be achieved. Generally, to guarantee task complet ion, a planner needs to be integrated

with the behavioral controller. In the second approach, the middle layer is defined as a

IThe task command is realized when the goal is achieved.

2

-
CHAPTER 1. I~TRODUCTION

planner (Arkin, 1990b; Gat, 1992). A robot path, consisting of a set of linear segments, is

planned from the start to goal position. Reactive behaviors cao override the execution of

this plan, but it is not clear how control is subsequently resumed by the path executor. The

second approach addresses the requirement for integrating a planner with the behavioral

controller, but in this case, the interaction between the planner and behavioral controller

could lead to situations where the two levels are not synchronized. The two components

need to be intimately interwoven in order to be synchronized. Such a configuration would

permit the behavioral controller to execute many tasks independent of a reasoning module.

The planner helps secure a guarantee of task completion (i.e.. achievement of the goal) in

many situations. Under these circumstances, a reasoning system could easily be integrated

in the role of an advisor.

This thesis proposes a real-time, asynchronous and parallel distributed robot architec­

ture called SPOTT2 which bridges the gap between the low and top levels. SPOTT is not a

completely distinct layer, but instead integrates behavioral (Le., reactive) controL planning

and sorne symbolic reasoning ioto a cohesive system. In essence, SPOTT is a rnerging of

the low and rniddle layers. A control module links sensing to acting in a classical control

feedback loop. Another component is a map database which contains an internaI model of

the environment. The control module not only controls the actuators, but also updates and

maintains the map database. A local planning module makes action decisions based on the

currently stored map. A global planning module performs classical Artificial Intelligence

(AI) planning based on a search through a graph structure representation of the map. The

global path planning module can be replaced by a symbolic reasoner3 in order ta perform

more than just AI search. The components of SPOTT are illustrated in Figure 1.1. Many

navigational tasks can be performed and guaranteed successful completion with SPOTT.

but task completion in certain scenarios will require additional - more complex - reasoning

capabilities.

The problem addressed by this thesis is autonomous navigation in a dynamic unpre­

dictable environment which is not completely specifiable by a map beforehand. The thrce

fundamental mobile robot navigational problems are (Leonard & Durrant-Whyte, 1991): (1)

.~ lVhere am 1 going?"; (2) "How am I going to get there?"; and (3) .. ~Vhp.re am I?". SPOTT

1The reasoning system will provide pertinent information ta the planning and behavioral modules, as weil as
maintain consistency and integrity of wodd model information. Another raie of the reasoning system is to guarantec
task completion in the situations where the combined planner and hehavioral controller cannat.

2 A System which integrates Potential fields for planning On-Iine with TR+ program control in order to suc­
cessfully execute a general suite of Task commands.

3The COCOLOG (Caines & Wang, 1995) reasoning system heing developed by Caines and his group at the
Centre for Intelligent Machines (CIM) is the one planned ta he interfaced with SPOTT.

3

CHAPTER 1. INTRODUCTIO~

environment
+

robot

._-_ _--

aetuators

ROBOT system =

1!
..ll~

::--_._---

adJ.L.

planning
+

map database
+

control
+

GUI

CONTROL

f~­

I~
:
~ CONTROL

il
. _ .._........... ~ L .._ _

SPOTT system =..

FIGURE 1.1. The SPOTT System. SPOTT consists of a control module, 2 planning modules.
an internai map database. as weil as a Graphitai User Interface (GUI). The control module as weil as
the local planner form two basic control feedback loops. The dark lines are control flow, whereas the
dashed lines are data flow.

addresses the first two questions and the issue of robot position estimation is handled by

integrating an existing localization module (Mackenzie & Dudek l 1994) into the system.

Under most circumstances, the three problems presuppose that the issue of representation

and content of an internaI model (Le., map) has been already addressed. Sensed environ­

mental information (Le., map) needs to be stored in order to perform navigational tasks

such as path planning, obstacle avoidance, and pose estimation. The representational form

of the map determines the type and amount of information accessible to the computations

associated with the three fundamental navigationaI problems.

The environment is unstructured, and there is either no a priori information (i.e' l map)

or there is a partial map of the permanent structures. A "partial map" is a map of the

4

CHAPTER 1. INTRODUCTION

permanent fixed structures in the environment, as would be presented by an architectural

CAD drawing4 • The assumption is made that there is an abstract graph representation of

the map available consistent with the architectural CAD map. The abstract graph consists

of nodes and edges, where nodes represent rooms or portions of hal1way and the edges

represent access ways (i.e., doors) between the nodes. SPOTT uses a CAD map of an

office and laboratory environment as a priori information. SPOTT has been tested in this

environment with a limited set of general navigational tasks. It has been implementeci on a

collection of SGI and SUN workstations and tested with a Nomad 2005 mobile robot. The

type of sensors on the robot include sonaL infrared proximity, bumper. and two controllable

range sensors mounted on pan-tilt heads (QUADRlS) (Bolduc, 1996).

4 Architectural drawings are readily available in computer readable CAD formats.
5The Nomad 200 is manufactured by Nomadic Technologies Inc., 2133 Leghorn Street, ~[ountain View, CA

94043-1605, tel. 415-988-7200, e-mail: nomad@robots.com

5

CHAPTER 1. INTRODUCTION

1. Types of N avigational Tasks

The types of navigational tasks studied in this thesis are based on a language lexicon

which is a minimal spanning subset for human 2D navigational tasks (Landau & Jackendof[

1993; Miller & Johnson-Laird, 1976). User-specified commands and internaI communica­

tions are formulated using this lexicon. The tasks are based on the verbs ., GO" and ..FI1VDl! .

and a mode of operation called intelligent tele-operation. A task command formulated with

the verb GO assumes that the goal is a known spatial location, whereas a task command

formulated with the verb FIND assumes that a description of the object is known but its

spatial location is not (see Figure 1.2). Intelligent tele-operation is concerned with navigat­

ing the robot in a specifie direction with no pre-defined target - following simple directional

commands such as jorward, left, to name a few - until an obstacle is encountered.

GOAL: spatial location known

a) GO

GOAL: spatial location unknown,
but abject description
known (chair)

b) FIND

FIGURE 1.2. Types of Navigational Tasks. The types of tasks considered are based on the
verbs GO and FIND. a) When GO is specified. it is assumed that the spatial location of the goal is
known. b) When FIND is specified. it is assumed that a description of the objeet sought is known,
but its spatial location is not.

The ability of SPOTT to guarantee task cornpletion depends on the type of task and

the amount of a priori information. The amount of knowledge SPOTT begins with in order

to execute a task, specified by the task lexicon, varies from none to a partial rnap of the

environment. SPOTT can guarantee task completion when the task is GO and a CAD map

is available a priori, or during the tele-operation mode. In other situations, SPOTT needs

to interface to a reasoning module in order ta guarantee task completion.

6

CHAPTER 1. I~TRODUCTION

A reasoning module can benefit SPOTT in situations where no initial map is available

a priori and during the •• FIND" task. See Figure 1.3 for a graphical illustration of where a

reasoning module could assist SPOTT in order to guarantee task completion. Sorne of the

functions of a reasoning module are to aggregate dynamically sensed map features into ab­

stract symbolic representations~ to determine the reachability of the goallocation~ to provide

advice on different search and control strategies, and to perform symbolic graph planning.

Currently. a global path planner in SPOTT performs the symbolic graph planning.

~~ ~;:. L.·.L-.l~I.--uL:l~ .

m~ "'··<-"'--11
A PRIORI ~. :r =-:-;: 1'":I•• :T:T. 7:} 1

" . _ =iJSju
INFO

~ ARCHrrECTURAl
NO

'-l CAD MAP MAP

TASKS'\. A PRIORI MAP

GO V v<
.patiallocation • goal ruchabilityof goal known • goal reachability • abatrlct graph

maintenance

FIND v< v<
1:atial location • goal r8achabllity

o goal unknown • goal reachabllity • abstract graph
••arch stnItegies \ maintenance

• ...rch atnItegies

Intelligent
\ •••...

Tele- V '. VOperation
•.
.....

move in .pecified ..
'.direction untilan
............obstacle is

encountered '.

What reasonln~""inodulecould
contrfbute•

../ Full check mark =task completlon guaranteed without reasonlng

..;c Partial check mark = task completlon requlres reasonlng

FIGURE 1.3. What SPOTT Can and Cannot Do. A check mark in a matrix entry indicates
the situations where SPOTT can guarantee task completion. A partial check mark indicates that
SPOTT cannot guarantee task completion in these situations and the associated caption indicates
what role an external reasoning module could fulfill in this situation.

7

-~i
.;

CHAPTER 1. INTRODUCTrON

2. The SPOTT Robot Control System

The proposed architecture - called SPOTT - consists of (1) a control module. (2a) a local

planning module~ (2b) a global planning module, (3) a map database (Le., world model).

and (4) a graphical user interface (GUI) (see Figure 1.4). The control module is based

on interpreting the task command lexicon within the context of a collection of behavioral

decision rules. The behavioral language interpreter evaluates, arbitrates. and executes a

collection of behavioral decision rules. In a behavioral decision rule, the antecedent is based

on the processing of sensory and world model information, and the consequent is a set of

actions. The selected actions control the robot actuators or update the world mode!. A

local planning module continually queries the world model and incrementally calculates

a trajectory for locally satisfying the task command goal. The global planning module

advises the local planning module on the effects of the global goal. The global planner

performs AI search in order to find a path in a symbolic (i.e., abstract) representation of

the map. It is not in the critical real-time feedhack loop of the system, 50 it is not subject

to the same time constraints as the behavioral controller and local planner. A reasoning

module would operate on a similar time scale as the global path planner. The fact that

the global planner already exists as part of SPOTT indicates that other time non-critical

modules - such as a symbolic reasoning system - could be integrated with SPüTT. The

plausibility of integration with a higher level reasoning system shows how SPOTT could

provide the crucial link between short-range reaction and long-range reasoning (Hexmoor

& Kortenkamp, 1995).

An extension of Teleo-Reactive6 (TR) programs proposed by Nilsson (1992: 1994) ­

called TR+ programs - is used for specifying behavioral control in an asynchronous and

concurrent implementation. TR programs are an ordered list of production rules which

are continually recompiled during execution time into an equivalent hierarchical circuit.

A TR program is represented as a graphical tree, called a TR tree, where a condition is

specified by a node and an action by an arc. TR+ programs allow condition and action

expressions and present the programmer with the ability ta control how and when the

expressions are evaluated. The formalism permits the "personality" of the robot (i.e.~

the set of behaviors) to be programmed in a similar fashion to conventional programming

(Le., with parameter passing and binding, hierarchy, and recursion). Potential limitations

6The actions of the robot are influenced by its goals, hence the terrn teleo. This terrn was coined by Nilsson in
(1992).

8

...

CHAPTER 1. INTRODUCTION

...···1

Local Planner

(Potential Field:
Real-Time 1&

Oynamic)

abstraet
greph--........

CONTROL

USER ..

BEHAVIORAL
CONTROLLER

TR+ TREES

ENVIRONMENT

sensors

..

FIGURE lA. System Overview. The main components of SPOTT are iIIustrated. The behav­
ioral controller is an interpreter of control programs. The potential field performs dynamic local path
planning. An AI planner produces a path based on an abstract graph representation of the CAO map
and provides global information to the local path planner. The map data base contains the a priori CAO
map. a graph abstraction of the CAO map. as weil as a map of the newly sensed features.

with the TR+ formalism arise for problems which are difficult to completely express as a

collection of fuIes, such as obstacle avoidance.

Handling obstacle avoidanee within the TR formalism can be diffieult sinee every po­

tential situation would have to be addressed. Many possible contextual rules dealing with

obstacle avoidance couid actually be encoded as TR+ behaviorai fuIes, but there is no

9

-

-

CHAPTER 1. INTRODUCTION

guarantee that aIl environmental contexts would be captured. To overcome the combinato­

rial explosion of obstacle avoidance rules, an independent concurrent module performs local

path planning based on a potential field technique. The latter is a representation based on

a discretized grid of the local map7 and avoids the combinatorial pitfalls associated with en­

coding aIl possible obstacle avoidance situations in a rule-based system. During execution~

the TR+ program continually provides goal, obstacle, and robot position estimate informa­

tion - via the map database - to the potential field module, which in turn is responsible for

dynamic local path planning. The map database is comprised of two levels of abstraction.

The first level contains the a priori CAD map and a map of aIl newly sensed features. The

second level is a graph abstraction of the CAD map. If the destination is unknown, a TR+

program executes an exploratory set of actions by proposing intermediate goals appropriate

for the sensed environment, context, and task.

The local path planner is based on the biologically plausible (Connolly & Burns, 1992)

potential fieldS method. It dynamically reacts to the obstacle, goal and robot position

estimate information in the map database, which is continually being updated by the TR+

control program. The potential function used by the local planner is a harmonie function,

which inherently does not exhibit any local minima. If at least one path exists to a known

destination, the path planning strategy is guaranteed to find a path to that goal (Doyle

& Snell, 1984). A hierarchical coarse-to-fine procedure involving a collection of harmonie

functions at varying resolutions is used to guarantee a timely and correct control strategy at

the expense of accuracy. The local path planner gets advice from the global path planner.

The global planning module performs classical AI search - using standard AI graph

search algorithms such as Dijkstra's algorithm (Aho et al., 1983) - through a graph structure

of nodes and arcs, and advises the local planning module of the local effects of a goal whieh

is outside the current local extent. The two planners - (1) potential field planner (local

path planner), and (2) AI-based planner (global path planner) - function in parallel, pass

pertinent information between themselves, and operate on different time-scales. The local

path planner is in a control feedback loop with the robot and environment, and its actuator

commands are crucial to the real-time operation of the robot. On the other hand, the global

path planner uses states which change at a slower rate. These are the current and potential

physicallocations of the robot with respect ta the nodes in the graph structure, where a

node is a room, or a hallway portion.

7The local map contains the features found in a window into the architectural CAD map and the collection of
newly sensed features.

8The potential field is a field of gradient vectors computed over a discretized version of a potential function.

10

-l

CHAPTER 1. INTRODUCTION

The global path planner only performs one of the functions of a reasoning system.

One can easily envision replacing it by a more comprehensive reasoning system. Such a

system would provide additional capabilities such as determining goal reachability, spatial

reasoning and map maintenance, and the determination of new TR+ programs (i.e., control

strategies). Presently, the local and global path planners, as weIl as the behavioral controller.

function concurrently and communicate asynchronously amongst each other! in arder to

execute a wide variety of navigational tasks presented by the user.

SPOTT is implemented in paraIlel, thus permitting real-time asynchronous function­

ality. The autonomous robot comrIlunicates via a radio link to SPOTT which runs on a

computer network. SPOTT's processing is distributed across a collection of SUN and SGI

workstations. The software tool PVM9 (Parallel Virtual Machine) (Geist et al., 1993) is

used to distribute the control, planning, and graphical user interface processing across a

collection of existing processor resources. PYM is a message passing library which al10ws

the harnessing of a collection of heterogeneous processors into a single transparent, cohesive

and unified framework for the development of parallel programs. The PYM system trans­

parently handles resource allocation, message routing, data conversion for incompatible

architectures, and other tasks that are necessary for operation in a heterogeneous network

environment. PYM offers excellent priee-performance characteristics eompared to massively

parallel proeessors (Sunderam et al., 1993). The portability and heterogeneous property of

PYM makes it possible to transfer this architecture on-board the robot in the future. The

computation for both the TR+ program control and local planning is also distributed to

provide real-time response. TypicaIly, ten to fifteen processors are used in an experiment.

9This is an ongoing project carried out by a consortium headed by the Oak Ridge National Laboratory.

Il

CHAPTER 1. INTRODUCTIO~

3. Claims of Originality

This thesis addresses the problem of autonomous navigation of a mobile robot in an

indoor environment, such as an office or laboratory space. The navigational tasks are based

on a language lexicon within two contextual settings: (1) a partial map of the environment

is available a priori; and (2) no map is available a priori. A robot control architecture called

SPOTT is proposed and implemented as a real-time and parallel system of concurrently

executing and co-operating modules. Inherently, the control system is a real-time Artificiai

Intelligence (AI) system which is responsible for dynamically adapting to changing environ­

mental circumstances in order to successfully execute and complete a set of navigational

tasks for an autonomous mobile robot. SPOTT consists of a behavioral controller. a local

dynamic path planner, and a global path planner, as well as a map database and a graphicai

user interface. The SPOTT architecture provides a framework for inclusion of additional

sensors and associated perceptual processing algorithms, actuators and control strategies.

SPOTT is a novel robot control architecture because it proposes a way of linking be­

havioral (Le., reactive) and symbolic control. The exploitation of existing computational

resources by the distributed implementation of SPOTT is additionally innovative. Contri­

butions are also made in the following three areas:

(i) The Teleo-reactive (TR) control (Nilsson, 1992) formalism forms the centerpiece

for the behavioral controller. This thesis has contributed ta TR behavioral control

research in the following manner:

• This thesis is the first research work to design, implement and test an on­

Hne and distributed TR interpreter - of concurrently executing behaviors - to

handle real-time robot control of an autonomous robot.

• The basic TR language is extended to handle multiple goals. concurrent ac­

tions, and conditional expressions. The extended formalism is called TR+.

(ii) Path planning is concurrently performed at two levels of abstraction. The local path

planner is a potential field approach based on a harmonie function. It is guaranteed

to find a path to a goal if such a path exists. The local path planner is in the critical

real-time control feedback loop with the environment. The global planner plans a

path based on a graph abstraction of the environment. The contributions made to

the field of path planning, in particular, the potential field approach using harmonie

functions, are as follows:

• In the local path planner, path computation and execution are done concur­

rently. In order to guarantee a correct control strategy during concurrent plan

12

CHAPTER 1. INTRODUCTION

computation, a hierarchical coarse-to-fine procedure based on a set of harmonie

functions at varying resolutions is proposed.

• A method is proposed for addressing the issue of planning for global goals when

the extent of the potential function is limited. This is necessary because (1)

the potential function is a rapidly decaying function which is not computable

for aIl grid elements in a large array, and (2) the computation time increases

proportional to the number of grid elements. Thus, the local path planner

needs to receive global goal information from the global path planner. This

assists in sliding the boundaries of the potential function when the robot moves

outside the CUITent local extent.

• A method for computing the harmonie function in real-time and in parallel

with existing computational reSOillces is proposed, implemented and tested.

(iii) There has been very little research done pertaining to humaD-machine natural lan­

guage interaction and communication in the field of autonomous mobile robot navi­

gation (Lueth et al., 1994). This thesis is the first to propose and put to use a mobile

robot task command lexical subset - consisting of verbs and spatial prepositions ­

, that is a minimal spanning basis set for human 2D navigational tasks (Landau &

Jackendoff, 1993; Miller & Johnson-Laird, 1976). A procedure for quantifying the

task command for execution in the behavioral controller and dynamic local path

planner is presented. The quantification of the spatial prepositions is shown to de­

pend on two norms. The two norms are the definitions for the spatial prepositions

near and far in the current context of the environment and task.

13

-

CHAPTER 1. INTRODUCTION

4. Reader's Guide

A brief reading of this work should include the fol1owing chapters and sections:

Introduction (Chapter 1),

Conclusions (Chapter 8).

To gain a more detailed understanding of the research presented in this thesis. it is reCOffi­

mend that the fol1owing sections he read in order.

(i) Chapter 1 covers the main contributions of the work and provides a general sum­

mary of the work.

(ii) Chapter 2 is a general review of behavioral robot control architectures. mobile

robot navigation, as wel1 as a review of the most commonly used sensors for mobile

robot research.

(iii) Chapter 3 provides a review of the Teleo-reactive (TR) formalism as introduced by

Nils Nilsson, and the extended formalism - TR+ - which enhances the TR formalism.

(iv) Chapter 4 discusses local and global path planning. A general review of path

planning approaches is given alongside a development of the technique used by the

local path planner (i.e., potential field using a harmonie function). The dynamic

interaction between the local and global path planners is also discussed. The chap­

ter concludes with a collection of potential research topics which could extend the

capabilities of the proposed local path planner.

(v) Chapter 5 specifies the task command language lexicon and its derivations, and

how it ties in with the SPOTT architecture.

(vi) Chapter 6, discusses how SPOTT is implemented in a distributed fashion. The

integration of a graphical user interface, and the programming and visualization

tools are also discussed.

(vii) Chapter 1 discusses the performance and capabilities of the system and the indi­

vidual components. The results of experimenting with the system are also discussed.

(viii) Chapter 8 is a general discussion of the work, outlining advantages, disadvantages~

and future research areas.

14

CHAPTER2. BACKGROU~D

-
CHAPTER 2

Background

SPOTT extends the behavioral robot control architecture formalism sa that it is able to

interface with a symbolic reasoning system. In general, the architecture of a robot control

system for autonomollS navigation is a classical feedhack loop as shown in Figure 2.1.

A behavioral architecture is a slight variation of the classical composition and is loosely

biologically motivated. Biological creatures apparently execute many tasks in the world

without doing any extensive reasoning by using a combination of routine skills. In recent

years researchers have used this as a guide to formulate behavioral architectures for robot

control.

World

Actuator
Control
Loops

World
Model

.........-----------i Sensors f4....--_..J

Goals

FIGURE 2.1. Simple Robot Control Architecture. Ali robot co":;trol architectures have
these basic components. the notable exception being the subsumption architecture (Brooks. 1986)
which does not have an internai world mode!.

15

...

CHAPTER2. BACKGROU~D

1. Review of Behavioral Robot Architectures

The basis for most behavioral architecture research efforts has been Brooks' subsump­

tion1 architecture (see Figure 2.2) (Brooks, 1986). In this architecture, each behaviorai

decision rule is a simple finite state machine2• Each level (i.e., behavior, finite state ma­

chine) consists of modules which are complete and self-contained control systems using var­

ious types of perceptuai information to generate commands for actuators. Each behavior

achieves sorne task, and as new behaviors are added to the system, the level of competence

of the robot increases. The ultimate purpose of the robot is defined by its higher level goals

(i.e., tasks). The robots built by Brooks and his colleagues (Brooks, 1991: Flynn & Brooks,

1988) did not have behaviors more complex than the wander behavior, contrary to what

was originally intended (see Figure 2.3).

The subsumption architecture does not have any memory3 and thus is prone to possible

inescapable cyelic behavior. Therefore, task completion cannot be guaranteed. Various

robots have been developed which consist of a few behaviors arranged in a hierarchical order

(Brooks, 1991; Flynn & Brooks, 1988). The results are impressive, given the simplicity of

the architecture and the lack of an internaI representation (i.e., memory) of the external

world. The subsumption program is fixed for a particular task and cannot be generalized

for a collection of tasks. It has Dever been scaled up to a level which included behaviors

that built and used maps. Its goals are embedded in the higher level behaviors. Rowever.

to achieve generality, a goal wouid need to be a programmable input (Hartley & Pipitone.

1991; Maes, 1991).

Brooks (1991) has strongly advocated the extreme position of having no explicit internaI

representation of the world. In this case, the external environment acts as the model for

the actions. ReceDtly, various researchers (RartIey & Pipitone, 1991; Gat et al., 1994;

ConDeIl, 1990; Mataric, 1992) have suggested relaxing this constraint of no internaI state

for behavioral architectures and have insisted on having sorne minimal internaI state (i.e.,

memory, maps).

The behavioral architecture contrasts sharply with the traditional robotics approach

(see Figure 2.4) (Nilsson, 1969; Moravec, 1983), which involved building complex models of

the environment before planning and executing actions. On the other hand, a behaviorai

lThe subsumption architecture was not novel in the 1980's. ~tore than thirty years before, ~iko Tinbergen
(1951) - one of the initiators of the ethology (ethology is the biological study of behavior) movement - proposed a
similar model for animal behavior.

2 A finite state machine is a structure in which computation is modeled as the transition from one of a finite
number of states to another.

3 Also referred to as internal state. The contents of the memory are a model (Le., representation) of the world.

16

CHAPTER2. BACKGROUND

a)

b)

• ... t inhibitor _supressort -- -
inputs level1 outputs- ..-

n
reset

... 1 level3 1 ...---'l!-.:""':""':....---1~ ... ~:""':.:---~~.~

••• •••--fi..;;..;...:..:~..........I""'---Ie-v-e-I-2----~~ !:

~ U·::: 1 ~.:.: : :.: acutatorssensors ~I .: __..._~ ~
. : -= : .. le_v_e_1_1____ ...

_ ..._~ levelO ~,-"",,~~
supresBors inh/bltors

FlGURE 2.2. Brooks Subsumption Architecture: The subsumption architecture is a simple
hierarchy of levels (i.e.. tasks. layers) where the conditions are continuously computed. The circuitry
which implements this architecture is fixed at run-time. (a) A layer has input and output lines. Input
signais can be suppressed and replaced by the suppressing signal. Output signais can be inhibited. A
module can also be reset to the NIL state. (b) Control is layered with higher level layers {i.e. tasks.
behaviors} subsuming the roles of lower level layers when they wish to take control. The dotted lines
indicate potential suppressor and inhibitor lines of control. (adapted from (Brooks. 1986)}

architecture's actions can be quickly executed after the arrivaI of sensory data. because the

processing involved to make a decision about the next action is usually negligible.

The other significant way a behavioral approach differs from the traditional approach

is that a behaviorai architecture has a collection of hierarchically ordered streams of action

rules (see Figures 2.4 and 2.5), while the traditional approach has a single sensory-to-action

processing stream. An action rule is defined as a decision rule based on processed sensor

data and world modei information. The collection of decision rules and the associated

sensory processing are computed in parallel. The rules linking sensing to action are referred

to as behaviors. When there is relatively instantaneous-l response, the behavior is referred

to as being reactive. The behaviors are hierarchically ordered from the most to the least

important. The current action to be executed is based on selecting the most important

4 In the order of milliseconds.

17

-

CHAPTER2. BACKGROü~D

work usefully

use maps

sensors build maps

explore

wander

avoid obstacles

acutators

..

'-

FIGURE 2.3. Brooks' Proposed Hierarchy of Behaviors. Illustrated is a proposed decom­
position of a mobile robot control system based on task-achieving behaviors. However, the only levels
Brooks and his colleagues ever implemented were the wander and obstacle avoidance levels. (adapted
From (Brooks. 1986»

behavior from the collection of behaviors, whose state (i.e., resultant of the executed decision

rule) is "on" (or logically TRUE). The action to be executed will either control a robot

actuator or update its internaI model.

Many other behavioral architectures have been proposed which closely resemble the

subsumption architecture (Kadonoff et al., 1988; Kaebling, 1988; Payton, 1986; Anderson

& Donath, 1988; Gat, 1991b; Gat, 1991a; Watanabe et al.! 1992; Kweon et aL 1992). The

ooly one which differs significantly from the subsumption architecture is the one suggested

by Arkin (1989).

Arkin (1989; 1990a; 1990b) proposed the AuRa architecture (Autonomous Robot

architecture). It is a behavioral architecture based on a dynamic network of active be­

haviors operating in parallel (as opposed to a hierarchical set of competing behaviors like

the subsumption architecture). Rather than driving the actuators directly, there is an in­

termediate representation, the potential fielcF which is a representation for action (Le.. the

robot movements). Arkin refers to this type of architecture as a boiling pot. A behavior

consists of activating a particular motor schema depending upon the validity of a particular

perceptual input. A motor schema is a template, representing an obstacle or goal, which

modifies the potential field. There can be many motor schemas activated in parallel. Goal

motor schemas are attractors, while obstacle motor schemas repel the robot. Given that

SThe potential field is a grid-based method which represents objects of the world as saturated grid elements.
The grid elements are either saturated positively (obstacles) or negatively (goals). The space left after the removal of
the objects is the free space, and this is the space where forces interact to detennine the robot's direction and speed.
Obstacles exert negative forces, whereas goals exert positive forces. The forces are summed to generate the potential
field. Gradient descent is performed on this surface in order ta steer the robot to the goal. The summation of positive
and negative forces may create local minima, and thus lead to the robot getting stuck.

18

CHAPTER2. BACKGRO~~D

.r
World

a) Robot Control System

.........-------..........
...... Actuator

Goals ----.........·-··-........1 II-·· ··.::.·..~------..,-.. Control 1-----....
/ '1 Plan 1 Loops

(1M:el il------:~.....;:-È....·~I :~~ 1
.•.•. --

................. L-..----....-..-......., ---------l sensors1--__--1

.......-----..........

b)
Goals

RobotControlSy~em

..----....-
";'<~ L,-..."",.,..

.....·~--__-.--II,....;.; =~ r- '\
\ _. ~on 1~-:)

... :::::.J Module" t- !
~ 1.. .l _

~ ~ -
............... .. .

....-.-.__ -..

Actuator- Control

1
..

Loops

World

World
Madel

Sensors --
FlGURE 2.4. Traditional vs. Behavioral Robot Control Architecture. (a) ln the tradi­
tional approach. there is only a single path of control from sensing to actuator activation. (b) ln the
behavioral approach. there are many paths from sensing to action. Each decision module may include
modeling and planning components of varying complexity.

--

the location of the robot is known, the maximum gradient of the potential field at the ro­

bot 's current location is used to determine the local direction of the robot. The potential

field mechanism that was implemented is problematic in that local minima may be present.

which may cause cyclic behavior. Like the subsumption architecture, the AuRa architecture

has not scaled up to more complex tasks which could potentially include reasoning.

A small community of robotics researchers is moving towards a three-Iayered hierar­

chical architecture (Hexmoor & Kortenkamp, 1995) (see Figure 2.6). The lowest layer is a

reactive control system such as the subsumption architecture (Brooks, 1986). The top layer

19

CHAPTER2. BACKGROU~D

••"11 , 11 ...

~ declslan ~
~ pracesslng ~
; based an sensar data : action a4 is executed

importance
of

behaviors

on 81

on 82

on 84

on 8S

..11I I1 III IIIU;

sensor b;
l.

a~ti
- 1

, IOFF 1- -
sensors

sensora - aetl
~ ION 1 -- -

acti
_1 IOFF 1 -- -

world - acti
model r: 1 ION 1 -- -

acti-
~ IOFF 1 -- -

FIGURE 2.5. Behavioral Architecture Example. a) A behavioral architecture has a collection
of hierarchically ordered streams of action rules. An action rule implements a decision base<:! on sensory
processing and world model information. A specified hierarchical order is the usual arbitration strategy
between behaviors. The highest "on" (or logically TRUE) behavior in the hierarchy is the behavior
whose action is executed. In this example. action G4 is executed.

-­,,
-1

is a traditional symbolic planning and modeling system, referred to as a deliberate layer.

The reactive and deliberate (i.e., symbolic) layers differ with respect to (1) the type of data

used, (2) the speed of reaction to environmental changes, and (3) the type of functionality.

Both layers have access to world model information, but the symbolic layer distinguishes

itself by only processing the abstract representations. In additioIl, the reactive layer uses

raw or minimally processed sensor input, while the symbolic layer handles highly processed

sensor information. Therefore, the reactive layer is readily responsive to different sensed

stimuli, while the symbolic layer is comparatively slow. The reactive layer consists of rules

which map sensor data to actuator control with a minimal amount of processing. The

symbolic layer is responsible for managing the consistency and integrity of world model

information, abstracting new information, as weIl as validating control issues such as con­

trollability, reachability, and observability. The middie layer, which mediates between the

reactive and symbolic layers, has nat yet been clearly specified. There have been various at­

tempts at defining the middie layer as a sequencing layer, which transforms a procedurallist

of task commands into an executable set of reactive skills (Firby, 1987; Gat, 1992; Payton,

20

CHAPTER2. BACKGROUND

1986; Georgeff & Lansky, 1987; Simmons, 1994; Ferguson, 1992; Bou-Ghannam, 1992: Con­

nell, 1992). The most popular of the sequencing architectures is the RAP (Reactive Action

Plans) architecture which has been proposed by Firby (1987). The RAP architecture takes

a set of high level tasks generated bya planner and recursively decomposes them into a set

of reactive skills. RAPs activate and deactivate these sets of skills, and monitor their exe­

cution to sec if the robot is being moved towards the goal (GaL 1992). Similar approaches

have been proposed by Payton (1986), Georgeff and Lansky's (1987) PRS (Procedural Rea­

soning SystemL and Simmon's (1994) TCA (Task Control Architecture). The sequencing

layer turns reactive behaviors on and off, but it does not guarantee successful completion

of any task. Task completion cannot he guaranteed unless a planner is integrated with the

behavioral (i.e., reactive) controller.

~
environment

~sensors

actuators

- 1 symbollc 1
- 1 1

H_1 middle layer ?11 1 -- 1 1 h -
SER - _J 1- reactive

- 1 1

u

FIGURE 2.6. Three-Layered Hierarchical Architecture. A consensus amongst a small
community of researchers applying AI to robotics agree on such a structure for robot control. but there
is no agreement on the details of the crucial middle layer.

Sorne researchers (Arkin, 1990b; Gat, 1992) have suggested defining the middle layer

as a planner. In this scenario, a path consisting of linear segments is planned from the

start to goal position. Reactive behaviors can override the execution of this plan. However.

it is not clear how control is subsequently resumed by the path executor. A path planner

is required in order to provide any guarantee of task completion; however, it needs to he

intimately interwoven with the behavioral controller. This will permit the behavioral con­

troller ta execute many tasks independent of a reasoning module. In this case, a reasoning

system could easily be integrated in the role of an advisor, and assist in guaranteeing task

completioo in the situations where a path planner could oot. The reasoning system would

provide pertinent information ta the planning and behavioral modules as weIl as rnaintain

internaI model consistency.

21

..

--

CHAPTER2. BACKGROUND

SPOTT bridges the gap between reactive and symbolic layers by integrating behavioral

(i.e., reactive) control and planning into a cohesive system. In essence~ SPOTT is a merging

of the low (Le., reactive) and middle layers. It consists of a behavioral controller and

a local path planner which operate in a critical real-time feedback control loop with the

environment, and a global path planner which functions at a slower time scale. The global

path planner's role is to provide crucial global information ta the local path planner. The

inclusion of a time non-critical module suggests that other such modules (i.e., symbolic

reasoning system) could also be integrated. SPOTT can guarantee task completion for

many navigational tasks, but more complicated scenarios will require additional reasoning

capabilities.

22

CHAPTER2. BACKGROU~D

2. Interfacing ta a Robot Control Architecture

The design of a mobile robot control architecture is influenced by the characteristics of

the components it interacts with, particularly: the role of the operator ~ the complexity of

the environment and the capabilities of the mobile robot (see Figure 2.7). The complexity

of the control system is inversely proportional to the amount of decision-making initiated

by the operator. The type of environment (e.g., static or dynamic) illotivates what control

strategies to adopt. The mobile robot's actuators and sensors place constraints on the

controllability of the robot. For example, the robofs ability to react to changes in the

environment is limited by what it can sense.

. ~ ~ ,
~r!î:~ ~~'~;1f~ ~.;~-;:~~~~.:

.' .

Aetuator
..----------... Control 1--------,

Loops

World
Model

~I------------ISensors----.....

FIG URE 2.7. Interfaces to a Robot Control Architecture. The robot control architecture
is influenced by the raie of the operator. the complexity of the environment. and the capabilities of the
mobile robot.

2.1. Role of the Operator

There are two levels of autonorny that robot control can have in relationship to a hunlan

operator (Iyengar & Kashyap, 1989).

• Tele-operation is the extension of a person's sensing and manipulating capabilities

to a remote location. The human operator acts as a supervisor, intermittently com­

municating to a computer information about goals, constraints, plans, contingencies,

assumptions, suggestions, and orders relative to a limited task. The human operator

gets back information about accomplishments, problems, concerns, and if requested,

sensory data. The robot performs the tedious (i.e., routine) functions and leaves the

cognitive tasks and difficult decisions to a human operator.

• The operator supplies a single high level command for intelligent autonomous

robots. An autonomous intelligent robot is a flexible machine system that can

23

-

-

CHAPTER2. BACKGROU~D

perform a variety of tasks under unpredictable conditions. 1t is able ta operate

without human intervention for extended periods of time.

Between the two, the more interesting and challenging is intelligent autonomous robot con­

trol, which is addressed by this thesis. As with tele-operation, the human operator gets

feedhack about the progress of the task, and whether the task has been completed. Contrary

to tele-operation, the human operator only needs to issue a single high level command to

execute a task. Such is the case with SPOTT, where tasks are specified by a task command

language lexicon hased on a minimal set of navigational verbs (Miller & Johnson-Laird.

1976) and a minimal spanning suhset of spatial prepositions (Landau & Jackendoff. 1993).

2.2. The Complexity of the Environment

The environmental complexity can be classified along the fol1owing dimensions:

• The environment may be completely known, partially known or completely unknown

heforehand. It is very difficult and unrealistic to completely know the robofs envi­

ronrnent beforehand, and therefore only the last two cases are truly relevant. The

first case is where a partial map of the environrnent is available a priori. An ar­

chitectural drawing in CAD format exists for most indoor environments and this

can provide a priori information for the robot. The permanent fixed features of the

indoor structure, namely the walls, are stored in the CAD drawing, but are never

spatially perfect in size or position. Sensory feedback is necessary to validate the

CAD map. Additionally, the robot needs to discover aIl movable features which

are not shown in the CAD map (see Figure 2.8). The second case is where no map

information is available a priori. Here, the robot needs ta reveal both the permanent

and movable features.

• The type of environrnent may be indoor, outdoor, industrial, planetary, or sorne

other, typical of mobile robot applications. The environment cao also be evaluated

with respect to its complexity: the number of objects, their size, and their spatial

layout.

• The abjects in the environrnent may be static or dynamic. The trajectory and speed

of the objects are also factors.

Environmental complexity can be reduced significantly by modifying the environment

ta include artificiallandmarks or tracks for the robot ta follow. This thesis avoids making

such compromises and tackles the more difficult problem of autonomous robot navigation

in an unmodified environment.

24

The walls are the only a priori
known features.

CHAPTER2. BACKGROUND

Other obstacles (moveable) are sensed
while performing navigation.

....

a) b)

c)

r
CAD map:
fixed structures (walls)

FIGURE 2.8. Environmental Complexity. (a) The permanent structures in the environment
can be obtained from readily available architectural CAD maps (see (c)). (b) Movable objeets must be
sensed and noted in the internai model as the robot performs its navigational tasks.

2.3. The Mobile Robot

The capabilities of a control architecture are limited by the type of robot and its sensors.

The proposed robot control architecture - SPOTT - has been tested using a Nomad 2006

mobile robot. This vehicle has two degrees of freedom in mobility - translation and rotation

- in a two-dimensional plane. In order to execute a movement, the platform first rotates~

and then the robot is translated the desired amount in a forward direction. The Nomad

6The Nomad 200 is manufactured by Nomadic Technologies [ne., 2133 Leghorn Street, ~[ountain View, CA
94043-1605, tel. 415-988-7200, e-mail: nomad@robots.com

25

--J

CHAPTER2. BACKGROL~D

200 mobile robot base is a three-wheel synchronous non-holonomie system. Its maximum

translational speed is 51 cm per second~ and the maximum rotational speed is 60° degrees

per second. The Nomad 200 has a diameter of 46 cm (53 cm induding the bumperL and a

height of 83 cm (137 cm including a mounted laser sensing unit). The robot~s high centre

of gravity does not permit safe passage on inclines. There is always the potential danger of

the robot tipping, sa the use of the robot is confined to fiat terrains. The Nomad is powered

by a package of five removable batteries.

It cornes equipped with a ring of 20 tactile sensors (pressure sensitive). a ring of 16

ultrasonic sensors, and a ring of 16 infrared proximity sensors. A system of two range sensors

(BIRIS) (Blais et al., 1991) mounted on pan-tilt heads, called QUADRIS (Bolduc~ 1996L

has also been added. QUADRIS is mounted on the top of the basic Nomad platform.

Sonar and QUADRIS are used for mapping. Furthermore. QUADRIS is specialized for

object recognition. The bumper and infrared sensors are primarily used for safety and

accomplish this by mapping very close objects which may be missed by the other two

sensors. These sensors are different from sonar and laser because their data is readily

available and requires minimal analysis. Figure 2.9 il1ustrates the placement of the sensors

on the Nomad 200 mobile robot. The sensors are of the type most commonly used in the

mobile robot literature.

QUADRIS (range) 1
!i---- vision

1"---- Sonar

.....-- Proximity (infrared)

Bumper....--

F[GURE 2.9. Mobile Robot Sensors. The sonar, infrared and bumper sensors come with the
original Nomad 200. A pair of range sensors mounted on pan-tilt heads - QUADRIS - is also installed.

26

-
CHAPTER2. BACKGROUND

Most common sensors (Luo & Kay, 1989; Harmon, 1987a; Everett. 1995) installed on

mobile robots are associated with a variety of problems when used as the sole sensing device.

Therefore. in practice, it is common to use many types of sensors to compensate for each

sensor's inadequacies.

2.3.1. Vision

Visual sensors are considered passive since they only receive information about the en­

vironment and do not emit any signais. One of the major problems with using vision is that

it lacks explicit information regarding the third dimension (i.e.. depth). Methods for de­

termining depth from video cameras include depth from stereo disparity (Longuet-Higgins~

1981; Prazdny, 1980; Marr & Poggio, 1976), depth from camera motion (Matthies et al..

1989), depth from focusing (Krotkov, 1989b), depth from texture gradients (Witkin, 1981),

depth from shading (Horn, 1977L depth from occlusion eues, and various combinations of

these methods. Video cameras are rarely used by mobile robots for navigational control

because of the large amount of processing requiredï to compute depth information which

makes real-time operation very difficult. However when they are used, the most popular

method for extracting depth information is based on the depth from stereo disparity tech­

nique. This was used to navigate the Stanford Cart (Moravec, 1983)8 ~ but the robot moved

only 1 m every 10 to 15 minutes. There was also significant error in position (i.e.. 20 %) of

the object features sensed in the environment. Current methods (Ezzati, 1995) for extract­

ing depth from stereo disparity are approaching real-time speeds, so that the use of video

cameras may soon become feasible. Besides navigation, visual sensors are also useful for

recognition tasks: finding a particular abject or landmark recognition (Krotkov, 1989a).

2.3.2. Acoustie (Sonar)

Sonar sensors are a type of active range sensor and function by emitting sound waves

and measuring the time delay it takes for the echo to return. A single transducer is often

used as bath the transmitter and receiver. The distance to the object reflecting the pulse

can be inferred from the knowledge of the time taken for the sound to return and of the

speed of sound (approximately 0.3 m/ns). A typical ultrasonic ranging device operates

with frequencies of roughly 50 kHz (Dudek et al., 1993). Sonar units are usually installed

on a robotic platform in one of two ways: (1) a single sonar unit is mounted on top of a

Tin general, visual sensors are critically dependent on ambient lighting conditions. The analysis of a visual scene
as well as the associated registration procedures can be complex and very time-consuming.

8The Stanford Cart project was conducted at Stanford University AI Lab between the years 1973 and 1980.

27

CHAPTER2. BACKGROUND

rotating platform which points it in different directions9 ; and (2) a collection of sonar units

are uniformly distributed around the exterior of the robot. There is always the problem

of crosstalk with multiple sonar units. This is especially true in cluttered environments~

where sound waves can refiect from multiple objects and then be received by other sen­

sor elements. To compensate for crosstalk, repeated measurements are often averaged to

bring the signal-to-noise ratio within acceptable levels, but at the expense of the additional

time required to determine a single range value (Borenstein et al., 1996). Other problems

characteristic of acoustic sensors include very low resolution, large specular refiections (i.e.~

multiple reflections), slow speed, fuzzy images, temperature (and to a lesser extent humid­

ity) dependence, and multiple echoes, as weIl as problems with the physics of the sonar

process 10 . Sonar sensors are useful because they are relatively inexpensive, fast and provide

range data in aH directions simultaneously. Sonar systems are less expensive than other

types of range sensors (Le., laser rangefinders) because of the relatively slow speed of sound

in air (compared to light), which places milder timing demands on the required circuitry.

The typical operating range of sonar sensors is 10 cm to 914 cm (Borenstein et al..

1996). In cluttered environments, reliable measurements can only be obtained from 2 or -1

ID (Dudek et al., 1993) away. Sonar sensors have been used for mapping (Le., creating an

internaI model of the environment) tasks (Crowley, 1985: Bozma & Kuc~ 1991: Elfes, 1987:

de Saint Vincent~ 1986) and for estimating the position of the robot (Drunlheller. 1987:

Leonard & Durrant-Whyte, 1991: Mackenzie & Dudek, 1994).

2.3.3. Laser Rangefinders

Laser rangefinders are another type of active range sensor. They project a structured

illumination pattern of their own, and make use of either the geometry or time of flight to

de termine the range of objects. Time of flight measurement determines the distance of an

object by measuring the time it takes for light to travel from the source ta the object and

back. Triangularization (Le., geometry) systems broadcast a beam of light with a known

shape (e.g., point, line, cross), and the camera observes refiection or scattering from the

object to determine depth based on the geometry. The time of flight method is fine for the

outdoors, but for indoor use, the size of the sensor head and power consumption are critical

factors (Harmon, 1987a). The triangularization technique uses a single camera and usually

a line projector. It is not recommended for long distance measurements and, just like sonar,

9The robot manufactured by Cyberworks Ine. uses this sonar arrangement (Cyberworks Ine., 31 Ontario Street,
Odilia, Ontario, L3V 6H 1).

lOThe sonar ehirp is not an infinitely narrow beam of infinite power but has a finite angular extent with a
complex eross~seetiona1 energy distribution (Dudek et al., 1993).

28

..
CHAPTER2. BACKGROUND

sometimes gets confused with reBections (Harmon. 1987a). In general. laser rangefinders

require an intense energy source, and they have a short range and slow scan rate ll . Laser

rangefinders may avoid all the drawbacks of visual and acoustic-ranging systems but this is

often at the expense of cost and potential hazard to humans. Laser rangefinders have been

used for estimating robot position (Cox, 1991; Moutarlier & Chatila, 1990) using a method

which correlates laser range data with an existing map.

The BIRIS12 Range Sensor (Blais et al., 1991) is a compact optical 3-D range sensor

developed by the NRC (Canada's National Research Council), which is based on the llse

of a double aperture mask in place of the diaphragm of a standard camera lens. A pair of

overlapping stereo images are produced on a single film plane. If a laser line is projected

perpendicular to the line connecting the two irises, then stereo correspondence is simplified.

This laser line, when viewed through the double aperture, produces two lines whose sepa­

ration correlates with the range distance. The BIRlS range sensor is able to detect objects

up to 5 m away. A single scan range estimation can be computed with a simple algorithm

which permits real-time computation (i.e., 10 frames per second). In order to provide a full

range image, the sensor must be swept across the scene. The QUADRIS (Bolduc, 1996)

system uses two BIRIS sensors mounted on pan-tilt heads.

2.3.4. Other Types of Sensors

Other types of sensors used by mobile robots include contact and proximity sensors.

Obstacle detection based on just contact sensors limits the speed of the robot because

contact must be made before detection can take place. Thus the introduction of proximity

sensors which are based on LED (Light Emitting Diode) phototransistor pairs. LED's

function by emitting light into the environment, and receiving light refiected by objects.

Usually they can rneasure range up to 45 cm away. Contact and proximity sensors are

mostly used for safety monitoring13 .

Most mobile robot designs incorporate many sensors (Kriegman et aL 1989; Yuta et al..

1991; Evans et al., 1992; de Saint Vincent, 1986) to overcome the shortfalls of any individual

one. There are rnany practical considerations when deciding which sensors to use, such as

cast, power consumption, speed, resolution, just to name a few. rvIany mobile robots use

Il For more information about laser rangefinders and processing techniques, see (Everett, 1995) and (Jarvis.
1983). Two typical laser rangefinders (both are 'time of flight' (tof) sensors) are as follows: (1) SEO AutoSense (9 m
maximum range, 1% accuracy, 29.3 rps scan rate, weight of 5 lbs.); (2) RIEGL LSS390 (range of 1 to 60 m, la cm
accuracy, la scansjsec, weight of 4.86 lbs.) (Everett, 1995).

12Based on two pinholes or irises, therefore the name Bi-IRIS.
13 As a last resort, if obstacles are not detected by other longer range sensors.

29

CHAPTER2. BACKGROU~D

acoustic or laser rangefinders as opposed to video cameras, because depth information is

explicit with these sensors.

The selection of sensors used by SPOTT was based on the availability of the processing

algorithms. The LED and bumper sensors require little processing and were integrated

for short-range sensing. Sonar and QUADRlS are used for long-range analysis. Nlapping

(Le., creating an internaI model) and localization (Le., estimating the position of the robot)

software based on sonar data (Mackenzie & Dudek, 1994) had been already developed and

research at CIM has just begun in using QUADRlS for mapping and abject recognition

(Bui, in preparation). Mapping, localization and recognition are the functions required for

the navigational tasks SPOTT executes.

30

-j

CHAPTER2. BACKGROU~D

3. Robot Control Issues

Autonomous robot control is difficult because of the timeliness of decision-making and

acting, the unpredictability of the world, and the imperfections associated with sensors and

actuators. Behavioral architectures are attractive because they are simple, fast and produce

interesting and complex behaviors which appear to be intelligent. An intelligent agent (i.e..

the robot) is defined as having the capability to adapt to a changing environment while

performing a particular task. The design of a behavioral architecture for nlobile robot

control has to take into consideration the foIlowing issues:

Ci) How weIl does the architecture scale to more complex problems?

(ii) Is the architecture general enough for a wide variety of tasks and environments?

(iii) Are the executed actions of the robot predictable beforehand?

(iv) Is the operator able to monitor the robot's interaction with the environment?

The scalability of an architecture is its ability to handle increasingly more complex

problems that demand a greater amount of knowledge without changing its underlying

mechanisms. A robot's architecture should oot be confused with a robot ~s programming

language (HorswiIl, 1995). A robot's programmîng language is the means of describing the

tasks and the techniques used to solve them, independent of the implemeotation mechanisffi.

It remains the same from one task to another. On the other hand, a robot's architecture

is a collection of specifie components with fixed connections that can jointly perform a

broad range of tasks with minimal modification. Given this distinction, the subsumption

architecture is more like a programming language than an architecture. There is no specifie

set of cornponents that aIl subsumption robots have in cornmon 14. In contrast, SPOTT is

an architecture15 with Olle of its components - TR+ interpreter - interpreting robot control

programs. It is actually the flexibility of the programming language which determines the

scalability of the architecture. Limitations of the architecture may require the addition of

a new component (e.g., reasoning), but this should not affect the existing mechanisms. In

other words, provisions for expansion should be allowed for in the original design.

The generality 16 of an architecture is a measure of the types of tasks and environments

which can be successfully operated upon. The architecture should be able ta do various

tasks without having to be reprogrammed or physically rebuilt. Brooks' robots were built

14 Each subsumption robot is built out of a common class of components; aH are built from finite-state machines
inhibiting one another, albeit different finite-state machines (Horswill, 1995).

15SpOTT's modules - TR+ interpreter, local path planner. global path planner - and their interconnections are
fixed for all tasks that the system can perform.

16 Genemlity and 5calability are not mutually exclusive properties: changing the task or environment may make
the problem more complex.

31

...

.-
.:t

. 1

CHAPTER2. BACKGROUND

to perform a single task, and were not able to extend performance to a suite of tasks. The

single task was hard coded for each robot. Other proposed behavioral architectures do not

clearly define what tasks (or sets of tasks) the robot can perform (Arkin, 199Db; Gat, 1992).

The architecture's functionality is predictable if it is able to guarantee successful

operation and task completion for various tasks and environments. The subsumption archi­

tecture (Brooks, 1991) cannot guarantee that the robot will complete the task successfully.

This mainly stems from the extreme position of having no internaI model. The emerging

overt behavior of the robot in most behavioral systems, including the subsumption archi­

tecture, is only evident by observing the robot. In order to guarantee task completion.

the gross actions 17 should be deterministic, predictable, and repeatable. Behavioral archi­

tectures such as the one by Brooks are usually non-deterministic. An internaI model and

a dynamically adaptable planner need to be integral parts of an architecture in order to

provide any task completion guarantees.

Analytic or graphical tools are necessary for monitoring (Brooks, 1991), debugging

and understanding expected and unexpected interactions with the environment, as weIl as

simplifying the task of programming control strategies. Debugging or the verification of

execution can either be done on-line or post-mortem.

Besides interfacing and the general issues mentioned above, the robot control archi­

tecture needs ta be designed to solve a particular class of problems intelligently and in

real-time. SPOTT addresses the problem of mobile robot navigation. It quickly reacts ta a

dynamic environment in order to avoid collision with obstacles while still striving to fulfill

its task objective. Real-time and intelligent interaction with the environment is addressed

by a relatively new research area called real-time AI. Other higher level concerns such as

learning and reasoning are beyond the scope this thesis and are left as potential research

areas for future extensions to the ideas presented here.

3.1. Mobile Robot Navigationa1 Problems

The three fundamental questions (Leonard & Durrant-Whyte, 1991) of mobile robot

navigation are: (1) "Where am l going'1"; (2) "Ho'UJ am l going to get there?"; and (3)

;, Where am 1'1". The questions can be rephrased as follows: (1) goal determination and

path planning; (2) path execution; and (3) the ongoing estimation of the robot's position.

AlI of these problems rely on the robot's "ability to sense the environment and to build a

17 A gross action is an abstract collection of actions such as obstacle avoidance. This gross action is deterministic
if the functionality, such as obstacle avoidance, is guaranteed to be successful. It is difficult to predict the exa.ct
trajectory due to the non-repeatability of environmental circumstances.

32

-.-[

CHAPTER2. BACKGROUND

representation of it, and ta use this representation effectively and efficientl'!l (Talluri & Ag­

garwal, 1993). This introduces the issue of map building (i.e., mapping of the environment).

3.1.1. Path Planning

The future locations of the robot include both the destination and the path ta he

followed. Path planning usually requires that a map (e.g., a CAD map of the indoors

environment) be transformed into a graph structure, which is then searched for a path. This

cau be achieved by parcelling the map into equally - or unequally - sized convex polygonal

regions. Nades are used to represent the regions, and edges connect nodes that share a

COIDIDon boundary. Each node and edge is labeled as passable or impassabIe~ and a search

is initiated to find a path through passable nodes via passable edges frOID a start to stop

node. Path planning for a fully autonomous mobile robot has always been a computational

bottleneck (Hwang & Ahuja, 1992) requiring complex search algorithms.

In contrast to autonomously planning a route~ tele-operated mobile robots avoid this

issue and permit a human to perform high level decisions. In this case, the research effort

is directed towards simplifying the decisions an operator must make by providing sufficient

and reHable information (i.e., the man-machine interface).

3.1.2. Path Execution

The execution of the path involves sensing the environment and making reactive deci­

sions to adapt to a potentially changing environment. There are several ways of executing

a path.

• Preprogrammed paths can be enforced by either buried wires or painted lines which

are sensed. This requires extensive modifications ta the environment (Harmon.

1987b).

• Following structures in the environment is a simple way of getting around. Exam­

pIes include wall following and road following. Road fol1owing techniques involve

fol1owing road edges, but certain problems may arise when the road edges can not

be detected (Thorpe et al., 1988; Dickmanns et al., 1990).

• Obstacle Avoidance: Obstacle avoidance can be performed by either using heuristic

reactive responses (Smith et al., 1975; Crowley, 1985; Manz et al., 1991; Waxman

et al., 1987; Moravec, 1983; Brooks, 1986; Arkin, 199Db), computationally expensive

reasoning (Nilsson, 1969), or dynamic path planning. The latter involves concur­

rently recomputing and executing the path. Such an approach is proposed in this

thesis.

33

r-:-'"
• :1

CHAPTER2. BACKGROU~D

3.1.3. Robot Position Estimation

A robot's position can be computed from information about either the robot's motion or

the relative positions of external cues for which absolute position is known. Dead reckoning L8

has good short term performance, but the errors are cumulative. Odometry19 is able to

provide the vehicle with an estimate of its position, but the position error grows without

bound unless an independent reference is used periodically to reduce the error (Cox, 1991).

Inertial systems20 may be able to provide good position estimation. However errors also

tend to accumulate, and the equipment is very expensive (Borenstein et al.. 1996). For a

wheel-based robot, position error is due to wheel slippage, which is diflicult ta mode!. Sorne

factors which influence wheel slippage include the type of Haar surface, robot velocity. wheel

alignment, and the magnitude and number of performed turns.

There are two basic methods for determining the position of the robot on an ongoing

basis. Landmark detection is perhaps the simplest. Installing pre-defined beacons2L re­

quires modification of the environment and does not lend itself to exploration of unknown

terrain. Known landmarks (Evans et al., 1992; Hebert, 1989: Cox, 1991) can be identified

and matched to a map when the terrain is known. Landmarks can either be naturalor

artificial (Borenstein et al., 1996). Naturallandmarks are those abjects or features that are

aIready in the environment and have a function other than for robot position estimation.

Artificiallandmarks are specially designed objects or markers that need ta be placed in the

environment with the sole purpose of enabling robot position estimation. When the known

landmarks are artificiaL they can be placed in positions which are optimal for detectability

even under adverse environmental conditions. On the other hand, natural landmarks re­

quire no preparation of the environment, but the environment needs to be at least partially

known a priori.

The second method is to match sensor data to a known map (Mackenzie & Dudek. 1994:

Schiele & Crowley, 1994; Wei{3 et al., 1994; Rencken, 1994), either geometric or topological.

Geometrie maps represent the world in a global coordinate system, while topological maps

represent it as a network of nodes and arcs. SPOTT uses an existing robot localization

18 Dend reckoning is derived from "'deduced reckoning' of sailing days. It is a simple mathematical procedure for
determining the present location of a vessel by advancing sorne previous position through a known course and velocity
informê:.tion over a given length of time (Borenstein el al., 1996).

19This method uses encoders to measure wheel rotation and/or steering orientation. [t is also the simplest
implementation of dead reckoning.

20 This method USes gyroscopes and sometimes accelerometers ~o measure the rate of rotation and acceleration.
21The absolute position of the robot is found by measuring the direction of incidence of three or more actively

transmitted beacons. The transmitters, usually using light or radio frequencies, must be located at known sites in the
environment.

34

-
CHAPTER2. BACKGROU~D

method (Mackenzie &: Dudek~ 1994) which is based on correlating sonar data with an a

priori geometric map.

3.1.4. Map Building

There are two common map representations: geometric and topological (Borenstein

et aL 1996). The geometric map can either be a grid map or a map consisting of a collec­

tion of geometric entities (Le., lines, polygons) tied to a fixed coordinate reference system.

An example of a grid map is called the occupancy grid. 1t is a probabilistic tessellated

representation of spatial information! where each grid entry is updated as more sensor in­

formation is made available about that specifie region in space (Elfes! 1989). Occupancy

grid-based maps require little computation and permit relatively simple integration of dif­

ferent sensors. However! they present difficulties in modeling dynamic obstacles and require

a complex estimation process for determining the robors position (Borenstein et aL 1996).

The topological approach is based on recording the geometric relationships between the ob­

served features. This produces a graph where the nodes represent the observed features and

the edges represent the relationships between them. Topological maps are used primarily

for robot position estimation and patk planning (Borenstein et al.. 1996). Robot position

estimation occurs when the robot is near one of the nodes and is able to match sensor data

with the stored map information at the node. Path planning is the selection of a route to

a destination location, visiting the necessary nodes along the way.

A map is built by fusing a priori knowledge (e.g., CAD mapL differcnt sensory data

and perhaps deduced information (i.e., by a reasoning module). Mobile robotics literature

(Hager, 1990; Durrant-Whyte! 1988) categorizes the different fusion methods as follows:

(1) competitive, where the sensors are supplying redundant or competing observations: (2)

complementary, when the sensors provide unique information which constrains or refines

observations from another; and (3) independent, as only one sensor contributes at a time.

The decision of what type of fusion strategy to use should be based on how the sensory

data is being utilized to support the robot's intended action (Murphy, 1996).

SPOTT uses adynamie path planner based on the potential field technique for deter­

mining action. !ts map consists of an a priori CAD map fused with sensory (Le., sonar!

range, infrared, bumper) data. The data is fused by using the competitive method. When

new sensory data arrives, it is compared ta the existing rnap to see if the corresponding

spatial locations are already oceupied. If it is, tben the new sensory data is discarded:

otherwise it is entered into the map. The advantage of this method is that it is sinlple and

35

CHAPTER2. BACKGROUND

adequate for navigation in most circumstances22 • The disadvantage is that recently sensed

redundant data is Dot used ta refine currently stored map features. Uncertainty is addressed

by padding the geometric map features by a predetermined expanse in aU directions (e.g.~

a line feature becomes a rectangle).

3.2. Rea1-time AI

An autonomous robot needs ta respond quickly and intelligently to changes in the en­

vironment. A relatively new area called real-time AI (Musliner et aL 1994) addresses the

difficult issues which arise when deadline constraints are combined with complexities arising

from (1) uncertainty in sensing, environmental modeling, and actuator activation~ and (2)

limited computational processor resources. Real-time AI is the convergence of real-time sys­

tems and Artificial Intelligence (AI) methods. A control system is real-time if the reaction

rate of control is faster than the rate of change in the environment. An AI method executes

search by finding an appropriate set of actions to lead an agent from sorne initial state ta a

goal state. The two areas are merging because AI methods are tackling more realistic do­

mains requiring real-time response and real-time systems are moving towards more complex

applications requiring intelligent behavior. Building real-time AI robot systems is difficult

because of the constraints imposed by the robot: (1) The robot is subject ta bounded com­

putation because its data processors have limited memory and speed; and (2) The robot is

also subject ta bounded reactivity due to the range and accuracy limitations of its sensors

and actuators. There are three ways in which AI can be integrated with real-time systems:

(1) AI is embedded into a real-time system; (2) real-time is embedded into an AI system:

and (3) a real-tirne and an AI system co-operate concurrently.

AI is embedded into a real-time system when search-based problem-solving is con­

strained to meet real-time deadlines. In general~ AI tasks~ such as planning and search­

based problem-solving, are ill-suited ta real-time scheduling as the scheduling relies on the

worst-case execution times for aU tasks, and these tasks often have unknown or extremely

large worst-case execution times (Paul et al., 1991). The unpredictable execution time is

due to variations caused by search and backtracking operations. There are two approaches

for embedding AI into a real-time system. In the first, the execution time variance inherent

in search-based AI problem-solving is reduced to make these techniques viable for worst-case

scheduling. An example is the purely reactive AI architectures (e.g., subsumption archi­

tecture (Brooks, 1986)), where aH condition-action rules are assumed ta run concurrentlv.

22This is not the case for maving abjects.

36

CHAPTER2. BACKGROUND

A hierarchical ordering of the rules is used to decide the current active rule without the

neecl for any AI search23 . Another way of reducing variance is to execute a collection of

distinct AI solving methods. Each method requires different computation times depending

on the circumstances. The result is obtained from the method which meets the current

situation's real-time constraints. In the second approach, the AI task is cast as an incre­

mental and interruptible algorithm. Such algorithms are referred to as anytime algorithms

(Mouaddib & Zilberstein~ 1995). The result of an anytime algorithm is available from the

start of computation at the expense of accuracy. The accuracy improves gradually~ directly

proportional to the execution time~ to sorne optimum value.

When real-time is embedded inta AI, the overall system employs AI deliberation tech­

niques but under sorne circumstances these techniques may be short-circuited in favour of

a real-tirne refiexive response. The main problem with this technique is that if refiexive

actions can bypass normal deliberation mechanisms~ it may be difficult or impossible for

deliberation processing to reason about the changes introduced by the refiexive responses.

The third method in which AI is integrated with real-time is to have two independent.

concurrently executing, and co-operating processes. Synchronization problems may occur

because the AI system operates at a time scale which is much slower than the real-time

system.

The approach taken by SPOTT combines all three methods for merging real-time con­

trol and AI deliberation. Examples of AI being embedded within a real-time systelIl are the

behavioral controller - TR+ program interpreter - and also the potential field local planning

mechanisffi. TR+ programs eliminate search by having a fixed hierarchy of ordered rules.

The potential field path planning strategy is an anytime algorithm (i.e.~ the local path is

always available). An instance of real-time being embedded into AI occurs when reactive

behaviors (Le., TR+ rules) override the currently planned movements (i.e., local potential

field path planner). A shared map database resolves local planning and behavioral control

confiicts. In addition, the local path planner can also be viewed as a real-time module

interacting with the concurrently executing global AI path planner. The local path planner

is in the critical real-time feedhack control loop, whereas the global path planner is not.

23 A production system aIso does not require any AI search.

37

-,"

CHAPTER2. BACKGROU~D

4. The SPOTT Robot Control System

This thesis proposes an architecture called SPOTT~ which provides a bridge for linking

behavioral (i.e.~ reactive) and symbolic control. SPOTT is a real-time AI system for au­

tonomous mobile robot control which is responsible for dynamically adapting to changing

environmental circumstances while executing navigational tasks. The architecture consists

of (1) a control module~ (2a) a local planning module, (2b) a global planning module, (3) a

map database (i.e., world model), and (4) a graphical user interface (GUI) (see Figure 1.4).

The control module consists of an interpreter executing behavioral (TR+) programs. The

selected actions - from the behavioral controller - control the robot actuators or update

the world model. A local planning module continually queries the world model and incre­

mentally calculates a trajectory for locally satisfying the task command goal. The local

planner and the behavioral controller are in the critical real-time feedback control loop of

the system. The global planning module advises the local planning module on the effects

of the global goal. The global planner performs AI search to find a path in a symbolic (i.e..

abstract) representation of the map. It is not in the critical real-time feedhack loop of the

system, so it is not subject to the same time constraints as the behavioral controller and

local planner. A reasoning module would operate on a similar time scale as the global path

planner. The fact that the global planner aIready exists as part of SPOTT indicates that

other time non-critical modules - such as a symholic reasoning system - could be integrated

with SPOTT. The plausibility of integration with a higher level reasoning system shows

how SPOTT could provide the crucial link between short-range reaction and long-range

reasoning (Hexmoor & Kortenkamp, 1995).

The proposed architecture - SPOTT - addresses the problematic shortcomings24 of ex­

isting behavioral architectures. A task command language lexicon based on a minimal set of

navigational verbs (Miller & Johnson-Laird, 1976) and a minimal spanning subset of spatial

prepositions (Landau & Jackendoff, 1993) has been developed in order to specify a collec­

tion of tasks which SPOTT can perform. The tasks are executed by the interpretation and

execution of a TR+ program alongside concurrent dynamic path planning execution. The

TR+ programs easily permit the addition of new sensors, actuators and control strategies.

SPOTT is able ta guarantee task completion for certain task and environmental configura­

tions25
• The GUI module provides visualization of the TR+ control program deliberation.

24ScaJability, generalizability, predictability (i.e., task completion guarantee), and the ability to monitor
execution.

25SPOTT is able to guarantee task completion when the location of the goal is known and a CAO map is
available a priori.

38

CHAPTER2. BACKGROU~D

as well as a view of the roboes state with respect to its environment. SPOTT is also mod­

ular and is dynamically responsive in real-time. Intelligent responsiveness is achieved by

applying real-time AI techniques as well as distributing the processing across an available

set of computational processor resources.

The following chapters of the thesis elaborate upon the various facets of SPOTT.

namely, TR+ control, path planning, and the task command lexicon used for specifying

navigational tasks. Subsequent chapters discuss the implementation of SPOTT and exper­

imental results.

39

-
CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

CHAPTER 3

Control: Teleo-Reactive+ Programs

In control theory, it is to customary to think of the control mechanisms as being composed

of analog electrical circuits, which are ideal for continuous feedback. In contrast~ computer

science is familiar with such ideas as sequences, events, discrete actions and subroutilles.

These are at odds with the notion of continuous feedhack. There has been Little effort to

import fundamental control theory ideas into computer science (Nilsson, 1992).

Nilsson (1992; 1994) has proposed a formalism, called "circuit semantics", which is

conceptually similar to electrical control circuits. He has also proposed a programming lan­

guage called Teleo-Reactive1 (TR) programs, which continually get recompiled into circuit

semantics at execution time. The TR formalism permits robot control to be programmed

in a similar fashion to conventional programming (Le., parameter passing and hinding,

hierarchy, recursion, and a main program with subroutines). A TR program is a list of

hierarchically-ordered condition-action rules (i.e., like a production system). It has a graph

representation - called a TR tree - where a condition is specified by a node and an action

by an arc.

SPOTT uses an extension of TeIeo-Reactive (TR) programs - called TR+ programs

- for specifying behaviorai control. During execution, the TR+ interpreter continuously

activates and evaluatcs the TR+ programs. The execution of the programs is aSYllchronous

and concurrent. The extensions to TR programs - TR+ programs - formalize the operators

for condition and action expressions2 and present the programmer with the ability to control

how and when the expressions are evaluated.

IThe actions of the robot are influenced by its goals, hence the term teleo. This term was coined by)O;ilsson in
(1992).

2ConditionaI expressions using AND and OR operators are aIso possible in the TR formalism, but without the
expressibility of TR+ programs. How and when the expression is evaluated can be control!ed by the TR+ operators.
ln addition, the TR formaJism does not contain any operators for specifying action expressions.

40

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

1. Teleo-Reactive Programs

Teleo-Reactive (TR) programs have been recently introduced by Nils Nilsson (1992:

1994) as a formalism for specifying event-driven behavioral control. The idea behind TR

programs is to give the control system the expressive power of a computer program. The

ideas that have been retained from computer science are as foHows: (1) The programs have

parameters that can be bound at run time and passed to subordinate routines; (2) There

is a hierarchical organi7.ation; and (3) The programs can be recursive.

TR programs are very similar to an ordered set of production rules (i.e.~ condition-action

pairs). They are interpreted in a manner comparable to the way a production system is

interpreted: The list of rules is scanned from the top for the first rule whose condition part

is satisfied, and then the corresponding action is executed. A TR program differs from

a production system in that aH the active3 conditions are continuously evaluated and the

action associated with the current highest TRUE condition is always the one executed. The

actions can be energized4 or ballistic5 , whereas production system actions are only baHistic.

A hierarchical order on the list of condition-action rules is imposed by the designer. A

TR program is constructed so that for each ruIe, Ki - ai, condition Ki is the regression.

through action ai, of some particular condition higher in the list. Ki is the weakest condition

such that the execution of action ai (under the most probable operating circumstances)

achieves sorne particular condition K J which is higher in the list (j < i). The condition KI

is the goal condition the prograrn is designed to achieve. The execution of the actions in a

TR program uitimately achieves the goal. Should an action have an unexpected effect, the

program will nevertheless continue working towards the goa16 .

A TR program is organized like a computer program with a single main program and

a collection of subroutine programs. When the term --TR program" is used, it actually

refers to a collection of TR programs: one is the main program and the rest are subroutine

programs. Initially, the execution of a TR program is such that the conditions in the main

program are continuously evaluated (Le., active). Ifone of the actions caUs a subroutine i TR

3Not aH conditions are continuously evaluated. A TR program is usually modular in organization, consisting
of a main program and a collection of subroutines, similar to the organization of a computer program. Only the
conditions in the main program (Le., invoked by the user) and the conditions in the currently called set of subroutines
are active.

4 An action is energized when it is sustained continually as long as its triggering condition remains TRUE.
5 An action is balli.!tic if it executes to complet ion after the logical transition of its triggering condition from

FALSE to TRUE.
6The TR sequence is complete if and only if K l V ... V KI V ... V Km is a tautology, which is a clause containing

complementary literais. A TR sequence is universal if it satisfies the regression property and is complete. A universal
TR sequence will achieve its goal condition, KI. if there are no sensing or external errors.

7 A subroutine may be invoked from the main program, from another subroutine program. or from a previous
instantiation of itself (Le., recursion).

41

.r

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~IS

program, then al! of the subroutine's conditions are also continuously evaluated in addition

to the main TR program's conditions. This is how a TR program (i.e.~ a subroutine TR

program) is dynamically activated at execution time. If a particular subroutine has not

been called via an action for a specified period of time, then the continuous evaluation

of its conditions ceases. This process is called ""garbage collection"a and is synonymous

with the identically named operation in a LISP programming environment. Activating

and deactivating conditions permits recursive caUs to different instantiations of the same

subroutine (i.e., with different input variable values).

An action - ai - either activates an actuator directIy or via sorne intermediate represen­

tation. An action can also be another TR subroutine. A condition - Ki - is an executable

process which returns a logical value (TRUE or FALSE). The value is based on sensory

inputs and world models. In addition, the process can also return other (i.e' l logical or non­

logical) values through variables attached to the condition. Conditions are based on the

K-B model proposed by Kaebling and Rosenchein (1990). In this model, embedded agents

or situated automata are '~computer systems that sense and ad on their environments".

An appropriate series of actions emerge from the interaction of the control system with the

environment. The K-B model separates perception and action (see figure 3.1). The percep­

tion module monitors the environment so that the agent (Le., robot) can establish certain

beliefs of the world. Conditional predicates based on these beliefs are the inspiration for

the conditions Ki in TR programs.

The conditions and actions of TR programs form a control conceptualization of the

robot within the world. This bears some resemblance to predicate calculus, although it is

not as powerful because there is no theorem proving. TR programs are only an incomplete

expression of declarative knowledge. The conditions in which the declarative knowledge

is presented are both functional and relational in nature. They are functional in that the

values of variables can be computed and passed to other conditions, actions or subroutines.

They are relational in that they represent a logical-value, either TRUE or FALSE. An action

is activated when its associated condition is TRUE and is the highest-level TRUE node in

the TR program. For TR programs, the universe of discourse9 are the objects and features

stored in the internaI model, as weIl as the feature information continllally received via

the sensors. The conditions and actions are the building blocks for what constitutes a TR

program.

8This phrase was aJso used by Nilsson (1992; 1994) in arder to describe the c1eaning procedure.
9The univer"e of di"coUT"e are the set of objects about which knowledge can be expressed.

42

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

PERCEPTION

o'- poila ekaraMfUl

-Uglat. 011 in room 17state vector-
O- ."

-
l'

ACTION-
ry

1
1

t -- i- update - 1 - Output -- , -
~ func:tioD 0 Func:tion i

"Beliefs" 1- 1

(oourukd ti~) 1---
(bouruûd tU-,

~ .,at~k...

1 eombinational
eircuit)

1

lIelUO

ÏDpu

FIGURE 3.1. K-B Model of an Embedded Agent. (as adapted from (Kaebling &. Rosen­
schein. 1990» An embedded agent is a computer system that senses and acts on its environment.
Beliefs of the world are continuously updated with feedback from the sensory devices.

1.1. TR Program Syntax

•
....

A TR program is an ordered list of condition-action rules. It is defined by a name and

a list of arguments (i.e.. variables) that are bound when the program is called. The binding

of arguments is subject to continuous recomputation. The conditions. K,~ are Boolean

combinations of components of astate vector as proposed hy Kaebling and Rosenchein

(1990) (see Figure 3.1).

AlI the conditions in a list are evaluated concurrently. An action is determined by the

highest ranking TRUE condition and is either energized or ballistic. Energized actions are

the kind that must he sustained by an enabling condition to continue operating. Ballistic

actions, once caUed, run to completion (i.e., pulse, one-shot operation). They are initiated

on the logical transition of their triggering condition from FALSE to TRUE.

­1 43

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

The syntax for a TR program as proposed by Nilsson (1992) is as follows:

<TR-Prog> :: (defseq <name> <arg-list>

((<KN>nil)

« Ki >< actioni »

« KI >< actionl »)

<action> <energized-action> 1 <ballistic-action> 1 nil

<energized-action> " <primitive-action> 1 <TR-Prog>

<ballistic-action> .. <primitive-action>

<K> <primitive-condition> 1 TRUE

The "primitive-conditions" and "primitive-actions" are predefined by the programmer.

The "primitive-conditions" produce a logical decision based on sensory or world model

input. The "primitive-actions" either drive the actuator or update the world model.

1.2. Graph Representation

The ordered set of rules which make up a TR program can be represented in graph

form, where anode represents a condition and an arc represents an action. The graph form

of a TR program is called a TR tree. TR programs and its graph representation - TR trees

- resemble the search trees lD constructed by planning systems that work backwards from

a goal condition (Nilsson, 1994). A particular type of TR tree is a TR sequence. For the

general case (i.e., TR tree (see figure 3.2)), many arcs cao enter a node but only one arc

exits a node. A TR sequence (see Figure 3.3) is a constrained TR tree where only one arc

may enter anode. TR trees (Le., the general case) are a more appropriate representation

than TR sequences when there are maoy actions which contribute to achieving a given

condition.

Recall that aIl the conditions in a TR program are continuously reevaluated and the

arc leaving the highest level TRUE node is executed. When represented graphicaIly as a

TR sequence, the highest level TRUE condition (Le., node) is unambiguous (Le., there is

10 Triangle table3 (Fikes et al., 1972) are an example. They are a degenerate form of TR trees, consisting of a
single path (Nilsson, 1994).

44

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

•

a) TR tree

•••

•••

••• b) corresponding
TR rules

c? K1 -> nil

~ -> 82
K3 -> S3
K4 -> 8 4
KS -> 8 5

KN- 1 -> 8 N_1
KN -> SN

- FlGURE 3.2. A TR Tree. The TR tree is shown in (a). while the corresponding list of rules is
presented in (b). KI is the program goal. The hierarchica 1 ardering is top-down and from left ta right.
The nodes are numbered with respect to their ordering of importance.

only one condition per level). This is not the case when the TR program is represented as

a TR tree, where many TRUE nodes can exist at the sarne level. Depth ties are resolved

according to sorne prespecified ordering, usually from left to right: if many nodes are TRUE

at the same level, the leftmost TRUE node's actions are triggered. The depth tie can also be

resolved by finding the node. from aIl the TRUE nodes at the same Level, with the minimum

cost path. A cost is associated with each action, and a total cast is determined by finding

the expenditure during the course of traversing all actions leading to the program goal node

from the node in question. The highest ranking TRUE node is the one with the minimum

cast path.

A TR tree can aiso be represented as an equivaient TR sequence. The cost for such

a transformation is the loss of ability to express the goal achievement li associated with

executing an action that is one of many actions which exit from the same node. The gain

11 The execution of an action over time will result in a new condition being TRUE. Recall that the current
TRUE condition is the regression of sorne higher level condition through its action (Le., in a condition-action rule).

45

CHAPTER 3. CONTROL: TELEO-REACTlVE+ PROGRAMS

a) TR sequence

•••
b) corresponding

TR rules

KN_1 -> aN_1
KN -> aN

,-:

FIGURE 3.3. A TR Sequence. The graph format is presented in (a). white the corresponding
Iist of rules is illustrated in (b). KI is the program goal.

is that the highest level TRUE condition (Le.! node) is unambiguous because there is only

one condition per hierarchical level. The TR tree in Figure 3.2 is shown in a TR sequence

format in Figure 3.4.

1.3. TR Program Interpretation and Execution

The algorithm for the run-time interpretation and execution of a TR program is stated

as follows:

(i) The main TR program 's conditions are executed and initiaLized.

(ii) The highest level TRUE condition specifies which ai is activated. If ai is a primitive

action, then it is active lill overridden. If ai is a subroutine TR program, then ils

conditions are executed and initiaLized (if they have not been as of yet), and (ii) is

repeated for this particuLar subroutine TR program.

(iii) If a subroutine TR program has not been called for a predefined period of lime,. the

execution of its conditions is stopped.

(iv) If the highest level condition in the main TR program is TRUE, then the interpreter

STOPS, otherwise execution returns to step (ii) , using the main TR program.

This causality for certain TR progra.ms is explicitly shown in a TR tree (see Figure 3.2), whereas it is not in a TR
sequence (see Figure 3.4).

46

..

CHAPTER 3. CONTROL: TELEO-REACTlVE+ PROGRA:\.IS

•••
FIGURE 3.4. A TR Sequence Created From a TR Tree. With a fixed tie-breaking method.
the TR tree maps to a TR sequence. This is the TR sequence which is equivalent to the TR Tree in
Figure 3.2. The head of a dotted arc indicates the implicit goal achieved as a consequence of executing
the action (shawn by a bold arc) associated with the node. The TR Tree is a more appropriate
representation because it captures this causality.

An example of the execution of the algorithm can be shown using Figure 3.5. Conditions

cl, c2, and c3 in the main program are continuously evaluated. If cl is TRUE (i.e.~ the

highest level TRUE condition in the main program), the interpreter stops because the

program has satisfied its global goal. \Vhile the program is executing. the conditions in the

main program (i.e., cl, c2, and c3) are continuously evaluated. If c3 is the highest level

TRUE condition in the main program, a3 is called, which invokes the subroutine a3. In this

case, conditions cl, c2. and c3 as weIl as c32 and c33 are aIl continuously evaluated. When

c3 is no longer the highest level TRUE condition, c32 and c33 are no longer continuously

evaluated.

The interpreter will only continuously evaluate the conditions that need to be evaluated.

This is pertinent for writing compact code, especially when the control can he expressed

as a recursive function (see Figure 3.8). AIso, the computational resources will ollly be

computing the necessary conditions, and not ones that have no influence on the resulting

control. This is the major difference between the TR formalism and the other behavioral

47

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

FIGURE 3.5. The Main Program and a Subroutine Program. A subroutine program has
a blank condition for its head and tail conditions. as shown above. The called subroutine program is
inserted into the calling main program in place ofthe arc which represents it (e.g., a3) by discarding the
blank head and tail conditions. The main and subroutine programs can be equivalently represented as
a single TR program as illustrated. Subroutine programs are a useful organization mechanism because
they help control what constitutes an active condition. While the program is executing. the conditions
in the main program are continuously evaluated. If c3 in the main program is the highest level TRUE
node. then the conditions in subroutine a3 are al50 continuously evaluated. otherwise they are not.

-

-

main

subroutine s3

the main program
wlththe

subroutine 83
Inserted

-~(

approaches such as the subsumption architecture (Brooks 1 1986). In the subsumption archi­

tecture 1 aIl specified conditions are always continually evaluated. whereas in a TR program 1

only the conditions pertinent to the current control 12 are evaluated.

1.4. Circuit Semantics

Since the TR programs perform control, they must respond in bounded time to en­

vironmental changes. Conceptually, the interpretation and execution of TR programs is

comparable to producing electrical-like circuits (Le., called circuit semantics). They are

an alternative way of visualizing the execution of a TR program. Figure 3.6 shows the

corresponding circuit diagram for the TR Program in Figure 3.3.

12 As specified by the TRUE conditions and the organization of the main and subroutine programs.

48

-...

-f

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

---------------..... nll

>-----------~82

>-----------4~ 83

•••

KN_-1~-~. 8N

FIGURE 3.6. Implementing a TR Sequence as a Circuit: The action associated with the
highest level TRUE condition is aetivated. (Nilsson. 1992).

Circuit semantics are similar to the finite-state machines and their composition in the

subsumption architecture (Brooks, 1986). The only difference is that the TR program cir­

cuits are created at run-time, while the subsumption circuit is compiled before run-time.

The computer-program analogy is the best approach for describing run-time circuit creation.

The conditions which are evaluated depend on the calling of the subroutine TR program

which contains them. If this subroutine TR program has not been called for a while, the

conditions within it are not evaluated anymore. This execution style can be conceptualized

by the creation and deletion of circuits. The creation of the circuits corresponds to the con­

ditions being continuously evaluated, and their deletion inlplies that the conditions are no

longer being evaluated on a continuous basis. In contrast, the circuits for the subsumption

architecture are created before run time and execute as is. This is the major distinction

between TR programs and other reactive (i.e., behavioral) programming methodologies

(Brooks, 1990; Kaebling & Rosenschein, 1990; Georgeff & Lansky, 1987; Firby, 1987; Sim­

mons, 1994; Lyons, 1993; Simon et al., 1993). AIl of these other methods are compiled

into circuits before run time. When a particular formalism is compiled into circuitry before

run-time, more circuitry is built 13 than needed because aIl possible contingencies must be

anticipated. In contrast, a TR program continuously adjusts its circuitry by adding and

deleting circuit elements14 during execution time.

13 More conditions are evaluated than required.
14 Adding and deleting condition processes to and from the list of condition processes which are continuously

being evaluated.

49

...

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

TR programs are versatile because of the blending of control theory with computer­

science concepts. They can be conceptualized as a list of rules or a graph structure. The

interpretation and execution of TR programs can be explained in terms of computer science

concepts or as electrical-like circuits (i.e.~ circuit semantics).

1.5. TR Program Examples

TR programs are a very effective formalism for specifying event-driven control to a

programmer working backwards from whatever goal condition the program is being designed

to achieve. For example, figure 3.7 shows a TR program for controlling the temperature

setting of a thermostat. The conditions are continuously monitored. If the temperature

is low, the corresponding action is ta turn up the temperature and vice versa. If the

temperature is within the desired range, no action is executed.

FIGURE 3.7. A TR Tree for Controlling a Thermostat. A sensor monitors the temperature
and a control mechanism permits the lowering and raising of the temperature.

The "goto{locl' program in Figure 3.8 illustrates a simple TR program for executing

robot navigation. This program assumes that there are two actions for controlling the robot:

move, and rotate. Move translates the robot in the direction it is currently pointing. Rotate

turns the robot in a clockwise direction. The input to the program is a location (in x~y

coordinates) for the robot to traverse to (i.e., loc). If the robot is not heading towards that

goal position, then the robot rotates (Le., rotate); otherwise, it moves towards the goal (i.e.,

move). If the specified goal position is attained, then there is no further movement.

Figure 3.9a shows how the inputs to the system - the goal specification~ the position

sensor and a compass reading - are combined to define the condition predicates. Figure 3.9b

illustrates the circuit semantics for the "goto(loc)" program.

The "amble" program in Figure 3.8 caUs "goto" as its subroutine. "Amble" recursively

caUs itself with intermediate goals (i.e., random positions) until there is a clear path to the

50

..
CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA.\<lS

main ro ram

amble (goal)goto(goal}

equal(position,goal) -> nil

clear-path(position,goal) -> goto(goal)

amble(new-polnt(p08lt1on,goal» T -> amble(new-point(position,goal»

6
subroutine program

(aqual (position, lac»

move

gala (Ioc)

equal(position,loc) -> nil

equal(heading,course(position,loc» -> move

T -> rotate

FlGURE 3.8. A Simple TR Tree for Controlling a Robot (adapted from (Nilsson, 1994)).
The gata program causes the robot to rotate if it is not aligned with the goal, otherwise the robot
moves forward. The amble program picks random points which serve as intermediate goals if there is
not a c1ear path to the goal. If there is a clear path, then the gata program is called. This program
may nct be successful if appropriate random locations are not seleeted.

goal15 . When there is a clear path to the goal (Le., or intermediate goal), then "goto" is

called. The undoing of all of the recursive calls results in the calling of "go to(goal)" , where

goal is the original global goal (i.e., the value of goal when amble was originally called).

When the recursive calls are not able to be undone, the robot is stuck in a thrashing

-.~. 15This may be an intennediate goal if amble has caUed itself.

51

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA:\IS

Ioc _

.., 10&1 ..-:lftc:atiOD
-

I----~-~ (equal (poIilloD) locll

P------3_~ (equaJ tbeecUDIJ (coune (poalion) locI)

-
comp... -

a) Update FunctioD

,.-_---+-~...~ (move)

(equal (beadillcJ (coune (~itiOIl) loc))

(equa.I (po8Ïlloll) loc))

(roule)

b) Output Function

Cïrcuitry for Moving a Robot to the Point lac

FlGURE 3.9. Circuit Semantics for a Simple Robot Controller: (a) This diagram illus­
trates how the conditional predicates in the TR program goto{loc) iIIustrated in Figure 3.8 are forme<J.
(b) This diagram illustrates the circuit semantics for the TR program goto(loc) in Figure 3.8.

.-"i

situation (i.e.~ cyclic loop) and unable to reach the global goal. There is a strong reliance

on the new-point function ta return locations that will help the robot navigate around an

obstacle. When new-point cannat provide such locations, the robot is stuck in a cyclic Ioop.

The example in Figure 3.8 illustrates the TR program properties of recursion, hierarchy

and variable passing. In the amble program (Le., the main TR program), the Iowest level

condition is called recursively until the condition clear-path is TRUE. If there is a clear

path, then the goto program - the subroutine TR program - is called. In both programs ­

goto and amble - the condition-action rules are ordered from most to least importance. The

program goal is specified in the top level condition of the amble program: equal(position,loc).

Variables are used as input ta conditions (e.g., equal(heading,course(position,loc))), and as

input to a main program (e.g., amble(loc)) and ta a subroutine program (e.g., goto(loc)).

In this example it is possible for the robot ta get stuck when no new random points (Le.,

new-point) will put the robot in a position where it has direct sight of the goal (Le., in order

ta execute goto) .

52

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

The TR prograrn in Figure 3.8 will work in most situations, but there is always the

possibility that the robot will get stuck at a local minimum (i.e.~ thrashing, cyclic loop).

This is a cornmon problem for rule-based systems since a11 potential environmental situations

are difficult to foresee as a set of hierarchica11y ordered set of condition-action rules. Thus~

a rule-based system cannot actually guarantee that a robot will be able to circurnvent aIl

obstacles while navigating towards a goal position.

1.6. Advantages and Disadvantages of the TR formalism

1.6.1. Advantages

As discussed above~ a TR program is goal driven (Le., programmable goals), hierar­

chical~ recursive, and modular. The modules are like a computer program: a main calling

routine and a collection of subroutines. Variables can be passed between subroutines as

weil as among conditions and actions within a TR program. The biggest advantage of the

TR formalism is its simple formulation and representation. A TR program is specified as a

set of hierarchically ordered condition-action rules. A graphical representation - ca11ed TR

trees - aids in the visualization of prograrnming and executing TR programs.

The TR formalism is event-driven as opposcd to state-driven. The programmer does

not require a complete state model of the world in order to define the actions. The conditions

by which an action is triggered are continuously recomputed and are responsive to sensory

inputs as weIl as internaI models. Each condition is the regression of sorne condition doser

to the goal, through an action that nominally achieves a "doser to the goar condition.

1.6.2. Disadvantages

The limitations of the TR formalism are only evident in a real-time irnplementation16 .

Two such limitations are as follows:

(i) The execution of sensor-based conditions takes a fixed amount of time. Condition

operators need to be formalized to give the programmer the flexibility to take this

into account.

(ii) Actions can either be dependent on or independent of each other. In order to specify

this, it is necessary to define procedural and concurrent action operators. There are

no such operators in the TR formalism.

16Nilsson's experiments with TR programs used off-line computation (i.e., a LISP machine). Simulations using
a virtuaJ world, or simulating the concurrency of executing TR programs, are not adequate for evaluating the TR
paradigm.

53

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

Nilsson makes the assumption that aIl conditions are continuously recomputed and that

they are instantaneously responsive to environmental changes. In reality, certain conditions

may be computed very quickly, whereas others may require more time. The time required

to evaluate a condition depends on the processing complexity. For example. acquiring sonar

data requires multiple scans in order to have a dense and reliable measurement, which may

take a few (i.e.~ two to five) seconds. There is also no way of turning off the computation

of a condition within a TR program. This is usefui when it is obvious that the processing

of a condition is irrelevant in a particular contextual setting.

The robot should be able to perform many actions concurrently. However, a TR pro­

gram has a single program goal and executes only one action at a time. The goal at the

top of the main TR program is the program goal while aH other nodes (i.e.~ conditions) in

the program are intermediate goals. When a goal is expressed as a collection of conditions.

the method by which the operators (i.e., AND, OR) dictate the arder and concurrency of

computation should be specified. Likewise. the arcs (Le., actions) should consist of a set of

actions in order to encode independent actions which may be concurrently executed.

In this thesis, an extension, caHed TR+ programs, is proposed to address the prob­

lematic issues of TR programs. The extension remains faithful to the basic concepts of

TR programs and its graphical representation. TR+ programs permit real-time operation.

concurrent actions, conditional expressions, and a level of expressiveness with conditions

and actions that was not conceivable with TR programs.

There are no clear rules for choosing conditions. actions and their combinations when

writing TR programs. Behavioral patterns of biological systems may provide pointers. A

certain level of experience needs to be obtained from experimenting with the TR formal­

ism before creating any TR programming rules. A start to defining a TR+ programming

methodology is to experiment with a particular application (e.g., mobile robot navigation)

within a specifie control architecture (i.e., SPOTT). In the SPOTT control architecture~ a

path planner operates alongside the TR+ interpreter. This alleviates the TR+ program

of the task of obstacle avoidance l ï and actually simplifies the taxonomy of the required

functionality for mobile robot navigation. Section 2.2 provides guidelines for writing TR+

programs for mobile robot navigation within the SPOTT architecture.

17The TR program example in Figure 3.8 illustrates that it is difficu[t to guarantee successful operation of the
obstacle avoidance task when encoded in a rule-based system, such as TR or TR+.

54

-

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~lS

2. Teleo-Reactive+ Programs

Nilsson's TR formalism has been extended ta handle the execution of TR programs in

real-time. Simulations using a virtual world, or simulating the concurrency of the execution

of TR programs is not adequate for evaluating this formalisme The real-time extension ­

called TR+ - is a concurrent implementation using a message passing paradigm across a

network of computers.

Message passing software is used to distribute the computation of the conditions across

a collection of processors. The computational-processor resaurce management is handled by

a software package called PYM (Parallel Virtual Machine) (Geist et al., 1993). The TR+

program is interpreted by asynchronously scanning the list of active condition processes 18 •

which are executed concurrently and independently19 of the TR+ interpreter.

TR programs do not permit condition expressions and more than one action to be

driven from a node. This has been remedied in the TR+ formalisme In the latter. a set

of actions can be performed in parallcl or in sequential arder. The concurrent operator is

specified by Il, and the sequential operator is symbolized by ~. The concurrency operator

forces the left and right side operands (Le., actions) ta be executed concurrently, while the

sequential operator orders the execution of the actions from left ta right20.

The necessity for providing the capability of executing actions in parallel originates from

the characteristics associated with solving the mobile robot navigation problern. There are

certain subproblems that are not dependent on each other and should he solved concur­

rently; namely, mapping, localization and the search for a goal destination. This is possible

in the SPOTT architecture because the parameters associated with these subproblems are

independent inputs to the local path planner. The local path planner accepts the robot

position (i.e., localization), the obstacles (Le., mapping) and goals as independent inputs

from a TR+ program (see Figure 4.1). The capacity to execute different problems simulta­

neously is not possible in the original TR formalisme Recall that an action in a TR program

can either be a primitive (Le., drives an actuator or updates a world model) or another TR

program (i.e., subroutine). Each TR program (i.e., main or subroutine) is interpreted by

the parallel computation of a hierarchically ordered set of condition processes in order to

18The conditions that are part of the main TR+ program are always active. The conditions associated with
a subroutine are also active if the subroutine has been called on a regular basis by the main or another subroutine
program (see Section 1).

19 Although the condition processes depend on the TR+ interpreter for the start and termination of their
execution.

20 A Il B means that actions A and B are executed concurrently. A ~ B means that action A is executed first.
followed byaction B, once action A has completed execution.

55

-..

CHAPTER 3. CONTROL: TELEO·REACTIVE+ PROGRA~IS

determine which single primitive action (Le., or subroutine) gets executed. The concurrent

operator - in the TR+ formalism - permits more than one primitive action ta be executed in

parallel. This operator introduces a second level of concurrency ta the original TR formal­

ism by providing the opportunity for many action primitives to be executed simultaneously.

The circuitry analogy for a simple TR+ program with a concurrency operator is illustrated

in Figure 3.10. The parallel operator is the major distinction between the TR+ and TR for­

malisms. The sequential operator is included to provide the programmer with the flexibility

of controlling the order in which actions are executed when dependency is important.

The execution time of some conditions may be slower than the time required for a

single TR+ interpreter to scan through the list of active conditions. A condition process is

computed at a certain frequency depending on its processing complexity. The TR formalism

assumed that the logical value of a condition value was always updated at each interpreter

cycle. In reality, this is not always possible. In the TR+ formalism~ the logical value

associated with a condition process during its computation can either be set to its last

computed value or ta FALSE. The latter is referred to as a ballistic condition. while the

former is called an energized condition. A TR+ condition's computation frequency can also

specified by the programmer.

An expression of conditions is created by the logical operators AND and OR. Recently~

Benson and Nilsson (1995) have also introduced an AND operator to create an expression of

conditions in an extension to the original TR forrnalism. The TR+ formalism includes the

TR additions proposed by Benson and Nilsson (1995) as weIl as specifies AND (/\) and OR

(V) based operators which permit the programmer to specify how and when the expression

is actually evaluated (Le., see Tables 3.1 and 3.2 for the definitions of the TR+ condition

operators: Â, Ât, V, Vt, /\~ /\t! V, and Vd. The condition expression is either computed from

left to right (Le., by using one of the A! At! Vor Vt operators) or aIl condition processes are

evaluated in parallel (Le., by using one of the /\, /\t, V~ or V t operators). If the expression

is evaluated from left to right, then when its logical value is known, no further conditions

are processed in the expression. For example, consider the expression AÂB! which means

perform A/\B and compute the expression from left to right. If A is false, B is not evaluated.

If A is true, B is evaluated. This provides the capability of turning off the computation of

certain condition processes subject ta event states, and also saves computation time. If the

expression is rewritten as A/\B, then A and B are evaluated concurrently, and once their

logical values are computed, the expression's value is determined by the AND operation.

The /\t operator is used to specify a timeout on the evaluation of the expression. If the

56

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~[S

main
"'"- program

B
subroutine
program

A
subroutine
program

FIGURE 3.10. A TR+ Parallel Action and the Associated Circuit Semantics. In the
main TR+ program. TR+ subroutines A and B are executed concurrently. The executian of A and
B both culminate at any particular instance in the executian of a primitive action (i.e.. .-\A3 and .-\B2.

respectively). Current TRUE conditions are yellow and current active actions are red. The circuit
semantics analogy is used to show that ail conditions are continuously evaluated. in addition ta the
concurrent determination of two different primitive actions.

computation of the expression and its operands takes longer than a specified timeout period,

then the value of the expression is FALSE regardless of the computed logical values of the

operands. The i\ operator combines the ordering of the computation with the timeout

feature. Similar operators are available for the OR operator: V, Vt, v, and Vt- The truth

tables for the binary conditional operators are specified in Tables 3.1 and 3.2.

In addition to the two binary operators, there are two unary conditional operators:

the negation operator (...,) and the empty set operator (0d (see Table 3.3). The empty set

57

.-

CHAPTER 3. CONTROL; TELEO-REACTIVE+ PROGRA~IS

Operator Name A B Result Order of Computation

1\ AND T T T Concurrent

T F F Concurrent

F T F Concurrent

F F F Concurrent

I\t AND(elapsed) T T T* Concurrent

T F F Concurrent

F T F Concurrent

F F F Concurrent

t\ AND(sequential) T T T A,B

T F F A

F NC F A

t\t AND(sequential~elapsed) T NC T* A

T F F A

F NC F A

TABLE 3.1. Truth Table for the AND Binary Logical Operators. The operator works on
can expression composed of .4 and B. If the allotted time has elapsed, the asterisk .. chcanges T (TRUE)
ioto F (FAL5E). Ne means that the condition is not evaluated.

operator performs no logical function but specifies a time limit for the computation of the

operand, which if not met, results in a logical FALSE being returned. If A is TRUE and

the computation of A took longer than a specified time limit~ then 0t (A) will be FALSE.

Otherwise, 0t (A} is also TRUE. If A is FALSE~ then 0t (A} is always FALSE. The negation

operator changes the logical value of the operand to its opposite (e.g.. from TRUE to

FALSE). If A is TRUE, then .(A) is FALSE, and if A is FALSE, then .(A) is TRUE. In

both examples for the unary operators (i.e., 0t and .), A can either be a condition primitive

or an expression of conditions.

As with the TR formalism, TR+ programs are represented graphically as TR+ trees.

The TR+ tree representation maintains the original TR tree description (Nilsson~ 1992;

Nilsson, 1994) because it is simpler to visualize TR+ (or TR) program execution when arcs

and nodes each have a single meaning (i.e., actions and conditions, respectively). This is in

contrast to the extension proposed by Benson and Nilsson (1995) for graphically representing

an AND operation. In Nilsson's extensions, the TR tree is changed such that aIl operands

58

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~[S

Operator Name A B Result Order of Computation

V OR T T T Concurrent

T F T Concurrent

F T T Concurrent

F F F Concurrent

Vt OReelapsed) T T T* Concurrent

T F T* Concurrent

F T T* Concurrent

F F F Concurrent

V OR(sequential) T NC T A

F T T A,B

F F F A,B

Vt oR(sequential,elapsed) T NC T* A

F T T* A,B

F F F A,B

TABLE 3.2. Truth Table for the OR Binary Logical Operators. The operator works on
an expression composed of A and B. If the allotted time has eJapsed, the asterisk • changes T (TRUE)
into F (FALSE). NC means that the condition is nat evaluated.

o Result ~
.., NOT T F

F T

0t NULL(elapsed) T T*

F F

~ Operator 1 Name

TABLE 3.3. Truth Table for the Unary Logical Operators. The aperator works on the
expression (or primitive) defined by A. Ifthe allotted time has elapsed. the asterisk • changes T (TRUE)
into F (FAlSE). NC means that the action is not executed.

which contribute to a particular condition are indicated by an additional arc to represent the

AND operation (see Figure 3.IIa). In the TR+ tree, the AND or OR conditional expression

is fully expressed within a single node, but no arcs are sacrificed for expLicitly displaying

the regression of the AND operands (see Figure 3.llb). 1t is assumed that the condition

which led to the left entering arc corresponds to the regression of the first operand in the

59

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA:\lS

conditional expression, and aIl subsequent arcs are the regressions of the corresponding

conditions specified by the ordering of the operands within the conditional expression.

-

o
arcs not
used to
represent
actions

a) TR tree
(with AND nodes)

rules: A & B -> ab
o ->d
C ->c

b) TR+ tree
(with AND nodes)

FIGURE 3.11. TR extended vs. TR+ Trees for ANDing Conditions. (a) ln the extended
TR tree formalism proposed by Bensen and Nilsson (1995), arcs are sacrificed for explicitly representing
the regression conditions (or A & B. (b) This is implicit for the TR+ tree.

The TR+ formalism defines a list of AND and OR condition operators that explicitly

encode the control of how the expression is evaluated. This is necessary for any real-time

scenario because it gives the TR+ program designer the flexibility of specifying how and

when the expressions are evaluated. This is in contrast to leaving it up to the discret ion

of the interpreter, as is the case in the TR formalisme Furthermore. the TR+ formalism

permits concurrent primitive action execution which was Dot possible in the TR formalisme

Indepeodent actions should be permitted to be executed in parallel. The formalization of the

operators used in a TR+ program gives the program designer the flexibility for specifying

precisely the behavior of the control program in a paraIlel implementation.

60

<action-primitive> 1 <TR-Prog>

<action-primitive>

....

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~IS

2.1. TR+ Syntax

The syntax for a TR+ program based on the extensions to the TR program is expressed

as follows:

<TR-Prog> :: (defseq <name> <arg-list>

((< KN > nil)

« Ki. >< action - eXPi »

« Kt >< action - eXpt »)

<K> .. <cond-exp> 1 <condition> <time>

<cond-exp> :: <cond-u-op> <K> 1 <K> <cond-b-op> <K>

<cond-u-op>, 1 0t

<cond-b-op> .. A!vlAlvlAtlVtlAtlVt
<condition> :: <energized-cond> 1 <bal1istic-cond>

<energized-cond> .. <condition-primitive>

<bal1istic-cond> .. <condition-primitive>

<action-exp> :: <action> <action-op> <action>

<action-op> Il 1 >-
<action> :: <energized-action> 1 <ballistic-action> 1

<action-exp>

<energized-action> ..

<ballistic-action> ..

The < time> parameter associated with a <condition> in the definition for <K> is the

maximum allotted computation time for a condition before it is set to FALSE by default.

Similar to TR programs~ the details of the specific condition and action primitives are

defined by the programmer.

61

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

2.2. TR+ Programs for Robot Control

TR+ programs maintain the essential properties of TR programs. The extensions per­

mit greater flexibility in programming systems for real-time operation with a dynamic and

unpredictable environment. TR+ programs for navigation control within SPOTT are simple

because path planning and execution are not their responsibility. The role of the TR+ pro­

gram is reduced to the role of continuously providing the necessary inputs ta the local path

planner! namely: the current obstacle configuration (i.e.! mappingL the current estimate of

the robot's position (i.e., robot localization), and a goal specification (i.e.. destination). A

simple TR+ program which facilitates concurrent dynamic map creation and localization of

the robot, while striving to meet the task objective is shawn in Figure 3.12. The map cre­

ation (new_objecLpositions_are(_)) and localization (currenLroboLposition_is(_)) condition

processes are based on sonar range data and were developed at CIM (Mackenzie & Dudek.

1994). In this example, the program continues executing until the task target has been

reached. The environment is mapped and the robot is localized. continually at a specified

frequency, while awaiting task complet ion. 1t is assumed that SPOTT's local path planner

is responsible for performing obstacle avoidance and moving the robot towards the goal at

the same time while the TR+ program is executing. The role of the TR+ program is to

provide the necessary information to the path planner so that navigation can be carried

out.

A local path planner is used in conjunction with a TR+ controller because it is difficult

(i.e.! probably impossible) to completely express obstacle avoidance as a collection of TR+

rules for aIl potential situations. Many possible obstacle avoidance contextual rules could

actually be encoded as TR+ behavioral rules, but there is no guarantee that aIl environ­

mental contexts would be captured. To overcome the combinatorial explosion of obstacle

avoidance rules, an independent concurrent module performs local path planning based on

a potential field technique. The latter is a representation based on a discretized grid of the

local map21 and avoids the combinatorial pitfalls associated with encoding aIl possible ob­

stacle avoidance situations in a rule-based systerIl. A TR+ program executes by continually

providing goal, obstacle, and robot position estimate information - via the map database ­

to the local path planner. which in turn is responsible for issuing trajectory commands to

the robot.

21 The local map consists of a local window into the architectural CAD map and the collection of newly sensed
features.

62

.-

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA.\IS

(Localize_the_robotO Il
Map_the_environmentO)

Map_the_environment()

*set object positions to(OBJECT_pOSmONS)

nil

*set robot position to(ROSOT_POSITION)

FIGURE 3.12. A Simple TR+ Program (or Navigation ta a Specifted Location. A
TR+ tree for controlling a robot navigating towards a goal position, while concurrently building a map
and localizing the robot is shown. The asterisk • in front of a condition (e.g. $et abject pO$itian to
and $et robot po$itian ta) is used ta signify that the condition is ballistic.

63

•

-

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

SPOTT's organization (i.e., having a path planner function concurrently with the TR+

interpreter) helps define the role and structure of a TR+ program. SPûTT's local path

planner continually requires updates of the environmental configuration (i.e., obstaclesL

the current estimate of the robofs position, and a goal specification (i.e., destination). The

TR+ formalism permits the acquisition of this information in parallel.

The example in Figure 3.12 illustrated a simple TR+ program (consisting of a main

routine and two subroutines) that performed the basic behaviors necessary for navigation

control. This TR+ program assumed that the user has specified the spatial coordinates

of the goal. However, if the goal's coordinates are not specified, then the TR+ program

would also be responsible for performing a search within the environment by creating an

ordered list of intermediate goals. In this case, the user might specify the goal as an object

description, and it would be up to the perceptual capabilities of the system to identify and

recognize it (i.e., using the QUADRIS sensor). The goal of the visual search is ta position

the robot such that the desired object is located and recognized. Additional responsibilities

of the TR+ program include monitoring the homeostasis of the robot (Le.. internaI failures

such as battery failure, sensor failure) and assuring its safety. The latter is usually encoded

as reactive behaviors (i.e., fast responses to environmental stimuli). For example. SPOTT

uses the bumper and infrared sensors as a fail safe against obstacles that were not discovered

while mapping the environment with the sonar and QUADRIS range data.

Ethological studies (Tinbergen, 1951: McFarland, 1989) have also proposed hierarchical

control structures for modelling animal (e.g., birds, insects) behavior. The type of behaviors

modelled included survivaL eating, defending, a.t tacking and mating. The listed order is

usually how these behaviors were hierarchically organized. Robotics researchers have used

ethology as an inspiration to formulate behaviors for mobile robots such as wall fol1owing

(Connell, 1990; Gat, 1991b; Noreils & Prajoux, 1991), wandering (Anderson & Donath,

1991; Flynn & Brooks, 1988; Payton, 1986), obstacle avoidance (Watanabe et al.. 1992;

Kweon et al., 1992), position estimation (Kadonoff et al., 1988), boming (Connell, 1990),

and fleeing (Flynn & Brooks, 1988). Many of these behaviors can be categorized as being

associated with the task of navigation22 . The only exception is the fieeing behavior which is

a safety reaction to a looming dangerous situation (e.g., large object approaching). In order

to write an appropriate TR+ program, the two questions that the programmer must answer

are: (1) What are the behaviors? and (2) How are the behaviors organized hierarchically?

22 Wall following and wandering are a type of heuristic search strategy. Homing is a specification of the destina­
tion for navigation. Po~ition e~timationand obstacle avoidance are fundamentalJy necessary behaviors for navigation.

64

-

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~IS

As discussed earlier, the type of behaviors needed include navigation~ safety~ and home­

ostasis. Navigation can be further broken down into mapping, robot position estimation

and the search for the goal (i.e., if the spatial coordinates of the goal are not provided by

the user). A set of behaviors may be executed concurrently when there is no dependence

between them. Thus since there is no dependence between safety, homeostasis~ and naviga­

tion, they may aIl he executed in parallel. An alternative may be to prioritize homeostasis

behaviors higher than safety and navigation. This is left up to the discret ion of the TR+

programmer. AIso, aIl of the navigation behaviors (e.g., mapping, localization, search) are

independent of each other~ and may also be executed in paraIlel. Figure 3.13 illustrates the

form of a typical TR+ program for mobile robot navigation. The typical TR+ program

consists of a main program whose highest condition is the satisfactory completion of the

task commando The main program executes a collection of subroutines whose organization

is determined by the TR+ programmeL and is subject to constraints imposed by the de­

pendencies between the behaviors. In order to improve the clarity of understanding the

TR+ program, the subroutines should he organized hierarchically and modularly.

An example TR+ program23 consisting of a main routine and fifteen subroutines is

illustrated in Figures 3.14 to 3.22. This TR+ program is an example of mobile robot

control using SPOTT's framework. For the task of navigation, writing a TR+ program is

relatively simple because an of the mentioned behaviors are independent of each other and

may be executed concurrently. This would not be the case if the manipulation of abjects

were part of SPüTT's task repertoire. In this situation, there would be a strong dependence

between manipulation and navigation (i.e., the robot has to be near the object before it can

manipulate it). The use of TR+ programs for providing event driven control in other fields

such as telecommunications, industrial process control, or manufacturing will require the

definition of the necessary behaviors as weIl as a determination of their inter-dependence.

23This TR+ program makes use of the independence of navigation, safety and homeostatic monitoring. The
navigation behaviors of mapping, robot position estimation and search are aIso independent of each other.

65

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA:"lS

A Typical TR+ Program
Main

A Typlcal TR. "aln Program

OR
A Typlcal TR. Main Program

NavlgaUon

•••

•••

Subroutines

SAfety

•••

Homeostasls

•••

.JP

FIGlJRE 3.13. A Typical TR+ Program for Mobile Robot Navigation. The typical
TR+ program consists of a main program whose highest condition is the satisfaetory completion of
the task commando The safety, homeostasis. and navigation behaviors may ail be executed in parallel
because they do not depend on each other. An alternative may be to prioritize homeostasis behaviors
higher than safety and navigation. This is left up to the discretion of the TR+ programmer. Navigation
is further broken down into a set of behaviors (e.g.. mapping. localization, search) that are independent
of each other, and may alsa be executed in parallel.

66

CHAPTER 3. CONTROL: TELEO·REACTIVE+ PROGRA~IS

set variable to false(STATUS)
(Potential_Field_MaintenanceO Il

Navigate(STATUS»

FIGURE 3.14. The Main Routine for a More Complicated TR+ Program. The mov­
ing_the_roboLfailed() condition monitors the homeostatic (e.g., battery power. loss of radio control)
state of the robot. Currently it only monitors the state of the communication link. The robot will stop
if the target is reached or if a homeostatic failure is annunciated. The PotentiaLFielcLMaintenance()
subroutine is shown in Figure 3.15 and the NatJigate() subroutine in Figure 3.17.

-

Potential_Field_Maintenance() Mapping_the_environment{)

~

ï..

·set robot position to(ROBOT_POSITION)

current robot position is(ROBOT_POSITION)

nil

FIGURE 3.15. TR+ Subroutines Responsible for Maintaining the Potential Field.
The local path planner (i.e., potential field) requires the current configuration of obstacles and the
position of the robot. Concurrently, the environment is mapped (Le., Mapping_the_environment()} and
the current estimate of the robot is updated (i.e.. Localue-the_robot(). Mapping_the_entJironment(}
can either be done with sonar data (i.e.. Map_objects_with...sonar() (see Figure 3.16) or with QUADRIS
range data (i.e., Map_object.s_with-QUADRIS() (see Figure 3.16).

67

-

-

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

*set abject positions to(OBJECT_POSITIONS)

oil

*set label positions to(LABEL)

nil

FIGURE 3.16. TR+ Subroutines for Mapping. It takes between two to five seconds to collect
and process a dense sonar reading. Therefore. sonar data collection is less frequent than map updates
with QUADRIS data. The QUADRIS range data is collected every second (Bui, in preparation). The
frequency of sonar data collection is not only based on time. but is also dependent on the distance
travelled (see Chapter 6 for how distance travelled is used in conjunction with time in order to determine
the frequency of collecting sonar data).

68

Navigate{STATUS)

(Interpret_Task(STATUS) Il
Monitor_reactivityO)

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

Monitor_Reactivity{)

(Bumper_checkO Il
Infrared_check())

Interpret_Task(STATUS)

FIGURE 3.17. TR+ Subroutines for Setting the Goals for Navigation. Nav­
igate(STATUS) is called from the main TR+ program (see Figure 3.14). It calls !nter­
preLTask(STATUS) which sets the goal or search strategy. Concurrently, MondoT_Reactivity()
monitors the bumper and infrared data for obstacle information which was missed by the sonar or
QUADRIS sensors (see Figure 3.18). InterpreLTask(STATUS) will cali a search strategy which is
appropriate to the given a priori knowledge (i.e.. CAO map is or is not available a priori). The search
strategy subroutines are in Figure 3.19.

69

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

•
*(set object positions to(OBJECT_pOSmONS) Il

set robot position to(ROBOT_POSITION»

~r has collided(OBJECT_POSITIONS.ROBOT_POSITIO

nil

C)
Infrared_checkQ

.:J
~

*(set object positions to(OBJECT_POSmONS) Il
set robot position to(ROBOT_POSITION»

~ed shows objects very c1ose(OBJECT_POSITIONS.ROBOT_POSI~

nH

()
FIGURE 3.18. TR+ Subroutines for Performing Reactivity. Bumper_check() will update
the potential field of the newly discovered obstacle (OBJECT_POSiTiONS) and move the robot
(ROBOT_POSITiON) slightly away from the obstacle. The potential field will be made aware of the
change in robot position via the map database. infraretLcheck() funetions in a similar fashion.

70

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

Search_the_map_environmem
(STATUS)

nil

FIGURE 3.19. TR+ Subroutines for Deciding Search Strategies. Apri.
ori..malUa.!k(STATUS) is called if a CAO map is available a priori; otherwise
No_apriori_map_la.!k(STATUS) is called (see Figure 3.17). Both of these subroutines further
break down the task command specified by the user in order to determine the search strategy. The
search strategy can either be random (i.e.. Rando1TL.!earch(STATUS)) (see Figure 3.22). initiated by
visiting each room in the CAO map systematically (Le.. Search_lhe_map_environment{STATUS})
(see Figure 3.20), or defined by a spatial preposition specifying a direction (e.g.. leh. right. north)
(i.e.. DirectioTL..!e4rch(STATUS)) (see Figure 3.21).

71

"~

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

remove intermediate target
(lNTERMEDIATE_TARGET)

set intermediate target to
(INTERMEDIATE_TARGEn

(is intermediate target set
(lNTERMEDIATE_TARGEn

V(-»
find a new room

target(1NTERMEDIATE_TARGET)

nil

FIGURE 3.20. TR+ Subroutines for Performing Room Search. The user specifies a
description of an abject to be found. The objeet's spatial location is unknown. The search for the
object is based on setting intermediate goals specifying the rooms in the CAO map. The condition
finrLa-new_room_target(_) keeps track ofthe previously visited rooms and selects a new room to visit.
The condition aILroom_targets_explored(_) is TRUE if ail the rooms have been visÎted. In this case,
the search fails. the STATUS variable Îs set ta FALSE. and is propagated back to the main routine (see
Figure 3.14), causing the TR+ program to stop execution. The TR+ program assumes ail doors are
open to start with. If a door is closed (door_noLopen), the execution also stops. In this case, the user
WOuId have ta open the door and restart the execution of the program. Alternatively, the subroutine
can be rewritten such that the room with the c10sed door is ignored and returned to after ail the other
rooms have been searched.

72

..

-,"

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRA~IS

Direction_search(STATUS)

remove intennediate target(INTERMEDIATE_TARGET)

set intennediate target to(INTERMEDIATE_TARGET)

nil

FIGURE 3.21. TR+ Subroutines for Performing Intelligent Teleo-Operation. An
intermediate target is set based on a directional spatial preposition (e.g.. left. north) which is defined
by the user as part of the task command (see Figure 3.19). An intermediate target is set in the
specified direction at a particular distance (e.g.. 2 m) away from the current position of the robot.
The ts_task.-target-reached() condition in the main routine (see Figure 3.14) will be TRUE if there
is an obstacle that interseets the line formed by joining the robot position with the position of the
intermediate goal (i.e.. if a direction is specified as part of the task command). The robot will move
in the desired direction until an obstacle is encountered.

Random_search(STATUS)

remove interml:diale targeU 1NTERMEDIATE_TARGET)

set intennediatc larget lo((NTERMEDlATE_TARGET)

nil

FIGURE 3.22. TR+ Subroutines for Performing Random Search. This subroutine per­
forms a random search of the environment by setting destinations that are generated by a random
number generator. There is no guarantee that the environment will be fully explored. This subroutine
is called when there is no CAO map available a priori (see Figure 3.19).

73

'.....

CHAPTER 4. PATH PLA='l'NING

CHAPTER 4

Path Planning

Path planning is not done using the TR+ controller because it is difficult to completely

express obstacle avoidance as a collection of TR+ rules for aIl potential situations. Many

possible obstacle avoidance contextual rules could actually be encoded as TR+ behavioral

rules, but there is no guarantee that aIl environmental contexts would be captured. To

overcome the combinatorial explosion of obstacle avoidance rules, SPOTT uses an indepen­

dent module which performs local path planning concurrently with the execution of a TR+

program (see Figure 4.1).

Path planning is the guidance of an agent - a robot - from a source ta a destination, while

avoiding aIl eneountered obstacles. A robot must not only be able to ereate and execute

plans, but must he wiIling to interrupt or abandon a plan when circumstances demand it

(Georgeff & Lansky, 1987). In traditional AI planning, a smart planning phase constructs

a plan which is carried out in a mechanical fashion by a dumb executive phase. The use of

plans regularly involves rearrangement, interpolation, disambiguation, and substitution of

map information. Real situations are characteristically complex, uncertain, and immediate

(Agre & Chapman, 1987). These situations require that the planning and the execution

phases - of at least one of the planners - function in parallel, as opposed to the seriaI ordering

found in traditional AI planning.

Path planning ean be categorized as either heing static or dynamic, depending on the

mode of available information (Hwang & Ahuja, 1992). A static path planning strategy is

used when aIl the information about the obstacles is known a priori. Most path planning

methods are statie. The path planning is dynamic when no or partial information is available

about the obstacles a priori. The environment can also be unpredictahle and time-varying.

Dynamic path planning is problematic because the path needs to be continually recomputed

as new information is discovered.

74

CHAPTER 4. PATH PLANNING

USER Spou

PATH
PLANNING

=-=de8cent

~

(dolleat
moat relfable
rnolution)POTEHTlAL

FUNcnON

(coarse resolution)

POTENTIAL FUNCnONS

Global Path Planner

~ ,,~ LOCAL PA:_:nt_,~~

,.......-----,:
j
:
i
::
1
!
:

1
!::
i
i

SENSORS

CONTROLLER

~ ~PERCEPnON

MODELLING

GOAL
COMMANDS

..

FrGURE 4.1. Path Planning Within SPOTT The goal specification is given as input by
the user. If an a priori CAO map exists, it is loaded into the Map Database. The role of the TR+
program is to provide the local path planner (i.e., potential field) with the necessary information for
computation. such as obstacle configurations and the current robot position. The TR+ program
continually computes this by processing sen50r data. As the path is being computed. another module is
responsible for concurrently performing steepest gradient descent on the potential function in order to
determine the local trajectory for the robot. In order to guarantee proper control, there is a collection
of potential functions computed at varying resolutions. The finest resolution potential function that
has converged to its solution is used for trajeetory generation. The TR+ progr.lm can .l!5O override
this trajectory generation. This usually occurs for safety re.lsons when there has to be a quick response
to sensory stimuli indicating a dangerous situation for the robot.

Continuous navigation is workable if trajectory commands are issued concurrently with

the plan computation, or the computation is faster than the rate of change in the envi­

ronment. SPOTT's local path planner concurrently computes and executes the plan. The

75

•

.--

CHAPTER 4. PATH PLANNING

robot controller solicits trajectory commands from the local path planner at the same time

the path is being computed. There is no guarantee on the correctness of the trajectory

commands before the computation has converged to the solution for the current configura­

tion. In order to address the correctness of the trajectory, a type of ;-anytime algorithm"

(Mouaddib & Zilberstein, 1995) is used, which trades off accuracyl of the solution versus

computation time. A collection of local path planners at varying spatial resolutions are

executed. The flner the resolution, the more time the computation requires. It is assumed

that the computation speed of the path planner at the coarsest resolution is faster than

the rate of trajectory-command requests. The coarsest resolution local path planner is used

flrst, and the finer resolution local path planners will eventually be used once their computa­

tions have converged to their respective solutions, provided that there have been no sensed

environmental changes. SPOTT's local path planner uses the potential field approach to

implement such a strategy for dynamic path planning.

The potential field approach applies a function over a discrete grid consisting of a

configuration of obstacles and goals, and the path is determined by performing gradient

descent on this function. SPOTT uses a specifie type of potential function called a harmonie

function. This function has the desirable property of no local minima (Connolly & Grupen.

1993; Tarassenko & Blake, 1991). If at least one path exists to a known destination, the

path planning strategy is guaranteed to find a path to that goal (Doyle & Snell, 1984).

A harmonie function is the solution ta Laplace's equation. The important contributions

of the described harmonie function potential field approach for local path planning are

(1) the guaranteeing of proper control with a collection of potential functions at varying

resolutions, (2) limiting the extent of the potential function2 and sliding its bounds when

the robot moves around the environment, and (3) an implementation which separates the

computation from the control3 .

SPOTT is able to guarantee task completion-l because of the collaboration between the

local (potential field) and global (AI-based) path planners. The two planners function in

paraUel at different time-scales. The local path planner is in a control feedback loop with

the robot and environment, and its response time ta sensory input is crucial to the real­

time operation of the robot. It dynamically reacts to changes in the map database which

l The path produced is based on visiting neighboring grid points in a discretized grid. The finer the grid spacing,
the more accura.te the path.

2This is necessary because the harmonie function is a rapidly decaying function and its computation time
increases exponentially in direct proportion ta the number of grid elements.

3Trajectory commands are solicited at the same time the potential function is computed.
4SPOTT is able to guarantee task completion when the location of the goal is known and a CAD map is availa.ble

a priori.

76

...

-

-

CHAPTER -1. PATH PLANNING

is continually updated by the behavioral controller. On the other hand, the global path

planner uses states which change at a slower rate. These states are the CUITent and potential

physicallocations of the robot with respect to nodes in an abstract graph structure, where a

node is a room or a hallway portion. The global planning module advises the local planning

module of the local effects of a global goal.

77

•

..

­>'

CHAPTER 4. PATH PLANNING

1. Path Planning Approeches

Path planning usually requires that a map (e.g., a CAD map of the indoor environment

fused with sensor data that is continually being acquired) be transformed into a graph

structure, which is then searched for a path. This can be achieved by parcelling the map

into equally - or unequally - sized convex5 polygonal regions6 . Nodes are used to represent

the regions, and edges connect nodes that share part or the whole of a cornmon boundary.

Each node and edge is labeled as passable or impassable, and a search is initiated to find a

path through passable nodes via passable edges from a start to stop node.

There are three main approaches to path planning (Hwang & Ahuja, 1992) identified

in the literature.

(i) The roadmap method captures the connectivity of the robot's free space ï ln a

network of one-dimensional curves - called the roadmap, r - lying in the free space.

Path planning is reduced to connecting the initial and goal configurations to points

in rand searching r for a path between these points. Two cornmon roadmaps (aiso

called a skeleton) are the visibility graph and the Vornoi diagram. The visibility

graph is the collection of lines in the free space that connect visible8 features (e.g..

object vertices) to one another. The Vornoi diagram is defined as the set of points

that are equidistant from two or more object features.

(ii) The cell decomposition method decomposes the robot's free space into simple re­

gions called cells. A non-directed graph representing the adjacency relation between

the cells is then constructed and searched. The adjacency relation is represented in

a graph form called the "connectivity graph". There are two types of cell decompo­

sition methods.

(a) The "exact ceU decomposition" approach treats the union of aIl the cells as

exactly equal to the free space.

(b) In the "approximate ceU decomposition" approach, the cells are a predefined

shape (e.g. rectangles), whose union is strictly included9 in the free space. It

is not necessary for the boundary of a cell to have a physical meaning.

5It is not necessary for the regions to be convex, but this is usually the case.
6SPOTT's local path planner parcels the map into equally sized square regions (see Section 3.2). Its global path

planner parcels the map into larger unequally sized reclangular regions (see Section 8). In the global path planner's
representation, the edges represent access ways (e.g., doorways) between nodes.

7The set of passable nodes.
8Two features are vi.,ible if a straight line that connects them does nat intersect any objects.
9The union of all the shape cells is less than or equal to the free space. If part of an object is contained in one

of the shape eells, than that shape eell is identified as being oecupied.

78

--

l''''

CHAPTER 4. PATH PLANNING

(iii) The potential field method is a member of the family of '~approximate cell decom­

position techniques. 1ts configuration space LO is discretized into a fine regular grid.

For a point robot, the configuration space is identical to the world space l1 (Hwang &

Ahuja, 1992). The grid elements, occupied wholly or partially by objects, are satu­

rated positively for obstacles or negatively for goals. The space left after the removal

of the objects is the Cree space. The potential function in the free space12 has values

that are bounded by (but flot equal to) the positive and negative saturation values.

This grid is searched for a free path. The term potential field corresponds to the

negated gradient vector field, -'lU, of a potential function U. The path is usually

determined by performing steepest gradient descent on the potential function. The

potential function in essence captures all the achievable paths from every possible

starting location in the free space. There are no extra computations required if the

estimated position of the robot is corrected (i.e., localized).

10 A configuration of an object or robot is a set of independent parameters completely specifying the position of
every point of the abject or robot. The space of all possible configurations is called the configuration space (C-space).

11 The world space refers to the physical space in which robots and obstacles exist.
12The potential function is only formulated in the free space.

79

-

~­",

CHAPTER 4. PATH PLANNING

2. Dynamic Path Planning Problem

The dynamic path planning problem extends the basic navigation planning problem

(Latombe1 1991). The preliminaries and assumptions of the dynamic path planning problem

are as follows:

• Let R be a single rigid abject - the robot - moving in a Euclidian space E~ called

the environment~ represented as RN, with N = 2. Only 2D motion is considered~

however the concepts apply ta higher dimensions~ where N > 2.

• Let /31, ... J3n be either fixed (or moving rigid) objects distributed in E. The positions

(and dynamics) of an object Pi may or may not be known a priori. The free space

of the robot is the allowable space for navigation and is obtained by subtracting aIl

the /3i models from the environmental space ~2.

• Assume that bath the geometry of R, f31! ... , f3n and the locations of the f3i ~s in E

can be approximated to within a certain predefined degree of slack or tolerance.

Assume further that the only kinematic constraint that limits the motions of R is

the two-dimensional plane on which it navigates.

Given the above definitions and assumptions, the dynamic path planning (see Figure 4.2)

problem is defined as follows:

• Given an initial position and orientation (qstard and a goal position and orientation

(qgoad of R in E, generate a path T specifying a continuous sequence of positions

and orientations of R, avoiding contact with the ,Bi 's, starting at the initial position

and orientation~ and terminating at the goal position and orientation. As the robot

navigates. the f3i 's may be known a priori, appear suddenly, disappear suddenly,

remain unchanged, or be dynamic 13 (see Figure 4.2). It can be further assumed that

R is circular and specifying the orientation of R is not a problem14. The orientation

of the goal does not necessarily need to be attained. Failure is reported if the goal

is unattainable in the current environment, or if the position of R is lost, or if the

obstacles /3i's in the environment E cannot be monitored with sufficient detai1.

13However, at this moment SPOTT is only able ta treat the case where abjects suddenly appear. If the location
of appearance is not where a current abject is situated, the model associated with the newly discovered abject is
added to the map database. Extending SPOTT's local path planner ta include dynamic abject models is an issue for
future research.

14The robot can be modelied as a point, as long as it is symmetrical and circular. In arder to compensate
for this, ail features in the environment are padded by a size equal ta half the robot's diameter (i.e., 26 cm) in ail
directions (Le., a line becomes a rectangle). In addition, to compensate for the uncertainties associated with the
position of the sensed features and the robot, a potential error factor which is equal to one quarter the diameter of
the robot (Le., 13 cm) is added ta ail obstacles in ail directions.

80

-

'132
unknown a priori

'131
known a priori

CHAPTER -1. PATH PLANNING

t]J3

unknown a priori

FIGURE 4.2. Dynamic Path Planning Problem. Given an initial position and orientation
(q"tare) and a goal position and orientation (qgoal) of R in E. generate a path T specifying a continuous
sequence of positions and orientations of R avoiding contact with the Pl 's. starting at the initial position
and orientation, and terminating at the position and orientation of the goal. As the robot navigates.
the (3. 's may be known a priori. appear suddenly. disappear suddenly, remain unchanged. or be dynamic.

There may he many different paths from the initial starting position to the goal. The

task is to attain a plausible path~ which may he the optimal path, but not necessarilyl5.

15S?OTT's local path planner uses a potential field approach. A harmonie funetion is used as the potential
funetion and it is equivalent to a probability function representing random walks on a ~Iarkov chain (Doyle & Snell,
1984). It can also be interpreted as representing a hitting probability (Connolly. 1994). Steepest gradient deseent on
this function produces an optimal path in the sense that the robot is positioned at locations which ma.'Cimally reduce
the hitting probability (see Section 5).

81

-

CHAPTER 4. PA.TH PLAN~ING

3. Path Planning Using Potential Fields

A potential function is formulated in the free space such that obstacles appear to exert

negative potentials and goals, positive potentials. It can either be a heuristic eombination

of functions or a single function superimposed onto the configuration space. In the heuristic

approach, the potential function is the SUffi of a collection of potential funetions emanating

from the obstacle and goal models (Khatib, 1986). The potential function emanating from

an obstacle is usually modelled as a symmetrically decaying funetion (i.e., Gaussian. ~! -Ir).
and the potential function radiating from a goal is a symmetrieally increasing funetion 16.

An example of the second approach is to compute a harmonie function over the free space.

This function is a solution to Laplaee's equation and is used to model various physics-based

problems such as laminar fluid flows around solid obstacles and current flow in a condueting

medium interspersed with nonconducting holes.

3.1. Biological Inspiration

The potential function has been used to model biological behavior assoeiated with

navigational path planning. Arbib (1987) developed a neural model to try to explain the

behavior of a frog when presented with a worm as a goal and a fence as an obstacle. The

models were used to explain visual orientation and the choiee of trajectory movement.

and both took on a form similar to the usual potential field. Physiological studies in

primates have also found various neural representations - similar to potential fields - in

the subcortieal areas of the brain whieh encode saccadeslï and covert attentional shifts

(Robinson & Petersen, 1992). Connolly and Burns (1992) suggest that another subcortieal

area in the brain - the basal ganglia - may be an important locus for the mechanisms of

harmonie function computation. They hypothesize that this function may be used in the

planning of goal-oriented and obstacle-avoiding behavior in biological systems.

3.2. Formulating a Potential Function

Every object f3i' i = 1 to n, in the workspace E maps into a region of C (the

configuration-space). The objects are modelled in 2D space as either points, lines, ellipses,

or rectangles 18 . The union of aIl the object models is called the abject space:

(4.4.1)
n

Cobject = U{3i
i== 1

-­7
.1

16 Usually the inverse of the function used for obstacles.
17Sudden eye movements.
180ther two-dimensional models may aIso be used, such as an n-sided polygon.

82

-

CHAPTER 4. PATH PLANNING

The region specified by removing the union of all object model regions tS called the fre.e

space:

(4.4.2)
n

Cfree = C - Cobjed = C - U {Ji
i=l

Let Pmax be the maximum value of the potential function, and Pmm be the minimum value

of the potential function. These are referred to as the saturation values. Let e be the

discretization of the potential field space (in 2D~ e = (x~ y». AlI object model regions.

whether obstacles or goals. are represented as saturated values in the potential function:

(4.4.3) C(x, y) = Pmax,

Pmin,

(x, y) c /3ù /3i = obstacle.

(x,y) C /3i,/3i = goal

(4.4.4)

The potential function is defined for every point (Le., grid element) in the free space. The

potential field is derived by taking the gradient at every point in the potential function. The

gradient represents the velocity vector which is used to locally control the robot. The net

result of a goal model is to generate an attractive potential which pulls the robot towards

the goal. In contrast, an obstacle model produces a repulsive. potential which pushes the

robot away from the obstacle.

3.3. Summation of Potentia1s Approach

In the summation of potentials approach, the potential function is created by summing

together attractive potential functions for each goal model and a repulsive potential function

for each obstacle mode!. Uatt is called the attractive potential associated with a collection

of goal configurations /3goal:

9

Uatt(x,y) = I:(Uatt.(x,y»
i=l

Urep is called the repulsive potenti.l1 associated with a collection of obstacle configurations

(/3obstacle):

n,j#goal

(4.4.5) Urep(X, y) = I: (UrePj (x, y»
)=1

Let U be the artificial potential function in the free space Cfree~ constructed as the SUffi of

obstacle and goal potential functions:

(4.4.6) U(X, y) = Uatt(x, y) + Urep(x, y)

­.
The elementary potential function for an obstacle is in the form of a decaying function

emanating from the obstacle's geometric mode!. Examples of such a function are a Gaussian,

83

CHAPTER 4. PATH PLAN~ING

~, or fz (where r is the distance from the object model). The attraction potential function

is a mirror image of the repulsive potential function:

(4.4.7)

The potential function created using the summation of potentials approach can have

a local maximum or minimum in places that are DOt desirable. A local maximum is only

appropriate in locations that correspond to obstacle models (i.e.~ outside of the Eree space).

and a local minimum should only occur at the location of the goal mode!. When two object

models are dosely positioned, the summation of their emanating potentials creates a local

maximum (see Figure 4.3). Similarly~ a local minimum can occur when summing two closely

positioned goal potentials.

Uatt

+

Urep

local
maximum-~-

-

FIGURE 4.3. Summation ofPotentials: Close Objects. The potential function U is created
by summing the obstacle potentials Urep with the goal potentials Uatt . When two obstacles are c10sely
positioned, the potential resulting from the summation creates a local maximum, as shown above.

!

A method for minimizing this phenomenon is to use the maximum value as opposed

to the surnmation when combining obstacle potentials, and to use the minimum when

84

CHAPTER 4. PATH PLANNING

combining goal potentials:

(4.4.8)
Urep(X, y) =

Uatt(x~ y) =

n.j #90al (U ())maxj=l repj X, Y

minf= l (Uattl (x, y))

See Figure 4.4 for an example of a potential function created using equation 4.4.8. Equa­

tion 4.4.8 does not guarantee that no spurious local minima will occur~ but reduces their

probability of occurrence. The calculations required are also no more complex than those

in Equations 4.4.4 and 4.4.5.

, ,

Uatt

+

Urep

local
maximum ----

FIGURE 4.4. Maximum Summation of Potentials: Close Objects. The potential funetion
is created by summing the obstacle potentials with the goal potential. The obstacle potential is created
by taking the maximum value of ail contributing obstacle potentials. Even with this combination
strategy. the potential resulting from the summation creates a local maximum, when two objects are
c10sely positioned. The maximum is less than the one shawn in Figure 4.3, but it still exists.

The advantages of using a heuristic potential approach (i.e., such as the summation

of potentials approach) is that the computations are simple enough so that it can be im­

plemented as a real-time planning procedure. Path planning is executed by performing

gradient descent on the potential function. In general, the potential field method removes

the need to reason about the topological relations of objects, as this is inherent in the po­

tential field control mechanism. The disadvantage of using the heuristic potential function

85

-

CHAPTER 4. PATH PLAN~ING

as the sole control mechanism is that local minima - other than the goal minimum - may

be present.

There are several methods of path planning which use the heuristic potential function

created by the summation of potentials approach (Latombe, 1991). The depth-first planning

technique is essentially the steepest gradient descent method. It escapes local minima using

heuristic methods, which may not always succeed. A simple heuristic action to take is to

traverse around the object's perimeter (Choi & Latombe, 1991). The best-first planning

technique uses a steepest descent method; however when a local minimum is reached, the

planner backtracks out of the local minimum and follows the next best potential gradient.

The variational approach employs a functional J of a path rand this is optimized over aB

possible paths. The best-first planning and variational techniques are guaranteed to find a

solution at the expense of a potentially costly search which includes backtracking. This is

in direct contrast to the inexpensive execution cost associated with the steepest gradient

descent method. 1t is fast because it asks for very little interpretation of the potential

function.

Other ways of dealing with local minima are to alter the potential function so as to

minimize or eliminate local minima. Sorne researchers (Arkin, 1993; Gat, 1992) minimize

local minima by specifying goals as a set of piecewise linear trajectories. In a similar fashion.

Krogh and Thorpe (1986) find a sequence of critical points along a globally observed path~

which are first computed and set as goals in a potential function. The critical points are

selected so that the chances of getting stuck in a local minimum are mininlized.

Another method of avoiding local minima is to control the potential function, by using

spherical models for the objects (Rimon & Koditschek, 1990). If aH objects are modelled

as spherical regions, the problem is to construct a diffeomorphism that deforms a given set

of obstacles into a set of spherical regions. However, this is not always possible.

The existence of local minima is a concern when using a heuristic potential function as

the input to a path planner. IdeaHy, it is desirable to have a potential function that has no

local minima. This type of function can then he safely used for trajectory control by using

the simple steepest gradient descent method.

86

CHAPTER 4. PATH PLANNING

4. Harmonie Funetions as Potential FunetioDS

A potential function which has the desirable property of no local minima is the Har­

monie funetion (Connolly & Grupen, 1993; Tarassenko & Blake~ 1991). If at least one

path exists to a known destination location, steepest gradient descent on this function is

guaranteed to find it (Doyle & Snell, 1984).

A harmonie function on a domain n c Rn is a function which satisfies Laplace~s

equation:

(4.4.9)

The value of cP is given on a closed domain n in the configuration space C. A harmonie

function satisfies the Maximum Princîple and Uniqueness Principle (Doyle & Snell, 1984).

The l\t!aximum Prineiple guarantees that there are no local minima in the harmonie function.

DEFINITION 1 (Maximum Prineiple). A harmonie funetion f(x~ y) defined on n takes on

its maximum value M and its minimum value m on the boundary.

The Uniqueness Prineiple guarantees that there is a unique solution to Laplace~s equa­

tion for a given configuration.

DEFINITION 2 (Uniqueness Principle). If I(x. y) and g(x, y) are harmonie functions on n
such that f(x, y) = g(x. y) for ail boundary points, then f(x, y) = g(x, y) for all x~ y.

The harmonie function has two physical analogies. In the first instance. obstacles

are modelled as nonconducting solids in a conducting medium. The boundaries of the

obstacles and n are current sources and the goal is an equal and opposite current sink

(Tarassenko & Blake, 1991). Integral Hnes of the current field forro feasible paths for

navigation. Alternatively~ obstacles are modelled as solids immersed in a laminar fluid flow.

The feasible paths are the streamlines of the fluid flow.

4.1. Computing Harmonie Funetions

Laplace's equation is solved in a two-dimensional domain when used as a potential

function for navigational path planning on a 2D planar surface. The domain is defined by a

local extent and a collection of obstacle and goal models. Navigation is eonfined to the free

space whieh is delineated by the obstacle and goal model boundaries and the closed domain

boundary of n. The harmonie function can be iteratively eomputed by taking advantage of

its inherent averaging property: the value of any point in the free space is equivalent to the

average of its neighbouring points. Numerical solutions for Laplaee's equation are obtained

87

(4.4.10)

(4.4.12)

(4.4.13)

...

CHAPTER -1. PATH PLA~NING

from finite difference equations (Hornbeck, 1975). The fol1owing expression for Laplace's

equation is obtained by combining a Taylor series expansion for a forward difference and

backward difference equation:

'V2
uli,j = Uxxkj + U yy li,j

= (Ui+l,j + Ui-1,j - 2Ui,)) + (Ui.j+l + ui.j-l - 2Ui,J) + O(h2
)

= Ui+1,j + Ui-l.j + Ui,j+l + Ui.j-l - 4Ui,j + O(h2
)

The sampling ratio is h, where h = !:lx = !:ly. If n x and n y are the dimensions of n, then

!:lx = ..!.. and !:ly = ..!... When Laplace's equation - U xx + U yy = 0 - is approximated usingn;r nit

Equation 4.4.10, the error term - O(h2) - is omitted, resulting in the implicit relation 19 :

1
(4.4.11) Ui,j = 4"(Ui + 1,j + Ui-l,j + Ui,j+l + Ui,j-d

Equation 4.4.11 can he used to perform an iterative computation subject to a given set of

boundary conditions. This computation converges to the harmonie function which is the

solution to Laplace's equation.

A more accurate expression for Laplace's equation can he obtained in a similar fashion.

utilizing the neighbouring diagonal elements (van de Vooren & Vliegenthart, 1967):

'V2
uli.j = !(Ui+L,j + Ui-l,j + Ui.j+1 + ui,j-d

+ 2
1
0 (Ui+ l,) + L+ Ui - 1.j + l + Ui - L,j - L + 'Ui + 1.j - d

+Ui,j + O(h8
)

In Equation 4.4.12, the error term is a lot smaller than in Equation 4.4.10. Omitting the

error term, the implicit relation for the nine-point kernel is written as follows:

Ui,j = !(Ui+l,j + Ui-L,j + Ui,j+l + Ui.j-d

+21
0 (Ui+l,j+l + Ui-l,J+l + Ui-1,j-l + Ui+L,j-r)

The nine-point kernel gives smoother20 intermediate results during the iterative computa­

tion as compared to the five-point kernel.

The computation of the harmonie function ean be formulated with two different types

of boundary conditions. The Dirichlet boundary condition21 is where U is given at each

point of the boundary. The Neumann boundary condition is where ~, the normal com­

ponent of the gradient of u, is given at eaeh point of the boundary. In order to have flow,

there has to be a source and a sink. Thus, the boundary of the mesh is modelled as a

source, and the boundary of the goal model is modelled as a sink. The boundaries of the

19The exact result at node (i,j) is denoted by Ui,j, and the approximate value by U1 •J •

20This is because the error term is smaller in forrnulating the nine-point kernel compared to the five-point kernel.
:!lThis inherently makes aH applicable boundary points into sources (i.e., in terrns of sources and sinks for

rnodelling liquid flow).

88

CHAPTER 4. PATH PLANNING

obstacles are modelled according to the type of boundary condition chosen: Dirichlet or

Neumann. If the obstacle boundaries are modelled using the Dirichlet boundary condition.

then they are also considered sources. Otherwise (i.e., for a Neumann boundary condition),

only the gradient at the obstacle boundary is defined and it is not a source. The harmonie

function has different properties which depend on the type of boundary condition used in

its formulation. The solution to a Dirichlet boundary condition problem has exponential

decay emanating from the goal. This causes sorne values to be unexpressible in a memory

address of a thirty-two-bit computer (Tarassenko & Blake, 1991). This is especially evident

with long corridor features. In this case, the maximum computable length-to-width ratio

for a thirty-two-bit computer is approximately 7.1 to 1 (see Appendix A for the derivation).

The Neumann boundary condition causes steepest gradient-descent paths to graze the ob­

stacle boundaries (see Figure 4.5). This is because for Neumann boundary conditions, an

obstacle's neighbouring points do Dot depend on the obstacle boundary point's value in

their calculation. For example, if UiJ is the bordering point, and Ui,j+l is the boundary

point, the Neumann condition implies that the gradient in the direction of the bordering

point - Ui,j - Ui,j +1 - is zero. Inserting this condition in Equation 4.4.11 results in the

following equivalence for the bordering point: Ui,j = !(Ui - 1,j + Ui+1,j + Ui,j-r). Therefore.

Ui,j+1 has no influence on the value of Ui,j' This has the effect22 of pulling the steepest

descent gradient path towards nearby obstacles. In contrast, the Dirichlet boundary con­

dition results in paths which are smooth and do not brush up against obstacle boundaries

(see Figure 4.6). Non-grazing robot trajectories are more desirable because this permits a

greater tolerance for errors in the modelling of object boundaries. It has been suggested

to use a combination23 of the Dirichlet solution and the Neumann solution (Connolly &

Grupen, 1993). However, this will not override the problem of properly representing the

Dirichlet solution in a thirty-two-bit computer, as the Dirichlet component's effect on the

solution will be negligible in long corridor environments. The Neumann solution can also

have a rapidly vanishing field problem, but the exponential decay is slower than the Dirich­

let solution. Limiting the extent of the potential function boundary (i.e., making it a local

path planner) permits the use of Dirichlet boundary conditions.

There are three ways of speeding up an iterative computation of a harmonie function:

(1) speeding up the time for a single iteration; (2) reducing the number of iterations; and

22The reason why an obstacle attracts a steepest gradient deseent path when using the Neumann boundary con­
dition can be shown by observing the equivalenee of the equation Ui,} = !(U,-l.J +U'+l.) +Ui.}-l) to Equation 4A.ll
multiplied by ~ with U',J+l set to 0 (i.e., a goal attractor).

23The !inear eombination of harmonie funetions is also a harmonie funetion (Axler d al., 1991). Harmonie
properties are also preserved under dilation, translation, sealing and with applying a bias.

89

10 20 30

(a)

40 50 60 70

CHAPTER 4. PATH PLANNING

a 0

(b)

80

..
FIGURE 4.5. Potential Field Using Neumann boundary conditions. {a} shows the equal­
potential contour plot of the potential funetion and various generated paths using steepest gradient
descent from different starting points. The paths c10sely follow the obstacle boundaries. (b) shows
the mesh diagram of the potential funetion. The obstacles are distinguishable from the rest of the
potential because for Neumann boundary conditions, an obstacle's neighbouring points do not depend
on the obstacle boundary point's value in their caleulation.

(3) providing a good initial guess to the solution when initiating the computation for a

particular configuration. The time for a single iteration can be reduced by parallelizing

the computation (see Chapter 6 for a discussion of the implementation issues). There is

a collection of techniques called ··fvlethods-of-Relaxation" (Hornbeck, 1975; Anles. 1992)

which reduce the number of iterations. A good initial guess to the computation cao be

obtained by using the summation of potentials technique which was discussed earlier in

Section 3.3.

4.1.1. Number of Iterations Reduced by Methods-of-Relaxation

The simplest method-ot:relaxation is called the Jacobi method24 • It has a slow conver­

gence rate and is rarely used. The basic single step of the iteration consists in replacing

the CUITent value U(k-l) by the improved value25 U(k)! which is obtained as follows for the

24 Also ca.lled "itemtion by total 3teps" , and the "method of .simultaneou$ düplacements".

25ur~) is written such that the superscript - k - is the iteration index and the subscript - i,j - is the spatial

position (i,j).

90

CHAPTER 4. PATH PL:\~~I~G

...

la 20 30 40 50 60 70

200

100

o
BQ

a a

80

(a) (b)

FIGURE 4.6. Potential Field Using Dirichlet boundary conditions. (a) shows the equal­
potential contour plot of the potential funetion and various generated paths using steepest gradient
descent From different starting points. The paths do not graze the obstacle boundaries. (b) shows the
mesh diagram of the potential funetion. The obstacles are barely distinguishable from the rest of the
field in the mesh diagram because the obstacle's neighbouring points are near the saturated value that
represents the obstacles. This can be explained by viewing the potential values, when using Dirichlet
boundary conditions, as representing hitting probabilities (i.e.• the probability of hitting an obstacle
before arriving at a goal when initiating a random walk from the location in question) (Doyle & Snell,
1984; Connolly, 1994). The hitting probability of a point near an obstacle boundary will be very close
in value ta the hitting probability of an obstacle point.

five-point kernel:

(4.4.14) U(k) = ~(U(k-l) + U~k-l) + U~k-l) + u~~-l»)
l,) 4 &+1,) 1-1,) 1,)+1 1,)-1

Similarly, the basic single step of the iteration can be written as follows for the nine-point

kernel:

u~~) =
l,)(4.4.15)

l(U~k-~) + U~k-l) + U~~-l) + U~~-I»)
5 1+1,) 1-1,) l,}+l l,}-1

+ 1 (U(k-l) + U(k-l) + U(k-l) + U(k-l))
20 i+l,j+l i-l.j+l i-l,j-l i+l,j-l

This type of computation can be used on a SIMD26 machine, where an iteration over the

grid is achieved in one parallel step using only one solution variable per processing element.

Similarly, it also lends itself to an implementation using a resistor lattice (McCann & Wilts,

1949; Tarassenko & Blake, 1991) (see Figure 4.7).

26Single Instruction, Multiple Data.

;'; 91

CHAPTER 4. PATH PLANNING

V(I+1,j+1)V(I-1,j+1)

V(I-1,j-1)

a) flve-polnt kemel ln reslstor terms b) nfne-polnt kemel ln reslstor terma

FIGURE 4.7. Iteration Kernel and Resistive Grid. The illustration shows how a resistive
grid can be used to implement the iteration kernel which is used in the Jacobi method for both the
five-point and nine-point kernels.

The resistor lattice equivalence is obtained by placing a resistor between neighbouring

nodes and having the value of anode represent a voltage. Ohm's law states that if points a

and b are connected by a resistance of magnitude R, then the current Ia,b that flows from

a to b is expressed as follows:..
(4.4.16)

V(a) - V(b)I ab = _:......:.._-,;,....,;",., R

By Kirchofrs Laws, the current flowing into a point defined by the coordinates Ci, j) must

be equal to the current flowing out:

(4.4.17)
\/(i+ l ,j)-V(i.j) +

V(i-l.j)- v"(i,j) +R R
F(i,j+l)-V(i,j) +

F(i,j -1)- \-"(i,j)
= 0R R

(4.4.18)

Multiplying through by Rand solving for V(i,j) results in the fol1owing relationship:

V(i,j) = ~(V(i + Lj) + V(i - Lj) + V(i,j + 1) + V(i,j - 1))

J
-',

The equivalence of Equation 4.4.18 and Equation 4.4.11 shows that the Jacobi method

can be solved by a resistor lattice. A similar correspondence can also be obtained for the

nine-point kernel.

A programmable resistive grid is described and simulated by Tarassenko and Blake

(1991). It consists of an array of transistors whose drain-source resistances are governed

by gate voltages. The transistor network can be used to set both Dirichlet and Neumann

obstacle types. After settling, the voltages at the free junctions represent a discrete sampling

of a harmonie function. A group at the University of Massachusetts (Stan et al., 1994)

92

-

CHAPTER 4. PATH PLANNING

implemented two CMOS VLSI implementations of this grid. One chip implemented the

harmonie function computation using Dirichlet boundary conditions, and the other used

Neumann boundary conditions. The chip sizes were 16 by 16 nodes and 18 by 18 nodes.

It was estimated that for grid sizes of 100 by 100 using a resistive VLSI approach~ the

harmonie function could be computed in a few microseconds (Connolly & Grupen~ 1993L

however this has never been physically realized. The two main problems with the VLSI

implementation were: (1) the network size was limited because the voltage between any

two adjacent nodes became so small that it was buried beneath the noise: and (2) the

memory containing the obstacle and goal configuration required to be entirely reloaded

when the configuration changed. The University of Massachusetts group~ due to the above

mentioned complications and technologieal limitations~ have abandoned the VLSI route.

They27 concluded that at this time, a digital approach shows more promise for larger grids.

higher dimensions, programmability, testing and reliability.

The Gauss-Seidel method28 of relaxation is based upon the immediate use of the im­

proved values. In order to compute the iterative solution on a computer~ the array of data

is scanned in a sequential fashion: usually from the top left hand corner, row by row. and in

each row, column by column. This imposes an ordering on the computation of mesh points.

The newest value of the already scanned grid elements can be used in the computation of

subsequent grid elements. The Gauss-Seidel method improves the rate of convergence when

compared to the Jacobi method29 . The Gauss-Seidel iteration step for the five-point kerllel

is expressed by:

(4.4.19)

(4.4.20)

.f

The Gauss-Seidel iteration step can also be written as follows for the nine-point kernel:

U~k) = !(U(k-L) + U(k) . + U(k-1) + U(k))
l,) ;) l+l,J 1-1.J 1,J+1 1,J-1

1 (U(k-l) U(k-l) U(k) U(k-l»)
+20 i+1.J+l + i-l,j+l + i-l,j-1 + i+l.j-l

The number of iterations can often be substantially reduced by an extrapolation pro­

cess from previous iterations of the Gauss-Seidel method (Ames, 1992). This method is

called "Successive Over-Relaxation" (SOR). The SOR method proceeds as the Gauss-Seidel

iteration; however, an extra step is performed before accepting the new value. Let Üi~j

be a component of the k'th Gauss-Seidel iteration. The SOR technique is defined by the

27This is based On personal communication with Wayne P. Burleson at the University of ~[assachusetts at
Amherst (May 11, 1994).

28 AIso called the ".!Ucce.uive displacementS' or "iteration by single steps".
290(n2) as opposed to O(2n2)

93

CHAPTER 4. PATH PLANNlNG

following relation:

(4.4.21) U~k) = (1 _ À)U{k- L) + >.Ü!c.
IJ lJ lJ

The accepted value at step k is extrapolated from the Gauss-Seidel value and the previously

computed value. If >. = 1, the method reduces to that of Gauss-Seidel. The quantity À is

called the relaxation parameter. The relaxation parameter determines the convergence rate

and is a value between 1 and 2. The optimum over-relaxation factor for the problem, Àopt.

is estimated by the fol1owing computation (Hornbeck, 1975):

(4.4.22)

where w is determined as folIows, when k --+ 00:

(4.4.23)

(4.4.24)

(4.4.25) y(k) = U~k) _ U(k-l)
1.) l,) l,)

In order for the SOR technique to function properly, it is important that the estimate of w2

settle down to a constant value less than 1, before using equation 4.4.22 to estimate >"opt.

For a better rate of convergence, it is better to overestimate Àopt than to underestimate it

(Hornbeck, 1975).

The relaxation techniques can he evaluated hased on the work required per iteration

and the number of iterations necessary for convergence. AlI the relaxation techniques are

essentially equivalent with respect to the amount of work per iteration. The time per

iteration can he reduced by allotting different regions of the array to different processors.

as discussed in Chapter 6. The rate of convergence for the Jacobi method is O(2n2), for

a square grid of n elements, while the rate of convergence for the Gauss-Seidel method is

O(n2). The rate of convergence for the optimum SOR method is O(n) (Ames, 1992). The

rates of convergence vary slightly when different types of houndary conditions are used.

Convergence is also improved by fol1owing the first sequence in a row direction with a

second in the column direction. This method is called an "Alternating Direction Implicif'

(ADI). It has heen shawn that this method can improve convergence bya factor of 2 (Ames,

1992).

94

-

CHAPTER 4. PATH PLANNING

In order to reduce the number of iterations as much as possible, Gauss-Seidel iteration

with Successive Over-Relaxation, combined with the ~·AlternatingDirection!' (ADI) method

is used by SPOTT's local path planner.

4.1.2. il Good Initial Guess

Another way of speeding up the computation of the harmonie function is to provide the

computation with a good initial guess for a given obstacle and goal configuration. A good

initial estimate can be provided by the '·summation of potentials approach" (see Section 3.3).

The initial guess is different depending on when it is applied:

• When the harmonie function iterative computation is initiated with a given CAD

map, the initial guess is given by Equations 4.4.6 and 4..t.8. as discussed in Sec­

tion 3.3.

• The harmonie function for the previous configuration30 can also be used as part of

formulating the initial guess for the new configuration. The function available during

convergence towards the harmonie function, or if available, the harmonie function

for the old configuration. can be used to formulate the initial guess for the new

configuration. Let u~7J be the k!th iteration of the harmonie function computation

using the old configuration. If U~~J is equal ta U~r:), then convergence had been

achieved for the oid configuration. u~~L is the potential function used as an initial

guess to the harmonie function for the new configuration. There are four ways in

which the configuration of obstacles and goals may change (see Figure 4.8) and

therefore four ways of formulating the initial guess for the recomputation of the

harmonie function. The methods depend on the type of changes to the obstacle and

goal configuration and can be stated as follows:

(i) In the first case, a new obstacle object model {Ji is added to the configuration

space. This changes the free space Cfree on which the potential function U is

defined:

(4.4.26)

(4.4.27)

Cfree(new) = Cfree(old) - {3i

Let Urep& be a local potential function (i.e., one of the functions specified in

Equation 4.4.5) associated with the obstacle object model {Ji. The initial guess

to the solution of the changed configuration is given by the following:

U (O} - (U(k))
new - max old' Urepi

30The free space will change by either the addition or subtraction of grid elements. The values at the unchanging
grid elements can he used to formulate the initial guess for the new configuration.

95

CHAPTER 4. PATH PLAN:-.l'ING

(ii) In the second case, an existing obstacle abject model {3i is removed from the

configuration space. This has the effect of increasing the extent of the Cree

space C free:

(4.4.28)

(4.4.29)

(4.4.30)

(iii)

Cfree{new) = Cfree{old) + {3i

For this situation~ the initial guess to the solution of the changed configuration

is given as follows:

u{O} - U(k)
new - old

In the third case, an obstacle object model {3i in the configuration space is

changed to a goal object model {3i•. This does not affect the free space C free.

Let Uatt , be a local potential function (i.e., one of the functions in Equa­

tion 4.4.5) associated with the goal object model (3i •. The initial guess to the

solution of the changed configuration is given by the fol1owing:

U (O) • (U(k) U)
new = mIn old' att 1

(4.4.31)

(iv) In the fourth case, a goal abject model {3i. is changed to an obstacle object

model {Ji. As in the third case, the free space C free remains unchanged. The

initial guess to the solution of the changed configuration is given by the fol­

lowing:

U (O) (U(k) U)
new = max old ' repi

A good initial guess to the computation of a harmonie function reduces the number

of iterations required for convergence. Using an initial guess, as weIl as the method of

relaxation (outlined in Section 4.1.1), is the extent of what can he done to reduce the

number of iterations. The time for a single iteration is an implementations issue and deaIt

with in Chapter 6. At the same time the harmonie function is being computed, a concurrent

agent (Le., another process) performs steepest gradient descent on the harmonie function

in order ta generate a local trajectory. This permits concurrent computation and execution

of the path.

96

CHAPTER 4. PATH PLANNING

i) ADDING A NEW OBSTACLE aBJECT MODEl

ii) REMOVING AN EXISTING OBSTACLE OBJECT MODEl

iii) CHANGING AN OBJECT MODEl FROM
AN OBSTACLE Ta A GOAL

iV) CHANGING AN OBJECT MODEl FROM
AN GOAL TO A OBSTACLE

FIGURE 4.8. Types of Changes to the Obstacle and Goal Configuration. The grey
pixels signify the free space, whereas the black pixels represent the obstacle models and the white pixels
represent the goal models. The configuration space is the collection of white. black and grey pixels.
The figure illustrates the four different possible changes to the configuration space. Ali other potential
changes are a combination of the above cases.

97

CHAPTER -t. PATH PLA:"lNING

5. Trajectory Generation Using Harmonie Fonctions

5.1. Loeal Trajeetory Generation

Harmonie functions have the desirable property of no local minima (Connolly & Gru­

pen, 1993; Tarassenko & Blake, 1991). If at least one path exists to a known destination.

steepest gradient deseent on this funetion is guaranteed to find it (Doyle & Snell, 1984).

This is advantageous for path exeeution because steepest gradient descent is a simple and

blind search strategy that is computationally inexpensive (Le., no backtracking).

The derivative of the harmonie function U at every free space Cfree point defines a

field of velocity vectors V(e):

(4.4.32) Veel = -'VÛ(e)

(4.4.33)

where 'lÜ(e) denotes the gradient vector of U at (e):

(au)
'ï1Ü = ~

The velocity vector is the value of V(e) at the current estimate of the roboCs position

(i.e., V(xr , Yr)). The field of velocities permits robot loealization (i.e., the correction of the

robot's position) to be independent of the trajectory generation. If the roboCs position is

updated (i.e., corrected) to (xr', yr')' then the trajectory will be selected based on the value

V at (xr', y/) (i.e., = V(xr', yr')). The velocity field defines aIl possible trajectories from

every location in the free space.

The velocity veetor V(e) has two components: (1) an orientation, and (2) a magnitude.

The orientation component defines the direction of the next robot movement.

A simple and fast algorithm is used to compute the local orientation component of the

velocity (see Figure 4.9). It is calculated by selecting the maximum negative gradient in

an eight-neighbourhood31 around the current position of the robot. The result will be an

orientation value that is divisible by 45 degrees. In arder to obtain a smoother trajectory,

an approximation to the continuous gradient is obtained by fitting a parabola to the three

points defined by the maximum negative gradient direction and its two neighbours (i.e., in

the eight-neighbourhhood operator centered at the current position of the robot). The local

minimum of the fitted parabola defines the orientation of the local trajectory.

It would be desirable to have the magnitude of the velocity vector IV(e)1 define the

speed of the robot. The field of velocities V(e) generated from a harmonie function is such

31 Recall that the potential function is defined on a discretized grid.

98

CHAPTER 4. PATH PLAN:'<IING

\--

/

t

~
,-
-~MAX "W
, 001~- +~ FIT

+
:~m~~~Jue

- .2 nelghbourtng
, velues)

"
FIGURE 4.9. Quick Calculation of Trajectory. The local trajectory is derived by selecting
the maximum negative gradient in an eight-neighbourhood around the current position of the robot
in the discretized potential funetion. In order to obtain smooth trajeetories. an interpolated value is
computed by fitting a parabola to the three points defined by the maximum negative gradient direction
and its two neighbours.

...
that IV(e)1 is a larger value near goal locations when compared to other locations in the free

space. A possible strategy for velocity control would be to make the robot!s speed inversely

proportional to the gradient's magnitude IV(e)l:

(4.4.34)
- 1

IV(e)1 'X -1\7Ü(e)!

This would result in the robot de-accelerating as it progressed towards the goal position.

However, this is not an appropriate strategy to take because the robot would start at a very

high speed (i.e., jump start) and deaccelerate as it approached the goal position. In the more

general case, the determination of the velocity should depend on a predefined velocity profile

from the start to goal position. The profile should consist of a combination of the following

velocity states: (1) acceleration, (2) constant velocity, and (3) de-acceleration. A maximum

velocity for the actuator sets an absolute limit. Depending on the arrangement of the

velocity states from the start to goal position, the velocity will either be directly or inversely

proportional to the harmonie function gradient at a particular location. Unfortunately, the

proportional factor is not constant, since it depends on the positioning of the object and

goal models. Thus, it is not cIear on how to use the potential function gradient information

99

-

-of

CHAPTER 4. PATH PLA~NI~G

in order to control speed, but the gradient vector V(xr , Yr) can definitely be used to specify

the trajectory.

The optimality of the generated trajectory is established by noting that there is a direct

eorrespondence between harmonie funetions and probability functions for a random walk

on a Markov32 chain (Doyle & Snell, 1984). The probabilistie interpretation of each point

in the harmonie function is a hitting probability (Connol1y, 1994) (Le., the probability of

hitting an obstacle before arriving at the goal). The steepest gradient-descent path ln a

harmonie function is optimal in terms of the described probabilistie interpretation. For

Dirichlet boundary conditions, steepest gradient descent produces a path where the hitting

probability is continually and maximally being redueed. The path is smooth33 and optimal

in the sense of being the shortest path subject to a penalty for proximity to obstacles (i.e.,

the path wants to move away from obstacles). In the Neumann case, the derivative of the

potential function is zero at obstacle boundaries, and consequently the path is not subject

to the obstacle proximity penalty.

32 A Markov process is a random process whose transition probabilities at the current time do not depend on
prior transitions. A finite Markov chain is a special type of change process that moves around the set of states
S = {Sl,S2 •••• ,Sr} in a Markovian fashion. When the process is in state Si, it moves with probability Pi] to state
s}. States that are once entered and cannot be left are caUed trop.f or ab.forbing-.date.s. A Markov chain is ealled
absorbing if it has at least one absorbing state and if, from any state, it is possible (not necessarily in one step) to
reach at least one absorbing state. The states of an absorbing chain that are not traps are ealled non-absorbing.

33 Almost all paths on a harmonie function are infinitely differentiable along their length (Sabersky et al., 19ï1).
An exception is a saddle point which will still be piecewise differentiable. The path produced from steepest gradient
descent will always escape a saddle point and is therefore infinitely differentiable along its length.

100

CHAPTER 4. PATH PLANNING

i) ADDING A NEW OBSTACLE OBJECT MODEl

ii) REMOVING AN EXISTING OBSTACLE OBJECT MODEl

:'C'" i-'

1·'

iii) CHANGING AN OBJECT MODEl FROM
AN OBSTACLE TO A GOAL

iV) CHANGING AN aBJECT MaDEL FROM
A GOAL Ta AN OBSTACLE

FIGURE 4.8. Types of Changes to the Obstacle and Goal Configuration. The grey
pixels signify the ftee space, whereas the black pixels reptesent the obstacle models and the white pixels
represent the goal models. The configuration space is the collection of white. black and grey pixels.
The figure iIIustrates the four different possible changes to the configuration space. Ali other potential
changes are a combination of the above cases.

97

CHAPTER 4. PATH PLANNING

5. Trajeetory Generation Using Harmonie Functions

Harmonie funetions have the desirable property of no local minima (Connolly & Gru­

pen, 1993; Tarassenko &. Blake, 1991). If at least one path exists to a known destination,

steepest gradient descent on this function is guaranteed to find it (Doyle &, Snell, 1984).

This is advantageous for path execution because steepest gradient descent is a simple and

blind search strategy that is computationally inexpensive (Le., no backtracking).

The derivative of the harmonie function U at every free space C free point defines a

field of velocity vectors V(e):

(4.4.32) V(e) = -V'Ü(e)

where V'Ü(e) denotes the gradient vector of U at (e):

(4.4.33) vü= (~)

The velocity vector is the value of V(e) at the current estimate of the robot's position

(Le., V(xn Yr)). The field of velocities permits robot localization (i.e., the correction of the

robot's position) to be independent of the trajectory generation. If the robot's position is

updated (i.e., corrected) to (xr', yr'), then the trajectory will be selected based on the value

Vat (xr',yr') (Le., = V(xr',yr'». The velocity field defines aIl possible trajectories from

every location in the Cree space.

The velocity vector V(e) has two components: (1) an orientation, and (2) a magnitude.

The orientation component defines the direction of the next robot movement.

A simple and fast algorithm is used to compute the local orientation component of the

velocity (see Figure 4.9). It is calculated by selecting the maximum negative gradient in

an eight-neighbourhood31 around the current position of the robot. The result will be an

orientation value that is divisible by 45 degrees. In order to obtain a smoother trajectory,

an approximation to the continuous gradient is obtained by fitting a parabola to the three

points defined by the maximum negative gradient direction and its two neighbours (Le., in

the eight-neighbourhhood operator centered at the current position of the robot). The local

minimum of the fitted parabola defines the orientation of the local trajectory.

It would be desirable to have the magnitude of the velocity vector IV(e)1 define the

speed of the robot. The field of velocities Veel generated from a harmonie function is such

tbat IV(e)1 is a larger value near goal locations when compared to other locations in the free

31 Recall that the potential function is defined on a discretized grid.

98

..

CHAPTER 4. PATH PLANNING

/

t
,~\\

-~MAX .im1 = \

1+ 10- +~ ~~~~~~..
- Il 2 neighbourtng
1 nlues)

"
FIGURE 4.9. Quick Calculation of Trajectory. The local trajectory is derived by selecting
the maximum negative gradient in an eight-neighbourhood around the current position of the robot
in the discretized potential funetion. In order to obtain smooth trajectories. an interpolated value is
computed by fitting a parabola to the three points defined by the maximum negative gradient direction
and its two neighbours.

space. A possible strategy for velocity control would be to make the robot!s speed inversely

proportional to the gradient's magnitude [V(e)l:

(4.4.34) - 1
IV(e)[ex -1V'Ü(e)1

This would result in the robot de-accelerating as it progressed towards the goal position.

However, this is not an appropriate strategy ta take because the robot would start at a very

high speed (Le., jump start) and deaccelerate as it approached the goal position. In the more

general case, the determination of the velocity should depend on a predefined veloeity profile

from the start to goal position. The profile should consist of a combination of the folIowing

veloeity states: (1) acceleration, (2) constant velocity, and (3) de-acceleration. A maximum

velocity for the actuator sets an absolute limit. Depending on the arrangement of the

velocity states from the start to goal position, the velocity will either be directly or inversely

proportional to the harmonie function gradient at a particular location. Unfortunately, the

proportional factor is not constant, since it depends on the positioning of the abject and

goal models. Thus, it is not clear on how to use the potential function gradient information

in order ta control speed, but the gradient vector V(xr, Yr) can definitely be used to speeify

the trajeetory.

99

CHAPTER 4. PATH PLANNING

The optimality of the generated trajectory is established by noting that there is a direct

correspondence between harmonic functions and probability functions for a random walk

on a Markov32 chain (Doyle & Snell, 1984). The probabilistic interpretation of each point

in the harmonie function is a hitting probability (Connolly, 1994) (i.e., the probability of

hitting an obstacle before arriving at the goal). The steepest gradient-descent path in a

harmonie function is optimal in terms of the described probabilistic interpretation. For

Dirichlet boundary conditions, steepest gradient descent produces a path where the hitting

probability is continually and maximally being reduced. The path is smooth33 and optimal

in the sense of being the shortest path subject to a penalty for proximity to obstacles (i.e.,

the path wants to move away from obstacles). In the Neumann case, the derivative of the

potential function is zero at obstacle boundaries, and consequently the path is not subject

to the obstacle proximity penalty.

32 A Markov process is a random process whose transition probabilities at the current time do not depend on
prior transitions. A finite Markov chain is a special type of change process that moves around the set of states
S = {Sl,S2, ... ,S.. } in a Markovian fashion. When the process is in state Si, it moves with probability Pij to state
S j. States that are once entered and cannat be left are called trop.s or ab.sorbing-.states. A Markov chain is caJled
absorbing if it has at least one absorbing state and if, from any state, it is possible (not necessarily in one step) to
reach at least one absorbing state. The states of an absorbing chain that are not traps are called non-absorbing.

33 Almost all paths on a harmonie function are infinitely differentiable aJong their length (Sabersky et al., 1971).
An exception is a saddle point which will still be piecewise ditl"erentiable. The path produced from steepest gradient
descent will always escape a sacidle point and is therefore infinitely differentiable a.long its length.

100

..

CHAPTER 4. PATH PLANNING

6. Guaranteeing Proper Control

There is no guarantee on the eorrectness of the trajectory commands before the com­

putation has converged to the solution for the current configuration. In order to address

the eorrectness of the trajectory, a type of "anytime alyorithm~' (Mouaddib & Zilberstein.

1995) is proposed. Anytime alyorithms are algorithms whose quality of results improves

as computation time increases. There are three metries to measure quality (lVlouaddib &

Zilberstein, 1995): (l) certainty in result eorrectness: (2) accuracy in result correctness:

and (3) specificity in the level of detail of the result (Le., sampling). The proposed method

improves along an three metrics as time increases.

The iterative computation of the harmonie function for a given configuration takes a

fixed amount of time before convergence is aehieved. Polling the gradient before convergence

to the harmonie funetion will result in potentially erroneous trajectories. Thus, it is desirable

to have the computation converge to the harmonie function almost instantaneously. The

computation time is exponentially proportional to the number of diserete grid elements.

It would be desirable to reduee the number of grid elements (i.e., make each grid element

represent a larger spatial area) , but the fewer their number, the eoarser the path. A

reasonable tradeoff is to simultaneously compute the harmonie funetion for different grid

resolutions34 (see Figure 4.10), and use the coarse grid result inîtially, gradually progressing

ta using the tiner grid results as their associated computations converge35 .

Let the different grid levels be {gI, Y2, ... , 9n}. where 91 is the coarsest (i.e.. lowest)

resolution grid and gn is the finest (i.e., highest) resolution grid. Given equal computational

resources, 9i will converge before Yj if j > i. AIl grids are given the same initial obstacle

and goal configuration and are aIl updated with newly acquired sensor information as it

becomes available. The harmonie functions are aIl computed iteratively and eoncurrently

for each grid resolution. The steepest descent gradient is taken at the current estimated

position of the robot for each grid computation: {vï, V2, ... , v~}. If grid Yi has converged

34 From a theoretieal point of view, sueh a strategy is feasible. Each harmonie function is eamputed at a different
resolution and each one is a suitable candidate for the generaticn of the trajeetory. However, the harmonie funetion
with more grid elements (Le., finer resolution) will produce a smoather trajectory. From a practical point of view,
there is a resource limitation on the number of levels in the hierarchy. Five processors were usually used to compute
a single harmonie function (see Chapter 7). Therefore. experimentation with SPOTT was confined to using only two
levels in the hierarchv.

35 IdeaIly, to s';ve on computational resources. it would be desirable to compress the hiera.rchy inta a single
level with an unequal grid sampling. Large open spaces would be represented by a few grid elements, while small
tight spaces would be represented by a more dense sampling. The local sampling might have to dynamically change
depending on what is sensed from the environment. The computationai overhead for managing a data structure
capable of representing ail the hierarchies within one level should not slow down the reaction of the system (Le., for
obstacle avoidanee) to newly sensed features. Representing the hierarchy in a single level is not addressed by this
thesis and is left as a future research topic.

101

..
...

CHAPTER 4. PATH PLAN:-.iI:-.iG

to the harmonie function for the CUITent configuration, and there are no grids Yj, where

j > i, that have also converged, then vi is used as the local trajectory control. It is assumed

that the computation time for convergence at the coarsest grid resolution is faster than the

rate of change in the environment. Therefore, if there are no environmental changes sensed.

eventually grid Yn (i.e., the finest grid) will converge and its trajectory vector v~ will be used

to specify the local trajectory for the robot. For normal operation. the trajectory vectors

are used in the order of ascending grid resolution {vi, v"2, ..., v~}. This progression switches

from grid Yi to grid Yi+l (Le., control from 'üi to 'Ui+d when grid 9i+l has converged to its

solution. The progression is restarted (i.e., sometimes before grid Yn 's vector v-; has had

a chance to he used for control) when the local map is updated (e.g., newly sensed data

arrives, or a new goal is set). At this time, vi will again he used for control, and control

will again switch in ascending arder until v~ is reached or newly sensed data arrives and

control is switched back to vi. The switching between levels depends on determining if a

particular grid resolution Yi has converged to its harmonic function.

Convergence can be found by measuring the change in value of the harmonic func­

tion grid elements between successive iteration steps. It is achieved when this value is a

minimum (i.e., approximately zero). However, convergence monitoring requires additional

computational resources, which will slow down the computation of the harmonic function .

An alternative approach is to compare aH the trajectory vectors {vï, V2, ... ,v~} in ascending

order, assuming that vï, the direction computed at the coarsest resolution, is correct. If

V2 is approximately36 equal to vï, then 'U2 is used, otherwise vï is used. This comparison

continues between successive grid resolution levels until it fails or v~ is reached.

Section 5 discussed the optimality of the trajectory produced by performing steepest

gradient descent on the harmonie function by the local path planner. This section addressed

the ability to guarantee proper response (Le., control) in a real-time operational scenario.

The potential field (i.e., local path planner) only performs path planning within a local

window of the map (Le., the world known to SPOTT). The next section addresses the

issue of integrating a topologically-based global path planner with the presented local path

planner in order to perform path planning in a larger scale environment.

36[n SPOTT's implementation, "approximate1y equaf' means being within ±22.5° of the compared value. If v-;
is equal ta Vi+l ± 22.5°, then Vi+l is used for control. Otherwise, Vi is continued ta be used for control.

102

CHAPTER 4. PATH PLANNING

RESOLUTION
HIGH

SLOWTO
CONVERGE

-...
III

o 0

OBSTACLES
~

GOAL ROBOT
~ TRAJECTORY

~

ROBOT POSITION
~ JO

o 0

-
RESOLUTION

LOW

.,
FASTTO

CONVERGE

MULTI-RESOLUTION POTENTIAL FIELD COMPUTATION

FIGURE 4.10. Muiti-Resolution Potential Fields. The trajeetory of the robot is continuously
available by taking the gradient at the finest resolution that has converged to its solution (i.e., harmonie
funetion) at a particular time instance.

103

..

CHAPTER 4. PATR PLANNING

7. Why is the Potential Field a Local Path Planner?

The potential field is not computable over a large environmental space due to the

enormous computational costs37 associated with a large number of grid elements, and the

rapidly decaying nature of the harmonic function. The environment used in the experiments

for SPOTT is an office and laboratory space which is 6500 cm by 3990 cm. The largest

size an individual grid element can be is 302 cm, which was determined by using three grid

elements to occupy the space between the two closest features in the environment. In an

office and laboratory space, the narrowest navigational regions are usually hallways and

doorwaysJ8. Reasonable convergence times (i.e., less than two seconds) can be obtained for

grids which are 35 by 35 (see Chapter 7). Thus, the maximum size a potential field can

cover is approximately 10 ID by 10 m.

In addition, the extent of the potential field is further constrained due to the rapid

decay of the harmonie function with Dirichlet boundary conditions in narrow corridors. On

a thirty-two bit computer, the harmonic function can only be accurately represented when

the length-to-width ratio for a narrow corridor is less than 7.1 to 1 (see Appendix A).

Therefore the potential field can only be used as a local path planner and it must slide

around to keep the robot within its bounds. When the robot reaches the frontier of the

local region, the bounds are shifted. The size of the potential function is fixed and its new

bounds centre the robot (see Figure 4.11). A global goal outside the extent of the potential

function's boundaries projects onto the border using information provided by the global

path planner (see Section 9)

37 Computation time is exponentia.lly proportiona.l to the number of grid elements.
38This is true when only considering the features present in an architectural CAD map of the environment.

There may be other regions where desks and chairs are closely positioned together. but this space is not traversed by
the robot in the experiments discussed in this thesis.

104

CHAPTER 4. PATH PLANNING

Une connectfng
robofs current position
ta the goal

robot's (used ta determlne projection of global goal)

current position

wall

paddlng ta compensate for !
(1) modelllng the robot as a point, and

(2) uncertalnty ln sensrng and position.

projection of global goal
onto local border

tralectory

..

FrGURE 4.11. Sliding Local Path Planner. The potential function's boundary slides when
the robot approaches the current boundary. The new boundary is defined 50 that the current position
of the robot is at its centre. The global path planner provides the information which projeets the global
goal. which is outside the local extent. anto the current local boundary (see Section 9). The shading
around the wall features corresponds ta their padding in arder to campensate for modelling the robot
as a point. as weil as the sensing and positioning uncertainty.

105

CHAPTER 4. PATH PLANNING

-
8. Global Path Planning

An architectural CAD map (see Figure 4.12) consists of a collection of Line segments

defining internaI walls and the external construction frame. It is assumed that abstract

symbolic entities in the map (e.g., rooms and hallways) are Iabelled. This abstract rep­

resentation is used by the global path planner to provide the local path planner with the

necessary information to guide it towards a goal located outside its current local extent .

\

robot
extentof
local path
planner

-1

r­
I

..

4..16--1 417
41-1~

-141

goal

..----------------t~x

y
FIG ü RE -1.12. CAD Map of CIM. The features are 0111 line segments representing permanent
walls. The extent of the local path planner olt a particular instance of time is shown.

The abstract graph structure (see Figure 4.13) is defined by G(N, E). N is a set of

oodes {n l, n2, ... } and E is a set of edges {e l, e2, ... }. Each edge e connects the elements of

an unordered distinct pair of nodes {ni, nj}. Every node represents a room or a rectangular

portion of hallway. The summation of the rectangular portions of hallways combine to form

the entire hallway network. An edge represents an access way between oodes. An access

way can either he a doorway (Le., open or closed) or a virtual plane39 , which projects to

a line in 2D. A doorway's state (i.e., open or closed) may change depending on perceptual

information which is continually being received from the sensors40 . The search for a path

39This is the case for two adjoining rectangular ha1lway portions where there is no doorway between them. The
boundary is artificiaJly created to satisfy the self-imposed requirement that nodes represent rectangular regions.

40Currently, QUADRIS (i.e., laser rangefinder) is used to recognize door states (Le., open or c1osed).

106

CHAPTER .1. PATH PLAN~rXG

in the graph space translates to a graph search from a start n r to a destination node 1lg . A

path is a sequence of edges el, e2, ... such that:

(i) ei and ei+1 share a common endpoint;

(ii) ei is not a self-Ioop; and

(iii) if ei is not the first or last edge~ ei shares one of its endpoints with ei-I and the

other with ei+ 1·

~
"V

-...hallwa

1-..... - -

®p0@
......., 1Jaurgpn apr-. Iiuur..........upra

~~~SP
~1a®@®0G)®0®0®@

r...... -.... '*-..... ........ ........ -.... ........ ........ ........... ..-...... ........ ........

~0@ @
tI..a-, 1..... ~ Ib.... ....~'P'. .... .....

- ~--=:'~~~.~~~-~-~~-
®®®<35p
_..... ...... lioii.... ,....,...

® 09'®
FrGURE 4.13. Abstract Graph of CAD Map. This is the abstraet graph corresponding to
the CAO map in Figure 4.12. The nodes represent rooms or hallway portions. The edges represent
access ways (Le., doors or virtual planes) which are line features in the CAO map. The highlighted
edges represent the path produced by Dijkstra's algorithm using the robot and goal locations shown in
Figure 4.12. The robot starts in room 421 and its destination is room 405.

-,-
A path {nr , ni, ni+l, ,.. , n g } is represented by the collection of nodes visited by traversing

the edges form the a starting position n r to a goal position ng • Dijkstra's algorithm (Aho

et al., 1983) is executed on the graph in order to find the shortest path from the starting

107



CHAPTER 4. PATH PLANNING

node to the goal node. The path is computed when the task (i.e., go from n r ta n g ) is

specified and recomputed only when an edge changes state (e.g., from an opened door to

a closed door). Initially, it is assumed that ail doors are open until verified or refuted by

sensor data.

In order to obtain a shortest path from the graph structure, a notion of distance with

respect ta the abstract graph is defined. A Cartesian reference is superimposed on the

CAD map, such that the top left hand corner is the origin. The positive x axis is directed

ta the right while the positive y axis is oriented downwards (see Figure 4.12). AIl the

rooms in the environment are rectangular and are represented by two sets of endpoints.

one representing the top left hand corner and the other, the bottom right hand corner:

n room = ((Xrml,Yrmt), (Xrm2,Yrm2))' Access ways are represented by a Line segment: ei =
((Xal,Yar),(Xa2,Ya2)). The distance from the start node to the next node is the distance

from the robot's starting position to the access way of the next node. The distance for

intermediate nodes on the path is the distance from the access way by which the node

was entered ta the access way that connects it to the next uode. The distance from the

second-Iast node on the list ta the goal is the distance from the access way from which the

second-Iast node was entered to the position of the goal via the access way connecting the

second-Iast and goal nodes (see Figure 4.14).

Architectural CAD maps can be a valuabLe piece of a priori knowledge for navigating

a robot in indoor environments. The CAD map only contains the permanent structures

in the environment (Le., walls). The robot still has ta sense the environment ta discover

abjects not contained in the CAD map and ta verify or refute-tl the existence and location

of the CAD map features (e.g., walls). A locaL window into the CAD map is used as an

initial map for the local path planner. The graphical abstraction of the CAO map (Le..

nodes and edges) is used ta guide the robot towards the boundary of the local region in

which local path planning is done in order to satisfy the global goal.

41 Refutation is currently not done by SPOTT. However, SPOTT does verify the existence and label (e.g., door.
wall) of existing features. Ali CAO features are initially labelled as walls. Both sonar and QUAORIS data are used
for mapping the environment, but only QUAORIS is used to recognize objects (e.g., doors, walls).

108



CHAPTER 4. PATH PLANNING

a)
CADmap

c

d4
4"~ d2 d1 ~

-1 L j,----:_
d

virtull/ pillne (II/ways open)

h1

b) abstract
graph

0
" ..-'

~_.-_.".. ...........

d

.•...,.,...•, ..~/// ....

~
FlGURE 4.14. Calculating Distances for Global Path Planning. (a) shows a sample CAO
map with a path going from room a to room c. The corresponding abstract graph is shown in (b),
where the nodes to be visited are shaded and the traversed edges along the path are in bold type. The
distance from the start node to the next node is the distance From the robot's starting position to the
access way of the next node (i.e., dl). The distance for intermediate nodes on the path is the distance
from the access way by which the node was entered to the access way that connects it to the next
node (i.e.. d2). The distance From the second-Iast node on the list to the goal is the distance From the
access way from which the second-Iast node was entered to the position of the goal via the access way
connecting the second-Iast and the goal node (i.e.. d3 + d.. ).

109



-

-J

CHAPTER.J. PATH PLANNING

9. Local and Global Path Planner Interaction

The global path planner, by using an abstraction of the CAD map, is able to provide

global goal information to the local path planner (i.e., potential field). This occurs when

the bounds of the potential field change: as the robot approaches the border of the potential

field, the potential field is re-anchored with the robot position in the centre, and the global

goal is projected onto the potential field's new border. If the global goal is within the

potential field's extent, then there is no need to project the global goal onto the border. If

no CAD map is available, then the location of the global goal is projected onto the border

by joining the global goal to the robot position, and intersecting this Hne with the potential

field's border. On the other hand, if a CAD map is available and the spatial location of the

goal is outside the extent of the potential field, the goal is projected onto the border of the

potential field at a location determined by an algorithm (see Section 9.3) which uses the

global path produced by the global path planner.

9.1. Four Typical Scenarios

The four typical scenarios under which global goal information is used (i.e .. if it is

necessary) by the local path planner for determining the projection of the global goal onto

its boundary are as follows:

(i) In the first case, the position of the robot and the goal are within the local extent

of the potential field, and the goal is reachable (i.e., there is a path. ta the goal

that stays within the local confines of the potential field) frOID the raboCs current

position (see Figure 4.15).

(ii) In the second case, the position of the robot and goal are within the local extent of

the potential field, but the goal is unreachable (i.e., there is no path ta the goal that

stays in the local confines of the potential field) from the current robot's position (see

Figure 4.16). The cause of this is either that the access way into the roam, where the

goal is located, is not contained within the local extent, or the access way is blocked

(Le., closed door). The global path is used ta determine the projection of the goal

onto the proper location on the boundary of the potential field (see Section 9.3).

(iii) In the third Cabe, the robot and the goal are located in the same node (e.g., room),

but the goal is not within the local extent of the potential field (see Figure 4.17). The

intersection of a Hne joining the robot and the goal with the potential field's border

is used to determine the location of the projection of the goal onto the potential

field's borders (see Figure 4.20).

110



•..

..

~.

CHAPTER·L PATH PL:\~NING

(iv) In the fourth case, the position of the robot and the goal are in different nodes (i.e..

rooms) and the goal is not within the current local boundaries (see Figure 4.18). The

global path is used to determine where the goal gets projected onto the potential

field's border (see Section 9.3).

The four scenarios encapsulate ail potential situations where the local and global path

planners may interact. The role of the global path planner is to provide the necessary

information to the local path planner in order to project the goal (i.e., global) onto the local

path planner's border. The local path planner's borders are repositioned when the robot

approaches the CUITent local bounds, so that the robot is in the centre of the new bounds.

Their extent is limited because the computation of the harmonie function is exponentially

proportional to the number of grid elements and the size of a grid element can only be a

certain size which is related to the context of the environment (see Section 7) .

111



CHAPTER -1. PATH PLANNING

-

robot

"\

'"•
Room
414

goal
l'

1
1
1

:
;,

j.
t

1

Room
417

(::::\
~
r:::'\
\~

\

FIGURE 4.15. Local and Global Path Planner Interaction: First Typical Case. The
position of the robot and the goal are within the local extent of the potential field. and the goal is
reachable (i.e.• there exists a path within the local confines of the potential field from the robot to the
goal position) from the robot's current position.

112



CHAPTER 4. PATH PLANNING

+

v
~ -goal

t@oom
437

doo."I'''' \

",.r::'\
doO%Opfn \1~

o

1
goal

- 1

\robot

goal

robot

Room 429

FIGURE 4.16. Local and Global Path Planner Interaction: Second Typical Case.
The position of the robot and goal are within the local extent of the potential field, but the goal is
unreachable (i.e., there is no path within the potential field's local confines From the robot to the goal)
From the robot's current position. The access way into the room, where the goal is located, is not
contained within the local extent. The global path is used to determine the projection of the goal onto
the proper location on the boundary of the potential field (see Section 9.3).

113



CHAPTER 4. PATH PLANNING

-

-

416

rabat

/
•

.-:f

FIGURE 4.17. Local and Global Path Planner Interaction: Third Typical Case. The
robot and the goal are located in the same node (i.e., room), but the goal is not within the local extent
of the potential field. The intersection of a line conneeting the robot and the goal with the potential
field's border determines the location of the projection of the goal onto the potential field's border.

114



-.

..

CHAPTER -1 PATH PLANNI~G

FIGURE 4.18. Local and Global Path Planner Interaction: Fourth Typical Case.
The position of the robot and the goal are in different nodes (i.e.• rooms). The global path is used to
determine where the goal gets projected onta the potential field's border (see Section 9.3).

115



CHAPTER 4. PATH PLA:.'DiI:'iG

9.2. Reachability

A global goal is reachable from a particular starting position if there is at least one

path ta it which avoids a11 obstacles. Sorne of the obstacles are given a priori (i.e., perma­

nent features such as walls contained in the CAD map) while others are discovered while

executing the task. In normal operational mode. SPOTT is given an architectural CAD

map, and a corresponding graph42 as a priori information. Initially, SPOTT assumes that

aIl the doors are open and the global path planner plans a minimum cast path from the

starting node to the node containing the global goal. During the course of traversing this

initial path. SPOTT senses its environment and may find doorways that are actually closed.

If this doorway is part of the planned path, then at this time, the global path is replanned

(see Section 8). It may be the case that the robot cannat leave its particular node or replan

a path ta the global goal because of the newly discovered state of the doors (Le., closed). If

this is the case, execution is ceased, and the operator is informed that the goal cannot be

reached.

During execution, SPOTT is continuaIly sensing its environment. It may be the case

that the robot is not able to traverse anode because newly discovered obstacles are blocking

its path within the node and the local path planner cannat plan a path araund them (e.g..

boxes blocking a hallway). This condition is referred to as blocking. Within a particular

node, the robot is either traversing ta an edge (i.e., doorway or virtual plane) or the global

goal (Le., if it is within the current node). One way of determining reachability of the local

or global goal is to perform spatial reasoning (Le.. potentially computationally expensive)

using the map (i.e.. the CAD map and the newly sensed features) ta determine if the goal

is reachable. This task is beyond the scope of SPOTT and is left to a reasoning agent43 •

A relatively inexpensive (i.e., computationally) approach has been taken to detect block­

ing, which capitalizes upon one of the features of the local path planner (i.e.. potential field).

If there is no path to the local goal, the potential functioll near the location of the position of

the robot will Hatten out and produce no ncgative gradient. If there is no negative gradient,

the robot will not move. If the robot does not move after a specified period of time44 , then

SPOTT is notified that there is a blockage at the current location. If the current location

is in the node where the robot and the global goal are both located, then the operator is

notified that the robot cannat attain its goal. However, if the robot is in one of intermediate

42Consisting of nodes for rooms and hallway portions, and edges for access ways (e.g., doors).
43This is one of the future planned tasks of the logical reasoning module called COCOLOG (Caines &. Wang,

1995), which has been recently interfaced with SPOTT (see Section 3 in Chapter 6).
44 Four seconds was chosen for a 35 by 35 potential field. A potential field of this size should converge in about

two seconds, and waiting for four seconds is ample time to determine that the goal is having no attractive influence.

116



CHAPTER .... PATH PLANNING

nodes (i.e., part of the global path), then the global path planner is notified of the blockage

so that it can try to plan another route. The potential field planner specifies this blockage

as a reachability constraint on the replanning of the global path. The constraint is specified

as (nj, (xr , YrL flag, ei, (xg, Yg)), where nj is the node where the blockage occurred, (x r. Yr)

is the position of the robot when it was blocked, and f Lag determines whether the next goal

is an edge ei or the global goal (xg, Yg).

An example of the use of reachability constraints by the global path planner when

planning a path from node ta node is shawn in Figure 4.19. In this case. a blockage was

previously detected in node 3 at position B when traversing node 3 on the way to edge

4. When the global path is replanned, edge 4 is ineligible as an edge in the global path

depending on the location where node 3 is entered in relation to the point of blockage.

If node 3 is reentered at edge 1, then edge 4 is not eligible as the next edge ta traverse:

however if node 3 is entered at edge 2 or 3, then it is eligible as the next edge ta traverse.

A straight-line distance comparison is made between the entering point ej and the

blockage points specified by the reachability constraints. If the distance to a destination

edge ei frOID the location where the node is entered - ej - is less than the distance from

the blockage point (i.e., specified by the reachability constraint) to the edge ei, then the

local goal is allowed ta be part of the new global path. If the distance is greater, then edge

ei is not a permissible candidate for the global path. The information conveyed by the

reachability constraint in Figure 4.19 is that the robot cannot reach edge -1 from the point

of blockage B, and therefore any locations beyond B (i.e., further away from edge 4 than

B is) are also assumed to be blocked.

9.3. Aigorithm: Projection of Global Goal onto Local Border

The following is the algorithm used for determining how a global goal is projected onto

the border of the potential field:

(i) If the goal is within the local extent of the potential field's border and in the same

node that the robot is in, then do nothing.

(ii) If the goal is in the same node that the robot is in but the goal is not within the

potential field's border, then the location of the global goal is projected onto the

border by joining the global goal to the robot position, and intersecting this line

with the potential field's border.

117



CHAPTER -t. PATH PLANNING

"~

FIGURE 4.19. Reachability and Blocking Constraints The figure iIIustrates the use of êl

reachabiUty con.!tmint which specifies that a blockage was previously detected in node 3 Olt position
8 when traversing node 3 On the way to edge 4. When the global path is replanned, edge 4 is ineligible
as an edge in the global path depending on the location where node 3 is entered in relation to the
point of blockage. If node 3 is reentered Olt edge l, then edge 4 is not eligible as the nex! edge ta
traverse: however if node 3 is entered Olt edge 2 or 3. then it is eligible as the next edge ta traverse. The
information conveyed by the illustrated reachability constmint is that the robot cannot reach edge 4
from the point of blockage B, and therefore any locations beyond B (i.e.. further away from edge 4
than 8 is) are aise assumed to be blocked.

(iii) Otherwise~ the projection is based on finding the first edge within the global path

that is not traversable (i.e.~ locally reachable-l5 ) by the robot while staying within the

local confines of the potential field. The projection is based on joining the centre of

that edge to the centre of the node last traversed before reaching that edge.

The global path is specified as {ni,ni+l~ni+2,...,nn}~ where ni is the start node and

nn is the goal node. The edges of the global path are {e(i,i+l)' e(i+1.i+2)' .... e(n-l,nd~

where the indices correspond to the two nodes that the edge connects. The goal

is locally reachable if the robot can safely pass through aIl of the edges·l6 that are

part of the global path, while staying within the bounds of the potential field. If the

edge is outside the local extent, then the edge is not passable. If the edge intersects

the border of the potential field, then the part of the edge inside the local extent

requires to be larger than the width of the robot for the edge to be passable. If the

edge is labeIled as a closed door, then it is not passable. Otherwise, if the edge is

completely within the local extent of the potential field and is labelled as an open

door or a virtual plane, then the edge is passable.

45 An edge is locally reachable if the robot can fit through the portion of the access way that is in the current
local extents of the potential field.

46Each edge represents a tine in a 20 map, which corresponds to a door or virtual plane in 3D space.

118



...

CHAPTER·1. PATH PLAN:'iIXG

The global path is used to determine the projection of the goal onto the proper

location on the boundary of the potential field. This is accomplished by finding

the first access way (Le., edge), proceeding in sequential order in the list of edges

{e(i,i+L)' e(i+l.i+2) ' ... , e(n-l,n)}, that is not passable (i.e., locally) e(i+k,i+k+L)' This

edge corresponds to an access way between nodes ni+k and ni+k+ L' The intersection

of a line connecting the centre of the edge defined by e(i+k,i+k+ L) and the centre of

the part of the node ni+L that is within the potential field's borders (or the location

of the robot if it is in that oode), with the potential field's border is used to deterrnine

the projection of the goal (see Figure 4.21).

Figures 4.20 through to 4.22 show sorne examples of the global goal being projected

onto the local potential field border.

• In Figure 4.20, the robot and the goal are located in the same oode (e.g.. room).

but the goal is not within the local extent of the potential field. The intersection

of a line joining the robot and the goal with the potential field's border is used to

determine the goal projection.

• In Figure 4.21, the position of the robot and goal are within the local extent of the

potential field, but the goal is locally unreachable from the robot 's current position.

The projection is based on the intersection of a Line defined by two points with the

potential field border. The first point is the centre of the part of node h6 that is

within the potential field bounds. The second point is the centre of the edge that

connects nodes h6 and room 430. This second point is also the centre of the first

edge that is not locally passable along the way from the start to goal node.

• In Figure 4.22, the positioIl of the robot and the goal are in different nodes (i.e..

rooms) and the goal is Ilot within the current local boundaries. The global path is

used to determine where the goal gets projected onto the potential field's border so

as to locally maintain the execution of the global path.

The topological path produced by the global path planner is used to project the global

goal onto the potential field's border (i.e., if it is necessary). This co-operation permits

the local path planner (i.e., potential field) to overcome its shortcomings in extent (i.e.,

the size of the potential field's extent is limited because an increase in size is directly

proportional to its computation time) by providing it with information about the global

goal. In a static environment, this arrangement will permit the global goal to be attained.

This is because the projection algorithm is based on tracing the global path's geometric

119



CHAPTER 4. PATH PLAN:'-lI:'-iG

gOllI
position

robot
po.mon

FIGURE 4.20. Goal Projection: Goal in Same Node but not in the Potential Field.
The robot and the goal are located in the same node (e.g.. room). but the goal is not within the local
extent of the potential field. The intersection of a line conneeting the robot and the goal with the
potential field's border is used to determine the goal projection. The shaded walls in this diagram and
subsequent ones correspond to CAO wall features that are at least partially in the potential field border
or in the node in which the robot is located.

local potential
field border

-

goal
position

robot
position

thls edge Is the first
••OOge ln the global path

;' that Is locally unpassable

CAD (eatures !
partlally located f
in local ~:-:
potentlal field
and robot node ..--~----------...

Global Path

FIGURE 4.21. Goal Projection: Locally Unreachable Goal. The position of the robot
and goal are within the local extent of the potential field. but the goal is locally unreachable from the
robot's current position. The projection is based on the intersection of a line defined by two points
with the potential field border. (1) The first point of the the line is the centre of the part of node h6
that is in the potential field bounds (Le., (a». (2) The second point of the line is the centre of the
edge that conneets nodes h6 and room .30 (i.e.. (b)). The second point is also the centre of the first
edge that is not locally passable alang the way from the 51art to the goal node.

120



CHAPTER 4. PATH PLANNING

S 4:iM-~iîh

~----~~----
Il

416

414
417

""""'''''''''­..........-­_..."..,..------- _.._.._.......- -...

5

FIGURE 4.22. Goal Projection: General Case. The position of the robot and the goal are
in different nodes (i.e.. rooms) and the goal is not within the current local boundaries. The global path
is used to determine where the goal gets projected onto the potential field's border 50 as to locally
maintain the execution of the global path.

correspondences of the nodes and edges within the local confines of the potential field47 .

In a dynamic environment, obstacles can be discovered anywhere (i.e., unknown a. priori)

and only experimentation will determine what the limitations48 of the projection algorithm

are for dynamic path planning in indoor environments or other environments where global

structure can be captured in an abstract graph (i.e., of nodes and edges).

-

47The abstract graph's nodes are rectangular, thus simplifying the geometrical projections of the global goal .
..BOne potential shortcoming occurs when an obstacle is discovered at the potential field boundary, just in front

of the location where the goal has been projected to. This will have the etrect of erasing the attractive pull of the
projected goal. A heuristic method of overcoming this is to make the projected point a line (i.e., a line covering a
portion of one of the sides that comprise the boundary of the potential field). Even with this method, one can imagine
sensing abjects that will block the attractive pull of the projected goal. The proper way to overcome this limitation
is to have a spatial reasoner reproject the goal when such a situation occurs.

121



CHAPTER 4. PATH PLANNING

10. Future Research Issues

1t is theoretically possible ta extend the formalisrn presented here for 2D path planning

(i.e., local path planning) ta address non-holonomic49 control~ moving obstacles, and 3D

path planning. These cases are of interest because they address more general cases of the

presented method: (1) Most vehicles50 (e.g., automobile) are non-holonomie: (2) ~Ioving ob­

stacles (e.g., people, other robots) are cornmon in mast office and warehouse environrnents:

and (3) 3D path planning is necessary for planning motions when looking for (i.e., finding)

abjects in 3D space and ta guide a manipulator if the mobile robot is equipped with one.

One way ta address extension into these three areas is ta include another dimension into the

potential field grid space to represent: (l) constraints for non-holonomie control (Connolly

& Grupen, 1994); (2) time in order to capture obstacle dynamics for control with moving

obstacles; or (3) the vertical dimension for 3D path planning. The addition of another

dimension, while theoretically possible, is not practical in most cases51 . The computational

time for a harmonie function on a discretized grid will increase in direct proportion to the

number of grid points. The extension of the presented techniques for path planning to these

newareas is a research challenge that requires a practical solution given current technology.

-19 A non-holonomie meehanieal system is one whose motion in configuration space is locally eonstrained (Con­
nolly &. Grupen, 1994). For example, a wheeled vehicle can move ta any position and orientation with a sequence of
maneuvering moves but its motion at any instant is eonstrained (Hwang &. Ahuja, 1992). This results in a constraint
on the curvature of paths for a wheeled vehicle. Traditional path planning techniques treat meehanical systems as
being holonomie (Le., not constrained loeally).

50The Nomadics 200 mobile robot is non-holonomie, but it is treated as a holonomie system.
51It is praetical only when the diseretized grid is coarse in 20 and will be coarse in the third dimension also

(i.e., there are not that many grid points).

122



..
CHAPTER 5. A TASK COMMAND LANGUAGE LEXICON

CHAPTER 5

A Task Command Language Lexicon

Interaction between robots and humans should be at a level which is accessible and natural

for human operators. There has been very little research done pertaining to human-machine

natural language interaction and communication in the field of autonomous mobile robot

navigation (Lueth et al., 1994). Natural language permits information to be conveyed

in varying degrees of abstraction subject to the application and contextual setting. A

major function of language is to enable humans to experience the world by proxy, I.l.because

the world can be envisaged how it is on the basis of a verbal description" (Johnson-Laird,

1989). There are two aspects to a naturallanguage interface: (1) speech recognition and its

interpretation into a vocabulary lexicon; and (2) a vocabulary lexicon and its interpretation

into control and representational constructs. The research area of speech recognition is

beyond the scope of this thesis and is not addressed, and only the interpretation into

control constructs for SPOTT is discussed.

SPOTT's language lexicon is a minimal spanning subset for human 2D navigational

tasks (Landau & Jackendoff, 1993; Miller & Johnson-Laird, 1976). The task command

lexicon consists of a verb, destination, direction and a speed. The destination is a location

in the environment defined by a geometric model positioned at a particular spatial location

in a globally-referenced Cartesian coordinate space. The basic form of the task command

lexicon is a variation of a command or request (Hodges & Whitten, 1986) sentence and its

syntax is:

(5.5.1)
+

COMMAND= +
+
+

VERB

(from)SOURCE

(to) DESTINATION

DIRECTION

SPEED

123



CHAPTER .'J .•\ TASK COMMAND LAXGFAGE LEXICON

If it is assunled that the roboes starting location is its current location. the reference ta the

SOUReE cao be removed which leaves the following as the basic form:

(5.5.2) COMMAND= +
+

+

VERB

(to)DESTINATION

DIRECTION

SPEED

-

User-specified commands are formulated using the lexicon template given by Equation 5.5.2.

InternaI communications and represcntational constructs can also be expressed using parts

of the lexicon set.

The tasks are based on the verbs "GO" and ·'FIND". and a mode of operation called

intelligent tele-operation. A task command formulated with the verb GO assumes that the

spatial location of the goal is known, whereas a task command formulated with the verb

FIND assumes that a description of the object is known but its spatial location is Ilot.

Intelligent tele-operation is concerned with navigating the robot in a specifie direction with

no predefined target - following simple directional commands such as forward. left. to name

a few - untii an obstacle is encountered.

The description of the spatial location for the ., GO" task is a 2D geometric primitive

situated at a particular location in the 2D navigational coordinate space. The modelling

of an object is subject to the representations used for 2D path planning, which are 2D

geometric models 1 (i.e., points, lines. ellipses, rectangles). These 2D geometric models are

used as goals for SPOTT's local path planning module (see Chapter 4). Typically. a point

(i.e.. geometric object) situated in the 2D coordinate space is used to specify a goal.

The kind of objects SPOTT can "FIND" is limited by its a prion knowledge and

perceptual capabilities. Currently, QUADRIS is used to recognize walls. doors, and chairs

(Bui. in preparation). A range profile is used to recognize these objects. Current research

(Bui, in preparation) is also looking into the recognition of geons (i.e.. general 3D primitives.

see Figure 5.2). using a collection of range profiles.

Another element of the task command is a minimal spanning subset of prepositions

(Landau & Jackendoff, 1993) that are used to spatially modify goal descriptions:! (e.g..

near, behind), and to specify trajectory commands (e.g., left, right, north). The spatial

relationships used are sparse, primarily including qualitative distinctions of distance and

direction. The quantification of the spatial and trajectory prepositions depends on two

1These 20 geometric models may be the result of a projection onto the 20 navigational plane of a corresponding
3D model representing an object (e.g., door, chair, wall) in the environment.

2Goals are specified by a spatial region in a global coordinate reference frame.

124



.-
CHAPTER .~. A TA5K COMMA~D LA~GCAGE LEXICON

norrns: the definitions for the spatial prepositions near and far in the current environment

and task context3 . In language design. the descriptors (e.g.. spatial prepositions) tilter out

metrie information (i.e.. not explicitly encoded)~ and similarly. such descriptions may be

instrurnental for providing the structure for a level in a cognitive rnap-t. The task conlnland

is interpreted and quantified by SPOTT. and subsequently used as input to a TR+ program

(see Chapter 3) and the local path planner (see Chapter 4).

3It may be a \'ery difficult task ta quantify the definitions for near and far based on the current environ ment
and task context. For example, far can either mean that the abject (e.g., pen) is not reachable or that the object is
somewhere in the horizon (e.g., mountain).

"'SPOTT's map database does not currently use spatial prepositions to encode topological relationships. al­
though. such descriptions might be lIseful for a symbolic reasoner.

125



..

.-

CHAPTER .'ï. :\ TASK CO~I:'l.IA~D LA~GFAGE LEXICON

1. Verbs

Verbs in the English language can be classified into categories of motion. possesszon.

vision and communication (Miller & Johnson-Laird. 1976). Motion and lJision are the two

categories that are of interest for specifying a navigational task commando

1.1. Motion Verbs

Verbs of nlOtion describe how people and things change their places and orientations in

space (Miller & Johnson-Laird. 1976). They describe how an object changes fronl a place PL

at time lL to another place P2 at a later time tl+ l ' The word travel appears to capture this

idea of a location change at least as weIl as any other single verb in the English language

(Miller & Johnson-Laird. 1976).

Deietic words are the type where it is necessary ta know the conditions under which

a word occurs in order ta interpret it (Miller & Johnson-Laird. 1976). The deictic verbs

of motion in English are a small set (e.g.! bring, come. go~ send. takeL but are the most

frequently used in common speech. When the verb go contrasts with .stay (i.e.. the nondeictic

sense of go)! it is closely similar in meaning to travel. Go is chosen as the verb to nwan travel

because the syntax of the task command (i.e.. commando request) inlplies the nondeictic

llse of the word go. and go is more commonly used in everyday speech. This is also the verb

used by Jackendoff (1990) to capture the concept of travel.

1.2. Vision Verbs

The conceptual core of vision rests on the verbs look and see (Nliller & Johnson-Laird.

1976). Loo~ is behavioral (i.e.. involves the act of moving the eyes or a part of the body)

while see is experiential (i.e.. perceptual). The central paradox of perception is that "no

daim about veridical vis1Lai perception ca.n be visually verifierf' (rvliller & Johnson-Laird.

1976). The individual is the oIlly person to know what it is that they perceive: other people

cannot verify this component of a veridical claim.

Verbs that are based on look are behavioral in nature. These verbs involve the concept

of a visual process in which a sequence of perceptual acts is under the control of an observer.

Looking over a perceptuai object is such a process. The sort of things that can he looked

over include areas~ surfaces, and objects. These verbs invoive a raIe of intention and can be

classified as follows:

5 Look is defined as "ta jet one'j eye$ upon jamething or in sorne direction in arder ta $ee". See is defined as
"ta perceive with the eye$, ta perceive thingj mentally, diseern, underjtand, ta can$trud a mental image of'. Bath
definitions are taken from the Webster's Encyclopedie Unabndged Didionary.

126



•..

CHAPTER .S. A TA5K COM~tA~D L.-\NGUAGE LEXICO:,\

• Visual monitoring may be impossible unless the perceptual system is intentionally

guided to act in arder to continue looking at a perceptual object (i.e., look al).

• An observation may be deliberately prolonged in arder to sec what happens ta the

perceptual object (i.e.. watch for).

• A series of observations may be initiated in order to come to be able to see a par­

ticular entity (i.e.. look for. search for. or find).

The verb find involves bath looking and seeing. In this case. looking is moving the

eyes (i.e.. controlling the pan-tilt head of a camera) and body (i.e .. robot) in a strategie

search sequence. and seeing is the perceptual process of identifying the sensed input as one

of the recognizable entities sought out by the agent (i.e .. robot). Watching for something

and searching for something are both perceptual activities and motivated by a higher-order

intention to learn something. When one is watching. the target is usually an event or an

action. but when one is searching, it is usually an object. An object is found if it becomes

visible. which in essence is also an event. In this sense. fint? is used ta search for an object

or event.

Find is the perfect companion ta the word go in the verb slot of the task commanù.

It specifies the case where a description of an object is given. but its spatial location is

unknown.

6The perceptliai sense of find is also directly related to the control instruction find.

127



CHAPTER .5. :\ TASK COM~IAND LANGlo AGE LEXICO:':

2. Spatial Locations and Object Descriptions

Using go and find as the verbs of a task command lexicon implies that the destination

for the robot is either a known spatial location (Le.. go) or an unknown place specified (i.e ..

find) by only an object's description (e.go, a baIl).

A known destination is a spatial region that is positioned in a predefined Cartesian

caordinate space. Since SPOTT~s task set is based on 20 navigational tasks. a set of simple

2D models (i.e .. point. line. ellipse. rectangle) are used ta model the spat.ial area defining

the destination (see Figure 5.1). In the real world. abjects are 3D in shape and a proper

(0,0)

---------------~x

-

v

rectangle .;
point

FIGCRE .5.1. 2D Models for Representing the Spatial Area Deftning the Destination.
The four different types of models used include a point. line. ellipse and rectangle. A point is specified
by a P = (x, y) coordinate pair. The rest of the models are specified by a set of two points PI =
(xl,yd,P'1 = (X;!,Y2). defining the top left and bottom right points. An ellipse is specified by the
two points defining a bounding rectangle.

description for perceptual identification wOllld be a 3D model'.

Parametric geons (Wu & Levine. 1993) arc chasen as a qualitative description of object

camponents for future use when SPOTT's perceptual capabilities have advanced. Paramet­

rie geons have heen shown to he applicable for qualitative object recognition (Wu~ 1996).

There are seven of them (i.e.~ ellipsoid, cuboid~ tapercd cylindcr. tapered cuboid. curved

cylinder. and curved cuboid) and they are defined by parametrizcd equations where the size

7The 20 models are just projections of the 3D models onto the 2D navigational plane.

128



.....
CHAPTER :"i. :\ TAS1\: CO~f~l.-\:'iD LA~Gl~AGE LEXICO~

and degree of tapering and bending is controlled (see Figure 5.2. Equations 5.5.3 through

to 5.5.9. and (Wu & Levine. 1993)).

cuboid curved cuboid tapered cuboid

Il
cylinder curved cylinder tapered cylinder

ellipsoid

FIGL"RE 5.2. Geons. Seven qualitative shape types defined by parametrized equations that control
the size and degree of tapering and bending have been proposed (Wu &. Levine. 1993) as a qualitative
description of abject components. These shape types are used ta describe 3D objects found in the
world. For example. a cuboid (i.e .. thin plate) would describe a wall. Other abjects may require the
combination of two or more shape types to describe their shape (e.g .. a chair would be described bya
thin plate for the backing and seat and four long cylinders for the legs).

The equation of an ellipsoid ("Vu & Levine. 1993) is:

(5.5.3) ( X)2 (11)2 (z)2- + -=- + - -1
al U2 U3 -.

The equation of a cylinder (Wu & Levine. 1993) is:

(5.5A)

The equation of a cuboid (Wu & Levinc, 1993) is:

--
(5.5.5 )

129



CHAPTER ,J. A TASK COMMA~D LA~GCAGE LEX[CO~

The eqllation of a tapered cylinder (\Vu & Levine. 1993) is:

(5.5.6 )

(-- .... )v.;). ,

(5.5.8)

-

where KI and Ky are tapering paranleters. The equation of a tapered cllboid (\Vu & Levine.

1993) is:

(

)( ) 20 ( Y ) 20 Z 20

al ( %;- 2 + 1) + a2 (~ 2 + 1) + CJ = 1

The equation of a eurved cylinder (Wu & Levine. 1993) is:

( ( ,,- 1 _ J2 2~ (1< - 1 - X) 2 ) 2 + (:) 2) 10 + (" -1 arct:
3

n. f_ X ) 20 = 1

where the curvature value K. is used to describe a sinlple bending operation around a centre

of a circle centered on the x-axis in the x-z plane (\Vu & Levine. 1993). The equation of a

curved cuboid (Wu & Levine. 1993) is as follows:
')0 ' 'JO

(5.5.9) (K.-
L

- JZ"!.+(K- L -Xl~)- + (y):m + (K.-larctanK._f_x)- = 1
al a2 a3

The types of 3D modcls currently in use are constrained by the perceptuaI capabilities of

the robot. SPOTT's recognition capabilities are limited ta walls. dooni. and chairs (Sui. in

preparation). These types of objects may be described by a collection of adjoining cuboids.

This kind of object description (i.e .. as a collection of geon parts) is useful for the perceptual

process of recognition. In arder ta describe a place. usually the location is idcalized by a

single part (3D or 2D) (Herskovits. 1985).

130



CHAPTER ,'i. :\ T:\SK CO~t~tA~D L:\~Gl"AGE LEXICO~

3. Prepositions

The preposition is a key element in the linguistic expression of place and path. and there

are few of them in comparison to the number of names for objects (Landau & .lackendoff.

1993). The totality of prepositional meanings is extremely limited. This fixes the nunlber

of prepositions in the English language (see Table 5.1) which makes them ideal for use in

a robot task conlmand language8 . There are two different types of prepositions that are

of interest for a robot task command lexicon: (1) one type describes a spatial rclationship

betwcen objects: and (2) the other describes a trajectory. A preposition in its spatial role

is only an ideal. The actual meaning is a deviation from the ideal. It is determined by the

context of a specific application. A level of geometric conceptualization ulCdiatcs bctween

the world u.5it i:; and language (Herskovits. 1985).

A locative expression is any spatial expression involving a preposition. its object and

whatever the prepositional phrase ulOdifies (nonn. clause. etc.):

(5.5.10) lVPI (preposition)N P2

where lVP is a nO'lLn phru.'te. If a noun phrase (lVPl) refers to an object (Od. then the

locative expression can be rewritten as foUows:

(5.5.11) 1kl (G 1(0 L) ~ G2 ( O2 ) )

where Cl is the geometric description applicd to the object (Od. and lAI is the ideal meaning

of the preposition. The ideal meaning of a preposition is such that (1) it is manifested in

aB uses of the preposition. although shifted or distorted in various ways. and (2) it does

not apply to the referents of the noun-phrase~but to geometric descriptions associated \Vith

these referents (Herskovits. 1985). If [T(lA!)] is the transformed ideal meaning. then the

geometric scene representation can he stated as follows:

(5.5.12)

--

The different types of categories that typify a geOluetric description function are as follows

(Herskovits. 1985):

(i) Functions that map a geometric construct onto one of ils part.s. EXaInples of parts

include a 3D parL edge~ or the oriented hase of the total outer surface.

(H) Functions that map a geometric construct onto sorne ideaiization of the object. The

idealization can he an approximation to a point. line, surface. or strip.

8Spat ial prepositions may also be used for qualitatively describing the spatial relationships amongst parametric
geons that are used ta model the parts of a single abject (Landau &. Jackendoff. 1993).

131



CHAPTER .'J. :\ TA5K COM:-'l.-\:'oiD L\NGl::\GE LEXIC'O~

Spatial Prepo.'litions

about above across after against along

alongside anlid(st) among(st) around at atop

behind below beneath beside between betwixt

beyond by clown from ln insiclc

into near nearby off on onto

opposite out outside over past through

throughout to toward under underneath up

upon via with within without

Compounds

far frorn

in between

in line with

to the left of

to the side of

Intransitive Prepositions

in back of

in front of

on top of

to the right of

afterward (s ) apart away

back backward downstairs

downward east forward

here iIlward left

N-warcl (e.g.. honlCward) Ilorth outward

right sideways south

there together upstairs

upward west

Nonspatial Preposition..,

aga as because of before despite during

for like of since until

TABLE 5.1. The Minimal Spanning Set of English Prepositions. The possi­
ble meanings of all prepositions is extremely limited (Landau & .1ackendoff. 1993).
The above lists the set of aU prepositions that minimaUy span aU the prepositional
meanings possible in the English language.

132



CHAPTER ~ . .-\ TASK COM~I:\~D L.-\:\'G FAGE LEXICOX

(iii) Functions that map a geometric construct onto sorne associated good form. A good

form is obtained by filling out sorne irregularities or irnplementing Gestalt principles

of closure or good fornl.

(iv) Functions that Inap a geometric construct onto some aS.'wciated '/Jolume that the

construct partially bounds. Adjacent volumes include the interior. the volUIlle or

area associated with a vertex. and lamina associated with a surface.

(v) Functions that nlap a geometric construct onto an axi.e;~ o'r a fmme of reference.

(vi) FUllctions that map a geometric construct outo a projection. The projections can

either be a projection on a plane at infinity or a projection onto the ground.

The meaning is transformed due to various contextual factors9 bearing on the choice and

interpretation of a location expression (Herskovits. 1985). T(Il\;l) and G functions are

frequently fuzzy: however. quantification of a spatial prepositional expression illto a fuzzy

definition is difficult becanse context is the kcy and its quantification is difficult (Herskovits.

1988).

Understanding the representations of space requires invoking mental elenlellts corrc­

sponding to places and paths. where places are generally understood as regions ofteIl occu­

pied by landmarks or reference objects. The spatial preposition is an operator that takes

as its arguments. bath the figure object and the reference abject. and the result of this

operation defines a region in which the figure object is located:

(5.5.13)

where Fsp is the spatial preposition defining a function operating on the figure Of and

reference Or abject models (i.e.. Of is 0 1 and Or is 0'2 in Equations 5.5.11 and 5.5.12) in

order to obtain a region of interest R.

The use of spatial prepositions may impose certain constraints on the figure or reference

abjects, or the resulting region. The restrictions placed on the form of the reference object

or figure object by spatial prepositions are not very severe, and only refer ta the gross

geometry at the coarsest level of representation of the abject (Landau & .1ackendoff. 1993).

The objecfs axial structure plays a crucial role. In a spatial expression defining a location.

there are no prepositions which canse the figure or reference abject ta be analyzed in terms

of a particular geon lO (Wu & Levine, 1993: Biederman, 1987). In general. there are no

9 Salience explains the direction of metonymic shifts. For example, one can use a noun which basically denotes
a whole abject ta refer ta a part of it which is typically salient. Relevance has to do with communicative goals. with
what the speaker wishes tu express or imply in the present cantext. Tolemnce is the deviation from the truth of the
ideal mealling, usually talked about in measurable terms such as angle or distance. Typicalily is the implication of
other meanings associated with the use of the current preposition (e.g. the use of behind implies nearness).

10.-\ qualitative description of an abject component (i.e., part) (sec Section 2).

133



..

CHAPTER .'J. :\ TASK CO~1~1A='iD L:\:"iGL\GE LEX[CO:":

prepositions that insist on analysis of the figure or reference object into its constituent parts.

:\. reference object can be schematized as a point. a container or a surface. as a. unit with

axial structure. or as a single versus aggregate entity. A figure object can be schematized

as most as a single lump or blob (no geometric structure whatsoever). a unit with axial

structure that is along, at most. one of its dinlensions. or a single versus distributed entity.

3.1. Quantifying Prepositional Expressions

The spatial relations encode several degrecs of distance and several kinds of direction.

Nlany complexities arise from assigning different frames of refercnce. Sorne spatial expres­

sions involving axes do not leave this choice of reference systern open. The choi<:e of axes

can either bc defined by the reference object 11. the speaker (i.e.. operator). or the actor

(i.e.. robot).

The quantification of spatial prepositions depends on the purpose of the usc. One

possible method is to quantify a spatial expression into regions with a degree of membership.

which is done by fuzzy sets (Zadeh. 1974). This representation is useful as an infonnation

source for search strategies that deterrnine the likelihood of locating an object in a particular

region. which is encoded by the spatial prepositional expression. At this time. SPOTT is

interested in encoding spatial prepositions in a task command lexicon in arder to define

regions in space to navigate to. Therefore. the quantification requires a precise location or

region in a global coordinate space.

Recall that SPOTT's path planner's navigational space is two-dimensional (see Chap­

ter 4) and the geometric descriptors of a goal arc a point. line. ellipse (e.g. cïrclc) and a

rectangle (e.g. square) (see Section 2). The regions describing the result of a spatial prepo­

sitional expression are described \Vith respect to the boundaries of these geometric objects.

The four levels of distance that are described by English spatial prepositions (Landau &

Jackendoff. 1993) are:

(i) location in the region interior to the reference abject (e.g. in. inside).

(ii) location in the region exterior to the reference abject but in contact \Vith it (e.g. O'TL.

against)~

(iii) location in the region proximate to the reference object (e.g. near). and

(iv) location distant from the reference object (e.g. far~ beyond).

Besicles the boundary defined by the reference objecte the quantification of a spatial ex­

pression only depends on a norm for describing what is meant by near and far. Althollgh

11 A reference objecl can have a usual orientation associated with it (e.g.. the front of the chair is the direction
where one can Sil from).

134



CHAPTER'i. :\ TASK CO~l~L-\:\D LA:'\Gl~:\GE LEXICO:\

hurnans are able to represent distance at finer levels for tasks that require tiner control. it

appears that spatial prepositions do not encode Ulis precision.

Vandeloise (1991), in describing the French equivalents of the English spatial preposi­

tions near and far. c1aimed that they are often described in terms of the following factors:

(i) The access of the target L2 •

(ii) The dimension of the landInark and to a lesser extent. the size of the target.

(iii) The size of the speaker. and

(iv) The speed of the target l:l.

The nornl that defines near and far needs to he defined with respect to some context.

Denofsky (1976) claimed that the nOrIn for far can be approxirnately equal ta four tinles

the nOrIn for near: however. this is clearly not applicable in aIl situations l
-'. For mobile

robot navigation. sorne categories (i.e., or context) that can help quantify the definition are

rnanipulator access. perception access. and the bounds of the environnlent:

• Manipulator access can define the norm for near as being the maximum reach of the

manipulator arm from the body surface of the robot.

• Perception access call define the norm for far as being equal to the fllrthest distance

that the robot can perceive objects.

• A bOllnded environment's (e.g.. a. room) maxiIllum dinlCnsious cau clefine a norrn for

far.

Even though there are only two norms to define (i.e .. near and far). it is not clear that snch

simple definitions for thcir quantification arc adequate across different contextllal settings.

Currently in SPOTT, the operator specifies the nornlS for near and far that are suhseqllently

llsed in the quantification of a spatial expression in the task comnland.

Only 2D spatial expressions are llsed in SPOTT's task command and the vertical

orientation prepositions are not currently included in the vocabulary, becallse all tasks are

on a planar surface. SPOTT's task comnland lexicon categorizes the prepositions it uses

into three groups:

(i) Spatial prepositions that depelld on a orientation based on the reference object (i.e..

directional prepositions) as weIl as the nornlS for near and far,

I::!Access can either by physical (i.e.. reachability for defining near) or perceptual (i.e., defining far based on the
furthest recognizable abject).

13 If the target is moving towards the landmark, the norm may increase with the speed of the target. If the
target is moving away from the landmark, the extent of the norm will diminish as the speed decreases. The speed of
the land mark may also be a factor: however. it is uncommon to find a landmark that is mobile with respect ta the
target. The speed of the speaker, and the size and the speed of the addressee may aiso be factors.

14 For example. in an outdoor setting, the picnic tables may be near and the distant mountains may he considered
far.

135



CHAPTER 5. A TA5K CO~I~IA~D L.-\="GFAGE LEXrCO="

(ii) Spatial prepositions that depend only on the distal norms for near and far with no

need for any orientation frame (i.e.. distal prepositions). and

(iii) Prepositions that define a trajectory (i.e., trajectory prepositions).

Both the directional and distal prepositions are used as part of the dest'ination member of

the task commando The trajectory prepositions are used to define the direction nlember of

the task command (see Equation 5.5.2 and Fi~ure 5.8).

3.1.1. Direetional and Distal Prepo."ition."

The result of quantifying the spatial expression (i.e .. in the destination part. of the task

command) is to define a goal regioll for the path planner (i.e .. potential field. sec Chapter -1).

In the potential field (i.e.. path planner). the entire goal region is saturated ta a low potential

value and is not used as part of the free space, which is where the robot navigates. The

robot navigates by perfornlÎng steepcst gradient descent on the harnlOnic function which is

computed in the free space. The robot will stop when it reaches the outskirts of the goal

region. Ideally~ the robot should navigate towards the centre of the region defined by a

spatial expression. This is why the regioll which is used to define the goal region is only

half the size of the region defined by the spatial expression (sec Figure 5.3).

Figure 5..1 illustrates graphically how the set of directional prepositions are quuntified

to act as a goal (i.e.. for path planning) for different 2D object models (i.e .. point. line.

ellipse. rectangle). The choice of axes can either be defined by the referencc object or the

speaker (Le.. the robot) or by the reference object (e.g.. the front of the chair is the direction

where one can sit frOIn). The prepositional region is based on the chosen orientation axis.

the orientation denoted by the spatial prepositions. as weIl as the norms for near and far.

The quantification of the spatial expression into a goal region is accolnplished by taking the

half of the region defined by the spatial expression which is closest to the object model (5ee

Figure 5.3).

Figure 5.5 illustrates graphically how the set of directional prepositions are quantified

to act as a goal (i.e.. for path planning) for different 2D object models (i.e., point. lîne.

ellipse. rectangle). The set of distal values are only four in llumber: interior. contact.

proximal (i.e.. ncar) and distal (i.e.~ far). Distal prepositions differentiate thenlselves from

directional prepositions by not being oriellted.

136



a)

CHAPTER .'5 . .-\ T.-\SK COM~fA~D LA~GF.-\GE LEXICON

b)
robot's trajectory

......................_~ .
.It···· ....

spatial "glon deftnlng
the goal 'or
ln Iront 01 the ch.lr

...... robot's trajectory

. - - _~-..
.....

.-.. _.-t! robot

object model 'or the j .....~ ..••...........,:.c_ ---f-- ----;:_.---~. 'near

......•...........

.......................................

jfar

objec:t model for the
ch.lr

..•..,
.(--- .....

....
. .

....

:near
'far

-{

FIGCRE 5.3. Spatial Expression Regions Defined as Goals for Path Planning. The
result of quantifying the spatial expression (i.e .. in the destination part of the task command) is to
define a goal region for the path planner (see Chapter 4). This figure illustrates the region defined
by the spatial expression "in front of the chair". and the final stopping position of the robot when
this spatial expression is used as the goal. The goal can be quantified in two different ways: in (a).
the region defined by the spatial expression is used as the goal for the path planner; and in (b), only
half the region is used as the goal. The rationale behind using only half the region is that the robot
traverses to the outskirts of the goal region. and in (b) the robot will end up in the middle of the region
defined by the spatial e,(pression. This contrasts with (a) where the robot will end up at the outskirts
of the region defined by the spatial expression.

137



-
CHAPTER S. :\ TA5K CO~I~t:\:':D L:\:-;ce AGE LEXICO:':

....Il••nI......+,...
r."••11

0 ....--...·,....·,..---
IN FRONT OF

ALONG·

IN BACK OF
ACROSS •

BEHIND

BEVOND

TO THE RIGHT OF

+ --

TO THE LEFT OF

TO THE SIDe OF
ALONGSIDE

BESIDE
BV

®
®

FIGCRE 5.-1. Directional Preposition Definitions. The goal of quantifying the spatial ex­
pression is to define a goal region for the path planner (see Chapter 4). The first row is the set of 2D
object models used. The second row shows how the near and far definitions relate to the different
2D object models. The subsequent rows show the region used as a goal model (i.e.. potential field
abject) when the object model in question is acted upon by the spatial preposition found in the first
column. The legend for the graphies and symbols used is shawn in the box situated in the first column
and second row. There are two regions highlighted throughout the table: the prepositional regton and
the potential field abject region. The region used to describe the result of the spatial expression is the
one highlighted as the potential field abject together with the region highlighted by the prepositional
region. The potential field object region is the one used as the goal model for the spatial expression.

138



NEAR
AT

AGAINST
AROUND

FAR

INSIDE
IN

OUT
OUTSIDE

+

CHAPTER :J. :\ TASK CO~o.l.-\~D LA~GeAGE LEXICO~

- -

FIGL'RE 5.5, Distance Preposition Definitions. The goal of quantifyillg the spatial '!Xpression
is to define a goal region for the path planner (see Chapter 4). The first row is the set of 20 object
models used. The second row shows how the near and far definitions relate to the different 20 object
models. The subsequent rows show the region used as a goal model (i.e., potenhal field object)
when the abject madel in question is acted upon by the spatial preposition found in the first column.
The legend for the graphics and symbols used is shown in the box situated in the first column and
second row. There are two regions highlighted throughout the table: the preposltional reglOn and the
potenhal field abject region. The region used to describe the result of the spatial expression is the
one highlighted as the potent'ial field abJect together with the region highlighted by the prepos'ihonal
reglOn. The potenhal field object region is the one used as the goal model for the spatial expression.
The goal region formed with the ',ns'ide" spatial preposition acting upon a point or line geometric
model is the actual 20 object mode!. In the case of an ellipse or rectangle, the goal region is a smaller
ellipse or rectangle centered in the 20 object mode!. For the fur preposition, the goal region is defined
as everything but the 20 object mode!. Prepositions such as ln and out are ooly relevant when the
reference object can be entered by the robot (e.g., a rectangle representing a raam ).

139



CHAPTER .'l. :\ T:\SK CO~(~tA:"D LA:"GL'AGE LEXIC'O:"

3.1.2. Trajectory Prepositions

The role of the trajectory prepositions (i.e,. direction category in the task command) is

to bias the steepest gradient descent operation that is performed on the potential function

by the local path planner (see Section 5 in Chapter 4), Rather than using steepest gradient

descent. the trajectory is a descending gradient that is biascd to be as close as possible

to the direction specified by the trajectory preposition (see Figure 5.6). There are three

different types of trajectory prepositions:

• For the first type. the trajectory is detennined by fol1owing the outer perimeter of

a reference object. keeping a distance equal to the norm for the definition of near

away froIn the reference object (e.g.. along. around).

• For the second type. the trajectory preposition is defined by a vector connecting the

robofs current position (i.e .. at the time the command is given) to the centroid of

the reference abject (e.g.. towards. away fronl).

• For the third type. the quantification of the trajectory preposition is defined by a

coordinate axis centered at the robot (e.g.. backward. forward. left. right) or a global

coordinate axis which dcfilles the compass heading (~.g.~ Horth. south. east~ west).

Figure 5.7 illustrates the direction biases that the set of trajectory prepositions define.

140



CHAPTER 5. A TAS1\: COM~I.-\='lD L:\~GCAGE LEXICON

(c)

....
(b)
direction specified

by lexicon

trajectory .'

(d) V~~~J~'" .....
~ .

trajectory
vector

chosen

,
"..................

~ steepest 'a '
~ gradient '4 1
, descent direction

..

-

FIGCRE 5.6. Trajectory Preposition Bias on Steepest Gradient Oescent. The role of
the trajectory prepositions (i.e .. diredion category in the task command) is to bias the steepest gradient
descent operation that is performed on the potential function by the local path planner (see Section 5
in Chapter 4). Recall that the steepest descent gradient at a particular location is computed using a 3
by 3 operator. The steepest descending gradient (a) is chosen out of the nine choices (i.e.. the dotted
vectars). The gradient used is based on finding a descending gradient which is the closest one to the
orientation specified by the trajectary preposition (b). Once this has been chosen (c). an interpolation
procedure is initiated. similar ta the one described in Figure 4.9. in order ta find a descending gradient
which is the closest in orientation to the trajeetory preposition (d) .

141



~ - -YOOEL + ---
PREPOSITION

LEGENDN._
/---..." 'iIij,N - .. -. Il

H -.+" --- . .
. ..

G .............- "-- ---- ~ .......--.....-~'

" <f-"
-~~-- ,/iIj" -ALONG ---,. .1 Ql G~.-:-/~

~-

~+~
, ." luu.mmu_.mn _ ",~- .., -

AROUND ~'-"'-a.t ~~/ i _1
~

,
l'-

VIA - -TO

/+ ---TOWARD

~/ / /'
Q '" ~

/ / / /
FROM

AWAY FROM \lœ ~
~

+ --- - -
- backward

rI9ht+,ett

lorward

Directions based on Inherent robot a1l8S.

C'HAPTER'l. A TASK CO~t"L\~D LA:'iGCAGE LEXICO~

nonh

west+e.l' Compass directions.

south

FIGl'RE .5.7. Trajectory Preposition Definitions. The raie of the trajectory prepositions is
to bias the steepest gradient descent operation (See Figure 5.6) on the potential function performed
by the local path planner (see Section 5 in Chapter 4). The first row is the set of 20 object models
used. The second row shows how the definition for near relates to the different 20 object models.
The icon which indicates the robot and its position is shown in the legend box, which is in the first
column and second row. The third through to the sixth rOWS show in terms of arrows how the trajectory
of the robot is defined by the trajectory prepositions. In the third and fourth rows, the trajectory is
determined by following the outer perimeter of a reference object. keeping a distance equal to the norm
for the definition of near away from the reference object (e.g., along. around). In the fifth and sixth
rows, the trajectory preposition is defined by a vector connecting the robot's current position (i.e., at
the time the command is given) to the centroid of the reference object (e.g., towards. away from).
The quantification of another set of trajectory prepositions (in the seventh row) is determined by li

coordinate axis centered at the robot (e.g., backward. forward, leh. right) or a global coordinate axis
defining a compass heading (e.g.. north, south, east, west).

142



CHAPTER .'). A TASK CO~(~(:\~D L.-\:'iGe AGE LEXICO~

4. The Task Command

Conlbining alllexicai elements results in the task command as shown in Figure 5.8. The

basic syntax is given by a verb. destination. direction and speed choice. The targets chosen

are based on what SPOTT can perceptually recognize (e.g.. door. wall). what SPOTT

knows about (e.g.. rooms. hallways in the CAD nlapL 2D models. and 3D models l5
. Gnly

2D spatial prepositions are chosen because SPOTT navigates on a 2D plane. The role of

specifying the direction is ta bias the path planning. The lexical set of speed variables is

small but a more discriminat.ing set of speeds can be easily accommodated (e.g.. very fast.

very slow).

153D models are planned for future use in perceptual tasks such as abject recognition.

143



CHAPTER :>. :\ TASK CO~D.L-\:'\D LANGL\GE LEXICO~

.~tj

À~~~,.,..'~~
.: _~'~~f~·t~:·~~1

",.._I__:_~_A_S_:__I.....__,axmiira_I"al_~_.~_:_~__"~~_:",!,:-,,,_:.Jt~,îll
FrGCRE 5.8. The Task Command Lexicon. The basic syntax is given bya verb. destination.
direction and speed choice. The destination is a located region that can be modified in a spatial
expression. The set of spatial preposition modifiers chosen are 20 because SPOTT is currently only
able to perform 20 navigation. A set of trajectory prepositions (i.e.. direction) are used to bias the
trajectory defined by the local path planner.

144



CHAPTER 6. l~tPLE~tE;\jTATIOX

CHAPTER 6

Implementation

SPOTT is implemented in parallel. thus permitting real-tinle l asynchronous functional­

ity. The autonomous robot communicates via a radio link to SPOTT. whose processing

is distributed across a collection of networked SUN and SGr workstations. The software

tool PVM2 (Parallel Virtual Machine) (Geist et al.. 1994) is used to distribute the con­

trol. planning. and graphical user interface across a collection of existing processors. pvrv[
is a message passing library which allows the harnessing of a collection of heterogeneolls

processors iuto a single transparent. cohesive and unified framework for the developIuent

of parallel progranls. The PYM systenl transparently handlcs rcsourcc allocation. Illessagc

routing! data conversion for incompatible architectures. and other tasks that are neccssary

for operation in a heterogeneous network environment. The portability and heterogeneous

property of pv~r makes it possible to transfer this architecture on-board the robot in the

future. The computation for both the TR+ program control and local planning is also

distributed ta provide real-time rcsponse. Typically~ teu to fifteen processors are nsed in an

experiment.

A distributed inlplclnentation pennits SPOTT ta control the robot in real-tinle. A par­

allel implementation of SPOTT is required because the conlplltation of the potential field

for the local path plannp.r can be very computationally expensive {i.e.. solving Laplacc's

equation iteratively with irregular bOllndary conditionsL and SOIne of the conditions of a

TR+ program can have extensive processing of the sensor data. PYM simplifies the paral­

lelization process by providing a high levellibrary of function caUs. The actual system caUs

and UNIX socket connections are transparent ta SPOTT's code and are masked by a linl­

ited set of PVIvr library caUs. Trausparency between differcnt levels of implementation are

essential for understanding, maintaining and debugging complex systems such as SPOTT.

1 Reaction time to em'ironmental changes is raster than the rate of change in the en\'ironment,
2This is an ongoing project carried out by a consortium headed by the Oak Ridge National Laboratory.

145



-

CHAPTER 6. I:\IPLEMENTATIO:-.r

When designing a complex systeul such as SPOTT. it is also important to consider

visualization for systelll monitoring and debugging, and in general, the user (Le.. operator)

interface. There are three modes of interacting with SPOTT: (1) befon~ execution time:

the operator initializes the systenl and specifies a task cOIumand: (2) during execution: the

graphical visualization of the current actions and state of the robot within its environment

continually update the visualization tools: and (3) post-mortem analysis: the operator or

programmer evaluates the executed task (i.e .. what went right and what went wrong). The

different types of SPOTT users include:

(i) nai1Je '/Lsers who are unfanliliar with the concepts that make up SPOTT.

(ii) partially knowledgeable user.s who are fanliliar with the concepts that make up

SPOTT (i.e.. they rnay be able to interpret why something went wrongL

(iii) Jully knowledgeable users who will want to specify different initialization parameters

(i.e.. other than the standard) and new TR+ control programs, and

(iv) SPOTT system developers who interpret the execution and enhance SPOTT by

correcting newly found software bugs, improve the efficiency of execution (i.e .. spced

and rnemory management). and enhance the user interface.

SPOTT's graphical user interface tries to address an the needs for the different types

of users. SPOTT is also flexible and expandable in that new TR+ control programs can be

added. as well as new sensors and actuators (i.e .. a robotic arm:J ).

PYM is the glue that has been used to ilnplement the SPOTT systcnl. A nlessage­

passing paradigIll (i.e.. PVWI) has beell chosen for distributing the processing bccause it is

relatively inexpensive (i.e .. cxisting processors are usedL and the implerncntation is portable

(i.e.. operates on a collection of heterogeneous machines which can be illterchanged).

3 A manipulatar arm may require its awn path planner. This wauld require sorne modification to SPOTT's
architecture bccause its current path planner is for navigatianal cammands, and the manipulator control wauld
require its awn path planner.

146



-

-"
~

CHAPTER 6. 1~IPLE~[E~TATIO~

1. Parallelism with PVM

PYM (Parallel Virtual Machine) (Geist et al.. 1993: Geist et al.. 1994: Beguelin et al..

1993) is a software system that enables a collection of heterogeneous computers ta be used

as a coherent and flexible concurrent computational resource in a network cnvironlnent.

With respect to a user. a subset of the underlying network~s processors are utilized so as

to give the inlpression that the capabilities of a parallel processor are available within the

confines of a single workstation. The pvrv[ system transparently halldles resource allo­

cation. message routing! data conversion for incompatible architectures. and other tasks

that are necessary for operation in a hetcrogeneous network environment. PV~[ offers

excellent priee-performance characteristics compared to massively parallel processors (Sun­

deraIll et al.. 1993). PV!'v[ was one of the first message-passing software systenls·l ta be

developed for parallelizing applications across networks. It was selected as the tool ta nlake

SPOTT concurrent because of its support (i.e.. many users~ news groups) and apparent

robustness''l. as weB as ongoing research and development. The support software for PV!'vI

executes on each machine in a user-configurable pool. and presents a llnified. general. and

powerful computational environment for concurrent applications. pvrv[ provides a set of C

or FORTRAN user calls to the PVNI library routines for functions such as process initiation.

message transmission and reception. and synchronization. PYM supplies the functions to

automatically start up tasks on the virtual machine and permits the tasks ta communicatc

and synchronize with each other. SPOTT is executed on a nctwork consisting of SUN and

SCI workstations~ and a PC (i.e .. personal computer) 586 machine. A radio link cornnulIli­

cates with a processor (i.e .. -186) on board the robot. The inlplenlentation cOllld be portcd

to he solely on board the robot if a multi-processor network were made available on the

robot6
.

The PVlv[ system is conlposed of two parts:

• The first part is a daernon (called pvmd.'J) which resides on aU the computers making

up the virtual machine. \Vhen a user wishes to run a PV1t1 application. pvm,']

"Other tools indude Linda (Carriero & Gelernter, 1989), Isis (Birman & ~Iarzullo. 1989), Express (Flowf'r et al.•
1991), and ~IPI (Gropp et al., 199-1).

·'JThere have been virtually no problems traced to PV~I during the course of de"'e1oping and testing SrOTT.
6This would be at a cost to batter)' life. Currently, the ~omad 200 can run for approximately four hours on

a complete charge of its battery set (i.e., five batteries). For indoor environments, the processing could be donc off
board the robot, provided that communication is maintained between the robot and the computer network responsible
for processing the control decisions. However, for remotely located environments (e.g., space applications such as the
navigating on the moon or Mars) where radio transmission ta the off board processing units couId be slow, it would
he necessary to have the computation performed on board. Experiments with the robot roaming the hallways at C[~[

showed that indoor transmission ma)' a!so be troublesome. Transmission was lost (i.e., severe!y degraded) when the
robot disappeared around corners (i.e.• out of the !ine of sight of the receiverJ.

147



-

CHAPTER 6. [~IPLE~IENTATION

is executed at a UNI.X. prompt on one of the computers which in turn starts up

pvmd3 on each of the computers making up the user-defined virtual machine. A

user configures a virtual ulachine (see Figure 6.1) by specifying, in a text file. the

hosts which are to be part of the virtual machine. After the daemons are started.

the PVrvl application can be started from a UIVIX prompt on any of the machines

that make up the virtual machine. Multiple users can configure overlapping virtual

machines. and each user can execute several PYM applications simultaneously.

• The second part of the system is a library of PYM interface routines. used for devel­

oping application software. The PVrvI library is composed of uscr-callablc routines

for message passing, spawning processes, coordinating tasks. and modifying virt ual

machine configurations. Application progranls are linked ta this PV~I library.

The PYM library provides routines for packing and sending messages between pro­

cesses. The comillunication routines include an asynchronous broadcast (Le.. send) ta a

single task. and a synchronous broadcast (i.e., multi cast) to a list of tasks. PYM transmits

messages over the underlying network using the fastest mechanism available (i.e. either

UDP. TCP. or other high-speed interconnects, if available). The PYM corunnmication

ulOdel also provides for asynchrollous blocking send. asYllchronous blocking receive. and

non-blocking receive functions. A blocking .ljend returns control as soon as the send buffer

is free for reuse. regardless of the state of the receiver. A non-blocking receive returns im­

mediately with either the data or a flag indicating if the data has arrived. while a blocking

receive returns only when the data is in the receive buffer. The PVrvI model guarantees that

message arder is preserved ï between any pair of communicating processes. The application

developer can specify constraints on certain processes. such as constrailling the computer

type (e.g., SUN. SGI) or even specifying the exact machine to rUIl the process. The default

is a transparent mode, where PVrvl automatically chaoses an appropriate machine based on

the resource allocations8 on the virtual machine.

The great advantage of using PVM over direct connnunication routines (i.e.. sockets.

pipes), is that application development can be done at a much higher level. The PYM

software package handles the allocation of resources, and errar handIing, and masks the low

level communication routines with the PYM library functions.

7~lessages are processed in the arder of arrivaI. This does not necessarily correspond ta the order of time of
departure from the source processes.

sThe current version of PV~1 (i.e., 3.3.10) does not perform load balanclng. The selection of the machine where
a process is executed is based on distributing the processes evenly across the entire collection of machines that make
up the parallel virtual machine.

148



CHAPTER 6. L\IPLE~tE~TATION

iii
1ibraries

.. ~~t2Z1..
application romponEl'lts

+ + .

11111111111111111111111111[11111[1111111111111[1[1111

~tr)){)}){}~(~~(tt}({I~~~

@ ~ ~.. lL\\1 ..
ri @

~ ~
11II - [ZZ3

~
ezzJ

@
EZ2]

~....
lB\1

II~
~-

FIGCRE 6.1. A Hypothetical "Parallel Virtual Machine". Each unique box shape rep­
resents an architecture. A daemon (i.e., pvmd) is running on every node There is one set of libraries
installed for each group of same-architecture nodes There are one or more application components
running on each node The nodes are connected by different types of networks. Ali daemons and appli­
cations shown are for one person's run. If another person were running on the same nodes. the diagram
would show another set of daemons and application programs running.

149



•

.~

'...

CHAPTER 6. 1~[PLE~[E;';T.-\TIOl'\

Sorne of the contentious issues in a message-passing parallel system are that the usable

capacities of each machine on the network vary from moment to moment according to the

load imposed upon them by multiple users. Another consideration is system failure: if an

application executes for long periods of time, failures during execution are more likely. For

example. one of the machines may crash due to a variety of reasons (e.g., another user's

application. mernory problems. hardware problcms). If such were the case. it wouid be

ideal to have the processes that are executing on this machine ta be restarted on another

machine. A system called Dame (Arabe et al.. 1995) has bcen recently introduced to

address the problems of load balancing in a hetcrogeneous multi user environulCnt. and

fault tolerance. Dome is built upon PYM and currently is only set up for SPMD9 type

processing.

9Single Processor, ~lultiple Data. This is the type of computation method used by the local path planner (i.e.,
potential field). The first release of the software for Dome only became available on ~tay 24, 1996. The potential field
computation has been found ta be quite robust without any current (oad balancing and error checking. Dame is oot
applicable for the TR+ interpreter since this is a ~tPMD (i.e., ~Iulti-Proccssor, ~[ulti-Data) computation style.

150



-.}

CHAPTER 6. [~IPLE~IENTAT(O~

2. The SPOTT System

SPOTT is implemE;nted as a distributed control system. The major conlponents (i.e..

processes) of SPOTT and the lines of communication between them are shown in Figure 6.2.

The user (i.e .. operator) interacts with the SPOTT system via the graphical user interface

(GUI). and in turn the GUI interfaces to each one of SPOTT's major components: the

TR+ interpreter. the local palk planner (i.e.. potential field). the global patk planner. and

the robot interface module (i.e.~ robodaemon interface). Besides the main GUI. there are

graphical displays controlled by some of the major modules: the TR+ interpreler displays

a graphical representation of the state of the currently executing TR+ control program: the

global graph planner displays a graphical representation of the global path: and the local

palk planner displays the equi-potential contour Hnes of the potential function. In addition.

the robot controlling software (i.e.. robodaemon) has its own graphical interface for direct

interaction (e.g.. testing low level fUllctionality) with the robot.

Most of SPOTT's computational resources are allocated for the processes associated

with the local palh planner and the TR+ interpreter. The local palh planner computes

the potential field by sending parce1s of data to slave processes in a master-slave config­

uration (see Section 2.3). Typically~ four slave processes have been nsed for experiments

with SPOTT. This type of parallel computation style is referred ta a..-; MPSD (i.e.. Multiple

Processor. Single Data). In contrast. the TR+ inlerpreter uses a rvrPNID (i.e.. Multi

Processor. Multi Data) style of parallel computation. The TR+ interp'reter spawns the

computational processes that are used to compute the conditions and actions lO of the cur­

reutly executing TR+ control progranl. The condition processes acquire almost ail of their

sensor data (i.e .. sonar, bumper, infrared. compass) frorn the robot via the robodaernon

program. except for the laser rangefinder (i.e.• QUADRIS) data which is acquired via a

separate interface. This separate interface also permits the TR+ actions to control the

pan-tilt nnits (PTU) of the QUADRIS system. In addition, TR+ actions send signais to

the robodaemon process to move the robot to a particular location, and sensor data to the

local palh planner in arder to update the potential field. The GUI process is responsible

for updating the local palh planner with the specified task comnland. The TR+ program

is selected via the GUI and passed to the TR+ interpreter when the operator starts the

robot via the GUI. Therefore, the overall controller of the SPOTT system is within the GUI

software process.

IOCurrently. ail actions involve only a data look up and very little computation, and are therefore executed as
part of the TR+ interpreter process. In contrast, most conditions involve extensive processing of the sensor data and
are implemented as separate processes.

151



-

T

•

CHAPTER 6. I~(PLEME~TATIOX

The SPOTT systenl has also been interfaced to the logical control (and theorem prov­

ing) system called COCOLOG (Caines & Wang, 1995). At this time COCOLOG (see

Section 3) provides. as input ta SPOTT. a procedural List of high Level goals (i.e .. spatial

locations). The relative ease in which COCOLOG was interfaced with SPOTT illustratcs

modularity, and the potential for expansion with the SPOTT system.

There is a graphieal and computational aspect to SPOTT's impiementatioll. The graph­

ical interfaces are either controlled by the GUI process or one of the other central processing

centres (e.g.. TR+ interpreter) (see Figure 6.2). The other central processing centres in­

cIude the TR+ interpreter. the local palh planne·r. the global path planner. in addition to

the low level robot and sensor interface software (i.e.. robodaemon).

152



CHAPTER 6. I~lPLEME~TAT[O~

USER

..

....

(~..::."'..:::~-.-

ROBOT

SPOTT

move robot
sonar

bumper
Infrared

compass

FIG CRE 6.2. Implementation Modules. The major components of SPOTT, their associated
processes, and the Iines of communication between them are shown. Each bubble is a separate process.
SPOTT's major components are: the GUI, the TR+ interpreter. the local path planner (i.e., potential
field), the global path planner. and the robot interface module (i.e.. robodaemon anterface). Most of
the GUI and the main control is initiated by the GUI process. Other components update aspects of the
GUI which are pertinent to describing their computations (e.g., equi-potential contours are displayed
by the local path planner). COCOlOG (Caines &. Wang. 1995) is able to interface to the GUI by
providing il procedural list of task goals (i.e., spatial locations).

153



-

CHAPTER 6. I~[PLE~[ENTATIO;:-';

2.1. Graphical User Interface

During execution~ there is a wealth of on-line graphical information displayed. namely.

the current state of the TR+ control programs~ the equi-potential contours of the potential

function used by the local path planner~ the current path in the global (i.e.. abstract)

graph map~ the planar map of the robot and its environment. as weIl as the graphical user

interface for specifying the task conlmand (and start and stop commands) (see Figure 6.3).

The software package PVani~I (Topol et aL 1994) is also used to provide online visualization

(i.e.. of processor and memory usage) of SPOTT's distributed execution with PV~1. AlI of

the graphies are displayed on two workstations Il ~ because there is not enough display space

on a single workstation. Future research will have to address the interaction with the user.

in particular~ the management and layout of the graphical information.

The task command is specified in a menu-based graphical interface which was dcveloped

using the software package called Forms (Zhau & Overrnans. 1995). A planar nlap view of

the robot's current position~ executed path and its rnap12 is also displayed and updated on

a continuaI basis during execution. The state of the currently executing TR+ program is

also displayed in its corresponding graphical notation. The local path planner is responsible

for updating a display showing the equi-potential contour lines of the potential fUIlction.

The contour Hnes are redrawn whell there are modifications made to the map database:

specifically, when changes are introduced iuta the local window that the local path planuer

uses. The background colour of the potential function display correlates to how weB the

potential function has converged to its solution. A dark hue of pink corresponds to con­

vergence. while a light hue corresponds to the early stages of iterative computation. The

colour mapping is based on taking a Laplacian operator at each discrete element location in

the potential function and correlating the result with a colour look up containing increasing

darker hues of pink.

The visualization software for displaying graphs was developed using the DoUy (Kout­

sofios & North. 1994) software package (see Section 2.1.1). This package is used to display

the state of the currently executing TR+ program~ and the current state of the path in the

global graph map.

One outstanding research issue which requires further attention is how to lay out the

graphical information on the computer screen and present it to the operator. Figure 6.3

11 PVani~1 graphies are displayed on their own display unit.
12 Based on an a priori CAO map and sensed environmental information. The displayed map is either the entire

map (i.e., global) known to SPOTT or a local window into the global map which corresponds to the local extent of
the local path planner (i.e., potential field).

154



..

-

CHAPTER 6. [~tPLE~tE~TAT[O~

illustrates one such arrangement. However. the global path is only displayed when the

operator expands the window assoeiated with it. Additional graphies for visualization are

llsually displayed on another workstation (e.g.. PVaniM for visualizing PVM mernory and

processor resouree usage). The presentation of the graphies information has only been

superficially addressed by this thesis and requires future examination.

155



CHAPTER 6. [~IPLE~tE='IT:\T[O~

TR+ control program state Task Command Interface

, ..ateM ~!'C~ M__ rc

(--- ~--..)

r .;r-
.M__t~ I:~~~'

i •
........~_~,' ~,lICwec.~::

1800 1850 1900 1950 2~~050 2100 2150 2200

250

100

150

200

500

..
equi-potential
contours
of the
potential function

planar map of the robot and
its environment

~ ~ .
-- -- -- --
ô~

- -- -- -- --
e~·~

- -1-- -- --

Ô@>®.
I~:;~--
\.;/~

path found
in the
global (abstract )
graph

®ô~0 0)
-- - - ,-- -- --
eee~
~~~ ---------- ----

ci) œœ@0X~X~(xX~x~~:
- - __ -_ -- -- -- -_ -- -- -_ -_ -- --1

1
1
1

-- 1
1

FIGURE 6.3. SPOTT's Graphical User Interface. The graphical user interface consists of
five major components: (1) the Task Command interface from which the task command is specified;
(2) the robot map which is a planar map view that is continually updated during execution; (3) a
graphical visualization of the currently executing TR+ program; (4) a graphical visualization of the
global graph map and the currently executing global plan (i.e.. path); and (5) a equi-potential drawing
of the contours in the potential funetion used by the local path planner (i.e.. potential field). The
global path (i.e .. (4)) is only displayed when the user expands the window associated with it.

156

•..

•

CHAPTER 6. l;"lP(.E;"lE:\T:\TIO~

2.1.1. Drawing Graphs with Dotty

Dotty is a toolkit developed by AT&T Bell Laboratories which is used to create soft­

ware for visually programming and monitoring graph structures. The package produces

aesthetically pleasing graph layouts when provided with the graph!s contents. The graphi­

cal display tools provided by AT&T 13 include a customizable user interface for drawing and

editing graphs. a UNIX lUter progranl for generatiag graph layouts based on a graphical

language and graph layout algorithms. and a language for developing user interfaces and

picture drawing. The major software components of the toolkit are as follows:

• Dot (Gansner et al.. 1993) is a UNIX batch filter that reads attributed graph~ and

writes drawings in PostScript. FrameMaker l\lIF ~ or as attributed graphs with layout

coordinates specified. Dot uses various graph layout algorithms (Gansner et al.. 1993:

North. 1993) to produce a graph which is easy to read. Dofs graph language is very

simple. and contains three kinds of items: graphs~ nodes~ and edges. The user is

also able to specify attributes of these entities (e.g.. label. colour).

• DoUy (Koutsofios & North. 1994) is an interactive and progralnmable front-end

(i.e.. WYSIWYGl.l) which runs under the UNI}(X windows environment. Dotty is

written in the lefty language (Koutsofios & Dobkin. 1991) (i.e.. a graphical display

language) and uses Dot as a back end ta produce the graph layouts. Dotty includes

functions to insert and delete nodes and edges~ as weIl as functions ta specify their

attributes. There is also a function for computing the graph layout (i.e .. performed

by dot in the background). Dotty consists of a collection of non-interactive tools and

filters 15 as opposed ta a systenl running from a central GUI. Dotty's script language

is more abstract than the ··C~~ programming language! and therefore more productive

for user-interface design. Its disadvantage is that it is non-standard.

• Lefty (Koutsofios & Dobkin! 1991) is a general-purpose programmable editor for

technical pictures with an interpretive programming language. The user interface

and graph editing operations for dotty are written as lefty functions. Lefty is also

a two-view graphies editor for pictorial (i.e., technical) pictures: (1) a view of the

picture! and (2) a textual view of the program that describes the picture. Each

picture is described by a program which contains functions to draw the pictures

13The graph drawing package is called dotty. The t::':IX filter program for generating graph layouts is called
dot. The graphical language is called lefty.

14What You See Is What 'l'ou Get.
15 DoLLy is run through scripts, and the portability of the system permits the same scripts to be run on different

platforms (e.g., SUN, SGI).

157

CHAPTER 6. [~tPLE~tE:'\T:\T[ON

and functions to perform editing operations. User actions like mouse and keyboard

events are bound to functions in a [efty program.

In the implementation of SPOTT~ Dotty has been customized for the following three

display tasks:

(i) A modified version of Dotty is used to display the current state of the executing

TR+ prograrn. The state is continually updated every three seconds 16 .

(H) Another copy of Dotty has been nlOdified to act as a user interface for creating

and editing (i.e.~ prograrnming) TR+ programs. This prograrn is called "TR+ediC,

and was integrated with a menu-based graphical interÎace to make it casier for the

programmer to specify the attributes of the condition and action entities which make

up a TR+ program.

(iii) Dotty is also used to display the abstract graph used by the global path planner.

The nodes represent rooms or rectangle portions of hallways and the edges represent

access ways between the nodes (i.e.~ doors). Highlighted nodes and edges represent

the currently executing global path.

2.2. Using the GUI as SPOTT's Main Controller

The SPOTT system is started and contralIed by its GUI (Graphical User Interface)

process. The algorithm used by SPOTT~s Gur is as follows:

(i) AIl of the processes that are to be constantly (i.e., never stopped) running during

SPOTT's execution are started and initialized: namely. the potential field processes

- ma.ster and a collection of slaves -~ the TR+ interpreter process. the actu.ator

control/cr process~ the global graph planner process~ and the robodaemon interface

process. Before SPOTT starts execution, it is assurned that the robot (i.e .. Nomadics

200) and the robodaemon process (i.e.~ interface to the robot) have been started.

(ii) A graphical events Ioop is initiated. Control from the user (c.g., task comnland

specification) is event driven. Within the graphical events loop there are five main

modes of operation corresponding to the execution state of the physical robot (as

illustrated in Figure 6.4): (1) the robot is stopped, (2) the transition from stop ta

start (which involvcs sorne initialization), (3) the robot is executing (i.e,~ startedL (4)

the transition from executing mode ta stopped mode (which also involves sorne ini­

tialization)~ and (5) the shutting down of the SPOTT system. The transition states

16This time interval was found to be sufficient for following the execution of a TR+ program. ContinuaI renewal
(Le.. for each cycle through the TR+ Interpreter) \'las found to use up ail of resources on the workstation displaying
SPOTT's graphical components. This slowed the response time for the entire SPOTT system.

158

..

CHAPTER 6. I~tPLE~lE='l'T:\T(ON

(i.e., (2) and (4}) are only visited for a single iteration through the graphical events

loop. During the visitation of the transitory states, certain processes are started or

stopped. Most state transitions are initiated by the operator pressing the start or

stop control buttons in the Task Command interface portion of the GUI. There are

two exceptions. The first exception is when the TR+ interpreter signaIs that the

currently executing TR+ program has achieved its task commando which initiates

the transition from the "robot executing' state to the ;'stop initialization" state. and

subsequently to the ··stoppecl' state. The second exception is when the global path

planner de termines that the global goal cannot be reached (i.e.. it is blocked). The

user may stop the entire SPOTT system in aIl states. During the ··robot executing"

state. the user may not specify a new task or operational parameters.

In aIl normal operating states l ï during the graphieal events Ioop in SPOTT's GUI

process, the following operations l8 are possible based on the polling ta see if a particular

condition exists:

(i) If the aetuator control/er has moved the roboL update the position of the robot.

(ii) If the border of the local path planner (i.e.. potential field) has ta be moved 19, then

erase the current contents of the potential field and load the contents of the new

local region:w.

(iii) The potential field master process may be notified ta update its equi-potential con­

tour display. This occurs if a new task has been specified by the operator. the map

has been updated with newly sensed data. or the robot is positioned in a location

such that the local potential field border has to be moved (i.e., the robot has lnoved

near the current local bounds).

(iv) If the robot moves to a new node in the abstract global map, thcn update the global

path planner with this information.

(v) If the TR+ interpreter has any update infornlation for the GUI (e.g.. newly sensed

information, updatcd actuator information), then read in this information.

17With the exception of the following states: "$tart SPOTT', "'SPOTT system is $toppetf', and "exit SPOTT'.
18The reason why these states are not encapsulated as a TR+ program (i.e., graph) is because a TR+ program

is event driven as opposed to being strictly state driven. For the main controlloop, astate driven approach is required.
Even though there is a similarity (i.e., bath uSe graphs) between the two, they are distinctl)' different. ln astate
driven system, the control exists at one particular state (Le., node) and a transition (i.e.• edge) indicates the next
control state. ln an event driven system (e.g., TR+), control is indicated by the edges, and aIl events (Le .• nodes) are
monitored continuously and can occur simultaneously.

19This is when the robot is near the boundary of the current local extent of the potential field.
20The local map consists of the CAD map and the previously sensed features that are at least partially located

within the new border. or in the node of the abstract global map in which the robot currently finds itself in.

159

CHAPTER 6. I~IPLE~IE~TAT[ON

(vi) If the global graph planner is blocked (i.e., not able ta find a path to the goalL put

SPOTT in the stop state.

(vii) If the actuator controller has not moved the robot in a specified period of time21 ,

then notify the global path planner that the robot is blocked at its current location22 .

The global path planner stores this information as a constraint (see Section 9.2 in

Chapter 4L 50 that if the robot is in this position again (i.e., when the global path

is replanned), this local route is not used for subsequent paths.

When the robot is started by the operator pushing the start but ton in the Task Com­

mand section of the G UL the GUI "events loop" enters the "robot i,<; !itarted: initialization"

state for a single iteration. in which the following operations occur:

(i) A signal is sent to the global path planner to clear aIl stored constraints which indicate

where the robot was previously blocked.

(ii) Place the robot map display in local mode. Gnly the features stored in the Inap

database that are within the local extent of the potential field's bounds are displayed.

(iii) If the robot is to be localized before starting execution23
, then localize the robot by

correlating sonar data with the known CAD map (l\lackenzie & Dudek. 1994).

(iv) Start the actuator controller process. which in turn performs steepest gradient de­

scent on the potential functioll. in arder to generate robot trajectory commands.

(v) Start the TR+ interpreter, which in turn interprets a TR+ program~ and signaIs

back to the GUI controller when the task command has been completed.

The ""robot is stopped: in-itialization" state may be entered from the "robot is executing"

state by either the operator pressing the stop button, the TR+ controller notifying the GUI

controller that the task connnand has been achieved, or the global path planner detennining

that there is no global path to the goal (e.g., doors are closed). The following operations

are performed in the "robot is stopped: initialization" state before the control enters the

"robot is stopperf' state:

(i) Notify the actuator control/Er to stop moving the robot.

(ii) If the stop button was pressed, then inform the TR+ interpreter to stop interpreting

and executing the TR+ program.

21 Five seconds was found ta suffice for a thirty-five by thirty-five square potential function grid. The time is
selected sa as to give the potential function more than ample lime ta converge ta its solution. [f the robot does not
move after this period, this indicates that the robot is blocked and is not able to achieve its goal.

22[n addition ta the Cartesian coordinates of the robot, the node in the abstract graph map is specified. in
addition ta the next node in the current global path, as well as the edge that is ta be traversed ta get ta the next
node.

23 An option specifiable by the user.

160

•..
CHAPTER 6. 1~IPLE~lE:'oIT;\TIO~

(iii) If the TR+ interpreter has satisfied the task cornmand (i.e.. the top norle in the

main program of the currently executing TR+ program), then clear the current task

command goal.

If the "SPOTT system is stoppecf' is entered by the user pressing the ;"stop SPOTT'

button. then aIl the processes that are part of the SPOTT system are stopped and killed.

Subsequently, the SPOTT program exits.

In addition to controlling the GUI. the GUI process is also responsible for informing

aU other processes of the current operating state. which is defined by the current statc of

the physical robot. The GUI process is an excellent candidate for this role because the user

interacts through the GUI (i.e., controlled by the GUI process) and the user is one of the

main sources for defining transitions between the states. Even though each Inodule (e.g..

TR+ -ïnterpreter) is independent to a certain degree. each module's execution is slightly

dependent on the states defined by the GUI process.

161

CHAPTER 6. l~[PLE~IENTAT[ON

-

--

stan SPOTI t---...

stop robot
buttan pressed

or
task completed

or
globally blocked

stop SPOTI
button pressed

stop SPOTf
buttan pressed

stop SPOTI
buttan pressed

)---.1 exit SPOTI

FlGl'RE 6A. SPOTT's GUl's State Transition Diagram. Within the graphical event loop
there are five main modes of operation : (1) the robot is stopped. (2) the transition from stop ta start
inllolving initialization, (3) the robot is executing (i.e.. started). (4) the transition from the executing
to the stopped mode. and (5) the SPOTT system is shut down. The user may start or stop the robot
in ail states. During execution. the user may not specify a new task or operation al parameters.

162

CHAPTER 6. [~tPLE~{E~TAT(O~

2.3. Local Path Planning

The potential function (i.e.. harmonie function. solution to Laplace's equation) is com­

puted by a collection of processes in a master-slave relationship. The master process also

operates as a server process. It handles updates and requests for data on a first-come.

first-serve basis. The GUI and the TR+ Interpreter are the processes which update the po­

tential field by sending updates to the master process. Updates include adding and deleting

obstacles or goals~ as weIl as changing an obstacle to a goal. or a goal into an obstacle.

The actuator controller process requests gradient information at the current robot position

estimate which in turn is used to specify the local trajectory commands for the robot. The

GUI. TR+ interp'reter. and actuator controller processes are also able to send updates to the

master process~ indicating a new position for the robot. Concurrently during the polling for

potential updates from other SPOTT processes~ the computation of the harmonie function

is performed using a master-slave configuration (see Figure 6.5).

The master process contains the entire discretized grid array of the potential function

and sends overlapping subgrids (i.e. a subset of the data) to slave processes to conlputc a

single iteration. After complet ion of one iteration by a slave process of its data subset. the

data are returned to the master process. This sequence of iterations continues indefinitcly.

New obstacle and goal configurations can be snecified concurrently. The master process

either contains the current harmonie function or a function which is converging towards

the harmonie function for the current configuration. Figure 6.5 il1ustrates how the grid is

divided into four overlapping subgrids. These are required sa that new data values fronl

bordering subgrids can be integrated. The original grid is bordered by a one pixel-wide

layer to store the boundary-value conditions2.t.

The iterative step of summing the neighbouring elements ta obtain the new estiInate

of the point on the grid can be equivalently solved by a resistive grid (Doyle & Snell. 1984)

(see Section 4.1 in Chapter 4). A resistive grid equivalent to the iteration kernel is derived

by using Kirchoff~s Law for current flowing into a node. and Ohm!s Law for a resistor.

See figure 4.7 for a resistive grid implementation of the five-point kerncl. The nine-point

kernel can be similarly represented as a resistive lattice~ although diagonal resistors need to

be added and the resistor values have ta be reproportioned accordingly. The potential for

implementing harmonie function computation in hardware, providing that the technological

24The boundary of the discretized grid is always set using Dirichlet boundary conditions (i.e., saturated high. a
source for a flow). However, the boundary conditions for obstacle boundaries can be either Dirichlet or ~eumann.

163

CHAPTER 6. IMPLEMENTATIO:-;

• Slave processes •

...................
~ ~. .
: E

L. J

.------
1
1
1
1
1
1 1
1 11._- 1

.. Slave processes •

____.

1 1

"'aster
Process
~

..~.....-.-
1
i

i
i
i
i

i !,..--.-.-...-...,-,..,1

a) Original Potentlal Functlon wlth a border
contalning the boundary condition.

b) Potentlal functlon partloned Into
a collection of parcels wlth overlapping
regions coineidlng with the boundary
condition of each parce!.

.~

FIGURE 6.5. Potential Field Master-Slave Configuration. The potential field is computed
as a server process. The server process responds to updates and requests and concurrently computes
the potential field in a master-slave configuration by partitioning the data into sub processes in order
to compute single iteration steps.

limitations are overeome~ eonfirms using harmonie funetions for path planning in real-tinle

as a viable option.

164

-

CHAPTER 6. [MPLE~lE~TATIO~

2.4. Map Database

The database consists of the architectural CAD map~ the sensed data. as well as an

abstraction of the CAD map. The CAD map and the newly sensed features (i.e .. line

segments) are stored as a symbolic list of geometric descriptions25 positioned in a Cartesian

coordinate space. The local path planner also has a corresponding occupancy grid Inap

(~loravec. 1988). It is a discretized grid~ in which grid elenlCnts that are occupied by an

obstacle are saturated high. and those that are occupied by a goal are saturated low. The

free space (i.e.. the exclusion of obstacle and goal grid elements) is where the harnlOnic

function is solved. The CAD map abstraction is such that rooms and ha11way portions are

represented by nodes. and access ways (i.e.. doors) are represented by edges.

At this point a11 incomiDg sensed data are coulpared to the existing data (i.e.. CAD

map and locally sensed data): if they do Dot already exist. they are added. In addition.

the QUADRIS (Bui. in preparation) system~s ability to assign labels (e.g.. walls. doors) to

certain features (e.g.. line segments) is made use of when entering QUADRIS features into

the Inap database: if the newly sensed QUADRIS feature corresponds (i.e.. spatially) to

an existing unlabelled feature already in the Ulap database. then that feature is labelled

accordingly.

At first glance. it seems appropriate to use a shared memory model to implement a map

database for SPOTT. However. this is not the approach taken for two reasons: (1) SPOTT

has been implemented using PV~L and shared melnory capabilities within PV~l have only

been recently introduced26 {Geist et al.. 1994}: and (2) the potential field processes require
,)-

access to the newly sensed data as soon as it becomes available- I
•

Rather than having a single copy of the database. SPOTT has multiple copies. du­

plieated for the following processes: the GUI, the potential field master process~ the TR+

interpreter process. and the global path planner process (see Figure 6.6). Not aIl parts of

the database are duplicated for each of the processes. AIl of the cited processes contain

information about the robot ~s eurrent position and the current task commando Only the

GUI contains the CAD map, newly sensed features, and the abstract graph map. The global

path planner process only contains the abstract graph map. The local palh planner (Le.,

25 Currently, the only geometric descriptions used are line segments.
26The current version of PV~(has shared memory ports which act as a transport mechanism for communication

between tasks. If the shared memory communication method is faster than socket caUs, it may be ideal for commu­
nication with a process that is responsible for maintaining and updating the database. This will require rethinking
how the map database functions within the SPOTT architecture and how it should be implemented.

27 This is because the local path planning module is in a real-time feedback loop with the robot and its
environment.

165

..

CHAPTER 6. tMPLE~[E~TATIO:'I

mastcr process), as weIl as the TR+ interpreter process. contain a local window into the set

of CAD map and newly sensed features dictated by the local extent of the potential field.

The implementation of the map database can be problematic because each process

can change its own copy. AlI processes that update a portion of the map database are

responsible for communicating their changes to aIl other processes which rely on this part

of the database28 • The difficulty arises when trying to assure uniformity across the multiple

copies. Ta maintain consistency. only one process can update a portion of the map database

during any particular state (i.e.. robot running or stoppcd). When the robot is not executing

a task, only the GUI process can make changes to the map database. However. during

execution. different processes can update independent portions of the map database: the

TR+ interpreter adds newly sensed information; the actuator controiler process updates

the position of the robot: the GUI process examines the newly sensed data to determine29

whether the doors in the abstract graph are open or closed~ and subsequently the global palk

planner process can update the global path. The GUI process is also responsible for sliding

the bounds of the potential field and thus changing the local window within the global

map. At this time, aIl updates ta the local nlap (i.e.. newly sensed data) are temporarily

suspended (i.e.. for a few milliseconds) until the local map has been created with features

from the CAD map and previously sensed data that falI within the new local bounds. The

temporary blocking of map updates is necessary ta ensure 50 that the local map is consistent

across the various processes.

Ideally~ it would be desirable ta have one copy of the map database (i.e .. shared mem­

ory). Such an irnpleUlentation could take on the structure of a blackboard (Carver &

Lesser, 1992). The latter is a type of global database which is shared by aIl modules (i.e ..

for SPOTT: the TR+ interpreter, the local patk planner. the global path planner) of the sys­

tem. The blackboard contains data and hypotheses (Le., potential partial solutionsL and

llsually performs problem solving by using an incremental hypothesize and test strategy.

SPüTT's map database is currently only a data depository. However, future expansions do

not exclude the possibility of making it an intelligent (i.e., automatically abstracting and

merging sensed data features as they arrive) database. In arder to change SPOTT's map

database into a blackboard structure, reliable and fast shared memory access is required

28The GUI process is the only one that relies on aH of the entities in the map database.
29The sonar and QUADRIS data are correlated with the known door positions (i.e.. stored in the abstract graph

map) to determine whether a door is open or closed. To determine if a door is open, none of the recently sensed data
should correlate with the position of a door contained in the local map provided that the robot is within sensing range
of a door. The door can be sensed using sonar or QUADRIS if the robot is within 2 m.

166

..

.-

CHAPTER 6. [~(PLE~IENTATIO~

and the issue of quickly updating the potential field~s occupancy grid (i.e.. via a blackboard

structure) to maintain real-time performance needs to he addressed.

Future modifications to SPOTT shouid address the issue of continuaI maintenance (e.g..

fusing map features. abstracting new nodes from sensor data) for the map database. This

will require sorne reasoning céi.tJabilities which may either be part of the map database as

a blackboard structure. or determined by an extcrnal reasoning agent (e.g.. COCOLOG

(Caines & Wang~ 1995)).

167

CHAPTER 6. I~!PLE~IE:'\TATION

USER

robot's task
position

CONTROL
......................

-------i~~~t!~~~.~~:':~~.JBEHAVIORAL
CONTROLLER

TR+TREES

A -------~~~~~~~~~p.~~~:J

0---........
action
(KtuatOt controlllng)

o :=:::O~~bPed)

~.. _ .. M"~

G
U
1

..----_. ----- ----_.._.--.----.-----------.-----_ --..----_._.._--_ _ .
,

.

SPOTT........•....................,}

ENVIRONMENT

FIGURE 6.6. SPOTT and the Implementation of the Map Database. The entire map
database is maintained by the process that controls the GUI. The TR+ lnterpreler and local palh
planner (Le.. master process) have a local map. which is a local window into the set of CAD and newly
sensed features. This corresponds to the local window of the potential field of the local palh planner.
The TR+ Interpreter and global palh planner both have a copy of the abstraet graph which is only
used for reading purposes. and is updated by the CUl process. The abstraet graph map is updated by
the CUI process when the robot changes position or the target changes. The TR+ lnlerpreter may
update the local map. which in turn updates the local map used by the local path planner.

168

-

CHAPTER 6. IMPLE~IE~T.-\TION

2.5. The TR+ Interpreter

The TR+ program interpreter. written in the ··C' programming language~ is imple­

mented using PYM. Each of the conditions is evaluated concurrently as a separate process.

One way to represent TR+ programs is in a tree graph format. The Dotty toolkit is used to

create software for visually prograrnming TR+ programs as trees. and for monitoring the

execution of TR+ programs. The algorithm for the TR+ interpreter process is as follows:

(i) Initialize communication with the GUI controller process~ and initialize the graphical

display~ which shows a graphical representation of the currently executing TR+

program.

(ii) The following sequence of operations are in a continuous loop until the TR+ inter­

preter process is told to stop processing (i.e.. when the SPOTT system is shut down

by the operator).

(a) If the GUI controller process sends an update of the local map. then update

the local map used by the TR+ Interpreter accordingly.

(b) If the actuator controiLer process updates the robot position. then update

accordingly.

(c) If the GUI controller process sends a ··stop SPOTT~~ signal. then exit the loop.

and subsequently exit the program.

(d) If the GUI process sellds a ··start execution~~ command with a particular task

commando then do the fol1owing in a continuous loop until told otherwise:

(i) If the GUI updates the local map. then update accordingly.

(ii) If the user (i.e.. via the GUl) stops the robot. then kill aIl condition

processes currently executing and exit this loop.

(iii) If the actuator control/er process updates the robot position. then update

accordingly.

(iv) Execute the TR+ program:

(A) The main TR program 's conditions are executed (i.e .. processes are

spawned) and initialized.

(B) The highest level TR UE condition specifies which action ai ù; aeti­

vated. If ai is a primitive action, then it is active till o·verridden. If

ai is a subroutine TR program, then its conditions are executed (i.e ..

processes are spawned) and initialized (if they have not been as of

yet), and (ii) is repeated for this particular subroutine TR program.

169

...

CHAPTER 6. IMPLEMENTATION

(C) If a subroutine TR program has not been cal/ed for a redefined period

of time, the execution of its conditions Ùi stopped (i. e., proce.o;ses are

kil/ed).

(D) If the highest Leve! condition -in the ma1.n TR program is TRUE,

then the interpreter STOPS, otherwise execution returns to .'Jtep (ii),

using the main T R program.

Currently~ when the TR+ interp'reter starts interpreting and executing a TR+ program.

aH the condition processes are spawned before they can be used for computation. The

startup of a process is a very time consunlÎng operation3o • A future modification to the TR+

interpreter would be to have it scan the TR+ program before run-time for aIl conditions

which contain processes that necd to be spawned. These condition processes would be

in a doormat state until activated by the TR+ interpreter. This would alleviate the lag

currently experienced in the start up of a TR+ program. This is especially evident for task

commands that require very little time for execution (i.e.. when the target location is close

to the starting position of the robot).

In addition to a graphical display for visualizing the state of the currently executing

TR+ program~ a graphical tool for programming TR+ programs has also been written.

2.5.1. Programming TR+ Program:;

A graphical editor (i.e.~ creator) of TR+ programs. called "TR+ edit". has been

implemented using Dotty. A menu-based graphical interface for specifying attributes of the

conditions~ actions and TR+ programs was also integrated within the graphical editor (see

Figure 6.7).

Before using the graphical editor to program the TR+ program~ a collection of condi­

tions~ actions. and variables (i.e .. primitive building blocks) must be defined and created.

These are the elements which arc manipulated to created the TR+ program. They are

redefined in a set of ASCII files (i.e.~ written in the C language, in .c and .h files), and are

the entities (Le., building blocks) of a TR+ program. In addition to the files containing the

definitions of the entities. there is a collection of programs which compile into exccutables

for performing the computation of the conditions. The model used is that each condition

process accesscs a process (c.g., robodaemon) which provides it with sensor data (Lc.~ pro­

cessed or raw). Actions are performed as part of the TR+ interpreter cycle. See Appendix B

for a list of conditions and actions currently implemented by the SPOTT system.

30It varies by machine type and the current resource allocations on the machine. Sometimes Ît can take several
seconds.

170

l

-

CHAPTER 6. IMPLEMENTATION

FIGURE 6.7. TR+ Prograrnming With TR+edit. A graphical editor (Le.• creator) of TR+
programs. called "TR+ edit". has been implemented using DoUy. A menu-based graphieal interface
for specifying attributes of t!le conditions. actions and TR+ programs was also integrated within the
graphical editor. lIIustrated is the graphical editor and a menu for editing the ilttributes of the selected
arc. Nodes are created by c1icking on the display space with the left mouse button. Arcs are created by
c1icking with the second mouse button on the source node and holding the mouse buttan down until
the cursor is over the destination node. The third mouse buttan. when the cursor is placed over anode
or arc. is used to pop up a menu whieh permits the selection of the node's or arc's attributes.

2.6. RoboDaemon

Robodaemon is a software development system which builds an abstraction of a robotic

environment (Dudek & Jenkin, 1993) that permits external software to interact with either a

simlùated robot and environment or to a real robot complete with sensors (Le., transparent).

It permits processors to communicate frOID anywhere on the net through a socket and

171

l

CHAPTER 6. IMPLE~1ENTATION

machine address. It also provides a realistic simulator of 2D time-of-flight sonar sensing

(Dudek et aL 1993), which can be used for simulating sonar sensing. This is useful for the

conditions in a TR+ program that use sonar as input. robodaemon has its own graphical user

interface. which can be used for control1ing the robot and testing the robot 's functionality.

A disadvantage of robodaemon's socket-based communications protocol is "'that it imposes

a data-dependent communications delay on inteTaetions~' (Dudek & Jenkin. 1993). Since

most of the sensor information, and control information has to flow through robodaemon.

this interface can be a potential bottleneck, especially if it blocks communication to other

processes. This is the case when the sonar sensors are acquiring data3l and robodaemon

does not listen to other commands (i.e.. they are discarded). A future modification ta the

robodaemon software package should include a PYM interface. PYM cornes equipped with

its own error handling and non-blocking caBs. and handles the queuing and buffering of

message requests.

Robodaemon provides a generic interface which supports many different mobile robot

platforms. This perrnits control software (e.g., SPOTT) (and sensor algorithms) to be de­

veloped independently of the specifie platform. Future modifications to robodaemon inclllde

the quelling and buffering of message requests ta help alleviate potential bottlenecks when

communicating to the robot via robodaemon.

J1The :"lomadics 200 robot has an array of sixteen sonar sensors evenly distributed on the circumference of the
upper part of its turret. Ta acquire a dense scan of the environment. the turret is rotated by appropriate incremental
angles.

172

...

...

-!

CHAPTER 6. IMPLEMENTATION

3. Reasoning System Interface

One of the goals of the SPOTT system is to bridge the gap between the low and top

levels (i.e.. reactive and symbolic control). SPOTT is not a completely distinct layer. but

instead integrates behavioral (i.e., reactive) controL planning and sorne SYIIlbolic reasoning

into a cohesive system. In essence, SPOTT is a merging of the low and rniddle layers. It

also does sorne reasoning using the global path planning module. However. the latter could

be replaced by a syrnbolic reasoner in order to perform more than just AI search. ~[any

navigational tasks can be performed with SPOTT. but task complet ion in certain scenarios

will require additional - more complex - reasoning capabilities.

The cOcOLOG (Caines & Wang, 1995) reasoning system being developed by Caines

and his group at cnv! is the one planned to he interfaced with SPOTT. Preliminary integra­

tion of cOCOLOG with SPOTT has involved COCOLOG replacing the global path planner

process (see Figure 6.8). The user specifies a task command goal, and then COCOLOG

takes control of SPOTT by specifying a set of intermediate goals32 . The user resumes con­

trol once COCOLOG has achieved the task command goal. The actual use of COCOLOG

in this scenario is not so interesting because COCOLOG 's role is redundant (i.e., SPOTT's

global path planner can already perform this operation). What is interesting is the integra­

tion of SPOTT with COcOLOG. The specification of intermediate goals by COCOLOG

will become useful when these goals are part of a complex exploration task (e.g., find the

red ball or find the chair). This is one of the potential roles for COCOLOG.

Other future uses of the COCOLOG reasoning system could include dynamically spec­

ifying changes to the TR+ programs during execution, possibly learning new TR+ control

programs, learning the abstract graph map in environments where this is not specified be­

forehand33 • and map database maintenance (Le., verifying, refuting, and merging symbolic

data constructs). ~Iap database maintenance is either a role for a reasoning agent such as

cOcOLOG or for a blackboard architecture (see Section 2.4).

32The intermediate goals are Cartesian coordinate points specifying the centre of edges (i.e., doors). COCO LOG
sends a procedural list of intermediate goals (i.e., SPOTT processes each one of these ta completian in sequential
arder) which are at the locations of edges that are to be traversed.

33[n the current implementation of SPOTT. the user creates the abstract graph map based on an architectural
CAO map. It would be ideal to automate this process before execution. or to learn this abstract graph while building
a map.

173

CHAPTER 6. [~tPLE:\IE~TATION

USER

G
U
1

~..

robor. tuk
poaltion

CONTROL

BEHAVIORAL
CONTROLLER

TR+TREES

A
o

--+---.

R:=t~",-,,,,,,
O condition

(sensory-based)

ENVIRONMENT

FIGüRE 6.8. Integration ofCOCOLOG with SPOTT. In the initial integration. COCOLOG
performs the global path planning and provides SPOTT with a procedural list of intermediate goals.
SPOTT notifies COCOLOG after the successful completion of each of the intermediate goals and when
a goal is not achievable (e.g.. doorway was blocked).

174

•

CHAPTER 6. l~tPLE~tE:"ITATION

4. Modularity and Portability

SPOTT's implementation uses a collection of communication processes executing across

a heterogeneous network of processing resources. This irnplementation is modular and eas­

ier to understand conceptually because conceptual modules correspond to an actual set of

cornputing processes. The heterogeneity property of PYM makes using different architec­

tures (e.g., SUN. SGI) relatively transparent to SPOTT's software. There is always the

potential of executing the entire SPOTT system on board the robot if sufficient proccssing

resources were made available. The portability of the SPOTT system, chiefly due to its

irnplementation using PV~L makes it truly hardware independent. This permits taking

advantage of raster processors as they become available. The ability to run UNIX (i.e..

PV~[is chiefly designated to run within a UNIX environment) on personal computers (i.e..

using Linux) opens up an opportunity to use a relatively inexpensive hardware platform for

executing SPOTT.

175

CHAPTER 7. EXPERIMENTS

CHAPTER 7

Experiments

SPOTT has been implemented as a distributed control system chiefly because of the compu­

tational requirements of the local path planner, and the conditions associated with a TR+

program. The local path planner (i.e., potential field) computes the solution to Laplacc's

equation (Le., used as the potential function) using an iterative (Le.. parallel) computation.

1t is only natural l to also concurrently compute each one of the TR+ conditions as separate

processes.

SPOTT's performance not only depends on the method of implementation2 , but also

on the rate at which the TR+ interpreter and local path planner3 are updated by sen­

sor information and consequently move the robot. Other measures of performance include

robustness, reliability and whether the task was successfully completed. Five sets of ex­

periments were performed which looked into different performance aspects of the SPOTT

system:

(i) The first experiment was a simple test of the communication speed on the network

at C11'I. Messages were passed back and forth between processes in different config­

urations (see Section 1).

(ii) The second set of experiments looked into speeding up the performance of the local

path planner (i.e., computing the harmonic function as the potential function) (see

Section 2).

(iii) The third set of experiments investigated the quality of the sensor (e.g., sonar.

QUADRIS) data and the performance of the mapping and localization algorithms

which rely on this data (see Section 3).

lin theory, the computation of each of the TR conditions is done in parallel.
2The method of implementation uses parallel processes and a message-passing paradigm.
JBoth are in a real-time feedback Joop with the robot and the environment.

176

-
CHAPTER 7. EXPERIMENTS

(iv) The fourth set of experiments involved using the entire SPOTT system. Two navi­

gational tasks consisting of maneuvering to a known spatial location were executed.

In the tirst navigational task, there was no a priori map, while in the second there

was.

(v) Finally, the last set of experiments was conducted at the 1996 IRIS-PRECARN

conference at the Queen Elizabeth Hotel in Montreal, between the dates of June 4-th

through to the 6-th, 1996. Three operator consoles as well as the mobile robot were

taken to the Queen Elizabeth Hotel and the control system was executed on these

workstations as well as on a collection of workstations back at McGill University. The

mode of communication between the Queen Elizabeth Hotel and McGill University

was Ethernet over an optical fibre link.

In addition to evaluating whether SPOTT can successfully achieve a navigational task

(iv, v), the other experiments (i, iL ii) evaluate the following important performance factors:

(i) The communication bandwidth of the message passing system (Le., PYM) provides

an upper limit for how fast SPOTT can perform. This is especially true for the

local path planner whose performance depends on the rate at which data is passed

between the master and slave processes.

(ii) The performance of the local path planner is a key element because it links perception

with action (i.e., trajectory planning). It is important that its response time to

environmental changes be minimized as much as possible.

(iii) Finally, SPOTT's ability to react to its environment is constrained by how well (i.e..

and how fast) it can see (i.e.. sense and perceive) the world.

177

...

CHAPTER 7. EXPERIME:-ITS

1. Message-Passing Costs on a Network

SPOTT's distributed control network is implemented using the message-passing soft­

ware package called PYM (Parallel Virtual Machine). When using PYM, the user specifies

a collection of workstations4 upon which the applications will be executed. and PYM decides

where the processes get executed. Since SPOTT is used ta control a robot in real-time5 , it is

desirable to choose the fastest machines for PYM (Le., from the set of accessible machines).

This ensures that the individual processes will be executed as quickly as possible, but the

execution speed of an application parallelized across a message-passing paradigm is also

dependent on the inter-process communication times.

The network at CIM is interconnected using the Ethernet protocol. Sorne of the work­

stations are connected in local cIusters. Table 7.1 lists the average (Le., over a run of 20

iterations) inter-process communication times for peak and low periods between processes

in different configurations. Each test consisted of initiating communications by sending the

smallest possible packet (Le., four bytes) for 20 iterations, and increasing the package size

every subsequent 20 iteratians. Table 7.1 shows that the time taken ta pack the data is

negligible and it is the communication (i.e., sencI) time which is the limiting factor for per­

formance in a message passing paradigm. The initial communication with another process

experiences sorne startup delays. As expected, communications between processes on the

same workstations are the fastest (Le., see the send column in Table 7.1). However, if bath

of these processes are heavily dependent on computational resources, they compete against

each other. Next fastest are communications between processes on the same local cIuster,

about 40% faster than communications between processes on the general network. It would

be interesting to see whether the performance would improve linearly if the network \Vere

linked to an ATM or "Fast Ethernet" protocol6 .

Sometimes, there is significant fluctuation (i.e., outliers) among the twenty iterations

for each of the inter-process bandwidth communication tests using PYM (see (b), (c), and

(e) in Figure 7.1). In addition, the first attempt at communication takes a lot longer than

subsequent exchanges7 . This needs to be taken into consideration, especially in processes

that are relied upon for real-time performance. For example, SPOTT's local path planner

continually iterates in a master-slave configuration (see Section 2). It was found that this

4The collection of workstations to run PYM on can be chosen from the local network, and can even include
other workstations accessible via the internet. Communication to machines outside the local network is usually slower.
PYM executes on a subset of machines accessible to the user.

5Real-time means that SPOTT responds raster than the time taken for changes in the environment.
6 Fast Ethernet has a bandwidth of 100 M bps, while Ethemet has a bandwidth of 10 ~I bps.
7See the rows in Table 7.1 for the data packet size of 4 bytes. See also (a) in Figure 7.1

178

•

-

CHAPTER ;. EXPERIMENTS

same machine local c/uster local cluster neiwork

Data Packet Stargazer Voyager Defiant Vangogh

Size Pack Send Pack Send Pack Send Pack Send

(bytes) (J.Lsec) (JLsec) (JLsec) (JLsec) (J.Lsec) (p.sec) (J.Lsec) (JLsec)

peak

4 - 25052 - 11763 - 28175 - 83885

100 136 3940 153 5897 142 6548 109 9705

1000 169 4101 185 7105 187 7586 127 12526

10000 741 8063 727 20025 740 22282 451 35843

100000 5504 54546 5493 335595 5445 174660 5999 273168

1000000 51404 533424 52975 1531164 50985 1533180 57120 2519459

low

4 - 40515 - 11307 - 27796 - 75259

100 141 3978 133 5816 142 6443 166 13492

1000 169 4128 173 6774 181 7511 182 12568

10000 764 7604 736 22183 733 21697 497 36243

100000 5692 64506 5420 161940 5421 158505 6795 261589

1000000 55956 525037 51061 1518712 51146 1516647 55042 2534524

TABLE 7.1. PYM Bandwidth Tests At Peak and Law Periads. Messages were sent from a
process on the SGI Indy workstation Stargazer to a process on the same machine. to a process on a SGI
Indy workstation Voyager which is on the same local c1uster, to another process on a 586 PC computer
Defiant on the same local cJuster, and to another process on a SUN4 workstation Vangogh on the
same local area network but not on the local c1uster. Each test consisted of initiating communications
by sending the smallest possible packet (i.e., four bytes) for 20 iterations. and subsequently increasing
the package size every 20 iterations, sending the same size packet for 20 iterations. The average times
for the packing of the data and transmission over the 20 iterations are shawn above. The packing lime
is negligible compared to the "ending time, and therefore it is the "end time which is the discriminating
parameter between the different arrangements.

computation required at start up that the first two iterations be synchronized. If this were

not the case, sorne of the slave processes would race ahead and process their parcel of data a

lot quicker than the other processes. ACter the first two synchronous iterations, the master

and the set of slave processes continue in an asynchronous fashion.

179

CHAPTER ï. EXPERIMENTS

a) 4 bytes d) 10000 bytes

201612

J 2.0.+4 L- _

o

1

1ft

• ~OeM

2012

(108.5

u

: 10.+4

e
J 1 0..3 ~ _

o

t

m 10..6

III III

b) 100 bytes e) 100000 bytes

1X.Voyager....V.ngogh 1 1··vOV.Q.....vangogh 1

so..s

:40..S~
30..5

~ L~~~~;..-.,.~::;;::;;:;
1 2.0..5

o 12 16 20
III

16 2012
1 ., 0.+3 L.!!::=::II:=-=-=:II:::IIt:=-..:!!!:S....::!!:~~!::Ilt:B.

o

80..3

III

+1_1.....'_'.....I""'1J
12e+4

c) 1000 bytes
l..voV.QlIr.••vangogl'l 1

168.4

1 1 S..4
m

14••4.
13a+4

~

u 1211.4

5 11.+4.
10.+4e

1 9 0..3
0 4 , 2 16 20

III

FIGURE ï.l. PYM Bandwidth Fluctuation Tests. The test results documented in Table 7.1
are the averages over 20 consecutive transmissions. The abave figure shows the peak transmission rates
for the 20 tests between Stargazer and Voyager. and between Stargazer and Vangogh workstations for
different data sizes. Stargazer and Voyager are bath SGI Indy workstations on the same local duster.
while Vangogh is a SUN4 workstation on the same network. The network is Cl multi-user network. 50

fluctuations in data transmission will occur depending on what other users are concurrently executing
on the network.

180

..

CHAPTER ï. EXPERIMENTS

Table 7.1 shows the average communication times for different packet sizes. Most of

the data packets sent between SPOTT's processes are less than 1000 bytes in size, which

translates to each communication taking between 4 to 13 msec8
. When large chunks of

data are sent (e.g., images9), communication times need to definitely be considered when

looking at system performance. Since SPOTT is executed on a multi-user network, there

are going to be fluctuations in the data rate over time because there is no way to anticipate

and predict aH activity on the network. This is a potential downside in executing a system

on a multi-user heterogeneous network, but the potential for portability when using PYM

outweighs this disadvantage under most circumstances.

8See the rows in Table 7.1 for the data packet size of 1000 bytes. See also (c) in Figure 7.1
9Communication times for sending an image can be interpolated from Table 7.1. Assume that the image is 512

by 512 pixels and that a single byte is used ta store each pixel (i.e., 262144 bytes in total). The average time ta send
such an image between processes on the same workstation is 138 msec, on the same local cluster is 348 msec, and on
the generaJ network is 562 msec.

181

CHAPTER Î. EXPERIMENTS

2. Local Path Planning

The local path planner computes the harmonie function (i.e' l potential function) using

an iterative computation. This has been chosen so that a steepest gradient descent value is

always available at the corresponding estimated position of the robot.

Performance of an iterative computation is improved by either reducing the time of

a single iteration l or the number of iterations required for convergence. The tests to ex­

amine single iteration performance were done using Gauss-Seidel iteration with ADI (i.e..

Alternating Direction) techniques (see Section 4.1.1 in Chapter 4). The various perfor­

mance improvements tested are as follows:

• Computing the harmonie function in parallel using PYM results in at least halving

the time required for a single iteration as compared with computing the harmonie

function using a single process.

• The computation time of the harmonie function is directly proportional to the num­

ber of grid elements (see Figure 7.2). Typically SPOTT uses a potential function

with a grid size of 35 by 35 points. Using this grid size results in convergence to the

harmonie function in less than 2 seconds.

• There should be at least one workstation devoted to each of the processes used in

computing the harmonie function in a master-slave configuration. Reeall that each

slave process iterates over a parcel of the entire data set. The optimum number of

slave processes to use is dependent on the size of the entire data set as weIl as the

overhead associated with the packing and sending of the data in a message passing

paradigm. Figure 7.3 shows the relationship between the computation times for a

single iteration with respect to the Humber of slave processes used (i.e., empirical

results).

• Using the faster machines (e.g., SPARC workstations as opposed to SUN 4 work­

stations) results in a speed advantage of at least 20%. In addition, using machines

that are on the same local cluster al30 improves performance (see Table 7.1).

• Executing the slave processes asynchronously with the master process results in an

average 33% improvement over a synchronous implementation. The master process

receives the results of a slave process as they become available. In a synchronous

implementation, the master process waits for aIl the slave results before starting a

new iteration. The only problem with using an asynchronous implementation with

slave processes is that the first two iterations need to be run synchronously. If this

is not done, sorne of the slave processes hang up on the network, and these processes

182

-

CHAPTER 7. EXPERI~IENTS

falI behind in the number of iterations they execute when compared to the processes

that do not hang up 10. Synchronizing the first two iterations results in the number

of iterations of aIl the slave processes to be within 10% of each other.

The improvements mentioned above make a single iteration faster by at least 73% (Le..

50%, 20% followed by 33% improvements). The time taken for a single iteration is also

dependent on the number of grid points (see Figure 7.2) as weIl as the number of slave

processes (see Figure 7.3).

Other factors that were considered are related to the overall convergence of the harmonie

function, as opposed to a single iteration, and are as follows:

• SOR (Successive Over-Relaxation) techniques help (see Section 4.1.1 in Chapter 4)

speed up convergence by a factor related to the grid dimension.

• A good first estimate of the unknowns makes it possible for the convergence of the

harmonie function to be solved in a relatively small number of iterations (Hornbeck!

1975). The use of the summation of potentials approach (see Section 3.3 in Chap­

ter 4) as an initial solution for the computation of the harmonie function produces

a solution which converges in about 20% less iterations. SPOTT typically uses the

summation of Gaussian potentials as an initial solution. However! other potential

functions and varying parameters associated with the initial resting value of the

potential function appear to slightly speed up the convergence rate (see Figure 7.4).

Other factors that did not necessarily speed up the convergence rate or speed up a single

iteration, but are more related to the overall functionality of the system are as follows:

• The use of a nine-point kernel (see Section ·1.1 in Chapter 4) is more aceurate than

the five-point kernel, and there is no significant additional computational expense.

The nine-point kernel appears to give smoother intermediate results.

• The checkingll of whether a slave process has sent data to the master process is

done by a polling loop in the master process. The order in which slave processes

are polled by the master process depends on a hierarchy which is determined by

the distance of the goal and robot to the centroid of the parcel of data associated

with the slave process. The slave processes whose centroid are doser to the goal and

robot positions are processed first. The ordering permits the poIl checking of which

slave process have computed their iteration to be relevant to the navigation of the

robot.

lOThis appears to be an undesirable side effect of how processes are executed and communications are initiated
through socket connections. It is not clear if this can be or will be corrected in PYM.

IlThis is clone using a non-blocking PYM function.

183

300

200
m
s
e

c 100

1x msec/ileration 1

CHAPTER ;. EXPERIMENTS

TIme taken for
each iteration for
different grid
sizes.

a)
0'----------

o 100 200
gnd slze = n, for n le n

-

It tOOO

900
a
f 800

700

1 600

e 500

400

a 300
1

200

o 100
n 0
s 0 50 100 150

gnd size = n, for n le n
200

1 X il. 10 converge 1

Number of
iterations ta
converge for
different grid sizes.

b)

300

s 200
e
c
o
n
d 100
s

Total time for
convergence
for different
grid sizes.

o ~......--------
o 100 200
grid size = n. for n le n

FIGURE 7.2. Potential Field Computation Times Versus Grid Size. (a) The computation
time of a single iteration increases proportionately with the number of grid points (i.e., sampling
resolution). (b) ln addition, the number of iterations required for convergence also increases. (c)
The total time for convergence appears to be exponential with respect to the number of grid points.
Therefore, it is desirable to keep the number of grid points to a reasonable level to have any resemblance
of real-time performance. Most of the experiments with the robot used a grid size of 35 by 35 points.

184

CHAPTER 7. EXPERIMENTS

10000

i
m
e

1000

m
s
e
c

100
o

500

400
m
e

{ 300
m
s
e 200
c

100
o 4

4 8 12 16
of processors

8 12 16
of processors

20

20

.300 by 300

.150 by 150

li 120 by 120

.100 by 100

.75 by 75

III 60 by 60

FIGURE ï.3. Computation Times for a Single Iteration: The computation time (in mil­
liseconds) of a single iteration for different grid sizes is plotted against the number of slave processes.
Each set of data corresponds to a different overall square grid size. Each slave processor processes an
equal amount of data. The optimum number of processors to use depends on the overall grid size.
The experiments were performed so as to ensure that each master and slave process were ex.ecuted on
a unique processor (i.e.. workstation).

The improvements made in order to reduce the time taken for a single iteration as weIl

as to minimize the number of iterations heip to speed up the convergence process signifi­

cantly. Convergence tinle is aiso dependent on the speed of the processors as weIl as the

communication protocol (see Section 1).

185

CHAPTER ï. EXPERIMENTS

'00 2aa '00 400
.oIl!erw.1Orq;

DaI

'0

100

Q a 1

c)

'00 200 100 400
• 01 Il..-..on.

'00

a ,

00'

'0

'000

o 0Cl'--------
o

'0000

a)

100 2aa 100 <00• oI.'.,.~

01

o al

~......"... -240_""
lrullal 5Olu1JOn: gaUSSlal1. 254.0 " Slable value. 75 li 75 pou1tS

d)

100 200 100 400
• 01 Il..aon.

'0

100

00'

., 01

IIlIDai soluDOn: QlWSSlIII1. 127.5 " slllble value. 75 li 75 pocnts
~aIl .. -240.-.....

b)

1"'Da1 SQ/uDOn: none. 127.5. slllble value. 75 li 75 poonlS
~aIl .. -lI0

INIIal soIU1Jon: 1/,2. 254.0 ,. srable value. 75 li 75 points

~..... aIl.-IIO""'''''

..

FIGURE 7.4. Relation of Initial Guess to Convergence Rate. The graphs show the
difference in value (i.e.. of the grid points) between successive iterations (Le.. error) plotted against
the number of iterations executed. Shown are both the average over ail grid points and the maximum
error (i.e.. outlier). In ail of the iIIustrated cases shown above. the summation of potentials approach
was used as an initial guess to the computation of the harmonie funetion. The goal saturation value
is O. while the obstacle saturation value is 255. In (a) and (e). Gaussian potentials were used. (b) was
proeessed with no initial solution. and (d) used a *potential.

186

...

.-

CHAPTER ;. EXPERIMENTS

3. Perception

3.1. Mapping Using Sonar

The sonar sensor is rated up ta an 8 fi range (according to Nomadics Technologies):

although, multiple reflections may reduce the reliability of the data at this range. In open

spaces, such as a laboratory area, the sonar can relatively accurately portray the environ­

ment up to the specifications of the sensor (see Figure 7.5). Trouble occurs in corners and

narrow corridors (see Figure 7.6), where multiple reflections result. In these cases, the sonar

range data does not accurately refiect the environment.

The results in Figures 7.5 and 7.6 have been processed with an algorithm (~Iackenzie

& Dudek, 1994) that eliminates outliers and fits straight Hne segments to a c1uster of sonar

data points. In order to obtain reHable rine segments, sonar data points beyond a certain

threshold are discarded 12. For open spaces, this threshold value can approach the range

specification of the sensor (see Figure 7.5), while in areas where multiple reflections are

possible (e.g., corners, narrow corridors) (see Figure 7.6), this threshold value should be

kept to a minimum (e.g., set to 2 ml.

Sorne potential enhancements to the processing of the sonar data which might improve

the quality of the data include taking advantage of a priori knowledge (e.g., CAD map) (and

possibly other sensor data). For example, in areas where multiple refiections occur (e.g.,

corners), CAD map information can he used to discard sonar data that do not accurately

reBect the environment 13. This type of improvement will increase the reliability of the sonar

data. Since time is an important element for real-time performance, it is necessary to keep

the time taken for sonar data collection and clustering into line segments to a minimum.

Presently, this process takes approximately 5 seconds to compute, which is too long1-t.

12Sonar data. is sent out in a cone pattern, and the further away the obstacles are with respect to the robot (i.e..
from which the data is reflected back), the less reliable the data is.

13The CAO map is used to form a hypothesis of what the sonar sensor should return. This is relatively easy to
do in a hallway where there are very few obstacles that are not captured in the CAO map. This is not the case in a
roorn, where there can be a fair amount of c1utter. [n this case, it would be difficult to determine if the sonar data is
sensing an obstacle not in the CAO map or just sensing a corner (i.e., with multiple reflections). Other sensor data
(e.g., QUADRIS) should be used to verify sonar data in rooms.

14[f the robot is moving at 1 rn/sec and the sonar range is 3 m, then the robot will have rnoved 5 m during the
time it takes to process the sonar data. This is assuming that the sonar sensing is concurrently executing while the
robot is moving. At this rate, the Sonar data will be irrelevant with respect to the CUITent position and heading of
the robot .

187

CHAPTER ï. EXPERIMENTS

...

(In metres) -1.2 -.6 -1.2 -.6 0 .6 1.2

0 ,... . -- _........ .-...-- _..... ..-..--.,

.6
// ----..... 7-~'

\
-

1
1 ,.

\1.2 f' \ +1.8
2.4 / /

3
t=200j

,-
3.6 t=300
4.2

0 - .• -"-* .~ .. _...- .-- ..~._..---
.6

/~'- /-
1.2

\
~

1

\
-

1t' t1.8
2.4 / /

3
3.6 ./ ,-.. 4.2 t=50Q1=400... 4.8

0 .-- I~."._---

.6
/-, /-

1.2

\
~

1

\
--

\f f1.8
2.4 / /

3
./ ,-

3.6

~ ~4.2
4.8

1

5.4 1

1

6 t;:6f)Q.j t=800

FIGURE 7.5. Sonar Mapping in Open Spaces. The sonar sensors on the Nomadics 200
have Ci range of 8 m. This figure iIIustrates mapping based on sonar data c1ustered into line segments
(Mackenzie & Dudek. 1994) with different thresholds for discarding data points which fall beyond
the specified range (i.e.. threshold). The top left pieture shows what the robot sees from its current
position and orientation. The top right pieture shows a pieture of the robot with an arrow indicating its
current orientation. The numbers in each map indicate a threshold value in cm: ail sonar data points
which fall beyond this threshold range are discarded as being unreliable. For an open space. such as the
illustrated laboratory setting, the threshold value can approach the sensing range of the sonar sensors
(e.g.• 8 m) because there are very few unwanted multiple refleetions.

188

CHAPTER7. EXPERIMENTS

(distances ln metres)

-2.4 -1.2 0 1.2 2.4

4.8
~

3.6

/
2.4

\ "r" \1. :
...... '"

1.2
'-

0 /'
200

-2.4 -1.2 0 1.2 2.4 -2.4 -1.2 0 1.2 2.4

4.8 4.8
~

"' 3.6
'-.

3.6

2.4 2.4
\ ;'1> \:'1"" \,._.,' _.;

1.2 , 1.2 "
0 / 0 "'-

/'
275 '" 300...

-

FIGURE 7.6. Sonar Mapping in Narrow Hallways. The sonar data is refleeted many times
in this environment making it difficult to use for map production. Refleetions are due to the narrow
corridor. door indentations. and corners. The number in each map indicates a threshold which dictates
the maximum range (in cm) for which sonar data points are considered reliable in order to c1uster them
into line segments. Sonar data points beyond this threshold are not c1ustered.

189

CHAPTER Î. EXPERIMENTS

3.2. Localization U sing Sonar

The localization procedure takes a sonar scan and correlates the data with the CAD

map ta determine the pose (Le., spatial location and orientation) of the robot (Mackenzie &

Oudek. 1994). The only locations where this will work reasonably weIl are places where there

are distinct features as seen by the sonar sensor. In an indoor environment~ these locations

are unobstructed corners (see Figure 7.7). Corners in offices are not good locations because

there is usually a lot of dutter in offices and this will confuse the correlation process. An

a priori CAD map (or a previously created map) is necessary as a reference to execute the

10calization procedure. Good localization regions are identified a priori in the CAO map.

When the robot is within one of these regions! as the robot navigates about in an attempt

to achieve its task objective, the robot is localized. 1t is assumed that before localization

is performed, the estimated position of the robot is approximately equal to the correct

position (Le., within 1 m).

FIGURE Î.Î. Good Locations to Perform Localization. Localization is performed in loca­
tions in the environment which are uncluttered and have distinct features (e.g.. the corner next to the
robot). The illustrated example shows the robot in an uncluttered corner. Sonar measurements are
correlated with an a priori CAD map to determine the pose of the robot.

Potential problems with this technique include an aperture problem: certain regions

in the environment appear the same to the sonar sensors (e.g., doors repeat, corners are

similar looking). This is why the assumption of being near the true estimate is necessary.

Another problem is that the actual corner is not properly mapped using the sonar data

(see Section 3.1) and it is really only the two straight Hne segments defining the corner

which are used in the correlation process. A problem may occur when the corrupted corner

feature captured by the sonar data confuses the correlation process. A practical problem

190

-

.-

CHAPTER ;. EXPERIME:'tTS

with the sonar-based localization procedure (Mackenzie & Dudek, 1994) is its extremely

long computation time. The process takes approximately half a minute and the robot IS

stopped during this procedure.

The robot Iocalization error (i.e., if only dead reckoning is used) for a traversaI of

3 m forward and 3 ID backwards on a tiled floor (i.e., 1 ID square tiles) has been round

to be approximately 6 cm. Based on this error, and assuming that an error tolerance of

20 cm is the maximum that can he acceptable, the robot should he localized every 20

m of traversal15 . It was found that the robot was localized within ±5 cm of its actual

position when the localization procedure hased on correlating sonar data to the CAD map

was executed. Future work should try to emphasize fast localization procedures which can

function in real-time (i.e., concurrently done during the navigation task).

3.3. Mapping Using QUADRIS

QUADRIS (see Figure 7.8) is a system consisting of two range sensors (BIRlS) (Blais

et aL 1991) mounted on pan-tilt heads (Bui, in preparation). QUADRIS is mounted on

the top of the basic Nomad platform. The BIRIS Range Sensor (Blais et al., 1991) is

a compact optical 3-D range sensor developed by the NRC (Canada's National Research

Council) which is based on the use of a double aperture mask in place of the diaphragm of a

standard camera lens. This laser line, when viewed through the double aperture, produces

two lines whose separation correlates with the range distance.

FIGURE 7.S. The QUADRIS System. QUAORIS (see Figure 7.8) is a system of two range
sensors (BIRIS) (Blais et al., 1991) mounted on pan-tilt heads (Bui, in preparation).

QUADRIS' PTU's follow a scanning pattern (i.e., series of orientations of the cameras)

which is based on the context of the current environment. Experiments have been conducted

in an office and laboratory environment and two different scanning patterns were chosen;

one when the robot is in a room and the other when it is in a hallway. In a room, the

15SpOTT's initialization parameters permit the frequency of localization ta be based on time, the distance
traversed, or a combination of the two. Currently, SPOTT will localize the robot after traversing at least 20 m and
when the robot is in one of the localization regions.

191

CHAPTER ;. EXPERIMENTS

QUADRIS sensor's direction is alternated between pointing forwards and sideways. In a

hallway. the emphasis is more on pointing towards the sicles. The QUADRIS data have been

found to be very reliable16 up to 2 m; however the measurements can be very sensitive to

lighting conditions (Bui, in preparation). The reliability of the range data is dependent on

having a credible lookup table (i.e., calibration) from which to correlate range and disparity

values. An example of the type of disparity data and map produced from a fiat wall segment

is illustrated in Figure 7.9. Typical processing times are 900 msec for the camera selection

and 400 msec for the disparity computation1ï and conversion into real world coordinates

(Bui, in preparation).

a)
2DOcm

Dcm

b)
-«lem Dem toc:m

Dcm

1CIO cm

........_--... . .

-1C1Ocm Dcm 100 cm

FlGURE 7.9. QUADRIS Range Data. During this experiment the robot was moving in a
straight line in a rectangular room void of any obstacles. (a) shows the disparity returned for a
particular scan. The scan direction is shown by the arrow on the robot in (b). (b) shows the map solely
produced from QUADRIS data. The line segment circled corresponds to the disparity data in (a).

16QUADRIS can obtain range data for abjects up to 5 m away but it is not aIways reliable.
17This aIso includes the overhead associated with monitoring the features ta see if they correspond ta abjects

QUADRIS can recognize Ce.g., doors, walls).

192

-

...

.:~

CHAPTER ï. EXPER[ME~TS

The QUADRIS system appears to he give reasonably reliable range data at a rate of

approximately 1 frame per second. It would be desirable to have the system return range

data at a faster rate. The limiting factor appears to be the selection and control of the

PTU units (Bui. in preparation), which is the attention problem18 .

18The attention problem takes into account the speed limitations of the cameras mounted on the pan-tilt heads,
in addition to the environment and task context ta determine where ta look (i.e., scan, point the cameras). This
problem has been short-circuited by fixing the scanning patterns for when the robot is in a room and hallway.
Currently, the camera selection is constrained ta be no raster than 900 msec (Bui, in preparation).

193

-

9"

CHAPTER ï. EXPERIMENTS

4. N avigational Experiments

The TR+ interpreter was found to take on average 0.7 msec/cycle for a tree with 20

conditions using between 10 to 15 processors. When 45 conditions are used. the average

time was found to be approximately 1 fisee/cycle. The time taken to converge to a solution

by the local path planner, using a 75 by 75 grid on a collection of 5 SCI workstations for 3

obstacles and a goal. is approximately 4 seconds. For aIl experiments. the grid size for the

potential field path planner was 35 by 35, which converges in less than 2 seconds.

Experimentation has been conducted for a variety of tasks. The experiments have

been performed under two different scenario~: (1) no map is available a priori: and (2) a

partial map of the permanent structures (i.e., walls) is available a priori. An A UTOCA.D

architectural drawing of the CIM office and laboratory space was used as a partial map of

the permanent structures.

One experiment was performed using the TR+ program illustrated in Figure 3.12.

There was no a priori map. The robot moved at 10 cm/sec and updated its map of the

environment from sonar data every 5 seconds. The robot was stopped for approximately

5 seconds while acquiring and processing the sonar data. The robot \Vas localized every

10 seconds19 . The map built up during the execution of the task is given in Figure 7.10.

Figure 7.11 shows selected frames during the exeeution of the task.

A second experiment, shown in Figure 7.12, illustrates the robot navigating to a pre­

defined location. In this experiment, the robot uses an available CAD map as a priori

knowledge. However, during task execution the robot discovers features (e.g., the partition)

that are not present in the CAD map. In this example, the robot moved at 50 cm/sec.

The mapping of the environment was performed every 150 cm traversed by the robot~ or

when previously unsensed parts of the environment had ta be observed20 (e.g., around the

partition in Figure 7.12). Localization of the robot was performed at the start of task

execution.

In addition to using sonar data for navigation, QUADRIS range data is also used, as weIl

as infrared and bumper sensor data. QUADRIS range data is employed for simple abject

recognition. Horizontal and vertical object range profiles are used to recognize features

such as doors, chairs and desks (Bui, in preparation). The control of the pan-tilt heads is a

predefined scanning pattern depending on the context21 . The bumper and infrared sensors

19This experiment was carried out when the localization frequency could only be specified with respect to time.
Currently, the rate can aIso be specified with respect to distance traversed.

20This is done by observing the global changes in the robot's trajectory. If the robot's direction has changed by
Q degrees since the last mapping, the environment is mapped again. The value used for Q was 60 degrees.

21 For example, a different scanning pattern is used for hallways and rooms.

194

CHAPTER ï. EXPERIMENTS

-------------_.._-------~-----

= The Robot's Map "

/J ,/

~-"y/

i',',
/ '

,
. 1

~\or
f

\
\

FIGURE 7.10. Dynamic Mapping and Trajectory Determination. As the robot moves
towards a predefined spatial location, sonar data updates the map and alters the trajeetory.

are used to indicate features rnissed by the sonar and range sensors, if any. The TR+

programs for QUADRIS (see Figure 3.16), bumper and infrared mapping (see Figure 3.18)

are aIl similar to the"1Vfap_the_environmenf' program illustrated in Figure 3.12. AH of the

mapping TR+ programs operate in parallel.

All of the TR+ programs discussed so far are based on knowing the spatial location of

the goal beforehand. The task is completed successfully when the robot arrives at the desired

position, as is the case when the task command is ·'GO". However, when the task command

is "FIND", a search needs to be performed in the environment. The TR+ control structure

can be used to guide the robot. Figures 3.14 to 3.22 in Chapter 3 show examples of the TR+

programs used for searching the environment to find a particuJar abject. For the ..FIND"

195

CHAPTER i, EXPERIMENTS

T
1
M
E

FIGURE 7.11. Autonomous Navigation with No A Priori Map. The robot successfully
navigated around various obstacles as it traversed towards a predefined spatial location.

196

.-

CHAPTER ;. EXPERIMENTS

priori, the robot only knows
boutwalls;
epartition
discovered while
ecuting the tasle.

Global Map

c)
Local Map
Shawn are the
CADmapand
sensed features,
as weIl as the
robot and ifs
traced path.

FIGURE 7.12. Autonomous Navigation with a Partial A Priori Map. A priori, the robot
only knows of the walls in the CAO map. (a) shows the initial configuration and the desired destination.
(b) shows the location of the local map in the global map. (c) shows the local map at task completion,
along with the CAO (light Iines) and sensed (eatures (darker lines), as weil as the executed trajeetory.
The padding of the (eatures, to account for uncertainty and the local path planner modeling of the
robot as a point, is iIIustrated by the grey regions surrounding the line (i.e., wall) features.

197

...

CHAPTER ï. EXPERI~lE~TS

task, the types of objects which can be found is limited by the recognition capabilities of

QUADRIS (i.e.. range data). Recognition at this time is limited to chairs. doors and walls.

Since the focus of attention problem has not yet been solved, the recognition of a chair also

requires the robot to be in a particular position and pose with respect to the chair (Bui, in

preparation). Object recognition based on QUADRIS data is an ongoing research project at

CIM. The testing of the •• FIND" task was only performed in simulation mode. One of the

future roles for COCOLOG is to help SPOTT guarantee task completion for the .• FIlvD"

task (see Figure 1.3).

There are two potential problems with the path planner that were discovered during

experimentation.

• The first problem is concerned with proximity sensor mapping (e.g., bumper~ in­

frared). The features mapped by the proximity sensors are very close to the robot:

so close (e.g., bumpers are contact sensors) that when these features are padded

by the local path plaoner (i.e.. to compensate for modelling the robot as a point),

the current estimate of the robot's position may actually faH on the plateau (i.e..

saturated high value in the potential function) formed by the feature. There is no

gradient on the plateau and therefore no trajectory is generated. To alleviate this

problem, the steepest descent gradient is computed by using a window that takes

into account the padding of the obstacles22 •

• The second problem concerns the projection of the goal onto the local path planner's

border (see Figure 7.13). If an obstacle is discovered near the border of the projected

location, it may have the effect of blocking the attractive forces of the goal. One

potential solution is to project the goal ooto the entire side of the potential field

(e.g., top horizontal). When the global goal is projected as a point onto the local

border, it is aIready based on the global geometry of the rooms ta determine its

precise placement. This has the effect of producing a smooth path when the local

window is moved. When the global goal is projected onto the entire side, the global

path will not necessarily be as smooth23 . AIso, there is still no guarantee that

newly discovered obstacles will not block the attraction generated by the entire side.

It may be that an additional role for the reasoning agent (Le., COCOLOG, see

Section 3 in Chapter 6) is to monitor if the current projected goal is blocked due to

22The size of the window used to compute the gradient is usually 3 by 3. A plateau is identified if there is no
gradient at the current robot position. If such is the case, a 5 by 5 operator is used to compute the gradient. The
size of the alternative operator is based on the padding size (Le., 25 cm, 50 cm for both sides of a line). and the pixel
(Le.• grid element) size (Le., 15 cm).

23The smoothness of the global path will depend on where the path exits each local window.

198

-
CHAPTER ï. EXPERIME~TS

the dynamically sensed data and to determine a new projected goal (see Section 9.3

in Chapter 4) if this happens.

FIG URE 7.13. Projection Onto a Point or a Line. The global goal is either projected onto
a point on the border or onto the entire side of the potential funetion (e.g., top horizontal). The
projection onto a point provides a better estimate of where to direct the robot towards the global goal.
However, if an obstacle is discovered at the border of the potential function, there is a potential for the
attractive forces of the goal to be blocked. In this diagram, the light lines are newly sensed features,
while the dark lines were obtained from the CAO map. The location of the illustrated projected goal
is Such that it has no attractive pull on the robot when the global goal is projected as a point.

A troublesome engineering problem experienced while navigating in the office enVI­

ronment was the loss of communication with the robot via the radio ethernet wireless link.

There is also a video link to transmit the image data for obtaining range from the QUADRIS

system24 ~ whose communication was also degraded at certain times. The degradation usu­

ally occurred when there was no line of sight from the transmitter on the robot to the

receiver and the distance exceeded 40 m. Another engineering issue is the battery life of the

robot~ which is about three to four hours. This can be a problem for continuous operation

when the robot is required to be active for longer periods than the life of the batteries (e.g.~

night surveillance of an office building).

When existing and self-contained modules (e.g., sonar mapping) are integrated into a

larger system (e.g.~ control system such as SPOTT), they usually require sorne redesign.

The sonar mapping and localization packages were never intended to operate in real-time~

and should be modified so that they are able to do so.

24Idea11y, the QUADRIS data should be processed on board the robot. The image consists of two projected
laser lines, whose separation correlates with the range distance. Only the range da.ta values are of interest. The rest
of the video data are discarded. If this computation were performed on board, then the range data could also be sent
via. the radio ethernet link.

199

CHAPTER 7. EXPERIME:"l'TS

5. Off Site Experiment

The entire SPOTT system was demonstrated at the 1996 IRIS-PRECARN conference~

held at the Queen Elizabeth Hotel in Montreal, Quebec, Canada between the dates of June

4-th through to the 6-th. 1996. The robot as weil as three workstations were taken to the

hotel. An optical fibre ethernet link connected the workstations to eight other workstations

at the CIM laboratories at McGill University. The demonstration was to show SPOTT's

navigational capabilities in an office environment. COCOLOG was also used as an interface

to the SPOTT system. However, it did not contribute anything new as it only took the

place of SPOTT's existing global path planner. The interesting aspect of COCOLOG's

involvement was that it was integrated with SPOTT. COCOLOG generates a path by

setting intermediate goals at edges (i.e., doorways). SPOTT completes each intermediate

goal, notifies COCOLOG that the goal has been reached, and waits for COCOLOG to

return another intermediate goal.

The office environment was produced using interlocking partitions, and a map (see Fig­

ure 7.14) was available to SPOTT. The entire demonstration also served as an experimental

testing ground for the SPOTT system and its components (see Figure 7.15).

The main problem experienced during the demonstration was with respect to the ro­

bustness and reliability of the sensor data, namely sonar and QUADRIS. The partitions were

connected with tubes that had many ridges notched into them. These notches produced

multiple refiections with the sonar data (see Figure 7.16) and had the effect of artificially

blocking the doorways in the potential field. This problem was temporarily addressed by

reducing the padding factor to make sure that the door was not blocked in the potential

field by the sonar data returned from the notched tubes. Future work with sonar data pro­

cessing should concentrate on modelling and compensation for various rnaterials and types

of surfaces and their geometric configurations. Reliability can be maintained by possibly

using the CAD map to verify if the returned sonar data is an accurate refiection of the

environment. QUADRIS also experienced sorne problems by producing features that were

the result of lighting effects as opposed ta actual physical abjects. The lights in the room

had to be dimmed and the curtain was drawn. Future research with QUADRIS shauld

concentrate on its robustness in different lighting conditions.

200

CHAPTER ;. EXPERIMENTS

v
windows

D

1 • 1

~ ~ -~.-""'---'--'.~ . ---'0'- -.~

1

-

1

6

5

4

3

2

a

X~--+--+---+---+---+--+----ll--.......--+-"'""""t"--+--+--+--+--+----l!----'
12 11 10 9 8 7 5 5 4 3 2 o (inmetra)

-

..-

FIGURE ï.14. Map of the Demonstration Environment. This is the a priori map given to
SPOTT for the demonstration at the 1996 IRIS-PRECARN conference held in Montreal (June 1996).

Most of the difficulties with making the demonstration work concerned engineering

problems, and have been or will be corrected with simple software changes or bug fixes 25
•

They are as follows:

• The Tobodaemon process (i.e.~ provides low level control of the robot) blocks com­

munication with the robot until the sonar data collection is complete. In addition,

when sonar data collection was initiated while the robot was moving, robodaemon

lost track of the robot 's position.

• There were occasional problems in allocating sockets for communication with the two

daemon processes responsible fo' controlling the QUADRIS PTU's and acquiring

QUADRIS range data.

• The global graph planner (Le., when not executing COCOLOG with SPOTT) oc­

casionally returned an incorrect path. This was traced to a problem with how

communication is done with PYM. PYM guarantees processing the messages in the

order in which they arrive at their destination and not necessarily in the order they

2:iThere were a series of problems that were encountered leading up to the demonstration. The week before
the demonstration, three circuit boards on board the robot failed. The boards were replaced a couple of days before
the demonstration. This prevented extensive testing of SPOTT and COCOLOG before the conference. In addition,
the conference organizers failed to provide a couple of sample partitions 50 that testing could be done before the
demonstration. There was also only 2 hours available once ail the equipment was moved to and set up at the hotel
for testing the system.

201

•..
CHAPTER ï. EXPERIMENTS

FIGURE 7.15. Example of an Execution During the IRIS-PRECARN Demonstra­
tion. SPOTT is aware of the walls a priori. COCOlOG is responsible for setting intermediate goals
(I.e.. doorway accesses). SPOTT's role is ta get the robot from one doorway ta another. The top
diagram illustrates the robot navigating around the box and the bottom diagram illustrates the map
produced from the new[y sensed data (i.e.. bright lines) and the existing CAD features (i.e., dark lines).
Ali of the map features (Le.. lines) are padded with Ci grey border to show how the path planner
compensates for modelling the robot as a point.

are sent. A message was sent ta update the global graph and subsequently a request

(i.e., from the same sending process) was sent requesting the current global path.

The update and the request were sent from the GUI process. Sometimes the request

for the global path was processed before the update had been processed. Integrating

the update and path request into a single message packet will alleviate this problem.

• There is a real need for a comprehensive set of debugging resources. These resources

can either be temporary data files (i.e., verbose descriptions of what the process is

doing) or graphical visualizations of execution. Sorne of these resources are aIready

in place and were a very useful resaillee when debugging specifie problems.

202

-.

CHAPTER i. EXPERIMENTS

SOnar
ReflectJons

FIGURE 7.16. Sonar Reftections. The pales which were used ta keep the partiticns in place
had little ridges notched into them which caused the sonar data to be refleeted many times and return
confusing and erroneous map data. The top two diagrams iIIustrate the robot in its environment. The
bottom two diagrams (i.e.. side by side) iIIustrate the dynamically produced map during the navigation
task. The circled features show how the sonar data was refleeted at the ridged poles. The produced
map should have contained only horizontal and vertical lines.

• COCOLOG requires a lot of computation time ta compute such simple things as

path planning. This is because of the overhead associated with its logical reasoning

and theorem proving. SPOTT's global path planner is able ta generate a path of 10

nodes to be visited (i.e., based on the graph in Figure 4.13) in less than 200 msec,

while at present cOcOLOG requires over a minute in initialization time, and a

subsequent 5 ta 10 sec for computing each subsequent intermediate goal. In arder to

make cOcOLOG viable in a real-time setting, practical operational issues have ta

be taken into account. COCOLOG should be able to precompute sorne of its results

(i.e., when possible) and store them in memory. This is in contrast to computing

the result only at the time when it is requested (i.e., by SPOTT) ta do sa.

203

-

CHAPTER 7. EXPERIMENTS

The experiments have demonstrated that SPOTT is able to perform navigation in an

unpredictable environment which may he partially known a priori. There are sorne research

issues that require attention, namely the ability to provide reliable and robust map data

from the sonar and QUADRIS sensors. Most of the naïve visitors to the demonstration

aIso queried why the robot rnoved so slowly26. The execution of the robot is only as fast

as its slowest component and the slow elements appear to be the processes responsible for

processing the sensor data and the low level robot controller (Le.. robodaemon).

26The robot moved at the rate of L5 cm per second, but it stopped ta collect sonar data every 1 m traversed.
The robot was stopped for approximately 5 seconds during sonar data acquisition and processing.

204

-

CHAPTER ï. EXPERIMENTS

6. Lessons Learned

The experiments performed with the SPOTT system helped identify the fol1owing is-

sues:

• SPOTT relies heavily on its message passing implementation. The speed of process­

ing messages is dependent on the size of the message and the speed of the lines of

communication. Communication speeds can improve drastically if other protocols

such as Fast Ethernet or ATM are used instead of Ethernet. Other ways of commu­

nicating between processes that should be investigated include shared memory, and

lightweight processes (i.e., low overhead) called threads. There is a thread version of

PYM caHed TPVM which is a current research project (Ferrari & Sunderam, 1995).

• ~[apping the environment with sonar and QUADRIS data currently occurs indepen­

dent of each other and other available information. Sonar data is prone to be bad in

areas where multiple refiections occur (e.g., corners). The a priori CAD map can be

used to provide sorne verification of the sonar data. Similarly, the QUADRIS sys­

tem needs to be made more robust to varying lighting conditions. The experiments

showed that these sensors are prone to give potential erroneous results in different

environments. Sensor algorithm testing should always try to vary sorne elements of

the environment (e.g., wall types, lighting).

• There is a real need for real-time localization: fast algorithms for correcting the

robot's position at regular intervals (i.e., every 20 m of traversai).

• Dynamic mapping may cause the attraction of a global goal to be blocked within the

confines of the local potential field. It is not clear how ta guarantee that this does

not occur with a simple algorithm, without requiring a reasoning agent to monitor

and compensate for it.

There is never enough experimentation one can do with a mobile robot control system

(e.g., SPOTT). AH the unknowns in the environment can never be fully anticipated. The

SPOTT system has been proven to be able ta navigate a robot in an office and laboratory

environment. The current issue is how ta make the robot move faster: an ideal speed for the

robot would be the average walking pace of a human (Le., approximately 1 rn/sec). Related

ta the issues of speeding up the robot's motion and the acquisition of sensor data (i.e..

sonar, QUADRIS), there is an engineering issue to address (Le., related to the speed): the

low level robot control software should be open to multiple commands and requests from

205

--

CHAPTER 7. EXPERIMEr-;TS

various processes and concurrent operation (e.g.~ moving and acquiring sonar data). At

normal walking speeds~ the speed of the local path planner27 will also have ta be reassessed.

27 Recall that the local path planner takes two seconds ta converge ta the harmonie function for a new
configuration.

206

..

CHAPTER 8. CONCLUSIONS

CHAPTER 8

Conclusions

This thesis has presented an architecture - called SPOTT - which provides a bridge be­

tween behavioral and symbolic (i.e., reasoning) control. Figure 6.8 illustrates one way of

potentially integrating a reasoning system Ce.g., COCOLOC 1 (Caines & Wang, 1995» with

SPOTT. In addition, SPOTT is modular and programmable, which permits the possibility

of extending the current functionality, as well as the domains of execution. New control

strategies as weIl as additional sensors and actuators can be easily incorporated within

SPOTT. There is a wide variety of navigational tasks which SPOTT can execute based

on its defined task command lexicon (see Chapter 5). With a planning module~ SPOTT

is able to guarantee navigational task completion under many different scenarios (see Fig­

ure 1.3). This is what primarily distinguishes SPOTT from other behavioral-based robot

control architectures (e.g., subsumption architecture (Brooks, 1986». SPOTT consists of

a behavioral controller, a local path planner, and a global path planner. The behavioral

controller and the local path planner are both in a real-time2 feedback loop with the ro­

bot and its environment. The global path planner is responsive to slower changes in the

environment (e.g., robot changes its position with respect to a room).

Behavioral control is based on extending an existing formalisrn - Teleo-Reactive pro­

grams - into Teleo-Reactive+ (TR+) programs (see Chapter 3). SPOTT is the first im­

plernentation which experiments with a real-time version of the TR formalism (i.e.. called

TR+). The latter is not limited to reactive behaviors (e.g., bumper collision detection,

lThe logical reasoning system COCO LOG (Caines &. Wang, 1995) has actually been interfaced with the SPOTT
system (see Section 3 in Chapter 6). COCOLOG did not contribute anything new to SPOTT as it only took the place
of SPOTT's global path planner. The interesting aspect of COCOLOG's involvement was that it was integrated with
SPOTT. Future uses of COCOLOG should address the elements of navigation for which SPOTT cannat guarantee
task completion, as suggested by Figure 1.3, as weil as providing capabilities such as determining goal reachability,
spatial reasoning and map maintenance, and the Jearning of new TR+ programs (i.e.• control strategies).

2SPOTT reacts (aster than the times taken by changes in the environment.

207

v

-

CHAPTER 8. CONCLUSIONS

lailure monitoringL but also permits functional behaviors (e.g.~ mapping the environment.

localizing the TobotL as well as symbolic-like behaviors (e.g., are aU the rooms exp/ored).

A potential field approach is used for dynamic3 path planning. The potential field is

used as a local path planner because its computational requirements increase proportionally

with the number of grid elements, and because long narrow corridors (i.e., prevalent in

indoor environments) do not permit the rapidly decaying potential function to be fully

representable in a 32-bit computer address (see Section 7 in Chapter 4). The harnlOnic

function is computed using an iterative approach (see Section 4 in Chapter 4). The robot's

trajectory is determined by performing steepest gradient descent on the computed harmonie

function (see Section 5 in Chapter 4). An algorithm is proposed which will guarantee proper

control given that real-time execution and computation are to be done concurrently (see

Section 6 in Chapter 4). In order to guarantee proper control, a collection of potential fields

at varying grid resolutions are computed.

If a graph abstraction of the environment (i.e.. CAD map) is available (i.e.. rooms are

nodes, access ways are arcs) a priori, an algorithm is presented which projects the global

goal (i.e., outside the extent of the local potential field bounds) onto the potential field

boundary (see Section 9 in Chapter 4). The algorithm m2.kes use of the global path (see

Section 8 in Chapter 4) produced by the global path planner (i.e., using the abstract graph

map). When the robot is close to the boundary of the potential field, the potential field is

moved so that it is centered around the robors current location.

A real-time and parallel implementation of a TR+ interpreter and a dynamic real-time

path planner have been developed (see Sections 2.3 and 2.5 in Chapter 6) using a message

passing software package called PVM (see Section 1 in Chapter 6). Navigational experiments

have consisted of moving the robot to known and unknown spatial locations with no or a

partial a priori map (see Section 4 in Chapter 7). A priori maps are readily available for

most indoor environments in the form of architectural CAD drawings. SPOTT's success to

date gives optimism for experimenting with more complex environments as weil as in other

unstructured environments which may be hazardous or remotely located.

3Dynamic means that obstacles are discovered while executing a path. Hence. path planning and path execution
are done concurrently.

208

...

-

CHAPTER 8. CONCLUSIONS

1. Contributions

This thesis addresses the problem of autonomous navigation of a mobile robot in an

indoor environment, such as an office or laboratory space. The navigational tasks are based

on a language lexicon (see Chapter 5) within two contextual settings: (1) a partial map of

the environment is available a priori; and (2) no map is available a priori. A robot control

architecture called SPOTT is proposed and implemented as a real-time and parallel system

of concurrently executing and co-operating modules. Inherently, the control system is a

real-time Artificial Intelligence (AI) system which is responsible for dynamically adapting

to changing environmental circumstances in order to successfully execute and complete a

set of navigational tasks for an autonomous mobile robot. SPOTT consists of a behavioral

controller, a local dynamic path planner, and a global path planner, as weIl as a map

database and a graphical user interface. The SPOTT architecture provides a framework

for the inclusion of additional sensors and associated perceptual processing algorithms,

actuators and control strategies.

SPOTT is a novel robot control architecture because it proposes a way of linking

behavioral (i.e., reactive) and symbolic control. SPOTT differs from other behavioral ar­

chitectures by being able to guarantee task completion-l under many different scenarios

(see Figure 1.3). The exploitation of existing computational resources by the distributed

implementation of SPOTT is additionally innovative. Contributions are also made in the

following three areas:

(i) The Teleo-reactive (TR) control (Nilsson. 1992) formalism forms the centerpiece

for the behavioral controller (sec Chapter 3). This thesis has contributed to TR

behavioral control research in the following manner:

• This thesis is the first research work to design, implement and test an on­

line and distributed TR interpreter - cf concurrently executing behaviors - to

handle real-time control of an autonomous robot.

• The basic TR language is extended to handle multiple goals, concurrent ac­

tions, and conditional expressions. The extended formalism is called TR+.

• A typical TR+ program for navigation is presented in Figure 3.13. This pro­

vides a guideline for writing TR+ navigational programs when executed in the

SPOTT architecture.

(ii) Path planning (see Chapter 4) is concurrently performed at two levels of abstraction.

The local path planner is a potential field approach based on a harmonie function.

4 Most behavioral architectures are not able ta predict successful task completion for any situation.

209

-

CHAPTER 8. CONCLUSIONS

It is guaranteed to find a path to a goal if sueh a path exists. The local path

planner is in the critical real-time control feedhack loop with the environment. The

global planner plans a path hased on a graph abstraction of the environment. The

contributions made to the field of path planning, in particulaL the potential field

approach using harmonie functions, are as follows:

• In the local path planner~ path computation and execution are done concur­

rently. In order to guarantee a correct control strategy during concurrent plan

computation. a hierarchical coarse-to-fine procedure hased on a set of harmonie

functions at varying resolutions is proposed (See Section 6 in Chapter 4).

• A method is proposed for addressing the issue of planning for global goals when

the extent of the potential funetion is limited (see Section 9 in Chapter 4). This

is necessary because (1) the potential function is a rapidly deeaying function

which is not computable for aIl grid elements in a large array, and (2) the

computation time increases proportionally with respect ta the number of grid

elements. Thus, the local path planner needs to receive global goal information

from the global path planner. The global goal is projeeted onto the border of

the local potential field. The boundaries of the potential field are moved when

the robot approaches the current local extent. so as to centre the new bounds

around the robot.

• A method for computing the harmonie function in real-time and in parallel

with existing eomputational resources is proposed, implemented and tested

(see Section 2.3 in Chapter 6).

(iii) This thesis is the first to propose and put to use a mobile robot task command

lexical subset - consisting of verbs and spatial prepositions - (see Chapter 5), that

is a minimal spanning basis set for human 2D navigational tasks (Landau & Jack­

endoff, 1993; Miller & Johnson-Laird~ 1976). A procedure for quantifying the task

command for execution in the behavioral controller and dynamic local path planner

is presented. The quantification of the spatial prepositions is shown to depend on

two norms. The two norms are the definitions for the spatial prepositions near and

far in the current context of the environment and task.

210

-

-

CHAPTER 8. CONCLUSIONS

2. Robot Control Issues

The design of a behavioral architecture for mobile robot control has to take inta con­

sideration the following issues (see Section 3 in Chapter 2):

(i) How weIl does the architecture scale to more complex problems?

(ii) 1s the architecture general enough for a wide variety of tasks and environments?

(iii) Are the executed actions of the robot predictable beforehand?

(iv) 1s the operator able ta monitor the robot's interaction with the environment?

SPOTT has addressed these design issues in the fol1owing manner:

• SPOTT is scalable in the sense that it aIlows for new perceptual capabilities. ac­

tuator mechanisms. and behavioral decision rules without requiring the redesign of

the underlying architecture. The system also suggests a way of interfacing to a rea­

soning module, and shows how this can be done by interfacing to an AI planner5.

The COCOLOG (Caines & Wang, 1995) logjcal reasoning system has also been

integrated with SPOTT proving that actual integration with a reasoning agent is

possible (see Section 3 in Chapter 6). A TR+ control program concurrently executes

many sensor-action control loops of varying execution time6 . The behavioral control

program language (i.e.. TR+) is an extension of a language which is already being

experimented with for learning control strategies (Nilsson, 1994), (Nilsson, 1995).

• SPOTT is modular. It consists of decomposable and replaceable parts. The main

components are a behavioral control language interpreter. a dynamic path planner.

and an A1-based planner. The dynamic path planner is local, and the AI-based

planner is global. The dynamic path planner is only aware of a local window ioto

the map of the environment at any particular time.

• SPOTT can be used for a wide variety of tasks and environments (i.e.. general).

The language of programming behaviors (Le., TR+, see Chapter 3) and the software

associated with the architecture remains the same from task to task. The control

programs can also be easily modified. A repertoire of tasks for navigation has been

defined which may be expanded in the future to incorporate manipulation tasks.

In arder to execute in real-time, SPOTT has been implemented using a message

passing software package called PYM which transparently distributes and manages

the processing across a collection of heterogeneous processors (see Chapter 6). The

SThis refers to one of the many search algorithms which are available in the Artificial Intelligence literature.
Specifically, Dijkstra's algorithm is used.

6This assumes that the time dependence is related to the amount of processing and modelling of the raw sensor
data.

211

..

-

CHAPTER 8. CONCLUSIONS

portability and heterogeneous property of PYM allows for the possibility of porting

this architecture on board the robot in the future .

• SPOTT's actions are predictable at a certain level of abstraction. This is when the

spatial location of the goal specified by the task is known (i.e.~ for the GO task).

There is a level of uncertainty in the modelling of the environment, especially when

little a priori information is provided (i.e.. map). The exact path cannot be pre­

dicted~ but the dynamic path planner can guarantee that the robot will circumvent

an obstacle if it is actually possible to do sa. The system also guarantees task

completion in most circumstances which do not require extensive spatial reasoning

or higher level cognitive skills. See Figure 1.3 for a list of tasks that SPOTT can

guarantee successful completion and for which ones it requires assistance. Support

can probably be obtained from an external reasoning agent (e.g., COCOLOG) or a

hUlllan operator.

• A set of tools have been developed (see Chapter 6) for SPOTT so that the monitor­

ing of execution and the programming of the behavioral control programs is made

easier to understand. A graphical visualization tool has made the art of program­

rning behavioral control programs relatively easy (see Section 2.5 in Chapter 6). The

execution of the behavioral rules is visualized dynamically by a graphical represen­

tation of the rule base. The current state and path to be followed in the abstract

graph map is also visualized dynamically (see Section 2.1 in Chapter 6).

SPOTT has addressed the problem of mobile robot navigation, in addition to paying

attention ta sorne of the general issues associated with the design of a robot control archi­

tecture. What distinguishes SPOTT from other behavioral architectures is the inclusion of

a path planner into the real-time feedback loop with the robot and its environment. This

permits SPOTT to predict task completion in certain situations. The SPOTT architecture

is also able ta scale to different problem scenarios (e.g., partial a priori map or no a pri­

ori map). New control strategies (i.e., TR+ programs) can be easily added without any

modifications to the underlying architecture.

212

...

-

CHAPTER 8. CONCLliSlONS

3. Future Research Possibilities

There are several research issues which should be explored in the future, namely:

(i) For the task of navigation, writing a TR+ program is relatively simple because most

of the navigational behaviors are independent of each other and may be executed

concurrently (see Section 2.2 in Chapter 3). This would not be the case if the ma­

nipulation of abjects were part of SPüTT's task repertoire. In this situation. there

would be a strong dependence between manipulation and navigation (e.g., the robot

has ta be near the abject before it ean manipulate it). A guideline for writing a typi­

cal TR+ navigation program using the SPOTT architecture is shawn in Figure 3.13.

Future experimentation and research with manipulation tasks may provide a similar

guideline for manipulation tasks. The use of TR+ programs for providing event

driven control in other fields such as telecommunications, industrial process control,

or manufacturing will require the definition of the neeessary behaviors as weIl as a

determination of their inter-dependence.

(ii) It is theoretically possible ta extend the path planning formalism presented in Chap­

ter 4 for 2D path planning (Le., local path planning) ta address non-holonomie con­

trol, moving obstacles, and 3D path planning (see Section 10 in Chapter 4). One

way to address extension into these three areas is to include another dimension into

the potential field grid space to represent: (1) eonstraints for non-holonomie con­

trol (Connolly & Grupen, 1994); (2) time in arder ta capture obstacle dynamics for

control with moving obstacles; or (3) the vertical dimension for 3D path planning.

The addition of another dimension, while theoretically possible, is not praetical in

most casesï. The eomputational time for a harmonie funetion on a discretized grid

will increase in direct proportion to the number of grid points. The extension of the

presented techniques for path planning to these new areas is a research challenge

that requires a practical solution given eurrent technology.

(iii) The task eommand lexicon is only defined for navigational tasks. If manipulation

tasks were to become part of SPOTT's repertoire, then the task command lexicon

would need to be expanded.

(iv) It is desirable ta make the robot move faster: an ideal speed for the robot would be

the average walking pace of a human (i.e., approximately 1 rn/sec). Currently, the

robot rnoves at about 15 cm/sec, but stops for about 5 sec, every 75 cm of traversaI in

1lt is practical only when the discretized grid is coarse in 2D and will be coarse in the third dimension also (Le.,
there are not that many grid points).

213

-

CHAPTER 8. CONCLlTSIONS

order to collect sonar data. The CUITent hindrances to this are the speed of processing

the sensor data and the limitation imposed by the low level robot control software in

not being able to process concurrent actions (e.g., robot movement and sonar data

acquisition) (see Chapter 7). The limitations of the low level robot control software

is an engineering issue which is currently being addressed.

(v) SPOTT relies heavily on its message passing implementation (Le., PYM). Commu­

nication speeds can improve drastically if other protocols such as Fast Ethernet or

ATM are used instead of Ethernet. Other ways of communicating among processes

that should be investigated include shared memory and lightweight processes (i.e..

low overhead) called threads (see Chapter 7).

(vi) Harmonie functions (Le., for the potential field, local path planning) can be com­

puted in hardware using a resistive grid. This avenue of research has been pursued

at the University of Massachusetts at Amherst and should be further investigated

(see Section 4.1.1 in Chapter 4).

(vii) Future modifications to SPOTT should address the issue of continuai maintenance

(e.g., fusing rnap features, abstracting new nodes from the sensor data) for the map

database. This will require sorne reasoning capabilities which may either be part of

the map database as a blackboard structure, or determined by an external reasoning

agent (e.g., COCOLOG (Caines & Wang, 1995}) (see Section 2.4 in Chapter 4).

(viii) SPOTT has been interfaced with the logical reasoning system called COcOLOG.

Other future uses of the COCOLOG reasoning system (see Section 3 in Chapter 6

could include dynamically specifying changes to the TR+ programs during cxecu­

tion, possibly learning new TR+ control programs, learning the abstract graph map

in environments where this is not specified beforehand8 , and rnap database mainte­

nance (Le., verifying, refuting, and merging symbolic data constructs).

(ix) One outstanding research issue which requires further attention is how to lay out

the graphical information on the computer screen and present it ta the operator.

Figure 6.3 illustrates one such arrangement. However, there is not enough room

on a single display ta also show the global path and it is only displayed when the

operator requests it. Additional graphies for visualization are usually displayed

on another workstation (e.g., PVaniM for visualizing PYM mernory and processor

8In the current implementation of SPOTT, the user creates the abstract graph map based on an architectural
CAO map. [t would be ideal ta automate this process before execution, or ta learn this abstract graph while building
amap.

214

-

CHAPTER 8. CONCLL'5l0N5

resource usage). The presentation of the graphics information has only been super­

ficial1y addressed by this thesis and requires further examination (see Section 2.1 in

Chapter 6).

(x) Mapping the environment with sonar and QUADRIS data currently occurs inde­

pendent of each other and other available information. Sonar data is prone ta be

bad in areas where multiple refiections occur (e.g., corners). The a priori CAD map

can possibly be used ta provide sorne verification of the sonar data. Similarly, the

QUADRIS system needs to be made more robust to varying lighting conditions. The

experiments (see Section 3 in Chapter 7) showed that the sensors are prone to give

potential erroneous results in different environments. Testing with sensor processing

algorithms should always try to vary sorne elements of the environment (e.g., wall

types, lighting).

(xi) There is a real need for real-time localization: fast algorithms for correcting the

robot's position on the fly. The current localization procedure which correlates sonar

measu;ements with an existing CAD map can take up to 30 sec (see Section 3.2 in

Chapter 7).

(xii) A global goal is projected onto the border of the local potential field. Dynamic

mapping may cause the attraction of the projected global goal to he blocked within

the confines of the local potential field. It is not clear how to guarantee that this does

not occur with a simple algorithm, without requiring a reasoning agent to monitor

and compensate for it (see Section 9.3 in Chapter 4 and Section 4 in Chapter 7).

(xiii) Future work with SPOTT should include investigating learning within the scope of

the SPOTT architecture. TR+ programs are very similar to AI decision trees and

learning TR+ control programs and revising existing control programs would be a

logical extension, especially when new environments are being explored. Another

area to investigate is the learning of new conditions and actions.

The research issues discovered as part of experirnenting with the SPOTT architecture

are particular to the environment (Le., office and laboratory) in which SPOTT was tested.

Experiments (see Section 5 in Chapter 7) showed that many assumptions are implicitly

made about the sensor processing algorithms when aIl experiments are confined to the

same setting. Different settings must be tested to make the system as general and robust

as possible.

215

-

-

CHAPTER 8. CO~CLUSIONS

4. Sumnlary

This thesis has proposed a behavioral-based robot control architecture called SPOTT

which is distinguished from other behavioral architectures by its ability to guarantee task

completion for a variety of tasks. The modularity and flexibility of the architecture permits

the inclusion of a reasoning agent to advise SPOTT when it reaches its limitations. SPOTT

has been actually implemented using a distributed architecture consisting of a collection

of existing heterogeneous workstations using the message-passing software package called

PVM. SPOTT has also been interfaced to a reasoning agent called COCOLOG. Preliminary

investigation with the SPOTT architecture has provided a proof that the conceptual ideas

that contribute to SPOTT's design can actually control a robot. Sorne engineering issues

are currently being addressed to permit the robot ta move at acceptable speeds (i.e.. the

average speed of a walking human, approximately 1 rn/sec).

216

••

-

REFERENCES

REFERENCES

Agre. Phillip E., & Chapman. David. 198ï. Pengi: An Implementation of a Theory of Activity. Pages
268-272 of: Proceedings .4.AAI-87 Sixth National Conference on Artificial Intelligence. A.-\.-\1.

Aho, Alfred V., Hopcroft, John E.. & l'lIman, Jeffrey D. 1983. Data Structures and Algorithms. Addison­
\Vesley Publishing Co.

Ames, \Villiam F. 1992. Numerical Methods for Partial Differential Equations. Academic Press Inc.

Anderson, T.L., & Donath, M. 1991. Animal behavior as a paradigm for developing robot autonomy. Pages
145-168 of: Designing Autonomous Agents. ~lIT Press.

Anderson, Tracy L., & Donath, :\[ax. 1988. Synthesis of Reflexive Behaviors for a :\Iobile Robot Based
on Stimulus-Response Paradigm. Pages 370-382 of: Proeeedings of the 1988 SPIE Conference on Mobile
Robots. SPIE.

Arabe, .Jose Nagib Cotrim, Beguelin. Adam. Lowekamp, Bruce, Seligman. Erik, Starkey, :\like, & Stephan.
Peter. 1995 (April). Dome: ParaUd programming in a heterogeneous multi-user environment. Tech. rept.
Technical Report CMU'-CS-95-137. School of Computer Science, Carnegie :\[ellon C'niversity. Pittsburg,
PA.

Arbib, ~Iichael A., & House, Donald H. 1987. Depth and Detours: An Essay on Visually Guided Behavior.
Pages 129-163 of: Vision, Brain and Cooperative Computation. :\lIT Press.

Arkin, Ronald C. 1989. :\Iotor Schema - Based ~[obile Robot Xavigation. The International Journal of
Robotics Research. 8(4),92-112.

Arkin, Ronald C. 1990a. The Impact of Cybernetics on the Design of a :\Iobile Robot System: A Case
Study. IEEE Transactions on Systems, Man, and Cybernetics, 20(6), 1245-1257.

Arkin, Ronald C. 1990b. Integrating Behavioral, Perceptual. and \Vorld Knowledge in Reactive ~avigation.

Robotics and Autonomous Systems, 6, 105-122.

Arkin, Ronald C. 1993. Behavior-based Robot Navigation for Extended Domains. Journal of Adaptive
Behavior, 1(2), 75-99.

Axler, S., Bourdon, P., & Ramey, \V. 1991. Harmonie Function Theory, vol. 137 of Graduate Texts in
Mathematics. New York: Springer-Verlag.

Beguelin, A., Dongarra, J., Geist, A., & Sunderam, V. 1993. Visualization and Debugging in a Heteroge­
neous Environment. IEEE Computer, 26(6), 88-95.

Benson, Scott, & Nilsson, Xils J. 1995. Reacting, Planning, and Learning in an Autonomous Agent.
Machine Learning 14.

Biederman, 1. 1987. Recognition-by-components: A theory of human image understanding. Psychological
RetJiew, 94(2), 115-147.

217

-

REFERENCES

Birman. Kenneth, & :\Iarzullo. Keith. 1989. Isis and the ~IETA project. Sun Technology, Summer. 90-104.

Blais, Francois, Rioux, ~Iarc, & Domey, Jacques. 1991. Optieal Range Image Acquisition for the ~avigation

of a Mobile Robot. Pages 2574~2586 of: Proceedings 1991 IEEE InternatIonal Conference on Robotics and
Automation.

Bolduc, Marc. 1996 (July). The QUADRIS Sensor. Tech. rept. CI~I-TR-96-?? ~IcGill Research Centre for
Intelligent ~[achines, McGill University. Montreal, PQ, Canada.

Borenstein. Johann, Everett. H.R.. & Feng, Liquiang. 1996. Navigating Mobile Robots: Systems and
Techniques. \Vellesley, :Vlassachusetts: ISBN 1-56881-058-X, A.K. Peters, Ltd.

Bou-Ghannam, Akram. 1992. Coutrolling Reactive Behavior with Consistent \Vorld ~lodeling and Rea­
soning. Pages 701-712 of: SPIE Vol. 1708 Applications of ArtificialInteliigence x: Machine Vision and
Robotics.

Bozma. O., & Kuc. R. 1991. Building a Sonar ~lap in a Specular Environment Csing a Single ~Iobile

Sensor. IEEE TI-ansactions on Pattern Analysis and Machine Intelligence. 13(12), 1260-1269.

Brooks. Rodney A. 1986. A Robust Layered Control System for a ~[obile Robot. IEEE TI-ansactl0ns on
Robotics and Automation, 2(4), 14-23.

Brooks, Rodney A. 1990 (April). The Behavior Language: User's Guide. Tech. rept. AI memo 122ï.
~lassachusetts Institute of Technology, Cambridge, MA.

Brooks, Rodney A. 1991. Challenges for Complete Creature Architectures. Pages 434 -443 of: From
.4mmals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior.
Bradford Book, :vnT Press.

Bui, Don. in preparation. QUADRIS: A Range Sensor for Navigation and Landmark Recognition. ~Iasters

thesis, ~1cGill C"niversity, Dept. of Electrical Engineering.

Caines, P.E., & \Vang, S. 1995. COCOLOG: A Conditional Observer and Controller Logic for Finite
~lachines. SIAM J. Cont. and Opt.. 33(6), 168ï-1il5.

Carriero, Nicholas, & Gelernter, David. 1989. How to write parallel programs: A guide to the perplexed.
AGM Computing Su.T1Jeys, September, 323-357.

Carver, ~orman, & Lesser, Victor. 1992. The Evolution of Blackboard Control Architectu.res. Tech. rept.
92-71. University of :\-Iassachusetts, Department of Computer Science, Amherst, ~lA.

Choi. \Vonyun, & Latombe, Jean-Claude. 1991. A Reactive Architecture for Planning and Executing
Robot ~lotions with Incomplete Knowledge. In: IEEE/RSI International Workshop on Intelligent Robots
and Systems IROS'91. IEEE.

ConneIl, Jonathan H. 1990. Minimalist Mobile Robotics. Academie Press Inc.

ConneIl, Jonathan H. 1992. SSS: A Hybrid Architecture Applied to Robot ~avigation. Pages 2719-2724
of: Proceedings from the 1992 IEEE International Conference on Robotics and Automation.

Connolly, Christopher 1. 1994. Harmonie Functions As A Basis For Motor Control And Planmng. Ph.D.
thesis, University of ~Iassachusetts,Amherst, Massachusetts.

Connolly, Christopher 1., & Burns, J. Brian. 1992. The Planning of Actions in the Basal Ganglia. ln: Ar­
tificial Intelligence Planning Systems: Proceedings of the First International Conference (AIPS92). AAAI.

Connolly, Christopher 1., & Grupen, Roderic A. 1993. On the Applications of Harmonie Functions to
Robotics. Journal of Robotic Systems, 10(7), 931-946.

Connolly, Christopher L, & Grupen, Roderic A. 1994 (June). Nonholonomic Path Planning Using Harmonie
f'u.nctions. Tech. rept. UM-CS-1994-0S0. University of Massachusetts. Amherst. MA.

218

-

:~

REFERENCES

Cox, Ingemar J. 1991. Blanche - An Experiment in Guidance and Navigation of an Autonomous Robot
Vehicle. IEEE 1ransactions on Robotics and Automation, 1(2), 193-204.

Crowley, James L. 1985. ~avigation for an Intelligent ~-Iobile Robot. IEEE 7hmsactions on Robotics and
Automation, 1(l), 31-41.

de Saint Vincent. A. Robert. 1986. A 30 Perception System for the Mobile Robot Hilare. Pages 1105-1111
of: Proceedings from the 1986 IEEE International Conference on Robotics and Automation, Volume 2.

Oenofsky, Murray Elias. 1976 (February). How Near is Near'! Tech. rept. AI ~[emo :'Il'o. 344. ~nT AI Lab.

Oickmanns, E.O.. ~Iysliwetz, B., & Christians, T. 1990. An [ntegrated Spatio-Temporal Approach to
Automatic Visual Guidance of Autonomous Vehicles. IEEE Transactions on Systems. Man and Cybernetics.
37(6), 1273-1284.

Doyle, Peter G .. & Snell, J. Laurie. 1984. Random Walks and Eleetric Networks. The ~Iathematical

Association of America.

Drumheller. ~1. 1987. Mobile Robot Localization üsing Sonar. IEEE Transactions on Pattern Analys1s
and Machine Intelligence, 9(2), 325-33l.

Dudek, Gregory, & Jenkin, ~lichael. 1993 (Feb.). A ~Iulti-Layer Distributed Development Environment for
Mobile Robotics. Pages 542-550 of: Proceedings of the International Conference on Intelligent Autonomous
Systems (IAS-3).

Dudek, Gregory, Jenkin, Michael, ~Hlios, Evangelos, & \Vilkes, David. 1993 (December). Reftections on
modelling a sonar range sensor. Tech. rept. CIM-2-9.)'lcGill Research Centre for Intelligent :\lachines.
~[CGill University, Montreal, PQ, Canada.

Durrant-Whyte, H.F. 1988. Integration, Coordinations, and Control of Multi.-Sensor Robot Systems. Boston:
Kluwer.

Elfes, Alberto. 1987. Sonar-Based Real-\Vorld :\'-lapping and :'Il'avigation. IEEE Transactions on Robotics
and Automation, 3(3), 249-265.

Elfes, Alberto. 1989. Using Occupancy Grids for :\lobile Robot Perception and :'iavigation. IEEE Computer
Magazine, 22(6), -16-58.

Evans, J., Krishnamurthy, B., Barrows, 8., Skewis, T., & Lumelsky, V. 1992. Handling Real-\Vorld :\lotioll
Planning: :\. Hospital Transport Robot. IEEE Control Systems, February, 15-20.

Everett. H.R. 1995. Sensors for Mobile Robots: Theory and Applications. ISBN 1-56881-048-2, A.K. Peters.
Ltd.

Ezzati. M. 1995 (September). Fast Image Segmentation Using Stereo Vision. :\Iasters thesis. ~IcGill

University, Dept. of Electrical Engineering.

Ferguson, Innes :\.. 1992. Touring ~lachines: Autollomous Agents with Attitudes. Computer Magazine,
25(5), 51-55.

Ferrari, Adam. & Sunderam, V.S. 1995. TPVM: Distributed Concurrent Computing with Lightweight
Processes. Pages 211-218 of: IEEE Symposium on High Performance Distributed Computing.

Fikes, R., Hart, P., & Nilsson, ~. 1972. Learning and Executing Generalized Robot Plans. Artificial
Intelligence, 3, 251-288.

Firby. R. James. 1987. An Investigation into Reactive Planning in Complex Domains. Pages 202-206 of:
Proceedings AAAI-87 Sixth National Conference on Artificial Intelligence. AAAI.

Flower, J., Kolawa, A., & Bharadway, S. 1991. The express way to distributed processing. Supercomputing
Review, May. 54-55.

219

REFERENCES

Flynn, Anita ~I., &.::: Brooks, Rodney A. 1988. ~nT ~[obile Robots - \Vhat's ~ext? Pages 611-617 of:
Proceedings 1988 Internation Conference on Robotics and Automation.

Gansner, E.R., Koutsofios. E., North, S.C., &.::: Vo, K.P. 1993. A technique for drawing directed graphs.
IEEE 7hmsactions on Software Engineerin9, 19(3), 214-230.

Gat, Erann. 1991a. ALFA: A Language for Programming Reactive Robotic Control Systems. Pages 1116­
1121 of: Proceedings [rom the 1991 IEEE International Conference on Robotics and Automation.

Gat, Erann. 1991b. Robust Low-computation Sensor-driven Control for Task- Directed Navigation. Page
2484 of: Proceedings [rom the 1991 IEEE International Conference on Robotics and Automation.

Gat, Erann. 1992. lntegrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for
Controlling Real-\Vorld ~Iobile Robots. Proceedings of the AAAI92.

Gat, Erann, Desia. R., Ivlev, R., Loch. J., &.::: ~[iller, D.P. 1994. Behavior Control for Robotic Exploration
of Planetary Surfaces. IEEE 'lhmsactions on Robotics and Automation, 10(4), 490-503.

Geist, Al, Beguelin, Adam, Dongarra, Jack, Jian. \Veicheng, :\[anchek, Robert, &.::: Sunderam. Vaidyu. 1993
(May). PVM 3 User's Guide and Reference Manual. Tech. rept. OR..'lL-T~[-12187.Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, VS:\..

Geist, Al, Beguelin, Adam, Dongarra, Jack, Jian, \Veicheng, Manchek, Robert, & Sunderam. Vaidy. 1994.
PVM: Parallel Virtual Machine - A Us ers , Guide and Tutorial for Networked Parallel Computing. ~HT

Press.

Georgeff, ~1iehael P.• &.::: Lansky, Amy L. 1987. Reactive Reasoning and Planning. Pages 677-682 of:
Proceedings AAAI-87 Sixth National Conference on Arlificial Intelligence. AA.-\1.

Gropp, \V.. Lusk, E., &.::: Skjellum, A. 1994. Using MPI. ~nT Press.

Hager, C.D. 1990. Task-Directed Sensor Fusion and Planning. Norwell,).o[A: Kluwer.

Harmon. S. 1987a. Autonomous Vehicles. Pages 39-45 of: Encyclopedia of Artificial Intelligence. John
\Viley and Sons.

Harmon, S. 1987b. Robots, ~[obile. Pages 957-963 of: Encyclopedia of Artificial Intelligence. John \Viley
and Sons.

Hartley, Ralph, & Pipitone, Frank. 1991. Experiments with the Subsumption Architecture. Pages 1652­
1658 of: Proceedings of the 1991 IEEE International Conferencp. on Robotics and Automation. IEEE.

Hebert, :\-lartial. 1989. Building and Navigating maps of road scenes using an active sensor. Pages 11,16­
1142 of: Proceedings 1989 IEEE Internation Conference on Robotics and .4utomation.

Herskovits, Annette. 1985. Semantics and Pragmatics of Locative Expressions. Cognitive Science. 9,
341-378.

Herskovits, Annette. 1988. Spatial Expressions and the Plasticity of ~[eaning. Pages 271-297 of: Tapies
in Cognitive Linguistics. Amsterdam/Philadelphia: John Benjamins Publishing Company.

Hexmoor, Henry, & Kortenkamp, D<i.vid. 1995. Issues on Building Software for Hardware Agents. Knowledge
Engineering Review, 10(3). 301-304.

Hodges, John C., &.::: \Vhitten, Mary E. 1986. Harbrace Callege Handbook. 10 edn. ~ew York: Harcourt
Brace Jovanovich, Ine.

Horn, B.K.P. 1977. Understanding Image Intensities. Artificial Intelligence, 8(2), 201-23l.

Hombeek, Robert W. 1975. Numerical Methods. Quantum Publishers Inc.

Horswill, lan. 1995 (March 27-29). Taking (Computer) Architecture Seriously. In: /995 AAAI Spring

220

REFERE~CES

Symposium: Lessons Learned from Implemented Software Architectures for Physical A.gents.

Hwang, Yang K., & Ahuja, :'olarendra. 1992. Gross ~Iotion Planning - A Survey. ACM Computing Surveys.
24(3), 220-291.

Iyengar, S. Sitharama. & Kashyap, Rangasami L. 1989. Autonomous Intelligent :\lachines. IEEE Computer.
22(6), 14-15.

Jackendoff, Ray. 1990. Semantic Structures. ~IIT Press.

Jarvis, R. 1983. A perspective on range finding techniques for computer vision. IEEE 7hmsactions on
Pattern Analysis and Machine Intelligence, 5(2), 122-139.

Johnson-Laird, P.);. 1989. Cultural Cognition. Pages 469-499 of: Foundations of Cognitive Science. :\oIIT
Press.

Kadonoff, ~Iark, Benayad-Cherif, Faycal, Franklin, Austin, ~Iaddox, James. :\Iuller, Lon. & ~Ioravec, Hans.
1988. Arbitration of Multiple Control Strategies for ~Iobile Robots. Pages 90-98 of: Proeeedings of the
1986 SPIE Conference on Mobile Robots. SPIE.

Kaebling, Leslie Pack. 1988. Goals as Parallel Program Specifications. Pages 60-65 of: Proceedings of
AAAI-88. AAAI.

Kaebling, Leslie Pack, & Rosenschein, Stanley J. 1990. Action and Planning in Embedded Agents. Roboties
and Autonomous Systems, 6(1), 35-48.

Khatib, Oussama. 1986. Real-Time Obstacle Avoidance for ~Ianipulators and :\Iobile Robots. The Inter­
national Journal of Roboties Research. 5(1), 90-98.

Koutsofios, Elefthereos. & Dobkin, David. 1991. Lefty: :\ two-view editor for technical pictures. Pages
68-76 of: Graphies Interface 1991.

Koutsofios, Elefthereos, &)jorth, Stephen C. 1994 (:\lay). Applications of Graph Visualization. Pages
235-245 of: Proeeedings of Graphies Interface 1994 Conference.

Kriegman, David J., Triendl, Ernst. & Binford. Thomas O. 1989. Stereo Vision and);avigation in Buildings
for Mobile Robots. IEEE Transactions on Robotic.; and Automation. 5(6), 792-803.

Krogh, B.H., & Thorpe, C.E. 1986. Integrated Path Planning and Dynamic Steering Control for Au­
tonomous Vehicles. Pages 1664 -1669 of: Proceedings of the 1986 IEEE International Conference on Ro­
botics and .4utomation. IEEE Press.

Krotkov, Eric. 1989a. ~Iobile Robot Localization Using A Single Image. Pages 978-983 of: Proceedings
1989 IEEE Internation Conference on Robotics and Automation.

Krotkov, Eric Paul. 1989b. Active Computer Vision by Cooperative Focus and Stereo. Springer- Verlag.

Kweon, L, Kuno, Y., \Vatanabe. M., & Onoguchi, K. 1992. Behavior-Based :\'-lobile Robot using Active
Sensor Fusion. Pages 1675-1682 of: Proceedings from the 1992 IEEE International Conference on Roboties
and Automation.

Landau, Barbara, & Jackendoff, Ray. 1993. \Vhat and \Vhere in Spatial Language and Spatial Cognition.
Behavioral and Brain Sciences, 16, 217-265.

Latombe, Jean-Claude. 1991. Robot Motion Planning. Kluwer Academie Publishers.

Leonard, John J., &c Durrant-\Vhyte, Hugh F. 1991. Mobile Robot Localization by Tracking Geometrie
Beacons. IEEE 7hmsactions on Roboties and Automation, 1(3), 376-382.

Longuet-Higgins, H.C. 1981. A Computer Algorithm for Reconstructing a Scene from two Projections.
Nature, 293, 133-135.

221

-

REFERENCES

Lueth, T.C., Laengle, Th., Herzog, G., Stopp. E., & Rembold, U. 1994. KANTRA: Human-~'Iachine

Interaction for Intelligent Robots using Natural Language. Pages 106-111 of: IEEE International Work.shop
on Robot and Human Communications.

Luo, Ren C., & Kay, ~Iichael G. 1989. ~[ultisensor Integration and Fusion in Intelligent Systems. IEEE
TI-ansactions on Systems, Man, and Cybernetics, 19(5), 901-931.

Lyons, Damian :VI. 1993. Representing and Analyzing ActlOn Plans as ~etworks of Concurrent Processes.
IEEE Transactions on Robotics and Automation, 9(3), 241-256.

:Vlackenzie, Paul, & Dudek, Gregory. 1994. Precise Positioning Using ~[odel-Based ~[aps. Pages 11615­
1621 of: IEEE International Conference on Robotics and Automation. vol. 2. San Diego. CA: IEEE.

~[aes, Pattie. 1991. Des~gning Autonomous Agents. ~nT Press.

Manz, Allan. Liscano. Ramiro, & Green, David. 1991. A Comparison of Realtime Obstacle Avoidance
~Iethods for ~[obile Robots. In: Second International Symposium on Experimental Robotics, Preprints.
LAAS/CNRS, Toulouse (France).

~Iarr, D., & Poggio, T. 1976. Cooperative computation of stereo displarity. Sc~ence. 194, 283-287.

~Iataric, ~Iaja J. 1992. Integration of Representation into Goal-Driven Behavior-Based Robots. IEEE
TI-ansactions on Robotics and Automation, 8(3), 304-312.

~[atthies, Larry, Kanade, Takeo, & Szeliski, Richard. 1989. Kalman Filter-based Aigorithms for Estimating
Depth from Image Sequences. International Journal of Computer Vision, 3, 209-236.

~[cCann, G.D., & \Vilts, C.H. 1949. Application of Electric-Analog Computers to Heat-Transfer and
Fluid-Flow Problems. Journal of Applied Mechanics, 16(3), 247-258.

~lcFarland, David. 1989. Problems of Ammal Behavior. Longman Scientific and Technical, John \Viley
and Sons.

:vriller, George A., & Johnson-Laird. Philip ~. 1976. Language and Perception. Harvard C'niversity Press.

~[oravec, Hans P. 1983. The Stanford Cart and the C~[C Rover. Proceedings of the IEEE, 71(7), 872-884.

~Ioravec, Hans P. 1988. Sensor Fusion in Certainty Grids for ~Iobile Robots. AI Magazine, 9(2), 61-ï4.

~Iouaddib, Abdel Illah, & Zilberstein, Shlomo. 1995. Knowledge-Based Anytime Computation. Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, I(August 20-25), 775-ï81.

:vroutarlier, P., & Chatila, R. 1990. Incremetal Environment Modelling by a)"Iobile Robot from)Zoisy
Data. Pages 321-346 of: Experimental Robotics 1. Springer-Verlag.

Murphy, Robin R. 1996. Biological and Cognitive Foundations of Intelligent Sensor Fusion. IEEE TI-ans­
actions on Systems, Afan, and Cybernetics - Part A: Systems and Humans. 26(1), 42-51.

~Iusliner, David J., Hendler, James A., & Agrawala, Ashok K. 1994 (June). The Challenges of Real-Time
A!. Tech. rept. CS-TR-3290, UMIACS-TR-94-69. University of Maryland Technical Report, ~[aryland,

USA.

Newell, Allen. 1990. Unified Theories of Cognition. Harvard University Press.

Nilsson, Nils J. 1992 (January). Toward Agent Programs With Circuit Semantics. Tech. rept. STAi'i-CS­
92-1412. Department of Computer Science, Stanford University, Stanford, California 94305.

Nilsson, Nils J. 1994. Teleo-Reactive Programs for Agent Control. Journal of Artificial Intelligence Research.
1, 139-158.

Nilsson, Nils J. 1995. Eye on the Prize. Artificial Intelligence Magazine, July.

Nilsson, N.J. 1969. A Mobile Automaton: An Application of Artificial Intelligence Techniques. Pages

222

-

REFERENCES

509-520 of: Proceedings of the First International Joint Conference on Artifical Intelligence, Washington.
DC.

Noreils, Fabrice R., & Prajoux, Roland. 1991. From Planning to Execution :\(onitoring Control for Indoor
:\lobile Robots. Pages 1510-1517 of: Proceedings /rom the 1991 IEEE International Conference on Robotics
and Automation.

='iorth. Stephen C. 1993. Drawing Ranked Digraphs with Recursive Clusters. (submltted). Abstract
presented at Proc. ALCOM International \Vorkshop on Graph Drawing and Topological Graph Aigorithms.
Paris, 1993.

Paul, C.J., Acharya, A., Black, B., & Strosnider, J.K. 1991. Reducing Problem-Solving Variance to Improve
Predictability. Communications of the ACM, 34(8), 81-93.

Payton, David \V. 1986. An Architecture for Reflexive Autonomous Vehicle Control. Pages 18:18-1845 of:
Proceedings /rom the 1986 IEEE International Conference on Robotics and Automation.

Prazdny, K. 1980. Egomotion and relative depth map from Optical Flow. Biological Cybernetics. 26.
8ï-102.

Rencken, \V.D. 1994 (September). Autonomous Sonar :'oiavigation in Indoor. L"'nknown. and Cnstructured
Environments. Pages 127-134 of: 1994 International Conference on Intelligent Robots (IROS '94)·

Rimon, Elon, & Koditschek, Daniel E. 1990. Exact Robot Navigation in Geometrically Complicated but
Topologically Simple Spaces.

Robinson, David Lee, & Petersen, Steven E. 1992. The pulvinar and visual salience. Trends in Neuroscience.
15(4), 127-132.

Sabersky, R.H.. Acosta, A.J., & Hauptmann, E.G. 1971. Flmd Flow. 2nd edn. :\(ac~lillan Publishing
Company.

Schiele, B., & Crowley, J. 1994. A Comparison of Position Estimation Techniques t"sing Occupancy Grids.
Pages 163-171 of: Proceedings of the IEEE Conference on Robotics and Automation. San Diego. CA:
IEEE.

Simmons, Reid G. 1994. Structure Control for Autonomous Robots. IEEE TI-ansactions on Robotics and
Automation, 10(1), 34-43.

Simon, Daniel, Espiau, Bernard, Castillo, Eduardo, & Kapellos, Konstantinos. 1993. Computer-Aided De­
sign of a Generic Robot Control1er Handling Reactivity and Real-Time Control Issues. IEEE Transactions
on Control Systems Technology, 1(4), 213-229.

Smith, ~LH., Sobek. R.P., Coles, L.S., Hodges, D.A., &= Roby, A.:\1. 1975. The System Design of JASO:-';,
A Computer Controlled ~'[obile Robot. Pages 72-75 of: Proceedings of the International Conference on
Cybemetics and Society IEEE, New York.

Stan, :\lircea R., Burleson, \Vayne P., Connolly, Christopher L, & Grupen, Roderic A. 1994. Analog Path
Computation Using VLSI Relaxation :-';etworks. Journal of VLSI Signal Processing, 8(1).

Sunderam, V.S., Geist, G.A., Dongarra, J .. & Manchek, R. 1993. The PV:\[Concurrent Computing System:
Evolution, Experiences, and Trends. Journal of Paralld Computing, 20(4), 531-546.

Talluri, R., & Aggarwal, J. 1993. Position Estimation Techniques for an Autonomous Mobile Robot - A
Review. Chap. 4.4, pages 769-801 of: Handbook of Pattern Recognition and Computer Vision. Singapore:
World Scientific.

Tarassenko, L., & Blake, A. 1991. Analogue computation of collision-free paths. Pages 540-545 of: Pro­
ceedings of the 1991 IEEE International Conference on Robotics and Automation. IEEE.

Thorpe, Charles, Hebert, Martial H., Kanade, Takeo, & Shafer, Steven A. 1988. Vision and Navigation

223

-

REFERENCES

for the Carnegie-Mellon Navlab. IEEE 'Ihmsactions on Pattern Analysis and Machine Intelligence, 10(3),
362-373.

Tinbergen, Xikolaas. 1951. The Study of Instinct. Clarendon Press, Oxford.

Topol, Brad, Stasko, John T., &. Sunderam, Vaidy. 1994 (October). Integrating Visualization Support inta
Distributed Camputing Systems. Tech. rept. Technical Report GIT-GVU-94/38. Graphics, Visualization,
and Usability Center, Georgia Institut- of Technology, Atlanta, GA.

van de Vooren, A.L, &. Vliegenthart, A.C. 1967. On the 9-Point Difference Formula for Laplace's Equation.
Journal of Engmeering Mathematics, 1(3), 187-202.

Vandeloise, Claude. 1991. Spatial Prepositions: A Case Study /rom French. The University of Chicago
Press. 1Tanslated by R.K. Bosch.

Watanabe, ~I., Onoguchi, K., Kweon, L, &. Kuno, Y. 1992. Architecture of Behavior-based :\lobile Robot
in Dynamic Environment. Pages 2711-2718 of: Proceedings /rom the 1992 IEEE International Conference
on Robotics and Automation.

Waxman, Allen M., Kushner, Todd R., Liang, Eli, &. Siddalingariah, Thrakesh. 1987. A Visual ~avigation

System for Autonomous Land Vehicles. IEEE 7hmsactions on Robotics and Automation. 3(2), 124-141.

\Vei{3, G., Wetzler, C., &. Puttkamer, E. 1994 (September). Keeping Track of Position and Orientation
of Moving Indoor Systems by Correlation of Ranger-Finder Scans. Pages 595-601 of: 1994 International
Conference an Intelligent Robots (IROS'94).

\Vitkin, Andrew P. 1981. Recovering Surface Shape and Orientation from Texture. Artificial Intelligence.
11(1),17-45.

\Vu, Kenong. 1996. Computing Parametric Ceon Descriptions of 3D Multi-part Objects. Ph.D. thesis.
McGill University, Dept. of Electrical Engineering.

\Vu, Keonong, &. Levine, ~lartin D. 1993 (September). 3-D Object Representation Using Parametnc Geons.
Tech. rept. TR-CIM-93-13. ~lcGill Research Centre for Intelligent ~lachines, ~lcGill Cniversity, :\lontreal.
PQ, Canada.

Yuta, Shinichi, Suzuki, Shooji, &. Iida, Shigeki. 1991. Implementation of a small size experimental self­
contained autonomous robot. ln: Second International Symposium on Experimental Robotics, Preprints.
LAAS/CNRS, Toulouse (France).

Zadeh, L.A. 1974. A fuzzy-algorithm approach to the definition of complex or imprecise concepts. Tech.
rept. Memo No. ERL-M474. Electronic Research Laboratory, University of California. Berkeley.

Zhau, T.C., &. Overmans, :\'lark. 1995. Forms Library: A Craphical User Interface Toolkit. Dept. of Physics.
University of \Visconsin-Milwaukee, ~Iilwaukee \VI 53201, L"'S:\..

224

(A.A.!)

...

APPENDIX A. HARMONIC FUNCTION COMPUTABILITY

APPENDIX A

Harmonie Function Computability

The harmonie funetion is the solution to Laplaee's equation and a gradient deseent on this

funetion is used as a path planning strategy (See Chapter 4). Recall that the potential

function is computed in the free space, which is the space void of aU obstacle and goal

models. The extent of the potential function, as weIl as the boundaries of the obstacle and

goal models define where the boundary conditions are applied.

For 2D, Laplaee's equation is given by the following:

a2u a2u
8x2 + 8y2 = 0

The solution is obtained by assuming U = XY l where X depends only on x and Y

depends only on y. Using the separation of variables method results in the fol1owing:

X"y + Xy" = 0
(A.A.2)

)("

x
Y"= --y

The second equation in Equation A.A.2 is obtained by dividing the first equation by

XV. If each side of the second equation is set equal to -À2 l then the second equation in

Equation A.A.2 can he rewritten as the fol1owing two equations:

(A.A.3)
X"+À 2 X = 0

Y" - À2 y - 0

which can he equivalently presented as fol1ows:

-
(A.A.4)

x = ClcosÀx + c2sinÀx

Y = C3eÀY + c4sine->'Y

225

APPENDIX :\. HARMONIe FUNCTION COMPUTABILITY

Assuming that À > 0, this solution becomes unbounded as y -+ ac~ which violates the

bounding condition (see the first paragraph in Sections 1 and 2). To avoid catastrophe.

C3 = 0 is chosen. This causes the solution to take on the following form:

(A.A.5) U(x,y) = e-'\Y(AcosÀx + BsinÀx)

y

w

o
o L x

FIGURE .'\.1. Potential Function Extent: The derivations for Neumann and Dirichlet bound­
ary conditions are formulated in the shaded areas, given the boundaries shawn above.

1. Neumann Boundary

Neumann boundary conditions are given by au~~w) = 0, au~~,o) = 0, U(O, y) = U,\[~

and U(L, y) = Ua. In order to simplify the computations, the constants UA! and Ua are set

as follows: UM = 1 and Uo = o. U(x, y) is also bounded: IU(x, y)1 < Um = l.

Applying the boundary condition au~:,o) = 0 results in solutions of the following form:

-
(A.A.6)

X(x)

Y(y)

A1e-kx

A1cosky

226

APPENDIX A. HAR~IONIC FL"~CTION COMPlrTABILITY

The following resuIts when combining the two solutions given in Equation A.A.6:

(A.A.7) U(x. y) = Cne- kx cos ky

Applying the other boundary condition au<;;w} = 0 produces kW = n1r. Therefore the

solution is simply U(x. y) = LZx. The gradient of this function is \! <P = - t~ which is a

constant.

When using Neumann boundary conditions~ there is no limit imposed on the size of

the potential field, as 232 - l could be the theoretical dimension of one of the sides for

the potential field. The real constraining factor is that for this size, the potential function

would require many iterations to compute and would be practically unfeasible.

2. Dirichlet Boundary

Dirichlet boundary conditions for the bounds specified in Figure A.l are given by

U(x,O) = Um~ U(x, W) = UA[, U(O~ y) = UA!, and U(L~ y) = Ua. In order to simplify the

computations, the constants UA! and Ua are set as follows: U.u = 1 and Ua = O. U(x. y) is

also bounded: IU(x,y)1 < Um = 1.

Applying the boundary condition U(x,O) = 1 results in Y(y) = Blcosky. Therefore.

the solution takes on the following form:

(A.A.8) U(x. y) = Ce-kXcosky

Applying the boundary condition U(x. W) = 1 results in the following:

(A.A.9)
n1r

k = W,n = 1.2,3, ...

and the solution takes the following form:

(A.A.IO)

Using the property of superposition and the boundary condition U(O, y) = UM results

in the following:

(A.A.11)

227

APPENDIX A. HARMONIC FUNCTION COMPUTABILITY

This reduces to en = n2tr if n is odd, and en = 0 if n is even. Substituting Equations A.A.8

and A.A.9 into A.A.IO produces the following:

U() ,",oc C.::.!!..!!.!. ntrX,y = LJn::::l ne w coswy

(A.A.12) =
=

1. ,",_2_e -~z cos !Er.Y
trLJ2m+l W
4,",00 1 (2m+l)1I' (2m+l)ll'Y
iLJn::::12m+l e 2W COS 2W

Therefore, l'l ('pl decays as fast as exp(- :~), the worst case being exp(- 2L;). This

means that approximately 9.06:V bits of resolution are required to represent the rapidly

decayiog potential function. This also implies that for a 32 bit machine (Le., using double

precision), only corridors that have a length to width ratio of less than approximately 7.1

cao be computed1.

Dirichlet boundary conditions define a limiting bound on the size of the potential

function, whereas, Neumann boundary conditions do note Dirichlet boundary conditions

(see Figure 4.6) on the obstacles produce trajectories that smoothly go around the obstacle.

The separation from the obstacle is determined by the configuration of obstacles (e.g., when

there are two obstacles and the trajectory goes between them, the trajectory is centered).

On the other hand, Neumann boundary conditions (see Figure 4.5) produce trajectories

which hug the obstacles. Dirichlet boundary conditions have been chosen as boundary

conditions to apply to the obstacle boundaries for this very reason. The cost for this is

that for indoor environments, where narrow corridors (e.g., hallways) are prevalent, the

potential field is local in scope. The size of the potential function is constrained by the

length to width ratio (i.e., less than 7.1 for a 32 bit machine) of the hallways. The other

factor considered is the computation time of the potential function, which is exponential in

relation to the number of grid elements.

lThis is based on using double precision (Le., 64 bits) to represent numbers between 0 and 1. This is round by
setting exp(- f~)equal to 2-b , where b is the number of bits.

228

APPENDIX B. TR+ CONDITIONS AND ACTIONS IMPLEMENTED AS PART OF SPOTT

APPENDIX B

TR+ Conditions and Actions Implemented as Part of
SPOTT

1. Conditions

A TR+ condition is a Boolean expression which usually initiates a computation process

which may take inputs or pass outputs through variables. The condition is evaluated as a

UNIX process.

The condition names are alliower case, and are descriptive of their function. There are

two parameters which are specified by the user with respect to a particular condition:

(i) The type of architecture that the condition process executes on (or even the specifie

workstation) may be specified. In the default case. PVM chooses the workstation

that executes the condition process.

(ii) The only other parameter a user may specify about a particular executing condition

process is the frequency at which it is computed.

The conditions implemented as part ofSPOTT and a short description of what they compute

are as follows:

• all room targets explored: This condition returns a TRUE value if there are no

more room targets (i.e., goals) to enter. The condition "find a new room target~'

updates a shared variable containing a list of the rooms (i.e.~ a type of node in the

abstract graph) already visited.

• aIl targets within room explored: This condition returns a TRUE value if there

are no more locations to visit within a particular room. Typically~ a target within a

room is determined by finding the largest open space.

• bumper has collided: This condition returns TRUE if the bumper sensor has

been triggered. Variables associated with this condition return the position and

orientation of the bumper collision and a position to move robot to so as to move

away from the collision site. The position to move the robot ta is usually oriented

229

APPENDIX B. TR+ CONDlTIONS AND ACTIONS lMPLEME~TED AS PART OF SPOTT

in the direction of 1800 away from the collision, and a range of one robot's diameter

away from the collision location.

• current robot position is: This condition always returns TRUE and invokes the

algorithm responsible for localizing the robot based on sonar data. This algorithm

correlates a sonar scan with the existing CAD map to get an estimate of the robot 's

pose (Mackenzie & Dudek. 1994).

• door not open: This conditions returns TRUE if the nearest doorway which pro­

vides access into the current room is blocked (e.g., door is closeG).

• find a new room: This condition always returns TRUE, except when there is

no new room to visit. The variable associated with the condition returns a new

intermediate goal (Le., room) ta visit. This condition keeps track of aH the rooms

and continually selects a new room. The set of rooms is determined from scanning

the abstract graph.

• find a new room target: This condition always returns TRUE. The variable

associated with this condition returns a new target (i.e., goal) based on the largest

open space in the current room (see "'aIl room targets explored").

• find a new target within room: This condition always returns TRUE. The

variable associated with this condition returns intermediate goals within the room.

The intennediate goals are usually found by finding the largest open space from the

robot 's current position.

• find new direction target: This condition always returns TRUE. It returns a

target (Le., goal) based on the direction specified in the task commando

• find new random target: This condition always returns TRUE. It returns a

random target for wandering. A random number generator is called which is mapped

into a location in a local region based around the robot 's current position.

• in hallway: This condition returns TRUE if the robot is in a hallway, else it returns

FAL5E.

• in room: This condition returns TRUE if the robot is in a room, else it returns

FAL5E.

• infrared shows abjects very close: This condition returns TRUE if the infrared

sensors have detected an object within 60 cm of the robot. Variables associated

with this condition return the position and orientation of the sensed environmental

feature with respect to the robot's current position.

230

-

APPEND[X B. TR+ CONDITIONS AND ACTIONS [MPLEMENTED AS PART OF SPOTT

• is danger target computed: This condition always returns TRUE. This condition

returns a goal position (i.e., in its output variable) which is out of harms way of

another dangerous position (Le., in its input variable).

• is intermediate target reached: This condition returns TRUE if the intermediate

goal set by one of the TR+ conditions has been reached. The intermediate goal is a

global variable.

• is intermediate target set: This condition returns TRUE if the intermediate goal

has been set by a TR+ condition. The intermediate goal is a global variable.

• is task target location known: This condition returns TRUE if the spatialloca­

tion of the target specified by the task command is known. The task command is a

global variable.

• is task target reached: This condition returns TRUE if the target (i.e.~ goal)

specified by the task command has been reached.

• is the variable faIse: This conditions checks the Boolean value of an input variable.

If the input variable is FALSE, then the condition returns TRUE, and visa versa.

• moving the robot faiIed: This condition returns TRUE if there has been sorne

problem found in moving the robot. The state of the robot is returned from the [ow

level robot control software (Le., robodaemon).

• new object positions are: This condition returns TRUE when new sonar data

has been sensed. This condition initiates a sonar scan and the clustering of the sonar

points into [ine segments (Mackenzie & Dudek~ 1994). The output variable contains

a list of Hne segments found from the sonar scan.

• object labels are: This condition returns TRUE when new QUADRIS data has

been sensed. The output variable contains a list of line segments found from the

range sensing scan (Bui, in preparation). The set of [ine segments may also have

a label attached to them identifying them as a particular type of object (e.g.. wall,

door).

• partial map available: This condition returns TRUE when a partial a priori map

is available (e.g., architectural CAD map).

• robot in a room: This condition returns TRUE if the robot is in the room specified

by an input variable.

• room not explored: This condition returns TRUE if the room specified by an

input variable has not yet been visited during the current execution of the task.

231

-

APPENDIX B. TR+ CONDITIONS AND ACTIONS [MPLEMENTED AS PART OF SPOTT

• task bas no destination just direction: This condition returns TRUE if the task

comnland has no destination specified, and only a direction element is specified.

• task bas no destination no direction: This condition returns TRUE if the task

command has no destination or direction element specified.

2. Actions

Actions either modify elements in the potential field or drive the robot actuators di­

rectly. The elements which can be modified in the potential field include adding obstacle or

goal information, or correcting the current estimate of the robot's position. The names of

the actions are aH in lower case, and there has been an attempt ta make the action names

into sentence form. The actions implemented as part of SPOTT and a short description of

what they perform are as follows:

• remove all intermediate targets: This action removes aH the set intermediate

targets. The intermediate targets are stored as part of a global variable.

• remove intermediate target: This action removes a particular intermediate tar­

get as specified in an input variable.

• set intermediate target to: This action sets the intermediate target to what is

indicated in the input variable.

• set label positions to: This action updates the potential field with a list of map­

ping features (i.e., Hne segments). The line segments may have labels (e.g.~ door,

wall) attached to them, as provided by the QUADRlS sensor processing algorithnl

(Bui, in preparation). This action typically operates with the QUADRIS sensing

condition '~object labels are~'.

• set object positions to: This action updates the potential field with a list of

mapping features (Le., Hne segments) (Mackenzie & Dudek, 1994). This action

typically operates with the sonar sensing condition "set abject positions to".

• set ptu to ballway mode: The PTU's for the QUADRIS system have different

scanning routines depending on the context. This action sets the scanning routine

to the hallway mode.

• set ptu ta room mode: This action sets the scanning routine for the QUADRIS

PTU to the hallway mode.

• set real world coord to: This action changes the definition for the global frame

of reference for the Cartesian coordinate system.

232

..

-

APPENDIX B. TR+ CONDITIONS AND ACTIONS [MPLEMENTED AS PART OF SPOTT

• set robot position to: This action updates the current estimate of the robot's

position (Mackenzie & Dudek, 1994). It is typically used in conjunction with the

condition "'current robot position is".

• set scale ta: This action changes the scale of the highest resolution potential field.

Typically, the resolutions of the other potential fields (Le., if a multi-resolution

scheme is used) are kept in direct proportion to the highest resolution one (i.e..

specified as an input parameter).

• set variable ta false: This action sets the value of its input variable to FALSE.

• set variable ta true: This action sets the value of its input variable to TRUE.

• turn the robot ctrl off: This action stops the robot aetuator process from per­

forming steepest gradient descent on the potential function.

• turn the robot ctrl on: This action undoes "turn the robot ctrl off" and

puts the robot actuator process back in its normal operating state (i.e., the robot

is moved based on the steepest gradient descent found in potential function at the

robot's current estimated position).

3. Variables

Variables are used to pass information between condition, actions, and the main and

subroutine TR+ programs. They have to be predefined. They are created for every instance

in every TR+ sub-routine they pop up in. The variable names are specified by using only

capital letters. The variables used as part of SPOTT's current implementation include the

following:

• COORD-REF: This variable specifies the coordinate reference for the internaI

Cartesian Ulap.

• INTERMEDIATE_TARGET : This variable is used to store the intermediate

target (i.e., goal position).

• LABEL: This variable is used to store a list of objects (i.e., line segments) which

may or may not have a label (e.g., door, wall) associated with them.

• aBJECT-POSITIONS: This variable is used ta store a list of objects (i.e., Hne

segments) which are typically returned from the sonar processing.

• ROBOT-POSITION: This variable is used to store the robot's position and pose.

• ROOM : This variable stores a room number.

• ROOM_STATUS: This variable stores a Boolean value which indicates whether a

particular room has been searched or not.

233

APPE~DIX B. TR+ CONDITIONS AND ACTIONS IMPLEMENTED AS PART OF SPOTT

• SCALE: This variable stores the scale (i.e.~ resolution) of the highest resolution

potential function.

• STATUS: This is a Boolean variable, usually indicating whether something has

gone wrong (e.g., robot failure). This variable is normally TRUE. but is FALSE if

something has gone wrong.

234

IMAGE EVALUATION
TEST TARGET (QA-3)

1.0 ~ I~ 12
.5

~ I~ 11111
2.2

L;.~ =

1.1 ~ ~ 11111

2
.
0

1I111~ ""' 111111.a

111111.25 111111.4 111111.6

1

'--­-
...

-

- 150mm -----...-1......

1

APPLIED .:â IrvlAGE 1_ .ne
.::= 1653 East Main Street
~ Rochester, NY 14609 USA
~~ Phone: 7161482-0300
__ Fax: 7161288-5989

Q 1993, Apphed Image. lne.• Ail Rights Reserved

