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ABSTRACT

Abstract

A mobile robot control architecture called SPOTT! is proposed and implemented as a
real-time system of concurrently executing and co-operating modules. What distinguishes
SPOTT from other behavioral architectures is that it is able to guarantee task completion
for navigational tasks under many different scenarios. SPOTT provides a bridge for linking
behavioral (i.e., reactive) and symbolic control and has actually been interfaced with the
logical reasoning system called COCOLOG. One of the roles of the symbolic reasoner is to
help guarantee task completion in the situations where SPOTT is not able to solely do so.
In essence. SPOTT is a real-time Al system which is responsible for dynamically adapting
to changing environmental circumstances in order to successfully execute and complete a
set of navigational tasks for an autonomous mobile robot.

SPOTT consists of a behavioral controller, a local dynamic path planner, and a global
path planner, as well as a map database and a graphical user interface. The behavioral
control formalism is called TR+ and is based on an adaptation and extension of the Teleo-
Reactive (TR) formalism. TR+ rules make decisions which affect actuator control and map
database maintenance. A dynamic local path planner continually polls the map database
in order to navigate around newly encountered obstacles. The local dynamic path planner
is based on a potential field method using harmonic functions. which are guaranteed to
have no spurious local minima. The global planning module advises the local planning
module in order to position and project the global goal onto the local border. A real-time
and parallel implementation of SPOTT using a message passing software package called
PVM has been developed and tested across a collection of ten to fifteen heterogeneous
workstations. Navigational experiments have consisted of moving the robot in an office and

laboratory environment to known spatial locations with no or a partial a priori map.

' A System which integrates Potential fields for planning On-line with TR+ program control in order to suc-
cessfully execute a general suite of Task commands.

il
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RESUME

Résumé

Une architecture de commande de robot mobile nommée SPOTT est proposée dans ce
manuscrit. La réalisation de cette architecture consiste en un systéme temps-réel composé
de modules coopérant et s’exécutant en parallele. SPOTT peut garantir 1’achévement
d “une tache de navigation donnée dans des situations trés variées; ceci le distingue d’autres
architectures réactives. SPOTT permet également d’utiliser conjointement des techniques
de contrdle réactif et symbolique, et est actuellement interfacé avec COCOLOG utilisé
ici comme moteur d’inférences logiques. Ce moteur d’inférence garantie | achévement
des taches lorsque SPOTT ne peut le faire de lui-méme. Essentiellement, SPOTT est un
systeme d’IA qui peut s "adapter dynamiquement aux changements de ’environnement pour
compléter les taches de navigation nécessaires a un robot mobile.

SPOTT contient un systéeme de commande réactif, un planificateur de trajectoires
locales dynamiques, un planificateur de trajectoires globales, ainsi qu "une base de données
cartographiques et une interface graphique. Le formalisme réactif TR+ provient d une
adaptation et d’une extension du formalisme Téléo-Réactif (TR). Les regles TR+ prennent
des décisions qui agissent sur les contréleurs du robot et le maintien de la base de donnée
cartographique. Le planificateur de trajectoires locales vérifie continuellement la base de
données cartographiques pour modifier la trajectoire du robot lorsque de nouveaux obstacles
sont découverts. Ce planificateur utilise une technique se servant de champs de potentiels et
de fonctions harmoniques qui garantie une solution sans minimums locaux. Le planificateur
de trajectoires globales projéte le but global de la trajectoire sur la bordure locale et avise le
planificateur local. Une implémentation paralléle temps-réel de SPOTT, utilisant le logiciel
de communication inter-procédés PVM, a été élaborée. Un réseau hétérogene de 10 a 15
ordinateurs est utilisé pour | expérimentation. Les expériences de navigation consistent a
déplacer le robot dans un environnement de laboratoire ou de bureau 4 un point donné, et

ceci avec ou sans données cartographiques a priori.

il
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

There is a variety of potential applications for mobile robots in such diverse areas as forestry,
space, nuclear reactors, environmental disasters. industry, and offices. Tasks in these en-
vironments are hazardous to humans, remotely located, or tedious. Potential tasks for
autonomous mobile robots include maintenance, delivery, and security surveillance. which
all require some form of intelligent navigationa: capabilities. A mobile robot will be a useful
addition to these domains only when it is capable of functioning robustly under a wide va-
riety of environmental conditions and able to operate without human intervention for long
periods of time. The environments in which mobile robots must function are dynamic, un-
predictable and not completely specifiable by a map beforehand. In order for a mobile robot
to successfully complete a set of tasks. it must dynamically interact with the environment
and adapt to changing circumstances.

Specifically, this thesis is concerned with a robot control architecture for autonomous
mobile robot navigation in an office and laboratory environment. The only prior knowledge
that the robot may have of its environment is a map of the permanent unchanging structures
(i.e., walls), as would be presented by an architectural CAD map. The robot control
architecture needs to make timely decisions based on the sensed data in order to continually
plan and execute robot motions in order to complete the requested task. Biological creatures
apparently execute many tasks in the world by using a combination of routine skills without
doing any extensive reasoning. In recent years researchers have used this as a guide to
formulate behavioral architectures for robot control.

Most of the proposed approaches are variations of the subsumption architecture as
introduced by Rodney Brooks (1986) at MIT. This technique was in sharp contrast to

the traditional robot architecture approach in which complex models of the environment
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were built before planning and executing actions. Originally, the behavioral approach de-
emphasized model building to the extreme by having no internal model of the environment
at all. However, recent behavioral architectures do have internal models (Gat et al., 1994:
Mataric, 1992). Behavioral architectures also possess many sensor-action streams which
are executed in parallel while the traditional approach has only a single processing stream.
The biggest advantage of behavioral architectures is that they are readily responsive to
environmental changes. However, they have not scaled well to more complex problems
involving symbolic reasoning.

A small community of robotics researchers is moving towards a three layered hier-
archical robot control architecture (Hexmoor & Kortenkamp, 1995). The lowest layer is a
reactive control system, such as the subsumption architecture (Brooks, 1986). which is read-
ily responsive to different sensed stimuli. The top layer is a traditional symbolic planning
and modeling system, referred to as a deliberate layer. Some of the responsibilities of the
symbolic layer include managing the consistency and integrity of world model information,
and abstracting new information, as well as validating control issues such as controllability.
reachability, and observability. The middle layer, which bridges the reactive and symbolic
layers, has not yet been clearly specified. Cognitive psychologists have also noticed different
layering based on time scales in human behavior (Hexmoor & Kortenkamp. 1995), as shown
by the four distinct layers proposed by Newell (1990): (1) biological (on the order of 1 to
10 msec); (2) cognitive (on the order of 100 msec to 10 sec); (3) rational (on the order of
minutes to hours); and (4) social (on the order of days to months). Time scale is one way of
differentiating the reactive and symbolic layers. The reactive layer is in a real-time feedback
control loop, while the symbolic layer is engaged with events that occur at slower intervals.
This emphasizes the importance of the two layers being able to function independently of
each other. The reactive (i.e., behavioral) layer should be able to guarantee task completion
for at least some set of tasks without dependence on the symbolic layer.

There are two ways in which current research has categorized the role of the crucial
middle layer. In the first approach, the middle layer is defined as a sequencing layer (Firby,
1987; Gat, 1992; Georgeff & Lansky, 1987; Simmons, 1994). The sequencing transforms a
procedural list of task commands into an executable set of reactive skills. The latter react
to environmental changes, but are not goal-driven. There is no guarantee that the goall
will be achieved. Generally, to guarantee task completion, a planner needs to be integrated

with the behavioral controller. In the second approach, the middle layer is defined as a

!'The task command is realized when the goal is achieved.
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planner (Arkin, 1990b; Gat, 1992). A robot path, consisting of a set of linear segments, is
planned from the start to goal position. Reactive behaviors can override the execution of
this plan, but it is not clear how control is subsequently resumed by the path executor. The
second approach addresses the requirement for integrating a planner with the behavioral
controller, but in this case, the interaction between the planner and behavioral controller
could lead to situations where the two levels are not synchronized. The two components
need to be intimately interwoven in order to be synchronized. Such a configuration would
permit the behavioral controller to execute many tasks independent of a reasoning module.
The planner helps secure a guarantee of task completion (i.e.. achievement of the goal) in
many situations. Under these circumstances, a reasoning system could easily be integrated
in the role of an advisor.

This thesis proposes a real-time, asynchronous and parallel distributed robot architec-
ture called SPOTT? which bridges the gap between the low and top levels. SPOTT is not a
completely distinct layer, but instead integrates behavioral (i.e.. reactive) control, planning
and some symbolic reasoning into a cohesive system. In essence, SPOTT is a merging of
the low and middle layers. A control module links sensing to acting in a classical control
feedback loop. Another component is 2 map database which contains an internal model of
the environment. The control module not only controls the actuators, but also updates and
maintains the map database. A local planning module makes action decisions based on the
currently stored map. A global planning module performs classical Artificial Intelligence
(AI) planning based on a search through a graph structure representation of the map. The

3 in order to perform

global path planning module can be replaced by a symbolic reasoner
more than just Al search. The components of SPOTT are illustrated in Figure 1.1. Many
navigational tasks can be performed and guaranteed successful completion with SPOTT.
but task completion in certain scenarios will require additional - more complex - reasoning
capabilities.

The problem addressed by this thesis is autonomous navigation in a dynamic unpre-
dictable environment which is not completely specifiable by a map beforehand. The three
fundamental mobile robot navigational problems are (Leonard & Durrant-Whyte, 1991): (1)

“Where am I going?’; (2) “How am I going to get there?’; and (3) “Where am 7. SPOTT

I'The reasoning system will provide pertinent information to the planning and behavioral modules, as well as
maintain consistency and integrity of world model information. Another role of the reasoning system is to guarantee
task completion in the situations where the combined planner and behavioral controller cannot.

2A System which integrates Potential fields for planning On-line with TR+ program control in order to suc-
cessfully execute a general suite of Task commands.

3The COCOLOG (Caines & Wang, 1995) reasoning system being developed by Caines and his group at the
Centre for Intelligent Machines (CIM) is the one planned to be interfaced with SPOTT.

3
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FIGURE 1.1. The SPOTT System. SPOTT consists of a control module, 2 planning modules,
an internal map database, as well as a Graphical User Interface (GUI). The control module as well as
the local planner form two basic control feedback loops. The dark lines are control flow, whereas the
dashed lines are data flow.

addresses the first two questions and the issue of robot position estimation is handled by
integrating an existing localization module (Mackenzie & Dudek, 1994) into the system.
Under most circumstances, the three problems presuppose that the issue of representation
and content of an internal model (i.e., map) has been already addressed. Sensed environ-
mental information (i.e., map) needs to be stored in order to perform navigational tasks
such as path planning, obstacle avoidance, and pose estimatior. The representational form
of the map determines the type and amount of information accessible to the computations
associated with the three fundamental navigational problems.
The environment is unstructured, and there is either no a priori information (i.e., map)
or there is a partial map of the permanent structures. A “partial map”’ is a map of the
4
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permanent fixed structures in the environment, as would be presented by an architectural
CAD drawing*. The assumption is made that there is an abstract graph representation of
the map available consistent with the architectural CAD map. The abstract graph consists
of nodes and edges, where nodes represent rooms or portions of hallway and the edges
represent access ways (i.e., doors) between the nodes. SPOTT uses a CAD map of an
office and laboratory environment as a priori information. SPOTT has been tested in this
environment with a limited set of general navigational tasks. It has been implementead on a
collection of SGI and SUN workstations and tested with a Nomad 200° mobile robot. The
type of sensors on the robot include sonar. infrared proximity, bumper. and two controllable
range sensors mounted on pan-tilt heads {QUADRIS) (Bolduc, 1996).

3 Architectural drawings are readily available in computer readable CAD formats.
$The Nomad 200 is manufactured by Nomadic Technologies Inc., 2133 Leghorn Street, Mountain View, CA
94043-1605, tel. 415-988-7200, e-mail: nomad@robots.com
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1. Types of Navigational Tasks

The types of navigational tasks studied in this thesis are based on a language lexicon
which is a minimal spanning subset for human 2D navigational tasks (Landau & Jackendoff.
1993; Miller & Johnson-Laird, 1976). User-specified commands and internal communica-
tions are formulated using this lexicon. The tasks are based on the verbs “GO” and “FIND".
and a mode of operation called intelligent tele-operation. A task command formulated with
the verb GO assumes that the goal is a known spatial location, whereas a task command
formulated with the verb FIND assumes that a description of the object is known but its
spatial location is not (see Figure 1.2). Intelligent tele-operation is concerned with navigat-
ing the robot in a specific direction with no pre-defined target - following simple directional

commands such as forward, left, to name a few - until an obstacle is encountered.

GOAL.: spatial location known GOAL: spatial location unknown,
but object description

known (chair)

a) GO b) FIND

FIGURE 1.2. Types of Navigational Tasks. The types of tasks considered are based on the
verbs GO and FIND. 3) When GO is specified, it is assumed that the spatial location of the goal is
known. b) When FIND is specified, it is assumed that a description of the object sought is known,
but its spatial location is not.

The ability of SPOTT to guarantee task completion depends on the type of task and
the amount of a priori information. The amount of knowledge SPOTT begins with in order
to execute a task, specified by the task lexicon, varies from none to a partial map of the
environment. SPOTT can guarantee task completion when the task is GO and a CAD map
is available a priori, or during the tele-operation mode. In other situations, SPOTT needs

to interface to a reasoning module in order to guarantee task completion.
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A reasoning module can benefit SPOTT in situations where no initial map is available
a priori and during the “FIND” task. See Figure 1.3 for a graphical illustration of where a
reasoning module could assist SPOTT in order to guarantee task completion. Some of the
functions of a reasoning module are to aggregate dynamically sensed map features into ab-
stract symbolic representations, to determine the reachability of the goal location, to provide
advice on different search and control strategies, and to perform symbolic graph planning.

Currently. a global path planner in SPOTT performs the symbolic graph planning.

A PRIORI oL E- PR
INFO i NO
H3 éggﬂll"TAEETURAL MAP
TASKS A PRIORI MAP
Go \/ \7<
i acalinown ® goal reachability M et
maintenance
FIND \)< \)<
of é’lﬁ'ﬂ.ﬁ%’iﬂi‘n @ goal reachability : glbctncto.l ""J’r‘s.'f'l."'
s L mrc?mugiu \ o mgmm s
Intelligent
Tele-
Operation \/
move in specified -
direction until an
obstacle is
encountered

What reasonin ;rrodule could
contribute.

\/ Full check mark = task completion guaranteed without reasoning
¢ Partial check mark = task completion requires reasoning

FIGURE 1.3. What SPOTT Can and Cannot Do. A check mark in a matrix entry indicates
the situations where SPOTT can guarantee task completion. A partial check mark indicates that
SPOTT cannot guarantee task completion in these situations and the associated caption indicates
what role an external reasoning module could fulfill in this situation.
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2. The SPOTT Robot Control System

The proposed architecture - called SPOTT - consists of (1) a control module. (2a) a local
planning module, (2b) a giobal planning module, (3) a map database (i.e., world model).
and (4) a graphical user interface (GUI) (see Figure 1.4). The control module is based
on interpreting the task command lexicon within the context of a collection of behavioral
decision rules. The behavioral language interpreter evaluates, arbitrates. and executes a
collection of behavioral decision rules. In a behavioral decision rule, the antecedent is based
on the processing of sensory and world model information, and the consequent is a set of
actions. The selected actions control the robot actuators or update the world model. A
local planning module continually queries the world model and incrementally calculates
a trajectory for locally satisfying the task command goal. The global planning module
advises the local planning module on the effects of the global goal. The global planner
performs Al search in order to find a path in a symbolic (i.e., abstract) representation of
the map. It is not in the critical real-time feedback loop of the system, so it is not subject
to the same time constraints as the behavioral controller and local planner. A reasoning
module would operate on a similar time scale as the global path planner. The fact that
the global planner already exists as part of SPOTT indicates that other time non-critical
modules - such as a symbolic reasoning system - could be integrated with SPOTT. The
plausibility of integration with a higher level reasoning system shows how SPOTT could
provide the crucial link between short-range reaction and long-range reasoning (Hexmoor
& Kortenkamp, 1995).

An extension of Teleo-Reactive® (TR) programs proposed by Nilsson (1992: 1994) -
called TR+ programs - is used for specifying behavioral control in an asynchronous and
concurrent implementation. TR programs are an ordered list of production rules which
are continually recompiled during execution time into an equivalent hierarchical circuit.
A TR program is represented as a graphical tree, called a TR tree, where a condition is
specified by a node and an action by an arc. TR+ programs allow condition and action
expressions and present the programmer with the ability to control how and when the
expressions are evaluated. The formalism permits the “personality” of the robot (i.e.,
the set of behaviors) to be programmed in a similar fashion to conventional programming

(i.e., with parameter passing and binding, hierarchy, and recursion). Potential limitations

8The actions of the robot are influenced by its goals, hence the term teleo. This term was coined by Nilsson in
(1992).

8
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FiGURE 1.4. System Overview. The main components of SPOTT are illustrated. The behav-
ioral controller is an interpreter of control programs. The potential field performs dynamic local path
planning. An Al planner produces a path based on an abstract graph representation of the CAD map
and provides global information to the local path planner. The map database contains the a priori CAD
map, a graph abstraction of the CAD map, as well as a map of the newly sensed features.

with the TR+ formalism arise for problems which are difficult to completely express as a
collection of rules, such as obstacle avoidance.

Handling obstacle avoidance within the TR formalism can be difficult since every po-
tential situation would have to be addressed. Many possible contextual rules dealing with
obstacle avoidance could actually be encoded as TR+ behavioral rules, but there is no

9



CHAPTER 1. INTRODUCTION

guarantee that all environmental contexts would be captured. To overcome the combinato-
rial explosion of obstacle avoidance rules, an tndependent concurrent module performs local
path planning based on a potential field technique. The latter is a representation based on
a discretized grid of the local map’ and avoids the combinatorial pitfalls associated with en-
coding all possible obstacle avoidance situations in a rule-based system. During execution,
the TR+ program continually provides goal, obstacle, and robot position estimate informa-
tion - via the map database - to the potential field module, which in turn is responsible for
dynamic local path planning. The map database is comprised of two levels of abstraction.
The first level contains the a priori CAD map and a map of all newly sensed features. The
second level is a graph abstraction of the CAD map. If the destination is unknown, a TR+
program executes an exploratory set of actions by proposing intermediate goals appropriate
for the sensed environment, context, and task.

The local path planner is based on the biologically plausible (Connolly & Burns, 1992)
potential field® method. It dynamically reacts to the obstacle, goal and robot position
estimate information in the map database, which is continually being updated by the TR+
control program. The potential function used by the local planner is a harmonic function,
which inherently does not exhibit any local minima. If at least one path exists to a known
destination, the path planning strategy is guaranteed to find a path to that goal (Doyle
& Snpell, 1984). A hierarchical coarse-to-fine procedure involving a collection of harmonic
functions at varying resolutions is used to guarantee a timely and correct control strategy at
the expense of accuracy. The local path planner gets advice from the global path planner.

The global planning module performs classical Al search - using standard Al graph
search algorithms such as Dijkstra’s algorithm (Aho et al., 1983) - through a graph structure
of nodes and arcs, and advises the local planning module of the local effects of a goal which
is outside the current local extent. The two planners - (1) potential field planner (local
path planner), and (2) Al-based planner (global path planner) - function in parallel, pass
pertinent information between themselves, and operate on different time-scales. The local
path planner is in a control feedback loop with the robot and environment, and its actuator
commands are crucial to the real-time operation of the robot. On the other hand, the global
path planner uses states which change at a slower rate. These are the current and potential
physical locations of the robot with respect to the nodes in the graph structure, where a

node is a room, or a hallway portion.

"The local map contains the features found in a window into the architectural CAD map and the collection of
newly sensed features.
8The potential field is a field of gradient vectors computed over a discretized version of a potential function.

10
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The global path planner only performs one of the functions of a reasoning system.
One can easily envision replacing it by a more comprehensive reasoning system. Such a
system would provide additional capabilities such as determining goal reachability, spatial
reasoning and map maintenance, and the determination of new TR+ programs (i.e., control
strategies). Presently, the local and global path planners, as well as the behavioral controller.
function concurrently and communicate asynchronously amongst each other, in order to
execute a wide variety of navigational tasks presented by the user.

SPOTT is implemented in parallel, thus permitting real-time asynchronous function-
ality. The autonomous robot communicates via a radio link to SPOTT which runs on a
computer network. SPOTT’s processing is distributed across a collection of SUN and SGI
workstations. The software tool PVM? (Parallel Virtual Machine) (Geist et al., 1993) is
used to distribute the control, planning, and graphical user interface processing across a
collection of existing processor resources. PVM is a message passing library which allows
the harnessing of a collection of heterogeneous processors into a single transparent, cohesive
and unified framework for the development of parallel programs. The PVM system trans-
parently handles resource allocation, message routing, data conversion for incompatible
architectures, and other tasks that are necessary for operation in a heterogeneous network
environment. PVM offers excellent price-performance characteristics compared to massively
parallel processors (Sunderam et al., 1993). The portability and heterogeneous property of
PVM makes it possible to transfer this architecture on-board the robot in the future. The
computation for both the TR+ program control and local planning is also distributed to

provide real-time response. Typically, ten to fifteen processors are used in an experiment.

9This is an ongoing project carried out by a consortium headed by the Oak Ridge National Laboratory.

11
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3. Claims of Originality

This thesis addresses the problem of autonomous navigation of a mobile robot in an
indoor environment, such as an office or laboratory space. The navigational tasks are based
on a language lexicon within two contextual settings: (1) a partial map of the environment
is available a priori; and (2) no map is available a priori. A robot control architecture called
SPOTT is proposed and implemented as a real-time and parallel system of concurrently
executing and co-operating modules. Inherently, the control system is a real-time Artificial
Intelligence (AI) system which is responsible for dynamically adapting to changing environ-
mental circumstances in order to successfully execute and complete a set of navigational
tasks for an autonomous mobile robot. SPOTT consists of a behavioral controller. a local
dynamic path planner, and a global path planner, as well as a map database and a graphical
user interface. The SPOTT architecture provides a framework for inclusion of additional
sensors and associated perceptual processing algorithms, actuators and control strategies.

SPOTT is a novel robot control architecture because it proposes a way of linking be-
havioral (i.e., reactive) and symbolic control. The exploitation of existing computational
resources by the distributed implementation of SPOTT is additionally innovative. Contri-
butions are also made in the following three areas:

(i) The Teleo-reactive (TR) control (Nilsson, 1992) formalism forms the centerpiece
for the behavioral controller. This thesis has contributed to TR behavioral control
research in the following manner:

e This thesis is the first research work to design. implement and test an on-
line and distributed TR interpreter - of concurrently executing behaviors - to
handle real-time robot control of an autonomous robot.

e The basic TR language is extended to handle muitiple goals. concurrent ac-
tions, and conditional expressions. The extended formalism is called TR+.

(if) Path planning is concurrently performed at two levels of abstraction. The local path
planner is a potential field approach based on a harmonic function. It is guaranteed
to find a path to a goal if such a path exists. The local path planner is in the critical
real-time control feedback loop with the environment. The global planner plans a
path based on a graph abstraction of the environment. The contributions made to
the field of path planning, in particular, the potential field approach using harmonic
functions, are as follows:

e In the local path planner, path computation and execution are done concur-

rently. In order to guarantee a correct control strategy during concurrent plan

12
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computation, a hierarchical coarse-to-fine procedure based on a set of harmonic
functions at varying resolutions is proposed.
e A method is proposed for addressing the issue of planning for global goals when
the extent of the potential function is limited. This is necessary because (1)
the potential function is a rapidly decaying function which is not computable
for all grid elements in a large array, and (2) the computation time increases
proportional to the number of grid elements. Thus, the local path planner
needs to receive global goal information from the global path planner. This
assists in sliding the boundaries of the potential function when the robot moves
outside the current local extent.
e A method for computing the harmonic function in real-time and in parallel
with existing computational resources is proposed, implemented and tested.
(iii) There has been very little research done pertaining to humap-machine natural lan-
guage interaction and communication in the field of autonomous mobile robot navi-
gation (Lueth et al., 1994). This thesis is the first to propose and put to use a mobile
robot task command lexical subset - consisting of verbs and spatial prepositions -
. that is a minimal spanning basis set for human 2D navigational tasks (Landau &
Jackendoff, 1993; Miller & Johnson-Laird, 1976). A procedure for quantifying the
task command for execution in the behavioral controller and dynamic local path
planner is presented. The quantification of the spatial prepositions is shown to de-
pend on two norms. The two norms are the definitions for the spatial prepositions

near and far in the current context of the environment and task.

13
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4. Reader’s Guide

A brief reading of this work should include the following chapters and sections:

Introduction (Chapter 1),
Conclusions (Chapter 8).

To gain a more detailed understanding of the research presented in this thesis. it is recom-

mend that the following sections be read in order.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Chapter 1 covers the main contributions of the work and provides a general sum-

mary of the work.

Chapter 2 is a general review of behavioral robot control architectures. mobile
robot navigation, as well as a review of the most commonly used sensors for mobile

robot research.

Chapter 3 provides a review of the Teleo-reactive (TR) formalism as introduced by

Nils Nilsson, and the extended formalism - TR+ - which enhances the TR formalism.

Chapter 4 discusses local and global path planning. A general review of path
planning approaches is given alongside a development of the technique used by the
local path planner (i.e., potential field using a harmonic function). The dynamic
interaction between the local and global path planners is also discussed. The chap-
ter concludes with a collection of potential research topics which could extend the

capabilities of the proposed local path planner.

Chapter 5 specifies the task command language lexicon and its derivations. and

how it ties in with the SPOTT architecture.

Chapter 6, discusses how SPOTT is implemented in a distributed fashion. The
integration of a graphical user interface, and the programming and visualization

tools are also discussed.

Chapter 7 discusses the performance and capabilities of the system and the indi-

vidual components. The results of experimenting with the system are also discussed.

Chapter 8 is a general discussion of the work, outlining advantages, disadvantages,

and future research areas.
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CHAPTER 2

Background

SPOTT extends the behavioral robot control architecture formalism so that it is able to
interface with a symbolic reasoning system. In general, the architecture of a robot control
system for autonomous navigation is a classical feedback loop as shown in Figure 2.1.
A behavioral architecture is a slight variation of the classical composition and is loosely
biologically motivated. Biological creatures apparently execute many tasks in the world
without doing any extensive reasoning by using a combination of routine skills. In recent

years researchers have used this as a guide to formulate behavioral architectures for robot

control.
Actuator
—»1 Control
Loops
Goals World World

Model

Sensors (-

FIGURE 2.1. Simple Robot Control Architecture. All robot coftrol architectures have
these basic components, the notable exception being the subsumption architecture (Brooks, 1986)
which does not have an internal world maodel.
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1. Review of Behavioral Robot Architectures

The basis for most behavioral architecture research efforts has been Brooks’ subsump-
tion! architecture (see Figure 2.2) (Brooks, 1986). In this architecture, each behavioral

2. Each level (i.e., behavior, finite state ma-

decision rule is a simple finite state machine
chine) consists of modules which are complete and self-contained control systems using var-
ious types of perceptual information to generate commands for actuators. Each behavior
achieves some task, and as new behaviors are added to the system, the level of competence
of the robot increases. The ultimate purpose of the robot is defined by its higher level goals
(i.e., tasks). The robots built by Brooks and his colleagues (Brooks, 1991: Flynn & Brooks,
1988) did not have behaviors more complex than the wander behavior, contrary to what
was originally intended (see Figure 2.3).

The subsumption architecture does not have any memory?3 and thus is prone to possible
inescapable cyclic behavior. Therefore, task completion cannot be guaranteed. Various
robots have been developed which consist of a few behaviors arranged in a hierarchical order
(Brooks, 1991; Flynn & Brooks, 1988). The results are impressive, given the simplicity of
the architecture and the lack of an internal representation (i.e., memory) of the external
world. The subsumption program is fixed for a particular task and cannot be generalized
for a collection of tasks. It has never been scaled up to a level which included behaviors
that built and used maps. Its goals are embedded in the higher level behaviors. However.
to achieve generality, a goal would need to be a programmable input (Hartley & Pipitone.
1991; Maes, 1991).

Brooks (1991) has strongly advocated the extreme position of having no explicit internal
representation of the world. In this case, the external environment acts as the model for
the actions. Recently, various researchers (Hartley & Pipitone, 1991; Gat et al, 1994;
Connell, 1990; Mataric, 1992) have suggested relaxing this constraint of no internal state
for behavioral architectures and have insisted on having some minimal internal state (i.e.,
memory, maps).

The behavioral architecture contrasts sharply with the traditional robotics approach
(see Figure 2.4) (Nilsson, 1969; Moravec, 1983), which involved building complex models of
the environment before planning and executing actions. On the other hand, a behavioral

!'The subsumption architecture was not novel in the 1980's. More than thirty years before, Niko Tinbergen
(1951) - one of the initiators of the ethology (ethology is the biotogical study of behavior) movement - proposed a
similar model for animal behavior.

2A finite state machine is a structure in which computation is modeled as the transition from one of a finite

number of states to another.
3 Also referred to as internal state. The contents of the memory are a model (i.e., representation) of the worid.
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FIGURE 2.2. Brooks Subsumption Architecture: The subsumption architecture is a simple

hierarchy of levels (i.e., tasks, layers) where the conditions are continuously computed. The circuitry

which implements this architecture is fixed at run-time. (a} A layer has input and output lines. [nput

signals can be suppressed and replaced by the suppressing signal. Qutput signals can be inhibited. A

module can also be reset to the NIL state. (b) Control is layered with higher level layers {i.e. tasks,

behaviors) subsuming the roles of lower level layers when they wish to take control. The dotted lines

indicate potential suppressor and inhibitor lines of control. {adapted from (Brooks, 1986})
architecture’s actions can be quickly executed after the arrival of sensory data. because the
processing involved to make a decision about the next action is usually negligible.

The other significant way a behavioral approach differs from the traditional approach
is that a behavioral architecture has a collection of hierarchically ordered streams of action
rules (see Figures 2.4 and 2.5), while the traditional approach has a single sensory-to-action
processing stream. An action rule is defined as a decision rule based on processed sensor
data and world model information. The collection of decision rules and the associated
sensory processing are computed in parallel. The rules linking sensing to action are referred
to as behaviors. When there is relatively instantaneous* response, the behavior is referred
to as being reactive. The behaviors are hierarchically ordered from the most to the least

important. The current action to be executed is based on selecting the most important

*In the order of milliseconds.
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work usefully

use maps

sensors build maps acutators
-

explore

wander

avoid obstacles

FIGURE 2.3. Brooks' Propased Hierarchy of Behaviors. lllustrated is a proposed decom-
position of 3 mobile robot control system based on task-achieving behaviors. However, the only levels
Brooks and his colleagues ever implemented were the wander and obstacle avoidance levels. (adapted

from (Brooks, 1986))

behavior from the collection of behaviors, whose state (i.e., resultant of the executed decision
rule) is “on” (or logically TRUE). The action to be executed will either control a robot
actuator or update its internal model.

Many other behavioral architectures have been proposed which closely resemble the
subsumption architecture (Kadonoff et al., 1988; Kaebling, 1988; Payton, 1986; Anderson
& Donath, 1988; Gat, 1991b; Gat, 1991a; Watanabe et al., 1992; Kweon ef al.. 1992). The
only one which differs significantly from the subsumption architecture is the one suggested
by Arkin (1989).

Arkin (1989; 1990a; 1990b) proposed the AuRa architecture (Autonomous Robot
architecture). It is a behavioral architecture based on a dynamic network of active be-
haviors operating in parallel (as opposed to a hierarchical set of competing behaviors like
the subsumption architecture). Rather than driving the actuators directly, there is an in-
termediate representation, the potential field® which is a representation for action (i.e., the
robot movements). Arkin refers to this type of architecture as a boiling pot. A behavior
consists of activating a particular motor schema depending upon the validity of a particular
perceptual input. A motor schema is a template, representing an obstacle or goal, which
modifies the potential field. There can be many motor schemas activated in parallel. Goal

motor schemas are attractors, while obstacle motor schemas repel the robot. Given that

5The potential field is a grid-based method which represents objects of the world as saturated grid elements.
The grid elements are either saturated positively (obstacles) aor negatively (goals). The space left after the removal of
the objects is the free space, and this is the space where forces interact to determine the robot’s direction and speed.
Obstacles exert negative forces, whereas goals exert positive forces. The forces are summed to generate the potential
field. Gradient descent is performed on this surface in order to steer the robot to the goal. The summation of positive
and negative forces may create local minima, and thus lead to the robot getting stuck.
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FIGURE 2.4. Traditional vs. Behavioral Robot Control Architecture. (a) In the tradi-
tional approach, there is only a single path of control from sensing to actuator activation. (b) In the
behaviorai approach, there are many paths from sensing to action. Each decision moduie may include
modeling and planning components of varying complexity.

the location of the robot is known, the maximum gradient of the potential field at the ro-
bot’s current location is used to determine the local direction of the robot. The potential
field mechanism that was implemented is problematic in that local minima may be present.
which may cause cyclic behavior. Like the subsumption architecture, the AuRa architecture
has not scaled up to more complex tasks which could potentially include reasoning.

A small community of robotics researchers is moving towards a three-layered hierar-
chical architecture (Hexmoor & Kortenkamp, 1995) (see Figure 2.6). The lowest layer is a
reactive control system such as the subsumption architecture (Brooks, 1986). The top layer
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FIGURE 2.5. Behavioral Architecture Example. a) A behavioral architecture has a collection
of hierarchically ordered streams of action rules. An action rule implements a decision based on sensory
processing and world model information. A specified hierarchical order is the usual arbitration strategy
between behaviors. The highest “on" (or logically TRUE) behavior in the hierarchy is the behavior
whose action is executed. In this example, action a4 is executed.

is a traditional symbolic planning and modeling system, referred to as a deliberate layer.
The reactive and deliberate (i.e., symbolic) layers differ with respect to (1) the type of data
used, (2) the speed of reaction to environmental changes, and (3) the type of functionality.
Both layers have access to world model information, but the symbolic layer distinguishes
itself by only processing the abstract representations. In addition, the reactive layer uses
raw or minimally processed sensor input, while the symbolic layer handles highly processed
sensor information. Therefore, the reactive layer is readily responsive to different sensed
stimuli, while the symbolic layer is comparatively slow. The reactive layer consists of rules
which map sensor data to actuator control with a minimal amount of processing. The
symbolic layer is responsible for managing the consistency and integrity of world model
information, abstracting new information, as well as validating control issues such as con-
trollability, reachability, and observability. The middle layer, which mediates between the
reactive and symbolic layers, has not yet been clearly specified. There have been various at-
tempts at defining the middle layer as a sequencing layer, which transforms a procedural list
of task commands into an executable set of reactive skills (Firby, 1987; Gat, 1992; Payton.
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1986; Georgeff & Lansky, 1987; Simmons, 1994; Ferguson, 1992; Bou-Ghannam, 1992: Con-
nell, 1992). The most popular of the sequencing architectures is the RA P (Reactive Action
Plans) architecture which has been proposed by Firby (1987). The RAP architecture takes
a set of high level tasks generated by a planner and recursively decomposes them into a set
of reactive skills. RAPs activate and deactivate these sets of skills, and monitor their exe-
cution to see if the robot is being moved towards the goal (Gat, 1992). Similar approaches
have been proposed by Payton (1986), Georgeff and Lansky’s (1987) PRS (Procedural Rea-
soning System), and Simmon’s (1994) TCA (Task Control Architecture). The sequencing
layer turns reactive behaviors on and off, but it does not guarantee successful completion
of any task. Task completion cannot be guaranteed unless a planner is integrated with the

behavioral (i.e., reactive) controller.

—] symbolic

& actuators

—1 middie layer ???

ot

USER

— =i reactive

environment

sensors

FIGURE 2.6. Three-Layered Hierarchical Architecture. A consensus amongst a small
community of researchers applying Al to robotics agree on such a structure for robot control, but there
is no agreement on the details of the crucial middle layer.

Some researchers (Arkin, 1990b; Gat, 1992) have suggested defining the middle layer
as a planner. In this scenario, a path consisting of linear segments is planned from the
start to goal position. Reactive behaviors can override the execution of this plan. However.
it is not clear how control is subsequently resumed by the path executor. A path planner
is required in order to provide any guarantee of task completion; however, it needs to be
intimately interwoven with the behavioral controller. This will permit the behavioral con-
troller to execute many tasks independent of a reasoning module. In this case, a reasoning
system could easily be integrated in the role of an advisor, and assist in guaranteeing task
completion in the situations where a path planner could not. The reasoning system would
provide pertinent information to the planning and behavioral modules as well as maintain
internal model consistency.
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SPOTT bridges the gap between reactive and symbolic layers by integrating behavioral
(i.e., reactive) control and planning into a cohesive system. In essence, SPOTT is a2 merging
of the low (i.e., reactive) and middle layers. It consists of a behavioral controller and
a local path planner which operate in a critical real-time feedback control loop with the
environment, and a global path planner which functions at a slower time scale. The global
path planner’s role is to provide crucial global information to the local path planner. The
inclusion of a time non-critical module suggests that other such modules (i.e., symbolic
reasoning system) could also be integrated. SPOTT can guarantee task completion for
many navigational tasks, but more complicated scenarios will require additional reasoning

capabilities.
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2. Interfacing to a Robot Control Architecture

The design of a mobile robot control architecture is influenced by the characteristics of
the components it interacts with, particularly: the role of the operator. the complexity of
the environment and the capabilities of the mobile robot (see Figure 2.7). The complexity
of the control system is inversely proportional to the amount of decision-making initiated
by the operator. The type of environment (e.g., static or dynamic) motivates what control
strategies to adopt. The mobile robot’s actuators and sensors place constraints on the
controllability of the robot. For example, the robot’s ability to react to changes in the

environment is limited by what it can sense.

Actuator
—»1 Control
Loops

Sensors 4————'

FIGURE 2.7. Interfaces to a Robot Control Architecture. The robot control architecture
is influenced by the role of the operator, the complexity of the environment, and the capabilities of the
mobile robot.

World
Model

2.1. Role of the Operator

There are two levels of autonomy that robot control can have in relationship to a human
operator (Iyengar & Kashyap, 1989).
¢ Tele-operation is the extension of a person’s sensing and manipulating capabilities
to a remote location. The human operator acts as a supervisor, intermittently com-
municating to a computer information about goals, constraints, plans, contingencies.
assumptions, suggestions, and orders relative to a limited task. The human operator
gets back information about accomplishments, problems, concerns, and if requested,
sensory data. The robot performs the tedious (i.e., routine) functions and leaves the
cognitive tasks and difficult decisions to a human operator.
e The operator supplies a single high level command for intelligent autonomous
robots. An autonomous intelligent robot is a flexible machine system that can
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perform a variety of tasks under unpredictable conditions. It is able to operate

without human intervention for extended periods of time.
Between the two, the more interesting and challenging is intelligent autonomous robot con-
trol, which is addressed by this thesis. As with tele-operation, the human operator gets
feedback about the progress of the task, and whether the task has been completed. Contrary
to tele-operation, the human operator only needs to issue a single high level command to
execute a task. Such is the case with SPOTT, where tasks are specified by a task command
language lexicon based on a minimal set of navigational verbs (Miller & Johnson-Laird.

1976) and a minimal spanning subset of spatial prepositions (Landau & Jackendoff. 1993).

2.2. The Complexity of the Environment

The environmental complexity can be classified along the following dimensions:

e The environment may be completely known, partially known or completely unknown
beforehand. It is very difficult and unrealistic to completely know the robot’s envi-
ronment beforehand, and therefore only the last two cases are truly relevant. The
first case is where a partial map of the environment is available a priori. An ar-
chitectural drawing in CAD format exists for most indoor environments and this
can provide a priori information for the robot. The permanent fixed features of the
indoor structure, namely the walls, are stored in the CAD drawing, but are never
spatially perfect in size or position. Sensory feedback is necessary to validate the
CAD map. Additionally, the robot needs to discover all movable features which
are not shown in the CAD map (see Figure 2.8). The second case is where no map
information is available a priori. Here, the robot needs to reveal both the permanent
and movable features.

e The type of environment may be indoor, outdoor, industrial, planetary, or some
other, typical of mobile robot applications. The environment can also be evaluated
with respect to its complexity: the number of objects, their size, and their spatial
layout.

e The objects in the environment may be static or dynamic. The trajectory and speed
of the objects are also factors.

Environmental complexity can be reduced significantly by modifying the environment
to include artificial landmarks or tracks for the robot to follow. This thesis avoids making
such compromises and tackles the more difficult problem of autonomous robot navigation
in an unmodified environment.
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The walls are the only a priori Other obstacles (moveable) are sensed
known features. while performing navigation.

WinEe)

HRERERE!

fixed structures (walls)

FIGURE 2.8. Environmental Complexity. (3} The permanent structures in the environment
can be obtained from readily availabie architectural CAD maps (see (c}}. (b) Movable objects must be
sensed and noted in the internal model as the robot performs its navigational tasks.

2.3. The Mobile Robot

The capabilities of a control architecture are limited by the type of robot and its sensors.
The proposed robot control architecture - SPOTT - has been tested using a Nomad 200°
mobile robot. This vehicle has two degrees of freedom in mobility - translation and rotation
- in a two-dimensional plane. In order to execute a movement, the platform first rotates,

and then the robot is translated the desired amount in a forward direction. The Nomad

5The Nomad 200 is manufactured by Nomadic Technologies Inc., 2133 Leghorn Street, Mountain View, CA
94043-1605, tel. 115-988-7200, e-mail: nomad@robots.com
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200 mobile robot base is a three-wheel synchronous non-holonomic system. Its maximum
translational speed is 51 cm per second, and the maximum rotational speed is 60° degrees
per second. The Nomad 200 has a diameter of 46 cm (53 cm including the bumper), and a
height of 83 cm (137 ¢cm including a mounted laser sensing unit). The robot’s high centre
of gravity does not permit safe passage on inclines. There is always the potential danger of
the robot tipping, so the use of the robot is confined to flat terrains. The Nomad is powered
by a package of five removable batteries.

It comes equipped with a ring of 20 tactile sensors (pressure sensitive). a ring of 16
ultrasonic sensors, and a ring of 16 infrared proximity sensors. A system of two range sensors
(BIRIS) (Blais et al., 1991) mounted on pan-tilt heads, called QUADRIS (Bolduc. 1996).
has also been added. QUADRIS is mounted on the top of the basic Nomad platform.
Sonar and QUADRIS are used for mapping. Furthermore, QUADRIS is specialized for
object recognition. The bumper and infrared sensors are primarily used for safety and
accomplish this by mapping very close objects which may be missed by the other two
sensors. These sensors are different from sonar and laser because their data is readily
available and requires minimal analysis. Figure 2.9 illustrates the placement of the sensors
on the Nomad 200 mobile robot. The sensors are of the type most commonly used in the

mobile robot literature.

QUADRIS (range) /
vision

Sonar

Proximity (infrared)

Bumper

FIGURE 2.9. Mobile Robot Sensors. The sonar, infrared and bumper sensors come with the
original Nomad 200. A pair of range sensors mounted on pan-tilt heads - QUADRIS - is also installed.
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Most common sensors (Luo & Kay, 1989; Harmon, 1987a; Everett. 1995) installed on
mobile robots are associated with a variety of problems when used as the sole sensing device.
Therefore, in practice, it is common to use many types of sensors to compensate for each

sensor’s inadequacies.

2.3.1. Vision

Visual sensors are considered passive since they only receive information about the en-
vironment and do not emit any signals. One of the major problems with using vision is that
it lacks explicit information regarding the third dimension (i.e.. depth). Methods for de-
termining depth from video cameras include depth from stereo disparity (Longuet-Higgins,
1981; Prazdny, 1980; Marr & Poggio, 1976), depth from camera motion (Matthies et al..
1989), depth from focusing (Krotkov, 1989b), depth from terture gradients (Witkin, 1981),
depth from shading (Horn, 1977), depth from occlusion cues, and various combinations of
these methods. Video cameras are rarely used by mobile robots for navigational control
because of the large amount of processing required’ to compute depth information which
makes real-time operation very difficult. However when they are used, the most popular
method for extracting depth information is based on the depth from stereo disparity tech-
nique. This was used to navigate the Stanford Cart (Moravec, 1983)83, but the robot moved
only 1 m every 10 to 15 minutes. There was also significant error in position (i.e.. 20 %) of
the object features sensed in the environment. Current methods (Ezzati, 1995) for extract-
ing depth from stereo disparity are approaching real-time speeds, so that the use of video
cameras may soon become feasible. Besides navigation, visual sensors are also useful for

recognition tasks: finding a particular object or landmark recognition (Krotkov, 1989a).

2.3.2. Acoustic (Sonar)

Sonar sensors are a type of active range sensor and function by emitting sound waves
and measuring the time delay it takes for the echo to return. A single transducer is often
used as both the transmitter and receiver. The distance to the object reflecting the pulse
can be inferred from the knowledge of the time taken for the sound to return and of the
speed of sound (approximately 0.3 m/ns). A typical ultrasonic ranging device operates
with frequencies of roughly 50 kHz (Dudek et al., 1993). Sonar units are usually installed

on a robotic platform in one of two ways: (1) a single sonar unit is mounted on top of a

In general, visual sensors are critically dependent on ambient lighting conditions. The analysis of a visual scene
as well as the associated registration procedures can be complex and very time-consuming.
8The Stanford Cart project was conducted at Stanford University Al Lab between the years 1973 and 1980.
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rotating platform which points it in different directions®; and (2) a collection of sonar units
are uniformly distributed around the exterior of the robot. There is always the problem
of crosstalk with multiple sonar units. This is especially true in cluttered environments,
where sound waves can reflect from multiple objects and then be received by other sen-
sor elements. To compensate for crosstalk, repeated measurements are often averaged to
bring the signal-to-noise ratio within acceptable levels, but at the expense of the additional
time required to determine a single range value {Borenstein et al., 1996). Other problems
characteristic of acoustic sensors include very low resolution, large specular reflections (i.e..
multiple reflections), slow speed, fuzzy images, temperature (and to a lesser extent humid-
ity) dependence, and multiple echoes, as well as problems with the physics of the sonar
process'®. Sonar sensors are useful because they are relatively inexpensive, fast and provide
range data in all directions simultaneously. Sonar systems are less expensive than other
types of range sensors (i.e., laser rangefinders) because of the relatively slow speed of sound
in air (compared to light), which places milder timing demands on the required circuitry.

The typical operating range of sonar sensors is 10 cm to 914 cm (Borenstein et al..
1996). In cluttered environments, reliable measurements can only be obtained from 2 or 4
m (Dudek et al., 1993) away. Sonar sensors have been used for mapping (i.e.. creating an
internal model of the environment) tasks (Crowley, 1985: Bozma & Kuc, 1991: Elfes, 1987:
de Saint Vincent, 1986) and for estimating the position of the robot (Drumbheller, 1987:
Leonard & Durrant-Whyte, 1991; Mackenzie & Dudek, 1994).

2.3.3. Laser Rangefinders

Laser rangefinders are another type of active range sensor. They project a structured
illumination pattern of their own, and make use of either the geometry or time of flight to
determine the range of objects. Time of flight measurement determines the distance of an
object by measuring the time it takes for light to travel from the source to the object and
back. Triangularization (i.e., geometry) systems broadcast a beam of light with a known
shape (e.g., point, line, cross), and the camera observes reflection or scattering from the
object to determine depth based on the geometry. The time of flight method is fine for the
outdoors, but for indoor use, the size of the sensor head and power consumption are critical
factors (Harmon, 1987a). The triangularization technique uses a single camera and usually

a line projector. It is not recommended for long distance measurements and, just like sonar,

9The robot manufactured by Cyberworks Inc. uses this sonar arrangement (Cyberworks Inc., 31 Ontario Street,
Orillia, Ontario, L3V 6H1).

10The sonar chirp is not an infinitely narrow beam of infinite power but has a finite angular extent with a
complex cross-sectional energy distribution (Dudek et al., 1993).
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sometimes gets confused with reflections (Harmon, 1987a). In general, laser rangefinders
require an intense energy source, and they have a short range and slow scan rate!!. Laser
rangefinders may avoid all the drawbacks of visual and acoustic-ranging systems but this is
often at the expense of cost and potential hazard to humans. Laser rangefinders have been
used for estimating robot position (Cox, 1991; Moutarlier & Chatila, 1990) using a method
which correlates laser range data with an existing map.

The BIRIS!? Range Sensor (Blais et al., 1991) is a compact optical 3-D range sensor
developed by the NRC (Canada’s National Research Council), which is based on the use
of a double aperture mask in place of the diaphragm of a standard camera lens. A pair of
overlapping stereo images are produced on a single film plane. If a laser line is projected
perpendicular to the line connecting the two irises, then stereo correspondence is simplified.
This laser line, when viewed through the double aperture, produces two lines whose sepa-
ration correlates with the range distance. The BIRIS range sensor is able to detect objects
up to 5 m away. A single scan range estimation can be computed with a simple algorithm
which permits real-time computation (i.e., 10 frames per second). In order to provide a full
range image, the sensor must be swept across the scene. The QUADRIS (Bolduc, 1996)

system uses two BIRIS sensors mounted on pan-tiit heads.

2.3.4. Other Types of Sensors

Other types of sensors used by mobile robots include contact and proximity sensors.
Obstacle detection based on just contact sensors limits the speed of the robot because
contact must be made before detection can take place. Thus the introduction of proximity
sensors which are based on LED (Light Emitting Diode) phototransistor pairs. LED’s
function by emitting light into the environment, and receiving light reflected by objects.
Usually they can measure range up to 45 cm away. Contact and proximity sensors are
mostly used for safety monitoring!3.

Most mobile robot designs incorporate many sensors (Kriegman et al., 1989; Yuta et al.,
1991; Evans et al., 1992; de Saint Vincent, 1986) to overcome the shortfalls of any individual
one. There are many practical considerations when deciding which sensors to use, such as

cost, power consumption, speed, resolution, just to name a few. Many mobile robots use

'1For more information about laser rangefinders and processing techniques, see (Everett, 1995) and (Jarvis,
1983). Two typical laser rangefinders (both are ‘time of flight’ (tof) sensors) are as follows: (1) SEO AutoSense (9 m
maximum range, 1% accuracy, 29.3 rps scan rate, weight of 5 lbs.); (2) RIEGL LSS390 (range of 1 to 60 m, 10 cm
accuracy, 10 scans/sec, weight of 4.86 1bs.) (Everett, 1995).

12Based on two pinholes or irises, therefore the name Bi-IRIS.

13As a last resort, if obstacles are not detected by other longer range sensors.
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acoustic or laser rangefinders as opposed to video cameras, because depth information is
explicit with these sensors.

The selection of sensors used by SPOTT was based on the availability of the processing
algorithms. The LED and bumper sensors require little processing and were integrated
for short-range sensing. Sonar and QUADRIS are used for long-range analysis. Mapping
(i.e., creating an internal model) and localization (i.e., estimating the position of the robot)
software based on sonar data (Mackenzie & Dudek, 1994) had been already developed and
research at CIM has just begun in using QUADRIS for mapping and object recognition
(Bui, in preparation). Mapping, localization and recognition are the functions required for

the navigational tasks SPOTT executes.
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3. Robot Control Issues

Autonomous robot control is difficult because of the timeliness of decision-making and
acting, the unpredictability of the world, and the imperfections associated with sensors and
actuators. Behavioral architectures are attractive because they are simple. fast and produce
interesting and complex behaviors which appear to be intelligent. An intelligent agent (i.e..
the robot) is defined as having the capability to adapt to a changing environment while
performing a particular task. The design of a behavioral architecture for mobile robot
control has to take into consideration the following issues:

(i) How well does the architecture scale to more complex problems?

(ii) Is the architecture general enough for a wide variety of tasks and environments?
(iii) Are the executed actions of the robot predictable beforehand?
(iv) Is the operator able to monitor the robot’s interaction with the environment?

The scalability of an architecture is its ability to handle increasingly more complex
problems that demand a greater amount of knowledge without changing its underlying
mechanisms. A robot’s architecture should not be confused with a robot’s programming
language (Horswill, 1995). A robot’s programming language is the means of describing the
tasks and the techniques used to solve them, independent of the implementation mechanism.
[t remains the same from one task to another. On the other hand, a robot’s architecture
is a collection of specific components with fixed connections that can jointly perform a
broad range of tasks with minimal modification. Given this distinction, the subsumption
architecture is more like a programming language than an architecture. There is no specific
set of components that all subsumption robots have in common!*. In contrast, SPOTT is
an architecture'® with one of its components - TR+ interpreter - interpreting robot control
programs. It is actually the flexibility of the programming language which determines the
scalability of the architecture. Limitations of the architecture may require the addition of
a new component (e.g., reasoning), but this should not affect the existing mechanisms. In
other words, provisions for expansion should be allowed for in the original design.

The generality'® of an architecture is a measure of the types of tasks and environments
which can be successfully operated upon. The architecture should be able to do various
tasks without having to be reprogrammed or physically rebuilt. Brooks’ robots were built

14Fach subsumption robot is built out of a commeon class of components; all are built from finite-state machines
inhibiting one another, albeit different finite-state machines (Horswill, 1995).

ISSPOTT's modules - TR+ interpreter, local path planner, global path planner - and their interconnections are
fixed for all tasks that the system can perform.

16 Generality and scalability are not mutually exclusive properties: changing the task or environment may make
the problem more complex.
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to perform a single task, and were not able to extend performance to a suite of tasks. The
single task was hard coded for each robot. Other proposed behavioral architectures do not
clearly define what tasks (or sets of tasks) the robot can perform (Arkin, 1990b; Gat, 1992).

The architecture’s functionality is predictable if it is able to guarantee successful
operation and task completion for various tasks and environments. The subsumption archi-
tecture (Brooks, 1991) cannot guarantee that the robot will complete the task successfully.
This mainly stems from the extreme position of having no internal model. The emerging
overt behavior of the robot in most behavioral systems, including the subsumption archi-
tecture, is only evident by observing the robot. In order to guarantee task completion.
the gross actions!” should be deterministic, predictable, and repeatable. Behavioral archi-
tectures such as the one by Brooks are usually non-deterministic. An internal model and
a dynamically adaptable planner need to be integral parts of an architecture in order to
provide any task completion guarantees.

Analytic or graphical tools are necessary for monitoring (Brooks, 1991), debugging
and understanding expected and unexpected interactions with the environment, as well as
simplifying the task of programming control strategies. Debugging or the verification of
execution can either be done on-line or post-mortem.

Besides interfacing and the general issues mentioned above, the robot control archi-
tecture needs to be designed to solve a particular class of problems intelligently and in
real-time. SPOTT addresses the problem of mobile robot navigation. It quickly reacts to a
dynamic environment in order to avoid collision with obstacles while still striving to fulfill
its task objective. Real-time and intelligent interaction with the environment is addressed
by a relatively new research area called real-time AL Other higher level concerns such as
learning and reasoning are beyond the scope this thesis and are left as potential research

areas for future extensions to the ideas presented here.

3.1. Mobile Robot Navigational Problems

The three fundamental questions (Leonard & Durrant-Whyte, 1991) of mobile robot
navigation are: (1) “Where am I going?’; (2) “How am I going to get there?’; and (3)
“Where am I?’. The questions can be rephrased as follows: (1) goal determination and
path planning; (2) path execution; and (3) the ongoing estimation of the robot’s position.

All of these problems rely on the robot’s “ability to sense the environment and to build a

7 A gross action is an abstract collection of actions such as obstacle avoidance. This gross action is deterministic
if the functionality, such as obstacle avoidance, is guaranteed to be successful. It is difficult to predict the exact
trajectory due to the non-repeatability of environmental circumstances.
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representation of it, and to use this representation effectively and efficiently’ (Talluri & Ag-

garwal, 1993). This introduces the issue of map butlding (i.e., mapping of the environment).

3.1.1. Path Planning

The future locations of the robot include both the destination and the path to be
followed. Path planning usually requires that a map (e.g.,, a CAD map of the indoors
environment) be transformed into a graph structure, which is then searched for a path. This
can be achieved by parcelling the map into equally - or unequally - sized convex polygonal
regions. Nodes are used to represent the regions, and edges connect nodes that share a
common boundary. Each node and edge is labeled as passable or impassable, and a search
is initiated to find a path through passable nodes via passable edges from a start to stop
node. Path planning for a fully autonomous mobile robot has always been a computational
bottleneck (Hwang & Ahuja, 1992) requiring complex search algorithms.

In contrast to autonomously planning a route, tele-operated mobile robots avoid this
issue and permit a human to perform high level decisions. In this case, the research effort
is directed towards simplifying the decisions an operator must make by providing sufficient

and reliable information (i.e., the man-machine interface).

3.1.2. Path Ezecution

The execution of the path involves sensing the environment and making reactive deci-
sions to adapt to a potentially changing environment. There are several ways of executing
a path.

e Preprogrammed paths can be enforced by either buried wires or painted lines which
are sensed. This requires extensive modifications to the environment (Harmon.
1987b).

e Follouing structures in the environment is a simple way of getting around. Exam-
ples include wall following and road following. Road following techniques involve
following road edges, but certain problems may arise when the road edges can not
be detected (Thorpe et al., 1988; Dickmanns et al., 1990).

o QObstacle Avoidance: Obstacle avoidance can be performed by either using heuristic
reactive responses (Smith et al., 1975; Crowley, 1985; Manz et al., 1991; Waxman
et al., 1987; Moravec, 1983; Brooks, 1986; Arkin, 1990b), computationally expensive
reasoning (Nilsson, 1969), or dynamic path planning. The latter involves concur-
rently recomputing and executing the path. Such an approach is proposed in this

thesis.
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3.1.3. Robot Position Estimation

A robot’s position can be computed from information about either the robot’s motion or
the relative positions of external cues for which absolute position is known. Dead reckoning'®
has good short term performance, but the errors are cumulative. Odometry!? is able to
provide the vehicle with an estimate of its position, but the position error grows without
bound unless an independent reference is used periodically to reduce the error (Cox. 1991).
Inertial systems?® may be able to provide good position estimation. However errors also
tend to accumulate, and the equipment is very expensive (Borenstein et al.. 1996). For a
wheel-based robot, position error is due to wheel slippage, which is difficult to model. Some
factors which influence wheel slippage include the type of floor surface, robot velocity. wheel
alignment, and the magnitude and number of performed turns.

There are two basic methods for determining the position of the robot on an ongoing
basis. Landmark detection is perhaps the simplest. Installing pre-defined beacons®! re-
quires modification of the environment and does not lend itseif to exploration of unknown
terrain. Known landmarks (Evans et al., 1992; Hebert, 1989: Cox, 1991) can be identified
and matched to a map when the terrain is known. Landmarks can either be natural or
artificial (Borenstein et al., 1996). Natural landmarks are those objects or features that are
already in the environment and have a function other than for robot position estimation.
Artificial landmarks are specially designed objects or markers that need to be placed in the
environment with the sole purpose of enabling robot position estimation. When the known
landmarks are artificial, they can be placed in positions which are optimal for detectability
even under adverse environmental conditions. On the other hand, natural landmarks re-
quire no preparation of the environment, but the environment needs to be at least partially
known a priori.

The second method is to match sensor data to a known map (Mackenzie & Dudek. 1994:
Schiele & Crowley, 1994; Weig et al., 1994; Rencken, 1994), either geometric or topological.
Geometric maps represent the world in a global coordinate system, while topological maps

represent it as a network of nodes and arcs. SPOTT uses an existing robot localization

'8 Dead reckoning is derived from “deduced reckoning” of sailing days. It isa simple mathematical procedure for
determining the present location of a vessel by advancing some previous position through a known course and velocity
information over a given length of time (Borenstein e! al., 1996).

19This method uses encoders to measure wheel rotation and/or steering orientation. [t is also the simplest
implementation of dead reckoning.

20This methad uses gyroscopes and sometimes accelerometers .0 measure the rate of rotation and acceleration.

21 The absolute position of the robot is found by measuring the direction of incidence of three or more actively
transmitted beacons. The transmitters, usually using light or radio frequencies, must be located at known sites in the
environment.
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method (Mackenzie & Dudek, 1994) which is based on correlating sonar data with an a

priori geometric map.

3.1.4. Map Building

There are two common map representations: geometric and topological (Borenstein
et al., 1996). The geometric map can either be a grid map or a map consisting of a collec-
tion of geometric entities (i.e., lines, polygons) tied to a fixed coordinate reference system.
An example of a grid map is called the occupancy grid. It is a probabilistic tessellated
representation of spatial information, where each grid entry is updated as more sensor in-
formation is made available about that specific region in space (Elfes, 1989). Occupancy
grid-based maps require little computation and permit relatively simple integration of dif-
ferent sensors. However, they present difficulties in modeling dynamic obstacles and require
a complex estimation process for determining the robot’s position {Borenstein et al., 1996).
The topological approach is based on recording the geometric relationships between the ob-
served features. This produces a graph where the nodes represent the observed features and
the edges represent the relationships between them. Topological maps are used primarily
for robot position estimation and path planning (Borenstein et al.. 1996). Robot position
estimation occurs when the robot is near one of the nodes and is able to match sensor data
with the stored map information at the node. Path planning is the selection of a route to
a destination location, visiting the necessary nodes along the way.

A map is built by fusing a priori knowledge (e.g., CAD map), different sensory data
and perhaps deduced information (i.e., by a reasoning module). Mobile robotics literature
(Hager, 1990; Durrant-Whyte, 1988) categorizes the different fusion methods as follows:
(1) competitive, where the sensors are supplying redundant or competing observations; (2)
complementary, when the sensors provide unique information which constrains or refines
observations from another; and (3) independent, as only one sensor contributes at a time.
The decision of what type of fusion strategy to use should be based on how the sensory
data is being utilized to support the robot’s intended action (Murphy, 1996).

SPOTT uses a dynamic path planner based on the potential field technique for deter-
mining action. Its map consists of an a priori CAD map fused with sensory (i.e., sonar,
range, infrared, bumper) data. The data is fused by using the competitive method. When
new sensory data arrives, it is compared to the existing map to see if the corresponding
spatial locations are already occupied. If it is, then the new sensory data is discarded:
otherwise it is entered into the map. The advantage of this method is that it is simple and
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adequate for navigation in most circumstances??. The disadvantage is that recently sensed
redundant data is not used to refine currently stored map features. Uncertainty is addressed
by padding the geometric map features by a predetermined expanse in all directions (e.g.,

a line feature becomes a rectangle).

3.2. Real-time Al

An autonomous robot needs to respond quickly and intelligently to changes in the en-
vironment. A relatively new area called real-timme AI (Musliner et al., 1994) addresses the
difficult issues which arise when deadline constraints are combined with complexities arising
from (1) uncertainty in sensing, environmental modeling, and actuator activation, and (2)
limited computational processor resources. Real-time Alis the convergence of real-time sys-
tems and Artificial Intelligence (AI) methods. A control system is real-time if the reaction
rate of control is faster than the rate of change in the environment. An Al method executes
search by finding an appropriate set of actions to lead an agent from some initial state to a
goal state. The two areas are merging because Al methods are tackling more realistic do-
mains requiring real-time response and real-time systems are moving towards more complex
applications requiring intelligent behavior. Building real-time Al robot systems is difficult
because of the constraints imposed by the robot: (1) The robot is subject to bounded com-
putation because its data processors have limited memory and speed; and (2) The robot is
also subject to bounded reactivity due to the range and accuracy limitations of its sensors
and actuators. There are three ways in which Al can be integrated with real-time systems:
(1) Al is embedded into a real-time system; (2) real-time is embedded into an Al system:
and (3) a real-time and an Al system co-operate concurrently.

Al is embedded into a real-time system when search-based problem-solving is con-
strained to meet real-time deadlines. In general, Al tasks, such as planning and search-
based problem-solving, are ill-suited to real-time scheduling as the scheduling relies on the
worst-case execution times for all tasks, and these tasks often have unknown or extremely
large worst-case execution times (Paul et al., 1991). The unpredictable execution time is
due to variations caused by search and backtracking operations. There are two approaches
for embedding AI into a real-time system. In the first, the execution time variance inherent
in search-based AI problem-solving is reduced to make these techniques viable for worst-case
scheduling. An example is the purely reactive Al architectures (e.g., subsumption archi-

tecture (Brooks, 1986)), where all condition-action rules are assumed to run concurrently.

22This is not the case for moving objects.
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A hierarchical ordering of the rules is used to decide the current active rule without the
need for any Al search®®. Another way of reducing variance is to execute a collection of
distinct Al solving methods. Each method requires different computation times depending
on the circumstances. The result is obtained from the method which meets the current
situation’s real-time constraints. In the second approach, the AI task is cast as an incre-
mental and interruptible algorithm. Such algorithms are referred to as anytime algorithms
(Mouaddib & Zilberstein, 1995). The result of an enytime algorithm is available from the
start of computation at the expense of accuracy. The accuracy improves gradually, directly
proportional to the execution time, to some optimum value.

When real-time is embedded into Al, the overall system employs Al deliberation tech-
niques but under some circumstances these techniques may be short-circuited in favour of
a real-time reflexive response. The main problem with this technique is that if reflexive
actions can bypass normal deliberation mechanisms, it may be difficult or impossible for
deliberation processing to reason about the changes introduced by the reflexive responses.

The third method in which Al is integrated with real-time is to have two independent.
concurrently executing, and co-operating processes. Synchronization problems may occur
because the Al system operates at a time scale which is much slower than the real-time
system.

The approach taken by SPOTT combines all three methods for merging real-time con-
trol and Al deliberation. Examples of Al being embedded within a real-time system are the
behavioral controller - TR+ program interpreter - and also the potential field local planning
mechanism. TR+ programs eliminate search by having a fixed hierarchy of ordered rules.
The potential field path planning strategy is an anytime algorithm (i.e., the local path is
always available). An instance of real-time being embedded into AI occurs when reactive
behaviors (i.e., TR+ rules) override the currently planned movements (i.e., local potential
field path planner). A shared map database resolves local planning and behavioral control
conflicts. In addition, the local path planner can also be viewed as a real-time module
interacting with the concurrently executing global Al path planner. The local path planner

is in the critical real-time feedback control loop, whereas the global path planner is not.

23 A production system also does not require any Al search.
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4. The SPOTT Robot Control System

This thesis proposes an architecture called SPOTT, which provides a bridge for linking
behavioral (i.e., reactive) and symbolic control. SPOTT is a real-time Al system for au-
tonomous mobile robot control which is responsible for dynamically adapting to changing
environmental circumstances while executing navigational tasks. The architecture consists
of (1) a control module, (2a) a local planning module, (2b) a global planning module, (3) a
map database (i.e., world model), and (4) a graphical user interface (GUI) (see Figure 1.4).
The control module consists of an interpreter executing behavioral (TR+) programs. The
selected actions - from the behavioral controller - control the robot actuators or update
the world model. A local planning module continually queries the world model and incre-
mentally calculates a trajectory for locally satisfying the task command goal. The local
planner and the behavioral controller are in the critical real-time feedback control loop of
the system. The global planning module advises the local planning module on the effects
of the global goal. The global planner performs Al search to find a path in a symbolic (i.e..
abstract) representation of the map. It is not in the critical real-time feedback loop of the
system, so it is not subject to the same time constraints as the behavioral controller and
local planner. A reasoning module would operate on a similar time scale as the global path
planner. The fact that the global planner already exists as part of SPOTT indicates that
other time non-critical modules - such as a symbolic reasoning system - could be integrated
with SPOTT. The plausibility of integration with a higher level reasoning system shows
how SPOTT could provide the crucial link between short-range reaction and long-range
reasoning (Hexmoor & Kortenkamp, 1995).

The proposed architecture - SPOTT - addresses the problematic shortcomings®! of ex-
isting behavioral architectures. A task command language lexicon based on a minimal set of
navigational verbs (Miller & Johnson-Laird, 1976) and a minimal spanning subset of spatial
prepositions (Landau & Jackendoff, 1993) has been developed in order to specify a collec-
tion of tasks which SPOTT can perform. The tasks are executed by the interpretation and
execution of a TR+ program alongside concurrent dynamic path planning execution. The
TR+ programs easily permit the addition of new sensors, actuators and control strategies.
SPOTT is able to guarantee task completion for certain task and environmental configura-
tions?>. The GUI module provides visualization of the TR+ control program deliberation,

*4Scalability, generalizability, predictability (i.e., task completion guarantee), and the ability to monitor
execution.

25SPOTT is able to guarantee task completion when the location of the goal is known and a CAD map is
available a priori.
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as well as a view of the robot’s state with respect to its environment. SPOTT is also mod-
ular and is dynamically responsive in real-time. Intelligent responsiveness is achieved by
applying real-time AI techniques as well as distributing the processing across an available
set of computational processor resources.

The following chapters of the thesis elaborate upon the various facets of SPOTT.
namely, TR+ control, path planning, and the task command lexicon used for specifying
navigational tasks. Subsequent chapters discuss the implementation of SPOTT and exper-

imental results.
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CHAPTER 3

Control: Teleo-Reactive+ Programs

In control theory, it is to customary to think of the control mechanisms as being composed
of analog electrical circuits, which are ideal for continuous feedback. In contrast, computer
science is familiar with such ideas as sequences, events, discrete actions and subroutines.
These are at odds with the notion of continuous feedback. There has been little effort to
import fundamental control theory ideas into computer science (Nilsson, 1992).

Nilsson (1992; 1994) has proposed a formalism, called “circuit semantics”. which is
conceptually similar to electrical control circuits. He has also proposed a programming lan-
guage called Teleo-Reactive! (TR) programs, which continually get recompiled into circuit
semantics at execution time. The TR formalism permits robot control to be programmed
in a similar fashion to conventional programming (i.e., parameter passing and binding,
hierarchy, recursion, and a main program with subroutines). A TR program is a list of
hierarchically-ordered condition-action rules (i.e., like a production system). It has a graph
representation - called a TR tree - where a condition is specified by a node and an action
by an arc.

SPOTT uses an extension of Teleo-Reactive (TR) programs - called TR+ programs
- for specifying behavioral control. During execution, the TR+ interpreter continuously
activates and evaluates the TR+ programs. The execution of the programs is asynchronous
and concurrent. The extensions to TR programs - TR+ programs - formalize the operators
for condition and action expressions? and present the programmer with the ability to control

how and when the expressions are evaluated.

IThe actions of the robot are influenced by its goals, hence the term teleo. This term was coined by Nilsson in
(1992).

2Conditional expressions using AND and OR operators are also possible in the TR formalism, but without the
expressibility of TR+ programs. How and when the expression is evaluated can be controlled by the TR+ operators.
In addition, the TR formalism does not contain any operators for specifying action expressions.
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1. Teleo-Reactive Programs

Teleo-Reactive (TR) programs have been recently introduced by Nils Nilsson (1992:
1994) as a formalism for specifying event-driven behavioral control. The idea behind TR
programs is to give the control system the expressive power of a computer program. The
ideas that have been retained from computer science are as follows: (1) The programs have
parameters that can be bound at run time and passed to subordinate routines; (2) There
is a hierarchical organization; and (3) The programs can be recursive.

TR programs are very similar to an ordered set of production rules (i.e., condition-action
pairs). They are interpreted in a manner comparable to the way a production system is
interpreted: The list of rules is scanned from the top for the first rule whose condition part
is satisfied, and then the corresponding action is executed. A TR program differs from
a production system in that all the active3 conditions are continuously evaluated and the
action associated with the current highest TRUE condition is always the one executed. The
actions can be energized® or ballistic?, whereas production system actions are only ballistic.

A hierarchical order on the list of condition-action rules is imposed by the designer. A
TR program is constructed so that for each rule, K; — a;, condition K; is the regression.
through action e, of some particular condition higher in the list. K; is the weakest condition
such that the execution of action a; {under the most probable operating circumstances)
achieves some particular condition K; which is higher in the list (j < ). The condition K
is the goal condition the program is designed to achieve. The execution of the actions in a
TR program ultimately achieves the goal. Should an action have an unexpected effect, the
program will nevertheless continue working towards the goal®.

A TR program is organized like a computer program with a single main program and
a collection of subroutine programs. When the term “TR program” is used, it actually
refers to a collection of TR programs: one is the main program and the rest are subroutine
programs. Initially, the execution of a TR program is such that the conditions in the main

program are continuously evaluated (i.e., active). If one of the actions calls a subroutine” TR

3Not all conditions are continuously evaluated. A TR program is usually modular in organization, consisting
of a2 main program and a collection of subroutines, similar to the organization of a computer program. Only the
conditions in the main program (i.e., invoked by the user) and the conditions in the currently called set of subroutines
are active.

4An action is energized when it is sustained continually as long as its triggering condition remains TRUE.

SAn action is ballistic if it executes to completion after the logical transition of its triggering condition fram
FALSE to TRUE.

5The TR sequence is complete if and only if K; V...V K, V...V K is a tautology, which is a clause containing
complementary literals. A TR sequence is universal if it satisfies the regression properiy and is complete. A universal
TR sequence will achieve its goal condition, K, if there are no sensing or external errors.

A subroutine may be invoked from the main program, from another subroutine program. or from a previous
instantiation of itself (i.e., recursion).
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program, then all of the subroutine’s conditions are also continuously evaluated in addition
to the main TR program’s conditions. This is how a TR program (i.e., a subroutine TR
program) is dynamically activated at execution time. If a particular subroutine has not
been called via an action for a specified period of time, then the continuous evaluation
of its conditions ceases. This process is called “garbage collection”® and is synonymous
with the identically named operation in a LISP programming environment. Activating
and deactivating conditions permits recursive calls to different instantiations of the same
subroutine (i.e., with different input variable values).

An action - a; - either activates an actuator directly or via some intermediate represen-
tation. An action can also be another TR subroutine. A condition - K; - is an executable
process which returns a logical value (TRUE or FALSE). The value is based on sensory
inputs and world models. In addition, the process can also return other (i.e., logical or non-
logical) values through variables attached to the condition. Conditions are based on the
K-B model proposed by Kaebling and Rosenchein (1990). In this model, embedded agents
or situated automata are “computer systems that sense and act on their environments”.
An appropriate series of actions emerge from the interaction of the control system with the
environment. The K-B model separates perception and action (see figure 3.1). The percep-
tion module monitors the environment so that the agent (i.e., robot) can establish certain
beliefs of the world. Conditional predicates based on these beliefs are the inspiration for
the conditions K; in TR programs.

The conditions and actions of TR programs form a control conceptualization of the
robot within the world. This bears some resemblance to predicate calculus, although it is
not as powerful because there is no theorem proving. TR programs are only an incomplete
expression of declarative knowledge. The conditions in which the declarative knowledge
is presented are both functional and relational in nature. They are functional in that the
values of variables can be computed and passed to other conditions, actions or subroutines.
They are relational in that they represent a logical-value, either TRUE or FALSE. An action
1s activated when its associated condition is TRUE and is the highest-level TRUE node in

the TR program. For TR programs, the universe of discourse®

are the objects and features
stored in the internal model, as well as the feature information continually received via
the sensors. The conditions and actions are the building blocks for what constitutes a TR

program.

8This phrase was also used by Nilsson (1992; 1994) in order to describe the cleaning procedure.
9The universe of discourse are the set of objects about which knowledge can be expressed.
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FIGURE 3.1. K-B Model of an Embedded Agent. (as adapted from (Kaebling & Rosen-
schein, 1990)) An embedded agent is a computer system that senses and acts on its environment.
Beliefs of the world are continuously updated with feedback from the sensory devices.

1.1. TR Program Syntax

A TR program is an ordered list of condition-action rules. It is defined by a name and
a list of arguments (i.e.. variables) that are bound when the program is called. The binding
of arguments is subject to continuous recomputation. The conditions, K;, are Boolean
combinations of components of a state vector as proposed by Kaebling and Rosenchein
(1990) (see Figure 3.1).

All the conditions in a list are evaluated concurrently. An action is determined by the
highest ranking TRUE condition and is either energized or ballistic. Energized actions are
the kind that must be sustained by an enabling condition to continue operating. Ballistic
actions, once called, run to completion (i.e., pulse, one-shot operation). They are initiated

on the logical transition of their triggering condition from FALSE to TRUE.
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The syntax for a TR program as proposed by Nilsson (1992) is as follows:

: <TR-Prog> :: (defseq <name> <arg-list>
: ((< Ky > nal)

: (< K; >< action; >)

: (€ K} >< action; >))

)

: <action> :: <energized-action> | <ballistic-action> | nil
: <energized-action> :: <primitive-action> | <TR-Prog>
: <ballistic-action> :: <primitive-action>

: <K> :: <primitive-condition> | TRUE

The “primitive-conditions” and “primitive-actions” are predefined by the programmer.
The “primitive-conditions” produce a logical decision based on sensory or world model

input. The “primitive-actions” either drive the actuator or update the world model.

1.2. Graph Representation

The ordered set of rules which make up a TR program can be represented in graph
form, where a node represents a condition and an arc represents an action. The graph form
of a TR program is called a TR tree. TR programs and its graph representation - TR trees
- resemble the search trees!® constructed by planning systems that work backwards from
a goal condition (Nilsson, 1994). A particular type of TR tree is a TR sequence. For the
general case (i.e., TR tree (see figure 3.2)), many arcs can enter a node but only one arc
exits a node. A TR sequence (see Figure 3.3) is a constrained TR tree where only one arc
may enter a node. TR trees (i.e., the general case) are a more appropriate representation
than TR sequences when there are many actions which contribute to achieving a given
condition.

Recall that all the conditions in a TR program are continuously reevaluated and the
arc leaving the highest level TRUE node is executed. When represented graphically as a
TR sequence, the highest level TRUE condition (i.e., node) is unambiguous (i.e., there is

10 Triangle tables (Fikes et al., 1972) are an example. They are a degenerate form of TR trees, consisting of a
single path (Nilsson, 1994).
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b) corresponding
ooo TR rules

aN

FIGURE 3.2. A TR Tree. The TR tree is shown in (a), while the corresponding list of ruies is
presented in (b). K is the program goal. The hierarchical ordering is top-down and from left to right.
The nodes are numbered with respect to their ordering of importance.

only one condition per level). This is not the case when the TR program is represented as
a TR tree, where many TRUE nodes can exist at the same level. Depth ties are resolved
according to some prespecified ordering, usually from left to right: if many nodes are TRUE
at the same level, the leftmost TRUE node’s actions are triggered. The depth tie can also be
resolved by finding the node. from all the TRUE nodes at the same level, with the minimum
cost path. A cost is associated with each action, and a total cost is determined by finding
the expenditure during the course of traversing all actions leading to the program goal node
from the node in question. The highest ranking TRUE node is the one with the minimum
cost path.

A TR tree can also be represented as an equivalent TR sequence. The cost for such
a transformation is the loss of ability to express the goal achievement!! associated with

executing an action that is one of many actions which exit from the same node. The gain

I The execution of an action over time will result in a new condition being TRUE. Recall that the current
TRUE condition is the regression of some higher level condition through its action (i.e., in a condition-action rule).
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nil

a) TR sequence
a2

b) corresponding
aN-1 TR rules

FIGURE 3.3. A TR Sequence. The graph format is presented in (a), while the correspanding
tist of rules is illustrated in (b). K is the program goai.

is that the highest level TRUE condition (i.e., node) is unambiguous because there is only

one condition per hierarchical level. The TR tree in Figure 3.2 is shown in a TR sequence

format in Figure 3.4.

1.3. TR Program Interpretation and Execution

The algorithm for the run-time interpretation and execution of a TR program is stated
as follows:

(1) The main TR program’s conditions are ezecuted and tnitialized.

(ii) The highest level TRUE condition specifies which a; is activated. If a; is a primitive
action, then it is active till overridden. If a; is a subroutine TR program, then its
conditions are erecuted and initialized (if they have not been as of yet), and (ii) is
repeated for this particular subroutine TR program.

(iii) If a subroutine TR program has not been called for a predefined period of time, the
ezecution of its conditions is stopped.

(iv) If the highest level condition in the main TR program is TRUE, then the interpreter
STOPS, otherwise ezecution returns to step (ii), using the main TR program.

This causality for certain TR programs is explicitly shown in a TR tree (see Figure 3.2), whereas it is not in a TR
sequence (see Figure 3.4).
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FIGURE 3.4. A TR Sequence Created From a TR Tree. With a fixed tie-breaking method,
the TR tree maps to a TR sequence. This is the TR sequence which is equivalent to the TR Tree in
Figure 3.2. The head of a dotted arc indicates the implicit goal achieved as a consequence of executing
the action (shown by a bold arc) associated with the node. The TR Tree is a more appropriate
representation because it captures this causality.

An example of the execution of the algorithm can be shown using Figure 3.5. Conditions
cl, 2, and ¢3 in the main program are continuously evaluated. If cl is TRUE (i.e., the
highest level TRUE condition in the main program), the interpreter stops because the
program has satisfied its global goal. While the program is executing. the conditions in the
main program (i.e., cl, c2, and ¢3) are continuously evaluated. If c¢3 is the highest level
TRUE condition in the main program. a3 is called, which invokes the subroutine a3. In this
case, conditions cl, c2. and ¢3 as well as ¢32 and ¢33 are all continuously evaluated. When
c3 is no longer the highest level TRUE condition, ¢32 and ¢33 are no longer continuously
evaluated.

The interpreter will only continuously evaluate the conditions that need to be evaluated.
This is pertinent for writing compact code, especially when the control can be expressed
as a recursive function (see Figure 3.8). Also, the computational resources will only be
computing the necessary conditions, and not ones that have no influence on the resulting
control. This is the major difference between the TR formalism and the other behavioral
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the main program
with the
subroutine a3
inserted

subroutine a3

(11

FIGURE 3.5. The Main Program and a Subroutine Program. A subroutine program has
a blank condition for its head and tail conditions, as shown above. The called subroutine program is
inserted into the calling main program in place of the arc which represents it (e.g., a3) by discarding the
blank head and tail conditions. The main and subroutine programs can be equivalently represented as
a single TR program as illustrated. Subroutine programs are a useful organization mechanism because
they help control what constitutes an active condition. While the program is executing, the conditions
in the main program are continuously evaluated. If €3 in the main program is the highest level TRUE
node, then the conditions in subroutine a3 are also continuously evaluated, otherwise they are not.

approaches such as the subsumption architecture (Brooks, 1986). In the subsumption archi-
tecture, all specified conditions are always continually evaluated, whereas in a TR program,

112

only the conditions pertinent to the current control' are evaluated.

1.4. Circuit Semantics

Since the TR programs perform control, they must respond in bounded time to en-
vironmental changes. Conceptually, the interpretation and execution of TR programs is
comparable to producing electrical-like circuits (i.e., called circuit semantics). They are
an alternative way of visualizing the execution of a TR program. Figure 3.6 shows the

corresponding circuit diagram for the TR Program in Figure 3.3.

12 As specified by the TRUE conditions and the organization of the main and subroutine programs.

48



¢

b

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

K1 y - nil
-
ﬂ
K3 A — 33
o 0 o
P - |
Kn =N *>°N

FIGURE 3.6. Implementing a TR Sequence as a Circuit: The action associated with the
highest level TRUE condition is activated. (Nilsson, 1992).

Circuit semantics are similar to the finite-state machines and their composition in the
subsumption architecture (Brooks, 1986). The only difference is that the TR program cir-
cuits are created at run-time, while the subsumption circuit is compiled before run-time.
The computer-program analogy is the best approach for describing run-time circuit creation.
The conditions which are evaluated depend on the calling of the subroutine TR program
which contains them. If this subroutine TR program has not been called for a while, the
conditions within it are not evaluated anymore. This execution style can be conceptualized
by the creation and deletion of circuits. The creation of the circuits corresponds to the con-
ditions being continuously evaluated, and their deletion implies that the conditions are no
longer being evaluated on a continuous basis. In contrast, the circuits for the subsumption
architecture are created before run time and execute as is. This is the major distinction
between TR programs and other reactive (i.e., behavioral) programming methodologies
(Brooks, 1990; Kaebling & Rosenschein, 1990; Georgeff & Lansky, 1987; Firby, 1987; Sim-
mons, 1994; Lyons, 1993: Simon et al., 1993). All of these other methods are compiled
into circuits before run time. When a particular formalism is compiled into circuitry before
run-time, more circuitry is built!® than needed because all possible contingencies must be
anticipated. In contrast, a TR program continuously adjusts its circuitry by adding and

deleting circuit elements'* during execution time.

13More conditions are evaluated than required.
'Y Adding and deleting condition processes to and from the list of condition processes which are continuously
being evaluated.
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TR programs are versatile because of the blending of control theory with computer-
science concepts. They can be conceptualized as a list of rules or a graph structure. The
interpretation and execution of TR programs can be explained in terms of computer science

concepts or as electrical-like circuits (i.e., circuit semantics).

1.5. TR Program Examples

TR programs are a very effective formalism for specifying event-driven control to a
programmer working backwards from whatever goal condition the program is being designed
to achieve. For example, figure 3.7 shows a TR program for controlling the temperature
setting of a thermostat. The conditions are continuously monitored. If the temperature
is low, the corresponding action is to turn up the temperature and vice versa. If the

temperature is within the desired range, no action is executed.

temp. = desired?

turn up temp.

temp. is high

FIGURE 3.7. A TR Tree for Controlling a Thermostat. A sensor monitors the temperature
and a control mechanism permits the lowering and raising of the temperature.

turn down temp.

The “goto(loc)’ program in Figure 3.8 illustrates a simple TR program for executing
robot navigation. This program assumes that there are two actions for controlling the robot:
move, and rotate. Move translates the robot in the direction it is currently pointing. Rotate
turns the robot in a clockwise direction. The input to the program is a location (in z.y
coordinates) for the robot to traverse to (i.e., loc). If the robot is not heading towards that
goal position, then the robot rotates (i.e., rotate); otherwise, it moves towards the goal (i.e.,
move). If the specified goal position is attained, then there is no further movement.

Figure 3.92 shows how the inputs to the system - the goal specification, the position
sensor and a compass reading - are combined to define the condition predicates. Figure 3.9b
illustrates the circuit semantics for the “goto(loc)” program.

The “amble” program in Figure 3.8 calls “goto” as its subroutine. “Amble” recursively
calls itself with intermediate goals (i.e., random positions) until there is a clear path to the
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main program

@ (position, soal))

goto (goal) '

equal(position,goal) -> nil

clear path(posiﬁo@
|

amble( new-point(position,goal) )

clear-path(position,goal) —> goto(goal)

T -> amble(new-point(position,goal))

subroutine program

move

@eadlng,course(posﬂlo@

goto (loc)

rotate - .
equal(position,loc) => nil

equal(heading,course(position,loc)) -> move

T -> rotate

FIGURE 3.8. A Simple TR Tree for Controlling a Robot (adapted from (Nilsson, 1994)).
The goto program causes the robot to rotate if it is not aligned with the goal, otherwise the robot
moves forward. The amble program picks random points which serve as intermediate goals if there is
not a clear path to the goal. If there is a clear path, then the goto program is called. This program
may not be successful if appropriate random locations are not selected.

goal'>. When there is a clear path to the goal (i.e., or intermediate goal), then “goto” is
called. The undoing of all of the recursive calls results in the calling of “goto(goal)’, where
goal is the original global goal (i.e., the value of goal when amble was originally called).

When the recursive calls are not able to be undone, the robot is stuck in a thrashing

15This may be an intermediate goal if amble has called itself.
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loc

_—
{ specification

woe o [——————3 (equal (position) loc))

position sensor

———————3» (equal (heading) (course (position) loc))

_——

compass

a) Update Function

(equal (heading) (course (position) loc)) -
N (mave)
>J:>_)

(equal (position) loc)) C !

é_,@% (rotate)

b) Output Function

Circuitry for Moving a Robet to the Point loc

FIGURE 3.9. Circuit Semantics for a Simple Robot Controller: (a) This diagram iilus-
trates how the conditional predicates in the TR program goto(loc) illustrated in Figure 3.8 are formed.
(b) This diagram illustrates the circuit semantics for the TR program goto(loc) in Figure 3.8.

situation (i.e., cyclic loop) and unable to reach the global goal. There is a strong reliance
on the new-point function to return locations that will help the robot navigate around an
obstacle. When new-point cannot provide such locations, the robot is stuck in a cyclic loop.

The example in Figure 3.8 illustrates the TR program properties of recursion, hierarchy
and variable passing. In the amble program (i.e., the main TR program), the lowest level
condition is called recursively until the condition clear-path is TRUE. If there is a clear
path, then the goto program - the subroutine TR program - is called. In both programs -
goto and amble - the condition-action rules are ordered from most to least importance. The
program goal is specified in the top level condition of the amble program: equal(position,loc).
Variables are used as input to conditions (e.g., equal(heading, course(position,loc))), and as
input to a main program (e.g., amble(loc)) and to a subroutine program (e.g., goto(loc)).
In this example it is possible for the robot to get stuck when no new random points (i.e.,
new-point) will put the robot in a position where it has direct sight of the goal (i.e., in order

to execute goto).
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The TR program in Figure 3.8 will work in most situations, but there is always the
possibility that the robot will get stuck at a local minimum (i.e.. thrashing, cyclic loop).
This is a common problem for rule-based systems since all potential environmental situations
are difficult to foresee as a set of hierarchically ordered set of condition-action rules. Thus,
a rule-based system cannot actually guarantee that a robot will be able to circumvent all

obstacles while navigating towards a goal position.

1.6. Advantages and Disadvantages of the TR formalism
1.6.1. Advantages

As discussed above, a TR program is goal driven (i.e., programmable goals), hierar-
chical, recursive, and modular. The modules are like a computer program: a main calling
routine and a collection of subroutines. Variables can be passed between subroutines as
well as among conditions and actions within a TR program. The biggest advantage of the
TR formalism is its simple formulation and representation. A TR program is specified as a
set of hierarchically ordered condition-action rules. A graphical representation - called TR
trees - aids in the visualization of programming and executing TR programs.

The TR formalism is event-driven as opposed to state-driven. The programmer does
not require a complete state model of the world in order to define the actions. The conditicns
by which an action is triggered are continuously recomputed and are responsive to sensory
inputs as well as internal models. Each condition is the regression of some condition closer

to the goal, through an action that nominally achieves a “closer to the goal’ condition.

1.6.2. Disadvantages

The limitations of the TR formalism are only evident in a real-time implementation!6.

Two such limitations are as follows:

(i) The execution of sensor-based conditions takes a fixed amount of time. Condition
operators need to be formalized to give the programmer the flexibility to take this
into account.

(ii) Actions can either be dependent on or independent of each other. In order to specify
this, it is necessary to define procedural and concurrent action operators. There are

no such operators in the TR formalism.

16 Nilsson's experiments with TR programs used off-line computation (i.e., a LISP machine). Simulations using
a virtual world, or simulating the concurrency of executing TR programs, are not adequate for evaluating the TR
paradigm.
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Nilsson makes the assumption that all conditions are continuously recomputed and that
they are instantaneously responsive to environmental changes. In reality, certain conditions
may be computed very quickly, whereas others may require more time. The time required
to evaluate a condition depends on the processing complexity. For example. acquiring sonar
data requires multiple scans in order to have a dense and reliable measurement, which may
take a few (i.e.. two to five) seconds. There is also no way of turning off the computation
of a condition within a TR program. This is useful when it is obvious that the processing
of a condition is irrelevant in a particular contextual setting.

The robot should be able to perform many actions concurrently. However, a TR pro-
gram has a single program goal and executes only one action at a time. The goal at the
top of the main TR program is the program goal while all other nodes (i.e.. conditions) in
the program are intermediate goals. When a goal is expressed as a collection of conditions.
the method by which the operators (i.e., AND, OR) dictate the order and concurrency of
computation should be specified. Likewise, the arcs (i.e., actions) should consist of a set of
actions in order to encode independent actions which may be concurrently executed.

In this thesis, an extension, called TR+ programs, is proposed to address the prob-
lematic issues of TR programs. The extension remains faithful to the basic concepts of
TR programs and its graphical representation. TR+ programs permit real-time operation.
concurrent actions, conditional expressions, and a level of expressiveness with conditions
and actions that was not conceivable with TR programs.

There are no clear rules for choosing conditions, actions and their combinations when
writing TR programs. Behavioral patterns of biological systems may provide pointers. A
certain level of experience needs to be obtained from experimenting with the TR formal-
ism before creating any TR programming rules. A start to defining a TR+ programming
methodology is to experiment with a particular application (e.g., mobile robot navigation)
within a specific control architecture (i.e., SPOTT). In the SPOTT control architecture, a
path planner operates alongside the TR+ interpreter. This alleviates the TR+ program
of the task of obstacle avoidance!” and actually simplifies the taxonomy of the required
functionality for mobile robot navigation. Section 2.2 provides guidelines for writing TR+

programs for mobile robot navigation within the SPOTT architecture.

17The TR program example in Figure 3.8 illustrates that it is difficult to guarantee successful operation of the
obstacle avoidance task when encoded in a rule-based system, such as TR or TR+.

54



CHAPTER 3. CONTROL: TELEC-REACTIVE+ PROGRAMS

2. Teleo-Reactive+ Programs

Nilsson’s TR formalism has been extended to handle the execution of TR programs in
real-time. Simulations using a virtual world, or simulating the concurrency of the execution
of TR programs is not adequate for evaluating this formalism. The real-time extension -
called TR+ - is a concurrent implementation using a message passing paradigm across a
network of computers.

Message passing software is used to distribute the computation of the conditions across
a collection of processors. The computational-processor resource management is handled by
a software package called PVM (Parallel Virtual Machine) (Geist et al., 1993). The TR+
program is interpreted by asynchronously scanning the list of active condition processes!®,
which are executed concurrently and independently!® of the TR+ interpreter.

TR programs do not permit condition expressions and more than one action to be
driven from a node. This has been remedied in the TR+ formalism. In the latter, a set
of actions can be performed in parallel or in sequential order. The concurrent operator is
specified by ||, and the sequential operator is symbolized by »~. The concurrency operator
forces the left and right side operands (i.e., actions) to be executed concurrently, while the
sequential operator orders the execution of the actions from left to right®0.

The necessity for providing the capability of executing actions in parallel originates from
the characteristics associated with solving the mobile robot navigation problem. There are
certain subproblems that are not dependent on each other and should be solved concur-
rently; namely, mapping, localization and the search for a goal destination. This is possible
in the SPOTT architecture because the parameters associated with these subproblems are
independent inputs to the local path planner. The local path planner accepts the robot
position (i.e., localization), the obstacles (i.e., mapping) and goals as independent inputs
from a TR+ program (see Figure 4.1). The capacity to execute different problems simulta-
neously is not possible in the original TR formalism. Recall that an action in a TR program
can either be a primitive (i.e., drives an actuator or updates a world model) or another TR
program (i.e., subroutine). Each TR program (i.e., main or subroutine) is interpreted by

the parallel computation of a hierarchically ordered set of condition processes in order to

8 The conditions that are part of the main TR+ program are always active. The conditions associated with
a subroutine are also active if the subroutine has been called on a regular basis by the main or another subroutine
program (see Section 1).

19 Although the condition processes depend on the TR+ interpreter for the start and termination of their
execution.

204 || B means that actions A and B are executed concurrently. A > B means that action A is executed first,
followed by action B, once action A has completed execution.
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determine which single primitive action (i.e., or subroutine) gets executed. The concurrent
operator - in the TR+ formalism - permits more than one primitive action to be executed in
parallel. This operator introduces a second level of concurrency to the original TR formal-
ism by providing the opportunity for many action primitives to be executed simultaneously.
The circuitry analogy for a simple TR+ program with a concurrency operator is illustrated
in Figure 3.10. The parallel operator is the major distinction between the TR+ and TR for-
malisms. The sequential operator is included to provide the programmer with the flexibility
of controlling the order in which actions are executed when dependency is important.

The execution time of some conditions may be slower than the time required for a
single TR+ interpreter to scan through the list of active conditions. A condition process is
computed at a certain frequency depending on its processing complexity. The TR formalism
assumed that the logical value of a condition value was always updated at each interpreter
cycle. In reality, this is not always possible. In the TR+ formalism, the logical value
associated with a condition process during its computation can either be set to its last
computed value or to FALSE. The latter is referred to as a ballistic condition, while the
former is called an energized condition. A TR+ condition’s computation frequency can also
specified by the programmer.

An expression of conditions is created by the logical operators AND and OR. Recently.
Benson and Nilsson (1995} have also introduced an AND operator to create an expression of
conditions in an extension to the original TR formalism. The TR+ formalism inciudes the
TR additions proposed by Benson and Nilsson (1995) as well as specifies AND (A) and OR
(V) based operators which permit the programmer to specify how and when the expression
is actually evaluated (i.e., see Tables 3.1 and 3.2 for the definitions of the TR+ condition
operators: A, Ay, V, Vi, A, A, V, and V,). The condition expression is either computed from
left to right (i.e., by using one of the A, A,, V or V, operators) or all condition processes are
evaluated in parallel (i.e., by using one of the A, A, V, or V, operators). If the expression
is evaluated from left to right, then when its logical value is known, no further conditions
are processed in the expression. For example, consider the expression AAB, which means
perform AA B and compute the expression from left to right. If A is false, B is not evaluated.
If A is true, B is evaluated. This provides the capability of turning off the computation of
certain condition processes subject to event states, and also saves computation time. If the
expression is rewritten as AAB, then A and B are evaluated concurrently, and once their
logical values are computed, the expression’s value is determined by the AND operation.

The A operator is used to specify a timeout on the evaluation of the expression. If the
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A

subroutine
program

main
program

subroutine
program

FIGURE 3.10. A TR+ Parallel Action and the Associated Circuit Semantics. In the
main TR+ program, TR+ subroutines A and B are executed concurrently. The execution of A and
B both culminate at any particular instance in the execution of a primitive action (i.e., 4,43 and Apga,
respectively). Current TRUE conditions are yellow and current active actions are red. The circuit
semantics analogy is used to show that all conditions are continuously evaluated, in addition to the
concurrent determination of two different primitive actions.

computation of the expression and its operands takes longer than a specified timeout period,
then the value of the expression is FALSE regardless of the computed logical values of the
operands. The A operator combines the ordering of the computation with the timeout
feature. Similar operators are available for the OR operator: V, V,, V, and V,. The truth
tables for the binary conditional operators are specified in Tables 3.1 and 3.2.
In addition to the two binary operators, there are two unary conditional operators:
the negation operator (—) and the empty set operator (0;) (see Table 3.3). The empty set
o7



4

CHAPTER 3. CONTROL: TELEO-REACTIVE+ PROGRAMS

Operator | Name AlB Result | Order of Computation
A AND T|T |T Concurrent
T|F F Concurrent
F{T |F Concurrent
F|F F Concurrent
Ay AND(elapsed) T|T |T* Concurrent
T|F F Concurrent
F|T |F Concurrent
F|F F Concurrent
A AND(sequential) T|T |T AB
T|IF |F A
F|{NC|F A
A AND(sequential.elapsed) || T | NC | T* A
T|F |F A
F|NC|F A

TABLE 3.1. Truth Table for the AND Binary Logical Operators. The operator works on
an expression composed of 4 and B. If the allotted time has elapsed, the asterisk * changes T (TRUE)
into F (FALSE). NC means that the condition is not evaluated.

operator performs no logical function but specifies a time limit for the computation of the
operand, which if not met, results in a logical FALSE being returned. If A is TRUE and
the computation of A took longer than a specified time limit, then 0,(A) will be FALSE.
Otherwise, 0;(A) is also TRUE. If A is FALSE, then @;(A) is always FALSE. The negation
operator changes the logical value of the operand to its opposite (e.g., from TRUE to
FALSE). If A is TRUE, then —(A) is FALSE, and if A is FALSE, then —(A4) is TRUE. In
both examples for the unary operators (i.e., #; and —), A can either be a condition primitive
or an expression of conditions.

As with the TR formalism, TR+ programs are represented graphically as TR+ trees.
The TR+ tree representation maintains the original TR tree description (Nilsson, 1992;
Nilsson, 1994) because it is simpler to visualize TR+ (or TR) program execution when arcs
and nodes each have a single meaning (i.e., actions and conditions, respectively). This is in
contrast to the extension proposed by Benson and Nilsson (1995) for graphically representing

an AND operation. In Nilsson’s extensions, the TR tree is changed such that all operands
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Operator | Name | A|(B Result | Order of Computation
\% OR T|(T |T Concurrent
TIF |T Concurrent
F|T |T Concurrent
F|F F Concurrent
V, OR(elapsed) T|T |T* Concurrent
T|F |T* Concurrent
FI|T |T* Concurrent
FIF F Concurrent
Y OR(sequential) T|[NC|T A
F|T |T AB
F{F |F AB
Ve OR(sequential.elapsed) || T | NC | T* A
F|T |T* AB
F|F |F AB

TABLE 3.2. Truth Table for the OR Binary Logical Operators. The operator works on
an expression composed of A and B. If the ailotted time has elapsed, the asterisk * changes T (TRUE)
into F (FALSE). NC means that the condition is not evaluated.

Operator | Name A | Result

- NOT T|F
F|T

0: NULL(elapsed) || T | T*
F|F

TABLE 3.3. Truth Table for the Unary Logical Operators. The operator works on the
expression (or primitive) defined by A. If the allotted time has elapsed, the asterisk * changes T (TRUE)
into F {(FALSE). NC means that the action is not executed.

which contribute to a particular condition are indicated by an additional arc to represent the
AND operation (see Figure 3.11a). In the TR+ tree, the AND or OR conditional expression
is fully expressed within a single node, but no arcs are sacrificed for explicitly displaying
the regression of the AND operands (see Figure 3.11b). It is assumed that the condition
which led to the left entering arc corresponds to the regression of the first operand in the
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conditional expression, and all subsequent arcs are the regressions of the corresponding

conditions specified by the ordering of the operands within the conditional expression.

ab
arcs not
used to "
represent
actions d

a) TR tree b) TR+ tree
{with AND nodes) {with AND nodes)
rules: A&B ->ab
D ->d
C ->C

FIGURE 3.11. TR extended vs. TR+ Trees for ANDing Conditions. (a) in the extended
TR tree formalism proposed by Benson and Nilsson {1995), arcs are sacrificed for explicitly representing
the regression conditions for A & B. (b) This is implicit for the TR+ tree.

The TR+ formalism defines a list of AND and OR condition operators that explicitly
encode the control of how the expression is evaluated. This is necessary for any real-time
scenario because it gives the TR+ program designer the flexibility of specifying how and
when the expressions are evaluated. This is in contrast to leaving it up to the discretion
of the interpreter, as is the case in the TR formalism. Furthermore. the TR+ formalism
permits concurrent primitive action execution which was not possible in the TR formalism.
Independent actions should be permitted to be executed in parallel. The formalization of the
operators used in a TR+ program gives the program designer the flexibility for specifying

precisely the behavior of the control program in a parallel implementation.
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2.1. TR+ Syntax

The syntax for a TR+ program based on the extensions to the TR program is expressed

as follows:

: <TR-Prog> :: (defseq <name> <arg-list>
: ((< Ky > nil)

: (< K; >< action — exp; >)

: (< K| >< action — exp, >))
)
: <K> :: <cond-exp> | <condition> <time>
: <cond-exp> :: <cond-u-op> <K> | <K> <cond-b-op> <K>
: <cond-u-op> :: - | 0,
: <cond-b-op> ::  A[VIAIV|A VAL Ve
: <condition> :: <energized-cond> | <ballistic-cond>
: <energized-cond> :: <condition-primitive>
1 <ballistic-cond> :: <condition-primitive>
: <action-exp> :: <action> <action-op> <action>
: <actiom-op> :: || >
: <action> :: <energized-action> | <ballistic-action> |
<action-exp>
: <energized-action> :: <action-primitive> | <TR-Prog>

: <ballistic-action> :: <action-primitive>

The < time> parameter associated with a <condition> in the definition for <K> is the
maximum allotted computation time for a condition before it is set to FALSE by default.
Similar to TR programs, the details of the specific condition and action primitives are

defined by the programmer.
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2.2. TR+ Programs for Robot Control

TR+ programs maintain the essential properties of TR programs. The extensions per-
mit greater flexibility in programming systems for real-time operation with a dynamic and
unpredictable environment. TR+ programs for navigation control within SPOTT are simple
because path planning and execution are not their responsibility. The role of the TR+ pro-
gram is reduced to the role of continuously providing the necessary inputs to the local path
planner, namely: the current obstacle configuration (i.e.. mapping), the current estimate of
the robot’s position (i.e., robot localization), and a goal specification (i.e.. destination). A
simple TR+ program which facilitates concurrent dynamic map creation and localization of
the robot, while striving to meet the task objective is shown in Figure 3.12. The map cre-
ation (new_object_positions_are(_)) and localization (current_robot_position_is(_)) condition
processes are based on sonar range data and were developed at CIM (Mackenzie & Dudek.
1994). In this example, the program continues executing until the task target has been
reached. The environment is mapped and the robot is localized, continually at a specified
frequency, while awaiting task completion. It is assumed that SPOTT’s local path planner
is responsible for performing obstacle avoidance and moving the robot towards the goal at
the same time while the TR+ program is executing. The role of the TR+ program is to
provide the necessary information to the path planner so that navigation can be carried
out.

A local path planner is used in conjunction with a TR+ controller because it is difficult
(i-e., probably impossible) to completely express obstacle avoidance as a collection of TR+
rules for all potential situations. Many possible obstacle avoidance contextual rules could
actually be encoded as TR+ behavioral rules, but there is no guarantee that all environ-
mental contexts would be captured. To overcome the combinatorial explosion of obstacle
avoidance rules, an independent concurrent module performs local path planning based on
a potential field technique. The latter is a representation based on a discretized grid of the
local map?! and avoids the combinatorial pitfalls associated with encoding all possible ob-
stacle avoidance situations in a rule-based system. A TR+ program executes by continually
providing goal, obstacle, and robot position estimate information - via the map database -
to the local path planner. which in turn is responsible for issuing trajectory commands to

the robot.

21 The local map consists of a local window into the architectural CAD map and the collection of newly sensed
features.
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is task target reached()

(Localize_the_robot() Il
Map_the_environment())

Map_the_environment()

*set object positions to(OBJECT_POSITIONS)

@osmons are(OBJECT_POSITIONS)

[}

nil

Localize_the_robot()

*set robot position to(ROBOT_POSITION)

current robot posmon istROBOT_ POSITION)

FIGURE 3.12. A Simple TR+ Program for Navigation to a Specified Location. A
TR+ tree for controlling a robot navigating towards 3 goal position, while concurrently building a map
and localizing the robot is shown. The asterisk * in front of a condition (e.g. set object position fo
and set robot position to) is used to signify that the condition is ballistic.
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SPOTT's organization (i.e., having a path planner function concurrently with the TR+
interpreter) helps define the role and structure of a TR+ program. SPOTT'’s local path
planner continually requires updates of the environmental configuration (i.e., obstacles).
the current estimate of the robot’s position, and a goal specification (i.e., destination). The
TR+ formalism permits the acquisition of this information in parallel.

The example in Figure 3.12 illustrated a simple TR+ program (consisting of a main
routine and two subroutines) that performed the basic behaviors necessary for navigation
control. This TR+ program assumed that the user has specified the spatial coordinates
of the goal. However, if the goal’s coordinates are not specified, then the TR+ program
would also be responsible for performing a search within the environment by creating an
ordered list of intermediate goals. In this case, the user might specify the goal as an object
description, and it would be up to the perceptual capabilities of the system to identify and
recognize it (i.e., using the QUADRIS sensor). The goal of the visual search is to position
the robot such that the desired object is located and recognized. Additional responsibilities
of the TR+ program include monitoring the homeostasis of the robot (i.e.. internal failures
such as battery failure, sensor failure) and assuring its safety. The latter is usually encoded
as reactive behaviors (i.e., fast responses to environmental stimuli). For example. SPOTT
uses the bumper and infrared sensors as a fail safe against obstacles that were not discovered
while mapping the environment with the sonar and QUADRIS range data.

Ethological studies (Tinbergen, 1951: McFarland, 1989) have also proposed hierarchical
control structures for modelling animal {e.g., birds, insects) behavior. The type of behaviors
modelled included survival, eating, defending, attacking and mating. The listed order is
usually how these behaviors were hierarchically organized. Robotics researchers have used
ethology as an inspiration to formulate behaviors for mobile robots such as wall following
(Connell, 1990; Gat, 1991b; Noreils & Prajoux, 1991), wandering (Anderson & Donath,
1991; Flynn & Brooks, 1988; Payton, 1986), obstacle avoidance (Watanabe ef al.. 1992;
Kweon et al., 1992), position estimation (Kadonoff et al., 1988), homing (Connell, 1990),
and fleeing (Flynn & Brooks, 1988). Many of these behaviors can be categorized as being
associated with the task of navigation??. The only exception is the fleeing behavior which is
a safety reaction to a looming dangerous situation (e.g., large object approaching). In order
to write an appropriate TR+ program, the two questions that the programmer must answer

are: (1) What are the behaviors? and (2) How are the behaviors organized hierarchically?

22 Wall following and wandering are a type of heuristic search strategy. Homing is a specification of the destina-
tion for navigation. Position estimation and obstacle avoidance are fundamentally necessary behaviors for navigation.
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As discussed earlier, the type of behaviors needed include navigation, safety, and home-
ostasis. Navigation can be further broken down into mapping, robot position estimation
and the search for the goal (i.e., if the spatial coordinates of the goal are not provided by
the user). A set of behaviors may be executed concurrently when there is no dependence
between them. Thus since there is no dependence between safety, homeostasis, and naviga-
tion, they may all be executed in parallel. An alternative may be to prioritize homeostasis
behaviors higher than safety and navigation. This is left up to the discretion of the TR+
programmer. Also, all of the navigation behaviors (e.g., mapping, localization, search) are
independent of each other, and may also be executed in parallel. Figure 3.13 illustrates the
form of a typical TR+ program for mobile robot navigation. The typical TR+ program
consists of a main program whose highest condition is the satisfactory completion of the
task command. The main program executes a collection of subroutines whose organization
is determined by the TR+ programmer, and is subject to constraints imposed by the de-
pendencies between the behaviors. In order to improve the clarity of understanding the
TR+ program, the subroutines should be organized hierarchically and modularly.

An example TR+ program?? consisting of a main routine and fifteen subroutines is
illustrated in Figures 3.14 to 3.22. This TR+ program is an example of mobile robot
control using SPOTT’s framework. For the task of navigation, writing a TR+ program is
relatively simple because all of the mentioned behaviors are independent of each other and
may be executed concurrently. This would not be the case if the manipulation of objects
were part of SPOTT’s task repertoire. In this situation, there would be a strong dependence
between manipulation and navigation (i.e., the robot has to be near the object before it can
manipulate it). The use of TR+ programs for providing event driven control in other fields
such as telecommunications, industrial process control, or manufacturing will require the

definition of the necessary behaviors as well as a determination of their inter-dependence.

23This TR+ program makes use of the independence of navigation, safety and homeostatic monitoring. The
navigation behaviors of mapping, robot position estimation and search are also independent of each other.
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A Typical TR+ Program

Main Subroutines

L

A Typical TR+ Main Program Safety

/’/' se e

Homeostasis

\\ oo e

Navigation [
[ N N
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F‘ -]

A Typical TR+ Main Program

FIGURE 3.13. A Typical TR+ Program for Mobile Robot Navigation. The typical
TR+ program consists of a main program whose highest condition is the satisfactory compietion of
the task command. The safety, homeostasis, and navigation behaviors may all be executed in parallel
because they do not depend on each other. An alternative may be to prioritize homeostasis behaviors
higher than safety and navigation. This is left up to the discretion of the TR+ programmer. Navigation
is further broken down into a set of behaviors (e.g., mapping, localization, search) that are independent
of each other, and may also be executed in parallel.
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is task target reached()
v
is the variable false(STATUS)

(Potential_Field_Maintenance() ll
Navigate(STATUS))

set variable to false(STATUS)

moving the robot failed()
il
status is FALSE(STATUS)

FIGURE 3.14. The Main Routine for 2 More Complicated TR+ Program. The mov-
ing_the_robot_failed() condition monitors the homeostatic (e.g., battery power, loss of radio control}

state of the robot. Currently it only monitors the state of the communication link. The robot will stop

if the target is reached or if a homeostatic failure is annunciated. The Potential. Field_Matntenance()
subroutine is shown in Figure 3.15 and the Navigate() subroutine in Figure 3.17.

Potential_Field_Maintenance() Mapping_the_environment()

(Map_objects_with_sonar() Il

(Localize_the_robot() It .
Map_objects_with_QUADRIS())

Mapping_the_environment())

FIGURE 3.15. TR+ Subroutines Responsible for Maintaining the Potential Field.
The local path planner (i.e., potential field) requires the current configuration of obstacles and the
position of the robot. Concurrently, the environment is mapped (i.e., Mapping.the_environment( )} and
the current estimate of the robot is updated (i.e., Localize_the.robot()). Mapping_the_environment()
can either be done with sonar data (i.e., Map_objects_with_sonar()) (see Figure 3.16) or with QUADRIS
range data (i.e., Map_objects_with. QUADRIS()) (see Figure 3.16).
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Map_objects_with_sonar()

*set object positions to(OBJECT_POSITIONS)

new object positions are(OBJECT_POSITIONS)

Map_objects_with_QUADRIS()

*set label positions to(LABEL)

B object labels are(LABEL)

FIGURE 3.16. TR+ Subroutines for Mapping. It takes between two to five seconds to collect
and process a dense sonar reading. Therefore, sonar data collection is less frequent than map updates
with QUADRIS data. The QUADRIS range data is collected every second (Bui, in preparation). The
frequency of sonar data collection is not only based on time, but is also dependent on the distance
travelled (see Chapter 6 for how distance travelled is used in conjunction with time in order to determine
the frequency of collecting sonar data).
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Navigate(STATUS) Monitor_Reactivity()

(Interpret_Task(STATUS) il }§ (Bumper_check() I
Monitor_reactivity()) Infrared_check())

FIGURE 3.17. TR+ Subroutines for Setting the Goals for Navigation. Nav-
igate(STATUS) is called from the main TR+ program (see Figure 3.14). It calls /Inter-
pret_Task(STATUS) which sets the goal or search strategy. Concurrently, Monitor_Reactivity()
monitors the bumper and infrared data for obstacle information which was missed by the sonar or
QUADRIS sensors (see Figure 3.18). Interpret_Task(STATUS) will call a search strategy which is
appropriate to the given a priori knowledge (i.e., CAD map is or is not available a priori). The search
strategy subroutines are in Figure 3.19.
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Bumper_check()

*(set object positions to(OBJECT_POSITIONS) I
set robot position to(ROBOT_POSITION))

Infrared_check()

*(set object positions to(OBJECT_POSITIONS}) i
set robot position to(ROBOT_POSITION))

infrared shows objects very close(OBJECT_POSITIONS ROBOT_POSITIO

FiGURE 3.18. TR+ Subroutines for Performing Reactivity. Bumper_check() will update
the potential field of the newly discovered obstacle (OBJECT_POSITIONS) and move the robot
(ROBOT-POSITION) slightly away from the obstacle. The potential field will be made aware of the
change in robot position via the map database. Infrared_check() functions in a similar fashion.
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Apriori_map_task(STATUS)

Random_search Direction_search . Search_the_map_environment
(STATUS) (STATUS) (STATUS)

task has task has is task target NOT (is task target

no destination no destination location known() location known())
no direction() just direction()

No_apriori_map_task(STATUS)

Random_search Direction_search . Random_search
(STATUS) (STATUS) (STATUS)

task has task has

N L. i ~ (is task target
no destination no destination is task target ( rg

location known() location known())

no direction() just direction()

FIGURE 3.19. TR+ Subroutines for Deciding Search Strategies. Apri-
ori_map_task(STATUS) is called if a CAD map is available a priori; otherwise
No_apriori_map_task(STATUS) is called (see Figure 3.17). Both of these subroutines further
break down the task command specified by the user in order to determine the search strategy. The
search strategy can either be random (i.e.. Random_search(STATUS)) (see Figure 3.22), initiated by
visiting each room in the CAD map systematically (i.e., Search_the_map_environment(STATUS))
(see Figure 3.20), or defined by a spatial preposition specifying a direction (e.g.. left, right, north)
(i.e., Direction_search(STATUS)) (see Figure 3.21).
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Search_the_map_environment(STATUS)

set variable to false | set variable to false remove intermediate target
(STATUS) (STATUS) (INTERMEDIATE_TARGET)

door not open all room targets explored is intermediate target reached
(INTERMEDIATE_TARGET) (INTERMEDIATE_TARGET) (INTERMEDIATE_TARGET)

set intermediate target to
(INTERMEDIATE_TARGET)

(is intermediale target set
(INTERMEDIATE_TARGET)
V(->)
find a new room
target(INTERMEDIATE_TARGET)

FIGURE 3.20. TR+ Subroutines for Performing Room Search. The user specifies a
description of an object to be found. The object’s spatial location is unknown. The search for the
object is based on setting intermediate goals specifying the rooms in the CAD map. The condition
find_a_new_room_target(_) keeps track of the previcusly visited rooms and selects 3 new room to visit.
The condition all_room_targets_ezplored(.) is TRUE if all the rooms have been visited. in this case,
the search fails, the STATUS variable is set to FALSE, and is propagated back to the main routine (see
Figure 3.14), causing the TR+ program to stop execution. The TR+ program assumes all doors are
open to start with. If a door is closed (door_not_open), the execution also stops. In this case, the user
would have to open the door and restart the execution of the program. Alternatively, the subroutine
can be rewritten such that the room with the closed door is ignored and returned to after all the other
rooms have been searched.
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Direction_search(STATUS)

remove intermediate target(INTERMEDIATE_TARGET)

@e target reached(INTERMEDIATE_TARG

set intermediate target tol INTERMEDIATE_TARGET)

is intermediate target se{ INTERMEDIATE_TARGET) V(-5
find new direction target{INTERMEDIATE_TARGET))

FIGURE 3.21. TR+ Subroutines for Performing Intelligent Teleo-Operation. An
intermediate target is set based on a directional spatial preposition (e.g., left, north) which is defined
by the user as part of the task command (see Figure 3.19). An intermediate target is set in the
specified direction at a particular distance (e.g., 2 m) away from the current position of the robot.
The is_task_target.reached() condition in the main routine (see Figure 3.14) will be TRUE if there
is an obstacle that intersects the line formed by joining the robot position with the position of the
intermediate goal (i.e., if a direction is specified as part of the task command). The robot will move
in the desired direction until an obstacle is encountered.

Random_search(STATUS)

remove intermediate target{ INTERMEDIATE_TARGET)

G mtermediate trget reached INTERMEDIATE_TARG

l

set intermediate target to(INTERMEDIATE_TARGET)

is intermediate target set(INTERMEDIATE_TARGET) V(->
find new random target( INTERMEDIATE_TARGET))

FIGURE 3.22. TR+ Subroutines for Performing Random Search. This subroutine per-
forms a random search of the environment by setting destinations that are generated by a random
number generator. There is no guarantee that the environment will be fuily explored. This subroutine
is called when there is no CAD map available a priori (see Figure 3.19).
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CHAPTER 4

Path Planning

Path planning is not done using the TR+ controller because it is difficult to completely
express obstacle avoidance as a collection of TR+ rules for all potential situations. Many
possible obstacle avoidance contextual rules could actually be encoded as TR+ behavioral
rules, but there is no guarantee that all environmental contexts would be captured. To
overcome the combinatorial explosion of obstacle avoidance rules, SPOTT uses an indepen-
dent module which performs local path planning concurrently with the execution of a TR+
program (see Figure 4.1).

Path planning is the guidance of an agent - a robot - from a source to a destination, while
avoiding all encountered obstacles. A robot must not only be able to create and execute
plans, but must be willing to interrupt or abandon a plan when circumstances demand it
(Georgeff & Lansky, 1987). In traditional AI planning, a smart planning phase constructs
a plan which is carried out in a mechanical fashion by a dumb executive phase. The use of
plans regularly involves rearrangement, interpolation, disambiguation, and substitution of
map information. Real situations are characteristically complex, uncertain, and immediate
(Agre & Chapman, 1987). These situations require that the planning and the execution
phases - of at least one of the planners - function in parallel, as opposed to the serial ordering
found in traditional Al planning.

Path planning can be categorized as either being static or dynamic, depending on the
mode of available information (Hwang & Ahuja, 1992). A static path planning strategy is
used when all the information about the obstacles is known a priori. Most path planning
methods are static. The path planning is dynamic when no or partial information is available
about the obstacles a priori. The environment can also be unpredictable and time-varying.
Dynamic path planning is problematic because the path needs to be continually recomputed

as new information is discovered.
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USER SPOTT

PATH
PLANNING
- Global Path Planner
*  LOCAL PATH PLANNER
g (coarse molmion)l stoe
GOAL m
COMMANDS f\i lj gradien
intermediate goals, (fine resolution) d
————am ) obstacies, & ) e ahable
) robot position, POTENTIAL resolution)
FUNCTION
override al POTENTIAL FUNCTIONS
. fleid lhoqulrod. -~
PERCEPTION
MODELLING

ACTUATORS

_ENVIRONMENT

SENSORS

FIGURE 4.1. Path Planning Within SPOTT The goal specification is given as input by
the user. If an a priori CAD map exists, it is loaded into the Map Database. The role of the TR+
program is to provide the local path planner {i.e., potential field) with the necessary information for
computation, such as obstacle configurations and the current robot position. The TR+ program
continually computes this by processing sensor data. As the path is being computed, another module is
responsible for concurrently performing steepest gradient descent on the potential function in order to
determine the local trajectory for the robot. In order to guarantee proper control, there is a collection
of potential functions computed at varying resolutions. The finest resolution potential function that
has converged to its solution is used for trajectory generation. The TR+ program can also override
this trajectory generation. This usually occurs for safety reasons when there has to be a quick response
to sensory stimuli indicating a dangerous situation for the robot.

Continuous navigation is workable if trajectory commands are issued concurrently with
the plan computation, or the computation is faster than the rate of change in the envi-
ronment. SPOTT’s local path planner concurrently computes and executes the plan. The
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robot controller solicits trajectory commands from the local path planner at the same time
the path is being computed. There is no guarantee on the correctness of the trajectory
commands before the computation has converged to the solution for the current configura-
tion. In order to address the correctness of the trajectory, a type of *anytime algorithm”
(Mouaddib & Zilberstein, 1995) is used, which trades off accuracy! of the solution versus
computation time. A collection of local path planners at varying spatial resolutions are
executed. The finer the resolution, the more time the computation requires. It is assumed
that the computation speed of the path planner at the coarsest resolution is faster than
the rate of trajectory-command requests. The coarsest resolution local path planner is used
first, and the finer resolution local path planners will eventually be used once their computa-
tions have converged to their respective solutions, provided that there have been no sensed
environmental changes. SPOTT’s local path planner uses the potential field approach to
implement such a strategy for dynamic path planning.

The potential field approach applies a function over a discrete grid consisting of a
configuration of obstacles and goals, and the path is determined by performing gradient
descent on this function. SPOTT uses a specific type of potential function called a harmonic
function. This function has the desirable property of no local minima (Connolly & Grupen.
1993; Tarassenko & Blake, 1991). If at least one path exists to a known destination, the
path planning strategy is guaranteed to find a path to that goal (Doyle & Snell, 1984).
A harmonic function is the solution to Laplace’s equation. The important contributions
of the described harmonic function potential field approach for local path planning are
(1) the guaranteeing of proper control with a collection of potential functions at varying
resolutions, (2) limiting the extent of the potential function? and sliding its bounds when
the robot moves around the environment, and (3) an implementation which separates the
computation from the control®.

SPOTT is able to guarantee task completion® because of the collaboration between the
local (potential field) and global {Al-based) path planners. The two planners function in
parallel at different time-scales. The local path planner is in a control feedback loop with
the robot and environment, and its response time to sensory input is crucial to the real-

time operation of the robot. It dynamically reacts to changes in the map database which

I'The path produced is based on visiting neighboring grid points in a discretized grid. The finer the grid spacing,
the more accurate the path.

2This is necessary because the harmonic function is a rapidly decaying function and its computation time
increases exponentially in direct proportion to the number of grid elements.

3Trajectory commands are solicited at the same time the potential function is computed.

4SPOTT is able to guarantee task completion when the location of the goal is known and a CAD map is availabie
a priori.
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is continually updated by the behavioral controller. On the other hand, the global path
planner uses states which change at a slower rate. These states are the current and potential
physical locations of the robot with respect to nodes in an abstract graph structure, where a
node is a room or a hallway portion. The global planning module advises the local planning

module of the local effects of a global goal.

77



CHAPTER 4. PATH PLANNING

1. Path Planning Approaches

Path planning usually requires that a map (e.g., a CAD map of the indoor environment
fused with sensor data that is continually being acquired) be transformed into a graph
structure, which is then searched for a path. This can be achieved by parcelling the map
into equally - or unequally - sized convex3 polygonal regions®. Nodes are used to represent
the regions, and edges connect nodes that share part or the whole of a common boundary.
Each node and edge is labeled as passable or impassable, and a search is initiated to find a
path through passable nodes via passable edges from a start to stop node.

There are three main approaches to path planning (Hwang & Ahuja, 1992) identified
in the literature.

(i) The roadmap method captures the connectivity of the robot’s free space’ in a

network of one-dimensional curves - called the roadmap, r - lying in the free space.
Path planning is reduced to connecting the initial and goal configurations to points
in r and searching r for a path between these points. Two common roadmaps (also
called a skeleton) are the wisibility graph and the Vornoi diagram. The visibility
graph is the collection of lines in the free space that connect visible® features (e.g..
object vertices) to one another. The Vornoi diagram is defined as the set of points
that are equidistant from two or more object features.

(ii) The cell decomposition method decomposes the robot’s free space into simple re-
gions called cells. A non-directed graph representing the adjacency relation between
the cells is then constructed and searched. The adjacency relation is represented in
a graph form called the “connectivity graph”. There are two types of cell decompo-
sition methods.

(a) The “ezact cell decomposition” approach treats the union of all the cells as
exactly equal to the free space.

(b) In the “approzimate cell decomposition” approach, the cells are a predefined
shape (e.g. rectangles), whose union is strictly included? in the free space. It

is not necessary for the boundary of a cell to have a physical meaning.

51t is not necessary for the regions to be convex, but this is usualily the case.

SSPOTT’s local path planner parcels the map into equally sized square regions (see Section 3.2). Its global path
planner parcels the map into larger unequally sized rectangular regions (see Section 8). In the global path planner’s
representation, the edges represent access ways (e.g., doorways) between nodes.

7The set of passable nodes.

8Two features are wisible if a straight line that connects them does not intersect any objects.

9The union of all the shape cells is less than or equal to the free space. If part of an object is contained in one
of the shape cells, than that shape cell is identified as being occupied.
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(iii) The potential field method is a member of the family of “approzimate cell decom-
position techniques. Its configuration space!® is discretized into a fine regular grid.
For a point robot, the configuration space is identical to the world space!! (Hwang &
Ahuja, 1992). The grid elements, occupied wholly or partially by objects, are satu-
rated positively for obstacles or negatively for goals. The space left after the removal
of the objects is the free space. The potential function in the free space!? has values
that are bounded by (but not equal to) the positive and negative saturation values.
This grid is searched for a free path. The term potential field corresponds to the
negated gradient vector field, —VU, of a potential function UU. The path is usually
determined by performing steepest gradient descent on the potential function. The
potential function in essence captures all the achievable paths from every possible
starting location in the free space. There are no extra computations required if the

estimated position of the robot is corrected (i.e., localized).

10X configuration of an object or robot is a set of independent parameters compietely specifying the position of
every point of the object or robot. The space of all possible configurations is called the configuration space (C-space).

1I'The world space refers to the physical space in which robots and obstacles exist.

12The potential function is only formulated in the free space.
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2. Dynamic Path Planning Problem

The dynamic path planning problem extends the basic navigation planning problem
(Latombe, 1991). The preliminaries and assumptions of the dynamic path planning problem
are as follows:

e Let R be a single rigid object - the robot - moving in a Euclidian space E, called
the environment. represented as RV, with N = 2. Only 2D motion is considered.
however the concepts apply to higher dimensions, where N > 2.

o Let (3,...,0n be either fixed (or moving rigid) objects distributed in £. The positions
(and dynamics) of an object 3; may or may not be known a priori. The free space
of the robot is the allowable space for navigation and is obtained by subtracting all
the §; models from the environmental space R2.

e Assume that both the geometry of R, 3,,..., 8, and the locations of the G;’s in E
can be approximated to within a certain predefined degree of slack or tolerance.
Assume further that the only kinematic constraint that limits the motions of R is
the two-dimensional plane on which it navigates.

Given the above definitions and assumptions, the dynamic path planning (see Figure 4.2)
problem is defined as follows:

e Given an initial position and orientation (gs,r¢) and a goal position and orientation
(ggoat) of R in E, generate a path 7 specifying a continuous sequence of positions
and orientations of R, avoiding contact with the §;’s, starting at the initial position
and orientation, and terminating at the goal position and orientation. As the robot
navigates. the (;’s may be known a priori, appear suddenly, disappear suddenly,
remain unchanged, or be dynamic!? (see Figure 4.2). It can be further assumed that
R is circular and specifying the orientation of R is not a problem!*. The orientation
of the goal does not necessarily need to be attained. Failure is reported if the goal
is unattainable in the current environment, or if the position of R is lost, or if the

obstacles 3;'s in the environment E cannot be monitored with sufficient detail.

13However, at this moment SPOTT is only able to treat the case where objects suddenly appear. If the location
of appearance is not where a current object is situated, the model associated with the newly discovered object is
added to the map database. Extending SPOTT's local path planner to include dynamic object models is an issue for
future research.

14The robot can be modelled as a point, as long as it is symmetrical and circular. In order to compensate
for this, all features in the environment are padded by a size equal to half the robot’s diameter (i.e., 26 c¢m) in all
directions (i.e., a line becomes a rectangle). In addition, to compensate for the uncertainties associated with the
position of the sensed features and the robot, a potential error factor which is equal to one quarter the diameter of
the robot (i.e., 13 cm) is added to all obstacles in all directions.
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Agoal B
32 unknown a priori
unknown a priori /
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FIGURE 4.2. Dynamic Path Planning Problem. Given an initial position and orientation
(gstare) and a goal position and orientation (gg0q:) of Rin E, generate a path T specifying a continuous
sequence of positions and orientations of R avoiding contact with the 3;'s, starting at the initial position
and orientation, and terminating at the position and orientation of the goal. As the robot navigates,
the 8,'s may be known a priori, appear suddenly, disappear suddenly, remain unchanged, or be dynamic.

There may be many different paths from the initial starting position to the goal. The

task is to attain a plausible path, which may be the optimal path, but not necessarily!®.

I5SPOTT’s local path planner uses a potential field approach. A harmonic function is used as the potential
function and it is equivalent to a probability function representing random walks on 2 Markov chain (Doyle & Snell,
1984). It can also be interpreted as representing a hitting probability (Connolly, 1994). Steepest gradient descent on
this function produces an optimal path in the sense that the robot is positioned at locations which maximally reduce
the hitting probability (see Section 35).
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3. Path Planning Using Potential Fields

A potential function is formulated in the free space such that obstacles appear to exert
negative potentials and goals, positive potentials. It can either be a heuristic combination
of functions or a single function superimposed onto the configuration space. In the heuristic
approach, the potential function is the sum of a collection of potential functions emanating
from the obstacle and goal models (Khatib, 1986). The potential function emanating from

an obstacle is usually modelled as a symmetrically decaying function (i.e., Gaussian. %, r%).,

and the potential function radiating from a goal is a symmetrically increasing function!®.
An example of the second approach is to compute a harmonic function over the free space.
This function is a solution to Laplace’s equation and is used to model various physics-based
problems such as laminar fluid flows around solid obstacles and current flow in a conducting

medium interspersed with nonconducting holes.

3.1. Biological Inspiration

The potential function has been used to model biological behavior associated with
navigational path planning. Arbib (1987) developed a neural model to try to explain the
behavior of a frog when presented with a worm as a goal and a fence as an obstacle. The
models were used to explain visual orientation and the choice of trajectory movement.
and both took on a form similar to the usual potential field. Physiological studies in
primates have also found various neural representations - similar to potential fields - in
the subcortical areas of the brain which encode saccades!” and covert attentional shifts
(Robinson & Petersen, 1992). Connolly and Burns (1992) suggest that another subcortical
area in the brain - the basal ganglia - may be an important locus for the mechanisms of
harmonic function computation. They hypothesize that this function may be used in the

planning of goal-oriented and obstacle-avoiding behavior in biological systems.
3.2. Formulating a Potential Function

Every object §;, 1 = 1 to n, in the workspace E maps into a region of C (the
configuration-space). The objects are modelled in 2D space as either points, lines, ellipses,

or rectangles!'®. The union of all the object models is called the object space:

n
(4.4.1) Cotject = | Bi

=1

16 Usually the inverse of the function used for obstacles.
17Sudden eye movements.
180ther two-dimensional models may also be used, such as an n-sided polygon.
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The region specified by removing the union of all object model regions is called the free

space:

(4.4.2) Cree = C = Cotgecr = C — | J B:

=1
Let pypqr be the maximum value of the potential function, and ppy,, be the minimum value
of the potentia! function. These are referred to as the saturation values. Let e be the
discretization of the potential field space (in 2D. e = (z,y)). All object model regions.

whether obstacles or goals, are represented as saturated values in the potential function:

(4.4.3) Clz.y) = Pme= (z.y) C Bi, B; = obstacle

Pmin, (2.y) C Bi, B = goal
The potential function is defined for every point (i.e., grid element) in the free space. The
potential field is derived by taking the gradient at every point in the potential function. The
gradient represents the velocity vector which is used to locally control the robot. The net
result of a goal model is to generate an attractive potential which pulls the robot towards
the goal. In contrast, an obstacle model produces a repulsive potential which pushes the

robot away from the obstacle.
3.3. Summation of Potentials Approach

In the summation of potentials approach, the potential function is created by summing
together attractive potential functions for each goal model and a repulsive potential function
for each obstacle model. Uy, is called the attractive potential associated with a collection

of goal configurations SBgoa::

g
(4.4.4) Uate(z.y) = D _(Uar, (2, ))

=1
Urep is called the repulsive potential associated with a collection of obstacle configurations
(Bobstacte):

n.j¥goal

(4.4.5) Urep(z,3) = > (Usep, (2. 3))

J=1

Let U be the artificial potential function in the free space Cy e, constructed as the sum of

obstacle and goal potential functions:
(4.4.6) U(z,y) = Uau(z,y) + Urep(zs y)

The elementary potential function for an obstacle is in the form of a decaying function
emanating from the obstacle’s geometric model. Examples of such a function are a Gaussian,
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l or -y (where 7 is the distance from the object model). The attraction potential function

is a mirror image of the repulsive potential function:

(4.4.7) Uatt, (z.y) = ‘UrepJ (z,y)

The potential function created using the summation of potentials approach can have
a local maximum or minimum in places that are not desirable. A local maximum is only
appropriate in locations that correspond to obstacle models (i.e., outside of the free space).
and a local minimum should only occur at the location of the goal model. When two object
models are closely positioned, the summation of their emanating potentials creates a local
maximum (see Figure 4.3). Similarly, a local minimum can occur when summing two closely

positioned goal potentials.

local
maximum

il .Jé’l"l“
lumﬂ}}k-‘ m +

'mmmh‘u}lgi’uu.g\\;

FIGURE 4.3. Summation of Potentials: Close Objects. The potential function U is created
by summing the obstacle potentials Ur.p with the goal potentials Uz When two obstacles are closely
positioned, the potential resuiting from the summation creates a local maximum, as shown above.

A method for minimizing this phenomenon is to use the maximum value as opposed

to the summation when combining obstacle potentials, and to use the minimum when
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combining goal potentials:

J {
Urep(z,y) = max}2F9°(Urep, (z,y))

(4.4.8)
Uaee(z.y) = min?=1(Uatt;(Iv y))

See Figure 4.4 for an example of a potential function created using equation 4.4.8. Equa-
tion 4.4.8 does not guarantee that no spurious local minima will occur. but reduces their
probability of occurrence. The calculations required are also no more complex than those

in Equations 4.4.4 and 4.4.5.

local
maximum

Y
; g
4‘1{=lmmh‘ :| lnl ] .. . +

Uatt

FIGURE 4.4. Maximum Summation of Potentials: Close Objects. The potential function
is created by summing the obstacle potentials with the goal potential. The obstacle potential is created
by taking the maximum value of all contributing obstacle potentials. Even with this combination
strategy, the potential resulting from the summation creates a local maximum, when two objects are
closely positioned. The maximum is less than the one shown in Figure 4.3, but it still exists.

The advantages of using a heuristic potential approach (i.e., such as the summation

of potentials approach) is that the computations are simple enough so that it can be im-
plemented as a real-time planning procedure. Path planning is executed by performing
gradient descent on the potential function. In general, the potential field method removes
the need to reason about the topological relations of objects, as this is inherent in the po-
tential field control mechanism. The disadvantage of using the heuristic potential function
85



CHAPTER 4. PATH PLANNING

as the sole control mechanism is that local minima - other than the goal minimum - may
be present.

There are several methods of path planning which use the heuristic potential function
created by the summation of potentials approach (Latombe, 1991). The depth-first planning
technique is essentially the steepest gradient descent method. It escapes local minima using
heuristic methods, which may not always succeed. A simple heuristic action to take is to
traverse around the object’s perimeter (Choi & Latombe, 1991). The best-first planning
technique uses a steepest descent method; however when a local minimum is reached, the
planner backtracks out of the local minimum and follows the next best potential gradient.
The variational approach employs a functional J of a path 7 and this is optimized over all
possible paths. The best-first planning and variational techniques are guaranteed to find a
solution at the expense of a potentially costly search which includes backtracking. This is
in direct contrast to the inexpensive execution cost associated with the steepest gradient
descent method. It is fast because it asks for very little interpretation of the potential
function.

Other ways of dealing with local minima are to alter the potential function so as to
minimize or eliminate local minima. Some researchers (Arkin, 1993; Gat, 1992) minimize
local minima by specifying goals as a set of piecewise linear trajectories. In a similar fashion,
Krogh and Thorpe (1986) find a sequence of critical points along a globally observed path,
which are first computed and set as goals in a potential function. The critical points are
selected so that the chances of getting stuck in a local minimum are minimized.

Another method of avoiding local minima is to control the potential function, by using
spherical models for the objects (Rimon & Koditschek, 1990). If all objects are modelled
as spherical regions, the problem is to construct a diffeomorphism that deforms a given set
of obstacles into a set of spherical regions. However, this is not always possible.

The existence of local minima is a concern when using a heuristic potential function as
the input to a path planner. Ideally, it is desirable to have a potential function that has no
local minima. This type of function can then be safely used for trajectory control by using

the simple steepest gradient descent method.
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4. Harmonic Functions as Potential Functions

A potential function which has the desirable property of no local minima is the Har-
monic function (Connolly & Grupen, 1993; Tarassenko & Blake, 1991). If at least one
path exists to a known destination location, steepest gradient descent on this function is
guaranteed to find it (Doyle & Snell, 1984).

A harmonic function on a domain 2 C R" is a function which satisfies Laplace’s

equation:
2, 8¢ _
(4.4.9) V2 = Zi:l—-éza;? =0

The value of ¢ is given on a closed domain 2 in the configuration space C. A harmonic
function satisfies the Mazimum Principle and Uniqueness Principle (Doyle & Snell, 1984).

The Mazimum Principle guarantees that there are no local minima in the harmonic function.

DEFINITION 1 (Maximum Principle). A harmonic function f(z,y) defined on Q takes on

its mazimum value M and its minimum value m on the boundary.

The Uniqueness Principle guarantees that there is a unique solution to Laplace’s equa-

tion for a given configuration.

DEFINITION 2 (Uniqueness Principle). If f(z.y) and g(z,y) are harmonic functions on Q
such that f(z,y) = g(z.y) for all boundary points, then f(z.y) = g(z,y) for all z.y.

The harmornic function has two physical analogies. In the first instance, obstacles
are modelled as nonconducting solids in a conducting medium. The boundaries of the
obstacles and 2 are current sources and the goal is an equal and opposite current sink
(Tarassenko & Blake, 1991). Integral lines of the current field form feasible paths for
navigation. Alternatively, obstacles are modelled as solids immersed in a laminar fluid fow.

The feasible paths are the streamlines of the fluid flow.

4.1. Computing Harmonic Functions

Laplace’s equation is solved in a two-dimensional domain when used as a potential
function for navigational path planning on a 2D planar surface. The domain is defined by a
local extent and a collection of obstacle and goal models. Navigation is confined to the free
space which is delineated by the obstacle and goal model boundaries and the closed domain
boundary of Q2. The harmonic function can be iteratively computed by taking advantage of
its inherent averaging property: the value of any point in the free space is equivalent to the
average of its neighbouring points. Numerical solutions for Laplace’s equation are obtained
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from finite difference equations (Hornbeck, 1975). The following expression for Laplace’s
equation is obtained by combining a Taylor series expansion for a forward difference and

backward difference equation:

Vulij = uzzlij + tyyli;
(4.4.10) = (Wistj + ity — 2uij) + (Wije1 + wij—1 — 2ui;) + O(h?)
= Uipry + Yoty F UGt F U1 — Ui+ O(h?)
The sampling ratio is h, where h = Az = Ay. If n; and n, are the dimensions of {2, then
1

Az = nl—, and Ay = -. When Laplace’s equation - uzz + uyy = 0 - is approximated using

Equation 4.4.10, the error term - O(h?) - is omitted, resulting in the implicit relation!®:
1
(4.4.11) Uj = Z(Ui+1.j +Uic1j + Uije1 + Ui j—1)

Equation 4.4.11 can be used to perform an iterative computation subject to a given set of
boundary conditions. This computation converges to the harmonic function which is the
solution to Laplace’s equation.

A more accurate expression for Laplace’s equation can be obtained in a similar fashion.

utilizing the neighbouring diagonal elements (van de Vooren & Vliegenthart, 1967):

Viufij = 3(ivr + o1y + ijer + %ij-1)
(4.4.12) + 95 (Wit 1 gl + Bictje1 + Bioljo1 + Uit 1)
+uij + O(h®)
In Equation 4.4.12, the error term is a lot smaller than in Equation 4.4.10. Omitting the

error term, the implicit relation for the nine-point kernel is written as follows:

Uij= $WUisty+Uiorj +Uijir + Ui 1)

(4.4.13) )
+a35(Uisrj+1 T Uicrje1 + Uinrj-1 + Ui 1)

The nine-point kernel gives smoother?® intermediate results during the iterative computa-
tion as compared to the five-point kernel.
The computation of the harmonic function can be formulated with two different types

! is where u is given at each

of boundary conditions. The Dirichlet boundary condition?
point of the boundary. The Neumann boundary condition is where g%, the normal com-
ponent of the gradient of u, is given at each point of the boundary. In order to have flow,
there has to be a source and a sink. Thus, the boundary of the mesh is modelled as a

source, and the boundary of the goal model is modelled as a sink. The boundaries of the

19The exact result at nade (i,j) is denoted by u; ;, and the approximate value by U, ;.

20This is because the error term is smaller in formulating the nine-point kernel compared to the five-point kernel.

21 This inherently makes all applicable boundary points into sources (i.e., in terms of sources and sinks for
modelling liquid flow).
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obstacles are modelled according to the type of boundary condition chosen: Dirichlet or
Neumann. If the obstacle boundaries are modelled using the Dirichlet boundary condition,
then they are also considered sources. Otherwise (i.e., for a Neumann boundary condition),
only the gradient at the obstacle boundary is defined and it is not a source. The harmonic
function has different properties which depend on the type of boundary condition used in
its formulation. The solution to a Dirichlet boundary condition problem has exponential
decay emanating from the goal. This causes some values to be unexpressible in a memory
address of a thirty-two-bit computer (Tarassenko & Blake, 1991). This is especially evident
with long corridor features. In this case, the maximum computable length-to-width ratio
for a thirty-two-bit computer is approximately 7.1 to 1 (see Appendix A for the derivation).
The Neumann boundary condition causes steepest gradient-descent paths to graze the ob-
stacle boundaries (see Figure 4.5). This is because for Neumann boundary conditions, an
obstacle’s neighbouring points do not depend on the obstacle boundary point’s value in
their calculation. For example, if U; ; is the bordering point, and U; j4| is the boundary
point, the Neumann condition implies that the gradient in the direction of the bordering
point - U;; — U; 41 - is zero. Inserting this condition in Equation 4.4.11 results in the
following equivalence for the bordering point: U;; = fl;'(Ui—l,j + Uis1,; + Ui j—1). Therefore,
Ui j+1 has no influence on the value of U; ;. This has the effect?? of pulling the steepest
descent gradient path towards nearby obstacles. In contrast, the Dirichlet boundary con-
dition results in paths which are smooth and do not brush up against obstacle boundaries
(see Figure 4.6). Non-grazing robot trajectories are more desirable because this permits a
greater tolerance for errors in the modelling of object boundaries. It has been suggested
to use a combination?® of the Dirichlet solution and the Neumann solution (Connolly &
Grupen, 1993). However, this will not override the problem of properly representing the
Dirichlet solution in a thirty-two-bit computer, as the Dirichlet component’s effect on the
solution will be negligible in long corridor environments. The Neumann solution can also
have a rapidly vanishing field problem, but the exponential decay is slower than the Dirich-
let solution. Limiting the extent of the potential function boundary (i.e., making it a local
path planner) permits the use of Dirichlet boundary conditions.

There are three ways of speeding up an iterative computation of a harmonic function:

(1) speeding up the time for a single iteration; (2) reducing the number of iterations; and

22The reason why an obstacle attracts a steepest gradient descent path when using the Neumann boundary con-
dition can be shown by observing the equivalence of the equation U;,; = %(U._ 1j +Uis1,,+U ;-1) to Equation 4.4.11
multiplied by # with U, ;4 set to 0 (i.e., a goal attractor).

23The linear combination of harmonic functions is also a harmonic function (Axler et al, 1991). Harmonic
properties are also preserved under dilation, translation, scaling and with applying a bias.
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FIGURE 4.5. Potential Field Using Neumann boundary conditions. (a) shows the equal-
potential contour plot of the potential function and various generated paths using steepest gradient
descent from different starting points. The paths closely follow the obstacle boundaries. (b) shows
the mesh diagram of the potential function. The obstacles are distinguishable from the rest of the
potential because for Neumann boundary conditions, an obstacle’s neighbouring points do not depend
on the obstacle boundary point’s value in their calculation.

(3) providing a good initial guess to the solution when initiating the computation for a
particular configuration. The time for a single iteration can be reduced by parallelizing
the computation (see Chapter 6 for a discussion of the implementation issues). There is
a collection of techniques called “Methods-of-Relazation” (Hornbeck, 1975; Ames, 1992)
which reduce the number of iterations. A good initial guess to the computation can be
obtained by using the summation of potentials technique which was discussed earlier in

Section 3.3.

4.1.1. Number of Iterations Reduced by Methods-of-Relazation

The simplest method-of-relaxation is called the Jacobi method?*. It has a slow conver-
gence rate and is rarely used. The basic single step of the iteration consists in replacing

the current value U(~1) by the improved value®® U%), which is obtained as follows for the

24 Also called “iteration by total steps™, and the “method of simultaneous displacements”.
'-’-"U‘.(j) is written such that the superscript - k - is the iteration index and the subscript - i, - is the spatial

position (i,j).
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(a) (b)

FIGURE 1.6. Potential Field Using Dirichlet boundary conditions. (a) shows the equal-
potential contour plot of the potential function and various generated paths using steepest gradient
descent from different starting points. The paths do not graze the obstacle boundaries. {b) shows the
mesh diagram of the potential function. The obstacles are barely distinguishable from the rest of the
field in the mesh diagram because the obstacle’s neighbouring points are near the saturated value that
represents the obstacles. This can be explained by viewing the potential values, when using Dirichlet
boundary conditions, as representing hitting probabilities (i.e., the probability of hitting an obstacle
before arriving at a goal when initiating a random walk from the location in question) (Doyle & Snell,
1984; Connolly, 1994). The hitting probability of a point near an obstacle boundary wiil be very close
in value to the hitting probability of an obstacle point.

five-point kernel:

K _ Lo k- k- k-1 k-

(4.4.14) Uy = W) + U + UG + USTY
Similarly, the basic single step of the iteration can be written as follows for the nine-point
kernel:

(k) _  1¢py(k=1) (k—1) (k—1) (k—1)
(4.4.15) Ui = sWUiny + U + Uiy U0 00)

o 1 U(k-l) U(k"l) U(k-l) U(k—l)
+35(Uisrja + Uiy +UiZ ;2 + UL 00)

This type of computation can be used on a SIMD?® machine, where an iteration over the
grid is achieved in one parallel step using only one solution variable per processing element.
Similarly, it also lends itself to an implementation using a resistor lattice (McCann & Wilts.
1949; Tarassenko & Blake, 1991) (see Figure 4.7).

26Single Instruction, Multiple Data.
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v(i-1}-1) V(i+1,j-1)
g V(i.j-1)
R 4R
V(i-1.j) V(i.j) VFIM J3) V{l—1 E) I ] Vfln A)
O R R
A 4R R
‘ gva,m
V(i-1,j+1) V(i+1,j+1)
a) five—point kernel in resistor terms b) nine-point kemel in resistor terms

FIGURE 4.7. Iteration Kernel and Resistive Grid. The illustration shows how a resistive
grid can be used to implement the iteration kernel which is used in the Jacobi method for both the
five-point and nine-point kernels.

The resistor lattice equivalence is obtained by placing a resistor between neighbouring
nodes and having the value of a node represent a voltage. Ohm’s law states that if points a
and b are connected by a resistance of magnitude R, then the current I, ; that flows from

a to b is expressed as follows:

(10 oy = L=V

By Kirchoff’s Laws, the current fowing into a point defined by the coordinates (i, j) must
be equal to the current flowing out:
V(iE+1,3)-V(ij) V(ii—1.j)—V(i.j)

R + —r  t

(4.4.17)
V(ig+1)=V(iJj) VEg-D-V@ug) _
t,] % t,) + i,J R — 0

Multiplying through by R and solving for V (7, j) results in the following relationship:
1 . .
(4.4.18) V(@i,j) = Z(V(i +1L)+VE-1L)+V(,j+1)+V(j-1))

The equivalence of Equation 4.4.18 and Equation 4.4.11 shows that the Jacobi method
can be solved by a resistor lattice. A similar correspondence can also be obtained for the
nine-point kernel.

A programmable resistive grid is described and simulated by Tarassenko and Blake
(1991). It consists of an array of transistors whose drain-source resistances are governed
by gate voltages. The transistor network can be used to set both Dirichlet and Neumann
obstacle types. After settling, the voltages at the free junctions represent a discrete sampling
of a harmonic function. A group at the University of Massachusetts (Stan et al., 1994)

92



hy

CHAPTER 4. PATH PLANNING

implemented two CMOS VLSI implementations of this grid. One chip implemented the
harmonic function computation using Dirichlet boundary conditions, and the other used
Neumann boundary conditions. The chip sizes were 16 by 16 nodes and 18 by 18 nodes.
[t was estimated that for grid sizes of 100 by 100 using a resistive VLSI approach, the
harmonic function could be computed in a few microseconds (Connolly & Grupen, 1993).
however this has never been physically realized. The two main problems with the VLSI
implementation were: (1) the network size was limited because the voltage between any
two adjacent nodes became so small that it was buried beneath the noise; and (2) the
memory containing the obstacle and goal configuration required to be entirely reloaded
when the configuration changed. The University of Massachusetts group, due to the above
mentioned complications and technological limitations, have abandoned the VLSI route.
They?? concluded that at this time, a digital approach shows more promise for larger grids.
higher dimensions, programmability, testing and reliability.

The Gauss-Seidel method?® of relaxation is based upon the immediate use of the im-
proved values. In order to compute the iterative solution on a computer. the array of data
is scanned in a sequential fashion: usually from the top left hand corner, row by row. and in
each row, column by column. This imposes an ordering on the computation of mesh points.
The newest value of the already scanned grid elements can be used in the computation of
subsequent grid elements. The Gauss-Seidel method improves the rate of convergence when
compared to the Jacobi method??. The Gauss-Seidel iteration step for the five-point kernel

is expressed by:

ky 1 (k-1) (k) (k-1) (k)
(4.4.19) Uiy = Z(UH.LJ +U S, + UG + UL

The Gauss-Seidel iteration step can also be written as follows for the nine-point kernel:

k k—1 k k-1 k
vl = bl +ul Ul + Ul
(4.4.20) y y
4. (k=1) (k-1 (k (k—1)
+35(Uiin o + Ui—l.j)+l + Ui—)l,j-l + Uit -0)

The number of iterations can often be substantially reduced by an extrapolation pro-
cess from previous iterations of the Gauss-Seidel method (Ames, 1992). This method is
called “Successive Qver-Relazation” (SOR). The SOR method proceeds as the Gauss-Seidel
iteration; however, an extra step is performed before accepting the new value. Let (7{3
be a component of the k’th Gauss-Seidel iteration. The SOR technique is defined by the

27This is based on personal communication with Wayne P. Burleson at the University of Massachusetts at
Amberst (May 11, 1994).

28 Also called the “successive displacements” or “iteration by single steps™.

290(n?) as opposed to O(2n?)
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following relation:
(4.4.21) R = (1 - WU+ ATE,

The accepted value at step k is extrapolated from the Gauss-Seidel value and the previously
computed value. If A = 1, the method reduces to that of Gauss-Seidel. The quantity A is
called the relaxation parameter. The relaxation parameter determines the convergence rate
and is a value between 1 and 2. The optimum over-relaxation factor for the problem, Agp.

is estimated by the following computation (Hornbeck, 1975):
2
1+ /(1 -w?)

where w is determined as follows, when k£ — oco:

(4.4.22) Aopt =

||y )| 2
(4.4.23) —”Y(k‘l)” — W
, n N k
(4.4.24) Yy ®)| = ZleFlm&H
(k) _ rr(k) _ pp(k=1)
(4.4.25) Y. =U; - U;;

In order for the SOR technique to function properly, it is important that the estimate of w?
settle down to a constant value less than 1, before using equation 1.4.22 to estimate A,p.
For a better rate of convergence, it is better to overestimate Aoy than to underestimate it
(Hornbeck, 1975).

The relaxation techniques can be evaluated based on the work required per iteration
and the number of iterations necessary for convergence. All the relaxation techniques are
essentially equivalent with respect to the amount of work per iteration. The time per
iteration can be reduced by allotting different regions of the array to different processors.
as discussed in Chapter 6. The rate of convergence for the Jacobi method is O(2n2), for
a square grid of n elements, while the rate of convergence for the Gauss-Seidel method is
O(n?). The rate of convergence for the optimum SOR method is O(n) (Ames, 1992). The
rates of convergence vary slightly when different types of boundary conditions are used.

Convergence is also improved by following the first sequence in a row direction with a
second in the column direction. This method is called an “Alternating Direction Implicit’
(ADI). It has been shown that this method can improve convergence by a factor of 2 (Ames,
1992).
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In order to reduce the number of iterations as much as possible, Gauss-Seidel iteration
with Successive Over-Relaxation, combined with the “Alternating Direction” (ADI) method

is used by SPOTT’s local path planner.

4.1.2. A Good Initial Guess

Another way of speeding up the computation of the harmonic function is to provide the
computation with a good initial guess for a given obstacle and goal configuration. A good
initial estimate can be provided by the “summation of potentials approach” (see Section 3.3).

The initial guess is different depending on when it is applied:

e When the harmonic function iterative computation is initiated with a given CAD
map, the initial guess is given by Equations 4.4.6 and 4.4.8, as discussed in Sec-
tion 3.3.

o The harmonic function for the previous configuration®® can also be used as part of
formulating the initial guess for the new configuration. The function available during
convergence towards the harmonic function, or if available, the harmonic function
for the old configuration. can be used to formulate the initial guess for the new
configuration. Let Uc(,lkd) be the k’th iteration of the harmonic function computation
using the old configuration. If U[E,kd) is equal to U(Sf:), then convergence had been
achieved for the old configuration. U,(JQL, is the potential function used as an initial
guess to the harmonic function for the new configuration. There are four ways in
which the configuration of obstacles and goals may change (see Figure 4.8) and
therefore four ways of formulating the initial guess for the recomputation of the
harmonic function. The methods depend on the type of changes to the obstacle and
goal configuration and can be stated as follows:

(i) In the first case, a new obstacle object model G; is added to the configuration
space. This changes the free space Cye. on which the potential function U is
defined:

(4.4.26) Cfree(new) = Cfree(old) - Bi

Let Uyep, be a local potential function (i.e., one of the functions specified in
Equation 4.4.5) associated with the obstacle object model 3;. The initial guess

to the solution of the changed configuration is given by the following:
(4.4.27) U9, = max(UE), Urep,)

30The free space will change by either the addition or subtraction of grid elements. The values at the unchanging
grid elements can be used to formulate the initial guess for the new configuration.
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(ii) In the second case, an existing obstacle object model 3; is removed from the
configuration space. This has the effect of increasing the extent of the free
space Cyree:

(44-28) Cfree(new) = Cfree(old) + ﬁi

For this situation, the initial guess to the solution of the changed configuration

is given as follows:
k
(4.4.29) vlQ, = vl

(iii) In the third case, an obstacle object model 3; in the configuration space is
changed to a goal object model B3;.. This does not affect the free space Cy,..
Let Uy, be a local potential function (i.e., one of the functions in Equa-
tion 4.4.5) associated with the goal object model §;.. The initial guess to the
solution of the changed configuration is given by the following:

(4.4.30) U89, = min(U), Uas,)

(iv) In the fourth case, a goal object model §;. is changed to an obstacle object
model §;. As in the third case, the free space Cy,.. remains unchanged. The
initial guess to the solution of the changed configuration is given by the fol-

lowing:
k
(4.4.31) UL, = max(Uy), Urep,)

A good initial guess to the computation of a harmonic function reduces the number
of iterations required for convergence. Using an initial guess, as well as the method of
relazation (outlined in Section 4.1.1), is the extent of what can be done to reduce the
number of iterations. The time for a single iteration is an implementations issue aud dealt
with in Chapter 6. At the same time the harmonic function is being computed, a concurrent
agent (i.e., another process) performs steepest gradient descent on the harmonic function
in order to generate a local trajectory. This permits concurrent computation and execution
of the path.
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FIGURE 4.8. Types of Changes to the Obstacle and Goal Configuration. The grey
pixels signify the free space, whereas the black pixels represent the obstacle models and the white pixels
represent the goal models. The configuration space is the collection of white, black and grey pixels.
The figure illustrates the four different possible changes to the configuration space. All other potential
changes are a combination of the above cases.
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5. Trajectory Generation Using Harmonic Functions
5.1. Local Trajectory Generation

Harmonic functions have the desirable property of no local minima (Connolly & Gru-
pen, 1993; Tarassenko & Blake, 1991). If at least one path exists to a known destination,
steepest gradient descent on this function is guaranteed to find it (Doyle & Snell, 1984).
This is advantageous for path execution because steepest gradient descent is a simple and
blind search strategy that is computationally inexpensive (i.e., no backtracking).

The derivative of the harmonic function U at every free space Cf,.. point defines a

field of velocity vectors V (e):
(4.4.32) Vie) = —VU(e)

where VU (e) denotes the gradient vector of U at (e):

. v
(4.4.33) VU = ( o )
dy

The velocity vector is the value of V(e) at the current estimate of the robot’s position
(i.e., V’(x,, yr)). The field of velocities permits robot localization (i.e., the correction of the
robot’s position) to be independent of the trajectory generation. If the robot’s position is
updated (i.e., corrected) to (z,',y,'), then the trajectory will be selected based on the value
V at (z,,y) (e, = V(z,,y:")). The velocity field defines all possible trajectories from
every location in the free space.

The velocity vector V’(e) has two components: (1) an orientation, and (2) a magnitude.
The orientation component defines the direction of the next robot movement.

A simple and fast algorithm is used to compute the local orientation component of the
velocity (see Figure 4.9). It is calculated by selecting the maximum negative gradient in
an eight-neighbourhood3! around the current position of the robot. The result will be an
orientation value that is divisible by 45 degrees. In order to obtain a smoother trajectory.
an approximation to the continuous gradient is obtained by fitting a parabola to the three
points defined by the maximum negative gradient direction and its two neighbours (i.e., in
the eight-neighbourhhood operator centered at the current position of the robot). The local
minimum of the fitted parabola defines the orientation of the local trajectory.

It would be desirable to have the magnitude of the velocity vector [V’(e)l define the

speed of the robot. The field of velocities V(e) generated from a harmonic function is such

3! Recall that the potential function is defined on a discretized grid.
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FIGURE 4.9. Quick Calculation of Trajectory. The local trajectory is derived by selecting
the maximum negative gradient in an eight-neighbourhood around the current position of the robot
in the discretized potential function. In order to obtain smooth trajectories, an interpolated value is
computed by fitting a parabola to the three points defined by the maximum negative gradient direction
and its two neighbours.

that H7(e)| is a larger value near goal locations when compared to other locations in the free
space. A possible strategy for velocity control would be to make the robot’s speed inversely

proportional to the gradient’s magnitude |V (e)|:

1

4. v _
(4.4.34) [V (e)| x YT

This would result in the robot de-accelerating as it progressed towards the goal position.
However, this is not an appropriate strategy to take because the robot would start at a very
high speed (i.e., jump start) and deaccelerate as it approached the goal position. In the more
general case, the determination of the velocity should depend on a predefined velocity profile
from the start to goal position. The profile should consist of a combination of the following
velocity states: (1) acceleration, (2) constant velocity, and (3) de-acceleration. A maximum
velocity for the actuator sets an absolute limit. Depending on the arrangement of the
velocity states from the start to goal position, the velocity will either be directly or inversely
proportional to the harmonic function gradient at a particular location. Unfortunately, the
proportional factor is not constant, since it depends on the positioning of the object and
goal models. Thus, it is not clear on how to use the potential function gradient information
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in order to control speed, but the gradient vector V(z,,y:) can definitely be used to specify
the trajectory.

The optimality of the generated trajectory is established by noting that there is a direct
correspondence between harmonic functions and probability functions for a random walk
on a Markov3? chain (Doyle & Snell, 1984). The probabilistic interpretation of each point
in the harmonic function is a hitting probability (Connolly, 1994) (i.e., the probability of
hitting an obstacle before arriving at the goal). The steepest gradient-descent path in a
harmonic function is optimal in terms of the described probabilistic interpretation. For
Dirichlet boundary conditions, steepest gradient descent produces a path where the hitting
probability is continually and maximally being reduced. The path is smooth3? and optimal
in the sense of being the shortest path subject to a penalty for proximity to obstacles (i.e..
the path wants to move away from obstacles). In the Neumann case, the derivative of the
potential function is zero at obstacle boundaries. and consequently the path is not subject

to the obstacle proximity penalty.

32A Markov process is a random process whose transition probabilities at the current time do not depend on
prior transitions. A finite Markov chain is a special type of change process that moves around the set of states
S = {s1,82,...,sr} in a Markovian fashion. When the process is in state s;, it moves with probability P;; to state
s;. States that are once entered and cannot be left are called traps or absorbing-states. A Markov chain is called
absorbing if it has at least one absorbing state and if, from any state, it is possible (not necessarily in one step) to
reach at least one absorbing state. The states of an absorbing chain that are not traps are called non-ebsorbing.

33 Almost all paths on a harmonic function are infinitely differentiabie along their length (Sabersky et al., 1971).
An exception is a saddle point which will still be piecewise differentiable. The path produced from steepest gradient
descent will always escape a saddle point and is therefore infinitely differentiable along its length.
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FIGURE 4.8. Types of Changes to the Obstacle and Goal Configuration. The grey
pixels signify the free space, whereas the black pixels represent the obstacle models and the white pixels
represent the goal models. The configuration space is the collection of white, black and grey pixels.
The figure illustrates the four different possible changes to the configuration space. All other potential
changes are a combination of the above cases.
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5. Trajectory Generation Using Harmonic Functions

Harmonic functions have the desirable property of no local minima (Connolly & Gru-
pen, 1993; Tarassenko & Blake, 1991). If at least one path exists to a known destination,
steepest gradient descent on this function is guaranteed to find it (Doyle & Snell, 1984).
This is advantageous for path execution because steepest gradient descent is a simple and
blind search strategy that is computationally inexpensive (i.e., no backtracking).

The derivative of the harmonic function U at every free space Cy,.. point defines a

field of velocity vectors V(e):
(4.4.32) Vie) = —=VU(e)

where VU (e) denotes the gradient vector of U at (e):
(4.4.33) VU = ( a; )
3y

The velocity vector is the value of V(e) at the current estimate of the robot’s position
(i.e., V(xr,y,)). The field of velocities permits robot localization (i.e., the correction of the
robot’s position) to be independent of the trajectory generation. If the robot’s position is
updated (i.e., corrected) to (z,',y,'), then the trajectory will be selected based on the value
V at (z.,y') (i.e., = V(z,.y,')). The velocity field defines all possible trajectories from
every location in the free space.

The velocity vector V (e) has two components: (1) an orientation, and (2) a magnitude.
The orientation component defines the direction of the next robot movement.

A simple and fast algorithm is used to compute the local orientation component of the
velocity (see Figure 4.9). It is calculated by selecting the maximum negative gradient in
an eight-neighbourhood?®! around the current position of the robot. The result will be an
orientation value that is divisible by 45 degrees. In order to obtain a smoother trajectory,
an approximation to the continuous gradient is obtained by fitting a parabola to the three
points defined by the maximum negative gradient direction and its two neighbours (i.e., in
the eight-neighbourhhood operator centered at the current position of the robot). The local
minimum of the fitted parabola defines the orientation of the local trajectory.

It would be desirable to have the magnitude of the velocity vector |‘7'(e)| define the
speed of the robot. The field of velocities V' (e) generated from a harmonic function is such

that |V (e)] is a larger value near goal locations when compared to other locations in the free

3! Recall that the potential function is defined on a discretized grid.
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FIGURE 4.9. Quick Calculation of Trajectory. The local trajectory is derived by selecting
the maximum negative gradient in an eight-neighbourhood around the current position of the robot
in the discretized potential function. In order to obtain smooth trajectories, an interpolated value is
computed by fitting a parabola to the three points defined by the maximum negative gradient direction
and its two neighbours.

space. A possible strategy for velocity control would be to make the robot’s speed inversely
proportional to the gradient’s magnitude |V (e)|:
1

This would result in the robot de-accelerating as it progressed towards the goal position.
However, this is not an appropriate strategy to take because the robot would start at a very
high speed (i.e., jump start) and deaccelerate as it approached the goal position. In the more
general case, the determination of the velocity should depend on a predefined velocity profile
from the start to goal position. The profile should consist of a combination of the following
velocity states: (1) acceleration, (2) constant velocity, and (3) de-acceleration. A maximum
velocity for the actuator sets an absolute limit. Depending on the arrangement of the
velocity states from the start to goal position, the velocity will either be directly or inversely
proportional to the harmonic function gradient at a particular location. Unfortunately, the
proportional factor is not constant, since it depends on the positioning of the object and
goal models. Thus, it is not clear on how to use the potential function gradient information
in order to control speed, but the gradient vector V(z,,y,) can definitely be used to specify

the trajectory.
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The optimality of the generated trajectory is established by noting that there is a direct
correspondence between harmonic functions and probability functions for a random walk
on a Markov®? chain (Doyle & Snell, 1984). The probabilistic interpretation of each point
in the harmonic function is a hitting probability (Connolly, 1994) (i.e., the probability of
hitting an obstacle before arriving at the goal). The steepest gradient-descent path in a
harmonic function is optimal in terms of the described probabilistic interpretation. For
Dirichlet boundary conditions, steepest gradient descent produces a path where the hitting
probability is continually and maximally being reduced. The path is smooth3? and optimal
in the sense of being the shortest path subject to a penalty for proximity to obstacles (i.e.,
the path wants to move away from obstacles). In the Neumann case, the derivative of the
potential function is zero at obstacle boundaries, and consequently the path is not subject

to the obstacle proximity penalty.

32A Markov process is a random process whose transition probabilities at the current time do not depend on
prior transitions. A finite Markov chain is a special type of change process that moves around the set of states
S = {s1,92,...,5r} in a Markovian fashion. When the process is in state s;, it moves with probability P;, to state
sj. States that are once entered and cannot be left are called traps or absorbing-states. A Markov chain is called
absorbing if it has at least one absorbing state and if, from any state, it is possible {not necessarily in one step) to
reach at least one absorbing state. The states of an absorbing chain that are not traps are called non-absorbing.

33 Almost all paths on a harmonic function are infinitely differentiable along their length (Sabersky et al., 1971).
An exception is a saddle point which will still be piecewise differentiable. The path produced from steepest gradient
descent will always escape a saddle point and is therefore infinitely differentiable along its length.
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6. Guaranteeing Proper Control

There is no guarantee on the correctness of the trajectory commands before the com-
putation has converged to the solution for the current configuration. In order to address
the correctness of the trajectory, a type of “anytime algorithm” (Mouaddib & Zilberstein,
1995) is proposed. Anytime algorithms are algorithms whose quality of results improves
as computation time increases. There are three metrics to measure quality {Mouaddib &
Zilberstein, 1995): (1) certainty in result correctness; (2) accuracy in result correctness:
and (3) specificity in the level of detail of the result (i.e., sampling). The proposed method
improves along all three metrics as time increases.

The iterative computation of the harmonic function for a given configuration takes a
fixed amount of time before convergence is achieved. Polling the gradient before convergence
to the harmonic function will result in potentially erroneous trajectories. Thus, it is desirable
to have the computation converge to the harmonic function almost instantaneously. The
computation time is exponentially proportional to the number of discrete grid elements.
It would be desirable to reduce the number of grid elements (i.e., make each grid element
represent a larger spatial area), but the fewer their number, the coarser the path. A
reasonable tradeoff is to simultaneously compute the harmonic function for different grid
resolutions3! (see Figure 4.10), and use the coarse grid result initially, gradually progressing
to using the finer grid results as their associated computations converge®.

Let the different grid levels be {gi,g2,.-.,9n}. where g, is the coarsest (i.e.. lowest)
resolution grid and g, is the finest (i.e., highest) resolution grid. Given equal computational
resources, g; will converge before g; if j > 7. All grids are given the same initial obstacle
and goal configuration and are all updated with newly acquired sensor information as it
becomes available. The harmonic functions are all computed iteratively and concurrently
for each grid resolution. The steepest descent gradient is taken at the current estimated
position of the robot for each grid computation: {v1,v3,...,vn}. If grid g; has converged

34From a theoretical point of view, such a strategy is feasible. Each harmonic function is computed at a different
resolution and each one is a suitable candidate for the generaticn of the trajectory. However, the harmonic function
with more grid elements (i.e., finer resolution) will produce a smoother trajectory. From a practical point of view,
there is a resource limitation on the number of levels in the hierarchy. Five processors were usually used to compute
a single harmonic function (see Chapter 7). Therefore, experimentation with SPOTT was confined to using only two
levels in the hierarchy.

351deally, to save on computational resources, it would be desirable to compress the hierarchy into a single
level with an unequal grid sampling. Large open spaces would be represented by a few grid elements, while small
tight spaces would be represented by a more dense sampling. The local sampling might have to dynamically change
depending on what is sensed from the environment. The computational overhead for managing a data structure
capable of representing all the hierarchies within one level should not slow down the reaction of the system (i.e., for

obstacle avoidance) to newly sensed features. Representing the hierarchy in a single level is not addressed by this
thesis and is left as a future research topic.
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to the harmonic function for the current configuration, and there are no grids g;, where
J > 1, that have also converged, then v; is used as the local trajectory control. It is assumed
that the computation time for convergence at the coarsest grid resolution is faster than the
rate of change in the environment. Therefore, if there are no environmental changes sensed.
eventually grid g, (i.e., the finest grid) will converge and its trajectory vector vy will be used
to specify the local trajectory for the robot. For normal operation, the trajectory vectors
are used in the order of ascending grid resolution {v7, v3, ..., vn }. This progression switches
from grid g; to grid gi+, (i.e.. control from v; to v;3 ;) when grid g;+, has converged to its
solution. The progression is restarted (i.e., sometimes before grid g,’s vector v; has had
a chance to be used for control) when the local map is updated (e.g., newly sensed data
arrives, or a new goal is set). At this time, v] will again be used for control, and control
will again switch in ascending order until v; is reached or newly sensed data arrives and
control is switched back to vj. The switching between levels depends on determining if a
particular grid resolution g; has converged to its harmonic function.

Convergence can be found by measuring the change in value of the harmonic func-
tion grid elements between successive iteration steps. It is achieved when this value is a
minimum (i.e., approximately zeio). However, convergence monitoring requires additional
computational resources, which will slow down the computation of the harmonic function.
An alternative approach is to compare all the trajectory vectors {vi, v3, ..., vn } in ascending
order, assuming that v, the direction computed at the coarsest resolution, is correct. If
3 is approximately3® equal to v}, then 4 is used, otherwise v} is used. This comparison
continues between successive grid resolution levels until it fails or 5 is reached.

Section 5 discussed the optimality of the trajectory produced by performing steepest
gradient descent on the harmonic function by the local path planner. This section addressed
the ability to guarantee proper response (i.e., control) in a real-time operational scenario.
The potential field (i.e., local path planner) only performs path planning within a local
window of the map (i.e., the world known to SPOTT). The next section addresses the
issue of integrating a topologically-based global path planner with the presented local path

planner in order to perform path planning in a larger scale environment.

36In SPOTT's implementation, “approzimately equal’ means being within £22.5° of the compared value. If v}
is equal to v;3; £ 22.3°, then v;3, is used for control. Otherwise, v; is continued to be used for control.
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FIGURE 4.10. Multi-Resolution Potential Fields. The trajectory of the robot is continuously
available by taking the gradient at the finest resolution that has converged to its solution (i.e., harmonic
function) at a particuiar time instance.
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7. Why is the Potential Field a Local Path Planner?

The potential field is not computable over a large environmental space due to the
enormous computational costs®’ associated with a large number of grid elements, and the
rapidly decaying nature of the harmonic function. The environment used in the experiments
for SPOTT is an office and laboratory space which is 6500 cm by 3990 cm. The largest
size an individual grid element can be is 302 cm. which was determined by using three grid
elements to occupy the space between the two closest features in the environment. In an
office and laboratory space, the narrowest navigational regions are usually hallways and
doorways®. Reasonable convergence times (i.e., less than two seconds) can be obtained for
grids which are 35 by 35 (see Chapter 7). Thus, the maximum size a potential field can
cover is approximately 10 m by 10 m.

In addition, the extent of the potential field is further constrained due to the rapid
decay of the harmonic function with Dirichlet boundary conditions in narrow corridors. On
a thirty-two bit computer, the harmonic function can only be accurately represented when
the length-to-width ratio for a narrow corridor is less than 7.1 to 1 (see Appendix A).

Therefore the potential field can only be used as a local path planner and it must slide
around to keep the robot within its bounds. When the robot reaches the frontier of the
local region, the bounds are shifted. The size of the potential function is fixed and its new
bounds centre the robot (see Figure 4.11). A global goal outside the extent of the potential
function’s boundaries projects onto the border using information provided by the global

path planner (see Section 9)

37Computation time is exponentially proportional to the number of grid elements.

38This is true when only considering the features present in an architectural CAD map of the environment.
There may be other regions where desks and chairs are closely positioned together, but this space is not traversed by
the robot in the experiments discussed in this thesis.
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FIGURE 4.11. Sliding Local Path Planner. The potential function's boundary slides when
the robot approaches the current boundary. The new boundary is defined so that the current position
of the robot is at its centre. The global path planner provides the information which projects the global
goal, which is outside the local extent, onto the current local boundary (see Section 9). The shading
around the wall features corresponds to their padding in order to compensate for modelling the robot
as a point, as well as the sensing and positioning uncertainty.
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8. Global Path Planning

An architectural CAD map (see Figure 4.12) consists of a collection of line segments
defining internal walls and the external construction frame. It is assumed that abstract
symbolic entities in the map (e.g., rooms and hallways) are labelled. This abstract rep-
resentation is used by the global path planner to provide the local path planner with the

necessary information to guide it towards a goal located outside its current local extent.
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FIGURE 4.12. CAD Map of CIM. The features are all line segments representing permanent
walls. The extent of the local path planner at a particular instance of time is shown.
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The abstract graph structure (see Figure 4.13) is defined by G(N,E). N is a set of
nodes {ni,ns,...} and E is a set of edges {e;,e;,...}. Each edge e connects the elements of
an unordered distinct pair of nodes {n;,n;}. Every node represents a room or a rectangular
portion of hallway. The summation of the rectangular portions of hallways combine to form
the entire hallway network. An edge represents an access way between nodes. An access
way can either be a doorway (i.e., open or closed) or a virtual plane®®, which projects to
a line in 2D. A doorway's state (i.e., open or closed) may change depending on perceptual
information which is continually being received from the sensors‘®. The search for a path

39This is the case for two adjoining rectangular hallway portions where there is no doorway between therm. The

boundary is artificially created to satisfy the self-imposed requirement that nodes represent rectangular regions.
10Currently, QUADRIS (i.e., laser rangefinder) is used to recognize door states (i.e., open or closed).
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in the graph space translates io a graph search from a start n, to a destination node n,;. A
path is a sequence of edges ej, ea, ... such that:
(i) e; and e;;, share a common endpoint;
(i1) e; is not a self-loop; and
(iii) if e; is not the first or last edge. e; shares one of its endpoints with e;_; and the

other with e; 4.
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FIGURE 4.13. Abstract Graph of CAD Map. This is the abstract graph corresponding to
the CAD map in Figure 4.12. The nodes represent rooms or hallway portions. The edges represent
access ways (i.e., doors or virtual planes) which are line features in the CAD map. The highlighted
edges represent the path produced by Dijkstra‘s algorithm using the robot and goal locations shown in
Figure 4.12. The robot starts in room 42! and its destination is room {05.

A path {n,,ni,nis1,...,ng} is represented by the collection of nodes visited by traversing
the edges form the a starting position n, to a goal position ny. Dijkstra’s algorithm (Aho
et al., 1983) is executed on the graph in order to find the shortest path from the starting
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node to the goal node. The path is computed when the task (i.e., go from n, to ng) is
specified and recomputed only when an edge changes state (e.g.. from an opened door to
a closed door). Initially, it is assumed that all doors are open until verified or refuted by
sensor data.

In order to obtain a shortest path from the graph structure, a notion of distance with
respect to the abstract graph is defined. A Cartesian reference is superimposed on the
CAD map. such that the top left hand corner is the origin. The positive x axis is directed
to the right while the positive y axis is oriented downwards (see Figure 4.12). All the
rooms in the environment are rectangular and are represented by two sets of endpoints.
one representing the top left hand corner and the other, the bottom right hand corner:
Troom = ((Trml: Yrmi)s (Trm2,Yrm2)). Access ways are represented by a line segment: e; =
((Za1,Ya1): (Ta2,¥a2)). The distance from the start node to the next node is the distance
from the robot’s starting position to the access way of the next node. The distance for
intermediate nodes on the path is the distance from the access way by which the node
was entered to the access way that connects it to the next node. The distance from the
second-last node on the list to the goal is the distance from the access way from which the
second-last node was entered to the position of the goal via the access way connecting the
second-last and goal nodes (see Figure 4.14).

Architectural CAD maps can be a valuable piece of a priori knowledge for navigating
a robot in indoor environments. The CAD map only contains the permanent structures
in the environment (i.e., walls). The robot still has to sense the environment to discover
objects not contained in the CAD map and to verify or refute*! the existence and location
of the CAD map features (e.g., walls). A local window into the CAD map is used as an
initial map for the local path planner. The graphical abstraction of the CAD map (i.e..
nodes and edges) is used to guide the robot towards the boundary of the local region in

which local path planning is done in order to satisfy the global goal.

41Refutation is currently not done by SPOTT. However, SPOTT does verify the existence and label (e.g., door,
wall) of existing features. All CAD features are initially labelled as walls. Both sonar and QUADRIS data are used
for mapping the environment, but only QUADRIS is used to recognize objects (e.g., doors, walls).
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FIGURE 4.14. Calculating Distances for Global Path Planning. (a) shows a sample CAD
map with a path going from room a to room c. The corresponding abstract graph is shown in (b),
where the nodes to be visited are shaded and the traversed edges along the path are in bold type. The
distance from the start node to the next node is the distance from the robot’s starting position to the
access way of the next node (i.e., d;). The distance for intermediate nodes on the path is the distance
from the access way by which the node was entered to the access way that connects it to the next
node (i.e., d2). The distance from the second-last node on the list to the goal is the distance from the
access way from which the second-last node was entered to the position of the goal via the access way
connecting the second-last and the goal node (i.e., d3 + dy).
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9. Local and Global Path Planner Interaction

The global path planner, by using an abstraction of the CAD map, is able to provide
global goal information to the local path planner (i.e., potential field). This occurs when
the bounds of the potential field change: as the robot approaches the border of the potential
field, the potential field is re-anchored with the robot position in the centre, and the global
goal is projected onto the potential field's new border. If the global goal is within the
potential field’s extent, then there is no need to project the global goal onto the border. If
no CAD map is available, then the location of the global goal is projected onto the border
by joining the global goal to the robot position, and intersecting this line with the potential
field’s border. On the other hand, if a CAD map is available and the spatial location of the
goal is outside the extent of the potential field, the goal is projected onto the border of the
potential field at a location determined by an algorithm (see Section 9.3) which uses the

global path produced by the global path planner.

9.1. Four Typical Scenarios

The four typical scenarios under which global goal information is used (i.e.. if it is
necessary) by the local path planner for determining the projection of the global goal onto
its boundary are as follows:

(i) In the first case, the position of the robot and the goal are within the local extent
of the potential field, and the goal is reachable (i.e., there is a path to the goal
that stays within the local confines of the potential field) from the robot’s current
position (see Figure 4.15).

(i1) In the second case, the position of the robot and goal are within the local extent of
the potential field, but the goal is unreachable (i.e., there is no path to the goal that
stays in the local confines of the potential field) from the current robot’s position (see
Figure 4.16). The cause of this is either that the access way into the room, where the
goal is located, is not contained within the local extent, or the access way is blocked
(i.e., closed door). The global path is used to determine the projection of the goal
onto the proper location on the boundary of the potential field (see Section 9.3).

(iii) In the third case, the robot and the goal are located in the same node (e.g., room),
but the goal is not within the local extent of the potential field (see Figure 4.17). The
intersection of a line joining the robot and the goal with the potential field’s border
is used to determine the location of the projection of the goal onto the potential
field’s borders (see Figure 4.20).
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(iv) In the fourth case, the position of the robot and the goal are in different nodes (i.e..
rooms) and the goal is not within the current local boundaries (see Figure 4.18). The
global path is used to determine where the goal gets projected onto the potential
field’s border (see Section 9.3).

The four scenarios encapsulate all potential situations where the local and global path
planners may interact. The role of the global path planner is to provide the necessary
information to the local path planner in order to project the goal (i.e., global) onto the local
path planner’s border. The local path planner’s borders are repositioned when the robot
approaches the current local bounds, so that the robot is in the centre of the new bounds.
Their extent is limited because the computation of the harmonic function is exponentially
proportional to the number of grid elements and the size of a grid element can only be a

certain size which is related to the context of the environment (see Section 7).
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FIGURE 4.15. Local and Global Path Planner Interaction: First Typical Case. The
position of the robot and the goal are within the local extent of the potential field, and the goal is
reachable (i.e., there exists a path within the local confines of the potential field from the robot to the

goal! position) from the robot's current position.
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FIGURE 4.16. Local and Global Path Planner Interaction: Second Typical Case.
The position of the robot and goal are within the local extent of the potential field, but the goal is
unreachable (i.e., there is no path within the potential field's lacal confines from the robot to the goal)
from the robot’s current position. The access way into the room, where the goal is located, is not
contained within the local extent. The global path is used to determine the projection of the goal onto
the proper location on the boundary of the potential field (see Section 9.3).
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FIGURE 4.17. Local and Global Path Planner Interaction: Third Typical Case. The
robot and the goal are located in the same node (i.e., room), but the goal is not within the local extent
of the potential field. The intersection of a line connecting the robot and the goal with the potential
field's border determines the location of the projection of the goal onto the potential field's border.
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FIGURE 4.18. Local and Global Path Planner Interaction: Fourth Typical Case.
The position of the robot and the goal are in different nodes (i.e., rooms). The global path is used to
determine where the goal gets projected onto the potential field's border (see Section 9.3).
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9.2. Reachability

A global goal is reachable from a particular starting position if there is at least one
path to it which avoids all obstacles. Some of the obstacles are given a priori (i.e.. perma-
nent features such as walls contained in the CAD map) while others are discovered while
executing the task. In normal operational mode, SPOTT is given an architectural CAD
map, and a corresponding graph®? as a priori information. Initially, SPOTT assumes that
all the doors are open and the global path planner plans a minimum cost path from the
starting node to the node containing the global goal. During the course of traversing this
initial path, SPOTT senses its environment and may find doorways that are actually closed.
If this doorway is part of the planned path, then at this time, the global path is replanned
(see Section 8). It may be the case that the robot cannot leave its particular node or replan
a path to the global goal because of the newly discovered state of the doors (i.e., closed). If
this is the case, execution is ceased, and the operator is informed that the goal cannot be
reached.

During execution, SPOTT is continually sensing its environment. It may be the case
that the robot is not able to traverse a node because newly discovered obstacles are blocking
its path within the node and the local path planner cannot plan a path around them (e.g..
boxes blocking a hallway). This condition is referred to as blocking. Within a particular
node, the robot is either traversing to an edge (i.e.. doorway or virtual plane) or the global
goal (i.e., if it is within the current node). One way of determining reachability of the local
or global goal is to perform spatial reasoning (i.e.. potentially computationally expensive)
using the map (i.e.. the CAD map and the newly sensed features) to determine if the goal
is reachable. This task is beyond the scope of SPOTT and is left to a reasoning agent*3.

A relatively inexpensive (i.e., computationally) approach has been taken to detect block-
ing, which capitalizes upon one of the features of the local path planner (i.e.. potential field).
If there is no path to the local goal, the potential function near the location of the position of
the robot will flatten out and produce no negative gradient. If there is no negative gradient,
the robot will not move. If the robot does not move after a specified period of time**, then
SPOTT is notified that there is a blockage at the current location. If the current location
is in the node where the robot and the global goal are both located, then the operator is

notified that the robot cannot attain its goal. However, if the robot is in one of intermediate

42Consisting of nodes for rooms and hallway portions, and edges for access ways (e.g., doors).

13This is one of the future planned tasks of the logical reasoning module called COCOLOG (Caines & Wang,
1995), which has been recentiy interfaced with SPOTT (see Section 3 in Chapter 6).

44 Four seconds was chosen for a 35 by 35 potential field. A potential field of this size should converge in about
two seconds, and waiting for four seconds is ample time to determine that the goal is having no attractive influence.
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nodes (i.e., part of the global path), then the global path planner is notified of the blockage
so that it can try to plan another route. The potential field planner specifies this blockage
as a reachability constraint on the replanning of the global path. The constraint is specified
as (n, (zr,yr), flag, ei, (z4.y4)), where n; is the node where the blockage occurred, (z,.y,)
is the position of the robot when it was blocked, and flag determines whether the next goal
is an edge e; or the global goal (z4,y,)-

An example of the use of reachability constraints by the global path planner when
planning a path from node to node is shown in Figure 4.19. In this case, a blockage was
previously detected in node 3 at position B when traversing node 3 on the way to edge
4. When the global path is replanned, edge 4 is ineligible as an edge in the global path
depending on the location where node 3 is entered in relation to the point of blockage.
If node 3 is reentered at edge 1, then edge 4 is not eligible as the next edge to traverse:
however if node 3 is entered at edge 2 or 3. then it is eligible as the next edge to traverse.

A straight-line distance comparison is made between the entering point e; and the
blockage points specified by the reachability constraints. If the distance to a destination
edge e; from the location where the node is entered - e; - is less than the distance from
the blockage point (i.e., specified by the reachability constraint) to the edge e;, then the
local goal is allowed to be part of the new global path. If the distance is greater, then edge
e; is not a permissible candidate for the global path. The information conveyed by the
reachability constraint in Figure 4.19 is that the robot cannot reach edge 4 from the point
of blockage B. and therefore any locations beyond B (i.e., further away from edge 4 than

B is) are also assumed to be blocked.

9.3. Algorithm: Projection of Global Goal onto Local Border

The following is the algorithm used for determining how a global goal is projected onto
the border of the potential field:

(i) If the goal is within the local extent of the potential field’s border and in the same
node that the robot is in, then do nothing.

(ii) If the goal is in the same node that the robot is in but the goal is not within the
potential field’s border, then the location of the global goal is projected onto the
border by joining the global goal to the robot position, and intersecting this line
with the potential field’s border.
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FIGURE 4.19. Reachability and Blocking Constraints The figure illustrates the use of a
reachability constraint which specifies that a blockage was previously detected in node 3 at position
B when traversing node 3 on the way to edge 4. When the global path is replanned, edge 4 is ineligible
as an edge in the global path depending on the location where node 3 is entered in relation to the
point of blockage. If node 3 is reentered at edge 1, then edge 4 is not eligible as the next edge to
traverse: however if node 3 is entered at edge 2 or 3, then it is eligible as the next edge to traverse. The
information conveyed by the illustrated reachability constraint is that the robot cannot reach edge 4
from the point of blockage B, and therefore any locations beyond B (i.e., further away from edge 4
than B is) are aiso assumed to be blocked.

(iii) Otherwise, the projection is based on finding the first edge within the global path
that is not traversable (i.e., locally reachable*®) by the robot while staying within the
local confines of the potential field. The projection is based on joining the centre of
that edge to the centre of the node last traversed before reaching that edge.

The global path is specified as {n;, ni+1, ni+2, ..., nn }. where n; is the start node and
nn is the goal node. The edges of the global path are {e(; ;+1), € 1.i42)+ - €n—-1.n) }+
where the indices correspond to the two nodes that the edge connects. The goal
is locally reachable if the robot can safely pass through all of the edges'® that are
part of the global path, while staying within the bounds of the potential field. If the
edge is outside the local extent, then the edge is not passable. If the edge intersects
the border of the potential field, then the part of the edge inside the local extent
requires to be larger than the width of the robot for the edge to be passable. If the
edge is labelled as a closed door, then it is not passable. Otherwise, if the edge is
completely within the local extent of the potential field and is labelled as an open

door or a virtual plane, then the edge is passable.

45 An edge is locally reachable if the robot can fit through the portion of the access way that is in the current
local extents of the potential field.
46Each edge represents a line in a 2D map, which corresponds to a door or virtual plane in 3D space.

118



CHAPTER 4. PATH PLANNING

The global path is used to determine the projection of the goal onto the proper
location on the boundary of the potential field. This is accomplished by finding
the first access way (i.e., edge), proceeding in sequential order in the list of edges
{€(ii+1)r €(i+1.i+2)s -+ E(n—1.n) }, that is not passable (i.e., locally) e(i ik i+k+1)- This
edge corresponds to an access way between nodes n;, s and n;, ;.. The intersection
of a line connecting the centre of the edge defined by e(;. 4 ;+x+1) and the centre of
the part of the node n;,; that is within the potential field’s borders {or the location
of the robot if it is in that node), with the potential field’s border is used to determine
the projection of the goal (see Figure 4.21).

Figures 4.20 through to 4.22 show some examples of the global goal being projected
onto the local potential field border.

e In Figure 4.20, the robot and the goal are located in the same node (e.g.. room).
but the goal is not within the local extent of the potential field. The intersection
of a line joining the robot and the goal with the potential field’s border is used to
determine the goal projection.

e In Figure 4.21, the position of the robot and goal are within the local extent of the
potential field, but the goal is locally unreachable from the robot’s current position.
The projection is based on the intersection of a line defined by two points with the
potential field border. The first point is the centre of the part of node h6 that is
within the potential field bounds. The second point is the centre of the edge that
connects nodes h6 and room 430. This second point is also the centre of the first
edge that is not locally passable along the way from the start to goal node.

e In Figure 4.22, the position of the robot and the goal are in different nodes (i.e..
rooms) and the goal is not within the current local boundaries. The global path is
used to determine where the goal gets projected onto the potential field’s border so
as to locally maintain the execution of the global path.

The topological path produced by the global path planner is used to project the global
goal onto the potential field’s border (i.e., if it is necessary). This co-operation permits
the local path planner (i.e., potential field) to overcome its shortcomings in extent (i.e.,
the size of the potential field’s extent is limited because an increase in size is directly
proportional to its computation time) by providing it with information about the global
goal. In a static environment, this arrangement will permit the global goal to be attained.

This is because the projection algorithm is based on tracing the global path’s geometric
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FIGURE 4.20. Goal Projection: Goal in Same Node but not in the Potential Field.
The robot and the goal are located in the same node (e.g.. roam), but the goal is not within the local
extent of the potential field. The intersection of a line connecting the robot and the goal with the
potential field's border is used to determine the goal projection. The shaded walls in this diagram and
subsequent ones correspond to CAD wall features that are at least partially in the potential field border

or in the node in which the robot is located.
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FIGURE 4.21. Goal Projection: Locally Unreachable Goal. The position of the robot
and goal are within the local extent of the potential field, but the goal is locally unreachable from the
robot’s current position. The projection is based on the intersection of a line defined by two points

with the potential field baorder. (1) The first point of the the line is the centre of the part of node k6
that is in the potential field bounds (i.e., (a)). (2} The second point of the line is the centre of the

edge that connects nodes k6 and room {30 (i.e.. (b)). The second point is also the centre of the first
edge that is not locally passable along the way from the start to the goal node.
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T

FIGURE 4.22. Goal Projection: General Case. The position of the robot and the goal are
in different nodes (i.e., rooms) and the goal is not within the current local boundaries. The global path
is used to determine where the goal gets projected onto the potential field's border so as to locally
maintain the execution of the giobal path.

goal projection robot local potentisl
position  field

correspondences of the nodes and edges within the local confines of the potential field*".
In a dynamic environment, obstacles can be discovered anywhere (i.e., unknown a priori)
and only experimentation will determine what the limitations*® of the projection algorithm
are for dynamic path planning in indoor environments or other environments where global

structure can be captured in an abstract graph (i.e., of nodes and edges).

3TThe abstract graph’s nodes are rectangular, thus simplifying the geometrical projections of the global goal.

*80ne potential shortcoming occurs when an obstacle is discovered at the potential field boundary, just in front
of the location where the goal has been projected to. This will have the effect of erasing the attractive pull of the
projected goal. A heuristic method of overcoming this is to make the projected point a line (i.e., a line covering a
portion of one of the sides that comprise the boundary of the potential field). Even with this method, one can imagine
sensing objects that will block the attractive pull of the projected goal. The proper way to overcome this limitation
is to have a spatial reasoner reproject the goal when such a situation occurs.
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10. Future Research Issues

It is theoretically possible to extend the formalism presented here for 2D path planning
(i.e., local path planning) to address non-holonomic®® control, moving obstacles, and 3D
path planning. These cases are of interest because they address more general cases of the
presented method: (1) Most vehicles®® (e.g., automobile) are non-holonomic; (2) Moving ob-
stacles (e.g., people, other robots) are common in most office and warehouse environments:
and (3) 3D path planning is necessary for planning motions when looking for (i.e., finding)
objects in 3D space and to guide a manipulator if the mobile robot is equipped with one.
One way to address extension into these three areas is to include another dimension into the
potential field grid space to represent: (1) constraints for non-holonomic control (Connolly
& Grupen, 1994); (2) time in order to capture obstacle dynamics for control with moving
obstacles; or (3) the vertical dimension for 3D path planning. The addition of another
dimension, while theoretically possible, is not practical in most cases3!. The computational
time for a harmonic function on a discretized grid will increase in direct proportion to the
number of grid points. The extension of the presented techniques for path planning to these

new areas is a research challenge that requires a practical solution given current technology.

49 A non-holonomic mechanical system is one whose motion in configuration space is locally constrained (Con-
nolly & Grupen, 1994). For example, a wheeled vehicle can move to any position and orientation with a sequence of
maneuvering moves but jts motion at any instant is constrained (Hwang & Ahuja, 1992). This results in a constraint
on the curvature of paths for a wheeled vehicle. Traditional path planning techniques treat mechanical systems as
being holonomic (i.e., not constrained locally).

50The Nomadics 200 mobile robot is non-holonomic, but it is treated as a holonomic system.

5!t is practical only when the discretized grid is coarse in 2D and will be coarse in the third dimension also
(i.e., there are not that many grid points).
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CHAPTER 5

A Task Command Language Lexicon

Interaction between robots and humans should be at a level which is accessible and natural
for human operators. There has been very little research done pertaining to human-machine
natural language interaction and communication in the field of autonomous mobile robot
navigation (Lueth et al, 1994). Natural language permits information to be conveyed
in varying degrees of abstraction subject to the application and contextual setting. A
major function of language is to enable humans to experience the world by proxy, “because
the world can be envisaged how it is on the basis of a verbal description” (Johnson-Laird,
1989). There are two aspects to a natural language interface: (1) speech recognition and its
interpretation into a vocabulary lexicon; and (2) a vocabulary lexicon and its interpretation
into control and representational constructs. The research area of speech recognition is
beyond the scope of this thesis and is not addressed, and only the interpretation into
control constructs for SPOTT is discussed.

SPOTT’s language lexicon is a minimal spanning subset for human 2D navigational
tasks (Landau & Jackendoff, 1993; Miller & Johnson-Laird, 1976). The task command
lexicon consists of a verb, destination, direction and a speed. The destination is a location
in the environment defined by a geometric model positioned at a particular spatial location
in a globally-referenced Cartesian coordinate space. The basic form of the task command

lexicon is a variation of a command or request (Hodges & Whitten, 1986) sentence and its

syntax is:
VERB
+  (from)SOURCE
(5.5.1) COMMAND = + (to)DESTINATION
+ DIRECTION
+ SPEED

123



4

CHAPTER 5. A TASK COMMAND LANGUAGE LEXICON

If it is assumed that the robot’s starting location is its current location. the reference to the

SOURCE can be removed which leaves the following as the basic form:

VERB
+ (to)DESTINATION
+ DIRECTION
+ SPEED

(5.5.2) COMMAND =

User-specified commands are formulated using the lexicon template given by Equation 5.5.2.
Internal communications and representational constructs can also be expressed using parts
of the lexicon set.

The tasks are based on the verbs “GO" and “FIND”. and a mode of operation called
intelligent tele-operation. A task command formulated with the verb GO assumes that the
spatial location of the goal is known. whereas a task command formulated with the verb
FIND assumes that a description of the object is known but its spatial location is not.
Intelligent tele-operation is concerned with navigating the robot in a specific direction with
no predefined target - following simple directional commands such as forward. left. to name
a few - until an obstacle is encountered.

The description of the spatial location for the “G(0” task is a 2D geometric primitive
situated at a particular location in the 2D navigational coordinate space. The modelling
of an object is subject to the representations used for 2D path planning, which are 2D
geometric models! (i.e., points, lines. ellipses, rectangles). These 2D geometric models are
used as goals for SPOTT's local path planning module (see Chapter 4). Typically. a point
(i.e.. geometric object) situated in the 2D coordinate space is used to specify a goal.

The kind of objects SPOTT can “FIND" is limited by its a prior1 knowledge and
perceptual capabilities. Currently, QUADRIS is used to recognize walls. doors, and chairs
(Bui, in preparation). A range profile is used to recognize these objects. Current research
(Bui, in preparation) is also looking into the recognition of geons (i.e.. general 3D primitives.
see Figure 5.2). using a collection of range profiles.

Another element of the task command is a minimal spanning subset of prepositions
(Landau & Jackendoff, 1993) that are used to spatially modify goal descriptions® (e.g..
near, behind), and to specify trajectory commands (e.g., left, right, north). The spatial
relationships used are sparse, primarily including qualitative distinctions of distance and

direction. The quantification of the spatial and trajectory prepositions depends on two

!These 2D geometric models may be the result of a projection onto the 2D navigational plane of a corresponding
3D model representing an object (e.g., door, chair, wall) in the environment.
2Goals are specified by a spatial region in a global coordinate reference frame.
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norms: the definitions for the spatial prepositions near and far in the current environment
and task context?. In language design. the descriptors (e.g.. spatial prepositions) filter out
metric information (i.e.. not explicitly encoded), and similarly. such descriptions may be
instrumental for providing the structure for a level in a cognitive map*. The task command
is interpreted and quantified by SPOTT. and subsequently used as input to a TR+ program
(see Chapter 3) and the local path planner (see Chapter 1).

31t may be a very difficult task to quantify the definitions for near and far based on the current environment
and task context. For example, far can either mean that the object (e.g., pen) is not reachable or that the object is
somewhere in the horizon (e.g., mountain).

iISPOTT's map database does not currently use spatial prepositions to encode topological relationships, al-
though, such descriptions might be useful for a symbolic reasoner.
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1. Verbs

Verbs in the English language can be classified into categories of motion. possession.
vision and communication (Miller & Johnson-Laird. 1976). Motion and wision are the two

categories that are of interest for specifying a navigational task command.

1.1. Motion Verbs

Verbs of motion describe how people and things change their places and orientations in
space (Miller & Johnson-Laird. 1976). They describe how an object changes from a place p,
at time #, to another place p, at a later time ¢|,. The word travel appears to capture this
idea of a location change at least as well as any other single verb in the English language
(Miller & Johnson-Laird. 1976).

Deictic words are the type where it is necessary to know the conditions under which
a word occurs in order to interpret it (Miller & Johnson-Laird. 1976). The deictic verbs
of motion in English are a small set (e.g., bring, come. go. send. take), but are the most
frequently used in common speech. When the verb go contrasts with stay (i.e.. the nondeictic
sense of go), it is closely similar in meaning to travel. Go is chosen as the verb to mean ¢ravel
because the syntax of the task command (i.e.. command. request) implies the nondeictic
use of the word go. and ge is more commonly used in everyday speech. This is also the verb

used by Jackendoff (1990) to capture the concept of travel.

1.2. Vision Verbs

The conceptual core of vision rests on the verbs look and see (Miller & Johnson-Laird.
1976). Look® is behavioral (i.e.. involves the act of moving the eyes or a part of the body)
while see is experiential (i.e.. perceptual). The central paradox of perception is that “no
claim about veridical visual perception can be visually verified” (Miller & Johnson-Laird.
1976). The individual is the only person to know what it is that they perceive: other people
cannot verify this component of a veridical claim.

Verbs that are based on look are behavioral in nature. These verbs involve the concept
of a visual process in which a sequence of perceptual acts is under the control of an observer.
Looking over a perceptual object is such a process. The sort of things that can be looked
over include areas, surfaces, and objects. These verbs involve a role of intention and can be

classified as follows:

5 Look is defined as “to set one’s eyes upon something or in some direction in order to see”. See is defined as
“to perceive with the eyes; to perceive things mentally, discern, understand; to construct ¢ mental image of'. Both
definitions are taken from the Webster’s Encyclopedic Unabridged Dictionary.
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¢ Visual monitoring may be impossible unless the perceptual system is intentionally

guided to act in order to continue looking at a perceptual object (i.e.. look at).

e An observation may be deliberately prolonged in order to sec what happens to the

perceptual object (i.e.. watch for).

o A series of observations may be initiated in order to come to be able to see a par-

ticular entity (i.e.. look for. search for. or find).

The verb find involves both looking and seeing. In this case. looking is moving the
eves (i.e.. controlling the pan-tilt head of a camera) and body (i.e.. robot) in a strategic
search sequence. and seeing is the perceptual process of identifying the sensed input as one
of the recognizable entities sought out by the agent (i.e.. robot). Watching for something
and searching for something are both perceptual activities and motivated by a higher-order
intention to learn something. When one is watching. the target is usually an event or an
action. but when one is searching, it is usually an object. An object is found if it becomes
vistble. which in essence is also an event. In this sense. find® is used to search for an object
or event.

Find is the perfect companion to the word go in the verb slot of the task command.
[t specifies the case where a description of an object is given. but its spatial location is

unknown.

5The perceptual sense of find is also directly related to the control instruction find.



4

CHAPTER 5. A TASK COMMAND LANGUAGE LEXICON

2. Spatial Locations and Object Descriptions

Using go and find as the verbs of a task command lexicon implies that the destination
for the robot is either a known spatial location (i.e.. go) or an unknown place specified (i.e..
find) by only an object’s description (e.g.. a ball).

A known destination is a spatial region that is positioned in a predefined Cartesian
coordinate space. Since SPOTT’s task set is based on 2D navigational tasks. a set of simple
2D models (i.e.. point. line. ellipse. rectangle) are used to model the spatial area defining

the destination (see Figure 5.1). In the real world. objects are 3D in shape and a proper
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FIGURE 5.1. 2D Models for Representing the Spatial Area Defining the Destination.
The four different types of models used include a point, line, ellipse and rectangle. A point is specified
by a P = (z,y) coordinate pair. The rest of the models are specified by a set of two points P, =
{(r1,y1), P» = (x2,y2). defining the top left and bottom right paints. An ellipse is specified by the
two points defining a bounding rectangle.

Y

Y

description for perceptual identification would be a 3D model’.

Parametric geons (Wu & Levine. 1993) are chosen as a qualitative description of object
components for future use when SPOTT’s perceptual capabilities have advanced. Paramet-
ric geons have been shown to be applicable for qualitative object recognition (Wu, 1996).
There are seven of them (i.e.. ellipsoid, cuboid, tapered cylinder. tapered cuboid. curved

cylinder, and curved cuboid) and they are defined by parametrized equations where the size

"The 2D meodels are just projections of the 3D models onto the 2D navigational plane.
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and degree of tapering and bending is controlled (see Figure 5.2. Equations 5.5.3 through
to 5.5.9, and (Wu & Levine, 1993)).

cuboid curved cuboid tapered cuboid

cylinder curved cylinder tapered cylinder

ellipsoid

FIGURE 3.2. Geons. Seven qualitative shape types defined by parametrized equations that control
the size and degree of tapering and bending have been proposed (Wu & Levine, 1993) as a qualitative
description of object components. These shape types are used to describe 3D objects found in the
world. For example, a cuboid (i.e., thin plate) would describe a wall. Other objects may require the
combination of two or more shape types to describe their shape (e.g., a chair would be described by a
thin plate for the backing and seat and four long cylinders for the legs).

The equation of an ellipsoid (Wu & Levine. 1993) is:

)

(5.5.3) (i) + (l) . (i) -1
a) a9 as

The equation of a cylinder (Wu & Levine. 1993) is:

2 2\ 10 2
(5.5.4) ((i) + (l> ) + (i) oL
a) as as
(555) <£)20+(£)20+(i>20_1
e a as as -
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The equation of a tapered cylinder (Wu & Levine. 1993) is:
10

2 2 20
(5.5.6) ) () ) <(E) -
a(o=Z +1) a2 (GEZ + 1) as

where K and K, are tapering parameters. The equation of a tapered cuboid (Wu & Levine.

1993) is:

20 20 20
- = X Y Z\°
(5.5.7) — = =] (%) =1

a[(;;'-Z+I) QQ(E-:-Z-(—]_) az
The equation of a curved cylinder (Wu & Levine. 1993) is:
k= V/ZT+ (kL = X)2 : v \? ° x~'arctan —_14—\- 0
(5.5.8) + (—) . ==\ _,
ay ay as

where the curvature value « is used to describe a simple bending operation around a centre
of a circle centered on the x-axis in the x-z plane (Wu & Levine. 1993). The equation of a

curved cuboid (Wu & Levine. 1993) is as follows:

20 . P 20
=1 —- 2 -1 _ v\2 20 -1 t: _[ .
(5.5.9) (n V2% + (x X) ) N (Y) N (n arc dn,c_l__‘\’) _ 1

ag a) ay
The types of 3D models currently in use are constrained by the perceptual capabilities of
the robot. SPOTT’s recognition capabilities are limited to walls. doors. and chairs (Bui. in
preparation). These types of objects may be described by a collection of adjoining cuboids.
This kind of object description (i.e.. as a collection of geon parts) is useful for the perceptual
process of recognition. In order to describe a place. usually the location is idcalized by a

single part (3D or 2D) (Herskovits. 1985).
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3. Prepositions

The preposition is a key element in the linguistic expression of place and path. and there
are few of them in comparison to the number of names for objects (Landau & Jackendoff.
1993). The totality of prepositional meanings is extremely limited. This fixes the number
of prepositions in the English language (see Table 5.1) which makes them ideal for use in
a robot task command language®. There are two different types of prepositions that are
of interest for a robot task command lexicon: (1) one type describes a spatial relationship
between objects: and (2) the other describes a trajectory. A preposition in its spatial role
is only an ideal. The actual meaning is a deviation from the ideal. [t is determined by the
context of a specific application. A level of geometric conceptualization mediates between
the world as it is and language (Herskovits. 19853).

A locative expression is any spatial expression involving a preposition. its object and

whatever the prepositional phrase modifies (noun. clause. etc.):
(5.5.10) N P (preposition)N P,

where VP is a noun phrase. If a noun phrase (/VP,) refers to an object (O;). then the

locative expression can be rewritten as follows:
(5.5.11) IM(G(01).G2(02))

where G, is the geometric description applied to the object (O;). and M is the ideal meaning
of the preposition. The ideal meaning of a preposition is such that (1) it is manifested in
all uses of the preposition. although shifted or distorted in various ways. and (2) it does
not apply to the referents of the noun-phrase, but to geometric descriptions associated with
these referents (Herskovits. 1985). If [T(IM)] is the transformed ideal meaning. then the

geometric scene representation can be stated as follows:
(5.5.12) [T(IM))(G1(01). G2(01))

The different types of categories that typify a geometric description function are as follows
(Herskovits, 1985):
(1) Functions that map a geometric construct onto one of its parts. Examples of parts
include a 3D part. edge. or the oriented base of the total outer surface.
(ii) Functions that map a geometric construct onto some idealization of the object. The

idealization can be an approximation to a point. line, surface. or strip.

8Spatial prepositions may also be used for qualitatively describing the spatial relationships amongst parametric
geons that are used to model the parts of a single object (Landau & Jackendoff. 1993).
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Spatial Prepositions

about above across after against along
alongside amid(st) among(st) | around at atop
behind below beneath | beside between | betwixt
beyond by down from in inside
into near nearby off on onto
opposite out outside over past through
throughout to toward under | underneath up
upon via with within without
Compounds
far from in back of
in between in front of
in line with on top of
to the left of to the right of
to the side of
Intransitive Prepositions
afterward(s) apart away
back backward downstairs
downward cast forward
here inward left
N-ward (e.g.. homeward) north outward
right sideways south
there together upstairs
upward west
Nonspatial Prepositions
ago as because of | before despite during
for like of since until

TABLE 3.1. The Minimal Spanning Set of English Prepositions. The possi-
ble meanings of all prepositions is extremely limited (Landau & Jackendoff, 1993).
The above lists the set of all prepositions that minimally span all the prepositional

meanings possible in the English language.
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(iii) Functions that map a geometric construct onto some associated good form. A good
form is obtained by filling out some irregularities or implementing Gestalt principles
of closure or good form.

(iv) Functions that map a geometric construct onto some assoctated volume that the
construct partially bounds. Adjacent volumes include the interior. the volume or
area associated with a vertex. and lamina associated with a surface.

(v) Functions that map a geometric construct onto an azis, or a frame of reference.

(vi) Functions that map a geometric construct onto a projection. The projections can
either be a projection on a plane at infinity or a projection onto the ground.

The meaning is transformed due to various contextual factors® bearing on the choice and
interpretation of a location expression (Herskovits. 1985). T(/M) and G functions are
frequently fuzzy: however. quantification of a spatial prepositional expression into a fuzzy
definition is difficult because context is the key and its quantification is difficult { Herskovits.
1988).

Understanding the representations of space requires invoking mental elements corre-
sponding to places and paths. where places are generally understood as regions often occu-
pied by landmarks or reference objects. The spatial preposition is an operator that takes
as its arguments. both the figure object and the reference object. and the result of this

operation defines a region in which the figure object is located:
(5.5.13) Fp(0f.0:) = R

where Fy, is the spatial preposition defining a function operating on the figure Oy and
reference O, object models (i.e.. Oy is Oy and O, is Oy in Equations 5.5.11 and 5.5.12) in
order to obtain a region of interest R.

The use of spatial prepositions may impose certain constraints on the figure or reference
objects, or the resulting region. The restrictions placed on the form of the reference object
or figure object by spatial prepositions are not very severe, and only refer to the gross
geometry at the coarsest level of representation of the object (Landau & Jackendoff. 1993).
The object’s axial structure plays a crucial role. In a spatial expression defining a location.
there are no prepositions which cause the figure or reference object to be analyzed in terms

of a particular geon'® (Wu & Levine, 1993: Biederman, 1987). In general. there are no

9 Salience explains the direction of metonymic shifts. For example, one can use a noun which basically denotes
a whole object to refer to a part of it which is typically salient. Relevance has to do with communicative goals, with
what the speaker wishes to express or imply in the present context. Tolerance is the deviation from the truth of the
ideal meaning, usually talked about in measurable terms such as angle or distance. Typicality is the implication of
other meanings associated with the use of the current preposition (e.g. the use of behind implies nearness).

107 qualitative description of an object component (i.e., part) (see Section 2).
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prepositions that insist on analysis of the figure or reference object into its constituent parts.
A reference object can be schematized as a point. a container or a surface. as a unit with
axial structure. or as a single versus aggregate entity. A figure object can be schematized
as most as a single lump or blob (no geometric structure whatsoever). a unit with axial

structure that is along, at most. one of its dimensions. or a single versus distributed entity.

3.1. Quantifying Prepositional Expressions

The spatial relations encode several degrees of distance and several kinds of direction.
Many complexities arise from assigning different frames of reference. Some spatial expres-
sions involving axes do not leave this choice of reference system open. The choice of axes
can either be defined by the reference object!!. the speaker (i.e.. operator). or the actor
(1.e.. robot).

The quantification of spatial prepositions depends on the purpose of the use. One
possible method is to quantify a spatial expression into regions with a degree of membership.
which is done by fuzzy sets (Zadeh. 1974). This representation is useful as an information
source for search strategies that determine the likelithood of locating an object in a particular
region. which is encoded by the spatial prepositional expression. At this time. SPOTT is
interested in encoding spatial prepositions in a task command lexicon in order to define
regions in space to navigate to. Therefore. the quantification requires a precise location or
region in a global coordinate space.

Recall that SPOTT's path planner’s navigational space is two-dimensional (see Chap-
ter 4) and the geometric descriptors of a goal are a point. line. ellipse (e.g. circle) and a
rectangle (e.g. square) (see Section 2). The regions describing the result of a spatial prepo-
sitional expression are described with respect to the boundaries of these geometric objects.
The four levels of distance that are described by English spatial prepositions (Landau &
Jackendoff. 1993) are:

(1) location in the region interior to the reference object (e.g. in. inside).

(i1) location in the region exterior to the reference object but in contact with it (e.g. on.
against),
(iii) location in the region proximate to the reference object (e.g. near). and
(iv) location distant from the reference object (e.g. far, beyond).
Besides the boundary defined by the reference object, the quantification of a spatial ex-

pression only depends on a norm for describing what is meant by near and far. Although

11 A reference object can have a usual orientation associated with it (e.g.. the front of the chair is the direction
where one can sit from).
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humans are able to represent distance at finer levels for tasks that require finer control. it
appears that spatial prepositions do not encode ilis precision.
Vandeloise (1991). in describing the French equivalents of the English spatial preposi-
tions near and far. claimed that they are often described in terms of the following factors:
(i) The access of the target!?,
(ii) The dimension of the landmark and to a lesser extent. the size of the target.
(iit) The size of the speaker. and
(iv) The speed of the target!®.
The norm that defines near and far needs to be defined with respect to some context.
Denofsky (1976) claimed that the norm for far can be approximately equal to four times
14

the normn for near: however. this is clearly not applicable in all situations For mobile

robot navigation. some categories (i.e.. or context) that can help quantify the definition are
manipulator access. perception access. and the bounds of the environment:

e Manipulator access can define the norm for near as being the maximum reach of the

manipulator arm from the body surface of the robot.

e Perception access can define the norm for far as being equal to the furthest distance

that the robot can perceive objects.

e A bounded environment's (e.g., a room) maximum dimensions can define a norm for

far.
Even though there are only two norms to define (i.e.. near and far). it is not clear that such
simple definitions for their quantification are adequate across different contextual settings.
Currently in SPOTT, the operator specifies the norms for near and fur that are subsequently
used in the quantification of a spatial expression in the task command.

Only 2D spatial expressions are used in SPOTT’s task command and the vertical
orientation prepositions are not currently included in the vocabulary. because all tasks are
on a planar surface. SPOTT’s task command lexicon categorizes the prepositions it uses
into three groups:

(i) Spatial prepositions that depend on a ortentation based on the reference object (i.e..

directional prepositions) as well as the norms for near and far,

12 Access can either by physical (i.e.. reachability for defining near) or perceptual (i.e., defining far based on the
furthest recognizable object).

131f the target is moving towards the landmark, the norm may increase with the speed of the target. If the
target is moving away from the landmark, the extent of the norm will diminish as the speed decreases. The speed of
the landmark may also be a factor: however, it is uncommon to find a landmark that is mobile with respect to the
target. The speed of the speaker, and the size and the speed of the addressee may also be factors.

14 For example, in an outdoor setting, the picnic tables may be near and the distant mountains may be considered

far.
135



CHAPTER 5. A TASK COMMAND LANGUAGE LEXICON

(ii) Spatial prepositions that depend only on the distal norms for near and far with no
need for any orientation frame (i.e.. distal prepositions). and
(111} Prepositions that define a trajectory (i.e., trajectory prepositions).
Both the directional and distal prepositions are used as part of the destination member of
the task command. The trajectory prepositions are used to define the direction member of

the task command (see Equation 5.5.2 and Figure 5.8).
3.1.1. Directional and Distal Prepositions

The result of quantifying the spatial expression (i.e.. in the destination part of the task
command) is to define a goal region for the path planner (i.e.. potential field. see Chapter ).
In the potential field (i.e.. path planner). the entire goal region is saturated to a low potential
value and is not used as part of the free space, which is where the robot navigates. The
robot navigates by performing steepest gradient descent on the harmonic function which is
computed in the free space. The robot will stop when it reaches the outskirts of the goal
region. Ideally, the robot should navigate towards the centre of the region defined by a
spatial expression. This is why the region which is used to define the goal region is only
half the size of the region defined by the spatial expression (see Figure 5.3).

Figure 5.4 illustrates graphically how the set of directional prepositions are quantified
to act as a goal (i.e.. for path planning) for different 2D object models (i.e.. point. line.
ellipse. rectangle). The choice of axes can either be defined by the reference object or the
speaker (i.c.. the robot) or by the reference object (e.g.. the front of the chair is the direction
where one can sit from). The prepositional region is based on the chosen orientation axis.
the orientation denoted by the spatial prepositions. as well as the norms for near and far.
The quantification of the spatial expression into a goal region is accomplished by taking the
half of the region defined by the spatial expression which is closest to the object model (see
Figure 5.3).

Figure 5.5 illustrates graphically how the set of directional prepositions are quantified
to act as a goal (i.e.. for path planning) for different 2D object models (i.e., point. line.
ellipse. rectangle). The set of distal values are only four in number: interior. contact.
proximal (i.e.. near) and distal (i.e., far). Distal prepositions differentiate themselves from

directional prepositions by not being oriented.
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FIGURE 5.3. Spatial Expression Regions Defined as Goals for Path Planning. The
result of quantifying the spatial expression (i.e., in the destination part of the task command) is to
define a goal region for the path planner (see Chapter 4). This figure illustrates the region defined
by the spatial expression “in front of the chair”, and the final stopping position of the robot when
this spatial expression is used as the goal. The goal can be quantified in two different ways: in (a),
the region defined by the spatial expression is used as the goal for the path planner; and in (b), only
half the region is used as the goal. The rationale behind using only half the region is that the robot
traverses to the outskirts of the goal region, and in (b) the robot will end up in the middle of the region
defined by the spatial expression. This contrasts with (a) where the robot will end up at the outskirts
of the region defined by the spatial expression.
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FIGURE 5.4. Directional Prepasition Definitions. The goal of quantifying the sparial ex-
pression is to define a goal region for the path planner (see Chapter 4). The first row is the set of 2D
object models used. The second row shows how the near and far definitions relate to the different
2D object madeis. The subsequent rows show the region used as a goal model (i.e., potential field
object) when the object model in question is acted upon by the spatial preposition found in the first
column. The legend for the graphics and symbols used is shown in the box situated in the first column
and second row. There are two regions highlighted throughout the table: the prepositional region and
the potential field object region. The region used to describe the result of the spatial expression is the
one highlighted as the potential field object together with the region highlighted by the prepositional
region. The potential field object region is the one used as the goal model for the spatial expression.
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FIGURE 5.5. Distance Preposition Definitions. The goal of quantifying the spatial axpression
is to define a goal region for the path planner (see Chapter 4). The first row is the set of 2D object
madels used. The second row shows how the near and far definitions relate to the different 2D object
models. The subsequent rows show the region used as a goal model (i.e., potential field object)
when the object model in question is acted upon by the spatial preposition found in the first column.
The legend for the graphics and symbols used is shown in the box situated in the first column and
second row. There are two regions highlighted throughout the table: the prepositional region and the
potential field object region. The region used to describe the result of the spatial expression is the
one highlighted as the potential field object together with the region highlighted by the prepositional
region. The potential field object region is the one used as the goal model for the spatial expression.
The goal region formed with the “inside” spatial preposition acting upon a point or line geometric
model is the actual 2D object model. In the case of an ellipse or rectangle, the goal region is a smaller
ellipse or rectangle centered in the 2D object model. For the far preposition, the goal region is defined
as everything but the 2D object model. Prepositions such as in and outl are only relevant when the
reference object can be entered by the robot (e.g.. a rectangle representing a room).
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3.1.2. Trajectory Prepositions

The role of the trajectory prepositions (i.e., direction category in the task command}) is
to bias the steepest gradient descent operation that is performed on the potential function
by the local path planner (see Section 5 in Chapter 4). Rather than using steepest gradient
descent. the trajectory is a descending gradient that is biased to be as close as possible
to the direction specified by the trajectory preposition (see Figure 5.6). There are three
different types of trajectory prepositions:

e For the first type. the trajectory is determined by following the outer perimeter of

a reference object. keeping a distance equal to the norm for the definition of near
away from the reference object (e.g.. along. around).

e For the second type. the trajectory preposition is defined by a vector connecting the
robot’s current position (i.e.. at the time the command is given) to the centroid of
the reference object (e.g.. towards. away from).

e For the third type. the quantification of the trajectory preposition is defined by a
coordinate axis centered at the robot (e.g.. backward. forward. left. right) or a global
coordinate axis which defines the compass heading (e.g.. north. south. east. west).

Figure 5.7 illustrates the direction biases that the set of trajectory prepositions define.
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FIGURE 5.6. Trajectory Preposition Bias on Steepest Gradient Descent. The role of
the trajectory prepositions (i.e., direction categary in the task command) is to bias the steepest gradient
descent operation that is performed on the potential function by the local path planner (see Section 5
in Chapter 4). Recall that the steepest descent gradient at a particular location is computed using a 3
by 3 operator. The steepest descending gradient (a) is chosen out of the nine choices (i.e., the dotted
vectors). The gradient used is based on finding a descending gradient which is the closest one to the
orientation specified by the trajectory preposition (b). Once this has been chosen (c). an interpolation
procedure is initiated, similar to the one described in Figure 4.9, in order to find a descending gradient
which is the closest in orientaticn to the trajectory preposition {d).
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FIGURE 5.7. Trajectory Preposition Definitions. The role of the trajectory prepasitions is
to bias the steepest gradient descent operation (See Figure 5.6) on the potential function performed
by the local path planner (see Section 5 in Chapter 4). The first row is the set of 2D object models
used. The second row shows how the definition for near relates to the different 2D object models.
The icon which indicates the robot and its position is shown in the legend box, which is in the first
column and second row. The third through to the sixth rows show in terms of arrows how the trajectory
of the robot is defined by the trajectory prepositions. In the third and fourth rows, the trajectory is
determined by following the outer perimeter of a reference object. keeping a distance equal to the norm
for the definition of near away from the reference object {e.g., along, around). In the fifth and sixth
rows, the trajectory preposition is defined by a vector connecting the robot's current position (i.e., at
the time the command is given) to the centroid of the reference object (e.g., towards, away from).
The quantification of another set of trajectory prepositions (in the seventh row) is determined by a
coordinate axis centered at the robot (e.g., backward, forward. left, right) or a global coordinate axis
defining a compass heading (e.g., north, south, east, west).
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4. The Task Command

Combining all lexical elements results in the task command as shown in Figure 5.8. The
basic syntax is given by a verb. destination. direction and speed choice. The targets chosen
are based on what SPOTT can perceptually recognize (e.g.. door. wall). what SPOTT
knows about (e.g., rooms. hallways in the CAD map), 2D models. and 3D models!>. Quly
2D spatial prepositions are chosen because SPOTT navigates on a 2D plane. The role of
specifying the direction is to bias the path planning. The lexical set of speed variables is
small but a more discriminating set of speeds can be easily accommodated (e.g.. very fast.

very slow).

'53D models are planned for future use in perceptual tasks such as object recognition.
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FIGURE 5.8. The Task Command Lexicon. The basic syntax is given by a verb. destination,
direction and speed choice. The destination is a located region that can be modified in a spatial
expression. The set of spatial preposition modifiers chosen are 2D because SPOTT is currently only
able to perform 2D navigation. A set of trajectory prepositions (i.e., direction) are used to bias the
trajectory defined by the tocal path planner.
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CHAPTER 6

Implementation

! asynchronous functional-

SPOTT is impiemented in parallel. thus permitting real-time
ity. The autonomous robot communicates via a radio link to SPOTT, whose processing
is distributed across a collection of networked SUN and SGI workstations. The software
tool PVM? (Parallel Virtual Machine) (Geist et al.. 1994) is used to distribute the con-
trol. planning. and graphical user interface across a collection of existing processors. PVM
is a message passing library which allows the harnessing of a collection of heterogeneous
processors into a single transparent. cohesive and unified framework for the development
of parallel programs. The PVM system transparently handles resource allocation. message
routing, data conversion for incompatible architectures. and other tasks that are necessary
for operation in a heterogeneous network environment. The portability and heterogeneous
property of PVM makes it possible to transfer this architecture on-board the robot in the
future. The computation for both the TR+ program control and local planning is also
distributed to provide real-time response. Typically, ten to fifteen processors are used in an
experiment.

A distributed implementation permits SPOTT to control the robot in real-time. A par-
allel implementation of SPOTT is required because the computation of the potential field
for the local path planner can be very computationally expensive (i.e.. solving Laplace’s
equation iteratively with irregular boundary conditions), and some of the conditions of a
TR+ program can have extensive processing of the sensor data. PVM simplifies the paral-
lelization process by providing a high level library of function calls. The actual system calls
and UNIX socket connections are transparent to SPOTT’s code and are masked by a lim-
ited set of PVM library calls. Transparency between different levels of implementation are
essential for understanding, maintaining and debugging complex systems such as SPOTT.

'Reaction time to environmental changes is faster than the rate of change in the environment.
2This is an ongoing project carried out by a consortium headed by the Oak Ridge National Laboratory.
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When designing a complex system such as SPOTT. it is also important to consider
visualization for system monitoring and debugging, and in general, the user (i.e.. operator)
interface. There are three modes of interacting with SPOTT: (1) before execution time:
the operator initializes the system and specifies a task command: (2) during execution: the
graphical visualization of the current actions and state of the robot within its environment
continually update the visualization tools: and (3) post-mortem analysis: the operator or
programmer evaluates the executed task (i.e.. what went right and what went wrong). The
different types of SPOTT users include:

(1) naive users who are unfamiliar with the concepts that make up SPOTT.

(i) partially knowledgeable users who are familiar with the concepts that make up
SPOTT (i.e.. they may be able to interpret why something went wrong),

(ii1) fully knowledgeable users who will want to specify different initialization parameters
(i.e.. other than the standard) and new TR+ control programs. and

(iv) SPOTT system developers who interpret the execution and enhance SPOTT by
correcting newly found software bugs, improve the efficiency of execution (i.e.. speed
and memory management). and enhance the user interface.

SPOTT's graphical user interface tries to address all the needs for the different types
of users. SPOTT is also flexible and expandable in that new TR+ control programs can be
added. as well as new sensors and actuators (i.e.. a robotic arm?).

PVM is the glue that has been used to implement the SPOTT system. A message-
passing paradigm (i.e.. PVM) has been chosen for distributing the processing because it is
relatively inexpensive (i.c.. existing processors are used), and the implementation is portable

(i.e.. operates on a collection of heterogeneous machines which can be interchanged).

3A manipulator arm may require its own path planner. This would require some madification to SPOTT's
architecture because its current path planner is for navigational commands, and the manipulator control would
require its own path planner.
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1. Parallelism with PVM
PVM (Parallel Virtual Machine) (Geist et al.. 1993: Geist et al., 1994: Beguelin et al..

1993) is a software system that enables a collection of heterogeneous computers to be used
as a coherent and flexible concurrent computational resource in a network environment.
With respect to a user. a subset of the underlying network’s processors are utilized so as
to give the impression that the capabilities of a parallel processor are available within the
confines of a single workstation. The PVM system transparently handles resource allo-
cation. message routing, data conversion for incompatible architectures. and other tasks
that are necessary for operation in a heterogeneous network environment. PVM offers
excellent price-performance characteristics compared to massively parallel processors (Sun-
deram et al.. 1993). PVM was one of the first message-passing software systems' to be
developed for parallelizing applications across networks. It was selected as the tool to make
SPOTT concurrent because of its support (i.e.. many users. news groups) and apparent
robustness®. as well as ongoing research and development. The support software for PVM
executes on each machine in a user-configurable pool. and presents a unified. general. and
powerful computational environment for concurrent applications. PVM provides a set of C
or FORTRAN user calls to the PVM library routines for functions such as process initiation.
message transmission and reception. and synchronization. PVM supplies the functions to
automatically start up tasks on the virtual machine and permits the tasks to communicate
and synchronize with each other. SPOTT is executed on a network consisting of SUN and
SGI workstations, and a PC (i.e.. personal computer) 586 machine. A radio link communi-
cates with a processor (i.e.. 486) on board the robot. The implementation could be ported
to be solely on board the robot if a multi-processor network were made available on the
robot®.

The PVM system is composed of two parts:

e The first part is a daemon (called pymd?3) which resides on all the computers making

up the virtual machine. When a user wishes to run a PVM application, pvm.J3

4Other tools include Linda (Carriero & Gelernter, 1989), Isis (Birman & Marzullo. 1989), Express (Flower et al..
1991), and MPI (Gropp et al., 1991).

>There have been virtually no problems traced to PVM during the course of developing and testing SPOTT.

5This would be at a cost to battery life. Currently, the Nomad 200 can run for approximately four hours on
a complete charge of its battery set (i.e., five batteries). For indoor environments, the processing could be done off
board the rabot, provided that communication is maintained between the robot and the computer network responsible
for processing the control decisions. However, for remotely located environments (e.g., space applications such as the
navigating on the moon or Mars) where radio transmission to the off board processing units could be slow, it would
be necessary to have the computation performed on board. Experiments with the robot roaming the hallways at CIM
showed that indoor transmission may also be troublesome. Transmission was lost (i.e.. severely degraded) when the
robot disappeared around corners (i.e.. out of the line of sight of the receiver).
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is executed at a UNIX prompt on one of the computers which in turn starts up
pvmd3 on each of the computers making up the user-defined virtual machine. A
user configures a virtual machine (see Figure 6.1) by specifying, in a text file. the
hosts which are to be part of the virtual machine. After the daemons are started.
the PVM application can be started from a UNIX prompt on any of the machines
that make up the virtual machine. Multiple users can configure overlapping virtual
machines. and each user can execute several PVM applications simultaneously.

e The second part of the system is a library of PVM interface routines. used for devel-
oping application software. The PVM library is composed of user-callable routines
for message passing, spawning processes, coordinating tasks. and modifying virtual
machine configurations. Application programs are linked to this PVM library.

The PVM library provides routines for packing and sending messages between pro-
cesses. The communication routines include an asynchronous broadcast (i.e.. send) to a
single task. and a synchronous broadcast (i.e.. multi cast) to a list of tasks. PVM transmits
messages over the underlying network using the fastest mechanism available (i.e. either
UDP, TCP. or other high-speed interconnects, if available). The PVM communication
model also provides for asynchronous blocking send. asynchronous blocking receive. and
non-blocking receive functions. A blocking send returns control as soon as the send buffer
is free for reuse. regardless of the state of the receiver. A non-blocking receive returns im-
mediately with either the data or a flag indicating if the data has arrived. while a blocking
receive returns only when the data is in the recetve buffer. The PVM model guarantees that
message order is preserved’ between any pair of communicating processes. The application
developer can specify constraints on certain processes. such as constraining the computer
type (e.g., SUN, SGI) or even specifying the exact machine to run the process. The default
is a transparent mode, where PVM automatically chooses an appropriate machine based on

8 on the virtual machine.

the resource allocations

The great advantage of using PVM over direct communication routines (i.e.. sockets.
pipes), is that application development can be done at a much higher level. The PVM
software package handles the allocation of resources, and error handling, and masks the low

level communication routines with the PVM library functions.

"\Messages are processed in the order of arrival. This does not necessarily correspond to the order of time of
departure from the source processes.

8The current version of PVM (i.e., 3.3.10) does not perform load balancing. The selection of the machine where
a process is executed is based on distributing the processes evenly across the entire collection of machines that make
up the parallel virtual machine.
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== 2 272 IR

FIGLURE 6.1. A Hypothetical "Parallel Virtual Machine”. Each unique box shape rep-
resents an architecture. A daemon (i.e., pvmd) is running on every node There is one set of libraries
installed for each group of same-architecture nodes There are one or more application components
running on each node The nodes are connected by different types of networks. All daemons and appli-
cations shown are for one person’s run. If another person were running on the same nodes, the diagram
would show another set of daemons and application programs running.

appion components
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Some of the contentious issues in a message-passing parallel system are that the usable
capacities of each machine on the network vary from moment to moment according to the
load imposed upon them by multiple users. Another consideration is system failure: if an
application executes for long periods of time, failures during execution are more likely. For
example. one of the machines may crash due to a variety of reasons (e.g., another user’s
application. memory problems. hardware problems). If such were the case. it would be
ideal to have the processes that are executing on this machine to be restarted on another
machine. A system called Dome (Arabe et al.. 1995) has been recently introduced to
address the problems of load balancing in a heterogeneous multi user environment. and
fault tolerance. Dome is built upon PVM and currently is only set up for SPMD? type

processing.

9Single Processor, Multiple Data. This is the type of computation method used by the local path planner (i.e.,
potential field). The first release of the software for Dome only became available on May 2.4, 1996. The potential field
computation has been found to be quite robust without any current load balancing and error checking. Dome is not
applicable for the TR+ interpreter since this is a MPMD (i.e., Multi-Processor, Multi-Data) computation style.
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2. The SPOTT System

SPOTT is implemented as a distributed control system. The major components (i.e..
processes) of SPOTT and the lines of communication between them are shown in Figure 6.2.
The user (i.e.. operator) interacts with the SPOTT system via the graphical user interface
(GUI). and in turn the GUI interfaces to each one of SPOTT’s major components: the
TR+ interpreter. the local path planner (i.e.. potential field). the global path planner. and
the robot interface module (i.e., robodaemon interface). Besides the main GUI. there are
graphical displays controlled by some of the major modules: the TR+ interpreter displays
a graphical representation of the state of the currently executing TR+ control program: the
global graph planner displays a graphical representation of the global path: and the local
path planner displays the equi-potential contour lines of the potential function. In addition.
the robot controlling software (i.e.. robodaemon) has its own graphical interface for direct
interaction (e.g.. testing low level functionality) with the robot.

Most of SPOTT's computational resources are allocated for the processes associated
with the local path planner and the TR+ interpreter. The local path planner computes
the potential field by sending parcels of data to slave processes in a master-slave config-
uration (see Section 2.3). Typically. four slave processes have been used for experiments
with SPOTT. This type of parallel computation style is referred to as MPSD (i.e.. Multiple
Processor. Single Data). In contrast, the TR+ interpreter uses a MPMD (i.e.. Multi
Processor. Multi Data) style of parallel computation. The TR+ interpreter spawns the
computational processes that are used to compute the conditions and actions!'® of the cur-
rently executing TR+ control program. The condition processes acquire almost all of their
sensor data (i.e.. sonar, bumper. infrared. compass) from the robot via the robodaemon
program, except for the laser rangefinder (i.e., QUADRIS) data which is acquired via a
separate interface. This separate interface also permits the TR+ actions to control the
pan-tilt units (PTU) of the QUADRIS system. In addition, TR+ actions send signals to
the robodaemon process to move the robot to a particular location. and sensor data to the
local path planner in order to update the potential field. The GUI process is responsible
for updating the local path planner with the specified task command. The TR+ program
is selected via the GUI and passed to the TR+ interpreter when the operator starts the
robot via the GUI. Therefore, the overall controller of the SPOTT system is within the GUI

software process.

10Currently. all actions involve only a data look up and very little computation, and are therefore executed as
part of the TR+ interpreter process. [n contrast. most conditions involve extensive processing of the sensor data and
are implemented as separate processes.
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The SPOTT system has also been interfaced to the logical control (and theorem prov-
ing) system called COCOLOG (Caines & Wang, 1995). At this time COCOLOG (see
Section 3) provides. as input to SPOTT. a procedural list of high level goals (i.e.. spatial
locations). The relative ease in which COCOLOG was interfaced with SPOTT illustrates
modularity, and the potential for expansion with the SPOTT system.

There is a graphical and computational aspect to SPOTT’s implementation. The graph-
ical interfaces are either controlled by the GUT process or one of the other central processing
centres (e.g.. TR+ interpreter) (see Figure 6.2). The other central processing centres in-
clude the TR+ interpreter. the local path planner. the global path planner. in addition to

the low level robot and sensor interface software (i.e.. robodaemon).
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FIGURE 6.2. Implementation Modules. The major components of SPOTT, their associated
processes, and the lines of communication between them are shown. Each bubbie is a separate process.
SPOTT's major components are: the GU/ the TR+ interpreter, the local path planner (i.e., potential
field), the global path planner, and the robot interface module (i.e., robodeemon interface). Most of
the GUI and the main control is initiated by the G U/ process. Other components update aspects of the
GUI which are pertinent to describing their computations (e.g., equi-potential contours are displayed
by the local path planner). COCOLOG (Caines & Wang, 1995) is able to interface to the GUI by
providing a procedural list of task goals (i.e.. spatial locations).
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2.1. Graphical User Interface

During execution, there is a wealth of on-line graphical information displayed. namely.
the current state of the TR+ control programs, the equi-potential contours of the potential
function used by the local path planner, the current path in the global (i.e.. abstract)
graph map, the planar map of the robot and its environment. as well as the graphical user
interface for specifying the task command (and start and stop commands) (see Figure 6.3).
The software package PVaniM (Topol et al.. 1994) is also used to provide online visualization
(i.e.. of processor and memory usage) of SPOTT's distributed execution with PVM. All of
the graphics are displayed on two workstations!!, because there is not enough display space
on a single workstation. Future research will have to address the interaction with the user.
in particular, the management and layout of the graphical information.

The task command is specified in a menu-based graphical interface which was developed
using the software package called Forms (Zhau & Overmans. 1995). A planar map view of
the robot’s current position, executed path and its map!? is also displayed and updated on
a continual basis during execution. The state of the currently executing TR+ program is
also displayed in its corresponding graphical notation. The local path planner is responsible
for updating a display showing the equi-potential contour lines of the potential function.
The contour lines are redrawn when there are modifications made to the map database:
specifically, when changes are introduced into the local window that the local path planner
uses. The background colour of the potential function display correlates to how well the
potential function has converged to its solution. A dark hue of pink corresponds to con-
vergence. while a light hue corresponds to the early stages of iterative computation. The
colour mapping is based on taking a Laplacian operator at each discrete element location in
the potential function and correlating the result with a colour look up containing increasing
darker hues of pink.

The visualization software for displaying graphs was developed using the Dotty (Kout-
sofios & North. 1994) software package (see Section 2.1.1). This package is used to display
the state of the currently executing TR+ program, and the current state of the path in the
global graph map.

One outstanding research issue which requires further attention is how to lay out the
graphical information on the computer screen and present it to the operator. Figure 6.3

11PVaniM graphics are displayed on their own display unit.

'2Based on an a priori CAD map and sensed environmental information. The displayed map is either the entire

map (i.e., global) known to SPOTT or a local window into the global map which corresponds to the local extent of
the local path planner (i.e., potential field).
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illustrates one such arrangement. However, the global path is only displayed when the
operator expands the window associated with it. Additional graphics for visualization are
usually displayed on another workstation (e.g.. PVaniM for visualizing PVM memory and
processor resource usage). The presentation of the graphics information has only been

superficially addressed by this thesis and requires future examination.
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FIGURE 6.3. SPOTT's Graphical User Interface. The graphical user interface consists of
five major components: (1) the Task Command interface from which the task cammand is specified;
(2) the robot map which is a planar map view that is continuaily updated during execution; (3) a
graphical visualization of the currently executing TR+ program; (4) a graphical visualization of the
global graph map and the currently executing global plan (i.e., path); and (5) a equi-potential drawing
of the contours in the potential function used by the local path planner (i.e., potential field). The
global path (i.e., (4)) is only displayed when the user expands the window associated with it.
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2.1.1. Drawing Graphs with Dotty

Dotty is a toolkit developed by AT&T Bell Laboratories which is used to create soft-
ware for visually programming and monitoring graph structures. The package produces
aesthetically pleasing graph layouts when provided with the graph's contents. The graphi-
cal display tools provided by AT&T!3 include a customizable user interface for drawing and
editing graphs. a UNIX filter program for generating graph layouts based on a graphical
language and graph layout algorithms. and a language for developing user interfaces and

picture drawing. The major software components of the toolkit are as follows:

e Dot (Gansner et al.. 1993) is a UNIX batch filter that reads attributed graphs and
writes drawings in PostScript. FrameMaker MIF, or as attributed graphs with layout
coordinates specified. Dot uses various graph layout algorithms (Gansner et al.. 1993:
North. 1993) to produce a graph which is easy to read. Dot’s graph language is very
simple. and contains three kinds of items: graphs, nodes, and edges. The user is
also able to specify attributes of these entities (e.g.. label. colour).

e Dotty (Koutsofios & North. 1994) is an interactive and programmable front-end
(i.e.. WYSIWYG!") which runs under the UNIX X windows environment. Dotty is
written in the lefty language (Koutsofios & Dobkin. 1991) (i.e.. a graphical display
language) and uses Dot as a back end to produce the graph layouts. Dotty includes
functions to insert and delete nodes and edges, as well as functions to specify their
attributes. There is also a function for computing the graph layout (i.e.. performed
by dot in the background). Dotty consists of a collection of non-interactive tools and
filters'®> as opposed to a system running from a central GUL Dotty's script language
is more abstract than the “C” programming language. and therefore more productive
for user-interface design. Its disadvantage is that it is non-standard.

o Lefty (Koutsofios & Dobkin, 1991) is a general-purpose programmable editor for
technical pictures with an interpretive programming language. The user interface
and graph editing operations for dotty are written as lefty functions. Lefty is also
a two-view graphics editor for pictorial (i.e., technical) pictures: (1) a view of the
picture, and (2) a textual view of the program that describes the picture. Each

picture is described by a program which contains functions to draw the pictures

13The graph drawing package is called dotty. The UNIX filter program for generating graph lavouts is called
dot. The graphical language is called lefly.

14What You See Is What You Get.

15 Dotty is run through scripts, and the portability of the system permits the same scripts to be run on different
platforms (e.g., SUN, SGI).
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and functions to perform editing operations. User actions like mouse and keyboard

events are bound to functions in a lefty program.

In the implementation of SPOTT, Dotty has been customized for the following three

display tasks:

(1)

(ii)

(iii)

A modified version of Dotty is used to display the current state of the executing
TR+ program. The state is continually updated every three seconds'S.

Another copy of Dotty has been modified to act as a user interface for creating
and editing (i.e., programming) TR+ programs. This program is called “TR+edit”.
and was integrated with a menu-based graphical interface to make it easier for the
programmer to specify the attributes of the condition and action entities which make
up a TR+ program.

Dotty is also used to display the abstract graph used by the global path planner.
The nodes represent rooms or rectangle portions of hallways and the edges represent
access ways between the nodes (i.e.. doors). Highlighted nodes and edges represent

the currently executing global path.

2.2. Using the GUI as SPOTT’s Main Controller

v The SPOTT system is started and controlled by its GUI (Graphical User Interface)
- process. The algorithm used by SPOTT’s GUI is as follows:

(i)

All of the processes that are to be constantly (i.e.. never stopped) running during
SPOTT’s execution are started and initialized: namely. the potential field processes
- master and a collection of slaves -, the TR+ interpreter process. the actuator
controller process, the global graph planner process, and the robodaemon interface
process. Before SPOTT starts execution. it is assumed that the robot (i.c.. Nomadics
200) and the robodaemon process (i.e., interface to the robot) have been started.

A graphical events loop is initiated. Control from the user (e.g., task command
specification) is event driven. Within the graphical events loop there are five main
modes of operation corresponding to the execution state of the physical robot (as
illustrated in Figure 6.4): (1) the robot is stopped, (2) the transition from stop to
start (which involves some initialization), (3) the robot is executing (i.e., started), (4)
the transition from executing mode to stopped mode (which also involves some ini-

tialization), and (5) the shutting down of the SPOTT system. The transition states

'6This time interval was found to be sufficient for following the execution of a TR+ program. Continual renewal
(i.e.. for each cycle through the TR+ interpreter) was found to use up all of resources on the workstation displaying
SPOTT's graphical components. This slowed the response time for the entire SPOTT system.
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(i.e., (2) and (4)) are only visited for a single iteration through the graphical events
loop. During the visitation of the transitory states, certain processes are started or
stopped. Most state transitions are initiated by the operator pressing the start or
stop control buttons in the Task Command interface portion of the GUI. There are
two exceptions. The first exception is when the TR+ interpreter signals that the
currently executing TR+ program has achieved its task command, which initiates
the transition from the “robot ezecuting’ state to the “stop initialization™ state. and
subsequently to the “stopped’ state. The second exception is when the global path
planner determines that the global goal cannot be reached (i.e.. it is blocked). The
user may stop the entire SPOTT system in all states. During the “robot erecuting”

state. the user may not specify a new task or operational parameters.

In all normal operating states!” during the graphical events loop in SPOTT's GUI

process, the following operations!'® are possible based on the polling to see if a particular

condition exists:

()
(i1)

(i)

If the actuator controller has moved the robot, update the position of the robot.

If the border of the local path planner (i.e.. potential field) has to be moved!'?, then
erase the current contents of the potential field and load the contents of the new
local region?°.

The potential field master process may be notified to update its equi-potential con-
tour display. This occurs if a new task has been specified by the operator. the map
has been updated with newly sensed data. or the robot is positioned in a location
such that the local potential field border has to be moved (i.e.. the robot has moved
near the current local bounds).

If the robot moves to a new node in the abstract global map, then update the global
path planner with this information.

If the TR+ interpreter has any update information for the GUI (e.g.. newly sensed

information, updated actuator information), then read in this information.

17"With the exception of the following states: “start SPOTT", “SPOTT system is stopped”, and “ezit SPOTT".
18The reason why these states are not encapsulated as a TR+ program (i.e., graph) is because a TR+ program
is event driven as opposed to being strictly state driven. For the main control loop, a state driven approach is required.
Even though there is a similarity (i.e., both use graphs) between the two, theyv are distinctly different. [n a state

driven system, the control exists at one particular state (i.e., node) and a transition (i.e., edge) indicates the next

control state. In an event driven system (e.g., TR+), control is indicated by the edges, and all events (i.e., nodes) are
monitored continuously and can occur simultaneously.

'9This is when the robot is near the boundary of the current local extent of the potential field.

29The local map consists of the CAD map and the previously sensed features that are at least partially located
within the new border, or in the node of the abstract global map in which the robot currently finds itself in.
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(vi) If the global graph planner is blocked (i.e.. not able to find a path to the goal). put
SPOTT in the stop state.

(vii) If the actuator controller has not moved the robot in a specified period of time?!.
then notify the global path planner that the robot is blocked at its current location??.
The global path planner stores this information as a constraint (see Section 9.2 in
Chapter 4), so that if the robot is in this position again (i.e.. when the global path
is replanned), this local route is not used for subsequent paths.

When the robot is started by the operator pushing the start button in the Task Com-
mand section of the GUI the GUI “events loop” enters the “robot is started: initialization”
state for a single iteration. in which the following operations occur:

(i) A signalissent to the global path planner to clear all stored constraints which indicate

where the robot was previously blocked.
(i) Place the robot map display in local mode. Only the features stored in the map
database that are within the local extent of the potential field’s bounds are displayed.
(iii) If the robot is to be localized before starting execution?3. then localize the robot by
correlating sonar data with the known CAD map (Mackenzie & Dudek, 1994).
(iv) Start the actuator controller process, which in turn performs steepest gradient de-
scent on the potential function, in order to generate robot trajectory commands.
(v) Start the TR+ interpreter, which in turn interprets a TR+ program. and signals
back to the GUI controller when the task command has been completed.

The “robot is stopped: initialization™ state may be entered from the “robot is ezecuting”
state by either the operator pressing the stop button. the TR+ controller notifying the GUI
controller that the task command has been achieved, or the global path planner determining
that there is no global path to the goal (e.g., doors are closed). The following operations
are performed in the “robot is stopped: initialization™ state before the control enters the
“robot is stopped” state:

(i) Notify the actuator controller to stop moving the robot.

(ii) If the stop button was pressed, then inform the TR+ interpreter to stop interpreting
and executing the TR+ program.

! Five seconds was found to suffice for a thirty-five by thirty-five square potential function grid. The time is
selected so as to give the potential function more than ample time to converge to its solution. [f the robot does not
move after this period, this indicates that the robot is blocked and is not able to achieve its goal.

22[n addition to the Cartesian coordinates of the robot, the node in the abstract graph map is specified. in
addition to the next node in the current global path, as well as the edge that is to be traversed to get to the next
node.

*3An option specifiable by the user.
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(iii) If the TR+ interpreter has satisfied the task command (i.e.. the top node in the
main program of the currently executing TR+ program), then clear the current task
command goal.

If the “SPOTT system is stopped” is entered by the user pressing the “stop SPOTT"
button. then all the processes that are part of the SPOTT system are stopped and killed.
Subsequently, the SPOTT program exits.

In addition to controlling the GUI. the GUI process is also responsible for informing
all other processes of the current operating state. which is defined by the current state of
the physical robot. The GUI process is an excellent candidate for this role because the user
interacts through the GUI (i.e.. controlled by the G UI process) and the user is one of the
main sources for defining transitions between the states. Even though each module (e.g..
TR+ interpreter) is independent to a certain degree, each module’s execution is slightly

dependent on the states defined by the GUI process.
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FIGURE 6.4. SPOTT’'s GUI's State Transition Diagram. Within the graphical event loop
there are five main modes of operation : (1) the robot is stopped, (2) the transition from stop to start
involving initialization, (3) the robot is executing (i.e., started), (4) the transition from the executing
to the stopped mode, and (5) the SPOTT system is shut down. The user may start or stop the robot
in all states. During execution, the user may not specify a new task or operational parameters.
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2.3. Local Path Planning

The potential function (i.e., harmonic function. solution to Laplace’s equation) is com-
puted by a collection of processes in a master-slave relationship. The master process also
operates as a server process. [t handles updates and requests for data on a first-come.
first-serve basis. The GUI and the TR+ Interpreter are the processes which update the po-
tential field by sending updates to the master process. Updates include adding and deleting
obstacles or goals, as well as changing an obstacle to a goal. or a goal into an obstacle.
The actuator controller process requests gradient information at the current robot position
estimate which in turn is used to specify the local trajectory commands for the robot. The
GUI TR+ interpreter. and actuator controller processes are also able to send updates to the
master process, indicating a new position for the robot. Concurrently during the polling for
potential updates from other SPOTT processes. the computation of the harmonic function
is performed using a master-slave configuration (see Figure 6.5).

The master process contains the entire discretized grid array of the potential function
and sends overlapping subgrids (i.e. a subset of the data) to slave processes to compute a
single iteration. After completion of one iteration by a slave process of its data subset. the
data are returned to the master process. This sequence of iterations continues indefinitely.
New obstacle and goal configurations can be snecified concurrently. The master process
either contains the current harmonic function or a function which is converging towards
the harmonic function for the current configuration. Figure 6.5 illustrates how the grid is
divided into four overlapping subgrids. These are required so that new data values from
bordering subgrids can be integrated. The original grid is bordered by a one pixel-wide
layer to store the boundary-value conditions®*.

The iterative step of summing the neighbouring elements to obtain the new estimate
of the point on the grid can be equivalently solved by a resistive grid (Doyle & Snell, 1984)
{see Section 4.1 in Chapter 4). A resistive grid equivalent to the iteration kernel is derived
by using Kirchoff's Law for current flowing into a node. and Ohm’s Law for a resistor.
See figure 1.7 for a resistive grid implementation of the five-point kernel. The nine-point
kernel can be similarly represented as a resistive lattice, although diagonal resistors need to
be added and the resistor values have to be reproportioned accordingly. The potential for

implementing harmonic function computation in hardware, providing that the technological

24The boundary of the discretized grid is always set using Dirichlet boundary conditions (i.e., saturated high, a
source for a flow). However, the boundary conditions for abstacle boundaries can be either Dirichlet or Neurnann.
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FIGURE 6.5. Potential Field Master-Slave Configuration. The potential field is computed
as a server process. The server process responds to updates and requests and concurrently computes
the potential field in a3 master-slave configuration by partitioning the data into sub processes in order
to compute single iteration steps.

limitations are overcome, confirms using harmonic functions for path planning in real-time

as a viable option.
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2.4. Map Database

The database consists of the architectural CAD map. the sensed data. as well as an
abstraction of the CAD map. The CAD map and the newly sensed features (i.e.. line
segments) are stored as a symbolic list of geometric descriptions?® positioned in a Cartesian
coordinate space. The local path planner also has a corresponding occupancy grid map
(Moravec. 1988). It is a discretized grid, in which grid elements that are occupied by an
obstacle are saturated high. and those that are occupied by a goal are saturated low. The
free space (i.e., the exclusion of obstacle and goal grid elements) is where the harmonic
function is solved. The CAD map abstraction is such that rooms and hallway portions are
represented by nodes. and access ways (i.e., doors) are represented by edges.

At this point all incoming sensed data are compared to the existing data (i.e., CAD
map and locally sensed data); if they do not already exist. they are added. In addition.
the QUADRIS (Bui. in preparation) system’s ability to assign labels (e.g.. walls. doors) to
certain features (e.g.. line segments} is made use of when entering QUADRIS features into
the map database: if the newly sensed QUADRIS feature corresponds (i.e.. spatially) to
an existing unlabelled feature already in the map database. then that feature is labelled
accordingly.

At first glance, it seems appropriate to use a shared memory model to implement a map
database for SPOTT. However. this is not the approach taken for two reasons: (1) SPOTT
has been implemented using PVM. and shared memory capabilities within PVM have only
been recently introduced?® (Geist et al.. 1994); and (2) the potential field processes require
access to the newly sensed data as soon as it becomes available®’.

Rather than having a single copy of the database, SPOTT has multiple copies. du-
plicated for the following processes: the GUI, the potential field master process, the TR+
interpreter process, and the global path planner process (see Figure 6.6). Not all parts of
the database are duplicated for each of the processes. All of the cited processes contain
information about the robot’s current position and the current task command. Only the
GUI contains the CAD map, newly sensed features, and the abstract graph map. The global

path planner process only contains the abstract graph map. The local path planner (i.e..

25Currently, the only geometric descriptions used are line segments.

26The current version of PV M has shared memory ports which act as a transport mechanism for communication
between tasks. [f the shared memory communication method is faster than socket calls, it may be ideal for commu-
nication with a process that is responsible for maintaining and updating the database. This will require rethinking
how the map database functions within the SPOTT architecture and how it should be implemented.

2"This is because the local path planning module is in a real-time feedback loop with the robot and its
environment.
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master process), as well as the TR+ interpreter process, contain a local window into the set
of CAD map and newly sensed features dictated by the local extent of the potential field.

The implementation of the map database can be problematic because each process
can change its own copy. All processes that update a portion of the map database are
responsible for communicating their changes to all other processes which rely on this part
of the database®®. The difficulty arises when trying to assure uniformity across the multiple
copies. To maintain consistency. only one process can update a portion of the map database
during any particular state (i.e.. robot running or stopped). When the robot is not executing
a task, only the GUI process can make changes to the map database. However. during
execution. different processes can update independent portions of the map database: the
TR+ interpreter adds newly sensed information; the actuator controller process updates
the position of the robot: the GUI process examines the newly sensed data to determine?®
whether the doors in the abstract graph are open or closed: and subsequently the global path
planner process can update the global path. The GUI process is also responsible for sliding
the bounds of the potential field and thus changing the local window within the global
map. At this time, all updates to the local map (i.e.. newly sensed data) are temporarily
suspended (i.e., for a few milliseconds) until the local map has been created with features
from the CAD map and previously sensed data that fall within the new local bounds. The
temporary blocking of map updates is necessary to ensure so that the local map is consistent
across the various processes.

[deally, it would be desirable to have one copy of the map database (i.c.. shared mem-
ory). Such an implementation could take on the structure of a blackboard (Carver &
Lesser, 1992). The latter is a type of global database which is shared by all modules (i.e..
for SPOTT: the TR+ tinterpreter, the local path planner, the global path planner) of the sys-
tem. The blackboard contains data and hypotheses (i.e., potential partial solutions), and
usually performs problem solving by using an incremental hypothesize and test strategy.
SPOTT’s map database is currently only a data depository. However, future expansions do
not exclude the possibility of making it an intelligent (i.e., automatically abstracting and
merging sensed data features as they arrive) database. In order to change SPOTT’s map

database into a blackboard structure, reliable and fast shared memory access is required

28The GUI process is the only one that relies on all of the entities in the map database.

29The sonar and QUADRIS data are correlated with the known door positions (i.e.. stored in the abstract graph
map) to determine whether a door is apen or closed. To determine if a door is open, none of the recently sensed data
should correlate with the position of a door contained in the local map provided that the robot is within sensing range
of a door. The door can be sensed using sonar or QUADRIS if the robot is within 2 m.
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and the issue of quickly updating the potential field’s occupancy grid (i.e.. via a blackboard
structure) to maintain real-time performance needs to be addressed.

Future modifications to SPOTT should address the issue of continual maintenance (e.g..
fusing map features, abstracting new nodes from sensor data) for the map database. This
will require some reasoning capabilities which may either be part of the map database as
a blackboard structure. or determined by an external reasoning agent (e.g.. COCOLOG
(Caines & Wang, 1995)).
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FIGURE 6.6. SPOTT and the Implementation of the Map Database. The entire map
database is maintained by the process that controls the GUI. The TR+ Interpreter and local path
planner (i.e., master process) have a local map, which is a local window into the set of CAD and newly
sensed features. This corresponds to the local window of the potential field of the local path planner.
The TR+ Interpreter and global path planner both have a copy of the abstract graph which is only
used for reading purposes, and is updated by the GU/ process. The abstract graph map is updated by
the GUT process when the robot changes pasition or the target changes. The TR+ [nterpreter may
update the local map, which in turn updates the local map used by the local path planner.

168



CHAPTER 6. IMPLEMENTATION

2.5. The TR+ Interpreter

The TR+ program interpreter. written in the *C” programming language. is imple-
mented using PVM. Each of the conditions is evaluated concurrently as a separate process.
One way to represent TR+ programs is in a tree graph format. The Dotty toolkit is used to
create software for visually programming TR+ programs as trees. and for monitoring the
execution of TR+ programs. The algorithm for the TR+ interpreter process is as follows:

(i) Initialize communication with the GUI controller process. and initialize the graphical
display. which shows a graphical representation of the currently executing TR+
program.

(ii) The following sequence of operations are in a continuous loop until the TR+ inter-
preter process is told to stop processing (i.e.. when the SPOTT system is shut down
by the operator).

(a) If the GUI controller process sends an update of the local map. then update
the local map used by the TR+ Interpreter accordingly.
(b) If the actuator controller process updates the robot position. then update
accordingly.
(c) If the GUI controller process sends a “stop SPOTT” signal. then exit the loop.
and subsequently exit the program.
(d) If the GUI process sends a “start execution” command with a particular task
command, then do the following in a continuous loop until told otherwise:
(1) If the GUI updates the local map. then update accordingly.
(ii) If the user (i.e.. via the GUI) stops the robot. then kill all condition
processes currently executing and exit this loop.
(iii} If the actuator controller process updates the robot position. then update
accordingly.
(iv) Execute the TR+ program:
(A) The main TR program’s conditions are ezecuted (i.e.. processes are
spawned) and inilialized.
(B) The highest level TRUE condition specifies which action a; is acti-
vated. If a; is a primitive action, then it is active till overridden. If
a; ts a subroutine TR program, then its conditions are ezecuted (i.e..
processes are spawned) and initialized (if they have not been as of

yet), and (ii) is repeated for this particular subroutine TR program.
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(C) If a subroutine TR program has not been called for a redefined period
of time, the execution of its conditions is stopped (i.e.. processes are
killed).

(D) If the highest level condition in the main TR program is TRUE,
then the interpreter STOPS, otherwise erecution returns to step (i),
using the main TR program.

Currently, when the TR+ interpreter starts interpreting and executing a TR+ program.
all the condition processes are spawned before they can be used for computation. The
startup of a process is a very time consuming operation®®. A future modification to the TR+
interpreter would be to have it scan the TR+ program before run-time for all conditions
which contain processes that need to be spawned. These condition processes would be
in a doormat state until activated by the TR+ interpreter. This would alleviate the lag
currently experienced in the start up of a TR+ program. This is especially evident for task
commands that require very little time for execution (i.e.. when the target location is close
to the starting position of the robot).

In addition to a graphical display for visualizing the state of the currently executing

TR+ program, a graphical tool for programming TR+ programs has also been written.

2.5.1. Programming TR+ Programs

A graphical editor (i.e., creator) of TR+ programs. called “TR+ edit™. has been
implemented using Dotty. A menu-based graphical interface for specifying attributes of the
conditions, actions and TR+ programs was also integrated within the graphical editor (see
Figure 6.7).

Before using the graphical editor to program the TR+ program, a collection of condi-
tions, actions. and variables (i.e.. primitive building blocks) must be defined and created.
These are the elements which are manipulated to created the TR+ program. They are
redefined in a set of ASCII files (i.e., written in the C language, in .c and .h files), and are
the entities (i.e., building blocks) of a TR+ program. In addition to the files containing the
definitions of the entities. there is a collection of programs which compile into executables
for performing the computation of the conditions. The model used is that each condition
process accesses a process (e.g., robodaemon) which provides it with sensor data (i.e.. pro-
cessed or raw). Actions are performed as part of the TR+ interpreter cycle. See Appendix B

for a list of conditions and actions currently implemented by the SPOTT system.

301t varies by machine type and the current resource allocations on the machine. Sometimes it can take several
seconds.
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TR attributes

graphical attributes
delete

FIGURE 6.7. TR+ Programming With TR+edit- A graphical editor (i.e., creator) of TR+
programs, called “TR+ edit”, has been implemented using Dotfy. A menu-based graphical interface
for specifying attributes of the conditions, actions and TR+ programs was also integrated within the
graphical editor. lilustrated is the graphical editor and a menu for editing the attributes of the selected
arc. Nodes are created by clicking on the display space with the left mouse button. Arcs are created by
clicking with the second mouse button on the source node and holding the mouse button down until
the cursor is over the destination node. The third mouse button, when the cursor is placed over a node
or arc, is used to pop up a menu which permits the selection of the node’s or arc's attributes.

2.6. RoboDaemon

Robodaemon is a software development system which builds an abstraction of a robotic
environment (Dudek & Jenkin, 1993) that permits external software to interact with either a
simulated robot and environment or to a real robot complete with sensors (i.e., transparent).

It permits processors to communicate from anywhere on the net through a socket and
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machine address. It also provides a realistic simulator of 2D time-of-flight sonar sensing
(Dudek et al., 1993). which can be used for simulating sonar sensing. This is useful for the
conditions in a TR+ program that use sonar as input. robodaemon has its own graphical user
interface. which can be used for controlling the robot and testing the robot’s functionality.
A disadvantage of robodaemon’s socket-based communications protocol is “that it imposes
a data-dependent communications delay on interactions” (Dudek & Jenkin. 1993). Since
most of the sensor information. and control information has to flow through robodaemon.
this interface can be a potential bottleneck, especially if it blocks communication to other
processes. This is the case when the sonar sensors are acquiring data®! and robodaemon
does not listen to other commands (i.e.. they are discarded). A future modification to the
robodaemon software package should include a PVM interface. PVM comes equipped with
its own error handling and non-blocking calls. and handles the queuing and buffering of
message requests.

Robodaemon provides a generic interface which supports many different mobile robot
platforms. This permits control software (e.g., SPOTT) (and sensor algorithms) to be de-
veloped independently of the specific platform. Future modifications to robodaemon include
the queuing and buffering of message requests to help alleviate potential bottlenecks when

communicating to the robot via robodaemon.

31 The Nomadics 200 robot has an array of sixteen sonar sensors evenly distributed on the circumference of the
upper part of its turret. To acquire a dense scan of the environment. the turret is rotated by appropriate incremental
angles.
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3. Reasoning System Interface

One of the goals of the SPOTT system is to bridge the gap between the low and top
levels (i.e., reactive and symbolic control). SPOTT is not a completely distinct layer. but
instead integrates behavioral (i.e., reactive) control, planning and some symbolic reasoning
into a cohesive system. In essence, SPOTT is a merging of the low and middle layers. It
also does some reasoning using the global path planning module. However. the latter could
be replaced by a symbolic reasoner in order to perform more than just Al search. Many
navigational tasks can be performed with SPOTT, but task completion in certain scenarios
will require additional - more complex - reasoning capabilities.

The COCOLOG (Caines & Wang, 1995) reasoning system being developed by Caines
and his group at CIM is the one planned to be interfaced with SPOTT. Preliminary integra-
tion of COCOLOG with SPOTT has involved COCOLOG replacing the global path planner
process (see Figure 6.8). The user specifies a task command goal, and then COCOLOG
takes control of SPOTT by specifying a set of intermediate goals3?. The user resumes con-
trol once COCOLOG has achieved the task command goal. The actual use of COCOLOG
in this scenario is not so interesting because COCOLOG's role is redundant (i.e.. SPOTT's
global path planner can already perform this operation). What is interesting is the integra-
tion of SPOTT with COCOLOG. The specification of intermediate goals by COCOLOG
will become useful when these goals are part of a complex exploration task (e.g., find the
red ball or find the chair). This is one of the potential roles for COCOLOG.

Other future uses of the COCOLOG reasoning system could include dynamically spec-
ifying changes to the TR+ programs during execution, possibly learning new TR+ control
programs, learning the abstract graph map in environments where this is not specified be-
forehand33. and map database maintenance (i.e., verifying, refuting, and merging symbolic
data constructs). Map database maintenance is either a role for a reasoning agent such as
COCOLOG or for a blackboard architecture (see Section 2.4).

32The intermediate goals are Cartesian coordinate points specifying the centre of edges (i.e., doars). COCOLOG
sends a procedural list of intermediate goals (i.e., SPOTT processes each one of these to completion in sequential
order) which are at the locations of edges that are to be traversed.

33[n the current implementation of SPOTT, the user creates the abstract graph map based on an architectural
CAD map. It would be ideal to automate this process before execution, or to learn this abstract graph while building
a map.
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4. Modularity and Portability

SPOTT’s implementation uses a collection of communication processes executing across
a heterogeneous network of processing resources. This implementation is modular and eas-
ier to understand conceptually because conceptual modules correspond to an actual set of
computing processes. The heterogeneity property of PVM makes using different architec-
tures {(e.g., SUN, SGI) relatively transparent to SPOTT’s software. There is always the
potential of executing the entire SPOTT system on board the robot if sufficient processing
resources were made available. The portability of the SPOTT system. chiefly due to its
implementation using PVM. makes it truly hardware independent. This permits taking
advantage of faster processors as they become available. The ability to run UNIX (i.e..
PVM is chiefly designated to run within a UNIX environment) on personal computers (i.e..
using Linux) opens up an opportunity to use a relatively inexpensive hardware platform for
executing SPOTT.
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CHAPTER 7

Experiments

SPOTT has been implemented as a distributed control system chiefly because of the compu-
tational requirements of the local path planner, and the conditions associated with a TR+
program. The local path planner (i.e., potential field) computes the solution to Laplace’s
equation (i.e., used as the potential function) using an iterative (i.e., parallel) computation.
It is only natural! to also concurrently compute each one of the TR+ conditions as separate
processes.

SPOTT’s performance not only depends on the method of implementation?, but also
on the rate at which the TR+ interpreter and local path planner® are updated by sen-
sor information and consequently move the robot. Other measures of performance include
robustness, reliability and whether the task was successfully completed. Five sets of ex-
periments were performed which looked into different performance aspects of the SPOTT
system:

(i) The first experiment was a simple test of the communication speed on the network
at CIM. Messages were passed back and forth between processes in different config-
urations (see Section 1).

(i) The second set of experiments looked into speeding up the performance of the local
path planner (i.e., computing the harmonic function as the potential function) (see
Section 2).

(iii) The third set of experiments investigated the quality of the sensor (e.g., sonar.
QUADRIS) data and the performance of the mapping and localization algorithms

which rely on this data (see Section 3).

'In theory, the computation of each of the TR conditions is done in parallel.
2The method of implementation uses parallel processes and a message-passing paradigm.
3Both are in a real-time feedback loop with the robot and the environment.
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(iv) The fourth set of experiments involved using the entire SPOTT system. Two navi-
gational tasks consisting of maneuvering to a known spatial location were executed.
In the first navigational task, there was no a priori map, while in the second there
was.

(v) Finally, the last set of experiments was conducted at the 1996 IRIS-PRECARN
conference at the Queen Elizabeth Hotel in Montreal, between the dates of June 4-th
through to the 6-th, 1996. Three operator consoles as well as the mobile robot were
taken to the Queen Elizabeth Hotel and the control system was executed on these
workstations as well as on a collection of workstations back at McGill University. The
mode of communication between the Queen Elizabeth Hotel and McGill University
was Ethernet over an optical fibre link.

In addition to evaluating whether SPOTT can successfully achieve a navigational task
(iv, v), the other experiments (i, ii, ii) evaluate the following important performance factors:

(i) The communication bandwidth of the message passing system (i.e.. PVM) provides
an upper limit for how fast SPOTT can perform. This is especially true for the
local path planner whose performance depends on the rate at which data is passed
between the master and slave processes.

(i1) The performance of the local path planner is a key element because it links perception
with action (i.e., trajectory planning). It is important that its response time to
environmental changes be minimized as much as possible.

(iii) Finally, SPOTT’s ability to react to its environment is constrained by how well (i.e..

and how fast) it can see (i.e.. sense and perceive) the world.
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1. Message-Passing Costs on a Network

SPOTT's distributed control network is implemented using the message-passing soft-
ware package called PVM (Parallel Virtual Machine). When using PVM, the user specifies
a collection of workstations? upon which the applications will be executed. and PVM decides
where the processes get executed. Since SPOTT is used to control a robot in real-time?, it is
desirable to choose the fastest machines for PVM (i.e., from the set of accessible machines).
This ensures that the individual processes will be executed as quickly as paossible, but the
execution speed of an application parallelized across a message-passing paradigm is also
dependent on the inter-process communication times.

The network at CIM is interconnected using the Ethernet protocol. Some of the work-
stations are connected in local clusters. Table 7.1 lists the average (i.e., over a run of 20
iterations) inter-process communication times for peak and low periods between processes
in different configurations. Each test consisted of initiating communications by sending the
smallest possible packet (i.e., four bytes) for 20 iterations, and increasing the package size
every subsequent 20 iterations. Table 7.1 shows that the time taken to pack the data is
negligible and it is the communication (i.e., send) time which is the limiting factor for per-
formance in a message passing paradigm. The initial communication with another process
experiences some startup delays. As expected, communications between processes on the
same workstations are the fastest (i.e., see the send column in Table 7.1). However, if both
of these processes are heavily dependent on computational resources, they compete against
each other. Next fastest are communications between processes on the same local cluster,
about 40% faster than communications between processes on the general network. It would
be interesting to see whether the performance would improve linearly if the network were
linked to an ATM or “Fast Ethernet” protocol®.

Sometimes, there is significant fluctuation (i.e., outliers) among the twenty iterations
for each of the inter-process bandwidth communication tests using PVM (see (b), (c¢), and
(e} in Figure 7.1). In addition, the first attempt at communication takes a lot longer than
subsequent exchanges’. This needs to be taken into consideration, especially in processes
that are relied upon for real-time performance. For example, SPOTT’s local path planner
continually iterates in a master-slave configuration (see Section 2). It was found that this

1The collection of workstations to run PVM on can be chosen from the local network, and can even iaclude
other workstations accessible via the internet. Communication to machines outside the local network is usually slower.
PVM executes on a subset of machines accessible to the user.

5Real-time means that SPOTT responds faster than the time taken for changes in the environment.

6 Fast Ethernet has a bandwidth of 100 M bps, while Ethernet has a bandwidth of 10 M bps.
7See the rows in Table 7.1 for the data packet size of 4 bytes. See also (a) in Figure 7.1
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same machine local cluster local cluster network
Data Packet Stargazer Voyager Defiant Vangogh
Size Pack Send | Pack Send Pack Send Pack Send
(bytes) (usec) | (usec) | (usec) | (usec) | (usec)| (usec) | (usec)! (usec)
peak
4 -1 25052 - 11763 - 28175 - 83885
100 136 3940 153 5897 142 6548 109 9705
1000 169 4101 185 7105 187 7586 127 12526
10000 741 8063 727 20025 740 22282 451 35843
100000 5504 | 54546 | 5493 | 335595 | 5445 | 174660 | 5999 | 273168
1000000 || 51404 | 533424 | 52975 | 1531164 | 50985 | 1533180 | 57120 | 2519459
low
4 -| 40515 - 11307 - 27796 - 75259
100 141 3978 133 5816 142 6443 166 13492
1000 169 4128 173 6774 181 7511 182 12568
10000 764 7604 736 22183 733 21697 497 36243
100000 5692 | 64506 | 5420 | 161940 | 5421 | 158505 | 6795 | 261589
1000000 || 55956 | 525037 | 51061 | 1518712 | 51146 | 1516647 | 55042 | 2534524

TABLE 7.1. PVM Bandwidth Tests At Peak and Low Periods. Messages were sent from a
process on the SGI Indy workstation Stargazer to a process on the same machine, to a process on a SGI
Indy workstation Voyager which is on the same local cluster, to another process on a 586 PC computer
Defiant on the same local cluster, and to another process on a SUN4 workstation Vangogh on the
same local area network but not on the local cluster. Each test consisted of initiating communications
by sending the smallest possible packet (i.e., four bytes) for 20 iterations, and subsequently increasing
the package size every 20 iterations, sending the same size packet for 20 iterations. The average times
for the packing of the data and transmission over the 20 iterations are shown above. The packing time
15 negligible compared to the sending time, and therefore it is the send time which is the discriminating

parameter between the different arrangements.

and the set of slave processes continue in an asynchronous fashion.

computation required at start up that the first two iterations be synchronized. If this were
not the case, some of the slave processes would race ahead and process their parcel of data a

lot quicker than the other processes. After the first two synchronous iterations, the master
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FIGURE 7.1. PVM Bandwidth Fluctuation Tests. The test results documented in Table 7.1
are the averages over 20 consecutive transmissions. The above figure shaws the peak transmission rates
for the 20 tests between Stargazer and Voyager, and between Stargazer and Vangogh workstations for
different data sizes. Stargazer and Voyager are both SGl Indy workstations on the same local cluster,
while Vangogh is a SUN4 workstation on the same network. The network is a multi-user network, so
fluctuations in data transmission will occur depending on what other users are concurrently executing
on the network.
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Table 7.1 shows the average communication times for different packet sizes. Most of
the data packets sent between SPOTT’s processes are less than 1000 bytes in size, which
translates to each communication taking between 4 to 13 msec®. When large chunks of
data are sent (e.g., images®), communication times need to definitely be considered when
looking at system performance. Since SPOTT is executed on a multi-user network, there
are going to be fluctuations in the data rate over time because there is no way to anticipate
and predict all activity on the network. This is a potential downside in executing a system
on a multi-user heterogeneous network, but the potential for portability when using PVM

outweighs this disadvantage under most circumstances.

8See the rows in Table 7.1 for the data packet size of 1000 bytes. See also (c) in Figure 7.1

9Communication times for sending an image can be interpolated from Table 7.1. Assume that the image is 512
by 512 pixels and that a single byte is used to store each pixel (i.e., 262144 bytes in total). The average time to send
such an image between processes on the same workstation is 138 msec, on the same local cluster is 348 msec, and on
the general network is 562 msec.
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2. Local Path Planning

The local path planner computes the harmonic function (i.e., potential function) using
an iterative computation. This has been chosen so that a steepest gradient descent value is
always available at the corresponding estimated position of the robot.

Performance of an iterative computation is improved by either reducing the time of
a single iteration, or the number of iterations required for convergence. The tests to ex-
amine single iteration performance were done using Gauss-Seidel iteration with ADI (i.e..
Alternating Direction) techniques (see Section 4.1.1 in Chapter 4). The various perfor-
mance improvements tested are as follows:

¢ Computing the harmonic function in parallel using PVM results in at least halving
the time required for a single iteration as compared with computing the harmonic
function using a single process.

e The computation time of the harmonic function is directly proportional to the num-
ber of grid elements (see Figure 7.2). Typically SPOTT uses a potential function
with a grid size of 35 by 35 points. Using this grid size results in convergence to the
harmonic function in less than 2 seconds.

e There should be at least one workstation devoted to each of the processes used in
computing the harmonic function in a master-slave configuration. Recall that each
slave process iterates over a parcel of the entire data set. The optimum number of
slave processes to use is dependent on the size of the entire data set as well as the
overhead associated with the packing and sending of the data in a message passing
paradigm. Figure 7.3 shows the relationship between the computation times for a
single iteration with respect to the number of slave processes used (i.e., empirical
results).

e Using the faster machines (e.g., SPARC workstations as opposed to SUN 4 work-
stations) results in a speed advantage of at least 20%. In addition, using machines
that are on the same local cluster also improves performance (see Table 7.1).

¢ Executing the slave processes asynchronously with the master process results in an
average 33% improvement over a synchronous implementation. The master process
receives the results of a slave process as they become available. In a synchronous
implementation, the master process waits for all the slave results before starting a
new iteration. The only problem with using an asynchronous implementation with
slave processes is that the first two iterations need to be run synchronously. If this

is not done, some of the slave processes hang up on the network, and these processes
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fall behind in the number of iterations they execute when compared to the processes
that do not hang up'?. Synchronizing the first two iterations results in the number
of iterations of all the slave processes to be within 10% of each other.
The improvements mentioned above make a single iteration faster by at least 73% (i.e..
50%, 20% followed by 33% improvements). The time taken for a single iteration is also
dependent on the number of grid points (see Figure 7.2) as well as the number of slave
processes (see Figure 7.3).

Other factors that were considered are related to the overall convergence of the harmonic

function, as opposed to a single iteration, and are as follows:

e SOR (Successive Over-Relaxation) techniques help (see Section 4.1.1 in Chapter 4)
speed up convergence by a factor related to the grid dimension.

e A good first estimate of the unknowns makes it possible for the convergence of the
harmonic function to be solved in a relatively small number of iterations (Hornbeck.
1975). The use of the summation of potentials approach (see Section 3.3 in Chap-
ter 4) as an initial solution for the computation of the harmonic function produces
a solution which converges in about 20% less iterations. SPOTT typically uses the
summation of Gaussian potentials as an initial solution. However, other potential
functions and varying parameters associated with the initial resting value of the
potential function appear to slightly speed up the convergence rate (see Figure 7.4).

Other factors that did not necessarily speed up the convergence rate or speed up a single

iteration, but are more related to the overall functionality of the system are as follows:

e The use of a nine-point kernel (see Section 4.1 in Chapter 4) is more accurate than
the five-point kernel, and there is no significant additional computational expense.
The nine-point kernel appears to give smoother intermediate results.

e The checking!! of whether a slave process has sent data to the master process is
done by a polling loop in the master process. The order in which slave processes
are polled by the master process depends on a hierarchy which is determined by
the distance of the goal and robot to the centroid of the parcel of data associated
with the slave process. The slave processes whose centroid are closer to the goal and
robot positions are processed first. The ordering permits the poll checking of which
slave process have computed their iteration to be relevant to the navigation of the

robot.

19T his appears to be an undesirable side effect of how processes are executed and communications are initiated
through socket connections. It is not clear if this can be or will be corrected in PVM.
"1 This is done using a non-blocking PVM function.
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Time taken for
each iteration for
different grid
sizes.

a

Number of
iterations to
converge for
different grid sizes.
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Total time for
convergence
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C)

FiGURE 7.2. Potential Field Computation Times Versus Grid Size. (a) The computation
time of a single iteration increases proportionately with the number of grid points (i.e., sampling
resolution). (b) In addition, the number of iterations required for convergence also increases. (c)
The total time for convergence appears to be exponential with respect to the number of grid points.
Therefore, it is desirable to keep the number of grid points to a reasonable level to have any resemblance
of real-time performance. Most of the experiments with the robot used 2 grid size of 35 by 35 points.
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FIGURE 7.3. Computation Times for a Single Iteration: The computation time (in mil-

liseconds) of a single iteration for different grid sizes is plotted against the number of slave processes.

Each set of data correspands to a different overail square grid size. Each slave processor processes an

equat amount of data. The optimum number of processors to use depends on the overall grid size.

The experiments were performed so as to ensure that each master and slave process were executed on

a unique processor (i.e., workstation).
The improvements made in order to reduce the time taken for a single iteration as well
as to minimize the number of iterations help to speed up the convergence process signifi-
cantly. Convergence time is also dependent on the speed of the processors as well as the

communication protocol (see Section 1).
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FIGURE 7.4. Relation of Initial Guess to Convergence Rate. The graphs show the
difference in value (i.e., of the grid points) between successive iterations (i.e., error) plotted against
the number of iterations executed. Shown are both the average over all grid points and the maximum
error (i.e., outlier). In all of the illustrated cases shown above, the summation of potentials approach
was used as an initial guess to the computation of the harmonic function. The goal saturation value
is 0, while the obstacle saturation value is 255. In (3) and (c}. Gaussian potentials were used, (b) was
processed with no initial solution, and (d) used a - potential.
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3. Perception
3.1. Mapping Using Sonar

The sonar sensor is rated up to an 8 m range {according to Nomadics Technologies):
although, multiple reflections may reduce the reliability of the data at this range. In open
spaces, such as a laboratory area, the sonar can relatively accurately portray the environ-
ment up to the specifications of the sensor (see Figure 7.5). Trouble occurs in corners and
narrow corridors (see Figure 7.6), where multiple reflections result. In these cases, the sonar
range data does not accurately reflect the environment.

The results in Figures 7.5 and 7.6 have been processed with an algorithm (Mackenzie
& Dudek, 1994) that eliminates outliers and fits siraight line segments to a cluster of sonar
data points. In order to obtain reliable line segments, sonar data points beyond a certain
threshold are discarded!'?. For open spaces, this threshold value can approach the range
specification of the sensor (see Figure 7.5), while in areas where multiple reflections are
possible (e.g., corners, narrow corridors) (see Figure 7.6), this threshold value should be
kept to a minimum (e.g., set to 2 m).

Some potential enhancements to the processing of the sonar data which might improve
the quality of the data include taking advantage of a priori knowledge (e.g.. CAD map) (and
possibly other sensor data). For example, in areas where multiple reflections occur (e.g..
corners), CAD map information can be used to discard sonar data that do not accurately
reflect the environment!3. This type of improvement will increase the reliability of the sonar
data. Since time is an important element for real-time performance, it is necessary to keep
the time taken for sonar data collection and clustering into line segments to a minimum.

Presently, this process takes approximately 5 seconds to compute, which is too long!*.

12S0nar data is sent out in a cone pattern, and the further away the obstacles are with respect to the robot (i.e..
from which the data is reflected back), the less reliable the data is.

13The CAD map is used to form a hypothesis of what the sonar sensor should return. This is relatively easy to
do in a hallway where there are very few obstacles that are not captured in the CAD map. This is not the case in a
room, where there can be a fair amount of clutter. In this case, it would be difficult to determine if the sonar data is
sensing an obstacle not in the CAD map or just sensing a corner (i.e., with multiple reflections). Other sensor data
(e.g., QUADRIS) should be used to verify sonar data in rooms.

131f the robot is moving at | m/sec and the sonar range is 3 m, then the robot will have moved 5 m during the
time it takes to process the sonar data. This is assuming that the sonar sensing is concurrently executing while the
robot is moving. At this rate, the sonar data will be irrelevant with respect to the current position and heading of
the robot.
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Sonar Mapping in Open Spaces. The sonar sensors on the Nomadics 200
have a range of 8 m. This figure illustrates mapping based on sonar data clustered into line segments
{Mackenzie & Dudek, 1994) with different thresholds for discarding data points which fall beyond
the specified range (i.e., threshold). The top left picture shows what the robot sees from its current
position and orientation. The top right picture shows a picture of the robot with an arrow indicating its
current arientation. The numbers in each map indicate a threshold value in cm: all sonar data points
which fall beyond this threshold range are discarded as being unreliable. For an open space, such as the
illustrated laboratory setting, the threshold value can approach the sensing range of the sonar sensors

{e.g., 8 m) because there are very few unwanted multiple reflections.
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FIGURE 7.6. Sonar Mapping in Narrow Hallways. The sonar data is reflected many times
in this environment making it difficult to use for map production. Reflections are due to the narrow
corridor, door indentations, and corners. The number in each map indicates a threshold which dictates
the maximum range (in cm) for which sonar data points are considered reliable in order to cluster them

into line segments. Sonar data points beyond this threshold are not clustered.
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3.2. Localization Using Sonar

The localization procedure takes a sonar scan and correlates the data with the CAD
map to determine the pose (i.e., spatial location and orientation) of the robot (Mackenzie &
Dudek, 1994). The only locations where this will work reasonably well are places where there
are distinct features as seen by the sonar sensor. In an indoor environment, these locations
are unobstructed corners (see Figure 7.7). Corners in offices are not good locations because
there is usually a lot of clutter in offices and this will confuse the correlation process. An
a priori CAD map (or a previously created map) is necessary as a reference to execute the
localization procedure. Good localization regions are identified a priori in the CAD map.
When the robot is within one of these regions, as the robot navigates about in an attempt
to achieve its task objective, the robot is localized. It is assumed that before localization
is performed, the estimated position of the robot is approximately equal to the correct

position (i.e., within 1 m).

FIGURE 7.7. Good Locations to Perform Localization. Localization is performed in loca-
tions in the environment which are uncluttered and have distinct features (e.g., the corner next to the
robot). The illustrated example shows the robot in an uncluttered corner. Sonar measurements are
correlated with an a priori CAD map to determine the pose of the robot.

Potential problems with this technique include an aperture problem: certain regions
in the environment appear the same to the sonar sensors (e.g., doors repeat, corners are
similar looking). This is why the assumption of being near the true estimate is necessary.
Another problem is that the actual corner is not properly mapped using the sonar data
(see Section 3.1) and it is really only the two straight line segments defining the corner
which are used in the correlation process. A problem may occur when the corrupted corner
feature captured by the sonar data confuses the correlation process. A practical problem
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with the sonar-based localization procedure (Mackenzie & Dudek, 1994) is its extremely
long computation time. The process takes approximately half a minute and the robot is
stopped during this procedure.

The robot localization error (i.e., if only dead reckoning is used) for a traversal of
3 m forward and 3 m backwards on a tiled floor (i.e., 1 m square tiles} has been found
to be approximately 6 cm. Based on this error, and assuming that an error tolerance of
20 cm is the maximum that can be acceptable, the robot should be localized every 20
m of traversal!'®>. It was found that the robot was localized within +5 cm of its actual
position when the localization procedure based on correlating sonar data to the CAD map
was executed. Future work should try to emphasize fast localization procedures which can

function in real-time (i.e., concurrently done during the navigation task).

3.3. Mapping Using QUADRIS

QUADRIS (see Figure 7.8) is a system consisting of two range sensors (BIRIS) (Blais
et al., 1991) mounted on pan-tilt heads (Bui, in preparation). QUADRIS is mounted on
the top of the basic Nomad platform. The BIRIS Range Sensor (Blais et al., 1991) is
a compact optical 3-D range sensor developed by the NRC (Canada’s National Research
Council) which is based on the use of a double aperture mask in place of the diaphragm of a
standard camera lens. This laser line, when viewed through the double aperture, produces

two lines whose separation correlates with the range distance.

FIGURE 7.8. The QUADRIS System. QUADRIS (see Figure 7.8) is a system of two range
sensors (BIRIS) (Blais et al., 1991) mounted on pan-tilt heads (Bui, in preparation).
QUADRIS’ PTU’s follow a scanning pattern (i.e., series of orientations of the cameras)
which is based on the context of the current environment. Experiments have been conducted
in an office and laboratory environment and two different scanning patterns were chosen;

one when the robot is in a room and the other when it is in a hallway. In a room, the

ISSPOTT's initialization parameters permit the frequency of localization to be based on time, the distance
traversed, or a combination of the two. Currently, SPOTT will localize the robot after traversing at least 20 m and
when the robot is in one of the localization regions.
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QUADRIS sensor’s direction is alternated between pointing forwards and sideways. In a
hallway. the emphasis is more on pointing towards the sides. The QUADRIS data have been
found to be very reliable!® up to 2 m; however the measurements can be very sensitive to
lighting conditions (Bui, in preparation). The reliability of the range data is dependent on
having a credible lookup table (i.e., calibration) from which to correlate range and disparity
values. An example of the type of disparity data and map produced from a flat wall segment
is illustrated in Figure 7.9. Typical processing times are 900 msec for the camera selection
and 400 msec for the disparity computation'’ and conversion into real world coordinates

(Bui, in preparation).

a)

OCm  =—pe __"_1__

100 CM ==

-100 em ocm 100 em

FIGURE 7.9. QUADRIS Range Data. During this experiment the robot was moving in a
straight line in a rectangular room void of any obstacles. (a) shows the disparity returned for a
particular scan. The scan direction is shown by the arrow on the robot in (b). (b) shows the map solely
produced from QUADRIS data. The line segment circled corresponds to the disparity data in (a).

1 QUADRIS can obtain range data for objects up to 3 m away but it is not always reliable.
7This also includes the overhead associated with monitoring the features to see if they correspond to objects
QUADRIS can recognize (e.g., doors, walls).
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The QUADRIS system appears to be give reasonably reliable range data at a rate of
approximately 1 frame per second. It would be desirable to have the system return range
data at a faster rate. The limiting factor appears to be the selection and control of the

PTU units (Bui. in preparation), which is the attention problem!?.

18The attention problem takes into account the speed limitations of the cameras mounted on the pan-tilt heads,
in addition to the environment and task context to determine where to look (i.e., scan, point the cameras). This
problem has been short-circuited by fixing the scanning patterns for when the robot is in a room and hallway.
Currently, the camera selection is constrained to be no faster than 900 msec (Bui, in preparation).
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4. Navigational Experiments

The TR+ interpreter was found to take on average 0.7 msec/cycle for a tree with 20
conditions using between 10 to 15 processors. When 45 conditions are used. the average
time was found to be approximately 1 msec/cycle. The time taken to converge to a solution
by the local path planner, using a 75 by 75 grid on a collection of 5 SGI workstations for 3
obstacles and a goal. is approximately 4 seconds. For all experiments. the grid size for the
potential field path planner was 35 by 35, which converges in less than 2 seconds.

Experimentation has been conducted for a variety of tasks. The experiments have
been performed under two different scenarios: (1) no map is available a priori: and (2) a
partial map of the permanent structures (i.e., walls) is available a priori. An AUTOCAD
architectural drawing of the CIM office and laboratory space was used as a partial map of
the permanent structures.

One experiment was performed using the TR+ program illustrated in Figure 3.12.
There was no a priori map. The robot moved at 10 cm/sec and updated its map of the
environment from sonar data every 5 seconds. The robot was stopped for approximately
5 seconds while acquiring and processing the sonar data. The robot was localized every
10 seconds!®. The map built up during the execution of the task is given in Figure 7.10.
Figure 7.11 shows selected frames during the execution of the task.

A second experiment, shown in Figure 7.12, illustrates the robot navigating to a pre-
defined location. In this experiment, the robot uses an available CAD map as a priori
knowledge. However, during task execution the robot discovers features (e.g., the partition)
that are not present in the CAD map. In this example, the robot moved at 50 cm/sec.
The mapping of the environment was performed every 150 cm traversed by the robot. or
when previously unsensed parts of the environment had to be observed?® (e.g.. around the
partition in Figure 7.12). Localization of the robot was performed at the start of task
execution.

In addition to using sonar data for navigation, QUADRIS range data is also used, as well
as infrared and bumper sensor data. QUADRIS range data is employed for simple object
recognition. Horizontal and vertical object range profiles are used to recognize features
such as doors, chairs ard desks (Bui, in preparation). The control of the pan-tilt heads is a

predefined scanning pattern depending on the context?!. The bumper and infrared sensors

!19This experiment was carried out when the localization frequency could only be specified with respect ta time.
Currently, the rate can also be specified with respect to distance traversed.

20This is done by observing the global changes in the robot’s trajectory. If the robat’s direction has changed by
a degrees since the last mapping, the environment is mapped again. The value used for @ was 60 degrees.

21 For example, a different scanning pattern is used for hallways and rooms.
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[ =  7he Robot's Map

FIGURE 7.10. Dynamic Mapping and Trajectory Determination. As the robot moves
towards a predefined spatial location, sonar data updates the map and alters the trajectory.

are used to indicate features missed by the sonar and range sensors, if any. The TR+
programs for QUADRIS (see Figure 3.16), bumper and infrared mapping (see Figure 3.18)
are all similar to the “Map_the_environment” program illustrated in Figure 3.12. All of the
mapping TR+ programs operate in parallel.

All of the TR+ programs discussed so far are based on knowing the spatial location of
the goal beforehand. The task is completed successfully when the robot arrives at the desired
position, as is the case when the task command is “GO”. However, when the task command
is “FIND”, a search needs to be performed in the environment. The TR+ control structure
can be used to guide the robot. Figures 3.14 to 3.22 in Chapter 3 show examples of the TR+
programs used for searching the environment to find a particular object. For the “FIND”
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FIGURE 7.11. Autonomous Navigation with No A Priori Map. The robot successfully
navigated around various obstacles as it traversed towards a predefined spatial location.
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FIGURE 7.12. Autonomous Navigation with a Partial A Priori Map. A priori, the robot
only knows of the walls in the CAD map. (a) shows the initial configuration and the desired destination.
(b) shows the location of the local map in the global map. (c) shows the local map at task completion,
along with the CAD (light lines) and sensed features (darker lines), as well as the executed trajectory.
The padding of the features, to account for uncertainty and the local path planner modeling of the
robot as a point, is illustrated by the grey regions surrounding the line (i.e., wall) features.
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task, the types of objects which can be found is limited by the recognition capabilities of
QUADRIS (i.e.. range data). Recognition at this time is limited to chairs, doors and walls.
Since the focus of attention problem has not yet been solved, the recognition of a chair also
requires the robot to be in a particular position and pose with respect to the chair (Bui, in
preparation). Object recognition based on QUADRIS data is an ongoing research project at
CIM. The testing of the “FIND” task was only performed in simulation mode. One of the
future roles for COCOLOG is to help SPOTT guarantee task completion for the “FIND”
task (see Figure 1.3).

There are two potential problems with the path planner that were discovered during

experimentation.

e The first problem is concerned with proximity sensor mapping (e.g.. bumper, in-
frared). The features mapped by the proximity sensors are very close to the robot:
so close (e.g., bumpers are contact sensors) that when these features are padded
by the local path planner (i.e., to compensate for modelling the robot as a point),
the current estimate of the robot’s position may actually fall on the plateau (i.e..
saturated high value in the potential function) formed by the feature. There is no
gradient on the plateau and therefore no trajectory is generated. To alleviate this
problem, the steepest descent gradient is computed by using a window that takes
into account the padding of the obstacles??.

e The second problem concerns the projection of the goal onto the local path planner’s
border (see Figure 7.13). If an obstacle is discovered near the border of the projected
location, it may have the effect of blocking the attractive forces of the goal. One
potential solution is to project the goal onto the entire side of the potential field
(e.g., top horizontal). When the global goal is projected as a point onto the local
border, it is already based on the global geometry of the rooms to determine its
precise placement. This has the effect of producing a smooth path when the local
window is moved. When the global goal is projected onto the entire side, the global
path will not necessarily be as smooth?®. Also, there is still no guarantee that
newly discovered obstacles will not block the attraction generated by the entire side.
It may be that an additional role for the reasoning agent (i.e., COCOLOG, see

Section 3 in Chapter 6) is to monitor if the current projected goal is blocked due to

22The size of the window used to compute the gradient is usually 3 by 3. A plateau is identified if there is no
gradient at the current robot position. If such is the case, a 5 by 5 operator is used to compute the gradient. The
size of the alternative operator is based on the padding size (i.e., 25 cm, 50 ¢m for both sides of a line). and the pixel
(i.e., grid element) size (i.e., 15 cm).

23The smoothness of the global path will depend on where the path exits each local window.
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the dynamically sensed data and to determine a new projected goal (see Section 9.3

in Chapter 4} if this happens.

& goel s projected to a point
where it is subseq dlocked
nncwl;dilcov:!"gy o

FIGURE 7.13. Projection Onto a Point or a Line. The global goal is either projected onto
a point on the border or onto the entire side of the potential function (e.g., top horizontal). The
projection onto a point provides a better estimate of where to direct the robot towards the global goal.
However, if an obstacle is discovered at the border of the potential function, there is a potential for the
attractive forces of the goal to be blocked. in this diagram, the light lines are newly sensed features,
while the dark lines were obtained from the CAD map. The location of the illustrated projected goal
is such that it has no attractive pull on the robot when the global goal is projected as a point.

A troublesome engineering problem experienced while navigating in the office envi-
ronment was the loss of communication with the robot via the radio ethernet wireless link.
There is also a video link to transmit the image data for obtaining range from the QUADRIS
system®*, whose communication was also degraded at certain times. The degradation usu-
ally occurred when there was no line of sight from the transmitter on the robot to the
receiver and the distance exceeded 40 m. Another engineering issue is the battery life of the
robot, which is about three to four hours. This can be a problem for continuous operation
when the robot is required to be active for longer periods than the life of the batteries (e.g..
night surveillance of an office building).

When existing and self-contained modules (e.g., sonar mapping) are integrated into a
larger system (e.g., control system such as SPOTT), they usually require some redesign.
The sonar mapping and localization packages were never intended to operate in real-time,

and should be modified so that they are able to do so.

241deally, the QUADRIS data should be processed on board the robat. The image consists of two projected
laser lines, whose separation correlates with the range distance. Only the range data values are of interest. The rest
of the video data are discarded. If this computation were performed on board, then the range data could also be sent
via the radio ethernet link.
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5. Off Site Experiment

The entire SPOTT system was demonstrated at the 1996 IRIS-PRECARN conference,
held at the Queen Elizabeth Hotel in Montreal, Quebec, Canada between the dates of June
4-th through to the 6-th. 1996. The robot as well as three workstations were taken to the
hotel. An optical fibre ethernet link connected the workstations to eight other workstations
at the CIM laboratories at McGill University. The demonstration was to show SPOTT's
navigational capabilities in an office environment. COCOLOG was also used as an interface
to the SPOTT system. However, it did not contribute anything new as it only took the
place of SPOTT’s existing global path planner. The interesting aspect of COCOLOG’s
involvement was that it was integrated with SPOTT. COCOLOG generates a path by
setting intermediate goals at edges (i.e., doorways). SPOTT completes each intermediate
goal, notifies COCOLOG that the goal has been reached, and waits for COCOLOG to
return another intermediate goal.

The office environment was produced using interlocking partitions. and a map (see Fig-
ure 7.14) was available to SPOTT. The entire demonstration also served as an experimental
testing ground for the SPOTT system and its components (see Figure 7.15).

The main problem experienced during the demonstration was with respect to the ro-
bustness and reliability of the sensor data, namely sonar and QUADRIS. The partitions were
connected with tubes that had many ridges notched into them. These notches produced
multiple reflections with the sonar data (see Figure 7.16) and had the effect of artificially
blocking the doorways in the potential field. This problem was temporarily addressed by
reducing the padding factor to make sure that the door was not blocked in the potential
field by the sonar data returned from the notched tubes. Future work with sonar data pro-
cessing should concentrate on modelling and compensation for various materials and types
of surfaces and their geometric configurations. Reliability can be maintained by possibly
using the CAD map to verify if the returned sonar data is an accurate reflection of the
environment. QUADRIS also experienced some problems by producing features that were
the result of lighting effects as opposed to actual physical objects. The lights in the room
had to be dimmed and the curtain was drawn. Future research with QUADRIS should

concentrate on its robustness in different lighting conditions.
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FIGURE 7.14. Map of the Demonstration Environment. This is the a priori map given to
SPOTT for the demonstration at the 1996 IRIS-PRECARN conference held in Montreal (June 1996).

Most of the difficulties with making the demonstration work concerned engineering
problems, and have been or will be corrected with simple software changes or bug fixes?.
They are as follows:

e The robodaemon process (i.e.. provides low level control of the robot) blocks com-
munication with the robot until the sonar data collection is complete. In addition,
when sonar data collection was initiated while the robot was moving, robodaemon
lost track of the robot’s position.

e There were occasional problems in allocating sockets for communication with the two
daemon processes responsible fo: controlling the QUADRIS PTU’s and acquiring
QUADRIS range data.

e The global graph planner (i.e., when not executing COCOLOG with SPOTT) oc-
casionally returned an incorrect path. This was traced to a problem with how
communication is done with PVM. PVM guarantees processing the messages in the

order in which they arrive at their destination and not necessarily in the order they

25There were a series of problems that were encountered leading up to the demonstration. The week before
the demonstration, three circuit boards on board the robot failed. The boards were replaced a couple of days before
the demonstration. This prevented extensive testing of SPOTT and COCOLOG before the conference. In addition,
the conference organizers failed to provide a couple of sample partitions so that testing could be done before the
demonstration. There was also only 2 hours available once all the equipment was moved to and set up at the hotel
for testing the system.
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FIGURE 7.15. Example of an Execution During the IRIS-PRECARN Demonstra-
tion. SPOTT is aware of the walls a priori. COCOLOG is responsible for setting intermediate goals
(1.e., doorway accesses). SPOTT's role is to get the robot from one doorway to another. The top
diagram illustrates the robot navigating around the box and the bottom diagram illustrates the map
produced from the newly sensed data (i.e., bright lines) and the existing CAD features (i.e., dark lines).
All of the map features (i.e., lines) are padded with a grey border to show how the path planner
compensates for modelling the robot as a point.

are sent. A message was sent to update the global graph and subsequently a request
(i.e., from the same sending process) was sent requesting the current global path.
The update and the request were sent from the GUI process. Sometimes the request
for the global path was processed before the update had been processed. Integrating
the update and path request into a single message packet will alleviate this problem.
There is a real need for a comprehensive set of debugging resources. These resources
can either be temporary data files (i.e., verbose descriptions of what the process is
doing) or graphical visualizations of execution. Some of these resources are already

in place and were a very useful resource when debugging specific problems.
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Sonar
Reflections

FIGURE 7.16. Sonar Reflections. The poles which were used to keep the partiticns in place
had little ridges notched into them which caused the sonar data to be reflected many times and return
confusing and erroneous map data. The top two diagrams illustrate the robot in its environment. The
bottom two diagrams (i.e., side by side) illustrate the dynamically produced map during the navigation
task. The circled features show how the sonar data was reflected at the ridged poles. The produced
map should have contained only horizontal and vertical lines.

COCOLOG requires a lot of computation time to compute such simple things as
path planning. This is because of the overhead associated with its logical reasoning
and theorem proving. SPOTT's global path planner is able to generate a path of 10
nodes to be visited (i.e., based on the graph in Figure 4.13) in less than 200 msec,
while at present COCOLOG requires over a minute in initialization time, and a
subsequent 5 to 10 sec for computing each subsequent intermediate goal. In order to
make COCOLOG viable in a real-time setting, practical operational issues have to
be taken into account. COCOLOG should be able to precompute some of its results
(i.e., when possible) and store them in memory. This is in contrast to computing

the result only at the time when it is requested (i.e., by SPOTT) to do so.
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The experiments have demonstrated that SPOTT is able to perform navigation in an
unpredictable environment which may be partially known a priori. There are some research
issues that require attention, namely the ability to provide reliable and robust map data
from the sonar and QUADRIS sensors. Most of the naive visitors to the demonstration
also queried why the robot moved so slowly®6. The execution of the robot is only as fast
as its slowest component and the slow elements appear to be the processes responsible for

processing the sensor data and the low level robot controller (i.e.. robodaemon).

26The robot moved at the rate of £5 cm per second, but it stopped to collect sonar data every 1 m traversed.
The robot was stopped for approximately 5 seconds during sonar data acquisition and processing.
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6. Lessons Learned

The experiments performed with the SPOTT system helped identify the following is-
sues:

e SPOTT relies heavily on its message passing implementation. The speed of process-
ing messages is dependent on the size of the message and the speed of the lines of
communication. Communication speeds can improve drastically if other protocols
such as Fast Ethernet or ATM are used instead of Ethernet. Other ways of commu-
nicating between processes that should be investigated include shared memory, and
lightweight processes (i.e., low overhead) called threads. There is a thread version of
PVM called TPVM which is a current research project (Ferrari & Sunderam, 1995).

e Mapping the environment with sonar and QUADRIS data currently occurs indepen-
dent of each other and other available information. Sonar data is prone to be bad in
areas where multiple reflections occur (e.g., corners). The a priori CAD map can be
used to provide some verification of the sonar data. Similarly, the QUADRIS sys-
tem needs to be made more robust to varying lighting conditions. The experiments
showed that these sensors are prone to give potential erroneous resulits in different
environments. Sensor algorithm testing should always try to vary some elements of
the environment (e.g., wall types, lighting).

e There is a real need for real-time localization: fast algorithms for correcting the
robot’s position at regular intervals (i.e., every 20 m of traversal).

e Dynamic mapping may cause the attraction of a global goal to be blocked within the
confines of the local potential field. It is not clear how to guarantee that this does
not occur with a simple algorithm, without requiring a reasoning agent to monitor
and compensate for it.

There is never enough experimentation one can do with a mobile robot control system
(e.g., SPOTT). All the unknowns in the environment can never be fully anticipated. The
SPOTT system has been proven to be able to navigate a robot in an office and laboratory
environment. The current issue is how to make the robot move faster: an ideal speed for the
robot would be the average walking pace of a human (i.e., approximately 1 m/sec). Related
to the issues of speeding up the robot’s motion and the acquisition of sensor data (i.e..
sonar, QUADRIS), there is an engineering issue to address (i.e., related to the speed): the

low level robot control software should be open to multiple commands and requests from
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various processes and concurrent operation (e.g., moving and acquiring sonar data). At

normal walking speeds, the speed of the local path planner?? will also have to be reassessed.

27Recall that the local path planner takes two seconds to converge to the harmonic function for a new
configuration.
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CHAPTER 8

Conclusions

This thesis has presented an architecture - called SPOTT - which provides a bridge be-
tween behavioral and symbolic (i.e., reasoning) control. Figure 6.8 illustrates one way of
potentially integrating a reasoning system (e.g., COCOLOG!' (Caines & Wang, 1995)) with
SPOTT. In addition, SPOTT is modular and programmable, which permits the possibility
of extending the current functionality, as well as the domains of execution. New control
strategies as well as additional sensors and actuators can be easily incorporated within
SPOTT. There is a wide variety of navigational tasks which SPOTT can execute based
on its defined task command lexicon (see Chapter 5). With a planning module, SPOTT
is able to guarantee navigational task completion under many different scenarios (see Fig-
ure 1.3). This is what primarily distinguishes SPOTT from other behavioral-based robot
control architectures (e.g., subsumption architecture (Brooks, 1986)). SPOTT consists of
a behavioral controller, a local path planner, and a global path planner. The behavioral
controller and the local path planner are both in a real-time? feedback loop with the ro-
bot and its environment. The global path planner is responsive to slower changes in the
environment (e.g., robot changes its position with respect to a room).

Behavioral control is based on extending an existing formalism - Teleo-Reactive pro-
grams - into Teleo-Reactive+ (TR+) programs (see Chapter 3). SPOTT is the first im-
plementation which experiments with a real-time version of the TR formalism (i.e., called

TR+). The latter is not limited to reactive behaviors (e.g., bumper collision detection,

1 The logical reasoning system COCOLOG (Caines & Wang, 1995) has actually been interfaced with the SPOTT
system (see Section 3 in Chapter 6). COCOLOG did not contribute anything new to SPOTT as it only took the place
of SPOTT’s global path planner. The interesting aspect of COCOLOG's involvement was that it was integrated with
SPCTT. Future uses of COCOLOG should address the elements of navigation for which SPOTT cannot guarantee
task completion, as suggested by Figure 1.3, as well as providing capabilities such as determining goal reachability,
spatial reasoning and map maintenance, and the learning of new TR+ programs (i.e., control strategies).

2SPOTT reacts faster than the times taken by changes in the environment.
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failure monitoring), but also permits functional behaviors (e.g.. mapping the environment,
localizing the robot), as well as symbolic-like behaviors (e.g., are all the rooms ezplored).

A potential field approach is used for dynamic® path planning. The potential field is
used as a local path planner because its computational requirements increase proportionally
with the number of grid elements, and because long narrow corridors (i.e., prevalent in
indoor environments) do not permit the rapidly decaying potential function to be fully
representable in a 32-bit computer address (see Section 7 in Chapter 4). The harmonic
function is computed using an iterative approach (see Section 4 in Chapter 4). The robot’s
trajectory is determined by performing steepest gradient descent on the computed harmonic
function (see Section 5 in Chapter 4). An algorithm is proposed which will guarantee proper
control given that real-time execution and computation are to be done concurrently (see
Section 6 in Chapter 4). In order to guarantee proper control, a collection of potential fields
at varying grid resolutions are computed.

If a graph abstraction of the environment (i.e., CAD map) is available (i.e.. rooms are
nodes, access ways are arcs) a priori, an algorithm is presented which projects the global
goal (i.e., outside the extent of the local potential field bounds) onto the potential field
boundary (see Section 9 in Chapter 4). The algorithm makes use of the global path (see
Section 8 in Chapter 4) produced by the global path planner (i.e., using the abstract graph
map). When the robot is close to the boundary of the potential field, the potential field is
moved so that it is centered around the robot’s current location.

A real-time and parallel implementation of a TR+ interpreter and a dynamic real-time
path planner have been developed (see Sections 2.3 and 2.5 in Chapter 6) using a message
passing software package called PVM (see Section 1 in Chapter 6). Navigational experiments
have consisted of moving the robot to known and unknown spatial locations with no or a
partial a priori map (see Section 4 in Chapter 7). A priori maps are readily available for
most indoor environments in the form of architectural CAD drawings. SPOTT’s success to
date gives optimism for experimenting with more complex environments as well as in other

unstructured environments which may be hazardous or remotely located.

3Dynamic means that obstacles are discovered while executing a path. Hence, path planning and path execution
are done concurrently.
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1. Contributions

This thesis addresses the problem of autonomous navigation of a mobile robot in an
indoor environment, such as an office or laboratory space. The navigational tasks are based
on a language lexicon (see Chapter 5) within two contextual settings: (1) a partial map of
the environment is available a priori; and (2) no map is available a priori. A robot control
architecture called SPOTT is proposed and implemented as a real-time and parallel system
of concurrently executing and co-operating modules. Inherently, the control system is a
real-time Artificial Intelligence (AI) system which is responsible for dynamically adapting
to changing environmental circumstances in order to successfully execute and complete a
set of navigational tasks for an autonomous mobile robot. SPOTT consists of a behavioral
controller, a local dynamic path planner, and a global path planner, as well as a map
database and a graphical user interface. The SPOTT architecture provides a framework
for the inclusion of additional sensors and associated perceptual processing algorithms,
actuators and control strategies.

SPOTT is a novel robot control architecture because it proposes a way of linking
behavioral (i.e., reactive) and symbolic control. SPOTT differs from other behavioral ar-
chitectures by being able to guarantee task completion® under many different scenarios
(see Figure 1.3). The exploitation of existing computational resources by the distributed
implementation of SPOTT is additionally innovative. Contributions are also made in the
following three areas:

(i) The Teleo-reactive (TR) control (Nilsson, 1992) formalism forms the centerpiece
for the behavioral controller (see Chapter 3). This thesis has contributed to TR
behavioral control research in the following manner:

e This thesis is the first research work to design, implement and test an on-
line and distributed TR interpreter - c¢f concurrently executing behaviors - to
handle real-time control of an autonomous robot.

e The basic TR language is extended to handle multiple goals, concurrent ac-
tions, and conditional expressions. The extended formalism is called TR+.

e A typical TR+ program for navigation is presented in Figure 3.13. This pro-
vides a guideline for writing TR+ navigational programs when executed in the
SPOTT architecture.

(ii) Path planning (see Chapter 4) is concurrently performed at two levels of abstraction.

The local path planner is a potential field approach based on a harmonic function.

1Most behavioral architectures are not able to predict successful task completion for any situation.
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It is guaranteed to find a path to a goal if such a path exists. The local path
planner is in the critical real-time control feedback loop with the environment. The
global planner plans a path based on a graph abstraction of the environment. The
contributions made to the field of path planning, in particular, the potential field
approach using harmonic functions, are as follows:

e In the local path planner, path computation and execution are done concur-
rently. In order to guarantee a correct control strategy during concurrent plan
computation, a hierarchical coarse-to-fine procedure based on a set of harmonic
functions at varying resolutions is proposed (See Section 6 in Chapter 4).

¢ A method is proposed for addressing the issue of planning for global goals when
the extent of the potential function is limited (see Section 9 in Chapter 4). This
is necessary because (1) the potential function is a rapidly decaying function
which is not computable for all grid elements in a large array, and (2) the
computation time increases proportionally with respect to the number of grid
elements. Thus, the local path planner needs to receive global goal information
from the global path planner. The global goal is projected onto the border of
the local potential field. The boundaries of the potential field are moved when
the robot approaches the current local extent. so as to centre the new bounds
around the robot.

e A method for computing the harmonic function in real-time and in parallel
with existing computational resources is proposed, implemented and tested
(see Section 2.3 in Chapter 6).

(iii) This thesis is the first to propose and put to use a mobile robot task command
lexical subset - consisting of verbs and spatial prepositions - (see Chapter 5), that
is a minimal spanning basis set for human 2D navigational tasks (Landau & Jack-
endoff, 1993; Miller & Johnson-Laird, 1976). A procedure for quantifying the task
command for execution in the behavioral controller and dynamic local path planner
is presented. The quantification of the spatial prepositions is shown to depend on
two norms. The two norms are the definitions for the spatial prepositions near and

far in the current context of the environment and task.
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2. Robot Control Issues

The design of a behavioral architecture for mobile robot control has to take into con-
sideration the following issues (see Section 3 in Chapter 2}:
(i) How well does the architecture scale to more complex problems?
(ii) Is the architecture general enough for a wide variety of tasks and environments?
(ii1) Are the executed actions of the robot predictable beforehand?
(iv) Is the operator able tc monitor the robot’s interaction with the environment?
SPOTT has addressed these design issues in the following manner:

e SPOTT is scalable in the sense that it allows for new perceptual capabilities. ac-
tuator mechanisms, and behavioral decision rules without requiring the redesign of
the underlying architecture. The system also suggests a way of interfacing to a rea-
soning module, and shows how this can be done by interfacing to an Al planner?.
The COCOLOG (Caines & Wang, 1995) logical reasoning system has also been
integrated with SPOTT proving that actual integration with a reasoning agent is
possible (see Section 3 in Chapter 6). A TR+ control program concurrently executes
many sensor-action control loops of varying execution time®. The behavioral control
program language (i.e., TR+) is an extension of a language which is already being
experimented with for learning control strategies (Nilsson, 1994), (Nilsson, 1995).

e SPOTT is modular. It consists of decomposable and replaceable parts. The main
components are a behavioral control language interpreter. a dynamic path planner.
and an Al-based planner. The dynamic path planner is local, and the Al-based
planner is global. The dynamic path planner is only aware of a local window into
the map of the environment at any particular time.

e SPOTT can be used for a wide variety of tasks and environments (i.e.. general).
The language of programming behaviors (i.e., TR+, see Chapter 3) and the software
associated with the architecture remains the same from task to task. The control
programs can also be easily modified. A repertoire of tasks for navigation has been
defined which may be expanded in the future to incorporate manipulation tasks.
In order to execute in real-time, SPOTT has been implemented using a message
passing software package called PVM which transparently distributes and manages

the processing across a collection of heterogeneous processors (see Chapter 6). The

5This refers to one of the many search algorithms which are available in the Artificial Intelligence literature.
Specifically, Dijkstra’s algorithm is used.

8This assumes that the time dependence is related to the amount of processing and modelling of the raw sensor
data.
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portability and heterogeneous property of PVM allows for the possibility of porting
this architecture on board the robot in the future.

e SPOTT’s actions are predictable at a certain level of abstraction. This is when the
spatial location of the goal specified by the task is known (i.e., for the GO task).
There is a level of uncertainty in the modelling of the environment, especially when
little a priori information is provided (i.e.. map). The exact path cannot be pre-
dicted, but the dynamic path planner can guarantee that the robot will circumvent
an obstacle if it is actually possible to do so. The system also guarantees task
completion in most circumstances which do not require extensive spatial reasoning
or higher level cognitive skills. See Figure 1.3 for a list of tasks that SPOTT can
guarantee successful completion and for which ones it requires assistance. Support
can probably be obtained from an external reasoning agent (e.g., COCOLOG) or a
human operator.

e A set of tools have been developed (see Chapter 6) for SPOTT so that the monzitor-
ing of execution and the programming of the behavioral control programs is made
easier to understand. A graphical visualization tool has made the art of program-
ming behavioral control programs relatively easy (see Section 2.5 in Chapter 6). The
execution of the behavioral rules is visualized dynamically by a graphical represen-
tation of the rule base. The current state and path to be followed in the abstract
graph map is also visualized dynamically (see Section 2.1 in Chapter 6).

SPOTT has addressed the problem of mobile robot navigation, in addition to paying
attention to some of the general issues associated with the design of a robot control archi-
tecture. What distinguishes SPOTT from other behavioral architectures is the inclusion of
a path planner into the real-time feedback loop with the robot and its environment. This
permits SPOTT to predict task completion in certain situations. The SPOTT architecture
is also able to scale to different problem scenarios (e.g., partial a priori map or no a pri-
ori map). New control strategies (i.e., TR+ programs) can be easily added without any

modifications to the underlying architecture.
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3. Future Research Possibilities

There are several research issues which should be explored in the future, namely:

(i) For the task of navigation, writing a TR+ program is relatively simple because most
of the navigational behaviors are independent of each other and may be executed
concurrently (see Section 2.2 in Chapter 3). This would not be the case if the ma-
nipulation of objects were part of SPOTT’s task repertoire. In this situation. there
would be a strong dependence between manipulation and navigation (e.g., the robot
has to be near the object before it can manipulate it). A guideline for writing a typi-
cal TR+ navigation program using the SPOTT architecture is shown in Figure 3.13.
Future experimentation and research with manipulation tasks may provide a similar
guideline for manipulation tasks. The use of TR+ programs for providing event
driven control in other fields such as telecommunications, industrial process control,
or manufacturing will require the definition of the necessary behaviors as well as a
determination of their inter-dependence.

(ii) It is theoretically possible to extend the path planning formalism presented in Chap-
ter 4 for 2D path planning (i.e., local path planning) to address non-holonomic con-
trol, moving obstacles, and 3D path planning (see Section 10 in Chapter 4). One
way to address extension into these three areas is to include another dimension into
the potential field grid space to represent: (1) constraints for non-holonomic con-
trol (Connolly & Grupen, 1994); (2) time in order to capture obstacle dynamics for
control with moving obstacles; or (3) the vertical dimension for 3D path planning.
The addition of another dimension, while theoretically possible, is not practical in
most cases’. The computational time for a harmonic function on a discretized grid
will increase in direct proportion to the number of grid points. The extension of the
presented techniques for path planning to these new areas is a research challenge
that requires a practical solution given current technology.

(iii) The task command lexicon is only defined for navigational tasks. If manipulation
tasks were to become part of SPOTT’s repertoire, then the task command lexicon
would need to be expanded.

(iv) It is desirable to make the robot move faster: an ideal speed for the robot would be
the average walking pace of a human (i.e., approximately 1 m/sec). Currently, the

robot moves at about 15 cm/sec, but stops for about 5 sec, every 75 cm of traversal in

It is practical only when the discretized grid is coarse in 2D and will be coarse in the third dimension also (i.e.,
there are not that many grid points).
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order to collect sonar data. The current hindrances to this are the speed of processing
the sensor data and the limitation imposed by the low level robot control software in
not being able to process concurrent actions (e.g., robot movement and sonar data
acquisition) (see Chapter 7). The limitations of the low level robot control software
is an engineering issue which is currently being addressed.

(v) SPOTT relies heavily on its message passing implementation (i.e., PVM). Commu-
nication speeds can improve drastically if other protocols such as Fast Ethernet or
ATM are used instead of Ethernet. Other ways of communicating among processes
that should be investigated include shared memory and lightweight processes (i.e..
low overhead) called threads (see Chapter 7).

(vi) Harmonic functions (i.e., for the potential field, local path planning) can be com-
puted in hardware using a resistive grid. This avenue of research has been pursued
at the University of Massachusetts at Amherst and should be further investigated
{see Section 4.1.1 in Chapter 4).

(vii) Future modifications to SPOTT should address the issue of continual maintenance
(e.g., fusing map features, abstracting new nodes from the sensor data) for the map
database. This will require some reasoning capabilities which may either be part of
the map database as a blackboard structure, or determined by an external reasoning
agent (e.g., COCOLOG (Caines & Wang, 1995)) (see Section 2.4 in Chapter 4).

(viii) SPOTT has been interfaced with the logical reasoning system called COCOLOG.
Other future uses of the COCOLOG reasoning system (see Section 3 in Chapter 6
could include dynamically specifying changes to the TR+ programs during execu-
tion, possibly learning new TR+ control programs, learning the abstract graph map
in environments where this is not specified beforehand®, and map database mainte-
nance (i.e., verifying, refuting, and merging symbolic data constructs).

(ix) One outstanding research issue which requires further attention is how to lay out
the graphical information on the computer screen and present it to the operator.
Figure 6.3 illustrates one such arrangement. However, there is not enough room
on a single display to also show the global path and it is only displayed when the
operator requests it. Additional graphics for visualization are usually displayed

on another workstation (e.g., PVaniM for visualizing PVM memory and processor

8In the current implementation of SPOTT, the user creates the abstract graph map based on an architectural
CAD map. [t would be ideal to automate this process before execution, or to learn this abstract graph while building
a map.
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resource usage). The presentation of the graphics information has only been super-
ficially addressed by this thesis and requires further examination (see Section 2.1 in
Chapter 6).

Mapping the environment with sonar and QUADRIS data currently occurs inde-
pendent of each other and other available information. Sonar data is prone to be
bad in areas where multiple reflections occur (e.g., corners). The a priori CAD map
can possibly be used to provide some verification of the sonar data. Similarly, the
QUADRIS system needs to be made more robust to varying lighting conditions. The
experiments (see Section 3 in Chapter 7) showed that the sensors are prone to give
potential erroneous results in different environments. Testing with sensor processing
algorithms should always try to vary some elements of the environment (e.g., wall
types, lighting).

There is a real need for real-time localization: fast algorithms for correcting the
robot’s position on the fly. The current localization procedure which correlates sonar
measurements with an existing CAD map can take up to 30 sec (see Section 3.2 in
Chapter 7).

A global goal is projected onto the border of the local potential field. Dynamic
mapping may cause the attraction of the projected global goal to be blocked within
the confines of the local potential field. It is not clear how to guarantee that this does
not occur with a simple algorithm, without requiring a reasoning agent to monitor
and compensate for it (see Section 9.3 in Chapter 4 and Section 4 in Chapter 7).
Future work with SPOTT should include investigating learning within the scope of
the SPOTT architecture. TR+ programs are very similar to Al decision trees and
learning TR+ control programs and revising existing control programs would be a
logical extension, especially when new environments are being explored. Another

area to investigate is the learning of new conditions and actions.

The research issues discovered as part of experimenting with the SPOTT architecture

are particular to the environment (i.e., office and laboratory) in which SPOTT was tested.
Experiments (see Section 5 in Chapter 7) showed that many assumptions are implicitly
made about the sensor processing algorithms when all experiments are confined to the
same setting. Different settings must be tested to make the system as general and robust

as possible.
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4. Summary

This thesis has proposed a behavioral-based robot control architecture called SPOTT
which is distinguished from other behavioral architectures by its ability to guarantee task
completion for a variety of tasks. The modularity and flexibility of the architecture permits
the inclusion of a reasoning agent to advise SPOTT when it reaches its limitations. SPOTT
has been actually implemented using a distributed architecture consisting of a collection
of existing heterogeneous workstations using the message-passing software package called
PVM. SPOTT has also been interfaced to a reasoning agent called COCOLOG. Preliminary
investigation with the SPOTT architecture has provided a proof that the conceptual ideas
that contribute to SPOTT’s design can actually control a robot. Some engineering issues
are currently being addressed to permit the robot to move at acceptable speeds (ie.. the

average speed of a walking human, approximately 1 m/sec).
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APPENDIX A

Harmonic Function Computability

The harmonic function is the solution to Laplace’s equation and a gradient descent on this
function is used as a path planning strategy (See Chapter 4). Recall that the potential
function is computed in the free space, which is the space void of all obstacle and goal
models. The extent of the potential function, as well as the boundaries of the obstacle and
goal models define where the boundary conditions are applied.
For 2D, Laplace’s equation is given by the following:

U  d*U
322 T By

The solution is obtained by assuming U = XY, where X depends only on z and Y

(A.A.1) =0

depends only on y. Using the separation of variables method results in the following:

X"Y + XY" = 0

‘\-Il Y”
X D

(A.A.2)

The second equation in Equation A.A.2 is obtained by dividing the first equation by
XY. If each side of the second equation is set equal to —A2, then the second equation in

Equation A.A.2 can be rewritten as the following two equations:

X" +XX = 0

AA3
( ) Y"-XY = 0

which can be equivalently presented as follows:

X = c¢1cosAz + cgsinAz

(A.A.4) »

Y = c3e* + cysine”
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Assuming that A > 0, this solution becomes unbounded as y — oc. which violates the
bounding condition (see the first paragraph in Sections 1 and 2). To avoid catastrophe.

c3 = 0 is chosen. This causes the solution to take on the following form:

(A.A.5) U(z,y) = e *¥(Acos Az + BsinAz)

where A = ¢;cy and B = cocy.

Y A

w

0 L X

FIGURE A.l. Potential Function Extent: The derivations for Neunann and Dirichlet bound-
ary conditions are formulated in the shaded areas, given the boundaries shown above.

1. Neumann Boundary

Neumann boundary conditions are given by %} =0, 8U(;’0 =0, U(0,y) = Uays.
and U(L,y) = Up. In order to simplify the computations, the constants Uy; and Uy are set
as follows: Ups = 1 and Up = 0. U(z,y) is also bounded: |U(z,y)| < Un = 1.

Applying the boundary condition 3%5‘9 = 0 results in solutions of the following form:

X(z) = Ae**

(A.A.6)
Y(y) = A cosky
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The following results when combining the two solutions given in Equation A.A.6:

(A.A.7) Ulz.y) = Cre * cos ky
Applying the other boundary condition WzW) — g produces kW = nm. Therefore the
solution is simply U(z.y) = % The gradient of this function is V¢ = —%, which is a

constant.

When using Neumann boundary conditions. there is no limit imposed on the size of
the potential field, as 232 — 1 could be the theoretical dimension of one of the sides for
the potential field. The real constraining factor is that for this size, the potential function

would require many iterations to compute and would be practically unfeasible.

2. Dirichlet Boundary

Dirichlet boundary conditions for the bounds specified in Figure A.l1 are given by
U(z,0) = Uy, Uz, W) = U, U(0.y) = Uy, and U(L,y) = Up. In order to simplify the
computations, the constants Uys and Uy are set as follows: Uy =1 and Ug = 0. U(z.y) is
also bounded: |U(z,y)| < Un = 1.

Applying the boundary condition U(z,0) = 1 results in Y (y) = Bjcosky. Therefore.

the solution takes on the following form:

(A.A.8) U(z.y) = Ce ¥ cosky

Applying the boundary condition U(z. W) = 1 results in the following:
(A.A.9) k= Ak 1.2,3. ...

and the solution takes the following form:
(A.A.10) U(z,y) = Cne'%cos%;-ry

Using the property of superposition and the boundary condition U(0,y) = Uys results

in the following:

(A.A.11) U,y) = Z::OUn(O’ y) = ZCnCOS%y =1
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This reduces to C,, = ;21; if n is odd, and C,, = 0 if n is even. Substituting Equations A.A.8
and A.A.9 into A.A.10 produces the following:

U(z,y) = Yoo Cre = cosiF

(A.A.12) = Iy 2ie"W cosiFy

— 4\ 1 @mtljx (2m+1)7y
Tl ne1TagTe W COST o

Therefore, |V¢| decays as fast as ezp(—33;), the worst case being e:rp(—.ﬁ—f,). This
means that approximately 9.06% bits of resolution are required to represent the rapidly
decaying potential function. This also implies that for a 32 bit machine (i.e., using double
precision), only corridors that have a length to width ratio of less than approximately 7.1
can be computed®.

Dirichlet boundary conditions define a limiting bound on the size of the potential
function, whereas, Neumann boundary conditions do not. Dirichlet boundary conditions
(see Figure 4.6) on the obstacles produce trajectories that smoothly go around the obstacle.
The separation from the obstacle is determined by the configuration of obstacles (e.g., when
there are two obstacles and the trajectory goes between them, the trajectory is centered).
On the other hand, Neumann boundary conditions (see Figure 4.5) produce trajectories
which hug the obstacles. Dirichlet boundary conditions have been chosen as boundary
conditions to apply to the obstacle boundaries for this very reason. The cost for this is
that for indoor environments, where narrow corridors (e.g., hallways) are prevalent, the
potential field is local in scope. The size of the potential function is constrained by the
length to width ratio (i.e., less than 7.1 for a 32 bit machine) of the hallways. The other
factor considered is the computation time of the potential function, which is exponential in

relation to the number of grid elements.

This is based on using double precision (i.e., 64 bits) to represent numbers between 0 and 1. This is found by
setting e::p(—i[‘ﬁ',-) equal to 2~%, where b is the number of bits.
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APPENDIX B

TR+ Conditions and Actions Implemented as Part of
SPOTT

1. Conditions

A TR+ condition is a Boolean expression which usually initiates a computation process
which may take inputs or pass outputs through variables. The condition is evaluated as a
UNIX process.

The condition names are all lower case, and are descriptive of their function. There are
two parameters which are specified by the user with respect to a particular condition:

(1) The type of architecture that the condition process executes on (or even the specific
workstation) may be specified. In the default case, PVM chooses the workstation
that executes the condition process.

(ii) The only other parameter a user may specify about a particular executing condition
process is the frequency at which it is computed.

The conditions implemented as part of SPOTT and a short description of what they compute
are as follows:

¢ all room targets explored: This condition returns a TRUE value if there are no
more room targets (i.e., goals) to enter. The condition “find a new room target”
updates a shared variable containing a list of the rooms (i.e., a type of node in the
abstract graph) already visited.

e all targets within room explored: This condition returns a TRUE value if there
are no more locations to visit within a particular room. Typically, a target within a
room is determined by finding the largest open space.

e bumper has collided: This condition returns TRUE if the bumper sensor has
been triggered. Variables associated with this condition return the position and
orientation of the bumper collision and a position to move robot to so as to move
away from the collision site. The position to move the robot to is usually oriented
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in the direction of 180° away from the collision, and a range of one robot’s diameter
away from the collision location.

current robot position is: This condition always returns TRUE and invokes the
algorithm responsible for localizing the robot based on sonar data. This algorithm
correlates a sonar scan with the existing CAD map to get an estimate of the robot’s
pose (Mackenzie & Dudek. 1994).

door not open: This conditions returns TRUE if the nearest doorway which pro-
vides access into the current room is blocked (e.g., door is closed}.

find a new room: This condition always returns TRUE, except when there is
no new room to visit. The variable associated with the condition returns a new
intermediate goal (i.e., room) to visit. This condition keeps track of ail the rooms
and continually selects a new room. The set of rooms is determined from scanning
the abstract graph.

find a new room target: This condition always returns TRUE. The variable
associated with this condition returns a new target (i.e.. goal) based on the largest
open space in the current room (see “all room targets explored”).

find a new target within room: This condition always returns TRUE. The
variable associated with this condition returns intermediate goals within the room.
The intermediate goals are usually found by finding the largest open space from the
robot’s current position.

find new direction target: This condition always returns TRUE. It returns a
target (i.e., goal) based on the direction specified in the task command.

find new random target: This condition always returns TRUE. It returns a
random target for wandering. A random number generator is called which is mapped
into a location in a local region based around the robot’s current position.

in hallway: This condition returns TRUE if the robot is in a hallway, else it returns
FALSE.

in room: This condition returns TRUE if the robot is in a room, else it returns
FALSE.

infrared shows objects very close: This condition returns TRUE if the infrared
sensors have detected an object within 60 cm of the robot. Variables associated
with this condition return the position and orientation of the sensed environmental

feature with respect to the robot’s current position.
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is danger target computed: This condition always returns TRUE. This condition
returns a goal position (i.e., in its output variable) which is out of harms way of
another dangerous position (i.e., in its input variable).

is intermediate target reached: This condition returns TRUE if the intermediate
goal set by one of the TR+ conditions has been reached. The intermediate goal is a
global variable.

is intermediate target set: This condition returns TRUE if the intermediate goai
has been set by a TR+ condition. The intermediate goal is a global variable.

is task target location known: This condition returns TRUE if the spatial loca-
tion of the target specified by the task command is known. The task command is a
global variable.

is task target reached: This condition returns TRUE if the target (i.e., goal)
specified by the task command has been reached.

is the variable false: This conditions checks the Boolean value of an input variable.
If the input variable is FALSE, then the condition returns TRUE, and visa versa.
moving the robot failed: This condition returns TRUE if there has been some
problem found in moving the robot. The state of the robot is returned from the low
level robot control software (i.e., robodaemon).

new object positions are: This condition returns TRUE when new sonar data
has been sensed. This condition initiates a sonar scan and the clustering of the sonar
points into line segments (Mackenzie & Dudek, 1994). The output variable contains
a list of line segments found from the sonar scan.

object labels are: This condition returns TRUE when new QUADRIS data has
been sensed. The output variable contains a list of line segments found from the
range sensing scan (Bui, in preparation). The set of line segments may also have
a label attached to them identifying them as a particular type of object (e.g.. wall,
door).

partial map available: This condition returns TRUE when a partial a priori map
is available (e.g., architectural CAD map).

robot in a room: This condition returns TRUE if the robot is in the room specified
by an input variable.

room not explored: This condition returns TRUE if the room specified by an

input variable has not yet been visited during the current execution of the task.
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e task has no destination just direction: This condition returns TRUE if the task
command has no destination specified, and only a direction element is specified.
e task has no destination no direction: This condition returns TRUE if the task

command has no destination or direction element specified.

2. Actions

Actions either modify elements in the potential field or drive the robot actuators di-
rectly. The elements which can be modified in the potential field include adding obstacle or
goal information, or correcting the current estimate of the robot’s position. The names of
the actions are all in lower case, and there has been an attempt to make the action names
into sentence form. The actions implemented as part of SPOTT and a short description of
what they perform are as follows:

s remove all intermediate targets: This action removes all the set intermediate

targets. The intermediate targets are stored as part of a global variable.

e remove intermediate target: This action removes a particular intermediate tar-
get as specified in an input variable.

e set intermediate target to: This action sets the intermediate target to what is
indicated in the input variable.

¢ set label positions to: This action updates the potential field with a list of map-
ping features (i.e., line segments). The line segments may have labels (e.g.. door,
wall) attached to them, as provided by the QUADRIS sensor processing algorithm
(Bui, in preparation). This action typically operates with the QUADRIS sensing
condition “object labels are”.

e set object positions to: This action updates the potential field with a list of
mapping features (i.e., line segments) (Mackenzie & Dudek, 1994). This action
typically operates with the sonar sensing condition “set object positions to”.

e set ptu to hallway mode: The PTU’s for the QUADRIS system have different
scanning routines depending on the context. This action sets the scanning routine
to the hallway mode.

e set ptu to room mode: This action sets the scanning routine for the QUADRIS
PTU to the hallway mode.

¢ set real world coord to: This action changes the definition for the global frame
of reference for the Cartesian coordinate system.
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set robot position to: This action updates the current estimate of the robot’s
position (Mackenzie & Dudek, 1994). It is typically used in conjunction with the
condition “current robot position is”.

set scale to: This action changes the scale of the highest resolution potential field.
Typically, the resolutions of the other potential fields (i.e., if a multi-resolution
scheme is used) are kept in direct proportion to the highest resolution one (i.e..
specified as an input parameter).

set variable to false: This action sets the value of its input variable to FALSE.
set variable to true: This action sets the value of its input variable to TRUE.
turn the robot ctrl off: This action stops the robot actuator process from per-
forming steepest gradient descent on the potential function.

turn the robot ctrl on: This action undoes “turn the robot ctrl off’ and
puts the robot actuator process back in its normal operating state (i.e., the robot
is moved based on the steepest gradient descent found in potential function at the

robot’s current estimated position).

3. Variables

Variables are used to pass information between condition, actions, and the main and

subroutine TR+ programs. They have to be predefined. They are created for every instance

in every TR+ sub-routine they pop up in. The variable names are specified by using only

capital letters. The variables used as part of SPOTT’s current implementation include the

following:

COORD_REF: This variable specifies the coordinate reference for the internal
Cartesian map.
INTERMEDIATE_TARGET : This variable is used to store the intermediate
target (i.e., goal position).
LABEL: This variable is used to store a list of objects (i.e., line segments) which
may or may not have a label (e.g., door, wall) associated with them.
OBJECT _POSITIONS: This variable is used to store a list of objects (i.e., line
segments) which are typically returned from the sonar processing.
ROBOT _POSITION: This variable is used to store the robot’s position and pose.
ROOM : This variable stores a room number.
ROOM_STATUS: This variable stores a Boolean value which indicates whether a
particular room has been searched or not.
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e SCALE: This variable stores the scale (i.e., resolution) of the highest resolution
potential function.

e STATUS: This is a Boolean variable, usually indicating whether something has
gone wrong (e.g., robot failure). This variable is normally TRUE. but is FALSE if

something has gone wrong.

234



e
& Y 4 ///
< Y /\\ s
VY & N &
7, o X /».U\\ /M,uu, P
ey N, TP W
ﬂ\\\ > ,// 2 ¢
o
% A
ES EPr I 4| £ mmm@m :
M/H\ TR m_______m"n"_ ;
< ol | 5
W% .nlu H___= Qm_‘___ M 3
L — = =
=0 .
4
NN
\\W/ \\// \\//
Y |y \\%/ oy, \0/
Ea#




