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Abstract 

A genetic algorithm was employed to select the optimal combination of pre­

processing variables, including data pretreatment, data manipulation and feature 

extraction procedures, for eventual clustering of a data set consisting of hyperspectral 

images acquired by a focal plane array Fourier transform infrared (FPA-FTIR) 

spectrometer. The data set consisted of infrared images of bacterial films, and the 

classification task investigated was the discrimination between Gram-positive and Gram­

negative bacteria. The genetic algorithm evaluated combinations of variables pertaining 

to bacterial film thickness tolerances, baseline correction, pixel co-addition, outlier 

removal, smoothing, mean centering, normalization, derivatization, integration and 

principal component selection. Following numerous iterations of unsupervised 

processing, the genetic algorithm arrived at a sub-optimal solution yielding a clustering 

accuracy of 97.8% and a data utilization of 28.6%. The results provided insight into the 

co-dependencies of the pre-processing variables and their consequential effect on the 

selected data. The robustness of the classification model was evaluated and reinforced by 

the successful classification of two distinct validation sets. The overall success of the 

genetic algorithm suggests that it is an effective time saving resource for the optimization 

of pre-processing variables that does not require operator intervention. 
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Résumé 

Un algorithme génétique a été employé pour choisir la combinaison optimale des 

variables de prétraitement comprenant la préparation des données, le traitement des 

données et les procédures d'extraction de traits significatifs afin de grouper des images 

hyperspectrales acquises par un spectromètre infrarouge à transformée de Fourier 

utilisant un détecteur matriciel au plan focal (FPA-FTIR). L'ensemble de données était 

composé des images infrarouges de films bactériens, and la tâche de classification était la 

discrimination entre des bactéries gram positif et des bactéries gram négatif. L'algorithme 

génétique évalue les combinaisons de variables concernant des tolérances d'épaisseurs de 

films bactériens, la correction des lignes de base, l'ajoutement des points, l'enlèvement 

des points discordants, le lissage, la normalisation, la dérivation, l'intégration et l'analyse 

en composantes principales. Après de nombreux traitements non supervisés, l'algorithme 

génétique est arrivé à une solution optimale comportant une exactitude de 97,8% avec 

une utilisation des données de 28,6%. Les résultats fournis précisent les interdépendances 

des variables de prétraitement et de leurs effets sur les données. La fiabilité du modèle de 

classification a été évaluée et renforcée par la classification réussie de deux différents 

ensembles. Le succès de l'algorithme génétique démontre le gain de temps pour 

l'optimisation des variables de prétraitement sans la nécessité d'un opérateur. 

VI 



1 Introduction 

Modem chemical and spectral analysis techniques are fundamentally based on the 

mathematical manipulation of experimental data (Adams, 1995). The term chemometrics 

was proposed more that 20 years ago to describe the mathematical manipulation 

techniques and operations associated with the interpretation of chemical data. In general, 

chemometric analysis is applied to determine either the quantitative composition of a 

sample or the qualitative classification of a species (Adams, 1995). It is essential that 

analysts comprehend how their data is obtained, modified and transformed to produce the 

information that they require. 

Chemometrics has played a major role in the development of new analytical 

applications of spectroscopie techniques, particularly near- and mid-infrared 

spectroscopy, over the pa st few decades. The rapid growth in popularity of these 

techniques was triggered by the availability of laboratory computers, which allowed the 

large amount of data that these techniques provide to be accessed directly, but this in tum 

required the development of means of manipulating these data to extract relevant and 

reliable information. The resulting advances in chemometrics as applied to infrared 

spectroscopie data have extended the scope of infrared spectroscopie analysis beyond the 

traditional realm of chemistry. An example of particular relevance to the research 

reported in this thesis is the utilization of infrared spectroscopy in microbiological 

analysis (Naumann, 2000). 

With continuing advances in instrumentation, such as the development of infrared 

imaging technologies, further recourse to chemometrics is needed to han dIe the 

increasingly complex tasks of data manipulation. For instance, a Fourier transform 



infrared (FTIR) spectrometer equipped with an n x n focal-plane-array (FPA) detector 

collects an image consisting of n2 individual spectra, where each spectrum provides 

information specific to a particular location in the sample. Analysis of the resulting data, 

termed hyperspectral data analysis, is inherently complex, given the impossibility of 

visualizing the full spatial and spectral information content of the acquired image on a 

three-dimensional plot. 

The overall objective of the research presented in this thesis was to determine the 

optimum methods of pretreatment, preprocessing and eventual clustering of a data set 

consisting of infrared images acquired by a FPA-FTIR spectrometer. The literature 

review section of this thesis will present a brief overview of elementary statistics and 

infrared spectroscopic acquisition. The discussion will explore several common methods 

used to process infrared spectral data, as well as methods of selecting and extracting 

spectral features relative to clustering and classification. The literature review will also 

address the fundamental theories behind genetic algorithms as a method of evaluating 

different combinations of pre-processing variables in order to determine the optimal 

combination for data classification. 

Chapter 3 will explore and evaluate the use of genetic algorithms to optimize the 

combination of data pretreatment, data manipulation and feature extraction procedures to 

effectively cluster Gram-positive and Gram-negative bacterial species based on their 

spectral profiles. The choice of this data set is related to ongoing research on the potential 

utility of FPA-FTIR spectroscopy in the identification ofbacteria (Kirkwood et al., 2004) 

but may be regarded as arbitrary in the context of the present study. Data pretreatment 

procedures such as co-addition, outlier removal, spectral quality assessments, and 
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baseline correction will be evaluated for their impact on the data clustering. Data 

manipulation techniques such as spectral smoothing, mean centering, normalization, 

derivatization and integration will also be evaluated. Feature extraction techniques such 

as principal component analysis will be tested as weIl. The effectiveness of the genetic 

algorithm, in combination with a good fitness function, in selecting the optimal 

combination of pre-processing variables will then be evaluated using two independent 

validation tests. Overall conclusions of this study will be presented in Chapter 4. 
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2 Literature Review 

The popularity of interdisciplinary studies has paved the way to the discovery of 

new methods and procedures for chemical and biological studies. The fusion of 

mathematics, computer science, and chemistry has given birth to the chemometrics 

discipline. In turn, the application of chemometrics in conjunction with infrared 

spectroscopic methods of analysis, traditionally associated with the field of chemistry, 

has provided new methods for the analysis of biological samples. For example, the 

research reported in this thesis was undertaken in relation to the application of infrared 

spectroscopy as a tool for the classification of bacteria, and thus the first section of this 

chapter documents the microbiological task of Gram-classification. Subsequent sections 

reference sorne elementary statistical concepts essential to the comprehension and 

implementation of mathematical modeling. The process of spectral acquisition is then 

explored as well as the techniques used to manipulate the data, select features and extract 

them for purposes of sample classification. The classification technique used in this work 

is documented as weIl. Finally, the principles of the functionality of a genetic algorithm 

are explained including the reproduction and fitness functions. 

2.1 Gram-Taxonomy 

The cell wall of a bacterium is perhaps one of its most distinguishing features. 

Not only does the cell wall structurally maintain the bacteria but it also helps to maintain 

the cell's characteristic shape, counter the effects of osmotic pressure and provide 

characteristics for viral susceptibility (UOT, 1995). The composition of the cell-wall is 

one of the primary characteristics analyzed in bacterial species differentiation. 
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In 1884 the Danish Physician Hans Christian Gram, developed a procedure for 

staining bacteria (Firkin and Whitworth, 1987). This procedure is known today as the 

Gram staining procedure. Later, this procedure would become the benchmark for 

bacterial classification on the basis of the cell wall permeability. 

Gram staining is a relatively simple laboratory procedure as illustrated in Figure 

2-1. The procedure consists of obtaining a cultured bacterial specimen and smearing it on 

a slide. The slide is then subjected to Crystal violet stain for 10 seconds and rinsed with 

water. It is then flooded with iodine for 10 seconds and rinsed again. Immediately the 

slide is rinsed with a decolorization solution of 95% ethanol until the thinnest part of the 

smear become colorless (Hashimoto and Birch, 1996). 

GRAM + 

o Fixation 

~ 
Crystal 
Violet 

~ 
lodine 

treatment 

GRAM· 

-
~ 

Decolorization ~ :JI 

~ 
Counter stai n 

(safranin) --
Figure 2-1: The Gram-staining procedure 

The cell wall of Gram-positive bacteria is relatively thick because it consists of 

many layers of the polymer peptidoglycan (VOT, 1995). Therefore, if the bacterial smear 
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is Gram-positive it will retain purple iodine dye complexes after the de-colorization 

procedure is complete (Hashimoto et al., 1996). 

Conversely, the cell wall of Gram-negative bacteria is relatively thin. The purple 

iodine dye vanishes during the de-colorization procedure (VOT, 1995). To identify if 

Gram-negative bacteria exist on the sample slide, the smear is flooded with safranin for 

10 seconds and allowed to air dry, leaving the Gram-negative bacteria with a pink 

colorization as illustrated in Figure 2-1 (Hashimoto et al., 1996). 

Today, the classification of unidentified bacteria into Gram-positive or Gram­

negative categories is an essential analytical technique spanning many disciplines. 

Physicians can make a presumptive etiologic diagnosis of bacterial meningitis, bacterial 

pneumonia, bacteriuria, gonorrhea, and pyogenic infections of the brain, lung, abdomen, 

pelvis and wounds or early clinical decisions based on the examination of a Gram stained 

smear of infectious material (Hashimoto et al., 1996). Food scientists working with meat 

production can develop adequate measures for preventing spoilage and identifying 

potentially harmful toxins (Davies and Board, 1998). Microbiologists and immunologists 

can determine the adequacy of a specimen for culture and further examination using a 

Gram test as opposed to wasting their time and financial resources. (Hashimoto et al., 

1996). 

2.2 Statistical Concepts 

Any method of chemometric evaluation of spectral data IS derived from 

mathematical statistical analysis. For instance, the classification of a sample by 

comparison of its infrared spectrum with a standard set of spectra in a pre-recorded 

database involves sorne degree of quantitative measure of similarity in order to determine 
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the best match (Adams, 1995). In order to comprehend these methods, it is important to 

understand sorne key statistical concepts with pertinence to chemometric analysis. 

2.2.1 Gaussian Distribution 

The Gaussian distribution is the most important distribution for continuous data 

because of its range of practical applications in spectral analysis (Adams, 1995). The 

Gaussian function represents the distribution of truly random phenomena. The most 

common illustration of a Gaussian curve is rolling several dice many times and recording 

the output. The more dice that are rolled, and the more times the dice are rolled, the more 

the function becomes continuous and resembles the Gaussian curve as illustrated in 

Figure 2-2 (Kowaski et al., 1986). 

1500 r-'" , , -"-~ï~~~-~-"r-'-~'~'<-""~"'"'ï"""' ~-~Î~' 

1000 

500 

l ~ 
1-"'" "-

-i-L V ........ 
1 

...,... r--. 
4 6 8 10 12 14 16 18 20 

Figure 2-2: The sum ofthree dice being rolled 10,000 times 

The continuous normal distribution (the red line in Figure 2-2) is normally 

adjusted so that the area under the curve is equivalent to unity or 1. The equation for the 
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continuous normal distribution is glven by the Gaussian function in Equation 2-1 

(Adams, 1995). In practice, however, only a finite number ofsamples exist, and therefore 

the Gaussian function is also represented as in Equation 2-2 (Adams, 1995). 

Equation 2-1 

Equation 2-2 

where 

f(x) = 1 exp[- (x - ;)2] 
a..J(21l-) 20" 

1 [-(X-xY ] f(x)= ~exp 2 
S"I/2Jr 2s 

- Ln xX x= 1 

n 
i=l 

n ( -)2 
s2 = L Xi -X 

i=l (n-l) 

f(x) is the height of the curve at sorne value x. 
J.1, x is the mean or average value of the function. 

0"2, S2 is the variance. 
0", S is the standard deviation. 
n is the total number of samples. 
i denotes the individual elements of the set of data. 

The standard deviation is a measure from the center or mean of the Gaussian 

curve. In practice, less than 1 in 3 of the samples will be greater than 0" distance away 

from J.1 or conversely 68.3% of the data wi11lie within 0" distance from J.1 . Less than 1 

in 20 will be greater than 20" away from J.1 or conversely 95.5% of the data will lie 

within 20" distance from J.1. Less than 1 in 300 will be greater than 30" away from J.1 or 

conversely 99.7% of the data will lie within 30" distance from J.1 (Adams, 1995; Burns, 

2001). 

8 



The standard deviation within a data set permits the comparison of the individual 

data points. A tighter standard deviation (smaller) therefore signifies a more uniform set 

of data. 

2.2.2 Multivariate Analysis 

Where section 2.2.1 explained the variance of a single component, there is an 

increasing emphasis currently being placed on analyzing multi-component (element) 

samples and utilizing multiple measures in data analysis (Adams, 1995). 

To begin understanding the concepts of multi-component analysis, it is important 

to outline the basic nomenclature used to de scribe the data. In general, multi-component 

data is referenced in matrix form to facilitate calculation and organization of the data. 

Traditionally, data is organized as illustrated in Figure 2-3 (Burns, 2001). 

m 

n x 

Figure 2-3: Multivariate Array 

where 
X is the data matrix 
n is the number of objects or samples 
m is the number of variables or components measured 
x ij are elements of the data matrix X 

A data matrix with only one row is termed a row vector or "r", and a data matrix 

with only one column is termed a column vector or "c". 
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2.2.2.1 Covariance 

In a mu1tivariate system it is customary not to ana1yze the individua1 variates in 

isolation, but to combine them in order to provide as complete a description for the 

system as possible. Variables that disp1ay no interaction with any other variables in the 

system are referred to as statistically inde pendent; a change in value of one variable 

would have no effect on another measured variable (Adams, 1995). 

In many cases the variates are not statistically independent. A measure of 

interaction between variates is required to begin to interpret the data and characterize the 

samp1es. The degree of interaction between variables can be estimated by calculating 

their covariances (Burns, 2001). 

As variance describes the spread of data about the mean for a single variable, 

covariance describes the re1ationship between two variables. The covariance formula in 

Equation 2-3 is derived from the variance formula in Equation 2-2 (Adams, 1995). 

Equation 2-3 

where 

n 

SPkl = .I(Xik -XkXX il -Xl) 
i=1 

SPkl 
COVkl =-( -) 

n-1 

Xij is the i th concentration of variate j. 

k, 1 are two arbitrary variates to be compared. 
SPkl is the corrected (mean centered) sum ofproducts ofvariates k & l. 

COVkl is the covariance coefficient between variates k & l. 
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2.2.2.2 Correlation 

To estimate the degree of interaction between variables, free from the influence of 

measurement units as in the covariance Equation 2-3, the correlation coefficient is 

introduced. The correlation coefficient requires that the variance of each variate be 

calculated as in Equation 2-2 (Burns, 2001; Adams, 1995). The correlation coefficient in 

Equation 2-4 cannot exceed the bounds of + 1 to -1, and is therefore normalized to unity. 

Equation 2-4 

where 

t(Xij -xJ 
S 2 = -'.i--,=I--;-_..,....-_ 

j (n -1) 
COVkl rkl =--
Sk • SI 

S j is the standard deviation of variate j. 

rkl is the correlation coefficient between variant k & 1. 

2.3 Spectroscopie Data Acquisition 

2.3.1 Introduction 

Davis et al. (2001) describe spectrometry as "the detection and measurement of 

radiation and its analysis in terms offrequency and energy distribution". Electromagnetic 

waves carry information about the sources that generate them. Each time-varying wave is 

composed of a frequency, amplitude and phase. Figure 2-4 depicts two waves with 

amplitude of one, a frequency of one wave every 2n seconds and a phase difference of 

n/2. 
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1.5,------------------------, 

0.5 +-+----\-----\-----+--+-'.--\-----+---+--+-----+---1 

~--+_--~--~--~---+--~--~--~ __ --~--~I-P~H11 -Phase 2 

-û.5 t-----\r---H----/-----'l---+-+----+---~---I 

-1 +---__ "-L-_">..L _____ ----"--"------"-L-____ -----'''-''l 

-1.5-'----------------·----------
Time 

Figure 2-4: Electromagnetic Waves 

The majority of electromagnetic sources do not just generate a uniform wave_ 

Sources such as the sun generate many waves with an infinite number of frequencies and 

amplitudes_ Figure 2-5 portrays an example ofthree waves with different frequencies and 

amplitudes. The overlay of the three waves is the sum representing the wave that would 

be measured by a wave-detecting device such as a spectrometer. In the case of the sun, 

each frequency represents a different color of visible light; when observing the sun, the 

observer sees only the sum of aU the waves that resembles a soft yeUow_ 
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-Freq2p,Amp2 

)~~+---+-+-,fI -Freqp,AmpO.5 
Freq pl2, Amp 1 

- Sum of waves 

-1 

-2 +--------+-"+"'-++--------+-''fL--+-!-------I 

-3-'--------------------------' 

Figure 2-5: Electromagnetic Wave Interference 

2.3.2 Fourier Transform 

A dispersing element such as a prism may be employed to separate light into its 

composite frequencies at different angles, producing a "rainbow" of multicolored bands 

in the case of visible light. Altematively, the decomposition of a time-varying wave into 

its individual frequencies may be achieved without the use of a dispersing element 

through the application of a mathematical algorithm commonly referred to as the Fourier 

transform, (Davis et al., 2001). Applying the Fourier transform to the "sum of waves" 

plot in Figure 2-5 decomposes the amplitude versus time wave into three waves with 

frequencies of 2n, n and n/2 and amplitudes of 2, 0.5 and 1, respectively, as illustrated in 

Figure 2-6 (Davis et al., 2001). 

For the broad-band radiation sources employed in molecular spectroscopy, the 

development of the Fast Fourier Transform algorithm and high-speed computers were 
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essential for high-resolution Fourier transfonn spectroscopy because of the sheer volume 

of the data and the complexity of the observed waves (Davis et al., 2001). 

-SumofWaves 
-f-:J;-. :g-. ..I.~-~-. +-I1.....4---+----+-I--I----+---_\_~ -Fourier Decomposition 

o ...... ...... N 

-1~--------~----~----------~----~------~ 

-2 +---- --+-t---1r+----

-3 ----.-.-.. -.--.--.. -... -.------------.-.---.... --------------

Time 1 Frequency 

Figure 2-6: Fourier Decomposition 

The algorithm for the Fast Fourier Transfonn or Fourier decomposition of a wave 

is explained as follows (Bourke, 1993). Consider the wave to be transformed as a vector 

series of data as illustrated in Equation 2-5. 

Equation 2-5 

where 
N is the total number of data points. 
Xi is a complex number defined as Xi = x real + jXimaginary. 

j is the imaginary number, j = ~. 

The Fast Fourier Transfonn of the vector series described by Equation 2-5 will 

also have N data points and is denoted X(k), and is described by Equation 2-6. 
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Equation 2-6 

X(n) = - Lx(k) exp - } 7m ,for n = O ... N-l 1 N-I [·k2] 
N k=O N 

2.3.3 Infrared Spectra 

Electromagnetic radiation is decomposed into various regions with corresponding 

wavelengths. In the case of mid-infrared (IR) spectroscopy, À. is in the range of 2.5 to 25 

J.lm. The unit of wavenumber as opposed to wavelength is often used in IR spectroscopy. 

It is described as the number of waves per centimeter and conforms to the relationship in 

Equation 2-7 (Davis et al., 2001). Typically, IR spectroscopy covers a wavenumber range 

of 4000 to 400 cm-1
• 

Equation 2-7 

v 1 
cr=-=-

c Â 
where 
cr is described as the wavenumber and has the unit cm-1

. 

2.3.4 Fourier Transform Spectroscopy 

To measure electromagnetic waves, most Fourier transform spectrometers make 

use of a scanning Michelson interferometer. The interferometer records the interferogram 

of the electromagnetic radiation under examination. The interferogram is then broken 

down into its frequency components by applying the Fourier transform as illustrated in 

Equation 2-6 (Davis et al., 2001). 

Today's interferometers are recognized for their high optical efficiency, no 

diffraction losses, high throughput, simultaneous observation of aIl frequencies / 

wavelengths, and wide spectral coverage (Davis et al., 2001). In order to comprehend 
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spectroscopic analysis, it is essential to understand the fundamental theory behind the 

interferometer. 

The process of Fourier transform infrared spectroscopy begins with an infrared 

source as illustrated in Figure 2-7. The infrared beam is directed toward an interferometer 

that contains a beam splitter, a fixed mirror, a moving mirror and an optical lens. The 

beam splitter divides the input source into two beams of equal amplitude. One beam is 

directed to the fixed mirror and the other to the moving mirror. The two beams are then 

recombined on the optical lens (often the same beam splitter serves as an efficient lens). 

The recombined beam is a combination of the two source beams that are allowed to 

interfere with each other as a function ofthe moving mirror's displacement. 

The output of the interferometer is referred to as an interferogram. The relative 

intensity of the interferogram is a function of the path difference, X (Figure 2-7), of the 

moving mirror. The intensity of the interferogram energy is measured in units of Watts 

per wavenumber or W/cm·1
• 

When measuring a sample, the interferogram is passed through the sample being 

analyzed. Depending on the properties of the sample, a portion of the optical energy is 

absorbed and a portion is transmitted. 

The detector is positioned to trap the energy transmitted or reflected, depending 

on the spectrometer configuration, and outputs the instantaneous interferogram as an 

analog signal. The interferograms collected by the detector are subjected to a Fast Fourier 

Transform, which produces a spectrum of energy intensity versus wavelength or 

wavenumber, referred to as the single beam spectrum. When the single beam spectrum is 

referenced against another single beam spectrum recorded at ambient conditions with no 
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sample present (referred to as the 'background'), the absorbance or transmittance 

spectrum of the sample can be calculated. 

---------------------~ 

MOVING 

INTERFEROMETER 

Figure 2-7: The Michelson Spectrometer 

The replacement of the detector shown in Figure 2-7 by an array detector provides 

an "infrared image" of the sample. A focal-plane array (FPA) detector works similarly to 

a digital camera. As opposed to collecting a single spectrum at a time, imaging 

spectrometers collect hundreds if not thousands of spectra simultaneously. Each of the 

spectra corresponds to the signal recorded at a single pixel on the FPA. Accordingly, the 

spatial resolution of an imaging spectrometer is defined by the field of view divided by 

the square of the number of pixels in the array. 
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2.3.5 Spectral Resolution 

The c1eanness of an apparatus function and the precision of the wavenumber and 

intensity scales and any possible sources of excess noise must be determined to produce a 

reliable data set (Davis et al., 2001). The maximum path difference, X, between the 

interfering beams in a Fourier transform spectrometer (see Figure 2-7) dictates the 

resolution of the instrument. The instrument resolution is determined by taking the 

inverse of the maximum path difference as in Equation 2-8. 

Equation 2-8 

Resolution = _1_ 
XMA)( 

For example, if the maximum path difference of an instrument is five meters (five 

hundred centimeters), then the corresponding resolution will be 0.02 cm-Jo Also the 

resolution of the instrument can be interchangeably used as the absolute wavenumber 

precision of the instrument. Instruments with variable resolution must be utilized 

carefully; excessive resolution deteriorates the quality of the signal to noise ratio. 

2.3.6 Signal and Noise 

Even under the stricte st of experimental conditions, there are always various kinds 

of noise generated by the source, electrical and mechanical variations in the environment 

or in the spectrometer itself (Davis et al., 2001). Noise is identifiable by sharp spikes, 

false spectral lines or other features not predictable by the properties of the incoming 

radiation. 

Physical noise is generated wh en the interferogram is collected and therefore it is 

important to understand the physical aspects when measuring a sample. Varying 
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procedures, processes and events at the instrument will translate into varying noise levels 

in the final spectrum (Davis et al., 2001). 

The signal to noise ratio is a method of calculating the strength of the signal vs. 

the ambient noise as illustrated in Equation 2-9 (Adams, 1995). 

Equation 2-9 

S / N = average _ signal _ magnitude 

RMS Noise 

RMS Noise = 

where 
n is the number of samples present 
Xi is the signal 

x is the average signal 

i=\ 

n-l 

RMS noise can be identified as the standard deviation ((Y) of the noise signal; 

therefore, the signal to noise ratio from Equation 2-9 can be redefined by Equation 2-10 

(Adams, 1995). 

Equation 2-10 

S/N=~ 

where 
(Y is the standard deviation of the noise signal. 

2.4 Data Enhancement 

2.4.1 Reducing Noise 

Numerous spectral anomalies including instrumental noise, random and natural 

variation in a sample's characteristics and composition as well as atmospheric conditions 

make an exact match between two spectra of the same substance almost impossible to 
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obtain; random errors will always exist. This section will explore methods of reducing 

noise. 

2.4.1.1 Co-Adding Spectra 

Signal averaging is a process that is conducted by co-adding individual spectra 

(Adams, 1995). Assuming that noise is randomly distributed, signaIs are enhanced 

because the signal strength or magnitude grows linearly with the number of scans N. 

Equation 2-11 

Signal Magnitude oc N = k] N 

In a similar fashion, the effects of the variances of noise grow linearly with each 

successive scan. RMS noise is equated with the standard deviation (being the square root 

of the variance) and therefore the magnitude of noise can be expressed as a function of 

the square root of the number of scans. As a result, the signal to noise ratio is increased 

linearly in proportion to the square root of the number of scans taken as in Equation 2-12. 

Equation 2-12 

Signal 

Noise 

A common practice in infrared spectroscopy is to co-add 100 spectra in order to 

receive a 10:1 theoretical enhancement in signal to noise ratio. Co-adding the spectra can 

be implemented in the collection stage, or after aIl the samples have been scanned once 

each. When using a focal plane array detector, the signaIs recorded by individual pixels 

can be co-added to reduce the effect of infrared refraction from pixel to pixel as well as 

the overall noise due to imperfections in the super-conductor (Wolsky et al., 1989). 
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2.4.1.2 Smoothing 

There are a wide variety of signal-smoothing algorithms available for smoothing 

spectral data. The most fundamental of these methods is referred to as the boxcar method 

or a mean smoother (Adams, 1995; Beebe et al., 1998). 

The boxcar method involves dividing a spectrum into equally spaced segments of 

five, seven, nine or eleven points. The centroid of each of these data segments is 

ca1culated. The data points in the segment analyzed are then replaced with the ca1culated 

value at the centroid location. 

The centroid location is determined by calculating the center of mass of the data 

points. The interpretation of a value for mass is questionable. Sorne analysts will use a 

consistent value of 1 as the mass at any given equally spaced data point. Others will 

utilize a formula proportional to the absorbance at the particular data point. Either way, 

the general X, Y coordinates of a centroid are ca1culated as in Equation 2-13. 

Equation 2-13 

where 
X is the x-axis (wavelength) location ofthe centroid. 
y is the y-axis (absorbance) location of the centroid. 
Xi is the given x-axis cordinate of a particular data point i. 

Yi is the given y-axis coordinate (absorbance) of a particular data point i. 

mi is the given mass of a particular data point i. 

Although the boxcar method is an excellent method of smoothing a spectrum, it 

increases the distortion of the signal. Subsequently, boxcar smoothing results in a loss of 

spectral resolution due to the fewer data points available for analysis (Adams, 1995). 
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The moving average method of smoothing is similar to the boxcar method but 

provides a more stable method of maintaining spectral resolution. As opposed to 

replacing a series of data points with one centroid data point, the moving average method 

replaces each data point with a value averaged from those points surrounding it (Beebe et 

al., 1998). For example, if a five point moving average, or running mean smoother, is 

performed, data pointx3 is replaced with the average value of data points X p X 2 ,X3,X4 

and xs. In tum, data point x4 is replaced with an average value of data points 

The mathematical process of implementing a moving average is referred to as a 

convolution. As with the boxcar method, convolution is a function of mass. However, 

when applying a moving average, the mass at each point is equivalent to unity, or 1. The 

formula for applying the convolution is expressed in Equation 2-14. 

Equation 2-14 

j=-n 

(2n + 1) 

where 
n is the incremental number of points to average in each direction. 

Polynomial smoothing extends the concept of a moving average by modifying the 

mass vector, such that the mass vector now describes a convex polynomial (Adams, 

1995). Without going into detail, it tums out that replacing values of m j with specifie 

predetermined constants and performing a moving average is equivalent to calculating a 

polynomial function for each increment of data points (n) (Beebe et al., 1998). These 
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constants are referred to as Savitzky-Golay coefficients after their founders and are listed 

in Table 2-1. 

T bl 2 1 S . k G 1 C ffi· t a e - : aVltz ry- o ay oe lClen s 
i/n -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 
5 -3 12 17 12 -3 

7 -2 3 6 7 6 3 -2 

9 -21 14 39 54 59 54 39 14 -21 

11 -36 9 44 69 84 89 84 69 44 9 -36 

13 -11 0 9 16 21 24 25 24 21 16 9 0 -11 

17 -21 -6 7 18 27 34 39 42 43 42 39 34 27 18 7 -6 -21 

For example, when applying a five point (n = 2) moving average, the mass vector 

is replaced with the following coefficients: 

m_2 =-3 

m_] = 12 

mo =17 

m]=12 

m2 =-3 

One of the disadvantages of running smoothing functions is the so-called "end 

effects." When the smoothing function is running on the first few or last few data points, 

not enough data points are available to completely smooth the sample (Beebe et al., 

1998). Care must be taken not to put tao much ernphasis on the end data points during 

analysis. 

2.5 Feature Selection and Extraction 

2.5.1 Introduction 

Post data collection and data enhancernent and prior ta analyzing the data by 

calibration, rnodeling or pattern recognition techniques, it is usual to perform sorne pre-
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processing of the data. Typically, there are three principal aims in the pre-processing of 

the data collected (Adams, 1995). 

1. To reduce the amount of data and eliminate data that is irrelevant to the task 

being undertaken. 

2. To preserve or enhance sufficient information within the data in order to 

achieve certain goals. 

3. To extract the information in a form suitable for further analysis. 

The techniques used to pre-process the data are referred to as feature selection 

andfeature extraction. Feature selection is defined as identifying and selecting features in 

analytical data that are believed to be important in calibration or pattern recognition. 

Feature extraction changes the dimensionality of the data and generally refers to 

combining or transforming original variables to provide better new ones. This section 

de fines selected commonly implemented methods of feature selection and feature 

extraction. 

2.5.2 Feature Selection 

Various data manipulation techniques are commonly employed to assist in feature 

selection. These techniques inc1ude means of accentuating the spectral differences within 

a data set and compensating for extraneous sources of spectral variation irrelevant to the 

study being undertaken (Adams, 1995). 
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2.5.2.1 Mean Centering 

Mean centering is a process used when dealing with a large number of samples. 

Essentially, the mean of each variable is subtracted from each of the samples (Beebe et 

al., 1998). Data sets are often mean centered to account for intercepts in regression 

models (Beebe et al., 1998). Mean centering generally does not hurt data, and often helps; 

therefore, many analysts mean center their data as a default. Mean centering is always 

recommended when performing routines such as Principal Component Analysis (see 

Section 2.5.3). 

2.5.2.2 Normalization 

Normalization is perhaps the most common form of data pre-processing used 

today (Adams, 1995). In its simple st terms, normalization involves scaling spectral data 

to a given constant. Normalization is used to remove systematic variation usuaHy 

associated with the total amount or thickness of the sample under investigation (Beebe et 

al., 1998). 

One method of normalization, referred to as normalizing to unit intensity, 

involves identifying the absolute highest peak in a spectrum. Subsequently, aH the data 

points in the spectrum are divided by the absolute value of the largest peak height (Beebe 

et al., 1998). 

Normalizing to unit area. termed l-norm normalization, IS accomplished by 

calculating a I-norm constant as shown in 
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Equation 2-15, and dividing every point in the spectrum by that constant (Beebe 

et al., 1998). 

Equation 2-15 
n 

1-norm = 2:IXjl 
j=l 

where 
n is the number of data points in the spectrum. 

Similarly, normalizing to unit length, termed 2-norm normalization, is 

accomplished by calculating a 2-norm constant as shown in Equation 2-16, and dividing 

every point in the spectrum by that constant (Beebe et al., 1998). 

Equation 2-16 

2.5.2.3 Baseline Correction 

Aside from noise, measured signaIs can also contain low-frequency variations not 

related to the sample under study. These components are referred to as baseline features 

and can be relatively large if not removed. 

The theory of baseline correction is that any sample vector can be written as a 

function of x as in Equation 2-17. The function is equal to the sum of the actual signal 

plus sorne baseline feature that can be expressed in polynomial form (Beebe et al., 1998). 

Equation 2-17 

r = f(x) = r + a + f3x + pc2 + &3 + ... 
where 
r is the signal of interest. 

a + px + rx 2 + &3 + ... is a polynomial approximating the baseline feature. 

26 



By postulating an algebraic model for the baseline as offset, linear or polynomial, 

the baseline component ofthe signal can be accounted for by simple subtraction. 

An offset baseline correction (i.e. a horizontalline) can be expressed as Equation 2-18. 

The baseline can be removed by estimating a value for a and subtracting it from every 

element in the vector r. The optimal value for a would be found by selecting a point on 

the original vector that is known to contain only background or baseline information. The 

average intensity of several baseline variables is often used in order to eliminate the 

amount of noise introduced into the sample vector by baseline subtraction. 

Equation 2-18 

A linearly sloping baseline is quite common in spectroscopy due to wavelength 

dependent scattering. Linear baseline correction is expressed as in Equation 2-19. In this 

case, a line is estimated and two or more points assumed to contain only baseline 

information are required to solve for the baseline constants, a and j3 . 

Equation 2-19 
r=r+a+j3x 

Other functions can also be estimated as long as the reference points selected are 

only influenced by the baseline. Ifreference points are chosen poorly, chemical variation 

in the data will be removed in addition to the baseline (Beebe et al., 1998). 

2.5.2.4 Derivatives 

Derivative spectroscopy provides another method of eliminating the baseline 

features from a spectrum (Beebe et al., 1998). It also provides a window to analyze data 

in a potentially more useful form than the zero 'th order (Adams, 1995). 
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Referring to the baseline equation (Equation 2-17) and taking the first derivative 

of the sample vector with respect to the variable x yields Equation 2-20 (Beebe et al., 

1998). 

Equation 2-20 

dr =r'=r'+0+p+2JX+3&2 + ... 
dx 

Equation 2-20 reveals that the first derivative has completely removed the offset 

feature, a. If the baseline is only comprised of an offset, the other coefficients III 

Equation 2-20 would be zero as weIl, and the baseline effect eliminated. 

If a more complex baseline exists, then each successive derivative will 

successfuIly remove a higher order term as illustrated in Equation 2-21. 

Equation 2-21 

d2~ =r"=r"+0+0+2y+6&+ ... 
dx 

As weIl as eliminating the baseline component of the samples, analytical 

applications of derivative spectroscopy are numerous and are usuaIly a result of the 

higher resolution of the differential data with respect to the original data. Derivative 

spectroscopy enhances changes in slope that are typicaIly difficult to extract from their 

zero'th order counterparts. The downfaIl of derivative spectroscopy is that it also greatly 

increases the effect of noise apparent in the original data. Renee, this limits derivative 

analysis to spectra with a high signal to noise ratio and emphasizes the importance of 

enhancing the spectral data prior to pre-processing (Adams, 1995). 

Several mathematical algorithms exist for differentiating spectral data. AlI of 

these methods require the data points to be evenly spaced (in most cases, a given 

wavenumber or wavelength interval). In cases when constant data intervals cannot be 
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recorded, techniques such as interpolation must be employed to extract the necessary 

data. 

The simplest method of computing the first-order derivative is calculated by 

Equation 2-22. 

Equation 2-22 

dy Yi+l - Yi-l = 
d}" 

where 
~}" is the given measurement interval (resolution) of the data. 
Yi is the given response (i.e. absorbance or intensity) at a data point i. 

Similarly, the second derivative is calculated by Equation 2-23. 

Equation 2-23 

d
2
y Yi+l -2Yi - Yi-I 

d},,2 ~},,2 

Various other methods exist for computing the first and second derivative. For 

example, using the Savitzky and Golay smoothing techniques outlined in Section 2.4.1.2, 

the effect of noise can be significantly reduced with their weighing techniques and a 

better approximation can be formed (Adams, 1995). The Savitzky and Golay first-order 

and second-order derivatives are described by Equation 2-25 

Savitzky and Golay propose the first-order derivative as described by Equations 

2-24 and 2-25, respectively. 

Equation 2-24 

dy 1 ( ) -=-- -2 - + +2 d}" 1 O~}" Yi-2 Yi-! Y i+\ Y i+2 

Equation 2-25 
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2.5.2.5 Integration 

Integration is naturally the complement to differentiation in mathematical terms. 

In its elementary definition, the integral is simply the area under the curve of the 

spectrum. Many methods of computing the area under a curve exist. In princip le, they 

involve dividing the curve into rectangles or trapezoids in order to estimate the area under 

the curve. As the number of data points increases within a given spectrum, so does the 

accuracy of such computational algorithms. Although both the rectangular and the 

trapezoidal integration method would be applicable to obtain a crude estimate of the 

integral, there is a more reliable and better-suited method derived from combining both 

the rectangular and trapezoidal algorithms. This method is referred to as Simpsons 

Method and is described by Equation 2-26. 

Equation 2-26 

A. =(x. _x.)(4Yi+O.5 +Yi+1 +Yi) 
1+0.5 1+1 1 6 

2.5.3 Feature Extraction 

In the interest of increased computational efficiency and improved analytical 

differentiation, data can be combined linearly to produce new variables. In essence, a 

linear combination of variables is represented by replacing two or more correlated 

variables with a weighted sum of those variables. This new variable sits on a new axis at 

sorne arbitrary angle a from the original axis as outlined in Equation 2-27 (Adams, 

1995). 
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Equation 2-27 

where 

x = a • Xl + b • X2 

a 2 +b 2 = 1 

a = sin a 

b = cosa 

Xl and .1'2 are the original variables. 
X is the new variable 
a and b are the normalized weights. 
a is the angle of the new axis. 

If a = b = 1I.J2 thena = 45°. 

If there is correlation between Xl and .1'2, then the vanance of X will be 

significantly greater than the individual variances of Xl and .1'2, respectively. Therefore, 

the new variable X contains more useful information than either of the variables Xl and 

.1'2. 

When dealing with more than two variables, the variance of the new variable can 

be described using the covariance or correlation coefficient (as discussed in Section 

2.2.2) as described by Equation 2-28. 

Equation 2-28 

where 

n n 

sx
2 = LLaj .ak .Covjk 

j=l k=l 

n n n 

S X 2 = La j 2 • S j 2 + L La j • S j • a k • S k • rjk 
j=l j=l k= j+l 

rjk is the correlation coefficient betweenj and k. 

2.5.3.1 Principal Component Analysis 

Principal Component Analysis (peA) involves the rotation and transformation of 

the original n axes, each representing a variable, to a new set of axes. These new axes 
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provide the maximum level of variance between the variables and ensure that they are 

orthogonal (perpendicular) and uncorrelated. Since PCA usually produces a new set of 

variables p, where p is always less than n, PCA proves to be a useful technique in 

reducing the dimensionality of the sample data (Adams, 1995; Beebe et al., 1998). 

PCA functions as an algorithm to seek out the first principal component, or 

principal axis that is able to inc1usively reflect the greatest amount of variance in the data. 

Once the first principal component is identified, the search continues to find the second 

principal component. The second principal component is able to inc1usively reflect the 

greatest amount of variance in the remaining data and is completely uncorrelated with the 

first principal component. The algorithm repeats until aU of the principal components 

have been identified and accounted for (Beebe et al., 1998). 

In essence, if two variables with a certain degree of covariance VARI & VAR2 

exist, then as discussed in Section 2.2.2.1, the covariance COVVARI ,VAR2 can be determined. 

As weU, the variance of each of the variables S~ARI & S~AR2 is known. Ifthe two variances 

are plotted on the x and y axes of a Cartesian plane respectively, at a distance equivalent 

to the covariance, perpendicular to their axes, then it is easy to visualize the first principal 

component. The first principal component is the axis drawn through the center of the 

ellipse formed by the origin of the plane (as the center) and the two data points as 

illustrated in Figure 2-8 (Adams, 1995) 
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Figure 2-8: First PCA Axis 

Mathematically, the first principal component slope is equal to the eigenvector of 

the variance and covariance matrix, and the length of the axis is equal to the calculated 

eigenvalue for the eigenvector. In the same manner, the second principal component's 

slope is equal to the second eigenvector and its length to the second eigenvalue (Adams, 

1995). 

Principal component analysis is employed extensively in infrared spectroscopy. 

The principal component loadings or eigenvectors highlight the weights given to each 

spectral point in each of the original spectra. The results of principal component analysis 

reduce dimensionality, and therefore, the similarity and differences between samples can 

often be better assessed. ConsequentIy, principal component analysis is a comerstone in 

chemometric analysis (Beebe et al., 1998). 
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2.6 Pattern Recognition 

2.6.1 Introduction 

Classification arises from the need to highlight similarities and differences 

between samples collected as modem analytical techniques generate large amounts of 

both qualitative and quantitative data (Adams, 1995). The purpose of classification is to 

derive a mathematical scheme for grouping into classes such that objects within a class 

are similar and different from those in other classes. 

Supervised pattern recognition or supervised learning requires a training set 

where the parent class group of each sample is known. This information can be used to 

develop functions suitable for classifying unknown samples. 

Unsupervised pattern recognition or cluster analysis consists of classifying a 

group of data where no class is known or identified. 

2.6.2 Measuring Distances between Objects 

Pattern recognition procedures typically begin with the calculation of a matrix of 

similarities or dissimilarities between the objects. Similarity and distance between objects 

are complementary concepts with no formaI definition. In practice, distance as a measure 

of dissimilarity is a much more clearly defined quantity and is therefore more commonly 

used in pattern recognition (Adams, 1995). 

The first stage of any pattern recognition procedure relies on the proper selection 

of a distance measure. It is recommended that clustering techniques be repeated with 

different distance measures in order to determine the proper fit for the data at hand. 
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In most applications of cluster analysis, the correlation coefficient used in 

similarity measures is too limiting (Adams, 1995). Correlation coefficients are solely a 

measure of colinearity between variates and do not take into account non-linear 

relationships, or the absolute magnitude of the variates under analysis. Distance measures 

are more commonly encountered in cluster analysis because of their accurate 

representation of the variates and their ability to be represented mathematically. 

However, it is always possible at the end of a cluster analysis to represent the data as a 

reverse similarity; the greater the distance between objects, the less their similarity. 

Any object is characterized by a set of measures and can therefore be represented 

as a point in multivariate space defined by axes. Each axis corresponds to a variate that 

describes the object. For example, consider two objects A and Beach described by two 

variates on a Cartesian coordinate system. Object A is characterized by vector 

a = X 1p X 12 ' and object B is characterized by vector b = X 2p X 22 • 

When using a distance measure, the objects close st together are assigned to the 

same c1uster. For a distance function to be useful, the following mIes must apply (for 

objects A and B only). 

(a) d AB Z 0, the distance between all pairs ofmeasurements for object 'A' and object 

'B' must be non-negative. 

(b) d AB = d BA' the distance measure is symmetric and can only be zero when A = B . 

(c) d AC + d BC Z d AB' the distance is commutative for all pairs of points. 
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The most common distance measure is referred to as the Minkowski measure and 

is described by Equation 2-29. 

Equation 2-29 

where 
Xi is the value ofthejth variable measured on the i th object. 

J 

m is a constant related to the metric used. 

If m = 1, than the equation is referred to as the city-block metric. The most 

common distance measure used is when m = 2 and is described as the Euc/idean distance 

(Beebe et al., 1998). 

Figure 2-9 illustrates the difference between the city-block and Euclidean distance 

measures (Adams, 1995). 

dAB (Euclidean) = dl 
dAB (city-block) = d2 + d3 

d2 
A 

Figure 2-9: Distance Measures 

A suitable distance measure for pattern recognition can now be examined. A 

simple example serves to illustrate the principal points. Table 2-2 describes three objects 

('A', 'B' and OC') each characterized by five variates. 
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Table 2-2: Dist an ce M easure E xample- s 1 D t ample aa 

Xl X2 X3 ~ Xs 
A 2.1 5.2 3.1 4.1 2.1 
B 2.5 4.0 4.0 4.6 3.5 
C 5.1 9.2 7.1 7.0 5.0 

Table 2-3 illustrates the tabulated resuIts ofusing the Euclidean distance measure; 

in this case the smallest distances are presented in bold face. Figure 2-10 illustrates the 

corresponding dendrogram. 

Table 2-3: Distance Measure Exam 1 D· t !J!le - IS an ces 
A B C 

A 0 2.15 7.60 
B 2.15 0 7.17 
C 7.60 7.17 0 

AB C 
AC 0 7.38 
B 7.38 0 

ABC 

L-I --L-r-_~ __ ~1-=-2._15_--=------,17.38 
Figure 2-10: Distance Measure Example - Dendrogram 

It is apparent that different results are obtained when using different measures. 

Figure 2-11 illustrates the objects from the sample data set in Table 2-2 plotted with their 

variables, and an explanation of the different resuIts is evident. If the variables in the 

sample represent trace eIements in a water sample for instance, then samples 'A' and 'B' 

are similar with the subtle difference possibly due to experimental error. Sample 'C' 

would be from a different source as its elemental concentrations are significantly 

different. In this case, the distance metric would be a suitable clustering measure. On the 

other hand, if the data represented points in a spectrum, than spectra 'A' and 'C' would 

be similar while differing only in scale. Spectrum 'B' would have a completely different 
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profile. In this case the correlation metric would prove to be a sui table method for 

clustering. If, however, the spectra had been normalized about the most intense response, 

then spectra 'A' and oC' would be closer and the distance metric more meaningful. 
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Figure 2-11: Distance Measure Example - Data Plot 

2.6.3 Unsupervised Clustering Techniques 

Figure 2-12 illustrates a visual example of clustering. It is evident from inspection 

that there are several ways of dividing the pattern space and producing several different 

clusters of objects. There is no single correct result; the success of any clustering method 

is dependent on what is being sought, and the intended use of the clustered information. 

When class information is known about the data set, it is of interest to compare 

this information to the natural classification. The natural clustering might or might not 
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relate to the expected groupings. If the natural clustering does not match the expected 

classification, then this indicates a disconnect between the measurements chosen, the data 

pre-treatment techniques or the data pre-processing techniques, and the expected results 

(Beebe et al., 1998). 

Variahle 

Variahle 1 

Figure 2-12: 2-D Cluster Example 

The general algorithm used for applying unsupervised pattern recognition 

proceeds in the following manner. 

1. The raw pre-processed data characterizing the samples being clustered are 

converted to a set of similarity and dissimilarity measures between samples. 

2. The aim is to cluster the samples with little separation between samples of the 

same class while maintaining separation between different clusters. 

When group mg objects together to form a cluster, the cluster itself can be 

represented by a typical member of the cluster. A typical member could be an actual 

39 



object within the cluster, or more commonly an object constructed of the mean variate 

values of the objects within the cluster. The between-cluster distance can then be defined 

by sorne metric such as the Euclidean distance between these means. The nearest 

neighbor distance describes the distance between the two closest members from different 

groups. On the other hand, the furthest neighbor distance describes the distance between 

the two furthest members from different groups. Further inter-group measures are 

obtained by taking the average inter-element measurements between elements in different 

groups (Adams, 1995). 

When only two or three variables are measured for each object, clusters can 

usually be visually identified. As the number of variates increases, visual interpretation 

becomes difficult and often clusters are missed. To address this problem, clustering 

techniques have been developed and are classified as the fOllowing types (Adams, 1995). 

(a) Hierarchical techniques in which objects are c1ustered together to form new 

representative objects. The process is repeated at different levels to produce a 

dendrogram. 

(b) Optimization of the partitioning between c1usters using an iterative algorithm 

until sorne minimal change in the clustered groups occurs. 

(c) Fuzzy cluster analysis in which objects are assigned a membership function 

indicating their degree ofbelonging to a certain c1uster. 

2.6.3.1 K-Means Clustering 

In order to explain this clustering method, a set of sample data from Adams 

(1995) will be utilized. Table 2-4 illustrates 12 samples or objects with two variables 
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each. Table 2-5 illustrates the corresponding Euc1idean distance matrix for this data. 

Figure 2-13 illustrates the relationship between the samples based on the two variables. 

Preliminary examination of the data graphed in Figure 2-13 reveals a single outlier point 

(L) and three distinct groups of data (B,C,D), (A,E,F,G) and (H,I,J,K). 

T bl 24 KM E a e - : - eans 1 S 1 D t xample- am pie aa 
A B C D E F G H 1 J K L 

X1 2 6 7 8 1 3 2 7 6 7 6 2 
X2 1 1 1 1 2 2 3 3 4 4 5 6 

T bl 25 KM E a e - : - eans 1 E rd D· xample- oc 1 ean Istance M . atnx 
A B C D E F G H 1 J K L 

A 0.0 4.0 5.0 6.0 1.4 1.4 2.0 5.4 5.0 5.8 5.7 5.0 
B 4.0 0.0 1.0 2.0 5.1 3.2 4.5 2.2 3.0 3.2 4.0 6.4 
C 5.0 1.0 0.0 1.0 6.1 4.1 5.4 2.0 3.2 3.0 4.1 7.1 
D 6.0 2.0 1.0 0.0 7.1 5.1 6.3 2.2 3.6 3.2 4.5 7.8 
E 1.4 5.1 6.1 7.1 0.0 2.0 1.4 6.1 5.4 6.3 5.8 4.1 
F 1.4 3.2 4.1 5.1 2.0 0.0 1.4 4.1 3.6 4.5 4.2 4.1 
G 2.0 4.5 5.4 6.3 1.4 1.4 0.0 5.0 4.1 5.1 4.5 3.0 
H 5.4 2.2 2.0 2.2 6.1 4.1 5.0 0.0 1.4 1.0 2.2 5.8 
1 5.0 3.0 3.2 3.6 5.4 3.6 4.1 1.4 0.0 1.0 1.0 4.5 
J 5.8 3.2 3.0 3.2 6.3 4.5 5.1 1.0 1.0 0.0 1.4 5.4 
K 5.7 4.0 4.1 4.5 5.8 4.2 4.5 2.2 1.0 1.4 0.0 4.1 
L 5.0 6.4 7.1 7.8 4.1 4.1 3.0 5.8 4.5 5.4 4.1 0.0 
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Figure 2-13: K-Means Example - 2-D Variable Plot 

The K-Means algorithm is one of the most popular and widely used clustering 

techniques due to its advantage in being applied to relatively large sets of data. K-Means 

is an optimization-based technique aimed at partitioning m objects, characterized by n 

variables, into K (user specified) number of clusters (Adams, 1995). 

The K-Means method relies on reducing the square of the within-cluster sum of 

distances. In practice, K-Means cannot be expected to predict the best possible 

partitioning of the data as it is only a local optimization algorithm. Local optimum in this 

classification method is obtained when no movement of an object from one cluster to 

another will reduce the within-cluster sum of squares (Adams, 1995). 

A1though severa1 K-Means a1gorithms exist, the Hartigan method is the most 

commonly used (Adams, 1995). The Hartigan algorithm requires that a matrix X be 

defined with elements Xi,}, where (1 S; i S; m,l S; j S; n). 
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L is defined as an arbitrary cluster and the nurnber of objects residing in cluster L 

is denoted RL ; where RL is defined as the total responsibility for the objects residing in 

L. The mean value of each variable j from all the objects residing in cluster L is denoted 

BL,;,(1 ~ L ~ K); where BL,; is defined as the center of the cluster L (MacKay, 2003). 

The distance between the lh object and the center of each cluster is given by the 

Euclidean rnetric in Equation 2-30. The error (é ) associated with any partition is defined 

by Equation 2-31 as the sum of the squares of the distance between the lh object and the 

center of the cluster in which the object resides (MacKay, 2003). 

Equation 2-30 

D. L = ~(x . - B
L 

. Î2lli 
l, r l,j ,j) J-

Equation 2-31 

where 
L(i) is the cluster containing the lh object. 

The K-means algorithm ai ms to move an object from one cluster to another in 

order to reduce the error é and ends when no movement can further reduce é (Adams, 

1995). The algorithm is outlined as follows: 

(a) Define a number of clusters, K. Initially assign each of the objects i to one of 

the clusters. Equation 2-32 is a cornmon method of assigning objects i to 

clusters L(i). 

Equation 2-32 

[( 
{

" X . . -MIN" X. Jl L(i) = INT K -1 ~ l,j ~ l,j + 1 
MAX" X . - MIN" X .. ~ l,j ~ l,j 

j j 

where 
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LXi,j is the sum of aU the variables for each object. 
j 

MIN and MAX denote the minimum and maximum sum values. 

(b) Given a number of predefined c1usters, K, and their initial contents, calculate 

the c1uster means B L,j and the initial partition error & per Equation 2-31. 

(c) For the first object, i = 1, compute the increase in error 11& obtained by 

transferring the object from the CUITent c1uster (L(I)) to every other c1uster L, 

(2 ~ L ~ K) as defined by Equation 2-33. If the 11& value is negative, the 

move would reduce the total partition error, and the object should be 

transferred from the initial c1uster to the c1uster L. The c1uster means, BL " 
.J 

should be adjusted accordingly to compensate for their new populations. 

Equation 2-33 

(RL(l) XD1,L(l) y 
(RL(I) )-1 

(d) Repeat step (c) for every object in the data space. 

(e) lfno object has been moved, then stop; otherwise retum to step (c). 

To further iUustrate the functionality of the K-Means algorithm, consider the 

example provided (Adams, 1995). The first step involves specifying the number of 

c1usters (K) expected, in this example K = 4. The next step requires that each object must 

be assigned to an initial c1uster by applying Equation 2-32; the variable sum results are 

tabulated in Table 2-6. 

Ta bl 26 KM e - : - eans E F' xample - Irst s teration ums 
A B C D E F G H 1 J K L 

X1 2 6 7 8 1 3 2 7 6 7 6 2 
X2 1 1 1 1 2 2 3 3 4 4 5 6 

LX. 3 7 8 9 3 5 5 10 10 11 11 8 
I,J 

j 
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The maXImum and mInImUm variables sums are identified as Il and 3, 

respectively, and these values are plugged into Equation 2-32 for object 'A' to produce 

the results in Equation 2-34. 

Equation 2-34 

L(A) = INT{(4 -1)[ (3 -3) ]} + 1 = 1 
(11-3) 

The results for each object are tabulated in Table 2-7. It is apparent that objects 

(A, E, F, G) are assigned to cluster 1, (B, C, L) are assigned to cluster 2, (D, H, 1) to 

cluster 3 and (J, K) to cluster 4. 

The next step involves calculating a value for the centers of the clusters. For 

cluster 1, the centers are calculated as illustrated in Equation 2-35. 

Equation 2-35 

B!,! = (2 + 1 + 3 + 2)/4 = 2.00 

B!,2 = (1 + 2 + 2 + 3)/4 = 2.00 

The centroids of the remaining three clusters are ca1culated in the same manner 

and the results are tabulated in Table 2-8, and the initial partitioning of the sample space 

is illustrated in Figure 2-14. 

Table 2-8: K-Means E xample- F· 1 Irst te ration Cl uster M eans 
Cluster Contents Cluster Means 

XI X2 
1 AEFG 2.00 2.00 
2 BCL 5.00 2.67 
3 DHI 7.00 2.67 
4 JK 6.50 4.50 
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Figure 2-14: K-Means Example - Initial Sample Space Partitioning 

The following step involves the calculation of the overall error for this 

classification iteration given by Equation 2-31. The results are shown in Equation 2-36. 

Equation 2-36 

8=(2-2)2 +(1-2)2 +(6-5)2 +(1-2.67)2 +(7-5)2 +(1-2.67)2 

+ (8 _7)2 + (1- 2.67)2 + (1- 2)2 + (2 - 2)2 + (3 - 2)2 + (2 - 2)2 + (2 - 2)2 

+(3-2)2 +(7 _7)2 +(3-2.67)2 +(6-7)2 +(4-2.67)2 +(7 -6.5)2 + 

(4 - 4.5)2 + (6 - 6.5)2 + (5 - 4.5)2 + (2 - 5)2 + (6 - 2.67)2 

= 42.35 

Attempts must now be made to reduce the error. The algorithm proceeds by 

examining each object in tum, and calculating the effect of transferring that object to a 

different cluster. For instance, for the first object 'A', the squared Euclidean distance to 

each cluster center is calculated and the corresponding change in error, f..8, is 

determined for moving object 'A' from its original cluster to each of the other clusters in 

the sample space as tabulated in Table 2-9. 
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Table 2-9: K M - eans E S dIt t'Ob' A xample - econ era Ion IJect 

Cluster 1 DA.1 
2 = (2.00 - 2.00)2 + (1.00 - 2.00)2 = 1.00 

DA.2 
2 = (2.00 - 5.00)2 + (1.00 - 2.67)2 = 11.79 

Cluster 2 
f):,,& = (3)(11.79)/4 - (4)(1)/3 = 7.51 

D A.3 
2 = (2.00-7.00)2 +(1.00-2.67)2 = 17,79 

Cluster 3 
f):,,& = (3)(17.79)/4 - (4)(1) /3 = 19.51 

DA.4 
2 = (2.00 - 6.50)2 + (1.00 - 4.50)2 = 32.50 

Cluster 4 
f):,,& = (3)(32.50)/4 - (4)(1)/3 = 20.34 

Examining the f):,,& values for object 'A' in Table 2-9 indicates that they are aIl 

positive; relocating object 'A' to another cluster would only serve to increase the overall 

error. Visually examining Figure 2-14 indicates that object 'A' is close st to the center of 

Cluster 1, and nothing would be gained by relocating it. This process is repeated for 

every object, i. From Figure 2-14 it can be observed that object 'C' would be closer to the 

centroid of cluster 3 rather than cluster 2. Table 2-10 illustrates the effect of moving 

object 'C' from cluster 2 to each of the other clusters. 

Table 2-10: K M - eans E S dIt t'Ob' C xampl e - econ era Ion IJect 

Cluster 2 De2 
2 = (7.00 - 5.00)2 + (1.00 - 2.67)2 = 6.79 

De.l 
2 = (7.00 - 2.00)2 + (1.00 - 2.00)2 = 26.00 

Cluster 1 
f):,,& = (4)(26.00) / 5 - (3)(6.79) / 2 = 3.82 

De.3 
2 = (7.00 -7.00)2 + (1.00 - 2.67)2 = 2.79 

Cluster 3 
f):,,& = (3)(2.79)/4 - (3)(6.79)/ 2 = -14.88 

De.4 
2 = (7.00 - 6.50)2 + (1.00 - 4.50)2 = 12.50 

Cluster 4 
f):,,& = (2)(12.50)/3 - (3)(6.79)/ 2 = -8.64 

Relocating object 'C' from cluster 2 to cluster 3 decreases the overall error by 

14.88; therefore, object 'C' can be relocated from cluster 2 to cluster 3, and the overall 

system error can be recalculated as shown in Equation 2-37. 
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Equation 2-37 

ë = 42.35 -14.88 = 27.47 

The new clusters and cluster centers with object 'C' relocated are calculated and 

tabulated in Table 2-11. 

Table 2-11: K-M eans E s xampl e - econ dl teratlon CI uster M eans 

Cluster Contents Cluster Means 
Xl X2 

1 AEFG 2.00 2.00 
2 BL 4.00 3.50 
3 CDHI 7.00 2.50 
4 JK 6.50 4.50 

On the next pass, object 'B' is transferred from cluster 2 to cluster 3. The cluster 

populations and their newly calculated centers are tabulated in Table 2-12. 

Table 2-12: K M - eans E xample- Th' d It ti CI t M Ir era on us er eans 
Cluster Contents Cluster Means 

Xl X2 

1 AEFG 2.00 2.00 
2 L 2.00 6.00 
3 BCDHI 6.80 2.00 
4 JK 6.50 4.50 

On the next pass, object '1' is re10cated from cluster 3 to cluster 4 as tabulated in 

Table 2-13. 

Table 2-13: K-M eans E F hl xample - ourt teration CI uster M eans 

Cluster Contents Cluster Means 
XI X2 

1 AEFG 2.00 2.00 
2 L 4.00 6.00 
3 BCDH 7.00 1.50 
4 IJK 6.33 4.33 

On the next pass, abject 'H' is relocated from cluster 3 ta cluster 4 as tabulated in 

Table 2-14. 
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Table 2-14: K M - eans E F1i xample - 1 th Iteration c luster Means 
Cluster Contents Cluster Means 

XI X2 

1 AEFG 2.00 2.00 
2 L 4.00 6.00 
3 BCD 7.00 1.00 
4 HIJK 6.50 4.00 

The process is repeated a final time, and no movement of any object between 

clusters yields a better result. Figure 2-15 depicts the final cluster arrangement. 

Although a value of K = 4 for the number of clusters was arbitrarily chosen, 

examination of the data indicates that values for K of 2 or 3 could have been used as weU. 

Cluster analysis is not considered a statistical test, and therefore the choice or criteria for 

the best results are always at the discretion of the analyst (Adams, 1995). 

K-Means clustering is considered a "hard" clustering method; aU of the objects 

within a cluster are weighted equally. A borderline object that may rest equally between 

two clustering groups will only contribute to the mean of the group in which it was 

assigned. Similarly, an outlier may have a drastic effect on the outcome of the K-Means 

algorithm (MacKay, 2003). 
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Figure 2-15: K-Means Example - Final Clusters 

2.7 Genetic Programming 

Genetic programming is a technique used to generate and optimize a desired 

computational function based on the concepts of Darwinian selection (See: The Origin of 

Species on the Basis of Natural Selection, Darwin). An initial random population of 

individuals, each encoding a computational function, is generated. The fitness of these 

individuals is evaluated and assessed on the basis of obtaining the desired output. New 

individuals, or offspring, are produced by mutation (the introduction of one or more 

random changes in the composition of the parent individual) or by crossover (randomly 

rearranging functional components between two or more parents). The fitness of the new 

individuals is then assessed. The individuals from the total population with the highest 

fitness level are selected to be the parents of the next generation. The process is repeated 

until the desired result is obtained, or the rate of improvement in the population becomes 

zero. Research has shown that the genetic method can approach the theoretical optimum 

efficiency of a search algorithm (Gilbert et al., 1997). 
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2.7.1 Fitness Function 

The fitness Junetion is a measure of the success of evolution for the genetic 

algorithm. The fitness function is completely dependent on the goal of the genetic 

pro gram. A fitness function is a performance measure, or reward function, and has the 

greatest analogy to natural selection (Russell and Norvig, 1995). 

Typically, the reward function is an algorithm that takes an individual as input, 

evaluates the resuIt of a process versus the desired result, and outputs a real number score 

based on the individual's fitness. It is these scores that are assessed when determining the 

parents for the next generation. 

It is common in genetic algorithms that incorporate other analytical procedures, 

such as neural networks, to have a penalty function associated with the fitness function. 

In other words, if an extremely large neural network has the same output as a smaller 

network, then the smaller one will be assigned a higher fitness function as the larger one 

will be penalized at a constant multiplied by the number ofnodes (Gilbert et al., 1997). 

Considerations in the evaluation of criteria with a fitness function should incIude 

the selection of the training and validation sets of data. By randomly assigning samples to 

these two sets on every evaluation, the problem of over-training to any one set is avoided 

(Gilbert et al., 1997). 

2.7.2 Selection 

As the evolutionary process leams via a fitness function, i.e. its rewards are its 

offspring, then the genetic algorithm can be seen as a form of reinforcement leaming. 

However, no attempt is made to leam the relationship between the rewards or the actions 

taken by the agent. Genetic algorithms simply search the sample space with the goal of 
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finding an individual, or individuals, that maximize the fitness function (Russell et al., 

1995). 

Genetic algorithms being se arch algorithms, or hill c1imbing algorithms, must 

take care not to get stuck on local maxima or minima when attempting to produce the 

desired optimum individual. Therefore, individuals with low-scoring fitness functions 

cannot be ignored. Typically on a set interval (i.e. every 10 generations), a randomly 

selected lower scoring individual is reintroduced into the parent population for the next 

generation (Gilbert et al., 1997). 

2.7.3 Architecture 

Prior to applying the genetic algorithm to a problem, certain questions must be 

addressed in order to produce a rugged architecture (Russell et al., 1995): 

• What is the fitness function? 

• How is an individual represented? 

• How are individuals selected? 

• How do individuals reproduce? 

In the biological genetic makeup, an individual gene is represented by a string of 

characters from a finite alphabet (A, G, T, C), where each element of the alphabetic string 

represents a nucleic acid (adenine, guanine, thymine, cytosine). In genetic algorithms on 

the other hand, individuals are usually represented by the binary alphabet (0, 1). These 

bits are represented in a bit string (Russell et al., 1995). 
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Typically, selection strategies are randomized based on the probability of 

selection as a function of fitness function. For example, if individual X scores twice as 

high as individual Y with the fitness function, then X is twice as likely to be chosen as 

the parent for the next generation. The randomized selection process is typically selected 

from only the top 30% of the population. Usually, selection is done with replacement, 

such that a strong individual will get to reproduce several times. 

Reproduction is accomplished by crossover and mutation. The individuals 

selected for reproduction are randomly paired. For each pair, a random crossover point is 

chosen, and the first part of the first individual (up to the crossover point) is paired with 

the second part of the second individual to produce one offspring. Conversely, the second 

part of the first individual is paired with the first part of the second individual to produce 

the second offspring. However, each offspring gene is subject to a smaU independent 

probability of mutation, where a bit is randomly selected and converted from 1 to 0 or 

vice versa. Figure 2-16 illustrates the reproduction stage of the genetic algorithm. 

The genetic algorithms is typicaUy programmed to stop when the desired fitness 

level is reached or the rate of improvement faUs to a low level or a specified number of 

maximum generations has been achieved. 
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Figure 2-16: Reproduction Stage of a Genetic Algorithm 

Genetic algorithms are relatively easy to apply to a wide range of analytical 

prohlems. On sorne prohlems the results can he excellent, and poor on others. 

2.8 Outlier Removal 

The presence of outliers or rogue values consistently causes problems for 

analysts. Analysts must be able to not only detect outliers but also develop sorne method 

of systematically reducing their effects on the end results (Adams, 1995). 

A common method for mathematically detecting outliers is to compare the 

difference between the observed value and sorne expected, predicted or modeled value 

(referred to as a residual). By calculating the standard deviation of an of the residuals in 

the data set, and determining a threshold (i.e. a multiple of the standard deviation), then 

the sample may be rejected if it fans outside of those conditions (Adams, 1995). If a 

sample is rejected, then it can he completely removed and its value discarded. 
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3 Using Genetic Aigorithm to Optimization of Pre­

Processing Variables 

3. 1 Introduction 

The recent declassification of military technology has made available the infrared 

focal plane array (FPA), which has introduced a new dimension of FT-IR spectroscopy 

(Woisky, 1989). The FPA allows for geometrical information to be captured together 

with spectral information (Van Den Broek et al., 1997). In addition, this newer 

technology lends itself to improved acquisition speeds that also add to the allure of this 

imaging technique. 

The focal plane array consists of thousands of sensing elements or "pixels", each 

capable of capturing a complete spectrum (Van Den Broek et al., 1997). With the added 

geometric dimensionality, sorne of these pixels may not be collecting spectral 

information about the sample under examination. As well, due to the manufacturing 

process and quality control sorne pixels, typically less than one percent, may not be 

functioning at all and therefore only producing noise. Manufacturing a flawless 

superconductor such as a FP A is extremely rare and difficult (Woisky, 1989). Therefore 

it is imperative to carefully consider the selection of pixels to be utilized for further 

analysis. 

Like traditional infrared spectroscopy, infrared imaging has found application in 

the classification of samples based on their infrared spectral characteristics. Again, 

selection of appropriate pre-processing variables is essential for the development of 
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accurate and reproducible classification models. Classification functions rely on pre­

processing algorithms to enhance the spectral data and to select and extract features 

relevant to effective segmentation. Furthermore, pre-processing algorithms help to 

amplify the spectral regions essential to the differentiation of one classification group 

from another. 

The plethora of data contained in the spectral images acquired from a FPA makes 

processing computationally expensive. Manual manipulation of pre-processing variables 

can be accompli shed based on sorne familiarity with the data and the personal experience 

of the analyst (Jarvis and Goodacre, 2004). There are many different pre-processing 

algorithms to choose from, making the process of informed trial and error inherently 

complex. In sorne cases, researchers will co-add the signaIs from all of the pixels in an 

image in order to produce an average spectrum and hence reduce the computational 

expense as they attempt to find an ideal processing sequence. 

One could identify a selection of pre-processing variables for analysis and then 

evaluate every possible combination applied to the training data; however, this would be 

computationally exhausting and time intensive. The computational expense is an 

exponential function of the size of the data set (Jarvis et al., 2004). In order to explore the 

search space efficiently, a heuristic search algorithm can be applied to find sub-optimal 

solutions (Russell, 1995). 

The aim of this study is to examine the utilization of a heuristic search algorithm, 

namely the genetic algorithm, to optimize the segmentation of untreated, raw, infrared 

image data acquired from randomly selected foodbome bacterial cultures into Gram­

positive and Gram-negative categories. While the effectiveness of the clustering is crucial 
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to the success of the algorithm, the secondary aim of the study is to utilize the same 

algorithm to conserve as much of the original pixel data as possible, while not discarding 

them during the data enhancement and selection procedures. 

3.2 Materials and Methods 

3.2.1 Organism growth, preparation and spectral acquisition 

One hundred and eighty-seven previously identified and confirmed foodbome 

bacterial cultures were selected and acquired from both Health Canada and the US Food 

and Drug Administration (Kirkwood et al., 2004). The cultures were maintained at -86°C. 

Prior to spectral acquisition, bacteria were streaked onto Universal Media™ agar plates 

(Quelab Inc., Montreal, Canada) and then cultured for 16-18 hours. Bacterial colonies 

scraped from the agar plates were then deposited in triplicate, with no pre-treatment or 

staining, onto an infrared-transparent ZnSe slide. Each sample occupied an area of 

approximately 1 mm2 ,allowing more than 200 samples to be deposited on the same 

slide (Kirkwood, 2004). Each slide was allowed to air dry for about 10 minutes in order 

to a produce a film for infrared analysis. 

Infrared images were acquired in triplicate using a Varian Excalibur (Varian, 

Randolph, MA) imaging spectrometer equipped with a UMA-600 infrared microscope 

and a liquid-nitrogen-cooled mercury cadmium telluride (MCT) focal-plane-array 

detector comprising 32 x 32 (1024) pixels. Using a 15x Schwarzschild objective, the 

field of view of the microscope was 176 x 176 ~m. The imaging spectrometer was 

constantly purged with dry air to reduce the spectral contributions of atmospheric carbon 

dioxide and water vapor. Each image consisted of 256 co-added scans at a resolution of 8 
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cm-l
. Once collected, each Image was divided by a background Image to produce 

absorbance values. 

Once the samples were cataloged and indexed, a random number generator was 

used to randomly select twelve Gram-positive and twelve Gram-negative samples from 

the collection to be used as a training set for the classification algorithm. The samples 

selected are listed in Table 3-1. 

Table 3-1: Tr .. S t B t . 1 S d S ammg e - ac ena ,pecles an specimens 
Strain Name Specimen # Culture # Gram-
Klebsiella oxytoca 112 2 Negative 
Hafnia alvei 115 2 Negative 
Klebsiella pneumoniae 145 2 Negative 
Shigella flexneri 165 4 Negative 
Escherichia coli 1125-26 2 Negative 
Escherichia coli 1156-2 3 Negative 
Salmonella berta 804 2 Negative 
Salmonella derby 4359 1 Negative 
Salmonella derby 4359 2 Negative 
Escherichia coli 0157:H7 149 1 Negative 
Salmonella heidelberg 3221 1 NeQative 
Salmonella heidelberg 3221 2 Negative 
Streptococcus xylosus 244 2 Positive 
Streptococcus xylosus 244 3 Positive 
Clostridium sporogenes 241 1 Positive 
Listeria monocytogenes 4404 1 Positive 
Listeria monocytogenes 4410 1 Positive 
Listeria monocytogenes 4410 2 Positive 
Listeria monocytogenes 4426 1 Positive 
Listeria monocytogenes 4749 2 Positive 
Staphylococcus aureus 251 4 Positive 
Listeria monocytogenes 688 3 Positive 
Listeria monocytogenes 1116-2 1 Positive 
Listeria monocytogenes 1116-2 2 Positive 

3.2.2 Constructing the Genetic Aigorithm 

The genetic algorithm is the heuristic search algorithm used to sub-optimize the 

combinations of pre-processing variables. In order to examine the effectiveness of a 

genetic algorithm for the optimization of the segmentation of infrared image data, careful 
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consideration must be made to the variable selection. Because the addition of each 

variable to the algorithm increases the computational cost, a group of ten commonly used 

pre-processing techniques were selected to be evaluated in this research. 

The ten pre-processing techniques are represented digitally by a 27-bit binary 

string or DNA series of pre-processing variables as illustrated in Figure 3-1. The 27 -bit 

binary string signifies 134,217,728 possible combinations of pre-processing variables. 

Although there are many possible combinations, further examination of the flow chart 

reveals that sorne pre-processing variables are interdependent. Consequently, there are 

only 28,753,920 unique combinations ofpre-processing variables. 

The study was authored in Matlab R13 (Mathworks, Boston, MA) and executed 

on a personal computer with an AMD Athalon 64 3400+ CPU, 1 gigabyte of RAM. The 

operating system was Windows XP Professional x64. 
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GENETIC ALGORITHM FLOWCHART 

Figure 3-1: Genetic Algorithm Flow Chart 

The first pre-processing variable evaluated during each iteration of the genetic 

algorithm is the acceptable absorbance range of the prote in amide l band, which is used 

as a measure of sample thickness since all bacterial cells contain protein. Within each of 
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the 24 images selected from Table 3-1 each of the 1024 pixels is evaluated at a 

wavenumber of 1650 cm- I with a two-point baseline correction at 1780 cm- I and 980 cm-

1. The first eight bits of the 27-bit binary DNA string represent an acceptable numerical 

absorbance range from 0.4 to 1.4 in increments of 0.066. If the absorbance at 1650 cm- I is 

outside of the defined range, then the pixel data is discarded. 

The second pre-processing variable evaluated is whether to use the baseline 

corrected data or the non-baseline corrected data for the future pre-processing procedures 

and the eventual clustering. The ninth bit in the DNA string represents a binary on/off 

switch. If the value is zero, the non-baseline corrected image data is used. If the value is 

one, the baseline corrected image data is used. 

The third pre-processing variable evaluated is whether or not to co-add sorne of 

the adjacent pixels within an image to reduce the noise. The twelfth and thirteenth bits in 

the DNA string represent four possible co-adding solutions. The first is not to co-add the 

data at all, and go on to the next pre-processing step. The second through the fourth are to 

co-add 2 x 2 (4), 4 x 4 (16) or 8 x 8 (64) adjacent pixels. The new co-added pixels 

become the data that is passed on to subsequent procedures. Because only adjacent pixels 

are co-added and sorne of the image data was already discarded in the first pre-processing 

step, left-over or orphaned pixels are discarded. 

The fourth pre-processing variable evaluated is whether or not to remove outlier 

data points. The tenth and eleventh bits in the DNA string represent four possible outlier 

removal solutions. The first solution is not to remove any outliers, and the data is passed 

to the following pre-processing procedure. The second to fourth solutions require that 

within each of the 24 images, the remaining pixel or co-added data is averaged and a 
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standard deviation is calculated from the mean. Pixels falling outside 1, 1.5, or 2 standard 

deviations are discarded. 

The pre-processing variables dealt with up to this point are concemed primarily 

with pixel selection. The following pre-processing variables are concemed primarily with 

data manipulation and feature selection. 

The tifth pre-processing variable is represented in the DNA string by bits fourteen 

through seventeen. The tirst two bits dictate if a smoothing algorithm should be applied, 

and if so which one. The procedure offers boxcar, mean and Sarvitzky-Golay smoothing 

algorithms. The last two bits represent the number of data points to use in conjunction 

with the smoothing algorithm (5, 7, 9 or Il). Ifno smoothing is selected, than these two 

bits are ignored. 

The sixth pre-processing variable evaluated is whether or not to mean center the 

data. The eighteenth bit in the DNA string is a binary on/off flag. If the flag is set to on, 

the mean of all data is subtracted from each sample. 

The seventh pre-processing variable evaluated is whether or not to normalize the 

data. The nineteenth bit in the DNA string is the binary on/offflag. If the flag is set to on, 

the twentieth bit dictates which normalization method to apply, normalization to unit area 

or normalization to unit length. 

The eighth pre-processing variable evaluated is whether or not to take the 

derivative of the data. The twenty-tirst bit in the DNA string is the binary on/off flag. If 

the flag is set to on, the twenty-second bit dictates whether to take the tirst or second 

derivative of each of the individual spectra in the data set. 
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The ninth pre-processing variable evaluated is whether or not to integrate the data. 

The twenty-second bit in the DNA string is the binary on/off flag. If the flag is set to on, 

each of the individual spectra is integrated. 

The tenth and final pre-processing variable evaluated prior to clustering is the 

selection of principal components. The four bits from twenty-four through twenty-seven 

numerically represent a number from zero to fifteen. A value of zero passes the data 

without selecting principal components. Values from one to fifteen represent the number 

of principal components to pass on to the clustering algorithm. 

Once the data has been passed through the pre-processing variable combination 

outlined in a particular DNA string, a portion of the data within each image has been 

discarded and the remaining pixels have been subjected to manipulation and feature 

selection. The remaining pixels are then segmented using the K-means natural clustering 

algorithm and the squared Euclidean distance metric. The algorithm is programmed to 

restart 5 times and take the best result in order to avoid local minima. The resulting 

clusters are compared with the known Gram-positive and Gram-negative classification of 

the samples in the training set. 

The fitness function scores the accuracy of the iteration by incorporating the 

clustering accuracy and the number of remaining pixels after all of the pre-processing has 

been accomplished and assigns it a score. For the purpose of this study, the classification 

accuracy was assigned a weight of 80% and the pixel conservation (number of spectra at 

clustering / number of original spectra) a weight of 20% resulting in a score from 0 to 1. 

In the first few iterations of the algorithm, DNA strings are generated randomly. 

After fifty iterations have been reached, the results of each iteration are sorted in order of 
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their fitness function score. New DNA strings are created by asslgnmg exponential 

weight to the higher scoring DNA strings and selecting two existing DNA strings to 

become the parents of the subsequent generations. The two selected parents are then split 

at a random bit and cross-bred to produce two unique children. At random occurrences, a 

genetic mutation will be randomly applied to one of the children. In sorne iterations a 

single parent may be bred with a randomly generated parent. The frequencies of the 

random mutations and random parent introductions are less than 5% of the time. Each 

generation produces two offspring DNA strings. The DNA strings are then subjected to 

the algorithm evaluated by the fitness function and assigned a place within the 

population. 

3.3 Results and Discussion 

3.3.1 Overview: Arrivai at Sub-Optimal Solution 

The data from the infrared images in Table 3-1 were input into the genetic 

algorithm and it was allowed to run. Each iteration of the algorithm increased in fitness 

until a sub-optimal solution was discovered after 316 iterations as illustrated in Figure 

3-2. Each iteration took on average 76 seconds to execute. The sub-optimal solution was 

discovered in approximately six hours and 40 minutes ofunsupervised processing. 
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Figure 3-2: Genetic Algorithm - Fitness vs. Iterations 
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The linear regression line superimposed on the data in Figure 3-2 illustrates the 

increase in fitness, or optimization of pre-processing variables with respect to the number 

of iterations for this particular data set. The sub-optimal solution represents a fitness 

score of 84.0%. The majority (80%) of the fitness score is comprised of the 97.8% 

accuracy achieved for the clustering of the data for the Gram-positive and Gram-negative 

samples and the balance (20%) is comprised of the utilization of 28.6% of the available 

data (7,029 data points). Figure 3-3 illustrates the processes determined by the sub-

optimal solution. 
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Figure 3-3: Flowchart of 8ub-Optimal Fitness DNA 
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Figure 3-4: Genetic Algorithm - 3-D Projection of Top Fitness Member 

Figure 3-4 is an illustration of the clusters projected in three-dimensional space. 

The crosses represent the centroid of each cluster. The red dots represent correctly 

classified pixels in the images of the Gram-negative samples while the green dots 

represent correctly classified pixels in the images of the Gram-positive samples. The blue 

dots represent incorrectly classified pixels. 

F ollowing iteration 316 where the sub-optimal solution was identified, the 

algorithm was allowed to continue until it reached 2,100 iterations. The 2,100 Ïterations 

represent 0.0073% of the possible unique combinations of pre-processing variables. 

Although the maximum fitness was discovered at iteration 316, it did not 

correspond to the maximum clustering accuracy. Iteration number 1,885 revealed a 

nearly perfect classification accuracy of 99.8% as opposed to the sub-optimal value of 
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97.8%. The difference in the fitness score is attributed to the 20% weight of the number 

of data points used. Iteration 1,885 utilized 3,293 data points to build the classification 

model while the sub-optimal fitness utilized 7,029. 

Efforts were made within the genetic programming to avoid local maxima within 

the state space by introducing randomized strings and mutations (Russell, 1995). 

Undoubtedly when exploring such a massive state space with such a limited numbers of 

iterations, DNA generations are likely to converge on a sub-optimal solution with similar 

attributes. 

3.3.2 Acceptable Amide 1 Absorbance Range 

The top fitness performer utilized an acceptable amide l tolerance range of 0.4 to 

1.0 absorbance units with the two four-bit DNA segments in Table 3-2. Each of the eight-

bit strings represents two four-bit absorbance boundaries. The pre-processing module 

ensures that the boundaries are utilized in numerical order. The acceptable absorbance 

range pre-processing module interprets the four-bit binary strings by converting them to 

their decimal value, multiplying the number by 6/90 and adding 0.4. 

Table 3-2: Amide 1 Absorbance Tolerance 
Boundary: 
Segment: 
Value: 

1 
0000 
0.4 

2 
1001 
1.0 

Examination of the top fitness performers in the population reveals relevant 

information pertaining to the data set. The acceptable amide l ranges for the top fifty 

fitness performers of the population are plotted in Figure 3-5. The top seven performers 

aU share the same amide l range of 0.4 to 1.0. The majority of the top performers have a 

tolerance range that begins at 0.4 and ends at 0.8. 
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At 1,024 pixels per image and 24 images, the initial data set comprised 24,576 

individual spectra. Once subjected to the boundary values of this pre-processing module, 

the number of retained pixels in the sub-optimal solution dropped to 7,029 - discarding 

71.4% of the original pixels. Figure 3-6 iUustrates the pixel usage of the Escherichia coli 

image before and after pixels outside the boundary values were discarded. 

Figure 3-6: Pixel Utilization Before and After Selection Based on Amide 1 Tolerance 

There can be several explanations for the selection of these particular boundary 

values by the genetic algorithm. One such is that the sample material is not uniform on 

the slide. Areas where there is no smear at aU would exhibit a uniform absorbance of 

approximately zero when the ratio was taken against a background. These pixels, not 

containing any useful data, would be exc1uded from the c1ustering algorithm. Similarly, 

any areas on the slide with extraneous material would not give rise to absorption of 

infrared energy at the wavenumber used to measure the amide 1 band. In contrast, in areas 

where the smear was excessively thick, causing ma st of the infrared energy ta be 

absorbed, the spectral data would not be suitable for analysis. 

Another potential contributor to the large amounts of data rejection may be the 

non-uniformity of the quantum sensitivity of the focal plane array from pixel to pixel 
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(Rainieri and Pagliarini, 2004; Davis, 2001; Adams, 1995). The particular boundary 

values selected by the genetic algorithm may correspond to the range of linear response. 

Dead pixels producing only random noise would probably faH outside of this tight 

tolerance range as weH. Figure 3-7 is a contour map representing the sum of the instances 

of each pixel after being subjected to the amide 1 absorbance tolerances. The darkest blue 

color patterns represent pixels that were rejected in aH of the 24 images. These pixels are 

probably the most likely candidates to be non-uniform or malfunctioning. 

Figure 3-7: Average Pixel Utilization After Selection Based on Amide 1 Tolerances 

3.3.3 Use of Baseline Corrected Data 

The top fitness combination of pre-processing variables as weIl as the 49 runner­

ups retained the raw data for processing as opposed to the baseline corrected data used to 

determine the amide 1 absorbance. 
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ln order to verify that this was not solely due to a local maximum in the state 

space, the genetic DNA of the first sub-optimum solution was mutated by switching the 

ninth bit from 0 to 1 as illustrated in Tablo 3.3-2. This caused aIl further processing and 

clustering to be applied to the baseline corrected data as opposed to the raw data. When 

the baseline corrected data was use d, the clustering accuracy dropped from 97.8% to 

60.4%. This reduction in performance could be due to the combined use of the first 

derivative and the baseline correction causing essential identification features to be lost 

(Beebe et al., 1998). 

Table 3-3: Baseline Correction Evaluation 

~riginal DNA 011101011001110000 0 00001001 
~odified DNA 1 011101011001110000 1 00001001 

To test this possibility, the DNA string was altered once again to remove the 

derivative processing function as illustrated in Table 3-4. This instance produced an even 

further drop in clustering accuracy to 57.9%. Therefore, a local maximum in the state 

space did not dictate the arbitrary selection of the first derivative over the baseline 

correction pre-processing variables. 

Table 3-4: Baseline Correction Evaluation - Derivative Mutation 

Modified DNA 1 01110 1 011001110000 0 00001001 
Modified DNA 2 01110 0 011001110000 1 00001001 

Although the baseline corrected data is essential for evaluating the response of the 

amide 1 band, it is detrimental to the accuracy of the model for the sub-optimum 

classification solution. 

3.3.4 Co-Addition of Pixels 

None of the top 50 fitness DNA strings exhibited any pixel to pixel co-addition. 

Given the tight tolerances of the amide 1 absorbance response, the image pixels were 
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sparsely dispersed throughout the image as illustrated in Figure 3-6, which shows the 

pixel usage in the image of Escherichia coli. In sorne of the sample images, even 

attempting to co-add 2 x 2 adjacent pixels would be impossible, thereby eliminating the 

image from the clustering set. For future research, it may be beneficial to attempt to 

construct a genetic algorithm that would execute a co-addition module prior to evaluating 

acceptable absorbance ranges. 

3.3.5 Outlier Removal 

The genetic algorithm sub-optimized with not removing any outlier pixels. This 

stood true for the top seven fitness members of the population that also shared the same 

amide I absorbance tolerance of 0.4 to 1.0 absorbance units. 

When examining the balance of the fifty top fitness combinations, it is apparent 

that there is a direct correlation between the acceptable amide I range and the tolerance 

for outlier removal. Table 3-5 illustrates the outlier tolerance selected by the genetic 

algorithm with reference to the acceptable amide I range. 

Table 3-5: Outlier Removal Tolerances vs. Amide 1 Tolerances 

Amide 1 Ran2e Outlier Tolerance 
0.400 1.000 No outlier removal 
0.400 0.867 > 1.5 Standard deviations 
0.400 0.667 No outlier removal 
0.400 0.800 > 1.5 Standard deviations 
0.400 0.733 > 1 Standard deviations 
0.467 0.800 > 1 Standard deviations 

As the amide I tolerances were reduced and therefore limited the number of 

useable pixels, the outlier tolerance increased as weU, resulting in the elimination of even 

more data. As the amide I tolerance is narrowed, the remaining pixels are more similar to 

one another than when the tolerance is greater. Because of the increased similarity and 
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the decreased number of data points, a higher outlier removal rate would even further 

increase the similarity between the remaining pixels and as a result produce a 

significantly higher c1ustering accuracy. 

To examine the influence of a different outlier removal, the sub-optimal DNA 

string was modified to remove all outliers beyond only one standard deviation. The 

hypothesis is that this modification would result in the use of fewer pixels but increase 

the overall c1ustering accuracy. When this genetic code was executed, an additional 765 

pixels were discarded, and the accuracy dropped to 67.5%. It is difficult to explain this 

phenomenon. It is possible that those pixels contained sample data essential to creating 

accurate c1usters. Because the sample points sat beyond 1 standard deviation away from 

the mean, it is a justified argument to assume that they also were positioned at the 

furthest points of the c1usters. Being located so far apart would further force the c1uster 

centers to be separated by a greater distance, resulting in increased c1ustering accuracy. 

Figure 3-8 illustrates the Escherichia coli image before and after pixels were removed 

with the outlier tolerance of one standard deviation. 

1 
Figure 3-8: Pixel Utilization Before and ACter Outlier Removal 
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The pre-processmg module charged with outlier removal has four possible 

functions including no outlier removal and removal of outliers beyond one, one and a half 

and two standard deviations from the mean. Examination of these results confirms that 

the outlier removal variable plays a significant role in the selection and conservation of 

spectral data for the eventual clustering accuracy of the data set. Future research would 

dictate that more increments for the outlier threshold to be optimized during the genetic 

algorithm search. 

3.3.6 Smoothing 

The DNA segment for the smoothing module exhibited a consistent and definite 

solution for all of the top fifty fitness performers. In every instance, the boxcar smoothing 

algorithm was applied with eleven smoothing points. As illustrated in Figure 3-9, the 

smoothing algorithm reduced the number of data points in each spectrum from 792 to 71 

and smoothed the fluctuations within the signal. While the original image represented a 

data range of approximately 4000 cm-I to 950 cm-l, the smoothed image only represents a 

data range of approximately 3939 cm-1 to 968 cm-1 due to the end effects of the 

algorithm. 
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Figure 3-9: Smoothing Results - Absorbance vs. Wavenumber 

In order to examine whether the smoothing method applied was due to a local 

maximum in the state space, the DNA strain was modified to execute the mean 

smoothing algorithm with eleven data points. This yielded a clustering accuracy of 

65.4%. The strain was modified again to use the Savitzky-Golay method with eleven data 

points as weIl. This method yielded a clustering accuracy of 64.0%, which was 

significantly less than the sub-optimal solution. As the effects of Savitzky-Golay 

smoothing are similar to those of performing the first derivative, the DNA strain was 

modified again to remove the first derivative function. In this scenario, the clustering 

accuracy dropped to 51.4%. 
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To examine the effects of the number of data points used for smoothing, the 

procedure was repeated using the boxcar method with five, seven and nine data points. In 

these scenarios the clustering accuracy dropped to 61.2%, 67.9% and 63.9%, 

respectively. To examine the influence of smoothing, the algorithm was executed without 

applying any smoothing and resulted in a clustering accuracy of 64.9%. 

In the state space where the sub-optimum solution is found, smoothing is an 

important step for noise reduction (Adams, 1995). The selection of the boxcar method 

ensures that the signal distortion caused by the smoothing algorithm is kept to a minimum 

while the number of smoothing points ensures that an adequate amount of signal noise is 

removed (Beebe et al., 1998). The Savitzky-Golay method inappropriately assigns 

weights to the smoothing points and over-distorted the signal. Yet, the derivative of the 

spectra remains important for proper classification. 

3.3.7 Feature Selection 

The feature selection processes are the functions that highlight the attributes to 

facilitate accurate clustering (Beebe et al., 1998). Of the available feature selection 

algorithms (mean centering, I-normalization to unit area, 2-normalization to unit length, 

first derivative, second derivative and integration) the sub-optimum solution applied the 

2-normalization and the first derivative. The normalization algorithm usually helps to 

compensate for differences in the sample volume (Beebe et al., 1998). The 2-

normalization method normalizes each individual spectrum to unit length. Therefore, any 

variations in sample thickness during the sample preparation are compensated for by this 

algorithm (Adams, 1995). Of the top fifty fitness species, only fourteen used 1-

normalization as opposed to 2-normalization. The rest of the feature selection variables 
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remained consistent. Figure 3-10 illustrates the effect of the se two feature selection 

criteria on a sample spectrum. 
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Figure 3-10: Feature Selection - Absorbance vs. Wavenumber 

The first derivative typically reduces the effects of baseline fluctuation (Beebe et 

al., 1998). As discussed in Sections 3.3.3 and 3.3.6, the first derivative performed better 

than both the baseline corrected data and the Savitzky-Golay smoothing algorithm. The 

first derivative is independent of base li ne corrections. There is no need to select a 

reference point or line in order to calculate the correction on a spectrum by spectrum 

basis. Therefore, the effects of spectral drift, or incorrectly choosing the baseline 

references, are not pertinent when performing the first derivative. 
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In order to ensure that none of the other feature selection protocols were 

overlooked due to local maxima in the state space, the DNA sequence was modified in 

the permutations listed in Table 3-6 to evaluate the influence of the other feature selection 

options on the top fitness species. While it would be lengthy to explore all combinations 

of feature selection protocols, it is apparent that the optimal feature selection criterion is 

in fact only the combination of normalization to unit length and taking the first 

derivative. 

Table 3-6: Feature Selection Evaluation 

riginal DNA 
ean Centering 
o Normalization 

1-N ormalization 
0111 0 1 
0011 0 1 
0011 0 1 
0011 1 1 

~L--JL-.J---l 

Accuracy 

01110000000001001 97.8% 
01110000000001001 52.7% 
01110000000001001 62.4% 
01110000000001001 57.8% 
01110000000001001 55.6% 
01110000000001001 60.8% 

After accounting for the success of the normalization and first derivative, it is 

difficult to explain the inadequacies of the other feature selection processes within the 

state space. The negative effect of the mean centering could possibly stem from a 

combination of other pre-processing variables already compensating for the intercept of 

the data, and this algorithm over-compensating (Beebe et al., 1998). 

Future considerations for this data set would be to remove the mean centering and 

integration variables to accelerate the search for a sub-optimal solution and allow for the 

computational expense to be spent on other pre-processing variables. 

3.3.8 Principal Component Analysis 

The sub-optimum fitness species utilized seven principal components to describe 

the data and accounted for 96.73% of the variance in the data. Table 3-7 illustrates the 
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variance accounted for by each of the principal components. Figure 3-11 illustrates the 

number of times within the top 50 fitness DNA strains that a number of principal 

components were utilized. It is apparent from the graph that the majority of the top 

performers utilized five to eleven principal components. 
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Figure 3-11: Number of Instances of Principal Components in Top 50 Fitness 

Table 3-7: Principal Component Variance Contributions 
Principal 

Variance 
Component 
1 76.86% 
2 12.21% 
3 2.23% 
4 2.14% 
5 1.69% 
6 0.96% 
7 0.64% 
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To evaluate the sub-optimum solution, the DNA was altered to allow for only 

three principal components accounting for 91.30% of the variance in the data. This 

solution resulted in a clustering accuracy of 91.6%. Moving in the other direction, the 

DNA was altered to use eleven principal components accounting for 98.4% of the 

variance. This solution yielded a clustering accuracy of 97.5%. 

Using aIl of the data and no principal components yielded a clustering accuracy of 

64.0%. In conjunction with increasing the number of principal components, it is apparent 

that a signiticant portion of the remaining data has a negative effect on the clustering 

accuracy, whereas using only a few principal components does not account for enough of 

the variance to accurately cluster the data 

The plots of the linear weights of each of the seven individual principal 

components as weIl as their scaled by variance sum are illustrated in Figure 3-12. The 

knowledge that these seven principal components produce the most accurate clustering of 

the sample data helps to determine the spectral regions where the pertinent data is 

contained. Examination of the plot of the scaled sums of the tirst seven principal 

components yields two distinct spectral regions where the majority of the principal 

component weighting is applied. The tirst region lies between approximately 3684 cm-J 

and 2750 cm-J while the second region lies between approximately 1817 cm-J and 1053 

cm-Jo 
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Figure 3-12: Principal Component Weights vs. Wavenumber 

It is evident that the pertinent data is contained in the second region from 1817 

cm-1 to 1053 cm-1
, In independent research on the entire data set of 200 samples, 

Kirkwood found that the region of 1770 cm-1 to 970 cm·1 contains the majority of the 

information required to c1uster Gram-positive versus Gram-negative samples (Kirkwood, 

2004). Due to the end effects of the smoothing algorithm, the leading data points were 

removed and hence we can conc1ude that the regions are almost identical (Adams, 1995). 

3.4 Validation Tests 

The successful sub-optimization of the pre-processing variables by the genetic 

algorithm separated the Gram-positive and Gram-negative bacterial samples in the 
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training set into segregated clusters. To test the reliability of this clustering model, and 

hence the appropriateness of the pre-processing variables se1ected, two validation tests 

were performed with samples not included in the training set. In the first validation test, 

replicate samples of the specimens included in the training set were classified. 

Subsequently, a second validation set consisting of other bacterial specimens was tested. 

ln both cases, the infrared images of each of the selected samples were subjected to the 

pre-processing procedures determined by the sub-optimal solution obtained with the 

training set. The image data were thus treated as follows. Each of the images was 

baseline corrected using a two-point baseline at 1780 cm-J and 980 cm-Jo Using the 

baseline corrected data, the amide 1 absorbance band at 1650 cm-J was measured. Any 

pixels with an amide 1 absorbance outside the range of 0.4 to 1.0 absorbance units were 

removed from the images. No pixel co-addition or outlier removal was performed. A 

boxcar smoothing algorithm was then applied to the raw (non-baseline corrected) data 

using eleven smoothing points. 

As far as feature selection is concemed, no mean centering was performed. Each 

pixel within the image was subjected to a normalization (2-Norm) procedure. Following 

the normalization, each individual spectrum was converted to the first derivative. There 

was no integration of the pixel data. 

For feature extraction, the first seven principal components were calculated, using 

the weights calculated from the original training set. Once the principal components were 

calculated, the distances to the centers of the two clusters found in the training set were 

calculated on a pixel-by-pixel basis and used to determine the Gram-classification. The 
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squared Euclidean distance metric was used as it was the metric applied in conjunction 

with the K-means clustering algorithm within the genetic algorithm. 

3.4.1 Validation Test 1 

Each of the 19 specimens included in the training set had been cultured three 

times, yielding a total of 57 samples for which infrared images were acquired. As shown 

in Table 3-1, the training set included duplicate samples of 5 of the 19 specimens. For 

validation of the Gram classification model developed using this training set, 19 other 

samples among the set of 57 samples were selected. These samples are tabulated in 

Table 3-8. 

Tabl 38 V rd e - : al atIon est -T 1 B actena ipecles an . 1 S dS ipeclmens 
Validation 

Training Set Set 
Strain Name Specimen # Culture(s) # Culture # Gram-
Klebsiella oxytoca 112 2 1 Negative 
Hafnia alvei 115 2 1 Negative 
Klebsiella pneumoniae 145 2 3 Negative 
Klebsiella pneumoniae 165 4 2 Negative 
Escherichia coli 1125-26 2 4 Negative 
Escherichia coli 1156-2 3 1 Negative 
Salmonella berta 804 2 4 Negative 
Salmonella derby 4359 1,2 3 Negative 
Escherichia coli 0157:H7 149 1 2 Negative 
Salmonella heidelberg 3221 1,2 3 Negative 
Streptococcus xylosus 244 2,3 1 Positive 
Clostridium sporogenes 241 1 2 Positive 
Listeria monocytogenes 4404 1 2 Positive 
Listeria monocytogenes 4410 1,2 3 Positive 
Listeria monocytogenes 4426 1 2 Positive 
Listeria monocytogenes 4749 2 3 Positive 
Staphylococcus aureus 251 4 3 Positive 
Listeria monocytogenes 688 3 2 Positive 
Listeria monocytogenes 1116-2 1,2 3 Positive 

The infrared Images acquired for these samples were subjected to the pre-

processing variables selected by the genetic algorithm. Following the removal of the 
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pixels outside of the acceptable amide l range of 0.4 to 1.0 absorbance units, 6,037 of the 

original 19,456 pixels remained for classification purposes. Figure 3-13 illustrates the 

remaining pixels in the image for the Escherichia coli sample after the amide l 

absorbance tolerance was evaluated. 

• 1 • 
• 

• 
• 

-~.~~ .... ~ .. _~ ... _ ... ~! 
Figure 3-13: Image of Escherichia coli Sample: Pixel Utilization Before and After Selection 
Based on Amide 1 Tolerance 

Boxcar smoothing was then applied with Il points followed by normalization and 

the first derivative. Following the initial pre-processing treatments, the seven principal 

component weights from the sub-optimal genetic algorithm solution were applied to each 

individual spectrum. The principal components were projected onto a three dimensional 

plane and superimposed on the original clustering data resulting from the genetic 

algorithm. Although it is difficult to visualize the complete dimensionality of the data, it 

is apparent in Figure 3-14 that the validation data falls within the boundaries of the data 

for the training set. The image centers of the validation data are represented by the o's in 

the image while the +'s represent the cent ers of the original training set clusters. 
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,. 

Figure 3-14: Validation Test 1- Cluster Plot 

In order to determine the classification of the samples in the validation set, the 

distances between the centers of each image and the centroids of the original clusters 

produced by the genetic algorithm were measured and the sample was classified based on 

the shortest center-to-centroid distance. This procedure resulted in 100% accurate 

classification of the samples in the validation data set as Gram-positive versus Gram-

negative. 

In order to determine the confidence level of the classifications, the spectral 

distance to the centroids of the Gram positive and Gram negative clusters was measured 

for each pixel in each of the images of the validation set. The percent confidence was 

calculated as the number of correctly classified pixels, based on closer proximity to the 

Gram positive or the Gram negative cluster, divided by the final number of retained 

pixels in the image as illustrated in Table 3-9. 
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Table 3-9· Results of Validation Test 1 
Culture Final # # Pixels % Distance 

Strain Name # Pixels Correct Confidence Gram- to Cluster 
Klebsiella oxytoca 1 463 463 100% Negative 1.8491xlO-s 

Hafnia alvei 1 94 94 100% Negative 2_5750xlO-s 

Klebsiella pneumoniae 3 301 301 100% Negative 1.0883xlO-s 

Shigella flexneri 2 401 284 70_8% Negative 33588xlO-s 

Escherichia coli 4 154 107 69BYo Negative 2_7111xl0-5 

Escherichia coli 1 172 171 99-4% Negative 2J244xlO-5 

Salmonella berta 4 26 21 80_8% Negative 5_3104xlO-s 

Salmonella derby 3 109 96 88_1% Negative 2_9155x 10-5 

Escherichia coli 0157:H7 2 136 134 98.5% Negative 5_7953xl0-6 

Salmonella heidelberg 3 585 585 100% Negative 13862 xlO-5 

Streptococcus xylosus 1 369 369 100% Positive 1.5291 x 10-5 

Clostridium sporogenes 2 484 484 100% Positive 2.0286xlO-5 

Listeria monocytogenes 2 312 312 100% Positive 4J 102xlO-5 

Listeria monocytogenes 3 430 430 100% Positive 2.7379xlO-5 

Listeria monocytogenes 2 487 487 100% Positive 2.0458x 1 0-5 

Listeria monocytogenes 3 393 392 99.7% Positive 33254xl0-5 

Staphylococcus aureus 3 549 549 100% Positive L3731xl0-5 

Listeria monocytogenes 2 305 305 100% Positive 1.4888xl0-5 

Listeria monocytogenes 3 267 267 100% Positive 9.4 104xIO-s 

In order to evaluate another form of goodness of fit, the centroid location of each 

individual image was measured in relation to the centers of the clusters formed by the 

genetic algorithm_ The measurements were carried out using the squared Euclidean 

distance metric and compared to the radius of the original cluster formed by the genetic 

algorithm_ The radius of the Gram-positive cluster was 1.6880x 10-4, and the radius of the 

Gram-negative cluster measured 1.0819xl0-4. Table 3-9 illustrates the measures of each 

of the Gram-positive and Gram-negative images to the centroids. It is apparent that each 

of the validation images fell within the radius boundaries of the training set. 

Examination of both the pixel to pixel c1ustering accuracy and the measure of the 

image centroids to each of the cluster centers indicates that this clustering sub-optimum 

solution is an effective classification too1. Each of the validation samples fell within the 

bounds of the clustering model and the confidence levels were acceptable_ 
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3.4.2 Validation Test 2 

The results obtained in the first validation test show that the model developed for 

Gram classification could be successfuHy applied to additional samples of the specimens 

included in the training set. In the second validation test, the performance of the model in 

regards to specimens not included in the training set was assessed. 

To select samples for the second validation test, the bacterial spectrallibrary was 

filtered to remove aH replicates of the specimens used in the training set. Six Gram­

positive and six Gram negative species were then randomly selected. The spectral images 

were processed and classified based on the clustering model determined by the genetic 

algorithm in the same manner as described above and illustrated in Figure 3-3. FoHowing 

the removal of the pixels outside of the acceptable amide 1 range of 0.4 to 1.0 absorbance 

units, the total number of pixels was reduced from 12,288 to 3,379 conserving 27.5% of 

the original validation data. In the case of two of the samples, less than 10 pixels were 

retained, indicating that the deposition of the sample film on the slide was inadequate. 

Accordingly, these samples were excluded from the data analysis. Table 3-10 iHustrates 

the classification accuracy for each image on a pixel-by-pixel basis and a confidence 

value. Table 3-10 also illustrates the distance of the center of each image to the 

corresponding cluster centroids of the training set. AH of these distances faH weH within 

the boundary values of the classification model. 
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Table 3-10· ResuIts of Validation Test 2 

Strain Name Culture Final # # Pixels % Gram- Distance 
# Pixels Correct Confidence to Cluster 

Aeromonas hydrophila 1 465 465 100% Negative 4.9466x 1 0-5 

Aeromonas hydrophila 1 148 134 90.5% Negative 2.7659xIO-s 

Salmonella typhmurium 2 400 385 96.3% Negative 9.1 22 lx 10-6 
Salmonella typhmurium 3 212 199 93.9% Negative 1.39 1 OxlO-5 

Vi brio parahaemolyticus 1 379 352 92.9% Negative 2.6723xIO-5 

Escherichia coli 8739 2 421 420 99.7% Negative 1.6974xlO-5 

Listeria ivanovii 1 9 - - - -
Listeria murrayi 3 8 - - - -
Clostridia perfringens 1 451 451 100% Positive 3.l18IxlO-s 

Listeria monocytogenes 3 176 176 100% Positive 2.5636x 1 0-5 

Listeria monocytogenes 1 324 324 100% Positive 3.2763xlO-5 

Listeria monocytogenes 1 386 386 100% Positive 1.5 566x 10-5 

Examination of the pixel to pixel clustering accuracy, as weU as the measure of 

the validation image centers to each of the cluster centers, indicates that the clustering 

model is an effective classification tool for specimens not included in the training set. 

Each of the validation samples feU within the bounds of the clustering model and the 

confidence levels were more than acceptable. 
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4 Conclusion 
The primary aim of this study was to examme the utilization of a genetic 

algorithm to optimize the pre-processing of infrared image data, with the secondary aim 

being to conserve as much of the original pixel data as possible. The data set selected for 

this purpose consisted of infrared images of bacterial cultures, and the classification task 

investigated was the discrimination between Gram-positive and Gram-negative bacteria. 

The use of the genetic algorithm was explored with a training set consisting of 12 Gram-

positive and 12 Gram-negative specimens. The genetic algorithm evaluated combinations 

of variables pertaining to bacterial film thickness tolerances, baseline correction, pixel 

co-addition, outlier removal, smoothing, mean centering, normalization, derivatization, 

integration and principal component selection and employed a fitness function that 

utilized a score incorporating the classification accuracy (assigned a weight of 80%) and 

the number of remaining pixels after all of the pre-processing was accomplished 

(assigned a weight of20%) When the genetic algorithm was applied to the infrared image 

data for the samples in the training set, the clustering of the infrared images on a pixel­

by-pixel basis yielded a classification accuracy of approximately 97.5%; the 

corresponding value for classification on an image-by-image basis was 100%. With 

respect to the secondary aim of the algorithm, the proportion of the pixel data retained 

from the original images was 28.6%. 

Applying the genetic algorithm to the spectral data for the training set yielded an 

appropriate combination of pre-processing variables for clustering of Gram-positive and 

Gram-negative specimens. To test the robustness of this combination of pre-processing 
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variables, two validation tests were perfonned, the first using replicate images of the 

specimens inc1uded in the training set and the second using images of a different set of 

specimens. FoIlowing pre-processing of the data in accordance with the procedures 

established for the training set with the use of the genetic algorithm, the validation 

samples were classified based on the squared Euclidean distances to the centroids of the 

Gram-positive and Gram-negative clusters of the training set. AlI the validation samples 

were classified correctly on an image-by-image basis and with a fairly high accuracy on a 

pixel-by-pixel basis. Furthennore, as summarized in Table 4-1: Comparison of Distances 

to Clusters, the average distances of the Gram-positive and the Gram-negative samples in 

both the first and second validation sets to the centroids of the corresponding clusters 

were weIl within the bounds for the training set. 

Table 4-1: Comparison of Distances to Clusters 
Gram-Negative Gram-Positive 

Training Set Cluster Radius l.0819xlO-4 1.6880xlO-4 
Validation Set 1 - Avg. Dist. To Cluster 2.3898xlO-5 3.1166xl0·5 

Validation Set 2 - Avg. Dist. To Cluster 2.3976xl0-) 2.6287xl0-) 

The validated success of the initial pass of the genetic algorithm indicates that it is 

an effective time-saving tool for the optimization of pre-processing variables for 

clustering and classification tasks. As discussed in Chapter 3, based on the results 

obtained in this work, a second pass could be attempted with several variables removed 

or replaced in order to increase the speed and accuracy of the algorithm. For instance, the 

baseline or raw data flag as weIl as the co-addition modules could be removed, 

significantly reducing the computational expense of the algorithm by five bits. The 

spectral data could also be limited to the region between 1817 cm-l and 1053 cm-l, 

thereby reducing the size of the data set by approximately one-third and again reducing 
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the computational expense of the algorithm. Alternative approaches for clustering of the 

spectral data could also be investigated. Applying a "learning" algorithm such as a neural 

network or k-nearest neighbors algorithm would most probably be highly effective. 

However, it is important to note that learning algorithms tend to overfit the data and may 

not produce correct classifications for samples not included in the training set. 

In conclusion, as advances in infrared imaging technology result in increasingly 

large sets of spectral image data, researchers require improved means of handling and 

interpreting data and applying this technology to perform particular analytical tasks. It is 

the appropriate combination of data acquisition, processing and analysis techniques that 

make it possible to effectively classify a hyperspectral data set. The research presented in 

this thesis demonstrates the effectiveness of a genetic algorithm as a tool for selecting 

pre-processing variables for a given classification task. The use of a genetic algorithm 

allows for the sub-optimization of the pre-processing variables without the intrinsic trial 

and error reasoning of the researcher. Using the genetic algorithm thus releases human 

resources, allowing them to be allocated to other tasks while minimizing the influence of 

human error. The sub-optimum solution was produced by the genetic algorithm in a 

reasonable time frame of less than seven hours, as opposed to manually optimizing the 

combination of variables over an extended period of time, and modifications of the initial 

set of variables, as discussed above, could further reduce the computational time. Finally, 

the genetic algorithm not only helps in the development of an unsupervised sub-optimum 

solution, but can also enhance the understanding of the relationships between pre­

processing variables and of their effects on overall analytical performance. 
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6 Appendix: Genetic Aigorithm Matlab Code 

6.1 Main Genetic Function 
~~ Tom Pinchuk 
~6 Gi?netic Algorithrn 
% Revision SepternbE·r 2005 

% Bit layûr:t - 27 Bits representing nUrrloers 0 to 134 / 217,727 
Combinations. 
See "GA Flow Chart.ppt" for more information 

~ Input Arguments: 
1; :i.mageFi..le: The filename of the image without an extension. 

genetic algorithme This number must be an even number. 

function [iData, oData]=AOO_runGenetic(imageFile, numlterations) 
format lonç.r E'; 

~ Check for errors. 
if rem(numlterations,2)-=O 

end 

disp('Number of iterations must bs an sven number.'); 
quit; 

~ Load the image Data and the output data if it is available. 
~s t.he numbE·,.r.· ,)f iteratiofis tG (). 
disp('Loading the data.'); 
[iData]=A01_LoadData(imageFile); 
outputFile=strcat (imageFile, 'OUT'); 
bOdd=O; 
if exist (strcat (outputFile, '.mat'), 'file') ° 

disp('Cr0atirlg OutI)ut l'ile. Il; 

curlteration=O; 

else 

end 

bOdd=l; 

disp('L0ading Outpllt File.'); 
load(outputFile) ; 
curlteration=length(oData.DNA); 
if rem(curlteration,2)==O 

bOdd=l; 
end 

for cntlter=(curlteration+l): (curlteration+numlterations) 
disp([' Iteration:' num2str(cntlter) , c':: 

num2str(curlteration+numlterations)]); 

net. sei".:. 

Reproduce and get tW0 new ~~A strands 0nly when the iterati0ns are 
c,dd. r.i.'h~refo:t.-8 '.'le a':"'.'lays finish wi th ùn e~Jçn I11..:i;-nr;9:t.-. 

if cntIter==l 
DNA=[134217728,O]; 
oData.DNA(cntlter)=DNA(l); 

elseif rem(cntlter,2)==bOdd 
[DNA, bOdd, oData]=reproduce(cntlter, oData, bOdd); 
oData.DNA(cntlter)=DNA(l); 

else 
oData.DNA(cntlter)=DNA(2); 

end 
disp([' Lh9ita~ :':,A: ' num2str(oData.DNA(cntlter))]); 

~ Split up the DNA into the correct f1lnction2. 0rlgina~ ~~A cüntains 
% 27 bits 
DNA_PCA = bitshift(oData.DNA(cntlter),-23); 
tmpDNA = oData.DNA(cntlter) - bitshift(DNA PCA,23); 
DNA_Feature = bitshift(tmpDNA,-17); 
tmpDNA = tmpDNA - bitshift(DNA_Feature,17); 
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DNA_Smooth = bitshift(tmpDNA,-13); 
tmpDNA = tmpDNA - bitshift(DNA_Smooth,13); 
DNA_Coadd = bitshift(tmpDNA,-ll); 
tmpDNA = tmpDNA - bitshift(DNA_Coadd,ll); 
DNA_Outlier = bitshift(tmpDNA,-9); 
tmpDNA = tmpDNA - bitshift(DNA_Outlier,9); 
DNA_Base = bitshift(tmpDNA,-8); 
DNA Amide = tmpDNA - bitshift(DNA_Base,8); 

% Check t.hé P..mide 1 to.llera.nccs Clnd updat(\ the output data. 
[rData]=AOZ_RemoveAmide(iData,DNA_Amide); 
oData.PctPixel(cntlter,l)=rData.NumPixels/iData.NumPixels; 
oData.Pctlmage(cntlter,l)=rData.Numlmages/iData.Numlmages; 
if (rData.NumPixels==O) Il (rData.Numlmages<iData.NumImages) 

end 

oData.Score(cntIter,1:3)=O; 
oData.totScore(cntlter)=O; 

disp([' -> Pixels: ' numZstr(rData.NumPixels) , / Images: 
numZstr(rData.Numlmages)]); 

if (rData.NumPixels>Z) && (rData.Numlmages==iData.Numlmages) 
% Determine te use baeeline correctcd or raw data 
[rData] = A03_UseRaw(iData, rData, DNA_Base); 
% New r~vcrsiDg functions - cOddd images 
[rData] = AOS CoaddImages(lData, rData, DNA_Coadd); 
disp([' -> Pixels: ' numZstr(rData.NumPixels) , ! Images: 

numZstr(rData.Numlmages)]); 
end 
oData.PctPixel(cntIter,2)=rData.NumPixels/iData.NumPixels; 
oData.PctImage (cntIter,Z) =rData.Numlmages/iData.Numlma ges; 
if (rData.NumPixels==O) Il (rData.Numlmages<iData.NumImages) 

end 

oData.Score(cntlter,1:3)=O; 
oData.totScore(cntlter)=O; 

:t, FJ2mCVe Ollt.-:".ic.:r::.": _. t12~::') 04b :rJhcn rcv<:.").rs(:;<J lti:Lth c(Jadd :.-:tl l.1'orithrn 
if (rData.NumPixels>Z) && (rData.NumImages==iData.NumImages) 

[rData] = A04b RemoveOutliers(iData, rData, DNA_Outlier); 
disp([' -> Pix,?ls: ' numZstr(rData.NumPixels) lrnag'=s: 

numZstr(rData.NumImages)]); 
end 
oData.PctPixel(cntIter,3)=rData.NumPixels/iData.NumPixels; 
oData.Pctlrnage(cntlter,3)=rData.NumImages/iData.Numlmages; 
if (rData.NumPixels==O) Il (rData.Numlmages<iData.Numlmages) 

end 

oData.Score(cntlter,1:3)=O; 
oData.totScore(cntlter)=O; 

~ Featurc S~l(:;ctlOI'i / CO[nbl!'~c data ! PCA ! Clllst~I (r10cd dt least 
pjxels or it wi11 not cr"eate 2 pr'~per li.nkage OI cluster. 

if (rData.NumPixels>Z) && (rData.NumImages==iData.Numlmages) 
[rData] A06_Smoothlmages(iData, rData, DNA_Smooth); 
[rData] = A07_FeatureSelection(iData, rData, DNA_Feature); 
[rData] = A08 ComblneImageData(lData, rData); 

el se 

[rData, pc] = A09 PCA(iData, rData, DNA_PCA); 
Adj1.lst.ed for kr'lE:.'3.ns 

[rData] = AIOb ClusterFunction(rData); 
clear ?c; 

80i; }\ccLl,~r-3.(··i (J.) 

't Où'~ .irna'.)'cs (~_:) 

;'t 2.ù'?, D~~t.cl ?cl.ints (3) 

~ N~w ... sData.tctSccr0(Nu~\) 
oData.Score(cntIter,l)=rData.Score; 
oData.Score(cntIter,Z)=oData.PctImage(cntIter,3); 
oData.Score(cntIter,3)=rData.NumPixels; 
oData.totScore(cntIter)= ... 

(oData.Score(cntIter,l)*.8)+ .. . 
(oData.PctImage(cntIter,3)*O)+ .. . 
((oData.Score(cntlter,3)/iData.NumPixels)*.Z); 
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end 

end 

oData.Score(cntlter,I:3)=O; 
oData.totScore(cntlter)=O; 

disp(['-> Scores: ' num2str(oData.totScore(cntlter)*IOO) 
num2str(oData.Score(cntlter,I)*IOO) '% and' ... 
num2str(oData.Score(cntlter,2)*IOO) '" Images a.nd ' 
num2str(oData.Score(cntlter,3)) , Pixels.')); 

tmpOutFile=strcat (' , , outputFile, num2str (cntIter) ) ; 
save (tmpOutFile, 'oGata'); 

save (outputFile, 'oDdta.'); 

6.2 Data Loading Function 
1; 

'?; 

% Revised for "Rescuc 2ixels 'f 9/25/2005 
Redesigned only ta use the sample data provided. Support for additional 

~ filç.2 types has been t(~mpcraril)' reny.)ved. New input file tyP(~ is a CSV. 
% Preloaded files will just be retrieved using the .mat fil~. 

s( A3sumptions: 
% - AlI images have the sarne characteristlcs and resolutions. Only need 1 

E~VI file coorinating wlth the first file name to load aIl of the 
:.~ imaq~s. 

% The bands are ln num~ri.:al ,)rder tram low ta high (we can verl~y ln the 
ENVI head~t fils. 

% Input Arguments: 
~ fil0Na~o: '~ho name n~ tl"i0 Input data S0t - rlO nC0d for a fi~c 

function [iData) = AOI LoadData(fileName) 

~ Constant3 (Fer flow chart - no longer read fram text file) 
cstBasePt(I)=980; 
cstBasePt(2)=1780; 
cstRespBand=1650; 
cstAmideRange(1)=O.4; 
cstAmideRange(2)=1.4; 

Cr0ating file nam0S ta scarch f0r. 
fileCSV=strcat(fileName,' .csv'); 
fileMAT=strcat(fileName,' .mat'); 

Chl'.:.~r.:k if fill'.;:! hJ.s ,be:en prf2vlou;.:;ly loaded - if S0 load infol.'rr,atir}n =:r:r_"I~n 

the mat fils. :f not pL0csed ta building the initIal data structure. 
if exist(fileMAT, 'flle') >= I 

el se 
load(fileMAT) ; 

Lcad th~ ~.ext filc: con::~i.n.lllg t:llû i~agee. Thi~ 8xt~[lsi.,)n i.s .ln 
[fileContents] =textread (fileCSV, ":',$' , 'dE::i.imi t.I:.::!" " 1 l ' ) ; 

lengthTextFile=length(fileContents); 
iData. Numlmages=lengthTextFile/2; 'i-Sl·t, the numb'èr c, f .1"u(.l'~'s r'r,ope n 'i 

~ H03d ttlG ENV: f.ile. 
~t~I;)~i10~fi10f:0nt0rits(1}; 

% f i10HDR..;...c.~har {tmpFi~e (1: len\]t h (t.mpFil\'2') - 4) ) : 
[envilnfo]=textread('OOO.hdr 1

, '~S'); 

iData.NumCols=str2num(envilnfo{IO,I}); "'S"ë tr." number c,f r2o:'umnc·. 
iData.NumRows=str2num(envilnfo{13,I}); ,,:S"ë th" number c,f Rows 
~S~t the nLlrnbE:c Q~ t>ands - nllmber of data pOInts fcr e2(~h pl~01 

iData.NumDataPoints=str2num(envilnfo{16,l}); 
%S~t the number o~ C16ss02 

iData.NumClasses=length(unique(fileContents(2:2:length(fileContents)))); 

datatype=str2num(envilnfo{29,I}); 
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switch data type 

end 

case {1} 
datastring='int8'; 

case {2} 
datastring='int'; 

case {3} 
datastring='int64 1

; 

case {4} 
datastring='float'; 

case {5} 
datastring='doublc'; 

case {6} 
error (' readE"nvi.In file cannat handle compl~x data ... 1) 

for cntBand=O: (iData.NumDataPoints-1) tSet the individual bands 
iData.Wavenumbers(cntBand+1) = str2num(enviInfo{ (49+cntBand),l}); 

end 
offset=str2num(enviInfo{20,l}); 

% Loaà thE~ raw .i.mage data 
for cntlmages=l:iData.Numlmages 

end 

indexFName = 2*cntlmages-1; 
indexFClass = 2*cntlmages; 
tmpFName=char(fileContents(indexFName»; 
fid=fopen(tmpFName, 'r'); 
[datlnfo) =fread (fid, offset, 'int8') ; 
[spectra)=fread(fid,datastring); 
specimg=reshape ... 

(spectra, [iData.NumRows,iData.NumCols,iData.NumDataPoints); 
for i=l:iData.NumDataPoints 

specimg (:, :, i) =specimg (:, :, i) , ; 
end 
iData.lmage(cntlmages) .rawData=specimg; 
fclose(fid); 
iData.Image(cntlmages) .class= ... 

str2num(char(fileContents(indexFClass»)); 

% Calcu:atc additiona: constants 
iData.NumPixels=iData.NumImages*iData.NumCols*iData.NumRows; 
iData.Resolution=(iData.Wavenumbers(ll)-iData.Wavenumbers(1))/10; 

~ Baseline C0rrect eash imagE and determine respons2 - fill in image 
~ map - det~rmi.ne ta use image or Dot 
base(l)=round((cstBasePt(l)-iData.Wavenumbers(l))/iData.Resolution+1); 
base(2)=round((cstBasePt(2)-iData.Wavenumbers(1»)/iData.Resolution+1); 
response=round((cstRespBand-iData.Wavenumbers(l))/iData.Resolution+l); 
tmpRun=base(2)-base(l); 
for cntImages=l:iData.NumImages 

iData.Image(cntImages) .numGoodPixels=O; 
for cntRow=l:iData.NumRows 

for cntCol=l:iData.NumCols 
absorbance(l)= ... 

iData. Image (cntlmages) .rawData(cntRow,cntCol,base(l)); 
absorbance(2)= ... 

iData.Image(cntImages) .rawData(cntRow,cntCol,base(2)); 
tmpSlope=(absorbance(2)-absorbance(1))/tmpRun; 
tmpConst=absorbance(2)-(tmpSlope*base(2)); 
for cntPT=l:iData.NurnDataPoints 

iData.lmage(cntlmages) .baseData(cntRow,cntCol,cntPT)= .. . 
iData. Image (cntlmages) .rawData(cntRow,cntCol,cntPT) .. . 
- (tmpSlope*iData.Wavenumbers(cntPT)+tmpConst); 

end 
iData. Image (cntImages) .AmideResponse(cntRow,cntCol)= ... 

iData.Image(cntImages) .baseData(cntRow,cntCol,response); 
if (iData.Image(cntlmages) .AmideResponse(cntRow,cntCol) ... 

el se 

<cstAmideRange (1)) 1 1 ••• 

(iData.Image(cntImages) .AmideResponse(cntRow,cntCol» ... 
cstAmideRange(2) ) 

iData.Image(cntImages) .pixlMap(cntRow,cntCol)=O; 
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iData.lmage(cntlmages) .pixlMap(cntRow,cntCol)=l; 
iData.Image(cntImages) .numGoodPixels= ... 

iData.Image(cntImages) .numGoodPixels+l; 

end 

end 
end % Count Columns 

end % Count R0""S 
if iData.Image(cntImages) .numGoodPixels==O 

iData.Image(cntImages) .useImage=O; 
el se 

iData. Image (cntlmages) .uselmage=l; 
end 

end ~ Count Images 

% SavE: the file 
save (fileMAT, 1 iData'); 

6.3 Amide 1 Removal Function 

's r;:'orn Pincbuk 

:~ 9/30/:2005 
~1 N(~\·; pr:)ce:ss 1::C' cpt ür:.i:::e the ranqe of acceptabLe Amià~~) l absor.'bance 
% responces from 0.4 ta 1.4. The increments are 6/90. The range is 
% determined by two sets of four ~it5 each represe!lting a range point. 
% 
% .A.SSll:11pt ions: 
.~ 
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% Input Arguments: 
~h0 Initial specatral data as determined by th0 load data 
a19<)r i. ':.hm. 
T'Le 8-r:;.i.t~ DNA st.rand .r.·~=prE:s8nt.ing bath c,f tLE: l\:-ni.d~? l 
tc,leIanc~s. If they are the same, th~ scores are zero. This 
must ~e ~hecked in the main GA script. 
Bits 8-5: Numerical value ~ 6 

, 
90 CI .; P.::'.!"! q;:~> / 

Bits 4-1: Nurn~rical value w 6 ! 90 CI 4 l~.:ir! q"~> 

Output AIgum~nt3: 
~hs data used during processing of ttle 3pectra. 

function [rData] = A02 RemoveArnide(iData, DNA) 

0; Consta.nts (PE',r i:J.C'I" (~ha.r-t - nf) l.onger r:'~ad :frcm t~(~xt. fJ.le) 
cstRespBand=1650; 
cstArnideRange(1)=O.4; 
cstArnideRange(2)=1.4; 

% Determine Ranges - and sort neçess 2lI 'J 
tmpRange(1)=bitshift(DNA,-4); 
tmpRange(2)=DNA - bitshift(tmpRange(l) ,4); 
tmpRange(1)=double(tmpRange(1))*6/90+cstArnideRange(1); 
tmpRange(2)=double(tmpRange(2))*6/90+cstArnideRange(1); 
range=sort(tmpRange) ; 

Pt 
P ;. 2 

disp([' - Amide l Rangs: ' num2str(range(1)) , ~.,-, ' num2str(range(2))]); 

~ EI".Sllr~ that rh~ t"Ange' V2J"U0S ~re 11(.t "lcl0ntlcal 2!".d I~he,~k j-t!0 amid0 
?; l:E·;Sf;!,)1JE.-t.J.:::. 

rData.NumPixels=O; 
rData.Numlmages=O; 
if range(1)-=range(2) 

for cntlmages=l:iData.Numlmages 
rData.lmage(cntlmages) .numGoodPixels=O; 
for cntRow=l:iData.NumRows 

for cntCol=l:iData.NumCols 
if (iData.lmage(cntlmages) .ArnideResponse(cntRow,cntCol)<range(l)) 1 1 ••• 

(iData.lmage(cntlmages) .AmideResponse(cntRow,cntCol»range(2)) 
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rData.lmage(cntlmages) .pixlMap(cntRow,cntCol)=O; 
else 

rData.lmage(cntlmages) .pix1Map (cntRow, cntCo1)=1; 

rData.lmage(cntlmages) .numGoodPixels=rData.lmage(cntlmages) .numGoodPixels+l; 
rData.NumPixels=rData.NumPixels + 1; 

else 

end 

end 
end 9.; Count: Columns 

end '~.i Count Ro~"s 

if rData.lmage(cntlmages) .numGoodPixels==O 
rData.lmage(cntlmages) .uselmage=O; 

e1se 

end 

rData.lmage(cntlmages) .uselmage=l; 
rData.Numlmages=rData.Numlmages+l; 

end % C0unt Imag~s 

~ Update the rest of the running data structure. - ~o Dot loclude the 
~ data parameter. 

rData.NumPixels=O; 
rData.Numlmages=O; 

6.4 Baseline or Raw Selection Function 
% 
:J) Tom !:?inchuk 

<~ 2.(j/02/2005 
.~ r~e;"i process to dêt!?rmine if the EAÏf~ dat.a cr th!? b.:l3~line cCJrrected da.ta 
,? ~:hou.i.d 0i.~ lJt.i.1 L Zt::d f(;!" future Ct)m~'ljta tion.s. 

~ ~his function a150 zeros out the data values of any piX8~S n0t in use 111 

~ the rDat.a structllre. 

lnput Arquffif.:::nts: 
Ths initial specatral data as d€tcrmined by the load data 
,,1gc_'r i th;n. 

rData: The running Data up until DOW. 

DN!, : The I-blt DNA strand repr~sentlI~g if th:~ Raw data or baselll10 
Ct)~rectcd data should he ilS8d. 

û: Keep the raw data 
_. Use the bascllne correctBd data 

~}lC data uscd during P~O~(:ssi.rl(J of tl"le epcctra. 

function [rData) = A03 UseRaw(iData, rData, DNA) 
if DNA==O 

disp ( [' - Usin9 l'AV; J.:1til')); 

else 
disp([' - Using Ba2elins Correct~d Data']); 

end 
for cntlmages=l:iData.Numlmages 

if DNA==O 
rData.lmage(cntlmages) .data 

else 
rData.lmage(cntlmages) .data 

end 
for cntRow=l:iData.NumRows 

for cntCo1=1:iData.NumCo1s 

iData.lmage(cntlmages) .rawData; 

iData.lmage(cntlmages) .baseData; 

if rData.lmage(cntlmages) .pix1Map(cntRow,cntCo1)==O 
rData.lmage(cntlmages) .data (cntRow, cntCo1, 1: iData.NumDataPoints) =0; 

end 
end ~ Co\]nti~g Colu~ns 
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end % C'ounting Ro\oJs 
end 

6.5 Pixel Co-Addition Function 

'~.î ~~~om P:i.nchuk 

Modified 10/02/2005 

* This function ia used to coadd the data in the images. 

~ Images are coadded in adjacent groups of 4 10 and 32 pixels. The input 
% i8 a 2-bit binary referencing the coadd va ues. If Dothing is 80 be 
% cl)addt~d, thaI1 the images are (:'f)mbi.ned .;: or lJrt.her prclcessing. 

~~ Assurnpt ions; 
~~ 

% Input Arguments: 
% iDa.ta: ThE initial specatral data as det~rmined by the load data 

algoritbm. ~:. 

% rData: The running Data up until now. 
.~ DNA: The 2-bi t DNA strand reprt"::senting the ac.ceptable nu:mb~r l'): 

pixels to coadd. 
00: Keep thE: ent.ir,,= image 
01: Coadd 4 adjacent pixels [2x2] 
~u: Coadd 1~ adjac0nt pixels [4x41 
:1: Coadd 64 adj~c0n!: p~xels [axa] 

function [rData] = A05_CoaddImages(iData, rData, DNA) 
CO.ITtpute the square rOf)t of the numb'':::I.: of plxels t f) coadd. 

switch DNA 

end 

case {O} 
CoaddLimit=O; 

case {l} 
CoaddLimit=2; 

case {2} 
CoaddLimit=4; 

case {3} 
CoaddLimi t=8; 

disp ( [ , - ':'Hàd:Lno: ' num2str (CoaddLimi t) 'x' num2str (CoaddLimi t) , inldqcs']); 
if CoaddLimit==O 

for cntImage=l:iData.NumImages 
cntPixel=O; 
if rData.Image(cntImage) .useImage==1 

rrData.CmbImg(cntImage) .useImage=l; 
for cntRow=l:iData.NumRows 

for cntCol=l:iData.NumCols 
if rData. Image (cntImage) .pixlMap(cntRow, cntCol)==1 

cntPixel=cntPixel+l; 

rrData.CmbImg(cntlmage) .data(cntPixel, :)=rData.lmage(cntlmage) .data(cntRow,cntCol, :); 
end 

el se 

else 

end 

end ~ C0url~ Colu~rl 

end ~ C'-_~unt:: K()",v 

rrData.CmbImg(cntImage) .numPixels=cntPixel; 

rrData.CmbImg(cntImage) .useImage=O; 
rrData.CmbImg(cntImage) .numPixels=O; 

end Count Ymages 

'~, :':':t.ar!· ::'rcm thE': t,yP '~eft ~J)')ki.nq f:c.r édja.:::erlt. qe.c.d pi.x~~.1.s. \,'1}i:~r, ::;6ch 
~.:.. i.t.crat..i·)fJ -- ll~:)àc:.;.t(; t,he ri.xc.1. [Tid.}:; dT'i\:i f.'C(_'\)cà tbc~ (~o3dd,~~ci i.md.<]c. 

for cntImage=l:iData.NumImages 
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cntPixel=O; 
if rData.lmage(cntlmage) .uselmage==l 

for cntRow=l: (iData.NumRows-CoaddLimit+l) 
for cntCol=l: (iData.NumCols-CoaddLimit+l) 

if rData.lmage(cntlmage) .pixlMap(cntRow, cntCol)==l 
%Check to see if the adjacent pOlnts are aIl good 
boolAllGood=l; 
for cntDR=cntRow: (cntRow+CoaddLimit-l) 

for cntDC=cntCol: (cntCol+CoaddLimit-l) 
if rData.lmage(cntlmage) .pixlMap(cntDR,cntDC)==O, 

boolAllGood=O; end 
end ~ dbl Count Columns 

end % db2. Count ROiti3 

~If they are aIl good - coadd them and the remove 
%their pixel flags 
if boolAllGood==l 

cntPixel=cntPixel+l; 
rrData.Cmblmg(cntlmage) .data(cntPixel, :)= ... 

sum(sum(rData.Image(cntImage) .data(cntRow: (cntRow+CoaddLimit­
l),cntCol: (cntCol+CoaddLimit-l), :»); 

rData.lmage(cntlmage) .pixlMap(cntRow: (cntRow+CoaddLimit­
l),cntCol: (cntCol+CoaddLimit-l»=O; 

end 

end 
end 

end % Courlt Column 
end % Cr)unt RO~\I 

if cntPixel>O 
rrData.CmbImg(cntlmage) .uselmage=l; 

else 
rrData.CmbImg(cntImage) .uselmage=O; 

end 
rrData.Cmblmg(cntlmage) .numPixels=cntPixel; 

else 

end 

rrData.Cmblmg(cntlmage) .uselmage=O; 
rrData.Cmblmg(cntlmage) .numPixels=O; 

end ~ Courlt :mag~s 

"1:>f.)pdate the tüta: number r:;.: images .s.rid pixels. 
rrData.NumPixels=O; 
rrData.Numlmages=O; 
rrData.NumDataPoints=iData.NumDataPoints; 
rrData.Wavenumbers=iData.Wavenumbers; 
for cntlmage=l:iData.Numlmages 

if rrData.Cmblmg(cntlmage) .uselmage==l 
rrData.Numlmages=rrData.Numlmages+l; 
rrData.NumPixels=rrData.NumPixels+rrData.Cmblmg(cntlmage) .numPixels; 

end 
end 
rData=rrData; 

6.6 Outlier Removal Function 

'T'c'in Pi.nchuK 

~0~ifi0ri ~OjO)!200S 

This ~ile 13 used ta deterrr~ine arld re~OV0 0utlicrs. The input is a 2 bit 
bln'"lr:.-' voi:l1uf,,:; t.hi'..lt ref(2rc·ncç.:.~s rf~movin,~% cutliers beyGnd c-:ert.ain .standard 
de?i;:-:tt.l,)flS. 

B VerSl,)~ i3 when Coadding and cutliers are reversed 
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% Input Arguments: 
~. iData: 'l'he initial specatral data as determined by th~ load data 

algorithm. 
~. rData: The running Data up until now. 
% DNA: The 2-bit DNA strand representing the acceptabl.e nu:nber of 

standard deviations to keep processing. % 
00: Keep the (~nti CE':. imag~.? 

ùl: Remove (~verything beyofld 2 SD 
~u: Remove evcrything beyond 1.5 SD 
11: Femove everything beyond 1 sn 

% Output Arguments: 
'% rData: 'l'he data llSf;d during processing of the spectra. 

function [rData] = A04b removeOutliers(iData, rData, DNA) 
% (':ompute t.he ~3t.andal~d Deviat.ion tolerance limit.s ba3ed on the input SNA 
~; argument. 
switch DNA 

end 

case {O} 
SDLimit=O; 

case {li 
SDLimit=2; 

case {2} 
SDLimit=1.5; 

case {3} 
SDLimit=l; 

disp ([ 1 - P ... emovlng out.="i7.:rs b7.:yond 1 nurn2str (SDLimit) 1 standard deviatls·ns. ']); 
if SDLimit -=0 

tmpNumlmage=rData.Numlmages; 
rrData.NumPixels=O; 
rrData.Numlmages=O; 
for cntlmage=l:tmpNumlmage 

if rData.Cmblmg(cntImage) .useImage==l 
'i: F'c-!' tbe '~'UJ:.:.;:>::.)nt. ,i.m'::-H]C - "I.rhat is the \l51u'~~ of t.he St,z~I)ddr.d U.~'v:L'3.t..iGrl. 

MU=sum((rData.CmbImg(cntImage) .data))/rData.CmbImg(cntlmage) .numPixels; 
tmpPixelNurn=O; 
for cntPixel=l:rData.CmbImg(cntlmage) .numPixels 

tmpPixelNum=tmpPixelNum+l; 
residual(tmpPixelNum)=sum((rData.Cmblmg(cntlmage) .data(cntPixel, :)-

MU (l, : ) ) . A2) ; 

end Pixel COllnt 

MD=mean(residual); 
SD=std(residual); 
minLirnit MD-(SDLimit*SD); 
maxLimit = MD+(SDLimit*SD); 

~ l'iod Tlumbcr' of pixels outsid~ of ttlC Si) lirnits: Updat(~ tfl'~ Dix'~l 

% It!ap dTld zero thosû dsta YarJges no! used. 
cntGoodPixels=O; 
tmpPixelNum=O; 
for cntPixel=l:rData.Cmblmg(cntlmage) .numPixels 

tmpPixelNum=tmpPixelNum+l; 
if (residual(tmpPixelNum)<minLimit) Il (residual(tmpPixelNum»maxLimit) 

rData.Cmblmg(cntlmage) .data(cntPixel,l:iData.NumDataPoints)=O; 
else 

cntGoodPixels=cntGoodPixels+l; 
rrData.Cmblmg(cntImage) .data(cntGoodPixels,l:iData.NurnDataPoints)= ... 

rData.Cmblmg(cntlmage) .data(cntPixel,l:iData.NumDataPoints); 
end 

end Pixel Count 
clear rC2idual.; 
clear 1\1U; 
clear SD; 
rrData.Cmblmg(cntlmage) .numPixels=cntGoodPixels; 
if rrData.Cmblmg(cntlmage) .numPixels==O 

rrData.Cmblmg(cntlmage) .useImage=O; 
el se 

rrData.Numlmages=rrData.NumImages+l; 
rrData.CmbImg(cntImage) .useImage=l; 
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end 
rrData.NumPixels=rrData.NumPixels+cntGoodPixels; 

end % Is image good 
end ~ Image Count 
rrData.NumDataPoints=rData.NumDataPoints; 
rrData.Wavenumbers=rData.Wavenumbers; 
clear ,'Da.ta; 
rData=rrData; 

el se 
rData.NumImages=rData.NumImages-1+1; 

end 

6.7 Image Smoothing Function 
_, Tcm F.incLuk 

% Modified 10/02/2005 

% ThIS functioIl i5 used ta smooth the data in the images in rcterence ta 
% section 4.1.2 Qf the literature review. 
% 
% :mages are smoothed using a 4-bit input oarameter 
% 
:% Assunrçtions: 
% 

1; IDat.a: ?he l11itl21 specatra]. d3t~ as det:ermined by th~ load data 
2 lq",r:; ;:,h:n. 

,., l Ga.t:.a : =he rur;ning Data up unt~l now. 
'.: UNi\.: ~h0 4-nit DNA strand r0pres0nting twa - 2-bit plCC0S of 

InfoInlation, the ~lrst bcing the method, arld the 301~Glld 

bcing ttl0 nUTIibcr of roirlts ta use: 
Uits 4-3: 
0(,: Ne Sm00thing 
01: Boxf,:ô.r 
-i.-U: l'1ean 
il: Sa.vltzky-Golay 
Bi ts :>2,: 
(JO; :")-F'cint.s 
(Jl: 7-?oint.s 
..:.U: 9-f-'nint .. s 
~1: l.l-~Pc.,.i.nts 

~5 .r:l..)ata: ~lle data used during proces3ing of the spcctra. 

function [rData] = A06 SmoothImages(iData, rData, DNA) 

% Split the DNA lJp into the twa smoothing parametsrs. 
smoothMethod = bitshift(DNA,-2); 
tmpNum = DNA - bitshift(smoothMethod,2); 
switch tmpNum 

end 

case (Q} 
smoothPoints=5; 

case (1) 
smoothPoints=7; 

case (2} 
smoothPoints=9; 

case {3} 
smoothPoints=ll; 

tmpPointsSide = (smoothPoints - 1) / 2; 
switch smoothMethod 

case (1) 
disp ([' 

,,<,ints']); 
case (2} 

SmG{:.thing !Jsir!g Bc,xcar methcJ( .. l and T num2str (smoothPoints) 

disp ([' Srnc0thlng usinQ Mean ,mthod and' num2str(smoothPoints) , points']); 
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case {3} 
disp ([' 

points']); 
- Smoothing using Séivitzky-Golay métl10d and' nurn2str(srnoothPoints) 

end 

~Box:car srne.ot.h:i.rig - Remove end I-~ffects by g(~tting rld of Li.rst and la.st 
% points. 
if smoothMethod == 1 

for tmplmageNum=l:iData.Numlmages 
if rData.Cmblmg(tmplmageNum) .uselmage==l 

boolNotEnd = 1; 
tmpOldlndex = tmpPointsSide + 1; 
tmpNewlndex = 0; 
while boolNotEnd==l 

tmpNewlndex = tmpNewlndex + 1; 
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 

newlmg(tmplmageNum) .data(cntPixels, tmpNewlndex) 
sum( rData.Cmblmg(tmplmageNum) .data(cntPixels, (tmpOldlndex­

tmpPointsSide): (tmpOldlndex+tmpPointsSide)) ) ... 
f smoothPoints; 

end 
newlmg(tmplmageNum) .sampleDataPoints(tmpNewlndex) 

iData.Wavenumbers(tmpOldlndex); 
if (tmpOldlndex + smoothPoints + tmpPointsSide) >= iData.NumDataPoints 

boolNotEnd = 0; 
else 

tmpOldlndex = tmpOldlndex + smoothPoints; 
end 

end % While Locp 
newlmg(tmplmageNum) .NumDataPoints 

end "; image (:ic)od 
end 'f.,c;(,untJ.r!l) thf: rlurnt'l::~:c of lmagcs 

tmpNewlndex; 

~.McRn sm0o!:.hing - RCffiOVC end effects by g0tting rid (,f flr"st ana last. pc.ints. 
elseif smoothMethod == 2 

for tmplmageNum=l:iData.Numlmages 
if rData.Cmblmg(tmplmageNum) .uselmage==l 

boolNotEnd = 1; 
tmpOldlndex = tmpPointsSide + 1; 
tmpNewlndex = 0; 
while boolNotEnd==l 

tmpNewlndex = tmpNewlndex + 1; 
for cntPixels=l:rData.Cmblmg(trnplrnageNurn) .nurnPixels 

newlrng(tmplmageNum) .data(cntPixels, trnpNewlndex) 
sum( rData.Cmblmg(tmplmageNum) .data(cntPixels, (tmpOldlndex­

tmpPointsSide): (tmpOldlndex+tmpPointsSide)) ) ... 
f srnoothPoints; 

end 
newlmg(trnplrnageNurn) .sarnpleDataPoints(tmpNewlndex) 

iData.Wavenumbers(tmpOldlndex); 
if (trnpOldlndex + trnpPointsSide) >= iData.NurnDataPoints 

boolNotEnd = 0; 
else 

tmpOldlndex = tmpOldlndex + 1; 
end 

end ~ whi:e loop 
newlmg(trnplmageNurn) .NumDataPoints 

end ,? -i :naqc is ~;clc,d 

end ·',cc·unt 1.!;<..~ th(~ !1umb<:.~r. (, t 1ma(F)~; 

tmpNewlndex; 

~Savlt.zky - G0:ay smo0thing - Pe~ove end 0ftect:s t,y gettl!"ig id ,)f fil~st dnd _dSt ?')LI)t~. 

elseif (smoothMethod == 3) 
if srnoothPoints==5, SGmu1t=[-3 12 17 12 -3]; end 
if smoothPoints==7, SGmult=[-2 3 6 7 6 3 2); end 
if smoothPoints==9, SGmult=[-21 14 39 54 59 54 39 14 -21]; end 
if smoothPoints==11, SGmult=[-36 9 44 69 84 89 84 69 44 9 -36]; end 
sumSGmult = sum(SGmult); 
for trnplmageNum=l:iData.Numlmages 

if rData.Cmblmg(tmplmageNum) .uselmage==l 
boolNotEnd = 1; 
tmpOldlndex = tmpPointsSide + 1; 
tmpNewlndex = 0; 
while boolNotEnd==l 
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tmpNewlndex = tmpNewlndex + 1; 
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 

tmpPoint(l:smoothPoints) = rData.Cmblmg(tmplmageNum) .data(cntPixels, 
(tmpOldlndex-tmpPointsSide): (tmpOldlndex+tmpPointsSide)); 

tmpArg = tmpPoint.*SGmult; 
newlmg(tmplmageNum) .data(cntPixels, tmpNewlndex) sum(tmpArg) / 

sumSGmult, 
end 
newlmg(tmplmageNum) .sampleDataPoints(tmpNewlndex) 

iData.Wavenumbers(tmpOldlndex), 
if (tmpOldlndex + tmpPointsSide) >= iData.NumDataPoints 

boolNotEnd = 0, 
else 

tmpOldlndex = tmpOldlndex + l, 
end 

end while loop 
newlmg(tmplmageNum) .NumDataPoints 

end %image le good 
end %count_ing t.hf~ number of images 

tmpNewlndex; 

end 

~ smootlllllg was done, update the rData fi~e. 
if smoothMethod>=l 

for cntlmg=l:iData.Numlmages 

end 

if rData.Cmblmg(cntlmg) .uselmage==l 
rData.Cmblmg(cntlmg) .data=newlmg(cntlmg) .data, 
rData.NumDataPoints=newlmg(cntlmg) .NumDataPoints, 
rData.Wavenumbers=newlmg(cntlmg) .sampleDataPoints, 

end 

end 

6.8 Feature Selection Function 
1; ::'om P~.nchuk 

Modified 10/08/2005 

'::"his :uncticlfl is used te perform ,::'1 featu.rC' 3e~cctioD proceadure ()n the 
sample r..idt,::<. ln êH..::(_~ordan(.'e "'Jith sectlon .:~ .. 2.x (Jf the literaturE: r~~view. 

A3sumptlons: 

:nput Argum~nts: 
i ùa i:~a; ~he i.nitial specatral data as determined by t:h0 load data 

algorithm. 
,~ r,)" ;:21 : 

'!. UNA: 
~>}le runninq Data up until DOW. 
'l'hG ~.~--b:L;-- Dt-TA st.r2nd r.er<n::sentlflq the :~>::2turc ;:<e.lcction 
algorithme to b0 applled. 

~ -------------------------------------------------------------------------

% 
~ 

~ 

c 
.j 3 2 

~ -------------------------------------------------------------------------

Bit 6: Integr3tion 
Bit c. ase Deriv [:.=ün O=Off] 

Bit 3: U2S Norm ~1=8~ O-Off] 
Bi.t 2: ~0rm ~I)tho·j [O=~ (,y ~2 

Rit ·1: fJ'·~l".iv ~"1c.r-h ~n F.~t./·~ Scdj B·it· 

OutDllt Argll~0rlts: 

rDat::'i: 

function [rData] = AD? FeatureSelection(iData, rData, DNA) 

~~e2n Centering - CalCll~ate the msan 0~ each dat~ p01nt 
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within a.n image '::'tnd subtract tht!.t value from each of the 
data points in the respective image. 

if bitget(DNA,l) == 1 

end 

disp ( [ , - i1'Oan C'Ontering the dat.a']); 
for tmplmageNum=l:iData.Numlmages 

end 

if rData.Cmblmg(tmplmageNum) .uselmage==l 
tempMean=mean(rData.Cmblmg(tmplmageNum) .data); 
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 

rData.Cmblmg(tmplmageNum) .data(cntPixels,:) = ... 
rData.Cmblmg(tmplmageNum) .data(cntPixels,:) - tempMean; 

end 
end % ls image ln use 

% Should we normalize Yes or No? 
if bitget(DNA,3) == 1 

disp([' - Normalization of data']); 
for tmplmageNum=l:iData.Numlmages 

if rData.Cmblmg(tmplmageNum) .uselmage==l 
if bitget(DNA,2) == 0 
% 1 - normalization - Norrnalize data ln a particular spectrum ta uI·lit area. 
~ Calculating tlle I-Norm constant and dividirlg each arlci 
% every data Foint by that value 

eise 

for cntPixels=l: rData.Cmblmg (tmplmageNum) .numPixels 
Norml=sum(abs(rData.Cmblmg(tmplmageNum) .data(cntPixels, :))); 
rData.Cmblmg(tmplmageNum) .data(cntPixels, :)= ... 

rData.Cmblmg(tmplmageNum) .data(cntPixels, :) ./ Norml; 
end 

~ 2 - norma:ization - Normali=e data in a particular sp~ctrum te unlt ar~a. 
Calculatinq the ~-N0rm constant and dividir;g each 2~d 
0~ery data p0int by that value 

for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 
Norm2=sqrt(sum( (rData.Cmblmg(tmplmageNum) .data(cntPixels, :) .A2) )); 
rData.Cmblmg(tmplmageNum) .data(cntPixels, :)= ... 

rData.Cmblmg(tmplmageNum) .data(cntPixels, :) ./ Norm2; 
end ~count pixsls 

end End if 
end % 13 image in use 

end % c.')unt Images 
end 'b)Jon·oallze? 

~ Use Cerivativ8s? 
if bitget(DNA,5) == 1 

1) ) ; 

disp([' - DerIvation of data']); 
rrData.NumPixels=rData.NumPixels; 
rrData.Numlmages=rData.Numlmages; 
rrData.NumDataPoints=rData.NumDataPoints-2; 
rrData.Wavenumbers(l:rrData.NumDataPoints)=rData.Wavenumbers(2: (rData.NumDataPoints-

tmpResConstA = 1/(2*iData.Resolution); 
tmpResConstB = 1/(iData.ResolutionA2); 
for tmplmageNum=l:iData.Numlmages 

rrData.Cmblmg(tmplmageNum) .numPixels=rData.Cmblmg(tmplmageNum) .numPixels; 
rrData.Cmblmg(tmplmageNum) .uselmage=rData.Cmblmg(tmplmageNum) .uselmage; 
if rData.Cmblmg(tmplmageNum) .uselmage==l 

if bitget(DNA,4) == 0 
~ First S0r1v~tlVG - First (j~riv2tivc lS calculatE:d 2nd t:hG ~t~~ riaf·.A 

dI·~ adjusted 2cc,)rdirlgly. 
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 

~for cntUataP01nts~1:rrData.NumDataf0ints 

::::.~r J.::.'.. ta. ,~mb "::'rng (tH,P _mat]e:'Jum) . da ta. (cntFixl".21s 1 ("_~rl t La ttl.2oin t s) - ... 
{.:-L':-:it3.. Ç.'mblrng (tmpTmaqeNum) . d3tô (1..--:·ntFix?-l::., '_-:ntD.3.ta.2cJlnt.s) ... 

-rData. Cmblrng (trnpTmageNum) . data (cntFixel.s 1 

.... tmI-:.'pr:";sCon.::: !:.f-\; 
·~~0d '~cc,unt dat2 p'111·lLs 
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rrData.CrnbIrng(trnpIrnageNurn) .data(cntPixels, 
l:rrData.NurnDataPoints)= ... 

(rData.CrnbIrng(trnplrnageNurn) .data(cntPixels, 
l:rrData.NumDataPoints) ... 

-rData.Crnblrng(trnplrnageNurn) .data(cntPixels, 
3: (rrData.NurnDataPoints+2») ... 

points 

else 

. *trnpResConstA; 
end %count pixels 

% Second Derivative - Second decivative ia calculated and the total data 

% arc adjusted accordirlgly. 
for cntPixels=l: rData.CrnbIrng (trnpIrnageNurn) .nurnPixels 

for cntDataPoints=l:rrData.NurnDataPoints 
rrData.CrnbIrng(trnpIrnageNum) .data(cntPixels, cntDataPoints)= ... 

(rData.CrnbImg(tmpImageNum) .data(cntPixels, cntDataPoints) ... 
-2*rData.Crnblrng(trnplrnageNurn) .data(cntPixels, 

cntDataPoints+l) ... 
-rData.Crnblrng(trnplrnageNurn) .data(cntPixels, 

(cntDataPoints+2») ... 
*trnpResConstB; 

end ~cGunt data ~)oints 
end ~count pixels 

end ~ First ! Second MGtl·~0d 

end ::':.15 imaf]E: good 
end '\Count irnag'ès 
rData=rrData; 
clear rrDatôi 

end ~:; Dü deri-Ilativs? 

Integration - IntegraIs are c"3~cuL3.ted baStd en the Slnlpson' s 
~he total Ija~a p')irlts are adjusted accordingly. 

if bitget(DNA,6) == 1 
disp([' - Integration GE data'); 
rrData.NurnPixels=rData.NurnPixels; 
rrData.NurnIrnages=rData.NurnIrnages; 
rrData.NurnDataPoints=rData.NurnDataPoints-l; 
rrData.Wavenurnbers(l:rrData.NurnDataPoints)=rData.Wavenurnbers(l: (rData.NurnDataPoints-

1»+(iData.Resolution/2); 
trnpResConst=iData.Resolution/6; 
for trnpIrnageNurn=l:iData.NurnIrnages 

rrData.CrnbImg(tmpImageNum) .numPixels=rData.CrnbImg(trnpIrnageNum) .nurnPixels; 
rrData.CrnbIrng(trnpImageNum) .useIrnage=rData.CrnbImg(tmpImageNum) .useImage; 
if rData.CmbImg(tmpImageNum) .useImage==l 

for cntPixels=l:rData.Crnblrng(trnpIrnageNurn) .nurnPixels 
for cntDataPoints=l:rrData.NurnDataPoints 

rrData.Cmblrng(trnplrnageNurn) .data(cntPixels, cntDataPoints)= ... 
(1.5*rData.CrnbIrng(trnpIrnageNurn) .data(cntPixels, cntDataPoints)+ ... 
1.5*rData.Crnblrng(trnplrnageNurn) .data(cntPixels, 

cntDataPoints+l»*trnpResConst; 
end ~ C0un~ dat~ ;)Qlnts 

end %c0unt !Jixcls 
end %15 Image good 

end :?'" c"-.Junt ima9t:- nlJmbel.­
rData=rrData; 
clear rrDatô.i 

end 'lUh] ,.!: 

6.9 Image Combina fion Funcfion 
'':''om Pinc:huk 

Mcdifi~d lO;08/2005 

,:,rLl.S .~;.lnct.i;)n le lJSe::.j !:.c) .::cn,!::,.in.c th~·::; imaqe: ::lai>::!. ;.l~:"i.:ng tl·;I.:':' fjTc:atcst . 
. t'~~~:cl.ut 1.c·n .lIïi:.O orlC .;:lrJ~l.~ :."1 J 
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% Input Arguments: 
% iData: The initial specatral data as determined by the load data 

algorithm. 
% rData: The running Data up until DOW. 

% 
% Output Arguments: 
% rData: The data used during processing of the spectra. 

function [rData] = A08_CombinelmageData(iData, rData) 
disp([' - Cc-mbinin9 tb(.~ d2ta.']); 
cntSpec=O; 
rrData.NumPixels=rData.NumPixels; 
rrData.Numlmages=rData.Numlmages; 
rrData.NumDataPoints=rData.NumDataPoints; 
rrData.Wavenumbers=rData.Wavenumbers; 
for tmplmageNum=l:iData.Numlmages 

if rData.Cmblmg(tmplmageNum) .uselmage==l 
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels 

cntSpec=cntSpec+l; 
rrData.Totlmg.class(cntSpec)=iData.lmage(tmplmageNum) .class; 
rrData.Totlmg.data(cntSpec, :)=rData.Cmblmg(tmplmageNum) .data(cntPixels, :); 
rrData.Totlmg.imgnum(cntSpec)=tmplmageNum; 

end %count pIxels 
end :::,vSE' Image 

end ~number of files 
rrData.NumClasses=length(unique(rrData.Totlmg.class)); 
rData=rrData; 

6. 10 Principal Component Analysis Function 

Modified 10/06/2005 

s-,: ri.'hls function i3 used tc; detê-r:nine thE prinl..-.:ipal components GI thê data 
% set for utilizaticn in classiflcation proceedurt-3. 

% AssumptJ.e.ns: 

Input ArgllmeIlts: 
~1 .iData: 

~~ rData: 
% LiNA: 

% 

'~'hc: in.itiCl.l sr'(~(_'atré~l daLa Ei3 dct0r!nin()d b~i the l:;;iè d2t.él 
alqor."i t.hm. 
~hc running Dat.a up until DOW. 

':'he ..j-bi t: [)NA str,;-u1d rcpr0senting the nUmb'2I of Fr inr.:ipal 
Cemponents from 0 [use aIl data) te 15 to use. 

% Output Argu~ent5: 

function [rData, pc] = A09 PCA(iData, rData, DNA) 
if DNA > 1 

disp([' - Cid;~1Jlat:lI,,} ?ri.[,C:lpal Ccponcrd:.:3: ' num2str(DNA)]); 
rrData.NumPixels=rData.NumPixels; 
rrData.Numlmages=rData.NumImages; 
rrData.NumDataPoints=rData.NumDataPoints; 
rrData.Wavenumbers=rData.Wavenumbers; 
rrData.NumClasses=rData.NumClasses; 
rrData.TotImg.class=rData.TotImg.class; 
rrData.Totlmg.imgnum=rData.Totlmg.imgnum; 

covMatrix = cov(rData.TotImg.data); 
[pc,variances,explained] = pcacov(covMatrix); 
for cntPC = l:DNA 

tempMult = pc(cntPC,:) '; 
for cntPixel = l:rData.NumPixels 
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tempMult; 
end 

rrData.Totlmg.data(cntPixel,cntPC) 

end % counting data points 

rData=rrData; 
else 

pc=O; 
end 

6.11 Cluster Function 
% Tom Pinchuk 

% Modified 10/08/:005 

rData.Totlmg.data(cntPixel,:) * 

% This functiol) is th0 newest clusterlng functlon. ~t works via ci linkage 
% to determine tl1e distance betwe0n çlusters. 

% Assumptions: 
% B version is fr)r k~lea.n3 

% 
% Input Arguments: 
% rData: The running Data up until now. 
% 
% Output Arguments: 
% rDat.3: ?he data ussd during pr0ces8ir~g of th0 sp0l:tra. 

function [rData] = AIOb_ClusterFunction(rData) 
txtDistMethod = 'sqELlclidcan'; 
txtStartMethod = 'samoIs'; 
cstNumlterations = 5; 

\C,distFunc-pdi3t (rL'at-:1. Tr)t_mg. d.:~ta) ; 
rrData.class=rData.Totlmg.class; 
rrData.NumClasses=rData.NumClasses; 
rrData.NumPixels=rData.NumPixels; 
%clear rDat.a; 
%àisp ([ 1 - C.L~]ST.ERING: Lin ka';!0' j j ; 

%link=linkage(distFunc); 
%clear dlstFunc; 
disp( [' - CLUSTERI~G: Calculating Clusters' ]); 
[clusterOut.category, clusterOut.centroid, clusterOut.WCSP, clusterOut.distToClusters] 

kmeans(rData.Totlmg.data, 
rrData.NumClasses, 'distancc',txtDistMethod, 'start',txtStartMethod, ... 

1 replicates J 1 cstNurnIterations, 1 (~mpt')7action 1, J .singl(~t.0n '); 
%clust --=- cluster (link, 1 maxr:lu3t 1, rrData. :4umC~a.sSf3.s) ; 
%3qDist-squareform(distFurlC); 
%[H,7 / perm] = dendrogram(:ink,O, 'colorthresh01d', 'default'); 
clear l.-[\ôta; 

cntClass(l:rrData.NumClasses)=O; 
~; RClws arr> cr . .i.y.in-::tl. ,::~.-::tSSI ct.J.lumns 6rf> numb~~r ():E :LX"iSt3.fICf>;;: (,f ncVJ \..-;·i.ôss. 

disp([' - CLfJSTEPI?'lG: VaLdat:i.nccf ilnd SCü!":!.",,,, J); 
newClass (l:rrData.NumClasses, l:rrData.NumClasses)=O; 
for cntPixels=l:rrData.NumPixels 

cntClass(rrData.class(cntPixels))=cntClass(rrData.class(cntPixels))+l; 
newClass (rrData.class(cntPixels) ,clusterOut.category(c ntPixels»= ... 

newClass(rrData.class(cntPixels),clusterOut.category(cntPixels))+l; 
end 
tmpClass=newClass; 
for cntCC=l:rrData.NumClasses 

Get the maximllm ~0r each c~lumn a~d the r0W index's w~~r~ they occur 
[colMax, rowlndexs]=max(tmpClass); 

Get the maXimlJffi frc,m the <:·)ltJmn [03~.1~.!~S 31~d the c0l1J;nn lr~a·~x Wh01:C It OC'CULS 

[absMax, collndex]=max(colMax); 

rowlndex=rowlndexs(collndex); 
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end 

% MAp the class 
mapClass(rowlndex)~collndex; 

% Now that it is found, make sure that neither 0r those are used again , 
% zero out the row and columns. 
tmpClass(rowlndex,1:rrData.NumClasses)~-100; 

tmpClass(1:rrData.NumC1asses,collndex)~-100; 

%Determine if the classes are correct. 
cntCorrect~O; 

for cntPixels~1:rrData.NumPixels 

end 

if clusterOut.category(cntPixels)~~mapClass(rrData.class(cntPixels)) 
cntCorrect~cntCorrect+1; 

end 

rData.NumPixels~rrData.NumPixels; 

rData.Score ~ cntCorrect/rrData.NumPixels; 

6. 12 Reproduction Function 

% Tom Pinchuk 
% 
% Function Reproduce: r-lodified 9/30/2005 
% This function creates 2 new strands of DNA fr0~ the ezi3ting population 
% taking into acsount several factors. It will randomly assign DNA to make 
~ the Initial population. It wIll also verify th~ strand ta ensure 
~ contlDuity and no duplic~tes. 

~ Swit,:h the bOdd value if thelr le (lnly one DNA strand f<Jund. 

function [DNA, bOdd, oData] ~ reproduce(cntlter, oData, bOdd) 
format .l()nq c 

% This section cantains constants 
cstlnitPop ~ 50; % Ini tial popul'::ttion t r) randorrüz ç.2 .::'1nd sc:l(:.~ct from 
cstSelectExp 2; % The exponential factor for se~ectlng Il Par02nts Il randcirnly. 

The random percentage factor for creatlng a "random" 
parent for reproduction 

cstPctRandom 7; % 
% 

cstPctMutate 7; ~; T'hr;: random pE~.rcer;t~"agE~ .fa;~t().r fer mu ",2tlflg ~ " randc,m" 
child after ["eprc>duction 15 

Bank arder th0 results till naw. Fill in the (lD~ta.Rank{it~r~tion) flel.d 
% with the actual rank Dt the scores. 
[tmpScores, tmpRank]~sort(oData.totScore); 

for cntRank~1:cntlter-1 

end 

tmplter ~ tmpRank(cntlter-cntRank); 
oData.Rank(tmplter)~cntRank; 

~ Cr02ate initial Population 
if cntlter <~ cstlnitPop 

isGoodDNA=O; 
while isGoodDNA~~O 

isGoodDNA = 1; 
isDNA1Good ~ 1; 
isDNA2Good ~ 1; 
DNA(1)~round(rand*134217728); 

DNA(2)~round(rand*134217728); 

if not(isempty(find(oData.DNA~~DNA(l»» 
DNA(1)~-1; 

isDNAIGood~O; 

end 
if not(isempty(find(oData.DNA~~DNA(2)))) 

DNA(2)~-1; 

isDNA2Good~O; 

end 
if DNA(2) ~~ DNA(1), isDNA2Good~0; end 
if (isDNA1Good~~0) && (isDNA2Good~~1) 

DNA(1)~DNA(2) ; 
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end 
else 

if bOdd;;O, bOdd;l; else bOdd;O; end 
elseif (isDNAIGood;;l) && (isDNA2Good;;0) 

if bOdd;;O, bOdd;l; else bOdd;O; end 
elseif (isDNAIGood;;O) && (isDNA2Good;;0) 

isGoodDNA;O; 
end 

!t Here is the real GENETIC ALGORITHt"l once the populat ion has bcen 
% verified. If a child has been found, make ctlild value = -1. The 
% maximum population to reproduce is the s.:une as t.h".::' ini t ia:;" 
% popula t.i on. 
isGoodDNA;O; 
while isGoodDNA;;O 

isGoodDNA ; 1; 
isDNAIGood ; 1; 
isDNA2Good ; 1; 
% 1: Determine the top performers in the populati.)n and randomly select 
% 2 of thern as parents. The top performers are first sorted by 
% the percentage clasifled and then hy the total score. The 
% selection i5 based on an expon0ntial curV0 fit. There is a 
% lQwer probabl.ilit.y or se.lectinq lc,~Y~:;r 3i~or.ed s:.:1:11ples and a 
~ higher of slecting higher Scor0S sa~plc.s. Y X~N 

% ROUND ( (RAND)" (UN) x ~lax Fopu.lati.c'n) = Index 
PICK(1:2);0; 
% Pick two parents from top populati0n 0 ta 50 
while PICK(1);;PICK(2) 

PICK(1:2);round«rand(1:2) .A(cstSeIectExp» .*(cstlnitPop-l»; 
end 
rnklndex(l);tmpRank(length(oData.Rank)-PICK(l»; 
rnklndex(2);tmpRank(length(oData.Rank)-PICK(2»; 
PARENT (1) ; oData.DNA(rnklndex(l»; 
txtParentPct(l) ; tmpScores«length(oData.Rank)-PICK(l»); 
'1. t",t.Farent P",l. (1) = tmpSco rc,s ( (lc,nc)U', (.)CaLéi, Ra nk! - P,C}: (j ) ) , 2) ; 
~ Creatc a random parent. if the random F~oCCSS tal.ls j.nt,) a glvcrl 
~ perccntaqea 
if (rand*lOO) <; cstPctRandom 

else 

end 

PARENT (2) ~ round(rand*134217728); 
txtParentPct(2) ; -1; 

PARENT (2) ; oData.DNA(rnkIndex(2»; 
txtParentPct(2) ; tmpScores«length(oData.Rank)-PICK(2»); 
;~txtParent_Pxl (2) = tmpScore3 ( (lengt.h (·'Ji'::.::~ ta. Rank} -~~ICK (:) ) , =) ; 

~ 2. RandcJmly pick a point wher0 the CtJt t.c, the r.igt;t wll: plovide ~')r 

~ crOS50ver reproduction. 7he bit nlDst t~ ta ttlC right of bit 27 
% through bit 2 ir) arder ta have ctiildren. 
tmpShiftBit; (round(rand*25) + 2); 
tmpFirstCut;bitshift(PARENT,-tmpShiftBit); 
tmpSecondCut;PARENT - bitshift(tmpFirstCut,tmpShiftBit); 
DNA(l) bitshift(tmpFirstCut(l),trnpShiftBit) + trnpSecondCut(2); 
DNA(2) ; bitshift(trnpFirstCut(2),trnpShiftBit) + trnpSecondCut(l); 

3: Randomly 3slect if ~utatlon 3hould b~ appllsd. l~ so, randornly 
select a :3a:-nple and [-:-ir1i.J.')ml:t' sei.ect. .:~ bit ts· :nutate. 

trnpMutateBit ; 0; 
if (rand*lOO) <; cstPctMutate 

tmpMutateBit ; round(rand*26) + 1; 
tmpMutateChiId ; round (rand) + 1; 
if bitget(DNA(tmpMutateChild),tmpMutateBit);;l 

DNA(tmpMutateChiId);bitset(DNA(tmpMutateChiId),tmpMutateBit,O); 
el se 

DNA(tmpMutateChiId);bitset(DNA(tmpMutateChiId),trnpMutateBit,l); 
end 

end mutatR&ble 

% Verify the child[~n 
if not(isempty(find(oData,DNA;;DNA(l»» 

DNA (1) ;-1; 
isDNA1Good;0; 
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end 
if not(isempty(find(oData.DNA==DNA(2»» 

DNA(2)=-1; 
isDNA2Good=0; 

end 
if DNA(2) == DNA(l), isDNA2Good=0; end 
if (isDNAIGood==O) && (isDNA2Good==1) 

DNA(1)=DNA(2); 
if bOdd==O, bOdd=l; else bOdd=O; end 

elseif (isDNA1Good==1) && (isDNA2Good==0) 
if bOdd==O, bOdd=l; else bOdd=O; end 

elseif (isDNA1Good==0) && (isDNA2Good==0) 
isGoodDNA=O; 

end 
end % While Laop 

% Display what i3 going on: 

disp([' Cutting parents ta the right. cf bit: ' num2st.r(tmpShiftBit)]); 
if tmpMutateBit > 0 
disp([' Mutating Bit.: ' num2str(tmpMutateBit) , in chL.d numly,r' 

num2str(tmpMutateChild)]); 
end 

disp([' Parent ~: ' num2str(PARENT(1» , Score: ' 
num2str(txtParentPct(1) *100) '% ']); 

if txtParentPct(2) == -1 
disp ( [ , Parent 2: ' num2str (PARENT (2» , - RF.NOOl>1LY GENER}\.TEO']); 

else 
disp ( [ , Parent 2: ' num2str (PARENT (2» , SC'Jr"': ' 

num2str (txtParentPct (2) *100) '% ']); 
end 
disp(char(160»; 
firstHalf(l, :)=27:-1:tmpShiftBit; 
firstHalf(2, :)=bitget(PARENT(1),27:-1:tmpShiftBit); 
firstHalf(3, :)=bitget(PARENT(2),27:-1:tmpShiftBit); 
if DNA(l)==-l 

firstHalf(4, :)=27:-1:tmpShiftBit; 
secondHalf(4, :)=(tmpShiftBit-1) :-1:1; 

else 
firstHalf(4, :)=bitget(DNA(1),27:-1:tmpShiftBit); 
secondHalf (4, :) =bi tget (DNA (1) , (tmpShiftBi t-1) : -1: 1) ; 

end 
if DNA(2)==-1 

firstHalf(5, :)=27:-1:tmpShiftBit; 
secondHalf(5, :)=(tmpShiftBit-1) :-1:1; 

else 
firstHalf(5, :)=bitget(DNA(2),27:-1:tmpShiftBit); 
secondHalf (5, : ) =bi tget (DNA (2) , (tmpShiftBit-1) : -1: 1) ; 

end 
secondHalf(l, :)=(tmpShiftBit-l) :-1:1; 
secondHalf (2, : ) =bitget (PARENT (1) , (tmpShiftBi t-1) : -1: 1) ; 
secondHalf (3, :) =bitget (PARENT (2), (tmpShiftBit-1) : -1: 1); 
middlepart=['<=>'; '<=>';'<=>';'<~>1;'<~>']; 
prePart= [ , Bl t: ' ; 1 Pë:o:rënt 1: '; 1 Parent ::'; 1 

disp([prePart(l,:) num2str(firstHalf(1, :» 
num2str(secondHalf(1, :»]); 

middlepart (1, :) 

disp ([prePart (2, :) num2str (firstHalf (2, :» middlePart (2, :) 
num2str (secondHalf (2, :»]); 

disp([prePart(3,:) num2str(firstHalf(3,:»' middlePart(3,:) 
num2str (secondHalf (3, :»]); 

disp([prePart(4,:) num2str(firstHalf(4,:» t middlePart(tl,:) 

num2str (secondHalf (4, :»]); 
disp([prePart(5,:) num2str(firstHalf(5,:» , , middlePart(5,:) 

num2str(secondHalf(5, :»]); 
end 

\,.:hi2.d 2: 1]; 
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