
OPTIMIZATION OF PRE-PROCESSING VARIABLES FOR
HYPERSPECTRAL ANAL YSIS OF FOCAL PLANE ARRA Y FOURIER

TRANSFORM INFRARED IMAGES

By

Tommy Pinchuk

Department of Food Science and Agricultural Chemistry
McGill University, Montreal, Canada

April, 2006

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of Masters of Science.

© Tommy Pinchuk, 2006

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24770-9
Our file Notre référence
ISBN: 978-0-494-24770-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Table of Contents
Table of Contents ... i
List of Tables .. ii
List of Figures .. iii
Acknowledgements .. iv
Abstract ... v
Résumé ... vi
1 Introduction ... 1
2 Literature Review .. 4

2.1 Gram-Taxonomy ... 4
2.2 Statistical Concepts ... 6
2.3 Spectroscopic Data Acquisition .. Il
2.4 Data Enhancement .. 19
2.5 Feature Selection and Extraction .. 23
2.6 Pattern Recognition ... 34
2.7 Genetic Programming ... 50
2.8 Outlier Removal .. 54

3 Using Genetic Aigorithm to Optimization ofPre-Processing Variables 55
3.1 Introduction ... 55
3.2 Materials and Methods .. 57
3.3 Results and Discussion ... 64
3.4 Validation Tests .. 82

4 Conclusion .. 90
5 References ... 93
6 Appendix: Genetic Aigorithm Matlab Code ... 96

6.1 Main Genetic Function ... 96
6.2 Data Loading Function ... 98
6.3 Amide l Removal Function ... 100
6.4 Baseline or Raw Selection Function ... 101
6.5 Pixel Co-Addition Function .. 102
6.6 Outlier Removal Function ... 103
6.7 Image Smoothing Function ... 105
6.8 Feature Selection Function ... 107
6.9 Image Combination Function ... 109
6.10 Principal Component Analysis Function .. 110
6.11 Cluster Function .. 111
6.12 Reproduction Function .. 112

List of Tables
Table 2-1: Savitzky-Golay Coefficients ... 23
Table 2-2: Distance Measure Example - Sample Data .. 37
Table 2-3: Distance Measure Example - Distances ... 37
Table 2-4: K-Means Example - Sample Data .. 41
Table 2-5: K-Means Example - Euc1idean Distance Matrix .. 41
Table 2-6: K-Means Example - First Iteration Sums ... 44
Table 2-7: K-Means Example - First Iteration Cluster Assignments 45
Table 2-8: K-Means Example - First Iteration Cluster Means ... 45
Table 2-9: K-Means Example - Second Iteration Object A ... 47
Table 2-10: K-Means Example - Second Iteration Object C ... 47
Table 2-11: K-Means Example - Second Iteration Cluster Means 48
Table 2-12: K-Means Example - Third Iteration Cluster Means 48
Table 2-13: K-Means Example - Fourth Iteration Cluster Means 48
Table 2-14: K-Means Example - Fifth Iteration Cluster Means 49
Table 3-1: Training Set - Bacterial Species and Specimens ... 58
Table 3-2: Amide 1 Absorbance Tolerance ... 68
Table 3-3: Baseline Correction Evaluation ... 72
Table 3-4: Baseline Correction Evaluation - Derivative Mutation 72
Table 3-5: Outlier Removal Tolerances vs. Amide 1 Tolerances 73
Table 3-6: Feature Selection Evaluation ... 79
Table 3-7: Principal Component Variance Contributions .. 80
Table 3-8: Validation Test 1 - Bacterial Species and Specimens 84
Table 3-9: Results of Validation Test 1 .. 87
Table 3-10: Results of Validation Test 2 .. 89
Table 4-1: Comparison of Distances to Clusters .. 91

II

List of Figures
Figure 2-1: The Gram-staining procedure .. 5
Figure 2-2: The SUIn ofthree dice being rolled 10,000 times ... 7
Figure 2-3: Multivariate Array .. 9
Figure 2-4: Electromagnetic Waves .. 12
Figure 2-5: Electromagnetic Wave Interference ... 13
Figure 2-6: Fourier Decomposition .. 14
Figure 2-7: The Michelson Spectrometer ... 17
Figure 2-8: First PCA Axis ... 33
Figure 2-9: Distance Measures ... 36
Figure 2-10: Distance Measure Example - Dendrogram ... 37
Figure 2-11: Distance Measure Example - Data Plot ... 38
Figure 2-12: 2-D Cluster Example .. 39
Figure 2-13: K-Means Example - 2-D Variable Plot ... 42
Figure 2-14: K-Means Example - Initial Sample Space Partitioning 46
Figure 2-15: K-Means Example - Final Clusters ... 50
Figure 2-16: Reproduction Stage ofa Genetic Aigorithm .. 54
Figure 3-1: Genetic Aigorithm Flow Chart .. 60
Figure 3-2: Genetic Aigorithm - Fitness vs. Iterations ... 65
Figure 3-3: Flowchart ofSub-Optimal Fitness DNA ... 66
Figure 3-4: Genetic Aigorithm - 3-D Projection of Top Fitness Member.. 67
Figure 3-5: Amide 1 Absorbance Tolerances for Top 50 Fitness Population 69
Figure 3-6: Pixel Utilization Before and After Selection Based on Amide 1 Tolerance .. 70
Figure 3-7: Average Pixel Utilization After Selection Based on Amide 1 Tolerances 71
Figure 3-8: Pixel Utilization Before and After Outlier Removal 74
Figure 3-9: Smoothing Results - Absorbance vs. Wavenumber 76
Figure 3-10: Feature Selection - Absorbance vs. Wavenumber.. 78
Figure 3-11: Number ofInstances of Principal Components in Top 50 Fitness 80
Figure 3-12: Principal Component Weights vs. Wavenumber ... 82
Figure 3-13: Image ofEscherichia coli Sample: Pixel Utilization Before and After
Selection Based on Amide 1 Tolerance ... 85
Figure 3-14: Validation Test 1 - Cluster PloL ... 86

III

Acknowledgements

1 would like to start off thanking my parents - for without them 1 would not be

able to participate in the quality education 1 am privileged to have. My parents along with

my sister have always been there for support, encouragement and understanding with this

endeavor.

1 like to thank two ofmy peers - Mr. Jonah Kirkwood for graciously providing me

with excellent image data, and Mr. Andrew Ghetler for his relentless brainstorming,

continuous input, feedback and revisions.

1 appreciate the love and support of my wife Tanya as well as her understanding

in delaying our honeymoon so that 1 may finish this project. 1 would also like to thank her

for her input, interest and editing revisions.

Working with me to the final hour, 1 appreciate the time and effort of Jacqueline Sedman

for her profession revisions and feedback.

Most of all, 1 would like to express my gratitude to Dr. Ashraf Ismail for his

leadership, guidance and supervision in my research pursuit. His passion and persistence

have been a driving factor in my accomplishment. 1 would also like to express my thanks

to the rest of the food science faculty and McGill University for their resources and

attention.

IV

Abstract

A genetic algorithm was employed to select the optimal combination of pre­

processing variables, including data pretreatment, data manipulation and feature

extraction procedures, for eventual clustering of a data set consisting of hyperspectral

images acquired by a focal plane array Fourier transform infrared (FPA-FTIR)

spectrometer. The data set consisted of infrared images of bacterial films, and the

classification task investigated was the discrimination between Gram-positive and Gram­

negative bacteria. The genetic algorithm evaluated combinations of variables pertaining

to bacterial film thickness tolerances, baseline correction, pixel co-addition, outlier

removal, smoothing, mean centering, normalization, derivatization, integration and

principal component selection. Following numerous iterations of unsupervised

processing, the genetic algorithm arrived at a sub-optimal solution yielding a clustering

accuracy of 97.8% and a data utilization of 28.6%. The results provided insight into the

co-dependencies of the pre-processing variables and their consequential effect on the

selected data. The robustness of the classification model was evaluated and reinforced by

the successful classification of two distinct validation sets. The overall success of the

genetic algorithm suggests that it is an effective time saving resource for the optimization

of pre-processing variables that does not require operator intervention.

v

Résumé

Un algorithme génétique a été employé pour choisir la combinaison optimale des

variables de prétraitement comprenant la préparation des données, le traitement des

données et les procédures d'extraction de traits significatifs afin de grouper des images

hyperspectrales acquises par un spectromètre infrarouge à transformée de Fourier

utilisant un détecteur matriciel au plan focal (FPA-FTIR). L'ensemble de données était

composé des images infrarouges de films bactériens, and la tâche de classification était la

discrimination entre des bactéries gram positif et des bactéries gram négatif. L'algorithme

génétique évalue les combinaisons de variables concernant des tolérances d'épaisseurs de

films bactériens, la correction des lignes de base, l'ajoutement des points, l'enlèvement

des points discordants, le lissage, la normalisation, la dérivation, l'intégration et l'analyse

en composantes principales. Après de nombreux traitements non supervisés, l'algorithme

génétique est arrivé à une solution optimale comportant une exactitude de 97,8% avec

une utilisation des données de 28,6%. Les résultats fournis précisent les interdépendances

des variables de prétraitement et de leurs effets sur les données. La fiabilité du modèle de

classification a été évaluée et renforcée par la classification réussie de deux différents

ensembles. Le succès de l'algorithme génétique démontre le gain de temps pour

l'optimisation des variables de prétraitement sans la nécessité d'un opérateur.

VI

1 Introduction

Modem chemical and spectral analysis techniques are fundamentally based on the

mathematical manipulation of experimental data (Adams, 1995). The term chemometrics

was proposed more that 20 years ago to describe the mathematical manipulation

techniques and operations associated with the interpretation of chemical data. In general,

chemometric analysis is applied to determine either the quantitative composition of a

sample or the qualitative classification of a species (Adams, 1995). It is essential that

analysts comprehend how their data is obtained, modified and transformed to produce the

information that they require.

Chemometrics has played a major role in the development of new analytical

applications of spectroscopie techniques, particularly near- and mid-infrared

spectroscopy, over the pa st few decades. The rapid growth in popularity of these

techniques was triggered by the availability of laboratory computers, which allowed the

large amount of data that these techniques provide to be accessed directly, but this in tum

required the development of means of manipulating these data to extract relevant and

reliable information. The resulting advances in chemometrics as applied to infrared

spectroscopie data have extended the scope of infrared spectroscopie analysis beyond the

traditional realm of chemistry. An example of particular relevance to the research

reported in this thesis is the utilization of infrared spectroscopy in microbiological

analysis (Naumann, 2000).

With continuing advances in instrumentation, such as the development of infrared

imaging technologies, further recourse to chemometrics is needed to han dIe the

increasingly complex tasks of data manipulation. For instance, a Fourier transform

infrared (FTIR) spectrometer equipped with an n x n focal-plane-array (FPA) detector

collects an image consisting of n2 individual spectra, where each spectrum provides

information specific to a particular location in the sample. Analysis of the resulting data,

termed hyperspectral data analysis, is inherently complex, given the impossibility of

visualizing the full spatial and spectral information content of the acquired image on a

three-dimensional plot.

The overall objective of the research presented in this thesis was to determine the

optimum methods of pretreatment, preprocessing and eventual clustering of a data set

consisting of infrared images acquired by a FPA-FTIR spectrometer. The literature

review section of this thesis will present a brief overview of elementary statistics and

infrared spectroscopic acquisition. The discussion will explore several common methods

used to process infrared spectral data, as well as methods of selecting and extracting

spectral features relative to clustering and classification. The literature review will also

address the fundamental theories behind genetic algorithms as a method of evaluating

different combinations of pre-processing variables in order to determine the optimal

combination for data classification.

Chapter 3 will explore and evaluate the use of genetic algorithms to optimize the

combination of data pretreatment, data manipulation and feature extraction procedures to

effectively cluster Gram-positive and Gram-negative bacterial species based on their

spectral profiles. The choice of this data set is related to ongoing research on the potential

utility of FPA-FTIR spectroscopy in the identification ofbacteria (Kirkwood et al., 2004)

but may be regarded as arbitrary in the context of the present study. Data pretreatment

procedures such as co-addition, outlier removal, spectral quality assessments, and

2

baseline correction will be evaluated for their impact on the data clustering. Data

manipulation techniques such as spectral smoothing, mean centering, normalization,

derivatization and integration will also be evaluated. Feature extraction techniques such

as principal component analysis will be tested as weIl. The effectiveness of the genetic

algorithm, in combination with a good fitness function, in selecting the optimal

combination of pre-processing variables will then be evaluated using two independent

validation tests. Overall conclusions of this study will be presented in Chapter 4.

3

2 Literature Review

The popularity of interdisciplinary studies has paved the way to the discovery of

new methods and procedures for chemical and biological studies. The fusion of

mathematics, computer science, and chemistry has given birth to the chemometrics

discipline. In turn, the application of chemometrics in conjunction with infrared

spectroscopic methods of analysis, traditionally associated with the field of chemistry,

has provided new methods for the analysis of biological samples. For example, the

research reported in this thesis was undertaken in relation to the application of infrared

spectroscopy as a tool for the classification of bacteria, and thus the first section of this

chapter documents the microbiological task of Gram-classification. Subsequent sections

reference sorne elementary statistical concepts essential to the comprehension and

implementation of mathematical modeling. The process of spectral acquisition is then

explored as well as the techniques used to manipulate the data, select features and extract

them for purposes of sample classification. The classification technique used in this work

is documented as weIl. Finally, the principles of the functionality of a genetic algorithm

are explained including the reproduction and fitness functions.

2.1 Gram-Taxonomy

The cell wall of a bacterium is perhaps one of its most distinguishing features.

Not only does the cell wall structurally maintain the bacteria but it also helps to maintain

the cell's characteristic shape, counter the effects of osmotic pressure and provide

characteristics for viral susceptibility (UOT, 1995). The composition of the cell-wall is

one of the primary characteristics analyzed in bacterial species differentiation.

4

In 1884 the Danish Physician Hans Christian Gram, developed a procedure for

staining bacteria (Firkin and Whitworth, 1987). This procedure is known today as the

Gram staining procedure. Later, this procedure would become the benchmark for

bacterial classification on the basis of the cell wall permeability.

Gram staining is a relatively simple laboratory procedure as illustrated in Figure

2-1. The procedure consists of obtaining a cultured bacterial specimen and smearing it on

a slide. The slide is then subjected to Crystal violet stain for 10 seconds and rinsed with

water. It is then flooded with iodine for 10 seconds and rinsed again. Immediately the

slide is rinsed with a decolorization solution of 95% ethanol until the thinnest part of the

smear become colorless (Hashimoto and Birch, 1996).

GRAM +

o Fixation

~
Crystal
Violet

~
lodine

treatment

GRAM·

-
~

Decolorization ~ :JI

~
Counter stai n

(safranin) --
Figure 2-1: The Gram-staining procedure

The cell wall of Gram-positive bacteria is relatively thick because it consists of

many layers of the polymer peptidoglycan (VOT, 1995). Therefore, if the bacterial smear

5

is Gram-positive it will retain purple iodine dye complexes after the de-colorization

procedure is complete (Hashimoto et al., 1996).

Conversely, the cell wall of Gram-negative bacteria is relatively thin. The purple

iodine dye vanishes during the de-colorization procedure (VOT, 1995). To identify if

Gram-negative bacteria exist on the sample slide, the smear is flooded with safranin for

10 seconds and allowed to air dry, leaving the Gram-negative bacteria with a pink

colorization as illustrated in Figure 2-1 (Hashimoto et al., 1996).

Today, the classification of unidentified bacteria into Gram-positive or Gram­

negative categories is an essential analytical technique spanning many disciplines.

Physicians can make a presumptive etiologic diagnosis of bacterial meningitis, bacterial

pneumonia, bacteriuria, gonorrhea, and pyogenic infections of the brain, lung, abdomen,

pelvis and wounds or early clinical decisions based on the examination of a Gram stained

smear of infectious material (Hashimoto et al., 1996). Food scientists working with meat

production can develop adequate measures for preventing spoilage and identifying

potentially harmful toxins (Davies and Board, 1998). Microbiologists and immunologists

can determine the adequacy of a specimen for culture and further examination using a

Gram test as opposed to wasting their time and financial resources. (Hashimoto et al.,

1996).

2.2 Statistical Concepts

Any method of chemometric evaluation of spectral data IS derived from

mathematical statistical analysis. For instance, the classification of a sample by

comparison of its infrared spectrum with a standard set of spectra in a pre-recorded

database involves sorne degree of quantitative measure of similarity in order to determine

6

the best match (Adams, 1995). In order to comprehend these methods, it is important to

understand sorne key statistical concepts with pertinence to chemometric analysis.

2.2.1 Gaussian Distribution

The Gaussian distribution is the most important distribution for continuous data

because of its range of practical applications in spectral analysis (Adams, 1995). The

Gaussian function represents the distribution of truly random phenomena. The most

common illustration of a Gaussian curve is rolling several dice many times and recording

the output. The more dice that are rolled, and the more times the dice are rolled, the more

the function becomes continuous and resembles the Gaussian curve as illustrated in

Figure 2-2 (Kowaski et al., 1986).

1500 r-'" , , -"-~ï~~~-~-"r-'-~'~'<-""~"'"'ï"""' ~-~Î~'

1000

500

l ~
1-"'" "-

-i-L V
1

...,... r--.
4 6 8 10 12 14 16 18 20

Figure 2-2: The sum ofthree dice being rolled 10,000 times

The continuous normal distribution (the red line in Figure 2-2) is normally

adjusted so that the area under the curve is equivalent to unity or 1. The equation for the

7

continuous normal distribution is glven by the Gaussian function in Equation 2-1

(Adams, 1995). In practice, however, only a finite number ofsamples exist, and therefore

the Gaussian function is also represented as in Equation 2-2 (Adams, 1995).

Equation 2-1

Equation 2-2

where

f(x) = 1 exp[- (x - ;)2]
a..J(21l-) 20"

1 [-(X-xY] f(x)= ~exp 2
S"I/2Jr 2s

- Ln xX x= 1

n
i=l

n (-)2
s2 = L Xi -X

i=l (n-l)

f(x) is the height of the curve at sorne value x.
J.1, x is the mean or average value of the function.

0"2, S2 is the variance.
0", S is the standard deviation.
n is the total number of samples.
i denotes the individual elements of the set of data.

The standard deviation is a measure from the center or mean of the Gaussian

curve. In practice, less than 1 in 3 of the samples will be greater than 0" distance away

from J.1 or conversely 68.3% of the data wi11lie within 0" distance from J.1 . Less than 1

in 20 will be greater than 20" away from J.1 or conversely 95.5% of the data will lie

within 20" distance from J.1. Less than 1 in 300 will be greater than 30" away from J.1 or

conversely 99.7% of the data will lie within 30" distance from J.1 (Adams, 1995; Burns,

2001).

8

The standard deviation within a data set permits the comparison of the individual

data points. A tighter standard deviation (smaller) therefore signifies a more uniform set

of data.

2.2.2 Multivariate Analysis

Where section 2.2.1 explained the variance of a single component, there is an

increasing emphasis currently being placed on analyzing multi-component (element)

samples and utilizing multiple measures in data analysis (Adams, 1995).

To begin understanding the concepts of multi-component analysis, it is important

to outline the basic nomenclature used to de scribe the data. In general, multi-component

data is referenced in matrix form to facilitate calculation and organization of the data.

Traditionally, data is organized as illustrated in Figure 2-3 (Burns, 2001).

m

n x

Figure 2-3: Multivariate Array

where
X is the data matrix
n is the number of objects or samples
m is the number of variables or components measured
x ij are elements of the data matrix X

A data matrix with only one row is termed a row vector or "r", and a data matrix

with only one column is termed a column vector or "c".

9

2.2.2.1 Covariance

In a mu1tivariate system it is customary not to ana1yze the individua1 variates in

isolation, but to combine them in order to provide as complete a description for the

system as possible. Variables that disp1ay no interaction with any other variables in the

system are referred to as statistically inde pendent; a change in value of one variable

would have no effect on another measured variable (Adams, 1995).

In many cases the variates are not statistically independent. A measure of

interaction between variates is required to begin to interpret the data and characterize the

samp1es. The degree of interaction between variables can be estimated by calculating

their covariances (Burns, 2001).

As variance describes the spread of data about the mean for a single variable,

covariance describes the re1ationship between two variables. The covariance formula in

Equation 2-3 is derived from the variance formula in Equation 2-2 (Adams, 1995).

Equation 2-3

where

n

SPkl = .I(Xik -XkXX il -Xl)
i=1

SPkl
COVkl =-(-)

n-1

Xij is the i th concentration of variate j.

k, 1 are two arbitrary variates to be compared.
SPkl is the corrected (mean centered) sum ofproducts ofvariates k & l.

COVkl is the covariance coefficient between variates k & l.

10

2.2.2.2 Correlation

To estimate the degree of interaction between variables, free from the influence of

measurement units as in the covariance Equation 2-3, the correlation coefficient is

introduced. The correlation coefficient requires that the variance of each variate be

calculated as in Equation 2-2 (Burns, 2001; Adams, 1995). The correlation coefficient in

Equation 2-4 cannot exceed the bounds of + 1 to -1, and is therefore normalized to unity.

Equation 2-4

where

t(Xij -xJ
S 2 = -'.i--,=I--;-_..,....-_

j (n -1)
COVkl rkl =--
Sk • SI

S j is the standard deviation of variate j.

rkl is the correlation coefficient between variant k & 1.

2.3 Spectroscopie Data Acquisition

2.3.1 Introduction

Davis et al. (2001) describe spectrometry as "the detection and measurement of

radiation and its analysis in terms offrequency and energy distribution". Electromagnetic

waves carry information about the sources that generate them. Each time-varying wave is

composed of a frequency, amplitude and phase. Figure 2-4 depicts two waves with

amplitude of one, a frequency of one wave every 2n seconds and a phase difference of

n/2.

Il

1.5,------------------------,

0.5 +-+----\-----\-----+--+-'.--\-----+---+--+-----+---1

~--+_--~--~--~---+--~--~--~ __ --~--~I-P~H11 -Phase 2

-û.5 t-----\r---H----/-----'l---+-+----+---~---I

-1 +---__ "-L-_">..L _____ ----"--"------"-L-____ -----'''-''l

-1.5-'----------------·----------
Time

Figure 2-4: Electromagnetic Waves

The majority of electromagnetic sources do not just generate a uniform wave_

Sources such as the sun generate many waves with an infinite number of frequencies and

amplitudes_ Figure 2-5 portrays an example ofthree waves with different frequencies and

amplitudes. The overlay of the three waves is the sum representing the wave that would

be measured by a wave-detecting device such as a spectrometer. In the case of the sun,

each frequency represents a different color of visible light; when observing the sun, the

observer sees only the sum of aU the waves that resembles a soft yeUow_

12

-Freq2p,Amp2

)~~+---+-+-,fI -Freqp,AmpO.5
Freq pl2, Amp 1

- Sum of waves

-1

-2 +--------+-"+"'-++--------+-''fL--+-!-------I

-3-'--------------------------'

Figure 2-5: Electromagnetic Wave Interference

2.3.2 Fourier Transform

A dispersing element such as a prism may be employed to separate light into its

composite frequencies at different angles, producing a "rainbow" of multicolored bands

in the case of visible light. Altematively, the decomposition of a time-varying wave into

its individual frequencies may be achieved without the use of a dispersing element

through the application of a mathematical algorithm commonly referred to as the Fourier

transform, (Davis et al., 2001). Applying the Fourier transform to the "sum of waves"

plot in Figure 2-5 decomposes the amplitude versus time wave into three waves with

frequencies of 2n, n and n/2 and amplitudes of 2, 0.5 and 1, respectively, as illustrated in

Figure 2-6 (Davis et al., 2001).

For the broad-band radiation sources employed in molecular spectroscopy, the

development of the Fast Fourier Transform algorithm and high-speed computers were

13

essential for high-resolution Fourier transfonn spectroscopy because of the sheer volume

of the data and the complexity of the observed waves (Davis et al., 2001).

-SumofWaves
-f-:J;-. :g-. ..I.~-~-. +-I1.....4---+----+-I--I----+---__~ -Fourier Decomposition

o N

-1~--------~----~----------~----~------~

-2 +---- --+-t---1r+----

-3 ----.-.-.. -.--.--.. -... -.------------.-.---.... --------------

Time 1 Frequency

Figure 2-6: Fourier Decomposition

The algorithm for the Fast Fourier Transfonn or Fourier decomposition of a wave

is explained as follows (Bourke, 1993). Consider the wave to be transformed as a vector

series of data as illustrated in Equation 2-5.

Equation 2-5

where
N is the total number of data points.
Xi is a complex number defined as Xi = x real + jXimaginary.

j is the imaginary number, j = ~.

The Fast Fourier Transfonn of the vector series described by Equation 2-5 will

also have N data points and is denoted X(k), and is described by Equation 2-6.

14

Equation 2-6

X(n) = - Lx(k) exp - } 7m ,for n = O ... N-l 1 N-I [·k2]
N k=O N

2.3.3 Infrared Spectra

Electromagnetic radiation is decomposed into various regions with corresponding

wavelengths. In the case of mid-infrared (IR) spectroscopy, À. is in the range of 2.5 to 25

J.lm. The unit of wavenumber as opposed to wavelength is often used in IR spectroscopy.

It is described as the number of waves per centimeter and conforms to the relationship in

Equation 2-7 (Davis et al., 2001). Typically, IR spectroscopy covers a wavenumber range

of 4000 to 400 cm-1
•

Equation 2-7

v 1
cr=-=-

c Â
where
cr is described as the wavenumber and has the unit cm-1

.

2.3.4 Fourier Transform Spectroscopy

To measure electromagnetic waves, most Fourier transform spectrometers make

use of a scanning Michelson interferometer. The interferometer records the interferogram

of the electromagnetic radiation under examination. The interferogram is then broken

down into its frequency components by applying the Fourier transform as illustrated in

Equation 2-6 (Davis et al., 2001).

Today's interferometers are recognized for their high optical efficiency, no

diffraction losses, high throughput, simultaneous observation of aIl frequencies /

wavelengths, and wide spectral coverage (Davis et al., 2001). In order to comprehend

15

spectroscopic analysis, it is essential to understand the fundamental theory behind the

interferometer.

The process of Fourier transform infrared spectroscopy begins with an infrared

source as illustrated in Figure 2-7. The infrared beam is directed toward an interferometer

that contains a beam splitter, a fixed mirror, a moving mirror and an optical lens. The

beam splitter divides the input source into two beams of equal amplitude. One beam is

directed to the fixed mirror and the other to the moving mirror. The two beams are then

recombined on the optical lens (often the same beam splitter serves as an efficient lens).

The recombined beam is a combination of the two source beams that are allowed to

interfere with each other as a function ofthe moving mirror's displacement.

The output of the interferometer is referred to as an interferogram. The relative

intensity of the interferogram is a function of the path difference, X (Figure 2-7), of the

moving mirror. The intensity of the interferogram energy is measured in units of Watts

per wavenumber or W/cm·1
•

When measuring a sample, the interferogram is passed through the sample being

analyzed. Depending on the properties of the sample, a portion of the optical energy is

absorbed and a portion is transmitted.

The detector is positioned to trap the energy transmitted or reflected, depending

on the spectrometer configuration, and outputs the instantaneous interferogram as an

analog signal. The interferograms collected by the detector are subjected to a Fast Fourier

Transform, which produces a spectrum of energy intensity versus wavelength or

wavenumber, referred to as the single beam spectrum. When the single beam spectrum is

referenced against another single beam spectrum recorded at ambient conditions with no

16

sample present (referred to as the 'background'), the absorbance or transmittance

spectrum of the sample can be calculated.

---------------------~

MOVING

INTERFEROMETER

Figure 2-7: The Michelson Spectrometer

The replacement of the detector shown in Figure 2-7 by an array detector provides

an "infrared image" of the sample. A focal-plane array (FPA) detector works similarly to

a digital camera. As opposed to collecting a single spectrum at a time, imaging

spectrometers collect hundreds if not thousands of spectra simultaneously. Each of the

spectra corresponds to the signal recorded at a single pixel on the FPA. Accordingly, the

spatial resolution of an imaging spectrometer is defined by the field of view divided by

the square of the number of pixels in the array.

17

2.3.5 Spectral Resolution

The c1eanness of an apparatus function and the precision of the wavenumber and

intensity scales and any possible sources of excess noise must be determined to produce a

reliable data set (Davis et al., 2001). The maximum path difference, X, between the

interfering beams in a Fourier transform spectrometer (see Figure 2-7) dictates the

resolution of the instrument. The instrument resolution is determined by taking the

inverse of the maximum path difference as in Equation 2-8.

Equation 2-8

Resolution = _1_
XMA)(

For example, if the maximum path difference of an instrument is five meters (five

hundred centimeters), then the corresponding resolution will be 0.02 cm-Jo Also the

resolution of the instrument can be interchangeably used as the absolute wavenumber

precision of the instrument. Instruments with variable resolution must be utilized

carefully; excessive resolution deteriorates the quality of the signal to noise ratio.

2.3.6 Signal and Noise

Even under the stricte st of experimental conditions, there are always various kinds

of noise generated by the source, electrical and mechanical variations in the environment

or in the spectrometer itself (Davis et al., 2001). Noise is identifiable by sharp spikes,

false spectral lines or other features not predictable by the properties of the incoming

radiation.

Physical noise is generated wh en the interferogram is collected and therefore it is

important to understand the physical aspects when measuring a sample. Varying

18

procedures, processes and events at the instrument will translate into varying noise levels

in the final spectrum (Davis et al., 2001).

The signal to noise ratio is a method of calculating the strength of the signal vs.

the ambient noise as illustrated in Equation 2-9 (Adams, 1995).

Equation 2-9

S / N = average _ signal _ magnitude

RMS Noise

RMS Noise =

where
n is the number of samples present
Xi is the signal

x is the average signal

i=\

n-l

RMS noise can be identified as the standard deviation ((Y) of the noise signal;

therefore, the signal to noise ratio from Equation 2-9 can be redefined by Equation 2-10

(Adams, 1995).

Equation 2-10

S/N=~

where
(Y is the standard deviation of the noise signal.

2.4 Data Enhancement

2.4.1 Reducing Noise

Numerous spectral anomalies including instrumental noise, random and natural

variation in a sample's characteristics and composition as well as atmospheric conditions

make an exact match between two spectra of the same substance almost impossible to

19

obtain; random errors will always exist. This section will explore methods of reducing

noise.

2.4.1.1 Co-Adding Spectra

Signal averaging is a process that is conducted by co-adding individual spectra

(Adams, 1995). Assuming that noise is randomly distributed, signaIs are enhanced

because the signal strength or magnitude grows linearly with the number of scans N.

Equation 2-11

Signal Magnitude oc N = k] N

In a similar fashion, the effects of the variances of noise grow linearly with each

successive scan. RMS noise is equated with the standard deviation (being the square root

of the variance) and therefore the magnitude of noise can be expressed as a function of

the square root of the number of scans. As a result, the signal to noise ratio is increased

linearly in proportion to the square root of the number of scans taken as in Equation 2-12.

Equation 2-12

Signal

Noise

A common practice in infrared spectroscopy is to co-add 100 spectra in order to

receive a 10:1 theoretical enhancement in signal to noise ratio. Co-adding the spectra can

be implemented in the collection stage, or after aIl the samples have been scanned once

each. When using a focal plane array detector, the signaIs recorded by individual pixels

can be co-added to reduce the effect of infrared refraction from pixel to pixel as well as

the overall noise due to imperfections in the super-conductor (Wolsky et al., 1989).

20

2.4.1.2 Smoothing

There are a wide variety of signal-smoothing algorithms available for smoothing

spectral data. The most fundamental of these methods is referred to as the boxcar method

or a mean smoother (Adams, 1995; Beebe et al., 1998).

The boxcar method involves dividing a spectrum into equally spaced segments of

five, seven, nine or eleven points. The centroid of each of these data segments is

ca1culated. The data points in the segment analyzed are then replaced with the ca1culated

value at the centroid location.

The centroid location is determined by calculating the center of mass of the data

points. The interpretation of a value for mass is questionable. Sorne analysts will use a

consistent value of 1 as the mass at any given equally spaced data point. Others will

utilize a formula proportional to the absorbance at the particular data point. Either way,

the general X, Y coordinates of a centroid are ca1culated as in Equation 2-13.

Equation 2-13

where
X is the x-axis (wavelength) location ofthe centroid.
y is the y-axis (absorbance) location of the centroid.
Xi is the given x-axis cordinate of a particular data point i.

Yi is the given y-axis coordinate (absorbance) of a particular data point i.

mi is the given mass of a particular data point i.

Although the boxcar method is an excellent method of smoothing a spectrum, it

increases the distortion of the signal. Subsequently, boxcar smoothing results in a loss of

spectral resolution due to the fewer data points available for analysis (Adams, 1995).

21

The moving average method of smoothing is similar to the boxcar method but

provides a more stable method of maintaining spectral resolution. As opposed to

replacing a series of data points with one centroid data point, the moving average method

replaces each data point with a value averaged from those points surrounding it (Beebe et

al., 1998). For example, if a five point moving average, or running mean smoother, is

performed, data pointx3 is replaced with the average value of data points X p X 2 ,X3,X4

and xs. In tum, data point x4 is replaced with an average value of data points

The mathematical process of implementing a moving average is referred to as a

convolution. As with the boxcar method, convolution is a function of mass. However,

when applying a moving average, the mass at each point is equivalent to unity, or 1. The

formula for applying the convolution is expressed in Equation 2-14.

Equation 2-14

j=-n

(2n + 1)

where
n is the incremental number of points to average in each direction.

Polynomial smoothing extends the concept of a moving average by modifying the

mass vector, such that the mass vector now describes a convex polynomial (Adams,

1995). Without going into detail, it tums out that replacing values of m j with specifie

predetermined constants and performing a moving average is equivalent to calculating a

polynomial function for each increment of data points (n) (Beebe et al., 1998). These

22

constants are referred to as Savitzky-Golay coefficients after their founders and are listed

in Table 2-1.

T bl 2 1 S . k G 1 C ffi· t a e - : aVltz ry- o ay oe lClen s
i/n -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
5 -3 12 17 12 -3

7 -2 3 6 7 6 3 -2

9 -21 14 39 54 59 54 39 14 -21

11 -36 9 44 69 84 89 84 69 44 9 -36

13 -11 0 9 16 21 24 25 24 21 16 9 0 -11

17 -21 -6 7 18 27 34 39 42 43 42 39 34 27 18 7 -6 -21

For example, when applying a five point (n = 2) moving average, the mass vector

is replaced with the following coefficients:

m_2 =-3

m_] = 12

mo =17

m]=12

m2 =-3

One of the disadvantages of running smoothing functions is the so-called "end

effects." When the smoothing function is running on the first few or last few data points,

not enough data points are available to completely smooth the sample (Beebe et al.,

1998). Care must be taken not to put tao much ernphasis on the end data points during

analysis.

2.5 Feature Selection and Extraction

2.5.1 Introduction

Post data collection and data enhancernent and prior ta analyzing the data by

calibration, rnodeling or pattern recognition techniques, it is usual to perform sorne pre-

23

processing of the data. Typically, there are three principal aims in the pre-processing of

the data collected (Adams, 1995).

1. To reduce the amount of data and eliminate data that is irrelevant to the task

being undertaken.

2. To preserve or enhance sufficient information within the data in order to

achieve certain goals.

3. To extract the information in a form suitable for further analysis.

The techniques used to pre-process the data are referred to as feature selection

andfeature extraction. Feature selection is defined as identifying and selecting features in

analytical data that are believed to be important in calibration or pattern recognition.

Feature extraction changes the dimensionality of the data and generally refers to

combining or transforming original variables to provide better new ones. This section

de fines selected commonly implemented methods of feature selection and feature

extraction.

2.5.2 Feature Selection

Various data manipulation techniques are commonly employed to assist in feature

selection. These techniques inc1ude means of accentuating the spectral differences within

a data set and compensating for extraneous sources of spectral variation irrelevant to the

study being undertaken (Adams, 1995).

24

2.5.2.1 Mean Centering

Mean centering is a process used when dealing with a large number of samples.

Essentially, the mean of each variable is subtracted from each of the samples (Beebe et

al., 1998). Data sets are often mean centered to account for intercepts in regression

models (Beebe et al., 1998). Mean centering generally does not hurt data, and often helps;

therefore, many analysts mean center their data as a default. Mean centering is always

recommended when performing routines such as Principal Component Analysis (see

Section 2.5.3).

2.5.2.2 Normalization

Normalization is perhaps the most common form of data pre-processing used

today (Adams, 1995). In its simple st terms, normalization involves scaling spectral data

to a given constant. Normalization is used to remove systematic variation usuaHy

associated with the total amount or thickness of the sample under investigation (Beebe et

al., 1998).

One method of normalization, referred to as normalizing to unit intensity,

involves identifying the absolute highest peak in a spectrum. Subsequently, aH the data

points in the spectrum are divided by the absolute value of the largest peak height (Beebe

et al., 1998).

Normalizing to unit area. termed l-norm normalization, IS accomplished by

calculating a I-norm constant as shown in

25

Equation 2-15, and dividing every point in the spectrum by that constant (Beebe

et al., 1998).

Equation 2-15
n

1-norm = 2:IXjl
j=l

where
n is the number of data points in the spectrum.

Similarly, normalizing to unit length, termed 2-norm normalization, is

accomplished by calculating a 2-norm constant as shown in Equation 2-16, and dividing

every point in the spectrum by that constant (Beebe et al., 1998).

Equation 2-16

2.5.2.3 Baseline Correction

Aside from noise, measured signaIs can also contain low-frequency variations not

related to the sample under study. These components are referred to as baseline features

and can be relatively large if not removed.

The theory of baseline correction is that any sample vector can be written as a

function of x as in Equation 2-17. The function is equal to the sum of the actual signal

plus sorne baseline feature that can be expressed in polynomial form (Beebe et al., 1998).

Equation 2-17

r = f(x) = r + a + f3x + pc2 + &3 + ...
where
r is the signal of interest.

a + px + rx 2 + &3 + ... is a polynomial approximating the baseline feature.

26

By postulating an algebraic model for the baseline as offset, linear or polynomial,

the baseline component ofthe signal can be accounted for by simple subtraction.

An offset baseline correction (i.e. a horizontalline) can be expressed as Equation 2-18.

The baseline can be removed by estimating a value for a and subtracting it from every

element in the vector r. The optimal value for a would be found by selecting a point on

the original vector that is known to contain only background or baseline information. The

average intensity of several baseline variables is often used in order to eliminate the

amount of noise introduced into the sample vector by baseline subtraction.

Equation 2-18

A linearly sloping baseline is quite common in spectroscopy due to wavelength

dependent scattering. Linear baseline correction is expressed as in Equation 2-19. In this

case, a line is estimated and two or more points assumed to contain only baseline

information are required to solve for the baseline constants, a and j3 .

Equation 2-19
r=r+a+j3x

Other functions can also be estimated as long as the reference points selected are

only influenced by the baseline. Ifreference points are chosen poorly, chemical variation

in the data will be removed in addition to the baseline (Beebe et al., 1998).

2.5.2.4 Derivatives

Derivative spectroscopy provides another method of eliminating the baseline

features from a spectrum (Beebe et al., 1998). It also provides a window to analyze data

in a potentially more useful form than the zero 'th order (Adams, 1995).

27

Referring to the baseline equation (Equation 2-17) and taking the first derivative

of the sample vector with respect to the variable x yields Equation 2-20 (Beebe et al.,

1998).

Equation 2-20

dr =r'=r'+0+p+2JX+3&2 + ...
dx

Equation 2-20 reveals that the first derivative has completely removed the offset

feature, a. If the baseline is only comprised of an offset, the other coefficients III

Equation 2-20 would be zero as weIl, and the baseline effect eliminated.

If a more complex baseline exists, then each successive derivative will

successfuIly remove a higher order term as illustrated in Equation 2-21.

Equation 2-21

d2~ =r"=r"+0+0+2y+6&+ ...
dx

As weIl as eliminating the baseline component of the samples, analytical

applications of derivative spectroscopy are numerous and are usuaIly a result of the

higher resolution of the differential data with respect to the original data. Derivative

spectroscopy enhances changes in slope that are typicaIly difficult to extract from their

zero'th order counterparts. The downfaIl of derivative spectroscopy is that it also greatly

increases the effect of noise apparent in the original data. Renee, this limits derivative

analysis to spectra with a high signal to noise ratio and emphasizes the importance of

enhancing the spectral data prior to pre-processing (Adams, 1995).

Several mathematical algorithms exist for differentiating spectral data. AlI of

these methods require the data points to be evenly spaced (in most cases, a given

wavenumber or wavelength interval). In cases when constant data intervals cannot be

28

recorded, techniques such as interpolation must be employed to extract the necessary

data.

The simplest method of computing the first-order derivative is calculated by

Equation 2-22.

Equation 2-22

dy Yi+l - Yi-l =
d}"

where
~}" is the given measurement interval (resolution) of the data.
Yi is the given response (i.e. absorbance or intensity) at a data point i.

Similarly, the second derivative is calculated by Equation 2-23.

Equation 2-23

d
2
y Yi+l -2Yi - Yi-I

d},,2 ~},,2

Various other methods exist for computing the first and second derivative. For

example, using the Savitzky and Golay smoothing techniques outlined in Section 2.4.1.2,

the effect of noise can be significantly reduced with their weighing techniques and a

better approximation can be formed (Adams, 1995). The Savitzky and Golay first-order

and second-order derivatives are described by Equation 2-25

Savitzky and Golay propose the first-order derivative as described by Equations

2-24 and 2-25, respectively.

Equation 2-24

dy 1 () -=-- -2 - + +2 d}" 1 O~}" Yi-2 Yi-! Y i+\ Y i+2

Equation 2-25

29

2.5.2.5 Integration

Integration is naturally the complement to differentiation in mathematical terms.

In its elementary definition, the integral is simply the area under the curve of the

spectrum. Many methods of computing the area under a curve exist. In princip le, they

involve dividing the curve into rectangles or trapezoids in order to estimate the area under

the curve. As the number of data points increases within a given spectrum, so does the

accuracy of such computational algorithms. Although both the rectangular and the

trapezoidal integration method would be applicable to obtain a crude estimate of the

integral, there is a more reliable and better-suited method derived from combining both

the rectangular and trapezoidal algorithms. This method is referred to as Simpsons

Method and is described by Equation 2-26.

Equation 2-26

A. =(x. _x.)(4Yi+O.5 +Yi+1 +Yi)
1+0.5 1+1 1 6

2.5.3 Feature Extraction

In the interest of increased computational efficiency and improved analytical

differentiation, data can be combined linearly to produce new variables. In essence, a

linear combination of variables is represented by replacing two or more correlated

variables with a weighted sum of those variables. This new variable sits on a new axis at

sorne arbitrary angle a from the original axis as outlined in Equation 2-27 (Adams,

1995).

30

Equation 2-27

where

x = a • Xl + b • X2

a 2 +b 2 = 1

a = sin a

b = cosa

Xl and .1'2 are the original variables.
X is the new variable
a and b are the normalized weights.
a is the angle of the new axis.

If a = b = 1I.J2 thena = 45°.

If there is correlation between Xl and .1'2, then the vanance of X will be

significantly greater than the individual variances of Xl and .1'2, respectively. Therefore,

the new variable X contains more useful information than either of the variables Xl and

.1'2.

When dealing with more than two variables, the variance of the new variable can

be described using the covariance or correlation coefficient (as discussed in Section

2.2.2) as described by Equation 2-28.

Equation 2-28

where

n n

sx
2 = LLaj .ak .Covjk

j=l k=l

n n n

S X 2 = La j 2 • S j 2 + L La j • S j • a k • S k • rjk
j=l j=l k= j+l

rjk is the correlation coefficient betweenj and k.

2.5.3.1 Principal Component Analysis

Principal Component Analysis (peA) involves the rotation and transformation of

the original n axes, each representing a variable, to a new set of axes. These new axes

31

provide the maximum level of variance between the variables and ensure that they are

orthogonal (perpendicular) and uncorrelated. Since PCA usually produces a new set of

variables p, where p is always less than n, PCA proves to be a useful technique in

reducing the dimensionality of the sample data (Adams, 1995; Beebe et al., 1998).

PCA functions as an algorithm to seek out the first principal component, or

principal axis that is able to inc1usively reflect the greatest amount of variance in the data.

Once the first principal component is identified, the search continues to find the second

principal component. The second principal component is able to inc1usively reflect the

greatest amount of variance in the remaining data and is completely uncorrelated with the

first principal component. The algorithm repeats until aU of the principal components

have been identified and accounted for (Beebe et al., 1998).

In essence, if two variables with a certain degree of covariance VARI & VAR2

exist, then as discussed in Section 2.2.2.1, the covariance COVVARI ,VAR2 can be determined.

As weU, the variance of each of the variables S~ARI & S~AR2 is known. Ifthe two variances

are plotted on the x and y axes of a Cartesian plane respectively, at a distance equivalent

to the covariance, perpendicular to their axes, then it is easy to visualize the first principal

component. The first principal component is the axis drawn through the center of the

ellipse formed by the origin of the plane (as the center) and the two data points as

illustrated in Figure 2-8 (Adams, 1995)

32

Figure 2-8: First PCA Axis

Mathematically, the first principal component slope is equal to the eigenvector of

the variance and covariance matrix, and the length of the axis is equal to the calculated

eigenvalue for the eigenvector. In the same manner, the second principal component's

slope is equal to the second eigenvector and its length to the second eigenvalue (Adams,

1995).

Principal component analysis is employed extensively in infrared spectroscopy.

The principal component loadings or eigenvectors highlight the weights given to each

spectral point in each of the original spectra. The results of principal component analysis

reduce dimensionality, and therefore, the similarity and differences between samples can

often be better assessed. ConsequentIy, principal component analysis is a comerstone in

chemometric analysis (Beebe et al., 1998).

33

2.6 Pattern Recognition

2.6.1 Introduction

Classification arises from the need to highlight similarities and differences

between samples collected as modem analytical techniques generate large amounts of

both qualitative and quantitative data (Adams, 1995). The purpose of classification is to

derive a mathematical scheme for grouping into classes such that objects within a class

are similar and different from those in other classes.

Supervised pattern recognition or supervised learning requires a training set

where the parent class group of each sample is known. This information can be used to

develop functions suitable for classifying unknown samples.

Unsupervised pattern recognition or cluster analysis consists of classifying a

group of data where no class is known or identified.

2.6.2 Measuring Distances between Objects

Pattern recognition procedures typically begin with the calculation of a matrix of

similarities or dissimilarities between the objects. Similarity and distance between objects

are complementary concepts with no formaI definition. In practice, distance as a measure

of dissimilarity is a much more clearly defined quantity and is therefore more commonly

used in pattern recognition (Adams, 1995).

The first stage of any pattern recognition procedure relies on the proper selection

of a distance measure. It is recommended that clustering techniques be repeated with

different distance measures in order to determine the proper fit for the data at hand.

34

In most applications of cluster analysis, the correlation coefficient used in

similarity measures is too limiting (Adams, 1995). Correlation coefficients are solely a

measure of colinearity between variates and do not take into account non-linear

relationships, or the absolute magnitude of the variates under analysis. Distance measures

are more commonly encountered in cluster analysis because of their accurate

representation of the variates and their ability to be represented mathematically.

However, it is always possible at the end of a cluster analysis to represent the data as a

reverse similarity; the greater the distance between objects, the less their similarity.

Any object is characterized by a set of measures and can therefore be represented

as a point in multivariate space defined by axes. Each axis corresponds to a variate that

describes the object. For example, consider two objects A and Beach described by two

variates on a Cartesian coordinate system. Object A is characterized by vector

a = X 1p X 12 ' and object B is characterized by vector b = X 2p X 22 •

When using a distance measure, the objects close st together are assigned to the

same c1uster. For a distance function to be useful, the following mIes must apply (for

objects A and B only).

(a) d AB Z 0, the distance between all pairs ofmeasurements for object 'A' and object

'B' must be non-negative.

(b) d AB = d BA' the distance measure is symmetric and can only be zero when A = B .

(c) d AC + d BC Z d AB' the distance is commutative for all pairs of points.

35

The most common distance measure is referred to as the Minkowski measure and

is described by Equation 2-29.

Equation 2-29

where
Xi is the value ofthejth variable measured on the i th object.

J

m is a constant related to the metric used.

If m = 1, than the equation is referred to as the city-block metric. The most

common distance measure used is when m = 2 and is described as the Euc/idean distance

(Beebe et al., 1998).

Figure 2-9 illustrates the difference between the city-block and Euclidean distance

measures (Adams, 1995).

dAB (Euclidean) = dl
dAB (city-block) = d2 + d3

d2
A

Figure 2-9: Distance Measures

A suitable distance measure for pattern recognition can now be examined. A

simple example serves to illustrate the principal points. Table 2-2 describes three objects

('A', 'B' and OC') each characterized by five variates.

36

Table 2-2: Dist an ce M easure E xample- s 1 D t ample aa

Xl X2 X3 ~ Xs
A 2.1 5.2 3.1 4.1 2.1
B 2.5 4.0 4.0 4.6 3.5
C 5.1 9.2 7.1 7.0 5.0

Table 2-3 illustrates the tabulated resuIts ofusing the Euclidean distance measure;

in this case the smallest distances are presented in bold face. Figure 2-10 illustrates the

corresponding dendrogram.

Table 2-3: Distance Measure Exam 1 D· t !J!le - IS an ces
A B C

A 0 2.15 7.60
B 2.15 0 7.17
C 7.60 7.17 0

AB C
AC 0 7.38
B 7.38 0

ABC

L-I --L-r-_~ __ ~1-=-2._15_--=------,17.38
Figure 2-10: Distance Measure Example - Dendrogram

It is apparent that different results are obtained when using different measures.

Figure 2-11 illustrates the objects from the sample data set in Table 2-2 plotted with their

variables, and an explanation of the different resuIts is evident. If the variables in the

sample represent trace eIements in a water sample for instance, then samples 'A' and 'B'

are similar with the subtle difference possibly due to experimental error. Sample 'C'

would be from a different source as its elemental concentrations are significantly

different. In this case, the distance metric would be a suitable clustering measure. On the

other hand, if the data represented points in a spectrum, than spectra 'A' and 'C' would

be similar while differing only in scale. Spectrum 'B' would have a completely different

37

profile. In this case the correlation metric would prove to be a sui table method for

clustering. If, however, the spectra had been normalized about the most intense response,

then spectra 'A' and oC' would be closer and the distance metric more meaningful.

10

9

8

7

6

" ..
8 c

0 5
___ 8

<>. ..
........c " rr:

4

3

2

O~--------~~--------~----------~----------~--------~
X1 X2 X3 X4 X5

Variable

Figure 2-11: Distance Measure Example - Data Plot

2.6.3 Unsupervised Clustering Techniques

Figure 2-12 illustrates a visual example of clustering. It is evident from inspection

that there are several ways of dividing the pattern space and producing several different

clusters of objects. There is no single correct result; the success of any clustering method

is dependent on what is being sought, and the intended use of the clustered information.

When class information is known about the data set, it is of interest to compare

this information to the natural classification. The natural clustering might or might not

38

relate to the expected groupings. If the natural clustering does not match the expected

classification, then this indicates a disconnect between the measurements chosen, the data

pre-treatment techniques or the data pre-processing techniques, and the expected results

(Beebe et al., 1998).

Variahle

Variahle 1

Figure 2-12: 2-D Cluster Example

The general algorithm used for applying unsupervised pattern recognition

proceeds in the following manner.

1. The raw pre-processed data characterizing the samples being clustered are

converted to a set of similarity and dissimilarity measures between samples.

2. The aim is to cluster the samples with little separation between samples of the

same class while maintaining separation between different clusters.

When group mg objects together to form a cluster, the cluster itself can be

represented by a typical member of the cluster. A typical member could be an actual

39

object within the cluster, or more commonly an object constructed of the mean variate

values of the objects within the cluster. The between-cluster distance can then be defined

by sorne metric such as the Euclidean distance between these means. The nearest

neighbor distance describes the distance between the two closest members from different

groups. On the other hand, the furthest neighbor distance describes the distance between

the two furthest members from different groups. Further inter-group measures are

obtained by taking the average inter-element measurements between elements in different

groups (Adams, 1995).

When only two or three variables are measured for each object, clusters can

usually be visually identified. As the number of variates increases, visual interpretation

becomes difficult and often clusters are missed. To address this problem, clustering

techniques have been developed and are classified as the fOllowing types (Adams, 1995).

(a) Hierarchical techniques in which objects are c1ustered together to form new

representative objects. The process is repeated at different levels to produce a

dendrogram.

(b) Optimization of the partitioning between c1usters using an iterative algorithm

until sorne minimal change in the clustered groups occurs.

(c) Fuzzy cluster analysis in which objects are assigned a membership function

indicating their degree ofbelonging to a certain c1uster.

2.6.3.1 K-Means Clustering

In order to explain this clustering method, a set of sample data from Adams

(1995) will be utilized. Table 2-4 illustrates 12 samples or objects with two variables

40

each. Table 2-5 illustrates the corresponding Euc1idean distance matrix for this data.

Figure 2-13 illustrates the relationship between the samples based on the two variables.

Preliminary examination of the data graphed in Figure 2-13 reveals a single outlier point

(L) and three distinct groups of data (B,C,D), (A,E,F,G) and (H,I,J,K).

T bl 24 KM E a e - : - eans 1 S 1 D t xample- am pie aa
A B C D E F G H 1 J K L

X1 2 6 7 8 1 3 2 7 6 7 6 2
X2 1 1 1 1 2 2 3 3 4 4 5 6

T bl 25 KM E a e - : - eans 1 E rd D· xample- oc 1 ean Istance M . atnx
A B C D E F G H 1 J K L

A 0.0 4.0 5.0 6.0 1.4 1.4 2.0 5.4 5.0 5.8 5.7 5.0
B 4.0 0.0 1.0 2.0 5.1 3.2 4.5 2.2 3.0 3.2 4.0 6.4
C 5.0 1.0 0.0 1.0 6.1 4.1 5.4 2.0 3.2 3.0 4.1 7.1
D 6.0 2.0 1.0 0.0 7.1 5.1 6.3 2.2 3.6 3.2 4.5 7.8
E 1.4 5.1 6.1 7.1 0.0 2.0 1.4 6.1 5.4 6.3 5.8 4.1
F 1.4 3.2 4.1 5.1 2.0 0.0 1.4 4.1 3.6 4.5 4.2 4.1
G 2.0 4.5 5.4 6.3 1.4 1.4 0.0 5.0 4.1 5.1 4.5 3.0
H 5.4 2.2 2.0 2.2 6.1 4.1 5.0 0.0 1.4 1.0 2.2 5.8
1 5.0 3.0 3.2 3.6 5.4 3.6 4.1 1.4 0.0 1.0 1.0 4.5
J 5.8 3.2 3.0 3.2 6.3 4.5 5.1 1.0 1.0 0.0 1.4 5.4
K 5.7 4.0 4.1 4.5 5.8 4.2 4.5 2.2 1.0 1.4 0.0 4.1
L 5.0 6.4 7.1 7.8 4.1 4.1 3.0 5.8 4.5 5.4 4.1 0.0

41

• .A
.B
AC

• .0
XE
eF

N +G X

-H

+ -1

.J

.K
AL

•

• • •

X1

Figure 2-13: K-Means Example - 2-D Variable Plot

The K-Means algorithm is one of the most popular and widely used clustering

techniques due to its advantage in being applied to relatively large sets of data. K-Means

is an optimization-based technique aimed at partitioning m objects, characterized by n

variables, into K (user specified) number of clusters (Adams, 1995).

The K-Means method relies on reducing the square of the within-cluster sum of

distances. In practice, K-Means cannot be expected to predict the best possible

partitioning of the data as it is only a local optimization algorithm. Local optimum in this

classification method is obtained when no movement of an object from one cluster to

another will reduce the within-cluster sum of squares (Adams, 1995).

A1though severa1 K-Means a1gorithms exist, the Hartigan method is the most

commonly used (Adams, 1995). The Hartigan algorithm requires that a matrix X be

defined with elements Xi,}, where (1 S; i S; m,l S; j S; n).

42

L is defined as an arbitrary cluster and the nurnber of objects residing in cluster L

is denoted RL ; where RL is defined as the total responsibility for the objects residing in

L. The mean value of each variable j from all the objects residing in cluster L is denoted

BL,;,(1 ~ L ~ K); where BL,; is defined as the center of the cluster L (MacKay, 2003).

The distance between the lh object and the center of each cluster is given by the

Euclidean rnetric in Equation 2-30. The error (é) associated with any partition is defined

by Equation 2-31 as the sum of the squares of the distance between the lh object and the

center of the cluster in which the object resides (MacKay, 2003).

Equation 2-30

D. L = ~(x . - B
L

. Î2lli
l, r l,j ,j) J-

Equation 2-31

where
L(i) is the cluster containing the lh object.

The K-means algorithm ai ms to move an object from one cluster to another in

order to reduce the error é and ends when no movement can further reduce é (Adams,

1995). The algorithm is outlined as follows:

(a) Define a number of clusters, K. Initially assign each of the objects i to one of

the clusters. Equation 2-32 is a cornmon method of assigning objects i to

clusters L(i).

Equation 2-32

[(
{

" X . . -MIN" X. Jl L(i) = INT K -1 ~ l,j ~ l,j + 1
MAX" X . - MIN" X .. ~ l,j ~ l,j

j j

where

43

LXi,j is the sum of aU the variables for each object.
j

MIN and MAX denote the minimum and maximum sum values.

(b) Given a number of predefined c1usters, K, and their initial contents, calculate

the c1uster means B L,j and the initial partition error & per Equation 2-31.

(c) For the first object, i = 1, compute the increase in error 11& obtained by

transferring the object from the CUITent c1uster (L(I)) to every other c1uster L,

(2 ~ L ~ K) as defined by Equation 2-33. If the 11& value is negative, the

move would reduce the total partition error, and the object should be

transferred from the initial c1uster to the c1uster L. The c1uster means, BL "
.J

should be adjusted accordingly to compensate for their new populations.

Equation 2-33

(RL(l) XD1,L(l) y
(RL(I))-1

(d) Repeat step (c) for every object in the data space.

(e) lfno object has been moved, then stop; otherwise retum to step (c).

To further iUustrate the functionality of the K-Means algorithm, consider the

example provided (Adams, 1995). The first step involves specifying the number of

c1usters (K) expected, in this example K = 4. The next step requires that each object must

be assigned to an initial c1uster by applying Equation 2-32; the variable sum results are

tabulated in Table 2-6.

Ta bl 26 KM e - : - eans E F' xample - Irst s teration ums
A B C D E F G H 1 J K L

X1 2 6 7 8 1 3 2 7 6 7 6 2
X2 1 1 1 1 2 2 3 3 4 4 5 6

LX. 3 7 8 9 3 5 5 10 10 11 11 8
I,J

j

44

The maXImum and mInImUm variables sums are identified as Il and 3,

respectively, and these values are plugged into Equation 2-32 for object 'A' to produce

the results in Equation 2-34.

Equation 2-34

L(A) = INT{(4 -1)[(3 -3)]} + 1 = 1
(11-3)

The results for each object are tabulated in Table 2-7. It is apparent that objects

(A, E, F, G) are assigned to cluster 1, (B, C, L) are assigned to cluster 2, (D, H, 1) to

cluster 3 and (J, K) to cluster 4.

The next step involves calculating a value for the centers of the clusters. For

cluster 1, the centers are calculated as illustrated in Equation 2-35.

Equation 2-35

B!,! = (2 + 1 + 3 + 2)/4 = 2.00

B!,2 = (1 + 2 + 2 + 3)/4 = 2.00

The centroids of the remaining three clusters are ca1culated in the same manner

and the results are tabulated in Table 2-8, and the initial partitioning of the sample space

is illustrated in Figure 2-14.

Table 2-8: K-Means E xample- F· 1 Irst te ration Cl uster M eans
Cluster Contents Cluster Means

XI X2
1 AEFG 2.00 2.00
2 BCL 5.00 2.67
3 DHI 7.00 2.67
4 JK 6.50 4.50

45

1·······:···········:·::=·====::··········:····:=-············ •• 1

l, ~ 1

; " 1

t .. ~~ ... 1

Figure 2-14: K-Means Example - Initial Sample Space Partitioning

The following step involves the calculation of the overall error for this

classification iteration given by Equation 2-31. The results are shown in Equation 2-36.

Equation 2-36

8=(2-2)2 +(1-2)2 +(6-5)2 +(1-2.67)2 +(7-5)2 +(1-2.67)2

+ (8 _7)2 + (1- 2.67)2 + (1- 2)2 + (2 - 2)2 + (3 - 2)2 + (2 - 2)2 + (2 - 2)2

+(3-2)2 +(7 _7)2 +(3-2.67)2 +(6-7)2 +(4-2.67)2 +(7 -6.5)2 +

(4 - 4.5)2 + (6 - 6.5)2 + (5 - 4.5)2 + (2 - 5)2 + (6 - 2.67)2

= 42.35

Attempts must now be made to reduce the error. The algorithm proceeds by

examining each object in tum, and calculating the effect of transferring that object to a

different cluster. For instance, for the first object 'A', the squared Euclidean distance to

each cluster center is calculated and the corresponding change in error, f..8, is

determined for moving object 'A' from its original cluster to each of the other clusters in

the sample space as tabulated in Table 2-9.

46

Table 2-9: K M - eans E S dIt t'Ob' A xample - econ era Ion IJect

Cluster 1 DA.1
2 = (2.00 - 2.00)2 + (1.00 - 2.00)2 = 1.00

DA.2
2 = (2.00 - 5.00)2 + (1.00 - 2.67)2 = 11.79

Cluster 2
f):,,& = (3)(11.79)/4 - (4)(1)/3 = 7.51

D A.3
2 = (2.00-7.00)2 +(1.00-2.67)2 = 17,79

Cluster 3
f):,,& = (3)(17.79)/4 - (4)(1) /3 = 19.51

DA.4
2 = (2.00 - 6.50)2 + (1.00 - 4.50)2 = 32.50

Cluster 4
f):,,& = (3)(32.50)/4 - (4)(1)/3 = 20.34

Examining the f):,,& values for object 'A' in Table 2-9 indicates that they are aIl

positive; relocating object 'A' to another cluster would only serve to increase the overall

error. Visually examining Figure 2-14 indicates that object 'A' is close st to the center of

Cluster 1, and nothing would be gained by relocating it. This process is repeated for

every object, i. From Figure 2-14 it can be observed that object 'C' would be closer to the

centroid of cluster 3 rather than cluster 2. Table 2-10 illustrates the effect of moving

object 'C' from cluster 2 to each of the other clusters.

Table 2-10: K M - eans E S dIt t'Ob' C xampl e - econ era Ion IJect

Cluster 2 De2
2 = (7.00 - 5.00)2 + (1.00 - 2.67)2 = 6.79

De.l
2 = (7.00 - 2.00)2 + (1.00 - 2.00)2 = 26.00

Cluster 1
f):,,& = (4)(26.00) / 5 - (3)(6.79) / 2 = 3.82

De.3
2 = (7.00 -7.00)2 + (1.00 - 2.67)2 = 2.79

Cluster 3
f):,,& = (3)(2.79)/4 - (3)(6.79)/ 2 = -14.88

De.4
2 = (7.00 - 6.50)2 + (1.00 - 4.50)2 = 12.50

Cluster 4
f):,,& = (2)(12.50)/3 - (3)(6.79)/ 2 = -8.64

Relocating object 'C' from cluster 2 to cluster 3 decreases the overall error by

14.88; therefore, object 'C' can be relocated from cluster 2 to cluster 3, and the overall

system error can be recalculated as shown in Equation 2-37.

47

Equation 2-37

ë = 42.35 -14.88 = 27.47

The new clusters and cluster centers with object 'C' relocated are calculated and

tabulated in Table 2-11.

Table 2-11: K-M eans E s xampl e - econ dl teratlon CI uster M eans

Cluster Contents Cluster Means
Xl X2

1 AEFG 2.00 2.00
2 BL 4.00 3.50
3 CDHI 7.00 2.50
4 JK 6.50 4.50

On the next pass, object 'B' is transferred from cluster 2 to cluster 3. The cluster

populations and their newly calculated centers are tabulated in Table 2-12.

Table 2-12: K M - eans E xample- Th' d It ti CI t M Ir era on us er eans
Cluster Contents Cluster Means

Xl X2

1 AEFG 2.00 2.00
2 L 2.00 6.00
3 BCDHI 6.80 2.00
4 JK 6.50 4.50

On the next pass, object '1' is re10cated from cluster 3 to cluster 4 as tabulated in

Table 2-13.

Table 2-13: K-M eans E F hl xample - ourt teration CI uster M eans

Cluster Contents Cluster Means
XI X2

1 AEFG 2.00 2.00
2 L 4.00 6.00
3 BCDH 7.00 1.50
4 IJK 6.33 4.33

On the next pass, abject 'H' is relocated from cluster 3 ta cluster 4 as tabulated in

Table 2-14.

48

Table 2-14: K M - eans E F1i xample - 1 th Iteration c luster Means
Cluster Contents Cluster Means

XI X2

1 AEFG 2.00 2.00
2 L 4.00 6.00
3 BCD 7.00 1.00
4 HIJK 6.50 4.00

The process is repeated a final time, and no movement of any object between

clusters yields a better result. Figure 2-15 depicts the final cluster arrangement.

Although a value of K = 4 for the number of clusters was arbitrarily chosen,

examination of the data indicates that values for K of 2 or 3 could have been used as weU.

Cluster analysis is not considered a statistical test, and therefore the choice or criteria for

the best results are always at the discretion of the analyst (Adams, 1995).

K-Means clustering is considered a "hard" clustering method; aU of the objects

within a cluster are weighted equally. A borderline object that may rest equally between

two clustering groups will only contribute to the mean of the group in which it was

assigned. Similarly, an outlier may have a drastic effect on the outcome of the K-Means

algorithm (MacKay, 2003).

49

I:~----- .. I
l .e i
i .c ~
i -4 ~i

l ' · i; 1

L_____~ __ ~~_I
Figure 2-15: K-Means Example - Final Clusters

2.7 Genetic Programming

Genetic programming is a technique used to generate and optimize a desired

computational function based on the concepts of Darwinian selection (See: The Origin of

Species on the Basis of Natural Selection, Darwin). An initial random population of

individuals, each encoding a computational function, is generated. The fitness of these

individuals is evaluated and assessed on the basis of obtaining the desired output. New

individuals, or offspring, are produced by mutation (the introduction of one or more

random changes in the composition of the parent individual) or by crossover (randomly

rearranging functional components between two or more parents). The fitness of the new

individuals is then assessed. The individuals from the total population with the highest

fitness level are selected to be the parents of the next generation. The process is repeated

until the desired result is obtained, or the rate of improvement in the population becomes

zero. Research has shown that the genetic method can approach the theoretical optimum

efficiency of a search algorithm (Gilbert et al., 1997).

50

2.7.1 Fitness Function

The fitness Junetion is a measure of the success of evolution for the genetic

algorithm. The fitness function is completely dependent on the goal of the genetic

pro gram. A fitness function is a performance measure, or reward function, and has the

greatest analogy to natural selection (Russell and Norvig, 1995).

Typically, the reward function is an algorithm that takes an individual as input,

evaluates the resuIt of a process versus the desired result, and outputs a real number score

based on the individual's fitness. It is these scores that are assessed when determining the

parents for the next generation.

It is common in genetic algorithms that incorporate other analytical procedures,

such as neural networks, to have a penalty function associated with the fitness function.

In other words, if an extremely large neural network has the same output as a smaller

network, then the smaller one will be assigned a higher fitness function as the larger one

will be penalized at a constant multiplied by the number ofnodes (Gilbert et al., 1997).

Considerations in the evaluation of criteria with a fitness function should incIude

the selection of the training and validation sets of data. By randomly assigning samples to

these two sets on every evaluation, the problem of over-training to any one set is avoided

(Gilbert et al., 1997).

2.7.2 Selection

As the evolutionary process leams via a fitness function, i.e. its rewards are its

offspring, then the genetic algorithm can be seen as a form of reinforcement leaming.

However, no attempt is made to leam the relationship between the rewards or the actions

taken by the agent. Genetic algorithms simply search the sample space with the goal of

51

finding an individual, or individuals, that maximize the fitness function (Russell et al.,

1995).

Genetic algorithms being se arch algorithms, or hill c1imbing algorithms, must

take care not to get stuck on local maxima or minima when attempting to produce the

desired optimum individual. Therefore, individuals with low-scoring fitness functions

cannot be ignored. Typically on a set interval (i.e. every 10 generations), a randomly

selected lower scoring individual is reintroduced into the parent population for the next

generation (Gilbert et al., 1997).

2.7.3 Architecture

Prior to applying the genetic algorithm to a problem, certain questions must be

addressed in order to produce a rugged architecture (Russell et al., 1995):

• What is the fitness function?

• How is an individual represented?

• How are individuals selected?

• How do individuals reproduce?

In the biological genetic makeup, an individual gene is represented by a string of

characters from a finite alphabet (A, G, T, C), where each element of the alphabetic string

represents a nucleic acid (adenine, guanine, thymine, cytosine). In genetic algorithms on

the other hand, individuals are usually represented by the binary alphabet (0, 1). These

bits are represented in a bit string (Russell et al., 1995).

52

Typically, selection strategies are randomized based on the probability of

selection as a function of fitness function. For example, if individual X scores twice as

high as individual Y with the fitness function, then X is twice as likely to be chosen as

the parent for the next generation. The randomized selection process is typically selected

from only the top 30% of the population. Usually, selection is done with replacement,

such that a strong individual will get to reproduce several times.

Reproduction is accomplished by crossover and mutation. The individuals

selected for reproduction are randomly paired. For each pair, a random crossover point is

chosen, and the first part of the first individual (up to the crossover point) is paired with

the second part of the second individual to produce one offspring. Conversely, the second

part of the first individual is paired with the first part of the second individual to produce

the second offspring. However, each offspring gene is subject to a smaU independent

probability of mutation, where a bit is randomly selected and converted from 1 to 0 or

vice versa. Figure 2-16 illustrates the reproduction stage of the genetic algorithm.

The genetic algorithms is typicaUy programmed to stop when the desired fitness

level is reached or the rate of improvement faUs to a low level or a specified number of

maximum generations has been achieved.

53

1101101011 8-32%

1101011111 6-24% 101101111---+1 L...-. __ -'

~10001001 6-24% 11 0 II11I-----Ml L...-. __ -'

1110100011 5-20% 100001001---+1
L.::....:...~-"--.....J

Initiai l
Population

i i
Crossover

i
Mutation Selection

Fitness
Function

Figure 2-16: Reproduction Stage of a Genetic Algorithm

Genetic algorithms are relatively easy to apply to a wide range of analytical

prohlems. On sorne prohlems the results can he excellent, and poor on others.

2.8 Outlier Removal

The presence of outliers or rogue values consistently causes problems for

analysts. Analysts must be able to not only detect outliers but also develop sorne method

of systematically reducing their effects on the end results (Adams, 1995).

A common method for mathematically detecting outliers is to compare the

difference between the observed value and sorne expected, predicted or modeled value

(referred to as a residual). By calculating the standard deviation of an of the residuals in

the data set, and determining a threshold (i.e. a multiple of the standard deviation), then

the sample may be rejected if it fans outside of those conditions (Adams, 1995). If a

sample is rejected, then it can he completely removed and its value discarded.

54

3 Using Genetic Aigorithm to Optimization of Pre­

Processing Variables

3. 1 Introduction

The recent declassification of military technology has made available the infrared

focal plane array (FPA), which has introduced a new dimension of FT-IR spectroscopy

(Woisky, 1989). The FPA allows for geometrical information to be captured together

with spectral information (Van Den Broek et al., 1997). In addition, this newer

technology lends itself to improved acquisition speeds that also add to the allure of this

imaging technique.

The focal plane array consists of thousands of sensing elements or "pixels", each

capable of capturing a complete spectrum (Van Den Broek et al., 1997). With the added

geometric dimensionality, sorne of these pixels may not be collecting spectral

information about the sample under examination. As well, due to the manufacturing

process and quality control sorne pixels, typically less than one percent, may not be

functioning at all and therefore only producing noise. Manufacturing a flawless

superconductor such as a FP A is extremely rare and difficult (Woisky, 1989). Therefore

it is imperative to carefully consider the selection of pixels to be utilized for further

analysis.

Like traditional infrared spectroscopy, infrared imaging has found application in

the classification of samples based on their infrared spectral characteristics. Again,

selection of appropriate pre-processing variables is essential for the development of

55

accurate and reproducible classification models. Classification functions rely on pre­

processing algorithms to enhance the spectral data and to select and extract features

relevant to effective segmentation. Furthermore, pre-processing algorithms help to

amplify the spectral regions essential to the differentiation of one classification group

from another.

The plethora of data contained in the spectral images acquired from a FPA makes

processing computationally expensive. Manual manipulation of pre-processing variables

can be accompli shed based on sorne familiarity with the data and the personal experience

of the analyst (Jarvis and Goodacre, 2004). There are many different pre-processing

algorithms to choose from, making the process of informed trial and error inherently

complex. In sorne cases, researchers will co-add the signaIs from all of the pixels in an

image in order to produce an average spectrum and hence reduce the computational

expense as they attempt to find an ideal processing sequence.

One could identify a selection of pre-processing variables for analysis and then

evaluate every possible combination applied to the training data; however, this would be

computationally exhausting and time intensive. The computational expense is an

exponential function of the size of the data set (Jarvis et al., 2004). In order to explore the

search space efficiently, a heuristic search algorithm can be applied to find sub-optimal

solutions (Russell, 1995).

The aim of this study is to examine the utilization of a heuristic search algorithm,

namely the genetic algorithm, to optimize the segmentation of untreated, raw, infrared

image data acquired from randomly selected foodbome bacterial cultures into Gram­

positive and Gram-negative categories. While the effectiveness of the clustering is crucial

56

to the success of the algorithm, the secondary aim of the study is to utilize the same

algorithm to conserve as much of the original pixel data as possible, while not discarding

them during the data enhancement and selection procedures.

3.2 Materials and Methods

3.2.1 Organism growth, preparation and spectral acquisition

One hundred and eighty-seven previously identified and confirmed foodbome

bacterial cultures were selected and acquired from both Health Canada and the US Food

and Drug Administration (Kirkwood et al., 2004). The cultures were maintained at -86°C.

Prior to spectral acquisition, bacteria were streaked onto Universal Media™ agar plates

(Quelab Inc., Montreal, Canada) and then cultured for 16-18 hours. Bacterial colonies

scraped from the agar plates were then deposited in triplicate, with no pre-treatment or

staining, onto an infrared-transparent ZnSe slide. Each sample occupied an area of

approximately 1 mm2 ,allowing more than 200 samples to be deposited on the same

slide (Kirkwood, 2004). Each slide was allowed to air dry for about 10 minutes in order

to a produce a film for infrared analysis.

Infrared images were acquired in triplicate using a Varian Excalibur (Varian,

Randolph, MA) imaging spectrometer equipped with a UMA-600 infrared microscope

and a liquid-nitrogen-cooled mercury cadmium telluride (MCT) focal-plane-array

detector comprising 32 x 32 (1024) pixels. Using a 15x Schwarzschild objective, the

field of view of the microscope was 176 x 176 ~m. The imaging spectrometer was

constantly purged with dry air to reduce the spectral contributions of atmospheric carbon

dioxide and water vapor. Each image consisted of 256 co-added scans at a resolution of 8

57

cm-l
. Once collected, each Image was divided by a background Image to produce

absorbance values.

Once the samples were cataloged and indexed, a random number generator was

used to randomly select twelve Gram-positive and twelve Gram-negative samples from

the collection to be used as a training set for the classification algorithm. The samples

selected are listed in Table 3-1.

Table 3-1: Tr .. S t B t . 1 S d S ammg e - ac ena ,pecles an specimens
Strain Name Specimen # Culture # Gram-
Klebsiella oxytoca 112 2 Negative
Hafnia alvei 115 2 Negative
Klebsiella pneumoniae 145 2 Negative
Shigella flexneri 165 4 Negative
Escherichia coli 1125-26 2 Negative
Escherichia coli 1156-2 3 Negative
Salmonella berta 804 2 Negative
Salmonella derby 4359 1 Negative
Salmonella derby 4359 2 Negative
Escherichia coli 0157:H7 149 1 Negative
Salmonella heidelberg 3221 1 NeQative
Salmonella heidelberg 3221 2 Negative
Streptococcus xylosus 244 2 Positive
Streptococcus xylosus 244 3 Positive
Clostridium sporogenes 241 1 Positive
Listeria monocytogenes 4404 1 Positive
Listeria monocytogenes 4410 1 Positive
Listeria monocytogenes 4410 2 Positive
Listeria monocytogenes 4426 1 Positive
Listeria monocytogenes 4749 2 Positive
Staphylococcus aureus 251 4 Positive
Listeria monocytogenes 688 3 Positive
Listeria monocytogenes 1116-2 1 Positive
Listeria monocytogenes 1116-2 2 Positive

3.2.2 Constructing the Genetic Aigorithm

The genetic algorithm is the heuristic search algorithm used to sub-optimize the

combinations of pre-processing variables. In order to examine the effectiveness of a

genetic algorithm for the optimization of the segmentation of infrared image data, careful

58

consideration must be made to the variable selection. Because the addition of each

variable to the algorithm increases the computational cost, a group of ten commonly used

pre-processing techniques were selected to be evaluated in this research.

The ten pre-processing techniques are represented digitally by a 27-bit binary

string or DNA series of pre-processing variables as illustrated in Figure 3-1. The 27 -bit

binary string signifies 134,217,728 possible combinations of pre-processing variables.

Although there are many possible combinations, further examination of the flow chart

reveals that sorne pre-processing variables are interdependent. Consequently, there are

only 28,753,920 unique combinations ofpre-processing variables.

The study was authored in Matlab R13 (Mathworks, Boston, MA) and executed

on a personal computer with an AMD Athalon 64 3400+ CPU, 1 gigabyte of RAM. The

operating system was Windows XP Professional x64.

59

1/1
C
o
i
c
:c
E
o
u
CI)

:c
iii
~
D­

CC)
N
....:-....
N

i

GENETIC ALGORITHM FLOWCHART

Figure 3-1: Genetic Algorithm Flow Chart

The first pre-processing variable evaluated during each iteration of the genetic

algorithm is the acceptable absorbance range of the prote in amide l band, which is used

as a measure of sample thickness since all bacterial cells contain protein. Within each of

60

the 24 images selected from Table 3-1 each of the 1024 pixels is evaluated at a

wavenumber of 1650 cm- I with a two-point baseline correction at 1780 cm- I and 980 cm-

1. The first eight bits of the 27-bit binary DNA string represent an acceptable numerical

absorbance range from 0.4 to 1.4 in increments of 0.066. If the absorbance at 1650 cm- I is

outside of the defined range, then the pixel data is discarded.

The second pre-processing variable evaluated is whether to use the baseline

corrected data or the non-baseline corrected data for the future pre-processing procedures

and the eventual clustering. The ninth bit in the DNA string represents a binary on/off

switch. If the value is zero, the non-baseline corrected image data is used. If the value is

one, the baseline corrected image data is used.

The third pre-processing variable evaluated is whether or not to co-add sorne of

the adjacent pixels within an image to reduce the noise. The twelfth and thirteenth bits in

the DNA string represent four possible co-adding solutions. The first is not to co-add the

data at all, and go on to the next pre-processing step. The second through the fourth are to

co-add 2 x 2 (4), 4 x 4 (16) or 8 x 8 (64) adjacent pixels. The new co-added pixels

become the data that is passed on to subsequent procedures. Because only adjacent pixels

are co-added and sorne of the image data was already discarded in the first pre-processing

step, left-over or orphaned pixels are discarded.

The fourth pre-processing variable evaluated is whether or not to remove outlier

data points. The tenth and eleventh bits in the DNA string represent four possible outlier

removal solutions. The first solution is not to remove any outliers, and the data is passed

to the following pre-processing procedure. The second to fourth solutions require that

within each of the 24 images, the remaining pixel or co-added data is averaged and a

61

standard deviation is calculated from the mean. Pixels falling outside 1, 1.5, or 2 standard

deviations are discarded.

The pre-processing variables dealt with up to this point are concemed primarily

with pixel selection. The following pre-processing variables are concemed primarily with

data manipulation and feature selection.

The tifth pre-processing variable is represented in the DNA string by bits fourteen

through seventeen. The tirst two bits dictate if a smoothing algorithm should be applied,

and if so which one. The procedure offers boxcar, mean and Sarvitzky-Golay smoothing

algorithms. The last two bits represent the number of data points to use in conjunction

with the smoothing algorithm (5, 7, 9 or Il). Ifno smoothing is selected, than these two

bits are ignored.

The sixth pre-processing variable evaluated is whether or not to mean center the

data. The eighteenth bit in the DNA string is a binary on/off flag. If the flag is set to on,

the mean of all data is subtracted from each sample.

The seventh pre-processing variable evaluated is whether or not to normalize the

data. The nineteenth bit in the DNA string is the binary on/offflag. If the flag is set to on,

the twentieth bit dictates which normalization method to apply, normalization to unit area

or normalization to unit length.

The eighth pre-processing variable evaluated is whether or not to take the

derivative of the data. The twenty-tirst bit in the DNA string is the binary on/off flag. If

the flag is set to on, the twenty-second bit dictates whether to take the tirst or second

derivative of each of the individual spectra in the data set.

62

The ninth pre-processing variable evaluated is whether or not to integrate the data.

The twenty-second bit in the DNA string is the binary on/off flag. If the flag is set to on,

each of the individual spectra is integrated.

The tenth and final pre-processing variable evaluated prior to clustering is the

selection of principal components. The four bits from twenty-four through twenty-seven

numerically represent a number from zero to fifteen. A value of zero passes the data

without selecting principal components. Values from one to fifteen represent the number

of principal components to pass on to the clustering algorithm.

Once the data has been passed through the pre-processing variable combination

outlined in a particular DNA string, a portion of the data within each image has been

discarded and the remaining pixels have been subjected to manipulation and feature

selection. The remaining pixels are then segmented using the K-means natural clustering

algorithm and the squared Euclidean distance metric. The algorithm is programmed to

restart 5 times and take the best result in order to avoid local minima. The resulting

clusters are compared with the known Gram-positive and Gram-negative classification of

the samples in the training set.

The fitness function scores the accuracy of the iteration by incorporating the

clustering accuracy and the number of remaining pixels after all of the pre-processing has

been accomplished and assigns it a score. For the purpose of this study, the classification

accuracy was assigned a weight of 80% and the pixel conservation (number of spectra at

clustering / number of original spectra) a weight of 20% resulting in a score from 0 to 1.

In the first few iterations of the algorithm, DNA strings are generated randomly.

After fifty iterations have been reached, the results of each iteration are sorted in order of

63

their fitness function score. New DNA strings are created by asslgnmg exponential

weight to the higher scoring DNA strings and selecting two existing DNA strings to

become the parents of the subsequent generations. The two selected parents are then split

at a random bit and cross-bred to produce two unique children. At random occurrences, a

genetic mutation will be randomly applied to one of the children. In sorne iterations a

single parent may be bred with a randomly generated parent. The frequencies of the

random mutations and random parent introductions are less than 5% of the time. Each

generation produces two offspring DNA strings. The DNA strings are then subjected to

the algorithm evaluated by the fitness function and assigned a place within the

population.

3.3 Results and Discussion

3.3.1 Overview: Arrivai at Sub-Optimal Solution

The data from the infrared images in Table 3-1 were input into the genetic

algorithm and it was allowed to run. Each iteration of the algorithm increased in fitness

until a sub-optimal solution was discovered after 316 iterations as illustrated in Figure

3-2. Each iteration took on average 76 seconds to execute. The sub-optimal solution was

discovered in approximately six hours and 40 minutes ofunsupervised processing.

64

..
:;
S
;;:

50 100

Fitness YS. Heration

150 200

Iteration

Figure 3-2: Genetic Algorithm - Fitness vs. Iterations

250 300 350

The linear regression line superimposed on the data in Figure 3-2 illustrates the

increase in fitness, or optimization of pre-processing variables with respect to the number

of iterations for this particular data set. The sub-optimal solution represents a fitness

score of 84.0%. The majority (80%) of the fitness score is comprised of the 97.8%

accuracy achieved for the clustering of the data for the Gram-positive and Gram-negative

samples and the balance (20%) is comprised of the utilization of 28.6% of the available

data (7,029 data points). Figure 3-3 illustrates the processes determined by the sub-

optimal solution.

65

TOP FITNESS FLOWCHART

No Co-Addition

No Outlier Removal

Figure 3-3: Flowchart of 8ub-Optimal Fitness DNA

66

18

16

14

12

10

6

2

o

Figure 3-4: Genetic Algorithm - 3-D Projection of Top Fitness Member

Figure 3-4 is an illustration of the clusters projected in three-dimensional space.

The crosses represent the centroid of each cluster. The red dots represent correctly

classified pixels in the images of the Gram-negative samples while the green dots

represent correctly classified pixels in the images of the Gram-positive samples. The blue

dots represent incorrectly classified pixels.

F ollowing iteration 316 where the sub-optimal solution was identified, the

algorithm was allowed to continue until it reached 2,100 iterations. The 2,100 Ïterations

represent 0.0073% of the possible unique combinations of pre-processing variables.

Although the maximum fitness was discovered at iteration 316, it did not

correspond to the maximum clustering accuracy. Iteration number 1,885 revealed a

nearly perfect classification accuracy of 99.8% as opposed to the sub-optimal value of

67

97.8%. The difference in the fitness score is attributed to the 20% weight of the number

of data points used. Iteration 1,885 utilized 3,293 data points to build the classification

model while the sub-optimal fitness utilized 7,029.

Efforts were made within the genetic programming to avoid local maxima within

the state space by introducing randomized strings and mutations (Russell, 1995).

Undoubtedly when exploring such a massive state space with such a limited numbers of

iterations, DNA generations are likely to converge on a sub-optimal solution with similar

attributes.

3.3.2 Acceptable Amide 1 Absorbance Range

The top fitness performer utilized an acceptable amide l tolerance range of 0.4 to

1.0 absorbance units with the two four-bit DNA segments in Table 3-2. Each of the eight-

bit strings represents two four-bit absorbance boundaries. The pre-processing module

ensures that the boundaries are utilized in numerical order. The acceptable absorbance

range pre-processing module interprets the four-bit binary strings by converting them to

their decimal value, multiplying the number by 6/90 and adding 0.4.

Table 3-2: Amide 1 Absorbance Tolerance
Boundary:
Segment:
Value:

1
0000
0.4

2
1001
1.0

Examination of the top fitness performers in the population reveals relevant

information pertaining to the data set. The acceptable amide l ranges for the top fifty

fitness performers of the population are plotted in Figure 3-5. The top seven performers

aU share the same amide l range of 0.4 to 1.0. The majority of the top performers have a

tolerance range that begins at 0.4 and ends at 0.8.

68

50
49-
4e-
47
46
45
44
43
42
41
40-
39-
38-
37-
36
35
34
33
32-
31-

c30-
.5:!29-
:!::28-
11127-
~26=
111 25
11124-
\1)23-
.522-
Ü:21-

20-
19
1e-
17-
1S-
1S-
14
13
12
11
10
9
8-
7-
6
5-
r
3
2
1

0.000 0.200
T

0.400
T

0.600
Amide 1 Range

Figure 3-5: Amide 1 Absorbance Tolerances for Top 50 Fitness Population

0.800 1.000
1

1.200

69

At 1,024 pixels per image and 24 images, the initial data set comprised 24,576

individual spectra. Once subjected to the boundary values of this pre-processing module,

the number of retained pixels in the sub-optimal solution dropped to 7,029 - discarding

71.4% of the original pixels. Figure 3-6 iUustrates the pixel usage of the Escherichia coli

image before and after pixels outside the boundary values were discarded.

Figure 3-6: Pixel Utilization Before and After Selection Based on Amide 1 Tolerance

There can be several explanations for the selection of these particular boundary

values by the genetic algorithm. One such is that the sample material is not uniform on

the slide. Areas where there is no smear at aU would exhibit a uniform absorbance of

approximately zero when the ratio was taken against a background. These pixels, not

containing any useful data, would be exc1uded from the c1ustering algorithm. Similarly,

any areas on the slide with extraneous material would not give rise to absorption of

infrared energy at the wavenumber used to measure the amide 1 band. In contrast, in areas

where the smear was excessively thick, causing ma st of the infrared energy ta be

absorbed, the spectral data would not be suitable for analysis.

Another potential contributor to the large amounts of data rejection may be the

non-uniformity of the quantum sensitivity of the focal plane array from pixel to pixel

70

(Rainieri and Pagliarini, 2004; Davis, 2001; Adams, 1995). The particular boundary

values selected by the genetic algorithm may correspond to the range of linear response.

Dead pixels producing only random noise would probably faH outside of this tight

tolerance range as weH. Figure 3-7 is a contour map representing the sum of the instances

of each pixel after being subjected to the amide 1 absorbance tolerances. The darkest blue

color patterns represent pixels that were rejected in aH of the 24 images. These pixels are

probably the most likely candidates to be non-uniform or malfunctioning.

Figure 3-7: Average Pixel Utilization After Selection Based on Amide 1 Tolerances

3.3.3 Use of Baseline Corrected Data

The top fitness combination of pre-processing variables as weIl as the 49 runner­

ups retained the raw data for processing as opposed to the baseline corrected data used to

determine the amide 1 absorbance.

71

ln order to verify that this was not solely due to a local maximum in the state

space, the genetic DNA of the first sub-optimum solution was mutated by switching the

ninth bit from 0 to 1 as illustrated in Tablo 3.3-2. This caused aIl further processing and

clustering to be applied to the baseline corrected data as opposed to the raw data. When

the baseline corrected data was use d, the clustering accuracy dropped from 97.8% to

60.4%. This reduction in performance could be due to the combined use of the first

derivative and the baseline correction causing essential identification features to be lost

(Beebe et al., 1998).

Table 3-3: Baseline Correction Evaluation

~riginal DNA 011101011001110000 0 00001001
~odified DNA 1 011101011001110000 1 00001001

To test this possibility, the DNA string was altered once again to remove the

derivative processing function as illustrated in Table 3-4. This instance produced an even

further drop in clustering accuracy to 57.9%. Therefore, a local maximum in the state

space did not dictate the arbitrary selection of the first derivative over the baseline

correction pre-processing variables.

Table 3-4: Baseline Correction Evaluation - Derivative Mutation

Modified DNA 1 01110 1 011001110000 0 00001001
Modified DNA 2 01110 0 011001110000 1 00001001

Although the baseline corrected data is essential for evaluating the response of the

amide 1 band, it is detrimental to the accuracy of the model for the sub-optimum

classification solution.

3.3.4 Co-Addition of Pixels

None of the top 50 fitness DNA strings exhibited any pixel to pixel co-addition.

Given the tight tolerances of the amide 1 absorbance response, the image pixels were

72

sparsely dispersed throughout the image as illustrated in Figure 3-6, which shows the

pixel usage in the image of Escherichia coli. In sorne of the sample images, even

attempting to co-add 2 x 2 adjacent pixels would be impossible, thereby eliminating the

image from the clustering set. For future research, it may be beneficial to attempt to

construct a genetic algorithm that would execute a co-addition module prior to evaluating

acceptable absorbance ranges.

3.3.5 Outlier Removal

The genetic algorithm sub-optimized with not removing any outlier pixels. This

stood true for the top seven fitness members of the population that also shared the same

amide I absorbance tolerance of 0.4 to 1.0 absorbance units.

When examining the balance of the fifty top fitness combinations, it is apparent

that there is a direct correlation between the acceptable amide I range and the tolerance

for outlier removal. Table 3-5 illustrates the outlier tolerance selected by the genetic

algorithm with reference to the acceptable amide I range.

Table 3-5: Outlier Removal Tolerances vs. Amide 1 Tolerances

Amide 1 Ran2e Outlier Tolerance
0.400 1.000 No outlier removal
0.400 0.867 > 1.5 Standard deviations
0.400 0.667 No outlier removal
0.400 0.800 > 1.5 Standard deviations
0.400 0.733 > 1 Standard deviations
0.467 0.800 > 1 Standard deviations

As the amide I tolerances were reduced and therefore limited the number of

useable pixels, the outlier tolerance increased as weU, resulting in the elimination of even

more data. As the amide I tolerance is narrowed, the remaining pixels are more similar to

one another than when the tolerance is greater. Because of the increased similarity and

73

the decreased number of data points, a higher outlier removal rate would even further

increase the similarity between the remaining pixels and as a result produce a

significantly higher c1ustering accuracy.

To examine the influence of a different outlier removal, the sub-optimal DNA

string was modified to remove all outliers beyond only one standard deviation. The

hypothesis is that this modification would result in the use of fewer pixels but increase

the overall c1ustering accuracy. When this genetic code was executed, an additional 765

pixels were discarded, and the accuracy dropped to 67.5%. It is difficult to explain this

phenomenon. It is possible that those pixels contained sample data essential to creating

accurate c1usters. Because the sample points sat beyond 1 standard deviation away from

the mean, it is a justified argument to assume that they also were positioned at the

furthest points of the c1usters. Being located so far apart would further force the c1uster

centers to be separated by a greater distance, resulting in increased c1ustering accuracy.

Figure 3-8 illustrates the Escherichia coli image before and after pixels were removed

with the outlier tolerance of one standard deviation.

1
Figure 3-8: Pixel Utilization Before and ACter Outlier Removal

74

The pre-processmg module charged with outlier removal has four possible

functions including no outlier removal and removal of outliers beyond one, one and a half

and two standard deviations from the mean. Examination of these results confirms that

the outlier removal variable plays a significant role in the selection and conservation of

spectral data for the eventual clustering accuracy of the data set. Future research would

dictate that more increments for the outlier threshold to be optimized during the genetic

algorithm search.

3.3.6 Smoothing

The DNA segment for the smoothing module exhibited a consistent and definite

solution for all of the top fifty fitness performers. In every instance, the boxcar smoothing

algorithm was applied with eleven smoothing points. As illustrated in Figure 3-9, the

smoothing algorithm reduced the number of data points in each spectrum from 792 to 71

and smoothed the fluctuations within the signal. While the original image represented a

data range of approximately 4000 cm-I to 950 cm-l, the smoothed image only represents a

data range of approximately 3939 cm-1 to 968 cm-1 due to the end effects of the

algorithm.

75

Original Spa cIra
0.6

0.5

0.4

0.3

0.2

0.1

3500 3000 2500 21lXJ 1500 1000

Smoolhed Speclra
0.6

0.5

0.4

0.3

0.2

0.1

0

---------0.1
4000 3500 3000 2500 2000 1500 1000

Figure 3-9: Smoothing Results - Absorbance vs. Wavenumber

In order to examine whether the smoothing method applied was due to a local

maximum in the state space, the DNA strain was modified to execute the mean

smoothing algorithm with eleven data points. This yielded a clustering accuracy of

65.4%. The strain was modified again to use the Savitzky-Golay method with eleven data

points as weIl. This method yielded a clustering accuracy of 64.0%, which was

significantly less than the sub-optimal solution. As the effects of Savitzky-Golay

smoothing are similar to those of performing the first derivative, the DNA strain was

modified again to remove the first derivative function. In this scenario, the clustering

accuracy dropped to 51.4%.

76

To examine the effects of the number of data points used for smoothing, the

procedure was repeated using the boxcar method with five, seven and nine data points. In

these scenarios the clustering accuracy dropped to 61.2%, 67.9% and 63.9%,

respectively. To examine the influence of smoothing, the algorithm was executed without

applying any smoothing and resulted in a clustering accuracy of 64.9%.

In the state space where the sub-optimum solution is found, smoothing is an

important step for noise reduction (Adams, 1995). The selection of the boxcar method

ensures that the signal distortion caused by the smoothing algorithm is kept to a minimum

while the number of smoothing points ensures that an adequate amount of signal noise is

removed (Beebe et al., 1998). The Savitzky-Golay method inappropriately assigns

weights to the smoothing points and over-distorted the signal. Yet, the derivative of the

spectra remains important for proper classification.

3.3.7 Feature Selection

The feature selection processes are the functions that highlight the attributes to

facilitate accurate clustering (Beebe et al., 1998). Of the available feature selection

algorithms (mean centering, I-normalization to unit area, 2-normalization to unit length,

first derivative, second derivative and integration) the sub-optimum solution applied the

2-normalization and the first derivative. The normalization algorithm usually helps to

compensate for differences in the sample volume (Beebe et al., 1998). The 2-

normalization method normalizes each individual spectrum to unit length. Therefore, any

variations in sample thickness during the sample preparation are compensated for by this

algorithm (Adams, 1995). Of the top fifty fitness species, only fourteen used 1-

normalization as opposed to 2-normalization. The rest of the feature selection variables

77

remained consistent. Figure 3-10 illustrates the effect of the se two feature selection

criteria on a sample spectrum.

Smoothed Spectra
0.6

0.4

0.2

0

-Oiooo 350] 3000 2500 2000 1500 1000

Normalized Spectra (2-Norm)
0.6

0.4

0.2

0

-01000 3500 3000 2500 2000 1500 1000

First Derivative Spectra
0.06

0.04

0.02

0

-0.02

-0.04
4000 3500 3000 2500 2000

Figure 3-10: Feature Selection - Absorbance vs. Wavenumber

The first derivative typically reduces the effects of baseline fluctuation (Beebe et

al., 1998). As discussed in Sections 3.3.3 and 3.3.6, the first derivative performed better

than both the baseline corrected data and the Savitzky-Golay smoothing algorithm. The

first derivative is independent of base li ne corrections. There is no need to select a

reference point or line in order to calculate the correction on a spectrum by spectrum

basis. Therefore, the effects of spectral drift, or incorrectly choosing the baseline

references, are not pertinent when performing the first derivative.

78

In order to ensure that none of the other feature selection protocols were

overlooked due to local maxima in the state space, the DNA sequence was modified in

the permutations listed in Table 3-6 to evaluate the influence of the other feature selection

options on the top fitness species. While it would be lengthy to explore all combinations

of feature selection protocols, it is apparent that the optimal feature selection criterion is

in fact only the combination of normalization to unit length and taking the first

derivative.

Table 3-6: Feature Selection Evaluation

riginal DNA
ean Centering
o Normalization

1-N ormalization
0111 0 1
0011 0 1
0011 0 1
0011 1 1

~L--JL-.J---l

Accuracy

01110000000001001 97.8%
01110000000001001 52.7%
01110000000001001 62.4%
01110000000001001 57.8%
01110000000001001 55.6%
01110000000001001 60.8%

After accounting for the success of the normalization and first derivative, it is

difficult to explain the inadequacies of the other feature selection processes within the

state space. The negative effect of the mean centering could possibly stem from a

combination of other pre-processing variables already compensating for the intercept of

the data, and this algorithm over-compensating (Beebe et al., 1998).

Future considerations for this data set would be to remove the mean centering and

integration variables to accelerate the search for a sub-optimal solution and allow for the

computational expense to be spent on other pre-processing variables.

3.3.8 Principal Component Analysis

The sub-optimum fitness species utilized seven principal components to describe

the data and accounted for 96.73% of the variance in the data. Table 3-7 illustrates the

79

variance accounted for by each of the principal components. Figure 3-11 illustrates the

number of times within the top 50 fitness DNA strains that a number of principal

components were utilized. It is apparent from the graph that the majority of the top

performers utilized five to eleven principal components.

9.---------------

8

7

6

3

2

o+---~-~-~

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Principal Components

Figure 3-11: Number of Instances of Principal Components in Top 50 Fitness

Table 3-7: Principal Component Variance Contributions
Principal

Variance
Component
1 76.86%
2 12.21%
3 2.23%
4 2.14%
5 1.69%
6 0.96%
7 0.64%

80

To evaluate the sub-optimum solution, the DNA was altered to allow for only

three principal components accounting for 91.30% of the variance in the data. This

solution resulted in a clustering accuracy of 91.6%. Moving in the other direction, the

DNA was altered to use eleven principal components accounting for 98.4% of the

variance. This solution yielded a clustering accuracy of 97.5%.

Using aIl of the data and no principal components yielded a clustering accuracy of

64.0%. In conjunction with increasing the number of principal components, it is apparent

that a signiticant portion of the remaining data has a negative effect on the clustering

accuracy, whereas using only a few principal components does not account for enough of

the variance to accurately cluster the data

The plots of the linear weights of each of the seven individual principal

components as weIl as their scaled by variance sum are illustrated in Figure 3-12. The

knowledge that these seven principal components produce the most accurate clustering of

the sample data helps to determine the spectral regions where the pertinent data is

contained. Examination of the plot of the scaled sums of the tirst seven principal

components yields two distinct spectral regions where the majority of the principal

component weighting is applied. The tirst region lies between approximately 3684 cm-J

and 2750 cm-J while the second region lies between approximately 1817 cm-J and 1053

cm-Jo

81

Firs! Principal Componen! • 76.66% of Variance

0.5
11

~:~, ,
4000 3500 3000 2500 2000

Third Principal Component • 2.23% of Variance

Fifth Principal Component • 1.69% of Variance

0:[

~2ooo'---3500-'-' --3000--"--2500-'-' --2000-'-' --I-'SÜO'----',000

,.: f ,~""'"""'''~~M. -"" mV,",""

-OroOo 3sOO 3000 2500 20ffi 1000

':Isecond Principal Component ·12.21% of Variance

.0.5.~ ",
4000 3500 3000 2500 2000 1500 1 000

Fourth Principal Component - 2.14% of Variance

Sixth Principal Componen! • 0.96% of Variance

] , , .. ,

4000 3500 3000 2500 2000 1500 1000

Scales Sum of Principal Components

"f .:=::
4000 3500 3000

,

1500
,

1000
,

25Ill
,

2000

Figure 3-12: Principal Component Weights vs. Wavenumber

It is evident that the pertinent data is contained in the second region from 1817

cm-1 to 1053 cm-1
, In independent research on the entire data set of 200 samples,

Kirkwood found that the region of 1770 cm-1 to 970 cm·1 contains the majority of the

information required to c1uster Gram-positive versus Gram-negative samples (Kirkwood,

2004). Due to the end effects of the smoothing algorithm, the leading data points were

removed and hence we can conc1ude that the regions are almost identical (Adams, 1995).

3.4 Validation Tests

The successful sub-optimization of the pre-processing variables by the genetic

algorithm separated the Gram-positive and Gram-negative bacterial samples in the

82

training set into segregated clusters. To test the reliability of this clustering model, and

hence the appropriateness of the pre-processing variables se1ected, two validation tests

were performed with samples not included in the training set. In the first validation test,

replicate samples of the specimens included in the training set were classified.

Subsequently, a second validation set consisting of other bacterial specimens was tested.

ln both cases, the infrared images of each of the selected samples were subjected to the

pre-processing procedures determined by the sub-optimal solution obtained with the

training set. The image data were thus treated as follows. Each of the images was

baseline corrected using a two-point baseline at 1780 cm-J and 980 cm-Jo Using the

baseline corrected data, the amide 1 absorbance band at 1650 cm-J was measured. Any

pixels with an amide 1 absorbance outside the range of 0.4 to 1.0 absorbance units were

removed from the images. No pixel co-addition or outlier removal was performed. A

boxcar smoothing algorithm was then applied to the raw (non-baseline corrected) data

using eleven smoothing points.

As far as feature selection is concemed, no mean centering was performed. Each

pixel within the image was subjected to a normalization (2-Norm) procedure. Following

the normalization, each individual spectrum was converted to the first derivative. There

was no integration of the pixel data.

For feature extraction, the first seven principal components were calculated, using

the weights calculated from the original training set. Once the principal components were

calculated, the distances to the centers of the two clusters found in the training set were

calculated on a pixel-by-pixel basis and used to determine the Gram-classification. The

83

squared Euclidean distance metric was used as it was the metric applied in conjunction

with the K-means clustering algorithm within the genetic algorithm.

3.4.1 Validation Test 1

Each of the 19 specimens included in the training set had been cultured three

times, yielding a total of 57 samples for which infrared images were acquired. As shown

in Table 3-1, the training set included duplicate samples of 5 of the 19 specimens. For

validation of the Gram classification model developed using this training set, 19 other

samples among the set of 57 samples were selected. These samples are tabulated in

Table 3-8.

Tabl 38 V rd e - : al atIon est -T 1 B actena ipecles an . 1 S dS ipeclmens
Validation

Training Set Set
Strain Name Specimen # Culture(s) # Culture # Gram-
Klebsiella oxytoca 112 2 1 Negative
Hafnia alvei 115 2 1 Negative
Klebsiella pneumoniae 145 2 3 Negative
Klebsiella pneumoniae 165 4 2 Negative
Escherichia coli 1125-26 2 4 Negative
Escherichia coli 1156-2 3 1 Negative
Salmonella berta 804 2 4 Negative
Salmonella derby 4359 1,2 3 Negative
Escherichia coli 0157:H7 149 1 2 Negative
Salmonella heidelberg 3221 1,2 3 Negative
Streptococcus xylosus 244 2,3 1 Positive
Clostridium sporogenes 241 1 2 Positive
Listeria monocytogenes 4404 1 2 Positive
Listeria monocytogenes 4410 1,2 3 Positive
Listeria monocytogenes 4426 1 2 Positive
Listeria monocytogenes 4749 2 3 Positive
Staphylococcus aureus 251 4 3 Positive
Listeria monocytogenes 688 3 2 Positive
Listeria monocytogenes 1116-2 1,2 3 Positive

The infrared Images acquired for these samples were subjected to the pre-

processing variables selected by the genetic algorithm. Following the removal of the

84

pixels outside of the acceptable amide l range of 0.4 to 1.0 absorbance units, 6,037 of the

original 19,456 pixels remained for classification purposes. Figure 3-13 illustrates the

remaining pixels in the image for the Escherichia coli sample after the amide l

absorbance tolerance was evaluated.

• 1 •
•

•
•

-~.~~ ~ .. _~ ... _ ... ~!
Figure 3-13: Image of Escherichia coli Sample: Pixel Utilization Before and After Selection
Based on Amide 1 Tolerance

Boxcar smoothing was then applied with Il points followed by normalization and

the first derivative. Following the initial pre-processing treatments, the seven principal

component weights from the sub-optimal genetic algorithm solution were applied to each

individual spectrum. The principal components were projected onto a three dimensional

plane and superimposed on the original clustering data resulting from the genetic

algorithm. Although it is difficult to visualize the complete dimensionality of the data, it

is apparent in Figure 3-14 that the validation data falls within the boundaries of the data

for the training set. The image centers of the validation data are represented by the o's in

the image while the +'s represent the cent ers of the original training set clusters.

85

,.

Figure 3-14: Validation Test 1- Cluster Plot

In order to determine the classification of the samples in the validation set, the

distances between the centers of each image and the centroids of the original clusters

produced by the genetic algorithm were measured and the sample was classified based on

the shortest center-to-centroid distance. This procedure resulted in 100% accurate

classification of the samples in the validation data set as Gram-positive versus Gram-

negative.

In order to determine the confidence level of the classifications, the spectral

distance to the centroids of the Gram positive and Gram negative clusters was measured

for each pixel in each of the images of the validation set. The percent confidence was

calculated as the number of correctly classified pixels, based on closer proximity to the

Gram positive or the Gram negative cluster, divided by the final number of retained

pixels in the image as illustrated in Table 3-9.

86

Table 3-9· Results of Validation Test 1
Culture Final # # Pixels % Distance

Strain Name # Pixels Correct Confidence Gram- to Cluster
Klebsiella oxytoca 1 463 463 100% Negative 1.8491xlO-s

Hafnia alvei 1 94 94 100% Negative 2_5750xlO-s

Klebsiella pneumoniae 3 301 301 100% Negative 1.0883xlO-s

Shigella flexneri 2 401 284 70_8% Negative 33588xlO-s

Escherichia coli 4 154 107 69BYo Negative 2_7111xl0-5

Escherichia coli 1 172 171 99-4% Negative 2J244xlO-5

Salmonella berta 4 26 21 80_8% Negative 5_3104xlO-s

Salmonella derby 3 109 96 88_1% Negative 2_9155x 10-5

Escherichia coli 0157:H7 2 136 134 98.5% Negative 5_7953xl0-6

Salmonella heidelberg 3 585 585 100% Negative 13862 xlO-5

Streptococcus xylosus 1 369 369 100% Positive 1.5291 x 10-5

Clostridium sporogenes 2 484 484 100% Positive 2.0286xlO-5

Listeria monocytogenes 2 312 312 100% Positive 4J 102xlO-5

Listeria monocytogenes 3 430 430 100% Positive 2.7379xlO-5

Listeria monocytogenes 2 487 487 100% Positive 2.0458x 1 0-5

Listeria monocytogenes 3 393 392 99.7% Positive 33254xl0-5

Staphylococcus aureus 3 549 549 100% Positive L3731xl0-5

Listeria monocytogenes 2 305 305 100% Positive 1.4888xl0-5

Listeria monocytogenes 3 267 267 100% Positive 9.4 104xIO-s

In order to evaluate another form of goodness of fit, the centroid location of each

individual image was measured in relation to the centers of the clusters formed by the

genetic algorithm_ The measurements were carried out using the squared Euclidean

distance metric and compared to the radius of the original cluster formed by the genetic

algorithm_ The radius of the Gram-positive cluster was 1.6880x 10-4, and the radius of the

Gram-negative cluster measured 1.0819xl0-4. Table 3-9 illustrates the measures of each

of the Gram-positive and Gram-negative images to the centroids. It is apparent that each

of the validation images fell within the radius boundaries of the training set.

Examination of both the pixel to pixel c1ustering accuracy and the measure of the

image centroids to each of the cluster centers indicates that this clustering sub-optimum

solution is an effective classification too1. Each of the validation samples fell within the

bounds of the clustering model and the confidence levels were acceptable_

87

3.4.2 Validation Test 2

The results obtained in the first validation test show that the model developed for

Gram classification could be successfuHy applied to additional samples of the specimens

included in the training set. In the second validation test, the performance of the model in

regards to specimens not included in the training set was assessed.

To select samples for the second validation test, the bacterial spectrallibrary was

filtered to remove aH replicates of the specimens used in the training set. Six Gram­

positive and six Gram negative species were then randomly selected. The spectral images

were processed and classified based on the clustering model determined by the genetic

algorithm in the same manner as described above and illustrated in Figure 3-3. FoHowing

the removal of the pixels outside of the acceptable amide 1 range of 0.4 to 1.0 absorbance

units, the total number of pixels was reduced from 12,288 to 3,379 conserving 27.5% of

the original validation data. In the case of two of the samples, less than 10 pixels were

retained, indicating that the deposition of the sample film on the slide was inadequate.

Accordingly, these samples were excluded from the data analysis. Table 3-10 iHustrates

the classification accuracy for each image on a pixel-by-pixel basis and a confidence

value. Table 3-10 also illustrates the distance of the center of each image to the

corresponding cluster centroids of the training set. AH of these distances faH weH within

the boundary values of the classification model.

88

Table 3-10· ResuIts of Validation Test 2

Strain Name Culture Final # # Pixels % Gram- Distance
Pixels Correct Confidence to Cluster

Aeromonas hydrophila 1 465 465 100% Negative 4.9466x 1 0-5

Aeromonas hydrophila 1 148 134 90.5% Negative 2.7659xIO-s

Salmonella typhmurium 2 400 385 96.3% Negative 9.1 22 lx 10-6
Salmonella typhmurium 3 212 199 93.9% Negative 1.39 1 OxlO-5

Vi brio parahaemolyticus 1 379 352 92.9% Negative 2.6723xIO-5

Escherichia coli 8739 2 421 420 99.7% Negative 1.6974xlO-5

Listeria ivanovii 1 9 - - - -
Listeria murrayi 3 8 - - - -
Clostridia perfringens 1 451 451 100% Positive 3.l18IxlO-s

Listeria monocytogenes 3 176 176 100% Positive 2.5636x 1 0-5

Listeria monocytogenes 1 324 324 100% Positive 3.2763xlO-5

Listeria monocytogenes 1 386 386 100% Positive 1.5 566x 10-5

Examination of the pixel to pixel clustering accuracy, as weU as the measure of

the validation image centers to each of the cluster centers, indicates that the clustering

model is an effective classification tool for specimens not included in the training set.

Each of the validation samples feU within the bounds of the clustering model and the

confidence levels were more than acceptable.

89

4 Conclusion
The primary aim of this study was to examme the utilization of a genetic

algorithm to optimize the pre-processing of infrared image data, with the secondary aim

being to conserve as much of the original pixel data as possible. The data set selected for

this purpose consisted of infrared images of bacterial cultures, and the classification task

investigated was the discrimination between Gram-positive and Gram-negative bacteria.

The use of the genetic algorithm was explored with a training set consisting of 12 Gram-

positive and 12 Gram-negative specimens. The genetic algorithm evaluated combinations

of variables pertaining to bacterial film thickness tolerances, baseline correction, pixel

co-addition, outlier removal, smoothing, mean centering, normalization, derivatization,

integration and principal component selection and employed a fitness function that

utilized a score incorporating the classification accuracy (assigned a weight of 80%) and

the number of remaining pixels after all of the pre-processing was accomplished

(assigned a weight of20%) When the genetic algorithm was applied to the infrared image

data for the samples in the training set, the clustering of the infrared images on a pixel­

by-pixel basis yielded a classification accuracy of approximately 97.5%; the

corresponding value for classification on an image-by-image basis was 100%. With

respect to the secondary aim of the algorithm, the proportion of the pixel data retained

from the original images was 28.6%.

Applying the genetic algorithm to the spectral data for the training set yielded an

appropriate combination of pre-processing variables for clustering of Gram-positive and

Gram-negative specimens. To test the robustness of this combination of pre-processing

90

variables, two validation tests were perfonned, the first using replicate images of the

specimens inc1uded in the training set and the second using images of a different set of

specimens. FoIlowing pre-processing of the data in accordance with the procedures

established for the training set with the use of the genetic algorithm, the validation

samples were classified based on the squared Euclidean distances to the centroids of the

Gram-positive and Gram-negative clusters of the training set. AlI the validation samples

were classified correctly on an image-by-image basis and with a fairly high accuracy on a

pixel-by-pixel basis. Furthennore, as summarized in Table 4-1: Comparison of Distances

to Clusters, the average distances of the Gram-positive and the Gram-negative samples in

both the first and second validation sets to the centroids of the corresponding clusters

were weIl within the bounds for the training set.

Table 4-1: Comparison of Distances to Clusters
Gram-Negative Gram-Positive

Training Set Cluster Radius l.0819xlO-4 1.6880xlO-4
Validation Set 1 - Avg. Dist. To Cluster 2.3898xlO-5 3.1166xl0·5

Validation Set 2 - Avg. Dist. To Cluster 2.3976xl0-) 2.6287xl0-)

The validated success of the initial pass of the genetic algorithm indicates that it is

an effective time-saving tool for the optimization of pre-processing variables for

clustering and classification tasks. As discussed in Chapter 3, based on the results

obtained in this work, a second pass could be attempted with several variables removed

or replaced in order to increase the speed and accuracy of the algorithm. For instance, the

baseline or raw data flag as weIl as the co-addition modules could be removed,

significantly reducing the computational expense of the algorithm by five bits. The

spectral data could also be limited to the region between 1817 cm-l and 1053 cm-l,

thereby reducing the size of the data set by approximately one-third and again reducing

91

the computational expense of the algorithm. Alternative approaches for clustering of the

spectral data could also be investigated. Applying a "learning" algorithm such as a neural

network or k-nearest neighbors algorithm would most probably be highly effective.

However, it is important to note that learning algorithms tend to overfit the data and may

not produce correct classifications for samples not included in the training set.

In conclusion, as advances in infrared imaging technology result in increasingly

large sets of spectral image data, researchers require improved means of handling and

interpreting data and applying this technology to perform particular analytical tasks. It is

the appropriate combination of data acquisition, processing and analysis techniques that

make it possible to effectively classify a hyperspectral data set. The research presented in

this thesis demonstrates the effectiveness of a genetic algorithm as a tool for selecting

pre-processing variables for a given classification task. The use of a genetic algorithm

allows for the sub-optimization of the pre-processing variables without the intrinsic trial

and error reasoning of the researcher. Using the genetic algorithm thus releases human

resources, allowing them to be allocated to other tasks while minimizing the influence of

human error. The sub-optimum solution was produced by the genetic algorithm in a

reasonable time frame of less than seven hours, as opposed to manually optimizing the

combination of variables over an extended period of time, and modifications of the initial

set of variables, as discussed above, could further reduce the computational time. Finally,

the genetic algorithm not only helps in the development of an unsupervised sub-optimum

solution, but can also enhance the understanding of the relationships between pre­

processing variables and of their effects on overall analytical performance.

92

5 References

Adams, M.J. (1995). Chemometrics in Analytical Spectroscopy. Cambridge: The Royal

Society ofChemistry.

Beebe, Kenneth R.; PeU, Randy J.; Seasholtz, Mary Beth. (1998). Chemometrics: A

Practical Guide. New York: Wiley Publications.

Bourke, P. (1993). Discrete Fourier Transform. Victoria, Australia: Swinburne

University of Technology http://astronomy.swin.edu.aul~pbourke/other/dftl

Burns, D.H. (2001). Chemometrics: Analysis ofChemical Data (Chemistry 567A Lecture

Handouts.) Montreal: McGiU University.

Davies, A.; Board, R. (1998). The Microbiology of Meat and Poultry. London, UK:

Blackie Academic & Professional.

Davis, Sumner P.; Abrams, Mark C.; Brault, James W. (2001). Fourier Transform

Spectrometry. San Diego, USA: Academic Press.

Firkin, B.G.; Whitworth, J.A. (1987). Dictionary of Medical Eponyms. Nashville, USA:

Parthenon Publishing.

93

Gilbert, RJ.; Goodacre, R.; Woodward, AM.; Kell, D.B. (1997). Genetic Programming.

Aberystwyth, UK: Institute of Biological Sciences: Analytical Chemistry

Hashimoto, T.; Birch, W.X. (1996). Gram Stain. Chicago, USA: Loyola University.

Jarvis, Roger M.; Goodacre, Royston. (2004). Genetic Algorithm Optimizationfor Pre­

Processing and Variable Selection of Spectroscopic Data. Manchester, UK: Oxford

University Press.

Kirkwood, Jonah; AI-Khaldi, Sufian F.; Mossoba, Magdi M.; Sedman, Jacqueline;

Ismail, Ashraf A (2004). Fourier transform infrared bacteria identification with the use

of a focal-plane-array detector and microarray printing. Montreal, Canada: Applied

Spectroscopy 5 8(11)

Kowaski; Illman; Sharaf. (1986). Chemometrics. New York: Wiley Publications.

MacKay, D.J.C. (2003). Information Theory, Inference, and Learning Algorithms.

Cambridge: Cambridge University Press.

Matlab Ri3, Statistics Toolbox. (2002). Boston: Mathworks.

Naumann, D. (2000). Infrared spectroscopy in microbiology. In: Encyclopedia of

Analytical Chemistry. New York: Meyers, R.A, Ed. John Wiley & Sons

94

Rainieri, S.; Pagliarini, G. (2001). Data Processing Technique Applied to the Calibration

of a High Performance FPA Infrared Camera. Parama, Italy: Elsevier Science B.V.

Russell, S.; Norvig, P. (1995). Artificial Intelligence A modern Approach. New Jersey,

USA: Prentice-Hall Inc.

UOT (1995). Introduction to Clinical Microbiology. Texas, USA: University of Texas -

Houston Medical School http://medic.med.uth.tmc.edu.

Van Den Broek, W.H.A.M.; Wienke, D.; MeIssen, W.J.; Buydens, L.M.C. (1997).

Optimal Wavelength Range Selection by a Genetic Algorithm for Discrimination

Pur poses is Spectroscopie Infrared Imaging. Nijmegen, Netherlands: Society of Applied

Spectroscopy

Wolsky, A.M; Daniels, E.J.; Giese, R.F.; Harkness, J.B.L.; Johnson, L.R.; Rote, D.M.;

Zwick, S.A. (1989). Applied Superconductivity. New Jersey, USA: Noyes Data

Corporation.

95

6 Appendix: Genetic Aigorithm Matlab Code

6.1 Main Genetic Function
~~ Tom Pinchuk
~6 Gi?netic Algorithrn
% Revision SepternbE·r 2005

% Bit layûr:t - 27 Bits representing nUrrloers 0 to 134 / 217,727
Combinations.
See "GA Flow Chart.ppt" for more information

~ Input Arguments:
1; :i.mageFi..le: The filename of the image without an extension.

genetic algorithme This number must be an even number.

function [iData, oData]=AOO_runGenetic(imageFile, numlterations)
format lonç.r E';

~ Check for errors.
if rem(numlterations,2)-=O

end

disp('Number of iterations must bs an sven number.');
quit;

~ Load the image Data and the output data if it is available.
~s t.he numbE·,.r.· ,)f iteratiofis tG ().
disp('Loading the data.');
[iData]=A01_LoadData(imageFile);
outputFile=strcat (imageFile, 'OUT');
bOdd=O;
if exist (strcat (outputFile, '.mat'), 'file') °

disp('Cr0atirlg OutI)ut l'ile. Il;

curlteration=O;

else

end

bOdd=l;

disp('L0ading Outpllt File.');
load(outputFile) ;
curlteration=length(oData.DNA);
if rem(curlteration,2)==O

bOdd=l;
end

for cntlter=(curlteration+l): (curlteration+numlterations)
disp([' Iteration:' num2str(cntlter) , c'::

num2str(curlteration+numlterations)]);

net. sei".:.

Reproduce and get tW0 new ~~A strands 0nly when the iterati0ns are
c,dd. r.i.'h~refo:t.-8 '.'le a':"'.'lays finish wi th ùn e~Jçn I11..:i;-nr;9:t.-.

if cntIter==l
DNA=[134217728,O];
oData.DNA(cntlter)=DNA(l);

elseif rem(cntlter,2)==bOdd
[DNA, bOdd, oData]=reproduce(cntlter, oData, bOdd);
oData.DNA(cntlter)=DNA(l);

else
oData.DNA(cntlter)=DNA(2);

end
disp([' Lh9ita~ :':,A: ' num2str(oData.DNA(cntlter))]);

~ Split up the DNA into the correct f1lnction2. 0rlgina~ ~~A cüntains
% 27 bits
DNA_PCA = bitshift(oData.DNA(cntlter),-23);
tmpDNA = oData.DNA(cntlter) - bitshift(DNA PCA,23);
DNA_Feature = bitshift(tmpDNA,-17);
tmpDNA = tmpDNA - bitshift(DNA_Feature,17);

96

DNA_Smooth = bitshift(tmpDNA,-13);
tmpDNA = tmpDNA - bitshift(DNA_Smooth,13);
DNA_Coadd = bitshift(tmpDNA,-ll);
tmpDNA = tmpDNA - bitshift(DNA_Coadd,ll);
DNA_Outlier = bitshift(tmpDNA,-9);
tmpDNA = tmpDNA - bitshift(DNA_Outlier,9);
DNA_Base = bitshift(tmpDNA,-8);
DNA Amide = tmpDNA - bitshift(DNA_Base,8);

% Check t.hé P..mide 1 to.llera.nccs Clnd updat(\ the output data.
[rData]=AOZ_RemoveAmide(iData,DNA_Amide);
oData.PctPixel(cntlter,l)=rData.NumPixels/iData.NumPixels;
oData.Pctlmage(cntlter,l)=rData.Numlmages/iData.Numlmages;
if (rData.NumPixels==O) Il (rData.Numlmages<iData.NumImages)

end

oData.Score(cntIter,1:3)=O;
oData.totScore(cntlter)=O;

disp([' -> Pixels: ' numZstr(rData.NumPixels) , / Images:
numZstr(rData.Numlmages)]);

if (rData.NumPixels>Z) && (rData.Numlmages==iData.Numlmages)
% Determine te use baeeline correctcd or raw data
[rData] = A03_UseRaw(iData, rData, DNA_Base);
% New r~vcrsiDg functions - cOddd images
[rData] = AOS CoaddImages(lData, rData, DNA_Coadd);
disp([' -> Pixels: ' numZstr(rData.NumPixels) , ! Images:

numZstr(rData.Numlmages)]);
end
oData.PctPixel(cntIter,2)=rData.NumPixels/iData.NumPixels;
oData.PctImage (cntIter,Z) =rData.Numlmages/iData.Numlma ges;
if (rData.NumPixels==O) Il (rData.Numlmages<iData.NumImages)

end

oData.Score(cntlter,1:3)=O;
oData.totScore(cntlter)=O;

:t, FJ2mCVe Ollt.-:".ic.:r::.": _. t12~::') 04b :rJhcn rcv<:.").rs(:;<J lti:Lth c(Jadd :.-:tl l.1'orithrn
if (rData.NumPixels>Z) && (rData.NumImages==iData.NumImages)

[rData] = A04b RemoveOutliers(iData, rData, DNA_Outlier);
disp([' -> Pix,?ls: ' numZstr(rData.NumPixels) lrnag'=s:

numZstr(rData.NumImages)]);
end
oData.PctPixel(cntIter,3)=rData.NumPixels/iData.NumPixels;
oData.Pctlrnage(cntlter,3)=rData.NumImages/iData.Numlmages;
if (rData.NumPixels==O) Il (rData.Numlmages<iData.Numlmages)

end

oData.Score(cntlter,1:3)=O;
oData.totScore(cntlter)=O;

~ Featurc S~l(:;ctlOI'i / CO[nbl!'~c data ! PCA ! Clllst~I (r10cd dt least
pjxels or it wi11 not cr"eate 2 pr'~per li.nkage OI cluster.

if (rData.NumPixels>Z) && (rData.NumImages==iData.Numlmages)
[rData] A06_Smoothlmages(iData, rData, DNA_Smooth);
[rData] = A07_FeatureSelection(iData, rData, DNA_Feature);
[rData] = A08 ComblneImageData(lData, rData);

el se

[rData, pc] = A09 PCA(iData, rData, DNA_PCA);
Adj1.lst.ed for kr'lE:.'3.ns

[rData] = AIOb ClusterFunction(rData);
clear ?c;

80i; }\ccLl,~r-3.(··i (J.)

't Où'~ .irna'.)'cs (~_:)

;'t 2.ù'?, D~~t.cl ?cl.ints (3)

~ N~w ... sData.tctSccr0(Nu~\)
oData.Score(cntIter,l)=rData.Score;
oData.Score(cntIter,Z)=oData.PctImage(cntIter,3);
oData.Score(cntIter,3)=rData.NumPixels;
oData.totScore(cntIter)= ...

(oData.Score(cntIter,l)*.8)+ .. .
(oData.PctImage(cntIter,3)*O)+ .. .
((oData.Score(cntlter,3)/iData.NumPixels)*.Z);

97

end

end

oData.Score(cntlter,I:3)=O;
oData.totScore(cntlter)=O;

disp(['-> Scores: ' num2str(oData.totScore(cntlter)*IOO)
num2str(oData.Score(cntlter,I)*IOO) '% and' ...
num2str(oData.Score(cntlter,2)*IOO) '" Images a.nd '
num2str(oData.Score(cntlter,3)) , Pixels.'));

tmpOutFile=strcat (' , , outputFile, num2str (cntIter)) ;
save (tmpOutFile, 'oGata');

save (outputFile, 'oDdta.');

6.2 Data Loading Function
1;

'?;

% Revised for "Rescuc 2ixels 'f 9/25/2005
Redesigned only ta use the sample data provided. Support for additional

~ filç.2 types has been t(~mpcraril)' reny.)ved. New input file tyP(~ is a CSV.
% Preloaded files will just be retrieved using the .mat fil~.

s(A3sumptions:
% - AlI images have the sarne characteristlcs and resolutions. Only need 1

E~VI file coorinating wlth the first file name to load aIl of the
:.~ imaq~s.

% The bands are ln num~ri.:al ,)rder tram low ta high (we can verl~y ln the
ENVI head~t fils.

% Input Arguments:
~ fil0Na~o: '~ho name n~ tl"i0 Input data S0t - rlO nC0d for a fi~c

function [iData) = AOI LoadData(fileName)

~ Constant3 (Fer flow chart - no longer read fram text file)
cstBasePt(I)=980;
cstBasePt(2)=1780;
cstRespBand=1650;
cstAmideRange(1)=O.4;
cstAmideRange(2)=1.4;

Cr0ating file nam0S ta scarch f0r.
fileCSV=strcat(fileName,' .csv');
fileMAT=strcat(fileName,' .mat');

Chl'.:.~r.:k if fill'.;:! hJ.s ,be:en prf2vlou;.:;ly loaded - if S0 load infol.'rr,atir}n =:r:r_"I~n

the mat fils. :f not pL0csed ta building the initIal data structure.
if exist(fileMAT, 'flle') >= I

el se
load(fileMAT) ;

Lcad th~ ~.ext filc: con::~i.n.lllg t:llû i~agee. Thi~ 8xt~[lsi.,)n i.s .ln
[fileContents] =textread (fileCSV, ":',$' , 'dE::i.imi t.I:.::!" " 1 l ') ;

lengthTextFile=length(fileContents);
iData. Numlmages=lengthTextFile/2; 'i-Sl·t, the numb'èr c, f .1"u(.l'~'s r'r,ope n 'i

~ H03d ttlG ENV: f.ile.
~t~I;)~i10~fi10f:0nt0rits(1};

% f i10HDR..;...c.~har {tmpFi~e (1: len\]t h (t.mpFil\'2') - 4)) :
[envilnfo]=textread('OOO.hdr 1

, '~S');

iData.NumCols=str2num(envilnfo{IO,I}); "'S"ë tr." number c,f r2o:'umnc·.
iData.NumRows=str2num(envilnfo{13,I}); ,,:S"ë th" number c,f Rows
~S~t the nLlrnbE:c Q~ t>ands - nllmber of data pOInts fcr e2(~h pl~01

iData.NumDataPoints=str2num(envilnfo{16,l});
%S~t the number o~ C16ss02

iData.NumClasses=length(unique(fileContents(2:2:length(fileContents))));

datatype=str2num(envilnfo{29,I});

98

switch data type

end

case {1}
datastring='int8';

case {2}
datastring='int';

case {3}
datastring='int64 1

;

case {4}
datastring='float';

case {5}
datastring='doublc';

case {6}
error (' readE"nvi.In file cannat handle compl~x data ... 1)

for cntBand=O: (iData.NumDataPoints-1) tSet the individual bands
iData.Wavenumbers(cntBand+1) = str2num(enviInfo{ (49+cntBand),l});

end
offset=str2num(enviInfo{20,l});

% Loaà thE~ raw .i.mage data
for cntlmages=l:iData.Numlmages

end

indexFName = 2*cntlmages-1;
indexFClass = 2*cntlmages;
tmpFName=char(fileContents(indexFName»;
fid=fopen(tmpFName, 'r');
[datlnfo) =fread (fid, offset, 'int8') ;
[spectra)=fread(fid,datastring);
specimg=reshape ...

(spectra, [iData.NumRows,iData.NumCols,iData.NumDataPoints);
for i=l:iData.NumDataPoints

specimg (:, :, i) =specimg (:, :, i) , ;
end
iData.lmage(cntlmages) .rawData=specimg;
fclose(fid);
iData.Image(cntlmages) .class= ...

str2num(char(fileContents(indexFClass»));

% Calcu:atc additiona: constants
iData.NumPixels=iData.NumImages*iData.NumCols*iData.NumRows;
iData.Resolution=(iData.Wavenumbers(ll)-iData.Wavenumbers(1))/10;

~ Baseline C0rrect eash imagE and determine respons2 - fill in image
~ map - det~rmi.ne ta use image or Dot
base(l)=round((cstBasePt(l)-iData.Wavenumbers(l))/iData.Resolution+1);
base(2)=round((cstBasePt(2)-iData.Wavenumbers(1»)/iData.Resolution+1);
response=round((cstRespBand-iData.Wavenumbers(l))/iData.Resolution+l);
tmpRun=base(2)-base(l);
for cntImages=l:iData.NumImages

iData.Image(cntImages) .numGoodPixels=O;
for cntRow=l:iData.NumRows

for cntCol=l:iData.NumCols
absorbance(l)= ...

iData. Image (cntlmages) .rawData(cntRow,cntCol,base(l));
absorbance(2)= ...

iData.Image(cntImages) .rawData(cntRow,cntCol,base(2));
tmpSlope=(absorbance(2)-absorbance(1))/tmpRun;
tmpConst=absorbance(2)-(tmpSlope*base(2));
for cntPT=l:iData.NurnDataPoints

iData.lmage(cntlmages) .baseData(cntRow,cntCol,cntPT)= .. .
iData. Image (cntlmages) .rawData(cntRow,cntCol,cntPT) .. .
- (tmpSlope*iData.Wavenumbers(cntPT)+tmpConst);

end
iData. Image (cntImages) .AmideResponse(cntRow,cntCol)= ...

iData.Image(cntImages) .baseData(cntRow,cntCol,response);
if (iData.Image(cntlmages) .AmideResponse(cntRow,cntCol) ...

el se

<cstAmideRange (1)) 1 1 •••

(iData.Image(cntImages) .AmideResponse(cntRow,cntCol» ...
cstAmideRange(2))

iData.Image(cntImages) .pixlMap(cntRow,cntCol)=O;

99

iData.lmage(cntlmages) .pixlMap(cntRow,cntCol)=l;
iData.Image(cntImages) .numGoodPixels= ...

iData.Image(cntImages) .numGoodPixels+l;

end

end
end % Count Columns

end % Count R0""S
if iData.Image(cntImages) .numGoodPixels==O

iData.Image(cntImages) .useImage=O;
el se

iData. Image (cntlmages) .uselmage=l;
end

end ~ Count Images

% SavE: the file
save (fileMAT, 1 iData');

6.3 Amide 1 Removal Function

's r;:'orn Pincbuk

:~ 9/30/:2005
~1 N(~\·; pr:)ce:ss 1::C' cpt ür:.i:::e the ranqe of acceptabLe Amià~~) l absor.'bance
% responces from 0.4 ta 1.4. The increments are 6/90. The range is
% determined by two sets of four ~it5 each represe!lting a range point.
%
% .A.SSll:11pt ions:
.~

96

% Input Arguments:
~h0 Initial specatral data as determined by th0 load data
a19<)r i. ':.hm.
T'Le 8-r:;.i.t~ DNA st.rand .r.·~=prE:s8nt.ing bath c,f tLE: l\:-ni.d~? l
tc,leIanc~s. If they are the same, th~ scores are zero. This
must ~e ~hecked in the main GA script.
Bits 8-5: Numerical value ~ 6

,
90 CI .; P.::'.!"! q;:~> /

Bits 4-1: Nurn~rical value w 6 ! 90 CI 4 l~.:ir! q"~>

Output AIgum~nt3:
~hs data used during processing of ttle 3pectra.

function [rData] = A02 RemoveArnide(iData, DNA)

0; Consta.nts (PE',r i:J.C'I" (~ha.r-t - nf) l.onger r:'~ad :frcm t~(~xt. fJ.le)
cstRespBand=1650;
cstArnideRange(1)=O.4;
cstArnideRange(2)=1.4;

% Determine Ranges - and sort neçess 2lI 'J
tmpRange(1)=bitshift(DNA,-4);
tmpRange(2)=DNA - bitshift(tmpRange(l) ,4);
tmpRange(1)=double(tmpRange(1))*6/90+cstArnideRange(1);
tmpRange(2)=double(tmpRange(2))*6/90+cstArnideRange(1);
range=sort(tmpRange) ;

Pt
P ;. 2

disp([' - Amide l Rangs: ' num2str(range(1)) , ~.,-, ' num2str(range(2))]);

~ EI".Sllr~ that rh~ t"Ange' V2J"U0S ~re 11(.t "lcl0ntlcal 2!".d I~he,~k j-t!0 amid0
?; l:E·;Sf;!,)1JE.-t.J.:::.

rData.NumPixels=O;
rData.Numlmages=O;
if range(1)-=range(2)

for cntlmages=l:iData.Numlmages
rData.lmage(cntlmages) .numGoodPixels=O;
for cntRow=l:iData.NumRows

for cntCol=l:iData.NumCols
if (iData.lmage(cntlmages) .ArnideResponse(cntRow,cntCol)<range(l)) 1 1 •••

(iData.lmage(cntlmages) .AmideResponse(cntRow,cntCol»range(2))

100

rData.lmage(cntlmages) .pixlMap(cntRow,cntCol)=O;
else

rData.lmage(cntlmages) .pix1Map (cntRow, cntCo1)=1;

rData.lmage(cntlmages) .numGoodPixels=rData.lmage(cntlmages) .numGoodPixels+l;
rData.NumPixels=rData.NumPixels + 1;

else

end

end
end 9.; Count: Columns

end '~.i Count Ro~"s

if rData.lmage(cntlmages) .numGoodPixels==O
rData.lmage(cntlmages) .uselmage=O;

e1se

end

rData.lmage(cntlmages) .uselmage=l;
rData.Numlmages=rData.Numlmages+l;

end % C0unt Imag~s

~ Update the rest of the running data structure. - ~o Dot loclude the
~ data parameter.

rData.NumPixels=O;
rData.Numlmages=O;

6.4 Baseline or Raw Selection Function
%
:J) Tom !:?inchuk

<~ 2.(j/02/2005
.~ r~e;"i process to dêt!?rmine if the EAÏf~ dat.a cr th!? b.:l3~line cCJrrected da.ta
,? ~:hou.i.d 0i.~ lJt.i.1 L Zt::d f(;!" future Ct)m~'ljta tion.s.

~ ~his function a150 zeros out the data values of any piX8~S n0t in use 111

~ the rDat.a structllre.

lnput Arquffif.:::nts:
Ths initial specatral data as d€tcrmined by the load data
,,1gc_'r i th;n.

rData: The running Data up until DOW.

DN!, : The I-blt DNA strand repr~sentlI~g if th:~ Raw data or baselll10
Ct)~rectcd data should he ilS8d.

û: Keep the raw data
_. Use the bascllne correctBd data

~}lC data uscd during P~O~(:ssi.rl(J of tl"le epcctra.

function [rData) = A03 UseRaw(iData, rData, DNA)
if DNA==O

disp ([' - Usin9 l'AV; J.:1til'));

else
disp([' - Using Ba2elins Correct~d Data']);

end
for cntlmages=l:iData.Numlmages

if DNA==O
rData.lmage(cntlmages) .data

else
rData.lmage(cntlmages) .data

end
for cntRow=l:iData.NumRows

for cntCo1=1:iData.NumCo1s

iData.lmage(cntlmages) .rawData;

iData.lmage(cntlmages) .baseData;

if rData.lmage(cntlmages) .pix1Map(cntRow,cntCo1)==O
rData.lmage(cntlmages) .data (cntRow, cntCo1, 1: iData.NumDataPoints) =0;

end
end ~ Co\]nti~g Colu~ns

101

end % C'ounting Ro\oJs
end

6.5 Pixel Co-Addition Function

'~.î ~~~om P:i.nchuk

Modified 10/02/2005

* This function ia used to coadd the data in the images.

~ Images are coadded in adjacent groups of 4 10 and 32 pixels. The input
% i8 a 2-bit binary referencing the coadd va ues. If Dothing is 80 be
% cl)addt~d, thaI1 the images are (:'f)mbi.ned .;: or lJrt.her prclcessing.

~~ Assurnpt ions;
~~

% Input Arguments:
% iDa.ta: ThE initial specatral data as det~rmined by the load data

algoritbm. ~:.

% rData: The running Data up until now.
.~ DNA: The 2-bi t DNA strand reprt"::senting the ac.ceptable nu:mb~r l'):

pixels to coadd.
00: Keep thE: ent.ir,,= image
01: Coadd 4 adjacent pixels [2x2]
~u: Coadd 1~ adjac0nt pixels [4x41
:1: Coadd 64 adj~c0n!: p~xels [axa]

function [rData] = A05_CoaddImages(iData, rData, DNA)
CO.ITtpute the square rOf)t of the numb'':::I.: of plxels t f) coadd.

switch DNA

end

case {O}
CoaddLimit=O;

case {l}
CoaddLimit=2;

case {2}
CoaddLimit=4;

case {3}
CoaddLimi t=8;

disp ([, - ':'Hàd:Lno: ' num2str (CoaddLimi t) 'x' num2str (CoaddLimi t) , inldqcs']);
if CoaddLimit==O

for cntImage=l:iData.NumImages
cntPixel=O;
if rData.Image(cntImage) .useImage==1

rrData.CmbImg(cntImage) .useImage=l;
for cntRow=l:iData.NumRows

for cntCol=l:iData.NumCols
if rData. Image (cntImage) .pixlMap(cntRow, cntCol)==1

cntPixel=cntPixel+l;

rrData.CmbImg(cntlmage) .data(cntPixel, :)=rData.lmage(cntlmage) .data(cntRow,cntCol, :);
end

el se

else

end

end ~ C0url~ Colu~rl

end ~ C'-_~unt:: K()",v

rrData.CmbImg(cntImage) .numPixels=cntPixel;

rrData.CmbImg(cntImage) .useImage=O;
rrData.CmbImg(cntImage) .numPixels=O;

end Count Ymages

'~, :':':t.ar!· ::'rcm thE': t,yP '~eft ~J)')ki.nq f:c.r édja.:::erlt. qe.c.d pi.x~~.1.s. \,'1}i:~r, ::;6ch
~.:.. i.t.crat..i·)fJ -- ll~:)àc:.;.t(; t,he ri.xc.1. [Tid.}:; dT'i\:i f.'C(_'\)cà tbc~ (~o3dd,~~ci i.md.<]c.

for cntImage=l:iData.NumImages

102

cntPixel=O;
if rData.lmage(cntlmage) .uselmage==l

for cntRow=l: (iData.NumRows-CoaddLimit+l)
for cntCol=l: (iData.NumCols-CoaddLimit+l)

if rData.lmage(cntlmage) .pixlMap(cntRow, cntCol)==l
%Check to see if the adjacent pOlnts are aIl good
boolAllGood=l;
for cntDR=cntRow: (cntRow+CoaddLimit-l)

for cntDC=cntCol: (cntCol+CoaddLimit-l)
if rData.lmage(cntlmage) .pixlMap(cntDR,cntDC)==O,

boolAllGood=O; end
end ~ dbl Count Columns

end % db2. Count ROiti3

~If they are aIl good - coadd them and the remove
%their pixel flags
if boolAllGood==l

cntPixel=cntPixel+l;
rrData.Cmblmg(cntlmage) .data(cntPixel, :)= ...

sum(sum(rData.Image(cntImage) .data(cntRow: (cntRow+CoaddLimit­
l),cntCol: (cntCol+CoaddLimit-l), :»);

rData.lmage(cntlmage) .pixlMap(cntRow: (cntRow+CoaddLimit­
l),cntCol: (cntCol+CoaddLimit-l»=O;

end

end
end

end % Courlt Column
end % Cr)unt RO~\I

if cntPixel>O
rrData.CmbImg(cntlmage) .uselmage=l;

else
rrData.CmbImg(cntImage) .uselmage=O;

end
rrData.Cmblmg(cntlmage) .numPixels=cntPixel;

else

end

rrData.Cmblmg(cntlmage) .uselmage=O;
rrData.Cmblmg(cntlmage) .numPixels=O;

end ~ Courlt :mag~s

"1:>f.)pdate the tüta: number r:;.: images .s.rid pixels.
rrData.NumPixels=O;
rrData.Numlmages=O;
rrData.NumDataPoints=iData.NumDataPoints;
rrData.Wavenumbers=iData.Wavenumbers;
for cntlmage=l:iData.Numlmages

if rrData.Cmblmg(cntlmage) .uselmage==l
rrData.Numlmages=rrData.Numlmages+l;
rrData.NumPixels=rrData.NumPixels+rrData.Cmblmg(cntlmage) .numPixels;

end
end
rData=rrData;

6.6 Outlier Removal Function

'T'c'in Pi.nchuK

~0~ifi0ri ~OjO)!200S

This ~ile 13 used ta deterrr~ine arld re~OV0 0utlicrs. The input is a 2 bit
bln'"lr:.-' voi:l1uf,,:; t.hi'..lt ref(2rc·ncç.:.~s rf~movin,~% cutliers beyGnd c-:ert.ain .standard
de?i;:-:tt.l,)flS.

B VerSl,)~ i3 when Coadding and cutliers are reversed

103

% Input Arguments:
~. iData: 'l'he initial specatral data as determined by th~ load data

algorithm.
~. rData: The running Data up until now.
% DNA: The 2-bit DNA strand representing the acceptabl.e nu:nber of

standard deviations to keep processing. %
00: Keep the (~nti CE':. imag~.?

ùl: Remove (~verything beyofld 2 SD
~u: Remove evcrything beyond 1.5 SD
11: Femove everything beyond 1 sn

% Output Arguments:
'% rData: 'l'he data llSf;d during processing of the spectra.

function [rData] = A04b removeOutliers(iData, rData, DNA)
% (':ompute t.he ~3t.andal~d Deviat.ion tolerance limit.s ba3ed on the input SNA
~; argument.
switch DNA

end

case {O}
SDLimit=O;

case {li
SDLimit=2;

case {2}
SDLimit=1.5;

case {3}
SDLimit=l;

disp ([1 - P ... emovlng out.="i7.:rs b7.:yond 1 nurn2str (SDLimit) 1 standard deviatls·ns. ']);
if SDLimit -=0

tmpNumlmage=rData.Numlmages;
rrData.NumPixels=O;
rrData.Numlmages=O;
for cntlmage=l:tmpNumlmage

if rData.Cmblmg(cntImage) .useImage==l
'i: F'c-!' tbe '~'UJ:.:.;:>::.)nt. ,i.m'::-H]C - "I.rhat is the \l51u'~~ of t.he St,z~I)ddr.d U.~'v:L'3.t..iGrl.

MU=sum((rData.CmbImg(cntImage) .data))/rData.CmbImg(cntlmage) .numPixels;
tmpPixelNurn=O;
for cntPixel=l:rData.CmbImg(cntlmage) .numPixels

tmpPixelNum=tmpPixelNum+l;
residual(tmpPixelNum)=sum((rData.Cmblmg(cntlmage) .data(cntPixel, :)-

MU (l, :)) . A2) ;

end Pixel COllnt

MD=mean(residual);
SD=std(residual);
minLirnit MD-(SDLimit*SD);
maxLimit = MD+(SDLimit*SD);

~ l'iod Tlumbcr' of pixels outsid~ of ttlC Si) lirnits: Updat(~ tfl'~ Dix'~l

% It!ap dTld zero thosû dsta YarJges no! used.
cntGoodPixels=O;
tmpPixelNum=O;
for cntPixel=l:rData.Cmblmg(cntlmage) .numPixels

tmpPixelNum=tmpPixelNum+l;
if (residual(tmpPixelNum)<minLimit) Il (residual(tmpPixelNum»maxLimit)

rData.Cmblmg(cntlmage) .data(cntPixel,l:iData.NumDataPoints)=O;
else

cntGoodPixels=cntGoodPixels+l;
rrData.Cmblmg(cntImage) .data(cntGoodPixels,l:iData.NurnDataPoints)= ...

rData.Cmblmg(cntlmage) .data(cntPixel,l:iData.NumDataPoints);
end

end Pixel Count
clear rC2idual.;
clear 1\1U;
clear SD;
rrData.Cmblmg(cntlmage) .numPixels=cntGoodPixels;
if rrData.Cmblmg(cntlmage) .numPixels==O

rrData.Cmblmg(cntlmage) .useImage=O;
el se

rrData.Numlmages=rrData.NumImages+l;
rrData.CmbImg(cntImage) .useImage=l;

104

end
rrData.NumPixels=rrData.NumPixels+cntGoodPixels;

end % Is image good
end ~ Image Count
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
clear ,'Da.ta;
rData=rrData;

el se
rData.NumImages=rData.NumImages-1+1;

end

6.7 Image Smoothing Function
_, Tcm F.incLuk

% Modified 10/02/2005

% ThIS functioIl i5 used ta smooth the data in the images in rcterence ta
% section 4.1.2 Qf the literature review.
%
% :mages are smoothed using a 4-bit input oarameter
%
:% Assunrçtions:
%

1; IDat.a: ?he l11itl21 specatra]. d3t~ as det:ermined by th~ load data
2 lq",r:; ;:,h:n.

,., l Ga.t:.a : =he rur;ning Data up unt~l now.
'.: UNi\.: ~h0 4-nit DNA strand r0pres0nting twa - 2-bit plCC0S of

InfoInlation, the ~lrst bcing the method, arld the 301~Glld

bcing ttl0 nUTIibcr of roirlts ta use:
Uits 4-3:
0(,: Ne Sm00thing
01: Boxf,:ô.r
-i.-U: l'1ean
il: Sa.vltzky-Golay
Bi ts :>2,:
(JO; :")-F'cint.s
(Jl: 7-?oint.s
..:.U: 9-f-'nint .. s
~1: l.l-~Pc.,.i.nts

~5 .r:l..)ata: ~lle data used during proces3ing of the spcctra.

function [rData] = A06 SmoothImages(iData, rData, DNA)

% Split the DNA lJp into the twa smoothing parametsrs.
smoothMethod = bitshift(DNA,-2);
tmpNum = DNA - bitshift(smoothMethod,2);
switch tmpNum

end

case (Q}
smoothPoints=5;

case (1)
smoothPoints=7;

case (2}
smoothPoints=9;

case {3}
smoothPoints=ll;

tmpPointsSide = (smoothPoints - 1) / 2;
switch smoothMethod

case (1)
disp (['

,,<,ints']);
case (2}

SmG{:.thing !Jsir!g Bc,xcar methcJ(.. l and T num2str (smoothPoints)

disp ([' Srnc0thlng usinQ Mean ,mthod and' num2str(smoothPoints) , points']);

105

case {3}
disp (['

points']);
- Smoothing using Séivitzky-Golay métl10d and' nurn2str(srnoothPoints)

end

~Box:car srne.ot.h:i.rig - Remove end I-~ffects by g(~tting rld of Li.rst and la.st
% points.
if smoothMethod == 1

for tmplmageNum=l:iData.Numlmages
if rData.Cmblmg(tmplmageNum) .uselmage==l

boolNotEnd = 1;
tmpOldlndex = tmpPointsSide + 1;
tmpNewlndex = 0;
while boolNotEnd==l

tmpNewlndex = tmpNewlndex + 1;
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels

newlmg(tmplmageNum) .data(cntPixels, tmpNewlndex)
sum(rData.Cmblmg(tmplmageNum) .data(cntPixels, (tmpOldlndex­

tmpPointsSide): (tmpOldlndex+tmpPointsSide))) ...
f smoothPoints;

end
newlmg(tmplmageNum) .sampleDataPoints(tmpNewlndex)

iData.Wavenumbers(tmpOldlndex);
if (tmpOldlndex + smoothPoints + tmpPointsSide) >= iData.NumDataPoints

boolNotEnd = 0;
else

tmpOldlndex = tmpOldlndex + smoothPoints;
end

end % While Locp
newlmg(tmplmageNum) .NumDataPoints

end "; image (:ic)od
end 'f.,c;(,untJ.r!l) thf: rlurnt'l::~:c of lmagcs

tmpNewlndex;

~.McRn sm0o!:.hing - RCffiOVC end effects by g0tting rid (,f flr"st ana last. pc.ints.
elseif smoothMethod == 2

for tmplmageNum=l:iData.Numlmages
if rData.Cmblmg(tmplmageNum) .uselmage==l

boolNotEnd = 1;
tmpOldlndex = tmpPointsSide + 1;
tmpNewlndex = 0;
while boolNotEnd==l

tmpNewlndex = tmpNewlndex + 1;
for cntPixels=l:rData.Cmblmg(trnplrnageNurn) .nurnPixels

newlrng(tmplmageNum) .data(cntPixels, trnpNewlndex)
sum(rData.Cmblmg(tmplmageNum) .data(cntPixels, (tmpOldlndex­

tmpPointsSide): (tmpOldlndex+tmpPointsSide))) ...
f srnoothPoints;

end
newlmg(trnplrnageNurn) .sarnpleDataPoints(tmpNewlndex)

iData.Wavenumbers(tmpOldlndex);
if (trnpOldlndex + trnpPointsSide) >= iData.NurnDataPoints

boolNotEnd = 0;
else

tmpOldlndex = tmpOldlndex + 1;
end

end ~ whi:e loop
newlmg(trnplmageNurn) .NumDataPoints

end ,? -i :naqc is ~;clc,d

end ·',cc·unt 1.!;<..~ th(~ !1umb<:.~r. (, t 1ma(F)~;

tmpNewlndex;

~Savlt.zky - G0:ay smo0thing - Pe~ove end 0ftect:s t,y gettl!"ig id ,)f fil~st dnd _dSt ?')LI)t~.

elseif (smoothMethod == 3)
if srnoothPoints==5, SGmu1t=[-3 12 17 12 -3]; end
if smoothPoints==7, SGmult=[-2 3 6 7 6 3 2); end
if smoothPoints==9, SGmult=[-21 14 39 54 59 54 39 14 -21]; end
if smoothPoints==11, SGmult=[-36 9 44 69 84 89 84 69 44 9 -36]; end
sumSGmult = sum(SGmult);
for trnplmageNum=l:iData.Numlmages

if rData.Cmblmg(tmplmageNum) .uselmage==l
boolNotEnd = 1;
tmpOldlndex = tmpPointsSide + 1;
tmpNewlndex = 0;
while boolNotEnd==l

106

tmpNewlndex = tmpNewlndex + 1;
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels

tmpPoint(l:smoothPoints) = rData.Cmblmg(tmplmageNum) .data(cntPixels,
(tmpOldlndex-tmpPointsSide): (tmpOldlndex+tmpPointsSide));

tmpArg = tmpPoint.*SGmult;
newlmg(tmplmageNum) .data(cntPixels, tmpNewlndex) sum(tmpArg) /

sumSGmult,
end
newlmg(tmplmageNum) .sampleDataPoints(tmpNewlndex)

iData.Wavenumbers(tmpOldlndex),
if (tmpOldlndex + tmpPointsSide) >= iData.NumDataPoints

boolNotEnd = 0,
else

tmpOldlndex = tmpOldlndex + l,
end

end while loop
newlmg(tmplmageNum) .NumDataPoints

end %image le good
end %count_ing t.hf~ number of images

tmpNewlndex;

end

~ smootlllllg was done, update the rData fi~e.
if smoothMethod>=l

for cntlmg=l:iData.Numlmages

end

if rData.Cmblmg(cntlmg) .uselmage==l
rData.Cmblmg(cntlmg) .data=newlmg(cntlmg) .data,
rData.NumDataPoints=newlmg(cntlmg) .NumDataPoints,
rData.Wavenumbers=newlmg(cntlmg) .sampleDataPoints,

end

end

6.8 Feature Selection Function
1; ::'om P~.nchuk

Modified 10/08/2005

'::"his :uncticlfl is used te perform ,::'1 featu.rC' 3e~cctioD proceadure ()n the
sample r..idt,::<. ln êH..::(_~ordan(.'e "'Jith sectlon .:~ .. 2.x (Jf the literaturE: r~~view.

A3sumptlons:

:nput Argum~nts:
i ùa i:~a; ~he i.nitial specatral data as determined by t:h0 load data

algorithm.
,~ r,)" ;:21 :

'!. UNA:
~>}le runninq Data up until DOW.
'l'hG ~.~--b:L;-- Dt-TA st.r2nd r.er<n::sentlflq the :~>::2turc ;:<e.lcction
algorithme to b0 applled.

~ ---

%
~

~

c
.j 3 2

~ ---

Bit 6: Integr3tion
Bit c. ase Deriv [:.=ün O=Off]

Bit 3: U2S Norm ~1=8~ O-Off]
Bi.t 2: ~0rm ~I)tho·j [O=~ (,y ~2

Rit ·1: fJ'·~l".iv ~"1c.r-h ~n F.~t./·~ Scdj B·it·

OutDllt Argll~0rlts:

rDat::'i:

function [rData] = AD? FeatureSelection(iData, rData, DNA)

~~e2n Centering - CalCll~ate the msan 0~ each dat~ p01nt

107

within a.n image '::'tnd subtract tht!.t value from each of the
data points in the respective image.

if bitget(DNA,l) == 1

end

disp ([, - i1'Oan C'Ontering the dat.a']);
for tmplmageNum=l:iData.Numlmages

end

if rData.Cmblmg(tmplmageNum) .uselmage==l
tempMean=mean(rData.Cmblmg(tmplmageNum) .data);
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels

rData.Cmblmg(tmplmageNum) .data(cntPixels,:) = ...
rData.Cmblmg(tmplmageNum) .data(cntPixels,:) - tempMean;

end
end % ls image ln use

% Should we normalize Yes or No?
if bitget(DNA,3) == 1

disp([' - Normalization of data']);
for tmplmageNum=l:iData.Numlmages

if rData.Cmblmg(tmplmageNum) .uselmage==l
if bitget(DNA,2) == 0
% 1 - normalization - Norrnalize data ln a particular spectrum ta uI·lit area.
~ Calculating tlle I-Norm constant and dividirlg each arlci
% every data Foint by that value

eise

for cntPixels=l: rData.Cmblmg (tmplmageNum) .numPixels
Norml=sum(abs(rData.Cmblmg(tmplmageNum) .data(cntPixels, :)));
rData.Cmblmg(tmplmageNum) .data(cntPixels, :)= ...

rData.Cmblmg(tmplmageNum) .data(cntPixels, :) ./ Norml;
end

~ 2 - norma:ization - Normali=e data in a particular sp~ctrum te unlt ar~a.
Calculatinq the ~-N0rm constant and dividir;g each 2~d
0~ery data p0int by that value

for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels
Norm2=sqrt(sum((rData.Cmblmg(tmplmageNum) .data(cntPixels, :) .A2)));
rData.Cmblmg(tmplmageNum) .data(cntPixels, :)= ...

rData.Cmblmg(tmplmageNum) .data(cntPixels, :) ./ Norm2;
end ~count pixsls

end End if
end % 13 image in use

end % c.')unt Images
end 'b)Jon·oallze?

~ Use Cerivativ8s?
if bitget(DNA,5) == 1

1)) ;

disp([' - DerIvation of data']);
rrData.NumPixels=rData.NumPixels;
rrData.Numlmages=rData.Numlmages;
rrData.NumDataPoints=rData.NumDataPoints-2;
rrData.Wavenumbers(l:rrData.NumDataPoints)=rData.Wavenumbers(2: (rData.NumDataPoints-

tmpResConstA = 1/(2*iData.Resolution);
tmpResConstB = 1/(iData.ResolutionA2);
for tmplmageNum=l:iData.Numlmages

rrData.Cmblmg(tmplmageNum) .numPixels=rData.Cmblmg(tmplmageNum) .numPixels;
rrData.Cmblmg(tmplmageNum) .uselmage=rData.Cmblmg(tmplmageNum) .uselmage;
if rData.Cmblmg(tmplmageNum) .uselmage==l

if bitget(DNA,4) == 0
~ First S0r1v~tlVG - First (j~riv2tivc lS calculatE:d 2nd t:hG ~t~~ riaf·.A

dI·~ adjusted 2cc,)rdirlgly.
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels

~for cntUataP01nts~1:rrData.NumDataf0ints

::::.~r J.::.'.. ta. ,~mb "::'rng (tH,P _mat]e:'Jum) . da ta. (cntFixl".21s 1 ("_~rl t La ttl.2oin t s) - ...
{.:-L':-:it3.. Ç.'mblrng (tmpTmaqeNum) . d3tô (1..--:·ntFix?-l::., '_-:ntD.3.ta.2cJlnt.s) ...

-rData. Cmblrng (trnpTmageNum) . data (cntFixel.s 1

.... tmI-:.'pr:";sCon.::: !:.f-\;
·~~0d '~cc,unt dat2 p'111·lLs

108

rrData.CrnbIrng(trnpIrnageNurn) .data(cntPixels,
l:rrData.NurnDataPoints)= ...

(rData.CrnbIrng(trnplrnageNurn) .data(cntPixels,
l:rrData.NumDataPoints) ...

-rData.Crnblrng(trnplrnageNurn) .data(cntPixels,
3: (rrData.NurnDataPoints+2») ...

points

else

. *trnpResConstA;
end %count pixels

% Second Derivative - Second decivative ia calculated and the total data

% arc adjusted accordirlgly.
for cntPixels=l: rData.CrnbIrng (trnpIrnageNurn) .nurnPixels

for cntDataPoints=l:rrData.NurnDataPoints
rrData.CrnbIrng(trnpIrnageNum) .data(cntPixels, cntDataPoints)= ...

(rData.CrnbImg(tmpImageNum) .data(cntPixels, cntDataPoints) ...
-2*rData.Crnblrng(trnplrnageNurn) .data(cntPixels,

cntDataPoints+l) ...
-rData.Crnblrng(trnplrnageNurn) .data(cntPixels,

(cntDataPoints+2») ...
*trnpResConstB;

end ~cGunt data ~)oints
end ~count pixels

end ~ First ! Second MGtl·~0d

end ::':.15 imaf]E: good
end '\Count irnag'ès
rData=rrData;
clear rrDatôi

end ~:; Dü deri-Ilativs?

Integration - IntegraIs are c"3~cuL3.ted baStd en the Slnlpson' s
~he total Ija~a p')irlts are adjusted accordingly.

if bitget(DNA,6) == 1
disp([' - Integration GE data');
rrData.NurnPixels=rData.NurnPixels;
rrData.NurnIrnages=rData.NurnIrnages;
rrData.NurnDataPoints=rData.NurnDataPoints-l;
rrData.Wavenurnbers(l:rrData.NurnDataPoints)=rData.Wavenurnbers(l: (rData.NurnDataPoints-

1»+(iData.Resolution/2);
trnpResConst=iData.Resolution/6;
for trnpIrnageNurn=l:iData.NurnIrnages

rrData.CrnbImg(tmpImageNum) .numPixels=rData.CrnbImg(trnpIrnageNum) .nurnPixels;
rrData.CrnbIrng(trnpImageNum) .useIrnage=rData.CrnbImg(tmpImageNum) .useImage;
if rData.CmbImg(tmpImageNum) .useImage==l

for cntPixels=l:rData.Crnblrng(trnpIrnageNurn) .nurnPixels
for cntDataPoints=l:rrData.NurnDataPoints

rrData.Cmblrng(trnplrnageNurn) .data(cntPixels, cntDataPoints)= ...
(1.5*rData.CrnbIrng(trnpIrnageNurn) .data(cntPixels, cntDataPoints)+ ...
1.5*rData.Crnblrng(trnplrnageNurn) .data(cntPixels,

cntDataPoints+l»*trnpResConst;
end ~ C0un~ dat~ ;)Qlnts

end %c0unt !Jixcls
end %15 Image good

end :?'" c"-.Junt ima9t:- nlJmbel.­
rData=rrData;
clear rrDatô.i

end 'lUh] ,.!:

6.9 Image Combina fion Funcfion
'':''om Pinc:huk

Mcdifi~d lO;08/2005

,:,rLl.S .~;.lnct.i;)n le lJSe::.j !:.c) .::cn,!::,.in.c th~·::; imaqe: ::lai>::!. ;.l~:"i.:ng tl·;I.:':' fjTc:atcst .
. t'~~~:cl.ut 1.c·n .lIïi:.O orlC .;:lrJ~l.~ :."1 J

109

% Input Arguments:
% iData: The initial specatral data as determined by the load data

algorithm.
% rData: The running Data up until DOW.

%
% Output Arguments:
% rData: The data used during processing of the spectra.

function [rData] = A08_CombinelmageData(iData, rData)
disp([' - Cc-mbinin9 tb(.~ d2ta.']);
cntSpec=O;
rrData.NumPixels=rData.NumPixels;
rrData.Numlmages=rData.Numlmages;
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
for tmplmageNum=l:iData.Numlmages

if rData.Cmblmg(tmplmageNum) .uselmage==l
for cntPixels=l:rData.Cmblmg(tmplmageNum) .numPixels

cntSpec=cntSpec+l;
rrData.Totlmg.class(cntSpec)=iData.lmage(tmplmageNum) .class;
rrData.Totlmg.data(cntSpec, :)=rData.Cmblmg(tmplmageNum) .data(cntPixels, :);
rrData.Totlmg.imgnum(cntSpec)=tmplmageNum;

end %count pIxels
end :::,vSE' Image

end ~number of files
rrData.NumClasses=length(unique(rrData.Totlmg.class));
rData=rrData;

6. 10 Principal Component Analysis Function

Modified 10/06/2005

s-,: ri.'hls function i3 used tc; detê-r:nine thE prinl..-.:ipal components GI thê data
% set for utilizaticn in classiflcation proceedurt-3.

% AssumptJ.e.ns:

Input ArgllmeIlts:
~1 .iData:

~~ rData:
% LiNA:

%

'~'hc: in.itiCl.l sr'(~(_'atré~l daLa Ei3 dct0r!nin()d b~i the l:;;iè d2t.él
alqor."i t.hm.
~hc running Dat.a up until DOW.

':'he ..j-bi t: [)NA str,;-u1d rcpr0senting the nUmb'2I of Fr inr.:ipal
Cemponents from 0 [use aIl data) te 15 to use.

% Output Argu~ent5:

function [rData, pc] = A09 PCA(iData, rData, DNA)
if DNA > 1

disp([' - Cid;~1Jlat:lI,,} ?ri.[,C:lpal Ccponcrd:.:3: ' num2str(DNA)]);
rrData.NumPixels=rData.NumPixels;
rrData.Numlmages=rData.NumImages;
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
rrData.NumClasses=rData.NumClasses;
rrData.TotImg.class=rData.TotImg.class;
rrData.Totlmg.imgnum=rData.Totlmg.imgnum;

covMatrix = cov(rData.TotImg.data);
[pc,variances,explained] = pcacov(covMatrix);
for cntPC = l:DNA

tempMult = pc(cntPC,:) ';
for cntPixel = l:rData.NumPixels

110

tempMult;
end

rrData.Totlmg.data(cntPixel,cntPC)

end % counting data points

rData=rrData;
else

pc=O;
end

6.11 Cluster Function
% Tom Pinchuk

% Modified 10/08/:005

rData.Totlmg.data(cntPixel,:) *

% This functiol) is th0 newest clusterlng functlon. ~t works via ci linkage
% to determine tl1e distance betwe0n çlusters.

% Assumptions:
% B version is fr)r k~lea.n3

%
% Input Arguments:
% rData: The running Data up until now.
%
% Output Arguments:
% rDat.3: ?he data ussd during pr0ces8ir~g of th0 sp0l:tra.

function [rData] = AIOb_ClusterFunction(rData)
txtDistMethod = 'sqELlclidcan';
txtStartMethod = 'samoIs';
cstNumlterations = 5;

\C,distFunc-pdi3t (rL'at-:1. Tr)t_mg. d.:~ta) ;
rrData.class=rData.Totlmg.class;
rrData.NumClasses=rData.NumClasses;
rrData.NumPixels=rData.NumPixels;
%clear rDat.a;
%àisp ([1 - C.L~]ST.ERING: Lin ka';!0' j j ;

%link=linkage(distFunc);
%clear dlstFunc;
disp([' - CLUSTERI~G: Calculating Clusters']);
[clusterOut.category, clusterOut.centroid, clusterOut.WCSP, clusterOut.distToClusters]

kmeans(rData.Totlmg.data,
rrData.NumClasses, 'distancc',txtDistMethod, 'start',txtStartMethod, ...

1 replicates J 1 cstNurnIterations, 1 (~mpt')7action 1, J .singl(~t.0n ');
%clust --=- cluster (link, 1 maxr:lu3t 1, rrData. :4umC~a.sSf3.s) ;
%3qDist-squareform(distFurlC);
%[H,7 / perm] = dendrogram(:ink,O, 'colorthresh01d', 'default');
clear l.-[\ôta;

cntClass(l:rrData.NumClasses)=O;
~; RClws arr> cr . .i.y.in-::tl. ,::~.-::tSSI ct.J.lumns 6rf> numb~~r ():E :LX"iSt3.fICf>;;: (,f ncVJ \..-;·i.ôss.

disp([' - CLfJSTEPI?'lG: VaLdat:i.nccf ilnd SCü!":!.",,,, J);
newClass (l:rrData.NumClasses, l:rrData.NumClasses)=O;
for cntPixels=l:rrData.NumPixels

cntClass(rrData.class(cntPixels))=cntClass(rrData.class(cntPixels))+l;
newClass (rrData.class(cntPixels) ,clusterOut.category(c ntPixels»= ...

newClass(rrData.class(cntPixels),clusterOut.category(cntPixels))+l;
end
tmpClass=newClass;
for cntCC=l:rrData.NumClasses

Get the maximllm ~0r each c~lumn a~d the r0W index's w~~r~ they occur
[colMax, rowlndexs]=max(tmpClass);

Get the maXimlJffi frc,m the <:·)ltJmn [03~.1~.!~S 31~d the c0l1J;nn lr~a·~x Wh01:C It OC'CULS

[absMax, collndex]=max(colMax);

rowlndex=rowlndexs(collndex);

111

end

% MAp the class
mapClass(rowlndex)~collndex;

% Now that it is found, make sure that neither 0r those are used again ,
% zero out the row and columns.
tmpClass(rowlndex,1:rrData.NumClasses)~-100;

tmpClass(1:rrData.NumC1asses,collndex)~-100;

%Determine if the classes are correct.
cntCorrect~O;

for cntPixels~1:rrData.NumPixels

end

if clusterOut.category(cntPixels)~~mapClass(rrData.class(cntPixels))
cntCorrect~cntCorrect+1;

end

rData.NumPixels~rrData.NumPixels;

rData.Score ~ cntCorrect/rrData.NumPixels;

6. 12 Reproduction Function

% Tom Pinchuk
%
% Function Reproduce: r-lodified 9/30/2005
% This function creates 2 new strands of DNA fr0~ the ezi3ting population
% taking into acsount several factors. It will randomly assign DNA to make
~ the Initial population. It wIll also verify th~ strand ta ensure
~ contlDuity and no duplic~tes.

~ Swit,:h the bOdd value if thelr le (lnly one DNA strand f<Jund.

function [DNA, bOdd, oData] ~ reproduce(cntlter, oData, bOdd)
format .l()nq c

% This section cantains constants
cstlnitPop ~ 50; % Ini tial popul'::ttion t r) randorrüz ç.2 .::'1nd sc:l(:.~ct from
cstSelectExp 2; % The exponential factor for se~ectlng Il Par02nts Il randcirnly.

The random percentage factor for creatlng a "random"
parent for reproduction

cstPctRandom 7; %
%

cstPctMutate 7; ~; T'hr;: random pE~.rcer;t~"agE~ .fa;~t().r fer mu ",2tlflg ~ " randc,m"
child after ["eprc>duction 15

Bank arder th0 results till naw. Fill in the (lD~ta.Rank{it~r~tion) flel.d
% with the actual rank Dt the scores.
[tmpScores, tmpRank]~sort(oData.totScore);

for cntRank~1:cntlter-1

end

tmplter ~ tmpRank(cntlter-cntRank);
oData.Rank(tmplter)~cntRank;

~ Cr02ate initial Population
if cntlter <~ cstlnitPop

isGoodDNA=O;
while isGoodDNA~~O

isGoodDNA = 1;
isDNA1Good ~ 1;
isDNA2Good ~ 1;
DNA(1)~round(rand*134217728);

DNA(2)~round(rand*134217728);

if not(isempty(find(oData.DNA~~DNA(l»»
DNA(1)~-1;

isDNAIGood~O;

end
if not(isempty(find(oData.DNA~~DNA(2))))

DNA(2)~-1;

isDNA2Good~O;

end
if DNA(2) ~~ DNA(1), isDNA2Good~0; end
if (isDNA1Good~~0) && (isDNA2Good~~1)

DNA(1)~DNA(2) ;

112

end
else

if bOdd;;O, bOdd;l; else bOdd;O; end
elseif (isDNAIGood;;l) && (isDNA2Good;;0)

if bOdd;;O, bOdd;l; else bOdd;O; end
elseif (isDNAIGood;;O) && (isDNA2Good;;0)

isGoodDNA;O;
end

!t Here is the real GENETIC ALGORITHt"l once the populat ion has bcen
% verified. If a child has been found, make ctlild value = -1. The
% maximum population to reproduce is the s.:une as t.h".::' ini t ia:;"
% popula t.i on.
isGoodDNA;O;
while isGoodDNA;;O

isGoodDNA ; 1;
isDNAIGood ; 1;
isDNA2Good ; 1;
% 1: Determine the top performers in the populati.)n and randomly select
% 2 of thern as parents. The top performers are first sorted by
% the percentage clasifled and then hy the total score. The
% selection i5 based on an expon0ntial curV0 fit. There is a
% lQwer probabl.ilit.y or se.lectinq lc,~Y~:;r 3i~or.ed s:.:1:11ples and a
~ higher of slecting higher Scor0S sa~plc.s. Y X~N

% ROUND ((RAND)" (UN) x ~lax Fopu.lati.c'n) = Index
PICK(1:2);0;
% Pick two parents from top populati0n 0 ta 50
while PICK(1);;PICK(2)

PICK(1:2);round«rand(1:2) .A(cstSeIectExp» .*(cstlnitPop-l»;
end
rnklndex(l);tmpRank(length(oData.Rank)-PICK(l»;
rnklndex(2);tmpRank(length(oData.Rank)-PICK(2»;
PARENT (1) ; oData.DNA(rnklndex(l»;
txtParentPct(l) ; tmpScores«length(oData.Rank)-PICK(l»);
'1. t",t.Farent P",l. (1) = tmpSco rc,s ((lc,nc)U', (.)CaLéi, Ra nk! - P,C}: (j)) , 2) ;
~ Creatc a random parent. if the random F~oCCSS tal.ls j.nt,) a glvcrl
~ perccntaqea
if (rand*lOO) <; cstPctRandom

else

end

PARENT (2) ~ round(rand*134217728);
txtParentPct(2) ; -1;

PARENT (2) ; oData.DNA(rnkIndex(2»;
txtParentPct(2) ; tmpScores«length(oData.Rank)-PICK(2»);
;~txtParent_Pxl (2) = tmpScore3 ((lengt.h (·'Ji'::.::~ ta. Rank} -~~ICK (:)) , =) ;

~ 2. RandcJmly pick a point wher0 the CtJt t.c, the r.igt;t wll: plovide ~')r

~ crOS50ver reproduction. 7he bit nlDst t~ ta ttlC right of bit 27
% through bit 2 ir) arder ta have ctiildren.
tmpShiftBit; (round(rand*25) + 2);
tmpFirstCut;bitshift(PARENT,-tmpShiftBit);
tmpSecondCut;PARENT - bitshift(tmpFirstCut,tmpShiftBit);
DNA(l) bitshift(tmpFirstCut(l),trnpShiftBit) + trnpSecondCut(2);
DNA(2) ; bitshift(trnpFirstCut(2),trnpShiftBit) + trnpSecondCut(l);

3: Randomly 3slect if ~utatlon 3hould b~ appllsd. l~ so, randornly
select a :3a:-nple and [-:-ir1i.J.')ml:t' sei.ect. .:~ bit ts· :nutate.

trnpMutateBit ; 0;
if (rand*lOO) <; cstPctMutate

tmpMutateBit ; round(rand*26) + 1;
tmpMutateChiId ; round (rand) + 1;
if bitget(DNA(tmpMutateChild),tmpMutateBit);;l

DNA(tmpMutateChiId);bitset(DNA(tmpMutateChiId),tmpMutateBit,O);
el se

DNA(tmpMutateChiId);bitset(DNA(tmpMutateChiId),trnpMutateBit,l);
end

end mutatR&ble

% Verify the child[~n
if not(isempty(find(oData,DNA;;DNA(l»»

DNA (1) ;-1;
isDNA1Good;0;

113

end
if not(isempty(find(oData.DNA==DNA(2»»

DNA(2)=-1;
isDNA2Good=0;

end
if DNA(2) == DNA(l), isDNA2Good=0; end
if (isDNAIGood==O) && (isDNA2Good==1)

DNA(1)=DNA(2);
if bOdd==O, bOdd=l; else bOdd=O; end

elseif (isDNA1Good==1) && (isDNA2Good==0)
if bOdd==O, bOdd=l; else bOdd=O; end

elseif (isDNA1Good==0) && (isDNA2Good==0)
isGoodDNA=O;

end
end % While Laop

% Display what i3 going on:

disp([' Cutting parents ta the right. cf bit: ' num2st.r(tmpShiftBit)]);
if tmpMutateBit > 0
disp([' Mutating Bit.: ' num2str(tmpMutateBit) , in chL.d numly,r'

num2str(tmpMutateChild)]);
end

disp([' Parent ~: ' num2str(PARENT(1» , Score: '
num2str(txtParentPct(1) *100) '% ']);

if txtParentPct(2) == -1
disp ([, Parent 2: ' num2str (PARENT (2» , - RF.NOOl>1LY GENER}\.TEO']);

else
disp ([, Parent 2: ' num2str (PARENT (2» , SC'Jr"': '

num2str (txtParentPct (2) *100) '% ']);
end
disp(char(160»;
firstHalf(l, :)=27:-1:tmpShiftBit;
firstHalf(2, :)=bitget(PARENT(1),27:-1:tmpShiftBit);
firstHalf(3, :)=bitget(PARENT(2),27:-1:tmpShiftBit);
if DNA(l)==-l

firstHalf(4, :)=27:-1:tmpShiftBit;
secondHalf(4, :)=(tmpShiftBit-1) :-1:1;

else
firstHalf(4, :)=bitget(DNA(1),27:-1:tmpShiftBit);
secondHalf (4, :) =bi tget (DNA (1) , (tmpShiftBi t-1) : -1: 1) ;

end
if DNA(2)==-1

firstHalf(5, :)=27:-1:tmpShiftBit;
secondHalf(5, :)=(tmpShiftBit-1) :-1:1;

else
firstHalf(5, :)=bitget(DNA(2),27:-1:tmpShiftBit);
secondHalf (5, :) =bi tget (DNA (2) , (tmpShiftBit-1) : -1: 1) ;

end
secondHalf(l, :)=(tmpShiftBit-l) :-1:1;
secondHalf (2, :) =bitget (PARENT (1) , (tmpShiftBi t-1) : -1: 1) ;
secondHalf (3, :) =bitget (PARENT (2), (tmpShiftBit-1) : -1: 1);
middlepart=['<=>'; '<=>';'<=>';'<~>1;'<~>'];
prePart= [, Bl t: ' ; 1 Pë:o:rënt 1: '; 1 Parent ::'; 1

disp([prePart(l,:) num2str(firstHalf(1, :»
num2str(secondHalf(1, :»]);

middlepart (1, :)

disp ([prePart (2, :) num2str (firstHalf (2, :» middlePart (2, :)
num2str (secondHalf (2, :»]);

disp([prePart(3,:) num2str(firstHalf(3,:»' middlePart(3,:)
num2str (secondHalf (3, :»]);

disp([prePart(4,:) num2str(firstHalf(4,:» t middlePart(tl,:)

num2str (secondHalf (4, :»]);
disp([prePart(5,:) num2str(firstHalf(5,:» , , middlePart(5,:)

num2str(secondHalf(5, :»]);
end

\,.:hi2.d 2: 1];

114

