OPTIMIZATION OF PRE-PROCESSING VARIABLES FOR
HYPERSPECTRAL ANALYSIS OF FOCAL PLANE ARRAY FOURIER
TRANSFORM INFRARED IMAGES

By
Tommy Pinchuk

Department of Food Science and Agricultural Chemistry
McGill University, Montreal, Canada

April, 2006

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of Masters of Science.

© Tommy Pinchuk, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-24770-9
Our file Notre référence
ISBN: 978-0-494-24770-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Table of Contents

Table Of COMENLS.......coiiiiiiieieeee ettt et e ettt e s eae e eeee e i
LISt Of TADIES ...ttt ettt et eeeae s ii
LISt OF FIZUIEScneieeieie ettt ettt ettt neen s eaeesennesenn iii
ACKNOWIEAGEIMENLS........eoceieiieieeieieeteete ettt et sae s e st saeenassneeas iv
ADSITACE ...ttt sttt et et b et sa et e et et e ere e s e enteneenn e enaesreees v
RESUIME......c.oiiiiiiiiieeeee ettt sttt ettt se e et e s aeeste e re e aeentesteeseeesseneesneean vi
| O € 115 (T L1 13 T s WO USSR 1
2 LAterature REVIEW.......cocvcviiiieiiciieeceeeeeeeee ettt ettt s e eme et e e 4
2.1 Gram-TaXOnOMYccccoiuiiiriiiriniecnircteee ettt ettt b s saens 4
2.2 StatistiCal CONCEPLS......ccovmirueirirtrieieeieie ettt st teeeete st et aeeaesseteenseeeneas 6
23 Spectroscopic Data ACQUISItIONccoeeieeieiiieieiieeiieieeeeeeeee et 11
2.4 Data ENhanCementcccuoeveiiuiiiiieiieieeiceeeceeeeteeee ettt 19
2.5 Feature Selection and EXtractionccoooeeeeieiieieeceeeecee e 23
2.6 Pattern ReCOZNItION.cccooiiiiiiiiiiciiicieeee ettt 34
2.7 Genetic Programmingcccveeieveeiiiieoiceeee e 50
2.8 Outlier RemMOVAL........cooveiiiiiiieiii ettt 54
3 Using Genetic Algorithm to Optimization of Pre-Processing Variables.................. 55
3.1 INtTOAUCHION.....ceiieeeceeeeee ettt 55
3.2 Materials and Methods..........cooeiuieiiieniiiiicecceeeeee e 57
33 Results and DiSCUSSIONccuecouvieeuiiiiieeieceeecee et 64
34 Validation TestScooceieiiiiie ettt 82
4 CONCIUSION ..ottt ettt et eeneeev e et eeae e et eaeanssaseeneeesnessaes 90
S REIEIENCES. ...ttt ettt ettt e eaeeneea 93
6 Appendix: Genetic Algorithm Matlab Code.............coeveiivriviiiieiieeeeeeeceeeeene 96
6.1 Main Genetic FUNCHIONocvieeiiiieiiciieeece e 96
6.2 Data Loading FUnCtionccceceoiieeieineciiiiccceeee vt 98
6.3 Amide I Removal Function............ceeceeeeiiiiiiiiiieecce e 100
6.4 Baseline or Raw Selection FUnction.............cccocoeevevieieiieeiiiececeee e 101
6.5 Pixel Co-Addition FUnCtion...........ccccueveeiiieveeeeeceeeeeeeceeeeeeeeee e 102
6.6 Outlier Removal FUNCHON.ccveiiiiiiieieeeeeceece e 103
6.7 Image Smoothing Function..............cccocceiniiiiniiiine e 105
6.8 Feature Selection FUNCtionccocoiiiiiiiiiiiiecceeee e 107
6.9 Image Combination FUNCHONcccooiiiiiiriini e 109
6.10 Principal Component Analysis FUNCHONcccoocoeiiiiiiiicieceeeee. 110
6.11 Cluster FUNCHOM.......ooieeiieieiciecee ettt ea e 111
6.12 Reproduction FUNCHOMN.........ccccuiviieiiiiieiceiee e 112

List of Tables

Table 2-1: Savitzky-Golay CoeffiCIentscoceeveeeerereriesreieeeise e 23
Table 2-2: Distance Measure Example — Sample Datacccoooveveevieeieecverccceeeene. 37
Table 2-3: Distance Measure Example — DiStancescc.ccccevverveereeeveveeereereenserveeseens 37
Table 2-4: K-Means Example — Sample Datacccoeeueviiirciececeicieeeevereeei e 41
Table 2-5: K-Means Example — Euclidean Distance Matrix............ccoceeveeveueveereresrennnnene. 41
Table 2-6: K-Means Example — First Iteration Sums.............cocooveveevveeeiceceiceceeee 44
Table 2-7: K-Means Example — First Iteration Cluster Assignments.................coccuo........ 45
Table 2-8: K-Means Example — First Iteration Cluster Means..............cccooooevveeeeeeeennn... 45
Table 2-9: K-Means Example — Second Iteration Object A...........cocovvevevveveevevevenrennne. 47
Table 2-10: K-Means Example — Second Iteration Object C..........ccocceeveeeieiicneenennne. 47
Table 2-11: K-Means Example — Second Iteration Cluster Meansccocoeveevevennnnee. 48
Table 2-12: K-Means Example — Third Iteration Cluster Means.............cccocvevevvereenennne. 48
Table 2-13: K-Means Example — Fourth Iteration Cluster Meansc.ccccoveveeeneennnn. 48
Table 2-14: K-Means Example — Fifth Iteration Cluster Meanscccoeevevvereereennnen. 49
Table 3-1: Training Set - Bacterial Species and Specimens...........ccocveevveveereeneenieeennnane. 58
Table 3-2: Amide I Absorbance Tolerance...........cc.oeveevriviieerieiecieceieeeeeseeseene e 68
Table 3-3: Baseline Correction Evaluation.............ccceeueeeeeuiieeececieeeieeeeeeeeceeieeeeeeen 72
Table 3-4: Baseline Correction Evaluation — Derivative Mutationc..cccceevee... 72
Table 3-5: Outlier Removal Tolerances vs. Amide I Tolerancescccceveveenennn... 73
Table 3-6: Feature Selection Evaluation..............cccoocveoeeiiiiiiceiiceeeeceeeeeee 79
Table 3-7: Principal Component Variance Contributionscc.oeceeeevvieieiieeeieeenennne. 80
Table 3-8: Validation Test 1 — Bacterial Species and Specimensccccoeeveveeveennnen. 84
Table 3-9: Results of Validation Test 1.........cccocevieieieiinieiiceneseeeee e 87
Table 3-10: Results of Validation Test 2ccooueeieeeieciiiceeeeereeeeveee et 89
Table 4-1: Comparison of Distances to CIUStErscoeverreveeueeeereceeieiieeeeeieeeeenens 91

i

List of Figures

Figure 2-1: The Gram-staining proCedurecccocuvrirrirrereeiererecerieneneeessessessessessessenne 5
Figure 2-2: The sum of three dice being rolled 10,000 times..........ccccocererereriienrcneenenne 7
Figure 2-3: Multivariate ATITAY.........ccccoeriieiieieieietececece sttt 9
Figure 2-4: Electromagnetic WavVes...........cceccevivierieieniieiesreseeeiieseesteeteeseesseeaaasssesaeesnes 12
Figure 2-5: Electromagnetic Wave Interference............ocoecvvvvveeieniereeeerereceeeee e 13
Figure 2-6: Fourier DecOmMPOSItIONc..cccceciririririeieieeesieie sttt 14
Figure 2-7: The Michelson Spectrometercoecveriiiiiiicieiieieiccteeeeee e 17
Figure 2-8: FIrSt PCA AXIS.....cociiieiiieieeieee ettt sttt es 33
Figure 2-9: DisStance MEASUIESccoevivrrerierierierieieieieseie e esnesse s ssessesseee s sseseeseenas 36
Figure 2-10: Distance Measure Example — Dendrogramccoceeeevevrienrninnenieneenenenn 37
Figure 2-11: Distance Measure Example — Data Plot...........ccocovivevviiiinninneiereeee, 38
Figure 2-12: 2-D Cluster EXample.........cccccooivmrenierirceeienriieieeieeeeeee e 39
Figure 2-13: K-Means Example — 2-D Variable Plot.........cocoeveieiniinieniieeee 42
Figure 2-14: K-Means Example — Initial Sample Space Partitioning...............ccoccvernenne.. 46
Figure 2-15: K-Means Example — Final Clustersccccociiiiiiniinieceeceee 50
Figure 2-16: Reproduction Stage of a Genetic Algorithm...............ccoceeeiiieiiecieie. 54
Figure 3-1: Genetic Algorithm Flow Chartcccoooiiiiiiiiiieeeceeeeeeee 60
Figure 3-2: Genetic Algorithm - Fitness vs. [terations............ccccceeeeeenieveieieceiecieee 65
Figure 3-3: Flowchart of Sub-Optimal Fitness DNAcccoovviviivvienienieieeienennen 66
Figure 3-4: Genetic Algorithm - 3-D Projection of Top Fitness Member........................ 67
Figure 3-5: Amide I Absorbance Tolerances for Top 50 Fitness Population................... 69
Figure 3-6: Pixel Utilization Before and After Selection Based on Amide I Tolerance .. 70
Figure 3-7: Average Pixel Utilization After Selection Based on Amide I Tolerances..... 71
Figure 3-8: Pixel Utilization Before and After Outlier Removalocooeiieinnne. 74
Figure 3-9: Smoothing Results — Absorbance vs. Wavenumberccccocoiiiinnne. 76
Figure 3-10: Feature Selection — Absorbance vs. Wavenumber..................cccooeeinnee. 78
Figure 3-11: Number of Instances of Principal Components in Top 50 Fitness 80
Figure 3-12: Principal Component Weights vs. Wavenumbercccceecevreieenieennnennnn. 82
Figure 3-13: Image of Escherichia coli Sample: Pixel Utilization Before and After

Selection Based on Amide I TOIEIance..........ccuevueieriinieeeeieieieiee et 85
Figure 3-14: Validation Test 1 — Cluster P1ot........cccoooiiuiiiriiieeee e 86

1

Acknowledgements

I would like to start off thanking my parents — for without them I would not be
able to participate in the quality education I am privileged to have. My parents along with
my sister have always been there for support, encouragement and understanding with this
endeavor.

I like to thank two of my peers - Mr. Jonah Kirkwood for graciously providing me
with excellent image data, and Mr. Andrew Ghetler for his relentless brainstorming,
continuous input, feedback and revisions.

I appreciate the love and support of my wife Tanya as well as her understanding
in delaying our honeymoon so that I may finish this project. I would also like to thank her
for her input, interest and editing revisions.

Working with me to the final hour, I appreciate the time and effort of Jacqueline Sedman
for her profession revisions and feedback.

Most of all, I would like to express my gratitude to Dr. Ashraf Ismail for his
leadership, guidance and supervision in my research pursuit. His passion and persistence
have been a driving factor in my accomplishment. I would also like to express my thanks
to the rest of the food science faculty and McGill University for their resources and

attention.

v

Abstract

A genetic algorithm was employed to select the optimal combination of pre-
processing variables, including data pretreatment, data manipulation and feature
extraction procedures, for eventual clustering of a data set consisting of hyperspectral
images acquired by a focal plane array Fourier transform infrared (FPA-FTIR)
spectrometer. The data set consisted of infrared images of bacterial films, and the
classification task investigated was the discrimination between Gram-positive and Gram-
negative bacteria. The genetic algorithm evaluated combinations of variables pertaining
to bacterial film thickness tolerances, baseline correction, pixel co-addition, outlier
removal, smoothing, mean centering, normalization, derivatization, integration and
principal component selection. Following numerous iterations of unsupervised
processing, the genetic algorithm arrived at a sub-optimal solution yielding a clustering
accuracy of 97.8% and a data utilization of 28.6%. The results provided insight into the
co-dependencies of the pre-processing variables and their consequential effect on the
selected data. The robustness of the classification model was evaluated and reinforced by
the successful classification of two distinct validation sets. The overall success of the
genetic algorithm suggests that it is an effective time saving resource for the optimization

of pre-processing variables that does not require operator intervention.

Résumé

Un algorithme génétique a été employé pour choisir la combinaison optimale des
variables de prétraitement comprenant la préparation des données, le traitement des
données et les procédures d'extraction de traits significatifs afin de grouper des images
hyperspectrales acquises par un spectrométre infrarouge & transformée de Fourier
utilisant un détecteur matriciel au plan focal (FPA-FTIR). L’ensemble de données était
composé des images infrarouges de films bactériens, and la tiche de classification était la
discrimination entre des bactéries gram positif et des bactéries gram négatif. L'algorithme
génétique évalue les combinaisons de variables concernant des tolérances d'épaisseurs de
films bactériens, la correction des lignes de base, 1’ajoutement des points, 1’enlévement
des points discordants, le lissage, la normalisation, la dérivation, I’intégration et I’analyse
en composantes principales. Aprés de nombreux traitements non supervisés, 'algorithme
génétique est arrivé a une solution optimale comportant une exactitude de 97,8% avec
une utilisation des données de 28,6%. Les résultats fournis précisent les interdépendances
des variables de prétraitement et de leurs effets sur les données. La fiabilité du modeéle de
classification a ét¢ évaluée et renforcée par la classification réussie de deux différents
ensembles. Le succes de l'algorithme génétique démontre le gain de temps pour

I’optimisation des variables de prétraitement sans la nécessité d’un opérateur.

vi

1 Introduction

Modern chemical and spectral analysis techniques are fundamentally based on the
mathematical manipulation of experimental data (Adams, 1995). The term chemometrics
was proposed more that 20 years ago to describe the mathematical manipulation
techniques and operations associated with the interpretation of chemical data. In general,
chemometric analysis is applied to determine either the quantitative composition of a
sample or the qualitative classification of a species (Adams, 1995). It is essential that
analysts comprehend how their data is obtained, modified and transformed to produce the
information that they require.

Chemometrics has played a major role in the development of new analytical
applications of spectroscopic techniques, particularly near- and mid-infrared
spectroscopy, over the past few decades. The rapid growth in popularity of these
techniques was triggered by the availability of laboratory computers, which allowed the
large amount of data that these techniques provide to be accessed directly, but this in turn
required the development of means of manipulating these data to extract relevant and
reliable information. The resulting advances in chemometrics as applied to infrared
spectroscopic data have extended the scope of infrared spectroscopic analysis beyond the
traditional realm of chemistry. An example of particular relevance to the research
reported in this thesis is the utilization of infrared spectroscopy in microbiological
analysis (Naumann, 2000).

With continuing advances in instrumentation, such as the development of infrared
imaging technologies, further recourse to chemometrics is needed to handle the

increasingly complex tasks of data manipulation. For instance, a Fourier transform

infrared (FTIR) spectrometer equipped with an » x n focal-plane-array (FPA) detector
collects an image consisting of n” individual spectra, where each spectrum provides
information specific to a particular location in the sample. Analysis of the resulting data,
termed hyperspectral data analysis, is inherently complex, given the impossibility of
visualizing the full spatial and spectral information content of the acquired image on a
three-dimensional plot.

The overall objective of the research presented in this thesis was to determine the
optimum methods of pretreatment, preprocessing and eventual clustering of a data set
consisting of infrared images acquired by a FPA-FTIR spectrometer. The literature
review section of this thesis will present a brief overview of elementary statistics and
infrared spectroscopic acquisition. The discussion will explore several common methods
used to process infrared spectral data, as well as methods of selecting and extracting
spectral features relative to clustering and classification. The literature review will also
address the fundamental theories behind genetic algorithms as a method of evaluating
different combinations of pre-processing variables in order to determine the optimal
combination for data classification.

Chapter 3 will explore and evaluate the use of genetic algorithms to optimize the
combination of data pretreatment, data manipulation and feature extraction procedures to
effectively cluster Gram-positive and Gram-negative bacterial species based on their
spectral profiles. The choice of this data set is related to ongoing research on the potential
utility of FPA-FTIR spectroscopy in the identification of bacteria (Kirkwood et al., 2004)
but may be regarded as arbitrary in the context of the present study. Data pretreatment

procedures such as co-addition, outlier removal, spectral quality assessments, and

baseline correction will be evaluated for their impact on the data clustering. Data
manipulation techniques such as spectral smoothing, mean centering, normalization,
derivatization and integration will also be evaluated. Feature extraction techniques such
as principal component analysis will be tested as well. The effectiveness of the genetic
algorithm, in combination with a good fitness function, in selecting the optimal
combination of pre-processing variables will then be evaluated using two independent

validation tests. Overall conclusions of this study will be presented in Chapter 4.

2 Literature Review

The popularity of interdisciplinary studies has paved the way to the discovery of
new methods and procedures for chemical and biological studies. The fusion of
mathematics, computer science, and chemistry has given birth to the chemometrics
discipline. In turn, the application of chemometrics in conjunction with infrared
spectroscopic methods of analysis, traditionally associated with the field of chemistry,
has provided new methods for the analysis of biological samples. For example, the
research reported in this thesis was undertaken in relation to the application of infrared
spectroscopy as a tool for the classification of bacteria, and thus the first section of this
chapter documents the microbiological task of Gram-classification. Subsequent sections
reference some elementary statistical concepts essential to the comprehension and
implementation of mathematical modeling. The process of spectral acquisition is then
explored as well as the techniques used to manipulate the data, select features and extract
them for purposes of sample classification. The classification technique used in this work
is documented as well. Finally, the principles of the functionality of a genetic algorithm

are explained including the reproduction and fitness functions.

2.1 Gram-Taxonomy

The cell wall of a bacterium is perhaps one of its most distinguishing features.
Not only does the cell wall structurally maintain the bacteria but it also helps to maintain
the cell’s characteristic shape, counter the effects of osmotic pressure and provide
characteristics for viral susceptibility (UOT, 1995). The composition of the cell-wall is

one of the primary characteristics analyzed in bacterial species differentiation.

In 1884 the Danish Physician Hans Christian Gram, developed a procedure for
staining bacteria (Firkin and Whitworth, 1987). This procedure is known today as the
Gram staining procedure. Later, this procedure would become the benchmark for
bacterial classification on the basis of the cell wall permeability.

Gram staining is a relatively simple laboratory procedure as illustrated in Figure
2-1. The procedure consists of obtaining a cultured bacterial specimen and smearing it on
a slide. The slide is then subjected to Crystal violet stain for 10 seconds and rinsed with
water. It is then flooded with iodine for 10 seconds and rinsed again. Immediately the
slide is rinsed with a decolorization solution of 95% ethanol until the thinnest part of the

smear become colorless (Hashimoto and Birch, 1996).

GRAM + GRAM -

© Fixation @
Crystal
-

Violet @
|

lodine
treatment

Counter stain
(safranin)

C)
Deootorlzatlon @
)

Figure 2-1: The Gram-staining procedure
The cell wall of Gram-positive bacteria is relatively thick because it consists of

many layers of the polymer peptidoglycan (UOT, 1995). Therefore, if the bacterial smear

1s Gram-positive it will retain purple iodine dye complexes after the de-colorization
procedure is complete (Hashimoto et al., 1996).

Conversely, the cell wall of Gram-negative bacteria is relatively thin. The purple
iodine dye vanishes during the de-colorization procedure (UOT, 1995). To identify if
Gram-negative bacteria exist on the sample slide, the smear is flooded with safranin for
10 seconds and allowed to air dry, leaving the Gram-negative bacteria with a pink
colorization as illustrated in Figure 2-1 (Hashimoto et al., 1996).

Today, the classification of unidentified bacteria into Gram-positive or Gram-
negative categories is an essential analytical technique spanning many disciplines.
Physicians can make a presumptive etiologic diagnosis of bacterial meningitis, bacterial
pneumonia, bacteriuria, gonorrhea, and pyogenic infections of the brain, lung, abdomen,
pelvis and wounds or early clinical decisions based on the examination of a Gram stained
smear of infectious material (Hashimoto et al., 1996). Food scientists working with meat
production can develop adequate measures for preventing spoilage and identifying
potentially harmful toxins (Davies and Board, 1998). Microbiologists and immunologists
can determine the adequacy of a specimen for culture and further examination using a
Gram test as opposed to wasting their time and financial resources. (Hashimoto et al.,

1996).

2.2 Statistical Concepts

Any method of chemometric evaluation of spectral data is derived from
mathematical statistical analysis. For instance, the classification of a sample by
comparison of its infrared spectrum with a standard set of spectra in a pre-recorded

database involves some degree of quantitative measure of similarity in order to determine

the best match (Adams, 1995). In order to comprehend these methods, it is important to

understand some key statistical concepts with pertinence to chemometric analysis.

2.2.1 Gaussian Distribution

The Gaussian distribution is the most important distribution for continuous data
because of its range of practical applications in spectral analysis (Adams, 1995). The
Gaussian function represents the distribution of truly random phenomena. The most
common illustration of a Gaussian curve is rolling several dice many times and recording
the output. The more dice that are rolled, and the more times the dice are rolled, the more
the function becomes continuous and resembles the Gaussian curve as illustrated in

Figure 2-2 (Kowaski et al., 1986).

1500 , . , ; ; ; , ;
1000} -
5001
s »t
= al
o I
2 4 I 8 10 12 14 16 18 20

Figure 2-2: The sum of three dice being rolled 10,000 times
The continuous normal distribution (the red line in Figure 2-2) is normally

adjusted so that the area under the curve is equivalent to unity or 1. The equation for the

continuous normal distribution is given by the Gaussian function in Equation 2-1
(Adams, 1995). In practice, however, only a finite number of samples exist, and therefore

the Gaussian function is also represented as in Equation 2-2 (Adams, 1995).

Equation 2-1

f(x): _(x_'u)2:|

1
N (eT) exp[20°

_ 1 —(x-x)?
f()=- mexp[o]

Equation 2-2

where
f(x) is the height of the curve at some value x.

M, X is the mean or average value of the function.

o?, s? is the variance.
o, s is the standard deviation.
n 1s the total number of samples.
i denotes the individual elements of the set of data.
The standard deviation is a measure from the center or mean of the Gaussian

curve. In practice, less than 1 in 3 of the samples will be greater than o distance away
from u or conversely 68.3% of the data will lie within o distance from g . Less than 1
in 20 will be greater than 20 away from g or conversely 95.5% of the data will lie
within 2o distance from . Less than 1 in 300 will be greater than 30 away from g or
conversely 99.7% of the data will lie within 3o distance from g (Adams, 1995; Burns,

2001).

The standard deviation within a data set permits the comparison of the individual
data points. A tighter standard deviation (smaller) therefore signifies a more uniform set

of data.

2.2.2 Multivariate Analysis

Where section 2.2.1 explained the variance of a single component, there is an
increasing emphasis currently being placed on analyzing multi-component (element)
samples and utilizing multiple measures in data analysis (Adams, 1995).

To begin understanding the concepts of multi-component analysis, it is important
to outline the basic nomenclature used to describe the data. In general, multi-component
data is referenced in matrix form to facilitate calculation and organization of the data.

Traditionally, data is organized as illustrated in Figure 2-3 (Burns, 2001).

m

v

v
Figure 2-3: Multivariate Array

where

X is the data matrix

n is the number of objects or samples

m is the number of variables or components measured
x; are elements of the data matrix X

A data matrix with only one row is termed a row vector or “r”, and a data matrix

46 0

with only one column is termed a column vector or “c”.

2.2.2.1 Covariance

In a multivariate system it is customary not to analyze the individual variates in
isolation, but to combine them in order to provide as complete a description for the
system as possible. Variables that display no interaction with any other variables in the
system are referred to as statistically independent; a change in value of one variable
would have no effect on another measured variable (Adams, 1995).

In many cases the variates are not statistically independent. A measure of
interaction between variates is required to begin to interpret the data and characterize the
samples. The degree of interaction between variables can be estimated by calculating
their covariances (Burns, 2001).

As variance describes the spread of data about the mean for a single variable,
covariance describes the relationship between two variables. The covariance formula in

Equation 2-3 is derived from the variance formula in Equation 2-2 (Adams, 1995).

Equation 2-3

SP, = Z(xik - %)(xi/ - f1)

i=1

SBy

(n=1)

Cov,, =

where
x; is the i™ concentration of variate J.

k,] are two arbitrary variates to be compared.
SP, is the corrected (mean centered) sum of products of variates k & /.

Cov,, is the covariance coefficient between variates k & /.

10

2.2.2.2 Correlation

To estimate the degree of interaction between variables, free from the influence of

measurement units as in the covariance Equation 2-3, the correlation coefficient is

introduced. The correlation coefficient requires that the variance of each variate be

calculated as in Equation 2-2 (Burns, 2001; Adams, 1995). The correlation coefficient in

Equation 2-4 cannot exceed the bounds of +1 to -1, and is therefore normalized to unity.

Equation 2-4

Y
C

Yy = P
Sy OSI

where
s; 1s the standard deviation of variate j.

r,, 1s the correlation coefficient between variant k & /.

2.3 Spectroscopic Data Acquisition

2.3.1 Introduction

Davis et al. (2001) describe spectrometry as “the detection and measurement of

radiation and its analysis in terms of frequency and energy distribution”. Electromagnetic

waves carry information about the sources that generate them. Each time-varying wave is
composed of a frequency, amplitude and phase. Figure 2-4 depicts two waves with

amplitude of one, a frequency of one wave every 2n seconds and a phase difference of

/2.

11

15

OO0 /0
WA

—Phase 1
~—Phase 2

IRV VARN YA \

Time

Amplitude
B
0.49
0.98
1.47
/4
245
2.94
/ﬁ
3.92
T 441
49
5.39
5
I
6.86
7.35
7.
/T::‘
8.82
9.31
A
. 103
~103
13
18
N
27
32
37
]
15.2
5

Figure 2-4: Electromagnetic Waves

The majority of electromagnetic sources do not just generate a uniform wave.
Sources such as the sun generate many waves with an infinite number of frequencies and
amplitudes. Figure 2-5 portrays an example of three waves with different frequencies and
amplitudes. The overlay of the three waves is the sum representing the wave that would
be measured by a wave-detecting device such as a spectrometer. In the case of the sun,
each frequency represents a different color of visible light; when observing the sun, the

observer sees only the sum of all the waves that resembles a soft yellow.

12

i
——Freq 2p, Amp 2

~-~Freqp, Amp 0.5
~Freq p/2, Amp 1

~~ Sum of waves

-3

Figure 2-5: Electromagnetic Wave Interference

2.3.2 Fourier Transform

A dispersing element such as a prism may be employed to separate light into its
composite frequencies at different angles, producing a “rainbow” of multicolored bands
in the case of visible light. Alternatively, the decomposition of a time-varying wave into
its individual frequencies may be achieved without the use of a dispersing element
through the application of a mathematical algorithm commonly referred to as the Fourier
transform, (Davis et al., 2001). Applying the Fourier transform to the “sum of waves”
plot in Figure 2-5 decomposes the amplitude versus time wave into three waves with
frequencies of 2w, m and n/2 and amplitudes of 2, 0.5 and 1, respectively, as illustrated in
Figure 2-6 (Davis et al., 2001).

For the broad-band radiation sources employed in molecular spectroscopy, the

development of the Fast Fourier Transform algorithm and high-speed computers were

13

essential for high-resolution Fourier transform spectroscopy because of the sheer volume

of the data and the complexity of the observed waves (Davis et al., 2001).

I o) o)
\

—Sum of Waves
. | |~ Fourier Decomposition

Amplitude
O ° -
0.54
1.08
1.62
2.16
=
432
4.86
5.4
5.94
6.48
7.02
7.56
8.1
seaf
Saryr]
s >
3
10.8
1.3
1.9
13
135
14
14.6

Time / Frequency

Figure 2-6: Fourier Decomposition
The algorithm for the Fast Fourier Transform or Fourier decomposition of a wave
is explained as follows (Bourke, 1993). Consider the wave to be transformed as a vector

series of data as illustrated in Equation 2-5.
Equation 2-5

x(k) = [xo,x] ,...,xN_l]
where
N is the total number of data points.

x; is a complex number defined as x; = X,.,; + /X, a0imary -

Jj is the imaginary number, j =~/—1.
The Fast Fourier Transform of the vector series described by Equation 2-5 will

also have N data points and is denoted X(k), and is described by Equation 2-6.

14

Equation 2-6
N-1 .
X(n)= %Zx(k) exp[— %] ,forn=0...N-1

k=0

2.3.3 Infrared Spectra

Electromagnetic radiation is decomposed into various regions with corresponding
wavelengths. In the case of mid-infrared (IR) spectroscopy, A is in the range of 2.5 to 25
um. The unit of wavenumber as opposed to wavelength is often used in IR spectroscopy.
It is described as the number of waves per centimeter and conforms to the relationship in

Equation 2-7 (Davis et al., 2001). Typically, IR spectroscopy covers a wavenumber range
of 4000 to 400 cm™.

Equation 2-7

where
o is described as the wavenumber and has the unit cm™.

2.3.4 Fourier Transform Spectroscopy

To measure electromagnetic waves, most Fourier transform spectrometers make
use of a scanning Michelson interferometer. The interferometer records the interferogram
of the electromagnetic radiation under examination. The interferogram is then broken
down into its frequency components by applying the Fourier transform as illustrated in
Equation 2-6 (Davis et al., 2001).

Today’s interferometers are recognized for their high optical efficiency, no
diffraction losses, high throughput, simultaneous observation of all frequencies /

wavelengths, and wide spectral coverage (Davis et al., 2001). In order to comprehend

15

spectroscopic analysis, it is essential to understand the fundamental theory behind the
interferometer.

The process of Fourier transform infrared spectroscopy begins with an infrared
source as illustrated in Figure 2-7. The infrared beam is directed toward an interferometer
that contains a beam splitter, a fixed mirror, a moving mirror and an optical lens. The
beam splitter divides the input source into two beams of equal amplitude. One beam is
directed to the fixed mirror and the other to the moving mirror. The two beams are then
recombined on the optical lens (often the same beam splitter serves as an efficient lens).
The recombined beam is a combination of the two source beams that are allowed to
interfere with each other as a function of the moving mirror’s displacement.

The output of the interferometer is referred to as an interferogram. The relative
intensity of the interferogram is a function of the path difference, X (Figure 2-7), of the
moving mirror. The intensity of the interferogram energy is measured in units of Watts
per wavenumber or W/cm'.

When measuring a sample, the interferogram is passed through the sample being
analyzed. Depending on the properties of the sample, a portion of the optical energy is
absorbed and a portion is transmitted.

The detector is positioned to trap the energy transmitted or reflected, depending
on the spectrometer configuration, and outputs the instantaneous interferogram as an
analog signal. The interferograms collected by the detector are subjected to a Fast Fourier
Transform, which produces a spectrum of energy intensity versus wavelength or
wavenumber, referred to as the single beam spectrum. When the single beam spectrum is

referenced against another single beam spectrum recorded at ambient conditions with no

16

sample present (referred to as the ‘background’), the absorbance or transmittance

spectrum of the sample can be calculated.

; MOVING
MIRROR

FIXED
MIRROR

NTERFEROMETER

SAMPLE

Figure 2-7: The Michelson Spectrometer

The replacement of the detector shown in Figure 2-7 by an array detector provides
an “infrared image” of the sample. A focal-plane array (FPA) detector works similarly to
a digital camera. As opposed to collecting a single spectrum at a time, imaging
spectrometers collect hundreds if not thousands of spectra simultaneously. Each of the
spectra corresponds to the signal recorded at a single pixel on the FPA. Accordingly, the
spatial resolution of an imaging spectrometer is defined by the field of view divided by

the square of the number of pixels in the array.

17

2.3.5 Spectral Resolution

The cleanness of an apparatus function and the precision of the wavenumber and
intensity scales and any possible sources of excess noise must be determined to produce a
reliable data set (Davis et al.,, 2001). The maximum path difference, X, between the
interfering beams in a Fourier transform spectrometer (see Figure 2-7) dictates the
resolution of the instrument. The instrument resolution is determined by taking the

inverse of the maximum path difference as in Equation 2-8.

Equation 2-8

Resolution=
MAX

For example, if the maximum path difference of an instrument is five meters (five
hundred centimeters), then the corresponding resolution will be 0.02 cm™. Also the
resolution of the instrument can be interchangeably used as the absolute wavenumber
precision of the instrument. Instruments with variable resolution must be utilized

carefully; excessive resolution deteriorates the quality of the signal to noise ratio.

2.3.6 Signal and Noise

Even under the strictest of experimental conditions, there are always various kinds
of noise generated by the source, electrical and mechanical variations in the environment
or in the spectrometer itself (Davis et al., 2001). Noise is identifiable by sharp spikes,

false spectral lines or other features not predictable by the properties of the incoming

radiation.
Physical noise is generated when the interferogram is collected and therefore it is

important to understand the physical aspects when measuring a sample. Varying

18

procedures, processes and events at the instrument will translate into varying noise levels
in the final spectrum (Davis et al., 2001).
The signal to noise ratio is a method of calculating the strength of the signal vs.

the ambient noise as illustrated in Equation 2-9 (Adams, 1995).

Equation 2-9
average signal _magnitude

S/N =

RMS Noise

RMS Noise =

where
n is the number of samples present
x; is the signal

X is the average signal
RMS noise can be identified as the standard deviation (o) of the noise signal,

therefore, the signal to noise ratio from Equation 2-9 can be redefined by Equation 2-10
(Adams, 1995).

Equation 2-10
S/N =

Q | =

where
o is the standard deviation of the noise signal.

2.4 Data Enhancement

2.4.1 Reducing Noise

Numerous spectral anomalies including instrumental noise, random and natural
variation in a sample’s characteristics and composition as well as atmospheric conditions

make an exact match between two spectra of the same substance almost impossible to

19

obtain; random errors will always exist. This section will explore methods of reducing

noise.

2.4.1.1 Co-Adding Spectra

Signal averaging is a process that is conducted by co-adding individual spectra
(Adams, 1995). Assuming that noise is randomly distributed, signals are enhanced

because the signal strength or magnitude grows linearly with the number of scans N.

Equation 2-11
Signal Magnitude « N =k, N

In a similar fashion, the effects of the variances of noise grow linearly with each
successive scan. RMS noise is equated with the standard deviation (being the square root
of the variance) and therefore the magnitude of noise can be expressed as a function of
the square root of the number of scans. As a result, the signal to noise ratio is increased

linearly in proportion to the square root of the number of scans taken as in Equation 2-12.

Equation 2-12

Signal — klN =k-\/ﬁ
Noise kz\/ﬁ

A common practice in infrared spectroscopy is to co-add 100 spectra in order to
receive a 10:1 theoretical enhancement in signal to noise ratio. Co-adding the spectra can
be implemented in the collection stage, or after all the samples have been scanned once
each. When using a focal plane array detector, the signals recorded by individual pixels
can be co-added to reduce the effect of infrared refraction from pixel to pixel as well as

the overall noise due to imperfections in the super-conductor (Wolsky et al., 1989).

20

2.4.1.2 Smoothing

There are a wide variety of signal-smoothing algorithms available for smoothing
spectral data. The most fundamental of these methods is referred to as the boxcar method
or a mean smoother (Adams, 1995; Beebe et al., 1998).

The boxcar method involves dividing a spectrum into equally spaced segments of
five, seven, nine or eleven points. The centroid of each of these data segments is
calculated. The data points in the segment analyzed are then replaced with the calculated
value at the centroid location.

The centroid location is determined by calculating the center of mass of the data
points. The interpretation of a value for mass is questionable. Some analysts will use a
consistent value of 1 as the mass at any given equally spaced data point. Others will
utilize a formula proportional to the absorbance at the particular data point. Either way,

the general X, Y coordinates of a centroid are calculated as in Equation 2-13.

Equation 2-13

—/?:inmi Y= Zyimi
> m, >m,
where

X is the x-axis (wavelength) location of the centroid.
Y is the y-axis (absorbance) location of the centroid.
x; is the given x-axis cordinate of a particular data point i.

v, is the given y-axis coordinate (absorbance) of a particular data point .

m, is the given mass of a particular data point i.

Although the boxcar method is an excellent method of smoothing a spectrum, it
increases the distortion of the signal. Subsequently, boxcar smoothing results in a loss of

spectral resolution due to the fewer data points available for analysis (Adams, 1995).

21

The moving average method of smoothing is similar to the boxcar method but
provides a more stable method of maintaining spectral resolution. As opposed to
replacing a series of data points with one centroid data point, the moving average method
replaces each data point with a value averaged from those points surrounding it (Beebe et

al., 1998). For example, if a five point moving average, or running mean smoother, is

performed, data pointx, is replaced with the average value of data points x,,x,,x,,x,
and x,. In turn, data point x, is replaced with an average value of data points
X,,X%;,X,,X; and x, (Beebe et al.,, 1998).

The mathematical process of implementing a moving average is referred to as a
convolution. As with the boxcar method, convolution is a function of mass. However,
when applying a moving average, the mass at each point is equivalent to unity, or 1. The

formula for applying the convolution is expressed in Equation 2-14.

Equation 2-14

n n
PRI

V__ J=n Jj==n

TS T T e
n+
2

j==n

where
n is the incremental number of points to average in each direction.

Polynomial smoothing extends the concept of a moving average by modifying the
mass vector, such that the mass vector now describes a convex polynomial (Adams,
1995). Without going into detail, it turns out that replacing values of m; with specific
predetermined constants and performing a moving average is equivalent to calculating a

polynomial function for each increment of data points (n) (Beebe et al., 1998). These

22

constants are referred to as Savitzky-Golay coefficients after their founders and are listed
in Table 2-1.

Table 2-1: Savitzky-Golay Coefficients

im|-841-71-6{-5]-41(-3]-21]-110 1 2 13 14 |5 6 |7 |8
5 3 (12 [17 [12 |3

7 2 3 |6 [7 [6 [3 [=2

9 21|14 |39 [54 |59 |54 |39 |14 |21

11 369 |44 [69 84 |89 [84 |69 [44 [9 |-36

13 110 |9 [16 |21 |24 [25 [24 |21 [16 |9 |0 |-11

17 [21[-6 |7 |18 [27 [34 |39 |42 |43 [42 |39 |34 |27 |18 |7 |-6 |-21

For example, when applying a five point (» = 2) moving average, the mass vector

is replaced with the following coefficients:

m_, =-3
m_ =12
my, =17
m =12
m, =-3

One of the disadvantages of running smoothing functions is the so-called “end
effects.” When the smoothing function is running on the first few or last few data points,
not enough data points are available to completely smooth the sample (Beebe et al.,

1998). Care must be taken not to put too much emphasis on the end data points during

analysis.

2.5 Feature Selection and Extraction

2.5.1 Introduction

Post data collection and data enhancement and prior to analyzing the data by

calibration, modeling or pattern recognition techniques, it is usual to perform some pre-

23

processing of the data. Typically, there are three principal aims in the pre-processing of

the data collected (Adams, 1995).

1. To reduce the amount of data and eliminate data that is irrelevant to the task
being undertaken.

2. To preserve or enhance sufficient information within the data in order to
achieve certain goals.

3. To extract the information in a form suitable for further analysis.

The techniques used to pre-process the data are referred to as feature selection
and feature extraction. Feature selection is defined as identifying and selecting features in
analytical data that are believed to be important in calibration or pattern recognition.
Feature extraction changes the dimensionality of the data and generally refers to
combining or transforming original variables to provide better new ones. This section
defines selected commonly implemented methods of feature selection and feature

extraction.

2.5.2 Feature Selection

Various data manipulation techniques are commonly employed to assist in feature
selection. These techniques include means of accentuating the spectral differences within

a data set and compensating for extraneous sources of spectral variation irrelevant to the

study being undertaken (Adams, 1995).

24

2.5.2.1 Mean Centering

Mean centering is a process used when dealing with a large number of samples.
Essentially, the mean of each variable is subtracted from each of the samples (Beebe et
al.,, 1998). Data sets are often mean centered to account for intercepts in regression
models (Beebe et al., 1998). Mean centering generally does not hurt data, and often helps;
therefore, many analysts mean center their data as a default. Mean centering is always
recommended when performing routines such as Principal Component Analysis (see

Section 2.5.3).

2.5.2.2 Normalization

Normalization is perhaps the most common form of data pre-processing used
today (Adams, 1995). In its simplest terms, normalization involves scaling spectral data
to a given constant. Normalization is used to remove systematic variation usually
associated with the total amount or thickness of the sample under investigation (Beebe et
al., 1998).

One method of normalization, referred to as normalizing to unit intensity,
involves identifying the absolute highest peak in a spectrum. Subsequently, all the data
points in the spectrum are divided by the absolute value of the largest peak height (Beebe
etal., 1998).

Normalizing to unit area. termed I/-norm normalization, is accomplished by

calculating a 1-norm constant as shown in

25

Equation 2-15, and dividing every point in the spectrum by that constant (Beebe

etal., 1998).

Equation 2-15

1—-norm = i]le
j=l

where
n is the number of data points in the spectrum.

Similarly, normalizing to unit length, termed 2-norm normalization, is
accomplished by calculating a 2-norm constant as shown in Equation 2-16, and dividing

every point in the spectrum by that constant (Beebe et al., 1998).

n

2

2—norm= ij
Jj=1

Equation 2-16

2.5.2.3 Baseline Correction

Aside from noise, measured signals can also contain low-frequency variations not
related to the sample under study. These components are referred to as baseline features
and can be relatively large if not removed.

The theory of baseline correction is that any sample vector can be written as a
function of x as in Equation 2-17. The function is equal to the sum of the actual signal

plus some baseline feature that can be expressed in polynomial form (Beebe et al., 1998).

Equation 2-17

r=f(x)=F+a+fx+m’ +8& +...
where
7 is the signal of interest.

a+ fx+m’ + & +... is a polynomial approximating the baseline feature.

26

By postulating an algebraic model for the baseline as offset, linear or polynomial,

the baseline component of the signal can be accounted for by simple subtraction.

An offset baseline correction (i.e. a horizontal line) can be expressed as Equation 2-18.
The baseline can be removed by estimating a value for o and subtracting it from every
element in the vector . The optimal value for & would be found by selecting a point on
the original vector that is known to contain only background or baseline information. The
average intensity of several baseline variables is often used in order to eliminate the

amount of noise introduced into the sample vector by baseline subtraction.

Equation 2-18
r=r+a

A linearly sloping baseline is quite common in spectroscopy due to wavelength
dependent scattering. Linear baseline correction is expressed as in Equation 2-19. In this
case, a line is estimated and two or more points assumed to contain only baseline
information are required to solve for the baseline constants, @ and £.

Equation 2-19
r=r+a+pfx

Other functions can also be estimated as long as the reference points selected are
only influenced by the baseline. If reference points are chosen poorly, chemical variation

in the data will be removed in addition to the baseline (Beebe et al., 1998).

2.5.2.4 Derivatives

Derivative spectroscopy provides another method of eliminating the baseline
features from a spectrum (Beebe et al., 1998). It also provides a window to analyze data

in a potentially more useful form than the zero’th order (Adams, 1995).

27

Referring to the baseline equation (Equation 2-17) and taking the first derivative
of the sample vector with respect to the variable x yields Equation 2-20 (Beebe et al.,

1993).

Equation 2-20

%:r'=7'+0+ﬂ+2}x+3§x2 e

Equation 2-20 reveals that the first derivative has completely removed the offset
feature, «. If the baseline is only comprised of an offset, the other coefficients in
Equation 2-20 would be zero as well, and the baseline effect eliminated.

If a more complex baseline exists, then each successive derivative will

successfully remove a higher order term as illustrated in Equation 2-21.

Equation 2-21

2
%=r"=?"+0+0+27+6§x+...

As well as eliminating the baseline component of the samples, analytical
applications of derivative spectroscopy are numerous and are usually a result of the
higher resolution of the differential data with respect to the original data. Derivative
spectroscopy enhances changes in slope that are typically difficult to extract from their
zero’th order counterparts. The downfall of derivative spectroscopy is that it also greatly
increases the effect of noise apparent in the original data. Hence, this limits derivative
analysis to spectra with a high signal to noise ratio and emphasizes the importance of
enhancing the spectral data prior to pre-processing (Adams, 1995).

Several mathematical algorithms exist for differentiating spectral data. All of
these methods require the data points to be evenly spaced (in most cases, a given

wavenumber or wavelength interval). In cases when constant data intervals cannot be

28

recorded, techniques such as interpolation must be employed to extract the necessary

data.

The simplest method of computing the first-order derivative is calculated by

Equation 2-22.

Equation 2-22
_dl _ Y Vi
dA 2A4
where
AA is the given measurement interval (resolution) of the data.
¥, 1s the given response (i.e. absorbance or intensity) at a data point i.

Similarly, the second derivative is calculated by Equation 2-23.

Equation 2-23
2
Ay _ Y =2~V

dr A

Various other methods exist for computing the first and second derivative. For

example, using the Savitzky and Golay smoothing techniques outlined in Section 2.4.1.2,

the effect of noise can be significantly reduced with their weighing techniques and a

better approximation can be formed (Adams, 1995). The Savitzky and Golay first-order

and second-order derivatives are described by Equation 2-25

Savitzky and Golay propose the first-order derivative as described by Equations

2-24 and 2-25, respectively.

Equation 2-24

dy 1
—=——-2y,, =y + V., +2y
p7) IOAl(Yieg = Via T Vi y1+2)
Equation 2-25
d’y 1

di? =W(2yi—2 —Via —2Yi Vi +2yi+2)

29

2.5.2.5 Integration

Integration is naturally the complement to differentiation in mathematical terms.
In its elementary definition, the integral is simply the area under the curve of the
spectrum. Many methods of computing the area under a curve exist. In principle, they
involve dividing the curve into rectangles or trapezoids in order to estimate the area under
the curve. As the number of data points increases within a given spectrum, so does the
accuracy of such computational algorithms. Although both the rectangular and the
trapezoidal integration method would be applicable to obtain a crude estimate of the
integral, there is a more reliable and better-suited method derived from combining both
the rectangular and trapezoidal algorithms. This method is referred to as Simpsons

Method and is described by Equation 2-26.

Equation 2-26

Aos = (xi+1 _xi)(4)"i+o.5 +6J’i+1 +yi)

2.5.3 Feature Extraction

In the interest of increased computational efficiency and improved analytical
differentiation, data can be combined linearly to produce new variables. In essence, a
linear combination of variables is represented by replacing two or more correlated
variables with a weighted sum of those variables. This new variable sits on a new axis at

some arbitrary angle o from the original axis as outlined in Equation 2-27 (Adams,

1995).

30

Equation 2-27
X=ageXl+beX2

a’+b* =1
a=sing
b=cosa

where

X1 and X2 are the original variables.
X is the new variable

a and b are the normalized weights.
a is the angle of the new axis.

If a=b=1/42 thena = 45°.

If there is correlation between X1 and X2, then the variance of X will be
significantly greater than the individual variances of X1 and X2, respectively. Therefore,
the new variable X contains more useful information than either of the variables X1 and
X2.

When dealing with more than two variables, the variance of the new variable can
be described using the covariance or correlation coefficient (as discussed in Section

2.2.2) as described by Equation 2-28.

Equation 2-28
X=ax +a,x, +..+a,x,

n n
2
sy’ =2.2.a;%a, ¢Cov,

j=1 k=1

n n n
2 2 2
= ey, L e5. @ o5, oy,
Sx zaj SJ +Z zaj s] a, ® S, rjk
i=1 J=l k=j+1

where
r; 1s the correlation coefficient between j and k.

2.5.3.1 Principal Component Analysis

Principal Component Analysis (PCA) involves the rotation and transformation of

the original » axes, each representing a variable, to a new set of axes. These new axes

31

provide the maximum level of variance between the variables and ensure that they are
orthogonal (perpendicular) and uncorrelated. Since PCA usually produces a new set of
variables p, where p is always less than n, PCA proves to be a useful technique in
reducing the dimensionality of the sample data (Adams, 1995; Beebe et al., 1998).

PCA functions as an algorithm to seek out the first principal component, or
principal axis that is able to inclusively reflect the greatest amount of variance in the data.
Once the first principal component is identified, the search continues to find the second
principal component. The second principal component is able to inclusively reflect the
greatest amount of variance in the remaining data and is completely uncorrelated with the
first principal component. The algorithm repeats until all of the principal components
have been identified and accounted for (Beebe et al., 1998).

In essence, if two variables with a certain degree of covariance VARl & VAR2

exist, then as discussed in Section 2.2.2.1, the covariance CoV, 1z ;4p can be determined.

As well, the variance of each of the variables s_,,, & 5.,z, is known. If the two variances

are plotted on the x and y axes of a Cartesian plane respectively, at a distance equivalent
to the covariance, perpendicular to their axes, then it is easy to visualize the first principal
component. The first principal component is the axis drawn through the center of the
ellipse formed by the origin of the plane (as the center) and the two data points as

illustrated in Figure 2-8 (Adams, 1995)

32

n

453

**Var ol

A £ . i i i
)

s’Var 1
Figure 2-8: First PCA Axis

Mathematically, the first principal component slope is equal to the eigenvector of
the variance and covariance matrix, and the length of the axis is equal to the calculated
eigenvalue for the eigenvector. In the same manner, the second principal component’s
slope is equal to the second eigenvector and its length to the second eigenvalue (Adams,
1995).

Principal component analysis is employed extensively in infrared spectroscopy.
The principal component loadings or eigenvectors highlight the weights given to each
spectral point in each of the original spectra. The results of principal component analysis
reduce dimensionality, and therefore, the similarity and differences between samples can
often be better assessed. Consequently, principal component analysis is a cornerstone in

chemometric analysis (Beebe et al., 1998).

33

2.6 Pattern Recognition

2.6.1 Introduction

Classification arises from the need to highlight similarities and differences
between samples collected as modern analytical techniques generate large amounts of
both qualitative and quantitative data (Adams, 1995). The purpose of classification is to
derive a mathematical scheme for grouping into classes such that objects within a class
are similar and different from those in other classes.

Supervised pattern recognition or supervised learning requires a training set
where the parent class group of each sample is known. This information can be used to
develop functions suitable for classifying unknown samples.

Unsupervised pattern recognition or cluster analysis consists of classifying a

group of data where no class is known or identified.

2.6.2 Measuring Distances between Objects

Pattern recognition procedures typically begin with the calculation of a matrix of
similarities or dissimilarities between the objects. Similarity and distance between objects
are complementary concepts with no formal definition. In practice, distance as a measure
of dissimilarity is a much more clearly defined quantity and is therefore more commonly
used in pattern recognition (Adams, 1995).

The first stage of any pattern recognition procedure relies on the proper selection
of a distance measure. It is recommended that clustering techniques be repeated with

different distance measures in order to determine the proper fit for the data at hand.

34

In most applications of cluster analysis, the correlation coefficient used in
similarity measures is too limiting (Adams, 1995). Correlation coefficients are solely a
measure of colinearity between variates and do not take into account non-linear
relationships, or the absolute magnitude of the variates under analysis. Distance measures
are more commonly encountered in cluster analysis because of their accurate
representation of the variates and their ability to be represented mathematically.
However, it is always possible at the end of a cluster analysis to represent the data as a
reverse similarity; the greater the distance between objects, the less their similarity.

Any object 1s characterized by a set of measures and can therefore be represented
as a point in multivariate space defined by axes. Each axis corresponds to a variate that
describes the object. For example, consider two objects 4 and B each described by two
variates on a Cartesian coordinate system. Object A is characterized by vector

a=1x,,,x,,and object B is characterized by vector b = x,,,x,, .

When using a distance measure, the objects closest together are assigned to the
same cluster. For a distance function to be useful, the following rules must apply (for

objects A and B only).

(a) d ; 20, the distance between all pairs of measurements for object ‘A’ and object
‘B’ must be non-negative.
(b) d; =d;,, the distance measure is symmetric and can only be zero when 4 = B..

(¢) d,c +dy- 2d ;, the distance is commutative for all pairs of points.

35

The most common distance measure is referred to as the Minkowski measure and

is described by Equation 2-29.

Equation 2-29

o[, y]%"

j
where
X, is the value of the j™ variable measured on the i object.

m is a constant related to the metric used.

If m=1, than the equation is referred to as the city-block metric. The most
common distance measure used is when m =2 and is described as the Euclidean distance
(Beebe et al., 1998).

Figure 2-9 illustrates the difference between the city-block and Euclidean distance

measures (Adams, 1995).

R dAB (Euclideany = d1
dAB (city-blocky = d2 + d3

d3

d2

Figure 2-9: Distance Measures

A suitable distance measure for pattern recognition can now be examined. A
simple example serves to illustrate the principal points. Table 2-2 describes three objects

(‘A’, ‘B’ and ‘C’) each characterized by five variates.

36

Table 2-2: Distance Measure Example — Sample Data

Xi X2 X3 X4 Xs
2.1 5.2 3.1 4.1 2.1
2.5 4.0 4.0 4.6 35
5.1 9.2 7.1 7.0 5.0

Table 2-3 illustrates the tabulated results of using the Euclidean distance measure;
in this case the smallest distances are presented in bold face. Figure 2-10 illustrates the
corresponding dendrogram.

Table 2-3: Distance Measure Example — Distances

A B C
A |0 2.15 | 7.60
B |215 |0 7.17
C (760 717 |0
AB C
AC |0 7.38
B 738 |0
A B C
_’_l 2.15 l 738

Figure 2-10: Distance Measure Example — Dendrogram

It is apparent that different results are obtained when using different measures.
Figure 2-11 illustrates the objects from the sample data set in Table 2-2 plotted with their
variables, and an explanation of the different results is evident. If the variables in the
sample represent trace elements in a water sample for instance, then samples ‘A’ and ‘B’
are similar with the subtle difference possibly due to experimental error. Sample ‘C’
would be from a different source as its elemental concentrations are significantly
different. In this case, the distance metric would be a suitable clustering measure. On the
other hand, if the data represented points in a spectrum, than spectra ‘A’ and ‘C’ would

be similar while differing only in scale. Spectrum ‘B’ would have a completely different

37

profile. In this case the correlation metric would prove to be a suitable method for
clustering. If, however, the spectra had been normalized about the most intense response,

then spectra ‘A’ and ‘C’ would be closer and the distance metric more meaningful.

——A
—~a-B

—+—C
4 4 A‘

Response
v

X1 X2 X3 X4 X5
Variable

Figure 2-11: Distance Measure Example — Data Plot

2.6.3 Unsupervised Clustering Techniques

Figure 2-12 illustrates a visual example of clustering. It is evident from inspection
that there are several ways of dividing the pattern space and producing several different
clusters of objects. There is no single correct result; the success of any clustering method
is dependent on what is being sought, and the intended use of the clustered information.

When class information is known about the data set, it is of interest to compare

this information to the natural classification. The natural clustering might or might not

38

relate to the expected groupings. If the natural clustering does not match the expected
classification, then this indicates a disconnect between the measurements chosen, the data
pre-treatment techniques or the data pre-processing techniques, and the expected results

(Beebe et al., 1998).

| EREEN
Variable

Variable 1

Figure 2-12: 2-D Cluster Example

The general algorithm used for applying unsupervised pattern recognition

proceeds in the following manner.

1. The raw pre-processed data characterizing the samples being clustered are
converted to a set of similarity and dissimilarity measures between samples.
2. The aim is to cluster the samples with little separation between samples of the

same class while maintaining separation between different clusters.

When grouping objects together to form a cluster, the cluster itself can be

represented by a typical member of the cluster. A typical member could be an actual

39

object within the cluster, or more commonly an object constructed of the mean variate
values of the objects within the cluster. The between-cluster distance can then be defined
by some metric such as the Euclidean distance between these means. The nearest
neighbor distance describes the distance between the two closest members from different
groups. On the other hand, the furthest neighbor distance describes the distance between
the two furthest members from different groups. Further inter-group measures are
obtained by taking the average inter-element measurements between elements in different
groups (Adams, 1995).

When only two or three variables are measured for each object, clusters can
usually be visually identified. As the number of variates increases, visual interpretation
becomes difficult and often clusters are missed. To address this problem, clustering

techniques have been developed and are classified as the following types (Adams, 1995).

(a) Hierarchical techniques in which objects are clustered together to form new
representative objects. The process is repeated at different levels to produce a
dendrogram.

(b) Optimization of the partitioning between clusters using an iterative algorithm
until some minimal change in the clustered groups occurs.

(c) Fuzzy cluster analysis in which objects are assigned a membership function

indicating their degree of belonging to a certain cluster.

2.6.3.1 K-Means Clustering

In order to explain this clustering method, a set of sample data from Adams

(1995) will be utilized. Table 2-4 illustrates 12 samples or objects with two variables

40

each. Table 2-5 illustrates the corresponding Euclidean distance matrix for this data.

Figure 2-13 illustrates the relationship between the samples based on the two variables.

Preliminary examination of the data graphed in Figure 2-13 reveals a single outlier point

(L) and three distinct groups of data (B,C,D), (A,E,F,G) and (H,1,J,K).

Table 2-4: K-Means Example — Sample Data

A B C D E F

X1 |2 6 7 8 1 3

XIN[O

X2 1 1 1 2 2

H
7
3

H(O|—

AN

IEIES

DN

Table 2-5: K-Means Example — Euclidean Distance Matrix

A B C D E F G

H

00 40 |50 |60 14 |14 |20

54

5.0

58

5.7

5.0

40 (0.0 |10 |20 {51 |3.2 |45

2.2

3.0

3.2

4.0

6.4

50 1.0 |00 1.0 |61 41 |54

2.0

3.2

3.0

4.1

71

6.0 |20 [1.0 |00 |71 |51 |6.3

2.2

3.6

3.2

4.5

7.8

14 51 |61 |71 100 |20 |14

6.1

54

6.3

5.8

4.1

14 3.2 |41 |51 20 [0.0 |14

4.1

3.6

4.5

4.2

4.1

20 |45 [54 |63 |14 (14 |00

5.0

4.1

5.1

4.5

3.0

54 22 [20 |22 |61 41 |5.0

0.0

1.4

1.0

2.2

5.8

50 |30 (32 36 (54 (3.6 [41

1.4

0.0

1.0

1.0

4.5

58 32 (3.0 (32 |63 |45 [51

1.0

1.0

0.0

1.4

54

57 40 (41 |45 [68 4.2 |45

2.2

1.0

1.4

0.0

4.1

PN C s iollinlelie]ledp-

50 |64 (71 |78 |41 41 [3.0

5.8

4.5

54

41

0.0

41

5] N
*A
nB
AC
ap

¢ - * XE
oF

b4 +G
-H

3 + - ~1
Y
nK
AL

2 X []

1 L 2] A |

X1

Figure 2-13: K-Means Example — 2-D Variable Plot

The K-Means algorithm is one of the most popular and widely used clustering
techniques due to its advantage in being applied to relatively large sets of data. K-Means
is an optimization-based technique aimed at partitioning m objects, characterized by n
variables, into K (user specified) number of clusters (Adams, 1995).

The K-Means method relies on reducing the square of the within-cluster sum of
distances. In practice, K-Means cannot be expected to predict the best possible
partitioning of the data as it is only a local optimization algorithm. Local optimum in this
classification method is obtained when no movement of an object from one cluster to
another will reduce the within-cluster sum of squares (Adams, 1995).

Although several K-Means algorithms exist, the Hartigan method is the most
commonly used (Adams, 1995). The Hartigan algorithm requires that a matrix X be

defined with elements x.

.j»wWhere (1<i<ml< j<n).

42

L is defined as an arbitrary cluster and the number of objects residing in cluster L
is denoted R, ; where R, is defined as the total responsibility for the objects residing in

L. The mean value of each variable j from all the objects residing in cluster L is denoted

B, ; ,(1 <LK); where B, ; is defined as the center of the cluster L (MacKay, 2003).

The distance between the i object and the center of each cluster is given by the
Euclidean metric in Equation 2-30. The error (£) associated with any partition is defined
by Equation 2-31 as the sum of the squares of the distance between the i™ object and the

center of the cluster in which the object resides (MacKay, 2003).

Equation 2-30
1
2
D, = [(x,.,j -8B,)Z]/

Equation 2-31

&= Z (DiL(i))z
where
L(i) is the cluster containing the i object.

The K-means algorithm aims to move an object from one cluster to another in
order to reduce the error ¢ and ends when no movement can further reduce & (Adams,

1995). The algorithm is outlined as follows:

(a) Define a number of clusters, K. Initially assign each of the objects i to one of
the clusters. Equation 2-32 is a common method of assigning objects i to

clusters L(i).

Equation 2-32

L(Gi) = INT| (K -1 LY MINY X, ||
MAXY X, -MINY X,
J j

where

43

ZX ,; 1s the sum of all the variables for each object.
j
MIN and MAX denote the minimum and maximum sum values.

(b) Given a number of predefined clusters, K, and their initial contents, calculate

the cluster means B, ; and the initial partition error¢ per Equation 2-31.

(c) For the first object, i = 1, compute the increase in error Ag obtained by
transferring the object from the current cluster (L(1)) to every other cluster L,

(2 <L<LK) as defined by Equation 2-33. If the Ag¢ value is negative, the

move would reduce the total partition error, and the object should be

transferred from the initial cluster to the cluster L. The cluster means, B, i

should be adjusted accordingly to compensate for their new populations.

Equation 2-33
_ (RL)(Dl,L)2 (RL(I) XDLL(I))2
Ag = -
(R,)+1 (RL(I))-1

(d) Repeat step (c) for every object in the data space.

(e) If no object has been moved, then stop; otherwise return to step (c).

To further illustrate the functionality of the K-Means algorithm, consider the
example provided (Adams, 1995). The first step involves specifying the number of
clusters (K) expected, in this example K = 4. The next step requires that each object must
be assigned to an initial cluster by applying Equation 2-32; the variable sum results are

tabulated in Table 2-6.

Table 2-6: K-Means Example — First Iteration Sums

A B |€C |ID |[E F G |H |l J K |[L
X1 2 6 7 8 1 3 2 7 6 7 6 2
X2 1 1 1 1 2 2 3 3 4 4 5 6

ZXU' 3 7 8 9 3 5 5 10 10 (11 |11 |8

J

44

The maximum and minimum variables sums are identified as 11 and 3,
respectively, and these values are plugged into Equation 2-32 for object ‘A’ to produce

the results in Equation 2-34.

Equation 2-34

_ B3 _
L(A)_INT{(4 1)[(11_3)]}“_1

The results for each object are tabulated in Table 2-7. It is apparent that objects
(A, E, F, G) are assigned to cluster 1, (B, C, L) are assigned to cluster 2, (D, H, I) to

cluster 3 and (J, K) to cluster 4.

Table 2-7: K-Means Example — First Iteration Cluster Assignments

= A B c b [E F |6 H I W K [
LO 11 2 2 3 1 [T 11 3 3 |4 Ja |2

The next step involves calculating a value for the centers of the clusters. For

cluster 1, the centers are calculated as illustrated in Equation 2-35.

Equation 2-35
B, =(2+1+3+2)/4=2.00

B, =[1+2+2+3)/4=2.00

The centroids of the remaining three clusters are calculated in the same manner
and the results are tabulated in Table 2-8, and the initial partitioning of the sample space

is illustrated in Figure 2-14.

Table 2-8: K-Means Example — First Iteration Cluster Means

Cluster Contents Cluster Means

X X2
1 AEFG 2.00 2.00
2 BCL 5.00 2.67
3 DHI 7.00 2.67
4 JK 6.50 4.50

45

@

o

@

~

o 1 2 3 4 5 [7 a 8
x1

Figure 2-14: K-Means Example — Initial Sample Space Partitioning
The following step involves the calculation of the overall error for this

classification iteration given by Equation 2-31. The results are shown in Equation 2-36.

Equation 2-36
e=(2-2+(1-2) +(6-5)7 +(1-2.67)> + (7 -5)* + (1 - 2.67)°

+(B-7)+(1-2.67 +(1-2)"+(2-2)*+(3-2)*+(2-2)* +(2-2)*
+3-22+(T-=-7+B-267) " +(6-7)>+(4-2.67)> +(7-6.5)" +
(4-4.5>+(6-6.5>+(5-4.5>+(2-5) +(6-2.67)*

=4235

Attempts must now be made to reduce the error. The algorithm proceeds by
examining each object in turn, and calculating the effect of transferring that object to a
different cluster. For instance, for the first object ‘A’, the squared Euclidean distance to
each cluster center is calculated and the corresponding change in error, Ag, is
determined for moving object ‘A’ from its original cluster to each of the other clusters in

the sample space as tabulated in Table 2-9.

46

Table 2-9: K-Means Example — Second Iteration Object A

Cluster 1

D,,* =(2.00-2.00)* +(1.00 - 2.00)* = 1.00

Cluster 2

D,,” =(2.00-5.00)* +(1.00 —2.67)* =11.79
Ag =(3)(11.79)/4 - (4)(1)/3=17.51

Cluster 3

D,,’ =(2.00~7.00)* +(1.00-2.67)* =17.79
Ag = (3)(17.79)/ 4 — (4)(1)/3 =19.51

Cluster 4

D,,’ =(2.00~6.50)% +(1.00 - 4.50) = 32.50
Ag = (3)(32.50)/ 4 — (4)(1)/3 = 20.34

Examining the Ag values for object ‘A’ in Table 2-9 indicates that they are all

positive; relocating object ‘A’ to another cluster would only serve to increase the overall

error. Visually examining Figure 2-14 indicates that object ‘A’ is closest to the center of

Cluster 1, and nothing would be gained by relocating it. This process is repeated for

every object, i. From Figure 2-14 it can be observed that object ‘C” would be closer to the

centroid of cluster 3 rather than cluster 2. Table 2-10 illustrates the effect of moving

object ‘C’ from cluster 2 to each of the other clusters.

Table 2-10: K-Means Example — Second Iteration Object C

Cluster 2

Dc,” =(7.00~5.00)% +(1.00 - 2.67)* = 6.79

Cluster 1

D¢, = (7.00-2.00)% +(1.00 — 2.00)? = 26.00
A& = (4)(26.00)/5 — (3)(6.79) /2 = 3.82

Cluster 3

D¢, =(7.00-7.00)* +(1.00-2.67)* = 2.79
As =(3)(2.79)/4 - (3)(6.79)/2 = —14.88

Cluster 4

D.,* =(7.00-6.50)* +(1.00 —4.50)* =12.50
Ag =(2)(12.50)/3—(3)(6.79)/2 = —8.64

Relocating object ‘C’ from cluster 2 to cluster 3 decreases the overall error by

14.88; therefore, object ‘C’ can be relocated from cluster 2 to cluster 3, and the overall

system error can be recalculated as shown in Equation 2-37.

47

Equation 2-37
£=42.35-14.88=27.47

The new clusters and cluster centers with object ‘C’ relocated are calculated and
tabulated in Table 2-11.

Table 2-11: K-Means Example — Second Iteration Cluster Means

Cluster Contents Cluster Means

X1 X2
1 AEFG 2.00 2.00
2 BL 4.00 3.50
3 CDHI 7.00 2.50
4 JK 6.50 4.50

On the next pass, object ‘B’ is transferred from cluster 2 to cluster 3. The cluster

populations and their newly calculated centers are tabulated in Table 2-12.

Table 2-12: K-Means Example — Third Iteration Cluster Means

Cluster Contents Cluster Means

X1 X2
1 AEFG 2.00 2.00
2 L 2.00 6.00
3 BCDHI 6.80 2.00
4 JK 6.50 4.50

On the next pass, object ‘I’ is relocated from cluster 3 to cluster 4 as tabulated in

Table 2-13.

Table 2-13: K-Means Example — Fourth Iteration Cluster Means
Cluster Contents Cluster Means

X1 X2

1 AEFG 2.00 2.00
2 L 4.00 6.00
3 BCDH 7.00 1.50
4 1JK 6.33 4.33

On the next pass, object ‘H’ 1s relocated from cluster 3 to cluster 4 as tabulated in

Table 2-14.

48

Table 2-14: K-Means Example — Fifth Iteration Cluster Means

Cluster Contents Cluster Means

X] X2
1 AEFG 2.00 2.00
2 L 4.00 6.00
3 BCD 7.00 1.00
4 HIJK 6.50 4.00

The process is repeated a final time, and no movement of any object between
clusters yields a better result. Figure 2-15 depicts the final cluster arrangement.

Although a value of K = 4 for the number of clusters was arbitrarily chosen,
examination of the data indicates that values for K of 2 or 3 could have been used as well.
Cluster analysis is not considered a statistical test, and therefore the choice or criteria for
the best results are always at the discretion of the analyst (Adams, 1995).

K-Means clustering is considered a “hard” clustering method; all of the objects
within a cluster are weighted equally. A borderline object that may rest equally between
two clustering groups will only contribute to the mean of the group in which it was
assigned. Similarly, an outlier may have a drastic effect on the outcome of the K-Means

algorithm (MacKay, 2003).

49

0 1 2 3 4 s [7 L] 9
x1

Figure 2-15: K-Means Example — Final Clusters

2.7 Genetic Programming

Genetic programming is a technique used to generate and optimize a desired
computational function based on the concepts of Darwinian selection (See: The Origin of
Species on the Basis of Natural Selection, Darwin). An initial random population of
individuals, each encoding a computational function, is generated. The fitness of these
individuals is evaluated and assessed on the basis of obtaining the desired output. New
individuals, or offspring, are produced by mutation (the introduction of one or more
random changes in the composition of the parent individual) or by crossover (randomly
rearranging functional components between two or more parents). The fitness of the new
individuals is then assessed. The individuals from the total population with the highest
fitness level are selected to be the parents of the next generation. The process is repeated
until the desired result is obtained, or the rate of improvement in the population becomes
zero. Research has shown that the genetic method can approach the theoretical optimum

efficiency of a search algorithm (Gilbert et al., 1997).

50

2.7.1 Fitness Function

The fitness function is a measure of the success of evolution for the genetic
algorithm. The fitness function 1s completely dependent on the goal of the genetic
program. A fitness function is a performance measure, or reward function, and has the
greatest analogy to natural selection (Russell and Norvig, 1995).

Typically, the reward function is an algorithm that takes an individual as input,
evaluates the result of a process versus the desired result, and outputs a real number score
based on the individual’s fitness. It is these scores that are assessed when determining the
parents for the next generation.

It is common in genetic algorithms that incorporate other analytical procedures,
such as neural networks, to have a penalty function associated with the fitness function.
In other words, if an extremely large neural network has the same output as a smaller
network, then the smaller one will be assigned a higher fitness function as the larger one
will be penalized at a constant multiplied by the number of nodes (Gilbert et al., 1997).

Considerations in the evaluation of criteria with a fitness function should include
the selection of the training and validation sets of data. By randomly assigning samples to

these two sets on every evaluation, the problem of over-training to any one set is avoided

(Gilbert et al., 1997).

2.7.2 Selection

As the evolutionary process learns via a fitness function, i.e. its rewards are its
offspring, then the genetic algorithm can be seen as a form of reinforcement learning.
However, no attempt is made to learn the relationship between the rewards or the actions

taken by the agent. Genetic algorithms simply search the sample space with the goal of

51

finding an individual, or individuals, that maximize the fitness function (Russell et al.,
1995).

Genetic algorithms being search algorithms, or hill climbing algorithms, must
take care not to get stuck on local maxima or minima when attempting to produce the
desired optimum individual. Therefore, individuals with low-scoring fitness functions
cannot be ignored. Typically on a set interval (i.e. every 10 generations), a randomly
selected lower scoring individual is reintroduced into the parent population for the next

generation (Gilbert et al., 1997).

2.7.3 Architecture

Prior to applying the genetic algorithm to a problem, certain questions must be

addressed in order to produce a rugged architecture (Russell et al., 1995):

What is the fitness function?

e How is an individual represented?

e How are individuals selected?

How do individuals reproduce?

In the biological genetic makeup, an individual gene is represented by a string of
characters from a finite alphabet (A, G, T, C), where each element of the alphabetic string
represents a nucleic acid (adenine, guanine, thymine, cytosine). In genetic algorithms on
the other hand, individuals are usually represented by the binary alphabet (0, 1). These

bits are represented in a bit string (Russell et al., 1995).

52

Typically, selection strategies are randomized based on the probability of
selection as a function of fitness function. For example, if individual X scores twice as
high as individual Y with the fitness function, then X is twice as likely to be chosen as
the parent for the next generation. The randomized selection process is typically selected
from only the top 30% of the population. Usually, selection is done with replacement,
such that a strong individual will get to reproduce several times.

Reproduction is accomplished by crossover and mutation. The individuals
selected for reproduction are randomly paired. For each pair, a random crossover point is
chosen, and the first part of the first individual (up to the crossover point) is paired with
the second part of the second individual to produce one offspring. Conversely, the second
part of the first individual is paired with the first part of the second individual to produce
the second offspring. However, each offspring gene is subject to a small independent
probability of mutation, where a bit is randomly selected and converted from 1 to 0 or
vice versa. Figure 2-16 illustrates the reproduction stage of the genetic algorithm.

The genetic algorithms is typically programmed to stop when the desired fitness
level is reached or the rate of improvement falls to a low level or a specified number of

maximum generations has been achieved.

53

10110101| 8-32%

10101111} 6 —24%

111 10101101 10101101
101 10110111 10110111

01000100} 6 —24% 10101111 01101111 00101111
11010001} 5 -20% \@)00100 10000100 10000000
{)I::Sl?llation Selection Crossover Mutation
Fitness
Function

Figure 2-16: Reproduction Stage of a Genetic Algorithm
Genetic algorithms are relatively easy to apply to a wide range of analytical

problems. On some problems the results can be excellent, and poor on others.

2.8 Outlier Removal

The presence of outliers or rogue values consistently causes problems for
analysts. Analysts must be able to not only detect outliers but also develop some method
of systematically reducing their effects on the end results (Adams, 1995).

A common method for mathematically detecting outliers is to compare the
difference between the observed value and some expected, predicted or modeled value
(referred to as a residual). By calculating the standard deviation of all of the residuals in
the data set, and determining a threshold (i.e. a multiple of the standard deviation), then
the sample may be rejected if it falls outside of those conditions (Adams, 1995). If a

sample is rejected, then it can be completely removed and its value discarded.

54

3 Using Genetic Algorithm to Optimization of Pre-

Processing Variables

3.1 Introduction

The recent declassification of military technology has made available the infrared
focal plane array (FPA), which has introduced a new dimension of FT-IR spectroscopy
(Wolsky, 1989). The FPA allows for geometrical information to be captured together
with spectral information (Van Den Broek et al., 1997). In addition, this newer
technology lends itself to improved acquisition speeds that also add to the allure of this
imaging technique.

The focal plane array consists of thousands of sensing elements or “pixels”, each
capable of capturing a complete spectrum (Van Den Broek et al., 1997). With the added
geometric dimensionality, some of these pixels may not be collecting spectral
information about the sample under examination. As well, due to the manufacturing
process and quality control some pixels, typically less than one percent, may not be
functioning at all and therefore only producing noise. Manufacturing a flawless
superconductor such as a FPA is extremely rare and difficult (Wolsky, 1989). Therefore
it is imperative to carefully consider the selection of pixels to be utilized for further
analysis.

Like traditional infrared spectroscopy, infrared imaging has found application in
the classification of samples based on their infrared spectral characteristics. Again,

selection of appropriate pre-processing variables is essential for the development of

55

accurate and reproducible classification models. Classification functions rely on pre-
processing algorithms to enhance the spectral data and to select and extract features
relevant to effective segmentation. Furthermore, pre-processing algorithms help to
amplify the spectral regions essential to the differentiation of one classification group
from another.

The plethora of data contained in the spectral images acquired from a FPA makes
processing computationally expensive. Manual manipulation of pre-processing variables
can be accomplished based on some familiarity with the data and the personal experience
of the analyst (Jarvis and Goodacre, 2004). There are many different pre-processing
algorithms to choose from, making the process of informed trial and error inherently
complex. In some cases, researchers will co-add the signals from all of the pixels in an
image in order to produce an average spectrum and hence reduce the computational
expense as they attempt to find an ideal processing sequence.

One could identify a selection of pre-processing variables for analysis and then
evaluate every possible combination applied to the training data; however, this would be
computationally exhausting and time intensive. The computational expense is an
exponential function of the size of the data set (Jarvis et al., 2004). In order to explore the
search space efficiently, a heuristic search algorithm can be applied to find sub-optimal
solutions (Russell, 1995).

The aim of this study is to examine the utilization of a heuristic search algorithm,
namely the genetic algorithm, to optimize the segmentation of untreated, raw, infrared
image data acquired from randomly selected foodborne bacterial cultures into Gram-

positive and Gram-negative categories. While the effectiveness of the clustering is crucial

56

to the success of the algorithm, the secondary aim of the study is to utilize the same
algorithm to conserve as much of the original pixel data as possible, while not discarding

them during the data enhancement and selection procedures.

3.2 Materials and Methods

3.2.1 Organism growth, preparation and spectral acquisition

One hundred and eighty-seven previously identified and confirmed foodborne
bacterial cultures were selected and acquired from both Health Canada and the US Food
and Drug Administration (Kirkwood et al., 2004). The cultures were maintained at -86°C.
Prior to spectral acquisition, bacteria were streaked onto Universal Media™ agar plates
(Quelab Inc., Montreal, Canada) and then cultured for 16-18 hours. Bacterial colonies
scraped from the agar plates were then deposited in triplicate, with no pre-treatment or
staining, onto an infrared-transparent ZnSe slide. Each sample occupied an area of
approximately 1 mm’ , allowing more than 200 samples to be deposited on the same
slide (Kirkwood, 2004). Each slide was allowed to air dry for about 10 minutes in order
to a produce a film for infrared analysis.

Infrared images were acquired in triplicate using a Varian Excalibur (Varian,
Randolph, MA) imaging spectrometer equipped with a UMA-600 infrared microscope
and a liquid-nitrogen-cooled mercury cadmium telluride (MCT) focal-plane-array
detector comprising 32 x 32 (1024) pixels. Using a 15x Schwarzschild objective, the
field of view of the microscope was 176 x 176 pum. The imaging spectrometer was
constantly purged with dry air to reduce the spectral contributions of atmospheric carbon

dioxide and water vapor. Each image consisted of 256 co-added scans at a resolution of 8

57

cm’. Once collected, each image was divided by a background image to produce
absorbance values.

Once the samples were cataloged and indexed, a random number generator was
used to randomly select twelve Gram-positive and twelve Gram-negative samples from
the collection to be used as a training set for the classification algorithm. The samples
selected are listed in Table 3-1.

Table 3-1: Training Set - Bacterial Species and Specimens

Strain Name Specimen# | Culture # | Gram-
Klebsiella oxytoca 112 2 Negative
Hafnia alvei 115 2 Negative
Klebsiella pneumoniae 145 2 Negative
Shigella flexneri 165 4 Negative
Escherichia coli 1125-26 2 Negative
Escherichia coli 1156-2 3 Negative
Salmonelia berta 804 2 Negative
Salmonella derby 4359 1 Negative
Salmonella derby 4359 2 Negative
Escherichia coli 0157:H7 149 1 Negative
Salmonella heidelberg 3221 1 Negative
Salmonella heidelberg 3221 2 Negative
Streptococcus xylosus 244 2 Positive
Streptococcus xylosus 244 3 Positive
Clostridium sporogenes 241 1 Positive
Listeria monocytogenes 4404 1 Positive
Listeria monocytogenes 4410 1 Positive
Listeria monocytogenes 4410 2 Positive
Listeria monocytogenes 4426 1 Positive
Listeria monocytogenes 4749 2 Positive
Staphylococcus aureus 251 4 Positive
Listeria monocytogenes 688 3 Positive
Listeria monocytogenes 1116-2 1 Positive
Listeria monocytogenes 1116-2 2 Positive

3.2.2 Constructing the Genetic Algorithm

The genetic algorithm is the heuristic search algorithm used to sub-optimize the
combinations of pre-processing variables. In order to examine the effectiveness of a

genetic algorithm for the optimization of the segmentation of infrared image data, careful

58

consideration must be made to the variable selection. Because the addition of each
variable to the algorithm increases the computational cost, a group of ten commonly used
pre-processing techniques were selected to be evaluated in this research.

The ten pre-processing techniques are represented digitally by a 27-bit binary
string or DNA series of pre-processing variables as illustrated in Figure 3-1. The 27-bit
binary string signifies 134,217,728 possible combinations of pre-processing variables.
Although there are many possible combinations, further examination of the flow chart
reveals that some pre-processing variables are interdependent. Consequently, there are
only 28,753,920 unique combinations of pre-processing variables.

The study was authored in Matlab R13 (Mathworks, Boston, MA) and executed
on a personal computer with an AMD Athalon 64 3400+ CPU, 1 gigabyte of RAM. The

operating system was Windows XP Professional x64.

59 .

GENETIC ALGORITHM FLOWCHART

27-Bit DNA Sequence: 134,217,728 possible combinations of pre-processing variables

Figure 3-1: Genetic Algorithm Flow Chart
The first pre-processing variable evaluated during each iteration of the genetic
algorithm is the acceptable absorbance range of the protein amide I band, which is used

as a measure of sample thickness since all bacterial cells contain protein. Within each of

60

the 24 images selected from Table 3-1 each of the 1024 pixels is evaluated at a
wavenumber of 1650 cm™ with a two-point baseline correction at 1780 cm™ and 980 cm™
!. The first eight bits of the 27-bit binary DNA string represent an acceptable numerical
absorbance range from 0.4 to 1.4 in increments of 0.066. If the absorbance at 1650 cm™ is
outside of the defined range, then the pixel data is discarded.

The second pre-processing variable evaluated is whether to use the baseline
corrected data or the non-baseline corrected data for the future pre-processing procedures
and the eventual clustering. The ninth bit in the DNA string represents a binary on/off
switch. If the value is zero, the non-baseline corrected image data is used. If the value is
one, the baseline corrected image data is used.

The third pre-processing variable evaluated is whether or not to co-add some of
the adjacent pixels within an image to reduce the noise. The twelfth and thirteenth bits in
the DNA string represent four possible co-adding solutions. The first is not to co-add the
data at all, and go on to the next pre-processing step. The second through the fourth are to
co-add 2 x 2 (4), 4 x 4 (16) or 8 x 8 (64) adjacent pixels. The new co-added pixels
become the data that is passed on to subsequent procedures. Because only adjacent pixels
are co-added and some of the image data was already discarded in the first pre-processing
step, left-over or orphaned pixels are discarded.

The fourth pre-processing variable evaluated is whether or not to remove outlier
data points. The tenth and eleventh bits in the DNA string represent four possible outlier
removal solutions. The first solution is not to remove any outliers, and the data is passed
to the following pre-processing procedure. The second to fourth solutions require that

within each of the 24 images, the remaining pixel or co-added data is averaged and a

61

standard deviation is calculated from the mean. Pixels falling outside 1, 1.5, or 2 standard
deviations are discarded.

The pre-processing variables dealt with up to this point are concerned primarily
with pixel selection. The following pre-processing variables are concerned primarily with
data manipulation and feature selection.

The fifth pre-processing variable is represented in the DNA string by bits fourteen
through seventeen. The first two bits dictate if a smoothing algorithm should be applied,
and if so which one. The procedure offers boxcar, mean and Sarvitzky-Golay smoothing
algorithms. The last two bits represent the number of data points to use in conjunction
with the smoothing algorithm (5, 7, 9 or 11). If no smoothing is selected, than these two
bits are ignored.

The sixth pre-processing variable evaluated is whether or not to mean center the
data. The eighteenth bit in the DNA string is a binary on/off flag. If the flag is set to on,
the mean of all data is subtracted from each sample.

The seventh pre-processing variable evaluated is whether or not to normalize the
data. The nineteenth bit in the DNA string is the binary on/off flag. If the flag is set to on,
the twentieth bit dictates which normalization method to apply, normalization to unit area
or normalization to unit length.

The eighth pre-processing variable evaluated is whether or not to take the
derivative of the data. The twenty-first bit in the DNA string is the binary on/off flag. If
the flag is set to on, the twenty-second bit dictates whether to take the first or second

derivative of each of the individual spectra in the data set.

62

The ninth pre-processing variable evaluated is whether or not to integrate the data.
The twenty-second bit in the DNA string is the binary on/off flag. If the flag is set to on,
each of the individual spectra is integrated.

The tenth and final pre-processing variable evaluated prior to clustering is the
selection of principal components. The four bits from twenty-four through twenty-seven
numerically represent a number from zero to fifteen. A value of zero passes the data
without selecting principal components. Values from one to fifteen represent the number
of principal components to pass on to the clustering algorithm.

Once the data has been passed through the pre-processing variable combination
outlined in a particular DNA string, a portion of the data within each image has been
discarded and the remaining pixels have been subjected to manipulation and feature
selection. The remaining pixels are then segmented using the K-means natural clustering
algorithm and the squared Euclidean distance metric. The algorithm is programmed to
restart 5 times and take the best result in order to avoid local minima. The resulting
clusters are compared with the known Gram-positive and Gram-negative classification of
the samples in the training set.

The fitness function scores the accuracy of the iteration by incorporating the
clustering accuracy and the number of remaining pixels after all of the pre-processing has
been accomplished and assigns it a score. For the purpose of this study, the classification
accuracy was assigned a weight of 80% and the pixel conservation (number of spectra at
clustering / number of original spectra) a weight of 20% resulting in a score from 0 to 1.

In the first few iterations of the algorithm, DNA strings are generated randomly.

After fifty iterations have been reached, the results of each iteration are sorted in order of

63

their fitness function score. New DNA strings are created by assigning exponential
weight to the higher scoring DNA strings and selecting two existing DNA strings to
become the parents of the subsequent generations. The two selected parents are then split
at a random bit and cross-bred to produce two unique children. At random occurrences, a
genetic mutation will be randomly applied to one of the children. In some iterations a
single parent may be bred with a randomly generated parent. The frequencies of the
random mutations and random parent introductions are less than 5% of the time. Each
generation produces two offspring DNA strings. The DNA strings are then subjected to
the algorithm evaluated by the fitness function and assigned a place within the

population.

3.3 Results and Discussion

3.3.1 Overview: Arrival at Sub-Optimal Solution

The data from the infrared images in Table 3-1 were input into the genetic
algorithm and it was allowed to run. Each iteration of the algorithm increased in fitness
until a sub-optimal solution was discovered after 316 iterations as illustrated in Figure
3-2. Each iteration took on average 76 seconds to execute. The sub-optimal solution was

discovered in approximately six hours and 40 minutes of unsupervised processing.

64

Fitness vs. lteration

Fitness

Iteration

Figure 3-2: Genetic Algorithm - Fitness vs. Iterations

The linear regression line superimposed on the data in Figure 3-2 illustrates the
increase in fitness, or optimization of pre-processing variables with respect to the number
of iterations for this particular data set. The sub-optimal solution represents a fitness
score of 84.0%. The majority (80%) of the fitness score is comprised of the 97.8%
accuracy achieved for the clustering of the data for the Gram-positive and Gram-negative
samples and the balance (20%) is comprised of the utilization of 28.6% of the available
data (7,029 data points). Figure 3-3 illustrates the processes determined by the sub-

optimal solution.

65

TOP FITNESS FLOWCHART

No Co-Addition
No Outlier Removal

Figure 3-3: Flowchart of Sub-Optimal Fitness DNA

66

Figure 3-4: Genetic Algorithm - 3-D Projection of Top Fitness Member

Figure 3-4 is an illustration of the clusters projected in three-dimensional space.
The crosses represent the centroid of each cluster. The red dots represent correctly
classified pixels in the images of the Gram-negative samples while the green dots
represent correctly classified pixels in the images of the Gram-positive samples. The blue
dots represent incorrectly classified pixels.

Following iteration 316 where the sub-optimal solution was identified, the
algorithm was allowed to continue until it reached 2,100 iterations. The 2,100 iterations
represent 0.0073% of the possible unique combinations of pre-processing variables.

Although the maximum fitness was discovered at iteration 316, it did not
correspond to the maximum clustering accuracy. Iteration number 1,885 revealed a

nearly perfect classification accuracy of 99.8% as opposed to the sub-optimal value of

67

97.8%. The difference in the fitness score is attributed to the 20% weight of the number
of data points used. Iteration 1,885 utilized 3,293 data points to build the classification
model while the sub-optimal fitness utilized 7,029.

Efforts were made within the genetic programming to avoid local maxima within
the state space by introducing randomized strings and mutations (Russell, 1995).
Undoubtedly when exploring such a massive state space with such a limited numbers of
iterations, DNA generations are likely to converge on a sub-optimal solution with similar

attributes.

3.3.2 Acceptable Amide | Absorbance Range

The top fitness performer utilized an acceptable amide I tolerance range of 0.4 to
1.0 absorbance units with the two four-bit DNA segments in Table 3-2. Each of the eight-
bit strings represents two four-bit absorbance boundaries. The pre-processing module
ensures that the boundaries are utilized in numerical order. The acceptable absorbance
range pre-processing module interprets the four-bit binary strings by converting them to

their decimal value, multiplying the number by 6/90 and adding 0.4.

Table 3-2: Amide I Absorbance Tolerance

Boundary: 1 2
Segment: 0000 1001
Value: 0.4 1.0

Examination of the top fitness performers in the population reveals relevant
information pertaining to the data set. The acceptable amide I ranges for the top fifty
fitness performers of the population are plotted in Figure 3-5. The top seven performers
all share the same amide I range of 0.4 to 1.0. The majority of the top performers have a

tolerance range that begins at 0.4 and ends at 0.8.

68

=
(=]
=
®
o
a.
o
o
o
c
=
L.

I I Y R

Y T Y

T

—
SANWHAEIOON®WOO

l
0.600

Amide | Range

Figure 3-5: Amide I Absorbance Tolerances for Top 50 Fitness Population

69

At 1,024 pixels per image and 24 images, the initial data set comprised 24,576
individual spectra. Once subjected to the boundary values of this pre-processing module,
the number of retained pixels in the sub-optimal solution dropped to 7,029 — discarding
71.4% of the original pixels. Figure 3-6 illustrates the pixel usage of the Escherichia coli

image before and after pixels outside the boundary values were discarded.

k.

Figure 3-6: Pixel Utilization Before and After Selection Based on Amide I Tolerance

There can be several explanations for the selection of these particular boundary
values by the genetic algorithm. One such is that the sample material is not uniform on
the slide. Areas where there is no smear at all would exhibit a uniform absorbance of
approximately zero when the ratio was taken against a background. These pixels, not
containing any useful data, would be excluded from the clustering algorithm. Similarly,
any areas on the slide with extraneous material would not give rise to absorption of
infrared energy at the wavenumber used to measure the amide I band. In contrast, in areas
where the smear was excessively thick, causing most of the infrared energy to be
absorbed, the spectral data would not be suitable for analysis.

Another potential contributor to the large amounts of data rejection may be the

non-uniformity of the quantum sensitivity of the focal plane array from pixel to pixel

70

(Rainieri and Pagliarini, 2004; Davis, 2001; Adams, 1995). The particular boundary
values selected by the genetic algorithm may correspond to the range of linear response.
Dead pixels producing only random noise would probably fall outside of this tight
tolerance range as well. Figure 3-7 is a contour map representing the sum of the instances
of each pixel after being subjected to the amide I absorbance tolerances. The darkest blue
color patterns represent pixels that were rejected in all of the 24 images. These pixels are

probably the most likely candidates to be non-uniform or malfunctioning.

Figure 3-7: Average Pixel Utilization After Selection Based on Amide I Tolerances

3.3.3 Use of Baseline Corrected Data

The top fitness combination of pre-processing variables as well as the 49 runner-
ups retained the raw data for processing as opposed to the baseline corrected data used to

determine the amide I absorbance.

71

In order to verify that this was not solely due to a local maximum in the state
space, the genetic DNA of the first sub-optimum solution was mutated by switching the
ninth bit from O to 1 as illustrated in Tablo 3.3-2. This caused all further processing and
clustering to be applied to the baseline corrected data as opposed to the raw data. When
the baseline corrected data was used, the clustering accuracy dropped from 97.8% to
60.4%. This reduction in performance could be due to the combined use of the first
derivative and the baseline correction causing essential identification features to be lost

(Beebe et al., 1998).

Table 3-3: Baseline Correction Evaluation
OriginalDNA 011101011001110000 {0 |00001001
Modified DNA 1 011101011001110000 |1 00001001

To test this possibility, the DNA string was altered once again to remove the
derivative processing function as illustrated in Table 3-4. This instance produced an even
further drop in clustering accuracy to 57.9%. Therefore, a local maximum in the state
space did not dictate the arbitrary selection of the first derivative over the baseline

correction pre-processing variables.

Table 3-4: Baseline Correction Evaluation — Derivative Mutation
Modified DNA1 01110 |1 (011001110000 [0 [00001001
Modified DNA 2 01110 {0 (011001110000 00001001

[y

Although the baseline corrected data is essential for evaluating the response of the
amide I band, it is detrimental to the accuracy of the model for the sub-optimum

classification solution.

3.3.4 Co-Addition of Pixels

None of the top 50 fitness DNA strings exhibited any pixel to pixel co-addition.

Given the tight tolerances of the amide 1 absorbance response, the image pixels were

72

sparsely dispersed throughout the image as illustrated in Figure 3-6, which shows the
pixel usage in the image of Escherichia coli. In some of the sample images, even
attempting to co-add 2 x 2 adjacent pixels would be impossible, thereby eliminating the
image from the clustering set. For future research, it may be beneficial to attempt to
construct a genetic algorithm that would execute a co-addition module prior to evaluating

acceptable absorbance ranges.

3.3.5 Outlier Removal

The genetic algorithm sub-optimized with not removing any outlier pixels. This
stood true for the top seven fitness members of the population that also shared the same
amide I absorbance tolerance of 0.4 to 1.0 absorbance units.

When examining the balance of the fifty top fitness combinations, it is apparent
that there is a direct correlation between the acceptable amide I range and the tolerance
for outlier removal. Table 3-5 illustrates the outlier tolerance selected by the genetic

algorithm with reference to the acceptable amide I range.

Table 3-5; Outlier Removal Tolerances vs. Amide I Tolerances
Amide I Range | Outlier Tolerance
0.400 | 1.000 | No outlier removal
0.400 | 0.867 | >1.5 Standard deviations
0.400 | 0.667 | No outlier removal
0.400 | 0.800 | >1.5 Standard deviations
0.400 | 0.733 | >1 Standard deviations
0.467 | 0.800 | >1 Standard deviations

As the amide I tolerances were reduced and therefore limited the number of
useable pixels, the outlier tolerance increased as well, resulting in the elimination of even
more data. As the amide I tolerance is narrowed, the remaining pixels are more similar to

one another than when the tolerance is greater. Because of the increased similarity and

73

the decreased number of data points, a higher outlier removal rate would even further
increase the similarity between the remaining pixels and as a result produce a
significantly higher clustering accuracy.

To examine the influence of a different outlier removal, the sub-optimal DNA
string was modified to remove all outliers beyond only one standard deviation. The
hypothesis is that this modification would result in the use of fewer pixels but increase
the overall clustering accuracy. When this genetic code was executed, an additional 765
pixels were discarded, and the accuracy dropped to 67.5%. It is difficult to explain this
phenomenon. It is possible that those pixels contained sample data essential to creating
accurate clusters. Because the sample points sat beyond 1 standard deviation away from
the mean, it is a justified argument to assume that they also were positioned at the
furthest points of the clusters. Being located so far apart would further force the cluster
centers to be separated by a greater distance, resulting in increased clustering accuracy.
Figure 3-8 illustrates the Escherichia coli image before and after pixels were removed

with the outlier tolerance of one standard deviation.

h

.

Figure 3-8: Pixel Utilization Before and After Outlier Removal

74

The pre-processing module charged with outlier removal has four possible
functions including no outlier removal and removal of outliers beyond one, one and a half
and two standard deviations from the mean. Examination of these results confirms that
the outlier removal variable plays a significant role in the selection and conservation of
spectral data for the eventual clustering accuracy of the data set. Future research would
dictate that more increments for the outlier threshold to be optimized during the genetic

algorithm search.

3.3.6 Smoothing

The DNA segment for the smoothing module exhibited a consistent and definite
solution for all of the top fifty fitness performers. In every instance, the boxcar smoothing
algorithm was applied with eleven smoothing points. As illustrated in Figure 3-9, the
smoothing algorithm reduced the number of data points in each spectrum from 792 to 71
and smoothed the fluctuations within the signal. While the original image represented a
data range of approximately 4000 cm™ to 950 cm™, the smoothed image only represents a
data range of approximately 3939 cm™ to 968 cm” due to the end effects of the

algorithm.

75

Original Spectra

Smoothed Spectra
06

051
0.4
03
02

01

4000 3500 3000 2500 2000 1500 1000

Figure 3-9: Smoothing Results — Absorbance vs. Wavenumber

In order to examine whether the smoothing method applied was due to a local
maximum in the state space, the DNA strain was modified to execute the mean
smoothing algorithm with eleven data points. This yielded a clustering accuracy of
65.4%. The strain was modified again to use the Savitzky-Golay method with eleven data
points as well. This method yielded a clustering accuracy of 64.0%, which was
significantly less than the sub-optimal solution. As the effects of Savitzky-Golay
smoothing are similar to those of performing the first derivative, the DNA strain was
modified again to remove the first derivative function. In this scenario, the clustering

accuracy dropped to 51.4%.

76

To examine the effects of the number of data points used for smoothing, the
procedure was repeated using the boxcar method with five, seven and nine data points. In
these scenarios the clustering accuracy dropped to 61.2%, 67.9% and 63.9%,
respectively. To examine the influence of smoothing, the algorithm was executed without
applying any smoothing and resulited in a clustering accuracy of 64.9%.

In the state space where the sub-optimum solution is found, smoothing is an
important step for noise reduction (Adams, 1995). The selection of the boxcar method
ensures that the signal distortion caused by the smoothing algorithm is kept to a minimum
while the number of smoothing points ensures that an adequate amount of signal noise is
removed (Beebe et al., 1998). The Savitzky-Golay method inappropriately assigns
weights to the smoothing points and over-distorted the signal. Yet, the derivative of the

spectra remains important for proper classification.

3.3.7 Feature Selection

The feature selection processes are the functions that highlight the attributes to
facilitate accurate clustering (Beebe et al., 1998). Of the available feature selection
algorithms (mean centering, 1-normalization to unit area, 2-normalization to unit length,
first derivative, second derivative and integration) the sub-optimum solution applied the
2-normalization and the first derivative. The normalization algorithm usually helps to
compensate for differences in the sample volume (Beebe et al, 1998). The 2-
normalization method normalizes each individual spectrum to unit length. Therefore, any
variations in sample thickness during the sample preparation are compensated for by this
algorithm (Adams, 1995). Of the top fifty fitness species, only fourteen used 1-

normalization as opposed to 2-normalization. The rest of the feature selection variables

77

remained consistent. Figure 3-10 illustrates the effect of these two feature selection

criteria on a sample spectrum.

Smoothed Spectra
06

0.4

02

02 I 1 1 i 1]
4000 3500 3000 2500 2000 1500 1000

Normalized Speetra (2-Norm)
0B

0.4+

0.2+
0 -
0. 1 L L I] 1
ZDDD 3500 3000 2500 2000 1500 1000
First Derivative Spectra
0.08
0.04
0.02
0
-0.02
004 1 | 1 1 1
4000 3500 3000 26500 2000 1500 1000

Figure 3-10: Feature Selection — Absorbance vs. Wavenumber
The first derivative typically reduces the effects of baseline fluctuation (Beebe et
al., 1998). As discussed in Sections 3.3.3 and 3.3.6, the first derivative performed better
than both the baseline corrected data and the Savitzky-Golay smoothing algorithm. The
first derivative is independent of baseline corrections. There is no need to select a
reference point or line in order to calculate the correction on a spectrum by spectrum
basis. Therefore, the effects of spectral drift, or incorrectly choosing the baseline

references, are not pertinent when performing the first derivative.

78

In order to ensure that none of the other feature selection protocols were
overlooked due to local maxima in the state space, the DNA sequence was modified in
the permutations listed in Table 3-6 to evaluate the influence of the other feature selection
options on the top fitness species. While it would be lengthy to explore all combinations
of feature selection protocols, it is apparent that the optimal feature selection criterion is
in fact only the combination of normalization to unit length and taking the first

derivative.

Table 3-6: Feature Selection Evaluation

Accuracy

Original DNA 01110 J1 [o J1 |1 [0 [01110000000001001 97.8%
Mean Centering 0011 0 1 0 1 1 [1[01110000000001001 52.7%
No Normalization 0111 0 1 0]0]1 0 01110000000001001 62.4%
1-Normalization 00110 1 0 100 01110000000001001 57.8%
Second Derivative 0011 0 1 [1]1 1 0 01110000000001001 55.6%
Integrate 001111 01 1 0 01110000000001001 60.8%

After accounting for the success of the normalization and first derivative, it is
difficult to explain the inadequacies of the other feature selection processes within the
state space. The negative effect of the mean centering could possibly stem from a
combination of other pre-processing variables already compensating for the intercept of
the data, and this algorithm over-compensating (Beebe et al., 1998).

Future considerations for this data set would be to remove the mean centering and
integration variables to accelerate the search for a sub-optimal solution and allow for the

computational expense to be spent on other pre-processing variables.

3.3.8 Principal Component Analysis

The sub-optimum fitness species utilized seven principal components to describe

the data and accounted for 96.73% of the variance in the data. Table 3-7 illustrates the

79

variance accounted for by each of the principal components. Figure 3-11 illustrates the

number of times within the top 50 fitness DNA strains that a number of principal

components were utilized. It is apparent from the graph that the majority of the top

performers utilized five to eleven principal components.

Number of Instances

1 2 3 4 5 6 7

8 9

10

Number of Principal Components

"

12

Figure 3-11: Number of Instances of Principal Components in Top 50 Fitness

Table 3-7: Principal Component Variance Contributions

Principal Variance
Component

1 76.86%
2 12.21%
3 2.23%

4 2.14%

5 1.69%

6 0.96%

7 0.64%

13

14

80

To evaluate the sub-optimum solution, the DNA was altered to allow for only
three principal components accounting for 91.30% of the variance in the data. This
solution resulted in a clustering accuracy of 91.6%. Moving in the other direction, the
DNA was altered to use eleven principal components accounting for 98.4% of the
variance. This solution yielded a clustering accuracy of 97.5%.

Using all of the data and no principal components yielded a clustering accuracy of
64.0%. In conjunction with increasing the number of principal components, it is apparent
that a significant portion of the remaining data has a negative effect on the clustering
accuracy, whereas using only a few principal components does not account for enough of
the variance to accurately cluster the data

The plots of the linear weights of each of the seven individual principal
components as well as their scaled by variance sum are illustrated in Figure 3-12. The
knowledge that these seven principal components produce the most accurate clustering of
the sample data helps to determine the spectral regions where the pertinent data is
contained. Examination of the plot of the scaled sums of the first seven principal
components yields two distinct spectral regions where the majority of the principal
component weighting is applied. The first region lies between approximately 3684 cm’
and 2750 cm™ while the second region lies between approximately 1817 cm™ and 1053

cm’!.

81

First Principal Component - 76.86% of Variance Second Principal Component - 12.21% of Variance
r 1

05 05
0 0
_0? L L 1 1 1 J 05 L 2 1 L 1 1
D00 3500 3000 2500 2000 1500 1000 4000 3500 3000 2500 2000 1500 1000
Third Principal Component - 2.23% of Variance Fourth Principal Component - 2.14% of Variance
05 05¢
of m D
05 . L L N L s 05 L .
4000 3500 3000 2500 2000 1500 1000 4000 3500 3000 2500 2000 1500 1000
Fifth Principal Component - 1.69% of Variance Sixth Principal Component - 0.96% of Variance
05 05
0 113 /\/\\/\‘/\/\W\
'Uf' L N N L N) 05 ") 1 1) .
000 3500 3000 2500 2000 1500 1000 4000 3500 3000 2500 2000 1500 1000
Seventh Principal Component - 0.64% of Variance Scales Sum of Principal Components
05¢ 05
ot 1]
_Of z L L L 1 » 05 1 1 1 N L)
000 3500 3000 2500 2000 1500 1000 4000 3500 3000 2500 2000 1500 1000

Figure 3-12: Principal Component Weights vs. Wavenumber
It is evident that the pertinent data is contained in the second region from 1817
cm” to 1053 cm™. In independent research on the entire data set of 200 samples,
Kirkwood found that the region of 1770 cm™ to 970 cm™ contains the majority of the
information required to cluster Gram-positive versus Gram-negative samples (Kirkwood,
2004). Due to the end effects of the smoothing algorithm, the leading data points were

removed and hence we can conclude that the regions are almost identical (Adams, 1995).

3.4 Validation Tests

The successful sub-optimization of the pre-processing variables by the genetic

algorithm separated the Gram-positive and Gram-negative bacterial samples in the

82

training set into segregated clusters. To test the reliability of this clustering model, and
hence the appropriateness of the pre-processing variables selected, two validation tests
were performed with samples not included in the training set. In the first validation test,
replicate samples of the specimens included in the training set were classified.
Subsequently, a second validation set consisting of other bacterial specimens was tested.
In both cases, the infrared images of each of the selected samples were subjected to the
pre-processing procedures determined by the sub-optimal solution obtained with the
training set. The image data were thus treated as follows. Each of the images was

" and 980 cm™. Using the

baseline corrected using a two-point baseline at 1780 cm’
baseline corrected data, the amide I absorbance band at 1650 cm™ was measured. Any
pixels with an amide I absorbance outside the range of 0.4 to 1.0 absorbance units were
removed from the images. No pixel co-addition or outlier removal was performed. A
boxcar smoothing algorithm was then applied to the raw (non-baseline corrected) data
using eleven smoothing points.

As far as feature selection is concerned, no mean centering was performed. Each
pixel within the image was subjected to a normalization (2-Norm) procedure. Following
the normalization, each individual spectrum was converted to the first derivative. There
was no integration of the pixel data.

For feature extraction, the first seven principal components were calculated, using
the weights calculated from the original training set. Once the principal components were

calculated, the distances to the centers of the two clusters found in the training set were

calculated on a pixel-by-pixel basis and used to determine the Gram-classification. The

83

squared Euclidean distance metric was used as it was the metric applied in conjunction

with the K-means clustering algorithm within the genetic algorithm.

3.4.1 Validation Test 1

Each of the 19 specimens included in the training set had been cultured three
times, yielding a total of 57 samples for which infrared images were acquired. As shown
in Table 3-1, the training set included duplicate samples of 5 of the 19 specimens. For
validation of the Gram classification model developed using this training set, 19 other

samples among the set of 57 samples were selected. These samples are tabulated in

Table 3-8.
Table 3-8: Validation Test 1 — Bacterial Species and Specimens
Validation
Training Set | Set

Strain Name Specimen# | Culture(s)# Culture # Gram-
Klebsiella oxytoca 112 2 1 Negative
Hafnia alvei 115 2 1 Negative
Klebsiella pneumoniae 145 2 3 Negative
Klebsiella pneumoniae 165 4 2 Negative
Escherichia coli 1125-26 2 4 Negative
Escherichia coli 1156-2 3 1 Negative
Salmonella berta 804 2 4 Negative
Salmonella derby 4359 1,2 3 Negative
Escherichia coli 0157:H7 | 149 1 2 Negative
Salmonella heidelberg 3221 1,2 3 Negative
Streptococcus xylosus 244 2,3 1 Positive
Clostridium sporogenes 241 1 2 Positive
Listeria monocytogenes | 4404 1 2 Positive
Listeria monocytogenes | 4410 1,2 3 Positive
Listeria monocytogenes | 4426 1 2 Positive
Listeria monocytogenes | 4749 2 3 Positive
Staphylococcus aureus 251 4 3 Positive
Listeria monocytogenes 688 3 2 Positive
Listeria monocytogenes 1116-2 1,2 3 Positive

The infrared images acquired for these samples were subjected to the pre-

processing variables selected by the genetic algorithm. Following the removal of the

84

pixels outside of the acceptable amide I range of 0.4 to 1.0 absorbance units, 6,037 of the
original 19,456 pixels remained for classification purposes. Figure 3-13 illustrates the
remaining pixels in the image for the Escherichia coli sample after the amide I

absorbance tolerance was evaluated.

-

Figure 3-13: Image of Escherichia coli Sample: Pixel Utilization Before and After Selection
Based on Amide I Tolerance

Boxcar smoothing was then applied with 11 points followed by normalization and
the first derivative. Following the initial pre-processing treatments, the seven principal
component weights from the sub-optimal genetic algorithm solution were applied to each
individual spectrum. The principal components were projected onto a three dimensional
plane and superimposed on the original clustering data resulting from the genetic
algorithm. Although it is difficult to visualize the complete dimensionality of the data, 1t
is apparent in Figure 3-14 that the validation data falls within the boundaries of the data
for the training set. The image centers of the validation data are represented by the o’s in

the image while the +’s represent the centers of the original training set clusters.

85

o’

Figure 3-14: Validation Test 1 — Cluster Plot

In order to determine the classification of the samples in the validation set, the
distances between the centers of each image and the centroids of the original clusters
produced by the genetic algorithm were measured and the sample was classified based on
the shortest center-to-centroid distance. This procedure resulted in 100% accurate
classification of the samples in the validation data set as Gram-positive versus Gram-
negative.

In order to determine the confidence level of the classifications, the spectral
distance to the centroids of the Gram positive and Gram negative clusters was measured
for each pixel in each of the images of the validation set. The percent confidence was
calculated as the number of correctly classified pixels, based on closer proximity to the
Gram positive or the Gram negative cluster, divided by the final number of retained

pixels in the image as illustrated in Table 3-9.

86

Table 3-9: Results of Validation Test 1

Culture | Final # | # Pixels | % Distance
Strain Name # Pixels | Correct | Confidence | Gram- to Cluster
Klebsiella oxytoca 1 463 463 100% Negative | 1.8491x107
Hafnia alvei 1 94 94 100% Negative | 2.5750x10°
Kiebsiella pneumoniae 3 301 301 100% Negative | 1.0883x10°
Shigella flexneri 2 401 284 70.8% Negative | 3.3588x10°
Escherichia coli 4 154 107 69.5% Negative | 2.7111x10°
Escherichia coli 1 172 171 99.4% Negative | 2.1244x10”
Saimonella berta 4 26 21 80.8% Negative | 5.3104x10”
Salmonella derby 3 109 96 88.1% Negative | 2.9155x107
Escherichia coli 0157.:H7 | 2 136 134 98.5% Negative | 5.7953x10°¢
Salmonella heidelberg 3 585 585 100% Negative | 1.3862 x10°
Streptococcus xylosus 1 369 369 100% Positive | 1.5291x107
Clostridium sporogenes 2 484 484 100% Positive | 2.0286x10”
Listeria monocytogenes 2 312 312 100% Positive | 4.1102x107
Listeria monocytogenes 3 430 430 100% Positive | 2.7379x107
Listeria monocytogenes 2 487 487 100% Positive | 2.0458x10°
Listeria monocytogenes | 3 393 392 99.7% Positive | 3.3254x10°
Staphylococcus aureus 3 549 549 100% Positive | 1.3731x10°
Listeria monocytogenes 2 305 305 100% Positive | 1.4888x107
Listeria monocytogenes 3 267 267 100% Positive | 9.4104x107

In order to evaluate another form of goodness of fit, the centroid location of each
individual image was measured in relation to the centers of the clusters formed by the
genetic algorithm. The measurements were carried out using the squared Euclidean
distance metric and compared to the radius of the original cluster formed by the genetic

algorithm. The radius of the Gram-positive cluster was 1.6880x10™ and the radius of the

Gram-negative cluster measured 1.0819x10™, Table 3-9 illustrates the measures of each
of the Gram-positive and Gram-negative images to the centroids. It is apparent that each
of the validation images fell within the radius boundaries of the training set.

Examination of both the pixel to pixel clustering accuracy and the measure of the
image centroids to each of the cluster centers indicates that this clustering sub-optimum
solution is an effective classification tool. Each of the validation samples fell within the

bounds of the clustering model and the confidence levels were acceptable.

87

3.4.2 Validation Test 2

The results obtained in the first validation test show that the model developed for
Gram classification could be successfully applied to additional samples of the specimens
included in the training set. In the second validation test, the performance of the model in
regards to specimens not included in the training set was assessed.

To select samples for the second validation test, the bacterial spectral library was
filtered to remove all replicates of the specimens used in the training set. Six Gram-
positive and six Gram negative species were then randomly selected. The spectral images
were processed and classified based on the clustering model determined by the genetic
algorithm in the same manner as described above and illustrated in Figure 3-3. Following
the removal of the pixels outside of the acceptable amide I range of 0.4 to 1.0 absorbance
units, the total number of pixels was reduced from 12,288 to 3,379 conserving 27.5% of
the original validation data. In the case of two of the samples, less than 10 pixels were
retained, indicating that the deposition of the sample film on the slide was inadequate.
Accordingly, these samples were excluded from the data analysis. Table 3-10 illustrates
the classification accuracy for each image on a pixel-by-pixel basis and a confidence
value. Table 3-10 also illustrates the distance of the center of each image to the
corresponding cluster centroids of the training set. All of these distances fall well within

the boundary values of the classification model.

88

Table 3-10: Results of Validation Test 2

. Culture | Final # | # Pixels | % Distance
Strain Name # Pixels Correct | Confidence Gram- to Cluster
Aeromonas hydrophila 1 465 465 100% Negative | 4.9466x10°
Aeromonas hydrophila 1 148 134 90.5% Negative | 2.7659x10”
Salmonella typhmurium | 2 400 385 96.3% Negative | 9.1221x10°
Salmonella typhmurium | 3 212 199 93.9% Negative | 1.3910x10°
Vibrio parahaemolyticus | 1 379 352 92.9% Negative | 2.6723x107
Escherichia coli 8739 2 421 420 99.7% Negative | 1.6974x107
Listeria ivanovii 1 9 - - - -

Listeria murrayi 3 8 - - - -

Clostridia perfringens 1 451 451 100% Positive | 3.1181x10°
Listeria monocytogenes | 3 176 176 100% Positive | 2.5636x107
Listeria monocytogenes | 1 324 324 100% Positive | 3.2763x10?
Listeria monocytogenes | 1 386 386 100% Positive | 1.5566x107

Examination of the pixel to pixel clustering accuracy, as well as the measure of

the validation image centers to each of the cluster centers, indicates that the clustering

model is an effective classification tool for specimens not included in the training set.

Each of the validation samples fell within the bounds of the clustering model and the

confidence levels were more than acceptable.

89

4 Conclusion
The primary aim of this study was to examine the utilization of a genetic

algorithm to optimize the pre-processing of infrared image data, with the secondary aim
being to conserve as much of the original pixel data as possible. The data set selected for
this purpose consisted of infrared images of bacterial cultures, and the classification task
investigated was the discrimination between Gram-positive and Gram-negative bacteria.
The use of the genetic algorithm was explored with a training set consisting of 12 Gram-
positive and 12 Gram-negative specimens. The genetic algorithm evaluated combinations
of variables pertaining to bacterial film thickness tolerances, baseline correction, pixel
co-addition, outlier removal, smoothing, mean centering, normalization, derivatization,
integration and principal component selection and employed a fitness function that
utilized a score incorporating the classification accuracy (assigned a weight of 80%) and
the number of remaining pixels after all of the pre-processing was accomplished
(assigned a weight of 20%) When the genetic algorithm was applied to the infrared image
data for the samples in the training set, the clustering of the infrared images on a pixel-
by-pixel basis yielded a classification accuracy of approximately 97.5%; the
corresponding value for classification on an image-by-image basis was 100%. With
respect to the secondary aim of the algorithm, the proportion of the pixel data retained
from the original images was 28.6%.

Applying the genetic algorithm to the spectral data for the training set yielded an
appropriate combination of pre-processing variables for clustering of Gram-positive and

Gram-negative specimens. To test the robustness of this combination of pre-processing

90

variables, two validation tests were performed, the first using replicate images of the
specimens included in the training set and the second using images of a different set of
specimens. Following pre-processing of the data in accordance with the procedures
established for the training set with the use of the genetic algorithm, the validation
samples were classified based on the squared Euclidean distances to the centroids of the
Gram-positive and Gram-negative clusters of the training set. All the validation samples
were classified correctly on an image-by-image basis and with a fairly high accuracy on a
pixel-by-pixel basis. Furthermore, as summarized in Table 4-1: Comparison of Distances
to Clusters, the average distances of the Gram-positive and the Gram-negative samples in
both the first and second validation sets to the centroids of the corresponding clusters

were well within the bounds for the training set.

Table 4-1: Comparison of Distances to Clusters

Gram-Negative | Gram-Positive
Training Set Cluster Radius 1.0819x10™ 1.6880x10™
Validation Set 1 — Avg. Dist. To Cluster | 2.3898x10” 3.1166x10”
Validation Set 2 — Avg. Dist. To Cluster | 2.3976x10” 2.6287x107

The validated success of the initial pass of the genetic algorithm indicates that it is
an effective time-saving tool for the optimization of pre-processing variables for
clustering and classification tasks. As discussed in Chapter 3, based on the results
obtained in this work, a second pass could be attempted with several variables removed
or replaced in order to increase the speed and accuracy of the algorithm. For instance, the
baseline or raw data flag as well as the co-addition modules could be removed,
significantly reducing the computational expense of the algorithm by five bits. The
spectral data could also be limited to the region between 1817 cm™ and 1053 cm’,

thereby reducing the size of the data set by approximately one-third and again reducing

91

the computational expense of the algorithm. Alternative approaches for clustering of the
spectral data could also be investigated. Applying a “learning” algorithm such as a neural
network or k-nearest neighbors algorithm would most probably be highly effective.
However, it is important to note that learning algorithms tend to overfit the data and may
not produce correct classifications for samples not included in the training set.

In conclusion, as advances in infrared imaging technology result in increasingly
large sets of spectral image data, researchers require improved means of handling and
interpreting data and applying this technology to perform particular analytical tasks. It is
the appropriate combination of data acquisition, processing and analysis techniques that
make it possible to effectively classify a hyperspectral data set. The research presented in
this thesis demonstrates the effectiveness of a genetic algorithm as a tool for selecting
pre-processing variables for a given classification task. The use of a genetic algorithm
allows for the sub-optimization of the pre-processing variables without the intrinsic trial
and error reasoning of the researcher. Using the genetic algorithm thus releases human
resources, allowing them to be allocated to other tasks while minimizing the influence of
human error. The sub-optimum solution was produced by the genetic algorithm in a
reasonable time frame of less than seven hours, as opposed to manually optimizing the
combination of variables over an extended period of time, and modifications of the initial
set of variables, as discussed above, could further reduce the computational time. Finally,
the genetic algorithm not only helps in the development of an unsupervised sub-optimum
solution, but can also enhance the understanding of the relationships between pre-

processing variables and of their effects on overall analytical performance.

92

5 References

Adams, M.J. (1995). Chemometrics in Analytical Spectroscopy. Cambridge: The Royal

Society of Chemistry.

Beebe, Kenneth R.; Pell, Randy J.; Seasholtz, Mary Beth. (1998). Chemometrics: A

Practical Guide. New York: Wiley Publications.

Bourke, P. (1993). Discrete Fourier Transform. Victoria, Australia: Swinburne

University of Technology http://astronomy.swin.edu.au/~pbourke/other/dft/

Burns, D.H. (2001). Chemometrics: Analysis of Chemical Data (Chemistry 567A Lecture

Handouts.) Montreal: McGill University.

Davies, A.; Board, R. (1998). The Microbiology of Meat and Poultry. London, UK:

Blackie Academic & Professional.

Davis, Sumner P.; Abrams, Mark C.; Brault, James W. (2001). Fourier Transform

Spectrometry. San Diego, USA: Academic Press.

Firkin, B.G.; Whitworth, J.A. (1987). Dictionary of Medical Eponyms. Nashville, USA:

Parthenon Publishing.

93

Gilbert, R.J.; Goodacre, R.; Woodward, A.M.; Kell, D.B. (1997). Genetic Programming.

Aberystwyth, UK: Institute of Biological Sciences: Analytical Chemistry

Hashimoto, T.; Birch, W.X. (1996). Gram Stain. Chicago, USA: Loyola University.

Jarvis, Roger M.; Goodacre, Royston. (2004). Genetic Algorithm Optimization for Pre-
Processing and Variable Selection of Spectroscopic Data. Manchester, UK: Oxford

University Press.

Kirkwood, Jonah; Al-Khaldi, Sufian F.; Mossoba, Magdi M.; Sedman, Jacqueline;
Ismail, Ashraf A. (2004). Fourier transform infrared bacteria identification with the use
of a focal-plane-array detector and microarray printing. Montreal, Canada: Applied

Spectroscopy 58(11)

Kowaski; Illman; Sharaf. (1986). Chemometrics. New York: Wiley Publications.

MacKay, D.J.C. (2003). Information Theory, Inference, and Learning Algorithms.

Cambridge: Cambridge University Press.

Matlab R13, Statistics Toolbox. (2002). Boston: Mathworks.

Naumann, D. (2000). Infrared spectroscopy in microbiology. In: Encyclopedia of

Analytical Chemistry. New York: Meyers, R.A., Ed. John Wiley & Sons

94

Rainieri, S.; Pagliarini, G. (2001). Data Processing Technique Applied to the Calibration

of a High Performance FPA Infrared Camera. Parama, Italy: Elsevier Science B.V.

Russell, S.; Norvig, P. (1995). Artificial Intelligence A modern Approach. New Jersey,

USA: Prentice-Hall Inc.

UOT (1995). Introduction to Clinical Microbiology. Texas, USA: University of Texas —

Houston Medical School http://medic.med.uth.tmc.edu.

Van Den Broek, W.H.A.M.; Wienke, D.; Melssen, W.J.; Buydens, LM.C. (1997).
Optimal Wavelength Range Selection by a Genetic Algorithm for Discrimination
Purposes is Spectroscopic Infrared Imaging. Nijmegen, Netherlands: Society of Applied

Spectroscopy

Wolsky, A.M; Daniels, E.J.; Giese, R.F.; Harkness, J.B.L.; Johnson, L.R.; Rote, D.M;

Zwick, S.A. (1989). Applied Superconductivity. New Jersey, USA: Noyes Data

Corporation.

95

6 Appendix: Genetic Algorithm Matlab Code

6.1 Main Genetic Function
Tom Pinchuk

Genetic Algorithm

Revision September 2805

P

Bit layout - 27 Bilts represen g numpers § to 134,217,727
Combinations.

See "GA Flow Chart.ppt" for more information

550 o0 90 g oF

filename
151 number
% genetic algorithn.

conpute when running the
umber must b2 an even number.

function [iData, oData]=A00_runGenetic(imageFile, numlIterations)
format long e;

% Check for errors.

if rem(numlIterations,2)~=0
disp('Number cof iterations must ke an even number.');
quit;

end

Load
the :
disp('Leoading
{iData]=A01_LoadData(imageFile);
outputFile=strcat (imageFile, 'CUT");
b0dd=0;
if exist(strcat (outputFile,*

disp ("' ing Cutput ¥
curlteration=0;
b0Odd=1;

else

disp ('Loading Cutput ¥

load (outputFile) ;

curlteration=length(oData.DNA};

if rem(curlteration,2)==
b0Odd=1;

end

for cntlter=(curlteration+l): (curlteration+numIterations)
disp((’ Iteraticn: ' num2str{cntiter) ' of '...
num2str (curlteration+numlterations)});

two new DNA itarations are

if cntlter==1
DNA=[134217728,01:
oData.DNA(cntIter)=DNA(1l);
elseif rem(cntlter, 2)==b0Odd
[DNA, b0Odd, oDatal=reproduce (cntlIter, oData, b0dd);
oData.DNA{cntIter)=DNA(1);
else
oData.DNA (cntIter)=DNA(2);
end
disp ([’ Digital ONA: ' num2str(oData.DNA(cntlIter))]);

o

up the DKNA
27 bits

DNA_PCA = bitshift (oData.DNA({(cntlter),-23);

tmpDNA = oData.DNA(cntIter) - bitshift (DNA_ PCA,23);
DNA_Feature = bitshift (tmpDNA,-17);

tmpDNA = tmpDNA - bitshift (DNA_Feature, 17);

% unctionz. Original DNA contains
<

DNA_Smooth = bitshift (tmpDNA,-13);

tmpDNA = tmpDNA - bitshift (DNA Smooth,13);
DNA Coadd = bitshift (tmpDNA,-11);

tmpDNA = tmpDNA - bitshift (DNA Coadd,1l);
DNA Outlier = bitshift (tmpDNA,-9);

tmpDNA = tmpDNA - bitshift (DNA_Outlier,9):
DNA Base = bitshift (tmpDNA,-8);

DNA_Amide = tmpDNA - bitshift (DNA Base,8);

llerances and update the output data.
[rData] =A02 RemoveAmlde(lData DNA Amide);
oData.PctPixel (cntlIter,l)=rData.NumPixels/iData.NumPixels;
oData.PctImage (cntlIter,l)=rData.NumImages/iData.NumImages;
if (rData.NumPixels==0) || (rData.NumImages<iData.NumImages)
oData.Score (cntIter,1:3)=0;
oData.totScore (cntIter)=0;
end

disp ([’ -» Pixels: ' num2str(rData.NumPixels) ' / Images: ‘.

num2str (rData.NumImages)]);

if (rData.NumPixels>2) && (rData.NumImages==iData.NumImages)
% Deter > to use baseline corrected or raw data
[rDatal AQ03 UseRaw(lData, rData, DNA Base):
% New reversing funct - coadd images
[rData] = A05 CoaddImages(lData, rData, DNA_Coadd):
disp ([’ -> Pix ' num2str{rData.NumPixels) ' / Image
nunm2str {rData. NumImages)]),

end
oData.PctPixel (cntlter, 2)=rData.NumPixels/iData.NumPixels;
oData.PctImage (cntIter,2)=rData.NumImages/iData.NumImages;
if (rData.NumPixels==0) || (rData.NumImages<iData.NumImages)
oData.Score(cntIter,1:3)=0;
oData.totScore (cntIter)=0
end

% Remove Outliers - use 4k When reversed with ceadd algorithm
if (rbata.NumPixels>2) && (rData.NumlImages==iData.Numlmages)
[rData] = AO04b_RemoveOutliers(iData, rData, DNA Outlier);
disp ([’ -> Pixels: !
num2str (rData.NumImages)]);

end
oData.PctPixel (cntIter, 3)=rData.NumPixels/iData.NumPixels;
oData.PctImage (cntIter, 3)=rData.NumImages/iData.NumImages;
if (rData.NumPixels==0) || (rData.NumImages<iData.Numlmages)
oData.Score{cntlIter,1:3)=0;
oData.totScore (cntIter)=0;
end

Feature Se PCA
% pixels or proper Li
if (rbata. NumPlxels>2) && (rData.NumImages==iData. NumImages)
{rData] = A06_SmoothImages(iData, rbData, DNA_ Smooth);
{rData] = AQ7_ FeatureSelection(iData, rData, DNA_ Feature);
[rData] = A08_CombineImageData(iData, rData):;
[rData, pc] = A09_PCA(iData, rData, DNA PCA);

adi ed for kMeans
[rData] = AlOb ClusterFunction({(rData);

oData.Score (cntiter,1l)=rData.Score;

oData.Score (cntlter,2)=oData.PctImage (cntlter,3);

oData.Score{(cntlIter, 3)=rData.NumPixels;

oData.totScore (cntIter)=...
(oData.Score(cntIter,1)*.8)+...
(oData.PctImage(cntlter,3)*0)+...
((oData.Score(cntIter,3)/iData.NumPixels) *.2);

else

U)

num2str (rData.NumPixels) ' / Images:

*

97

oData.Score{cntlIter,1:3)=0;
oData.totScore(cntIter)=0;
end
disp(['~> Scores: ' num2str(oData.totScore{cntIter)*100) ' = ‘...
num2str (oData.Score(cntIter,1)*100) '% and ‘...
num2str {oData.Score{cntlter,2)*100) '% Images and '...
num2str (oData.Score{cntlIter,3)) ' Pixels.']);
tmpOutFile=strcat (' __',outputFile,num2str(cntlter));
save (tmpOutFile, 'oData');
end
save (outputFile, 'cData’);

6.2 Data Loading Function

Tom Pinchuk

"Rescue Bi 2725720605
1ly to use the

data provided. Support for
emovad. New input file type is
ieved using the .mat file.

unptions:
11 imag
C file

lutions. Only need 1
load all of the

{we can verify in the

SE OC GO ge

data set - no need for &

oo

I}
kY
=
e
=
o
O
Q
o
o
o
o
h
=
—
o
=z
o
3
1

function [iData]
3 Constants (Fer flow chart -
cstBasePt (1)=980;

cstBasePt (2)=1780;
cstRespBand=1650;
cstAmideRange (1)=0.4;
cstAmideRange (2)=1.4;

read from text file}

1 S NANS
flleCSV strcat(flleName,
fileMAT=strcat (fileName, '

mation £

ructure.
1f ex1st(f11eMAT,

load(flleMAT),
else

The extans
ter’, ', ");

Loacd the caining 'ho
[fileContents]= textread(flleCSV
lengthTextFile=length(fileContents);
iData.NumImages=lengthTextFile/2; t3et the nurmber of images property

[enviInfo]l= textread(’
ibata.NumCols=str2num(enviInfo{10,1});
iData. NumRows str2num(env11nfo(13 1}y

2f bands - her of data poinis
iData. NumDataP01nts str2num(env11nfo{16 11
oF

1Data NumClasses length(unlque(flleContents(2 2:length(fileContents))}):

datatype=str2num(envilnfo{29,1});

98

switch datatype

case {1}
datastring='int8';
case {2}
datastring='int';
case {3}
datastring="int64';
case {4}
datastring='float’;
case {5}
datastring="double';
case {6}
error('readenvi.m file cannot handie complex data...')
end
for cntBand=0: (iData.NumDataPoints-1) %28et the individual kands
iData.Wavenumbers (cntBand+l) = strZnum(envilnfo{ (49+cntBand),1});
end

offset=str2num(enviInfo{20,1});

% Load the raw image data
for cntImages=1:iData.NumImages
indexFName = 2*cntImages-1;
indexFClass = 2*cntImages;
tmpFName=char (fileContents (indexFName)) ;
fid=fopen (tmpFName, 'r');
[datInfo]l=fread(fid,offset, 'int8'};
[spectral=fread(fid,datastring);
specimg=reshape...
{spectra, [iData.NumRows, iData.NumCols, iData.NumDataPoints]);
for i=l:iData.NumDataPoints
specimg{:,:,1i)=specimg(:,:,1i)"';
end
iData.Image (cntImages) .rawData=specimg;
fclose(fid) ;
iData.Image (cntImages) .class=...
str2num{char (fileContents (indexFClass)));

ate additional constants
iData.NumPixels=iData.NumImages*iData.NumCols*iData.NumRows;
iData.Resolution=(iData.Wavenumbers (11)-iData.Wavenumbers(1))/10;

< -
ne Lo use image or not
base (l)=round({cstBasePt (1) -iData.Wavenumbers (1)) /iData.Resolution+l);
base (2)=round((cstBasePt (2) -iData.Wavenumbers (1)) /iData.Resolution+l);
response=round ({cstRespBand-iData.Wavenumbers (1)) /iData.Resolution+1);
tmpRun=base (2) -base (1) ;
for cntImages=l:iData.Numlmages
iData.Image (cntImages) .numGoodPixels=0;
for cntRow=l:iData.NumRows
for cntCol=1l:iData.NumCols
absorbance(l)=...
iData.Image {cntImages) .rawData (cntRow,cntCol,base (1)) ;
absorbance (2)=...
iData.Image (cntImages) .rawbData {cntRow,cntCol,base(2));
tmpSlope=(absorbance (2) —absorbance (1) } /tmpRun;
tmpConst=absorbance (2) - (tmpSlope*base (2));
for cntPT=1:iData.NumDataPoints
iData.Image (cntImages) .baseData (cntRow,cntCol, cntPT)=...

ch i ¢ and determine response - f£ill in image

iData.Image (cntImages) .rawData (cntRow,cntCol, cntPT) ...

- (tmpSlope*iData.Wavenumbers (cntPT)+tmpConst) ;
end
iData.Image {cntImages) .AmideResponse {cntRow,cntCol)=...
iData.Image {cntImages) .baseData (cntRow, cntCol, response) ;
if (iData.Image (cntImages) .AmideResponse (cntRow,cntCol) ...
<cstAmideRange (1)) ||...

(iData.Image (cntImages) .AmideResponse (cntRow,cntCol)>. ..

cstAmideRange (2))
iData.Image (cntImages) .pix1lMap (cntRow,cntCol)=0;
else

99

iData.Image (cntImages) .pix1lMap (cntRow,cntCol)=1;
iData.Image (cntImages) .numGoodPixels=. ..
ibata.Image (cntImages) .numGoodPixels+1;

end
end % Count Columns
end % Count Rows
if iData.Image (cntImages) .numGoodPixels==
iData.Image {cntImages) .uselmage=0;
else

iData.Image {cntImages) .uselmage=1;

end %

% Save the file
save (£ileMAT, 'ilata');
end

6.3 Amide | Removal Function

table Amid

/50,

range of

umpticns:

ut Arguments:
ta: he initial specatral data as

SO S0 9O JF 06 O6 d6 GO ¢F oF ofF

o) W

[2al

&y

a used du

DNA)

function

[rData] = A02_RemoveAmide (iData,

raad

% Const. (Per
cstRespBand=1650;
cstAmideRange (1)=0.4;
cstAmideRange (2)=1.4;

chart - no longer

&) 2rermine Ranges and sort 1f necessary
tmpRange (1) =bitshift (DNA, -4);

tmpRange (2)=DNA - bitshift (tmpRange(l),4);

tmpRange (1)=double (tmpRange (1)) *6/90+cstAmideRange (1) ;
tmpRange (2) =double (tmpRange (2}) *6/90+cstAmideRange (1) ;
range=sort (tmpRange) ;

disp([" - Amide 1 Range: !

num2str (range(l)) ' o !

s are not adenti

the range v

LESLONSes.
rData.NumPixels=0;
rData.NumImages=0;
if range{l)~=range(2)
for entImages=1:iData.NumImages
rData.Image (cntImages) .numGoodPixels=0;
for cntRow=l:iData.NumRows
for cntCol=1:iData.NumCols

if (iData.Image (cntImages) .AmideResponse {(cntRow, cntCol)<range (1))

=

nd check the

abkscrbance

by the

num2str (range(2))1);

(iData.Image {cntlmages) .AmideResponse (cntRow, cntCol) >range (2))

100

rData.Image (cntImages) .pixlMap (cntRow, cntCol)}=0;
else
rData.Image (cntImages) .pix1lMap (cntRow, cntCol)=1;

rData.Image (cntImages) .numGoodPixels=rData.Image (cntImages) .numGoodPixels+1;
rData.NumPixels=rData.NumPixels + 1;
end

end % Ccunt Columns

end % Count Rows

if rData.Image (cntImages) .numGoodPixels==
rData.Image (cntImages) .uselmage=0;

else
rData.Image (cntImages) .uselmage=1;
rData.NumImages=rData.NumImages+1;

end

- Do not include the

rData.NumPixels=0;
rData.NumImages=0;
end

6.4 Baseline or Raw Selection Function

s to determ
uild be ut: ed

ine corrected «

I G0 9 GO oo

pixels not in use in

Lons:

Argumer

function [rData] = A03 UseRaw(iData, rData, DNA)

i1f DNA==
disp ([’ -
else
disp((’ - Using Baze ectad Datall);
end
for cntlmages=1:iData.Numlmages
if DNA==0
rData.Image (cntImages) .data = iData.Image (cntlmages).rawData;
else
rData.Image (cntIimages) .data = iData.Image (cntlImages) .baseData;
end

for cntRow=1l:iData.NumRows
for cntCol=l:iData.NumCols
if rData.Image(cntImages) .pixlMap(cntRow,cntCol)==
rData.Image {cntImages) .data(cntRow,cntCol,l:iData.NumDataPoints)=0;
end

end % Count

101

end % Counting Rows
end

6.5 Pixel Co-Addition Function

Tom Pinchuk

Modified 10/02/2008

This function is used to

in adiacent groups
the

rrencin

sumiptions:

& ge o o

iput Arguments:

T initial specatral data as determined by the load
algerithm.

GO GO G b gE ¢

2
%
%

2

[4x4
[8x8}

% : dat used 3
function [rData] = A05_ CoaddImages(iData, rData, DNA)
% Compute the square root of the number of pixels to ccadd.
switch DNA
case {0}
CoaddLimit=0;
case {1}
CoaddLimit=2;
case {2}
CoaddLimit=4;
case {3}
CoaddLimit=8;

end
disp ([’ - Ceadding: ' num2str (CoaddLimit) 'x' num2str (CoaddLimit) °
if CoaddLimit==
for cntImage=1l:iData.Numlmages
cntPixel=0;
if rData.Image (cntImage) .uselmage==
rrData.CmbImg{cntImage) .uselmage=1;
for cntRow=1:iData.NumRows
for cntCol=1:iData.NumCols
if rData.Image {cntImage) .pixlMap (cntRow, cntCol)==
cntPixel=cntPixel+1l;

rrData.CmbImg (cntImage) .data(cntPixel, :)=rData.Image (cntImage) .data (cntRow, cntCol, :

end
end %
end % Count Row

rrData.CmbImg{(cntImage) .numPixels=cntPixel;

lumn

rrData.CmbImg(cntImage) .uselmage=0;
rrData.CmbImg{cntImage) .numPixels=0;

end
end % Cou

gaood

the

- update

% iteration :
for cntImage=1l:iData.NumImages

102

cntPixel=0;

if rData.Image (cntImage) .uselmage==
for cntRow=1: (iData.NumRows-CoaddLimit+1)
for cntCol=1: (iData.NumCols-CoaddLimit+1)

if rData.Image (cntImage) .pixlMap (cntRow, cntCol)==

¥Check to see if the adjacent points are all good
boolAllGood=1;
for cntDR=cntRow: (cntRow+CoaddLimit-1)
for cntDC=cntCol: (cntCol+CoaddLimit-1)
if rData.Image (cntImage) .pixlMap (cntDR, cntDC)==0,

boolAallGood=0; end
nd % dbl Count Columns

dbl Count Rows
o

their pixel flags
if boolAllGood==
cntPixel=cntPixel+1;

rrData.CmbImg(cntImage) .data(cntPixel, ;)=

sum(sum(rData.Image (cntImage) .data (cntRow: (cntRow+CoaddLimit-

1),cntCol: (cntCol+CoaddLimit-1),:)));

all good - coadd them and the remove

rData.Image (cntImage) .pix1lMap (cntRow: {cntRow+CoaddLimit-

1) ,cntCol: (cntCol+CoaddLimit-1))=0;

end ¢
if cntPixel>0
rrData.CmbImg (cntImage) .uselmage=1;

else

rrData.CmbImg {cntImage) .uselmage=0;
end
rrData.CmbImg (cntImage) .numPixels=cntPixel;

else
rrData.CmbImg (cntImage) .uselmage=0;
rrData.CmbImg(cntimage) .numPixels=0;

end
end % Count Images
end
%Update the total number of images and pizels.

rrData.NumPixels=0;
rrData.NumImages=0;
rrData.NumDataPoints=iData.NumDataPoints;
rrData.Wavenumbers=iData.Wavenumbers;
for cntImage=1l:iData.NumImages
if rrbata.CmbImg{cntImage).uselmage==
rrData.NumImages=rrData.NumImages+l;

rrData.NumPixels=rrData.NumPixels+rrData.CmbImg (cntImage) .numPixels;

end
end
rData=rrData;

6.6 Outlier Removal Function

"
t

15]

103

rguments:
The initial specatral data as determined by the 1o
algorithm.
Data: The running Data up until now.
: ¥ DNA strand representing the acce
randard deviations to keep processing.
}: Keep the entire image

[o9

1)
o}

o ol
(i)
w

ptapkle number of

JRCRPr

rything beyond 2 8
everything beyond 1.5 SD
rythiing teyond 1 8

R e e

The data used during processing of the spechra.

function [rData] = AO04b_removeQutliers(iData, rData, DNA)
% Compute the Standard Deviation tolerance limits based on the input DNA
% argument.
switch DNA
case {0}
SDLimit=0;
case {1}
SDLimit=2;
case {2}
SDLimit=1.5;
case {3}
SDLimit=1;
end
disp([* - Removing cutlisrs keyond ' num2str(SDLimit) ' standard deviations.']):;
if SDLimit ~=0
tmpNumImage=rData.NumImages;
rrData.NumPixels=0;
rrData.NumImages=0;
for cntImage=1:tmpNumImage
if rData CrmbImg (cntImage) .uselmage==
r the ocurreni image - what 1z the value of
MU=sum((rData. CmbImg(cntImage) data))/rData CmbImg (cntImage) .numPixels;
tmpPixelNum=0;
for cntPixel=l:rData.CmbImg(cntImage) .numPixels
tmpPixelNum=tmpPixelNum+1;
residual (tmpPixelNum)=sum((rData.CmbImg(cntImage) .data (cntPixel, :) -

he Standard Deviation.

MU (1, :))."2);
end % xel {Count
MD=mean (residual);
SD=std(residual);
minLimit = MD- (SDLimit*SD);
maxLimit = MD+ (SDLimit*SD);

Find n

cntGoodPlxels O

tmpPixelNum=0;

for cntPixel=l:rData.CmbImg(cntlimage).numPixels

tmpPixelNum=tmpPixelNum+1;

if (residual (tmpPixelNum)<minLimit) || (residual (tmpPixelNum)>maxLimit)
rData.CmbImg (cntImage) .data(cntPixel, l:iData.NumDataPoints)=0;

else
cntGoodPixels=cntGoodPixels+1l;
rrData.CmbImg (cntImage) .data {(cntGoodPixels, 1:iData.NumDataPoints)=...

rData.CmbImg (cntImage) .data(cntPixel,1l:iData.NumbDataPoints) ;

ixel Count

idualy;

rrData.CmbImg (cntImage) .numPixels=cntGoodPixels;

if rrData.CmbImg(cntImage).numPixels==
rrData.CmbImg {cntImage) .uselmage=0;

else
rrData.NumImages=rrData.Numlmages+l;
rrData.CmbImg (cntImage) .uselmage=1;

104

end

rrData.NumPixels=rrData.NumPixels+cntGoodPixels;

end % Is image good

end % Image Count
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
clear rData;
rData=rrData;

else
rData.NumImages=rData.NumImages-1+1;

end

6.7 Image Smoothing Function

Tom Pir

K

o og

ature review.

Images are smoothed using a sarameter

dG 96 GO g6 of

Assumeptions:

GOS0 o

50

ATJUMET

%
&l
Q
3

function {rData] = A06 SmoothImages (iData, rData, DNA)

piit the DNA up i > the two smoothing o

smoothMethod = bitshift (DNA,-2);
tmpNum = DNA - bitshift (smoothMethod, 2);
switch tmpNum
case {0}

smoothPoints=5;
case (1)

smoothPoints=7;
case {2}

smoothPoints=9;
case {3}

smoothPoints=11;

meters.

end
tmpPointsSide = (smoothPoints - 1) / 2;
switch smoothMethod

case (1)

disp ([’ - “hing mathod and
28 1)
case {2}

disp ([’ - cthing '

smooth the data in the images in refer

ng two - Z-bit pi
zthod, and the

P by the load

" nun2str (smoothPoints)

num2str (smoothPoints)

poeints'l);

105

case {3}
disp ([’ - Smoothing
points']);
end

Savitzky-Golay method and ' num2str (smoothPoints) '

3y - Remove end effects by getting rid of
% points.
if smoothMethod == 1
for tmpImageNum=1:iData.NumImages
if rData.CmbImg (tmpImageNum) .uselmage==
boolNotEnd = 1;
tmpOldIndex = tmpPointsSide + 1;
tmpNewIndex = 0;
while boolNotEnd==1
tmpNewIndex = tmpNewIndex + 1;
for cntPixels=1l:rData.CmbImg(tmpImageNum).numPixels
newImg (tmpImageNum) .data (cntPixels, tmpNewIndex) = ...
sum(rData.CmbImg(tmpImageNum) .data{cntPixels, (tmpOldIndex-
tmpPointsSide) : (tmpOldIndex+tmpPointsSide))) ...
/ smoothPoints;

end
newImg (tmpImageNum) . sampleDataPoints (tmpNewIndex) =
iData.Wavenumbers (tmpOldIndex) ;
if (tmpOldindex + smoothPoints + tmpPointsSide) >= iData.NumbDataPoints
boolNotEnd = 0;

else
tmpOldIndex = tmpOldIndex + smoothPoints;
end
end % While Loop
newImg (tmpImageNum) .NumDataPoints = tmpNewIndex;
end % image Good

end %c ing b umper
EMean o 3 ¢
elseif smoothMethod
for tmpImageNum=1:iData.NumImages
if rbata.CmbImg(tmpImageNum).uselmage==
boolNotEnd = 1;
tmpOldIndex = tmpPointsSide + 1;
tmpNewIndex = 0;
while boolNotEnd==1
tmpNewIndex = tmpNewIndex + 1;
for cntPixels=l:rData.CmbImg (tmpImageNum) .numPixels
newImg (tmpImageNum) .data(cntPixels, tmpNewlndex) = ...
sum(rData.CmbImg(tmpImageNum) .data(cntPixels, (tmpOldIndex-
tmpPointsSide) : (tmpOldIndex+tmpPointsSide))) ...
/ smoothPoints;

r points.

end
newlmg (tmpImageNum) . sampleDataPoints (tmpNewIndex) =
iData.Wavenumbers {tmpOldIndex);

if (tmpOldIndex + tmpPointsSide) >= iData.NumDataPoints
boolNotEnd = 0;

else
tmpOldIndex = tmpOldIndex + 1;

end

end % while locp

= tmpNewIndex;

(smoothMetho
1f smoothPoints==5, SGmult=[-3 12 17 12 -3}; end
if smoothPoints==7, SGmult=[-2 3 6 7 6 3 2]; end
if smoothPoints==9, SGmult=[-21 14 39 54 59 54 39 14 -21]; end
if smoothPoints==11, SGmult={-36 9 44 69 84 89 84 69 44 9 ~36]; end
sumSGmult = sum(SGmult);
for tmpImageNum=1:iData.NumImages
if rData.CmbImg (tmpImageNum) .uselmage==
boolNotEnd = 1;
tmpOldIndex = tmpPointsSide + 1;
tmpNewIndex = 0;
while boolNotEnd==

Ve T
Ly ge
Y Qe

and

ol

106

tmpNewIndex = tmpNewIndex + 1;
for cntPixels=l:rData.CmbImg(tmpImageNum).numPixels
tmpPoint (1:smoothPoints) = rData.Cmblmg(tmpImageNum).data(cntPixels,
(tmpOldIndex-tmpPointsSide) : (tmpOldIndex+tmpPointsSide)) ;
tmpArg = tmpPoint.*SGmult;
newImg (tmpImageNum) .data (cntPixels, tmpNewIndex) = sum(tmpArg) /
sumsSGmult;
end
newlImg (tmpImageNum) .sampleDataPoints (tmpNewIndex) =
ibData.Wavenumbers (tmpOldIndex) ;
if (tmpOldIndex + tmpPointsSide) >= iData.NumDataPoints
boolNotEnd = 0;
else
tmpOldIndex = tmpOldIndex + 1;
end
end % while loop
newImg (tmpImageNum) .NumDataPoints = tmpNewIndex;
end %image is good
end %counting the number of images
end
% If smoothing was done, update the rhata
if smoothMethod>=1
for cntImg=1:iData.NumImages
if rData.CmbImg(cntImg).uselmage==
rData.CmbImg (cntImg) .data=newImg{cntImg) .data;
rData.NumDataPoints=newImg (cntImg) .NumDataPoints;
rData.Wavenumbers=newImg {cntImg) .sampleDataPoints;
end
end

end

6.8 Feature Selection Function

om Pinchuk

cdified

used during proces

function {rData) = A07_FeatureSelection(iData, rData, DNA)

107

within an image and subtract that value from each c¢f the
% data points in the respective image.
if bitget (DNA,1l) ==
disp ([’ - Mean Centering the data’]l);
for tmpImageNum=1:iData.NumImages
if rData.CmbImg (tmpImageNum).uselmage==
tempMean=mean (rData.CmbImg (tmpImageNum) .data);
for cntPixels=1l:rData.CmbImg (tmpIlmageNum) .numPixels
rData.CmbImg (tmpImageNum) .data (cntPixels,:) =...
rData.CmbImg (tmpImageNum) .data (cntPixels, :) - tempMean;

end

% Should we normali
if bitget (DNA,3) =
disp ([’ - Normalization of ¢
for tmpImageNum=1:iData.Numlmages
if rData.CmbImg(tmpImageNum) .uselmage==
1f bltget(DNA 2y ==
1 - normalization -

it area.
~ach and

o Bt oo

for cntPixels=1: rData CmbImg(tmpImageNum) numPixels
Norml=sum (abs (rData.CmbImg (tmpImageNum) .data (cntPixels, :)));
rData.CmbImg (tmpImageNum) .data (cntPixels, :)=...
rData.CmbImg (tmpImageNum) .data (cntPixels, :) ./ Norml;

lization

ever L value
for cntPixels=1:rData.CmbImg (tmpImageNum).numPixels
Norm2=sqgrt (sum{ (rData.CmbImg(tmpImageNum).data(cntPixels, :).%2)));
rData.CmbImg (tmpImageNum) .data (cntPixels, :)=...
rData.CmbImg (tmpImageNum) .data (cntPixels, :) ./ Norm2;
end %count pixels
% End 1if

end
end %Normalize?

% lise Deriva

if bitget (DNA,5)
disp ([’ - Derivation of data'l);
rrData.NumPixels=rData.NumPixels;
rrData.NumImages=rData.NumImages;
rrData.NumDataPoints=rData.NumDataPoints-2;
rrData.Wavenumbers (l:rrData.NumDataPoints)=rData.Wavenumbers (2: (rData.NumDataPoints-
1));
tmpResConstA = 1/ (2*iData.Resolution);
tmpResConstB = 1/ (iData.Resolution”™2);
for tmpImageNum=l:iData.NumlImages
rrData.CmbImg (tmpImageNum) .numPixels=rData.CmbImg (tmpImageNum) .numPixels;
rrData.CmbImg (tmpImageNum) .useImage=rData.CmbImg (tmpImageNum) .uselmage;
if rData.CmbImg (tmpImageNum) .uselmage==
if bitget (DNA,4) ==

2%

ives?

First Derivative - Firg!

moints

ara
for cntPixels—l rData. CmbImg(tmpImageNum) numPixels
for cntD Points=} a

ata{cntPi
um) . data(
eNum) .data (<

X”lo,

~aPoints+2yyr. ..

soount da

>J'-‘lllt~

108

rrData.CmbImg (tmpImageNum) .data{cntPixels,

l:rrData.NumDataPoints)=...

{rData.CmbImg (tmpImageNum) .data (cntPixels,
1:rrData.NumDataPoints)...

-rData.CmbImg (tmpImageNum) .data (cntPixels,
3: (rrData.NumDataPoints+2}))...

. *tmpResConstA;

end %count pixels
else

% Second Deriv

I derivative is calculated and the tctal data
npoints
% are adiusted accordingly.
for cntbPixels=1l:rData.CmbImg(tmpImageNum) .numPixels
for cntDataPoints=1:rrData.NumDataPoints
rrData.CmbImg {(tmpImageNum) .data (cntPixels, cntDataPoints)=...
(rData.CmbImg {tmpImageNum) .data (cntPixels, cntDataPoints)...
-2*rData.CmbImg (tmpImageNum) .data (cntPixels,
cntDataPoints+1l)...
-rData.CmbImg (tmpImageNum) .data (cntPixels,
(cntDataPoints+2))) ...
*tmpResConstB;
- dats .

pix
Second ¥

end %Count images
rData=rrData;
clear rrbata;
end % Do derivati

Integration -
if bitget (DNA, 6)
disp ([’ - Integration of data'l);
rrData.NumPixels=rData.NumPixels;
rrData.NumImages=rData.NumImages;
rrData.NumDataPoints=rData.NumbDataPoints-1;
rrData.Wavenumbers (1l:rrData.NumDataPoints)=rData.Wavenumbers (l: (rData.NumDataPoints-
1))+ {(iData.Resolution/2};
tmpResConst=iData.Resolution/6;
for tmpImageNum=1:iData.Numlmages
rrData.CmbImg (tmpImageNum) .numPixels=rData.CmbImg (tmpImageNum) .numPixels;
rrData.CmbImg (tmpImageNum) .useImage=rData.CmbImg (tmpImageNum) .uselmage;
if rData.CmbImg(tmpImageNum) .uselmage==
for cntPixels=l:rData.CmbImg (tmpImageNum) .numPixels
for cntDataPoints=1:rrData.NumDataPoints
rrData.CmbImg (tmpImageNum) .data (cntPixels, cntDataPoints)=...
(1.5*rData.CmbImg (tmpImageNum) .data(cntPixels, cntDataPoints)+...
1.5*rData.CmbImg (tmpImageNum) .data(cntPixels,
cntDataPoints+1l)) *tmpResConst;
{ t data

end
end % count
rData=rrData;
clear rrbata;

end

6.9 Image Combination Function

% Tom P

wk

OQi

Modifiaed 10/08/20¢

109

e

o

Input Arguments:

kS

% algorithm.

% rData: The running Data up until now.
%

% Output Arguments:

% rData: The data use g processing

%

the

iData: The initial specatral data as determined by the load data

PECLYE.

[}

function [rData] = A08 CombineImageData(iData, rData)

disp ([’ - Combining the data'l);
cntSpec=0;
rrData.NumPixels=rData.NumPixels;
rrData.NumImages=rData.NumImages;
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
for tmpImageNum=1:iData.NumImages

if rData.CmbImg (tmpImageNum) .useImage==

for cntPixels=1l:rData.CmbImg (tmpImageNum).numPixels

cntSpec=cntSpec+l;

rrData.TotImg.class (cntSpec)=ibData.Image (tmpImageNum) .class;

rrData.TotImg.data (cntSpec, :)=rData.CmbImg (tmpImageNum) .data (cntPixels, :);

rrData.TotImg.imgnum (cntSpec)=tmpImageNum;

pixe

end 3{ Image
end %number cf files

rrData.NumClasses=length (unique (rrData.TotImg.class));

rData=rrData;

Tom Pinchuk

ing Data up un
DNA strand reg

from G {use

6 o¢ ot o o

GO G GO GO ge

function [rData, pc] = A09_PCA(iData, rData,

if DNA > 1
disp([*’ - G plavang incipa
rrData.NumPixels=rData.NumPixels;
rrData.NumImages=rData.NumImages;
rrData.NumDataPoints=rData.NumDataPoints;
rrData.Wavenumbers=rData.Wavenumbers;
rrData.NumClasses=rData.NumClasses;
rrData.TotImg.class=rData.TotImg.class;
rrData.TotImg.imgnum=rData.TotImg.imgnum;

Copon

covMatrix = cov(rData.TotImg.data);

[pc,variances, explained] = pcacov(covMatrix);

for cntPC = 1:DNA
tempMult = pc(cntPC,:)';
for cntPixel = l:rData.NumPixels

now.

@senting the num

v

6.10Principal Component Analysis Function

o
D
a
jal
L)
I
+
b
&
L.
)
b4
ot

1% to use.

num2str (DNA)]);

110

rrData.TotImg.data(cntPixel,cntPC) = rData.TotImg.data (cntPixel,

tempMult;
end
end % counting data points

rData=rrData;
else

pc=0;
end

6.11Cluster Function

Tom Pinchuk

o

o

o

ge oo

is the GW cluster

% nee petween

%

]

% Assumptions:

% B version is for kMeans

96

2

3

% rData: €& running Data up until now.
o

%

% Output Argumen tc

% rData: »E the

function [rData]
txtDistMethod =
txtStartMethod =
cstNumIterations = 5;
5 (1
% Fun LTotimg.d
rrData. class rData TotImg.class;
rrData.NumClasses=rData.NumClasses;
rrData.NumPixels=rData.NumPixels;

st 1) ;

[clusterQut.category, clusterOut centr01d clusterOut .WCSP, clusterOut.distToClusters]

kmeans (rData.TotImg.data,
erata NumClasses, distance',txtDistMethod, 'sta
,cstNumIteratlons,'f ty
r{link, xciust?, rrl

txtStartMethod,...

action’

unay ;

’
= dpndYbJruﬂ_ o}

clear deta;

cntClass (1: erata Numclasses)—
% Rows & are nunoay
disp([’ “RI1 ! and Scor
newClass{l:rrData.NumClasses, l:rrData.NumClasses)
for cntPixels=l:rrData.NumPixels
cntClass (rrData.class (cntPixels))=cntClass (rrbata.class{cntPixels))+1;
newClass (rrData.class (cntPixels), clusterQut.category(cntPixels))=...
newClass (rrData.class (entPixels),clusterOut.category{cntPixels))+1;

end
tmpClass=newClass;
for cntCC=1l:rrData.NumClasses
Get the maximum £o >
[colMax, rowlIndexs]l=max{(tmpClass);
Get the maximum from the <ol 3
[absMax, collndex]=max {(colMax);
% Get the row index

rowlIndex=rowlIndexs (collndex);

index’

the

L&

H

111

% MAp the class
mapClass (rowIndex)=colIndex;
% Now that it is found, make sure that neither of those are used again,
% zero out the row and columns.
tmpClass (rowIndex, l:rrData.NumClasses)=~100;
tmpClass (l:rrData.NumClasses,colIndex)=-100;
end

%Determine if the classes are correct.
cntCorrect=0;
for cntPixels=l:rrData.NumPixels
if clusterOut.category(cntPixels)==mapClass (rrbata.class(cntPixels))
cntCorrect=cntCorrect+l;
end
end
rData.NumPixels=rrData.NumPixels;
rData.Score = cntCorrect/rrData.NumPixels;

6.12 Reproduction Function

Tom Pinchuk

W o¢ oo ov

o

< new
taking into account severail
the initial population. It will also ver

continuity and no duplicates.

£rom the exzisting pepulation
111l rand sig te make

e

EEgETE

o

Switch the bOdd value if their is only one

nd found.

function [DNA, bOdd, oData] = reproduce(cntlter, oData, b0Odd)
format long e

% This secticn contains con

cstInitPop = 50; % Initi o} e ion t 4 select
cstSelectExp = 2; % The expone “Pare
cstPctRandom = 7; % The random <fing
% parent for
cstPctMutate = 7; % The random
N)

child &af

% Rank ©
% with actual x ores.
[tmpScores, tmpRank]=sort (oData.totScore);
for cntRank=l:cntliter-1
tmplter = tmpRank(cntlter-cntRank);
oData.Rank (tmpIter)=cntRank;
end

% Create initial Population
if entIter <= cstInitPop
1sGoodDNA=0;
while isGoodDNA==0
isGoodDNA = 1;
isDNAlGood = 1;
isDNA2Good = 1;
DNA (1)=round(rand*134217728);
DNA (2)=round (rand*134217728) ;
if not (isempty(find{oData.DNA==DNA(1)}}))
DNA (1)=-1;
isDNAlGood=0;

end

if not (isempty(find(oData.DNA==DNA(2))))
DNA(2)=-1;
isDNA2Good=0;

end

if DNA(2) == DNA(l), isDNA2Good=0; end

if (isDNAlGood==0) && (isDNA2Good==1)
DNA (1) =DNA(2) ;

112

else

if b0dd==0, b0Odd=1; else b0Odd=0; end

elseif (isDNAlGood==1) && (isDNA2Good==0)

if b0dd==0, bOdd=1; else b0dd=0; end

elseif (isDNAlGood==0) && (isDNA2Good==0)

end
end

e oe o
o

oo

Here is the real GENETIC ALGCRITHX

erified. If a child has been founc
maximum population to reproduce is the
population.

isGoodDNA=0;

3 been

The

s the initial

isGoodDNA=0;
while isGoodDNA==0
isGoodDNA = 1;

isDNAlGood = 1;
isDNA2Good = 1;
% 1: Deternine the top perf 2rs 1

%

&
i

<

PICK(l 2)=0;
2 Pi

2 of them as parents.
the cerﬁentage clasif
selection i
¢ower prchab

higher of s
VO”N“((QAVL)’(

e tep p
ied and th
pased ﬂn &0 exponan

ility

ting higher
/N} x Max Population)

ck two parents from top population O to 50

while PICK(1)==PICK(2)

end

PICK(l:2)=round((rand(l:2)."(cstSelectExp)).* (cstInitPop-1));

rnkIndex (1) =tmpRank (length (oData.Rank) -PICK(1l));
rnkIndex (2)=tmpRank (length (oData.Rank) -PICK({2));
PARENT (1) = oData.DNA (rnkIndex(1));

txtParentPct (1) = tmpScores((length(oData Rank)—PICK(l))),
ZtxtFarentPzl{l) = tmpScores((le)
Create a random parent if the random

.
& O

% percentage.
if (rand*100) <= cstPctRandom

else

PARENT (2) = round(rand*134217728);
txtParentPct (2) = -1;

PARENT(2) = oData.DNA (rnkIndex(2));
txtParentPct (2) = tmpScores((length(oData.Rank)-PICK(2)));
gtxtParent?Pxl(2) = tmpScores ({length (ol a.Rank)}-PICK(Z})Y, 2}

hera the

tmpShlftBlt = (round(rand*ZS) + 2);
tmpFirstCut=bitshift (PARENT, -tmpShiftBit);

tmpSecondCut=PARENT - bitshift (tmpFirstCut, tmpShiftBit);

DNA(1) = bitshift (tmpFirstCut(l),tmpShiftBit) + tmpSecondCut(2);
DNA(2) = bitshift(tmpFirstCut(2),tmpShiftBit) + tmpSecondCut (1};

tmpMutateBlt = 0;
if (rand*100) <= cstPctMutate
tmpMutateBit = round(rand*26) + 1;
tmpMutateChild = round(rand) + 1;
if bitget (DNA (tmpMutateChild), tmpMutateBit)==
DNA (tmpMutateChild)=bitset (DNA (tmpMutateChild}, tmpMutateBit, 0);
else

end *

DNA (tmpMutateChild)=bitset (DNA (tmpMutateChild), tmpMutateBit,1);

end

mutateablas

Verify the children

if not{isempty{find(oData.DNA==DNA(l})))

DNA (1}=-1;
1sDNAlGood=0;

113

end
if not(isempty(find(oData.DNA==DNA (2}}))

DNA (2)=-1;
1sDNA2Good=0;
end
if DNA(2) == DNA(l), isDNA2Good=0; end

if (isDNAlGood==0) && (isDNA2Good==1)
DNA (1)=DNA (2);
if b0Odd==0, bOdd=1; else b0dd=0; end
elseif (isDNAlGood==1) && (isDNA2Good==0)
if b0Odd==0, b0Odd=1l; else b0Odd=0; end
elseif (isDNAlGood==0) && (isDNA2Good==0)
isGoodDNA=0;
end

S

end % While Loop

% Display what is going on:

disp ([’ Cutting parents to the right of hit: ' num2str(tmpShiftBit)]1);
if tmpMutateBit > 0
disp([* Mutating Bit: ' numZ2str(tmpMutateBit) *' in chiid number’
num2str (tmpMutateChild)]);
end
disp([* Parent 1: ' num2str(PARENT (1)) ' Score:
num2str (txtParentPct (1) *100) '% '1);
if txtParentPct (2) == -1
disp([* Parent 2: ' num2str (PARENT(2)) ' - RANDCMLY GENERATED']):;
else
disp ([’ Parent 2: ' num2str (PARENT(2)) ' Score:
numZstr (txtParentPct (2) *100) '% '1);
end

disp (char(160}) ;
firstHalf (1, :)=27:-1:tmpShiftBit;
firstHalf (2, :)=bitget (PARENT (1), 27:-1:tmpShiftBit);
firstHalf (3, :)=bitget (PARENT (2),27:~1:tmpShiftBit);
if DNA(1l)==-1
firstHalf(4,:)=27:-1:tmpShiftBit;
secondHalf (4, :}=(tmpShiftBit-1):-1:1;
else
firstHalf (4, :)=bitget (DNA(1),27:-1:tmpShiftBit);
secondHalf (4, :)=bitget (DNA(1l), (tmpShiftBit-1):-1:1);
end
if DNA(2)==-1
firstHalf (5, :)=27:-1:tmpShiftBit;
secondHalf (5, :)=(tmpShiftBit-1):-1:1;
else
firstHalf (5, :)=bitget (DNA(2),27:-1:tmpShiftBit);
secondHalf (5, :)=bitget (DNA(2), (tmpShiftBit-1):-1:1);
end
secondHalf (1, :)=(tmpShiftBit-1):-1:1;
secondHalf (2, :)=bitget (PARENT (1), (tmpShiftBit-1):-1:1);
secondHalf (3, :)=bitget (PARENT(2), (tmpShiftBit-1):-1:1);
middlePart=["<=>"; ' <=>"; " <ab ;Y <ad s P e],
prePart=["’ Bit:';! Parent 1:';’ Parent IZ:';" Chilc
disp({prePart(l,:) num2str(firstHalf(l,:)) ' ' middlePart(l,:) ' *
num2str (secondHalf(1,:))]);

disp ([prePart(2,:) num2str (firstHalf(2,:)) ' ' middlePart(2,:) ' '
num2str (secondHalf(2,:))]);

disp([prePart(3,:) num2str(firstHalf(3,:)) ' ' middlePart(3,:) ' '
num2str (secondHalf (3,:))1);

disp([prePart(4,:) num2str(firstHalf(4,:)) ' ' middlePart(4,:) ' *
num2str (secondHalf (4,:))1);

disp([prePart (5, :) num2str(firstHalf(5,:)) ' ' middlePart(5,:} ' '
num2str (secondHalf (5,:))1});

end

114

