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ABSTRACT 

Although metabolic differences between tumors and normal tissues were first observed over a 

century ago, the field of oncometabolism remained dormant in the subsequent years. It has only 

been until recently that dysregulation of cellular energetics was recognized as a hallmark of cancer. 

The advent of high throughput metabolomics technologies, computational systems biology and 

biochemical tools have aided in elucidating the various metabolic pathways exploited by cancer 

cells. Neoplastic cells strategically alter their metabolism to meet their bioenergetic and 

biosynthetic demands, which is particularly challenging in unfavorable microenvironments. 

However, emerging data indicate that cancer cells develop metabolic plasticity that allows them 

to rapidly remodel their metabolomes to survive and thrive in harsh tumor environments with 

limited nutrients and/or oxygen. The master regulators of cell growth and metabolism, 

AKT/mTOR (mechanistic/mammalian target of rapamycin) signaling axis plays a major role in 

governing metabolic processes essential to cancer cell survival and proliferation. This thesis 

highlights the crosstalk between the AKT/mTOR signaling and cancer metabolism. Specifically, 

my work elucidates plausible adaptive mechanisms that cancer cells turn on to survive energetic 

stress due to glutamine deprivation or inhibition of mitochondrial complexes I or IV. Specifically, 

the work in the thesis describes the changes in the glycolysis and citric acid cycle (CAC) resulting 

from the abrogation of the mitochondrial complex IV assembly protein, SCO2. These alterations 

in the metabolome were accompanied by rewiring of the AKT/mTOR signaling. The thesis also 

focuses on comparing energy production and utilization in colorectal cancer (CRC) cells and 

describes metabolic adaptations of CRC cells. To this end, we catalogued different energetic 

stressors and associated metabolic response networks that underpin adaptations of CRC cells to 



energy stress thus revealing potential targetable metabolic vulnerabilities. Altogether, this work 

provides previously unrecognized insights into metabolic adaptation and plasticity of cancer cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABRÉGÉ 

Bien que des différences métaboliques entre les tumeurs et les tissus normaux aient été observées 

pour la première fois il y a plus d'un siècle, le domaine de l'oncométabolisme est resté relativement 

méconnu jusqu’à récemment. L'avènement des technologies de métabolomique à haut debit et de 

la biologie intégrative a contribué à élucider les différentes voies métaboliques exploitées par les 

cellules cancéreuses pour répondre à leurs demandes bioénergétiques et biosynthétiques. Répondre 

à de telles demandes est particulièrement difficile pour les cellules tumorales dans des 

microenvironnements défavorables. Cependant, de nouvelles données indiquent que les cellules 

cancéreuses développent une plasticité métabolique qui leur permet de remodeler rapidement leurs 

métabolomes pour survivre et proliférer dans des environnements tumoraux difficiles avec des 

nutriments et/ou de l'oxygène limités. Le régulateur principal de la croissance et du métabolisme 

cellulaire, AKT/mTOR (Mechanistic/Mammalian Target of Rapamycin), joue un rôle majeur dans 

la régulation des processus métaboliques essentiels à la survie et à la prolifération des cellules 

cancéreuses. Cette thèse met en évidence les interactions entre la signalisation AKT/mTOR et le 

métabolisme du cancer. En particulier, mon travail élucide les mécanismes adaptatifs que les 

cellules cancéreuses activent pour survivre au stress énergétique dû à la privation de glutamine ou 

à l'inhibition des complexes mitochondriaux I ou IV. Les travaux de cette thèse décrivent les 

changements dans le cycle de la glycolyse et de l'acide citrique (CAC) résultant de l'abrogation de 

la protéine du complexe mitochondrial IV, SCO2. Ces altérations du métabolome sont 

accompagnées d'une adaptation de la voie de signalisation AKT/mTOR. Cette thèse se concentre 

également sur la comparaison de la production et de l'utilisation d'énergie dans les cellules du 

cancer colorectal (CCR) et décrit les adaptations métaboliques des cellules du CCR. À cette fin, 

nous avons répertorié différents facteurs de stress énergétique et les réseaux de réponse 



métabolique associés qui sous-tendent les adaptations des cellules CCR, révélant ainsi des 

vulnérabilités métaboliques potentielles ciblables. Dans l'ensemble, ces travaux fournissent des 

nouvelles connaissances sur l'adaptation métabolique et la plasticité des cellules cancéreuses. 
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CHAPTER 1: INTRODUCTION 

1.1 Cancer burden and biology 

Cancer imposes a significant burden on the Canadian healthcare system yearly as the population 

size grows and ages. Approximately 50 percent of Canadians are expected to be diagnosed with 

cancer in their lifetime (Canadian Cancer Statistics Advisory Committee, 2019) (Fig.1.1). In 

Canada, it was estimated that the number of new cancer cases will increase from 220,400 (1) to 

225,800 cases (Canadian Cancer Statistics Advisory Committee, 2019) (Fig.1.1). This correlates 

with upsurge in cancer-related deaths (1) (Canadian Cancer Statistics Advisory Committee, 2019) 

(Fig.1.1).   

Fig. 1.1. Cancer-related statistics in Canada, 2019. (Canadian Cancer Statistics Advisory 

Committee, 2019).  

Lung cancer was projected to be the leading cause of cancer-related deaths followed by colorectal, 

pancreatic and breast cancers (Canadian Cancer Statistics Advisory Committee, 2019). The steady 

rise in amount of cancer-associated mortality over the years is predominantly a reflection of poorly 



understood biological underpinnings of the disease. Studying cancer etiology is particularly 

important in preventing and treating cancer, and thus reducing the cancer-related deaths. Cancer 

risk factors can be broadly classified into intrinsic and non-intrinsic risk factors. Unmodifiable 

intrinsic risks are spontaneous mutations that occur due to random errors in DNA replication (2). 

On the other hand, non-intrinsic risk factors include exogenous factors (carcinogens, viruses, 

physical activity, diet, smoking, UV radiation) and endogenous factors (metabolism, hormone 

levels, immunity, DNA damage response, genetic susceptibility) (2). Several studies link non-

intrinsic factors to different types of cancers such as: smoking to lung cancer (3), Helicobacter 

pylori (H. pylori) to gastric cancer (Helicobacter & Cancer Collaborative (4), human 

papillomavirus (HPV) to cervical cancer (5) and head and neck cancer (6) , hepatitis B virus 

(HBV), hepatitis C virus (HCV) to hepatocellular cancer (HCC) (7, 8) and UV radiation to 

melanoma (9). Overall, whether such risk factors are intrinsic or non-intrinsic, they may result in 

irreparable changes in the genome. Such lesions are frequently found in genes that regulate cellular 

processes including cell growth, proliferation, and cellular energetics (10, 11). This eventually 

leads to neoplasia. 

There are over 200 different types of cancers (12). The diversity amongst the types of 

cancers makes them particularly challenging to diagnose and treat. Mutations in proto-oncogenes 

that generally regulate cell division, result in oncogenes that drive tumorigenesis (13). In addition, 

alterations in genes that act as tumor suppressors can trigger aberrant cell division (14). Molecular 

changes that are thought to underlie neoplasia are generally recognized as “hallmarks of cancer” 

that were originally published in 2000 (15). The hallmarks include: sustaining proliferative 

signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis, and activating invasion and metastasis (15). In 2011, “hallmarks of cancer” 



were revised to include cancer cell abilities to reprogram energy metabolism, evade immune 

destruction,  generate genome instability and tumor-promoting inflammation (10). Tumorigenesis 

is reliant on metabolic reprogramming which is often a direct and indirect consequence of 

oncogenic mutations. Inactivated tumor suppressor genes can also dysregulate cellular metabolism 

(16). Cancer cells rewire their metabolism to support the energetic demands of unchecked 

proliferation, fuel biosynthetic pathways and alleviate potentially deleterious effects of reactive 

oxygen species (ROS) (17). 

1.2 Cancer metabolism 

1.2.1 Warburg effect 

Almost a century ago, Otto Warburg observed that tumors uptake more glucose compared 

to surrounding healthy tissues (18). He also observed that the cancer cells even in the presence of 

physiological oxygen tension metabolize glucose into lactate (18). This is termed as the “Warburg 

effect” or “aerobic glycolysis”(19). Warburg went on further to propose that this phenomenon is 

specific to cancer cells and is caused by dysfunctional mitochondria (20). To this end, Warburg 

postulated that proliferating cells adapt to abrogation of mitochondrial functions by upregulating 

glycolysis to meet ATP demands (20).  

Subsequent studies have contradicted Warburg’s hypotheses as aerobic glycolysis has been 

observed in normal proliferating thymocytes and lymphocytes (21, 22). Additionally, it was later 

found that defective mitochondria are not the cause of aerobic glycolysis in most cancer cells 

which is supported by data illustrating that the tumorigenic potential of cancer cells is markedly 

reduced by depleting mitochondrial DNA (23-25). In fact, most cancer cells not only retain their 

ability to carry out oxidative phosphorylation through fully functional mitochondria, but also 

reprogram their mitochondrial metabolism to circumvent the metabolic challenges associated with 



their rapid proliferation (24, 26-29). Some cancer cells (e.g., HeLa, chronic lymphocytic leukemia 

(CLL) lymphocytes and melanoma) depend on oxidative phosphorylation (OXPHOS) and 

glycolysis to synthesize ATP (30-33). In particular, HeLa cells adapt their metabolism towards 

readily available substrates such as glucose and glutamine (which are catabolized in the 

mitochondria) (34). Exogenous lactate and acetate can also be oxidized by glioblastoma and breast 

cancer respectively to fuel neoplastic growth (35, 36). These and similar results illustrate the 

plasticity in cancer metabolism which is often needed to adapt to frequent changes in tumor 

microenvironment (TME). Other examples whereby cancer cells reprogram their cellular 

metabolism include increased glucose uptake (37), upregulated glycolysis (38), increased 

glutaminolysis (39), enhanced mitochondrial biogenesis (40) and perturbations in amino acid and 

lipid metabolism (41, 42).  

Although the reduction of glucose into lactate produces fewer ATP molecules per glucose 

molecule when compared to its complete breakdown to produce carbon dioxide and water, ATP is 

synthesized faster and at comparable amounts via glycolysis (43-45). Equally important, glycolysis 

regenerates NAD+ and provides proliferating cells with the necessary intermediates for 

synthesizing amino acids, lipids and nucleotides (46). Aerobic glycolysis is advantageous for 

cancer cells as it enhances NADPH production through the oxidative branch of the closely 

associated pentose phosphate pathway (PPP) to detoxify ROS while meeting the bioenergetic and 

biosynthetic requirements of proliferation (47) 

1.2.2 Glucose metabolism 

Glucose is an essential macronutrient for mammalian cells (48). It is either obtained 

directly through the hydrolysis of ingested polysaccharides and disaccharides (48) or 

biosynthesized in the liver through gluconeogenesis (49). Glucose serves as a major source for 



ATP which is used to drive cellular processes (48). In addition, glucose is a predominant carbon 

source used to biosynthesize building blocks such as amino acids, fatty acids and nucleotides (50).  

1.2.2.1 Glucose uptake 

Due to its hydrophilicity, glucose cannot move freely across the cell membrane (48). 

Glucose uptake into cells is facilitated by a family of membrane proteins called hexose or glucose 

transporters (GLUTs) (51) (Fig. 1.2.). Glucose is also transported by a family of sodium-dependent 

glucose co-transporters (SGLTs) which are structurally and functionally different from the GLUTs 

(52). SGLTs are encoded by solute carrier 5A (SLC5A) genes (52) while the GLUTs are expressed 

by a family of genes referred to as solute carrier 2A (SLC2A) (51).  

To date, 14 GLUTs were described and they are divided into 3 classes (51) (53).  The class 

I GLUTs include GLUT1-4, and represent the best characterized class of GLUTs (51). Their 

expression varies between different tissues and cell types (51). Furthermore, GLUTs 1-4 have 

different affinities for glucose (51). GLUT1 is primarily found in erythrocytes, brain and skeletal 

muscles (54). GLUT2 is expressed mostly in the liver, pancreas, intestines, and kidneys but absent 

in skeletal muscles (55, 56). GLUT3 and GLUT4 are both found predominantly in the neurons, 

whereby GLUT4 is also highly expressed in the heart and skeletal muscles and is sensitive to 

insulin (57-59). Importantly, certain cancers (e.g., breast and colorectal cancer) engage multiple 

glucose transporters such as GLUT2 and GLUT3 to support neoplastic growth (60).  

In normal cells, glucose uptake is a tightly regulated process that responds to changes in 

the cellular energy demands (61, 62). External regulation of glucose transport involves response 

to hormones (insulin and glucagon) and growth factors [epidermal growth factor (EGF) and 

insulin-like growth factors (IGF)] (63). To fuel high energy demanding cellular processes (e.g., 

mRNA translation) and biosynthesize the macromolecules necessary for proliferation, cancer cells 



often upregulate glucose uptake (64).Tumors are typically poorly vascularized which limits their 

access to nutrients and oxygen (65-67). Hence, neoplastic cells must adapt their metabolism (e.g., 

by enhancing the expression of glucose transporters) to survive conditions wherein nutrients and 

oxygen are limited (68). To this end, the expression of SLC2A1 is elevated in various types of 

cancers (69-71) including colorectal adenocarcinomas (69). In hepatocellular carcinoma, high 

levels of SLC2A2 were reported to correlate with poor overall survival (72). SLC2A3 and SLC2A4 

are also overexpressed in bladder cancer (73) and alveolar rhabdomyosarcoma (74) respectively. 

Similar to GLUTs, SGLTs (SGLT1 and SGLT2) were suggested to enhance glucose uptake in 

tumors (75). It was demonstrated that in metastatic lung cancer, SLC5A2 expression (SLC5A2 

encodes SGLT2) was higher in metastatic tumors relative to primary tumors (76) suggesting that 

glucose metabolism can be modulated to promote tumor progression. Overall, cancer cells appear 

to utilize different strategies to upregulate glucose uptake thus fueling neoplastic growth.  

1.2.2.2 Glycolysis 

Upon transport into the cell, glucose is partly catabolized in the cytosol and subsequently 

oxidized in the mitochondria (48). Glycolysis is catabolic process whereby glucose through a 

series of reactions is broken down into pyruvate in the cytosol (48) (Fig. 1.2). This process 

produces 2 moles of pyruvate, ATP and NADH per mole of glucose (48) (Fig. 1.2.). In the absence 

of oxygen, pyruvate gets reduced by lactate dehydrogenase (LDH) to produce NAD+ and lactate 

(48). As Warburg observed, neoplastic cells can convert pyruvate into lactate even in the presence 

of sufficient oxygen (18). In contrast, in most normal tissues, pyruvate is typically oxidized in 

mitochondria under normal oxygen tension (48).  

Hexokinases (HKs) catalyze the first committed step in glycolysis by phosphorylating 

glucose to produce glucose-6-phosphate (G6P) using an ATP molecule (48) (Fig. 1.2.). This traps 



the glucose molecules by preventing their efflux back to the extracellular space (48). In turn, G6P 

inhibits HKs as a part of a negative feed-back loop (77). There are four main isoforms of HK found 

in mammals which vary in their localization and kinetics with respect to different substrates [i.e., 

glucose and ATP; reviewed in (78)]. G6P is then converted into fructose-6-phosphate (F6P) by 

phosphoglucose isomerase (PGI) and subsequently phosphorylated to produce fructose-1,6-

biphosphate (F-1,6-BP) which is catalyzed by phosphofructokinase 1 (PFK1) (48) (Fig. 1.2.). The 

phosphorylation of fructose-6-phosphate is another rate-limiting step of glycolysis which 

consumes one ATP (48). Moreover, PFK1 is allosterically inhibited by ATP and activated by AMP 

(79).  This suggests that the activity of PFK1 is dependent on the bioenergetic state of the cell. 

F-1,6-BP is split by aldolase (ALDO) into two 3-carbon glycolytic intermediates that are 

isomers of each other: dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate 

(GAP) (48) (Fig. 1.2). Since only GAP is further metabolized in glycolytic pathway, all DHAP 

molecules are isomerized into GAP by triose phosphate isomerase (TPI) (48) (Fig. 1.2). This 

signifies the end of the energy investment phase of glycolysis where two molecules of ATP are 

consumed to catabolize a molecule of glucose into three-carbon phosphate intermediates. The 

payoff phase of glycolysis begins when glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

oxidizes and phosphorylates GAP to produce 1,3-biphosphoglycerate (1,3-BPG) by utilizing one 

NAD+ molecule per molecule of GAP in the process (48) (Fig. 1.2). 1,3-BPG is then converted to 

3-phosphoglycerate (3-PG) by phosphoglycerate kinase (PGK) (48) (Fig. 1.2). This reaction also 

yields one ATP molecule for each converted 1,3-BPG molecule (48) (Fig. 1.2). Afterwards, 

phosphoglycerate mutase (PGM) isomerizes 3-PG to 2-phosphoglycerate (2-PG) and subsequently 

enolase dehydrates 2-PG to produce phosphoenolpyruvate (PEP) (48) (Fig. 1.2). Pyruvate kinase 



(PK) catalyzes the last reaction of the payoff phase whereby PEP is irreversibly converted to 

pyruvate while simultaneously producing ATP (48) (Fig. 1.2).  

Glycolytic enzymes are essential for promoting the survival and proliferation of malignant 

cells (80). Elevated HK2 expression has been observed in many cancers (81) including brain 

metastasis of breast cancer which is significantly associated with poor patient survival post-

craniotomy (82). In addition, HK2 appears to be essential for tumorigenesis in in vivo models of 

KRAS-driven lung cancer and HER2+ breast cancer (83). PGI overexpression is involved in tumor 

metastasis and epithelial-mesenchymal transition (EMT) in breast cancer (84). Elevated levels of 

PFK mRNA have been observed in lung and colon carcinomas (85, 86). Notwithstanding that 

GAPDH is widely regarded as a housekeeping gene, its overexpression was observed in colorectal 

carcinoma (87) and pancreatic cancer  (88, 89). Accordingly, it has been suggested that GAPDH 

may exert antiapoptotic roles in drug-resistant  chronic myeloid leukemia (CML)  cancer (90). 

Likewise, some cancer types (e.g., lung, gastric and pancreatic cancers) upregulate PGK or ALDO 

expression which parallels with increased cell motility, angiogenesis and metastasis (91-93). 

Overall, these findings demonstrate that dysregulated glycolytic gene expression is likely to play 

a central role in cancer initiation and progression. 

In mammals, there are 2 genes (PKLR and PKM) which encode 4 tissue-specific isoforms 

(PKL, PKR, PKM1 and PKM2) of PK (94, 95). Intriguingly, although PKL is expressed in the 

liver, kidneys, pancreas and intestine while PKR is expressed in erythrocytes, they are both 

encoded by the PKLR gene (95). Alternative splicing of the PKM gives rise to two proteoforms: 

PKM1 (expressed in in the brain, skeletal and cardiac muscles) and PKM2 (expressed in in 

embryonic tissue, leucocytes, intestine, and thymus) (95, 96). Despite having the same catalytic 

function, PKM1 is constitutively active and more efficient at converting PEP into pyruvate relative 



to PKM2 (95). Serine can bind and activate PKM2, whereby PKM2 activity is diminished when 

serine is unavailable (97). This reduction in PKM2 activity turns cells to a fuel-efficient state 

whereby more pyruvate is redirected to the mitochondria (97). Prior to this discovery, PKM2 was 

observed to interact directly with phosphotyrosine peptides resulting in the release of its allosteric 

activator, F-1,6-BP (98). Abrogating the enzymatic activity of PKM2 diverts glycolytic 

intermediates from energy production to anabolic processes (e.g. lipid synthesis) when cancer cells 

are stimulated by growth factors such as IGF  (98). Consequently, growth factors which initiate 

the phosphorylation of tyrosine residues on signaling proteins inhibit PKM2 and this is thought to 

allow transformed cells to transition between bioenergetic and biosynthetic modes (98). Similar to 

serine and F-1,6-BP, succinylaminoimidazolecarboxamide ribose-5’-phosphate (SAICAR), which 

is a metabolic intermediate of de novo purine nucleotide biosynthesis pathway was also shown to 

allosterically activate PKM2 and promote cancer cell survival in glucose-deprived conditions (99). 

Accordingly, high PKM2 levels have been associated with many cancers including lung, cervical, 

prostate and brain malignancies (100-102). When malignant cells were engineered to express 

PKM1 instead of PKM2, the cells switched from aerobic glycolysis to OXPHOS which correlated 

with reduced tumor formation following xenotransplantation (102). As such, the regulation of 

PKM2 can be commandeered by neoplasia to increase metabolic flexibility. However, there are 

conflicting reports demonstrating that the abrogation or inhibition of PKM2 promotes tumor 

growth (103-105). Interestingly, in one of these reports, low PKM2 activity which was observed 

in lung cancer cells subjected to hypoxia led to the activation of PPP to generate sufficient NADPH 

for ROS detoxification and thus survival of cancer cells (105).  Collectively, these studies indicate 

that the role of PKM2 in tumorigenesis is likely to be context-dependent.  

 



 

Fig. 1.2. Glucose uptake and glycolysis (106). Glucose is taken into the cell via specific glucose 

transporters (GLUTs). It is subsequently metabolized through a series of ten enzymatic reactions 

(orange) to produce pyruvate. Glycolysis is divided into an energy investment phase (A; pink box) 

which consumes ATP (green) and a payoff phase (B: blue box) which produces NADH, ATP and 

H2O. 

1.2.3 Pyruvate metabolism: Crossroads between glycolysis and citric acid cycle 

1.2.3.1 Cytosolic reduction of pyruvate  

Under anaerobic conditions, LDH catalyzes the reversible conversion of pyruvate to lactate 

with the concomitant oxidation of NADH in the cytosol of normal cells (48). Following its 

production, lactate is excreted into the extracellular space via monocarboxylate transporters 

(MCTs) (107). As mentioned above, it was observed that tumor cells metabolize glucose into 

lactate even in the presence of ample oxygen (20). Furthermore, the NAD+ pool generated by LDH 

is used to support successive rounds of glycolysis and increase the levels of anabolic intermediates 



used by cancer cells (100, 108). Despite their high overall structural similarity, LDH exists as two 

distinct isoforms that exhibit significant differences in the charged residues surrounding the active 

sites. LDHA favors the conversion of pyruvate to lactate, while LDHB preferentially oxidizes 

lactate to pyruvate (109-111). Numerous studies demonstrate aberrant activation and abnormally 

high expression of LDHA in multiple cancers including colorectal cancer (CRC), liver cancer, 

non-small-cell lung cancer, pancreatic cancer and esophageal cancer (112-118). In addition to 

altering the metabolism to confer neoplastic growth advantage, the expression of LDHA promotes 

angiogenesis, cell invasion and metastasis (115, 119). While the upregulation of LDHB was shown 

to be essential to the proliferation of KRAS-driven lung cancer and triple negative breast cancer 

(120, 121), its low expression in hepatocellular carcinoma relative to noncancerous tissues 

correlated with unfavorable survival (122). This suggests that the role of LDHB in tumorigenesis 

seems to be context-dependent. Contrary to Warburg’s findings, a recent hypothesis (i.e., “Reverse 

Warburg Effect”) that supports oxidative mitochondrial metabolism in neoplasia proposes that 

stromal or transformed cells undergo aerobic glycolysis to produce lactate (123). Lactate is then 

released in the TME via MCT4 and is subsequently taken up through MCT1 transporter of 

surrounding cells as an energy source (123, 124). According to this model, LDHB catalyzes the 

oxidation of lactate to pyruvate which then enters the citric acid cycle (CAC). Metabolic 

cooperation of cancer cells within the TME is further substantiated in pancreatic and breast cancer 

models which revealed that lactate secreted by glycolytic hypoxic malignant cells can be taken up 

as fuel for aerobic tumor cells (36, 125). Moreover, secretion of lactate and subsequent 

acidification of TME is thought to induce angiogenesis while impairing tumor immunosurveillance  

(126). Of note, under physiological conditions, lactate released by brain, skeletal and muscle cells 

can be reconverted into glucose in the liver via the Cori cycle (127). Tumor cells extrude copious 



amounts of lactate into the TME to maintain a high glycolytic flux which is thought to increase 

Cori cycle activity in the liver (128, 129). Overall, pyruvate-lactate metabolism impacts cancer 

fate in a cell-autonomous and systemic level.  

1.2.3.2 Mitochondrial oxidative decarboxylation of pyruvate into acetyl-CoA 

Under normoxia, pyruvate is chiefly imported into the mitochondrial matrix via the 

mitochondrial pyruvate carrier complex 1/2 (MPC1 and MPC2) to be irreversibly oxidatively 

decarboxylated to acetyl-CoA by pyruvate dehydrogenase (PDH) complex (PDC) which is 

accompanied by NAD+ reduction (48, 130, 131). Essentially, this reaction links glycolysis, fatty 

acid metabolism and CAC (132). PDC is assembled from an e3 binding protein (e3BP) and 

multiple copies of three enzymes: E1 (pyruvate dehydrogenase), E2 (dihydrolipoyl transacetylase), 

and E3 (dihydrolipoyl dehydrogenase) (126, 133). E1 is the rate-limiting enzyme of the complex 

(126). At high concentrations, the products from the reaction (i.e., acetyl-CoA and NADH) inhibit 

the activity of PDC (134). Instantaneous post-translational regulation is achieved via kinases and 

phosphatases (134). Tissue-specific pyruvate dehydrogenase kinase isozymes (PDK1-4) which 

differ in their enzymatic activities, inactivate PDC by phosphorylating specific serine residues 

located on the α subunit of the E1 enzyme in the complex  (135, 136). In turn, pyruvate 

dehydrogenase phosphatases 1/2 (PDP1/2) restore PDC enzyme activity via dephosphorylating 

key regulatory residues (126, 134). Thus, PDKs and PDPs help in maintaining the mitochondrial 

acetyl-CoA pool to support CAC activity. Acetyl-CoA is a precursor used by histone 

acetyltransferases (HATs) to catalyze the addition of acetyl groups to the histone N-terminal tails 

(137). Based on this, HATs link epigenetic regulation to the metabolic status of the cells as they 

are dependent on glucose availability, lipid metabolism and mitochondrial function (138-140). 



This makes acetyl-CoA a versatile and critical metabolic intermediate to fuel anabolic reactions 

and epigenetic remodeling processes. 

Reduced expression levels of MPC1 or MPC2 in cancer have been shown to correlate with 

poor patient survival (141, 142). Increased expression of MPCs in CRC cells was found to not 

only increase mitochondrial pyruvate oxidation while suppressing aerobic glycolysis, but also to 

impair anchorage-independent growth (141). In addition, aberrant regulations of PDKs and PDPs 

which control the activity of PDC have been associated with different cancers (143-145). For 

instance, the enhanced PDK1 activity has been linked to increased invasiveness and tumor growth 

in head and neck squamous cancer cells (146) whereas the upregulation of PDK4 was reported to 

correlate with increased migration and invasion in CRC (147). Moreover, the activation of PDP1 

was observed to increase OXPHOS, decrease cell proliferation and reduce tumor growth in a lung 

cancer cell line xenograft model (143). Collectively, these studies suggest that the PD(K/P):PDC 

axis acts as metabolic switch in cancer cells which increases metabolic flexibility by allowing 

adaptation to fluctuations in nutrient and oxygen availability as well as bioenergetic requirements.  

1.2.4 Citric acid cycle (CAC) 

Acetyl-CoA produced by PDC can enter the citric acid cycle (CAC; also referred to as 

Krebs cycle or tricarboxylic acid cycle), where the carbon atoms are converted to CO2 while 

simultaneously producing reducing equivalents (i.e. NADH and FADH2) (131) (Fig. 1.3). CAC 

starts with the irreversible condensation of acetyl-CoA, derived from oxidative decarboxylation of 

pyruvate, β-oxidation of fatty acids or catabolism of amino acids (e.g., leucine, isoleucine and 

tryptophan), with oxaloacetate to produce the six-carbon citrate which is catalyzed by citrate 

synthase (CS) in the mitochondrial matrix (148). Through feedback inhibition, citrate suppresses 

the activity of CS (149). NADH, ATP and succinyl-CoA are also inhibitors of CS (148, 150). 



Importantly, citrate downregulates glycolysis by allosterically inactivating glycolytic enzymes 

PFK1 and PFK2 (148, 151). Furthermore, high levels of citrate suppress PDC and succinate 

dehydrogenase (SDH), thus repressing the CAC (152, 153). The role of CS in neoplasia remains 

poorly understood considering that the abrogation of its activity appears to result in contrasting 

phenotypes. While reduced CS expression led to marked increases in glycolysis and migration of 

cervical cancer cells, silencing CS expression inhibited invasion and migration of ovarian 

carcinoma cells (154, 155). In healthy prostate epithelial cells, citrate exits the CAC via the 

dicarboxylate antiporter solute carrier family 25  (SLC25A1) to be eventually secreted into the 

prostatic fluid to facilitate the maturation and motility of spermatozoa (156). A defining metabolic 

phenotype of normal prostate epithelial cells, which is elevated citrate production and secretion, is 

reversed during tumorigenesis (156). Thus, low concentrations of citrate serve as a useful 

biomarker of prostate cancer, wherein the citrate levels inversely correlate with the stage of 

prostate cancer (PCa) (157).  

 In most of the non-transformed cells, citrate is either transported to the cytosol through 

SLC25A1, to serve as a precursor molecule for fatty acid and cholesterol biosynthesis, or it is 

retained in the mitochondrial matrix where it is reversibly isomerized to isocitrate by aconitase 

(ACO) (148) (Fig. 1.3). ACO dehydrates citrate into cis-aconitate, an intermediate product, which 

is then rehydrated into isocitrate (158) (Fig. 1.3). Zinc acts as a competitive inhibitor of 

mitochondrial aconitase (ACO2), which prevents citrate oxidation in the CAC (159). This is 

particularly important for the physiological functions of prostate epithelial cells (159). Similar to 

citrate, intracellular zinc acts as a biomarker for PCa, whereby its levels are inversely correlated 

to the progression of the disease (159, 160). Indeed, previous studies have suggested decreased 

levels of zinc as a biomarker for the early diagnosis of PCa (161, 162). Consistent with this, the 



downregulation of an important zinc transporter, ZIP1, is associated with reduced zinc levels in 

prostate cancer (160, 163). Thus, the metabolic reprogramming that underlies the transformation 

of prostate cells comprises a switch from physiological citrate-producing epithelial cells to 

neoplastic citrate-oxidizing cells. Collectively, these findings suggest that the intracellular zinc 

levels not only dictate the metabolic state of prostate cells but could be associated with the 

development of PCa.  

In normal conditions, isocitrate is oxidatively decarboxylated into the five-carbon α-

ketoglutarate (α-KG) in a rate-limiting reaction catalyzed by NAD+-dependent isocitrate 

dehydrogenase (IDH) which concurrently produces the first NADH molecule of the CAC (148, 

164) (Fig. 1.3).  IDH is expressed in three isoforms: IDH1, IDH2, and IDH3 (151, 165).  IDH1 is 

localized in the cytosol while IDH2 and IDH3 are found in the mitochondria  (151, 165). Unlike 

mitochondrial IDH3 which depends on NAD(H), IDH1 and IDH2 prefer the use of NADP(H) as 

a cofactor (166). IDH1 and IDH2 have a high degree of sequence, structural and functional 

similarity between them (167, 168). Both isomers function as homodimers catalyzing the oxidative 

decarboxylation of isocitrate into α-KG while simultaneously producing NADPH necessary for 

protecting the cell against oxidative damage and fatty acid synthesis (169-172). Conversely, the 

reductive carboxylation of α-KG to isocitrate which is subsequently converted to citrate is 

important for regulating glycolysis and lipogenesis (173). The conversion of isocitrate to α-KG 

catalyzed by IDH3 is irreversible in contrast to the reversible processes of IDH1- and IDH2-

catalyzed reactions (174, 175). IDH3 is regulated through the concerted activities of ions and 

molecules as citrate, ADP and calcium ions are allosteric activators while ATP, α-KG, NADPH 

and NADH suppress IDH3 activity (176-178). Importantly, in tumors where biosynthetic 

processes are upregulated and often accompanied with reduced mitochondrial respiration either 



due to hypoxia or defective ETC complexes, the elevated intramitochondrial NADH/NAD+ ratio 

impedes isocitrate oxidative decarboxylation in the CAC (179, 180). The high NADH/NAD+ ratio 

is often associated with the mitochondrial export of citrate depots for synthesizing fatty acids, 

phosphoglycerides and cholesterol (179, 180). IDH1 is also a major producer of NADPH which is 

required for lipid synthesis and ROS detoxification (173, 181-184). Overall, this suggests that the 

activities and the direction of reactions catalyzed via IDH isoenzymes are governed by the 

NAD(P)H/NAD(P)+ ratios which in turn affects fatty acid and energy metabolism in both normal 

and malignant cells. This metabolic flexibility allows cancer cells to sustain essential anabolic 

processes and NADH generation for OXPHOS.  

It is worth mentioning that although the tumorigenic effects of IDH1 and IDH2 mutants 

have been well characterized (discussed in detail below), the role of IDH3 in neoplasia has not 

been well studied. Elevated levels of IDH3α, the catalytic subunit of IDH3, have been observed in 

GBM tumor samples as compared to normal brain tissue whereby it was found that elevated IDH3α 

promotes tumor progression in glioma mouse models (185). Accordingly, overexpression of 

IDH3α reduced α-KG levels thus preventing hypoxia inducible factor (HIF) 1α degradation and 

enhancing tumor growth in cervical cancer models (186). However, other studies provided 

contradictory data regarding the association between IDH3α expression and intracellular α-KG 

concentrations (187), thus suggesting that the mechanism by which IDH3 drives oncogenesis may 

be context-dependent.  

α-KG, also known as 2-oxoglutarate, is subjected to irreversible oxidative decarboxylation  

by 2-oxoglutarate dehydrogenase (OGDH) enzymatic complex in the mitochondrial matrix to 

generate the four-carbon succinyl-CoA and the second NADH molecule of the CAC [(148) Fig. 

1.3]. The OGDH complex is not only functionally analogous to the PDC, but also structurally 



similar as the OGDH complex also consists of multiple copies of a thiamine pyrophosphate-

dependent dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and dihydrolipoamide 

dehydrogenase (E3) (188). The OGDH complex requires thiamine pyrophosphate as a cofactor 

and is activated by calcium ions and suppressed by NADH and succinyl-CoA; two of the end 

products of the reaction it catalyzes (188-190). α-KG is an important cofactor for 2-

oxoglutarate/iron (II)-dependent dioxygenases (OGDDs) including Jumonji catalytic (JmjC) 

domain containing N-methyl-lysine and N-methyl-arginine histone demethylases, which are 

known to epigenetically control gene expression (191). Aberrant regulation of these enzymes is 

implicated in many different types of cancers including breast and prostate cancer (191, 192). 

Hence, it is crucial for normal cells to maintain optimal intracellular concentrations of α-KG to 

preserve their epigenetic landscape. On the contrary, breast cancer cells appear to deplete their α-

KG pool by upregulating OGDH levels and reduce α-KG into succinyl-CoA (193). This is 

congruent with reports demonstrating that the inhibition of OGDH results in the accumulation of 

α-KG which in turn increases levels of the α-KG-dependent chromatin modification 5-

hydroxymethylcytosine (5hmC) (194, 195).  This is mirrored by attenuated malignant progression 

and metastasis in p53−/− pancreatic ductal adenocarcinoma and breast cancer (194, 195). Overall, 

this illustrates that alterations in α-KG levels result in epigenetic perturbations that play a major 

role in determining the fate of malignant cells. 

Next, succinyl-CoA is hydrolyzed into succinate via succinyl-CoA synthetase (SCS) by 

substrate-level phosphorylation producing GTP in the process which is converted into ATP by 

mitochondrial nucleoside diphosphate kinase (NDPK) (148, 196, 197) Fig. 1.3.  Succinyl-CoA 

also serves as a precursor in important biosynthetic pathways. For example, the 5-aminolevulinic 

acid, which is a condensation product of succinyl-CoA with glycine, is exported to the cytosol 



which marks the first step of heme biosynthesis in the liver and erythroid cells (198). In addition 

to succinyl-CoA, succinate can be produced via the γ-aminobutyric acid (GABA) shunt, whereby 

GABA which is synthesized from glutamate by glutamate decarboxylase (GAD), is subsequently 

transaminated into succinic semialdehyde (SSA) through GABA transaminase (ABAT) that finally 

gets oxidized into succinate via SSA-dehydrogenase (SSADH) (199, 200). Although, there are 

limited studies on the GABA shunt in tissues other than neurons, recent findings showed that 

decreased expression of GAD impeded branched chain amino acid (BCAA) uptake in non-small-

cell lung cancer (NSCLC) (201, 202). Furthermore, low expression of GAD reduced the 

proliferation of both NSCLC and castration-resistant prostate cancer cells (201, 202). These 

observations further highlight metabolic pathways that appear to be hijacked by transformed cells 

to drive tumorigenesis. 

SDH, a component of complex II of the electron transport chain (ETC) located on the inner 

mitochondrial membrane, oxidizes succinate into fumarate [(148) Fig. 1.3]. Unlike the other CAC 

dehydrogenases that reduce NAD+, SDH produces FADH2  (148) Fig. 1.3. The SDH complex 

consists of 6 subunits (SDHA, SDHB, SDHC, SDHD, SDHAF1 and SDHAF2) (203, 204). 

Increased levels of oxaloacetate inhibit SDH complex thereby downregulating the CAC (202). 

Fumarase, also referred to as fumarate hydratase (FH), catalyzes reversible hydration of fumarate 

into malate, while consuming water in the process [(148, 205) Fig. 1.3]. Loss-of-function 

mutations in the SDH complex and FH in the accumulation of succinate and fumarate, respectively 

(206). The accumulation of either succinate or fumarate has been associated with different cancers 

such as renal cell carcinoma, thus suggesting that SDH and FH exhibit tumor-suppressive 

properties (206).  



Malate dehydrogenase (MDH) catalyzes the final enzymatic reaction which completes one 

turn of the CAC (148, 207). In this reaction, oxaloacetate is regenerated from malate with the 

concomitant reduction of NAD+ to NADH (148, 207) Fig. 1.3. The resulting oxaloacetate can then 

be used for the next round of CAC (148, 207). MDH exists as two isoforms (MDH1 and MDH2) 

that differ in their subcellular localization and preference for cofactors (208, 209). MDH1 is found 

in the cytosol while MDH2 is localized in the mitochondrial matrix (208, 209). Both MDH 

isoforms are part of the malate-aspartate shuttle (MAS) in which MDH1 reduces cytosolic 

oxaloacetate into malate with the concurrent oxidation of NADH into NAD+ while MDH2 

predominantly catalyzes the reverse reaction, thus converting the mitochondrial malate pool into 

oxaloacetate and NADH (209). Hence, the mitochondrial malate reserves are composed of 

cytosolic-derived malate (imported to the mitochondria via the SLC25A11 transporter) and 

mitochondrial-based malate (produced by FH) (209). As such, MDH1 supports aerobic glycolysis 

by maintaining a high cytosolic NAD+/NADH ratio while indirectly reducing mitochondrial 

NAD+/NADH ratio. The MDH2 isoform is allosterically activated by elevated malate levels and 

inhibited by high concentrations of oxaloacetate (210). Elevated levels of MDH2 expression in 

prostate cancer have been associated with markedly shorter period of relapse-free survival post-

chemotherapy (Liu et al., 2013). This suggests that aberrant MDH2 activity may be implicated in 

the metabolic reprogramming required for cancer cell progression (211). 

Considering that the CAC enzymes evolved before the presence of oxygen on earth, it was 

proposed that the fundamental role of the CAC is the biosynthesis of metabolites (e.g. hemes, 

amino acids, nucleic acids, fatty acids) (148). However, CAC has evolved to also play a 

bioenergetic role by producing ATP, NADH and FADH2 (148) Fig. 1.3. The NADH and FADH2 

subsequently feed the ETC via complex I and II respectively to ultimately generate ATP via 



OXPHOS (148). Hence, under physiological conditions the CAC is coupled to OXPHOS due to 

the oxidation of NADH and FADH2 (148). 

 

Fig. 1.3. Schematic diagram of the citric acid cycle (CAC). 2-carbon containing acetyl-

CoA (shown in a red box) enters the CAC by condensing with 4-carbon oxaloacetate to produce 

6-carbon citrate. Citrate is oxidatively decarboxylated through a series of enzymes to release CO2 

in the process while simultaneously producing 1 ATP molecule and reducing equivalents NADH 

(3) and FADH2 (1). 6-carbon containing CAC intermediates are denoted in orange boxes while 5-

carbon and 4-carbon containing CAC intermediates are represented with green and indigo boxes. 

The enzymes catalyzing CAC reactions are in cyan (adapted figure: George-stock.adobe.com).  



1.2.4.1 Aberrant activity of CAC enzymes produces “oncometabolites” 

1.2.4.1.1 2-Hydroxyglutarate (2-HG) 

The intracellular levels of α-KG directly affect the activities of OGDDs including ten-

eleven translocation (TET) family of DNA methylases, JmjC family of histone demethylases, 

prolyl hydroxylases (PHDs), AlkB homolog (ALKBH) DNA repair enzymes and fat mass and 

obesity-associated protein (FTO) which demethylates mRNA (212-215). OGDDs couple the 

oxidation of substrate to the oxidative decarboxylation of α-KG to produce succinate and CO2 

(214). Heterozygous somatic mutations observed in IDH1 and IDH2 have been known to indirectly 

modulate the activities of OGDDs (212, 216, 217). It was shown that missense mutations in 

IDH1/2 genes (mostly affecting active site amino acid residues: R132 in IDH1, R140 and R172 in 

IDH2) result in the loss of normal enzymatic activity while attaining the ability to reduce α-KG 

into the D-enantiomer of 2-hydroxyglutarate (D-2-HG also known as R-2-HG) (212, 218-220). D-

2-HG and L-2-HG (the L-enantiomer also referred to as S-2-HG) bind to the active sites of OGDDs 

as competitive inhibitors due to their structural similarities to α-KG (212, 216). Thus, these 

neomorphic mutations in IDH1/2 lead to accumulation of D-2-HG which suppresses OGDDs thus 

leading to epigenetic alterations (via histone and DNA methylation). Considering that OGDDs 

play a role in regulating normal cellular differentiation, it is not surprising that IDH1 and IDH2 

are frequently mutated genes in cancers such as glioma, acute myeloid leukemia (AML) and 

chondrosarcoma whereby IDH1 and IDH2 mutations are often associated with gene silencing and 

dedifferentiation of cells  (221-223). This is consistent with findings that demonstrate either 

exogenously expressing mutant IDH1/2 or treating non-transformed cells with cell-permeable D-

2-HG impedes cell differentiation and inhibits H3K9 demethylases (224, 225). 



Interestingly, D-2-HG and L-2-HG can accumulate in cells with wildtype IDH1/2 genes 

(179, 226, 227). Studies have revealed that α-KG can be converted to D-2-HG by hydroxyacid-

oxoacid transhydrogenase (HOT) while simultaneously producing SSA from γ-hydroxybutyrate 

(GHB) in normal cells (228, 229). Furthermore, overexpression of 3-phosphoglycerate 

dehydrogenase (PHGDH) in breast cancer, which catalyzes the first reaction of serine biosynthesis 

to produce 3-phosphohydroxypyruvate by NAD+-coupled oxidation of 3-PG has been suggested 

to reduce α-KG to D-2-HG (230). Although both D-2-HG and L-2-HG can be produced from α-

KG, L-2-HG can be formed by LDHA and MDH1/2 in acidic pH and/or when oxygen is limited 

(231-234). Taken together, the studies suggest that cancer cells utilize L-2-HG and D-2-HG to 

reprogram epigenome and facilitate tumor progression (227, 235). 

Under physiological conditions, the harmful effects of D-2-HG and L-2-HG are prevented 

as they are converted to α-KG by D-2-hydroxyglutarate dehydrogenase (D2HGDH) and L-2-

hydroxyglutarate dehydrogenase (L2HGDH) respectively (236-238). Although intracellular levels 

of 2-HGs are kept at micromolar range by 2HGDHs, the millimolar levels of D-2-HG observed in 

patients diagnosed with type II D-2-hydroxyglutaric aciduria (D-2-HGA), AML and glioblastoma 

due to mutations in IDH1/2 genes exceeds the catalytic ability of D2HGDH which leads to 

accumulation of D-2-HG in the plasma, urine and cerebrospinal fluids  (216, 236, 239-242). In 

addition, loss-of-function mutations in D2HGDH and L2HGDH are responsible for autosomal 

recessive neurometabolic disorders, type I D-2-HGA and L-2-hydroxyglutaric aciduria (L-2-

HGA) respectively (237, 242). Intriguingly, patients diagnosed with L-2-HGA are predisposed to 

developing brain tumors while patients diagnosed with D-2-HGA appear not to exhibit increased 

cancer incidence (241, 243). Of note, type II D-2-HGA patients which are characterized by 

mutations in IDH1/2 typically present with more D-2-HG built-up in their plasma, urine and 



cerebrospinal fluid as compared to type I D-2-HGA patients having inactivated D2HGDH (241, 

242). Nonetheless, the mortality of patients with severe D-2-HGA is exceptionally high during 

infancy (241, 242). This significantly confounds potential comparisons of cancer susceptibility 

between different types of D-2-HGA (241, 242). Furthermore, considering that L-2-HG is five to 

ten times more potent than D-2-HG in suppressing OGDDs, this may potentially explain the 

discrepancy between L-2-HGA and D-2-HGA in cancer predisposition. Moreover, even in the 

absence of IDH1/2 mutations, elevated levels of D-2-HG and L-2-HG have been observed in 

different cancer types such as colorectal cancer, breast cancer, renal cell carcinoma and diffuse 

large B-cell lymphoma (235). Notwithstanding that the molecular underpinnings of 2-HG 

enantiomer function(s) in neoplasia remain incompletely understood, both enantiomers are likely 

to play a prominent role in tumorigenesis and tumor progression. 

1.2.4.1.2 Succinate 

Other than 2-HGs, OGDDs are susceptible to competitive inhibition by succinate due to its 

structural similarity to α-KG (191, 244). Inactivating mutations found in some of SDH complex 

subunits (SDHB, SDHC, SDHD and SDHAF2) lead to a buildup of succinate which is commonly 

observed in familial and sporadic paraganglioma and pheochromocytomas (245-248).  Similarly 

to 2-HG, succinate acts as an oncometabolite by attenuating OGDD functions which includes 

abrogating the epigenetic remodeling by JmjC domain-containing histone demethylases and the 

TET family of DNA hydroxylases (244). Also, OGDDs like PHDs (i.e., PHD1-3) and factor 

inhibiting HIF (FIH) regulate HIF-α levels in response to alterations in intracellular oxygen 

tension. Namely, in normoxia specific proline (P402 and P564 in HIF-1α; P405 and P531 in HIF-

2α) and asparagine (N803 in HIF-1α and N851 in HIF-2α) residues in the HIF-α are hydroxylated 

by PHDs and FIH respectively to facilitate polyubiquitinylation and proteasomal degradation 



mediated by the tumor suppressor von-Hippel-Lindau (VHL)-E3 ubiquitin ligase (249-254). As 

discussed in a greater detail below, HIF-1/2 regulates genes that are involved in both systemic 

responses to hypoxia, such as angiogenesis and erythropoiesis, and in cellular responses, such as 

alterations in glucose metabolism (255).  

Mutations in SDHD and SDHB genes (which are commonly observed in hereditary 

paraganglioma and pheochromocytoma, respectively), activate hypoxic and angiogenic pathways, 

which is mediated by elevated succinate levels (255-257). These loss-of-function mutations in 

SDH subunits abolish the activity of the SDH complex leading to the accumulation of succinate in 

the mitochondrial matrix that consequently leaks into the cytosol to inhibit PHDs, ultimately 

stabilizing HIF-1/2α (256, 258). Moreover, reduced expression of SDHD has been observed in 

gastric and colorectal carcinoma while patients with mutations in SDHB and SDHC are susceptible 

to developing early-onset renal cell or papillary thyroid carcinoma (259-262). Thus, defects in the 

SDH complex which are often associated with succinate buildup, lead to a “pseudohypoxic” state 

wherein HIF is activated even under normoxia. Collectively, mutations in SDH subunits result in 

accumulation of succinate that favors tumorigenesis and tumor progression via epigenetic 

dysregulation, and aberrant activation of HIF.  

1.2.4.1.3 Fumarate 

Inactivating mutations in the homotetrametric enzyme FH leads to the accumulation of 

fumarate which is commonly observed in patients diagnosed with fumaric aciduria, an autosomal 

recessive metabolic disorder typically associated with severe encephalopathy, as well as hereditary 

leiomyomatosis and renal cell cancer (HLRCC) (263, 264). Similar to 

the SDH genes, FH mutations are often germline, and are associated with the loss of the wild-type 

allele and decreased FH activity in the tumors (263, 265). FH is therefore regarded as a tumor 



suppressor because decrease in its activity causes the intracellular buildup of the oncometabolite, 

fumarate, which akin to 2-HG and succinate competitively inhibits OGDDs including PHDs, 

histone demethylases and TET proteins (244, 266). HLRCC tumors in patients with germline FH 

mutations have been reported to increase not only HIF-1α and HIF-2α but also their gene targets 

such as VEGFA and SLC2A1 which suggests that fumarate-mediated inhibition of HIF-1/2α PHDs 

confers a survival advantage to HLRCC tumors (267). Additionally, recent findings show that the 

loss of FH and the subsequent accumulation of fumarate promotes EMT by inhibiting TET-

mediated demethylation of the antimetastatic miRNA cluster miR-200, which results in the 

expression of EMT-related transcription factors (e.g., ZEB2) and markers (e.g., vimentin) (268). 

Overall, these studies demonstrate that accumulation of fumarate caused by mutations in FH 

promotes tumor growth and progression in the context of neoplasia of the kidney and potentially 

other malignancies.  

1.2.4.2 CAC anaplerosis and cataplerosis 

CAC intermediates serve as precursors for producing macromolecules such as succinyl-

CoA for heme biosynthesis, citrate for fatty acid synthesis and oxaloacetate for aspartate and 

nucleic acid synthesis (269). The consumption of CAC intermediates is referred to as cataplerosis. 

In order to maintain CAC, which is necessary for generating the reducing equivalents (NADH and 

FADH2) and energy required to sustain cell growth and proliferation, intermediates utilized in 

cataplerotic processes must be replenished (269). This process of replacing depleted pools of CAC 

intermediates is termed anaplerosis. Under normal physiological conditions, cataplerotic and 

anaplerotic reactions are coordinated to maintain the levels of CAC intermediates for biosynthetic 

and bioenergetic pathways in the cell (269, 270) . 



The anaplerotic and cataplerotic metabolic pathways are organ-specific and are dependent 

on the organismal metabolic state (270). GTP-dependent phosphoenolpyruvate carboxykinase 

(PCK) isozymes (PCK1 localized in the cytosol and PCK2 localized in the mitochondrial matrix)  

catalyze the decarboxylation of oxaloacetate to PEP used for de novo glucose synthesis 

(gluconeogenesis) in the liver and kidneys (269). In skeletal muscles, PEP can be converted back 

to pyruvate that subsequently enters the CAC via acetyl-CoA (270). During fasting, characterized 

by low levels of insulin and elevated levels of glucagon and glucocorticoids, PCK1 mRNA is 

upregulated to promote hepatic gluconeogenesis (271, 272). In addition, PCK1 activity is detected 

in nongluconeogenic tissues such as white and brown adipose tissues (273). It has been proposed 

that during glucose starvation, increased cAMP levels stimulate PCK1 transcription which 

indirectly mediates the synthesis of 3-glycerol phosphate (glyceroneogenesis) to form oxaloacetate 

needed for the re-esterification of free fatty acids in adipose and hepatic tissues released as very 

low-density lipoproteins (274, 275). An anaplerotic counterpart of PCK exists to prevent the 

extensive efflux of oxaloacetate from the CAC. Namely, the tetrametric ATP-dependent pyruvate 

carboxylase (PC) carboxylates pyruvate to form oxaloacetate which represents a key anaplerotic 

pathway whereby alanine and lactate are metabolized into pyruvate to replenish depleted 

oxaloacetate pools for gluconeogenesis, the urea cycle and lipogenesis (269, 276). PC is 

predominantly localized in the mitochondrial matrix and is highly catalytically active in many 

organs including liver, skeletal muscles, heart and pancreas (269). Considering that PC is 

allosterically activated by acetyl-CoA which is the key metabolite in fatty acid synthesis and β-

oxidation, it suggests that fatty acid metabolism is linked to the regulation of anaplerotic flux via 

oxaloacetate and energy availability for gluconeogenesis (269, 277). Overexpression and/or 

elevated PC activity have been demonstrated to contribute to metabolic reprogramming and tumor 



progression in several cancer models including NSCLC, breast and papillary thyroid cancer (278-

280). Curiously, PCK2, the cataplerotic partner of PC, is also overexpressed in lung and breast 

cancer (281, 282). Glucose deprivation was shown to bolster the expression of PCK2 and increase 

PC activity in lung cancer models while being associated with the increased conversion of lactate 

to pyruvate and subsequently into PEP via oxaloacetate (281, 283). Also, amino acid starvation 

augments PCK2 expression required for the survival breast cancer cells in the context of amino 

acid withdrawal (282). These findings suggest that cancer cells may activate gluconeogenic and/or 

glyceroneogenic pathways previously assumed to be restricted to specialized tissues (adipose, liver 

and kidney) in order to survive nutrient scarcity. Although, these pathways eventually result in the 

production of glucose (via gluconeogenesis) and glycerol (via glyceroneogenesis), it is worth 

underscoring the importance of metabolic intermediates along these pathways which serve as 

precursors for building biomass in cancer cells. Finally, these findings illustrate high metabolic 

flexibility of cancer cells that allows them to adapt to fluctuations in TME.  

1.2.4.2.1 CAC anaplerosis and glutamine metabolism 

After glucose, glutamine is the second most consumed nutrient and most abundant amino 

acid in the blood stream making up over 20-25% of the free amino acid pool found at 

concentrations of 0.5-0.8 mM (284-286). Although digested food can be absorbed through the 

small intestine and metabolized to produce glutamine, most of the glutamine is catabolized in the 

small intestine and liver (286). Since skeletal muscles, adipose tissues and lungs are capable of 

synthesizing glutamine, glutamine is considered a non-essential amino acid (NEAA) (286). In 

skeletal muscles, the cytosolic concentration of glutamine ranges from 10 mM to 30 mM and 

serves as an important glutamine reserve that is readily released into the plasma in response to 

stress (287). Under certain conditions including injury or sepsis, glutamine uptake by kidneys, 



gastrointestinal tract and immune cells is markedly elevated which renders glutamine a 

conditionally essential amino acid (288). Intestinal cells are particularly dependent on glutamine 

as they quickly become necrotic when deprived of glutamine (288). Unlike other NEAA, 

glutamine has a broad range of functions which include donating the amide nitrogen needed for de 

novo synthesis of nitrogen-containing metabolites (e.g. asparagine, purines and pyrimidines), 

fueling OXPHOS through the oxidative decarboxylation of glutamine-derived α-KG via the CAC, 

and serving as a substrate for ureagenesis and ammoniagenesis in liver and kidney, respectively 

(286). In addition, glutamine is utilized for ROS detoxification, acid-base buffering and 

gluconeogenesis (286, 289, 290). Essentially, under physiological conditions, glutamine is a 

source of carbon and nitrogen atoms to support a variety of metabolic pathways while indirectly 

maintaining systemic acid-base pH homeostasis. 

Glutamine is imported into cells through several amino acid transporters including 

SLC1A5 (ASCT2) as well as SLC38A1 (SNAT1) and SLC38A2 (SNAT2) (291, 292). Glutamine 

can then be transported across the mitochondrial membranes by lesser-known and inadequately 

characterized mitochondrial glutamine transporters into the matrix to be deamidated by 

glutaminase (which is encoded by 2 genes: kidney-type GLS and liver-type GLS2) into glutamate 

and ammonia (293-295). Subsequently, mitochondrial glutamate is either further deamidated and 

oxidized to α-KG by glutamate dehydrogenase (GLUD) or transaminated into α-KG via amino 

acid transaminases such as alanine transaminases (ALT2 or GPT2) and aspartate transaminases 

(AST2 or GOT2) (296, 297). Alternatively, mitochondrial glutamate can be exported through 

SLC25A18 and SLC25A22 transporters to the cytosol where it participates in several metabolic 

activities that include serving as an exchange factor for extracellular cystine import via SLC7A11 

(xCT), and being a precursor for de novo synthesis of other amino acids [e.g., alanine, aspartate, 



serine and proline catalyzed by cytosolic ALT1, AST1, phosphoserine aminotransferase 1 

(PSAT1) and pyrroline-5-carboxylate synthase (P5CS), respectively] (289, 298, 299). Moreover, 

glutamine serves as a substrate for biosynthesis of glutathione, a tripeptide ROS scavenger 

composed of glutamate, cysteine and glycine (289, 298, 299). In addition, glutamine-derived α-

KG is implicated in a variety of the bioenergetic and biosynthetic activities of the CAC (289). α-

KG also serves as a cofactor for OGDDs and drives the malate-aspartate shuttle via its role as an 

exchange factor (289). Overall, glutamine regulates a wide range of cellular activities as a direct 

or indirect substrate (via the functions of glutamate and α-KG) of key metabolic pathways and/or 

by acting as a cofactor in pivotal enzymatic reactions.  

Similar to glucose, glutamine is thought to be frequently exploited by cancer cells to 

support neoplastic growth (300). The excessive demand for glutamine by cancer cells was first 

described by Harry Eagle when he demonstrated that for optimal growth, HeLa cells require 10-

100-fold molar excess of glutamine relative to other amino acids in culture medium (301). Some 

cancer cell lines including those derived from pancreatic cancer, acute myelogenous leukemia, and 

small cell lung cancer have been shown to be “addicted” to glutamine inasmuch as they are 

strongly dependent on exogenous glutamine despite the fact that they can synthesize it from 

glucose (302). Glutamine metabolism is also upregulated in glioblastoma but also in non-

transformed activated proliferating T-lymphocytes (39, 303). Interestingly, glutamine was found 

to activate glucose metabolism in cancer cells in which CAC intermediates are used as precursors 

for synthesizing other amino acids, nucleotides and fatty acids (39). In the absence of glucose, 

glutamine metabolism can be elevated in association with increased malic enzyme 1 (ME1) and 

PCK2 activities in an attempt to compensate for the loss of glucose as a bioenergetic and 

biosynthetic source in B-cell lymphoma and lung cancer cell lines (283, 304).  It was also observed 



that α-KG produced from glutamine was oxidatively decarboxylated in the CAC to produce either 

oxaloacetate that is subsequently converted to PEP by PCK2 or malate by MDH2 (39, 283, 305). 

PEP and malate are then exported to the cytosol for pyruvate synthesis (39, 283, 305). Cytosolic 

malate is oxidatively decarboxylated by ME1 to yield NADPH needed for fatty acid synthesis and 

pyruvate which is reduced to lactate via LDHA (39). In addition, it was reported that in pancreatic 

ductal adenocarcinoma (PDAC) cells glutamine-derived aspartate is transported into the cytosol 

to be converted into oxaloacetate by AST1 that is then reduced into malate by MDH1 and finally 

decarboxylated into pyruvate via NADPH-producing ME1 (306). The production of NADPH 

through this metabolic route is used to reduce glutathione for detoxifying ROS, hence highlighting 

the role of glutamine metabolism in maintaining cellular redox homeostasis (306).  

Inside the mitochondria, the metabolic fate of glutamine-derived α-KG is closely 

associated with CAC enzymes and ETC complex activities or lack thereof (180, 307-309). Brown 

adipocytes reductively carboxylate glutamine-derived α-KG into isocitrate which is then converted 

into citrate and exported to the cytosol for de novo lipid synthesis (310). This cataplerotic route 

accounted for 90% of the total flux of glutamine into lipids in brown adipocytes (310). In the 

context of mitochondrial dysfunctions (including mutations in either FH or mitochondrial DNA, 

genetic lesions or pharmacological inhibition of complexes I or III of the ETC), α-KG produced 

from glutamine has been shown to be reductively carboxylated to allow lipogenesis and aspartate 

synthesis in rapidly proliferating malignant cells (180, 307, 311, 312). Furthermore, hypoxia has 

been demonstrated to promote the reductive carboxylation of glutamine-generated α-KG into 

isocitrate via IDH1 (313) or IDH2 in melanoma (314), with the concomitant elevated synthesis of 

2-HG in several cancer cell lines with wildtype IDH1 and IDH2 (179). Furthermore, glutamine is 

the primary source of α-KG catalyzed into 2-HG by mutant IDH1 in glioma cells (308). This 



preferential use of glutamine-derived α-KG is thought to constitute a targetable metabolic 

vulnerability in mutant IDH1-expressing cells as they are more sensitive to GLS inhibition as 

compared to WT IDH1-expressing cells (308).  

Although many tumor cell types profoundly depend on glutamine metabolism to refill their 

diminished pools of CAC intermediates, it has been reported that the inhibition of glutaminolysis 

in some glioblastoma cell lines can induce a compensatory CAC anaplerotic mechanisms in which 

PC carboxylates glucose-derived pyruvate into oxaloacetate (315).  Hence, glucose-dependent 

CAC anaplerosis via PC allows cells to become “independent” of glutamine. Conceivably, this 

could be, at least in part, an underlying mechanism of resistance against drugs targeting 

glutaminolysis (315). Additionally, de novo glutamine synthesis via glutamine synthetase (GLUL) 

activity in which glutamine is produced from the co-substrates, glutamate and ammonia, may 

render cells glutamine independent. GLUL expression has been associated with enhanced 

metastatic potential of HCC, while induction of GLUL expression by glutamine starvation 

promotes nucleotide synthesis and amino acid transport thereby maintaining cell survival and 

proliferation of glioma and breast cancer cell lines (316-318). Overall, these findings imply that 

metabolic rewiring caused by glutamine deprivation may decrease sensitivity of certain cancer 

subtypes to the therapies targeting glutamine metabolism.  

1.2.5 ETC and OXPHOS 

NADH and FADH2 reducing equivalents that are largely generated via CAC, are chiefly 

oxidized in the ETC through a series of redox reactions that create an electrochemical gradient 

which is harnessed to produce ATP by OXPHOS (48, 319, 320). The ETC comprises of free 

electron carriers (ubiquinone and cytochrome C) and 4 bound protein complexes (I-IV) that are 

embedded within the inner mitochondrial membrane in close proximity to the mitochondrial 



matrix where the most of CAC reactions are catalyzed (48). The reaction sequence begins with 

NADH and FADH2 donating electrons to complex I (NADH-ubiquinone oxidoreductase) and 

complex II (succinate:ubiquinone oxidoreducatase) respectively (48, 320). Electrons are 

subsequently transferred to ubiquinone (CoQ) followed by complex III and ultimately to complex 

IV via cytochrome C (48, 319, 320). Complex IV reduces oxygen (the final electron acceptor) to 

produce water in the process (48, 320).  The movement of electrons along the ETC is coupled to 

protons being pumped into the intermembrane space by complexes I, III and IV (319, 320). The 

translocation of protons from the mitochondrial matrix to the intermembrane space creates a proton 

motive force, a proton gradient, used to drive the synthesis of ATP from ADP by complex V, ATP 

synthase (319, 321). Thus, the OXPHOS system includes the 4 complexes of the ETC which 

generates the proton motive force in addition to complex V which produces ATP. 

1.2.5.1 Mammalian Complex I 

Mammalian complex I, which is also referred to as NADH dehydrogenase, is the first and 

largest multicomponent enzyme complex of the ETC composed of 45 different subunits with a 

combined molecular mass of approximately 1 MDa  (319, 322). As the name implies, complex I 

oxidizes NADH to NAD+, which involves the transfer of electrons from NADH to ubiquinone 

(CoQ) (323). Specifically, two electrons are transferred from NADH through a chain of cofactors 

including flavin mononucleotide and a series of eight iron-sulfur clusters arranged from low to 

high electron potentials, to CoQ consequently producing ubiquinol (QH2) in the inner 

mitochondrial membrane (322, 323). This translocation of electrons, one at a time from NADH to 

CoQ, induces a conformational change in the complex that facilitates the pumping of four protons 

from the mitochondrial matrix to the intermembrane space (322, 324). It is thought that complex I 

generates approximately 40% of the proton flux (323). Defects in the complex I have been 



associated with neurodegenerative diseases including Leigh’s and Parkinson’s disease (325-327). 

The role of complex I in tumorigenesis has been controversial whereby it was suggested that 

inactivation of complex I has both tumor-suppressive and tumor-promoting effects (328-330). 

Notably, these findings were obtained using models bearing different mutations in the various 

subunits of complex I. Thus, it is plausible that the discrepancy between the aforementioned 

studies stems from diverse genetic alterations that although impacting the function of complex I 

may not result in a common phenotype. 

1.2.5.2 Mammalian Complex II 

In parallel to complex I, electrons are fed into the ETC via complex II (SDH) which is also 

a component of the CAC (331). Structurally, SDHC and SDHD contain the CoQ binding site and 

are embedded in the inner mitochondrial membrane to anchor the entire complex (332, 333) . The 

succinate binding pocket along with the iron-sulfur clusters and a flavoprotein are covalently 

attached to a FAD cofactor and are both found in SDHA and SDHB subunits which extend into 

the mitochondrial matrix (319, 334). Complex II converts FADH2 to FAD while simultaneously 

reducing CoQ into QH2 (331). Similar to complex I, electrons are transferred sequentially from 

FADH2 to CoQ via iron-sulfur clusters (335). Unlike complex I, electron transport from FADH2 

to CoQ is not accompanied by proton translocation from the matrix to the intermembrane space 

(335). As a result of bypassing complex I, electrons transferred from complex II to CoQ forego 

the opportunity to be coupled to proton ejection by complex I. 

Except for complex I and II, other lesser-known enzymes donate electrons to the CoQ pool 

(336). They include the electron-transferring flavoprotein (ETF)-ubiquinone oxidoreductase, the 

mitochondrial glycerol-3-phosphate dehydrogenase and the dihydroorotate dehydrogenase 

(DHODH) enzyme (337). The ETF-ubiquinone oxidoreductase enzyme is located on the 



mitochondrial matrix-facing side of the inner mitochondrial membrane (338). ETF transfers 

electrons generated during the oxidation of fatty acids, branched chain amino acids, lysine, 

tryptophan and choline (338, 339). The mitochondrial glycerol-3-phosphate dehydrogenase is a 

component of glycerophosphate shuttle with a prominent role in linking glycolysis, OXPHOS and 

fatty acid metabolism. Moreover, the DHODH catalyzes a rate-limiting of the de novo pyrimidine 

synthesis pathway whereby dihydroorotate is converted to orotate (336, 340-342).   

1.2.5.3 Mammalian Complex III 

The electrons from QH2 are donated to the dimeric complex III (referred to as cytochrome 

bc1 complex or CoQ-cytochrome c reductase) of the ETC which is localized in the inner membrane 

of the mitochondria (319, 320). The catalytic subunits of the complex are cytochrome b (bL and 

bH), cytochrome c1 and a high electron potential iron-sulfur cluster in the Rieske center (319, 320). 

Cytochrome b has two CoQ binding sites: (i) a QH2 oxidation site (Q0) located on the cytosolic 

side which is associated with the low potential cytochrome bL and (ii) a Q- reduction site (Qi) found 

on the mitochondrial matrix side and linked to the high potential cytochrome bH  (343). The 

oxidation of QH2 into ubisemiquinone (QH-) after transferring an electron to the Rieske center is 

coupled with the release of two protons into the mitochondrial intermembrane space (344). The 

electron is subsequently transferred to cytochrome c1, which then provides the electron to the 

mobile electron carrier, cytochrome c (344). Newly formed QH- found at the Q0 site donates the 

second electron to cytochrome bH at the Qi site via cytochrome bL (319). Next, the electron is lost 

to CoQ of the Qi site from the reduced cytochrome bH to regenerate QH- (319). A second QH2 

molecule is oxidized at the Q0 site which leads to the ejection of two more protons into the 

intermembrane space (319). This is accompanied by one additional electron being transferred to 

the iron-sulfur cluster while the second electron is transferred by cytochrome bH to QH− of the Qi 



site to yield QH2  (319). Complex III deficiency underpins neurological disorders including Leigh 

syndrome and Leber hereditary optic neuropathy (LHON), whereby aberrant complex III function 

has also been observed in breast, colorectal cancer and lung cancer (345-348). This suggests that 

complex III may play a prominent role in neoplasia 

1.2.5.4 Mammalian Complex IV 

Functionally similar to CoQ, cytochrome c is loosely attached to the outer surface of the 

inner mitochondrial membrane by electrostatic interactions and shuttles electrons from complex 

III to complex IV (cytochrome c oxidase) where molecular oxygen is reduced to water (319-321). 

Complex IV is composed of 13 subunits with the 3 core components (COX1, COX2 and COX3) 

encoded by the mitochondrial DNA (347). Considering the complexity of Complex IV and the fact 

that its subunits are assembled on both sides of the membrane, the enzyme complex requires 18 

assembly factors, many of which have not been well-characterized (347, 349). The complex IV 

also contains cofactors (heme and copper) embedded into the core proteins, COX1 and COX2 

(349). COX1 has 2 heme molecules and a copper ion in the CuB site, while COX2 has a CuA site 

formed by 2 copper ions (349).  After cytochrome c is reduced by complex III, it moves along the 

surface of the membrane to interact with the COX2 subunit of complex IV via electrostatic 

interaction while simultaneously transferring the electrons to the CuA site of the COX2 subunit 

(319). The electrons are subsequently transported from Fea to the active binuclear center (Fea3 and 

CuB) of COX1 where oxygen is bound and converted to water (319). COX3 is located on both 

sides of COX1 along with COX2, stabilizes both COX1 and COX2 and is primarily involved in 

pumping protons into the intermembrane space (319, 335). Analogous to complex I and III, the 

donation of four electrons at a time to oxygen is coupled to the translocation of eight protons from 

the mitochondrial matrix (350). The four protons are used to form two water molecules while the 



remaining protons enter the intermembrane space (350). As suspected, defects in mitochondrial 

complex IV resulting in decreased enzyme complex activity have been linked to neurodegenerative 

diseases such as LHON, Leigh-like syndrome and infantile-onset encephalopathy (347). 

Furthermore, mutations or aberrant expression of complex IV subunits, which either elevates or 

diminish the activity of the complex have been associated with shorter progression-free survival 

and increased invasiveness in different types of cancers including colorectal cancer, glioma, breast 

and esophageal cancer (351). The disruption of complex IV function was also demonstrated to 

induce Warburg Effect and enhance the metastatic potential of non-transformed skeletal myoblasts 

(351). This suggests that complex IV dysfunction may be crucial to metabolic reprogramming and 

tumor progression in a number of cancer subtypes. 

1.2.5.5 Mammalian Complex V (F1F0 ATP synthase) 

 Altogether, complexes I, III and IV pump a total of ten protons into the intermembrane 

space generating an electrochemical proton gradient known as the mitochondrial membrane 

potential (335). The mitochondrial membrane potential together with the proton concentration 

creates a proton-motive force that is essential for energy production during OXPHOS because it 

couples the ETC complexes to the catalytic activity of complex V (335). Complex V comprises 

two functionally distinct multisubunit domains: an extra-membranous F1 domain situated in the 

mitochondrial matrix and a transmembrane F0 domain located in the inner mitochondrial 

membrane (319, 335). Protons are translocated into the mitochondrial matrix from the 

intermembrane space via the F0 to F1 domains  (335). The movement of protons and the transfer of 

energy are coupled to a conformational change in the complex leading to the phosphorylation of 

ADP with inorganic phosphate to form ATP at the F1 domain (335). Alternatively, complex V can 

hydrolyze ATP to drive the efflux of protons from the mitochondrial matrix into the 



intermembrane space in order to sustain the proton-motive force (347, 352). This reverse-mode of 

complex V is typically observed in mitochondria with impaired respiration or leaky inner 

membranes (347, 352). Importantly, the persistent reverse-mode operation of complex V could 

deplete cellular ATP reserves, inevitably driving the cell into an energy crisis which could be 

exacerbated if there is an increased cellular demand for ATP (352, 353). Mutations in mtDNA 

genes encoding two of the F0 subunits, ATP6 and ATP8 have been observed in patients with 

LHON, breast cancer and osteosarcoma (347, 354, 355). Surprisingly, the exogenous expression 

of mutant ATP6 T8993G in prostate cancer PC3 cell line through cybrid transfer was demonstrated 

to significantly impair mitochondrial ATP synthesis and result in bigger tumors in mice compared 

to wildtype ATP6 cybrids (356). Moreover, the decreased expression of the α subunit of complex 

V in colon cancer cells was associated with decreased sensitivity to chemotherapy (357). 

Altogether, these findings suggest that impaired OXPHOS due to the abrogation of complex V 

may play an important role in tumorigenesis and chemoresistance.  

1.2.5.6 Reactive oxygen species (ROS)    

Under physiological conditions, 0.2-2% of the electrons leak out from ETC complexes and 

interact with oxygen to produce ROS (319). Thus, low levels of ROS are inevitably generated as 

byproducts of cellular respiration (335). The main sites for ROS production in the ETC are 

complexes I and III where electrons leak to partially reduce oxygen to superoxide anion (335, 358). 

The rate at which superoxide anion is generated is dependent on the concentration of the one-

electron donors and the rate at which these donors react with oxygen (335). When the iron-sulfur 

centers and flavin mononucleotide site of complex I accept electrons from NADH, they can react 

with oxygen to produce superoxide anion (335). Hence, the production of ROS is closely 

associated with the NAD+/NADH ratio, considering that a buildup of NADH which is usually 



observed when the ETC is disrupted results in elevated levels of superoxide at complex I (335). 

The QH2 oxidation site of complex III is another prominent location of superoxide anion 

production that creates an unstable QH- intermediate that can react with oxygen to produce 

superoxide anion in both the mitochondrial intermembrane space and matrix (319, 335). 

Accordingly, inhibitors of complex I (e.g., rotenone and piercidin) and III (e.g., antimycin A) 

which block electron transfer in the ETC increase ROS production (319, 359).  

ROS act as second-messengers in signaling pathways mediating various intracellular 

processes including autophagy and apoptosis (360, 361). Elevated ROS levels, however, are toxic 

to cells (319, 347). ROS damage DNA, lipids and proteins (323, 347). To counteract potentially 

deleterious effects of ROS, the cell utilizes antioxidant systems (335). To this end, the highly 

reactive and unstable super oxide anion is quickly converted to the more stable hydrogen peroxide 

by manganese SOD (Mn-SOD) localized in the mitochondrial matrix or copper/zinc SOD (Cu,Zn-

SOD) located in the intermembrane space (335). The importance of Mn-SOD is underscored by 

the findings associating the loss of this enzyme with perinatal lethality (362, 363). The amount of 

hydrogen peroxide diffused out (or exported via aquaporins) of the mitochondria is dependent on 

the activities of catalase (commonly found in the mitochondria of heart and liver tissues), 

glutathione peroxidase/reductase (GPx) system and thioredoxin peroxidase/reductase system 

located in the mitochondrial matrix (335, 358). GPx uses hydrogen peroxide to oxidize glutathione 

(GSH) to glutathione disulfide (GSSG) (335, 364). Hydrogen peroxide also oxidizes the cysteine 

residue in the catalytic site of peroxiredoxin (PRx) that is subsequently reduced by thioredoxin 

(TRx) (335). Notably, both GPx and TRx antioxidant systems require NADPH for their reductive 

activities and thus, indirectly dependent on the various metabolic pathways that generate NADPH  

(335). Increased levels of ROS have been observed in the context of mitochondrial dysfunction 



and suggested to drive bladder and prostate cancer progression (356, 365). Although heightened 

ROS levels promote DNA damage and genomic instability, the precise underlying mechanism of 

the role of ROS in tumorigenesis remains largely elusive. 

1.2.6 Amino acids metabolism in cancer  

In addition to glutamine, the levels of other NEAAs including serine, glycine, glutamate, 

alanine, aspartate and asparagine have been shown to have a major impact on cancer cell fate (298, 

366). Although there are many well-characterized metabolic pathways to biosynthesize NEAAs, 

highly proliferative malignant cells occasionally require exogenous reserves of NEAAs to meet 

their high bioenergetic and biosynthetic demands. Consistent with this, emerging data indicate that 

production and availability of NEAAs play a central role in tumorigenesis, tumor progression and 

therapeutic responses across a broad range of cancers.  

1.2.6.1 Aspartate 

 The CAC plays a prominent role in amino acid metabolism by providing metabolic 

precursors such as oxaloacetate and α-KG for the biosynthesis of various NEAAs (366).  Aspartate 

is generated from oxaloacetate and glutamate-derived nitrogen by cytosolic (AST1) and 

mitochondrial (AST2) isoforms of glutamate oxaloacetate transaminase (366). Aspartate is 

involved in transferring electrons from the cytosol to the mitochondria via the malate-aspartate 

shuttle (MAS) which involves the exchange of mitochondrial aspartate for cytosolic glutamate and 

malate through the aspartate-glutamate carrier 1/2 (AGC1/2 or SLC25A12/SLC25A13 

respectively)  and malate-α-KG antiporters (OGC/SLC25A11) respectively (366, 367). Since the 

plasma concentration of aspartate is low and it is inefficiently imported into most cancer cells, de 

novo synthesis via ASTs is considered to be the primary source of aspartate in cancer cells (366).  

Recent reports have demonstrated that one of the major functions of mitochondrial respiration in 



cancer cells is to support aspartate biosynthesis (311, 312). As aspartate is essential for nucleotide 

synthesis, it plays a key role in cellular proliferation (298). Therefore, aspartate availability is 

positively correlated with in vivo tumor growth whereas the inhibition of aspartate biosynthesis 

suppresses neoplastic growth in both breast and pancreatic cancers (306, 311, 312, 368, 369). In 

response to ETC inhibition, some cancer cell lines (e.g., ovarian cancer COLO-704, breast cancer 

MDA-MB-157 and acute monocytic leukemia NOMO-1) are able to maintain their intracellular 

aspartate levels by upregulating the expression of aspartate importers, SLC1A3 or SLC1A2 (370).  

Altogether, these findings indicate that aspartate biosynthesis plays a major role in metabolic 

reprograming of cancer, whereby increase in aspartate levels provides malignant cells with 

flexibility to adapt to the defects in mitochondrial functions.   

1.2.6.2 Asparagine 

Asparagine is another NEAA that is thought to be indispensable for malignant cell 

proliferation under certain conditions including glutamine deprivation (366). In cancer cells, 

asparagine was found to enhance the expression of GLUL, the rate limiting enzyme for de novo 

glutamine synthesis (371). Intriguingly, albeit asparagine supplementation did not restore the 

levels of other NEAAs or CAC intermediates, it increased glutamine synthesis and breakdown 

leading to the recovery of global protein synthesis (371). Through its role as an amino acid 

exchange factor, asparagine also mediates amino acid uptake wherein intracellular asparagine is 

exchanged for extracellular amino acids (serine, histidine and arginine) (372). Ubiquitously 

expressed ATP-dependent asparagine synthetase (ASNS) irreversibly converts aspartate into 

asparagine by utilizing the amide nitrogen from glutamine (373). ASNS expression is induced in 

response to metabolic stressors including glutamine and glucose deprivation and ER stress which 

is mediated by the GCN2-EIF2α-ATF4 and PERK-EIF2α-ATF4 axis (298, 373, 374).  Acute 



lymphoblastic leukemia (ALL) cells frequently do not express functional ASNS and are thus 

reliant on exogenous asparagine (375, 376). Based on this, L-asparaginase that degrades and thus, 

limits availability of the asparagine is used as a first line therapy in ALL  (377-379). In addition, 

high expression of ASNS is observed in castration-resistant prostate cancer, glioma and 

neuroblastoma wherein it correlates rapid tumor progression and poor prognosis (380, 381). 

Notably, human cells do not express asparaginase and are thus incapable of breaking down 

asparagine (382, 383). Although the exogenous expression of ASNS enhances glutamine and 

nucleotide synthesis while inducing CAC anaplerosis, it suppresses proliferation and survival of 

cancer cells in the absence of exogenous glutamine (371). This suggests that the lack of 

asparaginase activity in humans may be an evolutionary adaptive mechanism to survive abnormal 

fluctuations in plasma glutamine levels (371). Recent reports indicate that low intracellular 

asparagine level impedes breast cancer metastasis which was associated with decreased expression 

of asparagine-rich EMT-related proteins (384). In summary, these findings indicate that asparagine 

metabolism, particularly in the absence of glutamine, regulates amino acid homeostasis, protein 

and nucleotide synthesis and thereby play a critical role in tumor cell proliferation and metastatic 

progression.  

1.2.6.3 Serine and glycine 

Serine can be exogenously taken up by the cells via amino acid transporters SLC6A14, 

SLC38A2, SLC1A5 and SLC38A5 (291, 298, 385, 386). In addition, serine can be biosynthesized 

from glycolytic intermediate, 3-PG (298). The rate-limiting step in the serine synthesis pathway 

(SSP) involves the oxidation of 3-PG to 3-phosphopyruvate (3-PP) by phosphoglycerate 

dehydrogenase (PHGDH), which is then transaminated to 3-phosphoserine (3-PS) by PSAT1 (387, 

388). In the third and final step of the pathway, 3-PS is dephosphorylated into serine by 



phosphoserine phosphatase (PSPH) (387). Some of the transporters (i.e., SLC38A2, SLC38A5 and 

SLC6A14) that facilitate the import of serine also mediate the uptake of other amino acids 

including glycine (291, 298, 385, 386). In addition to utilizing identical amino acid transporters, 

both serine and glycine are biosynthetically linked as serine can be converted to glycine in the 

cytosol and mitochondria by serine hydroxymethyltransferase (SHMT1) and (SHMT2) 

respectively (387, 389). Taking into account that the carbon and nitrogen atoms in serine and 

glycine are derived from 3-PG and glutamate, respectively during de novo biosynthesis, serine and 

glycine metabolisms are closely associated with glucose and glutamine metabolism (390). Recent 

findings show that many cancer cell types are dependent on exogenous supply of serine whereby 

serine starvation markedly inhibits the growth of some neoplastic cells in cell culture and in vivo 

(391). In turn, breast cancer and melanoma cells upregulate serine biosynthesis by diverting 

glycolytic intermediates to the SSP or increasing the expression of SSP enzymes including 

PHGDH (391-393). Accordingly, suppressing PHGDH levels in breast cancer cell lines was 

associated with decreased proliferation while the overexpression of PSAT1 in colon carcinoma 

stimulated cell proliferation and facilitated chemoresistance (392, 394). Expression of SHMT2 

was shown to be induced by MYC or hypoxia (395). Importantly, increased SHMT2 expression 

appeared to prevent hypoxia-induced cell death by maintaining NADPH production and thus, 

bolstering ROS protection capacity (395). In the context of cancer, serine is regarded as the more 

conditionally essential amino acid relative to glycine because the proliferation rates of CRC and 

lung cancer cell lines were found to be unaltered by the absence glycine in the media, whereas the 

removal of only serine decreased proliferation to the same extent as the deprivation of both amino 

acids (396). The role of glycine metabolism in tumor cells has been controversial as it was reported 

that rapidly, but not slowly proliferating cancer cells depend on exogenous glycine (397). 



Furthermore, it was proposed that glycine is only imported and metabolized by cells when 

extracellular serine is depleted (398). These findings suggest that transformed cells promote 

survival and proliferation by rewiring serine and glycine metabolism as a possible adaptive 

response to nutrient deprivation and oxidative  stress (298).  

1.2.6.4 Folate and methionine cycle 

The SHMT catalytic activity requires a folate carrier, tetrahydrofolate (THF), as a cofactor 

which accepts one-carbon (1C) unit from serine to produce 5,10-methylenetetrahydrofolate (5,10-

methylene-THF) in parallel to two-carbon (2C) unit glycine (366). The 5,10-methylene-THF 

subsequently undergoes a series of redox transformations by folate cycle enzymes to produce 

various 1C-THF species, including the regeneration of THF (399-401). The folate cycle begins 

with the reduction of folate (commonly known as vitamin B9) by dihydrofolate reductase (DHFR) 

into the biologically active THF. Folate cycle requires both mitochondrial and cytosolic isoforms 

of folate enzymes including the multifunctional NADP-dependent methylenetetrahydrofolate 

dehydrogenase (MTHFD1/2/1L) (399-401). Glycine contributes to the folate cycle by donating 1C 

unit to THF via the activity of glycine decarboxylase (GLDC) of the glycine cleavage system 

(GCS) to generate 5,10-methylene-THF (402). The folate cycle produces THF-containing 

intermediates that serve as precursors for thymidine synthesis and contribute to the production of 

purines, ATP, and NADPH (366, 391, 398). It is thought that serine is the more significant 1C unit 

contributor of the folate cycle relative to glycine (402). The preferential consumption of serine 

over glycine implies that a demand for 1C units might be driving serine-to-glycine conversion 

because this reaction donates 1C unit to the folate cycle while the reverse reaction consumes 1C 

unit from the folate cycle (398). This is consistent with existing data showing that glycine 

consumption inhibits angiogenesis and tumor growth in CRC, melanoma and liver cancer (403-



405). The conversion of glycine to serine depletes the 1C pool needed for nucleotide synthesis and 

cell proliferation (396). The folate cycle plays a prominent role in cancer cell metabolism. For 

instance, elevated MTHFD2 expression in breast cancer correlates with poor survival of patients 

(406). In addition, GLDC was found to be highly expressed in tumor-initiating cells of NSCLC 

wherein it induces glycolysis, intracellular serine level, and pyrimidine metabolism (394, 406). 

Although the GCS system supports tumorigenesis by generating 1C units for nucleotide synthesis, 

it is suggested that its primary role may be the detoxification/degradation of intracellular glycine 

(407, 408).   

One of the 1C-THF species, 5-methyl-tetrahydrofolate (methyl-THF), which is generated 

by the folate cycle is used to drive the methionine cycle (366). In the methionine cycle, 

homocysteine is re-methylated to form methionine by methionine synthase (MS) using methyl-

THF (366). Methyl-THF can be derived from the breakdown of 5,10-methylene-THF via cytosolic 

NADPH-dependent methylenetetrahydrofolate reductase (MTHFR) (366).  Hence, the synthesis 

of methionine couples the methionine cycle to the folate cycle. Methionine can further be 

converted into S-adenosyl methionine (SAM) via the ATP-dependent methionine adenosyl 

transferase (MAT) (409). SAM acts as the principal donor of methyl groups for histone, DNA and 

RNA methylation reactions that underpin epigenetic and epitranscriptomic programs, (400). SAM 

is then demethylated by histone methyl transferase (HMT) to yield S-adenosyl homocysteine 

(SAH) which is ultimately converted to homocysteine via SAH hydrolase (SAHH) (366). This 

completes one turn of the methionine cycle. The homocysteine intermediate can leave the 

methionine cycle to enter a trans-sulfuration pathway consisting of the condensation of 

homocysteine with serine to produce cystathionine via cystathionine β-synthase (CBS), and the 

cleavage of cystathionine to cysteine by cystathionine γ-ligase (CSE) (410). Cysteine further 



participates in glutathione synthesis and thus, antioxidant protection against ROS (411). 1C 

metabolic cycles are closely connected to other metabolic pathways (400, 412). Thus, it is not 

surprising that aberrant regulation of 1C metabolism is observed across a broad range of cancer 

types including CRC and HCC (413, 414). 

Although malignant cells can synthesize methionine, most cancer cells rely on extracellular 

supply of methionine (415, 416). This phenomenon is only observed in transformed cells and is 

referred to as the Hoffman effect or methionine stress sensitivity (415, 416). It describes the 

underlying inhibitory mechanism of tumor cell proliferation when exogenous methionine is 

substituted for its metabolic precursor, homocysteine, which reflects the increased demand for 

metabolites derived from methionine (417, 418). The Hoffman effect is supported by recent data 

reporting that defects in the methionine cycle of lung tumor initiating cells result in loss of 

tumorigenic potential (419). This was attributed to alterations in cellular methylation due to 

reduction in SAM (419). In addition, breast cancer cell lines were demonstrated to be oxidatively 

stressed when methionine was replaced with homocysteine (418). The cells responded by 

redirecting homocysteine out of the methionine cycle for glutathione synthesis thus reducing 

production of methionine and SAM (418). Therefore, certain cancer cell types such as breast 

cancer reprogram their methionine metabolism in order to meet the demands for tumorigenesis 

and tumor survival. 

1.2.7 Lipid metabolism  

Lipids are a complex group of macromolecules with varying structures and functions (420). 

The large vacuoles in adipocytes and lipid droplets are the primary storage sites for lipids (421, 

422) . They contain triglycerides that serve as important energy sources because they can be 

metabolized to produce ATP when nutrients are limited (420, 423). Although phospholipids are 



the major component of biological membranes, other membrane lipids such as cholesterol, 

glycolipids and phosphatidylinositols facilitate membrane fluidity, cell recognition and function 

as secondary messengers, respectively (420, 424). Considering their versatile roles, lipids represent 

essential biomolecules in both normal and cancer cells (424).  

1.2.7.1 De novo lipogenesis 

The primary precursor of several lipid species are fatty acids (FAs), which are either 

derived from exogenous sources including diet or generated from lipids synthesized by lipogenic 

tissues (liver, breast and adipose tissues) (420, 423). The production of triglycerides and 

phospholipids involves the esterification of FAs with glycerol, which is generated from glycerol-

3-phosphate (425). Glycerol synthesis is linked to glycolysis whereby glycerol-3-phosphate is 

produced from DHAP via glycerol-3-phosphate dehydrogenase (GPDH) (426). In turn, the main 

substrate for FA synthesis is cytosolic acetyl-CoA which is derived from acetate or citrate (423). 

The CAC produces mitochondrial citrate from either the reductive carboxylation of glutamine-

derived α-KG or through the oxidative decarboxylation of glucose-generated pyruvate, that is 

exported to the cytosol (423). In the cytosol, citrate is cleaved to produce acetyl-CoA by ATP-

citrate lyase (ACLY). Acetyl-CoA is then used as the substrate for the rate-limiting acetyl-CoA 

carboxylases (ACCs)  to irreversibly generate the two-carbon donor malonyl-CoA (423). 

Eventually, the serial condensation of malonyl-CoA molecules and one priming acetyl-CoA by the 

NADPH-dependent fatty acid synthase (FASN) yields palmitate, the initial product of FA 

synthesis (423). Palmitate can be desaturated and/or elongated to generate other FA species (423). 

Considering that most normal tissues prefer the use of circulating lipids instead of de novo 

biosynthesis as the primary source of FAs, the role of FASN in non-transformed cells is of minor 

importance in well-nourished individuals (42). Nonetheless, a wide variety of tumors and pre-



malignant lesions upregulate FA synthesis through the coordinated expression of several lipogenic 

enzymes (42). The three main enzymes of FA biosynthesis- ACLY, ACC and FASN- are 

upregulated in several cancer types such as breast cancer and NSCLC (427-430). While it was 

demonstrated that silencing either ACC or FASN was associated with the induction of apoptosis 

and formation of ROS in breast and ovarian cancers, the inhibition of ACLY in human lung 

adenocarcinoma cell lines resulted in growth arrest in cell culture and in vivo (427, 429). When 

cancer cells are subjected to hypoxia or deprived of lipids, they increase acetate uptake via MCTs 

and by upregulating the expression of ATP-dependent acetyl-CoA synthetase 2 (ACSS2) which 

catalyzes the conversion of acetate to acetyl-CoA (35, 431, 432). Also, glioblastomas were shown 

to accumulate acetyl-CoA from glucose and acetate catabolism which was accompanied by 

elevated ACSS2 expression (35). Overall, the increase in lipogenesis even in the presence of 

exogenous lipid sources, allows tumor cells to meet their high metabolic demands and to adapt to 

exogenous lipid scarcity (424). 

1.2.7.2 Fatty acid uptake 

In addition to upregulating de novo FA synthesis, cancers have developed means to 

efficiently obtain lipids and FAs from the tumor microenvironment (433). Although lipids can be 

taken up by the cells through the endocytosis of low-density lipoprotein (LDL) via LDL receptor, 

free FAs are imported into the cells either via CD36 fatty acid translocase or the FA transport 

proteins (FATPs/SLC27A1-6) (434, 435). FA uptake can also be facilitated by FA binding proteins 

(FABPs) which are intracellular lipid chaperones (436). These different metabolic routes of 

obtaining FAs are often upregulated to meet the high metabolic needs of tumor cells (437-439). 

Consistently, the uptake of palmitate from the extracellular milieu has been demonstrated to 

promote migration and metastasis in squamous cell carcinoma (440). Thus, tumor cells develop 



strategies to access FAs essential to neoplastic growth, whereby these mechanisms play a 

prominent role under conditions wherein de novo FA synthesis is suppressed (e.g., hypoxia) (441, 

442). 

1.2.7.3 Fatty acid oxidation  

When nutrients are limiting, lipolysis disintegrates lipid droplets by cleaving acyl chains 

off triacylglycerides (423). The liberated FAs are coupled to CoA by acyl-CoA synthetase (ACS) 

(423). Subsequently, the FAs are converted to acylcarnitines by  carnitine palmitoyltransferase 1 

(CPT1) that are shuttled to the mitochondrial matrix via the carnitine-acylcarnitine translocase 

(SLC25A20) (423). Here, the FAs are transferred back to CoA by CPT2 (423). β-oxidation 

generates energy through the step-wise shortening of acyl-CoA molecules yielding one molecule 

of FADH2 and NADH for every 2-carbon unit of acetyl-CoA removed from the acyl chain (423). 

The acetyl-CoA molecules produced can be oxidatively decarboxylated via the CAC to produce 

more NADH and FADH2 (423). The reducing equivalents from both β-oxidation and CAC are 

finally oxidized via OXPHOS to produce ATP (423). Complete FA oxidation of palmitate 

produces approximately twice the amount of energy compared to the catabolism of glucose into 

carbon dioxide and water (423). Importantly, FA synthesis and oxidation are mutually exclusive 

and are regulated by negative feedback wherein CPT1 activity is inhibited by high levels of 

malonyl-CoA generated by ACC during FA synthesis (423). Considering that oxygen is required 

for FA oxidation, the catabolism of FAs is thought not to be a significant contributor to energy 

production in hypoxic tumor cells (443). In keeping with this, hypoxia increased the accumulation 

of lipid droplets, and suppressed β-oxidation by inhibiting the expression of acyl-CoA 

dehydrogenases (444). Paradoxically, it was reported that some neoplastic cells require β-

oxidation, especially when subjected to metabolic stress such as hypoxia or glucose deprivation 



(445). For example, the brain isoform of CPT1 (i.e., CPT1C), is induced by hypoxia or glucose 

depletion in tumor cells to support ATP production (445). These contradictory findings illustrate 

that understanding of the role of FA oxidation in neoplasia is incomplete. Nonetheless, these 

findings suggest that targeting FA catabolism may limit the metabolic plasticity of tumor cells.  

1.2.8 Pentose Phosphate Pathway (PPP)  

The pentose phosphate pathway (PPP), which is also referred to as the hexose 

monophosphate shunt, branches from the glycolytic pathway (446). In PPP, after G6P is formed 

by HK, it is irreversibly oxidized by the rate-limiting NADP-dependent G6P dehydrogenase 

(G6PDH) to produce  6-phosphoglucono-δ-lactone in the oxidative branch of the PPP (447). 6-

phosphoglucono-δ-lactone is then hydrolyzed via 6-phosphogluconase (6PGL) to yield 6-

phosphogluconate (446, 447). 6-phosphogluconate is oxidatively decarboxylated via NADP-

dependent 6-phosphogluconate dehydrogenase (6PGDH) to generate ribulose-5-phosphate (Ru5P) 

(446, 447). Consequentially, the oxidative branch of the PPP produces 2 molecules of NADPH per 

molecule of G6P. The non-oxidative branch of the PPP involves the conversion of Ru5P by ribose 

5-phosphate isomerase (RPI) to form ribose-5-phosphate (R5P) (447), which is followed by a 

series of reversible reactions catalyzed by transketolase (TKT) and transaldolase (TALDO). Both 

enzymes utilize glycolytic/gluconeogenic intermediates, such as F6P and G3P, to produce PPP 

intermediates and vice versa they can generate glycolytic/gluconeogenic intermediates from PPP 

intermediates (446). Hence, the PPP is coordinated with glycolysis and gluconeogenesis to control 

the production of NADPH and R5P (447, 448). Taken together, the PPP supports cell survival and 

proliferation by directly or indirectly providing NADPH needed to drive lipid biosynthesis and 

ROS scavenging, while simultaneously generating R5P molecules required for nucleotide 

synthesis (447).  



Studies have suggested that cancer cells may reprogram their metabolism to redirect carbon 

units derived from glucose into both arms of the PPP (447). PPP reprogramming in tumor cells is 

facilitated due to the reversible nature of most of the reactions in the nonoxidative arm (446). PPP 

has also been thought to play a major role in metabolic plasticity of cancer cells (446). For 

example, when cells are under oxidative stress, the PPP is utilized to enhance NADPH production 

via the oxidative branch, and to simultaneously direct the nonoxidative branch towards re-

synthesizing more G6P molecules needed to support the oxidative branch (446). Since G6PDH is 

negatively regulated by NADPH, it is expected that the activity of this enzyme is elevated in cancer 

cells with high NADPH consumption (449). In line with this, increased activity of G6PDH was 

reported in cervical cancer (450). In addition, it was shown that pancreatic cancer cells primarily 

engage the nonoxidative branch of PPP to produce ribonucleotides for the synthesizing nucleic 

acids (451, 452). This is occasionally supported by elevated TKT expression (451, 452). In 

summary, the aberrant expression, and activities of the PPP enzymes in cancer cells allow them to 

adapt to oxidative stress while supporting their rapid proliferative rates. 

1.2.9 Nucleotide metabolism 

Nucleotides play several diverse roles in a cell including providing energy to coenzymes 

in the form of ATP, acting as cofactors (e.g., FAD, NAD and NADP) and regulators (e.g., AMP 

and ADP) of various metabolic enzymes, along with providing the essential building blocks for 

nucleic acid synthesis (453). The synthesis of DNA and RNA is enhanced to support cell growth 

and proliferation especially in rapidly proliferating lymphocytes and cancer cells (454). Activated 

lymphocytes and tumor cells greatly induce de novo nucleotide synthesis pathways  plausibly due 

to the limiting concentrations of nucleosides and nitrogenous bases available in blood (455). 

 



1.2.9.1 Purine biosynthesis 

R5P molecules, which are predominantly derived from the PPP, are used to produce 

phosphoribosyl pyrophosphate (PRPP) via 5-phosphoribosylsynthetase (PRPS) (454). The purine 

biosynthetic pathway takes place in the cytosol and commences with the conversion of PRPP into 

5-phosphoribosyl-1-amine (PRA) by the rate-limiting PRPP amidotransferase (PPAT) (453, 456). 

PRA undergoes a series of reactions to build the purine rings which involves the use of glutamine 

and aspartate as the primary nitrogen atom providers while THF, bicarbonate, and glycine donate 

the carbon atoms needed to generate inosine monophosphate (IMP) (453, 454). The resulting IMP 

is used to synthesize both guanosine monophosphate (GMP) [via inosine monophosphate 

dehydrogenase (IMPDH) and guanosine monophosphate synthetase (GMPS)] and adenosine 

monophosphate (AMP) [through the activities of adenylosuccinate synthase (ADSS) and 

adenylosuccinate lyase (ADSL)] (456). De novo purine synthesis is regulated by product inhibition 

as AMP and GMP repress PRPS and PRA through a negative feedback loop (453). Enzymes 

involved in the nucleotide biosynthesis pathway such as IMPDH and PRPS2 have been shown to 

be important for MYC-driven oncogenesis because their abrogation correlates with decreased 

proliferation of B-cell lymphoma and small cell lung cancer (457, 458).  

1.2.9.2 Pyrimidine biosynthesis 

Unlike purine biosynthesis which begins with PRPP as the main precursor metabolite, 

pyrimidines are synthesized as free rings to which R5P molecules are subsequently attached (453). 

The first three reactions of de novo pyrimidine synthesis occur in the cytosol and are catalyzed by 

a trifunctional enzyme called carbamoyl phosphate synthetase 2, aspartate transcarbamoylase, and 

dihydroorotase (CAD) (456). Specifically, CAD uses bicarbonate to convert glutamine into 

carbamoyl phosphate which represents the rate-limiting step of the pathway (456). Carbamoyl 



phosphate co-reacts with aspartate to produce N-carbamoyl-L-aspartate that is ultimately 

dehydrated into dihydroorotate (453, 456). CAD catalyzes the assembly of the dihydroorotate ring 

by incorporating nitrogen atoms from glutamine and aspartate, while the carbon atoms of the ring 

are derived from aspartate and bicarbonate (454). As previously mentioned, dihydroorotate is 

oxidized into orotate by DHODH (453). The R5P molecules are linked to the orotate ring and 

subsequently decarboxylated into uridine monophosphate (UMP) via the catalytic activities of 

orotase phosphoribosyltransferase and orotidylic acid decarboxylase, respectively (453, 456, 459). 

Orotase phosphoribosyltransferase and orotidylic acid decarboxylase are components of the 

bifunctional uridine monophosphate synthetase (UMPS) (453, 456, 459). UMP acts as a negative 

regulator of pyrimidine biosynthesis through feedback inhibition of carbamoyl phosphate 

synthetase 2 domain of CAD (453). UMP is phosphorylated using 2 ATP molecules in sequential 

reactions catalyzed by UMP/CMP kinase and nucleoside-diphosphate kinase to produce UTP 

(459). UTP and glutamine serve as substrates of the ATP-dependent CTP synthase to generate 

CTP (459). Deoxyribonucleotides (dNTPs) such as dTTP are produced using dUMP as a precursor 

that can be methylated with 5,10-methylene-THF by thymidylate synthase to generate dTMP, 

which in turn is further phosphorylated to generate dTTP (460). dUMP is itself formed through 

the reduction and subsequent dephosphorylation of UTP by ribonucleotide reductase (RNR) or via 

the deamidation of dCMP derived from the hydrolysis of DNA (460, 461). De novo pyrimidine 

biosynthesis is upregulated in transformed breast cancer cells (462). The induction of de novo 

pyrimidine biosynthesis was accompanied by higher CAD expression and activity compared to 

non-transformed breast cells (462). 

 

 



1.3 Dysregulation of metabolism in cancer 

Perturbation in cellular energy metabolism and metabolic flexibility in cancer cells play a 

major role in tumor initiation, progression and therapeutic responses. Several transcription factors 

and signaling pathways that are frequently dysregulated in neoplasia are thought to orchestrate 

metabolic rewiring in cancer cells and underpin metabolic plasticity of neoplasia. 

1.3.1 Transcriptional regulation of cancer metabolism 

1.3.1.1 Hypoxia Inducible Factor (HIF) 

It is proposed that one of the predominant mechanisms underlying the Warburg effect is 

the activation of the HIF complex, which functions as a transcription factor that is physiologically 

activated in response to hypoxia (463). Given that solid tumors rapidly outstrip their vascular 

supply because of their neoplastic growth, most cells in the tumor bed are thought to be exposed 

to low oxygen levels ranging between 1% - 2%  (464, 465). The HIF complex is thought to 

upregulate the expression of genes to sustain cancer cell proliferation and survival under hypoxia 

(463). In some cancer subtypes, HIF is aberrantly activated even under normoxic conditions which 

is usually caused by genetic lesions such as the amplification of HER2 oncogene in breast cancer  

(466). HIF gene family comprises alpha and beta subunits that assemble into heterodimers to 

regulate transcription (467). Humans express 3 paralogues of HIF-α subunit (HIF-1α, HIF-

2α/EPAS, HIF-3α) as well as 2 HIF-β paralogues (HIF-1β/ARNT, HIF-2β/ARNT2) (467). HIFs 

appears to function in non-redundant manner whereby HIF-1 upregulates glycolytic genes while 

HIF-2 stimulates expression of genes associated with lipoprotein metabolism (468). Notably, 

genetic inactivation of the VHL tumor suppressor gene, which is common in clear cell renal 

carcinoma, leads to constitutive stabilization of HIF-1α and HIF-2α (254). Intriguingly, during the 

progression of clear cell renal carcinoma, the expression of HIF-1α is occasionally abolished and 



HIF-2 (a heterodimer of HIF-2α and HIF-1β)  takes over the transcriptional control of genes 

previously regulated by HIF-1 (469). Considering that HIF regulates the transcription of genes 

encoding 13 different glucose transporters (e.g., GLUT1 and GLUT3) and glycolytic enzymes 

(e.g., HK1, HK2, LDHA, ENO1, PKM, PGK1, GAPDH and TPI), it is thought that it plays a major  

role in regulation of aerobic glycolysis (470). Furthermore, as an adaptive response, HIF promotes 

the transcription of genes that induce mitochondrial breakdown via autophagy such as BNIP and 

BNIP3L, when cells are subjected to chronic hypoxia (471, 472). HIF also attenuates oxidative 

decarboxylation in the CAC and induces reductive metabolism of glutamine which at least in part 

is achieved via suppression of OGDH (41, 473, 474).  Taken together, HIF plays a prominent role 

in orchestrating metabolic reprograming of neoplasia.  

1.3.1.2 MYC 

Similar to HIF, the MYC family of oncoproteins (CMYC, MYCL and MYCN) are 

transcription factors that are approximated to regulate the transcription of 15% of the whole human 

genome (472, 475). Although MYC expression is tightly regulated in non-transformed cells, MYC 

has been found to be overexpressed or aberrantly regulated in up to 70% of all types of cancers 

through diverse mechanisms, such as genetic copy-number gain (chromosome amplification or 

translocation), super-enhancer activation, and altered protein stability (476). For instance, aberrant 

expression of CMYC is observed in up to 70–80% of CRC (477).  There is evidence demonstrating 

that enhanced MYC activation is a major promoter of malignant transformation, and that MYC-

driven tumors and cancers driven by other oncogenes (e.g., KRAS) constitutively depend on 

elevated MYC levels for tumor progression (478, 479). Notably, aberrant MYC expression is 

postulated to play a major role in modulating global metabolic reprogramming, to enable the 

production of bioenergetic substrates and biomass needed to support neoplastic growth (480). 



CMYC was reported to regulate the global metabolic rewiring of CRC by regulating 215 metabolic 

reactions (481). Similar to HIF, MYC acts as a promoter of glucose metabolism given that MYC 

directly upregulates the transcription of several glycolytic genes (e.g., SLC2A1, HK2, ENO1, 

LDHA) (37, 482). Interestingly, MYC cooperates with HIF-1 to upregulate the expression of key 

glycolytic genes in response to hypoxia, such as HK2 and PDK1 in MYC-driven Burkitt’s 

lymphoma cells (38). This suggests that crosstalk between MYC and HIF-1 plays a prominent role 

in governing the glucose metabolism in lymphoma and potentially other cancer types (38).  

 In addition to regulating glucose metabolism, MYC also modulates amino acid metabolism 

(483, 484). MYC was reported to elevate the mRNA levels of large neutral essential amino acid 

transporters (SLC7A5 and SLC43A1) (485). MYC also upregulates glutamine metabolism by 

activating glutamine transporters (SLC1A5 and SLC38A5) and inducing the expression of 

glutamine-utilizing enzymes (GLS1, PRPS2 and CAD) which collectively results in increased 

glutamine uptake (483, 486-488). Interestingly, a recent study showed that glutamine deprivation 

in cancer cells altered CMYC expression, wherein the major CMYC isoform is downregulated 

while the CMYC 1 isoform was upregulated  (316, 489).  The alterations in CMYC and CMYC 1 

expression levels were mirrored by increased expression of GLUL which catalyzes de novo 

glutamine synthesis (316, 489). Consistent with its central role in glutamine metabolism, 

overexpression of MYC was shown to induce “glutamine addiction” and increase sensitivity of 

colon cancer cells and MYC-transformed rat fibroblasts to mitochondrial inhibitors including 

metformin (490). Furthermore, ATP production and oxygen consumption were elevated when 

glutamine rather than glucose was the carbon source in MYC-overexpressing rat fibroblast (490). 

Altogether, these findings illustrate that MYC-driven metabolic perturbations play a prominent 

role in tumorigenesis and tumor progression across diverse types of neoplasia. 



1.3.1.3 p53 

It is generally thought that the tumor suppressor gene, TP53 is the most commonly mutated gene 

in cancer; it is mutated in over 50% of all cancer types (491).  For example, mutations in TP53 

gene occur in approximately 40%-50% of sporadic CRC (492). p53, the protein product of the 

TP53 gene,  is widely recognized as a transcription factor that plays a central role in responses to 

a variety of cellular stressors (DNA damage, hypoxia, nutrient fluctuation and mitogenic 

oncogenes) by modulating cell proliferation, senescence, DNA repair, and apoptosis (493). 

However, there is an accumulating evidence that suggests that the tumor suppressor function of 

p53 is also mediated by its metabolic regulatory activities (491).  

p53 has been shown to regulate glucose metabolism through the downregulation of glucose 

transporters (i.e., SLC2A1, SLC2A3 and SLC2A4) (494, 495). Furthermore, activated p53 inhibits 

the expression of several glycolytic enzymes such as HK2 and PGM (496-498). Conversely, p53 

induces TIGAR (TP53-induced glycolysis and apoptosis regulator) which depletes intracellular 

fructose-2,6-bisphosphate levels leading to the inhibition of glycolysis (496-498). Although p53 

suppress glucose uptake and glycolysis, reports indicate that it stimulates mitochondrial functions 

and OXPHOS (499). For example, p53 induces expression of SCO2 (Synthesis of Cytochrome c 

Oxidase 2) in CRC cells whereby the abrogation of the SCO2 gene in cells with wildtype p53 

protein recapitulated the metabolic switch from OXPHOS to aerobic glycolysis that occurs in p53-

deficient cells (499). Collectively, these studies suggest that p53 suppresses glucose metabolism 

while stimulating mitochondrial respiration. Moreover, these results provide mechanistic evidence 

that links loss of p53 function with Warburg effect in cancer cells. 

 

 



1.3.2 Metabolic regulation via cellular signaling pathways 

Activating mutations in oncogenes and loss-of-function mutations in tumor suppressor 

genes result in the dysregulation of several intracellular signaling pathways. Although aberrant 

signaling pathways are well established as facilitators of uncontrolled proliferation and enhanced 

survival of tumor cells, abnormal function of transduction pathways also underpin critical 

metabolic processes needed to drive tumorigenesis (500).  

1.3.2.1 RAS-RAF-MEK-ERK signaling pathway 

The RAS-RAF-MEK-ERK signaling cascade, one of the most extensively studied 

signaling pathways, couples stimuli from the cell surface receptors to transcription factors that 

regulate gene expression. This pathway is frequently hyperactivated by genetic alterations in 

upstream signaling molecules such as receptor tyrosine kinases (RTKs) or activating mutations in 

downstream transducers (i.e., RAS and RAF) (501). The aberrant activation of the RAS-RAF-

MEK-ERK prevents apoptosis while stimulating cell cycle progression (502). Moreover, there is 

growing body of evidence that implicates the constitutive activation of the RAS-RAF-MEK-ERK 

signaling pathway in inducing metabolic perturbations in cancer cells which includes promoting 

aerobic glycolysis (503). 

1.3.2.1.1 RAS 

Collectively, the three RAS genes (HRAS, NRAS and KRAS) are one of the most frequently 

mutated oncogenes in cancer with KRAS being the most prevalent (86%) (504). RAS proteins are 

GTPases that transduce extracellular signals from cell surface RTKs in response to growth factors 

and other extracellular stimuli to downstream intracellular effector pathways (e.g. ERK1/2 

signaling pathway) (505). Mutations in RAS proteins have been demonstrated to profoundly affect 

metabolism in a variety of malignancies (506). For instance, oncogenic RAS has been implicated 



in several nodes of glucose metabolism. Transcriptomic and stable isotope tracer analysis indicated 

that KRAS-transformed mouse embryonic fibroblasts, PDAC and CRC cells have elevated glucose 

uptake and glycolysis (507-509). The abrogation of mutant KRAS has been associated the 

downregulation of glucose transporter (SLC2A1) and several glycolytic genes (HK1, HK2, PFK1 

and LDHA) in PDAC  (508). KRAS mutants also promote the nonoxidative arm of the PPP as 

illustrated by the increased carbon flux into glycolytic intermediates (G3P, F6P) that are then fed 

into the PPP and non-oxidative PPP intermediate (sedohepulose-7-phosphate) (508). Moreover, 

recent reports suggest that KRAS and HK1 interact in GTP-dependent manner, whereby this 

interaction is required to stimulate the hexokinase (509). In spite of indications of a direct GTP-

dependent interaction between KRAS and HK1, KRAS predominantly regulates most metabolic 

pathways through MAPK-dependent signaling cascades to ultimately provide biomass for 

neoplastic growth (509, 510). 

1.3.2.1.2 RAF 

The serine/threonine RAF family of kinases which include ARAF, BRAF and CRAF 

become activated by GTP-bound RAS proteins (511). In addition, activating RAF mutations result 

in the constitutive activation of ERK1/2 signaling pathway (512). Among the three isoforms of 

RAF, BRAF has the highest mutation rate, occurring in 30–70% of melanomas, 30–50% of thyroid 

cancers, and 5–20% of colorectal cancers (511, 513). The majority of these tumors harbor BRAF 

V600E point mutation which favors the active structural conformation of BRAF causing the 

constitutive activation of ERK1/2 pathway (514). This ultimately promotes Warburg Effect and 

cell proliferation (515).  Accordingly, BRAF-mutated CRC cell lines upregulate the glucose 

transporter SLC2A1, to increase glucose uptake (516). In addition, the BRAF V600E point 

mutation sustains melanoma cells by upregulating glycolytic enzymes including GAPDH, 



PGAM1 and LDHA (517). Interestingly, it was shown that BRAF-mutated melanomas have 

reduced levels of the mitochondrial master regulator PGC1α, and decreased OXPHOS (518). 

Collectively these findings provide insights in the role of RAF mutations in metabolic rewiring of 

neoplasia. 

1.3.2.2 AMPK: Regulator of intracellular energy homeostasis 

It is critical for cells to maintain energy homeostasis by coordinating energy consumption 

and production. Dysregulation of energy homeostasis is implicated in promoting various diseases 

such as type 2 diabetes, obesity, and cancer. AMP-activated protein kinase (AMPK) is considered 

to represent a major intracellular energy sensor, that is activated in response to alterations in 

energetic status of the cell caused by various stressors including nutrient deficiency, oxidative 

stress and hypoxia (519, 520). AMPK is a heterotrimeric serine/threonine kinase complex 

consisting of a catalytic α subunit (α1 and α2) and two regulatory β (β1 and β2) and γ (γ1, γ2 and 

γ3) subunits (520-522). The expression of the different AMPK subunit isoforms is tissue-specific 

(523). Notably, AMPK α1, β1, and γ1 subunits are ubiquitously expressed while the other AMPK 

subunit isoforms exhibit a more restricted expression pattern (523). For example, α2 is highly 

expressed in skeletal and cardiac muscle, and it is the predominant α-subunit in these tissues (523). 

Cellular energy depletion typically results in the increase of AMP/ATP or ADP/ATP ratios, 

whereby AMP or ADP bind directly to the γ subunit of AMPK (523). This induces a 

conformational change in the α subunit and prevents dephosphorylation of the α subunit activation 

loop threonine residue (T172 in humans) by phosphatases (524-527). Threonine residue (T172 in 

humans) found in the activation loop of the α subunit is phosphorylated by upstream kinases 

including as the serine/threonine kinase liver kinase B1 (LKB1), and calcium/calmodulin-



dependent protein kinase kinase β (CAMKK2) (528, 529). The phosphorylation of AMPK at T172 

increases AMPK activity by up to 100-fold in cell-free assays (526).  

LKB1 functions as a constitutive heterotrimer found in complex with the kinase-dead 

STE20-related kinase (STRAD) and the STE20 family scaffolding protein (MO25) (530, 531). 

LKB1 is primarily responsible for the activation of AMPK under energy stress in most mammalian 

tissues (532). Nonetheless, AMPK can also be phosphorylated and activated independently of 

LKB1, in response to increased intracellular calcium levels by CAMKK2 (533). In this way, 

CAMKK2 couples calcium signaling to AMPK-dependent metabolic programs (534). Of note, 

CAMKK2 has been demonstrated to also activate AMPK following metabolic stressors, such as 

amino acid deprivation and hypoxia (535-537).  Taken together, the role of AMPK as a sensor of 

metabolic stress is facilitated by the catalytic activities of both LKB1 and CAMKK2.  

Importantly, it has been reported that the lysosomal membrane surface facilitates the 

phosphorylation of AMPK by LKB1 (538, 539). These studies provide mechanistic insights into 

AMPK activation under conditions of glucose deprivation (538, 539). In glucose-starved cells, 

LKB1 is tethered to the scaffolding protein, AXIN (538, 539).  The LKB1-AXIN-AMPK complex 

was shown to be localized to the late endosome/lysosomes by binding to the lysosomal protein, 

LAMTOR1 (also known as Ragulator1), a component of v-ATPase-Ragulator complex (538).  

There is accumulating evidence indicating that AMPK plays a major role in detecting 

oxidative stress. For example, ROS modulates AMPK activity by direct posttranslational 

modifications of the α-subunit (540, 541). However, the resulting effects of such modifications 

seem to be context-dependent. Exposure of HEK293 cells to H2O2 induced the oxidation and S-

glutathionylation of C299 and C304 in the α-subunit, which result in activation of AMPK (541). 

Conversely, treating cardiomyocytes with H2O2 causes the oxidation of the C130 and C174 in the 



α-subunit that coincides with the inhibition of AMPK (540). Although further work is warranted 

to define the role of AMPK in sensing ROS levels, these studies suggest that AMPK acts as a 

critical node linking energy and redox status in the cell. 

AMPK not only senses the cellular energy status but also ATP levels by suppressing ATP-

consuming biosynthetic pathways (e.g., protein synthesis and fatty acid synthesis), while 

concurrently promoting pathways that regenerate ATP through the breakdown of macromolecules 

and organelles (e.g., glycolysis and fatty acid oxidation). Specifically, energy stress activates 

AMPK which can promote glucose uptake by phosphorylating and degrading TXNIP, a negative 

regulator of glucose metabolism, resulting in the upregulation and surface translocation of 

SLC2A1 glucose transporter (542). Once glucose is catabolized to restore ATP to ADP/AMP 

ratios, AMPK is subsequently dephosphorylated which ultimately induces TXNIP to suppress 

glucose uptake as energy homeostasis is re-established (542). Conversely, AMPK prevents the 

storage of glycogen by inhibitory phosphorylation of glycogen synthases (GYS1 and GYS2) (543). 

It also downregulates gluconeogenesis through the phosphorylation and nuclear exclusion of 

cyclic-AMP-regulated transcriptional co-activator 2 (CRTC2) and class II histone deacetylases 

(HDACs), which are key cofactors for the transcription of gluconeogenic genes (544). 

Additionally, AMPK suppresses lipid synthesis through the direct inhibitory phosphorylation of 

acetyl-CoA carboxylase 1/2 (ACC1/2) which catalyzes the rate-limiting step of fatty acid synthesis 

(523, 545).  In parallel to inhibiting fatty acid synthesis, activated AMPK stimulates fatty acid 

oxidation by reducing the levels of ACC2-generated malonyl-CoA (523). This alleviates the 

repression of CPT1 thus promoting fatty acid oxidation (523).  In summary, AMPK-dependent 

inhibition of gluconeogenesis and lipid synthesis limits ATP consumption while promoting ATP-

generating metabolic processes under energy stress.  



Considering that protein synthesis is one of the most energetically demanding cellular 

process, AMPK inhibits this process when nutrients are limited. AMPK-dependent 

downregulation of protein synthesis is mostly mediated through the direct inhibition of 

mechanistic target of rapamycin complex 1 (mTORC1 complex)  through two independent 

mechanisms: the activating phosphorylation of tuberous sclerosis complex 2 (TSC2), a negative 

mTORC1 regulator, and the inhibitory phosphorylation of RAPTOR (546, 547). AMPK also 

suppresses protein synthesis by phosphorylating eukaryotic elongation factor 2 kinase (eEF2K) 

which is a negative regulator of mRNA translation elongation (548). Notably, eEF2K can also be 

directly phosphorylated by mTOR (549), thus illustrating crosstalk between AMPK and mTOR 

signaling pathways.  

Tumor-suppressive functions of AMPK have been described in prostate cancer wherein 

AMPK-mediated inhibition of lipogenesis was associated with tumor growth arrest (550). While 

the inhibition of AMPK due to a hypomorphic mutation decreases LKB1 expression and markedly 

accelerates tumor development in PTEN(+/-) mice, activating AMPK by administering well 

recognized mitochondrial inhibitors (such as metformin, phenformin or A-769662) to PTEN(+/-) 

mice significantly delayed tumor onset (551). Finally, it has been demonstrated that AMPK 

counteracts Warburg effect thus attenuating tumor growth in mouse models (552). Nevertheless, 

under certain contexts including nutrient and oxygen deprivation, AMPK activation engenders 

tumor cells with growth advantage by increasing metabolic plasticity and allowing cells to adapt 

to energy stress (553). This is for example illustrated by observations that under energy stress 

activated AMPK inhibits ACC1/2 in order to maintain NADPH levels by reducing NADPH-

consuming fatty-acid synthesis while elevating NADPH-generating fatty-acid oxidation (554). 

This facilitated anchorage-independent growth and solid tumor formation in vivo mouse models 



(554). These and other findings suggest that whereas AMPK plays a tumor suppressive role during 

tumor initiation, it attains a tumor promoting role once tumors outstrip their vasculature and are 

exposed to metabolic stress (555). 

1.3.2.3 PI3K-AKT-mTOR signaling 

The PI3K-AKT-mTOR signaling pathway underpins many essential cellular processes 

such as cell growth, protein synthesis, proliferation and energy metabolism (556). Similar to the 

RAS-RAF-MEK-ERK signaling cascade, the PI3K signaling pathway is activated when RTKs 

bind to growth factors, hormones or mitogens (557) (Fig. 1.4). This triggers the intracellular 

autophosphorylation of tyrosine residues on the RTKs which act as cell membrane anchors for 

PI3K (558-560).  Subsequently, PI3K phosphorylates phosphatidyl inositol-4,5-biphosphate 

(PIP2) to yield phosphatidyl inositol-3,4,5-triphosphate (PIP3) (Fig. 1.4). PIP3 translocates the 

serine/threonine kinase, AKT, to the cell membrane where it is phosphorylated within its activation 

loop (at T308) and activated by 3-phosphoinositide-dependent protein kinase 1 (PDK1) (561) (Fig. 

1.4).  A major negative regulator of the PI3K signaling pathway, is the tumor suppressor PTEN 

which dephosphorylates PIP3 into PIP2 (562) (Fig. 1.4).  Although the PI3K/AKT pathway has 

been reported to promote glucose uptake and glycolysis through the translocation of glucose 

transporter, SLC2A4 and activation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 

(PFKFB) respectively, the signaling pathway predominantly regulates various metabolic processes 

via its downstream effector mTOR (563-565). 

mTOR is a serine/threonine kinase which acts downstream of the PI3K signaling pathway 

(Fig. 1.4). mTOR is the catalytic subunit of two functionally and structurally distinct protein 

complexes. The mTORC1 complex is composed of mTOR, mLST8, proline rich AKT1 substrate 

40 (PRAS40), DEPTOR and RAPTOR while mTORC2 is composed mTOR, mLST8, mSIN1, 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proline


DEPTOR, PROTOR 1/2 and RICTOR (566-570).  Between the two complexes, the functions of 

mTORC1 complex are better defined whereby it has been shown that it promotes glycolysis, lipid 

synthesis, cell growth and protein synthesis while the activities of mTORC2 are mostly obscure 

(570, 571). Nonetheless, mTORC2 has been demonstrated to regulate proliferation, cell survival 

and cytoskeletal organization primarily via the phosphorylation of AGC kinases including AKT, 

SGK1 and PKC (572, 573). While mTORC2 modulates metabolism mainly through the activation 

of AKT, the complex also regulates cytoskeletal remodeling and cell migration through the 

phosphorylation of PKCα, PKCδ, PKCζ, PKCγ and PKCε (570, 574-578). Also, mTORC2-

mediated phosphorylation and activation of SGK1 promotes epithelial sodium ion transport and 

cell survival (579, 580). 

 1.3.2.3.1 Upstream activators of mTOR signaling 

AKT phosphorylate and inhibits TSC2 which together with TSC1 and TBC1 domain 

family member 7 (TBC1D7) comprises tuberous sclerosis complex (TSC) (581) (Fig. 1.4). The 

TSC complex is GTPase-activating protein (GAP) that inhibits the activator of mTORC1, ras 

homolog enriched in brain (RHEB) GTPase (582, 583) (Fig. 1.4). Thus, the inhibition of the TSC 

complex by AKT results in the activation of mTORC1. DNA damage and hypoxia induce 

regulated in development and DNA damage response 1 (REDD1) protein which facilitates the 

dissociation of inhibitory 14–3–3 protein from TSC2 leading to mTORC1 inhibition (584-586) 

(Fig. 1.4). 

 Interestingly, ERK1/2 from the RAS-RAF-MEK-ERK signaling pathway can 

phosphorylate TSC2 (at S540 and S664) and RAPTOR (at S8, S696 and S863) directly which 

activate mTORC1 (587-590). In addition, ERK1/2 indirectly leads to the phosphorylation of TSC2 

(at S1798) and RAPTOR (at S719, S721 and S722) via p90 ribosomal protein S6 kinase (RSK), 



thus promoting mTORC1 signaling (591-594) (Fig. 1.4).  The interaction between the RAS-RAF-

MEK-ERK and PI3K-AKT-mTORC1 pathways results in negative regulation of each other’s 

activity via cross-inhibition (595). For instance, the activation of ERK induces the phosphorylation 

of GRB2-associated binder 1 (GAB1) at six serine/threonine residues (T312, S381, S454, T476, 

S581, S597) which hinders GAB1-mediated recruitment of PI3K to the EGF receptor and thus 

decrease the phosphorylation of AKT (596). The ERK phosphorylation sites on GAB1 recruit the 

protein tyrosine phosphatase, SHP2, which dephosphorylates and regulate RASGAP and PI3K 

(595, 597). Conversely, AKT inhibits the MAPK signaling pathway via the phosphorylation of 

RAF (598). This is demonstrated in a study which show that high concentrations of IGF1 markedly 

activate AKT resulting in the phosphorylation and repression of RAF activity in breast cancer and 

melanoma cell lines (598-600). Intriguingly, it was shown that although activating BRAF 

mutations initiate nevi development, AKT activation is required to bypass MAPK-mediated cell 

cycle arrest or senescence (600). AKT reduces RAS-RAF-MEK-ERK signaling to levels it can 

cooperate with to transform nevi into melanomas (600). Collectively, these illustrate crosstalk 

between the RAS-RAF-MEK-ERK and PI3K-AKT-mTORC1 signaling pathways and thus, 

indicate cooperation between the two pathways in regulating metabolic processes and tumor 

development.   

Amino acids, glucose, energy stress and oxygen and growth factors activate mTORC1 

(570). Specifically, mTORC1 indirectly responds to high AMP/ATP ratio, glucose deprivation and 

hypoxia partly through the activation of AMPK which in turn inhibits mTORC1 as previously 

discussed (547, 601, 602) (Fig. 1.4).  However, glucose starvation also suppresses mTORC1 

complex independent of AMPK (603, 604). Glucose depletion inhibits Rag GTPases 

(RagA/RagB) which prevents the localization and activation of mTORC1 at the lysosome (603, 



604) (Fig. 1.4). Additionally, mTORC1 senses amino acid levels through Rag GTPases (605, 606) 

(Fig. 1.4). Rag GTPases function as heterodimeric complexes of RagA or RagB with RagC or 

RagD and are attached to the lysosome through their association with the Ragulator/LAMTOR 

complex (that is composed of MP1, p14, p18, HBXIP and c7ORF59) (607, 608). The 

Ragulator/LAMTOR complex which associates with a v-ATPase at the lysosomal surface, not 

only acts as a scaffold for Rag GTPases but also has a guanine nucleotide exchange factor (GEF) 

activity for RagA/B (608). The presence of amino acids stimulates the GEF activity of the 

Ragulator in a v-ATPase-dependent manner resulting in RagA/B-GTP loading and the subsequent 

recruitment of mTORC1 to the lysosome where it also interacts with RHEB (608) (Fig. 1.4). 

Interestingly, a few additional components involved in amino acid sensing by mTORC1 have been 

identified such as the folliculin-folliculin interacting protein 1/2 (FNIP1/2) complex which acts as 

a GAP for RagC/D GTPases (609, 610). However, glutamine and asparagine have been 

demonstrated to stimulate mTORC1 independently of Rag GTPases but through ADP ribosylation 

factor (ARF) family GTPases (611-613). Of note, specific amino acids (e.g., leucine and arginine) 

are amongst the most potent activators of mTORC1. Leucine and arginine activate mTORC1 via 

GATOR1 and GATOR2 complexes (614). GATOR1 complex (composed of DEPDC5, Nprl2 and 

Nprl3) is inhibited by the GATOR2 complex (consisting of Mios, WDR24, WDR59, Seh1L and 

Sec13)(614). GATOR1 which suppresses mTORC1 activity by acting as a GAP for RagA/B, is 

anchored to the lysosome by another complex, KICSTOR (comprised of KAPTIN, ITFG2, 

c12orf66, and SZT2) (614, 615). Cytosolic leucine and arginine activate mTORC1 by binding and 

inactivating Sestrin2 and CASTOR1 respectively which are inhibitors of GATOR2 (616-620). In 

addition to the extensive studies on the effects of glucose and amino acids on mTORC1 signaling, 



recent findings indicate that mTORC1 senses intracellular levels of nucleotides and lipids (621, 

622). 

Compared to mTORC1, there are fewer known activators of the mTORC2 complex. 

mTORC2 appears to be to be predominantly activated by insulin and other growth factors via PI3K 

(623). PI3K-dependent regulation of mTORC2 is facilitated by the mSIN1 subunit of the complex 

which contains a phosphoinositide-binding pleckstrin homology (PH) domain that inhibits 

mTORC2 in the absence of insulin but activates mTORC2 when insulin is present by binding to 

PIP3 generated at the plasma membrane (624) (Fig. 1.4). Interestingly, PI3K promotes the 

association of mTORC2 with ribosomes which results in mTORC2 activation (625). When AKT 

is partially activated due to phosphorylation of T308, it phosphorylates mSIN1 (at T86) which 

induces mTORC2 to phosphorylate (at S473) and fully activate AKT (626). Although the partial 

activation of AKT is sufficient to phosphorylate and thus activate mTORC1, fully activated AKT 

phosphorylates a more diverse set of effectors containing an RXXS/T motif (568). As such, 

mTORC2 promotes mTORC1 signaling via AKT-dependent phosphorylation of TSC2 and other 

effectors. However, mTORC2 is regulated by mTORC1 as a result of a negative feedback loop 

between mTORC1 and PI3K (627, 628). Specifically, elevated mTORC1 increases the activity of 

one of its downstream effectors, S6 kinase (S6K), resulting in the phosphorylation and degradation 

of insulin receptor substrate-1 (IRS-1) which in turn recruits PI3K (627-629). Furthermore, 

mTORC1 phosphorylates and activates growth factor receptor-bound protein 10 (GRB10), which 

negatively regulates insulin/IGF-1 receptor signaling upstream of AKT and mTORC2 (630, 631). 

More recently, AMPK has been revealed as a positive regulator of mTORC2 during periods of 

glucose deprivation (632, 633). AMPK activates mTORC2 by phosphorylating mTOR and 

RICTOR when PI3K signaling is downregulated (632). While the existence of positive and 



negative feedback loops between mTORC1 and mTORC2 signaling elucidate potential drug 

targets, the interconnectivity between the two complexes is indicative of cooperation between the 

mTOR complexes in mediating metabolic processes. 

 

 



Fig. 1.4. mTOR signaling pathway. mTOR exists in two distinct complexes: mTORC1 

(blue) and mTORC2 (magenta). mTOR is activated by hormones, growth factors via receptor 

tyrosine kinases as well as amino acids imported from the extracellular space. mTORC1 is also 

modulated by intracellular cues such as AMP/ATP ratio and levels of oxygen. Furthermore, 

mTORC1 signaling pathway interacts with the MAPK/RSK pathway. Upstream regulators of 

mTORC1 are shown in green (positive regulators) and red (negative regulators) while the 

downstream effectors are shown in yellow.  

1.3.2.3.2 Systemic effects of mTOR signaling 

mTOR signaling coordinates anabolic and catabolic processes to maintain energy 

homeostasis. In well-fed states, nutrient levels, and growth factors in the blood are increased which 

trigger anabolic processes while during starvation, catabolic processes are induced due to depleted 

growth factors and energy sources (570). The disruption of cellular energy homeostasis due to the 

upregulation or downregulation of mTOR result in tissue-specific abnormalities that are frequently 

lethal.  

Under physiological conditions, when plasma glucose concentration is reduced, adaptive 

processes involving mTOR signaling such as gluconeogenesis are induced (570). Moreover, 

constitutive activation of mTORC1 signaling due to the abrogation of TSC1 in the liver diminishes 

the production of ketone bodies as compensatory energy sources during fasting (634). The 

importance of diminishing mTORC1 signaling when the levels of nutrient (such as amino acids 

and glucose) are low is further underscored by the findings that the whole-body knock-in mice 

expressing a constitutively active form of RagA die due to their inability to induce autophagy in 

the liver during the perinatal fasting period (603). In pancreatic β-cells, mTORC1 has a biphasic 

effect on their function. The hyperactivation of mTORC1 through the loss of TSC2 in β-cells 



initially leads to increased pancreatic β-cell mass, elevated insulin production, and higher glucose 

tolerance in young mice which eventually leads to decreased β-cell mass, reduced insulin levels 

and hyperglycemia (635, 636). This is also consistent with prolonged mTORC1 hyperactivation 

induced by nutrient overload as commonly observed in type 2 diabetes and obesity (637, 638). 

Type 2 diabetes is often associated with diminished insulin production due to β-cell exhaustion 

caused by chronic exposure to excess of nutrients (i.e., glucose) (639). Furthermore, increased 

mTORC1 activity in insulin-responsive tissues results in insulin resistance because of enhanced 

negative feedback inhibition of insulin/PI3K/AKT signaling by S6K and via IRS-1 (638, 640). In 

addition, since mTORC2 fully activates AKT downstream of insulin-driven PI3K signaling, 

prolonged pharmacological or genetic inhibition of mTORC2 in the liver, muscle or adipocytes 

impedes response to insulin which is associated with glucose intolerance (641-645). In liver-

specific RICTOR-knockout mice, AKT is inhibited which reduces glucokinase activity and 

glycolysis in the liver (641). Taken together, these findings provide evidence that both mTORC1 

and mTORC2 regulate organismal glucose homeostasis.  

In the presence of nutrients and insulin, mTORC1 promotes adipogenesis and lipogenesis 

(646). However, the inhibition of mTORC1 induces lipolysis and fatty acid oxidation (647).  The 

hyperactivation of mTORC1 through the constitutive expression of activated RHEB in adipocytes 

upregulates lipogenesis while inhibiting lipolysis (648). Consistently, the abrogation of RAPTOR 

in the liver hinders mTORC1-driven de novo lipogenesis in the liver due to reduced expression of 

lipogenic genes including Srebp1c and Fas (649). Although the deletion of RAPTOR in 

adipocytes leads to hepatic steatosis, lipodystrophy and insulin resistance in mice, it also protects 

mice against diet-induced obesity and hypercholesterolemia because adipogenesis is 

downregulated (650, 651). Similar to mTORC1, mTORC2 regulates lipid homeostasis in the liver 



and adipose tissue (646). The inhibition of mTORC2 through the loss of RICTOR in adipocytes 

markedly increases the overall lean mass of mice due to growth in the size of non-adipose organs 

such as heart, kidney, spleen, and bone (645, 652).  Furthermore, the inactivation of RICTOR in 

adipocytes was associated with hyperinsulinemia, increased lipolysis in adipose tissue and insulin 

resistance in skeletal muscles and liver of mice (645, 652). Although hepatic insulin resistance is 

frequently linked to fatty liver due to the impaired ability of insulin to repress lipolysis, liver-

specific deletion of RICTOR actually protects mice against high-fat diet-induced fatty liver (641, 

642). Additionally, suppressing mTORC2 in the liver impairs insulin-driven hepatic lipogenesis 

which is accompanied by decreases in the expression of transcription factors (i.e., SREBP1c and 

PPARγ) and lipogenic enzymes (e.g., ACC and FASN) (641). However, the expression of genes 

regulating fatty acid oxidation (e.g., CPT1 and PPARα) are increased (641). In summary, both 

mTORC1 and mTORC2 play pivotal tissue-specific roles in regulating organismal lipid 

metabolism. 

 mTORC1 signaling promotes and maintains muscle mass. For instance, mTORC1 induces 

muscle hypertrophy and prevents muscle atrophy resulting from disuse (653). Conversely, when 

mTORC1 signaling is downregulated, hypertrophy is impeded (653). It is worth mentioning that 

these effects on muscle growth are only observed during acute activation of mTORC1signaling. 

Chronic activation of mTORC1 due to abrogation of TSC1 leads to muscle atrophy and low body 

mass because the muscles lack the ability to trigger autophagy which is a critical cellular process 

for muscle growth (654). Collectively, this suggests that periods of mTORC1 activation and 

inhibition is required for optimal muscle growth and function. 

 The PI3K-AKT-mTORC1 axis is frequently hyperactivated in cancer (655, 656).  

Hyperactivation of this axis stem from activating mutations in positive regulators including 



PIK3CA and AKT genes, and/or inactivation of tumor suppressors that suppress this signaling axis 

including PTEN and TSC genes (655-657). These mutations occur in diverse cancer types 

including breast cancer, CRC and glioblastoma (658). More recently, activating mutations in 

mTOR have also been described in endometrial carcinoma, CRC, melanoma, renal cell cancer and 

bladder cancer (655, 656, 659). This has garnered interest as targeting the PI3K-AKT-mTORC1 

pathway presents a potential therapeutic opportunity in cancer  (658). Notwithstanding the modest 

success of applying allosteric mTOR and PI3K inhibitors in the clinic, the outcomes of these 

approaches were lesser than initially expected (655). This was largely attributed to incomplete 

understanding of the complexity of the mechanisms underpinning pro-oncogenic activities of the 

PI3K-AKT-mTORC1 pathway, and in particular the precise role of downstream effectors of 

mTOR in oncogenesis and tumor progression (655). 

Considering that the effectors of mTORC1 and their impacts on cancer-related processes 

have been extensively covered in previous reviews (556, 565, 570, 647, 660),  herein I will focus 

on findings highlighting the impacts of mTOR effectors on cellular metabolism pertinent to this 

thesis.  

To date, the best studied downstream effectors of mTORC1 signaling are S6Ks (S6K1 and 

S6K2 in humans), and eukaryotic translation initiation factor 4E (eIF4E) binding proteins (4E-

BP1-3 in humans) (661-663) (Fig. 1.4). Specifically, mTORC1 phosphorylates 4E-BPs (at 

T37/T46, followed by T70 and finally S65 in human 4E-BP1) (661-663). When unphosphorylated, 

4E-BPs sequester eIF4E (mRNA cap-binding subunit of the eIF4F complex) and impedes its 

association with the scaffolding protein eIF4G1 (664). When mTORC1 phosphorylates 4E-

BPs, they dissociate from eIF4E, and thus allow the eIF4F complex assembly (665) (Fig. 1.4). 

eIF4F complex recruits mRNA to the ribosome during translation initiation and is composed of 



eIF4E, eIF4G1 and eIF4A (DEAD box RNA helicase) (666-669) (Fig. 1.4). mTORC1 regulates 

mRNA translation initiation via the phosphorylation of 4E-BPs and S6Ks (664, 670). In addition, 

mTORC1 stimulates translation elongation by directly or indirectly (via S6Ks) phosphorylating 

and inactivating eEF2K, whereby eEF2K negatively regulates ribosome translocation by 

phosphorylating and inhibiting eEF2 (670, 671). Importantly, protein synthesis is one of the most 

energy consuming processes in the cell (672). By altering the rates of global protein synthesis, 

mTORC1 therefore modulates cellular energy consumption (673).  

Although mTORC1 stimulates global protein synthesis, translation of a subset of mRNAs 

is particularly sensitive to changes in mTORC1 activity  (41, 674-678) (676-678). For example, 

the mTORC1-4E-BP-eIF4E axis regulates mitochondrial activity and biogenesis by selectively 

promoting the translation of nucleus-encoded mitochondria-related mRNAs [(such as components 

of complex I and V, mitochondrial ribosomal proteins and transcription factor a, mitochondrial 

(TFAM)]  (679). Importantly, the mRNA that encodes these proteins typically harbor 5′UTR/TISU 

elements (Translation Initiator of Short 5′ UTR; SAASATGGCGGC, in which S is C or G) and 

their translation is eIF4E sensitive, but unaffected by eIF4A inhibition (594, 679-681). 

Consequently, by inducing the translation of nucleus-encoded mitochondria-related mRNAs, 

mTORC1 upregulates ATP generating capacity to support the protein synthesis and other energy 

demanding cellular processes.  In addition, the mTORC1-4E-BP axis regulates translation of 

mRNAs encoding enzymes involved in NEAA synthesis including PC, PHGDH, PSAT1 and 

ASNS (41).  To this end, mTORC1-driven upregulation in translation of the aforementioned 

mRNAs has been shown to underpin metabolic plasticity of breast cancer, CRC and melanoma 

cells and determine their responses to the drug combinations of oncogenic kinase inhibitors and 



biguanides (41). Collectively, these findings demonstrate that mTORC1-dependent translational 

control plays a major role in regulating metabolic rewiring of neoplasia.  

mTOR can modulate glutamine metabolism via post-transcriptional and post-translational 

regulation of glutaminolysis-related genes (647, 660). Specifically, mTORC1 promotes 

glutaminolysis by increasing GLS levels through the S6K1-dependent regulation of CMYC (682) 

and activating GLUD through the abrogation of mitochondrial-localized sirtuin (SIRT4) which 

inhibits GLUD activity through ADP-ribosylation (683). While it is proposed that CMYC 

downregulates the expression of post-transcriptional repressors of GLS (i.e., miR-23a/b), 

mTORC1 promotes the proteasome-mediated degradation of a transcription factor, cAMP-

responsive element binding 2 (CREB2), which contains a recognition motif in the promoter region 

of SIRT4 (483). Thus, mTORC1 activates glutaminolysis via negative regulation of miR-23a/b and 

CREB2 which promotes GLS and GLUD activities respectively. mTORC2 may also regulate 

glutamine metabolism post-transcriptionally considering that it has been demonstrated to 

upregulate CMYC expression and a knockdown of RICTOR reduces the intracellular levels of α-

KG that are probably derived from glutaminolysis (679, 684). Furthermore, mTORC2 may 

promote glutaminolysis, by inhibiting expression of GLUL via AKT-dependent cytoplasmic 

localization of GLUL transcription factors (FOXO3 and FOXO4) (685). Collectively, these reports 

firmly establish mTOR as a regulator of glutamine metabolism.  

At the cellular level, mTOR regulates glucose metabolism chiefly through HIF-1α and 

CMYC which increase the expression glucose transporters and glycolytic enzymes as previously 

discussed (647, 660). mTORC1 indirectly upregulates the transcription of HIF-1α via the 

phosphorylation of signal transducer and activation of transcription 3 (STAT3) during hypoxia 

(686). Also, a recent study demonstrated that the transcription factor forkhead/winged helix family 



k1 (FOXK1) is another mediator of mTORC1-regulated expression of HIF-1α (687). mTORC1 

also promotes the translation of HIF-1α through the phosphorylation of its two downstream 

substrates: 4E-BP1 and S6K1 (686). This is consistent with reports illustrating that the deletion of 

TSC2, and thus activation of mTORC1 results in the accumulation of HIF-1α while the 

pharmacological inhibition of mTORC1 with rapamycin decreases the expression of HIF-1α (688, 

689). Likewise, mTORC1 enhances the translation of CMYC mRNA in a 4E-BP1 and S6K1-

dependent manner (682, 690). Given that glucose metabolic reprogramming is frequently observed 

in many cancers including breast, lung, pancreatic and colorectal cancers, it is not surprising that 

these cancers are also associated with the hyperactivation of mTOR, amplification of CMYC and 

increased aerobic glycolysis facilitated by elevated expression of glucose transporters such as 

SLC2A1 (656, 691, 692). mTORC2 regulates glucose metabolism through AKT which 

phosphorylates HK2 to promote its association with mitochondria and directly couple 

intramitochondrial ATP synthesis to glucose metabolism (693, 694). AKT also promotes 

glycolysis through phosphorylation and activation of PFK2 (563) and upregulating the expression 

of SLC2A1 (62). In fact, oncogenic activation of AKT has been shown to mediate aerobic 

glycolysis for the sustained growth and survival of cancer cells (695). mTORC2 also modulates 

glucose metabolism independent of AKT. In glioblastoma, mTORC2 inactivates class IIa histone 

deacetylases, which leads to the acetylation of FOXO1 and FOXO3 and thus activates CMYC to 

upregulate glycolytic gene expression (684). Taken altogether, the findings support that both 

mTORC1 and mTORC2 complexing are implicated in the regulation of glucose metabolism and 

metabolic reprogramming in cancer cells. 

As previously stated, mTORC1 regulates mitochondrial activity through a 4E-BP-

dependent selective translational regulation of mitochondrial-related mRNAs (679). Other studies 



have further corroborated the role of mTOR signaling in mitochondrial metabolism. For example, 

the inhibition of mTORC1 with rapamycin reduces the mitochondrial membrane potential, oxygen 

consumption, and ATP synthesis while altering the mitochondrial phosphoproteome (696). The 

suppression of mTORC1 via silencing of RAPTOR downregulates genes encoding proteins 

involved in OXPHOS and mitochondrial biogenesis, thus impairing mitochondrial respiration 

(679, 697, 698). mTORC1 modulates mitochondrial respiration through transcriptional regulators 

such as PGC-1α and yin yang 1 (YY1) (698, 699). In fact, mTOR and RAPTOR interact with 

YY1, and inhibition of mTOR disrupts the interaction and coactivation of YY1 by PGC-1α (699). 

Contrary to mTORC1, the role of mTORC2 remains poorly understood. The inhibition of 

mTORC2 through silencing RICTOR was demonstrated to have no effect on the expression of 

ETC complexes I-IV proteins or mitochondrial respiration (700). Although the knockdown of 

RICTOR does not alter the levels of mitochondrial proteins such as ATP5O (ATP synthase subunit 

O, mitochondrial) and TFAM, it decreases α-KG levels which is a key CAC intermediate (679). 

Also, genes implicated in mitochondrial transport and function were among a set of genes that was 

proposed to be translationally downregulated by mTOR catalytic inhibitors but not by rapamycin, 

would suggest that mTORC2 is involved in the translational regulation of these genes (675, 680). 

However, this can also be explained by the inability of rapamycin to inhibit the phosphorylation 

of 4E-BP as previously reported (701, 702). Furthermore, subsequent studies confirmed that the 

mTORC1/4E-BP1 rather than mTORC2 regulates the translation of nuclear-encoded mRNAs with 

mitochondrial functions such as ATP5O (679, 680). Nonetheless, when stimulated by growth 

factors, mTORC2 localizes to the mitochondria-associated endoplasmic reticulum membranes 

where it phosphorylates and activates AKT (693).  In turn, AKT phosphorylates HK2 which 

stimulates glycolysis, decreases the mitochondrial membrane potential and thus, affects 



mitochondrial physiology and metabolism (693). Specifically, mTORC2 deficiency via the loss of 

RICTOR disrupts mitochondria-associated endoplasmic reticulum membranes leading to increases 

in mitochondrial membrane potential, ATP production and calcium uptake (693). Overall, 

although extensive studies have provided evidence elucidating the functions of mTORC1 in 

mitochondrial metabolism, further research is warranted to fill the gaps in knowledge regarding 

the role of mTORC2 in mitochondrial metabolism. 

In addition to the metabolic processes discussed above, mTOR signaling is implicated in 

the biosynthesis and transport of amino acids (e.g., serine, methionine and cysteine), fatty acid 

synthesis and lipid metabolism, pentose phosphate pathway and nucleotide synthesis at various 

levels of regulation ranging from transcriptional to post-translational mechanisms (647, 660). This 

underscores the pertinent role of mTOR in mediating metabolic reprogramming of cancer cells. It 

is worth noting that although mTOR regulates several biosynthetic processes, mTOR activity is 

often regulated by the products of such processes. For example, mTOR regulates glucose and 

glutamine metabolism while being simultaneously regulated by glucose and glutamine (570, 647). 

As such mTOR is required to sense the energetic state of cells which promotes the anabolism or 

catabolism of nutrients. Even though there is an abundance of research elucidating the regulatory 

activities of mTORC1 in cancer metabolism, much is still left to uncover with regards to mTORC2. 

This thesis aims to further study the extensive crosstalk between mTOR signaling and metabolic 

reprogramming in the context of various energetic stressors in order to highlight vulnerabilities 

that can be targeted in cancer.  

 

 

 



1.4 CENTRAL HYPOTHESIS AND OVERARCHING GOALS 

Tumor cells must overcome energy stress as they outgrow their vascular supply. To this end, 

neoplastic cells must constantly adjust their metabolism to fluctuations in nutrients and oxygen in 

their microenvironment. Based on this, it is hypothesized that impeding the mechanism that allow 

cancer cells to adapt to energy stress will result in their death.  Therefore, the overarching objective 

of this thesis is to dissect the mechanisms that underpin the alterations in the metabolome of cancer 

cells subjected to energy stress with a goal to identify potentially targetable and clinically 

exploitable vulnerabilities. Specifically, we set out to address the mechanisms that allow cancer 

cells to adapt to dysfunction of mitochondrial complex IV (Chapter 2), pharmacological inhibition 

of mitochondrial complex I, and nutrient deprivation (Chapter 3).  
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CHAPTER 2: Mitochondrial complex IV defects induce metabolic and signaling 

perturbations that expose potential vulnerabilities in HCT116 cells 
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2.1 ABSTRACT 

Mutations in genes encoding cytochrome c oxidase (COX; mitochondrial complex IV) subunits 

and assembly factors (e.g., SCO1, SCO2, COA6) are linked to severe metabolic syndromes. 

Notwithstanding that SCO2 is under transcriptional control of tumor suppressor p53, the role of 

mitochondrial complex IV dysfunction in cancer metabolism remains obscure. Herein, we 

demonstrate that the loss of SCO2 in HCT116 colorectal cancer cells leads to significant metabolic 

and signaling perturbations. Specifically, abrogation of SCO2 increased NAD+ regenerating 

reactions and decreased glucose oxidation through citric acid cycle while enhancing pyruvate 

carboxylation. This was accompanied by a reduction in amino acid levels and the accumulation of 

lipid droplets. In addition, SCO2 loss resulted in hyperactivation of the IGF1R/AKT axis with 

paradoxical downregulation of mTOR signaling which was accompanied by increased AMPK 

activity. Accordingly, abrogation of SCO2 expression appears to increase the sensitivity of cells 

to IGF1R and AKT, but not mTOR inhibitors. Finally, the loss of SCO2 was associated with 

reduced proliferation and enhanced migration of HCT116 cells. Collectively, herein we describe 

potential adaptive signaling and metabolic perturbations triggered by mitochondrial complex IV 

dysfunction.   

2.2 INTRODUCTION 

Driven by genetic, epigenetic, environmental and other factors, malfunctions of citric acid cycle 

(CAC) enzymes, OXPHOS supercomplexes and other mitochondrial proteins have been 

mailto:michael.pollak@mcgill.ca
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implicated in neoplastic transformation, tumor progression and/or therapeutic responses (1, 2). 

This is exemplified by inactivation of fumarate hydratase (FH), succinate dehydrogenase (SDH) 

or neomorphic mutations in isocitrate dehydrogenase (IDH) that result in accumulation of 

fumarate, succinate and 2-hydroxyglutarate, respectively (3-7). These metabolites are thought to 

contribute to tumorigenesis and tumor progression by interfering with several classes of α-

ketoglutarate-dependent enzymes that govern key cellular functions (8). Cytochrome c oxidase 

(COX) assembly protein 2 (SCO2) is essential to the functioning of COX (mitochondrial complex 

IV). The loss of function or deletion of SCO2 leads to abrogation of COX assembly and activity 

(9).  

Though non-lethal diseases associated with deficiencies of COX are rare (10, 11), cell 

models bearing the relevant mutations are useful for understanding metabolic re-arrangements 

caused by mitochondrial complex IV deficiencies. To this end, studies on colon cancer HCT116 

cell line devoid of SCO2 (HCT116 SCO2-/- cells) showed that COX deficiency is associated with 

decrease in O2 consumption and slower proliferation. In addition, SCO2-deficient cells exhibit an 

increase in NADH, reactive oxygen species (ROS) and glycolysis, which are accompanied by 

reversed activity of F1Fo ATP-synthase (12-14). These perturbations are paralleled by dramatic 

changes in gene expression including induction of the factors implicated in epithelial-to-

mesenchymal transition (EMT) (12-15). Importantly, HCT116 SCO2-/- cells are more resilient to 

hypoxia than their SCO2-proficient counterparts (13), which in conjunction with induction of EMT 

phenotypes, suggests that dysfunction of mitochondrial complex IV may play a central role in 

metastatic progression. SCO2 expression is regulated by p53 (12). Metabolic perturbations caused 

by the loss of TP53 function are thus thought to be at least in part mediated by the downregulation 

of SCO2 (12). The loss of p53 function was reported to result in the reduction of oxidative 



phosphorylation (OXPHOS) and a compensatory increase in glycolysis (12) which is thought to 

be mediated by increase in hexokinase 2 (HK2) (16) and phosphoglycerate mutase (PGM) (17) as 

well as the reduction in TIGAR levels (18). Deletion of the SCO2 gene via homologous 

recombination in wild type TP53 HCT116 cells recapitulates the metabolic rewiring towards 

glycolysis that is observed in p53-deficient cells (12). However, it was also reported that wild type 

TP53 glioma and colon cancer cells adapt to hypoxia by at least in part inducing SCO2 expression 

(19). Moreover, the correlation between SCO2 levels and cancer prognosis remains unclear. For 

instance, low expression of SCO2 was associated with poor prognosis in breast and ovarian cancer 

patients (20-22). In contrast, TCGA analysis revealed amplification and subsequent increase in 

SCO2 levels in metastatic cancers harboring TP53 mutations, wherein high SCO2 levels correlated 

with poor prognosis (23). Collectively these findings demonstrate that notwithstanding that SCO2 

is likely to play a major role in p53-dependent metabolic reprogramming and thus determine the 

fate of cancer cells, the underpinning mechanisms and associated clinical correlates remain 

incompletely understood. In the attempt to address these gaps in knowledge, we systematically 

examined metabolic perturbations induced by SCO2 loss in HCT116 cells. As expected, 

dysfunction of mitochondrial complex IV in SCO2-/- HCT116 cells resulted in dramatic metabolic 

reprogramming including elevated dependence on glucose and altered pyruvate and amino acid 

metabolism. These metabolic perturbations were accompanied by increased migration and 

sustained proliferation under extremely low (<0.1%) oxygen levels. Accordingly, SCO2 deletion 

in HCT116 cells increases survival under hypoxia compared to the wildtype (WT) cells (13). 

Moreover, loss of SCO2 resulted in activation of IGF1R/AKT axis and elevated sensitivity to the 

IGF1R and AKT inhibitors.  

2.3 RESULTS 



2.3.1 SCO2 loss results in metabolic rewiring of HCT116 cells that is characterized by 

increased NAD+ regeneration   

Mitochondrial complex IV deficiency caused by SCO2 loss leads to impairment of the electron 

transport chain, decreased pyruvate oxidation and increased lactate production (13, 14).  To 

identify metabolic pathways that are altered by abrogation of SCO2, we first quantified 

intracellular and extracellular steady-state levels of key metabolites. As expected, the loss or 

depletion of SCO2 in HCT116 or A549 cells, respectively increased glucose uptake (Fig. 2.1A, 

Fig. S2.1A), extracellular lactate levels (Fig. 2.1B, Fig. S2.1B) and glycolytic intermediates 

including dihydroxyacetone phosphate (DHAP), 3-phosphoglycerol (3-PG) and 2-

phosphoglycerol (2-PG) (Fig. 2.1C). This is in agreement with previous observations that SCO2 

deletion or OXPHOS inhibition using biguanides increases levels of 3-PG and lactate production 

in order to regenerate NAD+ necessary for maintaining glycolysis (13, 24, 25). The re-introduction 

of exogenous SCO2 into SCO2-/- HCT116 cells attenuated increased glucose uptake and lactate 

secretion thus confirming that SCO2 attenuates glycolysis (Fig. S2.1C-D). Of note, 

notwithstanding repeated attempts, we could not achieve the rescue of SCO2 expression to the 

levels of the endogenous protein (Fig. S2.1E). Taken together, loss of SCO2 in HCT116 cells 

increases their dependence on glucose metabolism.  

In contrast to DHAP, pyruvate levels were found to be lower in SCO2-/- relative to WT 

HCT116 cells (Fig. 2.1C). This is likely due to the diversion of carbon units from the glycolytic 

pathway to glycerol biosynthesis via 3-phosphoglycerol (3-PG) as 3-PG was found to be higher in 

SCO2-/- than in WT HCT116 cells (Fig. 2.1C). This is indicative of enhanced cytosolic glycerol-

3-phosphate dehydrogenase (GPD1) activity which not only produces glycerol but also NAD+ 

(26). We hypothesize that this reaction in addition to the conversion of pyruvate to lactate is 



necessary for maintaining glycolysis in the HCT116 SCO2-/- cells. Indeed, the intracellular 

lactate/pyruvate ratio, which is traditionally used as a proxy for cytosolic NADH/NAD+ ratio and 

glycolytic activity (27) was elevated in the SCO2-/- as compared to WT HCT116 cells  (Fig. 2.1D). 

Since pyruvate oxidation is initiated by the pyruvate dehydrogenase (PDH), we investigated 

whether the SCO2 status affects the levels and/or phosphorylation of PDH subunits. Pyruvate 

dehydrogenase kinases (PDK1-4) when stimulated by ATP, acetyl-CoA or NADH phosphorylate 

and inactivate PDH thus deflecting pyruvate from CAC under conditions of mitochondrial 

dysfunction and hypoxia (28).  Surprisingly, we noted that both PDK1 levels and the 

phosphorylation of PDH subunit PDHE1-α1 (S293) are decreased in SCO2-/- cells relative to WT 

HCT116 cells in both normoxia and hypoxia (Fig. 2.1E). This was despite the fact that NADH 

levels are higher in SCO2-/- than in WT HCT116 cells (13). Considering that PDK1 expression is 

stimulated by hypoxia inducible factor (HIF)-1 and 2α, we next determined HIF-2α levels. HIF-

2α induction under severe hypoxia (<0.1% O2) was comparable between the cell lines (Fig. 2.1E). 

PDK1 levels and PDHE1-α1 phosphorylation were however more strongly induced in WT as 

compared to HCT116 SCO2-/- cells (Fig. 2.1E). Collectively, these findings show that although the 

loss of SCO2 increased NADH levels (13), PDK1 activity is reduced in SCO2-/- cells.  Intriguingly, 

the decreased phosphorylation level of the PDHE1-α1 subunit in HCT116 SCO2-/- cells suggests 

that pyruvate oxidation via PDH is elevated relative to WT cells. Collectively, these findings show 

that despite the loss of SCO2 which increased NADH levels (13), PDK1 activity is reduced in 

SCO2-/- cells. Hence, although pyruvate oxidation may be elevated in HCT116 SCO2-/- cells, this 

cannot be explained by NADH-mediated regulation of PDK1 activity. Recent studies 

demonstrated that one of the major functions of mitochondrial respiration is to produce sufficient 

amount of aspartate required to drive proliferation of cancer cells (29, 30). To this end, it is thought 



that the most of cellular aspartate is derived from oxaloacetate produced in oxidative CAC (31). 

Consistent with the disruption of the oxidative CAC in SCO2-/- HCT116 cells, steady-state 

aspartate levels were dramatically reduced in SCO2-/- as compared to WT HCT116 cells (Fig. 

2.2A). However, stable isotope tracer analysis (SITA) using 13C-labelled glucose show that in 

SCO2-/- HCT116 cells, pyruvate may primarily undergo carboxylation followed by transamination 

to produce aspartate as illustrated by increase in m+3 fractions of malate, fumarate and aspartate 

isotopomers (Fig. 2.2B-C).  In turn, the levels of the m+2 citrate, α-KG, fumarate, and malate 

isotopomers were markedly reduced in SCO2-/- compared to WT HCT116 (Fig. 2.2C). These 

findings suggest that increased carboxylation of pyruvate may represent a compensatory 

mechanism for a decrease in CAC-derived aspartate in SCO2-/- HCT116 cells. This, in addition to 

increased lactate production and contribution of 3-PG to glycerol synthesis may explain reduction 

in pyruvate levels in SCO2-deficient HCT116 cells.        

2.3.2 Abrogation of SCO2 in HCT116 cells leads to alterations in acetyl-CoA and lipid 

metabolism  

Pyruvate is oxidized through PDH to produce acetyl-coenzyme A (acetyl-CoA), a 2-carbon 

unit that enters the CAC and yields NADH (32). Notwithstanding observed reduction in PDK1 

activity in HCT116 cells devoid of SCO2 (Fig. 2.1E), PDH is sensitive to product inhibition by 

NADH (33). Considering that NADH levels are elevated in SCO2-/- vs. WT HCT116 cells  (13) 

while SCO2 loss decreased pyruvate oxidation through the CAC (Fig. 2.2B-C), we hypothesized 

that SCO2 deletion is paralleled by a decrease in acetyl-CoA levels. Despite our inability to 

measure acetyl-CoA directly, we analyzed the effects of SCO2 loss on acetyl-CoA-dependent 

pathways. Herein, we observed decreased levels of histone and α-tubulin lysine N-acetylation in 

SCO2-/- relative to WT HCT116 cells in both normoxia and moderate hypoxia (3% O2) (Fig. 2.3A). 



Thus, although the phosphorylation of S293 residue of PDHE1-α1 subunit often negatively 

correlates with PDH activity this is not the case for HCT116 SCO2-/- cells. Moreover, PDH can be 

inhibited when phosphorylated at either S232 or S300 residues of PDHE1-α1 subunit by PDK1-4 

(34-36). Considering that acetyl-CoA carboxylation which generates malonyl-CoA is the rate-

limiting step in fatty acid (FA) synthesis (37), we next monitored acetyl-CoA carboxylase (ACC) 

activity. Relative to WT, SCO2-/- HCT116 cells exhibited increased activity of AMP-activated 

protein kinase (AMPK) that phosphorylates (S79) and inactivates ACC (Fig. 2.3B). Moreover, the 

levels of citrate, which allosterically activates ACC, were markedly decreased in SCO2-/- as 

compared to WT HCT116 cells (Fig. 2.3C). Reduction of FA synthesis in SCO2-/- HCT116 as 

compared to WT cells also aligns with the increase in both the steady-state and m+3 levels of 2- 

and 3-PG, which are triacylglycerol (TAG) precursors (Fig. 2.1C, Fig. 2.2C). Collectively, these 

data suggest that FA synthesis is reduced in SCO2-deficient vs. proficient cells.  However, in 

contrast to WT cells, numerous Nile Red positive lipid droplets (LD), which are depots of TAGs, 

were observed in SCO2-/- but not in WT HCT116 cells (Fig. 2.3D). SCO2-deficient mice have 

increased fat mass associated with reduced β-oxidation (38). Altogether, these findings suggest 

that the SCO2 loss-induced decrease in mitochondrial β-oxidation is incompletely compensated 

by reduction in FA synthesis via suppression of ACC. Of note, we excluded the possibility that 

LDs contain FA that were imported from growth media by culturing cells in the presence of normal 

or FA-free FBS for 20 days, which did not affect the size or number of LDs (Fig. S2.2A). 

Importantly, HCT116 WT cells phenocopied the accumulation of LDs observed in SCO2-deficient 

cells when grown continuously under severe hypoxia (<0.1% O2) (Fig. S2.2B) or in the presence 

of complex III inhibitors antimycin A (Ant A) or myxothiazol (Myx) (Fig. S2.2C). Chronically 



hypoxic HCT116 SCO2-/- cells also increased LD deposition, suggesting that in the presence of O2 

some FA may be metabolized likely through the peroxisomal β-oxidation (39).  

2.3.3 Complex IV dysfunction in HCT116 cells results in increased succinate and 2-

hydroxyglutarate levels 

Steady-state metabolite analysis also revealed dramatic accumulation of succinate and 2-

hydroxyglutarate (2-HG) in SCO2-/- vs. WT HCT116 cells (Fig. 2.4A). As succinate is known to 

accumulate upon complex II inhibition (40-43)  as well as following treatment with the complex 

III inhibitor Ant A (44), we reasoned that the increased succinate observed in cells devoid of SCO2 

was due to the impairment of the electron transport chain (ETC) and subsequent decrease in the 

activity of mitochondrial complex II (SDH). Indeed, steady state fumarate and malate levels were 

decreased, thus suggesting reduced utilization of succinate through CAC in SCO2-/- as compared 

to WT HCT116 cells (Fig. 2.4A). In addition, 2-HG accumulated in HCT116 cells devoid of SCO2. 

While we could not distinguish the enantiomer of 2-HG that was elevated in HCT116 SCO2-/- 

cells, sequencing analysis of IDH1 and IDH2 mRNAs in WT and HCT116 SCO2-/- did not reveal 

neomorphic mutations (arginine residues R100, R109, R132 for IDH1, and R140, R149, R172 for 

IDH2) known to give rise to D-2-HG (Fig. S2.3A)  (45). Low pH, reduced oxidation of α-

ketoglutarate (α-KG) and increased NADH levels have been shown to enhance L-2-HG synthesis 

chiefly via lactate (LDH) and malate dehydrogenases (MDH) (46, 47). Although we did not detect 

differences in cellular pH between WT and SCO2-/- HCT116 cells (Fig. S2.3B), the overall 

reductive state caused by ETC dysfunction and the lack of IDH1 or IDH2 mutations, suggest that 

it is likely that L-2-HG accumulates in HCT116 SCO2-/- cells (48). 

 

 



2.3.4 SCO2 loss in HCT116 cells affects amino-acid metabolism  

Amino acid metabolism is partly dependent on mitochondrial function. The CAC intermediates 

are used to biosynthesize amino acids including aspartate, asparagine, proline and glutamate (49). 

Moreover, as noted above, the essential role of mitochondrial respiration in producing aspartate to 

fuel neoplastic growth has been described (29, 30, 50). To this end, it was shown that the inhibition 

of mitochondrial complex I with metformin not only reduced the NAD+/NADH ratio but also 

suppressed aspartate biosynthesis (50). Consistently, we observed a decrease in proline, glutamate 

and asparagine levels in SCO2-/- vs. WT HCT116 cells (Fig. 2.4B). In turn, levels of cysteine were 

higher in SCO2-deficient vs. proficient HCT116 cells (Fig. 2.4B). Considering that cysteine is a 

rate-limiting substrate in glutathione synthesis (51) and that the loss of SCO2 results in increased 

ROS production (13), the observed increase in cysteine levels in SCO2-/- HCT116 cells may be 

indicative of potential compensatory mechanisms that are triggered to protect cells from ROS-

induced damage. In line with this, increased cysteine levels may be required to support the turnover 

of mitochondrial cysteine-rich proteins that also contribute to the antioxidant defense machinery 

(52). Accordingly, the levels of mitochondrial ROS scavenger superoxide dismutase 2 (SOD2) 

were elevated in SCO2-/- compared to WT HCT116 cells (Fig. S2.4A). 

Cancer cells use glutamine as an anaplerotic source for the CAC (53, 54). The loss of SCO2 

in HCT116 cells reduced intracellular glutamine levels compared to WT cells.  Inhibition of 

OXPHOS results in reductive glutamine metabolism and consequent reductive carboxylation of α-

KG to produce aspartate which is necessary for cancer cell proliferation (29, 30). A high α-

KG/citrate ratio, commonly observed in cancer cells with mitochondrial dysfunction, is an indirect 

indication of reductive glutamine metabolism (55). Notwithstanding that the glutamine levels were 

lower in SCO2-/- as compared to WT HCT116 cells, the α-KG/citrate ratio was dramatically 



elevated in SCO2-deficient cells (Fig. 2.4B-C). Hence, although the deletion of SCO2 decreased 

intracellular glutamine level in HCT116 cells, these data suggest that most of the glutamine is 

likely to be reductively metabolized in HCT116 SCO2-/- cells (Fig. 2.4B). Altogether, these data 

suggest that the loss of SCO2 causes major perturbations in amino acid metabolism. 

2.3.5 Loss of mitochondrial complex IV function leads to induction of IGF1R/AKT axis with 

paradoxical reduction in mTOR signaling 

To better understand the mechanism of metabolic adaptations to the disruption of mitochondrial 

complex IV function, we next investigated the effects of SCO2 abrogation on mTOR signaling, 

which acts a major conductor of metabolic programs in the cell (56). Notably, phosphorylation of 

AKT catalytic site (T308) and hydrophobic motif (S473) were increased in SCO2-/- as compared 

to WT HCT116 cells (Fig. 2.5A). Accordingly, SCO2-/- HCT116 cells exhibited higher AKT-

dependent phosphorylation (S9) of GSK3β (Fig. 2.5A), thus indicating that AKT activity is higher 

in SCO2-deficient vs. proficient cells. Importantly, HCT116 WT cells treated with complex III 

inhibitors AntA and Myx showed similar increase in phosphorylation of AKT (S473) (Fig. 2.5B). 

Collectively, this indicates that disruption of terminal ETC complexes (III and IV) may result in 

compensatory AKT activation. Notably, the increase in AKT activity coincided with upregulation 

of insulin-like growth factor 1 receptor (IGF1R) mRNA and IGF1Rβ protein in SCO2-/- vs. WT 

HCT116 cells (Fig. 2.5A and 2.5C), implying that the loss of mitochondrial complex IV function 

may lead to increased signaling through the IGF1R/AKT axis. Similar induction of IGF1R mRNA 

levels was observed in WT HCT116 cells maintained at 0.1% O2 (Fig. 2.5C). Upregulated 

signaling via the IGF1R/AKT axis in SCO2-/- HCT116 cells was also paralleled by an increase in 

the amount of IGF1 bound to IGF1R (Fig. 2.5D). 



Surprisingly, despite increased AKT activity, SCO2 loss in HCT116 cells led to a decrease 

in mTORC1 activity, as illustrated by reduction in phosphorylation of its downstream substrate 

4E-binding protein 1 (4E-BP1; S65), and ribosomal protein S6 (rpS6; S240/244) which is a 

substrate of mTOR-dependent S6 kinases (S6Ks) (Fig. 2.5A). In turn, AMPK phosphorylation was 

increased in SCO2-/- relative to HCT116 WT cells (Fig. 2.3B). Given that AMPK is a negative 

regulator of mTORC1 (57, 58) this may explain the reduction of mTORC1 signaling upon SCO2 

loss, despite increase in AKT activity.  Altogether, these findings show that the impairment of 

mitochondrial complex IV function leads to increase in AKT and AMPK activity, which is 

accompanied by a decrease in mTORC1 signaling. 

mTORC1 stimulates cell proliferation (59). SCO2 loss-induced reduction in mTORC1 

activity was therefore consistent with decreased proliferation of SCO2-deficient vs. proficient cells 

(Fig. 2.5E). Consistent with previous findings (13), the proliferation of SCO2-/- HCT116 cells was 

less affected by exposure to 0.1% O2 in comparison to WT HCT116 cells (Fig. 2.5E). These 

observed phenotypes appeared not to be limited to HCT116 cells. SCO2 depletion in A549, HeLa 

and HT29 cells resulted in increased AKT phosphorylation (S473) and decreased phosphorylation 

of downstream mTORC1 substrates (Fig. S2.5A-C). Consistent with the findings in HCT116 cells, 

SCO2 depletion also reduced proliferation of A549, HeLa and HT29 cells (Fig. S2.5D-F). Next, 

we re-expressed SCO2 in SCO2-/- HCT116 cells to exclude potential inadvertent effects caused by 

cellular adaptation to SCO2 loss. Notwithstanding that as indicated above exogenous SCO2 protein 

levels were significantly lower than the levels of endogenous SCO2 protein (Fig. S2.1E, S2.5G), 

re-expression of SCO2 in SCO2-/- HCT116 cells resulted in partial rescue of cellular proliferation 

as compared to vector infected SCO2-/- HCT116 cells (Fig. S2.5H). Re-expression of SCO2 also 

partially rescued mTORC1 signaling as illustrated by increase in 4E-BP1 phosphorylation in 



SCO2-/- HCT116 cells expressing SCO2 relative to control, vector infected SCO2-/- HCT116 cells 

(Fig. S2.5G).  

2.3.6 SCO2 loss leads to increased cell migration and altered expression of EMT markers in 

HCT116 cells. 

Mitochondrial dysfunction resulting in increased ROS and/or accumulation of oncometabolites 

such as 2-HG has been linked to elevated expression of EMT markers, increased cell migration 

and higher metastatic potential of cancer cells (60, 61). Accordingly, previous studies have shown 

higher levels of ROS and the mesenchymal marker, vimentin, in SCO2-/- compared to HCT116 

WT cells (13, 14). To this end, we next monitored the effects of SCO2 loss on migration and 

expression of epithelial (E-cadherin) and mesenchymal (vimentin) markers using HCT116 cell 

model. These studies revealed that the loss of SCO2 enhances migration of HCT116 cells (Fig. 

2.5F). In addition to increased vimentin levels, SCO2-deficient HCT116 cells exhibited a decrease 

in E-cadherin levels as compared to WT HCT116 cells (Fig. 2.5G). Also the loss of SCO2 in 

HCT116 correlated with elevated ZEB1 mRNA levels (Fig. 2.5H), which encodes a key regulator 

of EMT (62). Moreover, re-expression of SCO2 in SCO2-/- HCT116 cells attenuated migration, 

reduced vimentin levels while increasing E-cadherin abundance (Fig. S2.5I-J). We observed that 

SCO2-deficient HCT116 cells exhibit attenuated mTORC1 signaling as compared to their SCO2-

proficient counterparts (Fig. 2.5A). Inhibition of mTOR was shown to coincide with elevated 

phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2) and increased 

cell migration (63, 64). However, the phosphorylation of eIF2α (S51) was not affected by the 

SCO2 status in the HCT116 cells (Fig. S2.5K). Hence, although SCO2 deletion in HCT116 cells 

reduced proliferation, it increased their migratory potential whereby this effect was independent 

of eIF2α phosphorylation. 



2.3.7 SCO2-deficient HCT116 cells exhibit increased susceptibility to IGF1R and AKT 

inhibitors. 

Considering that the disruption of mitochondrial complex IV activity is paralleled by the increase 

in IGF1Rβ levels and AKT activity (Fig. 2.5A), we next investigated the effects of IGF1R and 

AKT inhibitors on the fate of transformed cells as a function of their SCO2 status. As compared 

to control (vehicle) treatment, allosteric pan-AKT inhibitor MK2206 reduced proliferation (Fig. 

2.6A), attenuated progression from G1 to S phase of cell cycle (Fig. 2.6B) and decreased survival 

(Fig. 2.6C) of SCO2-/- HCT116 cells more pronouncedly than in WT cells. Of note, depletion of 

SCO2 also potentiated anti-proliferative effects of MK2206 in A549 and HT29 cells as compared 

to the control, scrambled shRNA infected cells (Fig. S2.6A-B) albeit to a lesser extent than the 

complete SCO2 knock-out in HCT116 cells (Fig. 2.6A). Moreover, MK2206 reduced levels of 

glycolytic intermediates including DHAP and 3-PG in HCT116 SCO2-/- cells to a greater extent 

than in control cells (Fig. S2.7A-B). Notably, comparable reduction of phosphorylated AKT levels 

was observed between WT and SCO2-/- HCT116 cells thus excluding potential differences in AKT 

inhibition by MK2206 between the cell lines (Fig. 2.6D). The effect of MK2206 on mTORC1, as 

monitored by rpS6 (S240/244) and 4E-BP1 (S65) phosphorylation levels, were greater in SCO2-

proficient vs. deficient HCT116 cells which is consistent with higher basal mTORC1 activity in 

the former cell line (Fig. 2.6D).  In turn, although the allosteric (rapamycin) and active-site (torin 

1) mTOR inhibitors abolished mTORC1 signaling in both cell lines as evidenced by the reduction 

in rpS6 (S240/244) and 4E-BP1 (S65) phosphorylation, their anti-proliferative effects were lesser 

in SCO2-/- as compared to WT HCT116 cells (Fig. 2.6D-F). SCO2 depletion also attenuated anti-

proliferative effects of mTOR inhibitors in A549 and HT29 cells (Fig. S2.8A-D).  Similar to AKT 

inhibition, IGF1R/insulin receptor inhibitor, OSI-906 (linsitinib), reduced 4E-BP1 (S65) 



phosphorylation and proliferation of HCT116 SCO2-/- cells to a greater extent compared to WT 

cells (Fig. 2.6G-H). These findings suggest that the loss of SCO2 may render HCT116 cells 

“addicted” to the IGF1R/AKT axis. In turn, HCT116 SCO2-/- cells exhibit reduced mTORC1 

signaling, which may explain their decreased sensitivity to mTOR inhibitors. Collectively, these 

results suggest that uncoupling of IGF1R/AKT and mTORC1 signaling may be required for 

adaptation of HCT116 cells to SCO2 loss. mTOR is major stimulator of anabolic processes such 

as lipid and protein synthesis (65, 66). This alludes to a model whereby activation of IGF1R/AKT 

axis promotes survival of cancer cells with complex IV dysfunction by driving glycolysis, while 

concomitant suppression of mTOR is required to decrease energy consumption and thus 

compensate for disrupted mitochondrial ATP production. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4 FIGURES 

 



Fig. 2.1. SCO2 loss in HCT116 cells rewires glucose metabolism while decreasing PDHE1-α1 

phosphorylation.  A-B, Glucose uptake (A) and extracellular lactate levels (B) were determined 

using BioProfiler analyzer. Data are represented as mean fold change relative to the control, WT 

HCT116 cells (set to 1) +/- standard deviation (SD). ****p<0.0001 (Unpaired 2-tailed t-test; n=5 

independent experiments with 3 technical replicates in each).  C. Intracellular levels of indicated 

metabolites in WT or HCT116 SCO2-/- cells. Metabolite levels were monitored by GC-MS. Data 

are presented as mean fold change relative to HCT116 WT cells (set to 1) +/- SD. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 (Unpaired 2-tailed t-test; n=3 independent experiments 

with 3 technical replicates in each). D. Intracellular lactate/pyruvate ratio in WT or HCT116 SCO2-

/- cells. Intracellular lactate and pyruvate levels were determined by GC-MS. Obtained 

lactate/pyruvate ratio in WT HCT116 cells were set to 1. Data are presented as mean fold change 

of n=3 independent experiments with 3 technical replicates in each. E. Levels and phosphorylation 

status of indicated proteins in WT or SCO2-/- HCT116 cells were monitored by Western blotting. 

α-tubulin served as a loading control. As indicated, cells were grown for 10 days under 19% and 

0.1% O2. Shown are representative Western blots from 3 independent experiments. Quantifications 

of Western Blots are shown in Fig. S2.9. 



 



Fig. 2.2. SCO2 loss in HCT116 cells reduces pyruvate oxidation while increasing pyruvate 

reduction and carboxylation. A. Intracellular levels of aspartate in WT and SCO2-/- HCT116 

cells. Aspartate levels were determined by GC-MS. Results are represented as mean fold change 

+/- SD in which the values calculated for WT HCT116 cells were set to 1. ****p<0.0001 

(Unpaired 2-tailed t-test; n=3 independent experiments with 3 technical replicates in each). B. 

Schematic diagram of 13C incorporation into metabolites after incubation with 13C6-glucose. Red 

arrow represents the incorporation of two 13C units via the oxidative carboxylation of CAC.  Blue 

arrow represents the carboxylation of pyruvate via pyruvate carboxylase (PC) whereby resulting 

metabolites have three 13C units. C. Mass spectrometry analysis of glucose-derived metabolites 

(glucose flux) in SCO2-/- and WT HCT116 cells. Cells were grown in the presence of 13C6-glucose 

for 1, 2, 5, 10, 20, 30, 60, 120 and 270 min. Representative plots of 3 independent experiments are 

shown.  



 

Fig. 2.3.  Complex IV deficiency alters fatty acid metabolism in HCT116 cells. A. 

Western blot analysis of α–tubulin (Lys 40) and total histone acetylation levels in WT and SCO2-

/- HCT116 cells. Representative blots of 2 independent replicates are shown B. Phosphorylation 

status and levels of indicated proteins were assessed in WT and SCO2-/- HCT116 by Western 

blotting. α-tubulin served as a loading control. Shown are representative blots of 3 independent 

experiments. C. Intracellular levels of citrate in WT and SCO2-/- HCT116 cells. Citrate levels were 

determined by GC-MS. Results are represented as mean fold change +/- SD whereby values 

obtained for WT HCT116 cells were set to 1. ****p<0.0001 (Unpaired 2-tailed t-test; n=3 



independent experiments with 3 technical replicates in each). D. Confocal microscopy of lipid 

droplets in WT and SCO2-/- HCT116 cells using Nile Red staining. Fluorescence images are stacks 

of 5 focal planes taken with a 0.5 µm step, with single-plane DIC images on the right (n=3 

independent experiments). Results of a representative experiment (N = 16 cells for each cell line) 

are normalized to the mean fluorescence intensity in WT HCT116 cells and shown as individual 

data points in arbitrary units (a.u.); mean value in WT HCT116 cells was set to 1 a.u. 

****p<0.0001 (Unpaired 2-tailed t-test). Quantifications of Western Blots are shown in Fig. S2.9. 



 

Fig. 2.4. SCO2 abrogation in HCT116 cells results in asymmetry in CAC intermediates and 

decrease in the levels of the most amino acids. A-B, Intracellular levels of metabolites in WT 

and SCO2-/- HCT116 cells were monitored by GC-MS showing decreased levels of malate, 

fumarate, α-ketoglutarate while succinate level increased in SCO2-/- HCT116 cells. Data are 



represented as mean fold change +/- SD relative to WT HCT116 cells wherein values for each 

metabolite are set to 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (Unpaired 2-tailed t-test; 

n=3 independent experiments with 3 technical replicates in each). C. Intracellular α-

ketoglutarate/citrate ratio in WT and SCO2-/- HCT116 cells was determined from the levels of 

respective metabolites detected by GC-MS. The values obtained for WT HCT116 cells were set at 

1 and the results were represented as means of the ratios from 3 independent experiments with 3 

technical replicates each +/- SD. ****p<0.0001 (Unpaired 2-tailed t-test). 



 



Fig. 2.5. SCO2 loss in HCT116 cells leads to activation of AKT and AMPK, suppression of 

mTORC1, reduction in cell proliferation and increased cell migration. A. Levels and 

phosphorylation status of indicated proteins were monitored by Western blotting in WT and SCO2-

/- HCT116 cells.  α-tubulin served as a loading control. Shown are representative Western blots 

from 3 independent replicates. B. WT HCT116 cells were treated with antimycin A (Ant A, 5 µM) 

or myxothiazol (Myx, 2 µM) treated for 8 days. Western blot analysis was employed to assess the 

levels and phosphorylation status of indicated proteins. α-tubulin served as a loading control. 

Representative blots from 3 independent experiments are shown C. IGF1R mRNA and IGF1Rβ 

protein levels were determined by RT-qPCR and Western blotting respectively. As indicated WT 

and SCO2-/- HCT116 cells were maintained under 19% or 0.1% O2 for 8 days. RT-qPCR data are 

presented as mean values of 3 independent experiments (columns) and individual data points; 

mean values obtained for HCT116 WT maintained under 19% oxygen was set to 1 a.u. **p<0.01, 

***p<0.001 (Unpaired 2-tailed t-test). Representative Western blots from 3 independent 

experiments are shown.  α-tubulin was used as a loading control. D. Levels of bound IGF1 were 

calculated by monitoring free IGF1 levels in extracellular media of WT and SCO2-/- HCT116 cells 

using ELISA. Data is represented as a mean fold change +/- SD relative to WT HCT116 cells (set 

at 1). ****p<0.0001 (Unpaired 2-tailed t-test; n=3 independent replicates with 3 technical 

replicates each). E. Numbers of viable WT (red) and SCO2-/- (blue) HCT116 cells grown 0.1% 

(triangles) or 19% O2 (squares) for indicated times was monitored by trypan blue exclusion using 

automated cell counter. Results are presented as the mean value +/- SD relative to WT or SCO2-/- 

HCT116 cell number grown in normoxia at day 1 which was set to 1 (n=4 independent experiments 

with 3 technical replicates each). F. Transwell migration assay of WT and SCO2-/- HCT116 cells. 

The columns represent the mean summarized cell counts of four fields from a single transwell 



migration chamber. Data are presented as the mean value +/- SD ****p<0.0001 (Unpaired 2-tailed 

t-test; n=3 independent experiments with 2 technical replicates each). G. Levels of indicated 

proteins were monitored by Western blotting. α-tubulin was used as a loading control. 

Representative blots from 3 independent experiments are shown. H. ZEB1 mRNA levels in WT 

and SCO2-/- HCT116 cells were analyzed by RT-qPCR. Results are presented as mean values of 3 

independent experiments (columns) and individual data points. Mean values obtained for WT 

HCT116 cells was set to 1 a.u. **p<0.01, ***p<0.001 (Unpaired 2-tailed t-test). Quantifications 

of Western Blots are shown in Fig. S2.9. 



 



Fig. 2.6. Complex IV deficiency increases sensitivity of HCT116 cells to IGF1R and AKT, 

but not mTOR inhibitors. A. WT and SCO2-/- HCT116 cells were treated with indicated 

concentrations of pan-AKT inhibitor MK2206 or a vehicle (DMSO) for 3 days. The number of 

viable cells at each time point was obtained using trypan blue exclusion and automated cell 

counter.  Data are represented as the mean fraction of cells relative to the corresponding DMSO-

treated controls which were set to 1. Experiments were carried out in 3 independent replicates (2 

technical replicates each time). Bars represent +/- SD values. B. Cell cycle distribution of WT and 

HCT116 SCO2-/- cells treated with MK2206 (15 µM) or a vehicle (DMSO) for 24 h was 

determined by flow cytometry. The data are presented as mean percent values of the total cell 

population +/- the SD. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (One-way ANOVA; 

Dunnette’s posthoc test with WT HCT116 DMSO-treated cells as control; n=2 independent 

experiments with 3 technical replicates in each). C. WT and SCO2-/- HCT116 cells were treated 

with MK2206 (15 µM) for 48 h, stained with AnnexinV-FITC and PI subsequently monitored by 

flow cytometry. Percent of live, early apoptotic, late apoptotic and dead cells are shown relative 

to the total cell population. The data are presented as mean values +/- the SD. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 (One-way ANOVA; Dunnette’s posthoc test with WT HCT116 

DMSO-treated cells as control; n=2 independent experiments with 3 technical replicates each). D. 

Western blot analysis of indicated proteins isolated from WT and HCT116 SCO2-/- cells treated 

with MK2206 (15 µM), rapamycin (50 nM), torin 1 (250 nM), or a vehicle (DMSO) for 24 h. 

Representative blots from 2 independent experiments are shown. α-tubulin served as a loading 

control. E-G, WT and SCO2-/- HCT116 cells were treated with indicated concentrations of mTOR 

[rapamycin (E) or torin 1 (F)], INSR/IGF1R inhibitors [OSI-906 (G)] or a vehicle (DMSO) for 3 

days. Numbers of viable cells in each condition were determined by trypan blue exclusion using 



automated cell counter. Data are represented as the mean fraction of cells relative to DMSO treated 

controls +/- SD. Experiments were carried out in independent triplicate with 2 technical replicates 

each. H. WT and SCO2-/- HCT116 cells were treated with OS1-906 (10 µM) or a vehicle (DMSO) 

for 24 h. Levels and phosphorylation status of indicated proteins was determined by Western 

blotting. α-tubulin served as a loading control. Representative blots from 3 independent 

experiments are shown. Quantifications of Western Blots are shown in Fig. S2.9. 

2.5 SUPPLEMENTAL FIGURES 

 



Fig. S2.1. SCO2 regulates glucose metabolism. A-D, Glucose uptake (A and C) and extracellular 

lactate levels (B and D) were monitored using BioProfiler analyzer in the indicated cell lines. Data 

are represented as mean fold change relative to the scrambled shRNA (SCR) control in A549 cells 

(A-B) or empty vector (EV) control in HCT116 cells (C-D) [SCR A549 and WT EV HCT116; set 

to 1 +/- standard deviation (SD)]. ****p<0.0001, ***p<0.001 ((A-B) Unpaired 2-tailed t-test; n=2 

independent experiments with 3 technical replicates each. (C-D) One-way ANOVA; Tukey’s 

multiple comparison post-hoc test; n=4 independent experiments with 1-3 technical replicates in 

each). E. Level of SCO2 in WT and SCO2-/- HCT116 cells infected with an empty vector (EV) or 

SCO2-/- HCT116 cells where SCO2 was re-expressed (+SCO2) was monitored by Western blotting 

(N=3 independent experiments). α-tubulin served as a loading control. Quantifications of the 

Western blots are provided in Fig. S2.9. 



 

Fig. S2.2. Inhibition of complex III or IV of the electron transport chain results in lipid 

droplet accumulation in HCT116 cells. A-C, Confocal microscopy of lipid droplets using Nile 

Red staining with the fluorescent images composed of stacks of 5 focal planes taken with 0.5 µm 

step subsequently superimposed with single-plane DIC images (N= 20 cells for each condition). 

A. SCO2-/- HCT116 cells were grown for 10 and 20 days in the presence of regular fatty acid (FA+) 

and FA-deficient FBS (FA-). B. SCO2-/- and WT HCT116 cells were maintained for 10 days at 

19%, 3% or 0.1% O2. C. WT HCT116 cells were treated with complex III inhibitors antimycin A 

(Ant A, 5 mM) or myxothiazol (Myx, 2 mM) for 10 days. All results are presented as median and 



interquartile range (boxes) (A-C) along with individual data points (B-C). Mean value obtained 

for WT HCT116 cells was set to 1 a.u. ****p<0.0001 (Unpaired 2-tailed t-test). 

 

Fig. S2.3. HCT116 cells are devoid of mutations in IDH1 and IDH2 genes while the loss of 

SCO2 does not affect intracellular pH. A. Sequence analysis of IDH1 and IDH2 genes in WT 

and SCO2-/- HCT116 cells. Complete amino acid sequences of IDH1 and IDH2 proteins and DNA 

fragments containing the known mutations (R140, R149 and R172) that underlie D-2-HG 

production by IDH is provided. The absence of mutations was confirmed by RNAseq analysis (n= 



2 independent experiments). B. The effects of SCO2 on intracellular pH were assessed via confocal 

Fluorescence Lifetime Imaging (FLIM) of 2’-7’-bis(carboxyethyl)-5(6)-carboxyfluorescein 

(BCECF) staining. Images are stacks of three focal planes taken with a 1 µm step. Right panel 

shows cumulative distributions of BCECF lifetime values in cells localized in the entire field of 

view (256×256 pixels); dotted lines demonstrate lifetime values that correspond to the 50th 

percentile (median) of the lifetime distribution (n=3 independent experiments).  

 

 

 

 

 

Fig. S2.4. SCO2 deletion in HCT116 cells increases expression of SOD2. A. Levels of indicated 

proteins were monitored by Western blotting. VDAC1 and α-tubulin served as loading controls. 

The experiments are representative of 3 independent replicates. Quantifications of the Western 

blots are provided in Fig. S2.9. 



 



Fig. S2.5. SCO2 loss rewires signaling, reduces proliferation and bolsters migration A-C, 

Levels and phosphorylation status of indicated proteins were monitored by Western blotting after 

lentiviral knockdown of SCO2 (shSCO2) in A549 (A), HeLa (B) and HT29 (C) cells. In parallel, 

A549 (A), HeLa (B) and HT29 (C) cells were infected with scrambled shRNA (SCR). Shown are 

the representative Western blots from 3 (A549 and HeLa) or 2 (HT29) independent experiments. 

α-tubulin was used as a loading control. D-F. Numbers of viable SCR (red) and shSCO2 (blue) 

infected A549 (D), HeLa (E) and HT29 (F) cells grown for indicated times were determined by 

trypan blue exclusion using automated cell counter. Results are presented as the mean value +/- 

SD whereby the number of SCR cells at day 1 was set to 1 (n=2 independent experiments with 3 

technical replicates each for A549, n=4 independent experiments with 3 technical replicates each 

for HeLa, n=3 independent experiments with 3 technical replicates each for HT29). G. Levels and 

phosphorylation status of indicated proteins in WT EV, SCO2-/- EV and SCO2-/-(+SCO2) HCT116 

cells were monitored by Western blotting. α-tubulin served as a loading control. Shown are 

representative Western blots from 3 independent experiments. H. Numbers of WT and SCO2-/- 

HCT116 cells infected with empty vector (EV) and SCO2-/- HCT116 cells re-expressing SCO2 

(+SCO2) grown for 3 days were assessed using trypan blue exclusion using automated cell counter. 

Results are presented as the mean value +/- SD relative to WT EV HCT116 cell number which 

was set to 1 (n=2 independent experiments with 2-3 technical replicates each). I. Transwell 

migration assay of WT EV, SCO2-/-EV and SCO2-/-(+SCO2) HCT116 cells. Presented are the 

mean summarized cell counts of four fields from a single transwell migration chamber +/- SD 

(****p<0.0001; ***p<0.001 One-way ANOVA; Tukey’s multiple comparison post-hoc test; n=2 

independent experiments with 2 technical replicates in each). J. Levels and phosphorylation status 

of indicated proteins were monitored by Western blotting in WT EV, SCO2-/- EV and SCO2-/- 



(+SCO2) HCT116 cells. α-tubulin served as a loading control. Shown are representative Western 

blots from 3 independent experiments. K. Levels and phosphorylation status of indicated proteins 

were monitored by Western blotting in WT and SCO2-/- HCT116 cells. α-tubulin served as a 

loading control. Shown are representative Western blots from 4 independent experiments. 

Quantifications of the Western blots are provided in Fig. S2.9. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. S2.6. Reduced complex IV activity increases sensitivity cancer cells to AKT inhibitor. A-

B. A549 (A) and HT29 (B) cells were infected with scrambled shRNA (SCR) or SCO2 shRNA 

(shSCO2). The cells were treated with indicated concentrations of pan-AKT inhibitor MK2206 or 

a vehicle (DMSO) for 3 days. The number of viable cells were determined using trypan blue 

exclusion and automated cell counter.  Data are presented as the mean fraction of cells relative to 

the corresponding DMSO-treated controls which were set to 1. Experiments were carried out in at 



least 2 independent replicates (with 2 technical replicates each). Bars represent SD values. Data 

are represented as mean fold change +/- SD relative to vehicle (DMSO) treated cells. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 (Unpaired 2-tailed t-tests were carried out at each drug 

concentration tested). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig. S2.7. Inhibition of AKT dampens the compensatory increase in glycolysis caused by the 

deletion of SCO2 in HCT116 cells. A-B, Intracellular levels of DHAP (A) and 3-PG (B) in WT 

or SCO2-/- HCT116 cells. Cells were seeded and treated with MK2206 (15 µM) for 24 h. 

Metabolite levels were monitored by GC-MS. Data are represented as mean fold change +/- SD 

relative to vehicle (DMSO) treated WT HCT116 cells. *p<0.05, **p<0.01, ***p<0.001, 



****p<0.0001 (One-way ANOVA; Tukey’s multiple comparison post-hoc test; n= 2 independent 

experiments with 3 technical replicates in each).   

 

 

 

 

 

 



 

 

 

 

 

 



Fig. S2.8. Depletion of mitochondrial complex IV activity reduces sensitivity of cancer cells 

to mTOR inhibitors. A549 (A-B) and HT29 (C-D) cells were infected with scrambled shRNA 

(SCR) or SCO2 shRNA (shSCO2). The cells were treated with indicated concentrations of 

rapamycin (A, C) or torin 1 (B, D) or a vehicle (DMSO) for 3 days. Numbers of viable cells in 

each condition were determined by trypan blue exclusion using automated cell counter. Data are 

represented as the mean fraction of cells relative to DMSO treated controls +/- SD. Experiments 

were carried out in at least two independent times with 2 technical replicates each. Error bars 

represent SD values. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (Unpaired 2-tailed t-tests 

were carried out at each drug concentration tested). 







 



 

Fig. S2.9. Densitometry analysis of Western blots. Results represent mean fold changes in 

densitometry signals relative to the indicated controls. Signals for phospho-proteins and proteins 

of interest were normalized over corresponding total proteins or α-tubulin, respectively as 



indicated. The experiments were repeated at least in independent duplicates; *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 (Unpaired 2-tailed t-test, 1-way ANOVAs, and 2-way ANOVAs were 

done when two, three or more than three variables were investigated, respectively).  















 



Fig. S2.10. Images and scans of Western blot films that are incorporated in the manuscript. 

The boxes around the indicated protein bands show the approximate area of the x-ray films and 

nitrocellulose membrane images included in the figures.    

 

2.6 DISCUSSION 

Metabolic reprogramming of cancer cells allows them to adapt to changes in nutrient and oxygen 

availability and therapeutic insults (67, 68). To this end, it is considered that metabolic rewiring 

not only fulfils the energetic requirements of cancer cells, but also provides building blocks and 

maintains redox buffering capacity required to fuel growth and survival of cancer cells (67, 68). 

Herein, we report that disruption of mitochondrial complex IV function by SCO2 loss is 

compensated by dramatic perturbations in metabolome and signaling. Most notably, SCO2 loss in 

HCT116 cells leads to increase in glycolysis (12). This not only enables HCT116 cells with 

dysfunctional complex IV to meet the biosynthetic demands by providing carbon atoms but also 

allows for the regeneration of NAD+ which is necessary to maintain glycolysis and redox 

homeostasis. Indeed, although SCO2 loss leads to overall increase in NADH levels in HCT116 

cells (13), SCO2-/- HCT116 cells upregulate NAD+ regenerating reactions. This is consistent with 

previous findings suggesting that conversion of pyruvate to lactate and the simultaneous 

production of NAD+ from NADH by lactate dehydrogenase are essential in the context of 

mitochondrial dysfunction (69). Moreover, SCO2-/- HCT116 cells appear to exhibit increased 

activity of GPD1, as illustrated by the alterations in steady-state metabolite levels and increased 

glucose flux to 3-PG. Notably, although mitochondrial glycerophosphate dehydrogenase (GPD2) 

has been implicated in the reoxidation of cytosolic NADH via the ETC in prostate cancer (70), due 

to compromised mitochondrial functions this mechanisms is unlikely to be at play in SCO2-



deficient HCT116 cells. Hence, GPD1 is most likely involved in maintaining NAD+/NADH ratio 

in HCT116 SCO2-/- cells. In addition, we observed large accumulation of lipids in HCT116 SCO2-

/- cells as compared to their WT counterparts. Lipid accumulation in SCO2-deficient cells was not 

caused by increased lipogenesis or FA uptake, thus indicating that the observed phenotype likely 

stems from impediments in β-oxidation of FA in the mitochondria. Finally, SCO2 loss resulted in 

a reduction of most of the CAC intermediates and amino acids, which was paralleled by an increase 

in succinate and 2-HG. Although we did not formally test whether accumulation of these 

metabolites is sufficient to disrupt function of α-ketoglutarate-dependent enzymes (e.g. HIF-α 

prolyl hydroxylase, histone, DNA and RNA demethylases) (41, 67), these findings suggest that 

SCO2 loss may result in epigenetic, transcriptional and epitranscriptional reprogramming.  

Notably, the observed alterations in metabolic programs in SCO2-deficient HCT116 cells 

were paralleled by significant rewiring characterized by increased IGF1R/AKT activity that was 

accompanied by a reduction in mTORC1 signaling. This, at least in part, may be explained by 

elevated AMPK activity in SCO2-deficient HCT116 cells. Accordingly, SCO2-/- HCT116 cells 

showed heightened sensitivity to IGF1R and AKT inhibitors, while they were less sensitive to 

mTOR inhibitors relative to SCO2-proficient cells. Previous studies demonstrated that AKT 

upregulates glycolysis (71). Since the loss of SCO2 renders HCT116 cells heavily dependent on 

glycolysis to produce ATP and regenerate NAD+, it is plausible that these cells are more sensitive 

to IGF1R and AKT inhibitors because of their inhibitory effects on glycolysis. Strikingly, similar 

induction in AKT phosphorylation was observed in WT HCT116 cells treated with mitochondrial 

complex III inhibitors or subjected to hypoxia. Comparable to HCT116 SCO2-/- cells, the decreased 

expression of SCO2 in HeLa and A549 increased AKT activity while downregulating mTORC1. 

Although the precise mechanism(s) of induction of IGF1R/AKT axis in the context of 



mitochondrial complex III or IV disruption remains elusive, these findings suggest that 

mitochondrial dysfunction may lead to critical reliance of neoplastic cells on AKT. 

AMPK acts as a negative regulator of mTORC1, and it has recently been described that it 

may stimulate mTORC2 (72) and be activated by ROS (73). This suggests that AMPK 

upregulation in HCT116 SCO2-/- cells may dampen mTORC1 signaling while sustaining mTORC2 

and AKT activity. Indeed, we observed that disruption of SCO2 results in marked increase in S473 

AKT phosphorylation which is indicative of increased mTORC2 activity (74). In addition, 

mTORC2 may also exert AKT-independent effects of glucose metabolism as reported in 

glioblastoma (75). Of note, HCT116 SCO2-/- cells produce ATP mainly in cytosol and have the 

ATP/protein ratio similar to that in WT cells (14), thus suggesting that AMP/ATP or ADP/ATP 

ratio may not play a major role in AMPK activation in this context. In turn, cytosolic Ca2+ levels 

are elevated in SCO2-/- as compared to HCT116 WT cells (14) thereby suggesting that 

Ca2+/calmodulin dependent protein kinase kinase (CAMKK) may activate AMPK in cells 

exhibiting complex IV dysfunction. Also, AMPK has been found to be hyperactivated by CAMKK 

in mouse embryonic fibroblasts (MEFs) devoid of LKB1 kinase when subjected to oxidative stress 

(76). Considering that we observed similar phenotypes between cells with functional (HCT116) 

or dysfunctional LKB1 (A549, HeLa), it is likely that mechanisms other than LKB1 play a major 

role in AMPK activation in the context of mitochondrial complex IV dysfunction. Intriguingly, 

despite several attempts, we failed to knock down AMPK α1 and/or α2 subunits in HCT116 SCO2-

/- cells or deplete SCO2 in AMPK α1/α2-/- mouse embryonic fibroblasts (MEFs) due to massive 

cell death. Notwithstanding that future investigations are required to establish the precise 

mechanism(s) of adaptation of cancer cells to the abrogated complex IV activity, these 

observations may suggest an important role for AMPK in this process.  



Recent studies show that ROS plays pivotal roles in facilitating EMT and cell motility (77). 

HCT116 SCO2-/- cells were previously shown to have elevated ROS levels (13). A prior study 

showed that ZEB1 represses E-cadherin and induces vimentin (62). Furthermore, elevated levels 

of 2-HG have been reported to increase the expression of ZEB1 by inhibiting histone demethylase, 

which in turn decreased the expression of E-cadherin while concurrently increasing the expression 

of vimentin in HCT116 cells (78). Similarly, elevated levels of 2-HG were observed to stimulate 

migration, invasion of HCT116 cells and associated with distant metastasis (78). Collectively these 

findings suggest that metabolic and signaling adaptation to mitochondrial dysfunction caused by 

SCO2 loss result in increased migratory potential of HCT116 cells.  

 Since SCO2 represents one of the major metabolic targets of p53, together with the 

previous work, our study suggests that complex IV dysfunction plays a major role in metabolic 

perturbations of malignancies with defective p53 function. Importantly, we demonstrate that 

despite reducing proliferation in cell culture models, SCO2 loss results in alterations in expression 

of EMT markers and increased migration of HCT116 cells. Considering the positive correlation of 

these phenomena and metastatic spread of cancer (79, 80), these findings suggest that alterations 

in SCO2 and dysfunction of mitochondrial complex IV may increase the metastatic potential of 

cancer cells.  Nonetheless, we acknowledge that our study has significant limitations as it was 

carried out on a very limited number of cell lines, while the precise mechanisms of signaling and 

metabolic perturbations remain elusive. Expanding these studies across various cancer cell lines 

and in vivo is therefore warranted to establish the general role of SCO2 and disruption of complex 

IV function in metabolic reprogramming and accompanied signaling rewiring in neoplasia and its 

impact on cancer cell phenotypes. 

 



2.7 METHODS 

2.7.1 Cell lines and culture conditions 

SCO2-/- and WT HCT116 cells were provided by Dr. Paul M. Hwang (15). A549, HT29 and HeLa 

cells were obtained and authenticated by ATCC. All cells were cultured in McCoy’s 5A medium 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% penicillin/streptomycin, 

10 mM HEPES and 2 mM L-Glutamine, (provided by either MilliporeSigma or Wisent). Cells 

were maintained at 37°C, 5% CO2 and 19% O2, unless otherwise indicated. 

2.7.2 Lentiviral infection of SCO2 shRNA and expression constructs 

Stable knockdown of SCO2 in A549, HT29 and HeLa cells was generated using pLKO.1 lentiviral 

shSCO2-containing vector (TRCN236560) obtained from Mission TRC genome-wide shRNA 

collections (MilliporeSigma). Non-mammalian shRNA control plasmid DNA was used as a 

negative control (MilliporeSigma: SHC002).  

For SCO2 cDNA generation, RNA was extracted from HCT116 cells using Trizol (ThermoFisher 

Scientific) according to manufacturer’s instructions. Subsequently, cDNA was synthesized by 

SuperScript III Reverse Transcriptase (Invitrogen) and PCR amplified using Phusion High-

Fidelity DNA polymerase (New England BioLabs) and the following primers: 

Forward primer: 5’ TATGCAACCGGTATGTTTGGTGGAGGTGGAGTTCTGAGC 3’ 

Reverse Primer: 5’ TTGCAAGAATTCTCAAGACAGGACACTGCGGAAAGCCGC 3’  

PCR cycling conditions: Initial denaturation was done at 98 ºC for 3 min, 35 cycles of 98 ºC for 

30 secs, 60 ºC for 30 s and 72 ºC for 40 s and the final extension was done at 72 ºC for 10 min.   

Human SCO2 cDNA was cloned into pLKO.1-puro empty vector control plasmid DNA (SHC001) 

using EcoRI and AgeI restriction enzymes (New England BioLabs).  pLKO.1-puro empty vector 

(SHC001) was used as a negative control for the exogenous expression of SCO2. 



Lentiviruses were produced as follows: HEK293T cells were co-transfected with 12 µg of 

shSCO2-containing plasmid (to knockdown SCO2 in HeLa, HT29 and A549 cells) or SCO2-

containing plasmid (to re-express SCO2 in HCT116 SCO2-/- cells), 8 µg of psPAX2 packaging 

plasmid and 4 µg of pMD2.G plasmid using jetPRIME transfection agent according to the 

manufacturer’s protocol (Polyplus transfection). The media was changed 24h later and collected 

48h post-transfection.  The media was filtered through 0.45 µm filter (Fisher Scientific). The virus-

containing media was mixed with fresh media at 1:1 ratio and added to already seeded A549, HT29 

and HeLa cells. 4 µg/mL polybrene (MilliporeSigma) was added to the cells. Cells were re-infected 

the following day using freshly collected and filtered virus-containing media.  48h later, selection 

was done using 2 µg/mL of puromycin (Bio Basic). 

2.7.3 Flow cytometry analysis of cell cycle 

HCT116 SCO2-/- and WT cells were seeded on 6-well plates and treated for 24 h MK2206 (15 µM) 

or vehicle (DMSO). The cells were then trypsinized, washed in PBS (Wisent) and then stained 

with 50 μg/mL propidium iodide (PI) in cold hypotonic buffer (0.1% sodium citrate and 0.1% 

Triton X-100 in water). Approximately 2.5×105 cells per condition were stained with 0.5 mL of 

the PI stain and analyzed on a LSR Fortessa cytometer (Becton Dickinson). Fluorescence was 

detected by excitation at 561nm and acquisition on the 610/20-A channel in linear scale. The 

distribution of cell cycle population was analyzed using the ModFit LT software.  

2.7.4 Flow cytometry analysis of apoptosis 

HCT116 SCO2-/- and WT cells were seeded on 6-well plates and treated for 48h with MK2206 (15 

µM) or vehicle (DMSO). Cells were trypsinized, counted and 1×105 cells were stained using 

Annexin V-FITC and PI for 20 min in the dark as per the manufacturer’s instructions (FITC 

Annexin V Apoptosis Detection Kit; Becton Dickinson). Samples were then analyzed with a LSR 



Fortessa cytometer (Becton Dickinson). Fluorescence was detected by excitation at 488 nm and 

acquisition on the 530/30-A channel for FITC-Annexin V and by excitation at 561 nm and 

acquisition on the 610/20-A channel for PI. Cell populations were separated as follows: viable 

cells – Annexin V-/PI-; early apoptosis - Annexin V+/PI-; late apoptosis Annexin V+/PI+; dead 

Annexin V-/PI+; and expressed as % of total single cells.  

2.7.5 GC-MS for Stable Isotope Tracer Analysis (SITA) 

3×105 SCO2-/- and WT HCT116 cells were seeded on 6-well plates to obtain 80% confluency 24 

h later. For stable isotope tracer analysis (SITA), the supplemented McCoy’s 5A medium was 

aspirated and replaced with fresh Dulbecco’s Modified Eagle’s Medium (DMEM) without 

glucose, glutamine and pyruvate, supplemented with 10% heat-inactivated FBS, 1% P/S, 2mM L-

glutamine and 16.65 mM glucose to equilibrate the cells for 2 h. The equilibration media was 

replaced with DMEM containing 16.65 mM [U-13C]-glucose (Cambridge Isotope laboratories). 

Cells were incubated in this ‘labelling media’ for 1 min, 2 min, 5 min, 10 min, 20 min, 30 min, 1 

h, 2 h and 4.5 h. The 6-well plates were taken out of the incubator and placed immediately on ice. 

The labelling media was aspirated, and cells were washed 3X with pre-chilled isotonic saline 

solution (on ice) and quenched on dry ice by adding 600 µL of 80% methanol pre-chilled to -20ºC. 

Cells were scraped from the plates and transferred to microcentrifuge tubes pre-chilled to -20 ºC. 

Cell suspensions were lysed using a sonicator at 4 °C (10 minutes, 30 sec on, 30 sec off, high 

power setting with a Diagenode Bioruptor). This was repeated to ensure complete recovery of 

metabolites. Cell debris were discarded after centrifugation (16000 g, 4°C), supernatants were 

transferred to pre-chilled tubes and dried in a CentriVap cold trap (Labconco) overnight at 4°C. 

Dried pellets were dissolved in 30 µL of pyridine containing methoxyamine-HCl (10 mg/mL) 

(MilliporeSigma) using a sonicator and vortex. Samples were incubated for 30 min at 70°C and 



then transferred to injection vials containing 70 µL of N-tert-butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA). Sample mixtures were further incubated at 70 °C for 1 h. 

1 µL of each sample was injected for GC–MS analysis. GC–MS instrumentation and software 

were all from Agilent. GC–MS methods and mass isotopomer distribution analyses were 

conducted as described (81). Data analyses were performed using the Agilent ChemStation and 

MassHunter software (Agilent). 

2.7.6 GC-MS for Steady State metabolite analysis 

3×105 HCT116 SCO2-/- and WT cells were seeded on 6-well plates to obtain cells at 80% 

confluency 24 h later. The plates were quickly placed on ice after incubation period was over. 

Media were aspirated and cells were washed 3X with chilled isotonic saline solution. 

Subsequently, 300 µL of 80% methanol pre-chilled to -20 ºC was added to the cells. Cells were 

scraped from the wells and transferred to microcentrifuge tubes pre-chilled to -20 ºC. 300 µL more 

of the 80% methanol was added to the leftover cells in the wells, scraped, collected and pooled 

with the previously collected 300 µL fraction. Cells were lysed, centrifuged and then the 

supernatants transferred into prechilled microcentrifuge tubes as previously described for SITA. 

The collected supernatants were spiked with 750 ng of myristic acid-D27 (Millipore Sigma) to serve 

as an internal standard. Supernatants were dried overnight and derivatized as previously described 

for SITA. 1 µL of the derivatized samples was injected for GC–MS analysis. The instrumentation 

and software used were identical to those used for SITA. Each metabolite was normalized to the 

peak intensity of myristic acid-D27 and the average protein content derived from cells seeded in 

parallel and identical conditions to those collected for GC-MS steady state analysis. Data were 

expressed as fold change relative to WT HCT116 cells. 

 



2.7.7 Glucose and lactate release assays 

5×105 cells were seeded in triplicates in 6-well plates in 2 mL of media. The media were collected 

24 h later. Cells were trypsinized and counted using an automated cell counter (Invitrogen). Media 

were spun down at 16000 g for 10 min and the supernatants transferred into microcentrifuge tubes. 

Glucose and lactate concentrations in the media were measured using a BioProfile 400 analyzer 

(Nova Biomedical). Total uptake and release were calculated by subtracting the concentrations 

from baseline glucose and lactate concentrations measured in samples of media incubated under 

identical conditions in 6-well plates without cells. Molar concentrations of the metabolites were 

normalized per cell and presented relative to the control.   

2.7.8 Cell proliferation assays 

1×105 cells were seeded in 6-well plates and incubated for 24 h. The media were replaced with 

treatment media containing MK2206, OSI-906, rapamycin, torin 1 or DMSO as a negative control 

and incubated for 72h. Treatment media were aspirated, and the cells were trypsinized. Complete 

media were added to stop the trypsinization. Samples were collected, stained with trypan blue to 

exclude dead cells and counted using an automated cell counter (Invitrogen). For hypoxic 

treatments, 1×105 cells were seeded in 6-well plates and placed in hypoxic chamber set to 0.1% 

O2. Cells were counted daily over a span of 3 days in parallel to cells seeded and placed at 19% 

O2.  

2.7.9 Western blotting and antibodies 

Cells were washed with ice-cold PBS and lysed for 20 min on ice in buffer A (Pierce RIPA) or B 

[50 mM Tris/HCL (pH 7.4), 5 mM NaF, 5 mM Na pyrophosphate, 1 mM EDTA, 1 mM EGTA, 

250 mM mannitol, 1% (v/v) triton X-100, 1 mM DTT], both supplemented with 1× complete 

protease inhibitors and 1× PhosSTOP. The lysates were clarified at 4°C (10 min at 16,000 g), and 



protein concentrations in the supernatants were determined using BCATM kit. Samples were boiled 

in 1× Laemmli buffer at 95°C for 5 min, proteins were separated by SDS–PAGE (10–40 μg per 

lane) and transferred using wet mini-transfer system Hoefer™ TE 22 (Hoefer, CA) either onto 

0.45 μm ImmobilonTM-P PVDF membranes (buffer A) or 0.45 μm nitrocellulose membranes 

(buffer B). In most cases, membranes were blocked in 5% BSA w/v in TBST buffer (0.1% Tween 

20 in 1× TBS) for 1h, and then incubated with primary antibodies, which were prepared at 1:1000 

dilution in 5% BSA in TBST (16 h at 4 °C). Antibodies against α-tubulin and HIF-2α (1:1000 

dilution), and the corresponding blocking solution were prepared using 5% (w/v) non-fat dry milk 

in TBST. Membranes were washed with TBST (3-5×5-10 min) and incubated for 1h with HRP-

conjugated secondary antibodies, which were prepared at 1:5000 or 1:2500 in 5% milk/TBST. 

Primary antibodies against 4E-BP1#9644, p-4E-BP1 (S65) #9456, ACC #3662, anti p-ACC (S79) 

#3661, eIF2α #2103S, p-eIF2α (S51) #9721S, α-tubulin #2125, acetyl-α-tubulin (Lys40) #5335, 

AKT #4691, p-AKT (S473) #4060, p-AKT (T308) #13038, #4056 and #9275 , AMPKα #5832 

and 2532, p-AMPKα (T172) #50081 and # 2535, E-cadherin #3195, IGF1Rβ #9750, mTOR 

#2972, p-mTOR (Ser2448) #2971, rpS6 #2217, p-rpS6 (S240/244) #2215, Snail #3879, Vimentin 

#5741 were all from Cell Signaling Technologies (Danvers, MA); VDAC1 #sc-8828 and rpS6 #sc-

74459 from Santa Cruz Biotechnologies (Dallas, TX); SCO2 #PA5-76209 from Thermo Fisher 

Scientific, HIF-2α # AF2886 from R&D Systems (Minneapolis, MN), SOD2 #ab16956, PDH E1-

α # Ab110330 and p-PDH E1-α (Ser293) #Ab92696 from Abcam (Cambridge, UK), acetyl-lysine 

#ST1027 and α-tubulin #T5168 from MilliporeSigma. Secondary HRP-conjugated mouse anti-

goat/sheep IgG #A9452, mouse anti-rabbit IgG #A1949, goat anti-mouse IgG #A0168 were from 

MilliporeSigma. After washing the membranes with TBST (3-5×5-10 min), specific protein bands 

were revealed by chemiluminescence using ECL™ Prime reagent on the LAS-3000 imager 



(Fujifilm, Japan). As requested by reviewers, we performed densitometric analysis using ImageJ 

software. Herein, for each replicate intensities obtained for the bands of the proteins or 

phosphoproteins of interest were normalized against corresponding loading controls and total 

proteins, respectively.  Resulting quantification (mean values across replicates +/- standard 

deviation) are provided in Fig. S9 while x-ray film scans and images of the immunoblots are 

included in Fig. S10.  

2.7.10 Transwell migration assay 

Cells were serum starved overnight (16 h) and plated onto 12-well-transwell migration inserts of 

8 µm pore diameter (VWR) at 2.5 X 105 cells per well. 10% FBS-supplemented media was added 

to the lower chamber as the chemo-attractant and incubated for 24 h. Cells were fixed with 10% 

buffered formalin and stained with crystal-violet. Migrated cells were imaged under 200X light 

microscope. Four separate images (fields) were taken of each well. Each data point represents the 

summarized cell count of four fields from a single transwell migration chamber.  

2.7.11 Generation of mRNA-seq libraries and IDH1 and 2 mRNA sequencing analysis 

The libraries for mRNA sequencing analysis were generated as in (82). Libraries were sequenced 

on an Illumina HiSeq 2000 system at the Beijing Genomics Institute (China). 

2.7.12 Isolation of RNA and RT-PCR Analysis  

Isolation of total RNA and reverse transcription reaction were performed using RNeasy® plus 

universal mini kit (Qiagen), high-capacity cDNA reverse transcription kit (Applied Biosystems). 

qPCR was conducted using SensiFAST™ SYBR® Lo-ROX kit (Bioline) on the AB7300 machine 

and analyzed using the 7300 System SDS Software (Applied Biosystems); reaction was controlled 

for the absence of genomic DNA amplification. Each experiment was carried out in independent 

triplicate. Primers were designed using Primer-BLAST program 
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(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) for human genes encoding β-actin 

(NM_001101.5, forward: 5’-CGGCTACAGCTTCACCACCACG and reverse: 5’-

AGGCTGGAAGAGTGCCTCAGGG) and IGF1R (NM_000875.5, forward: 5’-

CGGGGAGAGAGCCTCCTGTGA and reverse: 5’-GCTGTTGGAGCCGCAGGCAT) and 

ZEB1 (NM_001128128.2, forward: 5’-GAAGACAAACTGCATATTGTGGAAG and reverse: 

5’-CATCCTGCTTCATCTGCCTGA).  

2.7.13 Live cell staining and confocal microscopy 

Loading of the cells with fluorescent indicators was performed for 30 min using 1 µM BCECF 

(whole cell pH probe) or 2 µg/ml Nile Red (NR, lipid droplet stain) prepared in OptiMEM I 

medium. Live cell imaging was performed as follows: Fluorescence lifetime imaging (FLIM) of 

BCECF was performed at 37C on an upright laser scanning Axio Examiner Z1 (Carl Zeiss) 

microscope equipped with 20x/1.0 W-Plan Apochromat dipping objective. Fluorescence decays 

were collected using a picosecond 488 nm laser (with emission collected at 512-536 nm), DCS-

120 confocal (TCSPC) scanner, photon counting detector and SPCM software (Becker & Hickl 

GmbH). Data were analyzed with SPCImage (B&H) and Excel software. Fluorescence lifetime 

(LT) of BCECF was calculated using monoexponential fitting. The LT distribution histograms 

were obtained for 3 individual focal planes within each field of view (256×256-pixel matrixes). 

Cumulative LT distribution histograms were produced according to the algorithm developed in 

(83). 

The NR staining was analyzed on an Olympus FV1000 confocal laser-scanning microscope 

with controlled CO2, humidity and temperature. Fluorescence signals were collected with a 

UPLSAPO 60X/1.35 oil immersion Super Apochromat objective using 543 nm excitation and 550-

650 nm emission wavelengths. The resulting z-stacked fluorescence and single plane differential 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/


interference contrast (DIC) images were processed using FV1000 Viewer software (Olympus) and 

Adobe Photoshop. 

2.7.14 IGF1 ELISA 

1×106 SCO2-/- and WT HCT116 cells were seeded in duplicates in 2 mL of media in 6-well plates 

and incubated for 24h.  The media were collected 24h later and the cells were trypsinized and 

counted using an automated cell counter (Invitrogen). Media samples were spun down at 16000 g 

for 10 min and the supernatants were transferred into microcentrifuge tubes. ELISA was used to 

measure the concentrations of free IGF1 present in the media samples (Ansh Labs) according to 

the manufacturer’s instructions. Briefly, media samples were added to IGF1 antibody coated 

microtiter wells. The wells were then washed and then incubated with horseradish peroxidase 

labelled antibody conjugate. At the end of the incubation period, a substrate solution was added to 

the wells until the color was adequately developed. After incubation with the substrate solution, 

an acidic stopping solution was added. Dual wavelength absorbance measurements were taken at 

450 nm and at 630 nm. IGF1 concentrations were determined using a calibration curve. IGF1 

bound to the cells were calculated by subtracting the concentrations of free IGF1 concentrations 

from baseline concentrations measured in samples of media incubated under identical conditions 

in 6-well plates without cells. Molar concentrations of the metabolites were normalized per cell 

and presented relative to the control.   

2.7.15 Statistical analysis 

Statistical analysis was performed using the results of 2-5 independent experiments. To ensure the 

accuracy and fidelity of the data, the experiments, when possible, were performed in several 

technical replicates.  



The differences between SCO2-/- and WT HCT116 cells (at different treatment conditions) in NR 

fluorescence, protein and mRNA levels, and other measured parameters were evaluated using 

unpaired 2-tailed t-test and non-parametrical Mann-Whitney U-test. Unpaired 2-tailed t-tests, two-

way ANOVA (Dunnette’s) multiple comparison posthoc test) and one-way ANOVA (Tukey’s and 

Dunnette’s multiple comparison posthoc tests) analyses were done on Prism (GraphPad).  

2.7.16 Data Accessibility 

Raw data are deposited at Mendeley 

(https://data.mendeley.com/datasets/pyr8t5ng6r/draft?a=754177d8-d6f3-4de6-85b9-

645dd4136d2f). 
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2.11 BRIDGING TEXT 

This chapter investigates metabolic adaptations caused by mitochondrial dysfunction due to the 

inactivation of SCO2 in cancer cells. Loss of SCO2 induces energy stress which cancer cells adapt 

to by activating compensatory metabolic pathways (e.g., NAD+ regenerating pathways and 

pyruvate carboxylation). Metabolic reprogramming mediated by SCO2 deletion is accompanied 

by rewiring of the IGF1R/AKT axis and paradoxical decrease in mTORC1 signaling. This is 

paralleled by increased sensitivity of colorectal cancer cells to IGF1 and AKT inhibitors. This 

study therefore suggests that metabolic adaptations following energy stress may create rewiring of 

signaling pathways that may result in targetable vulnerabilities of cancer cells.  

Considering these findings, and recent recognition of perturbations in energy metabolism 

as a hallmark of cancer cells, in chapter 3, we sought to define potential metabolic vulnerabilities 

of CRC cells. Herein, we induced energy stress by treating cells with mitochondrial complex I 

inhibitor (i.e., phenformin) or nutrient depletion (i.e., glutamine deprivation). Different stressors 

were used to discern the metabolic pathways activated by phenformin or glutamine starvation in 

genetically heterogenous CRC cell lines but not in normal colon epithelial cells. These studies 

build on those carried out in the chapter 2 and have the overarching objective to identify potential 

commonalities in metabolic perturbations of genetically distinct CRC cells to various energetic 

stressors. 
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3.1 ABSTRACT 

 Intratumor heterogeneity is commonly observed in colorectal cancers (CRCs) as evidenced 

by different genetic makeup of cancer cells in the same tumor bed. Intratumor heterogeneity 

represents a major challenge for therapeutic approaches to target neoplasia. This is because most 

targeted anti-cancer therapies, although effective in eradicating cancer cells that harbor specific 

mutations, are ineffective against selected subclonal populations that are inherently resistant and/or 

acquire resistance by losing their dependence on targeted mutation. Regardless of their genetic 

makeup, cancer cells must undergo metabolic reprogramming to survive energy stress. To this end, 

identifying mechanisms of metabolic adaptations of cancer cells that are independent of their 

genetic makeup holds a promise to overcome issues related to therapeutic challenges imposed by 

intratumor genetic heterogeneity. To address this, we metabolically profiled colorectal cancer 

(CRC) cell lines in the context of glutamine deprivation or phenformin treatment to 

comprehensively map the metabolic pathways that underlie adaptation to energy stress. We show 

that CRC cells are more sensitive to the antiproliferative effects of phenformin, or glutamine 



deprivation compared to normal colon epithelial cells. Phenformin treatment and glutamine 

starvation downregulate mTORC1 signaling which concurrently suppress protein synthesis in 

transformed colon cells. Although phenformin and glutamine depletion lead to distinct metabolic 

profiles in HCT116 and HT29 cells, α-ketoglutarate carboxylation appears to be a common and 

potentially targetable metabolic vulnerability that may be exploited by combining biguanides with 

inhibitors of glutamine metabolism. Altogether, our studies provide initial evidence for potential 

commonalities in metabolic adaptations of CRC cell lines and lay foundation for further studies 

on a broader panel of CRC cell lines and in vivo models of CRC. 

3.2 INTRODUCTION 

 Colorectal cancer (CRC) is the second leading cause of cancer-related deaths and third 

most prevalent cancer amongst men and women globally (1). CRC death rates decreased in 2016 

compared to 1970 in highly developed countries because of the rapid development of diagnosing 

technologies and improved therapeutics over the years  (2). However, it is projected that by 2035,  

the incidence of CRC would rise to 2.5 million while the mortality rates of colon and rectal cancers 

will increase by 71.5% and 60% respectively worldwide (3). Genetic, lifestyle and environmental 

factors have been closely associated with the incidence and death rates of CRC, but the 

mechanisms underpinning the progression of CRC as well as potential molecular targets to treat 

this disease are still incompletely understood.  

Despite the recent developments, nearly 70% of CRC patients develop liver metastasis 

which is the primary cause of mortality (4-6). The treatment protocol for CRC typically involves 

a combination of approaches including surgery, radiotherapy, systemic chemotherapy, targeted 

therapy and/or immunotherapy (2). However, there are limitations to the different approaches in 

managing CRC such as systemic toxicity, comorbidities, poor efficacy and acquired resistance (7, 



8). Clinical management of CRC has been improved by the advent of targeted therapies  (8). To 

this end, the aberrant expression of EGFR and VEGFR, activating mutations in PI3KCA, KRAS 

and BRAF, mutations in p53 are regarded as biomarkers which dictate the advancement of CRC 

and predict the responsiveness to targeted therapeutics (7, 8). While targeted therapy has been 

effective in hindering the progression of certain cancers such as the use of imatinib to treat BCR-

ABL chronic myeloid leukemia (9), targeted approaches have yet to meet their expectations in 

CRC  (7, 10-13). 

 Although cetuximab, a monoclonal antibody specific for EGFR is occasionally used to 

treat chemorefractory metastatic CRC, resistance to this drug develops via a number of 

mechanisms including constitutive activation of KRAS (14, 15). Malignant cell populations with 

activating gene mutations downstream of EGFR may be present at frequencies too low to be 

detected by insensitive techniques during genetic profiling of tumors (16). Consequently, the 

analyses of tumor biopsies may fail to capture the extensive molecular complexities of genetic 

heterogenous tumors thus leading to ineffective treatment strategies (11). Intratumor and/or 

intermetastatic tumor genetic heterogeneity are commonly observed in solid tumors including 

CRC (11, 17-24). Genetic heterogeneity of tumors, which evolves as subclonal tumor cell 

populations change spatially and temporally during the development and progression of the 

disease, are often associated with shorter overall survival and adverse treatment outcomes of CRC 

(25-27). In addition, targeted therapies are thought to exert selection pressure that may allow better 

adapted malignant clonal cell populations to expand (28). This drawback in current targeted 

approaches needs to be addressed to effectively treat CRC.  

 During neoplastic growth, tumors rapidly outstrip their vasculature which results in 

hypoxic and nutrient-deficient tumor microenvironment (29-32). Therefore, in advanced solid 



tumors, neoplastic cells are exposed to metabolic stress that they must overcome to meet their 

bioenergetic and/or biosynthetic demands (33). To achieve this, neoplastic cells rewire their energy 

metabolism to sustain proliferation and survival (34). Since the discovery of the Warburg effect, 

numerous studies have illustrated metabolic reprogramming in cancer under contexts of various 

oncogenic mutations and tumor microenvironment conditions (34). To this end, metabolic 

reprogramming is now regarded as a hallmark of cancer (34). Glucose and glutamine are the two 

most predominantly used nutrients for energy production and biosynthesis of macromolecules in 

cells (35, 36). Tumor cells consume more glucose and glutamine than the cells populating 

nonproliferating normal tissues (37). While CRC cells have been shown to survive glucose-

deprived conditions, glutamine has been demonstrated to be required for their survival (38). 

Nonetheless, this apparent preference of glutamine over glucose as a biomass and bioenergetic 

source for CRC remains incompletely understood. 

 Metformin, a biguanide used as a first-line therapy for type 2 diabetes, exhibits 

antineoplastic effects across numerous cancer cell lines and models (39, 40). In addition, clinical 

studies revealed that metformin may be associated with reduced risk of colorectal adenoma 

incidence and CRC-specific mortality in diabetic patients with CRC (41, 42). In addition to its 

systemic effects that include decrease in insulin levels, metformin is thought to exert cell 

autonomous antitumoral effects by inhibiting mitochondrial complex I of the electron transport 

chain which leads to decreased ATP synthesis and an increase in the cellular AMP:ATP ratio (43). 

The elevated AMP:ATP ratio activates the cellular energy sensor, AMP-activated protein kinase 

(AMPK) which stimulates ATP generating catabolic processes such as fatty acid β-oxidation while 

suppressing energy consuming processes including protein synthesis in order to restore energy 

homeostasis (44, 45). Cells with impaired ability to activate AMPK due to the loss of LKB1 are 



unable to restore ATP levels in response to biguanide-induced energetic stress (46, 47). Thus, 

cancer cells with defective LKB1-AMPK signaling are  more sensitive to metformin compared to 

tumor cells that can activate AMPK (46). Taken together, AMPK activation seems to represent an 

adaptive response to biguanides that allows cells to bypass energy crisis. We previously showed 

that biguanides induce compensatory metabolic adaptations such as glucose addiction (48, 49). 

These adaptations represent potential drug targetable “metabolic vulnerabilities” that may be 

exploitable for treating CRC. 

As all tumor cells require energy to proliferate, we hypothesize that the systematic mapping 

of the metabolic pathways that enable genetically distinct CRC cells adapt to glutamine deprivation 

and phenformin (a biguanide that is more potent than metformin) will highlight potentially 

clinically targetable metabolic vulnerabilities. Given that biguanides and nutrient depletion induce 

energy stress (50-52), we sought to investigate their effects as independent stressors of CRC cells. 

Specifically, we set out to identify potential common adaptive metabolic alterations in genetically 

diverse CRC cell lines subjected to energy stress caused by glutamine depletion or phenformin. 

We observed that CRC cells were more sensitive to the antiproliferative effects of phenformin and 

glutamine deprivation than normal colon epithelial cells. As expected, phenformin and glutamine 

starvation inhibited mTORC1 signaling which was associated with reduced global protein 

synthesis. Although phenformin led to distinct metabolic profiles in HCT116 and HT29 cells, 

glutamine deprivation resulted in relatively similar metabolic perturbations characterized by 

increased levels of intracellular amino acids in both cell lines. Moreover, phenformin and 

glutamine deprivation of CRC cells reveal that reductive α-ketoglutarate carboxylation may be a 

common mechanism underpinning adaptation of CRC cells to metabolic stress. 

 



3.3 RESULTS 

3.3.1 Metabolic stress reduces proliferation of transformed colorectal cell lines more strongly 

than non-transformed colon epithelial cells 

Well-defined cancer cell lines that are frequently used as cell culture models have been shown to 

exhibit intra-cell line genetic variability (53, 54). Therefore, focusing on a single CRC cell line of 

defined genetic background may be insufficient to comprehensively recapitulate the intratumor 

genetic heterogeneity observed in patients and in vivo CRC models (55, 56). In order to simulate 

intratumor heterogeneity of CRC, and to mitigate cell line associated biases, we employed 2 

genetically different human colon adenocarcinoma cell lines: HCT116 and HT29. One of the 

primary goals behind the study was to elucidate energy-stress response networks shared between 

different CRC cell lines (Fig. 3.1A). Both HCT116 (Fig. 3.1B) and HT29 (Fig. 3.1C) cells were 

treated with increasing concentrations of phenformin. Although the antiproliferative effects of 

biguanides across various cancer cell lines have been previously documented (49, 57-59), it was 

important to determine the phenformin concentration that inhibited proliferation by 50% of the 

control cells (i.e., IC50). To facilitate direct comparisons of phenformin-induced metabolic 

perturbations between the cell lines we treated HCT116 and HT29 cells with the IC50 of 

phenformin (determined to be 0.6mM for both cells lines) (Fig. 3.1B-C). In addition to HCT116 

and HT29 cells, SV40-transformed colorectal cell line (CCD841CoTr) derived from the same 

tissue as the normal epithelial colon cell line (CCD841CoN) were also treated with phenformin 

(Fig. 3.1D). At most of the tested concentrations, phenformin minimally reduced proliferation of 

CCD841CoN compared to CCD841CoTr cells (Fig. 3.1D). This confirms previous findings that 

phenformin has only a marginal effect on proliferation and survival of non-malignant cells (49).  



  We next assessed the dependence of CRC cell lines on glucose. Herein, we cultured 

HCT116 and HT29 cells in DMEM supplemented with FBS and different concentrations of 

glucose (Fig. 3.1E-F). Of note, this concentration range encompasses the normal blood glucose 

level (5 mM) and recommended cell culture (25 mM) levels. While glucose concentration below 

2 mM dramatically reduced proliferation of both CRC cell lines, when cultured in 5mM of glucose, 

proliferation of HCT116 and HT29 was reduced by ~ 40% (Fig 3.1E) or was largely unaffected 

(Fig 3.1F) as compared to 25 mM glucose, respectively. Previous studies demonstrated that 

glutamine anaplerosis into citric acid cycle (CAC) may play an important role in normal colon but 

also in CRC (38, 60, 61). The core regions of solid tumors however often display glutamine 

deficiency (62). Therefore, we investigated glutamine dependencies in CRC cell lines. As 

expected, the proliferation of HCT116 (Fig 3.1G) and HT29 (Fig 3.1H) cells positively correlated 

with increasing glutamine concentration whereby the IC50 were determined to be 0.4mM for both 

cell lines. Although CCD841CoN cells exhibited no proliferative advantage over CCD841CoTr 

cells at any of the tested glutamine concentrations (Fig 3.1I), the proliferation of CCD841CoN 

cells was reduced by ~50% in the absence of glutamine in the media as compared to ~90% and 

80% reduction in proliferation of HCT116 (Fig 3.1G) and HT29 (Fig 3.1H) cells, respectively. 

Collectively, these data suggest that CRC cells exhibit heightened sensitivity to the inhibitors of 

mitochondrial functions as compared to non-transformed colon epithelial cells, and that, at least in 

some contexts, CRC cells exhibit increased dependency on exogenous glutamine. 

3.3.2 Phenformin and glutamine depletion downregulate mTORC1 activity and inhibit 

protein synthesis in CRC cell lines.  

Since AMPK and mTORC1 act as sensors for nutrient availability cellular energy status, we next 

monitored AMPK/mTORC1 signaling at early (2 h) and late (16 h) time points after inducing 



energy stress. Consistent with previous findings (63, 64), phenformin increased AMPK activity as 

illustrated by the phosphorylation of its α subunit (at T172) in both HCT116 (Fig 3.2A) and HT29 

(Fig 3.2B) cells. Phenformin induced AMPK activity as early as 2 h in HCT116 cells which was 

augmented after 16 h of treatment (Fig 3.2A). In turn, induction of AMPK by phenformin was 

evident only after 16 h of treatment in HT29 cells (Fig 3.2B). Consistent with the role of AMPK 

in suppressing mTORC1 (65), increase in AMPK activity correlated with reduced mTORC1 

signaling in both cell lines (Fig 3.2A-B). This was illustrated by the reduced phosphorylation of 

mTORC1 substrate, 4E-binding protein 1 (4E-BP1; S65) (Fig 3.2A), and mTORC1-dependent S6 

kinases (S6Ks) substrate ribosomal protein S6 (RPS6; S240/244) (Fig. 3.2A-B). In contrast to 

phenformin treatment, glutamine deprivation did not result in appreciable effects on AMPK 

phosphorylation levels in both HCT116 (Fig 3.2B) and HT29 (Fig 3.2D) cells. Nonetheless, long 

term (16 h) deprivation of glutamine suppressed mTORC1 signaling as illustrated by the 

diminished phosphorylation of 4E-BP1 (S65) and RPS6 (S240/244) (Fig 3.2C-D). This suggests 

that glutamine deprivation represses mTORC1 activity independently of AMPK. However, 

glutamine-derived α-ketoglutarate level may be depleted which prevents GTP loading of RAGB 

and subsequent activation of mTORC1 via prolyl hydroxylases (PHDs) (66). Alternatively, 

glutamine may activate mTORC1 independently of RAGs via adenosine diphosphate ribosylation 

factor-1 (ARF1) GTPase (67). Notwithstanding that future investigations are required to determine 

the temporal changes of mTORC1 signaling in response to glutamine starvation, the data imply 

that the time taken to deplete intracellular glutamine pools cause a time lag between the observed 

mTORC1 inhibition and the depletion of exogenous glutamine levels.  

Considering that mRNA translation is one of the most energetically demanding processes 

in the cell which is also regulated by AMPK and mTORC1 (68, 69), we assessed whether global 



protein synthesis was affected by phenformin and glutamine deprivation. Phenformin inhibited 

global mRNA translation as illustrated by reduced polysome formation that is reflected by 

decreased polysome/80S monosome ratios in HCT116 (Fig 3.2E) and HT29 cells (Fig 3.2F). 

Similar to phenformin treatment, 16 h of glutamine depletion suppressed global mRNA translation 

in both HCT116 (Fig 3.2G) and HT29 cells (Fig 3.2H). Overall, these findings are consistent with 

previous observations suggesting that downregulation of mTORC1 activity and global protein 

synthesis plays a central role in adaptation to metabolic stress (49).  

3.3.3 Phenformin induces metabolic perturbations in CRC cells. 

Aberrant AMPK and mTOR signaling has been implicated in the metabolic reprogramming of 

cancer cells (70). Furthermore, mTOR inhibitors have been shown to modulate cell metabolism 

by suppressing the translation of mRNAs encoding metabolic enzymes and mitochondrial factors 

(49, 71-73). Thus, we determined the impact of phenformin on steady-state intracellular 

metabolites in order to identify metabolic pathways that are perturbed in CRC cells in response to 

metabolic stress. As expected (74), phenformin reduced the intracellular levels of CAC 

intermediates including citrate, succinate, fumarate and malate in HCT116 cells as compared to 

the control, vehicle treated cells (Fig 2.3A) Also consistent with prior findings (48), in HCT116 

cells phenformin increased the levels of α-ketoglutarate and α-ketoglutarate/citrate ratio which is 

associated with the induction of reductive glutamine metabolism (75) (Fig 3.3A). Furthermore, the 

steady-state level of 2-hydroxyglutarate (2-HG) was elevated while γ-amino-butyric acid (GABA) 

was depleted in HCT116 cells treated with phenformin relative to the vehicle treated control (Fig 

3.3A). Considering that 2-HG is synthesized from α-ketoglutarate while the GABA shunt 

represents anaplerotic CAC route via succinate (76, 77), these findings are consistent with 

observed phenformin-induced increase in α-ketoglutarate and decrease in succinate, respectively. 



Since the synthesis of amino acids such as aspartate and alanine are dependent on mitochondrial 

activity (78-80), we expected that phenformin treatment will lead to reduction in intracellular 

steady-state levels of these amino acids. Indeed, a marked reduction in alanine and aspartate levels 

was observed in phenformin-treated HCT116 cells (Fig 3.3A). Although phenformin induced 

comparable perturbations in some steady-state metabolite levels in HT29 and HCT116 cells (e.g., 

citrate, succinate, α-ketoglutarate, 2-HG, GABA, aspartate and alanine), several differences in the 

phenformin-induced alterations of metabolite levels between these cell lines were noted (Fig 3.3B-

C). For instance, fumarate and malate which were significantly elevated after 2 h exposure to 

phenformin were reduced to control levels after 16 h in HT29 (Fig 3.3B), but not HCT116 cells 

(Fig 3.3A). These findings suggest potential temporal differences in phenformin-induced 

metabolomes of HCT116 and HT29 cells (Fig 3.3C). Although the underpinning mechanisms 

remain to be established, these metabolic distinctions in the effects of phenformin on the 

metabolome of HCT116 and HT29 cells may be a reflection of genomic differences between the 

cell lines. 

3.3.4 Glutamine deprivation depletes CAC intermediates while simultaneously increasing 

the levels of most amino acids in transformed colorectal cell lines. 

CRC cells were reported to critically depend on glutamine as an anaplerotic substrate for CAC 

(61, 81). Moreover, biguanides induce glutaminolysis to support lipogenesis and aspartate 

synthesis (48, 49, 78, 82). Thus, we sought to investigate time-dependent metabolic perturbations 

of glutamine-deprived HCT116 and HT29 cells. In accordance with its role in supporting the CAC, 

glutamine depletion reduced the levels of CAC intermediates (i.e., citrate, malate, succinate, 

fumarate and malate) in HCT116 cells (Fig 3.4A). In contrast to energy stress induced by 

phenformin, long term glutamine deprivation of HCT116 cells decreased the α-



ketoglutarate/citrate ratio which is indicative of decreased reductive carboxylation of α-

ketoglutarate (75). Intriguingly, 2 h of glutamine deprivation increased levels of both essential 

(e.g., valine, leucine, isoleucine, methionine, threonine, phenylalanine, tyrosine and histidine) and 

non-essential (e.g., cysteine, proline, serine and glycine) amino acids in HCT116 cells (Fig 3.4A). 

On the contrary, the levels a few amino acids such as alanine, glutamate, aspartate and asparagine 

were greatly depleted due to glutamine starvation (Fig 3.4A). Most of these observations were not 

limited to HCT116 cells. HT29 cells deprived of glutamine exhibited similar alterations in the 

levels of amino acids with concurrent decreases in CAC intermediates and α-ketoglutarate/citrate 

ratio (Fig 3.4B). Nonetheless, the effects of glutamine starvation on steady-state proline levels 

were remarkably different between HCT116 and HT29 cells (Fig 3.4A-B). Namely, while 

glutamine starvation led to an increase in proline levels in HCT116 cells, it was associated with a 

decrease in proline abundance in HT29 cells (Fig 3.4B-C). Although the cause of this apparent 

discrepancy in the effects of glutamine deprivation on proline levels between HCT116 and HT29 

cells remains unclear, it is plausible that this and other observed discrepancies may stem from 

differences in the mechanisms that drive metabolic rewiring in these cell lines. For example, MYC 

has been demonstrated to promote proline biosynthesis from glutamine via glutamate by increasing 

the expression of enzymes in the pathway such as P5CS and P5C reductase (PYCR) (83). 

Considering that MYC expression is elevated in 50% of CRC (84), it is conceivable that 

differential expression of MYC (85) in HCT116 and HT29 glutamine-deprived cells may explain 

differences in proline levels. 

 

 

 



3.4 FIGURES 

 

Fig. 3.1 Antiproliferative effects of nutrient deprivation and phenformin on epithelial colon 

cells.  A. Venn diagram representing metabolic vulnerabilities after inducing energy stress in 

HCT116 and HT29. “X” denotes overlapping metabolic changes induced by energy stress in both 

HCT116 and HT29. B-D. HCT116 (B), HT29 (C), CCD841CoN and CCD841CoTr (D) cells were 

treated with indicated concentrations of phenformin or a vehicle (water) for 3 days. The number 



of viable cells was determined using trypan blue exclusion and automated cell counter. Data are 

shown as the mean fraction of cells relative to the corresponding water-treated controls which were 

set at 1. The experiments were carried out in independent triplicates (with at least 2 technical 

replicates each time). Bars represent +/- SD values. E-F. HCT116 (E) and HT29 (F) cells were 

grown in media containing the indicated concentrations of glucose or vehicle (water) for 3 days. 

The number of live cells was determined using trypan blue exclusion and automated cell counter.  

Data are represented as the mean fraction of cells relative to the corresponding water-treated 

controls which were set at 1. The experiments were carried out in independent triplicates (with at 

least 2 technical replicates each time). Bars represent +/- SD values. G-I. HCT116 (G), HT29 (H), 

CCD841CoN and CCD841CoTr (I) cells were grown in media containing the indicated 

concentrations of glutamine or vehicle (water) for 3 days. The number of viable cells was 

determined using trypan blue exclusion and automated cell counter.  Data are shown as the mean 

fraction of cells relative to the corresponding water-treated controls which were set at 1. The 

experiments were carried out in at least independent duplicates (with 2 technical replicates each 

time). Bars represent +/- SD values. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (B-C and E-

H, One-way ANOVA; Dunnette’s posthoc test with water-treated cells as control; D and I, Two-

way ANOVA; Tukey’s posthoc test with water-treated cells as control). 



 



Fig. 3.2 Suppression of global mRNA translation is associated with the time course inhibition 

of mTORC1 signaling by phenformin and glutamine deprivation in CRC 

A-B. Western blot analysis of indicated proteins isolated from HCT116 (A) and HT29 (B) cells 

treated with phenformin (0.6 mM) or a vehicle (water) for 2 h or 16 h. Representative blots from 

3 independent experiments are shown. GAPDH and α-tubulin served as a loading control. C-D. 

HCT116 (C) and HT29 (D) cells were grown in media supplemented with FBS and 0.4 mM 

glutamine or 4 mM glutamine (water-treated control) for 2 h or 16 h. Levels and phosphorylation 

status of indicated proteins was determined by Western blotting. α-tubulin served as a loading 

control. The blots are representative of 3 independent experiments. E-H. HCT116 (E) and HT29 

(F) cells were treated with phenformin (0.6 mM) or vehicle (water) for 2 h or 16 h. G-H. HCT116 

(G) and HT29 (H) cells were in media supplemented with 0.4 mM glutamine or control (4 mM 

glutamine) for 2 h or 16 h.  Polysome fractions were obtained by ultracentrifugation using 5-50% 

sucrose gradients. Representative images of the polysome fraction absorbance profiles (254 nm) 

are shown. Polysome to 80S monosome ratios were calculated by comparing the area of the 80S 

peak to the cumulative area under the polysome peaks. The ratios of the areas were made relative 

to the corresponding control cells which were set at 1 as displayed on the right of the corresponding 

polysome profiles. The experiments were carried out in independent triplicates. Bars represent +/- 

SD values. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (E-H. One-way ANOVA; Dunnette’s 

posthoc test with water-treated cells as control). 



 



Fig. 3.3 Phenformin alters the metabolome of genetically heterogenous CRC cell lines. A-B. 

Intracellular levels of CAC-related metabolites and amino acids in HCT116 (A) and HT29 (B) 

cells were measured by GC-MS. The cells were treated as indicated and data are represented as 

mean fold change +/- SD relative to control cells wherein values for each metabolite are set to 1 

and displayed as the red-dashed line (N=3 independent experiments with technical triplicates each 

time). Intracellular α-ketoglutarate/citrate ratios in HCT116 (A) and HT29 (B) cells were 

determined from the steady state levels of α-ketoglutarate and citrate. The ratios calculated for the 

water-treated control cells were set at 1 (red-dashed line) and the results were represented as means 

of the ratios +/- SD for the phenformin-treated cells of 3 independent experiments with 3 technical 

replicates each. C. Heatmap of the intracellular metabolites shown in Fig. A and B. The colors 

vary from blue (for metabolites whose levels were decreased in treatment conditions vs. control) 

to red (for metabolites whose levels were increased in treatment conditions vs. control).   



  



Fig. 3.4 Glutamine deprivation reduces the levels of CAC intermediates but increases the 

levels of most amino acids in genetically distinct CRC cell lines. A-B. Intracellular levels of 

metabolites in HCT116 (A) and HT29 (B) cells were detected by GC-MS. The cells were treated 

as indicated and data are shown as mean fold change +/- SD relative to water-treated cells wherein 

values for each metabolite are set to 1 and displayed as the red-dashed line (N=3 independent 

experiments with technical triplicates each time). Intracellular α-ketoglutarate/citrate ratios in 

HCT116 (A) and HT29 (B) cells were calculated from the steady state levels of α-ketoglutarate 

and citrate. The ratios determined for the water-treated control cells were set at 1 (red-dashed line) 

and the results are presented as means of the ratios +/- SD for the treated cells from 3 independent 

experiments with 3 technical replicates each. C. Heatmap of the intracellular metabolites shown 

in Fig. A and B. The colors vary from blue (for metabolites whose levels were decreased in 

treatment conditions vs. control) to red (for metabolites whose levels were increased in treatment 

conditions vs. control).     

3.5 DISCUSSION 

Oxygen and nutrient availability vary during tumor development (86), whereby both factors 

become limiting in poorly vascularized solid tumors (86). In response to the energy stress, cancer 

cells undergo metabolic reprogramming in order to meet their bioenergetic and biosynthetic 

demands (86). Previously published studies demonstrated that energy stress caused by phenformin 

has only a minimal impact on proliferation of non-transformed breast epithelial NMuMG cells as 

compared to NMuMG cells transformed with oncogenic Neu/ErbB2 (V664E) (referred to as 

NT2197) (49). Consistent with this finding, HCT116 and HT29 cells exhibited greater sensitivity 

to energy stress caused by phenformin relative to normal epithelial colon cells (CCD841CoN). 

This is evident as phenformin IC50 is lower in transformed colorectal cells (i.e., 0.9mM for 



CCD841CoTr and 0.6 mM for both HCT116 and HT29) than in normal colon cells (i.e., 1.7 mM 

in CCD841CoN). Conversely, the IC50 value for glutamine is higher in transformed colorectal cells 

(i.e., 0.4 mM in both HCT116 and HT29) than in normal colon cells (i.e., 0 mM in CCD841CoN).  

Several driver mutations underlie tumor evolution and response to therapeutic insults in 

CRC. These mutations (APC; present in 80% of CRC), KRAS (35%–

45%), p53 (50%), PIK3CA (20%–30%), and BRAF (10%) result in aberrant activation of the 

mTOR pathway (87-89).   HCT116 and HT29 cells have missense mutations (P449T for HT29 

and H1047R for HCT116) in PIK3CA (90) which lead to the constitutively active PI3K-AKT-

MTOR signaling (91, 92). However, HCT116 and HT29 cells differ in the status of other driver 

mutations implicated in metabolic reprogramming. For instance, KRAS (G13D) is mutated only 

in HCT116 cells (93). In addition, HT29 cells have mutations in BRAF (V600E and T119S) and 

p53 (R273H) which are absent in HCT116 cells  (90, 94-98). Despite BRAF and KRAS mutations 

promoting similar physiological phenotypes, they have been reported to induce different metabolic 

dependencies in CRC (96). Corroborating prior works on the effects of biguanides across several 

cancer cell lines (49, 73, 99, 100), we establish that regardless of the genetic differences between 

HCT116 and HT29 cells, the downregulation of mTORC1 activity and consequently, protein 

synthesis by phenformin may at least be partly mediated by AMPK. However, it is worth 

mentioning that in addition to AMPK-dependent mechanisms, inhibition of mTORC1 by 

biguanides may be mediated via RAG GTPases and/or REDD1 (100-102). Thus, future genetic 

approaches whereby expression of REDD1, RAG GTPases or AMPK subunits is modulated is 

required to discern the precise mechanism by which phenformin inhibits mTORC1 signaling 

HCT116 and HT29 cells. Our data seem to validate reports that glutamine deprivation inhibits 

mTORC1 independent of AMPK activity (103). The inhibitory effects of glutamine deprivation 



on mTORC1 activity seem to be mediated via RAGB (66). In turn, glutamine appears to stimulate 

mTORC1 via ADP-ribosylation factor 1 (ARF1) (67, 104). Based on this, further investigation is 

required to highlight the mechanisms by which glutamine starvation inhibits mTORC1 activity in 

the context of CRC. In addition to reducing global protein synthesis, biguanides and nutrient 

deprivation have also been shown to preferentially affect translation of specific subsets of mRNAs 

while only marginally affecting others (49, 73, 105). Future applications of ribosome and/or 

polysome profiling methods coupled with RNAseq are therefore warranted to catalogue mRNAs 

whose translation is perturbed in response to metabolic stress in the context of CRC.  

Biguanides inhibit mitochondrial functions which leads to compensatory increase in 

glycolysis (48, 49, 106). Although the biguanide-induced increase in glycolysis is well-defined, 

the effect of biguanides on the levels of CAC intermediates appear to be context dependent (48, 

49, 59, 74, 107, 108). To this end, although phenformin induced comparable changes in the levels 

of α-ketoglutarate, citrate and succinate in HCT116 and HT29 cells, the effects of phenformin on 

fumarate and malate appeared to be diminished with time in HT29 but not HCT116 cells.  

However, to fully establish potential discrepancies in the effects of phenformin on the metabolome 

of HT29 and HCT116 cells it is necessary to perform future metabolic flux analysis using stable 

isotope tracer labeling with 13C-labelled substrates (such as glucose, glutamine or pyruvate). This 

and previously published studies (48, 49), suggest that phenformin induces reductive carboxylation 

of α-ketoglutarate. Given that glutamine is a major anaplerotic source (109, 110), CAC 

intermediate levels are expected to decrease once the intracellular glutamine levels become 

limiting. Importantly, glutamine deprivation appears to differentially affect CRC cell lines, 

whereby the effects of glutamine removal from the cell culture media led to dramatic inhibition of 

proliferation of HCT116 and HT29 but not CCD841CoTr cells. Notably, cells overexpressing 



the MYC proto-oncogene (e.g., HT29) or oncogenic KRAS (e.g., HCT116) or PI3KCA mutations 

(e.g., HCT116 and HT29) have been shown to be highly dependent on glutamine (61, 111-114). It 

is therefore plausible that the context of cancer-driving mutation(s) dictate(s) glutamine 

“addiction” of cancer cells, whereby SV40-transformed CCD841CoTr cells show lesser 

dependence on glutamine. Collectively, these data are in good keeping with previous findings  (61, 

111-114) suggesting that the driver mutations of CRC may direct metabolic adaptations to 

metabolic stress caused by glutamine starvation or drugs interfering with mitochondrial functions. 

Amino acid starvation leads to elevated levels of deacetylated tRNAs due to the failure of 

tRNA synthetase to aminoacylate tRNA when intracellular amino acid pools are insufficient (115, 

116).  Subsequently, the deacetylated tRNA molecules bind and activate GCN2 kinase (116). Once 

activated, GCN2 phosphorylates eIF2α which is paralleled by reduction in global mRNA 

translation with concomitant increase in translation of a small subset of mRNAs enriched in those 

encoding stress-responsive transcription factors including ATF4 (116). We observed similar 

alterations in the intracellular levels of most essential amino acids (EAAs) and nonessential amino 

acids (NEAAs) in glutamine-deprived HCT116 and HT29 cells. This is consistent with recent 

findings demonstrating that cancer cells cultured in glutamine-deficient media significantly elevate 

the levels of amino acids via increased uptake of exogenous amino acids mediated by ATF4 

transcriptional reprogramming (109, 110, 117, 118). Specifically, it was shown that glutamine 

deprivation triggers the general amino acid control (GAAC) pathway wherein ATF4 expression is 

upregulated (118, 119). In turn, ATF4 stimulates expression of genes encoding amino acid 

transporters (e.g., SLC7A5) which is associated with a time-dependent reactivation of mTORC1 

and inhibition of autophagy (117, 118).  Although glutamine-deprived cells also upregulate amino 

acid biosynthesis enzymes (e.g., asparagine synthetase) via GCN2/eIF2α/ATF4 axis, they seem to 



be unable to generate sufficient asparagine from the intracellular glutamine pools (109, 120).  

However, in contrast with the prior studies demonstrating that mTORC1 is reactivated in 

glutamine-starved cells (118), we observed no restoration of mTORC1 activity during 16 h of 

glutamine deprivation. Intriguingly, no observable changes to the levels of amino acids levels were 

detected when cells were grown in glutamine-deficient media that was supplemented with 

asparagine (109). Consistent with this, α-ketoglutarate or asparagine supplementation in 

glutamine-deficient media also rescued cell proliferation, restored mTORC1 activity and protein 

synthesis in glioblastoma and breast cancer cell lines (109, 110). Taken together, glutamine and/or 

asparagine appear to be required to sustain the mTORC1 activity in cancer cell lines, including 

CRC cells. In addition to enhanced amino acid uptake, it is plausible that the increase in the 

intracellular levels of EAA and NEAA in phenformin-treated or glutamine-deprived cells is caused 

by the induction of autophagy (121, 122). To this end, in the future we will set out to determine 

the role of autophagy in adaptation of CRC cells to energy stress induced by glutamine deprivation 

or biguanides. 

CAC anaplerosis via α-ketoglutarate derived from glutamine is more pronounced in the 

tumors than in adjacent normal colon tissues (61). Thus, phenformin and drugs inhibiting 

glutaminolysis may have an optimal therapeutic index for treating CRC. Phenformin increases the 

reductive carboxylation of α-ketoglutarate, while glutamine deprivation impedes it. This suggests 

that combining biguanides and inhibitors of glutaminolysis may result in synergistic anti-

neoplastic effects. Indeed, our findings have potential implications for therapeutic strategies 

targeting glutamine metabolism in CRC, as the efficacy of biguanides as antineoplastic drugs could 

be bolstered by combining it with inhibitors of glutamine metabolism.  



Accordingly, CRC stem cells show greater sensitivity to metformin in glutamine-depleted 

media but not in glucose-deprived media (123). Furthermore, glutaminase C inhibitor (compound 

968) enhanced the antineoplastic effects of metformin (123). In addition, CB-839 (a 

noncompetitive allosteric GLS1 inhibitor) exhibits marked antiproliferative effects across several 

cancer models (124-126) and prevents metabolic adaptation to MLN128 (an mTOR inhibitor) 

(127). Although our study provides pioneering insights into metabolic profiles of CRC in the 

context of metabolic stress. Future efforts to integrate energy stress-induced changes in gene 

expression, signaling and metabolome are warranted to establish the networks that underpin 

adaptive mechanisms of CRC cells and unravel potentially targetable metabolic vulnerabilities. 

3.6 METHODS 

3.6.1 Cell lines and culture conditions 

HCT116, HT29, CCD841CoN and CCD841CoTr were obtained from ATCC. All cells were 

cultured in complete DMEM (i.e., DMEM supplemented with 10% heat-inactivated fetal bovine 

serum (FBS) and 1% penicillin/streptomycin) (DMEM, FBS and penicillin/streptomycin were 

provided by Wisent). HCT116, HT29, CCD841CoN were maintained at 37 ºC, 5% CO2 and 19% 

O2 while CCD841CoTr was incubated at 33 ºC, 5% CO2 and 19% O2. 

3.6.2 Glutamine deprivation  

For western blotting, polysome profiling and GC-MS analysis, cells were seeded in complete 

DMEM 24 h before glutamine deprivation treatments. The cells were washed twice using DMEM 

without glutamine. After discarding the wash media, the cells were treated with DMEM containing 

0.4mM glutamine supplemented with 10% heat-inactivated FBS and 1% penicillin/streptomycin. 

1.8mL, 10.8mL and 27mL of treatment media were used for cells seeded in 6-well, 100mm and 

150mm plates respectively. 



3.6.3 Phenformin treatment  

Cells seeded for western blotting, polysome profiling and GC-MS analysis were cultured in 

complete DMEM media 24 h prior to treatment. The cells were washed twice with DMEM without 

glucose. After discarding the wash media, cells were treated with DMEM containing 10mM 

glucose supplemented with 10% heat-inactivated FBS, 1% penicillin/streptomycin and 0.6mM 

phenformin hydrochloride (Sigma). 1.8mL, 10.8mL and 27mL of the treatment media were used 

for cells seeded in 6-well, 100mm and 150mm plates respectively. 

3.6.4 Metabolomics analysis 

4.5×105 HCT116 and 5.7×105 HT29 cells were cultured on 6-well plates in technical triplicates to 

obtain cells approximately 80% confluency 48 h later. Cells were then treated with phenformin or 

deprived of glutamine for 2 h and 16 h. The plates were quickly placed on ice as soon as the 

treatment period was over. Media were discarded with an aspirator and the cells were washed with 

prechilled isotonic saline solution three times. Afterwards, the cells while on the plates were 

quenched on dry ice. 300 µL of 80% methanol pre-chilled to -20 ºC was added to the cells which 

were subsequently scraped from the wells and transferred into pre-chilled microcentrifuge tubes. 

This process was repeated with an additional 300 µL of 80% methanol and pooled with the 

previously collected 300 µL fraction. The cells were lysed at 4 °C (10 minutes, 30 sec on, 30 sec 

off, high power setting twice with a Diagenode Bioruptor). Cell debris were precipitated and 

discarded after centrifugation (16000 g, 4°C) while the supernatants were transferred into pre-

chilled tubes, spiked with 750 ng of myristic acid-D27 (Millipore Sigma) and dried in a CentriVap 

cold trap (Labconco) overnight at 4°C. Subsequently, the dried pellets were solubilized in 30 µL 

of pyridine containing methoxyamine-HCl (10 mg/mL) (MilliporeSigma) using a sonicator and 

vortex. The samples were heated to 70°C for 30 min and then moved into GC-MS injection vials 



containing 70 µL of N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). After 

homogenizing, the sample samples were reheated at 70 °C for 1 h. 1 µL of the derivatized samples 

was injected for GC–MS analysis. All GC–MS instrumentation and software (ChemStation and 

MassHunter) were from Agilent. Each metabolite was normalized to the peak intensity of myristic 

acid-D27 and the average cell number derived from the cells seeded in parallel and identical 

conditions to those collected for GC-MS steady state analysis. Data were expressed as fold change 

relative to the control cells. 

3.6.5 Cell proliferation assays 

1×105 cells were seeded in technical duplicates in 6-well plates and incubated for 24 h. The seeding 

media were aspirated and substituted with treatment media for 72 h. Different concentrations of 

phenformin tested were prepared using DMEM containing 10 mM glucose supplemented with 

10% heat-inactivated FBS and 1% penicillin/streptomycin. After the treatment period was over, 

the media were aspirated, and trypsin was added to the cells. Trypsinization was stopped by adding 

complete media to the wells after observing the cells were dislodged from the surface of the plates. 

The cell sample mixtures were collected and stained with trypan blue. Live cells were counted 

using an automated cell counter (Invitrogen).  

3.6.6 Western blotting and antibodies 

2.7×106 HCT116 and 3.4×106 HT29 cells were seeded in complete DMEM on 100mm plates. The 

seeding media were discarded 24 h later. Cells were then treated as previously described for 

glutamine deprivation and phenformin treatment. At the end of treatment period, the treatment 

media were aspirated, and the cells washed twice with ice-cold PBS while on ice. The cells were 

scrapped from the plates, collected into pre-chilled tubes and centrifuged (600 g at 4°C). The 

supernatants were carefully removed, the cell pellets were resuspended in lysis buffer [50 mM 



Tris/HCL (pH 7.4), 5 mM NaF, 5 mM Na pyrophosphate, 1 mM EDTA, 1 mM EGTA, 250 mM 

mannitol, 1% (v/v) triton X-100, 1 mM DTT, 1× complete protease inhibitors and 1× PhosSTOP] 

and placed on ice for 20 min. The cell lysates were centrifuged (10 min at 16,000 g and 4°C), and 

the supernatant subsequently transferred into clean microfuge tubes. After calculating protein 

concentrations by using BCATM kit, the samples were boiled in 1× Laemmli buffer at 95°C for 5 

min to denture and reduce the proteins. The proteins were separated by SDS–PAGE and transferred 

using wet mini-transfer system onto 0.45 μm nitrocellulose membranes. Membranes were placed 

in blocking buffer solution (5% BSA w/v in TBST buffer (0.1% Tween 20 in 1× TBS)) for 1 h at 

room temperature and then incubated with the appropriate primary antibodies which were diluted 

at 1:1000 in 5% BSA in TBST (overnight at 4 °C). The membranes were washed with TBST (3x 

10 min at room temperature) and incubated for 1 h with HRP-conjugated secondary antibodies 

diluted at 1:5000 or 1:2500 in 5% skimmed milk w/v in TBST. Primary antibodies against 4E-

BP1#9644, p-4E-BP1 (S65) #9456, α-tubulin #2125, GAPDH #2118, AMPKα #5832 and 2532, 

p-AMPKα (T172) #50081 and # 2535, p-rpS6 (S240/244) #2215 were all from Cell Signaling 

Technologies (Danvers, MA); rpS6 #sc-74459 from Santa Cruz Biotechnologies (Dallas, TX). 

Secondary HRP-conjugated mouse anti-rabbit IgG #A1949, goat anti-mouse IgG #A0168 were 

from MilliporeSigma. The membranes were washed (3X for 10 min at room temperature), ECL 

(Bio-Rad) mixture was added on the membranes and protein signals were revealed as 

chemiluminescent bands using Azure C300 Chemiluminescent Western Blot Imaging System 

(Azure Biosystems). 

3.6.7 Polysome Profiling 

6.8×106 HCT116 and 8.5×106 HT29 cells were seeded in complete DMEM on three 150mm plates 

per treatment condition. The cells were treated as previously described for glutamine deprivation 



and phenformin treatment. As soon as incubation period was over, the cells were harvested as 

described (128). A linear 5% to 50% sucrose gradient was prepared and used to isolate the 

polysomes described in (128).  Trizol (Thermo Fisher Scientific) was added to each fraction 

according to manufacturer’s instructions and stored at -80 °C. Experiments were carried out in 

independent triplicates.  

3.6.8 Statistical analysis 

Statistical analysis was performed using data from 2-3 independent experiments. To ensure the 

precision, accuracy and fidelity of the data, the experiments, when possible, were done with at 

least duplicates. Two-way ANOVA (Dunnette’s) multiple comparison posthoc test) and one-way 

ANOVA (Tukey’s and Dunnette’s multiple comparison posthoc tests) analyses were done on 

Prism (GraphPad). 
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CHAPTER 4: DISCUSSION 

4.1 Rewiring of signaling and metabolic networks underpins metabolic plasticity and 

adaptation of cancer cells to energy stress.  

Although Otto Warburg first described metabolic reprogramming in cancer cells over a 

century ago, the recent resurgence of interest in studying cancer metabolism that were spurred by 

the latest technological developments established dysregulated cellular energetics as a hallmark of 

cancer (1, 2). Metabolic reprogramming is often coupled with the other hallmarks of cancers such 

as sustained proliferation, resistance toward apoptosis, and epigenetic remodeling (3). For 

instance, this is evident as the sustained proliferation of tumor cells is a bioenergetically and 

biosynthetically demanding process, whereby neoplastic cells must adapt their metabolomes to 

survive and thrive in nutrient and oxygen depleted environment (2). In essence, cancer cells must 

be metabolically flexible and plastic to balance energy-producing and energy-consuming 

processes while withstanding adverse stressors emanating from tumor microenvironment. 

Commonly altered metabolic processes that support tumor growth and progression include 

glycolysis, lipid metabolism, glutamine metabolism, mitochondrial metabolism and redox 

homeostasis. Initial research in cancer metabolism predominantly focused on processes that 

incorporate nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed for 

proliferation (4). This established glucose and glutamine as the major sources for central carbon 

metabolism needed for cancer cell bioenergetic and biosynthetic processes (3, 4). In terms of 

bioenergetics, cancer cells often compensate for deficiency of either glucose or glutamine by 

augmenting the use of the available nutrient considering that the metabolism of both nutrients 

through the citric acid cycle (CAC) generates reducing equivalents for ATP production via 

oxidative phosphorylation (OXPHOS) (3-5). Cancer cells predominantly use reduced carbon to 



biosynthesize a vast array of macromolecules including fatty acids, nucleotides and non-essential 

amino acids through the transformation of nutrients into distinct intermediates that serve as 

substrates for these biomolecules (3). Aerobic glycolysis produces less ATP albeit rapidly from 

substrate-level phosphorylation than OXPHOS (4). However, it is proposed that aerobic glycolysis 

maintains redox balance and facilitates anabolic pathways by providing carbon units to support 

cancer cell survival (3, 4, 6).  Most biosynthetic reactions such as fatty acid synthesis are fueled 

by the reducing equivalent, NADPH (3). While NADPH is mainly produced through the oxidation 

of glucose via the pentose phosphate pathway, NADH is predominantly generated from glycolysis 

and CAC to drive OXPHOS (3). Cancer cell plasticity is necessary to allocate portions of carbon 

atoms derived from nutrients such as glucose and/or glutamine to various bioenergetic and 

biosynthetic processes (3). Overall, this illustrates how metabolic flexibility allows cancer cells to 

adapt to energetic stress, while fueling neoplastic growth and disease progression. 

Compared to aerobic glycolysis which has been extensively studied in the context of 

tumorigenesis and disease dissemination, the importance of OXPHOS in tumor metabolism has 

been mostly underappreciated despite studies demonstrating that OXPHOS is a pivotal source for 

ATP production in various types of cancers such as lymphoma, melanoma and glioblastoma (7). 

Mitochondrial metabolism is not only necessary for sustaining the biosynthetic and bioenergetic 

activities of the CAC but also maintaining mitochondrial membrane potential which is required 

for proliferation (8). Although neoplastic cells often display distinct metabolic features defined by 

their tissue of origin, metabolic plasticity enables cancer cells to adjust their dependence between 

aerobic glycolysis and OXPHOS during cancer progression, in response to therapeutic insults or 

alterations in tumor microenvironment (7, 9-11). For example, when primary melanoma lesions 

(which are characterized as “oxidative tumors”) intravasate into circulation OXPHOS is 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bioenergy


suppressed (9, 12). However, OXPHOS is upregulated after colonization of the metastatic site by 

the tumor cells (i.e., melanoma lung metastases) (9, 12). 

CAC anaplerosis fueled by glucose and glutamine provides intermediates and reducing 

equivalents needed for de novo biosynthetic processes (3). However, not all biosynthetic reactions 

dependent on glutamine can be supported by glucose (3). This is because in addition to being a 

carbon source, glutamine supplies reduced nitrogen which is required for biosynthesizing non-

essential amino acids and nucleotides (3). However, when glutamine is scarce cancer cells have 

been demonstrated to use branched-chain amino acids (BCAAs) as a nitrogen source (13). Overall, 

metabolic flexibility and plasticity allow cancer cells to meet their bioenergetic and biosynthetic 

needs which are vital to tumor growth, proliferation and survival. Recent discoveries indicate that 

cancer cell metabolism is dependent on various factors including (i) the availability of metabolic 

fuels, (ii) their metabolic plasticity and flexibility, and (iii) the tumor microenvironmental 

conditions [e.g., hypoxia, acidosis, etc. (14)]. 

Activation of oncogenes (e.g., KRAS and PI3KCA) or inactivation of tumor suppressors 

such as PTEN and TP53 impact on key metabolic processes including glutamine metabolism, 

glycolysis and OXPHOS (15-19). As such, oncogenic mutations inadvertently result in metabolic 

dependencies while concurrently exposing metabolic vulnerabilities that could be targeted by 

therapeutic interventions. The precise mechanisms of how oncogenic lesions influence cellular 

metabolomes and how metabolic perturbations are orchestrated with the alterations in gene 

expression and signaling programs are still largely elusive. Major nutrient-sensing mTOR pathway 

is frequently dysregulated across a broad spectrum of neoplasia (20, 21). Aberrant mTOR signaling 

is emerging as a major factor implicated in metabolic rewiring of neoplasia [reviewed in  (20-23) 

]. For example, we showed that mTORC1/4E-BP signaling axis coordinate reprograming of 



mRNA translation, mitochondrial functions and metabolic rewiring via controlling biosynthesis of 

the components of mitochondrial complexes and NEAAs including serine, asparagine and 

aspartate, respectively (24, 25). Similar interactions between mRNA translation machinery and 

metabolic programs are thought to be mediated by the GCN2/eIF2α/ATF4 signaling axis (26, 27). 

The GCN2/eIF2α/ATF4 axis mediates an adaptive stress response to amino acid deprivation by 

upregulating expression of genes involved in amino acid synthesis and transport (26, 28). Recent 

studies highlight that the crosstalk between these pathways and AMPK may play a major role in 

the coordination of metabolic and post-transcriptional gene expression programs in cancer cells 

thus endowing cancer cells with sufficient flexibility to adapt to a variety of stressor (29-31). These 

and similar post-transcriptional mechanisms are anticipated to collaborate with transcriptional 

programs directed by tumor promoting (e.g., c-MYC, HIF-1) or tumor suppressive transcription 

factors (e.g., p53) in shaping malignant metabolomes (32-36) (36). In turn, it is becoming apparent 

that metabolites including succinate, fumarate and 2-hydroxyglutarate affect gene expression by 

abrogating epigenetic and epitranscriptomic programs via interfering with histone, DNA and RNA 

demethylases (37). Collectively, these findings provide initial insights into the complexity of 

cellular networks that orchestrate signaling, gene expression and metabolic rewiring of neoplasia 

and indicate that future studies are warranted to dissect precise mechanisms that govern these 

processes. 

 Through my primary projects, I sought to capture metabolic perturbations induced by 

energetic stress in attempt to reveal potential targetable metabolic vulnerabilities in cancer. To this 

end, we show that glutamine deprivation or impaired mitochondrial complex I or IV activities 

result in energetic stress which is accompanied by a downregulation of mTORC1 signaling. 

However, while energetic stress due to complex I or IV dysfunction is associated with 



compensatory increase in glycolysis and activation of AMPK, glutamine starvation had no 

apparent effect on AMPK. Based on this and previous literature (38), it appears that glutamine 

depletion inhibits mTORC1 activity independently of AMPK. Furthermore, we show that the 

inactivation of complex IV results in a paradoxical hyperactivation of AKT which we assume 

promotes survival of cancer cells by upregulating ATP producing processes (i.e., glycolysis), while 

minimally consuming energy via concomitant suppression of mTORC1 signaling. Consistently, 

HCT116 with impaired complex IV function exhibited heightened sensitivity to AKT inhibitors, 

while they were less sensitive to mTOR inhibitors, as compared to control cells with undisrupted 

complex IV function. Although the mechanism of activation of AKT accompanied by the 

paradoxical suppression of mTORC1 remains elusive, it is plausible that associated activation of 

AMPK dampens the AKT-dependent activation of mTORC1. Indeed, repeated attempts to 

abrogate expression or deplete AMPK subunits in HCT116 cells with defective complex IV 

resulted in massive cell death. This suggests that AMPK activity is essential for rewiring signaling 

pathways and survival of cells with impaired complex IV function.   

In addition to rewiring of signaling pathways, we also observed that different types of 

stressors lead to distinct metabolic rewiring. For example, our data in conjunction with previous 

studies (39-45) revealed that rewiring of glutamine metabolism plays a major role in adaptation of 

cancer cells to aberrant ETC function. Consistent with findings showing that reductive glutamine 

metabolism is a function of the intracellular levels of α-ketoglutarate to citrate (46), we observed 

that impeding mitochondrial complex I or IV activity increases reductive glutamine metabolism. 

Although stable isotope tracer analysis with 13C-glutamine is required to delineate how 

intracellular carbon flux is altered in response to the different energetic stressors, these findings 



suggest that reductive glutamine metabolism may play a major role in adaptation of cancer cells 

to energy crisis caused by aberrant mitochondrial function. 

4.2 Pharmacological strategies to target metabolic vulnerabilities in cancer 

Metabolic reprograming is thought to play a central role in tumorigenesis and tumor 

progression, whereby specific metabolic programs are thought to distinguish malignant from 

normal cells (11). Hence, targeting cancer-specific metabolic vulnerabilities should provide a 

sufficient therapeutic window to selectively eradicate neoplastic cells while exerting minimal 

toxicity in normal cells and tissues.  

In addition to being the most abundant amino acid in the plasma, glutamine is metabolized 

by malignant cells at rates that appear to be higher than any other amino acid (10-100 times more 

than other amino acids) (47, 48). Although glutamine is often regarded as a nonessential amino 

acid, many types of cancers are dependent on extracellular glutamine, such as non-small cell lung 

cancer (NSCLC) and glioblastoma (49, 50). Furthermore, there is ample evidence suggesting that 

during stress, the need for glutamine seemingly exceeds the biosynthetic capacity of cells to 

provide sufficient amounts of de novo synthesized glutamine (51). Hence, glutamine is more 

accurately classified as a “conditionally essential amino acid” (51). Accordingly, the results of this 

thesis demonstrate the critical dependence of CRC cell lines on glutamine. For example, glutamine 

deprivation leads to reduction in mTORC1 activity and global protein synthesis which is paralleled 

with dramatically reduced proliferation of CRC cells. Although transformed colon cells showed 

no proliferative disadvantage compared to their parental non-transformed cells at any of the tested 

glutamine concentrations, future studies are required to elucidate the differences in glutamine 

metabolism between normal colon cells and CRC cells. In addition, our results in combination 

with studies from other groups (39-45) suggest that reductive glutamine metabolism may 



constitute a targetable metabolic vulnerability in cancer cells that exhibit mitochondrial 

dysfunction. Based on this, I will discuss current and/or potential strategies to target glutamine 

metabolism in the context of my primary studies. 

4.2.1 Pharmacological inhibition of glutamine uptake 

The glutamine analog, γ-l-glutamyl-p-nitroanilide (GPNA), has been shown to have 

antitumor effects in glutamine-dependent NSCLC and triple-negative basal-like breast cancer 

(TNBC) cell lines (52, 53). Pharmacological treatment of tumor cells with GPNA not only reduced 

glutamine uptake, but also inhibited mTOR signaling and cell proliferation (52, 53). The effects 

of GPNA were proposed to be mediated through the inhibition of the glutamine transporter, 

SLC1A5 (52, 53). Moreover, a more potent SLC1A5 inhibitor 2-amino-4-

bis(aryloxybenzyl)aminobutanoic acid (AABA; also referred to as V-9302) was demonstrated to 

reduce the viability of several cancer cell lines including breast, lung and CRC and attenuated the 

growth of corresponding xenografts tumor in mice (54). Consistent with the findings on the effects 

of glutamine deprivation on CRC cell lines reported in this thesis, V-9302 exposure decrease 

mTOR activity and diminish cancer cell proliferation (54).  

Interestingly, subsequent studies showed that GPNA and V-9302 may exert their 

antineoplastic effects independently of SLC1A5 and that they may be reliant on different 

glutamine (SLC38A2) and leucine transporters (SLC7A5)  (55-57). Given that GPNA is a 

substrate of a key enzyme in glutathione metabolism, γ-glutamyltransferase (GGT), additional 

reports suggested that the antitumor properties of GPNA in lung cancer were mediated by GGT 

(58). Specifically, it was proposed that GGT-catalyzes hydrolysis of GPNA into cytotoxic p-

nitroaniline thus inducing apoptosis without exerting a major effect on glutamine uptake in lung 

cancer cells (58). Taken together, these data suggest that the anticancer activities of GPNA may 



be context-dependent and more pleiotropic than previously thought. To this end, the antineoplastic 

effects of GPNA may be mediated by a combination of reduction in glutamine uptake and 

induction of oxidative stress. Deciphering of the molecular mechanisms of GPNA and V-9302 is 

further complicated by the intricate metabolic network involved in amino acid homeostasis. This 

is due to the existence of multiple amino acid transporters that import and export one or more 

amino acids (59). It was initially suggested that SLC7A5 is functionally coupled with SLC1A5 

wherein glutamine imported by SLC1A5 is subsequently exchanged for essential amino acids 

(EAAs) (e.g., leucine) by SLC7A5 (60, 61). According to this model, leucine and other branch 

chained amino acids were thought to mediate the effects of glutamine on mTOR activation (60, 

61). However, the pharmacological inhibition of SLC7A5 and SLC38A2 with V-9032, and 

abrogation of SLC1A5 led to a recently revised model of amino acid homeostasis (62). Herein it 

is thought that glutamine along with other NEAAs are predominantly accumulated in the cytosol 

by SLC38A1 which are then rapidly exchanged for other extracellular neutral NEAAs via SLC7A5 

and SLC1A5 (62). The inhibition of SLC7A5 results in a rescue response thereby upregulating 

SLC38A2 and SLC1A4 (62, 63). This therefore suggests that SLC38A2 and SLC1A4 are 

functionally redundant (63). This model is corroborated by the findings showing that the knockout 

of SLC1A5 in liver, colon and lung adenocarcinoma cell lines failed to repress mTORC1 signaling 

or proliferation because of amino acid transporter redundancies (64, 65). However, a recent study 

using human head and neck squamous cell carcinoma cell cultures and xenografts showed that 

abrogating SLC1A5 alone was sufficient to increase oxidative stress, suppress mTORC1 signaling 

and attenuate tumor growth (64). Collectively, with new emerging findings demonstrating 

redundancies in the various amino acid transporters, the mechanisms of antineoplastic actions of 

glutamine transporter inhibitors remain obscure. 



4.2.2 Pharmacological inhibition of glutaminolysis 

Intracellular glutamine is converted to glutamate by glutaminases (GLS). Glutamate is an 

important precursor of glutathione which protects cells from oxidative stress (66). Glutamate can 

then be deamidated either through (GLUD1) or transaminases such as (GOT or GPT) to produce 

α-ketoglutarate which is incorporated into the citric acid cycle (CAC) (67, 68). Other than its 

incorporation into the CAC for the subsequent production of ATP, glutamine-derived α-

ketoglutarate can be used for de novo fatty acid synthesis (indirectly through citrate), aspartate and 

nucleotide synthesis (ultimately through oxaloacetate) (67, 68).  

Over the last decade, small-molecule allosteric inhibitors of GLS have been developed as 

anticancer therapies. These include compound 968, BPTES (bis-2-(5-phenylacetamido-1,2,4-

thiadiazol-2-yl) ethyl sulfide), and CB-839 (69). GLS inhibitors differ in enzyme specificity and 

potency. While CB-839 and BPTES have the same molecular scaffold and are specific for GLS1, 

compound 968 is a pan-glutaminase inhibitor with moderate selectivity for GLS2 (69-72). 

Notably, compound 968 was demonstrated to suppress the proliferation of BPTES/CB-839-

resistant luminal breast cancer cell lines (72). The increased sensitivity of luminal A breast cancer 

cell lines to compound 968 was reported to be dependent on the upregulation and preference of 

GLS2 over GLS1 for glutaminolysis (72). The antiproliferative effect of CB-839 in TNBCs with 

upregulated GLS1 was associated with elevated glutamine uptake, decreased glutamine catabolism 

and diminished OXPHOS (73). Consistent with this, GLS inhibition of TNBC suppressed 

mTORC1 activity and induced ATF4 expression (74). Importantly, although the inhibition of 

glutaminolysis increases intracellular levels of glutamine while glutamine deprivation or treatment 

with glutamine transporter inhibitors deplete glutamine levels, abrogating any of the two reduces 

mTORC1 signaling and decreases cell proliferation (54, 74). Unlike GLS1, the function of GLS2 



remains unclear and appears to be context-dependent. For instance, while GLS2 is transcriptionally 

upregulated by p53 (75) and has been considered a tumor suppressor in liver cancer and 

glioblastoma, it was also shown to be regulated by N-MYC in neuroblastoma (76, 77). These 

apparently conflicting roles of GLS2 have hampered efforts in developing selective inhibitors 

against it. 

In pre-clinical studies, BPTES is the most frequently used highly selective glutaminase 

inhibitor (78). However, it is less potent than its analog, CB-839, and its poor aqueous solubility 

restricts its application in in vivo models (78). To this end, CB-839 has been the only one tested in 

numerous clinical trials for many types of cancers including non-Hodgkin’s lymphoma 

(NCT0207188), acute myeloid leukemia (NCT02071927), clear cell renal carcinoma (ccRCC) 

(NCT02771626), CRC (NCT02861300), TNBC (NCT03057600) and lung cancer 

(NCT02771626, NCT03831932, NCT03831932, NCT04250545). Although CB-839 used as a 

single-agent anticancer therapy profoundly inhibits glutaminolysis and arrest tumor cell growth in 

preclinical models, metabolic plasticity of cancer cells appears to significantly limit their efficacy 

(79) (80, 81). To this end, instead of relying solely on glutamine and specific glutamine 

transporters/glutaminolytic enzymes, cancer cells may switch to other metabolic routes that can be 

used as surrogate pathways to overcome therapeutic insults targeting glutamine metabolism (7). 

This in combination with a relatively modest success of therapeutic approaches targeting 

glutamine metabolism suggest that CB-839 and/or glutamine transporter inhibitors are unlikely to 

be effective as monotherapies. 

4.2.3 Drug combinations with glutamine metabolism inhibitors 

The mTOR signaling pathway regulates metabolism while integrating extracellular and 

intracellular signals emerging from the environment, nutrient availability and energetic status (82). 



Importantly, mTOR inhibitors decrease energy consumption due to inhibition of global mRNA 

translation that is associated with reduced energy production (25). In this manner, mTOR inhibitors 

cause metabolic dormancy in cancer cells which explains their cytostatic effects observed in the 

clinic (25).  

Strikingly, it was observed that CB-839 synergizes with the mTOR inhibitors AZD8055 

and PP242 to reduce the proliferation of TNBC and glioblastoma cells (74, 83). Accordingly, the 

resistance to mTOR inhibitors in glioblastoma has been attributed to compensatory glutamine 

metabolism wherein GLS expression was upregulated by PP242 and led to concomitant increases 

in the intracellular levels of glutamate and α-ketoglutarate (83). Although these studies illustrated 

synergy between glutaminase inhibitors and active site mTOR inhibitors, they fail to address 

whether the synergistic effects are predicated on inhibiting mTORC1, mTORC2 or both. More 

recently it was demonstrated that glutamine deprivation, GLS knockdown, or exposure to CB-839 

increased ROS levels, suppressed nucleotide synthesis and induced replication stress in a subset 

of ovarian cancer cells (84). The cells were more dependent on poly (ADP-ribose) polymerase 

(PARP) DNA repair and thus, sensitive to the PARP inhibitor, Olaparib (84). Moreover, DNA 

damage stimulated after treatment with certain cytotoxic drugs leads to abnormally high levels of 

PARP-mediated ribosylation, which is an energy costly process (85, 86). Taken together, these 

findings suggest that targeting multiple cellular processes increases the efficacy of drugs targeting 

glutamine metabolism which is likely due to the ability of these drug combinations to limit 

metabolic plasticity of neoplasia (84). Notwithstanding these promising preclinical results, future 

clinical trials are required to establish the efficacies of drug combinations targeting glutamine 

metabolism with other therapeutic modalities in cancer patients. 

 



4.2.4 Therapeutics targeting OXPHOS in cancer 

It has been shown that tumor cells devoid of mitochondrial DNA (mtDNA) lack 

tumorigenic potential, and form tumors only after acquiring healthy mtDNA from the host stromal 

cells (87). This was paralleled by restoration of respiratory activities in the tumor cells (87). This 

and similar studies illustrate the pivotal role of mitochondria in tumorigenesis and expose 

mitochondria as potential targets for anticancer drugs. The work in this thesis demonstrated that 

the inactivation of complex I or IV led to increased glucose uptake, glycolysis and reductive 

glutamine metabolism to compensate for the metabolic defects caused by mitochondrial (16, 24, 

42, 88). This suggests that impairment in mitochondrial functions and consequent activation of 

compensatory metabolic pathways may constitute druggable metabolic vulnerabilities.  

The anticancer activities of biguanides like metformin have been reported in numerous 

studies [reviewed in (89)]. Notably, results presented in this thesis confirmed previous findings 

that the antiproliferative effects of biguanides are more pronounced in malignant cells as compared 

to non-transformed cells (24), which together with proven safety of biguanides in the treatment of 

type 2 diabetes suggests sufficient therapeutic window (90). The mechanisms of the anti-neoplastic 

action of metformin and other biguanides is still unclear. For instance, it remains unclear whether 

biguanides act directly on the mitochondria by inhibiting complex I of the ETC because cancer 

cells deficient in mitochondrial DNA (rho0 cells) are sensitive to metformin (91). Furthermore, 

tumor cells with complex I mutations are more susceptible to metformin compared to cancer cells 

without the mutations (92). These reports oppose conclusions of previous studies showing that 

metformin causes time-dependent inhibition of complex I in isolated mitochondria (93) and that 

its anticancer effects are attenuated by the expression of Saccharomyces cerevisiae NADH 

dehydrogenase (NDI1) that is biguanide-insensitive (94). In addition, biguanides have been 



proposed to exert their antiproliferative effects at clinically relevant concentrations by inducing 

oxidative stress through the inhibition of mitochondrial glycerol phosphate dehydrogenase (GPD2) 

(95, 96). At the therapeutically relevant drug concentrations (1-5 µM) the reduced proliferation 

was not accompanied by suppression of mTOR signaling or diminished mitochondrial complex I 

activity (95, 96). These studies indicate that further research is required to determine the precise 

mechanism of the anti-neoplastic effects of biguanides.  

Hyperinsulinemia is a risk factor for several cancer types and is associated with adverse 

prognosis in breast, colon and pancreatic cancer patients (97-99). This is consistent with 

epidemiological studies demonstrating that type-2 diabetes mellitus and obesity are linked with an 

increased risk for developing breast, colon, liver, pancreas and kidney cancer (100, 101). Insulin 

can promote tumorigenesis through its action on insulin/insulin-like growth factor receptors 

(IR/IGF1R) which activate downstream signaling pathways (commonly implicated in neoplasia) 

such as PI3K/AKT/mTOR and RAS/RAF/MEK/ERK (102). Hyperinsulinemia can indirectly 

exert mitogenic effects by elevating the levels of insulin-like growth factors (IGFs), sex hormones 

(i.e., androgens and estrogens) and increasing the expression of IGF1R (102-104). 

Mechanistically, metformin acts as an antidiabetic agent by reducing liver gluconeogenesis and 

increasing glucose uptake in skeletal muscles, thus decreasing blood glucose levels, improving 

insulin sensitivity and lowering insulin levels in diabetic patients (105). Consequently, the 

anticancer properties of metformin may be due to its systemic effects on glucose and insulin levels. 

As such, it is thought that the systemic effects of metformin may underly its anticancer properties 

especially in cancer patients with hyperinsulinemia. Nonetheless, the results of a large phase 

III randomized, placebo-controlled, double-blind clinical trial examining the effects of metformin 

versus placebo in over 3500 non-diabetic women with early-stage breast cancer position 



biguanides as potential anticancer agents (106). Specifically, the administration of metformin led 

to weight loss, reduced circulating glucose and insulin levels, increased apoptosis and decreased 

proliferation of tumor cells (106, 107). 

Following the promising results from preclinical studies, there are close to 100 ongoing 

clinical trials evaluating the anticancer effects of biguanides either as a single agent or in 

combination with other interventions (108). However, the results of the completed trials have been 

mostly disappointing due to the incomplete understanding of the molecular mechanism of 

biguanides. Another plausible reason for the failures in clinical studies evaluating the efficacy of 

metformin as an antitumor agent may be because many of these studies assume that the commonly 

prescribed dose of metformin for type-2 diabetes mellitus is sufficient to elicit its anticancer 

effects. Even though phenformin is more potent and bioavailable due to its hydrophobicity and 

permeability, metformin is the preferred choice of biguanide in over 90% of the clinical trials (109, 

110). The primary reason for the lopsided application in clinical trials is due to phenformin-related 

toxicities such as lactic acidosis (111). This is in contrast with metformin which is well tolerated 

and largely nontoxic (112). Despite findings from retrospective epidemiological studies 

demonstrating that type-2 diabetes mellitus patients treated with metformin had reduced incidence 

rates of hepatocellular carcinoma, pancreatic cancer, breast cancer or colorectal adenoma, the 

bioavailability of metformin in treating cancer patients is not robust (113-118). In essence, 

preventing cancer does not equate to treating cancer.  A predominant reason why the anticancer 

properties of metformin observed in in vitro experimental models are not apparent in clinical trials 

is because of the difference in the effective concentration of biguanides tested (95). In clinical 

trials, oral intake of biguanides results in plasma levels which are about 10-100 folds less than 

those used in preclinical studies (95). Preclinical studies employ metformin in the supra-



pharmacological  levels (i.e., millimolar range) (95). Nonetheless, consistent efforts are being 

made to improve the potency of biguanides (119).  

Developing small molecule inhibitors selectively targeting OXPHOS  in cancer cells has 

remained a challenge because most conventional inhibitors of cellular respiration (e.g., rotenone) 

are also toxic to normal cells, and thus offer do not provide a suitable therapeutic window (120) 

(115). Novel potent OXPHOS inhibitors such as BAY 87-2243 and its analog IACS-010759 have 

suitable pharmacokinetic properties (121, 122). They have also been evaluated in clinical studies 

for acute myeloid leukemia, lymphoma and advanced solid tumors. While the clinical trials 

administering BAY 87-2243 was discontinued because of toxicity, IACS-010759 was 

demonstrated to be well-tolerated (123). 

4.2.5 Drug combinations with biguanides  

Given that cancer cells often undergo metabolic rewiring in response to biguanide-induced 

energy stress, targeting the compensatory metabolic adaptations through biguanide drug 

combination treatments is a potential pharmaceutical strategy that has been studied in various 

preclinical models (24, 124). Moreover, drug combinations that exhibit synergistic antineoplastic 

effects could mitigate the suboptimal pharmacokinetic issues associated with metformin by 

reducing its effective concentration.  

One of the earliest proposed combinatorial biguanide treatments involved the use of 

glycolytic inhibitors such as 2-deoxyglucose (2-DG) to block compensatory increase in glycolytic 

ATP production and NADH oxidation (125, 126). Biguanides have demonstrated synergy with 2-

DG to reduce cell viability and proliferation in preclinical models of prostate cancer, breast cancer 

and chemoresistant lung cancer stem cells (125, 127, 128). However, many clinical trials with 2-

DG have been terminated due to lack of clinical efficacy and serious side effects (126). 



Kinase inhibitors (KIs) such as erlotinib (EGFR inhibitor), gefitinib (EGFR inhibitor), 

trastuzumab (HER2 inhibitor), lapatinib (EGFR/HER2 dual inhibitor) and imatinib (BCR-ABL 

inhibitor) suppress glucose metabolism across various tumor cell models harboring mutations in 

the corresponding kinases (129-132).  However, metabolic flexibility occasionally limits the 

therapeutic efficacy of these drugs. An example of this is vemurafenib, a BRAF inhibitor 

commonly used to treat melanoma, which also represses glucose metabolism (24, 133, 134). BRAF 

inhibitors provide only short-term benefits followed by the development of drug resistance which 

is accompanied with increased dependence on OXPHOS and glutamine metabolism (133, 135). In 

one of the studies highlighted in the thesis, we demonstrated that KIs targeting different oncogenic 

mutations synergize with phenformin across broad spectrum of cancer cell lines (24). Specifically, 

KIs antagonized the metabolic adaptive pathways activated by phenformin treatments (24). KIs 

diminished phenformin-induced increases in glycolysis and reductive glutamine metabolism (24). 

Furthermore, this indicates that the drug combination may be effective against genetic and 

metabolic heterogenous tumors. In fact, phenformin is currently being tested in a phase I clinical 

trial to determine the optimal dosage for combination treatments with KIs (Dabrafenib and 

Trametinib) in patients with metastatic BRAF mutated melanoma (NCT03026517). Nonetheless, 

we demonstrated that mTORC1- and/or HIF1-dependent alterations in NEAA biosynthesis and 

glutamine metabolism, respectively provide cancer cells with metabolic flexibility that allows 

them to overcome KI and biguanide combinations (24). These data suggest that the applicability 

of KI/biguanide combinations in the clinic may be limited. 

Curiously, preclinical studies have shown that BPTES bolsters the antiproliferative effects 

of phenformin in LKB1-deficient NSCLC (136). The loss of LKB1 impeded AMPK activation 

and sensitized tumor cells to the energy stress induced by the phenformin/BPTES drug 



combination treatment (136). Abrogation of LKB1 impaired the metabolic flexibility of NSCLC 

cells and thus, rendered them susceptible to energetic crisis (136). Conceivably, the drug 

combination treatments impinge on essential metabolic and cellular processes regulated by mTOR 

signaling. Taken together, there seem to be promise in OXPHOS inhibitors/glutaminase inhibitors 

drug combination interventions particularly for tumors with limited metabolic flexibility and 

greatly dependent on glutamine metabolism and OXPHOS. Therefore, further research is required 

to identify the mechanisms that predict efficacy of combinatorial treatments incorporating small 

molecule inhibitors of OXPHOS. These studies should provide molecular basis to establish 

surrogate biomarkers that will facilitate stratification of the patients to identify potential responders 

to combinatorial approaches using OXPHOS inhibitors and other therapeutics.  

4.3 CONCLUSION 

Metabolic plasticity is an emerging feature of cancer cells that plays a prominent role in tumor 

dissemination and therapeutic responses. This thesis highlights previously unappreciated 

mechanisms underpinning metabolic flexibility of cancer cells in the context of energy stress 

caused by mitochondrial dysfunction due to abrogation of mitochondrial complex I or IV and/or 

nutrient deprivation. These findings provide initial insights into cellular networks underlying the 

metabolic adaptation of cancer cells to energy stress while exposing potential metabolic 

vulnerabilities. To this end, results reported in this thesis in concert with similar efforts in our 

laboratory and across the globe are likely to critically improve understanding of the molecular 

underpinnings of metabolic flexibility of cancer cells. In long-term, these efforts are anticipated to 

provide molecular bases for more effective approaches to identify and target metabolic 

vulnerabilities of neoplasia in the clinic. 

 



4.4 LIMITATIONS AND FUTURE PERSPECTIVES 

Notably, studies in chapters 2 and 3 were carried out in cell culture models that may not reflect 

complexity of organismal physiology and its impact on metabolic rewiring of neoplasia. 

Importantly, cell culture models are thought to insufficiently mimic rapid changes in nutrients, 

oxygen and hormonal milieu of cancer cells that occur in vivo. Tumor microenvironment affects 

metabolism of cancer cells. Reciprocally, cancer cells alter the metabolic composition of the 

extracellular milieu around them which often facilitate their progression (3). Additionally, 

metabolites produced by the host microbiota may promote or impede tumor initiation and 

progression (137). Taken together, studying the metabolic alterations of cancer cells warrants the 

use of in vivo models to fully capture the complexity of cancer metabolism. To this end, future 

studies using appropriate animal models are required to establish whether phenomena observed in 

chapters 2 and 3 also occur in vivo. Moreover, in chapter 3, we only monitored steady-state 

metabolite levels which are not indicative of flux through key metabolic pathways. This limitation 

will be addressed in future by performing stable isotope tracing analysis, which will allow us to 

monitor flux through key metabolic pathways upon abrogation of mitochondrial function and/or 

glutamine deprivation in CRC vs. non-transformed colon epithelial cells. Furthermore, the 

incorporation of systems biology approaches is required to elucidate the changes to gene 

expression and signaling pathways which underlie the metabolic adaptability of cancer cells to 

energy stress. These approaches will help us establish deeper insights into the mechanism 

underlying metabolic plasticity of cancer cells, which was an overarching objective of this thesis. 
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APPENDIX - OTHER WORKS 

A.1 Contributions to understanding of the molecular mechanisms of metabolic dysregulation 

in cancer  

In addition to contributing to improving the knowledge of the molecular underpinnings of 

cancer metabolism through my own projects (Chapters 2 and 3), I was extensively involved in 

collaborative work aiming to dissect the mechanisms of metabolic reprogramming in both normal 

and cancer cells. To this end, I provided critical experimental and intellectual inputs in studies 

wherein we set out to unravel the mechanisms of metabolic plasticity of cancer cells  (1-3). 

Moreover, we exploited potential avenues to target metabolic vulnerabilities of cancer cells and 

define mechanisms underlying the action of drugs targeting metabolic rewiring in neoplasia  (3, 

4). Collectively, these studies provide previously unappreciated insights into the mechanisms of 

metabolic plasticity of neoplasia. As mentioned in the introduction section, metabolic plasticity is 

a phenomenon whereby cancer cells instead of being addicted to one or few metabolic pathways 

can utilize a plethora of metabolites and/or nutrients via a variety of metabolic routes, while also 

being able to direct different metabolites and/or nutrients through the same metabolic pathway (5, 

6). Metabolic plasticity thus allows cancer cells to rapidly alternate between metabolic pathways 

in order to adapt to a variety of stressors including therapeutic insults (5). In addition, our studies 

provided hitherto unappreciated mechanistic insights into anti-neoplastic action of the 

combinations of inhibitors of oncogenic kinases and biguanides as well as the sodium-glucose 

cotransporter-2 (SGLT2) inhibitors (3, 4). In large part, these results were summarized in our 

review article (7), while the major findings of each of these studies are outlined below. 

 

 



A.1.1 Identification of hydride ion transfer complex that allows cells to overcome senescence 

and drives tumorigenesis. 

 Mitochondrial dysfunction, typically accompanied by decreased ATP levels and 

NAD+/NADH ratio, and increased reactive oxygen species (ROS) production is thought to play a 

major role in senescence  (8, 9). Senescence constitutes a major tumor suppressive mechanism 

(10). In addition to its well established function as a transcription factor (11), signal transducer and 

activator of transcription 3 (STAT3) has also been reported to function in the mitochondria (12). 

Indeed, it has been shown that the abrogation of STAT3 function results in elevated ROS 

production and dysfunctional mitochondria in hematopoietic stem cells and hematopoietic 

progenitor cells (13). This leads to premature aging of blood cells (13). Moreover, it was suggested 

that oncogenic RAS-induced malignant transformation of primary cells requires STAT3-

dependent regulation of mitochondrial functions (14). Altogether, these prior findings suggest a 

potential role of STAT3 in supporting mitochondrial activity in order to bypass senescence and 

drive oncogenesis.  

My work with Igelmann et al. employed STAT3-deficiency and other models of cellular 

senescence to highlight the mechanisms that allow cells to reprogram their metabolism and adapt 

to mitochondrial dysfunction-associated senescence (1).Specifically, mitochondrial dysfunction-

associated senescence was induced by depleting STAT3 in normal human fibroblasts (IMR90) (1). 

As expected, STAT3 depletion resulted in a reduction in cell proliferation and increased 

senescence-associated-β-galactosidase (SA-β-Gal) activity (1). This was accompanied by dramatic 

changes in the appearance of mitochondria including the disruption of cristae (1). STAT3 depletion 

not only disrupted the structural properties of the mitochondria but also suppressed their function 

(1). This was illustrated by elevated ROS levels, decreased NAD+/NADH ratio and reduced 



oxygen consumption relative to control scrambled shRNA infected cells (1). We next observed 

that abrogating TP53 or RB1 tumor suppressors, which enables IMR90 cells to overcome STAT3 

depletion-induced senescence resulted in normalization of NAD+/NADH ratio (1). This led us to 

hypothesize that a decrease in NAD+/NADH ratio may play a major role in metabolic 

perturbations that are related to induction of senescence. To test this tenet, we restored the 

NAD+/NADH ratio in STAT3-depleted cells by applying exogenous electron acceptor 

duroquinone or by expressing Lactobacillus brevis (LbNOX) or yeast (NDI1) NADH-oxidases. 

Strikingly, these interventions allowed STAT3 depleted cells to circumvent senescence (1). 

Collectively, these findings indicate that decrease in NAD+/NADH ratio plays a major role in the 

induction of senescence. 

Notably, reduced expression of STAT3 increases p53 levels thereby inducing senescence 

(1, 15). As noted above, we showed that decreasing the expression of p53 in cells depleted of 

STAT3 circumvented senescence and restored the NAD+/NADH ratio (1). These findings suggest 

that loss of p53 facilitates senescence bypass by reprogramming redox metabolism to elevate 

NAD+/NADH ratios in STAT3-depleted cells. To further investigate metabolic perturbations in 

this model (Fig. A.1.1A), I carried out stable isotope tracer analysis (SITA) using fully labelled 

13C-glucose in control or TP53-deficient STAT3-depleted IMR90 cells [Fig. A.1.1B-D; from Fig. 

1J-O in (1)]. This revealed that p53 loss-induced bypass of the senescence in STAT3-depleted 

IMR90 cells is associated with increased pyruvate carboxylase (PC), malic enzyme 1 (ME1) and 

malate dehydrogenase 1 (MDH1) activity which was evidenced by the increase in 13C-pyruvate, 

13C-malate and 13C-aspartate levels. We next sought to establish the mechanism of increased PC, 

ME1 and MDH1 activity in response to abrogation of p53 function. To this end, our bioinformatics 

analysis revealed that PC, ME1 and MDH1 are transcriptionally repressed by p53 while these 



enzymes were downregulated in senescent cells (1). Moreover, we made a surprising observation 

whereby in cells that bypassed senescence, a proportion of PC was localized in the cytoplasm, 

which was in stark contrast with almost exclusively mitochondrial localization of this enzyme in 

senescent or control cells (1).  Furthermore, a series of biophysical approaches in conjunction with 

immunofluorescence, immunoprecipitation and proximity ligation assays revealed that 

cytoplasmic PC, forms a complex with MDH1 and ME1 (1). Of note, MDH1 and ME1 are 

cytoplasmic enzymes (16, 17). Thus far, we concluded that the bypass of STAT3-depletion 

induced senescence is underpinned by formation of PC/ME1/MDH1 complexes. I next employed 

SITA analysis to further characterize metabolic activity of the latter complex, which revealed that 

PC supplies MDH1 with oxaloacetate in order to generate malate and oxidize NADH [Fig. A.1.1E-

H; from Fig. 4J-K and Fig. S6I-L in (1)]. Malate is then subsequently converted back to pyruvate 

by ME1 which results in generation of NADPH (Fig. A.1.1A). Based on its ability to transfer 

hydride ions from NADH to NADP+ we named PC/ME1/MDH1 complexes a hydride ion transfer 

complex (HTC). Importantly, HTC recycles NAD+ which is a major cofactor in metabolic 

pathways known to fuel cancer growth [e.g., glycolysis  and aspartate synthesis (18, 19)], while 

producing NADPH that drives lipid synthesis and provides ROS protection via stimulating 

regeneration of reduced glutathione (1). Indeed, overexpression of HTC enzymes in STAT3-

depleted IMR90 cells averted senescence while restoring NAD+/NADH ratio, increasing NADPH 

levels and decreasing ROS (1). Based on this, we predicted that HTC may increase metabolic 

plasticity and thus play a major role in tumorigenesis. To test this, we overexpressed HTC enzymes 

in combination with oncogenic RAS and showed that this is sufficient to suppress senescence in 

mouse embryonic fibroblasts (MEF), drive tumorigenesis and support tumor growth in in mice (1). 



These experiments revealed that HTC is not only sufficient to overcome oncogene-induced 

senescence, but that it can also induce malignant transformation and drive neoplastic growth.  

The importance of each enzyme within the HTC is highlighted by the findings that 

depletion of any of the HTC components leads to senescence. Namely, reducing the expression of 

PC, MDH1 or ME1 was accompanied by decreased NAD+/NADH in both IMR90 STAT3/p53 

depleted fibroblasts or prostate cancer PC-3 cells (1). I performed SITA analysis of 

PC/STAT3/p53 depleted IMR90 cells supplemented with 3,4-13C-glucose (Fig. A.1.1I-J; from Fig. 

1P-Q in (1)). As expected, PC depletion reduced the carbon flux into the HTC cycle as illustrated 

by the decrease in 13C-malate and 13C-aspartate levels (Fig. A.1.1J). It is also worthwhile to note 

that in addition to STAT3-depletion and oncogene-induced senescence, overexpression of HTC 

enzymes in normal human fibroblasts delayed replicative senescence while increasing the 

NAD+/NADH ratio (1). Altogether, these findings demonstrate that HTC plays a central role in 

overcoming senescence and driving tumorigenesis and tumor growth.  

Importantly, the role of HTC in overcoming mitochondrial dysfunction appears not to be 

limited only to the senescence. For instance, overexpression of HTC enzymes diminished 

antiproliferative effects of mitochondrial complex I inhibitor piercidin A in human fibroblast (1). 

Furthermore, HTC assembly is induced by hypoxia (1). This is consistent with previous 

observations that hypoxia averts senescence in fibroblasts expressing oncogenic RAS (1, 20). 

Overall, these findings suggest that HTC plays a major role in adaptation to repression of 

mitochondrial functions. 

In conclusion, these findings highlight the significance of HTC in maintaining cellular 

redox homeostasis under conditions of mitochondrial dysfunction. Specifically, we identified a 

cytosolic HTC complex that is formed by PC, ME1 and MDH1 and plays a paramount role in the 



rewiring of NAD+ metabolism which allows cells to overcome senescence and become cancerous. 

(1). Considering that HTC assembly is repressed by the tumor suppressors including TP53, RB1 

and PTEN (1), our findings further support the growing body of work that metabolic rewiring plays 

a major role in tumorigenesis caused by the loss of tumor suppressors (21-26). Accordingly, we 

observed increased expression and colocalization of HTC enzymes in prostate cancer mouse 

models and patient specimens. Importantly, by increasing the levels of electron acceptors (i.e., 

NAD+) while providing reducing equivalents (i.e., NADPH), HTC increases metabolic flexibility 

of cancer cells. The central role of HTC in metabolic plasticity is further illustrated by its ability 

to induce rewiring of metabolome thus allowing the cells to adapt to complex I inhibition and 

hypoxia.  Significantly, HTC catalyzes the metabolic cycle with no net-carbon loss. This is 

important inasmuch as it is thus likely that HTC does not affect cellular pools of pyruvate, 

oxaloacetate and malate which are important precursors of a number of biosynthetic processes that 

are crucial for proliferation and survival of cancer cells  (27-29). Although this study highlights 

cytosolic PC, MDH1 and ME1 as key components of the HTC complex, it is plausible that HTC 

comprises additional interacting partners. Future studies are presently conducted to further confirm 

the role of HTC in establishing metabolic plasticity of cancer cells in particular in the context of 

metastatic spread of the disease and drug resistance. 



 

Fig. A.1.1A Schematic of the multi-enzymatic complex (hydride transfer complex) 

underlying metabolic reprogramming and senescence bypass. To bypass oncogene-induced 

senescence or mitochondrial dysfunction-induced senescence, the HTC which comprises of PC, 

MDH1 and ME1, catalyzes a metabolic cycle resulting in the regeneration of NAD+ and NADPH.  

NAD+ and NADPH are key cofactors for essential metabolic processes including glycolysis and 

ROS detoxification. Figure is from (1). 



 

Fig. A.1.1B Model of NAD+ and NADPH regeneration by MDH1, ME1 and PC and 

schematic of 13C metabolite labeling patterns after incubating cells with 13C6-glucose. 13C are 

denoted by filled circles. Red cycle is the forward direction of the citric acid cycle giving (m+2) 

intermediates (Red-filled circles). Blue cycle begins with pyruvate carboxylase (PC) and is 

characterized by (m+3) intermediates (Blue-filled circles). HTC, hydride transfer complex; mito, 

mitochondria. Figure is from (1). 

 



 

Fig. A.1.1C Reduced expression of p53 reprograms metabolism in STAT3-depleted 

IMR90 cells. Ratio of (m+3)/(m+2) isotopomers for the aforementioned metabolites in IMR90 

cells expressing control vectors, a shRNA against STAT3 (shS3[A]) alone or in combination with 

an shRNA against p53 (shp53). The ratios were calculated using SITA data after 10 min of 13C6-

glucose flux. Figure is from (1). 



 

 Fig. A.1.1D IMR90 cells depleted of STAT3 and p53 increases CAC anaplerosis via 

PC while decreasing entry into the CAC through pyruvate dehydrogenase. Mass spectrometry 

analysis of glucose-derived metabolites (13C6-glucose flux) over time in IMR90 cells expressing a 

control shRNA (shNTC), a shRNA against STAT3 (shS3[A]) alone or in combination with an 

shRNA against p53 (shp53). Representative plots for the experiments are shown. Figure is from 

(1). 

 



 

Fig. A.1.1E Expression of the hydride transfer complex enzymes reprograms 

metabolism in STAT3-depleted IMR90 cells. Ratio of (m+3)/(m+2) isotopomers for the 

indicated metabolites in IMR90 cells expressing control vectors, a shRNA against STAT3 with 

either control vectors (shS3[A]) or with vectors expressing HTC enzymes (shS3[A]HTC). The 

ratios were calculated using SITA data after 10 min of 13C6-glucose flux. Figure is from (1). 

 

 



 

Fig. A.1.1F Expression of the hydride transfer complex enzymes increases CAC 

anaplerosis via PC in STAT3-depleted IMR90 cells. Mass spectrometry analysis of glucose-

derived metabolites (13C6-glucose flux) over time in IMR90 cells expressing a control shRNA 

(shNTC), a shRNA against STAT3 with either control vectors (shS3[A]) or with vectors 

expressing HTC enzymes (shS3[A]HTC). Mean percent of total labeled metabolites are shown. 

Figure is from (1). 



 

Fig. A.1.1G Schematic model of pyruvate carboxylase (PC) activity labeling pattern 

after 3-13C-glucose flux. 3-13C-glucose is metabolized into 3-13C-pyruvate. During the 

decarboxylation of 3-13C-pyruvate into acetyl-CoA, the labeled carbon is lost as heavy-labeled 

carbon dioxide and the subsequent citric acid cycle intermediates generated through oxidative 

decarboxylation are not labeled (magenta cycle). However, carboxylation of 3-13C-pyruvate into 

oxaloacetate by PC retains the labeled carbon and thus, each intermediate further derived from 3-

13C-oxaloacetate is also labeled [(i.e., m+1 (green cycle)]. The filled circles show labelled carbon. 

Figure is from (1). 



 

Fig. A.1.1H Expression of the hydride transfer complex enzymes increases CAC 

anaplerosis via PC in STAT3-depleted IMR90 cells. Mass spectrometry analysis of glucose-

derived metabolites (3-13C-glucose flux) over time in IMR90 cells expressing a control shRNA 

(shNTC), a shRNA against STAT3 with either control vectors (shS3[A]) or with vectors 

expressing HTC enzymes (shS3[A]HTC). Figure is from (1). 



 

Fig. A.1.1I Schematic model of pyruvate carboxylase (PC) activity labeling pattern 

after 3,4-13C-glucose flux. 3,4-13C-glucose is metabolized into 3-13C-pyruvate. During the 

decarboxylation of 3-13C-pyruvate into acetyl-CoA, the labeled carbon is lost as heavy-labeled 

carbon dioxide and the subsequent citric acid cycle intermediates generated through oxidative 

decarboxylation are not labeled (magenta cycle). However, carboxylation of 3-13C-pyruvate into 

oxaloacetate by PC retains the labeled carbon and thus, each intermediate further derived from 3-

13C-oxaloacetate is also labeled [(i.e., m+1 (blue cycle)]. The filled circles show labelled carbon. 

HTC, hydride transfer complex; mito, mitochondria. Figure is from (1).  



 

Fig. A.1.1J PC mediates metabolic reprogramming in IMR90 cells depleted of p53 

and STAT3. Mass spectrometry analysis of glucose-derived metabolites (3-13C-glucose flux) 

over time in IMR90 cells expressing a control shRNA (shNTC), a shRNA against STAT3 alone 

(shS3[A]) or in combination with an shRNA against p53 (shp53), and/or a shRNA against PC 

(shPC). Figure is from (1). 

 

 

 

 

 



A.1.2 Elucidating the mechanisms of the anti-neoplastic action of the sodium-glucose 

cotransporter-2 (SGLT2) inhibitors. 

Increase in aerobic glycolysis is arguably one of the most recognized metabolic 

perturbations commonly observed in proliferating cells and neoplasia (30, 31). Over the last few 

decades, a panoply of studies have identified genes that are important regulators of glucose 

metabolism (32). Based on this, a number of lead compounds and/or drugs were developed and/or 

repurposed to target glucose metabolism in cancer (32). However, most of these efforts did not 

result in expected outcomes, thus suggesting that further investigation in the role of glucose 

metabolism in cancer is warranted. To this end, we investigated the mechanisms of antineoplastic 

action of canagliflozin, which is a sodium glucose cotransporter 2 (SGLT2) inhibitor that is 

commonly used to treat type 2 diabetes (4). SGLT2 transporters, expressed in the proximal 

convoluted tubule of the kidneys, are targeted when treating diabetes because they are responsible 

for roughly 90% of filtered glucose reabsorption (33). Thus, antihyperglycemic agents like 

canagliflozin inhibit the reabsorption of filtered glucose in the kidney which leads to increased 

glucose excretion and reduced blood glucose levels (33). The antiproliferative effects of 

canagliflozin have previously been shown in pancreatic and lung cancer (34, 35). Moreover, 

SGLT2 expression, which is generally thought to be limited to kidney cells, has been observed in 

prostate, glioblastoma, and pancreatic cancer (35, 36). However, the mechanism of anti-cancer 

action of canagliflozin remain obscure.  

Supporting previously published studies (37-39), we showed that canagliflozin exhibits the 

antiproliferative effects in HER2+ (i.e., SKBR3 and BT-474) and luminal A (i.e., MCF7) breast 

cancer cell lines (4). I generated some of the cell proliferation data which compared the 

proliferative rates of control murine NT2197 breast cancer cells vs. those treated with 



canagliflozin, other antidiabetic drugs like biguanide metformin or the additional SGLT2 inhibitor 

dapagliflozin [Fig A.1.2A; from Fig. 1C in (4)]. Surprisingly, the anti-proliferative effects of 

canagliflozin were not dependent on the availability of glucose (4). This suggested that the anti-

proliferative effects of canagliflozin are independent of inhibition of glucose transport. In addition, 

the depletion of SGLT2 transporter neither reduced cell division nor rescued breast cancer cells 

from the antineoplastic effects of canagliflozin (4). Overall, these findings suggested a potential 

mechanism of anti-cancer action of canagliflozin that is independent of SGLT2. 

Canagliflozin was previously shown to reduce cellular proliferation and decrease survival 

of prostate and lung cancer cells by inhibiting mitochondrial complex I (39). Also, HER2+ breast 

cancers have been shown to exhibit increased glutamine anaplerosis, to support neoplastic growth 

(40). Taking these findings into consideration, we sought to explore the effects of canagliflozin on 

mitochondrial metabolism in HER2+ breast cancer cells. Herein, we observed that relative to 

vehicle treated control, canagliflozin reduces oxygen consumption along with decreasing total 

ATP production in HER2-amplified SKBR3 breast cancer cells (4). In addition, canagliflozin 

reduced citrate, alpha-ketoglutarate and succinate levels while increasing glutamine levels as 

compared to vehicle treated control (4). SITA using labelled 13C5-glutamine showed reduced 

carbon flux into the citric acid cycle (CAC) through the sequential enzymatic activities of 

glutaminase 1 (GLS1) and glutamate dehydrogenase (GLUD) to produce α-ketoglutarate (4). In 

conclusion, these experiments demonstrated that canagliflozin alters mitochondrial metabolism of 

HER2+ breast cancer cells at least in part by inhibiting glutamine anaplerosis with a subsequent 

decrease in the levels of CAC metabolites. 

Considering the observed inhibitory effects of canagliflozin on glutamine metabolism, we 

set out to further dissect the underlying mechanisms. We first demonstrated that the presence of 



glutamine is required for the antineoplastic effects of canagliflozin as oxygen consumption and 

proliferation were reduced only in the presence of glutamine (4). Moreover, canagliflozin induced 

glutamine uptake while increasing glutamate excretion which suggests reduced GLUD activity in 

converting glutamate to alpha-ketoglutarate (4). This was supported by subsequent findings that 

canagliflozin greatly diminished GLUD activity (4). Altogether, the data suggests that 

canagliflozin inhibits proliferation of HER2-amplified breast cancer cell lines by interfering with 

glutamine metabolism via disruption of GLUD function. 

Our findings support accruing evidence that glutamine metabolism may represent a valid 

therapeutic target in cancer. Indeed, recently several inhibitors of glutamine metabolism have been 

developed (41, 42). To this end, glutamine transporters, such SLC1A5, can be effectively targeted 

by drugs such as V-9302 (43). Moreover, several inhibitors of GLS1 including CB-839, BPTES 

and 968 have shown promising results in pre-clinical models (44). Importantly, CB-839 proceeded 

into clinical trials as a monotherapeutic agent and in combination with chemotherapy or 

immunotherapy for triple negative breast cancer (TNBC), non-small cell lung cancer (NSCLC) 

and non-Hodgkin’s lymphoma (NHL) patients (ClinicalTrials.gov identifiers: NCT02771626, 

NCT02071862, NCT02071888). In contrast, fewer clinical trials have been carried out to date 

investigating the effects of GLUD inhibitors. Nevertheless, epigallocatechin-3-gallate (EGCG) is 

currently being assessed as an anticancer agent for colorectal cancer patients (NCT:02891538). 

The use of EGCG as an antineoplastic compound against colorectal cancer provides basis for 

exploring the effects of canagliflozin beyond HER2+ breast cancer. Collectively, our study 

provided pioneering evidence that the effects of canagliflozin in HER2-amplified breast cancer are 

unlikely to be mediated by SGLT2 and are more likely to be the consequence of abrogation of 

glutamine metabolism. 



 

 

Fig. A.1.2A Canagliflozin reduces the proliferation of NT2197 cells. Number of viable 

NT2197 cells grown for indicated days was monitored by trypan blue exclusion using automated 

cell counter. Figure is from (4) 

 

 A.1.3 Establishing the role of PR/SET Domain 15 (PRDM15) in metabolic rewiring 

of B-cell lymphomas. 

Transcription factors including c-MYC and HIF1α, act as master regulators of cancer 

metabolism [summarized in the introduction section and (7)]. Nonetheless, the understanding of 

how transcriptional programs are integrated with metabolic rewiring in cancer is still incomplete. 

In collaboration with Mzoughi et al., we identified PRDM15 as transcription factor that is essential 

for metabolic reprogramming required to support survival and proliferation of B-cell lymphoma 

cells (2). PRDM15 is generally known to be involved in determination of cell identity during early 

development (45), but its function in adult tissues was largely unknown. Notwithstanding that we 

and others observed that PRDM15 is of the most highly overexpressed genes across the spectrum 



of different non-Hodgkin’s B-cell lymphomas (NBCL) such as follicular lymphoma, diffuse large 

B-cell lymphoma (DLBCL) and Burkitt’s lymphoma (2, 46), its role in the etiopathogenesis and 

progression of these diseases remained elusive. This motivated us to investigate the role of 

PRDM15 in NBCL. 

We first demonstrated that the abrogation of PRDM15 using antisense oligonucleotides 

(AONs) reduces the survival of primary DLBCL cells and various B-cell lymphoma cell lines 

including P493-6, MC116, OCILY3, Karpas231, PR1, and HT (DLBCL), thus suggesting that 

PRDM15 plays a major role in B-cell lymphoma biology (2). Interestingly, except for having a 

slightly longer lifespan, tamoxifen-inducible PRDM15 adult whole-body KO mice 

(Prdm15Δ/Δ;CreER or Δ/Δ for short) had no conspicuous phenotypic differences compared to the 

controls (2). This indicates that PRDM15 is mostly expendable for normal adult murine 

homeostasis and adult stem cell renewal even though it has been previously described to be 

essential in embryonic stem cells and during development  (2, 47, 48). However, considering that 

PRDM15 is upregulated in bone marrow B cells obtained from Eµ-Myc mice, we demonstrated 

that tamoxifen-inducible PRDM15 adult whole-body KO Eµ-Myc  (Prdm15Δ/Δ;CreER;Eµ-

Myc) mice  delayed disease onset whereby Prdm15Δ/Δ;CreER;Eµ-Myc mice had a median disease-

free survival of 332 days, compared to 107 days in control Eµ-Myc mice (2). Furthermore, the 

disruption of PRDM15 in primary tumor B-cells derived from tamoxifen-inducible PRDM15 KO 

Eµ-Myc mouse model decreased proliferation and increased apoptosis (2). In order to illustrate the 

cell-autonomous role of PRDM15 in tumor maintenance, primary tumors were extracted from 

PRDM15F/F;CreER;Eµ-Myc mice and transplanted into syngeneic recipient mice which were 

subsequently injected with tamoxifen to deplete PRDM15 in the tumor cells (2). While none of 

the tamoxifen-injected mice had palpable tumors at the end point of the experiment, all control 



mice had tumors and greater disease burden. Collectively, these findings demonstrate that 

PRDM15 may act as a central factor driving B-cell lymphomagenesis and maintenance of B-cell 

lymphoma.   

To gain further insights in the molecular mechanism(s) that underpin the role of PRDM15 

in driving B-cell lymphomagenesis and disease progression, we carried out chromatin 

immunoprecipitation (ChIP)-sequencing and RNA sequencing experiments in PRDM15-

proficient and deficient B-cells isolated from Eµ-Myc mice to identify promoters that are occupied 

by PRDM15 in parallel with the changes in mRNA level.  These analyses revealed that 

transcriptional targets of PRDM15 are enriched in metabolic genes including pyruvate kinase 

(Pkm), insulin receptor (Insr) and insulin like growth factor 1 receptor (Igf1r) (2). Moreover, gene 

ontology analysis of affected genes highlighted glycolysis and PI3K-AKT-mTOR signaling as two 

of the most highly affected functions upon Prdm15 loss (2). We confirmed these findings by 

showing that the loss of Prdm15 inhibited the activity of PI3K-AKT-mTOR signaling pathway 

(2). Intriguingly, suppression of mTOR signaling caused by Prdm15 loss appeared not to be 

accompanied by the disruption of negative feedbacks that lead to activation of other tumorigenic 

signaling pathways including MAPK-ERK (2). It is worthwhile to note that the compensatory 

activation of the latter pathways has been shown to limit the efficacy of clinically used mTOR 

inhibitors (e.g., everolimus) in oncological indications (49, 50). Considering that mTOR plays a 

major role in regulation of cellular metabolism, while putative PRDM15 transcriptional targets 

were also enriched in genes known to regulate glucose metabolism [e.g., glucose  transporter 1 

(SLC2A1), pyruvate kinase (PKM), hexokinase 3 (HK3) and enolase (ENO)] (2), we next sought 

to document the effects of  PRDM15 loss on the metabolome. I participated in these studies. 



Indeed, loss of Prdm15 in B-cell lymphomas derived from mice (i.e., 

Prdm15F/F;CreER;Eµ-Myc tumors treated with tamoxifen to deplete the expression of Prdm15) 

was accompanied by decrease in intracellular levels of glucose and glycolytic intermediates 

including fructose-6-phosphate, glucose-6-phosphate and glucose-1-phosphate (Fig. A.1.3A; from 

Fig. 6A in (2)). Likewise, the intracellular levels of a pentose phosphate pathway (PPP) 

intermediate sedoheptulose-7P were reduced when Prdm15 was abrogated as compared to the 

control (Fig. A.1.3A; from Fig. 6A in (2)). Accordingly, in addition to the downregulation of 

glycolytic genes, the loss of Prdm15 was also associated with the reduced expression of PPP 

enzymes (e.g., glucose-6-phophate isomerase) (2). Nucleotides, CAC intermediates (e.g., malate, 

succinate, fumarate and α-ketoglutarate) and amino acids (asparagine, glutamine, glutamate and 

proline) were also reduced in B-cell lymphoma cells lacking Prdm15 relative to Prdm15-proficient 

controls (Fig. A.1.3A; from Fig. 6A in (2)). Furthermore, OXPHOS was greatly diminished by 

deletion of Prdm15 as compared to control B-cell lymphoma cells (2). Since c-MYC plays a 

prominent role in regulating glutamine metabolism (51) and our data suggests that c-MYC 

stimulates PRDM15 transcription (2), I next performed SITA analysis whereby Prdm15-proficient 

(i.e., Prdm15F/F;CreER;Eµ-Myc) and tamoxifen-induced Prdm15-deficient B-cell (i.e. 

Prdm15Δ/Δ;CreER;Eµ-Myc) tumor lymphoma cells were labelled with 13C5-glutamine. This 

analysis revealed that although the total 13C-labeled CAC intermediates levels were reduced in 

association with the loss of PRDM15, the fraction of 13C-labeled CAC intermediates is mostly 

unaffected by PRDM15 status (Fig. A.1.3B-D; from Supplementary Fig. 6D, G-H in (2)). Hence, 

CAC enzyme activities were unaffected by PRDM15 status in the cell, and that the decrease in the 

total 13C-labeled CAC intermediates levels observed in B-cell lymphomas devoid of PRDM15 is 

at least partly due to decreased glutamine uptake and/or utilization (2). Taken altogether, these 



findings established PRDM15 as a major regulator of metabolic rewiring in B-cell lymphoma, 

while suggesting that the loss of PRDM15 leads to metabolic catastrophe and subsequent death of 

B-cell lymphoma cells. These findings thus position PRDM15 as a major factor that underpins 

metabolic plasticity of B-cell lymphoma cells, whereby PRDM15 appears to be essential for 

survival and proliferation of B-cell lymphoma cells.  

In conclusion, our study pointed out that although PRDM15 is essential for supporting 

metabolic programs of B-cell lymphoma, but not normal B-cells or other hematopoietic cells. This 

suggest that PRDM15 may constitute an appealing target for therapeutic intervention. Importantly, 

in addition to exhibiting low expression in adult tissues, the loss of Prdm15 in mice did not result 

in any obvious phenotypic differences in the major examined organs (e.g., spleen, intestines and 

testes), thereby suggesting a wide therapeutic window for the potential PRDM15-targeted 

therapies for adults. Although the crystal structure of PRDM15 is yet to be determined and 

potential inhibitors of PRDM15 may still be in development, antisense oligonucleotides targeting 

PRDM15 seem to be a plausible approach (2, 52).  



 

Fig. A.1.3A PRDM15 transcriptionally reprograms metabolism in Eµ-Myc tumor 

cells. Metabolomics analysis in Prdm15F/F;CreER;Eµ-Myc vs. Prdm15Δ/Δ;CreER;Eµ-Myc cells. 

The values in the upper panel represent the average intracellular level of each indicated metabolite 

in Prdm15Δ/Δ;CreER;Eµ-Myc cells relative to the Prdm15F/F;CreER;Eµ-Myc control cells 



determined by LC-MS. The data were obtained from three independent tumors (i.e., A, B and C) 

with each tumor consisting of three technical replicates. The values in the bottom panel are average 

intracellular levels of pyruvate and glutamate measured in two independent tumors determined by 

GC-MS. Figure is from (2) 

 

 

Fig. A.1.3B Schematic model of 13C incorporation into CAC intermediates after 

incubating cells in media containing 13C-glutamine. 13C-glutamine is metabolized into 13C-α-

ketoglutarate which undergoes oxidative decarboxylation (red cycle) in the CAC to produce 

intermediates of the cycle. The filled circles show labelled carbon. Figure is from (2) 

 



 

Fig. A.1.3C Loss of PRDM15 in Eµ-Myc tumor cells decreases the intracellular levels 

of CAC intermediates derived from the oxidative decarboxylation of glutamine-derived α-

ketoglutarate. Prdm15F/F;CreER;Eµ-Myc and Prdm15Δ/Δ;CreER;Eµ-Myc cells were incubated 

with 13C5-glutamine for 180 min. SITA were performed and the levels of indicated isotopomer ion 

amounts are shown as absolute amount and relative to the average of the Prdm15F/F;CreER;Eµ-

Myc control cells. Figure is from (2). 

 

 



 

Fig. A.1.3D PRDM15 status has no effect on the activity of CAC enzymes. SITA of 

Prdm15F/F;CreER;Eµ-Myc (WT) and Prdm15Δ/Δ;CreER;Eµ-Myc (PRDM15) cells incubated with 

13C5-glutamine. The fraction of 13C-CAC intermediates relative to the total pool labelled over time 

is shown. Data from two independent tumors (i.e., T63339 and T3464) is shown. Figure is from 

(2). 

 

A.1.4 The role of mTORC1/4E-BP/eIF4E axis and HIF1 in metabolic plasticity of cancer 

cells and responses to the combinations of inhibitors of oncogenic kinases and biguanides. 

To date, attempts to target metabolic vulnerabilities of cancer cells have resulted only in a 

modest success (53). This is thought to be a consequence of incomplete understanding of the 

molecular underpinnings of metabolic rewiring in neoplasia (54). More recent evidence points out 

that when one of the major metabolic pathways is suppressed, cancer cells can compensate by 

activating alternative metabolic routes (54). For instance, anti-diabetic biguanides (e.g., 

metformin) exhibit anti-neoplastic effects by suppressing OXPHOS which at least in part is 

achieved via the inhibition of mitochondrial complex I (55-59). This decrease in OXPHOS is 

however compensated by increased uptake and utilization of glucose including its reduction to 



lactate (59-62). The latter is thought to be required to regenerate NAD+ under conditions wherein 

the NADH dehydrogenase activity of complex I is reduced (60, 61). In turn, the vast majority of 

the inhibitors of oncogenic kinases (KIs) including HER2/EGFR inhibitor lapatinib, BRAF 

inhibitor vemurafenib, or BCR/ABL inhibitor imatinib suppress glucose uptake and glycolysis 

(63). Therefore, we and others rationalized that combining biguanides and KIs should result in 

synthetic lethality whereby compensatory increase in glycolysis required for adaptation to energy 

stress caused by biguanides should be disrupted by KIs (3, 64, 65). To test this hypothesis, we 

investigated the effects of combination of biguanides and KIs across the range of cancer cell lines 

whose neoplastic growth is driven by different oncogenic kinases  (3). We opted to use phenformin 

in our experiments motivated by the findings that metformin is a less potent complex I inhibitor 

compared to phenformin (66), while phenformin has a more favorable pharmacokinetic and 

pharmacodynamic profile than metformin (67). It is important to note that although phenformin is 

not in clinical use for the treatment of type 2 diabetes due to relatively higher frequency of lactic 

acidosis as compared to metformin, its repurposing for oncological indications is well justified 

considering severity of the side-effects of anti-cancer therapeutics (68).  

Using cell line models, we demonstrated that combining phenformin with KIs results in 

synergistic anti-proliferative effects and induction of apoptosis across a variety of cancer cell lines 

(3). More specifically, HER2 inhibitor lapatinib, BCR/ABL inhibitor imatinib and BRAF inhibitor 

vemurafenib synergized with phenformin in HER2+ breast cancer NT2197, BCR-ABL positive 

K562 myelogenous leukemia and BRAF-mutated A375 melanoma cell lines, respectively (3). 

Proliferation of HCT116 colon cancer cells is dependent on EGFR activity and is thus sensitive to 

lapatinib which acts as a dual HER2/EGFR kinase inhibitor (69). Of note, one of my contributions 

to this study was to carry out experiments showing that lapatinib and phenformin exert synergistic 



anti-proliferative effects in HCT116 cells (Fig. A.1.4A; from Fig. 1B and Supplementary Fig. 2F-

G of (3)). NT2197 cells were generated by expressing oncogenic Neu/ErbB2 (V664E) (rat 

orthologue of HER2) in Normal Murine Mammary Gland (NMuMG) cells (70). Importantly, 

NMuMG cells showed minimal sensitivity to phenformin, lapatinib or combination thereof as 

compared to NT2197 cells, thus suggesting that this drug combination does not induce major 

toxicity in normal cells (3). Finally, using xenograft NT2197 model, we showed that in vivo effects 

of a combination of phenformin and lapatinib are significantly stronger than using each drug alone 

(3). 

Thus far, our results showed that phenformin and KIs exert synergistic effects across a 

variety of cell lines and “driver” oncogenic kinases. Considering the opposing effects of KIs and 

phenformin on glycolysis (71-75) (60), we next probed the effects of phenformin/KI combinations 

on metabolome. I actively participated in these studies. As expected, vemurafenib (referred to as 

PLX4032) and lapatinib inhibited phenformin-induced increase in glucose uptake and lactate 

production (Fig. A.1.4B; from Fig. 2B and Fig. 2F of (3)). In addition, it was previously shown 

that biguanides induce reductive glutamine metabolism (62). As described in chapter 2, reductive 

glutamine metabolism is characterized by the reductive carboxylation of α-ketoglutarate which 

allows sufficient production of citrate to fuel lipid synthesis under conditions where mitochondrial 

functions and/or CAC are blocked (76). We observed that vemurafenib and lapatinib largely 

antagonized phenformin-induced increase in the reductive glutamine metabolism (Fig. A.1.4C; 

from Fig. 2D and Fig. 2H of (3)). Findings obtained in cell culture were further confirmed in vivo 

using the NT2197 xenograft model (3). Altogether, these findings indicate that KIs attenuate 

adaptive metabolic rewiring induced in response to energy stress caused by phenformin treatment. 

However, the synergy between lapatinib and phenformin could not be explained solely by their 



opposing effects on glucose metabolism inasmuch as combining phenformin with inhibitors of 

glycolysis (e.g., phosphofructokinase inhibitor 3PO), resulted only in weak additive effect (3).  

Phenformin and KIs impinge on protein synthesis machinery (77) which is one of the most 

highly energetically demanding processes in the cells that is upregulated in cancer and linked to 

metabolic reprogramming in neoplasia (78, 79). We therefore investigated whether the effects of 

KIs and phenformin on protein synthesis may contribute to the observed synergistic effects.  

Herein, we first focused on two major signaling mechanisms known to regulate protein synthesis: 

the AMPK-mTORC1 axis and the MAPK-ERK pathway. As expected, phenformin activated 

AMPK while KIs such as lapatinib, vemurafenib and imatinib inhibited the MAPK-ERK pathway. 

However, at concentrations used, combining KIs and phenformin resulted in downregulation of 

mTORC1 signaling to a significantly higher extent than each drug alone (3). Intriguingly, although 

the active-site mTOR inhibitor, torin1, repressed mTORC1 and global protein synthesis to a higher 

extent than phenformin/lapatinib combination, the effects of torin1 on apoptosis were dramatically 

less pronounced that those observed when phenformin and lapatinib were combined (3). This can 

be explained by the findings that active-site mTOR inhibitors induce metabolic dormancy whereby 

the reduction in ATP synthesis is offset by the inhibition of energy demanding processes like 

protein synthesis (79). Hence, it is plausible that residual mTOR signaling in phenformin/lapatinib-

treated cells is required to prevent metabolic dormancy and lead to energetic crisis which may 

explain higher induction of apoptosis in NT2197 cells treated with the latter combination as 

compared to torin1 treatment. 

In addition to regulating global protein synthesis, alterations in mTORC1 signaling have 

been linked to selective perturbations in the pools of mRNAs that are being translated (80-84). We 

observed that phenformin/lapatinib combination not only inhibited global protein synthesis, but 



also strongly reduced the translation of a number of “eIF4E-sensitve” mRNAs (e.g., MCL1, BCL2 

and MYC) (77)to the higher extent than either drug alone (3). We next confirmed that these effects 

on protein synthesis are mediated via the mTORC1-4E-BP-eIF4E axis by showing that is sufficient 

to rescue translation of “eIF4E-sensitive” mRNAs in cells treated with phenformin/KI combination 

to the levels comparable to those observed in control, vehicle treated cells (3). In addition to 

“classical” “eIF4E-sensitive mRNAs”, we observed that the loss of 4E-BPs alleviated the 

inhibitory effects of phenformin/lapatinib combination on translation of pyruvate carboxylase 

(PC), phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) 

and asparagine synthetase (ASNS) mRNAs (3). Notably, proteins encoded by the aforementioned 

mRNAs are implicated in biosynthesis of non-essential amino acid (NEAA) aspartate (PC), 

asparagine (ASNS) and serine (PHGDH AND PSAT1) (85, 86). It was previously demonstrated 

that the mTORC1-4E-BP-eIF4E axis regulates translation of mRNAs involved in mitochondrial 

biogenesis (e.g., TFAM) and functions (e.g., ATP5O) (79), which was also confirmed in the 

experiments using phenformin/lapatinib combination (3). Collectively, these results suggested that 

synergistic effects of biguanides and KIs may at least in part be mediated by translational 

reprograming of NEAA metabolism and bioenergetics via the mTORC1-4E-BP-eIF4E axis.  

To test this, I carried out SITA with 13C6-glucose and 3-13C-glucose, which revealed that 

according to alterations in translations, NT2197 cells devoid of 4E-BP1/2 synthesize more serine 

and aspartate compared to 4E-BP1/2-proficient cells, whereby the flux via these biosynthetic 

pathways remained significantly elevated after treatment with phenformin and lapatinib 

combination in 4E-BP1/2 KO cells [Fig. A.1.4D-F; from Fig. 6B and Supplementary Fig. 6B of 

(3)]. The significance of aspartate and asparagine in determining the sensitivity of cells to 

phenformin/lapatinib combination was further underscored by the findings that supplementation 



of the media with either aspartate or asparagine significantly attenuated the antiproliferative effects 

of phenformin/lapatinib combination even in 4E-BP1/2-proficient NT2197 cells (3). Conversely, 

inhibition of serine synthesis by depleting PHGDH potentiated the antiproliferative effect of the 

drug combination (3). Collectively, these findings show that translational reprogramming of 

NEAA biosynthesis via the mTORC1-4E-BP-eIF4E axis is a major determinant of the efficacy of 

combinations of phenformin with KIs. 

Notwithstanding that abrogation of 4E-BP1/2 expression attenuated the effects of 

biguanide/KI combinations in cancer cell lines, it did not rescue proliferation rates to the levels 

observed in control vehicle-treated cells (3). This suggested that the factors other than the 

mTORC1-4E-BP-eIF4E axis are implicated in response to combinatorial biguanide/KI treatment. 

We observed that the HIF-1α levels were more strongly reduced in NT2197 cells treated with 

phenformin/lapatinib drug combination compared to cells treated with either drug alone (3).  

Opposite to previous reports showing that in some contexts HIF-1α levels are regulated at the level 

of translation in a 4E-BP-dependent manner (87), we determined that the changes in HIF-1α levels 

in response to phenformin/lapatinib combination treatment of NT2197 cells were independent of 

the 4E-BP status in the cells (3). 13C5-glutamine tracing experiments under conditions where HIF-

1α levels were induced by dimethyloxallyl glycine (DMOG), or in renal cancer RCC4 cells devoid 

or competent for Von Hippel Lindau (VHL) E3 ubiquitin ligase that marks HIF-1α for degradation 

(88-90) revealed that HIF-1α plays a major role in inducing reductive glutamine metabolism (3). 

Consistent with previous reports (91), we found that HIF-1α negatively regulates α-ketoglutarate 

dehydrogenase (αKGDH) subunit E1 (OGDH) levels which limits oxidative, while bolstering 

reductive glutamine metabolism (3). Notably, phenformin/lapatinib combination treatment which 

had no major effect on the levels of HIF-1α and OGDH in VHL-deficient renal cancer RCC4 cells, 



reduced the levels of both proteins in their VHL-proficient counterparts (3). As mentioned above, 

increase in reductive glutamine metabolism limits anti-neoplastic efficacy of biguanides (62). 

Consistent with this VHL-deficient RCC4 cells exhibited reduced sensitivity to 

phenformin/lapatinib combination as compared to VHL-proficient RCC4 cells (3).  This was 

accompanied with the inability of the drugs to suppress HIF-1α levels and reductive glutamine 

metabolism in the absence of VHL (3).  

Altogether, these findings unraveled the previously unappreciated mechanisms that 

mediate the effects of biguanide and KI combinations. More importantly, these results showed that 

cancer cells engage alternative metabolic pathways governed by the mTORC1-4E-BP-eIF4E and 

HIF-1α dependent mechanisms to adapt to biguanide and KI combinations (Fig. A.1.4G; from (3)). 

These findings therefore suggest that instead of being “addicted” to one or few metabolic 

pathways, cancer cells exhibit metabolic plasticity whereby they can rewire metabolism using 

alternative mechanisms and pathways to avoid therapeutic insults and adapt to other types of stress. 

Considering that the combination of biguanides and KIs are being considered or are already in 

clinical trials (NCT03026517), these findings suggest that consideration of metabolic plasticity 

should play a major role in design and interpretation of these trials. Moreover, these and other 

emerging mechanisms that enhance metabolic flexibility of cancer cells [e.g., PGC1-dependent 

metabolic perturbations (92) and PDK1-dependent metabolic reprogramming (93)] are likely to 

limit the efficacy of targeting metabolic vulnerabilities of neoplasia in the clinic and dictate 

metastatic spread of the disease (6, 54). Collectively, these findings suggest that future research is 

warranted to improve understanding of the molecular underpinnings of metabolic reprograming in 

cancer. 



  

Fig. A.1.4A Lapatinib and phenformin work synergistically to inhibit the 

proliferation of HCT116 cells. HCT116 cells were treated with phenformin and/or lapatinib, at 

the indicated concentrations, for three days. Cell proliferation was monitored by BrdU 

incorporation and expressed as mean values +/- the SD of phenformin untreated (left panel) or 

lapatinib-untreated cells (middle panel). Combination Index 50 (CI50) for lapatinib and phenformin 

(right panel) was calculated by isobologram method using the cell proliferation curves (left and 

middle panels) for HCT116. Data shown are representative of 2 independent experiments, each 

with 3 technical replicates. Figure is from (3). 

 

  



Fig. A.1.4B Kinase inhibitors counters phenformin-induced changes in glucose 

metabolism. A375 and NT2197 cells were treated with phenformin and/or kinase inhibitors (i.e., 

A375 cells were treated with PLX4032 while NT2197 cells were treated with lapatinib) for a day. 

Glucose uptake in drug-treated cells is presented relative to DMSO-treated control cells. Results 

are presented as mean values +/- the SD. Figure is from (3). 

 

 

 

Fig. A.1.4C Kinase inhibitors opposes phenformin-induced changes in reductive 

glutamine metabolism. A375 and NT2197 cells were treated with phenformin and/or kinase 

inhibitors (i.e., A375 cells were treated with PLX4032 while NT2197 cells were treated with 

lapatinib) for a day. Intracellular α-KG/citrate ratios were determined by GC-MS and presented 

relative to DMSO-treated control cells. Results are presented as mean values +/- the SD. Figure is 

from (3). 

 



 

Fig. A.1.4D Schematic of 13C metabolite labeling patterns after incubating cells 

with 13C6-glucose. 13C are denoted by filled circles. Red cycle is the forward direction of the CAC 

giving (m+2) intermediates (Red-filled circles). Blue cycle begins with pyruvate carboxylase (PC) 

and is characterized by (m+3) intermediates (Blue-filled circles). Figure is from (3). 

 



 

Fig. A.1.4E Deletion of 4E-BP in NT2197 cooperates with lapatinib and phenformin 

drug-induced increases in the levels of aspartate and serine. Abrogation of 4E-BP NT2197 WT 

and 4E-BP KO cells were incubated with 13C6-glucose for 20 min. SITA were performed and the 

absolute levels of aspartate (m+3) and serine (m+3) ions are shown. Data are representative of 2 

independent experiments. AU: arbitrary units. Figure is from (3). 

 

 

 



 

Fig. A.1.4F Loss of 4E-BP increases the activity of PC in NT2197 cells. NT2197 WT 

and 4E-BP KO cells were incubated with 3-13C-glucose for 10 min. SITA were performed and the 

absolute levels of (m+1) ions of aspartate are shown. Data represents the average of 3 independent 

experiments +/- SD. AU: arbitrary units. Figure is from (3). 

 

 



Fig. A.1.4G Schematic of the molecular mechanisms underlying the synergic efficacy 

of kinase inhibitors (KI) and biguanides in treating cancer cells. Cancer cells exhibit metabolic 

plasticity mediated by mTORC1/4E-BP1 and HIF-1α. Drug combination treatments with KIs and 

biguanides can limit such metabolic plasticity. However, cancer cells can activate non-redundant 

adaptive mechanisms which allows them to survive the drug combinations. Figure is from (3). 

A.2 CONCLUSION:  

In this chapter, I described a number of collaborative studies in which I participated both 

experimentally and conceptually. Altogether, these studies provided hitherto unappreciated 

insights into mechanisms of metabolic reprogramming required to fuel neoplastic growth that also 

provide cancer cells with flexibility to adapt to fluctuations in nutrient and oxygen availability as 

well as to overcome therapeutic insults. Moreover, these findings highlighted previously unknown 

mechanisms of action of drugs targeting cancer metabolism and associated signaling pathways. 

Finally, these results in conjunction with a bevy of other recent studies highlighted the central role 

of metabolic plasticity in cancer maintenance, progression and therapeutic responses (54). 

Notwithstanding these advances in the field, there is still much to learn about the mechanisms 

governing metabolomes of cancer cells. Future research efforts addressing gaps in knowledge 

pertinent to the metabolic plasticity of neoplasia are thus required to provide the molecular basis 

for more efficient therapeutic strategies that take advantage of metabolic differences between 

normal and malignant cells.  
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