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ABSTRACT
The critical dimension necessary for a flame to propagate in suspensions of fuel par-
ticles in oxidizer is studied analytically and numerically. Two types of models are
considered: First, a continuum model, wherein the individual particulate sources are
not resolved and the heat release is assumed spatially uniform, is solved via con-
ventional finite difference techniques. Second, a discrete source model, wherein the
heat diffusion from individual sources is modeled via superposition of the Green’s
function of each source, is employed to examine the influence of the random, discrete
nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert
gas surrounding the reactive medium are considered as the loss mechanisms. Both
cylindrical and rectangular (slab) geometries of the reactive medium are considered,
and the flame speed is measured as a function of the diameter and thickness of the
domains, respectively. In the continuum model with inert gas confinement, a univer-
sal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete
source model, as the time scale of heat release of the sources is made small com-
pared to the interparticle diffusion time, the geometric scaling between cylinders and
slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime
to propagate in thinner slabs than predicted by continuum scaling is attributed to
the flame being able to exploit local fluctuations in concentration across the slab
to sustain propagation. As the heat release time of the sources is increased, the
discrete source model reverts back to results consistent with the continuum model.
Implications of these results for experiments are discussed.
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1. Introduction

The examination of how flames respond to heat losses reveals considerable insight into
flame structure and dynamics. It could be argued that modern combustion science be-
gan in 1815 with Sir Humphry Davy’s development of the safety lamp. In addition to
its practical application in preventing mine explosions, the demonstration that a wire
mesh can quench a flame made clear that it is the competition between heat generation
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and heat loss that determines criticality in flame propagation. [1] The seminal analytic
treatment of this problem by Spalding showed that quenching corresponds to a criti-
cality in the solution of the flame structure. [2] Modern asymptotic analysis revealed
that the decrement in flame speed with increasing heat loss can be described mathe-
matically by an eigenvalue solution for the flame speed, with the critical condition for
flame quenching associated with a turning point in the solution. [3, 4]

Recently, a number of unique features of flame propagation have been experimen-
tally identified in suspensions of reactive metal particles in a gas-phase oxidizing en-
vironment, wherein the inherent fluctuations in particle spacing may occur on a scale
that is comparable to the flame thickness itself. [5, 6] The resulting flame propagation is
thus dominated by the local heat diffusion among randomly distributed particles rather
than a laminar-like reaction front, as in classical flame theory. [5–10] The flame propa-
gation behavior identified in such systems has now been recognized as a unique branch
of combustion, discrete combustion. [11] In these earlier studies, the discrete regime of
flame propagation has been examined in adiabatic systems (or quasi-adiabatic systems
with insignificant heat loss). Further in-depth exploration into the physics of discrete
combustion, however, necessitates examining how such flames respond to heat losses.

In this paper, flame quenching is examined in a model system consisting of three
dimensional clouds of randomly positioned heat sources and is compared between cylin-
drical and rectangular slabs of the reactive media. Flame propagation in this system is
amenable to description via an analytic construction of superposition of Green’s func-
tions representing the sources; however, in practice, a computer is required in order to
keep track of the sequence of ignitions of the large number of sources (approaching 105

sources for some of the simulations in this paper). Taking advantage of this modeling
approach, Lam et al. previously performed a large number of simulations in randomly
generated, two-dimensional clouds of sources with periodic boundary conditions (and
thus no losses), and the resulting flame propagations were ensemble-averaged to mea-
sure the thickness of the flame front due to roughening as it propagated through the
random media. In that study, it was found that, in the highly discrete regime with
a low ignition temperature, the flame front roughening behavior could be described
by a power law relation that was shown to belong to the Kardar-Parisi-Zhang (KPZ)
universality class. [10] The present study extends these results to three dimensions and
includes losses at the periphery of the reactive media, such that critical behavior may
be observed. The fact that the resulting phenomenon for the problem under consid-
eration is statistical (meaning, for a given concentration, a flame in a given geometry
may propagate or quench depending upon the particular realization of the system) ne-
cessitates that ensemble averaging also be employed in the present study, assisted by
the use of high performance computing clusters. The flame front morphologies, propa-
gation speed, and scaling between critical cloud diameter and thickness resulting from
the discrete source model will be compared to the classical solution of a thermal flame
described by continuum equations and discussed in this paper.

This paper is organized as follows. In Sect. 2, the models describing a continuous
reactive medium (i.e., continuum model) and a cloud of reactive particulates (i.e., dis-
crete source model) are introduced. The heat losses into cold surroundings (either inert
gas or isothermal wall) considered in these models are also described in Sect. 2. The re-
sults of flame front morphology, flame propagation speed, critical cloud dimension for
flame propagation, and the dimensional scaling between the critical cloud dimensions
of cylindrical and slab geometries are presented in Sect. 3. The results are discussed
and interpreted in Sect. 4. The key findings of this study are summarized in the Con-
clusion (Sect. 5). Some mathematical details of how the governing equations of the
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models were derived from the reactive Navier-Stokes equations and how the boundary
conditions were implemented in the calculations can be found in the Appendices.

2. Model description

In this study, since the flame propagation behavior resulting from a system that con-
sists of discrete sources will be compared with the classical solution of thermal flames,
two different models are considered to treat a continuous reactive medium and a sus-
pension of randomly distributed, point-like sources. These models are referred to as the
continuum model and discrete source model, and introduced in Sect. 2.1 and Sect. 2.2,
respectively. The heat losses through the boundaries of the reactive medium are im-
plemented into these models via applying boundary conditions (i.e., isothermal wall
or open boundary conditions) to the governing equations of the models. The details of
the implementation of boundary conditions can be found in Sect. 2.3 and Appendix B.

2.1. Continuum model

In this model, the propagation of thermal flames in a reactive continuum is governed
by a two-dimensional heat diffusion equation (in rectangular and axisymmetric coor-
dinates) with a reaction source term and an equation tracking the reaction progress
variable. This model is based on the assumption that there is no mass diffusion, i.e., an
infinite Lewis number (Le = ∞). The dimensionless form of the governing equations
is as follows,

∂θ

∂t
=
∂2θ

∂x2
+
∂2θ

∂y2
+R(θ, C) rectangular

∂θ

∂t
=
∂2θ

∂x2
+
∂2θ

∂r2
+

1

r

∂θ

∂r
+R(θ, C) axisymmetric

∂C

∂t
= −R(θ, C)

(1)

Temperature is non-dimensionalized as θ = (T̃ − T̃0)/(T̃ad − T̃0), where T̃ is the di-

mensional temperature1, T̃0 is the initial temperature, and T̃ad is the adiabatic flame
temperature. C is the dimensionless reaction progress variable, or normalized concen-
tration of reactant, which evolves from 1 (unreacted) to 0 (completely reacted). The
reaction rate R depends on both θ and C and is governed by a switch-type reaction
model as follows,

R(θ, C) =

{
1 θ ≥ θign and C > 0

0 otherwise
(2)

When local temperature θ reaches a prescribed ignition temperature θign, the exother-
mic reaction begins. This reaction model is an appropriate approximation for partic-
ulate fuels that undergo a transition to diffusion-limited combustion. [12]

In the continuum model, time is non-dimensionalized with respect to the charac-

teristic reaction time t̃r, i.e., t = t̃/t̃r. The spatial coordinate is x = x̃/
√
α̃t̃r where

1Note that all of the dimensional quantities in this paper are denoted with a tilde “∼”
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α̃ is the thermal diffusivity. Further details of how these dimensionless equations are
derived from the dimensional governing equations can be found in Appendix A.1 and
Ref. [13].

Figure 1. Schematic of continuum model domain. The representative two-dimensional numerical grid is shown
with exaggerated grid spacing; solid black lines represent cold wall (Dirichlet) boundary conditions, while

dashed-dotted lines represent the axes of symmetry. Temperature contours are superimposed on cutaways of

the three-dimensional domains. Volume shaded in red represents the initiation region, and volume shaded in
gray represents the reactive region. Dashed pink lines highlight the ignition temperature (here θign = 0.2). (a)

Cylindrical domain with cold wall boundary conditions; (b) cylindrical domain with inert confinement condi-

tions; (c) slab domain with cold wall boundary conditions; (d) slab domain with inert confinement conditions.
The black-white dashed lines in (b) and (d) represent the initial interface between the reactive and non-reactive

regions.

As illustrated in Fig. 1(a), the flame was initiated by a high temperature zone (vol-
ume shaded red) where the temperature and reaction progress variable were initially
θ = 1 and C = 0, respectively; for the reactive medium (unshaded volume), the initial
conditions were θ = 0 and C = 1. The thickness and diameter of the reactive medium
are denoted as h and d, respectively. Only half of the reactive medium needed to be
considered by applying an adiabatic boundary condition along the bottom boundary
of the domain. The reactive medium loses heat into its surroundings through the top
boundary (see Sect. 2.3). The numerical method used to solve the continuum formu-
lation was a central difference spatial discretization with the Forward-Euler method
used for time integration of C.

2.2. Discrete source model

In the discrete source model, point-like reactive particulates are randomly distributed
in a three-dimensional oxidizing environment. The heat released by each particulate
diffuses through the inert, inter-particle medium. The mass diffusion of oxidizer is
neglected in this model, i.e., Le =∞, which is consistent with the assumption made in
the continuum model. This system is described by a three-dimensional heat diffusion
equation with a source term that governs the heat release of the point-like reactive
particulates in the system. The non-dimensional form of the governing equation is
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formulated as follows,

∂θ

∂t
=
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
+

N∑
i=1

Ri(x, t) (3)

where x is a position vector in three dimensions, i.e., x = (x, y, z), N is the total
number of reactive particles in the system, and i is the particle index. The reaction
model for the ith particle Ri(x, t) can be expressed as follows,

Ri(x, t) =
δ(x− xi)

τc
H(t− tign,i)H(τc − t+ tign,i) (4)

where xi is the location of the ith particle, and tign,i is the time when the local tem-
perature at the ith particle first reaches the ignition temperature θign. The point-like
nature of the particle is described by a spatial Dirac δ-function in Eq. 4. The Heavi-
side function H is used to construct a boxcar function for the cases that the particles
release energy over a finite amount of time after being ignited.

The discreteness parameter τc is defined as the ratio between the energy release
time of each particle t̃r and the characteristic heat diffusion time over the average
inter-particle spacing l̃, i.e., t̃d = l̃2/α̃. The expression for τc is as follows,

τc =
t̃r

t̃d
(5)

When τc � 1, the spatial discreteness of the heat sources becomes significant. In the
limit of τc → 0, the energy release of each particle is instantaneous, and thus, the
source term (Eq. 4) becomes Ri(x, t) = δ(x− xi)δ(t− tign,i).

In the discrete source model, time is non-dimensionalized by the characteristic heat
diffusion time, i.e., t = t̃/t̃d, and spatial coordinates are non-dimensionalized by the

average particle spacing, i.e., x = x̃/l̃. Note that this non-dimensionalization is dif-
ferent from that used for the continuum model. Scale conversion between these two
dimensionless systems is needed when the results of the discrete source model are
compared with those of the continuum model in Sect. 3. Further details of how the
dimensionless equations are derived from the dimensional governing equations for the
discrete source model can be found in Appendix A.2 and Ref. [10].

As depicted schematically in Fig. 2, a cloud of randomly distributed particulates
was initially generated in rectangular slab or cylindrical geometries. The length of the
particulate cloud in the flame propagation direction (x-direction), L, is 10 times the
slab thickness or the cylinder diameter, i.e., L = 10h or L = 10d, respectively. For the
slab geometry, the width of the cloud, W , equals the cloud length, i.e., W = L, so the
aspect ratio of the slab is maintained at h : W = 1 : 10. Since a periodic boundary
condition is applied along the edges of the slab in the z-direction (as described in
Section 2.3), however, there are no heat losses from the edge, and the slab is thus
effectively of infinite width. Within the initiation region (shaded red), the particles (red
points) were initially ignited at t = 0. The length of this initiation region is one tenth
of the cloud length, i.e., Linit/L = 0.1. The heat generated by these particles triggered
the subsequent ignitions and energy release of the particles in the reactive cloud. By
solving the governing equations (Eqs. 3 and 4), the temperature at a specific location
θ(x, t) can be obtained. This solution for θ(x, t) can be analytically constructed via
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Figure 2. Schematic of discrete model cloud geometries with sources shown as points. Volume shaded in red

represents the initiation region, in which point sources are ignited (active) at t = 0, but the medium is inert.

Point sources in the gray shaded region ignite when the ignition temperature at the specific location is reached.
(a) Cylindrical cloud geometry with length L and diameter d; (b) slab domain with length L, width W and

thickness h. The implementation of periodic boundary conditions to create an effectively infinite width slab
via the method of images is shown schematically using points outside the slab.

linearly superimposing the Green’s function solution of an individual particle for τc = 0
or its time convolution with a temporal boxcar function described by Eq. 4. Shown in
Fig. 2(b) are the particle images used to handle the boundary conditions as detailed
in Section 2.3. The details of the computations for the discrete source model can be
found in Ref. [10].

The computations are parametrized by the ignition temperature θign, discreteness
parameter τc, and the size of the reactive cloud h or d. Concerning the stochastic
nature of the randomly distributed particulates, for each set of θign, τc, and cloud
thickness or diameter, simulations were performed for at least 20 independently gen-
erated particulate clouds in order to obtain a statistical ensemble of results. Random
particulate positions were generated by the Mersenne Twister pseudorandom num-
ber generator (MT19937). [14] The simulations were executed in parallel on Compute
Canada’s supercomputers Mammoth and Guillimin.

2.3. Losses

The heat losses into the surroundings were implemented in the models via applying
boundary conditions to the governing equations. Two types of boundary losses are
considered in this study: (1) losses to a cold-wall confinement (Fig. 1(a) and (c)); and
(2) losses into an essentially infinite amount of cold, inert gas surrounding the reac-
tive medium with heat capacity and conductivity the same as the reactive medium
(Fig. 1(b) and (d)). The cold-wall boundary condition (1) serves as a model for typi-
cally encountered experimental scenarios, where the tube or parallel plates containing
metal particulate suspensions are heat sinks that remain at a nearly constant tem-
perature. The inert gas confinement condition (2) would correspond to a reactive
suspension dispersed into inert gas or fuel particles dispersed into an oxidizer that
does not otherwise contain fuel sources. How these two types of boundary losses are
implemented in the continuum and discrete source models are reported in the following
paragraphs.

To implement a cold-wall confinement in the continuum model, an isothermal
boundary condition was applied along the upper edge of the reactive medium, i.e.,
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θ|y=h/2 = 0 or θ|r=d/2 = 0, as illustrated in Fig. 1(a) and (c). The interior of the
domain is discretized by a square grid consisting of Nx nodes in the x-direction and
Ny nodes in the y-direction; ∆x = ∆y is the grid spacing. The Laplacian ∂2θ

∂x2 + ∂2θ
∂y2 in

Eqn. 1 is approximated at each node (i, j) by

∂2θ

∂x2
+
∂2θ

∂y2
u
θi−1,j + θi+1,j + θi,j−1 + θi,j+1 − 4θi,j

∆x2
(6)

The boundary condition enters via the Laplacian of the topmost, leftmost and right-
most nodes (i.e., the nodes closest to the isothermal boundary). For the topmost nodes,
the Laplacian is approximated by

∂2θ

∂x2
+
∂2θ

∂y2
u
θi−1,j + θi+1,j − 4θi,j

∆x2
(7)

and similarly for the leftmost and rightmost nodes. In this case, the computational
domain covers only the reactive medium. In order to model an inert-gas confinement, as
shown in Fig. 1(b) and (d), a reactive medium and a large inert region were included in
the computational domain. In an identical manner, an isothermal boundary condition
of θ = 0 was applied along the boundary of the computational domain, which was
placed sufficiently far away from the edge of the reactive medium so as not to influence
the flame.

In the discrete source model (Fig. 2), the condition of inert-gas confinement is im-
posed by using the Green’s function to construct the temperature field. By definition,
the free-space Green’s function is the solution to the heat equation in an unbounded
domain, and any superposition of Green’s functions also exhibits the required decay
at infinity. Thus, use of the Green’s function naturally satisfies the conditions of inert
gas confinement outside of the cloud of reactive particles.

The cold-wall confinement condition was imposed by using the well-known method
of images. For the slab geometry, virtual copies (images) of the physical domain are
created in both directions perpendicular to the cold-wall boundary with an offset
from the physical domain of 2h, 4h, 6h, ... . Each image contains virtual particles that
contribute to the temperature in the physical domain Then, images of the physical
domain mirrored about the cold-wall boundary image are added with an offset from
the physical domain of h, 3h, 5h, ... . The contribution of the virtual particles in the
latter images are instead subtracted from the temperature in the physical domain.
For the cylindrical geometry, the cold-wall boundary condition is satisfied by a series
solution; the details are included in Appendix B.1.

To create a slab with an effectively infinite width in the z-direction, periodic bound-
ary conditions are implemented by introducing images of the physical domain as above,
but at an offset of h, 2h, 3h, ... with all virtual particles contributing positively. The
series solution described in Appendix B.2 provides an alternative way to incorporate
the periodic boundary condition.

3. Results

The results are presented in the following order: for the continuum model, the mor-
phology and flame speed are briefly explored, followed by the problem of critical di-
mensional scaling. The results for the discrete model are presented in the same order.
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3.1. Continuum model

In this section, the continuum model non-dimensionalization of length and time quan-
tities (denoted with superscript ∗) is used.

3.1.1. Continuum morphology and flame speed

For the continuum model, the temperature field of the reactive medium was directly
obtained from numerical simulations. The flame front is defined as the iso-contour
of ignition temperature, θign, that propagates into the unreacted medium. The flame
speed was calculated by tracking the flame front position along the central axis of the
reactive medium, i.e., the bottom boundary of the computational domain, and then
fitting the resulting position-time data, disregarding the first and last 30% of data in
order to reduce initiation effects and the influence of the boundaries normal to the
direction of propagation. The flame propagation is said to be successful if the flame
front reaches the final 10% of the length of the domain.

The morphology of the flame is exemplified at the bottom of Fig. 3. Here, a three-
dimensional iso-contour of the ignition temperature front (θign = 0.1) is shown beside
colored contours of a two-dimensional slice of the data. Under both boundary con-
ditions (cold-wall, inert gas) the structure is smooth and essentially independent of
time.

The computed flame speed is plotted as a function of the reciprocal of the continuum
dimension of the reactive region in Fig. 4 for both boundary conditions considered,
with ignition temperatures θign = 0.1, 0.2, and 0.3. In the case of inert gas confinement,
for a fixed ignition temperature, the propagation speeds are similar between slab and
cylinder geometries for d ∼ 2t.

In Fig. 6(a), the solid black curve depicts again the continuum-model results of
flame speeds plotted as a function of 1/d∗ for θign = 0.2. In the limit of 1/d∗ → 0,
i.e., for a cylindrical domain with an infinitely large diameter, the continuum-model
results approach the one-dimensional analytic solution of flame speed for a continuous
reactive medium without losses. The details of this analytic solution can be found
in Ref. [7]. As diameter decreases (1/d∗ increases), the resulting V ∗f decreases until
reaching a critical diameter (d∗cr indicated by the vertical gray line in Fig. 6(a)) below
which flame propagation cannot be sustained.

3.1.2. Critical dimensions and scaling

The critical dimension for the continuum model can be defined as the smallest dimen-
sion, i.e., the diameter d∗cr (for cylinders) or the thickness h∗cr (for slabs), of the reactive
region that will allow the reactive front to propagate. The critical dimensions for both
boundary conditions, both geometries and ignition temperatures θign = 0.1, 0.2, and
0.3 are tabulated in Table 1. The scaling ratio d∗cr/h

∗
cr is computed in the last row.

Cold-wall confinement Inert gas confinement
θign 0.1 0.2 0.3 0.1 0.2 0.3
d∗cr 2.9014 5.0617 7.8426 1.4719 2.8777 4.9700
h∗cr 1.8198 3.1302 4.7440 0.7544 1.4748 2.5411

d∗cr/h
∗
cr 1.5944 1.6170 1.6532 1.9744 1.9512 1.9558

Table 1. Critical diameter d∗cr and thickness h∗cr, and the scaling ratio d∗cr/h
∗
cr, for cold-wall and inert gas

confinement boundary conditions for various ignition temperatures (θign) as computed using the continuum

model.
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Figure 3. Snapshots of ignition temperature iso-contours of flames propagating to the right for θign = 0.1
and various values of τc. The foreground corners of the slab geometry are highlighted by solid lines; a two-

dimensional slice of the temperature profile is shown as the colored contour plot (corresponding temperature

is indicated by the color bar). Each column corresponds to the indicated boundary condition. The continuum
flame fronts are produced using the continuum model, while other fronts are produced using the discrete source

model.

3.2. Discrete source model

In this section, quantities obtained from the discrete source model are presented in the
dimensionless form for the discrete source system except in Fig. 6, where the results
of flame speed from the continuum model and the discrete source model are directly
compared.

3.2.1. Morphology of the discrete flame front

The flame front for the slab geometry is exemplified in Fig. 3 as three-dimensional iso-
contours of θ = θign = 0.1. In the left column, the cold-wall confinement case for the
discrete source model is shown for τc = 0.1 and τc = 1 for a fixed cloud size h = 8. For
larger τc, the flame fails to propagate at this domain size due to the high rate of heat
loss under these boundary conditions. The continuum model flame front is appended
at the bottom of the column for comparison. In the right column of Fig. 3, the inert
gas confinement case is shown for τc = 0.1, τc = 1, and τc = 4, with the continuum
model front appended. For both boundary conditions, as τc increases, the length scale
of the features of the flame front increases and the front becomes smoother. The
trailing features in some fronts are due to sharp curvature in the ignition temperature
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Figure 4. Propagation speed in the continuum non-dimensionalization plotted as a function of the inverse

continuum dimension, i.e., (diameter d∗ and thickness h∗), for both cold-wall confinement and inert gas con-

finement boundary conditions. Thickness h is scaled by an additional factor of 2 to illustrate the scaling in the
inert gas confinement case.

iso-contour (e.g., near the cold-wall boundary).
Since the discrete source simulations are qualitatively similar for both cold-wall and

inert gas confinement cases, the remainder of this study will limit attention to the
inert gas confinement case exclusively.

3.3. Flame speed for particulate clouds

In this model, the results directly obtained from the computations were the sequence of
source ignition times, tign,i. Sample results of the sequence of source ignition times for
a cylindrical cloud with d = 5, τc = 0.1, and θign = 0.2 are plotted as an x-t diagram in
Fig. 5. Within the initiation region on the left, the sources were ignited at t = 0. Each
dot plotted on Fig. 5 represents the ignition time tign,i of a source and its location in the
x-direction (i.e., the direction of flame propagation). The temperature field over the
entire cloud at specific times was then calculated by evaluating the analytic solution
for θ(x, t) by using the solution of source ignition times over a uniform Cartesian grid
(see more details in Ref. [10]). The flame speed resulting from the discrete source
model was then obtained by fitting the position-ignition-time data of the sources,
disregarding 50% of the particles closest to the initiation zone. In a fashion similar to
the continuum analysis, the flame propagation is said to be successful if an ignition is
detected in the final 10% of the length of the domain.

The speeds of flame propagation resulting from the continuum model and the dis-
crete source model for selected cylindrical cases with θign = 0.2 and inert-gas confine-
ment are compared in Fig. 6(a). Note that the results in this figure are reported as
quantities in the continuum-model nondimensionalization, which are denoted with an
asterisk ∗. The quantities of flame speed V ∗f and cloud diameter d∗ in the continuum-
model nondimensionalization are related to those in the discrete-source-model nondi-
mensionalization as Vf = V ∗f /

√
τc and d = d∗

√
τc, respectively.

The dots in Fig. 6(a) are the time-average flame speeds resulting from the discrete
source model plotted as a function of the reciprocal of the cloud diameter. Each dot
represents the result from one individual run of the discrete-source-model computa-
tions. The results for the cases with τc = 1, 3, and 10 are plotted as green, purple, and
red dots in Fig. 6(a), respectively. The markers plotted at V ∗f = 0 represent the cases
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Figure 5. Sequence of source ignition times tign,i (resulting from the discrete source model) plotted as a

function of the corresponding position in the direction of flame propagation (x-direction) for a cylindrical cloud
with d = 5, τc = 0.1, and θign = 0.2.

where the flame failed to propagate.
As shown in Fig. 6(a), for a large value of discreteness parameter, e.g., τc = 10, the

speed V ∗f resulting from the discrete source model is in agreement with the continuum
model results. As τc decreases, the difference between the results from the discrete
source model and the continuum model increases. For τc = 1, the speed V ∗f result-
ing from the discrete source model is significantly less than that resulting from the
continuum model at the same cloud diameter.

3.4. Critical dimensions of particulate clouds

It can be noted in Fig. 6(a) that while the continuum model associates each diameter
with a fixed propagation speed, the discrete source model exhibits a range of propa-
gation speeds. Furthermore, for each value of τc, at sufficiently small diameters, some
realizations of discrete clouds can sustain flame propagation, and some realizations
cannot. Thus, for an ensemble of discrete-source-model results at a certain cloud di-
ameter, the probability of flame propagation can be defined as the ratio between the
number of runs in which flame propagation was observed, Nprop, and the total number
of runs in the ensemble, Nens, i.e.,

P =
Nprop

Nens
(8)

following [8, 9]. The probability of propagation for cylindrical particulate clouds with
θign = 0.2 is plotted as a function of 1/d∗ in Fig. 6(b). Each dot represents the ensemble
of all realizations sharing the same macroscopic parameters. The vertical line showing
the continuum model critical diameter is extended from Fig. 6(a). To obtain a smooth
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Figure 6. The results of (a) flame speeds V ∗
f and (b) propagation probability P as a function of the recip-

rocal of the reactive cloud diameter 1/d∗ for the cylindrical cases with θign = 0.2 and inert-gas confinement.
Horizontal dashed line indicates the flame speed of a one-dimensional analytic solution without losses; vertical

dashed line indicates the critical diameter d∗cr of the continuum model.

representation of the probability of propagation, a shifted and scaled error function
was fitted to the P -vs.-1/d∗ data. The cloud diameter of 50% propagation probability,
d50, can be obtained by evaluating the fitting error function at P = 0.5. Similar
analysis was performed for the results of the discrete source model with rectangular
slab geometry to obtain the cloud thickness of 50% propagation probability, h50. In the
rest of this paper, h50 and d50 are reported as the critical cloud dimensions marking
the flame propagation limit. In comparison, the critical dimensions for the continuum
model are denoted by hcr and dcr.

In Fig. 7(a) and (b), the critical dimensions resulting from the continuum model
(dashed lines) and the discrete source model (dots connected by solid curves) are plot-
ted as a function of the discreteness parameter τc for rectangular slab and cylindrical
geometries, respectively. The upper and lower bounds of the shaded regions enclosing
the results of the discrete source model represent the cloud thickness or diameter of
P = 0.9 and P = 0.1, respectively. The results for the cases with three different values
of θign, i.e., θign = 0.1, 0.2, and 0.3, are compared in this figure. For the same value of
τc, the resulting critical dimension increases for increasingly large θign.
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Figure 7. The results of (a) critical cloud thickness (hcr or h50) for rectangular slab geometry and (b)

critical cloud diameter (dcr or d50) for cylindrical geometry plotted as a function of discreteness parameter τc
on a logarithmic scale. The dots represent the discrete model results of cloud thickness or diameter of 50%
propagation probability (P = 0.5). The upper and lower bounds of the shaded regions enclosing the dots

represent the cloud thickness or diameter of P = 0.9 and P = 0.1, respectively.

As shown in Fig. 7, in the limit of large τc for both geometries, the critical dimensions
resulting from the continuum and discrete source models are in agreement. As τc

decreases, the discrete-source-model results deviate from the continuum-model results
for the same θign. In the limit of τc → 0, the critical dimensions resulting from the
discrete source model for each θign approach a plateau value.

3.5. Dimensional scaling between cylindrical and slab geometries

Comparison of the critical diameters and thicknesses resulting from the discrete source
model are obtained through evaluation of the scaling ratio at 50% propagation prob-
ability, i.e., d50/h50. The scaling ratio is plotted as a function of τc using logarithmic
scales in Fig. 8. The size of error bars above and below data points are given by the
expression

ε =
√
ε2rms,cyl + ε2rms,slab (9)

where each εrms is the root-mean-square error of the fit of probability of propagation
as a function of 1/d or 1/h. The depicted curves are scaled and shifted error function
fits. In the limit of large τc, the scaling ratios resulting from the discrete source model
with various θign tend to approach the scaling ratio near dcr/hcr = 2 : 1. The range of
scaling ratios resulting from the continuum model for θign = 0.1, 0.2, and 0.3 listed in
Table 1 are depicted as a horizontal shaded band in Fig. 8.

The scaling ratio in the discrete source model d50/h50 increases as τc decreases. For
τc ≤ 0.5, d50/h50 approaches a plateau value for each θign. The plateau value of d50/h50

in the limit of τc → 0 decreases for increasingly large θign.
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Figure 8. Scaling ratio between critical diameter and critical thickness at 50% probability of propagation

plotted as a function of discreteness parameter τc with horizontal axis plotted on a logarithmic scale. The
horizontal gray band indicates the range of values of scaling ratio obtained from the continuum model. Error

bars represent the combined root-mean-square error of the propagation probability fit.

4. Discussion

4.1. Interpretation of the results in the limit of τc → ∞

In the limit of τc → ∞, the time scale over which an ignited particulate deposits its
energy into the medium is much greater than the characteristic time of heat diffusion
from one particulate to its closest neighbors. Under such a regime, the spatial dis-
creteness imposed by the random distribution of point sources is homogenized by heat
diffusion during this long heat release process. As shown in Fig. 3, for an increasingly
large τc, the resulting flame front exhibits less roughness. In the limit of τc →∞, the
resulting flame exhibits a laminar-like structure, featuring an overall smooth flame
front, which resembles that resulting from the continuum model. The similar speeds
of propagation between particulate clouds with large τc and the continuum model
cylinders in Fig. 6(a) further confirm the continuum-like propagation of such clouds
despite the discreteness of the heat sources.

As shown in Figs. 7 and 8, for large values of τc, the critical cloud thickness and
diameter at 50% propagation probability and the scaling ratio between cylindrical
and rectangular slab geometries d50/h50 resulting from the discrete source model are
in agreement with the continuum-model results obtained via finite-difference numerical
simulations. This agreement suggests that there is fundamentally no difference in the
propagation and quenching mechanisms between a thermally homogenized flame in a
particulate cloud and a laminar flame in a continuous medium subject to boundary
heat losses.
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4.2. Interpretation of the results in the limit of τc → 0

The limit of τc → 0 represents a regime where propagation is limited by heat diffu-
sion between sources. The propagation speed as depicted in Fig. 6(a), is consequently
lower than that of the continuum model. The particular distribution of sources further
affects the propagation velocity, especially near the critical dimension of the cloud.
Propagation through sufficiently small clouds may typically rely on “paths” traced
by sequences of neighboring particles that bottleneck the speed of propagation. The
absence of these paths in small cylinders may lead to quenching, while the abundance
of these paths in large cylinders allow more consistent propagation speeds.

The propagation probability shown in Fig. 6(b) varies over a larger range of 1/d∗

for the case τc = 1, with P strongly dependent on d∗ for values of d∗ between the range
of 4.2 and 5.5. As τc increases, the range over which P changes decreases; for τc = 50,
propagation probability changes for d∗ between 2.8 and 3.1, approaching the sharply
defined critical dimension found in the continuum model. An alternative illustration
is provided by the shaded regions in Fig. 7 that collapse onto a single curve as τc

increases.
The stochastic nature of propagation through clouds of small τc enhances the im-

portance of cloud geometry. The scaling ratio depicted in Fig. 8 is a function of τc, and
varies most significantly from the continuum model value when the ignition tempera-
ture is small, i.e., when the mechanism of propagation is the delivery of heat from a
small number of nearby sources without allowing the medium to thermally equilibrate.

The question arises as to whether the flame propagation in the limit of this highly
discrete regime (i.e., τc → 0) can be described by percolation theory—a sub-discipline
of statistical mechanics that describes how random connections between elements can
form a domain-spanning cluster. Researchers have attempted to use percolation theory
to interpret combustion phenomena in heterogeneous reactive media with randomly
distributed sources (or the so-called disordered media in the literature of statistical
mechanics) since the 1980s. [15] Beer and Enting, perhaps for the first time, pointed
out that a simple site-bond percolation model—considering that a source can only
be ignited by its nearest neighbors—cannot adequately describe flame propagation
phenomena in such a system wherein the ignition of an individual source might be a
result of the collective heat contribution from ignited sources located at distances that
are much greater than the average source spacing. [16] As recently shown by Schiulaz
et al., site-bond percolation theory is applicable to a system wherein strong volumetric
heat loss is present so that the heat contribution to ignite a source is limited within its
closest neighbors. [17, 18] It is rather clear that a simple site-bond percolation theory
is inadequate to describe the current results of flame propagation in a highly discrete
regime. As shown by Grinchuk and Rabinovich, a modified percolation model that
considers heating from previously ignited, non-adjacent sources better agrees with their
simulation results of flame propagation in a heterogeneous medium. [19] Thus, future
efforts should be made to explore the use of long-range percolation models wherein very
distant elements can be connected in order to describe the herein identified discrete
combustion phenomena. [20]

Recently, using a similar model and semi-analytic solution, Bozorg et al. investigated
the critical behavior of flame propagation in a suspension of iron particles between two
parallel cooling plates. [21] These authors have demonstrated that, as the spacing be-
tween the two plates or the temperature of the plates increases, the propagation speed
of the flame increases. These findings are consistent with the well-known behavior
of laminar flames, thus are inconclusive in revealing the nature of discrete flame. In
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the current study, via examining the scaling ratio of the critical dimensions for two
different geometries, the difference in the fundamental mechanisms underlying contin-
uum and discrete regimes of flame propagation has been demonstrated. Therefore, in
order to gain further insights into discrete combustion, it is of importance to select
and gauge the metrics that reflect the unique physics underlying such a combustion
regime.

4.3. Implications for experiments

Because of the central role that flame quenching plays in both combustion theory
and applications—particularly in combustion safety—flame quenching in various ge-
ometries has been extensively studied. For laminar flames in premixed gas, results
of quenching dimensions can be quantitatively scaled between various geometries
(quenching plates, tubes and tube bundles, honeycomb structures, packed beds, ran-
dom porous media, etc.). [22–25] The results of the present study are consistent with
this picture: For the continuum model considered in this study, there exists a straight-
forward, approximate 2:1 scaling between results of flames in cylindrical and slab
geometries for the light confinement imposed by the surrounding inert gas, and a scal-
ing ratio somewhat below 2:1 for cold-wall confinement. When the flame propagation
is influenced by the random nature of the discrete, particulate sources, however, the
simple 2:1 geometric scaling is broken, as illustrated in Fig. 8. In a high aspect ratio
channel with a low ignition temperature fuel, for example, a flame is able to continue
propagation in a much narrower channel than would be predicted from 2:1 scaling from
quenching results of the same mixture in a cylindrical tube. This result is attributed
to the flame’s ability to exploit fluctuations in concentration (i.e., local inter-particle
spacing) that exist across the channel to continue its propagation under conditions
where it would quench in a cylinder. To date, the studies that have examined flame
quenching in suspensions of nonvolatile fuels have used channels formed by quenching
plates that would correspond to the case of slab geometry with cold walls considered
in the present study. [26–30] The results of our study suggest that the geometry of
the quenching tests may have a significant influence on the results—an influence that
cannot be accounted for by a fixed scaling parameter in the discrete regime. This
conclusion has implications for explosion hazard assessment of particulate fuels.

5. Concluding remarks

The present study investigated the decrease in flame speed, leading to flame quench-
ing, in a medium governed by a switch-type reaction mechanism representative of
particulate fuels in suspension in a gaseous oxidizer. Flame propagation in two dif-
ferent geometries was considered, flames in cylindrical columns and rectangular slabs,
and two different mechanisms of heat loss were implemented, isothermal walls and
confinement by inert gas. In a continuum-based model, which is valid when the par-
ticulate spacing is negligible compared to the thermal thickness, the reactive diffusion
equation was solved via conventional finite-difference calculations. In this regime, the
scaling between the cylindrical and rectangular (slab) geometries has a unique value
of dcr/hcr u 2, independent of the other parameters in the model. In a discrete-
source model that explicitly treats the spatially discrete nature of the heat sources,
the solution was found via superposition of the analytic solution for individual sources
(Green’s function). In the limit of fast combustion time in comparison to interparticle
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diffusion time, the resulting flame propagation became inherently statistical, necessi-
tating ensemble averaging of results generated by parallel supercomputer simulations.
In this discrete regime, a unique value of scaling between the cylindrical and rectan-
gular (slab) geometries was not found, with the scaling values being dcr/hcr > 2 and
dependent upon the ignition temperature of the sources. As the characteristic com-
bustion time was increased, the results of the discrete simulations reverted back to
the classical geometric scaling of dcr/hcr → 2. The finding of a break-down in simple
geometric scaling between the different geometries (cylinder vs. slab) is proposed as a
signature of the influence of spatially discrete effects on flame propagation and should
be observed experimentally.
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Appendix A. Derivation of the dimensionless form of the governing
equations from the reactive Navier-Stokes equations

A.1. Continuum model

In the absence of viscosity and body forces, the full, dimensional model for a single-step
reaction based on the conservation laws can be written similarly to [31] as

∂ρ̃
∂t̃

+∇ · (ρ̃ũ) = 0
∂ũ
∂t̃

+ (ũ · ∇)ũ = −∇p̃ρ̃
ρ̃∂h̃
∂t̃

+ ρ̃(ũ · ∇)h̃ = ∂p̃
∂t̃

+∇ ·
(
k̃
c̃p
∇h̃
)

+ q̃cB̃ω̃

p̃ = p̃(ρ̃, T̃ )

(A1)

where dimensional quantities present are the density ρ̃, time t̃, fluid velocity ũ, fluid
pressure p̃, enthalpy h̃, fluid conductivity k̃, heat capacity c̃p, heat of combustion per

mass q̃c, fuel per unit volume B̃, and reaction rate ω̃.
When the pressure fluctuation term ∂p̃

∂t̃
is small, the energy equation can be approx-

imated by

ρ̃c̃p
∂T̃

∂t̃
+ ρ̃(ũ · ∇)h̃ = ∇ ·

(
k̃∇T̃

)
+ q̃cB̃ω̃ (A2)

where T̃ is the temperature of the fluid. For constant thermophysical properties, one
may choose the non-dimensionalization described in Section 2.1 and replace the di-
mensional terms with non-dimensional terms
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∂θ

∂t
= −Pe u · ∇θ +∇2θ +R (A3)

where Pe = Ũchar l̃/α̃ is the Peclet number based on a characteristic flow velocity Ũchar,
characteristic length l̃ and heat diffusivity α̃. Neglecting the effects of flow induced by
thermal expansion of the fluid, one may discard the advection term and examine only
the reaction-diffusion equation

∂θ

∂t
= ∇2θ +R (A4)

Similarly, the concentration of the limiting reagent (fuel if lean, oxidizer if rich) can
be non-dimensionalized as C = C̃/C̃0 where C̃ is the dimensional quantity, and C̃0 is
the initial oxidizer concentration. The governing equation then becomes

∂C

∂t
= ∇2C −R. (A5)

A switch-type kinetic model can then be introduced to describe R as in Section 2.1.

A.2. Discrete source model

The discrete source model relies on the same set of dimensional equations as the
continuum model, but with length non-dimensionalized by the inter-particle spacing
and time by the characteristic heat diffusion time t̃d so that, on average, a unit volume
contains one discrete source. The reaction term in Eq. 3 can model a cloud of discrete
sources by multiplying the reaction rate by the Dirac δ, i.e., δ(x−xi) for the ith source,
and summing over all particles. The total amount of energy released is equivalent to
the continuum model in the sense that every unit volume contains, on average, unit
energy.

Appendix B. Implementation of boundary conditions in the discrete
source model

B.1. Series solution for a cold-wall cylinder

A solution for Eq. 3 for a single particle placed somewhere within a cylinder of radius
b representing a cold wall (Dirichlet) boundary condition can be assumed to have the
form

θ(x, r, φ, t) = ψx(x, t)ψr,φ(r, φ, t). (B1)

Here ψx is the one-dimensional Green’s function for the x-direction (boundary condi-
tions at infinity). The coupling of the polar coordinates φ and r require these variables
to be present in the same factor ψr,φ.

The factor ψr,φ can be expressed by a summation of eigenfunctions of the disk; that
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is,

ψr,φ =
1

πb2

∞∑
m=0

(2− δ0m) cos (m(φ− φ0))

∞∑
n=1

Jm
(
αmnr0
b

)
Jm
(
αmnr
b

)
[Jm+1(αmn)]2

e−
α2
mnt

b2 (B2)

where δij is the Kronecker delta; (r0, φ0) are the coordinates of the particle; Jν is the
Bessel function of the first kind; and αmn is the nth zero of Jm. This analytic solution
is documented in the literature—for example, in [32].

B.2. Series solution for a periodic slab domain

In this subsection we construct the series solution of Eq. 3 for a single particle placed
at the origin of a three-dimensional domain for which the direction of propagation has
boundary conditions applied at infinity (i.e., inert gas confinement) and the transverse
directions have periodic boundary conditions. τc is assumed to be zero; the solution
for any value of τc > 0 can be derived by a subsequent convolution operation.

Assuming that the solution has the form

θ(x, y, z, t) = ψx(x, t)ψy(y, t)ψz(z, t) (B3)

one deduces that the factors ψ required are the one-dimensional Green’s functions for
the appropriate boundary conditions applied; that is, the free-space Green’s function

ψx(x, t) =
1

(4πt)
1

2

exp

(
−x2

4t

)
(B4)

and the Green’s function for a periodic domain of width L

ψy(y, t) =
1

L

(
1 + 2

∞∑
k=1

cos

(
2πky

L

)
exp

(
−4π2k2t

L2

))
(B5)

and similarly for φz. While both the series solution and the method of images for
bounded domains require a theoretically infinite number of computations, the method
of images is preferable when considering short times t after source ignition, since
for small t the Green’s function decays rapidly in space, allowing computations to
be truncated after a small number of images; the same cannot be said of the series
solution, which may be preferable when solutions at large t are needed. [33]

B.3. Series solution for a cold-wall slab

The series solution for a cold-wall slab can be derived in a similar fashion to construct-
ing the series solution for a periodic domain described in Appendix B.2. In this case,
the one-dimensional Green’s function ψz for a single source placed at position z in a
domain of length L is given by

ψz(z, t) =
2

L

∞∑
k=1

sin

(
kπy

L

)
sin

(
kπy0

L

)
exp

(
−k

2π2t

L2

)
(B6)
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is used to construct the solution θ = ψx(x, t)ψy(y, t)ψz(z, t), where each ψ is chosen
according to the boundary condition.
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