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Abstract 

The forecasting of mineral commodity prices, yet perhaps the most important factor to the 

decision-making process of mining companies, still remains an intricate task due to the different 

elements that drive such prices. To this date, several techniques have been developed with the aim 

of improving the forecasting accuracy; however, their architecture has also varied in terms of 

complexity.  

This thesis explores the use of Artificial Neural Networks (ANNs) on the forecasting of mineral 

commodity prices. ANNs have proven to be quite helpful modeling the hidden patterns that many 

time-series forecasting methods, be they the Autoregressive Integrated Moving Average (ARIMA) 

and the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) have failed to.  

A case study was conducted not only to assess the accuracy of the ANNs on nickel price 

forecasting but also to determine how this model compares to the ARIMA and the GARCH 

techniques. This study reveals that, indeed, the forecasted values based on ANNs more accurately 

captures the real values than those obtained by the other two methods. The same study also shows 

that, although these three methods are somewhat good at estimating future price values, their 

accuracy works better for short terms, i.e., from a couple of months to up to two years (or any time 

unit of interest).  
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Résume  

La prévision des prix des matières premières minérales, pourtant peut-être le facteur le plus 

important du processus décisionnel des sociétés minières, reste une tâche complexe en raison des 

différents éléments qui déterminent ces prix. A ce jour, plusieurs techniques ont été développées 

dans le but d'améliorer la précision des prévisions; cependant, leur architecture a également varié 

en termes de complexité. 

Cette thèse explore l'utilisation des Artificial Neural Networks (ANNs) pour la prévision des 

prix des matières premières minérales. Les ANNs se sont révélés très utiles pour modéliser les 

modèles cachés que de nombreuses méthodes de prévision de séries chronologiques, qu'il s'agisse 

de la AutoRegressive Integrated Moving Average (ARIMA) et de Generalized Autoregressive 

Conditionally Heteroscedastic (GARCH), ont échoué. 

Une étude de cas a été menée non seulement pour évaluer l'exactitude des ANNs sur la prévision 

du prix du nickel, mais aussi pour déterminer comment ce modèle se compare aux techniques de 

ARIMA et GARCH. Cette étude révèle que, en effet, les valeurs prévues basées sur les ANNs 

ressemblent plus exactement aux valeurs réelles que celles obtenues par les deux autres méthodes. 

La même étude montre également que, bien que ces trois méthodes soient assez bonnes pour 

estimer les valeurs de prix futures, leur précision fonctionne mieux à court terme, c'est-à-dire de 

quelques mois à deux ans (ou toute unité de temps d'intérêt). 
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Chapter 1 
 

Introduction 
 

1.1.  Problem statement 

Mineral commodity prices are one of the most crucial parameters used in the economic 

evaluation of a mining project. They have a considerable impact on the company's revenues, 

heavily influencing the strategic decisions to be made by the company's board. Moreover, since 

mining companies, in the majority of cases, play almost no role in the determination of the mineral 

prices, i.e., they are price takers, their plans are deeply dependant on mineral commodity prices. 

Regardless of this dependence on mineral commodity price forecasts and the different 

techniques that have tried to address this issue, mineral price forecasting remains challenging due 

to the increased volatility in commodity markets. Globalization increased the sensitivities to 

economic, commercial, natural and political events at every point of the world. The markets of 

many commodities are international. A great deal of effort has been dedicated to developing and 

improving the forecasting methods used for the estimation of future mineral prices. 

The main two drivers of mineral commodity prices are supply and demand. In fact, many 

conventional forecasting methods take advantage of historical supply and demand values and, 

through the use of  mathematical techniques, attempt to obtain estimates of mineral prices in the 

short and long term (Espí Rodríguez and De La Torre, 2013).  

The forecasting approach used by mining companies and stockbroker analysts are based on 

time-series techniques. These methods may be classified as: 
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a. Simple methods such as exponential smoothing and moving average (MA). In fact, 

exponential smoothing and MA are smoothing techniques rather than forecasting.  

b. More sophisticated techniques such as the Autoregressive Moving Average (ARMA) and 

Autoregressive Integrated Moving Average (ARIMA).  

In addition to these techniques, simulation-based approaches (e.g., geometric Brownian motion 

and mean reverting techniques) and various machine learning techniques are also used for 

forecasting purposes. 

Time series-based methods assume that past behaviour of a commodity price will continue into 

the future; however, their main pitfall is that all follow linear models, constraining the future values 

to be linear functions of past observations (Kriechbaumer et al., 2014). This issue poses a serious 

problem given that  real-time series exhibit a mixture of linear and non-linear patterns. 

In order to better model the patterns real-world time series show, several techniques have been 

proposed,  some of which have proven to be more accurate than others at predicting future values. 

Two of the most widely used non-linear methods are the AutoRegressive Conditional 

Heteroskedasticity (ARCH) and the Generalized Autoregressive Conditionally Heteroscedastic 

(GARCH). Theoretically, when the behaviour of the series over time is the only factor taken into 

account, both generally represent an improvement from the conventional and still widely used 

ARMA and ARIMA models. Nonetheless, they are no without any drawbacks, as expected from 

any forecasting technique.  

Researchers in the matter of price forecasting have shown that, even when ARIMA and 

GARCH are the go-to methods for mining companies and traders due to their simplicity, they tend 

to fall short to machine learning techniques such as Artificial Neural Networks (ANNs) (Chen et 

al., 2003). 
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ANNs have shown to more accurately model real-world time series, providing more accurate 

forecasts (Kristjanpoller and Minutolo, 2015). However, growing research on the factors that affect 

the capability of forecasting methods, even the most sophisticated one, has yielded interesting 

results as to what could possibly make one forecasting technique more accurate than the other at 

predicting future values (Dooley and Lenihan, 2005). This phenomenon will be discussed in later 

chapters.  

In order to properly grasp the accuracy and usefulness of such forecasting methods, a case 

study needs to be conducted. The selection of the mineral commodity boasted different metals; 

however, given its critical nature as a raw material and its importance not only as a macroeconomic 

indicator but also for the industrial sector, nickel was chosen. 

 

1.2. Research objectives 

- Examine the appropriateness of the most common linear time-series method, i.e., the ARIMA 

technique. 

- Determine the efficiency of the most common non-linear model for the data’s volatility: The 

GARCH model. To that end, a hybrid ARIMA-GARCH model will be used, as it is not possible 

to forecast the mean values of the data using only the GARCH model. 

- Investigate the performance of machine learning method, using ANNs on the forecast of mineral 

commodity prices. It will be verified the flexibility and non-linear capability of neural networks 

over the traditional linear and non-linear time-series model.  

- Benchmark the outcomes of different methods. 
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1.3. Original contributions 

As discussed in Section 1.1, the main shortcoming of the conventional time-series methods is 

their linearity assumption behind their models (smoothing techniques, ARIMA). To overcome this 

particular issue, different models, those based on pure non-linear time series and those based on 

machine learning techniques, are explored. In fact, machine learning methods such as ANNs have 

proven to effectively identify the hidden non-linear patterns that the pure non-linear time series 

models failed to do (Lorente-Leyva et al., 2019), outperforming the conventional time-series 

forecasting techniques. This research aims to demonstrate the pros and cons of the time-series 

forecasting techniques and extend more advanced ANNs technique. All techniques to be 

investigated will be tested through a case study.  

 

1.4.Social and economic impacts 

The forecast of mineral commodity prices has a great positive impact on all the stakeholders 

(i.e., mining corporates, governments, and local communities) of the mining industry. More 

precisely, the outcome of this research will most likely be beneficial to: 

- Tax makers, by providing a broader understanding of the future behavior of the mineral commodity 

prices (Takatoshi and Rose, 2011). Thus, governments can set the most efficient yet reasonable 

tax rate to maximize benefit for society. Likewise, local communities would have a much clearer 

idea of the financial/social perks mining project operating in the nearby area would bring so the 

process to grant social license to operate would be less cumbersome and social risks could be 

reduced. Finally, mining corporates will have more reliable information on the profitability and 

sustainability of the operations,  
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- Policymakers, by effectively monitoring mineral prices, which are one of the major factors 

affecting policy goals (Rudenno, 2012). Consequently, as part of the mining policy, an ideal type 

of tax regime can be defined so as to balance between the benefit of society and sustainability of 

mining corporates. That is, the predicted price values can help governments to adopt regulatory 

actions that ensure a fair taxation system in all the possible price scenarios, allowing neither 

corruption nor exaggerated demand by the communities when prices rise. Furthermore, the 

satisfactory forecast of mineral prices facilitates the delineation of governmental mining policies 

so as to guarantee sufficient future mineral supplies (Radetzki and Wårell, 2016). 

- Investors, by facilitating their decision-making process regarding their investments. In fact, every 

mining project is subject to numerous risks associated with the mineral commodity markets, and, 

therefore, a better and improved prediction of the commodities' prices can lead to better evaluation 

and optimization of investment opportunities in mining projects. 

- Corporations, by reducing the level of uncertainty linked to the mineral commodity price. By 

doing so, the corporations will be able to make an informed decision regarding major strategic 

decisions: mine portfolio management, the construction of a new mine,  or expansion of production 

(Radetzki and Wårell, 2016). Furthermore, mining companies will also be better equipped to 

elaborate on a more representative contingency plan that addresses the possible changes in the 

market conditions. 

A more realistic forecast of the mineral commodity price can also provide a greater understanding 

of the financial value of a mining company (Schaeffer, 2008). That is, since the mineral commodity 

price is one of the main drivers in the mineral reserves calculation, which, in turn, are the principal 

parameter that underpins the liquidity of a mining company, a more accurate price forecasting can 

help a mining company understand its financial status in the short and long run. 
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- Mine planners, by helping them set more realistic and accurate capacities, developing cut-off grade 

strategy, and adjusting the corresponding mining method sequence (Rudenno, 2012). 

Consequently, mine planners are able to better adjust their mine plans, reflected as changes in the 

production sequencing, the life of mine, the mineral reserves, etc. so as to maximize the mine’s 

profits in both the short, medium, and long term.  

 

1.5. Outline 

Chapter 1 states the research problem and identifies both the original contributions to the field 

and the research’s social and economic impacts. 

Chapter 2 reviews key statistical concepts and describes the existing methodologies and 

research in the mineral commodity price forecasting field.  

Chapter 3 explains the methodology and the way it is organized,  

Chapter 4 analyzes the conventional linear time-series method used in the mining industry: 

The ARIMA technique,  

Chapter 5 examines the currently used non-linear time-series method, GARCH, as well as its 

joint performance ARIMA-GARCH on the mineral commodity price forecasting. 

Chapter 6 evaluates the use of the machine learning technique ANNs in the mineral price 

forecasting.  

Chapter 7 summarizes the key findings/findings of this research and outlines the future work. 
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Chapter 2 
 

Literature Review 
 

2.1. Commodity markets 

 The economic sectors can be categorized into the primary, secondary, and tertiary sectors. 

In this regard, only the primary sector includes raw materials, i.e., metals, agriculture, fishery, and 

forestry. The outcomes of primary sectors are generally called commodities, which are typically 

traded in commodity exchanges (Radetzki and Wårell, 2016). 

 

 

Figure 2.1 - Sectors of economies 

(Source: “A Handbook of Primary Commodities in the Global Economy”, Chapter 5, Radetzki et al., 2016) 

 

Sectors of 
economies

Primary 
Sectors

(Raw material)

e.g., mining, mineral fuels, 
agriculture, fishery and 

forestry

Secondary 
sectors

(Manufacturing)

e.g., construction, 
automotive, metallurgy, 

aerospace, iron-steel, 
chemical, biotechnology, 

food, glass, textile

Tertiary sectors

(Services)

e.g., trade, transportation, 
shipping, storage, education, 

tourism, financial services, real 
estate, healthcare, 

entertainment, sport, 
communication, consultancy, 

legal advise
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A commodity exchange (also called commodity market) is the market where primary sector 

products are traded (Rudenno, 2012). Examples of such commodity exchanges are the London 

Bullion Market (LBMA), London Metal Exchange (LME), the CME Group (Chicago Board of 

Trade), the New York Mercantile Exchange (NYMEX), and Commodity Exchange, Inc. 

(COMEX) merged). These exchanges require high product standards (both quality and quantity) 

so as to guarantee a successful commodity trading between both parties (buyer and seller) (Priolon, 

2018). The prices of the commodities are set on a daily basis on the exchanges and companies can 

buy or sell through the so-called brokers. 

These commodity markets are usually driven by two fundamental economic factors: supply 

and demand (Radetzki and Wårell, 2016). These two elements determine the price that suppliers 

are inclined to take, and buyers are willing to pay. As a result, any major disruption or changes in 

both elements would shift the commodity prices.  

In many of the commodity exchanges, different commodities are traded; the main tradable 

commodities can be found in Table 2.1.  

 

Table 2.1 : Tradable commodities 

Group Examples 

Precious Metals Gold, Silver, Platinum 

Base Metals 
Copper, Lead, Molybdenum 

Nickel, Aluminum 

Agro-Based Commodities 
Wheat, Corn, Cotton, Oils, 

Oilseeds 

Soft Commodities Coffee, Cocoa, Sugar 

Live-Stock Live Cattle, Pork Bellies 

Energy 
Crude Oil, Natural Gas, 

Gasoline 
(Source: “A Handbook of Primary Commodities in the Global Economy”, Chapter 5, Radetzki et al., 2016) 
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There are different types of markets at which these commodities are traded, such as spot or 

physical markets, futures markets, auction markets, and commodity markets. Also, given that 

mining corporates are listed in stock markets, stock markets and commodity price dynamics are 

closely intertwined (Radetzki and Wårell, 2016). 

- The physical market (or the spot market) is a market where commodities are exchanged. 

That is, the seller supplies the amount of the commodity requested by the buyer, who takes 

delivery of it. In these markets, the transactional price is also called the spot price. 

Although, in reality, only a relatively small percentage of the commodity is actually 

delivered, since transactions are mainly made through future contracts, some exchanges do 

have storage facilities/warehouses (Rudenno, 2012). 

- Auction markets: Sellers introduce the lowest price willing to accept and buyers bid the 

highest price willing to pay. 

- Future markets, as opposed to the stop markets, are the markets where the buyer and seller 

of the mineral commodity "settle in advance" to a certain amount of the commodity at an 

agreed-upon price to be delivered at the pre-defined time in the future. Since the price has 

already been pre-defined and agreed upon by both parties, futures markets can provide a 

tool for estimating mineral commodity prices. One example of future markets is the 

NYMEX. 

- Commodity markets, as per its name suggests, is the market at which primary sector 

products are traded. 

In general, the exchanges discussed above can serve a number of purposes. One of those is the 

establishment of competitive and representative commodity prices. In fact, as competitive markets, 

these exchanges define the commodity prices by weighing in the transactions made by both buyers 
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and sellers (Takatoshi and Rose, 2011). Consequently, these commodity prices can be taken as 

benchmarks by outside buyers who wish to purchase commodities at entities outside the 

exchanges. Furthermore, these prices set by the exchanges can come in handy to not only perform 

an economic valuation of investment portfolios, but also establish commodity indices as well as 

exchange traded funds (ETF) (Jones et al., 2019). In addition to the benefits mentioned above, 

these commodity exchanges can also serve as delivery locations.  

An example of commodity markets is the LME, which is one of the world trading centers 

for mineral commodities, especially non-ferrous metals such as copper and nickel1, where future 

buyers and sellers of metal futures and options meet. These commodities can be traded in different 

forms: an agreed-upon quantity of a metal is bought/sold on a pre-defined date, at a fixed price 

agreed today, or via an option, in which futures contract are sold/bought at a price (also known as 

the strike price) agreed today (The London Metal Exchange, 2019). This exchange also offers 

prospective clients a tool to manage the risks against metal price movements through hedging. 

That is, by allowing its clients to hedge their commodity prices, the LME helps mine operators to 

reduce the potential losses that might incur as a result of falling.  

This exchange also provides prospective sellers and buyers with a physical market of last 

resort, via the worldwide network of LME-approved warehouses (The London Metal Exchange, 

2019). In fact, LME has approximately 700 warehousing facilities, serving as a spot market with 

more than 500 brands of metal products listed. That way, through the LME, consumers are able to 

purchase mineral commodities in times of extreme shortage, whereas producers are also able to 

sell their metals in times of oversupply, granted that they both meet the criteria set by the exchange.  

 
1. The LME is the major world trading center for copper and lead. 
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  Other exchanges of significant relevance are those that belong to the CME, a merger of the 

NYMEX, and the COMEX. The NYMEX is an exchange where futures and options are traded. 

The metals it trades are copper, gold, zinc, and silver. This exchange has set, as any other exchange, 

a set of rules governing the adequate trading, yet its rules are not as strict as those of the LME. In 

fact, the NYMEX trade is vastly confined to the American market and, taking advantage of the 

preference the American producers have to deal directly with the buyers. 

LBM is the market at which gold and silver are traded. This trading, which is usually 

conducted by buyers and sellers directly, is overseen by the Bank of England and is represented 

by the LBMA. Since all transactions are conducted between both parties to maintain 

confidentiality, all risks exist only between the two counterparts. In this exchange, the members 

of the LBM, along with the Bank of England, act as gatekeepers to the market and certify the 

bullion traded and delivered meets the LBMA standards. Table 2.2 shows the metals and the 

exchanges they are traded at. 

 

Table 2.2: Main metals and their principal exchanges 

Group Exchanges 

Base Metals 

Copper LME, COMEX 

Lead LME 

Zinc LME 

Nickel LME 

Molybdenum LME 

Tin LME 

Steel NYMEX 

Aluminum LME 

Precious Metals 
Gold COMEX, LBMA 

Silver COMEX 

 

 



12 
 

2.2. Commodity price mechanisms 

In order to understand the intricate economic drivers of the mineral commodity price, it is 

useful as a starting point to consider the basic economic theory of supply and demand. 

 

Figure 2.2- Definition of mineral supply  

 

Theoretically, the price of a mineral commodity settles at the equilibrium point of both the 

supply and demand curve. As a result, considering a competitive market, this settlement of the 

price would prevent suppliers and consumers from charging higher price and offering way less 

money than determined, respectively. In this regard, commodity markets do not behave any 

different than any competitive market (Priolon, 2018). What really sets commodities markets apart 

is the group of factors that influences their supply and demand (Zsidisin, 2011). 

 

2.2.1. Supply-driven factors 

Mineral commodities can be extracted as main products, co-products, or by-products. The 

way these commodities are extracted directly affects the mine’s output and viability (Radetzki and 

Wårell, 2016). 

Once processed and consumed, some metals can be recovered and recycled. Recycled 

materials make up what is called “secondary” production and are often referred to as “scrap.” Scrap 

material is usually classified into two categories: new scrap, which is generated in the 

manufacturing of new goods, and old scrap, which derives from goods that have reached the end 

Mineral reserves this period = Mineral reserves last period - New mineral consumption last period + 

Amount of mineral recycled last period + New mineral reserves discovered last period 
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of their useful lives or have become obsolete. In this regard, according to Rudenno (2012), the 

flow of minerals supplied in a given period needs to consider the relationship between the depletion 

of a finite mineral stock, current mineral reserves, new mineral supply, recycled materials, and 

additions to stocks from new discoveries, technological change, or changes in prices. 

Unexpected changes in the mineral commodity supply can be attributed to different factors 

including the opening or closure of mining operation(s), the significance of certain mining 

operation to the global production as stalled production in a highly production-contributive country 

due to a company's external or internal factor that can decline the overall world metal production 

of a certain commodity. In fact, disruptive events such as strikes, accidents in major mines, natural 

disasters such as floods and fires, failure of important machinery can be detrimental to mineral 

supply worldwide. 

 

2.2.2 Demand-driven factors 

The main driver for the demand of a commodity is associated with its industrial use. This 

use may change over time due to new technologies or the effects of substitutes or complementary 

products.  

What determines the demand behavior for a mineral at any given point in time are the 

technological level, the quantity of consumers and their preferences, and the prices of both the 

commodities and any other substitute products (Takatoshi and Rose, 2011). 

The competition between different producers is the determinant of the way goods are 

produced. In theory, the chosen method would be the one with the lowest cost at any time. That is, 

if at certain point in time a new method of production with a lower cost than the current one is 

found, this one will displace the old one. 
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When the supply of a given metal/mineral increases, the demand will also increase. 

Consequently, the price of the mineral commodity will rise until the overall production peaks what 

is wanted from buyers. Similarly, when there is an overproduction of a mineral commodity, buyers 

will take the lowest price (or last price quoted at an exchange) and this will continue until the 

excess of material is exhausted and the equilibrium is re-established. Production will decrease and 

because demand has stayed the same, eventually, the supply and demand situation will equalize, 

and the price will be back to normal. In a nutshell, the major factors influencing mineral demand 

include (Radetzki and Wårell, 2016): 

 

• Incomes which are often represented by the Gross Domestic of a country. 

• Industrial output 

• The past behaviour of the commodity’s price 

• Prices of substitute and complement materials 

• Technology improvements or new technology, which not only help reduce other 

industries’ demand for a mineral commodity; but also affect the competitiveness of a 

mineral commodity in the market. 

• Consumer preferences, which can vary depending on the consumer’s income and 

economic scenario of a region/country. 

• Government policies, regulations, activities 

 

Supply, on the other hand, is mainly determined by the production of existing mines, 

recycling activity, mining production costs, among others.  
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As part of demand drivers, the consumer behaviour and the economy of lead 

producers/users of mineral commodities (countries) have to be considered, as well. In fact, China 

has been playing an important role due to its growing economic power during the last years 

(Tauber, 2015).  

The prices of substitutes of commodities do also affect demand: when the price of such 

declines, demand for the mineral commodity decreases. In addition to the price-independent 

drivers, both supply and demand can also be affected by the price itself. That is, price affects both 

demand and supply as much as they influence price (Tauber, 2015). That is why any approach that 

fails to account for the inter-dynamics among supply, demand, and price is essentially flawed. 

Technology changes and the political status of a country, and in general any sudden event, also 

affect supply and demand. For example, political instability or unfavourable mining political 

policies can really hinder the financial behaviour of a commodity. 

 

2.2.3. Scarcity of mineral commodities  

There is, in fact, a great deal of literature on the scarcity of mineral commodities, i.e., a 

finite mineral resource stock and fluctuations in their prices. Many scholars suggest that price 

difference among different commodity prices can be attributed not only to the two main mineral 

commodity prices' drivers, i.e., demand and supply, but also to the mineral's scarcity, geography 

and metallurgical properties. According to Rudenno (2012), the scarcity of the minerals, the 

location of the minerals’ ore bodies and their comminution processes, as opposed to the minerals’ 

demand and supply, are the key drivers on the volatility of mineral commodity prices.  

Nevertheless, the positive impacts of technological change on mineral supply through more 

sophisticated mineral exploration seem to have hampered the belief that mineral resource scarcity 
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plays a role just as important. In fact, recent changes in mining technology have offset the depletion 

of higher-grade and have allowed companies to exploit lower-grade deposits as they have become 

now viable from an economic and technical standpoint.  

 

2.3. Commodity price uncertainty and risk management  

Price forecasts are used by mining companies to make informed strategic decisions. As a result, 

they significantly impact any mining company’s revenues and profits. They also play a role in the 

liquidity of a company and, consequently, in its financial planning process.  

For instance, a decrease in commodity prices could: 

- reduce producers’ sales revenue, leading to not only a re-evaluation of the current business 

strategy but also to a possible decline of the company's total value. 

- affect the viability of certain mine zones that were economically viable under the original 

prices. As a result, the production levels of the company's mines, as well as the whole mine 

planning and scheduling, could be changed to prevent potential losses. 

- Potentially alter the company’s current inventory management solutions, and, therefore, 

the company's earnings due to a decline in the inventory directly impact the company's 

dividends. 

Whereas a rise in commodity prices could: 

- increase the company’s sales revenues and, thus, its financial value. 

- encourage competition among producers as new entrants seek to take advantage of the 

higher prices.  

- reduce profitability for consumers (of such commodities). 
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The forecasting of commodity prices is  a difficult task. Although over the years substantial 

progress has been made and many different techniques from many different branches of 

economics, finance, and computer science have been developed, the increased volatility of 

commodity prices has made forecasting more burdensome than ever. Table 2.3 summarizes the 

effects of price variations on inventory, sales, purchasing, and revenue. 

Table 2.3: Impacts of price movements 

Price movement 
Impact 

Inventory Sales Purchasing Revenue 

Decline in 

commodity price 

Leading to higher 

cost of inventory 

(constraint in cash 

flow) 

Reduced sales 

volume and 

impact negatively 

profitability  

Increase in 

purchasing power  
Reducing earnings 

Rise in 

commodity price 

Leading to lower 

cost of inventory 

(increase in cash 

flow) 

Increased sales 

values due to 

higher price 

Decrease in 

purchasing power 

Increasing 

earnings 

 

In order to understand the challenges in mineral commodity forecasting, it is important to 

understand the nuances of commodity markets. According to Tauber (2015), the response of a 

commodity price behaviour as a result of changes in supply and demand varies across different 

commodities. He found that a decrease in supply would yield a much larger price increase in 

copper than in gold, with a percentage increase twice as greater. His analysis also indicated that 

copper prices are much more sensitive (than those of gold) to changes in mining costs (via mining 

cost inflation) and China’s GDP. These price differences among different commodities can be 

explained by the variations of supply and demand curves of said commodities. That is, the location 

of the equilibrium point of the supply and demand curves in the supply-and-demand diagrams 

would indicate the sensible commodity prices are prone to.  

Mineral commodity prices have somehow the same drivers for all commodities, but that 

the effect occurs in different degrees. Therefore, it is vital to identify those that affect them the 
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most. For example, the most powerful drivers of gold prices are the investor demand and political 

stability of the countries. However, copper and iron ore prices  are more sensitive to Asian markets. 

(Arslanalp et al., 2016). That is why a convincing grasp of the commodity drivers would allow the 

investors to properly identify and construct different case scenarios that account for how the 

dynamic supply-and-demand evolves. That is, how supply- and demand-side players would 

respond to changes in market prices and its inevitable risks.  

Currently, there are two ways a company usually deals with price uncertainty: it can be 

treated as a 'procuring risk' or as a 'tradable risk.' To mitigate said risk, the former focuses on 

improving supply chain management, whereas the latter puts more emphasis on the financial risk 

and hedging of the commodities (Deloitte, 2017). 

Corporates dealing with procuring risk is used to concentrate all their efforts in a risk 

transfer and avoidance framework (Deloitte, 2017). However, nowadays, although it might seem 

that all risk is being passed on to consumers, corporations are increasingly embracing new 

practices aimed to find a balance in the supply chain so as to offset most of the consumer-

associated risk. In fact, many companies have begun to develop management measures that involve 

cost control in the whole supply chain as well as negotiations with suppliers for the settlement of 

a fixed price (Deloitte, 2017). 

Companies exposed to tradable risk have as common practice hedging the mineral 

commodity price risk. As explained in previous sections, hedging is the process of mitigating the 

risk of price fluctuations in the physical market by settling in advance the price for the same 

commodity in the futures market (Deloitte, 2017). There are two main reasons for a company to 

hedge the commodity price risk:  

- To lock in a future price which is attractive 
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- To secure a price fixed against disruptions that might affect the price values 

The decision to eliminate the price risk entirely or just a part of it is solely made by the 

company, which bases its choice on the amount of price risk it is prone to accept. 

 

2.4. Deflator for mineral commodity prices 

As mentioned, the historical price data were the most important component to forecast the 

commodity prices. These data are usually given as the current (nominal) values. Before applying 

a forecasting technique, the effect of the inflation should be eliminated. In other words, the current 

values must be converted to constant (real) values. This conversion is achieved by using the 

deflators or the price indices. The selection of an appropriate index is a difficult task. 

A deflator is a statistic that allows price data to be measured at different points of time in 

terms of a base period, which can be any period of time. 

As mentioned, deflators are usually price indices that are used to report historical inflation. 

An index relates the price of a particular year to the price of a year of reference, referred to as the 

base year of the price index series, which is given an index of 100. There exist many price indices; 

however, some of the more common include: 

- CPI: Consumer Price Index 

- PPI: Producer Price Index 

- WPI: Wholesale Price Index 

- CEI: Chemical Engineering Index 

- M&S: Marshall & Swift Index for industrial equipment 

- NR: Nelson Refinery Construction Cost Index 

- MUV: Manufactures Unit Value Index 
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From those, the CPI is based on a fixed basket of goods and services purchased by average 

urban households, while the PPI program measures the average change over time in the selling 

prices received by domestic producers for their output. On the other hand, the MUV is used as a 

proxy for the price of developing country imports of manufactures in the US dollar terms. 

Any commodity price-related work involves the unquestionable use of a deflator (CPI, PPI, 

MUV, etc.) as a prior tool to homogenize a data set (Cuddington and Jerrett, 2008). Usually, all 

the prices are expressed as a statistic of the actual values at a time given, in what is called nominal 

value. As a result, a comparison among prices at different points in time would be inaccurate.  

No deflator can make the claim that it is universally “most relevant.” Ultimately, the 

deflator selection depends on what relative prices one is most interested in. For example, from the 

perspective of a financial investor considering investments in commodities as an asset class, the 

CPI might prove to be more suitable as the investor is interested in knowing how their prices move 

over time relative to the CPI (Cuddington and Jerrett, 2008). On the other hand, if one is looking 

for the price of metal inputs relative to output prices, then one would want to select the particular 

outputs of interest. Here the PPI might be viewed as more relevant because it includes capital as 

well as consumption goods and excludes distribution costs and indirect taxes (Heap, 2005). 

 

2.5. Mineral commodity price forecasting 

 Mineral commodity price forecasting is a complex task that has been addressed by different 

techniques; however, the ones that have been widely used, due to its understandability and simple 

structure, are the time-series methods. 
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Time series forecasting uses past observations of a variable to develop a model describing 

the underlying relationship between said observations. The model is then used to extrapolate the 

time series into the future (Zang, 2003).  

There are, in fact, several different time series models used in commodity price forecasting. 

Traditional statistical models include moving average, exponential smoothing, ARMA, ARIMA, 

(ARCH), and GARCH.  

The ARMA model combines Autoregressive (AR) and Moving Average (MA) models. It 

assumes that a sequence of random variables depends upon time and that the series mean and 

variance do not change over time (stationary). This assumption hampers the utility of these 

methods for mineral commodity price forecasting as commodity prices tend to have a non-

stationary behavior. In response to this lack of application, the ARIMA model, the generalized 

version of the ARMA model, was developed. This model uses a linear function to describe past 

behavior and random errors. ARIMA models assume that lagged random changes of the dependent 

variables are represented by an algebraic equation with fixed coefficients estimated from past data 

(Cortez, 2018). Despite the fact that the ARIMA model offers a more realistic forecasting 

approach, it is not able to handle the volatility and nonlinearity that are present in the data series 

(Yaziz et al., 2013). 

Both the ARCH and the GARCH models have been largely used to measure volatility in 

pricing (Rudenno, 2012). The perks of such models are that they account for the heteroscedasticity 

phenomenon (variances of the error are not constant), allowing to consider volatility in clusters as 

a feature of the model. Table 2.4 summarizes time series models used for forecasting along with 

pros and cons. 
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Table 2.4: Summary of commonly used time series models for forecasting 

 

Recently, ANNs have been extensively studied in time series forecasting. The main 

advantage of this method is its flexible non-linear modeling capability (Zhang, 2003). That is why 

ANNs seem to be an alternative to traditional linear methods. In fact, compared to time-series 

methods, machine learning techniques have demonstrated better performance for forecasting 

mineral commodity prices over time (Mombeini and Yazdani-Chamzini, 2015). 

ANNs have proved to add significant advantages in the forecasting “process”. One 

important advantage of the ANNs models (over both time-series linear and non-linear methods) is 

Type of model Pros Cons 

Time 
series 

MA and Exponential 

Smoothing 
Simple and easy to implement 

Fail to consider the diverse 

components of a time series 

 

ARMA 

Takes into consideration past 

market behavior  

The random variables rarely 

fluctuate in a regular pattern 

 

 

 

ARIMA 

Flexibility to represent 

different time series, their 

statistical properties and the 

use of the Box–Jenkins 

methodology 

 

Fails to account for the non-

linear part of the series 

 

 

ARCH 

Considers the 

heteroskedasticity of series, 

allowing to account for 

volatility clustering 

Not useful for a point estimation. 

Better result when combined 

with ARMA 

 

 

GARCH 

Inclusion of previously 

squared volatilities (variances) 

in the calculation of the future 

returns' variance 

Provides an improvement form 

the ARCH model by including 

past variances 
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that no prior assumption of the model form is required, being this model determined by the 

characteristics of the data, instead (Wongsathan and Seedadan, 2016). 

In this thesis, we will thoroughly review, analyze, and compare the three more important 

forecasting methods used by the bulk of literature (ARIMA, GARCH, and ANNs), aiming to 

determine which one of those is more accurate and under what conditions one of them would 

prevail over the others. 
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Chapter 3  
 

Methodology 
 

3.1 Introduction 

Three different forecasting models are studied, analyzed, and compared. The first two 

methods fall under the category of time-series forecasting techniques and the other can be 

identified as a machine learning technique. These methods are ARIMA, which is fully evaluated 

in Chapter 4; GARCH, which is thoroughly developed in Chapter 5; and ANNs, which is reviewed 

in Chapter 6. The performances of the proposed techniques above are tested through a case study 

using historical nickel prices. The price of nickel was adjusted for inflation, and its outliers were 

identified and corrected. The nickel prices are forecasted for the next 24 months.  The outcomes 

of each technique are then compared. 

The forecasts for each forecasting method are contrasted against the real values of nickel 

prices. The metrics to analyze each estimated value will be the prediction error, which is the 

difference between actual and forecasted values. 

Since this metric does not say much about the prediction quality itself, each one of the 

metric values will be compared against each other to determine the most accurate model. The 

comparison across different models will be analyzed in different installments of 12, 18, and 24 

months, aiming to find out which model is more suitable at different forecasting stages, and the 

reason behind this occurrence are discussed. 
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3.2. Data 

The data includes 456 observations of monthly nickel prices (in USD per ton) from January 

1980 to December 2017. The monthly nickel prices (in USD per ton) from January 2018 to 

December 2019 were used to validate the accuracy of the forecasted values. In order to conduct a 

proper test, all these values (from 1980 to 2019) were adjusted for inflation using the CPI as a 

deflator, which is “preferred” on the basis of the literature recommendations and the availability 

of the indexes’ observations over time (Irwin and Sanders, 2011). Also, due to the lack of some 

indexes’ availability for the time span of main data, the deflator selection was narrowed down to 

two choices: the CPI and the PPI. If this selection were to be made solely from the investors’ 

perspective, the CPI could be viewed as more suitable; and, since one of the main goals of metal 

price forecasting is the decision to lean towards the use of the CPI (Irwin and Sanders, 2011). 

However, for the sake of affirmation, the trends of both indexes were compared graphically to 

better understand the possible differences of choosing one over the other.  

Both the CPI and PPI values were taken from the website of the U.S. Bureau of Labor 

Statistics (with values updated as of November 2020). Figure 3.1 shows the log values of the CPI 

and the PPI from 1980 to 2019. As can be seen from this figure, the logarithmic values of both 

indexes resemble one another to some extent, with the CPI risen a little more rapidly than the PPI, 

though they both follow the same trend and fluctuations. Consequently, the trend of the real nickel 

prices would be somewhat less positive than that of the nickel price values deflated by the PPI, 

yielding more conservative dataset values. This detail, along with the fact that the selection of one 

index over the other would lead to little different real nickel prices, suggests that, in this case, the 

CPI is the most suitable deflator for nickel price forecasting. 
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Figure 3.1: Comparison between logarithmic CPI values and logarithmic PPI 

 

3.3. Performance evaluation 

 The main problem is how much deviations from actual or real values are acceptable. 

Theoretically , the forecasting techniques estimate future values; so, unless we establish some kind 

of benchmark that allows us to compare the real values and the forecasted values, there is no way 

to assess the quality of the forecasting model (Omar et al., 2016). 

After the nominal nickel prices are converted to the real nickel prices, the real monthly 

nickel price values from January 2018 to December 2019 are used as reference benchmarks to 

assess the performance of the forecasted price. This procedure are applied to the different case 

studies using the three different forecasting techniques —ARIMA, GARCH, and ANNs.  

In order to evaluate the performance of these forecasting methods, the criterion to be 

utilized will be the prediction error — the disparity between the forecasted values and the real 
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values. In fact, there are different error measures that research on fields such as engineering, 

computer science, statistics, and econometrics have adopted, making a consensus on the best 

performance evaluators a problematic task. However, it is possible to establish some kind of 

pattern in the machine-learning-based forecasting literature, allowing us to identify the most 

commonly used performance metrics rather than striving for the best metric. As it turns out, in 

2018, Botchkarev (2018) carried out one of the most comprehensive studies regarding the error 

measures in machine learning regression, forecasting, and prognosis. Botchkarev (2018) reviewed 

over 100 peer-reviewed papers published from 1983 to 2017 and found that the most commonly 

used performance metrics are: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). Botchkarev 

(2018) also found that although RMSE, MAE and MAPE are the metrics, most researchers rely 

on, the prevalence of one of them over the other has changed drastically over the 25-year timeline: 

in the 80s the dominance of RMSE was clear, whereas in the 90s MAE took over as the leading 

metric to assess machine-learning forecasting models and remained in that position until the 

beginning of the 2000s when MAPE and R2 moved up to the first place. Furthermore, Botchkarev's 

research also sheds light on an important matter concerning forecasting model comparison: the use 

of different performance metrics to compare distinct forecasting models, aiming to pick the one 

that yields the most accurate forecasts. It turns out that the error measures previously mentioned 

cannot be used to compare different models unless they have the same units as well as belong to 

the same measure category. RMSE, MAE, and MAPE belong to a category called "primary 

metrics", whilst R2 belongs to a category called "composite metrics" (Botchkarev, 2018). Primary 

metrics typically involve the calculation of point distance and the aggregation of point distance 

results across the data set values. This type of metrics also served as a foundation for the 
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construction of other metrics such as composite metrics and hybrid metrics. For instance, the 

coefficient of determination R2, which can be categorized as a composite metric, involves the 

combination of the sum of squares (SSE) and the sum of residuals (SSyy), as seen in the formulas 

below.  

Based on the extensive body of literature, the following performance measures were 

chosen: RMSE, MAE, MAPE, and R2. 

Let 𝑦�̂� be the expected or predicted values, 𝑦𝑖 the observed or real values, �̅� the average of 

the set of values of the series, and 𝑛 the number of values of the data set; each one of the error 

measures can be expressed as: 

 

(i) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(ii) 𝑀𝐴𝐸 =
∑ |𝑛

𝑖=1 𝑦�̂�−𝑦𝑖|

𝑛
 

(iii) 𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑦�̂�−𝑦𝑖

𝑦𝑖

|𝑛
𝑖=1  

(iv) 𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
= 1 −

∑ (𝑦�̂�−𝑦𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

 

 

The RMSE calculates the square root of the mean squared error, yielding a more 

representative measure since the RMSE is measured in the same units as the data set values as 

opposed to the mean squared error. This particular feature also allows the RMSE to be compared 

with different primary metrics with the same units as the data itself.  

Botchkarev (2018) also ascertained that the RMSE might pose a hidden threat because 

when working with a large set of data, this error measure gives quite disproportionate weight to 
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very large pint distance among the data set values, leading to what is known as occasional large 

error. That is why it is widely suggested the data be adjusted for outliers before any kind of 

modelling. 

MAE, as can be inferred from its formula, has the same units as the data’s, and it is usually 

smaller than the RMSE since the latter is divided by the square root of n as opposed to just n 

(which is the denominator of the MAE). It is also believed that the MAE is a more precise 

measurement since it avoids the need for squaring the point distance in the calculation.  

MAPE is perhaps the easiest-to-understand metric among those described above since its 

ability to express the error in terms of percentage is appealing to a greater group of researchers. 

R2 shows how much of the variability in dependent variable can be explained by the 

independent variable(s). R2 is a positive number that can only take values between zero and one. 

A value for R2 close to one shows a good fit for the forecasting model and a value close to zero 

presents a poor fit. 

It is also worth stressing that the performance metrics of the same groups can only be 

compared between models whose errors are measured in the same units. That is, if one model's 

errors are in absolute units while another's are in logged units, their error measures cannot be 

directly compared. In such cases, it is advisable to convert the errors of both models into 

comparable units before computing the various measures. In this particular thesis, both the RMSE, 

MAE and MARE will be jointly used to compare forecasting models, and only the R2 of each 

model will be compared among the others R2s.  
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3.4. Modelling 

For the cases studies in this thesis, the software R version 3.6.1 for Windows was used. All 

computational works was realized by a computer Acer, Intel(R) Core(TM) i5-8265U CPU @ 

1.60GHz, with 8.00 GB RAM. 
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Chapter 4  
 

Forecasting Through Auto-Regressive 

Integrated Moving Average (ARIMA) 

Models 
 

4.1. Introduction 

The commodity price is key to assessing both the economic and technical feasibility of a 

mining project; therefore, it plays a major role in the decision making of the whole hierarchy ladder 

of a mining company from upper manager to mine planners (Espí and De La Torre, 2013). 

One common yet somewhat outmoded practice in the mining industry when assessing 

viability of a mining project is to simply overlook the future price fluctuations and set one fixed 

value over the entire operating life of the project. Though the risks of this approach can be, to some 

extend, hindered via sensibility analysis on the key variables determining project feasibility, this 

traditional method seems to ignore past observation patterns that might be helpful to describe the 

future behavior of certain metal price, doing this traditional practice not so ideal especially when 

dealing with real-world price uncertainty. 

Mineral commodity forecasting has always been one of the most difficult tasks in many 

different areas such as economics, statistics, engineering, etc. undertake, often with no definite 

answer to the best forecasting model. In fact, the wide range of forecasting models includes some 

of the following: (1) those based on mathematical and statistical calculations such as time-series 

methods (mainly studied and covered by quantitative finance) in what is called objective forecast, 
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and (2) those based on qualitative techniques such as experts’ opinions and supply and demand 

analysis in what is known as subjective forecast (Rudenno, 2012). Although some progress has 

been made over the past few decades, the ultimate choice of the most suitable forecasting method 

comes down to the following criteria: sample size, stationary, seasonality, length of the forecast 

(short term or long term), among others (Rudenno, 2012). 

 For a long time, researchers, forecasters and alike relied on simple forecasting models, such 

as exponential smoothing and moving averages to estimate future prices and, though such methods 

are still widely used to quickly obtain a trend curve that might serve as a guide to how the future 

values will behave over a given time frame, their accuracy has been shown to be outperformed by 

more sophisticated methods such ARMA and ARIMA models (Brockwell and Davis, 2016). Both 

models, the latter being built on the former, belong to a larger forecasting model category called 

time-series forecasting models. This type of forecasting model uses past observations of a certain 

variable to describe the relationship and hidden patterns among those observations and 

extrapolates the future values of the said variable (Guidolin and Pedi, 2018). Due to their simplicity 

and easy implementation, the ARMA and ARIMA models have become widely accepted and even 

nowadays are the “go-to” models for stock and commodity price forecasting. ARMA is built on 

the assumption that the observations vary over time in a regular pattern (Ru and Ren, 2012). That 

is to say that, over time, the observation values fluctuate around a constant mean and wiggles in a 

regular pattern, i.e., stationary (Nau, 2019). ARIMA model,  which is an extension of ARMA, 

describes the behavior of the past observations, or rather the lagged values of those observations, 

and the random errors using a linear function. That is, the coefficients of the linear function are 

calculated based on the behavior of past data observations. The advantage of the ARIMA models 

over the ARMA models is the removal of the stationary constraint, allowing for treatment and 
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modeling of more real-world data, which most of the time does not resemble a stationary behavior 

(Paolella, 2019).  

 In this chapter, we aim to design an ARIMA model to predict the future price values of 

nickel in the short run. In fact, in the bulk of literature regarding stock price forecasting, time-

series forecasting models have proven to be more accurate when the time span chosen ranged from 

a couple of months to up to a few years (Ru and Ren, 2012).  

This chapter is structured as follows: Section 4.2. discuses the literature review regarding 

the use of ARIMA models in different settings, such as stock prices, metal prices, and agricultural 

commodity prices. Section 4.3 explains the basic concepts and frameworks of ARIMA models and 

how the key parameters in the model architecture can be found. Section 4.4 develops an ARIMA 

model for nickel price forecasting for the short run. This section analyzes and determines the best 

ARIMA model that fits the data given, using the model parameters to predict the future values of 

nickel price. It also discusses the results of the case study and analyzes what the results might mean 

in the context of the ARIMA model accuracy to estimate forecasts. This section summarizes the 

main conclusion and takeaways of the case study, as well. 

 

4.2. Literature review  

 A time series is a sequence of data points taken successively over time (Box et al., 2016). 

The intervals of time at which those observations are taken are equally spaced (Chatfield, 2010). 

That is, when collecting data for a certain variable, the time interval must remain constant and 

could take up any value such as months, days, hours, etc. 

In order to better understand a time series and a forecasting technique, it is imperative to 

be familiar with its different components. According to Chatfield (2010), all time series can be 
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decomposed into the following elements: (i) a seasonal component or variation, which is the type 

of variation that arises when observing a similar pattern over the same particular time of a year. 

(ii) The trend component is present when, over a prolonged period of time, the time series displays 

either upward or downward behavior. This statement does not mean that the time series cannot 

exhibit some fluctuations within the observed period of time, but rather an overall decline or 

growth. (iii) The cyclical component, which usually ranges for longer periods from several years 

to several decades, but not seasonal variations. (iv) The other components, which can be regular 

or irregular fluctuation or variations the time series might display, include all remaining elements 

after the seasonal and trend components are removed. 

Generally speaking, forecasting time series methods use past observations of a variable 

(univariate forecasting) or set of variables multivariate forecasting) to predict their future values. 

In the particular case of this research, the focus will be univariate forecasting of mineral 

commodity prices. These time series forecasting methods include ARIMA, ARIMA, ARCH, and 

GARCH, among others.  

The ARIMA models are perhaps the most valuable and common element in a forecaster's 

toolkit. It is both one of the most widely used forecasting models as well as the model that serves 

as a ground for more advanced and technically demanding forecasting methods. The foundation 

of the ARIMA models can be attributed to the early work of Box and Jenkins  — the Box-Jenkins 

model.  

Box and Jenkins cemented the basics for time series control, analysis and forecasting 

(Chatfield, 2010), but with the inclusion of Reinsel and others they developed a more thorough 

revision and analysis of ARIMA models that included a new outlier detection process, a revised 

test for unit roots and an extended estimation procedure (Box et al., 2016).  
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To this date, there are a few papers that have solely focused on the use of ARIMA for 

mineral commodity price forecasting, with the majority of them being an assessment of the 

different time series forecasting methods (Matyjaszek et al., 2019). This finding can be attributed 

to the fact that ARIMA models are considered to be of the simplest estimation models there are 

and, to some extent, not worthy of study alone. Nonetheless, in this research, a whole section is 

devoted to the ARIMA-based forecasting model because it is the author's belief that in order to 

make a better comparison among different forecasting models, a detailed explanation of each of 

the models is needed. 

 

4.3. The ARIMA model 

4.3.1. ARIMA model components 

In the ARIMA-based forecasting model, the future values of a variable are a linear combination 

or a linear function of random errors and past observations or the lagged values of those. That is, 

an ARIMA model can be explained by a set of three different parameters (𝑝, 𝑑, 𝑞). Each one of 

these parameters is related to a component of the ARIMA model (Lütkepohl, 2005). 

- The auto-regressive component (𝑝) refers to the use of past values in the regression. The 

parameter "𝑝" specifies the number of terms in the model that describe the dependency 

among successive observations and can be thought of as the memory of the model 

regarding past data observations. For example, a model with (𝑝 = 0) means that there is 

no relationship between adjacent observations, whereas a model with two auto-regressive 

terms (𝑝 = 2) is one in which an observation depends on (is predicted by) two previous 

observations. This model’s regression equation could be expressed as: 

                                                         𝑦𝑡 = 𝑐 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + 𝑒𝑡                                       (4.1) 
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Where 𝑦𝑡 shows the variable 𝑦 measured at time 𝑡, 𝑦𝑡−1 shows the variable 𝑦 measured 

at time 𝑡 − 1, 𝑦𝑡−2 shows the variable 𝑦 measured at time 𝑡 − 2, 𝛼1 and 𝛼2 are the 

numerical coefficients calculated from simulations, 𝑐 is a constant, and 𝑒𝑡 is the random 

error.  

- The Moving average component (𝑞) represents the error of the model as a combination of 

previous random shocks or error terms 𝑒𝑡. In a nutshell, the term "𝑞" denotes the number 

of errors to be included in the model. That is, a moving average process with 𝑞 = 0 does 

not have moving average components, whilst a moving average process with 𝑞 = 2 could 

be expressed as: 

 

                                           𝑦𝑡 = 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + 𝑒𝑡                                               (4.2) 

Where 𝑦𝑡 represents the variable 𝑦 measured at time 𝑡, 𝑒𝑡 represents the random shock at 

time period 𝑡, 𝑒𝑡−1 represents the random shock at time 𝑡 − 1, and 𝑒𝑡−2 represents the 

random shock at time 𝑡 − 2, 𝜃1 and 𝜃2 are numerical coefficients.  

- The Trend component (𝑑) refers to the number of differences needed among pairs of 

observations to make a non-stationary series to be stationary. That is, we need to find a 

series that vary around a constant mean level, neither decreasing nor increasing 

systematically over time, with constant variance. For example, 

 

𝐼𝑓 𝑑 = 0, 𝑌𝑡 = 𝑦𝑡 

𝐼𝑓 𝑑 = 1, 𝑌𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 
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Where 𝑌𝑡 is the differenced series, 𝑦𝑡 represents the variable 𝑦 measured at time 𝑡, 𝑦𝑡−1 

represents the variable 𝑦 measured at time 𝑡 − 1, and 𝑑 is the number of differences needed 

to make a process stationary. 

Therefore, a general equation for an ARIMA process, which is the mix of both moving 

averages and autoregressive components can be written as: 

 

                            𝑦𝑡 = 𝑐 + 𝛼1𝑋𝑡−1 + … + 𝛼𝑝𝑋𝑡−𝑝 − 𝜃1𝑒𝑡−1 − 𝜃𝑞𝑒𝑡−𝑞                        (4.3) 

 

4.3.2. Stationarity 

 A time-series model is considered to be stationary when the process remains in what Box 

et al. (2016) defined as "statistical equilibrium." That is, the time-series data points vary over a 

fixed constant mean and with constant variance. This particular property is what sets ARMA and 

ARIMA models apart. As it turns out, one of the main requirements of ARMA models is for the 

time series to be stationary; whereas ARIMA provides a more flexible option as it "relaxes" this 

requirement and allows for the modeling of any type of data, both stationary and non-stationary 

ones (Paolella, 2019). In fact, ARIMA models have been proven to be of quite an importance as 

in the real world of business, engineering, mathematics, finance and economics the data presents 

itself with no defined patterns and is better represented by non-stationary processes (Dooley and 

Lenihan, 2005). 

 Checking whether a time series has the property of stationary can include different 

procedures ranging from simple inspection of the series graph to more sophisticated computational 

tests. The simplest method to check for stationary is to inspect the graph of a time series, draw an 

imaginary line that represents the means and assess whether the different upward and downward 
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fluctuations vary around it, offsetting one another over the period of time selected (Brockwell and 

Davis, 2016). However, this method is not completely reliable as some time series might appear 

to be non-stationary when, in reality, they are, and vice versa (Berlinger et al., 2015). The other 

procedure, on the other hand, involves the so-called Augmented Dickey-Fuller (ADF) test. The 

ADF test has the null hypothesis that the time series is non-stationary. Mathematically: 

                                              ∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 ∑ 𝛿𝑡𝑦𝑡−𝑝
ℎ
𝑖=1 + 𝑒𝑡                                     (4.4) 

Where 𝛼 and 𝛽 are numerical coefficients (different from those of equations above) of the time 

trend and p is the lag order of the autoregressive process. The ADF test using a t-test checks the 

following hypothesis. 

𝐻𝑜: 𝛾 = 0 (non-stationary) 

𝐻𝐴: < 0 (stationary) 

The intuition behind the ADF test is that testing 𝛾 = 0 is equivalent to 𝑦𝑡 following a unit 

root process. In fact, the equation the ADF test uses can provide different insights if a careful look 

is taken at each one of their components. If both 𝛼 = 0 and 𝛽 = 0, we can say that 𝑦𝑡 follows a 

random walk process with drift since both the constant and time trend are equal to zero. On the 

other hand, if 𝛽 = 0, 𝑦𝑡 would follow a random walk process with drift. The analysis of the 

different values of 𝛼 and 𝛽 is important since, though no change needs to be made in the setup of 

the hypothesis, the values of the t statistics the rejections zones are under changes as both 

coefficients take up on different values (a combination of zeros).  
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 4.3.3. Differencing 

One way to make a non-stationary time series stationary is to compute the differences 

between consecutive observations. This is known as differencing. 

Differencing can help stabilize the mean of a time series by removing changes in the level 

of a time series, and therefore eliminating (or reducing) trend and seasonality. Sometimes, 

transformations such as logarithms can help to stabilize the variance of a time series and need to 

be made before differencing the time series.   

Another way to identify the number of differences a time series needs to be stationary is to 

look at the Autocorrelation Function (ACF) plot. For a stationary time series, the ACF will drop 

to zero relatively quickly, while the ACF of non-stationary data decreases slowly (Hyndman and 

Athanasopoulos, 2018). This particular statement will be thoroughly covered in the next section.  

 

4.3.4. Autocorrelation and Partial Autocorrelation Functions (ACF/PACF) 

 The rule of thumb for identifying the essential parameters for any ARIMA model lies in 

the proper analysis of the ACF and Partial Autocorrelation Function (PACF). In order to 

understand both functions, it is important to be familiar with a concept that, at first glance, it might 

seem self-explanatory. In fact, both the autocorrelation and partial autocorrelation functions are 

computed on a series of sequential lags. A lag can be defined as the time periods between two 

different points of a time series. For instance, lag 1 is between 𝑌𝑡 and 𝑌𝑡−1, lag 2 is between 𝑌𝑡 and 

𝑌𝑡−2, and, in general, lag k is between 𝑌𝑡 and 𝑌𝑡−𝑘.  
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4.3.4.1. Autocorrelation function (ACF) 

 The autocorrelation of 𝑌𝑡 at lag 𝑘, which gives correlations between 𝑌𝑡 and 𝑌𝑡−𝑘, can be 

defined by 

                                                         𝜌𝑘 =
𝑐𝑜𝑣(𝑌𝑡,𝑌𝑡−𝑘)

√𝑣𝑎𝑟(𝑌𝑡).𝑣𝑎𝑟(𝑌𝑡−𝑘)
                                                       (4.5) 

Since the process is defined for stationary time series, the value of the varies does not change 

across time and, therefore, 𝜌𝑘 formula can de simplified to  

                                                              𝜌𝑘 =
𝑐𝑜𝑣(𝑌𝑡,𝑌𝑡−𝑘)

𝑣𝑎𝑟(𝑌𝑡)
                                                             (4.6) 

The plot of 𝜌𝑘 against lag 𝑘 is what is called the ACF. Furthermore, the equation above can be 

farther simplified to  

                                                    𝜌𝑘 =
1

𝑁−𝑘
∑ (𝑌𝑡−�̅�)𝑁−𝑘

𝑡=1 (𝑌𝑡−𝑘−�̅�)

1

𝑁−1
∑ (𝑌𝑡−�̅�)2𝑁

𝑡=1

                                                    (4.7) 

Where 𝑁 is the number of observations on the whole series, 𝑘 is the lag, �̅� is the mean of the whole 

series,  

                                                                �̅� =
1

𝑁
∑ 𝑌𝑡

𝑁
𝑡=1                                                              (4.8) 

and the denominator is the variance of the whole series, as well. 

 

4.3.4.2. Partial autocorrelation function (PACF) 

The partial autocorrelation is technically a conditional correlation. That is, it is the 

correlation between two variables when the value of another one or a set of them is considered to 
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be known (assumption). In fact, the partial autocorrelation function can be thought of in the context 

of linear regression with 𝑌 as a dependent variable and 𝑥1, 𝑥2, 𝑥3 as independent variables. The 

partial autocorrelation between 𝑌 and 𝑥3 would be equal to the correlation considering how both 

𝑌 and 𝑥3 are related to 𝑥1 and 𝑥2. That is, in the context of a linear regression the partial 

autocorrelation function can be expressed as 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌, 𝑥3|𝑥1, 𝑥2)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌|𝑥1, 𝑥2). 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥3|𝑥1, 𝑥2)
 

 This equation can be translated in terms of a time series. Let 𝑌𝑡 be the values of the time 

series observation at time 𝑡, and 𝑘 is the lag. The partial autocorrelation between 𝑥𝑡 and 𝑥𝑡−𝑘 can 

be defined as the regression between 𝑥𝑡 and 𝑥𝑡−𝑘, conditional on 𝑥𝑡−1, 𝑥𝑡−2, …, 𝑥𝑡−𝑘+1 (set of 

variables that comes between 𝑥𝑡 and 𝑥𝑡−𝑘). Therefore: 

- The partial autocorrelation at lag 1 is equal to the autocorrelation function at lag 1.  

- The partial autocorrelation function at lag 2 can be expressed as  

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡, 𝑥𝑡−2|𝑥𝑡−1)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡|𝑥𝑡−1). 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡−2|𝑥𝑡−1)
 

(the values of the variances are equal provided that the time series is stationary) 

- The partial autocorrelation function at lag 3 is defined by 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡, 𝑥𝑡−3|𝑥𝑡−1, 𝑥𝑡−2)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡|𝑥𝑡−1, 𝑥𝑡−2). 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡−3|𝑥𝑡−1, 𝑥𝑡−2)
 

And so on for any lag. 
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4.4. Case study: Nickel price forecasting 

4.4.1. The best set of parameters (𝒑, 𝒒, 𝒅) 

 The selection of the parameter 𝑑 is perhaps the easiest one to make. As pointed out above, 

this parameter can be determined either visually or through computing methods. Since the former 

has already been explained, only the latter will be described. The software R provides the diff 

package. The only input needed is the time series and the command yields the number of 

differences needed to make the series stationary (Tsay, 2012).  

The ACF is a tool in identifying the order of an 𝑀𝐴(𝑞) process because it is expected to 

"cut off" after lag 𝑘. However, the ACF is not as useful in the identification of the order of an 

𝐴𝑅(𝑝) process since it includes a mixture of exponential decay and sinusoid expressions, which 

cannot really tell what the order for the autoregressive part is. Hence, while ACF could help 

indicate that the process might have an AR structure, it fails to provide further information about 

the order of such structure (Hyndman and Athanasopoulos, 2018). For that, PACF of the time 

series has proven to be more useful.  

For an 𝐴𝑅(𝑝)  model, the lag 𝑘 at which the PACF graphs cuts offs is a good predictor of 

the value of 𝑝. Theoretically, PACF shuts off past the order of the model. That is, the partial 

autocorrelations are equal to 0 beyond the order of the model corresponding to the autoregressive 

part of the ARIMA process. 

Nonetheless, the methodology explained above means little if the time series is not treated 

in the context of stationary. That is, since non-stationary time series have an ACF that remains 

significant for half a dozen or more lags, rather than quickly declining to zero, it is vital the time 

series be differenced until stationary is achieved. The values of 𝑑 correspond to the number of 
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differences needed to achieve said stationary. Once differenced, the stationary property of a time 

series need to be checked until both visually and statistically it meets the requirements of 

stationary. 

Table 4.1: Summary of methodology for non-seasonal ARIMA parameter’s identification 

Process ACF PACF 

𝑨𝑹(𝒑) X Helps to identify the value of 𝑝 

𝑴𝑨(𝒒) Helps to identify the value of 𝑞 X 

 

4.4.2. Future prices 

As mentioned before, the data consists of 456 observations of monthly nickel prices (in 

USD per ton) from January 1980 to December 2017. The monthly nickel prices (in USD per ton) 

from January 2018 to December 2019 were used to validate the accuracy of the forecasted values. 

In order to conduct a proper test, all these values (from 1980 to 2019) were adjusted for inflation 

using the Consumer Product Index (CPI) as a deflator. 

The data’s noisy fluctuations were smoothed using the moving average technique (though 

any particular smoothing technique is feasible, and none represents a ‘better’ fit). This moving 

average smoother of order 'm' averages the nearest 'm' periods of each observation. As neighboring 

observations of a time series are likely to be similar in value, averaging eliminates some of the 

randomness in the data, leaving a smooth trend-cycle component. The mathematical expression of 

a moving average can be expressed as: 

                                                 𝑇𝑡 =  
1

𝑚
∑ 𝑦𝑗+𝑘

𝑘
𝑗=−𝑘                                                        (4.9) 
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where  

𝑘 =  
𝑚 − 1

2
 

This moving average is not the same as the one described at the beginning of this thesis, as 

this smoothing technique is related to the actual values of our variable rather than the errors. 

Theoretically, the higher the order of the moving average, the smoother the original series becomes 

(Tsay, 2012). However, the order value chosen should neither smooth the series too much so as to 

‘arrest’ the series’ trend nor help very little to smooth the data. Based on repeated attempts, a 

moving average smoother of order eight was selected. 

Then, since a time series is built on three essential components (seasonality, trend and 

random), the series was deconstructed to better understand its behavior and prepared a foundation 

for building a forecasting model. To that end, an additive deconstruction was carried out as a 

simple inspection revealed that, though the series did not follow any specific seasonality-trend 

pattern, the seasonal component did not generally increase as the trend went up (except for a few 

outlier values). 

Figure 4.1 shows the different components of a time series. The time series contains a quite 

constant seasonal component that might have trouble in the fitting of the model, especially since 

the basic models are usually designed for non-seasonal models. The trend of the time series also 

shows that the series is not stationary; it will need to undergo any kind of treatment to make it 

stationary. When treating the seasonal component, one has to be careful not to forget it since that 

issue might lead to naïve forecasts. However, it is not always the case that the seasonal component 

bears importance to the forecast of a time series (Hyndman and Athanasopoulos, 2018). 
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Figure 4.1: Seasonal, trend and random components of the time series
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 Since the first inspection of the time series graph reveals that the data might not be 

stationary, the Augmented Dickey-Fuller test was conducted. The values of the said test were: 

 

Augmented Dickey-Fuller Test 

Dickey-Fuller = -2.4792, Lag order = 7, p-value = 0.3752 

alternative hypothesis: stationary 

 

 Since the p-value was greater than 0.05, the null hypothesis of non-stationary was 

rejected, in favor of the alternative hypothesis. That is, the ADF test confirms that the time series 

is actually stationary. This means that the times series need to be differenced to become non-

stationary. To do so, the command diff was run using the software R. This command yields the 

number of differences the time series needs to get rid of the stationarity. After running the 

command diff, it was determined that the series only needed one difference to become stationary. 

To prove this, a new ADF test was conducted to see whether the p-value was less than 0.05. 

 

Augmented Dickey-Fuller Test 

Dickey-Fuller = -5.2069, Lag order = 7, p-value = 0.01 

alternative hypothesis: stationary 

 

 Since now the p-value was less than 0.05, the null hypothesis was rejected in favor of the 

alternative hypothesis, confirming that now the differenced series is stationary.   

 After a time series was stationarized by differencing, the 𝐴𝑅 or 𝑀𝐴 was determined. A 

quick inspection of the ACF graph revealed that the correlation function cut-offs at lag 8-9, hinting 
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the possibility that 𝑞 could take on the value 8 or 9. Although it might seem like PACF is a bit 

volatile, it actually shows some important insights that can come in handy to determine the 𝑝 order 

of AR. The inspection also showed that the PACF cut off at lag 2 or 3. It can be argued that some 

values at some lags are well above the 95% significance boundaries (blue dotted lines), but that 

can be attributed to the fluctuation of the data as those values do not exceed the boundaries by that 

much and seem to have and overall constant trend).  

Figure 4.2: Autocorrelation function at different lags for the time series 
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Figure 4.3: Partial Autocorrelation function at different lags for the time series 

 

 Both Figure 4.2 and Figure 4.3 show the autocorrelation and partial-autocorrelation 

function values of the series at different lags. Both figures allow us to identify the values of the 

parameters for the model. Note that both figures indicate a ballpark of the parameters and such 

need to be tested in order to find out what the best set of parameters is.  

 The different possible values of 𝑝 and 𝑞 mentioned above provided a series of 

combinations, with each one of them yielding different ARIMA models. The Arima models tested 

were (3,1,2), (3,1,8), (3,1,9) and (2,1,2). Also, the Akaike criterion (AIC) was used as a comparable 

measure of the model’s suitability. The model with the lowest AIC values is the most suitable 

(Hyndman and Athanasopoulos, 2018).  

 Table 4.2 shows the values of the AIC for the different set of parameters selected. These 

values will help us determine what the best set of parameters really is.  
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Table 4.2: Values of Akaike coefficients for different set of parameters 

 

 

 

 

 

 

Also, the assumption of no correlated errors was tested. A simple test of the residuals revealed that 

indeed there was no autocorrelation among the errors.  

 

 

Figure 4.4: ACF and PACF of the model residuals for ARIMA (2,1,2) 

 

 

ARIMA AIC 

(3,1,2) 5,643.53 

(3,1,8) 5,446.01 

(3,1,9) 5,447.73 

(2,1,2) 5,440.08 
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Figure  4.4 shows the  statistical properties of the residuals of the series once the model was fitted. 

For the model to be statistically right, the residuals need to behave like white noise (Hyndman and 

Athanasopoulos, 2018). That is, their autocorrelation needs to be as close as possible to zero. In 

order to check this assumption, a simple inspection of the spikes of the ACF could be made. If 

95% of the spikes lie within the blue-dotted lines, then no correlation could be expected and the 

residuals can be considered as white noise. This is clearly the case for the graph above. 

It is also worth pointing out that when testing the set of parameters mentioned above, the seasonally 

adjusted data was re-seasonalized as to avoid results that weren’t consistent with what might be 

expected based on the past behaviour of the time series, such as obtaining horizontal or flat lines 

as forecast. That is, when running the command forecast () in the software R, which calculates the 

forecasts for a time series given a particular model, once the specifications made was to include 

the seasonal component in the forecasting model since by default this command tend to seasonally 

adjust the time series to a non-seasonal model. This proved quite a useful technique since when 

the seasonal component was not included, not only the behaviour of the time series did not make 

sense (horizontal line), but also the values of the AIC obtained were much lower that those yielded 

when using a non-seasonal ARIMA model.  
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Finally, the best model was fitted to the time series, and the nickel prices for the next 24 months were calculated. 

 

 

 

Figure 4.5: Forecasting of nickel prices for the next two years using ARIMA 
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Figure 4.5 shows a comparison of the real values of the nickel price (blue line) from 

January 2018 to December 2019. Since this thesis was written in 2020, the nickel price data can 

be taken advantage of in order to precisely determine how accurate the model is in predicting 

nickel prices. To have a better idea of the behaviour of the forecasted values, a line with said values 

was also graphed (blue line).  

Table 4.3. shows the values of the forecasted nickel prices from January 2018 to December 

2019.  

Table 4.3: Summary of future values of Nickel prices using an ARIMA model 

Date Estimate (USD/tn) Date Estimate (USD/tn) 

Jan-18 10,615.78 Jan-19 12,625.59 

Feb-18 10,874.57 Feb-19 12,749.48 

Mar-18 11,136.58 Mar-19 12,865.15 

Apr-18 11,366.00 Apr-19 12,972.58 

May-18 11,502.20 May-19 13,071.84 

Jun-18 11,635.02 Jun-19 13,163.06 

Jul-18 11,772.11 Jul-19 13,246.44 

Aug-18 11,889.04 Aug-19 13,322.18 

Sep-18 12,050.84 Sep-19 13,390.57 

Oct-18 12,205.84 Oct-19 13,451.89 

Nov-18 12,353.55 Nov-19 13,506.47 

Dec-18 12,493.56 Dec-19 13,554.65 
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Chapter 5  
 

Forecasting Through Generalized 

Autoregressive Conditionally Heteroscedastic 

(GARCH) Models 
 

5.1. Introduction 

  Unlike both ARMA and ARIMA forecasting techniques, which model the mean of any 

time series, ARCH process and its more extended and comprehensive version, GARCH, change 

the main focus to the series’ volatility (Bauwens et al., 2012). Time series’ volatility forecasts are 

vital to a myriad of financial instruments such as risk measure and hedging (Viens et al., 2012).  

Many researchers have suggested that the applications of ARMA and ARIMA models for 

forecasting are limited because the former assumes that the data show constant volatility 

(stationary), whereas the latter not only impose linearity constrains to the forecasting model but 

also are not able to handle volatility (Brockwell and Davis, 2016). To overcome these issues, both 

the ARCH and GARCH processes were developed to reflect the time-varying volatility most real-

world time series show (Viens et al., 2012). 

Financial data, especially stock returns and commodity prices, are heteroskedastic — the 

magnitude of their error terms changes over time, with intermittent periods of high and low values 

(Hyndman and Athanasopoulos, 2018). The natural yet vexed question that arises when forecasting 

such data is the accuracy of the forecasting model. In order to determine how accurate a forecasting 

model is, a parameter that plays a key role is the variance of the error terms of the time series 
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(Knight and Satchell, 2007). In fact, the square roots of the error terms’ variance  are the ones that 

provide a measure to assess the time series’ volatility over time. Furthermore, despite what its 

name suggests, GARCH models not only allow for the modeling of the data error variance but also 

the mean of the process (Dritsaki, 2018). In some papers this forecasting technique is called “the 

hybrid models ARMA-GARCH”; however, in this chapter and forward, for the sake of uniformity 

and in completion with several computer packages such as R and Phyton, this process will be 

called  GARCH. 

In this chapter, we aim to design a GARCH model to estimate the future price values of 

nickel in both the short run and long term, considering the definition of the long run as the 

estimation of forecast one year or more ahead and short term as forecasts looking out less than one 

year in the future (Bernard et al., 2006). The reason behind this categorization is to test the 

hypothesis that  as the forecast horizon increases, the efficiency of the different forecasting 

methods considered in this research changes, establishing different groups of time-series 

forecasting techniques that work better depending on the forecasting term (Rudenno, 2012). 

Furthermore, since the ARIMA-based forecasting results have already been determined, a 

comparison between the forecast using an ARIMA model and a GARCH model will be conducted. 

A series of error measures will be calculated to numerically assess the accuracy of both models as 

well as to determine which model represents a better fit for the nickel price data given. 

This chapter is structured as follows: Section 5.2. discuses the literature review regarding 

the use of GARCH models for forecasting purposes in different settings, such as oil prices, metal 

prices and electricity prices. Section 5.3 explains the basic concepts and frameworks of ARCH 

and GARCH models, as well as their differences. This section also addresses how the key 

parameters in the GARCH models can be found. Section 5.4 describes the GARCH model that 
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best fits the nickel price data given and uses such a model to estimate the future value of nickel 

prices. Section 5.4 also discusses the results of the case study and analyzes the efficiency of both 

the ARMA model and GARCH model forecasting processes. The main takeaways from the 

analysis are provided at the end of this section. 

 

5.2. Literature review 

 In 1982, Nobel prize winner Robert F. Engle introduced the ARCH models aimed to tackle 

economic time series with time-varying volatility (Engle, 2001). A few years later,  Bollerslev 

(1986) introduced the more general class of the ARCH process, commonly known as the GARCH 

process (Hyndman and Athanasopoulos, 2018). Before the introduction of both methods, there 

were no forecasting methods for the modeling the variance of the residuals, as most tended to focus 

on the estimation of the mean. The closest empirical method to the ARCH and GARCH models 

back then entailed the calculation of the standard deviation using a fixed amount of the latest 

observations of the time series (Engle, 2001). At that time, this type of estimation made a lot of 

sense due to the belief that most recent observations played a greater role in the determination of 

the variance of tomorrow’s residual and that the earliest observations’ coefficients were non-

significant in comparison to the latest’s, assigning a zero coefficient automatically to the variance 

of older past observations (Engle, 2001). Both the ARCH and GARCH processes shifted that 

constrain by allowing the weight of the variance of each of one of the residuals to be determined 

by the data instead (Engle, 2001).  

 Given the importance of the ARCH/GARCH models to the financial markets, most of the 

ARCH/GARCH-related research done, yet limited, has been conducted using price returns instead 

of the prices themselves. This finding follows the idea that the price returns, or returns of any 
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financial data for that matter, exhibit much more attractive statistical properties, especially when 

it comes to normalization and stationary properties (Mills, 2015). However, even among return 

indicators, there has been a strong debate as to which, namely the simple returns or the logarithm 

returns of a financial variable, is the better fit when it comes to dealing with financial data. There 

is a great bulk of finance-related papers making the case for logarithm returns over simple returns. 

The consensus is that financial data modelling would be better off when using logarithm returns 

due to their time-additivity and complexity properties (Hudson and Gregoriou, 2015). When 

dealing with returns, there is a widely-used term called compounding returns, which is the 

cumulative return of the series over time. The problem with compounding return is that, though 

returns themselves are normally distributed, their product is not (Hudson and Gregoriou, 2015). 

Therefore, the use of logarithms provides not only a normally-distributed foundation onto which 

financial data can be modelled but also a much easier architecture, since only the logarithm of the 

initial and last period variables are used in the compounding returns’ calculation. Given the 

unanimous accord towards the use of the log returns (of prices),  these values will be the input for 

the case study to be described lines below. 

The assumption under which the ARCH model was developed is that the variance of future 

returns is a function of the variance of the residuals of previous observations (Engle, 2001). The 

main difference between the ARCH  and GARCH models is the inclusion of previously squared 

volatilities (variances) in the calculation of the future returns' variance (Bauwens et al., 2012). 

 The body of literature on commodity price forecasting using GARCH processes is, to some 

extent, scarce. A handful of them uses gold prices, oil prices, and energy prices as case studies for 

GARCH-based forecasting. Many applications consider a hybrid method that includes the 

combination of ARMA and GARCH models so as to account for both the linear and non-linear 



57 
 

features most real-world time series exhibit. For example, Yaziz et al. (2013) considered a hybrid 

model ARIMA-GARCH to forecast daily gold prices. Using a sample of daily gold prices taken 

every five days from November 26th, 2005 and January 18th,  2006, they used a two-phase process 

that involves 1) the modeling of the linear data of the time series through the use of an ARIMA 

process, and 2) the modeling of the residuals of the first phase (or non-linear data) using a GARCH 

model. When comparing the hybrid model ARIMA-GARCH against the single forecasting models 

ARIMA and GARCH, they found, using MAE and MSE as error measures, that the hybrid model 

represents a potential better forecasting model in terms of accuracy. This finding, according to 

them, confirmed the research-based idea that the combination of different models aimed to tackle 

any time series’ different features might outperform the use of single forecasting models (Newbold 

and Granger, 1974) (Zhang, 2003). Dritsaki (2018) used the same approach, though this time the 

variable is not oil prices themselves, but rather the return of oil prices since the effectiveness of 

GARCH models have been proven and widely studied in the context of financial data such as the 

return of stock prices (Ruppert, 2011), let alone the almost unanimous consensus that they use of 

log returns provide a better statistical foundation in the context of normalization and stationary 

properties.  

In terms of the selection of the GARCH model for forecasting commodity prices, there is 

a large body of literature suggesting that, in fact, GARCH process does actually provide better 

performance over other parametric and non-parametric time series forecasting methods. For 

example, Hou and Suardi (2012) compared GARCH models and other non-parametric methods to 

both model and estimated the volatility of oil price return and found that a GARCH forecast for 

data volatility does yield superior performance. This finding was verified by Agnolucci (2009), 

whose research showed that GARCH models provide significant forecasts for the volatility of 



58 
 

crude oil futures prices. The research on the superiority of GARCH models over some other time-

series forecasting methods is not only limited to the volatility of oil price returns; the studies such 

as those of Wang and Wu (2012), which focused on the forecast energy market volatility, make a 

case for GARCH forecasting models, with the univariate GARCH process being outperformed by 

the multivariate GRACH model. Nonetheless, for the sake of simplicity and based on previous 

research done in the area of metal price forecasting, this chapter, and in general the whole thesis, 

will focus on univariate forecasting models, as the data selected is composed of one single variable 

— the mineral commodity price. 

 

5.3. The GARCH model approach 

For quite a long time, ARMA and ARIMA processes were the most applied models for 

financial forecasting. However, as more research was conducted in the quest for finding a 

forecasting model that can most reliably predict the future values of the series, linear models started 

losing momentum in favor of a more stylized model that could explain some of the series' features 

that, otherwise, might have been overlooked (Lama, 2015; Tully and Lucey, 2007). Properties such 

as volatility clustering — the tendency of large changes in the main (and unique) variable to be 

followed by other larges changes, forming a sort of cluster along with the series of persistent 

volatility (Engle, 2012) — cannot be captured by the tradition ARIMA models.  

Let 𝑃𝑡 be the price of a financial asset at time 𝑡, 𝑍𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1 the log return of 

the said price at time 𝑡, and ℎ𝑡 is the conditional variance. An ARIMA process will consider ℎ𝑡 to 

be constant over time (and, therefore, independent of 𝑡) (Bernard et al., 2006). Nonetheless, real-

world time series rarely show stationary behavior over time. Therefore, the foundation of ARCH 

and GARCH models aims to incorporate the effects of such properties into the model design. That 
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is, the volatility, measured by the conditional variance ℎ𝑡 of the series, will depend on the past 

values of 𝑍𝑡
2 

                                              ℎ𝑡 = 𝑎0 + ∑ 𝑎𝑖. 𝑍𝑡−𝑖
2𝑝

𝑖=1                                                     (5.1) 

Where 𝑍𝑡 =  √ℎ𝑡. 𝜀𝑡 with 𝜀𝑡 being independent and identically distributed as well as normally 

distributed with 𝑁(0,1). Also, 𝑝 is some integer and 𝑖 is an integer that can take on the values 1 to 

𝑝, 𝑎0 is a constant greater than zero (𝑎0 > 0), and the coefficients 𝑎𝑖 can be equal or greater than 

0 (𝑎𝑖 ≥ 0). The value of 𝑝 depends on the number of past observations that the models used in the 

calculation of the conditional variance (Bauwens et a., 2012).  

 The GARCH model, on the other hand, postulate a more comprehensive model by 

including past volatilities into equation 5.1. 

                                               ℎ𝑡 = 𝑎0 + ∑ 𝑎𝑖. 𝑍𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝑏𝑖. ℎ𝑡−1
𝑞
𝑖=1                                       (5.2) 

Where 𝑖 is an integer that can take on the values 0 to 𝑞, the constant 𝑎0 > 0, and the coefficients 

𝑎𝑖 ≥ 0, 𝑏𝑖 ≥ 0 

 

5.4. Case study: Nickel price forecasting 

The previously described dataset in Sections 3.2 and 4.4.2 was also used for this case study. 

The inflation was also adjusted using the CPI. 

Since the majority of research  using GARCH models for forecasting purposes has been 

conducted on financial time series and due to their time-additivity and normalization-related 

properties, it is vital to wok with the log returns of the original nickel prices (Bauwens et al., 2012; 
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Knight and Satchell, 2007). Let 𝑃𝑡 be the nickel price at time 𝑡 and 𝑍𝑡 be the log returns of the 

nickel prices at time 𝑡; then this value can be calculated using the following equation: 

                                                𝑍𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1                                                     (5.3) 

 

5.4.1. The best set of parameters (𝒎, 𝒔) 

 There are many procedures to determine the best set of parameters (𝑚, 𝑠) for the GARCH 

process in price forecasting, neither representing an absolute better approach over the other. In 

fact, the choice of the best set of parameters for the GARCH models has proved to be a difficult 

task and, therefore, the model GARCH (1,1) has long been the gold ‘standard’ when it comes to 

GARCH modelling of financial data due to its simplicity (Chatfield, 2010). One of the most 

recommended and widely used tools is the identification of both the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) plots of the series 𝑍𝑡 (log returns of the nickel 

prices) and their squares 𝑍𝑡
2. For instance, if 𝑍𝑡 appears to be white noise — the series do not 

show any autocorrelation (or it is close to zero) — shown by the lag spikes in the autocorrelation 

function plot (ACF) lying within the 95% bounds, and 𝑍𝑡
2 appears to be 𝐴𝑅(1), then an 𝐴𝑅𝐶𝐻(1) 

model for the variance is suggested (Engle, 2001). If the PACF of the 𝑍𝑡
2 suggests 𝐴𝑅(𝑚), then 

𝐴𝑅𝐶𝐻(𝑚) might work. GARCH models may be suggested by an 𝐴𝑅𝑀𝐴 type look to the ACF and 

PACF of 𝑍𝑡
2 (Tsay, 2012). In practice, this rule of thumb will not always work as correctly, and a 

little experimentation with various ARCH and GARCH structures might need to be tested. 

Another common methodology is the use of software to estimate the best set of parameters. 

Luckily, the software R allows us to rank a different set of GARCH parameters (𝑚, 𝑠) based on 

the values of the AIC. The procedure would be the following: 
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- The optimal set of ARMA orders would be based on the values of 𝑝 and 𝑞 for the ideal 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) for the time series, which were already determined in Chapter 4. These values would 

be combined with values (1,1) and (2,2), just in case the optimal values do not coincide with these 

values. 

- Usually, the orders of the GARCH model take on the values of 1 and 2 or any combination of 

these numbers.  

- Each combination of 𝐴𝑅𝑀𝐴(𝑝, 𝑞) and 𝐺𝐴𝑅𝐶𝐻(𝑚, 𝑠) should be tested and ranked according to 

its AIC. The ARMA-GARCH model with the lowest AIC should be picked.  

- The best set of parameters of 𝐴𝑅𝑀𝐴(𝑝, 𝑞) and 𝐺𝐴𝑅𝐶𝐻(𝑚, 𝑠) will be fitted to the time series.  

 From Chapter 4, we determined that the ideal order values for the AMRA model were 

(2,2). In order to determine the lowest AIC for ARMA-GARCH model the set of orders tested 

(𝑝, 𝑞) (𝑚, 𝑠) was the following: (1,1) (1,1), (1,1) (2,2), (2,2) (1,1), and (2,2) (2,2).  

Table 5.1. shows a summary of the AIC for a different set of parameters for the ARMA-

GARCH model. As can be seen from this table, the set of orders 𝐴𝑅𝑀𝐴(2,2) − 𝐺𝐴𝑅𝐶𝐻(1,1) 

provides the lowest AIC. Though these values coincide with what most literature suggests, it 

should not be granted that the best set of parameters for ARMA-GARCH would coincide with the 

best ARMA model for the time series. It is always good practice to analyze a different array of 

orders. These values will then be used to forecast the nickel prices 24 months ahead. The results 

from this forecast will be shown in the next subsection. 

 

 

 

 



62 
 

Table 5.1: AIC for a different set of parameters for ARMA-GARCH 

Model Parameters Akaike 

ARMA (1,1) 
17.063 

GARCH (1,1) 

ARMA (1,1) 
17.109 

GARCH (2,2) 

ARMA (2,2) 
17.037 

GARCH (1,1) 

ARMA (2,2) 
17.082 

GARCH (2,2) 

 

 

5.4.2. Future prices 

Using the optimal set of parameters, the nickel prices for the next 24 months starting 

January 2018 was forecasted.  Unlike the ARIMA process, the input variable for the GARCH 

model was the log of the return of nickel prices. Therefore, to calculate the nickel prices back, the 

reverse of equation 5.4 would be used.  

Let 𝑃𝑡 be the nickel price at time 𝑡 and 𝑍𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1 the log returns. If 𝑍𝑡+1 is the 

forecasting log return one unit of time ahead (same as time interval in between two consecutive 

observations of the time series), then the formula for converting the forecasting log return to the 

original price is  

 

                                                    𝑃𝑡+1 = 10𝑍𝑡+1+log 𝑃𝑡                                                   (5.4) 

 

Figure 5.1 shows the log-returns of the original time series as well as the forecasted log returns 

(𝑍𝑡+1) 24 months ahead of starting January 2018. These values were converted (back) to the 

original nickel prices using Equation 5.4. For example, for January 2018, the value of the nickel 

price is: 
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                        𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦−2018 = 10𝑍𝐽𝑎𝑛𝑢𝑎𝑟𝑦−2018+log 𝑃𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟−2017                                (5.5) 

 

Since the values of 𝑍𝑡+1 are already known for the next 24 months, the value of 𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦−2018 can 

be determined. This value is then used to calculate the nickel price for February 2018.  

                     𝑃𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦−2018 = 10𝑍𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦−2018+log 𝑃𝐽𝑎𝑛𝑢𝑎𝑟𝑦−2018                                  (5.6) 

 

Analogically, the rest of the values can be calculated following the same procedure.  

The results from such conversion are shown in Table 5.2. Table 5.2 summarizes the converted 

values of the forecasted log returns for the next 24 months from January 2018 to December 2019.  

 

 

          Figure 5.1: Forecasted log-returns 24 months ahead starting January 2018 
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Table 5.2: Summary of future values of Nickel prices using an GARCH model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Estimate ($/t) Date 
Estimate 

($/t) 
Date Estimate ($/t) 

Jan-18 12,542.894 Sep-18  11,567.80  May-19  11,365.03  

Feb-18 11,378.765 Oct-18  10,690.40  Jun-19  10,773.84  

Mar-18 12,634.961 Nov-18  9,880.60  Jul-19  10,801.73  

Apr-18 14,012.372 Dec-18  11,040.53  Aug-19  9,697.19  

May-18 12,307.016 Jan-19  13,830.08  Sep-19  9,420.43  

Jun-18 13,237.602 Feb-19  13,860.16  Oct-19  8,705.79  

Jul-18 12,392.029 Mar-19  14,758.49  Nov-19  8,262.94  

Aug-18 10,947.678 Apr-19  12,183.24  Dec-19  7,718.88  



65 
 

 

Chapter 6  
 

Forecasting Through Artificial Neural 

Networks (ANN) Models 
 

6.1. Introduction 

One of the most critical issues many mining companies face when evaluating a mining 

project or determining the financial liquidity of current operations is the price prediction of the 

mineral(s) they exploit or plan to. In fact, due to the sensibility of mineral prices to external market 

forces, its importance in the decision-making process in the mining industry is of major concern.  

Despite the drawbacks that time-series forecasting models such as ARIMA and GARCH 

have, mining companies and traders still rely on them for mineral price forecasting. Though these 

models help have a clearer idea of the future path of the mineral prices, recent research has proved 

that, in the short run, both ARIMA and GARCH forecasting models tend to be outperformed by 

current machine learning techniques (Labys, 2006) 

In the last decade, ANNs have been extensively studied as an alternative to popular linear 

and non-linear time series forecasting models. In fact, due to the networks’ non-linear modeling 

capability, it is believed that ANNs are able to better resemble the complex real world with a high 

degree of accuracy (Chen et al., 2003). 

The main idea behind an artificial neural network architecture is based on how the different 

networks of neurons in the human brain work when processing information. Their ability to work 
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parallelly and interconnected with the aim of delivering certain function(s) is what makes this 

particular method a strong forecasting technique (Zhang, 2003). 

In this research, an ANN model will be developed and trained to forecast the future prices 

of nickel in the short term. Their forecasts will be validated against not only the real or observed 

values but also the forecasts of other models, aiming to assess the quality of this forecasting model 

over the most common and popular time-series forecasting methods.  

 

6.2. The Artificial Neural Network (ANN) approach  

An ANN model can be thought to work the same way the intricate network of neurons in 

the human brain does when processing information. That is, neural networks allow to establish 

different complicated relationships across and among the set of values of any data. In fact, artificial 

neural networks are machine-learning forecasting techniques that allow rather complex non-linear 

relationships between the forecast(s) and its predictors. There is where their advantage over time-

series linear techniques lies (Zhang, 2003).  

The architecture of neural network resembles a network of neurons distributed in different 

layers; its architecture revolves around one single element, also called a single neuron, which is 

the base unit of a neural network. In the simplest design of an artificial neural network, also known 

as single layer perceptron, there are only two layers: the input layer, where the external 

information is received, and the output or forecast layer, where the problem solution is obtained 

(Panella et al., 2012). The neurons in the input layer are also known as inputs or predictors, 

whereas those in the output layer are also called outputs or forecasts. In this type of set-up a single 

neuron receives input and computes an output. Each input comes with an associated weight (wj), 

which is assigned on the basis of its relative importance to other inputs (Panella et al., 2012). In 
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the output layer, a weighted linear combination function is applied to transform the input(s) into a 

final output.  

The set-up from Figure 6.1 takes the input values 𝑋1, 𝑋2 and 𝑋3, and assigns them weights 

𝑤1, 𝑤2 and 𝑤3. These values along with the pre-established input 1 with weight 𝑏, also known as 

bias, are jointed together simulating a weighted linear combination. As can also be seen in Figure 

6.1., the only member in the linear combination of the inputs that does not depend on the input 

values themselves is the bias. This term is extremely important in the linear combination set-up 

since it provides every neuron with a trainable constant value (Panella et al., 2012).  

 

 

 

 

 

 

 

 

Figure 6.1. Architecture of a single neuron with three input neurons and a bias 
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double-layer neural network or single neuron works exactly as either a linear or multilinear linear 

regression depending on the number of inputs, the nonlinearity feature mentioned at the very 
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beginning of this chapter is not yet accomplished. It is, in fact, the hidden layer the one that 

accounts for the non-linear advantage of artificial neural networks and makes them a much more 

representative and accurate forecasting technique (Mombein and Yazdani-Chamzini, 2015).  

This multilayer network , also known as multilayer feed-forward network, has an 

interesting architecture in which each one of the neurons of the input layer acts as the inputs to the 

hidden layer and undergoes a weighted linear transformation (Kristjanpoller and Minutolo, 2015). 

These outputs become the inputs to the final layer, and the final output is the result of a non-linear 

modification of the hidden layer outputs. For instance, the input into a hidden neuron “j” are 

combined to give: 

                                           𝑍𝑗 = 𝑎𝑗 + ∑ 𝑤𝑗𝑌𝑗
𝑛
𝑖=1                                                              (6.1) 

Where 𝑎𝑗 is the bias factor and 𝑍𝑗 is the linear combination of all the input neurons (𝑌𝑗) and 

their respective weights (𝑤𝑗) to the hidden layer.  

The parameter 𝑎𝑗 and 𝑤𝑗 are actually learned from the data after a series of simulations 

undertook by the network using different starting points randomly selected (Tsay, 2012). That is, 

firstly, both values are taken randomly, and are constantly updated using the observed data values 

and the predicted ones, which are added to the observed data as soon as they are estimated. These 

coefficients are usually restricted to the so-called decay parameter, which is set to be equal to 0.1. 

The network is usually trained several times using different random starting points, and the results 

are averaged (Tsay, 2012). 
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In this multilayer network, unlike other networks such as the recurrent neural networks, the 

information moves only forward and there is no connection between the neurons of different 

layers. That is, once the input values from a layer, say the input layer, move forward to the next 

layer, they do not turn back to create any kind of cycle (Kristjanpoller and Minutolo, 2015). 

Figure 6.2. illustrates the design of a simple neural network with an intermediate or hidden 

layer. Each one of the input dots follows a path forward that always yields one last value.  

 

 

 

Figure 6.2. Architecture of a multilayer network with a hidden layer consisted of 3 hidden neurons, 4 

input neurons and an output layer 

The outputs of the hidden layer, now the inputs of the output layer, are transformed to a 

final result using a non-linear function called the activation function. This activation function is 

the sole responsible for providing the non-linearity feature to the model (Wongsathan and 

Seedadan, 2016). Given that real-world time series are non-linear, the activation function plays a 

crucial role in the setup. 

All activation functions, no matter what the formula they take, take a single input value and 

transforms it into a real number (Panella et al., 2012). There are several activation functions; the 

most common ones are: 
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- Sigmoid: this function takes a value and, via Equation 6.2, transforms it into a positive real 

number between 0 and 1. Figure 6.3 shows that the range for the sigmoid function is 

between 0 and 1, no matter what the value in the domain is.  

                                                         σ(x) = 1 / (1 + exp(−x))                                                     (6.2) 

 

 

Figure 6.3: Sigmoid function 

- Tanh: this function takes a value and, through Equation 6.3, transforms it into a real number 

ranging between -1 and 1, inclusive. Figure 6.4 shows that the tanh function can take a 

maximum value of 1 and a minimum value of -1 or any value in between that range.  

                                      tanh(x) = (exp(x) − exp(−x))/ (exp(x) + exp(−x))                                (6.3) 

 

Figure 6.4: Tanh function 
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- ReLU (Rectified Linear Unit): This function takes a value and compares it with zero (as 

can be seen from Figure 6.4), yielding the maximum between both numbers. That is, it 

replaces the negative values (or zero) with zero and the positive values with the same 

positive values. Figure 6.5 shows that the ReLU takes on zero for all negative values, 

whereas it resembles the identity function for positive input values.   

                                                             f(x) = max(0, x)                                                             (6.4) 

 

Figure 6.5: ReLU function 

 

6.3. Case study: Nickel price forecasting  

6.3.1. Artificial Neural Network (ANN) forecasting model 

 In the ANN architecture for time series, the past values or rather their lagged values are 

computed as inputs and the future value is the output (Khashei and Bijari, 2010). That is, if 𝑦𝑡 is 

the observation at time t, then 

                                              𝑦𝑡+1 = 𝑓(𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑛)                                                (6.5) 

y is the values of the forecasted value one unit of time ahead, be it a month, year, day, etc., and 

𝑛 indicates the number of past observations the network needs to conduct proper training and 
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subsequent re-trainings. In fact, the network follows the same training procedure described in the 

previous section and, once the first forecasted values is calculated, it is immediately added to the 

training patterns the network will use for the second-step-ahead estimated value (Khashei and 

Bijari, 2010). This process is iterative and continues for as long as number of time units ahead the 

networks is provided with. That is, if we follow the same example cited above, the forecasted 

values two-step ahead, three-step ahead, and so on will be: 

 

𝑦𝑡+2 = 𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, … , 𝑦𝑡−𝑛+1), 

𝑦𝑡+3 = 𝑓(𝑦𝑡+2, 𝑦𝑡+1, 𝑦𝑡, … , 𝑦𝑡−𝑛+2), 

𝑦𝑡+4 = 𝑓(𝑦𝑡+3, 𝑦𝑡+2, 𝑦𝑡+1, … , 𝑦𝑡−𝑛+3), 

. 

. 

. 

𝑦𝑡+𝑘 = 𝑓(𝑦𝑡+𝑘−1, 𝑦𝑡+𝑘−2, 𝑦𝑡+𝑘−3, … , 𝑦𝑡+1, 𝑦𝑡, … , 𝑦𝑡−𝑛+𝑘−1 ) 

 

The generalized formula that the neural network will follow is: 

                                    𝑌𝑡 = 𝑤0 + ∑ 𝑤𝑗 . 𝑔(𝑤0,𝑗 + ∑ 𝑤𝑖,𝑗. 𝑌𝑡−𝑖)
𝑞
𝑖=1

𝑞
𝑖=1 + 𝜀𝑡                                 (6.6) 

where 𝑌𝑡−𝑖 is the subset of the lag values of the time series to be used by the network, 𝑤𝑖,𝑗 are the 

arc weight coefficients feeding the hidden layer, 𝑔(𝑥) is the activation function, and 𝑤𝑗 are the 

coefficients of the hidden layer outputs aiming to feed the forecast layer.  
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Figure 6.6: Architecture of a multilayer feed-forward neural network with 5 neurons and 3 neurons in the 

input and hidden layers, respectably 

 For the purposes of this study, the sigmoid function will be used to transform the hidden 

layer outputs to the output layer. 

                                                                  𝑔(𝑥) =
1

1+𝑒−𝑥                                                            (6.7) 

Another way to look at neural networks and one that actually helps to understand what 

needs to be determined in order to estimate forecasts is parameter-based notation. Since an 

artificial neural network is equivalent to a non-linear autoregressive model for time series 

forecasting, its typical notation is NNAR(p, P, k) (Berlinger et al., 2015). The parameter p  indicates 

the number of lagged inputs (from the data set) that the neural network used to re-train itself, 

whereas k indicates the number of nodes in the hidden layer and P responds to the number of 

differences needed for the time series to achieve stationary. For instance, NNAR (9,1,5) would 

indicate a neural network that uses the last nine observations of the data for modelling.   
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 Although many different approaches exist in order to find the optimal architecture of an 

ANN, such as the pruning algorithm, polynomial time algorithm, the canonical decomposition 

techniques, etc., these methods are usually quite complex and difficult to implement (Zhang et al., 

1998). Furthermore, none of these methods can guarantee the optimal solution for all real 

forecasting problems. To date, there is no simple clear-cut method for the determination of these 

parameters; however, there are a couple of research-based methods that have been proven to be 

most effective across most forecasting literature.   

 For the purpose of this study, the software R will be used to avoid tricky and complex 

calculations; however, the yielded optimal parameters will be contrasted  against the rule of thumb 

laid out by Hyndman and Athanasopoulos (2018). Both authors proposed that the optimal number 

of lags for the network are the same optimal number of lags (according to the AIC) for a linear 

AR(𝑝) model. This value can be therefore obtained by inspecting the partial autocorrelation 

diagram of the time series.  

 

 

 

 

 

 

 

 

Figure 6.7: PACF of the time series for nickel prices.  
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Figure 6.7 shows the partial-autocorrelation function at different lags of the time series. 

After analyzing the partial autocorrelation correlogram of the time series, we can clearly see 

that the graph cuts off at lag 13, indicating that the optimal value of p for the neural network 

would be 13. 

Furthermore, Hyndman and Athanasopoulos (2018) ascertained that the default value of 𝑃 

is set to be 1 and the values of k can be calculated with the following formula: 

𝑘 = (𝑝 + 𝑃 + 1)/2  

(rounded down to the nearest integer) 

 The value of 𝑃 (equal to 1) actually coincides with what the Dickey-Fuller test (stationary 

test) yielded (Chapter 04). 

If we plug the value of 𝑝 into the formula to calculate k, we obtain (rounding down to 

the nearest integer): 

𝑘 = (13 + 1 + 1)/2 

𝑘 = 7 

 Therefore, the optimal set of parameters for the neural network would be (13,1,7). 

In R (software), the function 𝑛𝑛𝑒𝑡𝑎𝑟() helps determine the optimal set of parameters. 

Coincidentally, the results for the set of parameters of the networks is the same as that determined 

by the rule of thumb stated above.  
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6.3.2. Future prices 

As previously stated, the optimal set of parameters for the nickel price time series is 

(13,1,7). Nickel prices for the next 24 months will be forecasted. However, in order to develop a 

more comprehensive knowledge of the future values of nickel price, a series of 1,000 simulations 

will be performed. That way, the distribution of the future path will be better understood and more 

defined. The overall distribution of the forecasted nickel price will be the average of the set of 

simulations.  

This simulation process also helps determine the extreme future sample paths the 

forecasted nickel prices might take, establishing what is known as prediction intervals. These 

intervals describe the range of the set of paths the future nickel prices might fall into.  

In Figure 6.8, it can be seen that the simulation of eight possible sample paths (out of the 

1,000 simulations performed) for the nickel price forecasts for the next 24 months. These 

simulations were randomly selected just to show how their path behaves over time. Clearly, it can 

also be seen that ANNs are able to model cyclicity that the ARIMA model in Chapter 4 was unable 

to. It can also capture the asymmetry that models such as ARIMA (Chapter 4) and GARCH 

(Chapter 5) failed to. 

Figure 6.9, on the other hand, shows the average of the 1,000 simulations performed.  

Although the software R allows you to conduct as many simulations as wanted to train the neural 

network, Hyndman and Athanasopoulos (2018) stated that running simulations a few hundred or 

thousand times is enough to have a clear understanding of what the future path of the forecasted 

values will be.  In fact, carrying out more simulations might only slow down the calculation process 

and provide no significant changes.  This remark can be clearly seen in Figure 6.10. 
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 Figure 6.8: Simulations of the future sample paths for forecasted nickel prices for the next 24 months 
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Figure 6.9: Average of the 1000 simulations for forecasted nickel prices for the next 24 months (green line).

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Aug-76 Feb-82 Aug-87 Jan-93 Jul-98 Jan-04 Jul-09 Dec-14 Jun-20 Dec-25

P
ri

ce
 (

U
SD

/t
n

)



79 
 

Figure 6.10: Average nickel price future paths simulated iteratively (100, 500, 900 & 1,000 simulations)  

 

Figure 6.10 shows that there is almost no difference between the future path for the forecasted 

values ran 900 and 1,000 times. That is why the chosen threshold was 1,000 simulations for the 

sake of accuracy and speed.  

Table 6.1. provides the values the forecasted nickel prices using Artificial Neural Networks (ANN) 

training from January 2018 and December 2019.  
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Table 6.1: Summary of future values of Nickel prices using an ANN model 

 

 

 

 

 

 

 

 

 

 

Figure 6.11, in turn, provides a picture of what the most likely future paths for the forecasting of 

nickel prices in the next 2 years will look like.  It shows the two ‘extreme’ values  the simulations 

(for the forecasted nickel price) can take as well as the average of the values of the 1,000 

simulations. The other simulations lie within those two ‘extremes.’

Date 
Estimate 

(USD/tn) 
Date 

Estimate 

(USD/tn) 
Date 

Estimate 

(USD/tn) 

Jan-18  11,453.64  Sep-18  12,787.38  May-19 10,442.38  

Feb-18  11,839.57  Oct-18  12,370.79  Jun-19 10,122.14  

Mar-18  11,785.11  Nov-18  12,366.88  Jul-19  9,780.74  

Apr-18  12,505.11  Dec-18  12,024.75  Aug-19  9,393.29  

May-18  12,083.58  Jan-19  11,703.19  Sep-19  9,078.55  

Jun-18  12,554.33  Feb-19  11,519.98  Oct-19  8,729.99  

Jul-18  12,685.72  Mar-19  11,046.09  Nov-19  8,423.09  

Aug-18  12,544.30  Apr-19  10,840.76  Dec-19  8,135.52  
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 Figure 6.11: Prediction intervals (maximum and minimum) for forecasted nickel prices for the next 24 months 
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Chapter 7  
 

Discussion and Conclusions 
 

7.1. Performance assessment of the different models 

The observed or real monthly nickel prices from January 2018 to December 2019 are used 

as reference benchmarks to assess the performance of a) the ARIMA model over time, b) GARCH 

forecasting model over the ARIMA process, and c) the ANN model in comparison to the ARIMA 

and GARCH models.  In order to grasp how well those models behave over one another over time, 

a comparison at different points in time will be carried out. 

The criteria to analyze the performance of the forecasting models will be the use of 

different performance measures: RMSE, MAE, and MAPE. 

Table 7.1 summarizes all the error measures for different forecasting timeframes for the 

ARIMA, GARCH, and ANN processes. The decision to include values of performance measures 

at different time periods was based on the idea that both the ARIMA, GARCH, and ANN 

forecasting models are more suitable for short-term forecasting. That is, it is possible the accuracy 

of those models changes over time (either increases or decreases or both) and that the relationship 

between the two might change as well, implying that at point of time the accuracy of a model may 

be outperformed by the other that used to be a more accurate model. 

Figure 7.1 through 7.3  shows a graphical comparison between forecasts 24 months ahead 

using ARIMA, GARCH, and ANN processes. 
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Figures 7.1, 7.2, and 7.3 show the trend of the error measures MAE, MAPE, and RMSE 

over different time frames (6, 12, 18, and 24 months). Both lines in each one of the graphs will be 

compared against an imaginary line located right on the horizontal axis (y = 0). That is, the more 

the line trend deviates from the horizontal axis, the less accurate the forecasting model is. This 

procedure will help determine an empirical cut-off at which the relationship between different 

forecasting models changes. 

Figure 7.4 shows that the ARIMA model predicts an overall increase of the nickel price for 

the next 24 months, whereas the GARCH model estimates a dramatic decline of the price after 

month 15 (March 2019). The forecasts using the ANN model, on the other hand, based on a quick 

glance, do seem to be able to resemble the overall behavior of the real prices’ time series (both in 

terms of the overall trend and fluctuations). 

 

7.1.1. Performance assessment of the ARIMA model 

As can be seen in Figure 7.4, the predicted values using an ARIMA model resembles, for 

the most part, the overall trend of the real nickel price values. Nonetheless, the ARIMA-based 

forecast is unable to predict the upward and downward fluctuations the real values show.   

The forecast also shows the linearity problem many researchers point out regarding 

ARIMA forecasting. The forecasted values go up across the timeframe given, providing not-so-

real nickel price values. However, if a careful look were taken at the predicted values after month 

18, it can be shown that, due to ARIMA models’ linearity, the model is able to estimate, though 

not precisely and only in terms of the trend, the boom in prices due to the Indonesian ban on nickel 

exports.  



84 
 

From Figure 7.1, 7.2, and 7.3, it can be seen that in months 6 and 12 both the error measure 

lines for the ARIMA models deviate more from the horizontal axis. Due to the linearity feature of 

the ARIMA models, it is expected that during the first 6 to 12 months, the performance of the 

model is somewhat larger, especially if the time series have shown signs of extreme volatility (ups 

and downs). This seems to be the case for the ARIMA model presented in this thesis. Over time, 

and due to the volatility of mineral commodity prices, the model’s forecasting accuracy tends to 

stabilize since many of the larger forecasting values tend to be offset by the drops in mineral 

commodity prices as part of their natural price cycle. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Performance of ARIMA, GARCH and ANN forecasting models over time measured via 

RMSE. Price of nickel (USD/tn) vs time (months) 
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Figure 7.2: Performance of ARIMA, GARCH and ANN forecasting models over time  measured via 

MAE. Price of nickel (USD/tn) vs time (months) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Performance of ARIMA, GARCH and ANN forecasting models over time  measured via 

MAPE. Price of nickel (USD/tn) vs time (months) 
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These figures also show that, overall, forecasts using ARIMA models yield better results 

over the whole 24-month horizon, when compared to the other models. However, when the trend 

of each of the error measures is compared at different times, the results vary: the cut-off for optimal 

precision for the ARIMA model seems to be 18 months. Nonetheless, this value should be taken 

with a grain of salt and only be understood in the context of what it represents in relation to the 

other models' cut-off. The accuracy of ARIMA-based forecasting is bell-shaped. From months 6 

to 18, the accuracy of the forecasts using ARIMA models increases (comes close to the horizontal 

axis) and then, decreases between forecasting month 18 and month 24, suggesting that ARIMA 

forecasting models work best in the short run (as explained before, the definition of short run can 

seem to be broad; nonetheless this thesis is considering it as any value that is less than 24 months). 

Drawing a quantitative answer of what constitutes an optimal cut-off would be subjective as many 

studies might need to be conducted in order to determine the said threshold. 

 

Table 7.1: Error measures for different models and timeframes (N, in months) 

 

 

 

 

 

 

 

 

 

  

Model ARIMA GARCH ANNs 

N (months) 6 6 6 

RMSE 2,720.85 1,490.51 1,890.07 

MAE 2,688.89 1,216.41 1,840.36 

MAPE 0.1928 0.1316 0.0862 

N (months) 12 12 12 

RMSE 2,141.60 1,493.91 1,477.04 

MAE 1,918.19 1,274.63 1,305.59 

MAPE 0.1429 0.0976 0.0958 

N (months) 18 18 18 

RMSE 1,809.29 1,464.87 1,509.60 

MAE 1,490.03 1,273.37 1,351.13 

MAPE 0.1130 0.1036 0.0985 

N (months) 24 24 24 

RMSE 2,029.68 3,566.34 3,630.33 

MAE 1,639.49 2,554.71 2,657.44 

MAPE 0.1163 0.1824 0.1756 
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Based on Table 7.1, it can be seen that for almost all the scenarios (different timeframes) 

the accuracy of the forecasts using the ARIMA model is the worse among those of the other two 

forecasting models. It is only when considering a time span of 2 years for the forecasted values 

that the accuracy of the model improves. This behavior can be fairly explained by the statements 

made in the paragraphs above.  

 

7.1.2. Performance assessment of the GARCH model 

As can be seen from Figure 7.4, the predicted values using a GARCH model resemble the 

overall trend of the real nickel price values for the first fifteen months (January 2018 to March 

2019). Nonetheless, the forecasts using the GARCH process are unable to replicate the extreme 

increase jump the real values show from June 2019 to September 2019. This behavior contrasts 

with the future path of the ARIMA-based forecast, which surprisingly is able to predict, though 

not precisely, the trend the nickel prices' path takes from May 2019 forward. Although the GARCH 

forecasting behavior might seem odd since the GARCH process models the mean (ARMA) and 

volatility of the time series, the downward trend can be attributed to the high volatility of the 

forecasted series show.   

From Figures 7.1 to 7.3, it can be seen that, unlike the ARIMA forecasting technique, the 

shape of the accuracy curve of the GRACH model is not definitive. What is clear, however, is that 

the accuracy of this model does tend to be quite stable up until month 18. This finding is clearly 

stated in Table 7.1. In that we can see that the forecasts using this model tend to have, in almost 

all case, the second lowest error measures, losing only to the ANN forecasting method and 

indicating that the GARCH forecasting technique represents a much better approach than the 

ARIMA model.  
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In addition, the accuracy of GARCH forecasting models seems to decrease, though slightly 

until month 18, as time passes. This outcome could indicate and confirm that the GARCH 

forecasting technique, just like the ARIMA model, works best in the short run and looses its 

efficiency when the forecasting time span is too wide.  

If the comparison to the ARIMA forecasting method were to be made for the complete 

forecasting horizon (24 months), the accuracy of the GARCH model would pale in comparison to 

that of the linear model. However, this finding should be considered carefully since the surge in 

prices that the ARIMA forecasting method is able to suggest can be attributed to a unique external 

factor that is not reflected in the past behavior of the time series.  

 It can be argued that, even though the GARCH forecasting method failed to precisely 

portrait the trend of the time series after month 18, the sudden and dramatic decline in the 

forecasted prices from May 2019 on might seem like a bit of an exaggeration . Nevertheless, in 

this special case, this finding seems to make sense somehow (from a quantitative perspective) since 

the time series of nickel prices exhibit great periods of high volatility, a factor that is taken into 

account in the calculation of the forecasted values using this model.  

 

7.1.3. Performance assessment of the ANN model 

As can be seen from Figure 7.4, the ANN model is the one that seems to yield better results 

in the nickel price forecasting. Both the trend and fluctuations of the time series of the real nickel 

prices seem to be accurately estimated by this method.  

Table 7.1 confirms this finding. For all the forecasting timeframes up until 18 months, the error 

measures of the forecasting method is one of the lowest among all, only rivalling the ones from 

the GARCH model. For instance, based on Figures 7.1 through 7.3, if the RMSE and the MAPE 
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were to be chosen as the determinants of which model is most suitable, the ANN one will win by 

a slight margin over the GARCH method. Conversely, the opposite would happen when 

considering the MAE as the main error measure. However, when the error measures for the 24-

month forecast are compared, the results vary: among the three forecasting models this thesis 

reviewed and analyzed, the artificial neural network forecasting model is no longer the most 

suitable one, whereas the ARIMA forecasting model is the most appropriate. This occurrence 

might be attributed to the fact that ANNs are better suitable for shorter forecasting timeframes 

(than those of the other two models). In fact, as the ANN forecast moves forward, more and more 

past observations are dropped, relying instead on forecast to predict further future values. 

Therefore, the longer the forecasting horizon, the less reliable and accurate the ANN model.  

The results explained above (sections 7.1.1 to 7.1.3) seem to agree with some of the 

findings in the body of literature in mineral commodity price forecasting. That is, forecasting 

methods, be they ARIMA, GARCH, or ANN, tend to be more accurate in the short run (somewhat 

between a few months and up to two years). This can be seen in Figures 7.1, 7.2 and 7.3, being the 

ARIMA-based forecast somewhat of an outlier due to external factors affecting the price in 2019 

(Indonesian ban). 

Furthermore, as expected, the results show that the GARCH forecasting model does 

represent an improvement over the traditional linear forecasting models such as ARIMA.  
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Figure 7.4: Summary of different forecasting models for nickel price. The timeframe of the forecasts is 24 months 
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7.2. Conclusions and Future Work 

 Mineral commodity prices have been the most important factor to consider when assessing 

the economic viability of a mining project or any strategic decision for that matter. And yet, the 

estimation of future mineral commodity prices remains ever challenging and a matter of simplicity 

and accuracy. In fact, conventional forecasting methods, though as simple as they can get, have 

been proven not to be able to resemble the behaviour of real-world time series. They do come in 

handy when a raw estimation of future prices is needed; however, their forecasted values should 

be taken lightly and be used just to ascertain the price’s trend as opposed to the amount it will 

increase or decrease by.  

 This thesis not only assessed the accuracy of two of the most common linear and non-linear 

forecasting methods, ARIMA and  GARCH, respectively, but also outlined the use of a machine 

learning method that has proven to model accurately the hybrid patterns (linear and non-linear) 

that real-world time series exhibit, i.e., the ANN forecasting technique. 

 This work showed that the most widely used forecasting method, i.e., ARIMA, though easy 

to use, falls short in terms of the accuracy when estimating future values to other more 

sophisticated forecasting models, be they the GARCH or the ANN processes. This inability to 

portrait the behaviour of the real future prices of a mineral commodity can be attributed to the 

constrain that working with a linear model imposes to the forecasted values. 

 The GARCH forecasting technique, on the other hand, despite being built on the same idea 

of using past observations to determine future prices, exhibits a much more accurate representation 

of the real nickel prices. Due to the alleviation of the linear constraints of the ARIMA model, the 

GARCH method was able to predict the overall trend, cyclicality, and fluctuations of the time 

series representing the nickel prices fairly well.   
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 Nowadays, computer science has provided yet another tool in the wide range of forecasting 

techniques. They have been proven to be quite capable of identifying the hidden patterns (both 

linear and non-linear) that other traditional forecasting methods fail to. Through constant training 

of the model over and over for a number of times, machine learning techniques are able to represent 

the behaviour of real-world time series more accurately.  

The ANN forecasting method, in this thesis, has shown a remarkable improvement over both 

the ARIMA and the GARCH techniques in terms of accuracy over time. Nonetheless, it seems that 

the ANN models tend to work better when the span of the forecast is shorter and up to 18 months 

since their accuracy starts decreasing past this threshold. In fact, this occurrence makes sense due 

to the fact that as part of the training of the ANN model, lesser past observations are considered in 

the training of the next value. 

The work done in this thesis has also revealed what was mentioned lines above. Overall, all 

the forecasting methods explained in Chapter 4 through 6 show better performance at predicted 

mineral commodity prices in the short run. The time span for the forecast is still up for debate; 

however, it can range from a few months to a year (or a year and a half). Indeed, the performance 

in the error measures for all the forecasting techniques tends to deviate a lot more past the threshold 

(only for this case study) of 18 months, indicating that long-term forecasting using said techniques 

might lead to wrong interpretations.  

Future work on this topic could involve the integration of the ARIMA model into the ANN 

framework, creating a hybrid model. This setup would require ‘separating’ the linear and non-

linear components of the time series, allowing each one of the components to be approached by 

the correct technique (Zhang, 2003). That is, for the time series originated from a linear process 

the ARIMA technique could be used; whereas for that generated from a non-linear  process, the 
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ANN framework should be applied. This methodology should yield a forecasting accuracy greater 

than those obtained using each one of the methods alone, as per it is suggested by the literature.   

Other famous machine learning methods used in the forecasting literature are the Support 

Vector Machines (SVM) and Fuzzy Systems (FS). Based on experience minimization and 

statistical learning theory, the SVM technique seems to offer better both learning capacity & 

performance and generalization in comparison to traditional forecasting models; however, it is 

limited to small sample size and might not be able to yield accurate results when working with 

large data sets (Zhang et al., 2015). The FS method, on the other hand, is not able to learn and only 

provides approximate value(s) rather than precise one; nonetheless, its ability to work with 

incomplete date makes it a popular forecasting tool (Tapia Cortez, 2018).  Both methods have also 

been combined with other traditional models in order to improve the accuracy of the forecasts. 

Methods such as SVM- GARCH (Zhang et al., 2015), ANNs integrated with FS (also called 

ANFIS) (Alameer at al., 2019), ANN-GFS (ANNs with Generic Fuzzy Systems, a category of FS) 

(Hadavandi et al, 2010; Guan at al., 2018; Barros and Medeiros, 2017) have been extensively used 

in the forecasting of electricity spot price as well as oil prices. These forecasting models might 

also be explored as apart of the future work.  

Besides machine learning techniques, another method that has gathered a lot of attention from 

researchers because of its ability to deal with the complexities of dynamic systems is Chaos theory 

(CT). In fact, CT offers another alternative to the ever-challenging forecasting of real-world non-

linear time series. In fact, CT ascertains that the chaotic behaviour of real-world time series 

produced from non-linear processes does actually follow a regular structure. This apparent 

randomness can be ‘treated’ via different methods to detect the hidden patterns that govern the 
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dynamics of the time series, allowing the observation of such properties to be the foundation of 

the estimation of future values (Picano et. al., 2019).  

Ultimately, the forecasting of mineral commodity prices would remain an open-ended question 

and a constant process. Many factors, including but not limited to the availability of data, the 

forecasting accuracy we want to achieve, the time needed to conduct a thorough analysis and the 

forecasting time span (Chamber et. al., 1971), must be weighed in order to fully ascertain what the 

best forecasting technique is.  
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