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ABSTRACT

In this thesis, we give a survey of results in conformal geometry that give
rise to conformal invariants, including zero and negative eigenvalues of confor-
mally covariant operators; nodal sets of eigenfunctions in the kernel of those
operators; conformally invariant maps into projective space; and finally, con-
formal invariants arising from the component functions of the Weyl tensor. We
also discuss the case of products of Riemann surfaces, and explore the connec-

tions to spectral theory of the hyperbolic Laplacian on Riemann surfaces.
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ABREGE

Dans cette these, nous donnons une revue des résultats en géométrie con-
forme qui définissent les invariants conformes, y compris les valeurs propres
nulles et négatives des opérateurs conformément covariants; les ensembles
nodaux des fonctions propres dans le noyau de ces opérateurs; applications
invariantes conformément covariants a l’espace projectif; et, finalement, les
invariants conformes donnés par des composantes du tenseur de Weyl. Nous
discutons également le cas des produits des surfaces de Riemann et explorons
les connexions a la théorie spectrale du Laplacien hyperbolique sur les surfaces

de Riemann.
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CHAPTER 1
Introduction

The central idea of conformal geometry is to change metrics while preserv-
ing angles. Under these types of changes, some operators—known as confor-
mally covariant operators—transform in specific ways. These operators, and
the conformal invariants they give rise to, form the theme of this thesis.

Chapters 2 and 3 serve as a gradual progression to Chapter 4, whose pri-
mary focus aligns with the theme of this thesis. Chapter 2 starts with a subsec-
tion devoted to introducing the fundamental ideas of conformal geometry—Iike
how, under a conformal change of a Riemannian metric, angles are preserved;
important ideas like conformal classes and conformal transformations are also
introduced. Then, after a few more subsections of background material, the
Uniformization Theorem is discussed. While the theorem is not proved in this
thesis, its equivalence with the statement that every Riemann surface admits,
in its conformal class, a complete metric of constant curvature, is proven.
This equivalent statement serves as a sort of precursor to the Yamabe prob-
lem, which is discussed in Chapter 3. The last two sections of the chapter
serve as asides; one is devoted to how the Ricci flow on a 2-dimensional closed
Riemmanian manifold can be used to take one from the given metric to a con-
formally equivalent metric that is of constant curvature; the other discusses
how one can determine what the universal cover of a Riemann surface is.

In Chapter 3, we discuss the generalization of the Uniformization Theorem:
the Yamabe problem, which asks if, for a compact Riemannian manifold of

dimension n > 3, there is a metric, conformal to the starting metric, that



has constant scalar curvature. The answer to the Yamabe problem is yes,
though we only provide a rough outline of the proof, with some parts of the
proof emphasized more than others. Apart from the useful statement that the
Yamabe problem provides, it also serves to introduce the conformal Laplacian,
which paves the way for the next chapter.

In Chapter 4, we clearly define conformally covariant operators and provide
a few examples of such operators—one of which is the conformal Laplacian
(Yamabe operator).

In Chapter 5, we discuss some of the conformal invariants that can be ob-
tained from conformally covariant operators; the nodal sets and nodal domains
of an eigenfunction in the kernel, maps into projective space (obtained by us-
ing eigenfunctions in the kernel as projective coordinates), and the number of
negative eigenvalues are amongst the invariants discussed. The chapter closes
with a short section on spaces of conformal structures and a theorem which
states that for a generic smooth metric on a closed n-dimensional manifold,
zero is not an eigenvalue of the conformal Laplacian.

In Chapter 6, we explore the smallest number of negative eigenvalues of
the conformal Laplacian on a product of two or more Riemann surfaces. The
new results in this chapter are the joint effort of the author and Professor
Dmitry Jakobson, where the ideas are largely due to Professor Jakobson and
the computations are mostly due to the author. The proof of Proposition
6.2.1 in this chapter was communicated by Professor C. LeBrun; I would also
like to thank Professor V. Apostolov for useful and stimulating conversations

regarding these results. The results in this chapter are a work in progress; see

Y],



Over the next three chapters, we discuss the Weyl tensor. This discussion
is largely inspired by how the simple transformation law for the Weyl ten-
sor is similar to the transformation law for eigenfunctions in the kernel of a
conformally covariant operator.

In Chapter 7, we survey basic results of the Weyl tensor. In particular,
we show how the Weyl tensor is a term in the decomposition of the (0,4)-
Riemann curvature tensor, and how it transforms under a conformal change
of the metric.

In Chapter 8, the survey on results of the Weyl tensor continues but now
specializes to two types of metrics on Lie groups: left-invariant metrics and bi-
invariant metrics. A left-invariant metric allows the components of the Weyl
tensor to be written in terms of the Lie algebra’s structure constants, while a
bi-invariant metric allows the Weyl tensor to be written in a relatively simple
form.

In Chapter 9, we consider a product of two surfaces, where the metric on
one surface is multiplied by a conformal factor, and then compute the ratios
of the components of the Weyl tensor. We then discuss the behaviour of these
ratios as the conformal factor degenerates at a point. The computations in this
chapter are due to the author, while the ideas that inspired these computations
are due to Professor Dmitry Jakobson.

In Chapter 10, we conclude the thesis and provide directions for further

research in the form of several conjectures.



CHAPTER 2
The Uniformization Problem

The primary goal of this chapter is to prove that the Uniformization The-
orem is equivalent to the statement that every Riemann surfaces admits a
complete metric of constant curvature in its conformal class. Attempting to
generalize this latter statement brings one to the Yamabe problem, which is

the subject of Chapter 3.

2.1 Background
2.1.1 Conformal transformations
In this subsection, we quickly introduce a few important concepts from

conformal geometry. To do this, we use the introductions of [YS], [YO], and

[INSS].

Consider an n-dimensional, C'* manifold M equipped with a Riemannian
metric g. Consider two arbitrary, nonzero, tangent vectors from the tangent
space of some point p € M; that is, z,y € T,(M). It is well-known that the

angle 6 between x and y is uniquely given through

<x>y>9
mg‘y’g’

cosf =

where |z|, = (z, 2} = g,(z, 2)"/? (sec [Lec2)).
Now, suppose ¢ is another Riemannian metric on M. If, at each point of

the manifold, the angle between any pair of tangent vectors with respect to g



and g is equal, then the two metrics are said to be conformally equivalent (or
conformally related or conformal to each other).

Consider the case where we start with (M, g) and we multiply ¢g by a
positive function u that is defined on M. Then the angle between two tangent
vectors with respect to the metric ug is uniquely given by

<:L'7y>ug . U(p)(il),y) _ (as,y)g

cosf = = g = )
Zluglylug  (u(®)Y2|2])(u®)?yly)  |zlglylg

So, the multiplication of g by a positive function u defined on M has not
changed the angle between the two tangent vectors, meaning that the metric
defined as ¢ := ug is conformal to g.

Expanding upon this, we can take any function f € C°°(M) and define a
new metric § := e/g so that g is conformal to g. Changing ¢ in this manner,
to obtain g, is referred to as a conformal change of the metric, and the func-
tion e/(® is called the conformal factor. In fact, the necessary and sufficient
condition for two metrics ¢ and g of M to be conformally equivalent is for

there to exist a function f such that § = e/g.

Definition 2.1.1. For a Riemannian metric g on a manifold M, its conformal

class [g] is the set of metrics {efg : f € C>®(M)}.

Definition 2.1.2. Let (M, g) and (M’, ¢’) be two Riemannian manifolds and
U : M — M’ be a diffeomorphism. Then the pullback § := ¥*¢ is a
Riemannian metric on M. If g is conformally equivalent to g, then the map

VU is called a conformal transformation (or, a conformal map).

Remark 2.1.3. In [Lee2], an isometry is defined as a diffeomorphism ¥ between

two Riemannian manifolds (M, g) and (M',¢') such that ¢ = W*¢'. Clearly



then, an isometry preserves angles and, by the above definition, it may be

thought of as a conformal transformation.

2.1.2 Riemann surfaces
For this subsection we shall follow [For] (chapter 1, section 1) and [FK]

(chapter 1, section 1).

Definition 2.1.4. Let M be a 2-dimensional manifold. A complex chart on
M is a homeomorphism ¢ : U — V', where U C M is open and V C C is
open. Two complex charts ¢;, ; are said to be holomorphically compatible if
the map

o0t oi(UiNU;) — @;(U; N U)

is biholomorphic (holomorphic, bijective, and its inverse is also holomorphic).

Remark 2.1.5. A complex chart is also known as a local uniformizing variable;
however, when we use this latter term, it shall be understood in the following
sense: for a Riemann surface M, a local uniformizing variable at a point p € M
is a homeomorphism z, : D, — U,, where D, C C is open and U, is a

neighbourhood of p.

Definition 2.1.6. A complez atlas on M is a collection of charts A = {y; :
Ui — V; . i € I} such that the charts are all holomorphically compatible
and M is covered by them, that is, | J;.; U; = M. Two complex atlases A and
A’ are said to be analytically equivalent if every chart of A is holomorphically

compatible with every chart of A’.

Definition 2.1.7. A complex structure on a 2-dimensional manifold M is an

equivalence class of analytically equivalent atlases on M.



Definition 2.1.8. A Riemann surface is a pair (M,X), where M is a 2-

dimensional connected manifold and ¥ is a complex structure on M.

Alternatively, in the introduction of [MT], we see that a Riemann surface

may also be defined in the following way:

Definition 2.1.9. A Riemann surface is a pair (M, [g]), where M is a 2-

dimensional, connected, oriented, C'*° manifold, and [g] is a conformal class.

It is further noted in [MT] that these definitions are made equivalent via a
well-known bijection between the set of conformal classes on M and the set of
complex structures on M—it should be stressed that this bijection only exists
in the case where M is 2-dimensional. As for the question of orientability in
Definition 2.1.8, we look to [Mi] where it is noted that the complex charts
induce a well-defined local orientation at each point of the Riemann surface;
this, in turn, induces an orientation for the entire Riemann surface.

As one might expect from the equivalence of the above two definitions,
we can (and will, in the coming sections) pass between Riemann surfaces and

connected, oriented, 2-dimensional Riemannian manifolds.

Definition 2.1.10. Let M and N be Riemann surfaces. A continuous map-
ping f : M — N is said to be holomorphic if for every pair of charts

w; Ui — Vion M and ¢, : U; — V; on N, with f(U;) C U;, the mapping
pjofopit:Vi—V,
is holomorphic in the usual sense.

In the context of the above definition, a mapping f : M — N is said

to be biholomorphic (or, conformal) if it is bijective and both f and f~! are



holomorphic. Two Riemann surfaces M and N are said to be biholomorphically
equivalent (or, conformally equivalent) if such a mapping exists between them.
Note that the automorphism group Aut(M) of a Riemann surface M is the

group whose elements are conformal mappings from M to itself.

2.1.3 Covering spaces
For this subsection, we utilize [Mun| (chapter 9, section 53; and chapter

13, sections 80 and 81), and [Ahl] (chapter 9, section 5).

Definition 2.1.11. Let X and X be topological spaces. Let 7 : X — X
be a continuous surjective map. An open set U of X is evenly covered by 7 if
7~ }(U) can be written as a union of disjoint open sets V; from X such that
for each j, the restriction of m to V} is a homeomorphism of V; onto U.

If every point of X has a neighbourhood that is evenly covered by 7, then

the map 7 is called a covering map, and X is called a covering space of X.

Definition 2.1.12. Let 7 : X — X be a covering map. If X is simply

connected, then X is said to be a universal covering space.

Definition 2.1.13. Let 7 : X — X be a covering map. A deck transfor-
mation (or, covering transformation) is a homeomorphism h : X — X such

that m = 7o h.
From [Ahl], we have the following theorem.

Theorem 2.1.14. Apart from the identity, a deck transformation has no fized

points.



The set of all deck transformations for a covering space X forms a group

G(X) under composition.

Definition 2.1.15. Let 7: X — X be a covering map. The covering space
X is said to be reqular (or, normal) if for each = € X and each pair of points

z,7' € {m!(x)}, there is a deck transformation taking 7 to Z’.
We refer to [Mun] (Theorem 81.6) for the proof of the following theorem.

Theorem 2.1.16. Let 7: X — X be a covering map and let X be reqular.

Then the quotient X /G(X) is homeomorphic to X .

Note that when we eventually use Theorem 2.1.16, we will take X to be

the universal cover of X, since every universal cover is regular.

2.1.4 Constant curvature

For this subsection, we follow [Bo| (chapter 8) and [Lee2| (chapters 7 and
8), and focus primarily on sectional curvature. It should be noted that Ricci
curvature and scalar curvature are not defined here but are instead defined in

Section 2.3, where they are particularly relevant.

Definition 2.1.17. Let (M, g) be a Riemannian manifold and let X(M) de-
note the set of C*° vector fields on M. The (1,3)-Riemann curvature tensor is

defined by

R:X(M)xX(M) x X(M) — X(M),

R(X,Y)Z = VxVyZ — VyVxZ — Vixy Z.

In local coordinates, its components are denoted as Rijkl .



Remark 2.1.18. The map R is multilinear over C*°(M ), hence, it is indeed a

(1,3)-tensor field (see Proposition 7.3 in [Lee2]).

Definition 2.1.19. The (0,4)-Riemann curvature tensor, denoted as Rm,
is the (0,4)-tensor field obtained from lowering the last index of the (1,3)-

Riemann curvature tensor R. The action of Rm on vector fields is given by
Rm(X,Y,Z, W)= (R(X,Y)Z,W),.

In local coordinates, its components (Rm); i are given by (Rm);ju = Riju =

m
ImRijr™

At any point p € M, a plane section o (i.e. a two dimensional subspace of

T

»(M)) is determined by any pair of mutually orthogonal unit vectors u, v at

p.

Definition 2.1.20. For a plane section ¢ with orthonormal basis u,v €

T,

»(M), its sectional curvature K,(o) is defined as

K,(o0) = —Rmy(u,v,u,v) = —(Rp(u, v)u,v),.

In the case of surfaces (2-dimensional Riemannian manifolds), the sectional
curvature is the same as the Gaussian curvature of the surface.

Definition 2.1.21. If the sectional curvatures across all plane sections at all
points are the same constant value, then the Riemannian manifold is said to

be of constant curvature (or, constant sectional curvature).

In preparation for the next theorem, we recall the definition of hyperbolic

space; more precisely, we state the hyperboloid model of hyperbolic space:

10



Fix r > 0 and suppose n > 1. Let R™! be Minkowski space, whose

coordinates are (x1,...,z,,t) and whose metric is given by
q=dx®+ - +dx,* — dt*.

Then H?”, the hyperboloid model of hyperbolic space of radius r, is the sub-
manifold of R™! defined as all points which satisfy =7 + - - + 22 — t* = —r?
with ¢ > 0, and whose metric is given by i*q, where i : H? — R™! is the

inclusion map.

We can now state the following theorem which provides us with some
important, and soon to be relevant, examples of Riemannian manifolds with

constant curvature.

Theorem 2.1.22. The following n-dimensional Riemannian manifolds have
the indicated constant curvatures:
(1) R™ with the Fuclidean metric has constant curvature 0.
(i1) The sphere S} of radius v > 0, with the standard round metric g, has
constant curvature 1/r2.

(iii) Hyperbolic space H" of radius r > 0 has constant curvature —1/r?.

Note that for each fixed r, there are actually four mutually isometric models
of hyperbolic space (see Theorem 3.7 in [Lee2]). When hyperbolic space next
arises, we shall be making use of the model known as the Poincaré ball model
B”, rather than the hyperboloid model that was previously defined.

For hyperbolic space of radius r, the Poincaré ball model B is the ball
of radius r centred at the origin in R", and its metric in the coordinates

(x1,...,2,) is given by

de? + -+ + dx,>
(= = oY

11



We now end this subsection by stating the Killing-Hopf theorem (see Chap-
ter 12 of [Lee2]).

Theorem 2.1.23. Let (M, g) be a complete, simply connected, n-dimensional
Riemannian manifold with constant curvature andn > 2. Then M is isometric

to either R™, S, or H.

2.2 The Uniformization Theorem
To reach the Uniformization Theorem, we shall follow [Ab] (sections 2 and
3) and the introduction of [Ch]. We shall omit the proof of the theorem, but

it is proved in both of these references.

We begin with the uniformization problem, which can be stated in the
following way: Let M be an arbitrary Riemann surface. Find all domains
D c C and holomorphic functionst: D — M so that at each pointp € M, t
is a local uniformizing variable at p. In other words, for each p € M, there is a

neighbourhood U, such that ¢ restricted to D, := t~*(U,) is a homeomorphism.

A useful way of perceiving the uniformization problem is to view it from
a covering space perspective. Let D C @, let M be a Riemann surface, and
let M be the universal covering space of M with covering map 7 : M —s M.
Using the well-known fact that the universal cover of a Riemann surface is
also a Riemann surface, we see that Misa simply connected Riemann surface.
Suppose t : D —» M is a uniformizing map. Then with the covering map 7,
we can obtain a uniformization for M through the composition 7 o t.

So, if we can show that every simply connected Riemann surface is confor-
mally equivalent to a subdomain of C (so that M is conformally equivalent to

D), then we are done. The following theorem shows that this can in fact be

12



done, and since it essentially leads one to the solution of the uniformization

problem, it has become known as the Uniformization Theorem.

Theorem 2.2.1. Every simply connected Riemann surface is conformally

equivalent to either the complex plane C, the Riemann sphere @, or the unit

disk D1 .

Alternatively, the Uniformization Theorem can be stated in the following

way.

Theorem 2.2.2. Fvery Riemann surface admits, in its conformal class, a

complete metric of constant curvature.

Let us roughly prove the equivalence of the above two theorems.

Proof. First, we start with Theorem 2.2.2. Let M be our Riemann surface
with conformal class [g], and let ¢’ € [g] be the complete metric of constant
curvature. Now, we pass to the universal cover M by using the covering map
M — M to pullback our complete metric; this gives us 7*¢’ which is still
of constant curvature. So, M is now a simply connected, complete surface
with constant curvature. Applying the Killing-Hopf theorem, we see that M
is isometric to either R?, S? or H? (or rather, B?). Upon identifying M as a
simply connected Riemann surface and identifying R?, S?, and B? as, respec-
tively, C, C, and Dy, we are able to realize the isometry as a biholomorphism.

Thus, we have obtained Theorem 2.2.1.

Now, let us start with Theorem 2.2.1 and show that we can obtain Theorem
2.2.2 from it. Let M be an arbitrary Riemann surface. Its universal covering
space M is a simply connected Riemann surface, meaning it is conformally

equivalent to either C, @, or D;. In their defining conformal class, the spaces

13



C, C, and D; admit the following metrics:

p(z)|dz| = |dz| for C,
2|dz|

dz| = 2% g ¢
plelldz| = A o
2|dz
p()lde] = - 2 ‘Z|‘2 for Di.

From [FK] (chapter 4, section 8), we know that these metrics are complete
and of constant curvature, where the curvature is 0 for C, 1 for @, and —1 for
D,. So, M admits one of these metrics.

Now we would like to bring the complete constant curvature metric on M
down to M. To do this, we use Theorem 2.1.16 to see that M ~ M/G(]\Aj),
where G(M) is the group of deck transformations of M. We next observe that
G(M ) is a subgroup of the automorphism group Aut(ﬁ ).

For the first case, suppose M is conformally equivalent to C. From [FK]

(chapter 4, section 5), we know that

az+b
cz+d

Aut(@)%PSL(Q,C)g {z—> ta,b,e,d € C, and ad—bc:l}.

The only automorphisms of C which act as isometries (i.e. preserve the metric)

are those which belong to the following set (see [FK], chapter 4, section 8):

{z — Zj—i_—s ca,b € C, and |a]* + |c]* = 1} ~ SU(2)
However, for our purposes, we do not have to concern ourselves with the
isometries of C. Indeed, suppose h € Aut(C). As noted in [Ahl] (chapter 10,
section 6), such an h has at least one fixed point on C; then from Theorem
2.1.14, we see that if h € G’(@), then h must be the identity. Thus, when we
push the metric for C down via the covering map M— M / G(]\N/[ )~ M, it

is still complete and of constant curvature.

14



For the second case, suppose M is conformally equivalent to D;. From
[Kr] (Section 0.2, Theorem 3), we know that every automorphism of D, is of

the form h(z) = @y(z) o ¢4, where

ba(2) = , a€ Dy and wo(2) = 2", O cR.

To see how the metric for D; behaves under such an h, we compute the pullback
h*p(z); from [Kr| again, we know that h*p(z) = p(h(2)) - |W'(2)].
(i) If A(2) = @o(2), then |A'(2)] =1 and

2 2

~ e 1o P

/ 1— CL|2
(=) = =

T azp

and so

o) =o( o) )

1—az
B 2 1 —al?
1 [EEPR - azp
2(1 — |af*)
1 —az]2— |z —al?
_ 2(1 — |a]*)
122 Ja + a2
B 2
RERE
= p(2).

Since every h € Aut(D;) can be written as a composition of the above two
cases, we see that our metric for D; is invariant under the action of Aut(Dy);
thus, it is also invariant under the action of G(D;). So, when this metric gets
pushed down via the covering map M— M /G (]Tf ) >~ M, it is still complete

and of constant curvature.

15



For the final case, suppose M is conformally equivalent to C. Then
Aut(C) ={z+——az+b:a,be C, a # 0}.
Let h € Aut(C). Then

W p(2) = p(h(=)) - W (2)] = plaz +b) - |a] = |al.

Clearly then, the only automorphisms of C which act as isometries are those
with a such that |a| = 1. Indeed, [FK] notes that the automorphisms which

act as isometries are those which take the form
z—e%24+b,  HeRbeC. (2.1)

Now, in searching for the deck transformations of C, we should disregard
the h € Aut(C) that have fixed points, since Theorem 2.1.14 says that deck
transformations have no fixed ponts (except for the identity). So, suppose

h € Aut(C) has a fixed point: h(w) = aw + b = w. Then

b
1—a

w =

which means that a # 1. Conversely, if a # 1, this expression gives us a fixed
point for h(z) = az +b. Thus, h € Aut(C) has a fixed point if and only if
a # 1. So, disregarding these automorphisms, we are left with automorphisms
of the form h(z) = z + b, which, according to 2.1, preserve the metric. Thus,
we are able to conclude that our metric on C is invariant under the action
of G(C), and so when it gets pushed down via the covering map, it is still
complete and of constant curvature.

So, as originally desired, we have obtained Theorem 2.2.2 from Theorem

2.2.1.

16



This finishes the proof that Theorem 2.2.1 and Theorem 2.2.2 are equiva-

lent. O

2.3 Ricci flow

For this section, we follow [CK] (primarily the beginning of chapter 5).

In the previous section, we showed how the Uniformization Theorem im-
plies that every Riemann surface admits in its conformal class a complete met-
ric of constant curvature. This guaranteed existence of a metric of constant
curvature raises a new question: If we start with a 2-dimensional Rieman-
nian manifold, is there an evolution equation that will conformally deform our
starting metric to the point where we obtain a metric of constant curvature?

To answer this question, we need the concept of Ricci flow, which was first
introduced by Hamilton in [Ha] with the intent of applying it to Thurston’s
Geometrization Conjecture. For our purposes, it will provide us with a way
of evolving our metric to obtain the metric of constant curvature.

Before defining the Ricci flow, we use [Lee2] to recall the definition of the

Ricci curvature.

Definition 2.3.1. Let (M, g) be an n-dimensional Riemannian manifold. The
Ricci curvature (or, Ricci tensor) is the covariant 2-tensor field, denoted as Ric,

whose action upon vector fields X and Y is defined as
Ric(X,Y) =tr(Z — R(Z,X)Y),

where R is the (1,3)-Riemann curvature tensor. In local coordinates, its com-

ponents are given by (Ric)ij = Rui;" = 0" Ruijm.
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Now that we have defined the Ricci curvature, it is convenient to define

the scalar curvature.

Definition 2.3.2. The scalar curvature is the function R defined as the trace

of the Riccl curvature:

R = tr,Ric = ¢g" (Ric);;.

Remark 2.3.3. From [Lee2] (Proposition 8.32) and [Bo| (chapter 8, section 3),
we know that for an orthonormal basis {ej,...,e,} at a point p of a Rieman-

nian manifold, the Ricci curvature is given by

n

Ric,(u,v) = Z(Rp(ei,u)v, €i)g = Z Rmy,(e;,u,v,€;),

i=1 i=1
and the scalar curvature is given by
R(p) = Ricy(ej,e;) = Y Rmy(eire;, e, €)
j=1

ij=1

3 Rl ) = 3 Kyles)

i,j=1 i#j
where K, (e;, €;) is the sectional curvature of the plane section with orthonor-

mal basis e;, e;.

Remark 2.3.4. In [Lee2] (Corollary 7.27), it is shown that in dimension 2, the

Ricci curvature can be written as Ric = %Rg.

Now we may continue with our discussion on the Ricci flow.
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Definition 2.3.5. The Ricci flow is defined as

0
— g = —92Ri
. Ric

9(0) = go,

where g is the metric on the Riemannian manifold (M, go).

Definition 2.3.6. The normalized Ricci flow is defined as

Rd
ot n [, dp

9(0) = go,

where dy is the volume form, g is the metric on the n-dimensional Riemannian

manifold (M, go), and R is the scalar curvature of go.

Remark 2.3.7. In general, the Ricci flow does not preserve volume. The nor-
malized Ricci flow, however, will ensure that the volume is preserved; as shown
in [Ha, it is obtained from the Ricci flow by reparametrizing in time and ap-

plying a change of scale in space.

Theorem 2.3.8. If (M, g) is a 2-dimensional, closed (i.e. compact and with-
out boundary) Riemannian manifold, then there exists a unique solution g(t)
of the normalized Ricci flow

0 Rd

—qg= M —R)yg

ot fM dp

9(0) = Yo-

The solution ezists for all time, and as t — oo, the metrics g(t) converge

uniformly in any C*-norm to a smooth metric g, of constant curvature.
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The proof of Theorem 2.3.8 is rather long and so we omit it from here; the
full proof may be found in [CK] (chapter 5). We shall merely note that the

proof is split into three parts, where each part depends upon the sign of

o fMRdu

roi= m, (2.2)

which is referred to as the average scalar curvature. In literature, however, the
parts are typically distinguished by the sign of the Euler characteristic x(M).
To see why, observe that in dimension n = 2, the scalar curvature is twice the
Gaussian curvature; then look at the Gauss-Bonnet theorem (Theorem 2.4.1

in the next section) to see that the sign of r coincides with the sign of x(M).

So, given a 2-dimensional closed Riemannian manifold (M, go), the nor-
malized Ricci flow will provide us with an evolution equation g(¢) that will
take us from our starting metric go to the metric of constant curvature g. The
only thing left to do is to confirm that g is indeed conformally equivalent to
9o-

Suppose ¢(t) is the solution obtained from Theorem 2.3.8. Let f be the
function f(z,t) :=r — Ryu)(z), € M, t € [0,T), and r is defined in (2.2).

Then the normalized Ricci flow becomes

9 4(t) = Iz, 0900

& T nglt) = 1(n,1

— Ing(t) =1ng(0) —l—/() f(x,s)ds

— g(t) = exp (/OTf(fmS) dS)go-

So, every metric that is coming from the solution ¢(t) is conformally equivalent
to our starting metric gg. Hence, the constant curvature metric g is also

conformally equivalent to gg.
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2.4 Universal covers of Riemann surfaces

In section 3.2, the universal cover provides the link between the uniformiza-
tion problem and the Uniformization Theorem. Given the importance of the
universal cover, one is led to wonder if there is a simple way to determine what
the universal cover of a Riemann surface is.

Specifically, let M be a Riemann surface and M be its universal covering
space. Recall that Mis a simply connected Riemann surface. Applying the
Uniformization Theorem, we find that M is conformally equivalent to either
the complex plane, the Riemann sphere, or the unit disk; but is there a simple
way to know which one?

The answer is yes, but first we must impose some conditions. To start, we

recall the Gauss-Bonnet theorem from [Lee2].

Theorem 2.4.1. If (M, g) is a 2-dimensional closed Riemannian manifold,

then

/ K dA = 2y (M), (2.3)

where K is the Gaussian curvature of g and x(M) is its Euler characteristic.

From the well-known classification theorem for surfaces, we know that any
2-dimensional, closed, orientable manifold M with genus k is homeomorphic
to either the sphere (k = 0) or a connected sum of k-tori (k > 1). From this,

we can easily compute the Euler characteristic of M by using x(M) = 2 — 2k.

So, to make use of these results, we suppose that our Riemann surface M is
closed. For the sake of an example, suppose its genus is k = 0. Then y (M) = 2
which, from equation (2.3), implies that K > 0 for M. As a consequence, we
also have K > 0 for the universal cover M. Recall that M is conformally

equivalent to either the complex plane, the Riemann sphere, or the unit disk.
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Only the Riemann sphere has positive Gaussian curvature, thus M must be
conformally equivalent to the Riemann sphere.
This argument can be easily repeated for the other cases. The results are

summarized below.

Let M be a compact Riemann surface without boundary, k£ be its genus,
and M be its universal covering space. Then:
(i) If k = 0, M is conformally equivalent to the Riemann sphere C (or
rather, S?).
(i) If k=1, M is conformally equivalent to the complex plane C (or rather,
R?)
(iii) If & > 2, M is conformally equivalent to the unit disk D; (or rather,

H2).
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CHAPTER 3
The Yamabe Problem

Naturally, one now seeks out a generalization of the Uniformization Theo-
rem to higher dimensions. Doing so leads one to the Yamabe problem:

For a compact Riemannian manifold (M, g) of dimension n > 3, is there
a metric conformal to g that has constant scalar curvature?

Ultimately, the answer to this question is yes. The first attempt to show
that this is indeed the answer came from Yamabe in 1960, in the paper
[Yam|. There was, however, an error in the paper which was later mended
by Trudinger, though it came at the cost of having to introduce a condition
on the manifold’s Yamabe invariant A\(M) (we define this later). Aubin then
showed that Trudinger’s condition can be stated in a simpler manner: if the
n-dimensional manifold M satisfies A(M) < A(S™), then the problem can be
solved. Aubin then showed that the condition is satisfied when n > 6 and
M is not locally conformally flat. Then, in 1984, Schoen finished solving the
problem by proving that the condition is satisfied for all other cases (n = 3,4,
or 5, or if M is locally conformally flat). In this chapter, we we follow [LeeP]
and make use of [Aub] to explore some of these results.

Apart from being interesting on its own, the Yamabe problem introduces
us to the conformal Laplacian (Yamabe operator) which, as we shall see in

Chapter 4, is a conformally covariant differential operator.
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3.1 Background

Definition 3.1.1. The Hélder space C**(M), 0 < a < 1, is defined as
Ch(M) = {f € C*(M) : || fllgre < 00},

where

\VA v
I Fllgne = 1l +sup | f<|f;>_ v )l

The supremum is over all x # y such that y is contained in a coordinate
neighbourhood of . The covariant derivative is denoted as V, and so when
V* acts on the function f, we get the k-tensor V* f; when we write V¥ f(y), we
mean the tensor at y obtained by parallel transport along the geodesic from

T to y.

We now state the Sobolev embedding theorems for compact Riemannian

manifolds.

Theorem 3.1.2. Suppose M is a compact, n-dimensional Riemannian man-
ifold (possibly with C' boundary).
(1) If

>

=S| =
S
SEES

then W*4(M) is continuously embedded in L"(M).
(11) (Rellich-Kondrakov Theorem) If strict inequality holds in (i), then the
embedding WH1(M) — L"(M) is compact.

(111) Suppose 0 < o < 1, and
k—a
—

Then W*4(M) is continuously embedded in C*(M)

<

Q| =
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From [BGV], we obtain a definition for what it means to be locally con-

formally flat.

Definition 3.1.3. A Riemannian manifold (M, g) is locally conformally flat
if each point in M has a coordinate neighbourhood U which is conformal to
Euclidean space R™. That is, there is a diffeomorphism ¥ : V C R" — U

such that the pullback ¥*g is conformal to the standard Fuclidean metric.

From [Can], we obtain a definition of the Laplace-Beltrami operator, which

is a generalization of the usual Laplace operator for Riemannian manifolds.

Definition 3.1.4. Given a Riemannian manifold (M, g), the Laplace-Beltrami

operator is defined as

A, : C=(M) —s C=(M)

A, = —div, 0 V,.
In local coordinates, the operator takes the form,

1 "0 0
A=y = det g| g7 — ).
T V]dety] ; axi( |dets|g 5%)

(3.1)

Observe that this reduces to the usual Laplacian in Euclidean space, since
the Euclidean metric has |det g| = 1.

For this definition, the subscript of g has been used to emphasis a depen-
dence on the metric. In what follows, this subscript is occasionally dropped,

though the dependence on the metric should still be clear.
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3.2 The Yamabe equation

Let (M, g) be a compact, connected Riemannian manifold of dimension
n > 3. Let § be conformal to g, which we can write as § = e?/¢g for some
real-valued f € C®(M). Let R and R denote the scalar curvatures of g and

g, respectively. The following transformation law is then satisfied:
R=e(R+2(n—1)Af - (n—1)(n-2)|V[J),

where A is the Laplace-Beltrami operator and V f is the covariant derivative
of f, both defined with respect to the metric g.

Before proceeding, make note of the following notation:

O =aA + R.

Now, we make the substitution €/ = P2, where ¢ € C*(M) and ¢ > 0.

Then § = P 2g and
. 1
R =P <4%A<p + Rgo) . (3.2)

So, we are led to the conclusion that § = P 2g has constant scalar curvature

R = X if and only if ¢ satisfies
Op = APt (3.3)

Equation (3.3) is referred to as the Yamabe equation.
So, solving the Yamabe problem is equivalent to solving (3.3), with the

requirement that the solution ¢ be smooth and strictly positive.
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3.3 The Yamabe invariant

Consider the functional

Jyy RV,
([ V)7

where dV, = /| det g|dz' A --- A dz™ is the volume form. When we evaluate

Q(g) =

this functional at § = ©?~2g, we get what is known as the Yamabe functional:

_ JuRdvg
(fr dVg)*r

1/p
lell, = ( / |eo|pdvg) |
M

Yamabe noticed that (3.3) is the Euler-Lagrange equation for (3.4). To see

JulalVel* + Rp?)dV,
lell;

Q(9) & Qylp) = ;o (34)

where

this, start by setting

B(¢)i= [ (VP + RV,

Then observe that

d
%E(SO + t1))

= 2/ (aV - Vi + Ro) dV,
t=0 M
= 2/ (—a-div(Ve) + Re)y dV,
M
—2 [ (g + ROV Y,
M
where we used integration by parts to get the second line.

Further observe that

L) e
=2 [el) ([ elrean,)

2l fu el ) av
loll?

d 2
— t
N+t

t=0
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Then,

d
%Qg(%p + )

_ K%E(SOJFW)) HSOJFWH;%FE@@HW(% H@JrWH;Q)]

t=0 t=0

2 _ _
S / (aBo+ R — |lgll? Elg)er Yo v,
el /s

From this, we see that ¢ satisfies the Yamabe equation (3.3) with A = E(p)/ [l¢|[;
if and only if it is a critical point of Q.
Let us now introduce the constant A\(M), which is known as the Yamabe

muariant:

AM) =inf{Qy(p) : ¢ € C(M) and ¢ > 0}.

Proposition 3.3.1. A\(M) is an invariant of the conformal class [g].

Proof. We consider a conformal change of the metric g by § = ¢?~2g. We then
have

dVy = gp”(p*Q)/QdVg = ©PdV,.

Now consider
L@l V(@) + Rp*y?)dV,

Qqlpv) =
’ ( fM PP dvg)Q/p

Observe that

/ V()P dV, = / (PIVEP 1+ 2Vl + 200V - Vi) dVy.  (3.5)
M M

Applying integration by parts to the second term on the right hand side of the

above equation, we get

/ PVl dv, = / (W*V) - Vidv,
M M
= —/ - div(y* V) dVj,
M

= / (P> Ap) dVy — 2 / (P V) - Vi) dV,.
M M
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Inserting this back into (3.5) and then inserting that back into Q,(¢v), we

get

Qo) = Ju(a®| VY PaVy) + [y (adp + Ro)py*dV,
’ (Jag emer dvg)wp
Then using (3.2) gives

Ju (@ IVedVy) + [o RePy*dV,

QQ(SO@ZJ) =
( fM g&pzﬁpdVg) v

Now use the fact that
PIVYP AV, = > P(V - V) dV; = Vi - Vi dV; = [V dV;,

to arrive at

TR s Ry,
Qq(py) = (fM @Dpd‘/;;)z/p Q3(1).

This means that (M), associated to the metric g, is equal to A\(M), associated

to the conformally equivalent metric g. Thus, A(M) is indeed an invariant of

the conformal class [g]. O

The Yamabe invariant is crucial to solving the Yamabe problem. As we
shall soon see, the way A(M) compares to A(S™) is of particular importance,
and so the next section is devoted to the Yamabe problem in the setting of

the sphere.

3.4 The Yamabe problem on the sphere S”
Let g denote the standard metric on the sphere S™ and recall that it is of

constant scalar curvature.

Proposition 3.4.1. There exists a positive, C™ function 1» on S™ satisfying

Qg(¥) = A(S™).
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In other words, the above proposition is stating that A(S™) is indeed at-
tained by a metric g in the conformal class of g. As a consequence, g has
constant scalar curvature.

Now consider the following proposition, which essentially states that such a
metric must be, up to a conformal diffeomorphism and a constant scale factor,

the standard metric g.

Proposition 3.4.2. Suppose g is a metric on S™ that is conformal to the
standard metric g and has constant scalar curvature. Then up to a constant

scale factor, g is obtained from g by a conformal diffeomorphism of the sphere.

The combination of the above two propositions provides us with the so-
lution to the Yamabe problem on the sphere. This solution is stated in the

following theorem:

Theorem 3.4.3. The Yamabe functional (3.4) on (S™, ) is minimized by con-
stant multiples of g and its images under conformal diffeomorphisms. These

are the only metrics conformal to g that have constant scalar curvature.

Lee and Parker go on in [LeeP] to show how the Yamabe problem on S™
is related to a problem concerning the Sobolev inequality; in doing so, they
show that A(S™) > 0. They then proceed to prove the following lemma, which

is due to Aubin.

Lemma 3.4.4. Suppose M is a compact Riemannian manifold M of dimen-

sionn > 3. Then N(M) < A(S™).
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3.5 Minimizing the Yamabe functional
We now consider a general, compact Riemannian manifold M. We seek
to minimize the Yamabe functional (3.4); one idea would be to construct
a sequence of functions that causes the Yamabe functional to approach its
infimum, and then seek out some subsequence which converges to an extremal
function. But for reasons stated in [LeeP], this approach does not work.
Instead, Yamabe took a different approach and considered

[y (@ Vol]* + Re?)dV,

Q*(p) = 2
el

for 2 < s < p. We then set A, = inf{Q*(¢) : ¢ € C®(M)}. Note that a

function ¢ which minimizes the above functional and has ||¢||, = 1, satisfies
Op = A* 1, (3.6)

which is the Euler-Lagrange equation of @*. Equation (3.6) is known as the
subcritical equation.

We now present a proposition which was proved in [Yam].

Proposition 3.5.1. For 2 < s < p, there exists a smooth, positive solution

@5 to the subcritical equation (3.6), for which Q*(ps) = As and |||, = 1.

Proof. Let {u;} C C*°(M) be a sequence which minimizes the functional Q*
and satisfies ||u;||, = 1. Observe that Q°(|u;|) = Q*(u;), so we may replace u;
by |u;| and then assume that u; > 0. Also observe that {u;} is bounded in the

Sobolev space H'(M) (also denoted as W2(M)):

el = /M (IVul? +2) v,

. R
@)+ [ (1-T)eay,

1
< EQS(UD +C w2,

31



where we have used Holder’s inequality to get the last line. Since H'(M) is
a Hilbert space, we may use the well-known fact that a bounded sequence in
a Hilbert space has a weakly convergent subsequence; thus, a subsequence of
{u;} will weakly converge in H'(M).

Now we want to show that the embedding H'(M) < L* is compact. Ob-

serve that
2n B
n—2

1
- = s<
s

S|

p

N —

>

and since we assume that s < p, we may apply Theorem 3.1.2 to see that the
embedding is indeed compact. Thus, the weakly convergent subsequence of
{u;} will be mapped, via the compact embedding, to a sequence in L® that
strongly converges to a function ¢, € L* (see [Con], Chapter 6, Proposition
3.3). Note that ||¢s]|, = 1.

Now, we can use Holder’s inequality to see that the L? norm is dominated

by the L® norm:

112 = /M (P 1) Ve < (L 1oy = IS voly (M) 72,

Thus, [,, Rui — [,, R¢?.

Weak convergence in H! implies that
/ IVs|?dV, = lim / (Vu;, V) dV,
M 11— 00 M

1/2 1/2
< lim sup (/ ]VuiIQdVg) (/ \Vgos|2dvg) .
1—00 M M

So, we arrive at Q*(¢s) < lim; o Q°(u;) = As. But recall that A\, was
defined as the infimum of @Q*, and so we must have Q°(ps) = As. So, @5 is

a weak solution of the subcritical equation (3.6). By a regularity theorem in

[LeeP] (labelled as Theorem 4.1), ¢, is C* and positive. O
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We now turn our attention to the limit of ¢ as s — p, which leads us
to the error in Yamabe’s proof. Yamabe made the claim that the functions
{¢s} are uniformly bounded as s — p; but in general, this is false, as in
the case of the sphere. However, Proposition 3.5.3, which collects the work
of Trudinger and Aubin, provides a uniform L" bound that does allow the
problem to solved, provided the condition A(M) < A(S™) holds. Before giving
this proposition, we state the following lemma which describes the behaviour

of \.

Lemma 3.5.2. If fM dV, = 1, then || is nonincreasing as a function of
s € [2,p] (i.e. if s < then |Ag| < |Xs|); furthermore, if A\(M) > 0, then A

s continuous from the left.

As a result of this lemma, it is assumed, from this point on, that ¢ is
such that | 1 @V = 1; this can always be achieved by multiplying g by an

appropriate constant.

Proposition 3.5.3. Suppose \(M) < A(S™) and let {ps} be the collection of
functions given in Proposition (3.5.1). Then there are constants so < p, > p,

and C > 0 such that ||¢s||, < C for all s > s.

We can now state the following important theorem, which essentially states

that the Yamabe problem can be solved if A(M) < A(S™).

Theorem 3.5.4. Suppose \N(M) < A(S™) and let {ps} be the collection of
functions given in Proposition (3.5.1). As s — p, a subsequence converges

uniformly to a positive function ¢ € C*°(M) which satisfies

Qqlp) = A(M), Ty = AM)g".
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Thus, the metric g = pP~2g has constant scalar curvature A(M).

Proof. From Proposition 3.5.3, we know that the functions {¢s} are uniformly
bounded in L". The regularity theorem in [LeeP] may then be used to show
that the functions are also uniformly bounded in C**(M). Then an applica-
tion of the Arzela-Ascoli theorem gives us a subsequence which converges in

C?(M) to a function ¢ € C*(M). Thus, ¢ satisfies the Yamabe equation
Do = AP,

and Q4(¢) = X where A\ = lim,,, ;. If A(M) > 0, Lemma 3.5.2 says that
A= AM). If \(M) < 0, |As| nonincreasing implies that Ay is increasing, which
implies A < A(M); but recall that (M) is the infimum of ), and so we must
have A = A\(M) once again. Another application of the regularity theorem in

[LeeP] shows that ¢ € C*°(M) and that ¢ > 0. O

3.6 The condition on the Yamabe invariant \(M)

Given Theorem 3.5.4, solving the Yamabe problem has been reduced to
showing that A(M) < A(S™). Recall that A(S™) > 0; so, if A\(M) < 0, we
are already done. This leaves us with the case of A(M) > 0. For the sake of
brevity, only an outline of how this final case is handled will be given here,
but all details may be found in [LeeP].

The primary idea for the A(M) > 0 case is to find a function ¢ such that
Qg(1) < A(S™). The first major step in doing this is to define generalized
stereographic projections. Let w denote the volume of the unit sphere. For
P € M, let I'p denote the Green function for [J; that is, (JI'p = dp. Note that

at each P € M, I'p exists and is strictly positive (see Lemma 6.1 in [LeeP]).
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Definition 3.6.1. Suppose (M, g) is a compact Riemannian manifold with

A(M) > 0. For P € M define the metric § = G?~2g on M = M — {P}, where
G = (n —2)wal'p.

The manifold (M, §) together with the natural map o : M — {P} — M is

called the stereographic projection of M from P.

Now, on the manifold M, one may define a function ¢ with a positive
parameter « such that as a — 00, Q;(p) becomes close to A(S™). To know
the behaviour of Q;(¢) as a — oo, one examines the average behaviour of
g on M over large spheres. This average behaviour of § is measured by a
constant p which is called the distortion coefficient of §g. So, it is really p that
determines the behaviour of Q;(¢) as o — oo.

It turns out that if 4 > 0, one can obtain Q;(¢) < A(S™) (see Proposition
7.1 in [LeeP]). Then, using the fact that

AM) = inf  Q4(¥),
YeCE® (M)

one approximates ¢ by a function ¢ € C°(M) to obtain A(M) < A(S™).

Theorem 3.6.2. If (M, g) is a compact Riemannian manifold of dimenson
n > 3 with A\(M) > 0, then A(M) < A(S™) if there is a generalized stereo-

graphic projection M of M with strictly positive distortion coefficient .

Showing the positivity of u is split into two cases. The first case concerns
the scenario where n > 6 and M is not locally conformally flat. Once it is
shown that p > 0 in this case, we get the following theorem, which was proved

by Aubin.
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Theorem 3.6.3. If M has dimension n > 6 and is not locally conformally

flat, then \(M) < A(S™).

The second case concerns n < 6 or if M is locally conformally flat. Once
it is shown that g > 0 here as well, we get the following theorem, which was

proved by Schoen.

Theorem 3.6.4. If M has dimension 3, 4, or 5, or if M is locally conformally

flat, then \(M) < A(S™) unless M is conformal to the standard sphere.
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CHAPTER 4
Conformally Covariant Operators

In this chapter, we introduce conformally covariant differential operators
and show that the conformal Laplacian (also known as the Yamabe operator)

is such an operator.

From what is stated in [JNSS], [Ros|, and [CGJP1], we can make the

following definition for conformally covariant differential operators.

Definition 4.0.1. Let (M, g) be a Riemannian manifold, let P, be a differen-
tial operator, and let [g] = {€*/g : f € C°°(M)} be the conformal class for g.
If there exists w,w’ € R such that for any g € [g], the differential operator P,

transforms according to

Pg = €_w,fpg€wf, (41)

then the operator is called a conformally covariant differential operator of

biweight (w,w’).

There are a few well-known conformally covariant operators: the confor-
mal Laplacian, the Paneitz operator, and the Dirac operator. The class of
conformally covariant operators known as the GJMS operators—which the
conformal Laplacian and the Paneitz operator belong to—will be our primary
concern. The Dirac operator is omitted here but a treatment of it may be

found in [Hit).
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4.1 GJMS operators
For this section, we follow some of [CGJP1].
Let (M, g) be a Riemannian manifold of dimension n > 3. The GJMS

operators are defined through the following proposition.

Proposition 4.1.1. Fork =1,...,5 when n is even, and for all non-negative
integers k when n is odd, there is a conformally invariant operator P, = Py,

of biweight (§ — k, % + k) such that

Py = AP + lower order terms. (4.2)

4.1.1 The conformal Laplacian

In the case of k = 1, (4.2) gives us the conformal Laplacian,

n— 2

Prg=0g+ 12
b= Bt gyl

where R, is the scalar curvature.

Remark 4.1.2. Note that in the previous chapter, the Yamabe equation (3.3)

was defined with the operator

0=42
n

—1
A+R
-9 T4,
which is just P , multiplied by 4(n —1)/(n — 2). In fact, Lee and Parker in

[LeeP] refer to the operator [J as the conformal Laplacian.

Let’s show that the operator (4.3) is indeed conformally covariant, with
biweight (5 — 1,5 +1).
We start by considering a conformal change of § = €?¢¢. From (3.1), it

is not too difficult to see that the conformal change results in the following

38



transformation law:
Ngf = e 2(Agf — (n—2)VFo Vif).
Now consider the action of A, on e f, where a is some real number.

Ag(e?f) = =V"Vi(e™f)
= —V* e (Vif + afVip)]
= —ae™Vr(Vif + afVip) + e (Ayf + a(fAgp — VE [Vie))

= e®[—2aVF Vi f — a® VOV + Ay f + afAye).

So,
Ay ) = e (A (e ) — (n — 2) T4 V(e )]
= e [N, (e f) — e (n — 2)V*0 (Vif + afVip)]
= el 9[-2aVFQV, f — a?fVFOVip + Ay f + afAgp
— (n=2)V* (Vi f + afVip)]
— e(a’2)‘P[Agf +afAyp — (n+2a—2)VV,f
—(n+a—2)afVpVel.
If we let a = —(§ — 1), then the above becomes

n—2

Ag(emGDPf) = = (3FDe <Ag — (28,0 — (n — Z)ngovkgp)> f.

Now recall that under such a conformal change, the scalar curvature transforms

according to:

R; = e *(Ry+2(n — 1)Ayp — (n — 1)(n — 2)VFpV,0).
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So,
Rg(e’(%’l)‘pf) = (3w (Rg +(n—1)2A;¢0 — (n — 2)ngovkg0) f.

Clearly then, we have

+

n _n_ n n—2 —(n_
6(2“)‘”]31,@6 s 1)¢f:€(2+1)¢(Ag ng)e K 1)<pf:P1,gf>

which is equivalent to

P ;= e~ (EtDe p g elz=De

4.1.2 The Paneitz operator

In the case of k = 2, (4.2) gives us the Paneitz operator,

1
n—1)

n—4 n
Pyg=NA2+6Vd+ 5 (2( AR, + m}%ﬁ — 2|S|2), (4.4)

where
1

| R,
5= n—2(R1Cg_ 2(n — 1)g>

is the Schouten-Weyl tensor (see section 7.2 for more on this tensor), and V
is the tensor
n—2

which acts on 1-forms. The Paneitz operator is of biweight (§ —2,% + 2).
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CHAPTER 5
Conformal Invariants

Conformal invariants are things which are unaffected by conformal changes
of the metric. In this chapter, we closely follow [CGJP1] to discuss several

conformal invariants that arise from conformally covariant operators.

5.1 Nodal sets and nodal domains
The chief concern of this section is nodal sets—that is, zero loci. Closely
related is the concept of nodal domains, which are the connected components

of complements of nodal sets.

Let (M, g) be a Riemannian manifold of dimenson n > 3. Let P, be a
conformally covariant operator with biweight (w,w’). Then from the transfor-
mation law (4.1), we see that under a conformal change § = ¢?/¢, the kernel
transforms according to

ker P; = e “/ ker P, (5.1)

In the case of a GJMS operator P4, the dimension of its kernel is an
invariant of the conformal class [g] (see section 3 of [CGJP1] for the technical
details). For the Dirac operator, see [Hit] (Proposition 1.3) for the proof that
the dimension of its kernel is conformally invariant. In general, dimker P,
is conformally invariant if the conformally covariant operator P, admits an
endomorphism on some function space—from this point onwards, we assume

this to be true.
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Now suppose we have a conformally covariant operator P, of biweight
(w,w'), and a function u, € C*(M) with o € M such that u,(zy,) = 0.
Further suppose that u, belongs to a collection of functions {u;}gecq C C*(M)

that is parametrized by the conformal class [g] in the following way:
Ue2r g (T) = e @y, (),  VfeC®(M,R). (5.2)
This means that for any g € [g], we have
ug (o) = e /™)y, (14) = 0.

Similarly, if xy € M is such that uz(zy) = 0, then we must have u,(zo) = 0
as well. Thus, we see that ug_l(O) = u;*(0), which means that the nodal set
u,'(0) is an invariant of the conformal class [g].

Observe that if we take u, € ker Py, then (5.1) will give us (5.2). Combining

this nodal set result with the conformal invariance of dim ker P,;, we obtain the

following proposition, which is stated in the context of GJMS operators.

Proposition 5.1.1. Let k € N and assume that k < 5 if n is even.
(i) If dimker P, , > 1, then the nodal sets and nodal domains of any nonzero
null-eigenfunction of Py 4 give rise to invariants of the conformal class
[g]-
(i) If dimker P, , > 2, then non-empty intersections of nodal sets of null-
etgenfunctions of Py 4, and their complements, are invariants of the con-

formal class [g].

To make another observation, let us suppose that P, is a conformally co-

variant operator with biweight (0,w’). Then from (5.1), we have

ker P; = ker P,
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for any g € [g]. So, if we take u, € ker P,, we see that all of its level sets
{xr € M :ug(x) =N}, where A € C,

are independent of the metric that represents the conformal class. Thus, the
level sets of a non-constant u, € ker P, are invariants of [g]. The following

proposition states this result in the context of GJMS operators.

Proposition 5.1.2. Suppose n is even. If dimker Pz > 2, then the level sets
of any non-constant null-eigenfunction of Pn are invariants of the conformal

class |g].

For the final result of this section, we make use of [CGJP2]. Suppose
dimker P, = s > 1 and let {uy,,...,usy} serve as a basis for ker P, ,. We

set N := Nicj<u;,(0) and define the map ® : M \ N — RP*"' by
O(x) == [ur4(x),...,usy(z)], VoxeM\N.

Recalling equation (5.1), we see that each u;, satisfies equation (5.2). From
this, we observe that for x € M \ N, the s-tuple {uy,,...,us,} depends
on g only up to positive scaling. This means that the projective vector
[u14(z), ..., usy(x)] € RP*7 is independent of the metric chosen to repre-

sent the conformal class [g]. Furthermore, it means that for § € [g], we have

Us, (z) eiwf(x)ui,g(l’) i Ui,g@).

I

§
ujg(r) e @y (x)  uj(e)

hence, the u;-s may be used as conformally invariant projective coordinates.

So, we have obtained the following proposition.

Proposition 5.1.3. The map ®, as defined above, is an invariant of the

conformal class [g].
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5.2 Negative eigenvalues

Let (M,g) be a compact Riemannian manifold of dimension n > 3 and
let £ € N (and assume that £ < % when n is even). Let G be the set of
Riemannian metrics on M.

As explained in [CGJP1], the spectrum of the GJMS operator P, consists
of a sequence of real eigenvalues converging to oo. Thus, the eigenvalues can

be ordered as a non-decreasing sequence
M(Peg) € Aa(Prg) < ...

where each eigenvalue is repeated according to multiplicity.
We now state a technical lemma which will be needed for the theorem that

follows.

Lemma 5.2.1. For every j € N, the function g — \;(Py4) is continuous on

g.

Now, for a metric g € G, we would like to keep track of the number of

negative eigenvalues that belong to the operator P ,. To do this, we define

vi(g) == #{j € N: \;(FPr,) <0}

Additionally, we would like to keep track of the metrics in G that make

Py 4 have at least m negative eigenvalues, where m € N. To do this, we define
Grm = {9 € G : Py 4has at least m negative eigenvalues}.

Observe that Gi,, = {9 € G : v(g) > m} ={g € G : \p(Pry) < 0}. This

fact, combined with Lemma 5.2.1, means that Gy ,,, is an open subset of G.
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Theorem 5.2.2. Let g € G. Then vi(g) is an invariant of the conformal class
lg]. Furthermore, for the operator Py, g4, the sign of its first eigenvalue \(Py 4)

is also an invariant of the conformal class [g].

Proof. Let g € G and, for convenience, we set m = v4(g) and s = dimker P, ;.
Then observe that \; (P ,) < 0for j <m, A\;(Pr,y) =0for j =m+1,...,m+s,
and \;(Pg4) > 0 for j > m+s+1. Now let § be a positive, real number which

satisfies

§ < min{ [ A (Prg)l s Amtst1(Prg)}-

Consider an arbitrary § € [g]. From Lemma 5.2.1, we know that if g is
close enough to g, then we can have \,,(Py5) < —6 and Appsq1(Prg) > 0.
So, the only eigenvalues of Py ; that are contained in the interval [—d, 0] are
Ami1(Prg)s -« s Amrs(Prg)-

From the previous section, we know that the dimension of ker Py, is an
invariant of the conformal class [g], meaning we have dim ker P, ; = s which
in turn means that of all the A\;(P ;), there are precisely s of them which are
equal to 0. But recall that the s eigenvalues A\y11(Prg), .-, Amts(Prg) are
the only eigenvalues contained in the interval [—d,d]. For both of these facts
to be simultaneously true, we must have A\,,11(Prg) = -+ = Apss(Prg) = 0.
From this, we observe that A, (P ;) < 0 and hence arrive at v(g) = m.

So, what we have shown is that when the map g — v, (g) is restricted
to the conformal class [g], it is locally constant. Now since C*°(M,R) is
path connected and [g] is the range of this space under the continuous map
f — €*/g, we know that [g] is path connected, and hence a connected subset
of G. Then, using the well-known fact that a locally constant function on
a connected set is constant on the set, we can now conclude that vy(g) is

constant for the entire conformal class [g].
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Now we examine the conformal invariance of the sign of the first eigenvalue
of Py 4. Observe the following:
(1) M(Pry) < 0if and only if v4(g) > 1.
(i) A1(Prg) =0 if and only if v(g) = 0 and dimker P, , > 1.
(iii) A1(Pgg) > 0 if and only if dimker Py, = v4(g) = 0.
Combining these observations with the conformal invariance of both dim ker P ,

and v (g), we see that the sign of A\j(P ) is a conformal invariant. O

5.3 Manifolds with boundary
In this section we briefly remark upon the case of manifolds with boundary.
Let M be an n-dimensional (n > 3) manifold with smooth boundary OM. Let
P, be a conformally covariant operator on (M, M) whose kernel transforms
according to (5.1), and let g be a Riemannian metric such that dim ker P, > 1.
Given all of this, some of the previously discussed results will continue to hold.
Specifically, the following statements are true (see [CJKS]):
(i) k= dimker P, is an invariant of [g].
(ii) The nodal sets and nodal domains of nonzero null-eigenfunctions u €
ker P, are invariants of [g].
(iii) If £ > 2, then non-empty intersections of nodal sets of null-eigenfunctions
and their complements are invariants of [g]
(iv) The number of negative eigenvalues of P, is an invariant of [g].
(v) Let k& > 2, let {uy,...,u,} be a basis of ker P, and let M = M\
(N*_,u;1(0)). Define the map ®, : M — RP* ' by D, () = [ur(x),. .., uk(z)]

Then the orbit of ®,(M) under the action of GLj(R) is conformally in-

variant.
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5.4 Spaces of conformal structures

In [SS], we find the usual definitions for Teichmiiller spaces and moduli
spaces. Let M be a compact, oriented, C*°, 2-dimensional manifold, and let
M be the set of complex structures of M which agree with the orientation
and the C*-structure. Let D be the group of diffeomorphic self-mappings of
M, let Dy be the group consisting of all f € D such that f is homotopic to
the identity, and let D, be the group of orientation preserving diffeomorphic

self-mappings of M. With all of this in mind, we can now state the definitions.

Definition 5.4.1. The Teichmiiller space of the surface M is defined by the
quotient

T(M) = M/D,.

Definition 5.4.2. The moduli space of the surface M is defined by the quotient

R(M) = M/D,.

Observe that since we are dealing with surfaces, we could have defined
T(M) and R(M) in terms of conformal classes—simply replace M by G/P,
where G is the space of all Riemannian metrics on M and P is the group of
conformal transformations.

If we pursue this approach with conformal classes and now let M be a
compact, orientable, n-dimensional Riemannian manifold, we can make the

following definitions.

Definition 5.4.3. For the manifold M, the Teichmiiller space of conformal

structures is defined by the quotient

T(M) = gé—f.
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Definition 5.4.4. For the manifold M, the Riemannian moduli space of con-

formal structures is defined by the quotient

o =97

Obviously, in dimension n = 2, we have T (M) = T(M) and R(M) =
R(M).

A brief observation made in [CGJP1] provides us with one reason why the
spaces T (M) and R(M) are of interest; namely, that the conformal invariants
discussed earlier (nodal sets, negative eigenvalues, etc) can be thought of as
functions on either 7 (M) or R(M).

The following theorem from [GHJL] provides us with another reason to be

interested in T (M).

Theorem 5.4.5. Let M be a closed, n-dimensional manifold. Then for a
generic smooth metric g on M, zero is not an eigenvalue of the conformal

Laplacian P 4.

Let us clarify the meaning of this theorem and hence show the connection
with 7(M). First, observe that if g is a metric such that P, , has zero as an
eigenvalue, then for any g € [g], P15 also has zero as an eigenvalue—by the
transformation equation 4.1. So, we must change conformal classes if we hope
to find metrics for which P, , does not have zero as an eigenvalue; this gives
us the first indication that working with 7 (M) could be useful.

Continuing in this direction, let Gy be the set of all metrics on M such that
for g € Gy, zero is an eigenvalue of P, with a multiplicity of at least one.

Then let

() = ST
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So, the true meaning of Theorem 5.4.5 is the following theorem, which is

proved in [GHJL].

Theorem 5.4.6. The complement T of the set To(M) in T (M) is open and
dense in T (M).
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CHAPTER 6
Products of Surfaces and Few Negative Eigenvalues

In this chapter, we consider the conformal Laplacian P, on a Riemannian
manifold (M, g), and seek to understand its smallest number of negative eigen-
values. We restrict ourselves to cases where M is a product of two or more

Riemann surfaces.

6.1 Background

Using [Lee2|, we start by describing the product of two arbitrary Rieman-
nian manfiolds (Mj, g1) and (Ms, g2). The natural Riemannian metric for the
product manifold M; x M, is given by the product metric g = g1 & go. The

product metric is defined by

9(p1,p2) ((vh UQ): (wla w2)) = gl‘pl (Ula wl) + 92|p2 (UQ7 w2)

where (vy,v2), (wy,we) € T, (M) & T,,(Ms), which can be identified with
Tpy po) (M1 x My). With local coordinates (1, ..., ;) for My and (41, ..., Tngm),
we have coordinates (21, ..., Z,1m) for My x M,. Locally, the product metric

is then given by g = g;; dz'dz?, where (g;;) is the matrix

(91)as 0
0 (g2>cd

(gij) =

. The indices a, b run from 1 to n, and the indices ¢, d run from n+1 to n+m.
Let us now calculate the scalar curvature of this product metric. We start

with the well-known fact that the (1, 3)-Riemann curvature tensor in this case
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is given by

R<X7 Y>Z = (R1(X1,Y1)Z1,R2(X2,Y2)Z2)7

where X = (X1, X5), X; € X(M;), and likewise for Y and Z. The (0,4)-

Riemann curvature tensor is then

R(X,Y, Z,W) = (R(X,Y)Z, W),
= (R1(X1,Y1)Z1, Wh)g, + (Ra(X2, Y2) Zo, Wa)y,

= Rm1<X15 }/17 Zh Wl) + Rm2(X27 Y'27 Z27 WQ)

The components of the Ricci curvature (Ric);; = g™ (Rm)y;; are then given
by
Ricy)g 0
(RIC)” = ( 1) ’
0 (RiCQ)Cd

So, the scalar curvature is

R = gij (RIC)Z]
= 91" (Ric1)ap + 957 (Rica)cq

— Ry + Re. (6.1)

6.2 Product of £ Riemann surfaces

We denote by M(7y1,72,-..,7) the 2k-dimensional Riemannian manifold
of the form M = S} x Sy x ... x Si, where S; are orientable Riemann surfaces
of genus ; > 2. We put a hyperbolic metric g; on 5}, and equip M with the
metric g = g1 D g2 D ... D Gr.

Each hyperbolic metric g; is normalized so that its sectional curvature is
—1. The scalar curvature is twice the sectional curvature and so R; = —2. By

applying equation (6.1) k£ — 1 times, we find that the scalar curvature of the
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metric g is R = —2k. So, the conformal Laplacian of g takes the form

n—2

By =8+ gy
B k(k — 1)
B AT

Let \j;, @ = 0,1,2,... denote the eigenvalues of A, on Sj; note that the
eigenvalue A,y = 0 corresponds to the constant eigenfunction. It is well-known
that the eigenvalues of A, are of the form

iy, ip = Z )\j,ij- (6-2)

j=1
Accordingly, the eigenvalues of P, are then of the form
k(k—1)

j=1
and the number of negative eigenvalues of P, is equal to
. . k(k—1)
e Sy, < e b 6.3
#{(217 7Zk) M1,...,k < 2% — 1 } ( )

k(k—1)
2k—1

We remark that if we let i; = 0 for all j = 1,...,k, then pp_ o =0 <

so P, has at least one negative eigenvalue.

We now prove the following general proposition.

Proposition 6.2.1. The manifold M (v, ...,v) does not admit any metrics

of positive or zero constant scalar curvature.

The author and Professor D. Jakobson would like to thank Professor C.
LeBrun for communicating the following proof, and Professor V. Apostolov

for useful conversations.
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Proof. We first remark that there exist no metrics of positive curvature on
M(v1,...,7). We observe that M = M (~,...,7) is a spin manifold that
is enlargeable, in the sense of [GL], i.e. for every ¢ > 0 there exists a finite
covering of M which is e-hyperspherical and spin. Indeed, it is proven in [GL)]
that every compact hyperbolic manifold is enlargeable (see pg. 210 of [GL]
or Corollary 3.9 of [GL] and the following discussion); and that the product
of enlargeable manifolds is also enlargeable (see [GL], pg. 210), proving the
statement for M. Hence, by [GL] (Theorem A), M does not admit a metric
of positive scalar curvature, and any metric of nonnegative scalar curvature
on M must be flat—in particular, it must be Ricci-flat. Finally, the method
in [Boch| shows that for any Ricci-flat metric g, any harmonic 1-form must
be parallel with respect to g, implying b (M) < dim(M). But we observe,
since v; > 2 for all j, that by (M) = 2(2?21 v;) > 2k = dim(M), which is
a contradiction, proving that M does not admit any metrics of zero scalar

curvature. OJ

6.3 Few negative eigenvalues of the conformal Laplacian

It is well-known (see [CGJP1], [CGJP2|, [El]) that for a compact mani-
fold of dimension n > 3, the number of negative eigenvalues of P, cannot be
uniformly bounded from above, if we are allowed to vary the conformal class.
Accordingly, an interesting topological invariant seems to be the smallest num-
ber of negative eigenvalues of P, on M. It will, of course, be zero if M admits
metrics of non-negative scalar curvature. To study this, we make the following

definition.
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Definition 6.3.1. Assume that a manifold M of dimension n > 3 does not
admit metrics of positive or zero scalar curvature. We denote by MinNeg(M)

the smallest number of negative eigenvalues of the conformal Laplacian.

By Proposition 6.2.1, any product M = M(v1,...,7) does not admit
metrics of positive or zero scalar curvature, so MinNeg(M) > 1 is well-defined.
Now, denote by A(7) the supremum of A\;(Aj) over all hyperbolic metrics

h on a surface S of genus v > 2. Let S; have genus ;.

Theorem 6.3.2. Assume that A(y) > kz(],:,j). Let M = (v,k), denote the

k-fold product of Riemann surfaces of genus . Then
MinNeg(M (v, k)) = 1.

Proof. Equip S, with the metric g; where A; attains the supremum A(7y).
According to (6.3), negative eigenvalues of P, are in bijection with (i1, ..., i)

such that p;,, ;, < k(k—1)/(2k — 1). By assumption, this can only happen

-----

when 0 = 4; = ... = i, and so P, has only one negative eigenvalue. On the

other hand, MinNeg(M) > 1, finishing the proof. O

Proposition 6.3.3. For2 <k <8, MinNeg(M(2,k)) = 1.

Proof. 1t is known ([SU]) that the Bolza surface provides A(2) ~ 3.8. We next
remark that f(x) := z(z—1)/(2x—1) is an increasing function for z > 1, since
f'(x) = (22® — 22 + 1)/(2x — 1)* > 0. Accordingly, the sequence f(k),k > 2
is monotone increasing (i.e. f(2) < f(3) < ...). So, to apply Theorem 6.3.2,
we want to find the largest k such that f(k) < 3.8. An easy calculation shows
that f(8) ~ 3.73 < 3.8, while f(9) ~ 4.24 > 3.8. Therefore, Theorem 6.3.2

applies for y=2and 2 < k < 8. O
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It is clear that we can obtain upper bounds on MinNeg(M (2, k)) for k > 8
from precise values of eigenvalues of the hyperbolic Laplacian on the Bolza

surface.

The results in this chapter establish for the first time the value of MinNeg(M)
for certian product manifolds M. A reasonable question is whether MinNeg
is always attained on such manifolds by a product of hyperbolic metrics on
the corresponding Riemann surfaces. If true, then very interesting recent re-
sults about the spectrum of the hyperbolic Laplacian on Riemann surfaces
in the large genus limit (see [LS, Monk]) would provide a lot of information
on MinNeg for product manifolds; we discuss a possible consequence in the

Conclusion.
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CHAPTER 7
The Weyl Tensor

In Chapter 5, we discussed conformally invariant maps from manifolds
(possibly with a subset removed) into projective spaces, obtained by using
eigenfunctions in the kernel of a GJMS operator as projective coordinates.
The key observation was that conformal covariance of the operator implies
an easy transformation law for eigenfunctions in the kernel under a conformal
change of metric.

One can then notice that similar transformation laws exist for the compo-
nents of the Weyl tensor. Given this, it seems natural to extend the methods
seen in Chapter 5 to the setting of the Weyl tensor, and thus to obtain con-

formal invariants from ratios of the components of the Weyl tensor.

Our discussion on the Weyl tensor begins in this chapter with a survey
of basic results, including how it transforms under a conformal change of
the metric. Since these results apply in both the Riemannian and pseudo-
Riemannian setting, we start with a section on pseudo-Riemannian metrics.

Throughout this chapter, we follow [Lee2].

7.1 Pseudo-Riemannian metrics
Let V be a finite dimensional vector space, and let ¢ be a symmetric co-
variant 2-tensor on V' (i.e. a symmetric bilinear form). We can then define a

linear map ¢: V — V* by
G(v)(w) = q(v,w) for all v,w € V.
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If ¢ is an isomorphism, then we say that q is nondegenerate. This is equivalent
to saying that for every nonzero v € V| there is a w € V such that ¢(v, w) # 0.
Yet another equivalent statement is that if ¢ = g;;n'n’ where {n'} is some basis
of V*, then the matrix (g;;) is invertible.

A nondegenerate symmetric bilinear form on a finite dimensional vector
space V is referred to as a scalar product. In the case where the scalar product
is positive definite, it is referred to as an inner product.

Now, suppose (V, q) is an n-dimensional scalar product space. As shown in
[Lee2] (Corollarly 2.64), there is a basis {3°} of V* such that ¢ can be written

as
G= (B et (B = (B = e = (B
where r and s are nonnegative integers which satisfy r +s = n. The nonnega-

tive integers r and s are actually independent of the choice of basis. Together,

they form an ordered pair (7, s) which is referred to as the signature of gq.

Definition 7.1.1. Let M be a smooth manifold. A pseudo-Riemannian metric
on M is a smooth, symmetric 2-tensor field g that is nondegenerate at each

point of M and has the same signature everywhere.

The pseudo-Euclidean space of signature (r, s), denoted by R provides
us with a simple example of pseudo-Riemannian manifolds. Specifically, this
space is the manifold R"** with coordinates (z1, ..., 2, t1,...,ts) and pseudo-

Riemannian metric ¢ defined by

¢ = dat 4 Fda? — dt? — - —dt

(1) is especially well-known; it is called the

The pseudo-Euclidean space R
(n + 1)-dimensional Minkowski space and its metric is called the Minkowski

metric.
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The Minkowski metric belongs to an important class of pseudo-Riemannian
metrics known as the Lorentz metrics; these pseudo-Riemannian metrics are
characterized by having a signature of (r,1) (or (1,7) in some literature).
Note that Riemannian metrics constitute another important class of pseudo-

Riemannian metrics.

7.2 Decomposition of the Riemann curvature tensor

In this section, we define the Weyl tensor and show that it is one of the
terms in the decomposition of the (0, 4)-Riemann curvature tensor Rm. Before
this is done, we must introduce the Kulkarni-Nomizu product.

Let R(V*) denote the vector space of all covariant 4-tensors on the vector
space V' which have the same symmetries as the (0,4)-Riemann curvature

tensor; that is, such a tensor 7" should satisfy:

(i) T(w,x,y,z) = =T(z,w,y, z)
(i) T(w,z,y,2) = =T (w,z,2,y)
(il) T(w,z,y,2) =T(y, z,w,x)
(iv) T(w,z,y,2) + T(z,y,w,2) + T(y,w,z,z) = 0.

Let (V,g) be a scalar product space, and let ¥?(V*) denote the space of
symmetric 2-tensors on V. The trace of a covariant 2-tensor h with respect
to g is given by tr,(h) = g“h;;. In the case of a tensor from R(V*), we let
try : R(V*) — X2(V*) be the trace, with respect to g, on the first and last

indices. Given this, we see that Ric = try,Rm.

Definition 7.2.1. Given h,k € X*(V*), their Kulkarni-Nomizu product is a

covariant 4-tensor denoted as h @) k and defined by

rOk(w, z,y, z) = h(w, 2)k(z,y)+h(z, y)k(w, 2)—h(w, y)k(x, z)—h(x, 2)k(w, y).
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The following lemma provides us with some useful properties of the Kulkarni-

Nomizu product.

Lemma 7.2.2. Let (V,g) be an n-dimensional scalar product space. Let h,k €
¥2(V*) and let T € R(V*).
(1) h®k € R(V*)
(1)) hQk=k®h
(iii) try(h @ g) = (n — 2)h + (tryh)g.
() trg(g @® g) = 2(n —1)g.
(v) (T, h @ g)y = 4{tryT, h),.

Proposition 7.2.3. Let (V,g) be an n-dimensional scalar product space with

n > 3. Define a linear map G : X*(V*) — R(V*) by

G(h):niz(h—%:—ﬂ)@ D g

Then G s a right inverse for try, and its image is the orthogonal complement

of the kernel of try in R(V™).

Proof. Let h € ¥?(V*). Then, using (iii) and (iv) of Lemma 7.2.2, we have

(Gl = s (1 B 9) = 5 (9 )
1 trgh _—
= =) ((n —2)h + (tryh)g — m2( 1)g)

which shows that G is indeed a right inverse for tr,. Given this, we see that
G must be injective and tr, must be surjective; this, in turn, reveals that
dim Im (G) = dimker(tr,)*. Furthermore, if T € R(V*) is such that tr,7 = 0,
then an application of (v) of Lemma 7.2.2 results in (T', G(h)), = 0. This, plus

the dimensionality argument, leads us to conclude that Im(G) = ker(tr,)*. O
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Definition 7.2.4. Let g be either a Riemannian or pseudo-Riemannian met-
ric. The Schouten tensor (or, Schouten-Weyl tensor) of g is a symmetric

2-tensor field defined by:

1 , R
S_n—2<R1C_2(n—1)g)’

where Ric is the Ricci curvature and R is the scalar curvature, both defined

with respect to g.

Definition 7.2.5. Let g be either a Riemannian or pseudo-Riemannian met-

ric. The Weyl tensor of g is the tensor from R(V*) defined as

W=Rm-S®Ngyg

1
Ric® g +

R
= fm = 2(n —1)(n — 2)

gByg.

Proposition 7.2.6. For every Riemannian or pseudo-Riemannian manifold

(M, g) of dimension n > 3, the trace of the Weyl tensor is zero, and
Rm=W+S®g

is the orthogonal decomposition of Rm corresponding to R(V*) = ker(tr,) @

ker(tr,)*.

Proof. This follows easily by taking h = Ric in Proposition 7.2.3. Indeed,
doing this shows that G(Ric) = S ® g and thus S ® g € ker(tr,)*. Then,

using the fact Ric = tr,Rm and that the map G is a right inverse for try, we
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have

trgW = trgRm — tr (S @ g)
= trgRm — try(G(tryRm))

= trgRm — tryRm = 0,

which shows that the Weyl tensor is traceless and hence W € ker(tr,). ]

7.3 Conformal transformation of the Weyl tensor

Proposition 7.3.1. Let (M, g) be an n-dimensional (n > 3) Riemannian or
pseudo-Riemannian manifold (with or without boundary). Under a conformal
change of the metric g = e* g, where f € C*(M), the Weyl tensor transforms
according to

W =e2Ww. (7.1)

Proof. Under a conformal change § = €*/g, the (0,4)-Riemann curvature ten-
sor Rm, the Ricci curvature Ric, and the scalar curvature R transform in the

following way (see [Lee2], Theorem 7.30):

i = (R~ (V) @+ (VS V) @9~ JIV/Pla ©9) )

Ric = Ric — (n — 2)(V2f) + (n = 2)(Vf @ Vf) + (Af — (n — 2)[V f*)g,

R=e(R+2(n—1)Af —(n—1)(n—2)|Vf]?).

With these transformations, the proof of the proposition is just a couple of

simple calculations. First, we observe how the Schouten tensor S transforms
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under this conformal change:

= 1 (= R
S:n—2<RIC_2(n—1)g)
A A
=S =V +(Vf @ V) + g [ViPg - Log+ SV

— -V 4+ (Vf@ V) - SV

From this, we see that the last three terms of S Dg=e* (§ @ g) are identical

to the last three terms of Rm. Thus, we have
W=Rm—-SQ®j=e’W.

]

Remark 7.3.2. Given the above proposition, we define the (1, 3)-Weyl tensor W
by defining its components as Wijkl = glmWijkm. Now consider what happens

to W under a conformal change of the metric § = e¢*/¢:

W'jkl = glmWijkm = 6_2fglm62fwijkm = szkl'

1,

Thus, the (1,3)-Weyl tensor W is conformally invariant.

There is a useful corollary to be obtained from Propositon 7.3.1, but before

we state and prove it, we shall need the following definition and theorem.

Definition 7.3.3. A Riemannian manifold is flat if it is locally isometric to
Euclidean space. That is, every point on the manifold has a neighbourhood

that is isometric to an open set in R™ with the Euclidean metric.

Theorem 7.3.4. A Riemannian or pseudo-Riemannian manifold is flat if and

only if its (0,4)-Riemann curvature tensor vanishes identically.
Now we present the corollary from Propositon 7.3.1.
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Corollary 7.3.5. Let (M,g) be an n-dimensional (n > 3) Riemannian or
pseudo-Riemannian manifold. If g is locally conformally flat, then its Weyl

tensor vanishes identically.

Proof. 1f (M, g) is a Riemannian (pseudo-Riemannian) manifold, let gy denote
the flat Riemannian (pseudo-Riemannian) metric on R™. Now suppose (M, g)
is locally conformally flat. This means that for an arbitrary point p € M,
there is a neighbourhood U and a diffeomorphism ¥ : U — R"” such that
the pullback § = U*g, satisfies § = e¢*/ g for some f € C*°(M). Then, by
Theorem 7.3.4, the (0, 4)-Riemann curvature tensor of g is zero, meaning the
Weyl tensor of g is zero. Then, from (7.1), we conclude that the Weyl tensor

of ¢ must also be zero. O
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CHAPTER 8
The Weyl Tensor and Lie Groups

In this chapter, we continue the survey given in Chapter 7 but now special-
ize to the Weyl tensor for left-invariant metrics and bi-invariant metrics on Lie
groups. In the former case, one finds that the components of the Weyl tensor
may be written in terms of the structure constants. In the latter case, curva-
ture formulas become pleasant and, as a consequence, so does the formula for

the Weyl tensor.

8.1 Background

For this section, we follow [Leel| and [Lee2].
8.1.1 Lie groups

Definition 8.1.1. A Lie group is a smooth manifold G, without boundary,
that is also a group with the property that the multiplication map m : G x
G — G and the inversion map i : G — G are both smooth. Note that the

multiplication map m and the inversion map ¢ are given, respectively, by

m(a,h) = ah, i(a) =a ',

Definition 8.1.2. Let G be a Lie group. Given any a € G, we can define

two maps: the left translation map L, : G — G and the right translation map
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R, : G — G, respectively defined by

Lo(h) = ah, R.(h) = ha.

Remark 8.1.3. In fact, L, : G — G is a diffeomorphism because it is smooth

and has the smooth inverse L,-1. Similarly, R, : G — G is a diffeomorphism.

Definition 8.1.4. Let GG be a Lie group. A Riemannian metric g on G is left-
invariantif L g = g for all a € G (i.e. it is invariant under all left translations).
Similarly, g is right-invariant if R} g = g for all a € G. If g is both left-invariant

and right-invariant, it is said to be bi-invariant.

8.1.2 Lie algebras

Definition 8.1.5. A Lie algebra, over R, is a real vector space g equipped

with a map (typically called the bracket) that is of the form

gxg—9

(X,)Y) — [X,Y]

and, for any X,Y, Z € g, satisfies the following:

(i) Bilinearity: For any a,b € R,

[aX +bY, Z] = a|X, Z] + b]Y, Z]

[Z,aX +bY] =a|Z, X]|+b]Z,Y].

(ii) Antisymmetry:
[Xa Y] = _[Y> X]
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(iii) Jacobi Identity:

(X Y. Z]| + [V, [Z, X]| + [Z, [ X, Y]] = 0.

Let us describe a well-known Lie algebra. Start by considering X(M), the
space of C* vector fields on a C*° manifold M. Given any X,Y € X(M),

their Lie bracket [X,Y] is defined by
X,Y]f = XY f - VX,

for f € C*(M). Lemma 8.25 and Proposition 8.28 of [Leel| shows, respec-
tively, that [X,Y] € X(M) and that the Lie bracket satisfies the three prop-
erties described in Definition 8.1.5. Thus, X(M) with the Lie bracket is a Lie

algebra.

For our purposes, we need to understand the Lie algebra that naturally

comes with a given Lie group. To start, consider the following definition.

Definition 8.1.6. Let GG be a Lie group. A vector field X on G is left-invariant
if (L,)«X = X for all a € G. Similarly, X is right-invariant if (R,).X = X

for all a € G.

For a Lie group G, it turns out that the space of smooth, left-invariant
vector fields is closed under the Lie bracket ([Leel], Proposition 8.33). Thus,
the space of these vector fields together with the Lie bracket determines a Lie
algebra. This Lie algebra is known as the Lie algebra of G and is denoted by
Lie(G).
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8.1.3 The adjoint representation

Definition 8.1.7. If G and H are Lie groups, a Lie group homomorphism be-
tween them is a smooth map ¢ : G — H which is also a group homomorphism.
If g and b are Lie algebras, a Lie algebra homomorphism between them is a

linear map 1 : g — b which preserves brackets (i.e. ¥[X,Y] = [¢ X, ¢¥Y]).

For a finite dimensional real or complex vector space V', let GL(V') denote
the group of invertible linear maps from V' to itself. Note that this group is
isomorphic to either GL(n,R) or GL(n,C), where n = dim V/, and thus it is a
Lie group.

Similarly, for a finite dimensional real or complex vector space V', let gl(V')
denote the Lie algebra of linear maps from V' to itself (note that the bracket
for this Lie algebra is defined by [A, B] = Ao B — Bo A).

Definition 8.1.8. For a Lie group G, a finite dimensional representation of
G is a Lie group homomorphism ¢ : G — GL(V), for some V. For a finite
dimensional Lie algebra g, a finite dimensional representation of g is a Lie

algebra homomorphism ¢ : g — gl(V'), for some V.

With these definitions, we can now define what is known as the adjoint
representation. To start, let G be a Lie group and g be its Lie algebra. For
each g € G, we may obtain a Lie group homomorphism C, : G — G defined
by Cy(z) = grg~'. From Theorem 8.44 of [Leel], we know that each Lie
group homomorphism induces a Lie algebra homomorphism; the Lie algebra
homomorphism induced by C, is denoted by Ad(g) = (C,). : g — g.

Observe that because Cj is a Lie group homomorphism for each g € G, we
have Cy,4, = Cy, 0 Cy, and, as a consequence, Ad(g192) = Ad(g1) o Ad(gz), for

any ¢gi,9, € G. From this, we see that Ad(g) € GL(g), where its inverse is
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given by Ad(g~'). Additionally, we now see that Ad : G — GL(g) is a group
homomorphism. Upon showing that Ad is smooth, the following proposition

will have been proven.

Proposition 8.1.9. For a Lie group G with Lie algebra g, the map
Ad: G — GL(g)

is a Lie group representation, known as the adjoint representation of G.

We can also obtain an adjoint representation for Lie algebras. Consider
a finite dimensional Lie algebra g. For each X € g, we can define a map

ad(X): g — g by ad(X)Y = [X,Y].

Proposition 8.1.10. For any Lie algebra g, the map ad : g — gl(g) is a Lie

algebra representation, known as the adjoint representation of g.

Theorem 8.1.11. Let G be a Lie group, g be its Lie algebra, and Ad: G —
GL(g) be the adjoint representation of G. The induced Lie algebra represen-

tation Ad, : g — gl(g) is given by Ad, = ad.

8.2 Weyl tensor of a left-invariant metric

For this section, we primarily follow [Mil].

For a Lie group G, there is a bijection between left-invariant Riemannian
metrics on G and inner products on Lie(G) (see [Lee2], Lemma 3.10). When
there is no risk of confusion, the inner product corresponding to a left-invariant
Riemmanian metric g will be simply denoted by (-, ).

Lemma 3.10 from [Lee2] also tells us that a Riemannian metric g on a Lie
group G is left-invariant if and only if for all XY € Lie(G), the function

g(X,Y) is constant on G. As a consequence, for any vector field Z, we have
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Z(X,Y) = 0. Knowing this, consider Koszul’s formula:

(VxY,Z) = %(X(Y, Z)+Y{(Z,X) - Z(X,Y)

- <Y7 [X7 Z]) - <Za D/a X]) + <X7 [Z’ Y]>)

Applying this formula to a Lie group with a left-invariant metric, and using

left-invariant vector fields X, Y, and Z, the formula reduces to

<VXY7 Z) = %(_<Y> [X7 Z]) - <Z’ [YvXD + <X> [Z? Y]>)

= (XY].2) - (V2L X) 4 (Z,X], 7). (81)

Before continuing with this formula, we must now define the structure con-

stants.

Definition 8.2.1. Let G be an n-dimensional Lie group with a left-invariant
metric g. Let ey, ..., e, be a basis for the vector space Lie(G) that is orthonor-
mal with respect to the inner product associated to g. Then the structure

constants o, are defined by
[ei, €5] = Z QijkCk
k
< Qi = <[6i, 6]'], 6k>.

Together, the structure constants form an n x n x n array which describes the

Lie algebra’s structure.
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We now return to equation (8.1) but with the orthonormal basis described

in the above definition. This results in the following expression:

(Veesen) = 5({lew-esl ) = e exlsed + {lews el )
1

= §(Oéijk — ki + Qkij)
1
= Ve = Z 5( ijk = Qjki + Qi) ek
k

Ultimately, this allows us to express the sectional curvature entirely in
terms of the structure constants. To see this, we show how the sectional cur-
vature of a plane section with orthonormal basis ey, e5 is calculated. Recalling
Definition 2.1.20, and skipping over the tedious calculations, we obtain the

following formula:

K(eh 62) = —<R(€1, 62)61, €2>

= <V[el,62]€1 - velvegel + V62V€1€17 €2>

1
= Z (5%%(—041% + aop1 + ak12)
k
1
- 1(041% — Qop1 + Qp12) (Qaok + Qogr — Q12) — Q11 Qg2

Now, further recall Remark 2.3.3, which says that the scalar curvature R

can be written as

R=> K(ee;).
i#]
From this formula, we see that the scalar curvature may also be written entirely

in terms of the structure constants.
We can also express the components of the (0,4)-Riemann curvature tensor
Rm in terms of the structure constants and, as a consequence, we can do the

same for the components of the Ricci curvature—by using the other formula
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in Remark 2.3.3:
Ric(u,v) = Z Rm(e;, u, v, €;)
i=1

While these expressions are somewhat impractical, they provide us with the
valuable fact that, for a Lie group with a left-invariant metric, the components

of the Weyl tensor may be written in terms of the structure constants.

8.3 Weyl tensor of a bi-invariant metric

For this section, we continue to follow [Mil].

First, we must recall what the adjoint of a linear transformation is. If L is
a linear transformation between metric spaces, then its adjoint L* is defined
by

(Lz,y) = (x, L"y).

Additionally, L is said to be skew-adjoint if L* = — L, meaning

(Lx,y) = —(z, Ly).

We now state a lemma from [Mil] which provides us with a condition for

determining if a left-invariant metric on a connected Lie group is bi-invariant.

Lemma 8.3.1. Let G be a connected Lie group. A left-invariant metric on G

is bi-invariant if and only if the linear transformation ad(X) is skew-adjoint

for every X € Lie(G).

So, for the rest of this section, we assume that G is a connected Lie group
and that g is a bi-invariant metric on G with corresponding inner product (-, -)

on Lie(G). Furthermore, all vector fields are assumed to belong to Lie(G).
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As a result of these assumptions and the above lemma, ad(X) is skew-

adjoint for all X € Lie(G), which means we have
(ad(X)Y, Z) = —(Y,ad(X)Z).
Recalling that ad(X)Y = [X, Y], we see that this is equivalent to

<[X’YLZ> = _<Y7 [X7 Z])

& (Y, X, 2) = (X, 2]) (32)
Applying this to equation (8.1), we get
(VY. 2) = S({(X, Y], 2) [V, 2], X) + {[Z,X],Y))
= SUX, Y], 2) — (¥, [2, X)) + (12, X], )
= S{X.¥1,2),

and so,

1 1
Vx=zad(X) & Vy¥ = [XY] (8.3)

With (8.3), we can obtain simple formulas for the curvatures. Starting

with the (1,3)-Riemann curvature tensor R, we have

R(X,Y)Z =VxVyZ - VyVxZ — VixyZ

1 1 1
= X 2 - IV X Z)) - X, YD, Z]
= —4l1X.¥),

— R(X,Y) = —iad([X, YY),

Note that we used the Jacobi identity to go from the second line to the third
line in the calculation of R(X,Y)Z.
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The (0,4)-Riemann curvature tensor is then

Rm(X,Y,Z,W) = (R(X,Y)Z, W)
= —3(1%,Y),2), W)

= _}qu? Y]’ [27 W]>7

where we used (8.2), a consequence of skew-adjointness, to go from the second
line to the third line.
It is now a simple matter to obtain the sectional curvature of a plane

section with orthonormal basis u, v:

K(u,v) = —Rm(u,v,u,v)

1
= un’ U]a [u7 U])

Before obtaining an expression for the Ricci curvature, we consider the

following definition.

Definition 8.3.2. Let g be a Lie algebra, either over R or C. The Killing

form B of g is the symmetric, bilinear form defined by
B(z,y) = tr(ad(z) o ad(y)),
where z,y € g.

Now, recall that the Ricci curvature is defined as the trace of

7 R(ZX)Y = —}L[[z, X1,Y]

= v [x.2]

- —}Lad(Y)(ad(X)Z)

- _}l(ad(Y) oad(X))Z,
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and so

Ric(X,Y) = t1(Z — R(Z, X)Y)
::——itr(ad(}/)c>ad()())
= —itr(ad(X) oad(Y))

1
=——B(X,)Y
4 ( ) )

We are now in a position to obtain an expression for the Weyl tensor W

of a bi-invariant metric g on a connected Lie group G:

W = Rm —

Ric® g +

R
S —1)n—2)7 09

B®y(X,Y,Z,K)

n—2
— W(X,Y,Z,K) = —%([X, Y], [Z, K]) + in—2)
tryB

TS Dm gy OIXT 2 K)
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CHAPTER 9
The Weyl Tensor and Degeneration of a Conformal Factor

In this chapter, we consider a 4-dimensional Riemannian manifold that
is formed from taking the product of two surfaces, where the metric on one
surface is multiplied by a conformal factor. We compute the ratios of the
components of the Weyl tensor for this product manifold, and then discuss the
behaviour of these ratios as the conformal factor degenerates at a point. Note

that the components of the (1, 3)-Riemann curvature tensor were computed in

Maple.

9.1 The first manifold

The first factor in our product will be the 2-dimensional Riemannian man-
ifold (M, h) where the metric h is hyperbolic and, in local coordinates (x,y),
is given by

4

SRR

4
dz® + dy*) = E(dazz + dy?),

where a = a(z,y) := (1 — 2% — y?)%
The nonzero components of its (1, 3)-Riemann curvature tensor are

4
1 2
Ro12” = Ria1” = p

4
1 2
Rize = Ron” = u
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For the (0, 4)-Riemann curvature tensor Rm, recall that (Rm);ju = Riju =

himRijk™, and so its nonzero components are

16

Rai21 = Riz12 = 2
16
Ri221 = Rar12 = 2

The nonzero components of its Ricci curvature (Ric);; = Rkijk are
. ) 4
(RIC)H = (RIC)QQ = —a

The scalar curvature is then

. 4 4

9.2 The second manifold
The second factor in our product will be the 2-dimensional Riemannian

manifold (V, k) where the metric k, in local coordinates (z,w), is given by

4e2f
(1—22— w2)2(

2 2 4e! 2 2 2f 7.
k= dz* + dw*) = —(dz* + dw*) = ™k,

where p = p(z,w) := (1—22—w?)?, k is the usual hyperbolic metric of the same
form as the metric h for the first manifold, and f := f(z,w) is an arbitrary
smooth function defined on N, that is, f € C>(N).

Now, given that (N, k) will be the second factor in our product, we will
use 3, 4 for our indices as opposed to 1, 2. With this in mind, the nonzero

components of its (1, 3)-Riemann curvature tensor are

ww T 4 + 2z
R4343 — R3434 — pf ; pf

_pfww —4— pfzz
p )

3 4
R344 = R433 =
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where the notation f,, means f,, = g—; f(z,w).

The nonzero components of its (0,4)-Riemann curvature tensor are

46X (pfu + 4+ pf-:)
2
4€2f<_pfww —4 — prZ)
p2

Razaz = Raaza =

R3443 = R4334 =

The nonzero components of its Ricci curvature are

_pfww —4 - pfzz

(RiC)gg = (RiC)44 = P

The scalar curvature is

—2f _ A —2f _ 4 —
R:e p( pfww 4 pfzz)+6 P< pfww 4 pfzz)
4 p 4 p
e (pfow 4+ pfe)
- 2
N (A WP
22 <822 + ow? J -2
=2(Ayf —e )

= 2672f(Al~€f - 1)7

where Ay = e 2/ A; is the Laplace-Beltrami operator for (N, k).

9.3 The product manifold

We now consider the product of the two previously described Riemannian
manifolds; that is, we consider the manifold M x N with the metric g =h @k
which, in local coordinates (x,y, z, w), is given by

4 4e2f
g = —(dz* + dy?) + e—(dz2 + dw?).
a p
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Recall that by equation 6.1, the scalar curvature is the sum of each factor’s

scalar curvature, and so
R =2 (Af — e —1).

Regarding the (1,3)-Riemann curvature tensor R;;™, its components are
equal to those for (M, h) when the indices i, j, [, m take on values 1 or 2, equal
to those for (N, k) when they take on 3 or 4, and equal to zero in all other
cases; obviously, the same is true for the components of the (0,4)-Riemann
curvature tensor R;jim,. Similarly, the components of the Ricci tensor (Ric);;
are equal to those for (M, h) when i, j take on values 1 or 2 and equal to those
for (N, k) when they take on 3 or 4.

Now, to compute the Weyl tensor we will need to also compute Ric (M) ¢

and g @ g. The components of Ric @) g are given by

(Ric @ 9)ijim = (Ric)imgji + (Ric)jigim — (Ric)ugjm — (Ric)jmgir-
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So, we have

) . 32
(RlC O 9)2121 = (RIC ® 9)1212 = E

i . 32
(Ric @ g)1221 = (Ric B g)2112 = )

8¢ (p funs + 4+ pf)
Pz
862f(pfww + 4 + pfzz)
2
(Ric® g)1313 = (Ric @ ¢)3131 = (Ric ® ¢)1414 = (Ric @) 9) 4141

= (Ric ® ¢)2323 = (Ric ® ¢)3232 = (Ric @) ¢)2424
_ 16e* +4pfuw + 4pfs.. + 16
= (RIC O 9)4242 = pf ap rf

(Ric ® g)1331 = (Ric @ ¢)3113 = (Ric ® ¢)14a1 = (Ric @ 9)a114

= (Ric @ g)3223 = (Ric ® g)2332 = (Ric @ 9)2442

162 + 4pfow +4pfs. + 16
= (Ric @ g)a224 = — o pfap+ ples )

(Ric @ g)asaz = (Ric @ g)3434 =

(Ric ® g)a334 = (Ric @ g)3a43 = —

Calculating the components of g®) g follows the same procedure and yields

the following:
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(9D 9)2121 = (gD 9)1212 = —§

32
(9 O 9)1221 = (9 » 9)2112 = pel
32¢4f
(9@ g)asss = (9 O 9)3a34 = — e
32¢4f

(9D g)asza = (gD g)3aaz = 2

(G® 9313 = (gD g)3131 = (9D 9)1414 = (9 O 9)a1a1
= (gD g)2323 = (gD 9)3232 = (9 O 9)2424

32¢2f
= (9 O 9)4242 = —
ap

(9D gz = (gD g)3113 = (9 DO g)1aa1 = (9 O g)a114

= (gD g)3223 = (9D g)2332 = (9 O g)2442

32¢2f
= (9D g)az2a = :
ap

Finally, we can now calculate the Weyl tensor W which takes the following

form for dimension n = 4:

W = Rm —

Ric @ g + gDy

R
n—2 2(n—1)(n—2)

L. R
—Rm—ERlc@g—l—Eg@g
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So, the components of W for our product manifold (M x N, g) are

8
Watst = Wit = —— R
2121 1212 32
8
W =W =—R
1221 2112 = 33
getf
Wists = Wasgs = — ——
4343 3434 307
Retf
Wanaz = Wagga = -5 R
3p
Wisiz = Waig1 = Wisia = Waisr = Wasaz = Wiago
4e2f
= Wasos = Wagao = 3—R
ap
Wizgr = Wai13 = Wiaar = Wiia = Wazzg = Wigas
42!
= Wasao = Wapos = —/—R
3ap

9.4 Ratios of the Weyl tensor and degeneration at a point
Let us now determine the ratios of the components of the Weyl tensor.
The trivial ratios which give +1 are omitted; then, up to multiplication by

—1, there are three ratios:

Observe that, up to reciprocals and multiplication by a constant, each ratio
is just the ratio of 4/a and 4e?//p (though T} differs a bit more in that it
additionally squares this ratio).

Now suppose that the conformal factor e?/ degenerates at a point; that is,

f(po) = —o0 at some point pg = (zp,wp) € N. As a result of this, the metric
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gon M x {po} will degenerate. Observe that such a degeneration is detected
by the Weyl tensor in the sense that at pg, the ratios 71,75, and T3 will either

go to 0 or co.
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CHAPTER 10
Conclusion

While being reasonably self-contained, this thesis provides an introduction
to the theory of conformally covariant operators. Additionally, numerous con-
formal invariants obtained from such operators have been discussed in detail.
In conclusion, we state several conjectures about conformal invariants, which

provide directions for further research.

In Chapter 6 we considered the problem of understanding the smallest num-
ber of negative eigenvalues MinNeg(M) of the conformal Laplacian on a prod-
uct M of k Riemann surfaces. An important question is whether MinNeg(M)
for the product M is always attained by the product of hyperbolic metrics on
each factor. If true, then recent results about the spectrum of the hyperbolic
Laplacian on Riemann surfaces of large genus provide a lot of information on
the behaviour of MinNeg. We discuss this below in more detail.

It can be shown that for any € > 0, there exists N, such that for v > N,
we have A(y) > 975/4096 — € (following the work of Kim and Sarnak [Kim],
this result is presented in [Mond| as Theorem 1.1).

On the other hand, it was shown (see Part 9 of [LS], and [Monk]) that
the number of eigenvalues of the hyperbolic Laplacian on a surface of genus ~
lying in the interval [1/4,1/4 4 §] grows proportionally to the volume of the
surfaces (and hence, by the Gauss-Bonnet theorem, linearly in 7) as v — oo.

Based on these results, the following conjecture seems reasonable.
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Conjecture 1. Fiz k > 0. There exists C = C(k) > 0, such that in the limit

Y14+ Y2+ ...+ — 00, we have

l S Maneg(M(’Yl, 727 e 77143)) S C’
C Y12 - Vk

These results will be discussed in more detail in the forthcoming paper

7Y,

In Chapter 9, we explored how a conformal factor degenerating at a point
can influence the ratios of the components of the Weyl tensor. These com-
putations were done in dimension 4, but it seems interesting to make similar

explorations in higher dimensions.

Apart from Conjecture 2, which is due to Colin Guillarmou but stated in
[CGJP1], all remaining conjectures were originally posed in [CGJP1].

Let M be an n-dimensional manifold. Recall that P, = Py, denotes a
GJMS operator, T (M) denotes the Teichmiiller space of conformal structures,

and that R(M) denotes the Riemannian moduli space of conformal structures.

Conjecture 2. Assume the dimension n is odd. Then for any conformal class

in T (M), there exists a constant C' > 0 such that

dimker P, < Ck" Vk € N.

Consider the discriminant hypersurface Hy (in either T (M) or R(M)),

which consists of conformal classes with nontrivial nullspace ker P # 0.

Conjecture 3. For a generic conformal class in Hj, dimker P, = 1.
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For the last two conjectures, suppose the dimension n is even and consider
the critical GJIMS operator Pz. Also, note that in the & = 3 case, the dis-
criminant hypersurface Hz is defined as the set of conformal classes for which

dim ker P% > 2.

Conjecture 4. For a generic conformal class in T (M), the nullspace ker P

consists of constant functions.

Conjecture 5. For a generic conformal class in Hz, the nullspace ker P has

dimension 2.
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