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ABSTRACT

In this thesis, we give a survey of results in conformal geometry that give

rise to conformal invariants, including zero and negative eigenvalues of confor-

mally covariant operators; nodal sets of eigenfunctions in the kernel of those

operators; conformally invariant maps into projective space; and finally, con-

formal invariants arising from the component functions of the Weyl tensor. We

also discuss the case of products of Riemann surfaces, and explore the connec-

tions to spectral theory of the hyperbolic Laplacian on Riemann surfaces.
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ABRÉGÉ

Dans cette thèse, nous donnons une revue des résultats en géométrie con-

forme qui définissent les invariants conformes, y compris les valeurs propres

nulles et négatives des opérateurs conformément covariants; les ensembles

nodaux des fonctions propres dans le noyau de ces opérateurs; applications

invariantes conformément covariants à l’espace projectif; et, finalement, les

invariants conformes donnés par des composantes du tenseur de Weyl. Nous

discutons également le cas des produits des surfaces de Riemann et explorons

les connexions à la théorie spectrale du Laplacien hyperbolique sur les surfaces

de Riemann.
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CHAPTER 1
Introduction

The central idea of conformal geometry is to change metrics while preserv-

ing angles. Under these types of changes, some operators—known as confor-

mally covariant operators—transform in specific ways. These operators, and

the conformal invariants they give rise to, form the theme of this thesis.

Chapters 2 and 3 serve as a gradual progression to Chapter 4, whose pri-

mary focus aligns with the theme of this thesis. Chapter 2 starts with a subsec-

tion devoted to introducing the fundamental ideas of conformal geometry—like

how, under a conformal change of a Riemannian metric, angles are preserved;

important ideas like conformal classes and conformal transformations are also

introduced. Then, after a few more subsections of background material, the

Uniformization Theorem is discussed. While the theorem is not proved in this

thesis, its equivalence with the statement that every Riemann surface admits,

in its conformal class, a complete metric of constant curvature, is proven.

This equivalent statement serves as a sort of precursor to the Yamabe prob-

lem, which is discussed in Chapter 3. The last two sections of the chapter

serve as asides; one is devoted to how the Ricci flow on a 2-dimensional closed

Riemmanian manifold can be used to take one from the given metric to a con-

formally equivalent metric that is of constant curvature; the other discusses

how one can determine what the universal cover of a Riemann surface is.

In Chapter 3, we discuss the generalization of the Uniformization Theorem:

the Yamabe problem, which asks if, for a compact Riemannian manifold of

dimension n ≥ 3, there is a metric, conformal to the starting metric, that
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has constant scalar curvature. The answer to the Yamabe problem is yes,

though we only provide a rough outline of the proof, with some parts of the

proof emphasized more than others. Apart from the useful statement that the

Yamabe problem provides, it also serves to introduce the conformal Laplacian,

which paves the way for the next chapter.

In Chapter 4, we clearly define conformally covariant operators and provide

a few examples of such operators—one of which is the conformal Laplacian

(Yamabe operator).

In Chapter 5, we discuss some of the conformal invariants that can be ob-

tained from conformally covariant operators; the nodal sets and nodal domains

of an eigenfunction in the kernel, maps into projective space (obtained by us-

ing eigenfunctions in the kernel as projective coordinates), and the number of

negative eigenvalues are amongst the invariants discussed. The chapter closes

with a short section on spaces of conformal structures and a theorem which

states that for a generic smooth metric on a closed n-dimensional manifold,

zero is not an eigenvalue of the conformal Laplacian.

In Chapter 6, we explore the smallest number of negative eigenvalues of

the conformal Laplacian on a product of two or more Riemann surfaces. The

new results in this chapter are the joint effort of the author and Professor

Dmitry Jakobson, where the ideas are largely due to Professor Jakobson and

the computations are mostly due to the author. The proof of Proposition

6.2.1 in this chapter was communicated by Professor C. LeBrun; I would also

like to thank Professor V. Apostolov for useful and stimulating conversations

regarding these results. The results in this chapter are a work in progress; see

[JY].
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Over the next three chapters, we discuss the Weyl tensor. This discussion

is largely inspired by how the simple transformation law for the Weyl ten-

sor is similar to the transformation law for eigenfunctions in the kernel of a

conformally covariant operator.

In Chapter 7, we survey basic results of the Weyl tensor. In particular,

we show how the Weyl tensor is a term in the decomposition of the (0, 4)-

Riemann curvature tensor, and how it transforms under a conformal change

of the metric.

In Chapter 8, the survey on results of the Weyl tensor continues but now

specializes to two types of metrics on Lie groups: left-invariant metrics and bi-

invariant metrics. A left-invariant metric allows the components of the Weyl

tensor to be written in terms of the Lie algebra’s structure constants, while a

bi-invariant metric allows the Weyl tensor to be written in a relatively simple

form.

In Chapter 9, we consider a product of two surfaces, where the metric on

one surface is multiplied by a conformal factor, and then compute the ratios

of the components of the Weyl tensor. We then discuss the behaviour of these

ratios as the conformal factor degenerates at a point. The computations in this

chapter are due to the author, while the ideas that inspired these computations

are due to Professor Dmitry Jakobson.

In Chapter 10, we conclude the thesis and provide directions for further

research in the form of several conjectures.
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CHAPTER 2
The Uniformization Problem

The primary goal of this chapter is to prove that the Uniformization The-

orem is equivalent to the statement that every Riemann surfaces admits a

complete metric of constant curvature in its conformal class. Attempting to

generalize this latter statement brings one to the Yamabe problem, which is

the subject of Chapter 3.

2.1 Background

2.1.1 Conformal transformations

In this subsection, we quickly introduce a few important concepts from

conformal geometry. To do this, we use the introductions of [YS], [YO], and

[JNSS].

Consider an n-dimensional, C∞ manifold M equipped with a Riemannian

metric g. Consider two arbitrary, nonzero, tangent vectors from the tangent

space of some point p ∈ M ; that is, x, y ∈ Tp(M). It is well-known that the

angle θ between x and y is uniquely given through

cos θ =
〈x, y〉g
|x|g|y|g

,

where |x|g = 〈x, x〉1/2g = gp(x, x)1/2 (see [Lee2]).

Now, suppose g̃ is another Riemannian metric on M . If, at each point of

the manifold, the angle between any pair of tangent vectors with respect to g
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and g̃ is equal, then the two metrics are said to be conformally equivalent (or

conformally related or conformal to each other).

Consider the case where we start with (M, g) and we multiply g by a

positive function u that is defined on M . Then the angle between two tangent

vectors with respect to the metric ug is uniquely given by

cos θ =
〈x, y〉ug
|x|ug|y|ug

=
u(p)〈x, y〉g

(u(p)1/2|x|g)(u(p)1/2|y|g)
=
〈x, y〉g
|x|g|y|g

.

So, the multiplication of g by a positive function u defined on M has not

changed the angle between the two tangent vectors, meaning that the metric

defined as g̃ := ug is conformal to g.

Expanding upon this, we can take any function f ∈ C∞(M) and define a

new metric g̃ := efg so that g̃ is conformal to g. Changing g in this manner,

to obtain g̃, is referred to as a conformal change of the metric, and the func-

tion ef(x) is called the conformal factor. In fact, the necessary and sufficient

condition for two metrics g and g̃ of M to be conformally equivalent is for

there to exist a function f such that g̃ = efg.

Definition 2.1.1. For a Riemannian metric g on a manifold M , its conformal

class [g] is the set of metrics {efg : f ∈ C∞(M)}.

Definition 2.1.2. Let (M, g) and (M ′, g′) be two Riemannian manifolds and

Ψ : M −→ M ′ be a diffeomorphism. Then the pullback g̃ := Ψ∗g′ is a

Riemannian metric on M . If g̃ is conformally equivalent to g, then the map

Ψ is called a conformal transformation (or, a conformal map).

Remark 2.1.3. In [Lee2], an isometry is defined as a diffeomorphism Ψ between

two Riemannian manifolds (M, g) and (M ′, g′) such that g = Ψ∗g′. Clearly
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then, an isometry preserves angles and, by the above definition, it may be

thought of as a conformal transformation.

2.1.2 Riemann surfaces

For this subsection we shall follow [For] (chapter 1, section 1) and [FK]

(chapter 1, section 1).

Definition 2.1.4. Let M be a 2-dimensional manifold. A complex chart on

M is a homeomorphism ϕ : U −→ V , where U ⊂ M is open and V ⊂ C is

open. Two complex charts ϕi, ϕj are said to be holomorphically compatible if

the map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

is biholomorphic (holomorphic, bijective, and its inverse is also holomorphic).

Remark 2.1.5. A complex chart is also known as a local uniformizing variable;

however, when we use this latter term, it shall be understood in the following

sense: for a Riemann surface M , a local uniformizing variable at a point p ∈M

is a homeomorphism zp : Dp −→ Up, where Dp ⊂ C is open and Up is a

neighbourhood of p.

Definition 2.1.6. A complex atlas on M is a collection of charts A = {ϕi :

Ui −→ Vi : i ∈ I} such that the charts are all holomorphically compatible

and M is covered by them, that is,
⋃
i∈I Ui = M . Two complex atlases A and

A′ are said to be analytically equivalent if every chart of A is holomorphically

compatible with every chart of A′.

Definition 2.1.7. A complex structure on a 2-dimensional manifold M is an

equivalence class of analytically equivalent atlases on M .
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Definition 2.1.8. A Riemann surface is a pair (M,Σ), where M is a 2-

dimensional connected manifold and Σ is a complex structure on M .

Alternatively, in the introduction of [MT], we see that a Riemann surface

may also be defined in the following way:

Definition 2.1.9. A Riemann surface is a pair (M, [g]), where M is a 2-

dimensional, connected, oriented, C∞ manifold, and [g] is a conformal class.

It is further noted in [MT] that these definitions are made equivalent via a

well-known bijection between the set of conformal classes on M and the set of

complex structures on M—it should be stressed that this bijection only exists

in the case where M is 2-dimensional. As for the question of orientability in

Definition 2.1.8, we look to [Mi] where it is noted that the complex charts

induce a well-defined local orientation at each point of the Riemann surface;

this, in turn, induces an orientation for the entire Riemann surface.

As one might expect from the equivalence of the above two definitions,

we can (and will, in the coming sections) pass between Riemann surfaces and

connected, oriented, 2-dimensional Riemannian manifolds.

Definition 2.1.10. Let M and N be Riemann surfaces. A continuous map-

ping f : M −→ N is said to be holomorphic if for every pair of charts

ϕi : Ui −→ Vi on M and ϕj : Uj −→ Vj on N , with f(Ui) ⊂ Uj, the mapping

ϕj ◦ f ◦ ϕ−1
i : Vi −→ Vj

is holomorphic in the usual sense.

In the context of the above definition, a mapping f : M −→ N is said

to be biholomorphic (or, conformal) if it is bijective and both f and f−1 are
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holomorphic. Two Riemann surfacesM andN are said to be biholomorphically

equivalent (or, conformally equivalent) if such a mapping exists between them.

Note that the automorphism group Aut(M) of a Riemann surface M is the

group whose elements are conformal mappings from M to itself.

2.1.3 Covering spaces

For this subsection, we utilize [Mun] (chapter 9, section 53; and chapter

13, sections 80 and 81), and [Ahl] (chapter 9, section 5).

Definition 2.1.11. Let X and X̃ be topological spaces. Let π : X̃ −→ X

be a continuous surjective map. An open set U of X is evenly covered by π if

π−1(U) can be written as a union of disjoint open sets Vj from X̃ such that

for each j, the restriction of π to Vj is a homeomorphism of Vj onto U .

If every point of X has a neighbourhood that is evenly covered by π, then

the map π is called a covering map, and X̃ is called a covering space of X.

Definition 2.1.12. Let π : X̃ −→ X be a covering map. If X̃ is simply

connected, then X̃ is said to be a universal covering space.

Definition 2.1.13. Let π : X̃ −→ X be a covering map. A deck transfor-

mation (or, covering transformation) is a homeomorphism h : X̃ −→ X̃ such

that π = π ◦ h.

From [Ahl], we have the following theorem.

Theorem 2.1.14. Apart from the identity, a deck transformation has no fixed

points.
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The set of all deck transformations for a covering space X̃ forms a group

G(X̃) under composition.

Definition 2.1.15. Let π : X̃ −→ X be a covering map. The covering space

X̃ is said to be regular (or, normal) if for each x ∈ X and each pair of points

x̃, x̃′ ∈ {π−1(x)}, there is a deck transformation taking x̃ to x̃′.

We refer to [Mun] (Theorem 81.6) for the proof of the following theorem.

Theorem 2.1.16. Let π : X̃ −→ X be a covering map and let X̃ be regular.

Then the quotient X̃/G(X̃) is homeomorphic to X.

Note that when we eventually use Theorem 2.1.16, we will take X̃ to be

the universal cover of X, since every universal cover is regular.

2.1.4 Constant curvature

For this subsection, we follow [Bo] (chapter 8) and [Lee2] (chapters 7 and

8), and focus primarily on sectional curvature. It should be noted that Ricci

curvature and scalar curvature are not defined here but are instead defined in

Section 2.3, where they are particularly relevant.

Definition 2.1.17. Let (M, g) be a Riemannian manifold and let X(M) de-

note the set of C∞ vector fields on M . The (1,3)-Riemann curvature tensor is

defined by

R : X(M)× X(M)× X(M) −→ X(M),

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

In local coordinates, its components are denoted as Rijk
l.

9



Remark 2.1.18. The map R is multilinear over C∞(M), hence, it is indeed a

(1,3)-tensor field (see Proposition 7.3 in [Lee2]).

Definition 2.1.19. The (0,4)-Riemann curvature tensor, denoted as Rm,

is the (0,4)-tensor field obtained from lowering the last index of the (1, 3)-

Riemann curvature tensor R. The action of Rm on vector fields is given by

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉g.

In local coordinates, its components (Rm)ijkl are given by (Rm)ijkl = Rijkl =

glmRijk
m.

At any point p ∈M , a plane section σ (i.e. a two dimensional subspace of

Tp(M)) is determined by any pair of mutually orthogonal unit vectors u, v at

p.

Definition 2.1.20. For a plane section σ with orthonormal basis u, v ∈

Tp(M), its sectional curvature Kp(σ) is defined as

Kp(σ) = −Rmp(u, v, u, v) = −〈Rp(u, v)u, v〉g.

In the case of surfaces (2-dimensional Riemannian manifolds), the sectional

curvature is the same as the Gaussian curvature of the surface.

Definition 2.1.21. If the sectional curvatures across all plane sections at all

points are the same constant value, then the Riemannian manifold is said to

be of constant curvature (or, constant sectional curvature).

In preparation for the next theorem, we recall the definition of hyperbolic

space; more precisely, we state the hyperboloid model of hyperbolic space:
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Fix r > 0 and suppose n ≥ 1. Let Rn,1 be Minkowski space, whose

coordinates are (x1, . . . , xn, t) and whose metric is given by

q = dx1
2 + · · ·+ dxn

2 − dt2.

Then Hn
r , the hyperboloid model of hyperbolic space of radius r, is the sub-

manifold of Rn,1 defined as all points which satisfy x2
1 + · · · + x2

n − t2 = −r2

with t > 0, and whose metric is given by i∗q, where i : Hn
r → Rn,1 is the

inclusion map.

We can now state the following theorem which provides us with some

important, and soon to be relevant, examples of Riemannian manifolds with

constant curvature.

Theorem 2.1.22. The following n-dimensional Riemannian manifolds have

the indicated constant curvatures:

(i) Rn with the Euclidean metric has constant curvature 0.

(ii) The sphere Snr of radius r > 0, with the standard round metric ḡ, has

constant curvature 1/r2.

(iii) Hyperbolic space Hn
r of radius r > 0 has constant curvature −1/r2.

Note that for each fixed r, there are actually four mutually isometric models

of hyperbolic space (see Theorem 3.7 in [Lee2]). When hyperbolic space next

arises, we shall be making use of the model known as the Poincaré ball model

Bnr , rather than the hyperboloid model that was previously defined.

For hyperbolic space of radius r, the Poincaré ball model Bnr is the ball

of radius r centred at the origin in Rn, and its metric in the coordinates

(x1, . . . , xn) is given by

g = 4r4dx1
2 + · · ·+ dxn

2

(r2 − |x|2)2
.
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We now end this subsection by stating the Killing-Hopf theorem (see Chap-

ter 12 of [Lee2]).

Theorem 2.1.23. Let (M, g) be a complete, simply connected, n-dimensional

Riemannian manifold with constant curvature and n ≥ 2. Then M is isometric

to either Rn, Snr , or Hn
r .

2.2 The Uniformization Theorem

To reach the Uniformization Theorem, we shall follow [Ab] (sections 2 and

3) and the introduction of [Ch]. We shall omit the proof of the theorem, but

it is proved in both of these references.

We begin with the uniformization problem, which can be stated in the

following way: Let M be an arbitrary Riemann surface. Find all domains

D ⊂ Ĉ and holomorphic functions t : D −→M so that at each point p ∈M , t

is a local uniformizing variable at p. In other words, for each p ∈M , there is a

neighbourhood Up such that t restricted to Dp := t−1(Up) is a homeomorphism.

A useful way of perceiving the uniformization problem is to view it from

a covering space perspective. Let D ⊂ Ĉ, let M be a Riemann surface, and

let M̃ be the universal covering space of M with covering map π : M̃ −→M .

Using the well-known fact that the universal cover of a Riemann surface is

also a Riemann surface, we see that M̃ is a simply connected Riemann surface.

Suppose t : D −→ M̃ is a uniformizing map. Then with the covering map π,

we can obtain a uniformization for M through the composition π ◦ t.

So, if we can show that every simply connected Riemann surface is confor-

mally equivalent to a subdomain of Ĉ (so that M̃ is conformally equivalent to

D), then we are done. The following theorem shows that this can in fact be
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done, and since it essentially leads one to the solution of the uniformization

problem, it has become known as the Uniformization Theorem.

Theorem 2.2.1. Every simply connected Riemann surface is conformally

equivalent to either the complex plane C, the Riemann sphere Ĉ, or the unit

disk D1.

Alternatively, the Uniformization Theorem can be stated in the following

way.

Theorem 2.2.2. Every Riemann surface admits, in its conformal class, a

complete metric of constant curvature.

Let us roughly prove the equivalence of the above two theorems.

Proof. First, we start with Theorem 2.2.2. Let M be our Riemann surface

with conformal class [g], and let g′ ∈ [g] be the complete metric of constant

curvature. Now, we pass to the universal cover M̃ by using the covering map

π : M̃ −→M to pullback our complete metric; this gives us π∗g′ which is still

of constant curvature. So, M̃ is now a simply connected, complete surface

with constant curvature. Applying the Killing-Hopf theorem, we see that M̃

is isometric to either R2, S2, or H2 (or rather, B2). Upon identifying M̃ as a

simply connected Riemann surface and identifying R2, S2, and B2 as, respec-

tively, C, Ĉ, and D1, we are able to realize the isometry as a biholomorphism.

Thus, we have obtained Theorem 2.2.1.

Now, let us start with Theorem 2.2.1 and show that we can obtain Theorem

2.2.2 from it. Let M be an arbitrary Riemann surface. Its universal covering

space M̃ is a simply connected Riemann surface, meaning it is conformally

equivalent to either C, Ĉ, or D1. In their defining conformal class, the spaces
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C, Ĉ, and D1 admit the following metrics:

ρ(z)|dz| = |dz| for C,

ρ(z)|dz| = 2|dz|
1 + |z|2

for Ĉ,

ρ(z)|dz| = 2|dz|
1− |z|2

for D1.

From [FK] (chapter 4, section 8), we know that these metrics are complete

and of constant curvature, where the curvature is 0 for C, 1 for Ĉ, and −1 for

D1. So, M̃ admits one of these metrics.

Now we would like to bring the complete constant curvature metric on M̃

down to M . To do this, we use Theorem 2.1.16 to see that M ' M̃/G(M̃),

where G(M̃) is the group of deck transformations of M̃ . We next observe that

G(M̃) is a subgroup of the automorphism group Aut(M̃).

For the first case, suppose M̃ is conformally equivalent to Ĉ. From [FK]

(chapter 4, section 5), we know that

Aut(Ĉ) ∼= PSL(2,C) ∼=
{
z −→ az + b

cz + d
: a, b, c, d ∈ C, and ad− bc = 1

}
.

The only automorphisms of Ĉ which act as isometries (i.e. preserve the metric)

are those which belong to the following set (see [FK], chapter 4, section 8):{
z −→ az − c̄

cz + ā
: a, b ∈ C, and |a|2 + |c|2 = 1

}
∼= SU(2)

However, for our purposes, we do not have to concern ourselves with the

isometries of Ĉ. Indeed, suppose h ∈ Aut(Ĉ). As noted in [Ahl] (chapter 10,

section 6), such an h has at least one fixed point on Ĉ; then from Theorem

2.1.14, we see that if h ∈ G(Ĉ), then h must be the identity. Thus, when we

push the metric for Ĉ down via the covering map M̃ −→ M̃/G(M̃) ' M , it

is still complete and of constant curvature.
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For the second case, suppose M̃ is conformally equivalent to D1. From

[Kr] (Section 0.2, Theorem 3), we know that every automorphism of D1 is of

the form h(z) = ϕθ(z) ◦ φa, where

φa(z) =
z − a
1− āz

, a ∈ D1 and ϕθ(z) = zeiθ, θ ∈ R.

To see how the metric forD1 behaves under such an h, we compute the pullback

h∗ρ(z); from [Kr] again, we know that h∗ρ(z) = ρ(h(z)) · |h′(z)|.

(i) If h(z) = ϕθ(z), then |h′(z)| = 1 and

h∗ρ(z) = ρ(zeiθ) =
2

1− |zeiθ|2
=

2

1− |z|2
= ρ(z).

(ii) If h(z) = φa(z), then

|h′(z)| = 1− |a|2

|1− āz|2
,

and so

h∗ρ(z) = ρ

(
z − a
1− āz

)
· |h′(z)|

=
2

1− | z−a
1−āz |2

· 1− |a|2

|1− āz|2

=
2(1− |a|2)

|1− āz|2 − |z − a|2

=
2(1− |a|2)

1− |z|2 − |a|2 + |a|2|z|2

=
2

1− |z|2

= ρ(z).

Since every h ∈ Aut(D1) can be written as a composition of the above two

cases, we see that our metric for D1 is invariant under the action of Aut(D1);

thus, it is also invariant under the action of G(D1). So, when this metric gets

pushed down via the covering map M̃ −→ M̃/G(M̃) 'M , it is still complete

and of constant curvature.
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For the final case, suppose M̃ is conformally equivalent to C. Then

Aut(C) ∼= {z 7−→ az + b : a, b ∈ C, a 6= 0}.

Let h ∈ Aut(C). Then

h∗ρ(z) = ρ(h(z)) · |h′(z)| = ρ(az + b) · |a| = |a|.

Clearly then, the only automorphisms of C which act as isometries are those

with a such that |a| = 1. Indeed, [FK] notes that the automorphisms which

act as isometries are those which take the form

z 7−→ eiθz + b, θ ∈ R, b ∈ C. (2.1)

Now, in searching for the deck transformations of C, we should disregard

the h ∈ Aut(C) that have fixed points, since Theorem 2.1.14 says that deck

transformations have no fixed ponts (except for the identity). So, suppose

h ∈ Aut(C) has a fixed point: h(w) = aw + b = w. Then

w =
b

1− a
,

which means that a 6= 1. Conversely, if a 6= 1, this expression gives us a fixed

point for h(z) = az + b. Thus, h ∈ Aut(C) has a fixed point if and only if

a 6= 1. So, disregarding these automorphisms, we are left with automorphisms

of the form h(z) = z + b, which, according to 2.1, preserve the metric. Thus,

we are able to conclude that our metric on C is invariant under the action

of G(C), and so when it gets pushed down via the covering map, it is still

complete and of constant curvature.

So, as originally desired, we have obtained Theorem 2.2.2 from Theorem

2.2.1.
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This finishes the proof that Theorem 2.2.1 and Theorem 2.2.2 are equiva-

lent.

2.3 Ricci flow

For this section, we follow [CK] (primarily the beginning of chapter 5).

In the previous section, we showed how the Uniformization Theorem im-

plies that every Riemann surface admits in its conformal class a complete met-

ric of constant curvature. This guaranteed existence of a metric of constant

curvature raises a new question: If we start with a 2-dimensional Rieman-

nian manifold, is there an evolution equation that will conformally deform our

starting metric to the point where we obtain a metric of constant curvature?

To answer this question, we need the concept of Ricci flow, which was first

introduced by Hamilton in [Ha] with the intent of applying it to Thurston’s

Geometrization Conjecture. For our purposes, it will provide us with a way

of evolving our metric to obtain the metric of constant curvature.

Before defining the Ricci flow, we use [Lee2] to recall the definition of the

Ricci curvature.

Definition 2.3.1. Let (M, g) be an n-dimensional Riemannian manifold. The

Ricci curvature (or, Ricci tensor) is the covariant 2-tensor field, denoted as Ric,

whose action upon vector fields X and Y is defined as

Ric(X, Y ) = tr(Z 7−→ R(Z,X)Y ),

where R is the (1,3)-Riemann curvature tensor. In local coordinates, its com-

ponents are given by (Ric)ij = Rkij
k = gkmRkijm.
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Now that we have defined the Ricci curvature, it is convenient to define

the scalar curvature.

Definition 2.3.2. The scalar curvature is the function R defined as the trace

of the Ricci curvature:

R = trgRic = gij (Ric)ij.

Remark 2.3.3. From [Lee2] (Proposition 8.32) and [Bo] (chapter 8, section 3),

we know that for an orthonormal basis {e1, . . . , en} at a point p of a Rieman-

nian manifold, the Ricci curvature is given by

Ricp(u, v) =
n∑
i=1

〈Rp(ei, u)v, ei〉g =
n∑
i=1

Rmp(ei, u, v, ei),

and the scalar curvature is given by

R(p) =
n∑
j=1

Ricp(ej, ej) =
n∑

i,j=1

Rmp(ei, ej, ej, ei)

=
n∑

i,j=1

−Rmp(ej, ei, ej, ei) =
∑
i 6=j

Kp(ei, ej),

where Kp(ei, ej) is the sectional curvature of the plane section with orthonor-

mal basis ei, ej.

Remark 2.3.4. In [Lee2] (Corollary 7.27), it is shown that in dimension 2, the

Ricci curvature can be written as Ric = 1
2
Rg.

Now we may continue with our discussion on the Ricci flow.

18



Definition 2.3.5. The Ricci flow is defined as

∂

∂t
g = −2Ric

g(0) = g0,

where g0 is the metric on the Riemannian manifold (M, g0).

Definition 2.3.6. The normalized Ricci flow is defined as

∂

∂t
g = −2Ric +

2

n

∫
M
Rdµ∫

M
dµ

g

g(0) = g0,

where dµ is the volume form, g0 is the metric on the n-dimensional Riemannian

manifold (M, g0), and R is the scalar curvature of g0.

Remark 2.3.7. In general, the Ricci flow does not preserve volume. The nor-

malized Ricci flow, however, will ensure that the volume is preserved; as shown

in [Ha], it is obtained from the Ricci flow by reparametrizing in time and ap-

plying a change of scale in space.

Theorem 2.3.8. If (M, g) is a 2-dimensional, closed (i.e. compact and with-

out boundary) Riemannian manifold, then there exists a unique solution g(t)

of the normalized Ricci flow

∂

∂t
g =

(∫
M
Rdµ∫

M
dµ
−R

)
g

g(0) = g0.

The solution exists for all time, and as t −→ ∞, the metrics g(t) converge

uniformly in any Ck-norm to a smooth metric g∞ of constant curvature.
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The proof of Theorem 2.3.8 is rather long and so we omit it from here; the

full proof may be found in [CK] (chapter 5). We shall merely note that the

proof is split into three parts, where each part depends upon the sign of

r :=

∫
M
Rdµ∫

M
dµ

, (2.2)

which is referred to as the average scalar curvature. In literature, however, the

parts are typically distinguished by the sign of the Euler characteristic χ(M).

To see why, observe that in dimension n = 2, the scalar curvature is twice the

Gaussian curvature; then look at the Gauss-Bonnet theorem (Theorem 2.4.1

in the next section) to see that the sign of r coincides with the sign of χ(M).

So, given a 2-dimensional closed Riemannian manifold (M, g0), the nor-

malized Ricci flow will provide us with an evolution equation g(t) that will

take us from our starting metric g0 to the metric of constant curvature g̃. The

only thing left to do is to confirm that g̃ is indeed conformally equivalent to

g0.

Suppose g(t) is the solution obtained from Theorem 2.3.8. Let f be the

function f(x, t) := r − Rg(t)(x), x ∈ M , t ∈ [0, T ), and r is defined in (2.2).

Then the normalized Ricci flow becomes

∂

∂t
g(t) = f(x, t)g(t)

⇔ ∂

∂t
ln g(t) = f(x, t)

=⇒ ln g(t) = ln g(0) +

∫ T

0

f(x, s) ds

=⇒ g(t) = exp

(∫ T

0

f(x, s) ds

)
g0.

So, every metric that is coming from the solution g(t) is conformally equivalent

to our starting metric g0. Hence, the constant curvature metric g̃ is also

conformally equivalent to g0.
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2.4 Universal covers of Riemann surfaces

In section 3.2, the universal cover provides the link between the uniformiza-

tion problem and the Uniformization Theorem. Given the importance of the

universal cover, one is led to wonder if there is a simple way to determine what

the universal cover of a Riemann surface is.

Specifically, let M be a Riemann surface and M̃ be its universal covering

space. Recall that M̃ is a simply connected Riemann surface. Applying the

Uniformization Theorem, we find that M̃ is conformally equivalent to either

the complex plane, the Riemann sphere, or the unit disk; but is there a simple

way to know which one?

The answer is yes, but first we must impose some conditions. To start, we

recall the Gauss-Bonnet theorem from [Lee2].

Theorem 2.4.1. If (M, g) is a 2-dimensional closed Riemannian manifold,

then ∫
M

K dA = 2πχ(M), (2.3)

where K is the Gaussian curvature of g and χ(M) is its Euler characteristic.

From the well-known classification theorem for surfaces, we know that any

2-dimensional, closed, orientable manifold M with genus k is homeomorphic

to either the sphere (k = 0) or a connected sum of k-tori (k ≥ 1). From this,

we can easily compute the Euler characteristic of M by using χ(M) = 2− 2k.

So, to make use of these results, we suppose that our Riemann surface M is

closed. For the sake of an example, suppose its genus is k = 0. Then χ(M) = 2

which, from equation (2.3), implies that K > 0 for M . As a consequence, we

also have K > 0 for the universal cover M̃ . Recall that M̃ is conformally

equivalent to either the complex plane, the Riemann sphere, or the unit disk.
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Only the Riemann sphere has positive Gaussian curvature, thus M̃ must be

conformally equivalent to the Riemann sphere.

This argument can be easily repeated for the other cases. The results are

summarized below.

Let M be a compact Riemann surface without boundary, k be its genus,

and M̃ be its universal covering space. Then:

(i) If k = 0, M̃ is conformally equivalent to the Riemann sphere Ĉ (or

rather, S2).

(ii) If k = 1, M̃ is conformally equivalent to the complex plane C (or rather,

R2)

(iii) If k ≥ 2, M̃ is conformally equivalent to the unit disk D1 (or rather,

H2).
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CHAPTER 3
The Yamabe Problem

Naturally, one now seeks out a generalization of the Uniformization Theo-

rem to higher dimensions. Doing so leads one to the Yamabe problem:

For a compact Riemannian manifold (M, g) of dimension n ≥ 3, is there

a metric conformal to g that has constant scalar curvature?

Ultimately, the answer to this question is yes. The first attempt to show

that this is indeed the answer came from Yamabe in 1960, in the paper

[Yam]. There was, however, an error in the paper which was later mended

by Trudinger, though it came at the cost of having to introduce a condition

on the manifold’s Yamabe invariant λ(M) (we define this later). Aubin then

showed that Trudinger’s condition can be stated in a simpler manner: if the

n-dimensional manifold M satisfies λ(M) < λ(Sn), then the problem can be

solved. Aubin then showed that the condition is satisfied when n ≥ 6 and

M is not locally conformally flat. Then, in 1984, Schoen finished solving the

problem by proving that the condition is satisfied for all other cases (n = 3, 4,

or 5, or if M is locally conformally flat). In this chapter, we we follow [LeeP]

and make use of [Aub] to explore some of these results.

Apart from being interesting on its own, the Yamabe problem introduces

us to the conformal Laplacian (Yamabe operator) which, as we shall see in

Chapter 4, is a conformally covariant differential operator.
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3.1 Background

Definition 3.1.1. The Hölder space Ck,α(M), 0 < α < 1, is defined as

Ck,α(M) = {f ∈ Ck(M) : ‖f‖Ck,α <∞},

where

‖f‖Ck,α = ‖f‖Ck + sup
x,y

|∇kf(x)−∇kf(y)|
|x− y|α

.

The supremum is over all x 6= y such that y is contained in a coordinate

neighbourhood of x. The covariant derivative is denoted as ∇, and so when

∇k acts on the function f , we get the k-tensor ∇kf ; when we write ∇kf(y), we

mean the tensor at y obtained by parallel transport along the geodesic from

x to y.

We now state the Sobolev embedding theorems for compact Riemannian

manifolds.

Theorem 3.1.2. Suppose M is a compact, n-dimensional Riemannian man-

ifold (possibly with C1 boundary).

(i) If

1

r
≥ 1

q
− k

n

then W k,q(M) is continuously embedded in Lr(M).

(ii) (Rellich-Kondrakov Theorem) If strict inequality holds in (i), then the

embedding W k,q(M) ↪−→ Lr(M) is compact.

(iii) Suppose 0 < α < 1, and

1

q
≤ k − α

n
.

Then W k,q(M) is continuously embedded in Cα(M)
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From [BGV], we obtain a definition for what it means to be locally con-

formally flat.

Definition 3.1.3. A Riemannian manifold (M, g) is locally conformally flat

if each point in M has a coordinate neighbourhood U which is conformal to

Euclidean space Rn. That is, there is a diffeomorphism Ψ : V ⊂ Rn −→ U

such that the pullback Ψ∗g is conformal to the standard Euclidean metric.

From [Can], we obtain a definition of the Laplace-Beltrami operator, which

is a generalization of the usual Laplace operator for Riemannian manifolds.

Definition 3.1.4. Given a Riemannian manifold (M, g), the Laplace-Beltrami

operator is defined as

∆g :C∞(M) −→ C∞(M)

∆g = −divg ◦ ∇g.

In local coordinates, the operator takes the form,

∆g = − 1√
| det g|

n∑
i,j=1

∂

∂xi

(√
| det g| gij ∂

∂xj

)
. (3.1)

Observe that this reduces to the usual Laplacian in Euclidean space, since

the Euclidean metric has | det g| = 1.

For this definition, the subscript of g has been used to emphasis a depen-

dence on the metric. In what follows, this subscript is occasionally dropped,

though the dependence on the metric should still be clear.
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3.2 The Yamabe equation

Let (M, g) be a compact, connected Riemannian manifold of dimension

n ≥ 3. Let g̃ be conformal to g, which we can write as g̃ = e2fg for some

real-valued f ∈ C∞(M). Let R and R̃ denote the scalar curvatures of g and

g̃, respectively. The following transformation law is then satisfied:

R̃ = e−2f (R + 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2),

where ∆ is the Laplace-Beltrami operator and ∇f is the covariant derivative

of f , both defined with respect to the metric g.

Before proceeding, make note of the following notation:

p =
2n

n− 2
, a = 4

n− 1

n− 2
, � = a∆ +R.

Now, we make the substitution e2f = ϕp−2, where ϕ ∈ C∞(M) and ϕ > 0.

Then g̃ = ϕp−2g and

R̃ = ϕ1−p
(

4
n− 1

n− 2
∆ϕ+Rϕ

)
. (3.2)

So, we are led to the conclusion that g̃ = ϕp−2g has constant scalar curvature

R̃ = λ if and only if ϕ satisfies

�ϕ = λϕp−1. (3.3)

Equation (3.3) is referred to as the Yamabe equation.

So, solving the Yamabe problem is equivalent to solving (3.3), with the

requirement that the solution ϕ be smooth and strictly positive.
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3.3 The Yamabe invariant

Consider the functional

Q(g) =

∫
M
RdVg( ∫

M
dVg
)(n−2)/n

where dVg =
√
| det g| dx1 ∧ · · · ∧ dxn is the volume form. When we evaluate

this functional at g̃ = ϕp−2g, we get what is known as the Yamabe functional:

Q(g̃) =

∫
M
R̃ dVg̃

(
∫
M
dVg̃)2/p

⇔ Qg(ϕ) =

∫
M

(a|∇ϕ|2 +Rϕ2)dVg

‖ϕ‖2
p

, (3.4)

where

‖ϕ‖p =

(∫
M

|ϕ|pdVg
)1/p

.

Yamabe noticed that (3.3) is the Euler-Lagrange equation for (3.4). To see

this, start by setting

E(ϕ) :=

∫
M

(a|∇ϕ|2 +Rϕ2)dVg.

Then observe that

d

dt
E(ϕ+ tψ)

∣∣∣∣
t=0

= 2

∫
M

(a∇ϕ · ∇ψ +Rϕψ) dVg

= 2

∫
M

(−a · div(∇ϕ) +Rϕ)ψ dVg

= 2

∫
M

(a∆ϕ+Rϕ)ψ dVg,

where we used integration by parts to get the second line.

Further observe that

d

dt
‖ϕ+ tψ‖−2

p

∣∣∣∣
t=0

=

[
− 2

p

(∫
M

|ϕ+ tψ|p
)− 2

p
−1(∫

M

p|ϕ+ tψ|p−1ψ dVg

)]∣∣∣∣
t=0

= −2

(∫
M

|ϕ|p
)− 2

p
−1(∫

M

|ϕ|p−1ψ dVg

)
= −

2 ‖ϕ‖−pp
∫
M

(|ϕ|p−1ψ) dVg

‖ϕ‖2
p
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Then,

d

dt
Qg(ϕ+ tψ)

∣∣∣∣
t=0

=

[(
d

dt
E(ϕ+ tψ)

)
‖ϕ+ tψ‖−2

p + E(ϕ+ tψ)

(
d

dt
‖ϕ+ tψ‖−2

p

)]∣∣∣∣
t=0

=
2

‖ϕ‖2
p

∫
M

(a∆ϕ+Rϕ− ‖ϕ‖−pp E(ϕ)ϕp−1)ψ dVg

From this, we see that ϕ satisfies the Yamabe equation (3.3) with λ = E(ϕ)/ ‖ϕ‖pp

if and only if it is a critical point of Qg.

Let us now introduce the constant λ(M), which is known as the Yamabe

invariant:

λ(M) = inf {Qg(ϕ) : ϕ ∈ C∞(M) and ϕ > 0}.

Proposition 3.3.1. λ(M) is an invariant of the conformal class [g].

Proof. We consider a conformal change of the metric g by g̃ = ϕp−2g. We then

have

dVg̃ = ϕn(p−2)/2dVg = ϕpdVg.

Now consider

Qg(ϕψ) =

∫
M

(a|∇(ϕψ)|2 +Rϕ2ψ2)dVg( ∫
M
ϕpψp dVg

)2/p
.

Observe that∫
M

|∇(ϕψ)|2 dVg =

∫
M

(ϕ2|∇ψ|2 + ψ2|∇ϕ|2 + 2ϕψ∇ϕ · ∇ψ) dVg. (3.5)

Applying integration by parts to the second term on the right hand side of the

above equation, we get∫
M

ψ2|∇ϕ|2 dVg =

∫
M

(ψ2∇ϕ) · ∇ϕdVg

= −
∫
M

ϕ · div(ψ2∇ϕ) dVg

=

∫
M

(ϕψ2∆ϕ) dVg − 2

∫
M

(ϕψ∇ψ · ∇ϕ) dVg.
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Inserting this back into (3.5) and then inserting that back into Qg(ϕψ), we

get

Qg(ϕψ) =

∫
M

(aϕ2|∇ψ|2dVg) +
∫
M

(a∆ϕ+Rϕ)ϕψ2dVg( ∫
M
ϕpψp dVg

)2/p
.

Then using (3.2) gives

Qg(ϕψ) =

∫
M

(aϕ2|∇ψ|2dVg) +
∫
M
R̃ϕpψ2dVg( ∫

M
ϕpψpdVg

)2/p
.

Now use the fact that

ϕ2|∇ψ|2 dVg = ϕ2−p(∇ψ · ∇ψ) dVg̃ = ∇̃ψ · ∇̃ψ dVg̃ = |∇̃ψ|2 dVg̃,

to arrive at

Qg(ϕψ) =

∫
M

(a|∇̃ψ|2 + R̃ψ2)dVg̃( ∫
M
ψpdVg̃

)2/p
= Qg̃(ψ).

This means that λ(M), associated to the metric g, is equal to λ̃(M), associated

to the conformally equivalent metric g̃. Thus, λ(M) is indeed an invariant of

the conformal class [g].

The Yamabe invariant is crucial to solving the Yamabe problem. As we

shall soon see, the way λ(M) compares to λ(Sn) is of particular importance,

and so the next section is devoted to the Yamabe problem in the setting of

the sphere.

3.4 The Yamabe problem on the sphere Sn

Let ḡ denote the standard metric on the sphere Sn and recall that it is of

constant scalar curvature.

Proposition 3.4.1. There exists a positive, C∞ function ψ on Sn satisfying

Qḡ(ψ) = λ(Sn).
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In other words, the above proposition is stating that λ(Sn) is indeed at-

tained by a metric g in the conformal class of ḡ. As a consequence, g has

constant scalar curvature.

Now consider the following proposition, which essentially states that such a

metric must be, up to a conformal diffeomorphism and a constant scale factor,

the standard metric ḡ.

Proposition 3.4.2. Suppose g is a metric on Sn that is conformal to the

standard metric ḡ and has constant scalar curvature. Then up to a constant

scale factor, g is obtained from ḡ by a conformal diffeomorphism of the sphere.

The combination of the above two propositions provides us with the so-

lution to the Yamabe problem on the sphere. This solution is stated in the

following theorem:

Theorem 3.4.3. The Yamabe functional (3.4) on (Sn, ḡ) is minimized by con-

stant multiples of ḡ and its images under conformal diffeomorphisms. These

are the only metrics conformal to ḡ that have constant scalar curvature.

Lee and Parker go on in [LeeP] to show how the Yamabe problem on Sn

is related to a problem concerning the Sobolev inequality; in doing so, they

show that λ(Sn) > 0. They then proceed to prove the following lemma, which

is due to Aubin.

Lemma 3.4.4. Suppose M is a compact Riemannian manifold M of dimen-

sion n ≥ 3. Then λ(M) ≤ λ(Sn).
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3.5 Minimizing the Yamabe functional

We now consider a general, compact Riemannian manifold M . We seek

to minimize the Yamabe functional (3.4); one idea would be to construct

a sequence of functions that causes the Yamabe functional to approach its

infimum, and then seek out some subsequence which converges to an extremal

function. But for reasons stated in [LeeP], this approach does not work.

Instead, Yamabe took a different approach and considered

Qs(ϕ) =

∫
M

(a|∇ϕ|2 +Rϕ2)dVg

‖ϕ‖2
s

for 2 ≤ s ≤ p. We then set λs = inf{Qs(ϕ) : ϕ ∈ C∞(M)}. Note that a

function ϕ which minimizes the above functional and has ‖ϕ‖s = 1, satisfies

�ϕ = λsϕ
s−1, (3.6)

which is the Euler-Lagrange equation of Qs. Equation (3.6) is known as the

subcritical equation.

We now present a proposition which was proved in [Yam].

Proposition 3.5.1. For 2 ≤ s < p, there exists a smooth, positive solution

ϕs to the subcritical equation (3.6), for which Qs(ϕs) = λs and ‖ϕs‖s = 1.

Proof. Let {ui} ⊂ C∞(M) be a sequence which minimizes the functional Qs

and satisfies ‖ui‖s = 1. Observe that Qs(|ui|) = Qs(ui), so we may replace ui

by |ui| and then assume that ui ≥ 0. Also observe that {ui} is bounded in the

Sobolev space H1(M) (also denoted as W 1,2(M)):

‖ui‖2
H1 =

∫
M

(
|∇ui|2 + u2

i

)
dVg

=
1

a
Qs(ui) +

∫
M

(
1− R

a

)
u2
i dVg

≤ 1

a
Qs(ui) + C ‖ui‖2

s ,
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where we have used Hölder’s inequality to get the last line. Since H1(M) is

a Hilbert space, we may use the well-known fact that a bounded sequence in

a Hilbert space has a weakly convergent subsequence; thus, a subsequence of

{ui} will weakly converge in H1(M).

Now we want to show that the embedding H1(M) ↪−→ Ls is compact. Ob-

serve that

1

s
>

1

2
− 1

n
⇔ s <

2n

n− 2
= p

and since we assume that s < p, we may apply Theorem 3.1.2 to see that the

embedding is indeed compact. Thus, the weakly convergent subsequence of

{ui} will be mapped, via the compact embedding, to a sequence in Ls that

strongly converges to a function ϕs ∈ Ls (see [Con], Chapter 6, Proposition

3.3). Note that ‖ϕs‖s = 1.

Now, we can use Hölder’s inequality to see that the L2 norm is dominated

by the Ls norm:

‖f‖2
2 =

∫
M

(|f |2 · 1) dVg ≤
∥∥|f |2∥∥

s/2
‖1‖s/(s−2) = ‖f‖2

s volg(M)(s−2)/s.

Thus,
∫
M
Ru2

i −→
∫
M
Rϕ2

s.

Weak convergence in H1 implies that∫
M

|∇ϕs|2 dVg = lim
i→∞

∫
M

〈∇ui,∇ϕs〉 dVg

≤ lim sup
i→∞

(∫
M

|∇ui|2dVg
)1/2(∫

M

|∇ϕs|2dVg
)1/2

.

So, we arrive at Qs(ϕs) ≤ limi→∞Q
s(ui) = λs. But recall that λs was

defined as the infimum of Qs, and so we must have Qs(ϕs) = λs. So, ϕs is

a weak solution of the subcritical equation (3.6). By a regularity theorem in

[LeeP] (labelled as Theorem 4.1), ϕs is C∞ and positive.
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We now turn our attention to the limit of ϕs as s −→ p, which leads us

to the error in Yamabe’s proof. Yamabe made the claim that the functions

{ϕs} are uniformly bounded as s −→ p; but in general, this is false, as in

the case of the sphere. However, Proposition 3.5.3, which collects the work

of Trudinger and Aubin, provides a uniform Lr bound that does allow the

problem to solved, provided the condition λ(M) < λ(Sn) holds. Before giving

this proposition, we state the following lemma which describes the behaviour

of λs.

Lemma 3.5.2. If
∫
M
dVg = 1, then |λs| is nonincreasing as a function of

s ∈ [2, p] (i.e. if s ≤ s′ then |λs′| ≤ |λs|); furthermore, if λ(M) ≥ 0, then λs

is continuous from the left.

As a result of this lemma, it is assumed, from this point on, that g is

such that
∫
M
dVg = 1; this can always be achieved by multiplying g by an

appropriate constant.

Proposition 3.5.3. Suppose λ(M) < λ(Sn) and let {ϕs} be the collection of

functions given in Proposition (3.5.1). Then there are constants s0 < p, r > p,

and C > 0 such that ‖ϕs‖r ≤ C for all s ≥ s0.

We can now state the following important theorem, which essentially states

that the Yamabe problem can be solved if λ(M) < λ(Sn).

Theorem 3.5.4. Suppose λ(M) < λ(Sn) and let {ϕs} be the collection of

functions given in Proposition (3.5.1). As s −→ p, a subsequence converges

uniformly to a positive function ϕ ∈ C∞(M) which satisfies

Qg(ϕ) = λ(M), �ϕ = λ(M)ϕp−1.
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Thus, the metric g̃ = ϕp−2g has constant scalar curvature λ(M).

Proof. From Proposition 3.5.3, we know that the functions {ϕs} are uniformly

bounded in Lr. The regularity theorem in [LeeP] may then be used to show

that the functions are also uniformly bounded in C2,α(M). Then an applica-

tion of the Arzelà-Ascoli theorem gives us a subsequence which converges in

C2(M) to a function ϕ ∈ C2(M). Thus, ϕ satisfies the Yamabe equation

�ϕ = λϕp−1,

and Qg(ϕ) = λ where λ = lims→p λs. If λ(M) ≥ 0, Lemma 3.5.2 says that

λ = λ(M). If λ(M) < 0, |λs| nonincreasing implies that λs is increasing, which

implies λ ≤ λ(M); but recall that λ(M) is the infimum of Qg and so we must

have λ = λ(M) once again. Another application of the regularity theorem in

[LeeP] shows that ϕ ∈ C∞(M) and that ϕ > 0.

3.6 The condition on the Yamabe invariant λ(M)

Given Theorem 3.5.4, solving the Yamabe problem has been reduced to

showing that λ(M) < λ(Sn). Recall that λ(Sn) > 0; so, if λ(M) < 0, we

are already done. This leaves us with the case of λ(M) > 0. For the sake of

brevity, only an outline of how this final case is handled will be given here,

but all details may be found in [LeeP].

The primary idea for the λ(M) > 0 case is to find a function ψ such that

Qg(ψ) < λ(Sn). The first major step in doing this is to define generalized

stereographic projections. Let ω denote the volume of the unit sphere. For

P ∈M , let ΓP denote the Green function for �; that is, �ΓP = δP . Note that

at each P ∈M , ΓP exists and is strictly positive (see Lemma 6.1 in [LeeP]).
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Definition 3.6.1. Suppose (M, g) is a compact Riemannian manifold with

λ(M) > 0. For P ∈M define the metric ĝ = Gp−2g on M̂ = M − {P}, where

G = (n− 2)ωaΓP .

The manifold (M̂, ĝ) together with the natural map σ : M − {P} −→ M̂ is

called the stereographic projection of M from P .

Now, on the manifold M̂ , one may define a function ϕ with a positive

parameter α such that as α → ∞, Qĝ(ϕ) becomes close to λ(Sn). To know

the behaviour of Qĝ(ϕ) as α → ∞, one examines the average behaviour of

ĝ on M̂ over large spheres. This average behaviour of ĝ is measured by a

constant µ which is called the distortion coefficient of ĝ. So, it is really µ that

determines the behaviour of Qĝ(ϕ) as α→∞.

It turns out that if µ > 0, one can obtain Qĝ(ϕ) < λ(Sn) (see Proposition

7.1 in [LeeP]). Then, using the fact that

λ(M) = inf
ψ∈C∞0 (M̂)

Qĝ(ψ),

one approximates ϕ by a function ψ ∈ C∞0 (M̂) to obtain λ(M) < λ(Sn).

Theorem 3.6.2. If (M, g) is a compact Riemannian manifold of dimenson

n ≥ 3 with λ(M) > 0, then λ(M) < λ(Sn) if there is a generalized stereo-

graphic projection M̂ of M with strictly positive distortion coefficient µ.

Showing the positivity of µ is split into two cases. The first case concerns

the scenario where n ≥ 6 and M is not locally conformally flat. Once it is

shown that µ > 0 in this case, we get the following theorem, which was proved

by Aubin.
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Theorem 3.6.3. If M has dimension n ≥ 6 and is not locally conformally

flat, then λ(M) < λ(Sn).

The second case concerns n < 6 or if M is locally conformally flat. Once

it is shown that µ > 0 here as well, we get the following theorem, which was

proved by Schoen.

Theorem 3.6.4. If M has dimension 3, 4, or 5, or if M is locally conformally

flat, then λ(M) < λ(Sn) unless M is conformal to the standard sphere.
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CHAPTER 4
Conformally Covariant Operators

In this chapter, we introduce conformally covariant differential operators

and show that the conformal Laplacian (also known as the Yamabe operator)

is such an operator.

From what is stated in [JNSS], [Ros], and [CGJP1], we can make the

following definition for conformally covariant differential operators.

Definition 4.0.1. Let (M, g) be a Riemannian manifold, let Pg be a differen-

tial operator, and let [g] = {e2fg : f ∈ C∞(M)} be the conformal class for g.

If there exists ω, ω′ ∈ R such that for any g̃ ∈ [g], the differential operator Pg

transforms according to

Pg̃ = e−ω
′fPge

ωf , (4.1)

then the operator is called a conformally covariant differential operator of

biweight (ω, ω′).

There are a few well-known conformally covariant operators: the confor-

mal Laplacian, the Paneitz operator, and the Dirac operator. The class of

conformally covariant operators known as the GJMS operators—which the

conformal Laplacian and the Paneitz operator belong to—will be our primary

concern. The Dirac operator is omitted here but a treatment of it may be

found in [Hit].
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4.1 GJMS operators

For this section, we follow some of [CGJP1].

Let (M, g) be a Riemannian manifold of dimension n ≥ 3. The GJMS

operators are defined through the following proposition.

Proposition 4.1.1. For k = 1, . . . , n
2

when n is even, and for all non-negative

integers k when n is odd, there is a conformally invariant operator Pk = Pk,g

of biweight (n
2
− k, n

2
+ k) such that

Pk,g = ∆(k)
g + lower order terms. (4.2)

4.1.1 The conformal Laplacian

In the case of k = 1, (4.2) gives us the conformal Laplacian,

P1,g = ∆g +
n− 2

4(n− 1)
Rg, (4.3)

where Rg is the scalar curvature.

Remark 4.1.2. Note that in the previous chapter, the Yamabe equation (3.3)

was defined with the operator

� = 4
n− 1

n− 2
∆ +R,

which is just P1,g multiplied by 4(n − 1)/(n − 2). In fact, Lee and Parker in

[LeeP] refer to the operator � as the conformal Laplacian.

Let’s show that the operator (4.3) is indeed conformally covariant, with

biweight (n
2
− 1, n

2
+ 1).

We start by considering a conformal change of g̃ = e2ϕg. From (3.1), it

is not too difficult to see that the conformal change results in the following
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transformation law:

∆g̃f = e−2ϕ(∆gf − (n− 2)∇kϕ∇kf).

Now consider the action of ∆g on eaϕf , where a is some real number.

∆g(e
aϕf) = −∇k∇k(e

aϕf)

= −∇k[eaϕ(∇kf + af∇kϕ)]

= −aeaϕ∇kϕ(∇kf + af∇kϕ) + eaϕ(∆gf + a(f∆gϕ−∇kf∇kϕ))

= eaϕ[−2a∇kϕ∇kf − a2f∇kϕ∇kϕ+ ∆gf + af∆gϕ].

So,

∆g̃(e
aϕf) = e−2ϕ[∆g(e

aϕf)− (n− 2)∇kϕ∇k(e
aϕf)]

= e−2ϕ[∆g(e
aϕf)− eaϕ(n− 2)∇kϕ (∇kf + af∇kϕ)]

= e(a−2)ϕ[−2a∇kϕ∇kf − a2f∇kϕ∇kϕ+ ∆gf + af∆gϕ

− (n− 2)∇kϕ (∇kf + af∇kϕ)]

= e(a−2)ϕ[∆gf + af∆gϕ− (n+ 2a− 2)∇kϕ∇kf

− (n+ a− 2)af∇kϕ∇kϕ].

If we let a = −(n
2
− 1), then the above becomes

∆g̃(e
−(n

2
−1)ϕf) = e−(n

2
+1)ϕ

(
∆g −

n− 2

4

(
2∆gϕ− (n− 2)∇kϕ∇kϕ

))
f.

Now recall that under such a conformal change, the scalar curvature transforms

according to:

Rg̃ = e−2ϕ(Rg + 2(n− 1)∆gϕ− (n− 1)(n− 2)∇kϕ∇kϕ).
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So,

Rg̃(e
−(n

2
−1)ϕf) = e−(n

2
+1)ϕ

(
Rg + (n− 1)(2∆gϕ− (n− 2)∇kϕ∇kϕ

)
f.

Clearly then, we have

e(n
2

+1)ϕP1,g̃ e
−(n

2
−1)ϕf = e(n

2
+1)ϕ

(
∆g̃ +

n− 2

4(n− 1)
Rg̃

)
e−(n

2
−1)ϕf = P1,gf,

which is equivalent to

P1,g̃ = e−(n
2

+1)ϕP1,g e
(n
2
−1)ϕ.

4.1.2 The Paneitz operator

In the case of k = 2, (4.2) gives us the Paneitz operator,

P2,g = ∆2
g + δV d+

n− 4

2

(
1

2(n− 1)
∆gRg +

n

8(n− 1)2
R2
g − 2|S|2

)
, (4.4)

where

S =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
is the Schouten-Weyl tensor (see section 7.2 for more on this tensor), and V

is the tensor

V =
n− 2

2(n− 1)
Rgg − 4S

which acts on 1-forms. The Paneitz operator is of biweight (n
2
− 2, n

2
+ 2).
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CHAPTER 5
Conformal Invariants

Conformal invariants are things which are unaffected by conformal changes

of the metric. In this chapter, we closely follow [CGJP1] to discuss several

conformal invariants that arise from conformally covariant operators.

5.1 Nodal sets and nodal domains

The chief concern of this section is nodal sets—that is, zero loci. Closely

related is the concept of nodal domains, which are the connected components

of complements of nodal sets.

Let (M, g) be a Riemannian manifold of dimenson n ≥ 3. Let Pg be a

conformally covariant operator with biweight (ω, ω′). Then from the transfor-

mation law (4.1), we see that under a conformal change g̃ = e2fg, the kernel

transforms according to

kerPg̃ = e−ωf kerPg (5.1)

In the case of a GJMS operator Pk,g, the dimension of its kernel is an

invariant of the conformal class [g] (see section 3 of [CGJP1] for the technical

details). For the Dirac operator, see [Hit] (Proposition 1.3) for the proof that

the dimension of its kernel is conformally invariant. In general, dim kerPg

is conformally invariant if the conformally covariant operator Pg admits an

endomorphism on some function space—from this point onwards, we assume

this to be true.
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Now suppose we have a conformally covariant operator Pg of biweight

(ω, ω′), and a function ug ∈ C∞(M) with x0 ∈ M such that ug(x0) = 0.

Further suppose that ug belongs to a collection of functions {ug̃}g̃∈[g] ⊂ C∞(M)

that is parametrized by the conformal class [g] in the following way:

ue2fg(x) = e−ωf(x)ug(x), ∀f ∈ C∞(M,R). (5.2)

This means that for any g̃ ∈ [g], we have

ug̃(x0) = e−ωf(x0)ug(x0) = 0.

Similarly, if x0 ∈ M is such that ug̃(x0) = 0, then we must have ug(x0) = 0

as well. Thus, we see that u−1
g̃ (0) = u−1

g (0), which means that the nodal set

u−1
g (0) is an invariant of the conformal class [g].

Observe that if we take ug ∈ kerPg, then (5.1) will give us (5.2). Combining

this nodal set result with the conformal invariance of dim kerPg, we obtain the

following proposition, which is stated in the context of GJMS operators.

Proposition 5.1.1. Let k ∈ N and assume that k ≤ n
2

if n is even.

(i) If dim kerPk,g ≥ 1, then the nodal sets and nodal domains of any nonzero

null-eigenfunction of Pk,g give rise to invariants of the conformal class

[g].

(ii) If dim kerPk,g ≥ 2, then non-empty intersections of nodal sets of null-

eigenfunctions of Pk,g, and their complements, are invariants of the con-

formal class [g].

To make another observation, let us suppose that Pg is a conformally co-

variant operator with biweight (0, ω′). Then from (5.1), we have

kerPg̃ = kerPg
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for any g̃ ∈ [g]. So, if we take ug ∈ kerPg, we see that all of its level sets

{x ∈M : ug(x) = λ}, where λ ∈ C,

are independent of the metric that represents the conformal class. Thus, the

level sets of a non-constant ug ∈ kerPg are invariants of [g]. The following

proposition states this result in the context of GJMS operators.

Proposition 5.1.2. Suppose n is even. If dim kerPn
2
≥ 2, then the level sets

of any non-constant null-eigenfunction of Pn
2

are invariants of the conformal

class [g].

For the final result of this section, we make use of [CGJP2]. Suppose

dim kerPk,g = s ≥ 1 and let {u1,g, . . . , us,g} serve as a basis for kerPk,g. We

set N := ∩1≤j≤su
−1
j,g (0) and define the map Φ : M \ N −→ RPs−1 by

Φ(x) := [u1,g(x), . . . , us,g(x)], ∀x ∈M \ N .

Recalling equation (5.1), we see that each uj,g satisfies equation (5.2). From

this, we observe that for x ∈ M \ N , the s-tuple {u1,g, . . . , us,g} depends

on g only up to positive scaling. This means that the projective vector

[u1,g(x), . . . , us,g(x)] ∈ RPs−1 is independent of the metric chosen to repre-

sent the conformal class [g]. Furthermore, it means that for g̃ ∈ [g], we have

ui,g̃(x)

uj,g̃(x)
=
e−ωf(x)ui,g(x)

e−ωf(x)uj,g(x)
=
ui,g(x)

uj,g(x)
;

hence, the uj-s may be used as conformally invariant projective coordinates.

So, we have obtained the following proposition.

Proposition 5.1.3. The map Φ, as defined above, is an invariant of the

conformal class [g].
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5.2 Negative eigenvalues

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 and

let k ∈ N (and assume that k ≤ n
2

when n is even). Let G be the set of

Riemannian metrics on M .

As explained in [CGJP1], the spectrum of the GJMS operator Pk,g consists

of a sequence of real eigenvalues converging to ∞. Thus, the eigenvalues can

be ordered as a non-decreasing sequence

λ1(Pk,g) ≤ λ2(Pk,g) ≤ . . . ,

where each eigenvalue is repeated according to multiplicity.

We now state a technical lemma which will be needed for the theorem that

follows.

Lemma 5.2.1. For every j ∈ N, the function g −→ λj(Pk,g) is continuous on

G.

Now, for a metric g ∈ G, we would like to keep track of the number of

negative eigenvalues that belong to the operator Pk,g. To do this, we define

νk(g) := #{j ∈ N : λj(Pk,g) < 0}.

Additionally, we would like to keep track of the metrics in G that make

Pk,g have at least m negative eigenvalues, where m ∈ N. To do this, we define

Gk,m := {g ∈ G : Pk,g has at least m negative eigenvalues}.

Observe that Gk,m = {g ∈ G : νk(g) ≥ m} = {g ∈ G : λm(Pk,g) < 0}. This

fact, combined with Lemma 5.2.1, means that Gk,m is an open subset of G.
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Theorem 5.2.2. Let g ∈ G. Then νk(g) is an invariant of the conformal class

[g]. Furthermore, for the operator Pk,g, the sign of its first eigenvalue λ1(Pk,g)

is also an invariant of the conformal class [g].

Proof. Let g ∈ G and, for convenience, we set m = νk(g) and s = dim kerPk,g.

Then observe that λj(Pk,g) < 0 for j ≤ m, λj(Pk,g) = 0 for j = m+1, . . . ,m+s,

and λj(Pk,g) > 0 for j ≥ m+s+1. Now let δ be a positive, real number which

satisfies

δ < min{ |λm(Pk,g)| , λm+s+1(Pk,g)}.

Consider an arbitrary g̃ ∈ [g]. From Lemma 5.2.1, we know that if g̃ is

close enough to g, then we can have λm(Pk,g̃) < −δ and λm+s+1(Pk,g̃) > δ.

So, the only eigenvalues of Pk,g̃ that are contained in the interval [−δ, δ] are

λm+1(Pk,g̃), . . . , λm+s(Pk,g̃).

From the previous section, we know that the dimension of kerPk,g is an

invariant of the conformal class [g], meaning we have dim kerPk,g̃ = s which

in turn means that of all the λj(Pk,g̃), there are precisely s of them which are

equal to 0. But recall that the s eigenvalues λm+1(Pk,g̃), . . . , λm+s(Pk,g̃) are

the only eigenvalues contained in the interval [−δ, δ]. For both of these facts

to be simultaneously true, we must have λm+1(Pk,g̃) = · · · = λm+s(Pk,g̃) = 0.

From this, we observe that λm(Pk,g̃) < 0 and hence arrive at νk(g̃) = m.

So, what we have shown is that when the map g −→ νk(g) is restricted

to the conformal class [g], it is locally constant. Now since C∞(M,R) is

path connected and [g] is the range of this space under the continuous map

f −→ e2fg, we know that [g] is path connected, and hence a connected subset

of G. Then, using the well-known fact that a locally constant function on

a connected set is constant on the set, we can now conclude that νk(g) is

constant for the entire conformal class [g].
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Now we examine the conformal invariance of the sign of the first eigenvalue

of Pk,g. Observe the following:

(i) λ1(Pk,g) < 0 if and only if νk(g) ≥ 1.

(ii) λ1(Pk,g) = 0 if and only if νk(g) = 0 and dim kerPk,g ≥ 1.

(iii) λ1(Pk,g) > 0 if and only if dim kerPk,g = νk(g) = 0.

Combining these observations with the conformal invariance of both dim kerPk,g

and νk(g), we see that the sign of λ1(Pk,g) is a conformal invariant.

5.3 Manifolds with boundary

In this section we briefly remark upon the case of manifolds with boundary.

Let M be an n-dimensional (n ≥ 3) manifold with smooth boundary ∂M . Let

Pg be a conformally covariant operator on (M,∂M) whose kernel transforms

according to (5.1), and let g be a Riemannian metric such that dim kerPg ≥ 1.

Given all of this, some of the previously discussed results will continue to hold.

Specifically, the following statements are true (see [CJKS]):

(i) k = dim kerPg is an invariant of [g].

(ii) The nodal sets and nodal domains of nonzero null-eigenfunctions u ∈

kerPg are invariants of [g].

(iii) If k ≥ 2, then non-empty intersections of nodal sets of null-eigenfunctions

and their complements are invariants of [g]

(iv) The number of negative eigenvalues of Pg is an invariant of [g].

(v) Let k ≥ 2, let {u1, . . . , uk} be a basis of kerPg, and let M̃ = M \

(∩ki=1u
−1
i (0)). Define the map Φg : M̃ −→ RPk−1 by Φg(x) = [u1(x), . . . , uk(x)].

Then the orbit of Φg(M̃) under the action of GLk(R) is conformally in-

variant.

46



5.4 Spaces of conformal structures

In [SS], we find the usual definitions for Teichmüller spaces and moduli

spaces. Let M be a compact, oriented, C∞, 2-dimensional manifold, and let

M be the set of complex structures of M which agree with the orientation

and the C∞-structure. Let D be the group of diffeomorphic self-mappings of

M , let D0 be the group consisting of all f ∈ D such that f is homotopic to

the identity, and let D+ be the group of orientation preserving diffeomorphic

self-mappings of M . With all of this in mind, we can now state the definitions.

Definition 5.4.1. The Teichmüller space of the surface M is defined by the

quotient

T (M) =M/D0.

Definition 5.4.2. The moduli space of the surfaceM is defined by the quotient

R(M) =M/D+.

Observe that since we are dealing with surfaces, we could have defined

T (M) and R(M) in terms of conformal classes—simply replace M by G/P ,

where G is the space of all Riemannian metrics on M and P is the group of

conformal transformations.

If we pursue this approach with conformal classes and now let M be a

compact, orientable, n-dimensional Riemannian manifold, we can make the

following definitions.

Definition 5.4.3. For the manifold M , the Teichmüller space of conformal

structures is defined by the quotient

T (M) =
G/P
D0

.
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Definition 5.4.4. For the manifold M , the Riemannian moduli space of con-

formal structures is defined by the quotient

R(M) =
G/P
D+

.

Obviously, in dimension n = 2, we have T (M) = T (M) and R(M) =

R(M).

A brief observation made in [CGJP1] provides us with one reason why the

spaces T (M) and R(M) are of interest; namely, that the conformal invariants

discussed earlier (nodal sets, negative eigenvalues, etc) can be thought of as

functions on either T (M) or R(M).

The following theorem from [GHJL] provides us with another reason to be

interested in T (M).

Theorem 5.4.5. Let M be a closed, n-dimensional manifold. Then for a

generic smooth metric g on M , zero is not an eigenvalue of the conformal

Laplacian P1,g.

Let us clarify the meaning of this theorem and hence show the connection

with T (M). First, observe that if g is a metric such that P1,g has zero as an

eigenvalue, then for any g̃ ∈ [g], P1,g̃ also has zero as an eigenvalue—by the

transformation equation 4.1. So, we must change conformal classes if we hope

to find metrics for which P1,g does not have zero as an eigenvalue; this gives

us the first indication that working with T (M) could be useful.

Continuing in this direction, let G0 be the set of all metrics on M such that

for g ∈ G0, zero is an eigenvalue of P1,g with a multiplicity of at least one.

Then let

T0(M) =
G0/P
D0

.
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So, the true meaning of Theorem 5.4.5 is the following theorem, which is

proved in [GHJL].

Theorem 5.4.6. The complement T c0 of the set T0(M) in T (M) is open and

dense in T (M).
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CHAPTER 6
Products of Surfaces and Few Negative Eigenvalues

In this chapter, we consider the conformal Laplacian Pg on a Riemannian

manifold (M, g), and seek to understand its smallest number of negative eigen-

values. We restrict ourselves to cases where M is a product of two or more

Riemann surfaces.

6.1 Background

Using [Lee2], we start by describing the product of two arbitrary Rieman-

nian manfiolds (M1, g1) and (M2, g2). The natural Riemannian metric for the

product manifold M1 ×M2 is given by the product metric g = g1 ⊕ g2. The

product metric is defined by

g(p1,p2)

(
(v1, v2), (w1, w2)

)
= g1

∣∣
p1

(v1, w1) + g2

∣∣
p2

(v2, w2)

where (v1, v2), (w1, w2) ∈ Tp1(M1) ⊕ Tp2(M2), which can be identified with

T(p1,p2)(M1×M2). With local coordinates (x1, . . . , xn) forM1 and (xn+1, . . . , xn+m),

we have coordinates (x1, . . . , xn+m) for M1 ×M2. Locally, the product metric

is then given by g = gij dx
idxj, where (gij) is the matrix

(gij) =

(g1)ab 0

0 (g2)cd


. The indices a, b run from 1 to n, and the indices c, d run from n+1 to n+m.

Let us now calculate the scalar curvature of this product metric. We start

with the well-known fact that the (1, 3)-Riemann curvature tensor in this case
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is given by

R(X, Y )Z = (R1(X1, Y1)Z1,R2(X2, Y2)Z2),

where X = (X1, X2), Xi ∈ X(Mi), and likewise for Y and Z. The (0, 4)-

Riemann curvature tensor is then

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉g

= 〈R1(X1, Y1)Z1,W1〉g1 + 〈R2(X2, Y2)Z2,W2〉g2

= Rm1(X1, Y1, Z1,W1) +Rm2(X2, Y2, Z2,W2).

The components of the Ricci curvature (Ric)ij = gkl(Rm)kijl are then given

by

(Ric)ij =

(Ric1)ab 0

0 (Ric2)cd

 .

So, the scalar curvature is

R = gij(Ric)ij

= gab1 (Ric1)ab + gcd2 (Ric2)cd

= R1 +R2. (6.1)

6.2 Product of k Riemann surfaces

We denote by M(γ1, γ2, . . . , γk) the 2k-dimensional Riemannian manifold

of the form M = S1×S2× . . .×Sk, where Sj are orientable Riemann surfaces

of genus γj ≥ 2. We put a hyperbolic metric gj on Sj, and equip M with the

metric g = g1 ⊕ g2 ⊕ . . .⊕ gk.

Each hyperbolic metric gj is normalized so that its sectional curvature is

−1. The scalar curvature is twice the sectional curvature and so Rj = −2. By

applying equation (6.1) k − 1 times, we find that the scalar curvature of the
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metric g is R = −2k. So, the conformal Laplacian of g takes the form

Pg = ∆g +
n− 2

4(n− 1)
R,

= ∆g −
k(k − 1)

2k − 1
.

Let λj,i, i = 0, 1, 2, . . . denote the eigenvalues of ∆gj on Sj; note that the

eigenvalue λj,0 = 0 corresponds to the constant eigenfunction. It is well-known

that the eigenvalues of ∆g are of the form

µi1,...,ik :=
k∑
j=1

λj,ij . (6.2)

Accordingly, the eigenvalues of Pg are then of the form

ωi1,...,ik :=
k∑
j=1

λj,ij −
k(k − 1)

2k − 1
,

and the number of negative eigenvalues of Pg is equal to

#

{
(i1, . . . , ik) : µi1,...,ik <

k(k − 1)

2k − 1

}
. (6.3)

We remark that if we let ij = 0 for all j = 1, . . . , k, then µ0,...,0 = 0 < k(k−1)
2k−1

,

so Pg has at least one negative eigenvalue.

We now prove the following general proposition.

Proposition 6.2.1. The manifold M(γ1, . . . , γk) does not admit any metrics

of positive or zero constant scalar curvature.

The author and Professor D. Jakobson would like to thank Professor C.

LeBrun for communicating the following proof, and Professor V. Apostolov

for useful conversations.
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Proof. We first remark that there exist no metrics of positive curvature on

M(γ1, . . . , γk). We observe that M = M(γ1, . . . , γk) is a spin manifold that

is enlargeable, in the sense of [GL], i.e. for every ε > 0 there exists a finite

covering of M which is ε-hyperspherical and spin. Indeed, it is proven in [GL]

that every compact hyperbolic manifold is enlargeable (see pg. 210 of [GL]

or Corollary 3.9 of [GL] and the following discussion); and that the product

of enlargeable manifolds is also enlargeable (see [GL], pg. 210), proving the

statement for M . Hence, by [GL] (Theorem A), M does not admit a metric

of positive scalar curvature, and any metric of nonnegative scalar curvature

on M must be flat—in particular, it must be Ricci-flat. Finally, the method

in [Boch] shows that for any Ricci-flat metric g, any harmonic 1-form must

be parallel with respect to g, implying b1(M) ≤ dim(M). But we observe,

since γj ≥ 2 for all j, that b1(M) = 2(
∑k

j=1 γj) > 2k = dim(M), which is

a contradiction, proving that M does not admit any metrics of zero scalar

curvature.

6.3 Few negative eigenvalues of the conformal Laplacian

It is well-known (see [CGJP1], [CGJP2], [El]) that for a compact mani-

fold of dimension n ≥ 3, the number of negative eigenvalues of Pg cannot be

uniformly bounded from above, if we are allowed to vary the conformal class.

Accordingly, an interesting topological invariant seems to be the smallest num-

ber of negative eigenvalues of Pg on M . It will, of course, be zero if M admits

metrics of non-negative scalar curvature. To study this, we make the following

definition.
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Definition 6.3.1. Assume that a manifold M of dimension n ≥ 3 does not

admit metrics of positive or zero scalar curvature. We denote by MinNeg(M)

the smallest number of negative eigenvalues of the conformal Laplacian.

By Proposition 6.2.1, any product M = M(γ1, . . . , γk) does not admit

metrics of positive or zero scalar curvature, so MinNeg(M) ≥ 1 is well-defined.

Now, denote by Λ(γ) the supremum of λ1(∆h) over all hyperbolic metrics

h on a surface S of genus γ ≥ 2. Let Sj have genus γj.

Theorem 6.3.2. Assume that Λ(γ) > k(k−1)
2k−1

. Let M = (γ, k), denote the

k-fold product of Riemann surfaces of genus γ. Then

MinNeg(M(γ, k)) = 1.

Proof. Equip Sγ with the metric gj where λ1 attains the supremum Λ(γ).

According to (6.3), negative eigenvalues of Pg are in bijection with (i1, . . . , ik)

such that µi1,...,ik < k(k − 1)/(2k − 1). By assumption, this can only happen

when 0 = i1 = . . . = ik, and so Pg has only one negative eigenvalue. On the

other hand, MinNeg(M) ≥ 1, finishing the proof.

Proposition 6.3.3. For 2 ≤ k ≤ 8, MinNeg(M(2, k)) = 1.

Proof. It is known ([SU]) that the Bolza surface provides Λ(2) ≈ 3.8. We next

remark that f(x) := x(x−1)/(2x−1) is an increasing function for x ≥ 1, since

f ′(x) = (2x2 − 2x + 1)/(2x − 1)2 > 0. Accordingly, the sequence f(k), k ≥ 2

is monotone increasing (i.e. f(2) < f(3) < . . . ). So, to apply Theorem 6.3.2,

we want to find the largest k such that f(k) < 3.8. An easy calculation shows

that f(8) ≈ 3.73 < 3.8, while f(9) ≈ 4.24 > 3.8. Therefore, Theorem 6.3.2

applies for γ = 2 and 2 ≤ k ≤ 8.
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It is clear that we can obtain upper bounds on MinNeg(M(2, k)) for k > 8

from precise values of eigenvalues of the hyperbolic Laplacian on the Bolza

surface.

The results in this chapter establish for the first time the value of MinNeg(M)

for certian product manifolds M . A reasonable question is whether MinNeg

is always attained on such manifolds by a product of hyperbolic metrics on

the corresponding Riemann surfaces. If true, then very interesting recent re-

sults about the spectrum of the hyperbolic Laplacian on Riemann surfaces

in the large genus limit (see [LS, Monk]) would provide a lot of information

on MinNeg for product manifolds; we discuss a possible consequence in the

Conclusion.
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CHAPTER 7
The Weyl Tensor

In Chapter 5, we discussed conformally invariant maps from manifolds

(possibly with a subset removed) into projective spaces, obtained by using

eigenfunctions in the kernel of a GJMS operator as projective coordinates.

The key observation was that conformal covariance of the operator implies

an easy transformation law for eigenfunctions in the kernel under a conformal

change of metric.

One can then notice that similar transformation laws exist for the compo-

nents of the Weyl tensor. Given this, it seems natural to extend the methods

seen in Chapter 5 to the setting of the Weyl tensor, and thus to obtain con-

formal invariants from ratios of the components of the Weyl tensor.

Our discussion on the Weyl tensor begins in this chapter with a survey

of basic results, including how it transforms under a conformal change of

the metric. Since these results apply in both the Riemannian and pseudo-

Riemannian setting, we start with a section on pseudo-Riemannian metrics.

Throughout this chapter, we follow [Lee2].

7.1 Pseudo-Riemannian metrics

Let V be a finite dimensional vector space, and let q be a symmetric co-

variant 2-tensor on V (i.e. a symmetric bilinear form). We can then define a

linear map q̂ : V → V ∗ by

q̂(v)(w) = q(v, w) for all v, w ∈ V.
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If q̂ is an isomorphism, then we say that q is nondegenerate. This is equivalent

to saying that for every nonzero v ∈ V , there is a w ∈ V such that q(v, w) 6= 0.

Yet another equivalent statement is that if q = qijη
iηj where {ηi} is some basis

of V ∗, then the matrix (qij) is invertible.

A nondegenerate symmetric bilinear form on a finite dimensional vector

space V is referred to as a scalar product. In the case where the scalar product

is positive definite, it is referred to as an inner product.

Now, suppose (V, q) is an n-dimensional scalar product space. As shown in

[Lee2] (Corollarly 2.64), there is a basis {βi} of V ∗ such that q can be written

as

q = (β1)2 + · · ·+ (βr)2 − (βr+1)2 − · · · − (βr+s)2,

where r and s are nonnegative integers which satisfy r+ s = n. The nonnega-

tive integers r and s are actually independent of the choice of basis. Together,

they form an ordered pair (r, s) which is referred to as the signature of q.

Definition 7.1.1. LetM be a smooth manifold. A pseudo-Riemannian metric

on M is a smooth, symmetric 2-tensor field g that is nondegenerate at each

point of M and has the same signature everywhere.

The pseudo-Euclidean space of signature (r, s), denoted by R(r,s), provides

us with a simple example of pseudo-Riemannian manifolds. Specifically, this

space is the manifold Rr+s with coordinates (x1, . . . , xr, t1, . . . , ts) and pseudo-

Riemannian metric q(r,s) defined by

q(r,s) = dx2
1 + · · ·+ dx2

r − dt21 − · · · − dt2s.

The pseudo-Euclidean space R(n,1) is especially well-known; it is called the

(n + 1)-dimensional Minkowski space and its metric is called the Minkowski

metric.
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The Minkowski metric belongs to an important class of pseudo-Riemannian

metrics known as the Lorentz metrics; these pseudo-Riemannian metrics are

characterized by having a signature of (r, 1) (or (1, r) in some literature).

Note that Riemannian metrics constitute another important class of pseudo-

Riemannian metrics.

7.2 Decomposition of the Riemann curvature tensor

In this section, we define the Weyl tensor and show that it is one of the

terms in the decomposition of the (0, 4)-Riemann curvature tensor Rm. Before

this is done, we must introduce the Kulkarni-Nomizu product.

Let R(V ∗) denote the vector space of all covariant 4-tensors on the vector

space V which have the same symmetries as the (0, 4)-Riemann curvature

tensor; that is, such a tensor T should satisfy:

(i) T (w, x, y, z) = −T (x,w, y, z)

(ii) T (w, x, y, z) = −T (w, x, z, y)

(iii) T (w, x, y, z) = T (y, z, w, x)

(iv) T (w, x, y, z) + T (x, y, w, z) + T (y, w, x, z) = 0.

Let (V, g) be a scalar product space, and let Σ2(V ∗) denote the space of

symmetric 2-tensors on V . The trace of a covariant 2-tensor h with respect

to g is given by trg(h) = gijhij. In the case of a tensor from R(V ∗), we let

trg : R(V ∗) −→ Σ2(V ∗) be the trace, with respect to g, on the first and last

indices. Given this, we see that Ric = trgRm.

Definition 7.2.1. Given h, k ∈ Σ2(V ∗), their Kulkarni-Nomizu product is a

covariant 4-tensor denoted as h©∧ k and defined by

h©∧ k(w, x, y, z) = h(w, z)k(x, y)+h(x, y)k(w, z)−h(w, y)k(x, z)−h(x, z)k(w, y).
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The following lemma provides us with some useful properties of the Kulkarni-

Nomizu product.

Lemma 7.2.2. Let (V, g) be an n-dimensional scalar product space. Let h, k ∈

Σ2(V ∗) and let T ∈ R(V ∗).

(i) h©∧ k ∈ R(V ∗)

(ii) h©∧ k = k©∧ h

(iii) trg(h©∧ g) = (n− 2)h+ (trgh)g.

(iv) trg(g©∧ g) = 2(n− 1)g.

(v) 〈T, h©∧ g〉g = 4〈trgT, h〉g.

Proposition 7.2.3. Let (V, g) be an n-dimensional scalar product space with

n ≥ 3. Define a linear map G : Σ2(V ∗)→ R(V ∗) by

G(h) =
1

n− 2

(
h− trgh

2(n− 1)
g

)
©∧ g.

Then G is a right inverse for trg, and its image is the orthogonal complement

of the kernel of trg in R(V ∗).

Proof. Let h ∈ Σ2(V ∗). Then, using (iii) and (iv) of Lemma 7.2.2, we have

trg(G(h)) =
1

(n− 2)

(
trg(h©∧ g)− trgh

2(n− 1)
trg(g©∧ g)

)
=

1

(n− 2)

(
(n− 2)h+ (trgh)g − trgh

2(n− 1)
2(n− 1)g

)
= h,

which shows that G is indeed a right inverse for trg. Given this, we see that

G must be injective and trg must be surjective; this, in turn, reveals that

dim Im (G) = dim ker(trg)
⊥. Furthermore, if T ∈ R(V ∗) is such that trgT = 0,

then an application of (v) of Lemma 7.2.2 results in 〈T,G(h)〉g = 0. This, plus

the dimensionality argument, leads us to conclude that Im(G) = ker(trg)
⊥.
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Definition 7.2.4. Let g be either a Riemannian or pseudo-Riemannian met-

ric. The Schouten tensor (or, Schouten-Weyl tensor) of g is a symmetric

2-tensor field defined by:

S =
1

n− 2

(
Ric− R

2(n− 1)
g

)
,

where Ric is the Ricci curvature and R is the scalar curvature, both defined

with respect to g.

Definition 7.2.5. Let g be either a Riemannian or pseudo-Riemannian met-

ric. The Weyl tensor of g is the tensor from R(V ∗) defined as

W = Rm− S©∧ g

= Rm− 1

n− 2
Ric©∧ g +

R

2(n− 1)(n− 2)
g©∧ g.

Proposition 7.2.6. For every Riemannian or pseudo-Riemannian manifold

(M, g) of dimension n ≥ 3, the trace of the Weyl tensor is zero, and

Rm = W + S©∧ g

is the orthogonal decomposition of Rm corresponding to R(V ∗) = ker(trg) ⊕

ker(trg)
⊥.

Proof. This follows easily by taking h = Ric in Proposition 7.2.3. Indeed,

doing this shows that G(Ric) = S ©∧ g and thus S ©∧ g ∈ ker(trg)
⊥. Then,

using the fact Ric = trgRm and that the map G is a right inverse for trg, we
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have

trgW = trgRm− trg(S©∧ g)

= trgRm− trg(G(trgRm))

= trgRm− trgRm = 0,

which shows that the Weyl tensor is traceless and hence W ∈ ker(trg).

7.3 Conformal transformation of the Weyl tensor

Proposition 7.3.1. Let (M, g) be an n-dimensional (n ≥ 3) Riemannian or

pseudo-Riemannian manifold (with or without boundary). Under a conformal

change of the metric g̃ = e2fg, where f ∈ C∞(M), the Weyl tensor transforms

according to

W̃ = e2fW. (7.1)

Proof. Under a conformal change g̃ = e2fg, the (0, 4)-Riemann curvature ten-

sor Rm, the Ricci curvature Ric, and the scalar curvature R transform in the

following way (see [Lee2], Theorem 7.30):

R̃m = e2f

(
Rm− (∇2f)©∧ g + (∇f ⊗∇f)©∧ g − 1

2
|∇f |2(g©∧ g)

)
,

R̃ic = Ric− (n− 2)(∇2f) + (n− 2)(∇f ⊗∇f) + (∆f − (n− 2)|∇f |2)g,

R̃ = e−2f (R + 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2).

With these transformations, the proof of the proposition is just a couple of

simple calculations. First, we observe how the Schouten tensor S transforms
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under this conformal change:

S̃ =
1

n− 2

(
R̃ic− R̃

2(n− 1)
g̃

)
= S −∇2f + (∇f ⊗∇f) +

∆f

n− 2
g − |∇f |2g − ∆f

n− 2
g +

1

2
|∇f |2g

= S −∇2f + (∇f ⊗∇f)− 1

2
|∇f |2g

From this, we see that the last three terms of S̃©∧ g̃ = e2f (S̃©∧ g) are identical

to the last three terms of R̃m. Thus, we have

W̃ = R̃m− S̃©∧ g̃ = e2fW.

Remark 7.3.2. Given the above proposition, we define the (1, 3)-Weyl tensorW

by defining its components as Wijk
l = glmWijkm. Now consider what happens

to W under a conformal change of the metric g̃ = e2fg:

W̃ l
ijk = g̃lmW̃ijkm = e−2fglme2fWijkm =Wijk

l.

Thus, the (1, 3)-Weyl tensor W is conformally invariant.

There is a useful corollary to be obtained from Propositon 7.3.1, but before

we state and prove it, we shall need the following definition and theorem.

Definition 7.3.3. A Riemannian manifold is flat if it is locally isometric to

Euclidean space. That is, every point on the manifold has a neighbourhood

that is isometric to an open set in Rn with the Euclidean metric.

Theorem 7.3.4. A Riemannian or pseudo-Riemannian manifold is flat if and

only if its (0, 4)-Riemann curvature tensor vanishes identically.

Now we present the corollary from Propositon 7.3.1.
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Corollary 7.3.5. Let (M, g) be an n-dimensional (n ≥ 3) Riemannian or

pseudo-Riemannian manifold. If g is locally conformally flat, then its Weyl

tensor vanishes identically.

Proof. If (M, g) is a Riemannian (pseudo-Riemannian) manifold, let g0 denote

the flat Riemannian (pseudo-Riemannian) metric on Rn. Now suppose (M, g)

is locally conformally flat. This means that for an arbitrary point p ∈ M ,

there is a neighbourhood U and a diffeomorphism Ψ : U −→ Rn such that

the pullback g̃ = Ψ∗g0 satisfies g̃ = e2fg for some f ∈ C∞(M). Then, by

Theorem 7.3.4, the (0, 4)-Riemann curvature tensor of g̃ is zero, meaning the

Weyl tensor of g̃ is zero. Then, from (7.1), we conclude that the Weyl tensor

of g must also be zero.
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CHAPTER 8
The Weyl Tensor and Lie Groups

In this chapter, we continue the survey given in Chapter 7 but now special-

ize to the Weyl tensor for left-invariant metrics and bi-invariant metrics on Lie

groups. In the former case, one finds that the components of the Weyl tensor

may be written in terms of the structure constants. In the latter case, curva-

ture formulas become pleasant and, as a consequence, so does the formula for

the Weyl tensor.

8.1 Background

For this section, we follow [Lee1] and [Lee2].

8.1.1 Lie groups

Definition 8.1.1. A Lie group is a smooth manifold G, without boundary,

that is also a group with the property that the multiplication map m : G ×

G → G and the inversion map i : G → G are both smooth. Note that the

multiplication map m and the inversion map i are given, respectively, by

m(a, h) = ah, i(a) = a−1.

Definition 8.1.2. Let G be a Lie group. Given any a ∈ G, we can define

two maps: the left translation map La : G→ G and the right translation map
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Ra : G→ G, respectively defined by

La(h) = ah, Ra(h) = ha.

Remark 8.1.3. In fact, La : G → G is a diffeomorphism because it is smooth

and has the smooth inverse La−1 . Similarly, Ra : G→ G is a diffeomorphism.

Definition 8.1.4. Let G be a Lie group. A Riemannian metric g on G is left-

invariant if L∗a g = g for all a ∈ G (i.e. it is invariant under all left translations).

Similarly, g is right-invariant if R∗a g = g for all a ∈ G. If g is both left-invariant

and right-invariant, it is said to be bi-invariant.

8.1.2 Lie algebras

Definition 8.1.5. A Lie algebra, over R, is a real vector space g equipped

with a map (typically called the bracket) that is of the form

g× g −→ g

(X, Y ) 7−→ [X, Y ]

and, for any X, Y, Z ∈ g, satisfies the following:

(i) Bilinearity: For any a, b ∈ R,

[aX + bY, Z] = a[X,Z] + b[Y, Z]

[Z, aX + bY ] = a[Z,X] + b[Z, Y ].

(ii) Antisymmetry:

[X, Y ] = −[Y,X].
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(iii) Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Let us describe a well-known Lie algebra. Start by considering X(M), the

space of C∞ vector fields on a C∞ manifold M . Given any X, Y ∈ X(M),

their Lie bracket [X, Y ] is defined by

[X, Y ]f = XY f − Y Xf,

for f ∈ C∞(M). Lemma 8.25 and Proposition 8.28 of [Lee1] shows, respec-

tively, that [X, Y ] ∈ X(M) and that the Lie bracket satisfies the three prop-

erties described in Definition 8.1.5. Thus, X(M) with the Lie bracket is a Lie

algebra.

For our purposes, we need to understand the Lie algebra that naturally

comes with a given Lie group. To start, consider the following definition.

Definition 8.1.6. Let G be a Lie group. A vector field X on G is left-invariant

if (La)∗X = X for all a ∈ G. Similarly, X is right-invariant if (Ra)∗X = X

for all a ∈ G.

For a Lie group G, it turns out that the space of smooth, left-invariant

vector fields is closed under the Lie bracket ([Lee1], Proposition 8.33). Thus,

the space of these vector fields together with the Lie bracket determines a Lie

algebra. This Lie algebra is known as the Lie algebra of G and is denoted by

Lie(G).
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8.1.3 The adjoint representation

Definition 8.1.7. If G and H are Lie groups, a Lie group homomorphism be-

tween them is a smooth map ϕ : G→ H which is also a group homomorphism.

If g and h are Lie algebras, a Lie algebra homomorphism between them is a

linear map ψ : g→ h which preserves brackets (i.e. ψ[X, Y ] = [ψX,ψY ]).

For a finite dimensional real or complex vector space V , let GL(V ) denote

the group of invertible linear maps from V to itself. Note that this group is

isomorphic to either GL(n,R) or GL(n,C), where n = dimV , and thus it is a

Lie group.

Similarly, for a finite dimensional real or complex vector space V , let gl(V )

denote the Lie algebra of linear maps from V to itself (note that the bracket

for this Lie algebra is defined by [A,B] = A ◦B −B ◦ A).

Definition 8.1.8. For a Lie group G, a finite dimensional representation of

G is a Lie group homomorphism ϕ : G → GL(V ), for some V . For a finite

dimensional Lie algebra g, a finite dimensional representation of g is a Lie

algebra homomorphism ψ : g→ gl(V ), for some V .

With these definitions, we can now define what is known as the adjoint

representation. To start, let G be a Lie group and g be its Lie algebra. For

each g ∈ G, we may obtain a Lie group homomorphism Cg : G → G defined

by Cg(x) = gxg−1. From Theorem 8.44 of [Lee1], we know that each Lie

group homomorphism induces a Lie algebra homomorphism; the Lie algebra

homomorphism induced by Cg is denoted by Ad(g) = (Cg)∗ : g→ g.

Observe that because Cg is a Lie group homomorphism for each g ∈ G, we

have Cg1g2 = Cg1 ◦Cg2 and, as a consequence, Ad(g1g2) = Ad(g1) ◦Ad(g2), for

any g1, g2 ∈ G. From this, we see that Ad(g) ∈ GL(g), where its inverse is
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given by Ad(g−1). Additionally, we now see that Ad : G → GL(g) is a group

homomorphism. Upon showing that Ad is smooth, the following proposition

will have been proven.

Proposition 8.1.9. For a Lie group G with Lie algebra g, the map

Ad : G −→ GL(g)

is a Lie group representation, known as the adjoint representation of G.

We can also obtain an adjoint representation for Lie algebras. Consider

a finite dimensional Lie algebra g. For each X ∈ g, we can define a map

ad(X) : g→ g by ad(X)Y = [X, Y ].

Proposition 8.1.10. For any Lie algebra g, the map ad : g→ gl(g) is a Lie

algebra representation, known as the adjoint representation of g.

Theorem 8.1.11. Let G be a Lie group, g be its Lie algebra, and Ad : G →

GL(g) be the adjoint representation of G. The induced Lie algebra represen-

tation Ad∗ : g→ gl(g) is given by Ad∗ = ad.

8.2 Weyl tensor of a left-invariant metric

For this section, we primarily follow [Mil].

For a Lie group G, there is a bijection between left-invariant Riemannian

metrics on G and inner products on Lie(G) (see [Lee2], Lemma 3.10). When

there is no risk of confusion, the inner product corresponding to a left-invariant

Riemmanian metric g will be simply denoted by 〈·, ·〉.

Lemma 3.10 from [Lee2] also tells us that a Riemannian metric g on a Lie

group G is left-invariant if and only if for all X, Y ∈ Lie(G), the function

g(X, Y ) is constant on G. As a consequence, for any vector field Z, we have
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Z〈X, Y 〉 = 0. Knowing this, consider Koszul’s formula:

〈∇XY, Z〉 =
1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

− 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉)

Applying this formula to a Lie group with a left-invariant metric, and using

left-invariant vector fields X, Y, and Z, the formula reduces to

〈∇XY, Z〉 =
1

2
(−〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉)

=
1

2
(〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉). (8.1)

Before continuing with this formula, we must now define the structure con-

stants.

Definition 8.2.1. Let G be an n-dimensional Lie group with a left-invariant

metric g. Let e1, . . . , en be a basis for the vector space Lie(G) that is orthonor-

mal with respect to the inner product associated to g. Then the structure

constants αijk are defined by

[ei, ej] =
∑
k

αijkek

⇐⇒ αijk = 〈[ei, ej], ek〉.

Together, the structure constants form an n×n×n array which describes the

Lie algebra’s structure.
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We now return to equation (8.1) but with the orthonormal basis described

in the above definition. This results in the following expression:

〈∇eiej, ek〉 =
1

2
(〈[ei, ej], ek〉 − 〈[ej, ek], ei〉+ 〈[ek, ei], ej〉)

=
1

2
(αijk − αjki + αkij)

=⇒ ∇eiej =
∑
k

1

2
(αijk − αjki + αkij)ek.

Ultimately, this allows us to express the sectional curvature entirely in

terms of the structure constants. To see this, we show how the sectional cur-

vature of a plane section with orthonormal basis e1, e2 is calculated. Recalling

Definition 2.1.20, and skipping over the tedious calculations, we obtain the

following formula:

K(e1, e2) = −〈R(e1, e2)e1, e2〉

= 〈∇[e1,e2]e1 −∇e1∇e2e1 +∇e2∇e1e1, e2〉

=
∑
k

(
1

2
α12k(−α12k + α2k1 + αk12)

− 1

4
(α12k − α2k1 + αk12)(α12k + α2k1 − αk12)− αk11αk22

)
Now, further recall Remark 2.3.3, which says that the scalar curvature R

can be written as

R =
∑
i 6=j

K(ei, ej).

From this formula, we see that the scalar curvature may also be written entirely

in terms of the structure constants.

We can also express the components of the (0, 4)-Riemann curvature tensor

Rm in terms of the structure constants and, as a consequence, we can do the

same for the components of the Ricci curvature—by using the other formula
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in Remark 2.3.3:

Ric(u, v) =
n∑
i=1

Rm(ei, u, v, ei)

While these expressions are somewhat impractical, they provide us with the

valuable fact that, for a Lie group with a left-invariant metric, the components

of the Weyl tensor may be written in terms of the structure constants.

8.3 Weyl tensor of a bi-invariant metric

For this section, we continue to follow [Mil].

First, we must recall what the adjoint of a linear transformation is. If L is

a linear transformation between metric spaces, then its adjoint L∗ is defined

by

〈Lx, y〉 = 〈x, L∗y〉.

Additionally, L is said to be skew-adjoint if L∗ = −L, meaning

〈Lx, y〉 = −〈x, Ly〉.

We now state a lemma from [Mil] which provides us with a condition for

determining if a left-invariant metric on a connected Lie group is bi-invariant.

Lemma 8.3.1. Let G be a connected Lie group. A left-invariant metric on G

is bi-invariant if and only if the linear transformation ad(X) is skew-adjoint

for every X ∈ Lie(G).

So, for the rest of this section, we assume that G is a connected Lie group

and that g is a bi-invariant metric on G with corresponding inner product 〈·, ·〉

on Lie(G). Furthermore, all vector fields are assumed to belong to Lie(G).
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As a result of these assumptions and the above lemma, ad(X) is skew-

adjoint for all X ∈ Lie(G), which means we have

〈ad(X)Y, Z〉 = −〈Y, ad(X)Z〉.

Recalling that ad(X)Y = [X, Y ], we see that this is equivalent to

〈[X, Y ], Z〉 = −〈Y, [X,Z]〉

⇔ 〈[Y,X], Z〉 = 〈Y, [X,Z]〉 (8.2)

Applying this to equation (8.1), we get

〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉)

=
1

2
(〈[X, Y ], Z〉 − 〈Y, [Z,X]〉+ 〈[Z,X], Y 〉)

=
1

2
〈[X, Y ], Z〉,

and so,

∇X =
1

2
ad(X) ⇔ ∇XY =

1

2
[X, Y ] (8.3)

With (8.3), we can obtain simple formulas for the curvatures. Starting

with the (1, 3)-Riemann curvature tensor R, we have

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

=
1

4
[X, [Y, Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X, Y ], Z]

= −1

4
[[X, Y ], Z]

=⇒ R(X, Y ) = −1

4
ad([X, Y ]).

Note that we used the Jacobi identity to go from the second line to the third

line in the calculation of R(X, Y )Z.
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The (0, 4)-Riemann curvature tensor is then

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

= −1

4
〈[[X, Y ], Z],W 〉

= −1

4
〈[X, Y ], [Z,W ]〉,

where we used (8.2), a consequence of skew-adjointness, to go from the second

line to the third line.

It is now a simple matter to obtain the sectional curvature of a plane

section with orthonormal basis u, v:

K(u, v) = −Rm(u, v, u, v)

=
1

4
〈[u, v], [u, v]〉.

Before obtaining an expression for the Ricci curvature, we consider the

following definition.

Definition 8.3.2. Let g be a Lie algebra, either over R or C. The Killing

form B of g is the symmetric, bilinear form defined by

B(x, y) = tr(ad(x) ◦ ad(y)),

where x, y ∈ g.

Now, recall that the Ricci curvature is defined as the trace of

Z 7−→ R(Z,X)Y = −1

4
[[Z,X], Y ]

= −1

4
[Y, [X,Z]]

= −1

4
ad(Y )(ad(X)Z)

= −1

4
(ad(Y ) ◦ ad(X))Z,
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and so

Ric(X, Y ) = tr(Z 7−→ R(Z,X)Y )

= −1

4
tr(ad(Y ) ◦ ad(X))

= −1

4
tr(ad(X) ◦ ad(Y ))

= −1

4
B(X, Y )

We are now in a position to obtain an expression for the Weyl tensor W

of a bi-invariant metric g on a connected Lie group G:

W = Rm− 1

n− 2
Ric©∧ g +

R

2(n− 1)(n− 2)
g©∧ g

=⇒ W (X, Y, Z,K) = −1

4
〈[X, Y ], [Z,K]〉+

1

4(n− 2)
B©∧ g(X, Y, Z,K)

− trgB

8(n− 1)(n− 2))
g©∧ g(X, Y, Z,K)
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CHAPTER 9
The Weyl Tensor and Degeneration of a Conformal Factor

In this chapter, we consider a 4-dimensional Riemannian manifold that

is formed from taking the product of two surfaces, where the metric on one

surface is multiplied by a conformal factor. We compute the ratios of the

components of the Weyl tensor for this product manifold, and then discuss the

behaviour of these ratios as the conformal factor degenerates at a point. Note

that the components of the (1, 3)-Riemann curvature tensor were computed in

Maple.

9.1 The first manifold

The first factor in our product will be the 2-dimensional Riemannian man-

ifold (M,h) where the metric h is hyperbolic and, in local coordinates (x, y),

is given by

h =
4

(1− x2 − y2)2
(dx2 + dy2) =

4

a
(dx2 + dy2),

where a = a(x, y) := (1− x2 − y2)2.

The nonzero components of its (1, 3)-Riemann curvature tensor are

R212
1 = R121

2 =
4

a

R122
1 = R211

2 = −4

a
.
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For the (0, 4)-Riemann curvature tensor Rm, recall that (Rm)ijkl = Rijkl =

hlmRijk
m, and so its nonzero components are

R2121 = R1212 =
16

a2

R1221 = R2112 = −16

a2
.

The nonzero components of its Ricci curvature (Ric)ij = Rkij
k are

(Ric)11 = (Ric)22 = −4

a
.

The scalar curvature is then

R = hij(Ric)ij =
a

4

(
− 4

a

)
+
a

4

(
− 4

a

)
= −2.

9.2 The second manifold

The second factor in our product will be the 2-dimensional Riemannian

manifold (N, k) where the metric k, in local coordinates (z, w), is given by

k :=
4e2f

(1− z2 − w2)2
(dz2 + dw2) =

4e2f

ρ
(dz2 + dw2) = e2f k̃,

where ρ = ρ(z, w) := (1−z2−w2)2, k̃ is the usual hyperbolic metric of the same

form as the metric h for the first manifold, and f := f(z, w) is an arbitrary

smooth function defined on N , that is, f ∈ C∞(N).

Now, given that (N, k) will be the second factor in our product, we will

use 3, 4 for our indices as opposed to 1, 2. With this in mind, the nonzero

components of its (1, 3)-Riemann curvature tensor are

R434
3 = R343

4 =
ρfww + 4 + ρfzz

ρ

R344
3 = R433

4 =
−ρfww − 4− ρfzz

ρ
,
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where the notation fzz means fzz = ∂2

∂z2
f(z, w).

The nonzero components of its (0, 4)-Riemann curvature tensor are

R4343 = R3434 =
4e2f (ρfww + 4 + ρfzz)

ρ2

R3443 = R4334 =
4e2f (−ρfww − 4− ρfzz)

ρ2
.

The nonzero components of its Ricci curvature are

(Ric)33 = (Ric)44 =
−ρfww − 4− ρfzz

ρ
.

The scalar curvature is

R =
e−2fρ

4

(
−ρfww − 4− ρfzz

ρ

)
+
e−2fρ

4

(
−ρfww − 4− ρfzz

ρ

)
= −e

−2f (ρfww + 4 + ρfzz)

2

= − ρ

2e2f

(
∂2

∂z2
+

∂2

∂w2

)
f − 2e−2f

= 2(∆kf − e−2f )

= 2e−2f (∆k̃f − 1),

where ∆k = e−2f∆k̃ is the Laplace-Beltrami operator for (N, k).

9.3 The product manifold

We now consider the product of the two previously described Riemannian

manifolds; that is, we consider the manifold M ×N with the metric g = h⊕ k

which, in local coordinates (x, y, z, w), is given by

g =
4

a
(dx2 + dy2) +

4e2f

ρ
(dz2 + dw2).
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Recall that by equation 6.1, the scalar curvature is the sum of each factor’s

scalar curvature, and so

R = 2e−2f (∆k̃f − e
2f − 1).

Regarding the (1, 3)-Riemann curvature tensor Rijl
m, its components are

equal to those for (M,h) when the indices i, j, l,m take on values 1 or 2, equal

to those for (N, k) when they take on 3 or 4, and equal to zero in all other

cases; obviously, the same is true for the components of the (0, 4)-Riemann

curvature tensor Rijlm. Similarly, the components of the Ricci tensor (Ric)ij

are equal to those for (M,h) when i, j take on values 1 or 2 and equal to those

for (N, k) when they take on 3 or 4.

Now, to compute the Weyl tensor we will need to also compute Ric©∧ g

and g©∧ g. The components of Ric©∧ g are given by

(Ric©∧ g)ijlm = (Ric)imgjl + (Ric)jlgim − (Ric)ilgjm − (Ric)jmgil.
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So, we have

(Ric©∧ g)2121 = (Ric©∧ g)1212 =
32

a2

(Ric©∧ g)1221 = (Ric©∧ g)2112 = −32

a2

(Ric©∧ g)4343 = (Ric©∧ g)3434 =
8e2f (ρfww + 4 + ρfzz)

ρ2

(Ric©∧ g)4334 = (Ric©∧ g)3443 = −8e2f (ρfww + 4 + ρfzz)

ρ2

(Ric©∧ g)1313 = (Ric©∧ g)3131 = (Ric©∧ g)1414 = (Ric©∧ g)4141

= (Ric©∧ g)2323 = (Ric©∧ g)3232 = (Ric©∧ g)2424

= (Ric©∧ g)4242 =
16e2f + 4ρfww + 4ρfzz + 16

aρ

(Ric©∧ g)1331 = (Ric©∧ g)3113 = (Ric©∧ g)1441 = (Ric©∧ g)4114

= (Ric©∧ g)3223 = (Ric©∧ g)2332 = (Ric©∧ g)2442

= (Ric©∧ g)4224 = −16e2f + 4ρfww + 4ρfzz + 16

aρ
,

Calculating the components of g©∧ g follows the same procedure and yields

the following:
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(g©∧ g)2121 = (g©∧ g)1212 = −32

a2

(g©∧ g)1221 = (g©∧ g)2112 =
32

a2

(g©∧ g)4343 = (g©∧ g)3434 = −32e4f

ρ2

(g©∧ g)4334 = (g©∧ g)3443 =
32e4f

ρ2

(g©∧ g)1313 = (g©∧ g)3131 = (g©∧ g)1414 = (g©∧ g)4141

= (g©∧ g)2323 = (g©∧ g)3232 = (g©∧ g)2424

= (g©∧ g)4242 = −32e2f

aρ

(g©∧ g)1331 = (g©∧ g)3113 = (g©∧ g)1441 = (g©∧ g)4114

= (g©∧ g)3223 = (g©∧ g)2332 = (g©∧ g)2442

= (g©∧ g)4224 =
32e2f

aρ
.

Finally, we can now calculate the Weyl tensor W which takes the following

form for dimension n = 4:

W = Rm− 1

n− 2
Ric©∧ g +

R

2(n− 1)(n− 2)
g©∧ g

= Rm− 1

2
Ric©∧ g +

R

12
g©∧ g
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So, the components of W for our product manifold (M ×N, g) are

W2121 = W1212 = − 8

3a2
R

W1221 = W2112 =
8

3a2
R

W4343 = W3434 = −8e4f

3ρ2
R

W3443 = W4334 =
8e4f

3ρ2
R

W1313 = W3131 = W1414 = W4141 = W2323 = W3232

= W2424 = W4242 =
4e2f

3aρ
R

W1331 = W3113 = W1441 = W4114 = W2332 = W3223

= W2442 = W4224 = −4e2f

3aρ
R

9.4 Ratios of the Weyl tensor and degeneration at a point

Let us now determine the ratios of the components of the Weyl tensor.

The trivial ratios which give ±1 are omitted; then, up to multiplication by

−1, there are three ratios:

T1 =
W1221

W3443

=

(
ρ

ae2f

)2

T2 =
W1221

W4242

=
2ρ

ae2f

T3 =
W3443

W4242

=
2ae2f

ρ

Observe that, up to reciprocals and multiplication by a constant, each ratio

is just the ratio of 4/a and 4e2f/ρ (though T1 differs a bit more in that it

additionally squares this ratio).

Now suppose that the conformal factor e2f degenerates at a point; that is,

f(p0) = −∞ at some point p0 = (z0, w0) ∈ N . As a result of this, the metric
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g on M × {p0} will degenerate. Observe that such a degeneration is detected

by the Weyl tensor in the sense that at p0, the ratios T1, T2, and T3 will either

go to 0 or ∞.
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CHAPTER 10
Conclusion

While being reasonably self-contained, this thesis provides an introduction

to the theory of conformally covariant operators. Additionally, numerous con-

formal invariants obtained from such operators have been discussed in detail.

In conclusion, we state several conjectures about conformal invariants, which

provide directions for further research.

In Chapter 6 we considered the problem of understanding the smallest num-

ber of negative eigenvalues MinNeg(M) of the conformal Laplacian on a prod-

uct M of k Riemann surfaces. An important question is whether MinNeg(M)

for the product M is always attained by the product of hyperbolic metrics on

each factor. If true, then recent results about the spectrum of the hyperbolic

Laplacian on Riemann surfaces of large genus provide a lot of information on

the behaviour of MinNeg. We discuss this below in more detail.

It can be shown that for any ε > 0, there exists Nε such that for γ > Nε,

we have Λ(γ) > 975/4096 − ε (following the work of Kim and Sarnak [Kim],

this result is presented in [Mond] as Theorem 1.1).

On the other hand, it was shown (see Part 9 of [LS], and [Monk]) that

the number of eigenvalues of the hyperbolic Laplacian on a surface of genus γ

lying in the interval [1/4, 1/4 + δ] grows proportionally to the volume of the

surfaces (and hence, by the Gauss-Bonnet theorem, linearly in γ) as γ →∞.

Based on these results, the following conjecture seems reasonable.
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Conjecture 1. Fix k > 0. There exists C = C(k) > 0, such that in the limit

γ1 + γ2 + . . .+ γk →∞, we have

1

C
≤ MinNeg(M(γ1, γ2, . . . , γk))

γ1γ2 . . . γk
≤ C.

These results will be discussed in more detail in the forthcoming paper

[JY].

In Chapter 9, we explored how a conformal factor degenerating at a point

can influence the ratios of the components of the Weyl tensor. These com-

putations were done in dimension 4, but it seems interesting to make similar

explorations in higher dimensions.

Apart from Conjecture 2, which is due to Colin Guillarmou but stated in

[CGJP1], all remaining conjectures were originally posed in [CGJP1].

Let M be an n-dimensional manifold. Recall that Pk = Pk,g denotes a

GJMS operator, T (M) denotes the Teichmüller space of conformal structures,

and that R(M) denotes the Riemannian moduli space of conformal structures.

Conjecture 2. Assume the dimension n is odd. Then for any conformal class

in T (M), there exists a constant C > 0 such that

dim kerPk ≤ Ckn ∀k ∈ N.

Consider the discriminant hypersurface Hk (in either T (M) or R(M)),

which consists of conformal classes with nontrivial nullspace kerPk 6= 0.

Conjecture 3. For a generic conformal class in Hk, dim kerPk = 1.
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For the last two conjectures, suppose the dimension n is even and consider

the critical GJMS operator Pn
2
. Also, note that in the k = n

2
case, the dis-

criminant hypersurface Hn
2

is defined as the set of conformal classes for which

dim kerPn
2
≥ 2.

Conjecture 4. For a generic conformal class in T (M), the nullspace kerPn
2

consists of constant functions.

Conjecture 5. For a generic conformal class in Hn
2
, the nullspace kerPn

2
has

dimension 2.
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