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Abstract

A broad class of models that describe physics beyond the Standard Model of Particle

Physics predicts that topological defects, such as cosmic strings, will appear during a phase

transition on the very early universe. Therefore cosmological data provides an important

arena to test extensions of the Standard Model of Particle Physics. In this thesis, I will

show that searches for cosmic strings using the Cosmic Microwave Background temperature

power spectrum can put the most robust constraint to date on the parameter that charac-

terizes the cosmic string, its tension. Given that new telescopes and satellites are providing

us with an unprecedented amount of data on the large scale structure (LSS) of the universe

as seen through the distribution of galaxies and 21cm intensity maps, it is essential to ask

how powerful will LSS be to constrain the cosmic string parameter. It will be shown that

cosmic string changes its surroundings by creating a wake consisted of a planar overdense

region that forms behind the string as it passes by the dark matter distribution. First,

an analytical study of the wake disruption is presented. After that, the thesis shows the

characterization of cosmic string wakes in LSS by the use of numerical computations simu-

lating the effects of cosmic string wakes and aiming to find optimal statistics that extract

such effects in the presence of the “noise” produced by the dominant source of fluctuations.

Codes which run statistics designed to identify the string wake signal have been developed.

They include wavelet, ridgelet (bi and tridimensional), curvelet (bidimensional) transforms

and smoothing algorithms. The conclusion is that a wake with tension slightly less than

the current bound can be identifiable with high statistical significance down to redshift at

least z = 3 in tomographic dark matter maps.
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Abrégé

Une large classe de modèles décrivant la physique au-delà du modèle standard de la

physique des particules prédit que des défauts topologiques, tels que les cordes cosmiques,

apparâıtront durant une transition de phase au début de l’univers. Par conséquent, les

données cosmologiques constituent un domaine important pour mettre à l’épreuve les ex-

tensions du modèle standard de la physique des particules. Dans cette thèse, je montrerai

que la recherche de cordes cosmiques à l’aide du spectre de puissance de la température du

fond diffus cosmologique permet de mettre la contrainte la plus robuste sur le paramètre

qui caractérise les cordes cosmiques, c’est-à-dire leur tension. Étant donné que les nou-

veaux télescopes et satellites nous fournissent une quantité sans précédent de données sur

les structures à grande échelle de l’univers telles que mesurées à partir de la distribution des

galaxies et des cartes d’intensité de la raie à 21 cm, il est essentiel de se demander quelle

sera la portée des structures à grande échelle de l’univers pour contraindre le paramètre des

cordes cosmiques. Nous montrerons qu’une corde cosmique modifie son environnement en

créant un sillage constitué d’une région surfacique plane qui se forme derrière la corde au

passage de la distribution de la matière noire. Tout d’abord, une étude analytique de la per-

turbation de sillage est présentée. Après cela, la thèse montre la caractérisation des sillages

de cordes cosmiques dans les structures à grande échelle de l’univers par l’utilisation de cal-

culs numériques simulant les effets des sillages des cordes cosmiques et visant à trouver des

statistiques optimales permettant d’extraire ces effets en présence du � bruit � produit par

la source dominante des fluctuations. Des algorithmes qui calculent des quantités statis-

tiques conçues pour identifier le signal des sillages de cordes cosmiques ont été développés.

Ils incluent des transformations en ondelettes, en arêtelettes (bi et tridimensionnelles), en

courbelettes (bidimensionnelles) et des algorithmes de lissage. La conclusion est qu’un sil-

lage avec une tension donnée à peine inférieure à la limite actuelle peut être identifié avec

une signification statistique élevée jusqu’à un décalage vers le rouge d’au moins z = 3 dans

les cartes de matière noire tomographiques.
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Chapter 1

Overview

Cosmology is the branch of science that studies the origin, composition, and evolution

of the universe. Since it is known today that the universe is expanding and cooling, it

is clear that understanding the properties of the very early universe involves studying a

regime of small scales and high energies. Therefore, fundamental physics and cosmology

are intimately interconnected, and cosmological probes offer an arena to probe both the

Standard Model of particle physics and its proposed extensions.

A broad class of models that describe physics beyond the standard model predicts the

appearance of topological defects, which are regions in space of trapped energy density.

The consequences of topological defects in the large scale structure (LSS) of the universe is

studied by performing numerical computations that simulate the influences of topological

defects, aiming to find optimal statistics that extract such effects.

The main focus of this thesis is a one-dimensional type of topological defect called

“cosmic string” and its effect on the LSS of the universe. The primary goal of this project

is to model the impact of such strings on the distribution of matter in the universe, applying

statistical tests for their identification and predicting their expected signals in cosmological

observations. The most important effect of a cosmic string on the LSS is the production of

a wake –a sheet-like overdensity that forms behind the string as it passes through the dark

matter distribution. The thickness of this wake depends on the string tension µ, which is

the main parameter that describes the gravitational effects of the string. The presented

project concerns the extraction of this signal in the presence of the “noise” produced by

the dominant source of fluctuations (ΛCDM fluctuations). Currently, the most robust

2019/09/18
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constraint on the cosmic string tension comes from cosmic microwave background (CMB)

analyses, and it is Gµ < 1.5 × 10−7, where G is Newton’s gravitational constant. This

project aims to find how powerful LSS data are for constraining the cosmic string parameter,

and which values for the cosmic string tension can be restricted using a robust statistical

analysis of the LSS.

The thesis is organized into two parts. The first part is called Cosmic Strings and

Cosmology and covers the basic physics and motivation necessary for the second part.

The first part contains four chapters: Introduction, which shows an overview of cosmology,

cosmic strings, and its current robust constraints; Cosmic string wakes, exposing how

wakes of cosmic strings are formed and how they evolve; Probing particle physics beyond

the Standard Model with Cosmic Strings, contains attempts to use spatial information to

constrain the cosmic string parameter.

The second part of the thesis contains four publications: Disruption of Cosmic String

Wakes by Gaussian Fluctuations, where the question if the ΛCDM fluctuations would

disrupt the wake is approached; Dark Matter Distribution Induced by a Cosmic String Wake

in the Nonlinear Regime, which studies the evolution of the LSS using N-body simulations

of the distribution of dark matter particles, and implements a code for creating the initial

conditions used in the N-body simulations with and without a cosmic string wake. In

addition, a ridgelet statistic is designed to identify the string wake signal; Cosmic String

Wake Detection using 3D Ridgelet Transformations, applying a similar strategy for the

wake signal extraction; and Signature of a Cosmic String Wake at z = 3, showing that a

Gµ = 1 × 10−7 wake is identifiable with high statistical significance down to z = 3 in a

two-dimensional dark matter map.
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Chapter 2

Introduction

2.1 Standard Cosmology

Cosmology is the branch of science that studies the origin, composition, and evolution of

the universe. Its study has a long and rich history, but only relatively recently, it became

a science subject to experimental verification. An example was the observation of Hubble

that the galaxies are moving away from us at a speed proportional to the distance. The

rate of departure of galaxies is measured by the redshift z, which is the ratio between the

emitted λE and received λR wavelength :

z + 1 =
λR
λE
. (2.1.1)

A positive redshift indicates that the universe expanded (explaining the increase of the

wavelength of light), and so the galaxies are moving away. Another useful way to measure

the expansion of the universe is to divide the emitted wavelength λE(t) at time t by the

received wavelength λR today:

a(t) =
λE
λR

(t). (2.1.2)

a(t) measures the length of an object at time t compared to its length today. The luminosity

distance, defined as dL = ( L
4πF 2 ) is used to measure the distance from other galaxies to us,

where L is the intrinsic luminosity of the object and F is the measured flux.

2019/09/18
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Hubble discovered the following experimental law:

z ≈ H0dL. (2.1.3)

The proportionality constant is known as the Hubble constant of the present time, and it is

defined as H0 = 100h km sec−1 Mpc−1, where h is measured by experiments. For example,

the measurements in [1] show h = 0.72± 0.008. For small velocities compared to the speed

of light, this law is rewritten as:

v ≈ H0dL, (2.1.4)

since the redshift z caused by moving-away sources is given by z = v/c. This form of

the Hubble’s law permits the interpretation that galaxies are moving away from each other

with a velocity proportional to their distance, which is a straightforward conclusion if space

is expanding.

The inverse of the Hubble parameter is known as the Hubble radius. At a distance

greater than this radius, the velocity associated with the expansion is higher than the

speed of light, and therefore the photons outside this region cannot reach the center and

are not in causal contact with the central portion of this region.

Hubble’s observation allowed him to discard the static universe model initially proposed

by Einstein in favor of a dynamic universe. Extrapolation into the past of a dynamic,

expansive universe leads to the conclusion that it passed through an early period of high

energy known as the Big Bang. In its current state, the Standard Model of Cosmology

(SMC) is the dominant paradigm of cosmology. It assumes the validity of three principles:

General Relativity; the Cosmological Principle (spatial homogeneity and isotropy of the

universe on large scales) and that a perfect gas describes well the content of the universe.

Einstein’s equations of General Relativity describe the dynamics of the universe, and relate

the evolution of the metric of the cosmos with the distribution of sources of gravitational

fields. The SMC leads to a series of predictions, such as the existence of an initial state

of high energy density (or Big Bang), the existence and black body nature of the Cosmic

Microwave Background (CMB), and the description of the abundance of light elements.

The Robertson-Walker metric assumes a homogeneous and isotropic space, and it is
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given by

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (2.1.5)

where κ = K
a2(t)

and K ∈ (−1, 0, 1), depending on the spatial curvature of the universe

(hyperbolic, planar or spherical, respectively). Here, a(t) is the scale factor, related to

the Hubble parameter at time t by the equation H(t) = ȧ(t)
a(t)

1. The distance measured

by the coordinate r is called comoving distance. If two test particles are always at fixed

comoving distance distance r, they will depart from each other because their physical

distance rphy = a(t)r will increase.

Applying Einstein’s equations to the metric above and using the energy-momentum

tensor given by a perfect gas, T µν = diag(ρ,−p,−p,−p) (where ρ is the energy density and

p is the pressure of the perfect gas) two independent equations result:

d(ρa3) = −pd(a3) (2.1.6)

k

H2a2
=

ρ

3H2/8πG
− 1 = Ω− 1, (2.1.7)

where the last equality is used to define Ω, which is the ratio of the density ρ to the critical

density ρc = 3H2

8πG
, which is 1.879h2 × 10−29g cm−3 today. Equation (2.1.6) is nothing but

the equation of energy conservation for the gas (first law of thermodynamics) and equation

(2.1.7) is called the Friedmann equation.

The Friedmann equation (2.1.7) provides a criterium for the spatial curvature: since

H2a2 ≥ 0, there is a correspondence between the k sign and the Ω sign. If Ω > 1 (higher

energy density than the critical density) then k = 1, and it will lead to a spherical universe.

Similarly, Ω = 1 and Ω ≤ 1 implies k = 0 and k = −1, respectively.

The energy conservation equation (2.1.6) provides the dependence of the energy density

on the scale factor: for an energy density of radiation (where p = 1
3
ρ), ρ ∝ a−4; for an

energy density of matter (p = 0), ρ ∝ a−3; and a density of energy of the cosmological

constant (p = −ρ), ρ ∝ const . The various components of the energy density at any time

add together to form the total energy density ρ = ρcc+ρdm+ρbm+ρr+ρn, corresponding to

the sum of the energy densities associated with the cosmological constant (or dark energy),

1This definition for the Hubble constant together with the definition of the physical distance rphy = a(t)r
allows us to obtain 2.1.4, by only taking the temporal derivative of rphy. The result is vphy = H(t)rphy
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dark matter, baryonic matter, radiation, and neutrinos, respectively. Other contributions

may be considered, depending on the model. Measurements indicate that currently there

is a dominant contribution of dark energy Ωcc = 0.74, followed by dark matter Ωdm = 0.2

and a small contribution of baryonic matter Ωbm = 0.05. The other contributions are

negligible today. Since ρr ∝ a−4, ρm ∝ a−3 and ρCC ∝ const, it follows that the current

period corresponds to a cosmological constant dominated universe, preceded by a relatively

recent period which had the dominant contribution to the energy density coming from

matter, and before that a much earlier period when the dominant contribution was from

radiation. Inserting ρ(t) in 2.1.7, the following results: a ∝ t
1
2 for the universe dominated

by radiation; a ∝ t
2
3 when it is dominated by matter; and a ∝ e(H0t) when it is dominated

by the cosmological constant.

Initially, the universe was very hot, and as it cools, radiation decouples from matter

(time of decoupling) which in turn forms neutral atoms (recombination time). From this

period onwards, the radiation will no longer interact intensively with matter, because there

will not be a considerable number of free charges, and the universe becomes transparent to

photons. The radiation from the time of recombination is called CMB (Cosmic Microwave

Background), and its existence was proposed theoretically by Ralph Alpher and Robert

Herman in 1948 and discovered experimentally by Arno Penzias and Robert Wilson in

1964. The CMB has a blackbody spectrum with a temperature of 2.72548± 0.00057K.

The hypothesis of homogeneity is only an approximation. If it were strictly true, the

energy density of the universe would be precisely the same in all points, contradicting

the existence of structures like galaxies (which have energy densities orders of magnitude

higher than the average) and stars. Thus, the description of the content of the universe

in terms of a homogeneous ideal gas no longer applies but must be viewed only as a

first approximation. One can perturb the RW metric to account for the inhomogeneities,

and treat the evolution of these fluctuations through a perturbative analysis of Einstein’s

equations. The characterization of fluctuations involves the quantification of the initial

conditions of such fluctuations and the determination of their physical origins. Figure 2.1

shows the fluctuations of the CMB temperature map measured by the Planck collaboration

[2]

The fluctuations of the primordial potential Φ are usually encoded in its power spectrum

[4], defined as of
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Figure 2.1 Planck 2015 CMB sky map taken from [3]. The CMB map has
been masked and inpainted in regions where residuals from foreground emis-
sion are expected to be substantial. This mask, mostly around the Galactic
plane, is delineated by a grey line in the full resolution temperature map. The
color code indicates the fluctuations in temperature in µK.

< Φ(~k)Φ∗(~k′) >= (2π)3PΦ(k)δ3(~k − ~k′), (2.1.8)

where the brackets denote an average over the distribution, Φ(~k) is the gravitational po-

tential in Fourier space, Φ∗(~k′) its complex conjugate and δ3(~k− ~k′) the three dimensional

Dirac delta function. PΦ(k) has dimensions of k−3, so if we multiply PΦ(k) by k3 we can

obtain a dimensionless quantity proportional to the variance ∆2:

∆2(k) =
k3PΦ(k)

2π2
. (2.1.9)

∆2 indicates the clumpiness on a scale k−1. When the combination k3PΦ(k) (and also the

variance) does not depend on k, the power spectrum is called scale invariant. Assuming a

nearly scale-invariant power spectrum allows for a successful description of the fluctuations

observed in the CMB, as can be seen by Figure 2.2
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Figure 2.2 Planck 2018 CMB anisotropies taken from [3]. The x-axis is
multipole (large multipoles correspond to small angles) and the y-axis is the
angular power spectrum DTT

l [µK2], with red dots indicating the measure-
ments and blue lines showing the best-fitting model. ∆DTT

l [µK2] indicates
the difference between the best-fitting model and Planck measurements.

The most popular candidate responsible for the primordial fluctuations is the inflation-

ary scenario, although other scenarios also can lead to a nearly scale-invariant primordial

power spectrum.

2.2 Cosmic Strings

Cosmic strings are one-dimensional topological defects in space-time. A broad class of

models that describe physics beyond the Standard Model of Particle Physics (SMPP) ad-

mits cosmic strings as solutions, which are regions of trapped energy density. Generally,

theories that go beyond the Standard Model lead to phase transitions in the high energy

regime. Cosmological probes offer an alternative possibility (with respect to modern parti-
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cle colliders) to test the large energy scales needed to observe the effects of those theories

since the high energy regime arises naturally during the very early universe.

The presence of cosmic strings is a generic property of many extensions of the SMPP.

While in some models, cosmic strings can be produced during and at the end of inflation,

such as [5], in many, they are produced during phase transitions after inflation or after

early universe scenarios alternative to inflation [6]. It is also important to mention that

superstring theory, one of the most studied proposals for a unified theory of all fundamental

interactions inspires models beyond the standard model that contain cosmic strings (called

cosmic superstrings in this context). Among the extensions that are not necessarily moti-

vated by string theory is the class of Grand Unification Theories (GUTs), which unify the

strong, weak, and electromagnetic forces into one single interaction. GUT theories assume

that the SMPP forces were unified into a large gauge group during a regime of high energy

density, such as the very early universe. Below a specific critical temperature, the gauge

group is reduced to a product of subgroups due to a phase transition characterized by

spontaneous symmetry breaking (SSB). Under certain conditions (see 2.2.21 below), the

formation of linear topological defects is unavoidable during this transition.

Regardless of which specific description beyond the Standard Model holds, Kibble [7]

found in 1976 that if a model of nature admits cosmic string solutions, they will necessarily

form during the early universe. Both numerical simulations [8, 9] and analytic arguments

[10] shows that after formation, a cosmic string scaling network will always persist. The

network will consist of both long strings moving near the speed of light and also a distri-

bution of loops. A scaling solution means that the statistical properties of the network will

be the same at all times if the length scales are measured in units of the Hubble radius.

The tension µ of cosmic strings is determined by the energy scale η at which the string

network forms [11], and is given by:

Gµ = (
η

mpl

)
2

, (2.2.10)

where G is Newton’s constant and mpl is the Planck mass. µ is also the linear mass density

of the string.

A simple example that illustrates the most important properties of cosmic strings is

the Abelian Higgs model with a spontaneously broken U(1) symmetry [12]. In the context

of GUT theories, this is an over-simplistic realization with a U(1) symmetry completely
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breaking. This model still keeps the essential features of a generic symmetry breaking

process that are interesting for cosmic string physics. The Lagrangian L of this model

contains a gauge field Aµ of charge q (with respect to the U(1) symmetry) and a complex

Higgs field φ :

L = DµφD
µφ∗ − 1

4
FµνF

µν − λ(φφ∗ − η2

2
)2, (2.2.11)

where

Fµν = ∂µAν − ∂νAµ (2.2.12)

Dµφ = ∂µφ− iqAµφ. (2.2.13)

It can be noted that the potential V (φ) = −λ(φφ∗ − η2

2
)2 is minimized for the value of

the modulus of the Higgs field given by |Φ|2 = η2

2
. Therefore the condition for minimum

potential energy:

φ = (
η√
2

)eiθ (2.2.14)

provides conditions only for the modulus of the Higgs field and not for its phase θ, which

in general will depend on the position θ = θ(~x). This phase needs to be single-valued,

so the total change of θ around a closed path ∆θ needs to be an integer multiple of 2π.

Considering a path where ∆θ = 2π, and compressing it to a single point, ∆θ, cannot change

continuously from 2π to 0. Therefore there must be a point inside the first path at which

the phase is undefined, i.e., φ = 0 (this is known as a false vacuum). The point at which the

Higgs field is equal to zero is part of a tube-shaped region of false vacuum. Such a region

needs to be a closed tube or an infinite tube. Otherwise, it would be possible to deform

the path around the tube and contract it to a point without finding the false vacuum. This

tube is the cosmic string.

The first approximate solution of the equations of motion of the Lagrangian (2.2.11)

containing a cosmic string was found by Nielsen and Olesen [13]:

φ =
η√
2

[
1− e−

r
r1

]
e−iθ (2.2.15)



2 Introduction 14

Aθ =

[
1− e−

r
r2

]2

er
, (2.2.16)

where a cylindrical coordinate system was used, with the string centered along the z-axis,

and where r1 and r2 are ∝ η−1. The linear energy density of the cosmic string is given by

equation 2.2.10 above.

Vilenkin [14] solved the Einstein equation for the metric of an infinite cosmic string

along the z-axis. In terms of cylindrical coordinates, the result is:

ds2 = dt2 − dz2 − dr2 − (1− 4Gµ)2r2dθ2. (2.2.17)

By a coordinate transformation of the polar angle θ → ((1 − 4Gµ)θ the metric becomes

the Minkowski metric, which means that space perpendicular to a string is a cone. It is

spatially flat away from the string core, but the polar angle can only vary between 0 and e

2π(1− 4Gµ). This fact indicates that the flat metric of a cosmic string has a deficit angle

α given by

α = 8πGµ. (2.2.18)

This result is known as the conical singularity, and it is responsible for the important

gravitational effects caused by cosmic strings.

To explain in more detail the appearance of cosmic strings from GUT theories, consider

a Lagrangian L(Aµ, φ, ..) containing a gauge field Aµ, a scalar field φ and possibly other

fields. The Lagrangian is invariant under the action of some internal symmetry group G,

which is broken spontaneously in one or several stages into a smaller symmetry group H.

Usually H is the SMPP group H = SU(3)×SU(2)×U(1). The Higgs field φ is responsible

for the SSB by taking an expectation value that is not invariant under the full G, but

under H ⊂ G. To accomplish this, the potential V (φ) of the Higgs field must have a global

minimum at φ 6= 0. The set of all field configurations M that minimize the potential

is known as the vacuum manifold. Under the symmetry breaking G → H the vacuum

manifold is characterized by:

M ∼= G/H, (2.2.19)
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where the symbol ∼= means an isomorphism.

The condition on M for the existence of a cosmic string solution needs the following

concept of homotopy classes of M . Consider a set of maps ψ : Sn → M , where Sn is the

n-dimensional sphere. ψ1 and ψ2 are equivalent (symbolically ψ1 ≈ ψ2) if ∃ a one-parameter

family of maps ψ(t) : Sn → M , t ∈ [0, 1] such that ψ(0) = ψ1 and ψ(1) = ψ2. That means

it is possible to continuously deform ψ1 into ψ2. The n’th homotopy group of M , Πn(M)

is the set of all homotopy classes of maps Sn → M . As we saw above, if the vacuum

manifold is equivalent to a circle, then cosmic solutions exist. Therefore the condition for

the existence of cosmic strings is the following [15]:

Π1(M) 6= I, (2.2.20)

which means that the first homotopy group of M must be non-trivial. Now it is possible

to show [11] (if it is connected and simply connected) that Π1(G/H) ∼= Π0(H). Therefore

a simpler condition for the existence of cosmic strings follows:

Π0(H̃) 6= I, (2.2.21)

where the tilde symbol means G̃ was taken, which is the universal covering group of G,

defined as the embedding of any compact Lie group G in a simply connected G̃. The

transformation G → G̃ also applies to H → H̃. Since n = 0 in the condition 2.2.21 , Π0

counts the number of connected components of H̃. Therefore the complicated verification

that Π1(M) 6= I reduces to the simple verification whether the H is connected or not.

One can illustrate the condition 2.2.21 with the previous example. The initial symmetry

group was G = U(1). Since the covering group for the multi-connected U(1) is the simply

connected real line G̃ = R, H which was the identity become the set of translations by

2πn, which are the integers: H̃ = Z. Since Z is a disconnected set, cosmic string solutions

will exist.

A realistic GUT model should contain a larger symmetry group that includes the stan-

dard model groups. The group G = SO(10) is one well-known example, having a Higgs that

spontaneously breaks the symmetry at an energy scale of approximately 1014GeV leaving

an unbroken H̃ = SU(3)×SU(2)×U(1)×Z2 group, which excepting the Z2, contains the

Standard Model group [11]. The presence of the disconnected component Z2 guarantees



2 Introduction 16

the existence of cosmic strings in this particular model.

The strings discussed so far are called local cosmic strings. The term local refers to the

role played by the gauge field as a local symmetry. It is also possible to consider global

strings, in which the gauge field Aµ is absent. In the local case, the gauge field compensates

the phase gradients in the kinetic term, allowing then not to contribute to the energy of

the string at large distances. In the absence of the gauge field, the kinetic term contributes

to the energy density of the string, which is not exponentially suppresed outside the string

core and lads to a logarithmic growing contribution to the mass per unit length of the

string given by:

Gµ(r) = (
η

mpl

)
2

ln(r/δ), (2.2.22)

where r is a large distance cutoff (e.g. radius of a string loop, Hubble radius for an isolated

long string) and δ is its width. Also, the deficit angle will be modified. At a distance r

from the string core, it is:

α(r) = 8πGµ(r), (2.2.23)

where µ(r) is given by 2.2.22 above. As for local strong, the global strings will also achieve

a scaling network. One example of an extension of the SMPP which contains global strings

(see [16, 17]) is the axion model, which was proposed as a solution to the strong CP

problem. Global cosmic strings appear because the axion breaks a global Peccei-Quinn

U(1) symmetry.

As already mentioned, superstring theory also contains cosmic strings. The first pro-

posal [17] suggested that O(32) and E8 × E8 string theories might have stable vortex

lines, but they required an energy density close to the Planck mass, which is ruled out

by observations. Otherwise, they would generate large unseen perturbations. Since then,

more one-dimensional objects were found to exist in superstring theory: D-strings, high-

dimensional D-, NS-, M-branes that have components which are wrapped along compact

cycles with only one non-compact remaining dimension. There is an inflationary model

which gives rise to cosmic strings, called brane-inflation [5], that considers a brane anti-

brane pair annihilation. Each brane has a U(1) symmetry (with opposite charges), with

the daughter brane having a remaining U(1) symmetry. The brane annihilation produces

stable cosmic strings, referred to as cosmic superstrings [18].
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2.3 Cosmic String network formation and evolution

The Kibble mechanism [7] ensures that if a theory of nature admits cosmic strings solutions,

strings will be produced during a phase transition in the early universe. To illustrate

this, consider the Abelian-Higgs model discussed above where temperature effects were not

considered. But since the temperature was very high in the early universe, its effect has

to be taken into account. A simple way to insert temperature effects to the Abelian-Higgs

model is to add an interaction between φ and another scalar field ψ which is in equilibrium

with the thermal bath. Adding a interaction of the form 1/2λ̃φ2ψ2 to the Lagrangian

presented in 2.2.11 results in :

L = DµφD
µφ∗ − 1

4
FµνF

µν − λ(φφ∗ − η2

2
)2 − 1

2
λ′φ2ψ2. (2.3.24)

The expectation value for ψ2 in thermal equilibrium is < ψ2 >T≈ T 2, allowing 2.3.24

to be rewritten as:

L = DµφD
µφ∗ − 1

4
FµνF

µν − VT (φ, T ) (2.3.25)

where VT (φ, T ) is the finite temperature effective potential:

VT (φ, T ) = λφ4 +m2(T )φ2 + λ
η4

4
(2.3.26)

and

m(t) = λ̃T 2 − λη2 (2.3.27)

is the effective mass. Above the critical temperature Tc = η
√
λ/λ̃ the mass term is positive,

and the potential has a minimum at φ = 0. On the other hand, if T < Tc the Higgs field

acquires a vacuum expectation value that fixes φ to |φ|2 = (1/2)|m(T )|/λ and symmetry

breaking occurs. This yields a non-zero value for the modulus for the Higgs field but

does not fix its phase, which can take any value. By causality, the phase of the Higgs

field in different Hubble volumes must be uncorrelated. Therefore, there is a probability

of order one that given a circle of the size of the Hubble radius, the phase of the Higgs

field will change by a non-zero multiple of 2π. The consequence is that there will exist

a point on every surface that has this circle as a boundary such that this field is zero,

with the phase undefined there. The cosmic string will be the collection of these points.

Kibble’s mechanism ensures that after the phase transition, the universe will be filled with
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cosmic strings having a correlation length approximately equal to the Hubble radius: ξ ≈ t.

Besides this, numerical simulations [19] shows that about 80% of the energy of the network

will be in infinite strings and the remaining 20% will be in cosmic string loops.

After they form, cosmic strings achieve a scaling network. The main reason for this is

that cosmic strings exchange ends when they collide. In the picture 2.3 bellow, two cosmic

strings collide in two points and exchange ends, resulting in a loop. The same process

occurs when a cosmic string intersects itself, also producing a loop. After the loop forms, it

releases energy through a radiation channel. To see that the cosmic string network reaches

a scaling solution, consider the correlation length of the network at a time t, ξ(t). The

correlation length measures the mean distance between cosmic strings. If this distance is

much smaller than the Hubble radius (ξ(t) << t), then there will be a lot of cosmic string

intersections and loops will be produced copiously and evaporate, increasing ξ(t)/t. On

the other hand, if ξ(t) > t, the correlation length will not change, because no physical

process can occur between regions that are not causally connected. This will decreases

ξ(t)/t, rendering ξ(t) ≈ t as a stable solution. Figure 2.4 shows a sketch of the string

scaling solution.

Figure 2.3 Visualization of the exchanging end mechanism that allows loop
production. Picture taken from [11].

This analytical argument presented above for the scaling network solution is corrobo-

rated by numerical simulations, which also indicate that the long strings will have velocities

near the speed of light. There are two ways of numerically studing the cosmic string dy-

namics. In one of them, called Nambu-Goto simulation, the thickness of the string is set

to zero [9] and the string worldsheet dynamics is studied using the equations of motion

derived from the Nambu-Goto action, with the string crossing prescription imposed by

hand. In the other type, called field-theory simulations, the field equations of motion de-
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Figure 2.4 Sketch of the scaling distribution of a cosmic string network,
consisting of O(1) long strings and a distribution of loops. At an arbitrary
time, all pictures will look similar if their size is give by the Hubble radius.
Picture taken from [15].

rived from the abelian-Higgs model are solved numerically [20]. Although in this case it is

possible to resolve the thickness of the cosmic string, there are difficulties treating the very

different scales of the problem, because the cosmic string thickness is about 100 order of

magnitude smaller than the correlation length at late cosmological times. Both methods

agree concerning the scaling network evolution, but they produce different distributions for

the loops, with the Nambu-Goto simulations containing more loops that the field-theory

simulations. Another critical difference is that in Nambu-Goto simulations, the energy of

the string network goes into gravitational radiation, whereas in the field theory simulations

the energy of the cosmic string goes to particle production.

2.4 Robust Observational Constraint on Cosmic Strings

The initial interest in cosmic string appeared with the idea that they could be the leading

candidates to seed fluctuations [21]. However, this idea was proven wrong. The features

observed in the fluctuations of the CMB temperature cannot be explained only by cosmic

strings. If cosmic string exists, they cannot be responsible for more than 5% of the observed
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fluctuations, having only a subdominant contribution. The reason for this is because the

fluctuations provided by cosmic strings are incoherent and active, whereas the observations

indicate that the dominant source of fluctuations is the opposite (coherent and passive)

[22]. Fluctuations generated by inflation are called “passive” because once inflation ends,

the fluctuations will evolve without additional sources of fluctuations, contrary to the fluc-

tuations caused by topological defects, which will always source them [23] (that is why they

are called “active”). Also, fluctuations generated by cosmic strings are “incoherent” in the

sense that the strong non-linear dynamics will force all correlations in different times to

zero, as opposed to the inflationary case.

Inflationary models predict an ensemble of pressure waves in the photon-baryon fluid

that are phase-focused, that is, the entire ensemble |~k| = k reaches an amplitude equal to

zero at the same time. Waves with different wavenumbers k pass through the moments

of zero amplitude at different times, giving to the CMB the oscillatory features (called

acoustic peaks) that can be seen in 2.2. On the other hand, cosmic strings will not contain

BAO features in the CMB, because the random nature of the pressure waves will destroy

the phase focusing [24]. In fact, observing the BAO imposes the most robust constraint on

cosmic strings [25, 26]:

Gµ < 1.3× 10−7. (2.4.28)

where the quoted constraint is obtained from an analysis of Planck data, and the modeled

cosmic string effects come from Nambu-Gotto simulations. For field theory simulation, the

constraint in [26] is Gµ < 3.0× 10−7.

There are also stronger limits which come from pulsar timing surveys [112], but these

depend on assumptions about the distribution of string loops which are not universally

accepted.

By studying the observational aspects of cosmic strings, two possibilities can happen.

One is that a cosmic string is observed, which would be a significant achievement in probing

particle physics models beyond the SMPP. Another option is not to find cosmic strings,

which will may lower the bound on the cosmic string tension, thus ruling out more classes

of particle physics models.
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Chapter 3

Cosmic string wakes

This chapter will be dedicated to showing how cosmic strings create a wake, changing the

distribution of matter behind them.

3.1 Wake formation

A cosmic string wake is a planar overdense region that forms behind a long cosmic string

as it passes by the matted distribution [27, 28]. A long cosmic string produces a wake due

to two of its features: the missing angle (see 2.2.18) and the fact that it has a non-zero

velocity vs.

Recall that the plane perpendicular to a long cosmic string will have a missing angle

giving by the following expression:

α = 8πGµ. (3.1.1)

Also, remember that numerical simulations indicate that long cosmic strings have velocities

vs near the speed of light. This introduces velocity perturbations δv given by:

δv = 4πγsvsGµ, (3.1.2)

where γs is the Lorentz factor associated with vs. To see this, consider two test particles at

rest and near each other and the long cosmic string passing between the two. In the frame

in which the long string is at rest, the two dark matter particles will meet at some point

behind the string, as the two figures 3.1 and 3.2 below indicate.

2019/09/18
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Figure 3.1 The plane perpendicular to a long string has a missing angle
with two test particles meeting behind the string, in the frame in which the
long cosmic string is at rest

Going back to the previous frame (here is the origin of the Lorentz factor in 3.1.2) an

equivalent situation is obtained, where the two dark matter particles initially at rest receive

a velocity kick towards the plane behind the string as soon as the string passes between

the two.

Repeating the same line of thought to many test particles results in having two times

more particles behind the long cosmic string after it passes through the matter distribution,

as can be viewed in the following figure 3.3.

This leads to an overdense wedge-shaped region, which is the wake of the cosmic string.

At a time of wake formation tf , the string length is given by c1tf , where c1 is a constant of

the order of unity and tf is roughly the Hubble radius. Since the string has a velocity vs in

the normal direction of the string, the depth of the wake is given by tfvsγs. The width is

much smaller, given by the deficit angle times the average depth: 4πGµtfvcγc. So a wake
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Figure 3.2 This is an equivalent visualization of the space perpendicular to
a long string with two test particles meeting behind the string, in the frame
in which the long cosmic string is at rest

generated by a cosmic strings at a time tf has dimensions given by:

c1tf × tfvsγs × 4πGµtfvsγs. (3.1.3)

Wakes of cosmic strings produce non-linear density fluctuations at arbitrary early times,

but perturbations can only grow after the time of equal matter and radiation energy density.

3.2 Wake evolution

The wake evolution is studied analytically by using the Zel’dovich approximation [29],

which is applied to the wake dynamics to provide the wake thickness as a function of time

[30, 31]. To obtain the evolution of the wake thickness, consider a test particle near the
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Figure 3.3 This is a visualization of the space perpendicular to a long string
with a set of test particles meeting behind the string, in the frame in which
the long cosmic string is at rest

wake. Its physical distance h to the wake (as depicted by figure 3.4) is the scale factor a(t)

times the initial comoving distance q to the wake minus a comoving displacement ψ, which

depends on the initial position:

h(q, t) = a(t)[q − ψ(q, t)]. (3.2.4)

The particle has no displacement initially (at time ti):

ψ(ti) = 0. (3.2.5)
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Figure 3.4 This figure depicts the displacement of a test particle represented
by the red dot in terms of its comoving distance to the center of the wake. q
is its initial comoving distance and ψ is its comoving displacement

It also receives a velocity kick induced by 3.1.2 (here shown in comoving coordinates):

ψ̇(ti) =
4πγsvsGµ

a
(3.2.6)

The dynamics is set by Newton’s law

ḧ = −∂Φ

∂h
(3.2.7)

and the Poisson equation of motion:

∂2Φ

∂h2
= 4πG[ρ+ σδ(h)], (3.2.8)

where Φ is the gravitational potential, G is Newton’s constant, ρ is the volume energy
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density, δ(h) enforces the extra surface density σ to be at h = 0. The extra surface density

σ induced by the wake is given by:

σ(t) = 4πGµtivsγs(
t

ti
)
2
3ρ(t), (3.2.9)

which is the physical initial wake thickness 4πGµtivsγs(
t
ti

)
2
3 at time t ≥ ti times the energy

density ρ(t). The linear version of equations 3.2.7 and 3.2.8 results in:

ψ̈ +
4

3t
ψ̇ − 2

3t2
ψ = 0, (3.2.10)

This equation has the following growing mode solution:

ψ(t) =
12π

5
Gµvsγsti(

t

ti
)
2
3 . (3.2.11)

Plugging this solution back into 3.2.6 an interesting scenario appears: initially the physical

distance from the test particle to the wake starts to increase due to the Hubble expansion,

but eventually the growing mode dominates and the particle starts to move towards the

wake. The wake thickness is now defined as the length for which all particles within it are

moving towards the wake. The point of which the transition occurs is called turn around

point given by the condition that the time derivative of h vanishes ḣ = 0. This condition

implies that a test particle that is turning around at time t was initially at the following

initial comoving position qta:

qta =
24π

5
Gµvsγst0

√
1 + zi

(1 + z)
. (3.2.12)

When comparing this initial position with the displacement induced by the wake, the result

is that at the turning around point the test particle is at half the comoving distance where

it started:

ψ(qta, t) =
1

2
qta. (3.2.13)

This means that when the test particle turns around, the wake has two times the average

density, therefore this property, which was true initially is maintained by the wake evolution.

The wake thickness d(t) will include the distance between particles on both sides of the
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wake that are turning around at time t:

d(t) =
24π

5
Gµvsγst0

√
1 + zi

(1 + z)
. (3.2.14)

After formation, the planar dimensions of the wake increase with the Hubble flow (they

are fixed in comoving coordinates). The wake thickness increases because the wake starts

to accrete matter, and grows as the scale factor in comoving coordinates. The equation

above also confirms the intuition that wakes formed earlier (higher redshift zi) are thicker.

For wakes formed at the time of matter-radiation equality, the comoving planar dimension

of the wake is ≈ 100Mpc, and the thickness is ≈ 0.1a Mpc in comoving coordinates if the

cosmic string has a tension given by the current bound 2.4.28

The linear approximation developed in the previous section breaks down when the scale

corresponding to the wake thickness enters the non-linear regime in pure ΛCDM cosmology.

There is a necessity for a description of the wake evolution during these regimes that goes

beyond the linear approximation. Early on the wake is very distinguishable from the rest of

the matter distribution, but as time passes the ΛCDM fluctuations start to become more

pronounced than the fluctuations caused by the wake, causing fragmentation of the wake

plane.

The criteria for wake disruption was studied in [32] (see also chapter 5). Two different

criteria were considered, called “local” and “global” disruption conditions. The local wake

disruption condition uses a box of the size of the wake thickness and studies the standard

deviation of the density contrast in this region, given by ΛCDM cosmology, to look whether

it overcomes the wake density contrast. Since there are fluctuations of the order one in the

wake, the local wake disruption criterium is the following: if the standard deviation on a

cube of side d (given by the wake thickness 3.2.14) is of order one, then the wake is locally

disrupted. For the current bound on the cosmic string tension, the local criteria give a

disruption at z ≈ 8.

The local criterion does not take into account the global volume of the wake, so a

natural extension would be to consider an anisotropic box with dimensions given by the

whole wake. The global disruption criterion reads the following: if the standard deviation

for a box with wake dimensions is of order one, then the wake is globally disrupted. This

criterion yields the result that although the wake gets disrupted locally, its global signal

remains present at all times, independently of the cosmic string tension.
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Chapter 4

Probing particle physics beyond the

Standard Model with Cosmic Strings

In section 2.4 of chapter 2 the most robust current constraint on the cosmic string parameter

was presented. It was based on the difference between attributes introduced by cosmic

strings in the angular power spectrum of the CMB and the ones observed. It will be shown

that cosmic strings leave distinct features in position space as well, and this information

has the potential to constrain the cosmic string tension parameter even more.

4.1 Signature of CS in the CMB temperature and polarization

maps in position space

Cosmic strings predict non-Gaussian temperature anisotropies because photons passing on

different sides of a long string with velocity vs reach the observer with the following Doppler

shift:
δT

T
= 8πγsvsGµ, (4.1.1)

where γs is the gamma factor associated with vs. The observer will detect a discontinuous

jump on the CMB temperature map given by δT above. This is called the Kaiser-Stebbins

(KS) effect [33], and is illustrated by figure 4.1 below.

2019/09/18
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Figure 4.1 This is a visualization of the Kaiser-Stebbins effect in the tem-
perature (in µK units) CMB maps (figure taken from [26]).

4.1.1 Signature of wakes in the CMB polarization maps

CMB photons travelling to us acquire polarization when they transverse regions of inho-

mogenious density. The polarization of a photon depends on the direction of its electric

field [34]. Given the electric field of monochromatic radiation

~E = (~ε1E1 + ~ε2E2)ei
~k·~x−iwt, (4.1.2)

the polarization vector can be decomposed in two perpendicular vectors given by ~ε1 and

~ε2 . One way to characterize the polarization is using the Stokes parameters I,Q, U, V ,

defined by

I =
∣∣∣~ε1 · ~E∣∣∣2 +

∣∣∣~ε2 · ~E∣∣∣2 Q =
∣∣∣~ε1 · ~E∣∣∣2 − ∣∣∣~ε2 · ~E∣∣∣2 (4.1.3)

U = 2Re[(~ε1 · ~E)∗(~ε2 · ~E)] V = 2Im[(~ε1 · ~E)∗(~ε2 · ~E)]. (4.1.4)

The amplitude of the polarization P is given by P =
√
Q2 + U2.
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In addition to the Stokes parameters, another way to characterize the polarization is

in terms of the E and B modes, which are components of the polarization vector with

the property they have null divergence and null curl, respectively. The inflation model

predicts that the contribution to the polarization is more significant for E mode than for B

mode. The latter is produced only by gravitational waves. An accurate observation of the

polarization spectrum of the B modes can test whether these were produced by inflation

or by an effect of string gas cosmology [22], for example. On the other hand, disturbances

generated by wakes of cosmic strings contribute equally to the two modes [36].

If the initially unpolarized CMB radiation encounters free electrons with a quadrupole

anisotropy, then the resulting Thomson scattering will lead to polarization. The magnitude

of the polarization is given by

P ∼=
1

10
(

3

4π
)

1
2

τTQ (4.1.5)

where τT is the optical depth and depends on the Thomson cross section σT and the integral

of the density of free electrons ne(t, ti) along the geodesic traveled by the photon:

τT = σT

∫
ne(χ)dχ. (4.1.6)

For wakes formed after recombination ti > trec, the baryonic content has a quadrupole

anisotropy and can ionize the gas. Thus, photons passing through this gas suffer Thomson

scattering and acquire polarization [36]. The initial density of free electrons in the wake

is n(t, ti) ≈ fρb(ti)m
−1
p (where f is the fraction of free electrons and mp is the proton

mass). For t > ti, the density changes according to the inverse of the volume (n ∝ a−3)

and therefore

ne(t, ti) = fρb(ti)m
−1
p (

z(t) + 1

z(ti) + 1
)3. (4.1.7)

The integral of (4.1.6) results in

τT = 2ρTne(t, ti)(z(t) + 1)h(t, ti). (4.1.8)

Using the value of h from (3.2.4), (3.2.11) and (3.2.12) yields

P

Q
∼=

24π

25
(

3

4π
)

1
2

σTfGµvγΩbρ(t0)m−1
p t0(z(t) + 1)2(z(ti) + 1)

1
2 . (4.1.9)
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The polarization signal in position space of the CMB produced by a wake will be very

specific: it will be a rectangle in the sky with extra polarization in the same direction with

the following comoving dimensions:

c1ti(z(ti) + 1)× vγti(z(ti) + 1). (4.1.10)

4.2 Signature of wakes in the 21 cm hydrogen transition line

The 21 cm radiation is emitted (or absorbed) by the hydrogen atoms, which make up the

bulk of the baryonic matter, when the proton and electron exchange among themselves their

respective spins directions. The background radiation temperature Tγ passing through a

cloud of hydrogen with a spin temperature TS and optical depth τν will emerge with a

temperature [37] [38]

Tb = TS(1− e−τν ) + Tγe
−τν , (4.2.11)

where the spin temperature gives the fraction of hydrogen in the excited state and is

implicitly defined by the equation
n1

n2

= 3e
−T∗
TS , (4.2.12)

where n1 and n2 are the hydrogen densities in the states 1 and 2, corresponding to this

hyperfine transition and T∗ = E12

kb
is the energy difference between these states divided by

the Boltzmann constant.

What is measured in observations is the difference in brightness temperature between

the CMB and a cloud of hydrogen gas. This difference is given by

δTb(ν) =
Tb(ν)− Tγ(ν)

1 + z
∼=
TS(ν)− Tγ(ν)

1 + z
τν , (4.2.13)

where the optical depth is given by

τν =

∫
dS αν , (4.2.14)

where αν is the absorption coefficient. The spin temperature can also be expressed in terms

of the wake gas temperature TK , of the incident photon temperature Tγ and the collision
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coefficient xc , which determines the scattering rate between hydrogen atoms and electrons:

TS =
1 + xc

1 + xc
Tγ
TK

. (4.2.15)

Inserting (4.2.15) in (4.2.12) results in

δTb(ν) ≈ TS
xc

1 + xc
(1− Tγ

TK
)τν(1 + z)−1. (4.2.16)

The optical depth of the hydrogen cloud is given by

τν =
3c2A10

4ν2
(
~ν10

kBTS
)
NHI

4
φ(ν). (4.2.17)

where NHI is the column density of hydrogen, and the term φ(ν) is due to enlargement of

the emission line.

In the case of a wake, the column density equals the density of hydrogen of the wake

nwakeHI times the length of the light ray passing through the wake, given by the wake width

w and the angle θ that it makes with the vertical:

NHI =
2nrastroHI w

cosθ
(4.2.18)

Considering a point of the wake where the photons come in at an angle that is not

orthogonal to the plane of the wake, it results that, relative the photon emitted in the

center of the path, the emitted photons from the highest point and lowest generate a

relative Doopler effect:
δν

ν
= 2sin(θ)tan(θ)

Hw

c
. (4.2.19)

Both the width w and the expansion rate H are evaluated at the time that the photons

are emitted. By normalization of φ(ν), it follows that

φ(ν) =
1

δν
(4.2.20)
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for ν ∈ (ν10 − δν
2
, ν10 + δν

2
) and φ(ν) = 0 otherwise. The result is

δTb(ν) = 2
xc

1 + xc
(1− Tγ

TK
)

3c3A10~

16ν2
10kBH0Ω

1
2
m

(4.2.21)

× nbgHI(t0)
nrastroHI (t0)

nbgHI(t0)
(2sin2(θ))−1(1 + z)

1
2 . (4.2.22)

For illustrative proposes, using the parameters

A10 = 2.85× 10−15s−1, T∗ = 0.068K,H0 = 73kms−1Mpc−1,

ν10 = 1420MHz,Ωb = 0.042,Ωm = 0.26, 2sin2(θ) = 1,

TK = 20K,Gµ = 0.310−6, (vcγc)
2 = 1

3
,

zi = 103, 1 + z = 30, Tγ = 82K, xc = 0.16

(4.2.23)

results in an emission of

δTb(ν) ≈ −160mK. (4.2.24)

The planar dimensions of the emission will be in the angular direction, and are given

by:

c1ti(zi + 1)× tivcγc(zi + 1) (4.2.25)

In summary, a cosmic string wake lead to a three-dimensional wedge of extra absorp-

tion in 21 cm redshift maps of angular size 4.1.10 with frequency direction of 4.2.19 and

amplitude 4.2.24.

4.3 Brief comments on methods of cosmic string detection in

position space

The previous two sections were devoted to showing that cosmic strings produce distinct

localized features in position space of either the CMB (in both temperature and polarization

maps) or the 21 cm map of the distribution if neutral hydrogen. In this section, various

strategies used to extract such position space signals will be shown. One can divide the

detection methods into several categories: the Canny edge detection algorithm, which uses

intensity gradients to find edges in images; Minkowski functionals, which are used to study

the topology of d-dimensional bodies embedded in a D-dimensional Euclidean space (with



4 Probing particle physics beyond the Standard Model with Cosmic Strings34

D > d); convolutional neural networks, which use artificial intelligence methods to find

patterns in images; multiresolution representations, which are used to detect discontinuities

in one to three-dimensional maps. Some extraction techniques combine two of the methods

above.

The CANNY algorithm consists of various stages to detect the edges in images. The

first step consists of filtering the data to eliminate point sources. The length scale of

the Gaussian filter is a free parameter of the algorithm and should be smaller than the

scale of interest of the problem, but high enough to eliminate most of the point sources.

The second step involves computing the gradient vector of the Gaussian-filtered image. The

third step looks for local maxima of the gradients. The next step involves a double threshold

procedure, done by labeling the pixels with maximum gradient given below as “strong”,

“weak” or “suppressed”, depending if the value of the gradient is higher than a high cutoff,

in between the high and low cutoffs or lower than the lower cutoff, respectively. Finally,

the algorithm produces a list of points belonging to edges. This algorithm has three free

parameters that can be tuned to differentiate CMB maps with and without cosmic strings

[39] (see also [40] for the algorithm applied to cosmic superstrings). A modified version of

the algorithm is presented in [41], where it was found that the South Pole Telescope will

be able to constrain the cosmic string parameter one order of magnitude lower than the

current constraint from CMB temperature maps.

Minkowski functionals are used in cosmology to probe the topology of a three-dimensional

distribution of matter, by discriminating the filamentary and wall-like structures in the

universe [42]. It can also be applied to estimate in a model-independent way the non-

Gaussianities of the Planck CMB maps [43]. The use of Minkowski functionals is motivated

by Hadinger’s theorem, which states that for a convex body B embedded in a d-dimensional

Euclidean space, there exist D + 1 functionals Mµ, µ = 1, .., d + 1 on B satisfying certain

natural conditions (motion invariance, additivity, and conditional continuity) that char-

acterize the topology of B entirely. Minkowski functionals are particularly interesting for

wake characterization since in three-dimensional Euclidean space, the second Minkowski

functional measures the surface of the body B. The work pursued this approach in [44],

where the authors consider the 21-cm signature of wakes in the distribution of neutral

hydrogen. To define the body B in the temperature maps, they considered the body as

enclosed by an iso-temperature surface. Therefore this analysis has one free parameter,

which is the temperature used to construct the surfaces. The authors found that using
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simulated Gaussian maps (matching the ΛCDM power spectrum) with wakes of cosmic

strings it is possible to extract the wake presence for Gµ = 5× 10−8, which corresponds to

an improvement factor of 3 over the current robust constraint.

Machine learning applies a numerical algorithm that improves its performance at a given

task based on experience [45]. The goal of machine learning algorithms is to predict a set

of values ~y from a set of numerical inputs ~x. The experience is gained from a collection

of N examples (X, Y ∗), where X = ~xi and Y ∗ = ~y∗, i = 1, ..N that could come from

simulations or observations from the phenomena at interest. The performance is measured

by comparing the predicted values of y with the true target values y∗. The simplest choice

for performance evaluation is the squared error, SE =
∑

(y∗i − yi)
2, which must be mini-

mized. The algorithm “learns” when its performance has improved under the exposure to

new experience. Recent advances in machine learning come from neural network methods

which are widely used for pattern recognition. A deep neural network consists in a set of

nested non-linear functions that are adjusted to predict data, meaning that the input val-

ues, ~x receive a non-linear transformation at each layer of the network, with the final layer

producing the guesses of the prediction, ~y. Each layer has a given number (called width of

the layer) of neurons, and the number of layers is called depth, with the intermediate layers

called hidden layers. In image pattern recognition, usually neighboring pixels are corre-

lated, and a convolutional network is designed to take this correlation into account. One

example of cosmic string detection using artificial intelligence methods is in [46, 47], where

the authors use deep convolutional neural networks to extract signals from cosmic strings

in the CMB. The pattern recognized is the Kaiser-Stebbins effect on the temperature maps

of the CMB. The authors find that noise-free CMB maps with ΛCDM plus cosmic strings

can be distinguished from pure ΛCDM maps for Gµ ≤ 5 × 10−9. Their analysis involved

the use of 11 free parameters (called hyperparameters).

Another class of important analysis tools that are suitable for wake detection is gener-

ically called multiscale methods. “Sparse representations” also refers of the same group of

methods. Those methods involve the decomposition of a signal (a map in a given dimen-

sion) into a complete series of basis functions. Like in the case of Fourier analysis, in a

multiscale basis any signal can be described using the basis function, but unlike the Fourier

analysis case, which has non-localized (in position space) basis functions, the multiscale

basis functions are localized in position space and therefore are widely used to find discon-

tinuities in a signal [48]. The discontinuities correspond to the highest coefficients in this
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basis decomposition having a specific localization and scale. For cosmic string localization,

one uses mostly three different kinds of sparse representations: wavelets, ridgelets, and

curvelets, which are suitable for point, line and line segment detection, respectively (for

2d maps). For three dimensional maps, ridgelets are used for plane detection, with the

size of the ridgelet basis vector being of the same order as the image size; and curvelets

are used for the location of plane segments, with variable size. The “publications” part of

this thesis (except the first paper therein) explores the use of ridgelets and curvelets for

wake detection in the dark matter distribution [49–51]. These papers conclude that it is

possible to locate a cosmic strings wake with tension Gµ = 10−7 down to redshift of z = 3.

Wavelets and curvelets can be applied to searches for cosmic strings in the CMB. [52] uses

wavelet-bayesian inference to put constraints of Gµ ≤ 5 × 10−7 for Nambu-Goto cosmic

strings, including integrated Sachs-Wolfe effects. Additionally, [53] uses curvelets to put

constraints of Gµ ≤ 1.4× 10−7 for CMB maps with SPT-3G specifications. The multiscale

methods have one free parameter which is the scale that is being probed, which can be

fixed to match the size of the effect in interest, therefore can be chosen in accordance to

the string tension to be searched.

An exciting option for cosmic string detection in real space is to use a combination

of the methods above. For example, in [54], a curvelet analysis followed by the Canny

edge detection method is performed, resulting in a constraint Gµ ≤ 4.3 × 10−10 on the

cosmic string tension for noiseless maps and Gµ ≤ 1.2 × 10−7 constraint for a CMB-S4

phase II experiment. Another example is found in [55], where a combination of curvelet

and artificial intelligence techniques was applied to CMB maps to find Gµ ≤ 4.3 × 10−10

constraint for noise-free maps and Gµ ≤ 3× 10−8 for a CMB S4-like maps.
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Part II

Publications
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Chapter 5

Disruption of Cosmic String Wakes

by Gaussian Fluctuations

5.1 Introduction

Cosmic strings exist as solutions of the field equations in many particle physics models

beyond the Standard Model. A sufficient criterion is that the vacuum manifold M of the

model (the space of field configurations which minimize the potential energy density) has

non-vanishing first homotopy group Π1(M) 6=1. Roughly speaking the condition is that

the vacuum manifold has the topology of a circle. A simple causality argument [7] leads to

the important conclusion that in models which admit cosmic string solutions, a network of

such strings inevitably forms during the symmetry breaking phase transition in the early

universe and survives to the present time (see [11, 15, 56] for reviews of the role of cosmic

strings in cosmology). Cosmic strings carry energy and hence induce gravitational effects

which can lead to signatures in cosmological observations. The strength of these effects is

proportional to the string tension µ which in turn is given (up to a numerical constant)

by η2, where η is the scale of symmetry breaking at which the strings are formed. Hence,

searching for cosmic strings in cosmological observations is a way to probe particle physics

beyond the Standard Model which is complementary to accelerator searches (which can

only probe new physics at low energy scales) 1.

Based on analytical arguments [11, 15, 56] it is expected that the distribution of cosmic

1See [57] for an elaboration on this theme.

2019/09/18
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strings will take on a “scaling solution” according to which the statistical properties of

the distribution of strings are independent of time if all lengths are scaled to the Hubble

radius H−1(t) (where H(t) is the cosmic expansion rate at time t). The distribution of

strings consists of a network of infinite strings with mean curvature radius and separation

c1t (where c1 is a constant of order one whose precise value needs to be determined in

numerical simulations) 2 and a set of string loops which are the remnants of intersections of

long string segments. Numerical simulations [9, 58–64] have confirmed that the distribution

of strings takes on a scaling solution.

String loops oscillate and gradually decay by emitting gravitational radiation. Long

string segments moving through the plasma of the early universe will lead to nonlinear

overdensities in the plane behind the moving string. These are called string wakes [27, 28,

65, 66]. Wakes are formed because the geometry of space perpendicular to a long string

segment is conical with deficit angle

α = 8πGµ , (5.1.1)

where G is Newton’s gravitational constant [14]. A string moving through the plasma

with a velocity v perpendicular to the tangent vector of the string will lead to a velocity

perturbation

δv = 4πGµvγ(v) (5.1.2)

from both sides towards the plane behind the moving string (where γ(v) is the relativistic

gamma factor associated with the velocity v). In turn, this leads to a thin region behind

the string with twice the background density, the wake. The dimensions of the wake behind

a string at time ti are

c1ti × vγ(v)ti × 4πGµvγ(v)ti , (5.1.3)

where the dimensions are length along the string, depth of the wake in the direction of string

motion, and mean thickness of the wake, respectively. We will denote these dimensions by

ψ1, ψ2 and ψ3 respectively when using comoving coordinates.

Cosmic string loops accrete matter in a roughly spherical way and give rise to density

fluctuations which are hard to tell apart from fluctuations formed by other point sources.

String wakes, on the other hand, give rise to signals with a clear geometrical signature,

2We are here considering a simplified “one-scale-model” of strings.
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and have hence been the focus of a lot of recent work (see e.g. [22]). Long cosmic string

segments produce line discontinuities in CMB (cosmic microwave background) temperature

maps [33]. The contribution to the power spectrum of cosmological perturbations is scale-

invariant [67–69]. However, the fluctuations are active and incoherent [23, 35, 70] and hence

do not lead to acoustic oscillations in the CMB angular power spectrum anisotropies. At

present, the angular CMB power spectrum, in fact, provides the most robust upper bounds

on the string tension [25, 26] (see the introduction of [71] for a more detailed discussion on

string tension limits as well as [72–80] for earlier studies)

Gµ < 1.3× 10−7 . (5.1.4)

Hence, it follows that cosmic strings are only a sub-dominant component to the power

spectrum of perturbations. The dominant contribution must be due to almost Gaussian

and almost adiabatic fluctuations such as those produced by inflation (or by alternatives

to inflation such as String Gas Cosmology [81, 82] or the Matter Bounce [83–85]).

Whereas overall cosmic strings are a sub-dominant component to structure formation,

string wakes can nevertheless give rise to prominent signatures in position space maps. They

give rise to a network of edges in CMB temperature maps across which the temperature

jumps [33], rectangles in the sky with a specific CMB polarization signal (statistically

equal E-mode and B-mode polarization with a polarization angle which is uniform over

the rectangle and whose amplitude has a linear gradient [36]), and thin wedges of extra

absorption or emission in 21cm redshift maps [37] (see also [44, 71, 86]). These features

are most prominent at high redshifts when string wakes are already nonlinear fluctuations,

but the Gaussian fluctuations are still in their linear regime. The cosmic string signals

are also most easily visible in position space maps (e.g., with edge detection algorithms

[39, 41, 87]), whereas the distinctive stringy features are washed out in power spectra (see

e.g., [88]).

At early times, cosmic strings dominate the nonlinearities in the universe, the reason be-

ing that wakes are nonlinear perturbations beginning at the time they are formed, whereas

Gaussian perturbations are linear at early times. At late times, however, the Gaussian

fluctuations dominate the structure in the universe. Most of the nonlinearities at present

are due to the Gaussian fluctuations. The question we wish to address in this paper is

whether the string-induced inhomogeneities, which at early times are clearly visible, are
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still observable as coherent objects in position space maps at later times (in particular

times after reionization). Concretely, we wish to study whether string wakes will remain

coherent or whether the Gaussian fluctuations disrupt them. This analysis is a crucial

preliminary step towards identifying string signals at low redshifts, e.g., in 21cm redshift

maps at redshifts comparable and smaller than the redshift of reionization, or in large-scale

structure redshift surveys.

In this paper, we study various stability criteria for string wakes. We study the stability

of a wake to local disruption and find the redshift above which a cosmic string wake remains

locally intact, as a function of Gµ. However, even if Gaussian fluctuations cause the wake

to be locally disrupted, a global signal may remain. We study a specific criterion which can

be used to search for the signals of primordial wakes. This analysis shows that signals of

string wakes remain from a global perspective to the present time. Interestingly, the signals

can be identified independently of the value of Gµ, and do not depend on whether the wakes

are shock-heated or diffuse (see [89] for a discussion of the difference between these two

cases). Our various stability criteria will be relevant for developing robust observational

strategies to search for string wakes.

In the following section, we give a brief review of cosmic string wakes. In Section 3,

we present a local stability condition based on a displacement condition. In Section 4, we

consider a local density contrast consideration. The resulting stability condition shows that

wakes are locally disrupted by the Gaussian perturbations at a redshift lower than some

critical redshift which depends on Gµ. In Section 5, we discuss a global stability condition

which shows that wakes are visible up to the present time independent of the value of Gµ.

5.2 String Wake Review

Consider a string segment at time ti moving with velocity v in the direction perpendicular

to the string. This segment will produce an overdense region with twice the background

density behind it whose dimensions are given by (5.1.3). Once formed, this wake will be

stretched in the planar directions by the expansion of space, and it will grow in thickness by

accreting matter from above and below. This accretion can be studied using the Zel’dovich

approximation [29]. We will consider wakes produced at times ti > teq, where teq is the

time of equal matter and radiation. Those produced earlier cannot grow until teq, and they

will hence be smaller.
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The thickness of the wake at time t > ti is determined by computing the comoving

distance qnl(t) of a shell of matter which is starting to collapse (“turning around”) onto the

wake, i.e. for which

ḣ(qnl(t), t) = 0 , (5.2.5)

where the physical height is given by

h(q, t) = a(t)
[
q − ψ(q, t)

]
, (5.2.6)

where a(t) is the cosmological scale factor and ψ(q, t) is the comoving displacement induced

by the gravity of the wake. A standard calculation (see e.g. [30, 31, 36]) yields

qnl(t, ti) = (z(t) + 1)−1 24π

5
vγ(v)Gµ(z(ti) + 1)1/2t0 , (5.2.7)

where z(t) is the cosmological redshift at time t and t0 is the present time. At the

turnaround ψ(qnl, t) = 1
2
qnl. After turnaround, the shell of baryonic matter virializes at a

distance which is half of the turnaround radius, whereas the dark matter remains extended

[90]. Hence, the physical height of the dark matter wake at time t is

h(t, ti) = (z(t) + 1)−1 qnl(t, ti) . (5.2.8)

This is also the displacement which a particle experiences due to the wake if this particle

ends up at the edge of the wake. We also denote the wake thickness in comoving coordinates

by

ψ3(z) =
24π

5
10−7(Gµ)7vγ(v)t0

√
1 + zi

(1 + z)
, (5.2.9)

where (Gµ)7 is the value of Gµ in units of 10−7.

The result (5.2.8) shows that the thickest wakes are those produced at the earliest

times, namely ti = teq. The thickness of a wake is obviously proportional to Gµ, and its

comoving size grows linearly in the cosmological scale factor a(t), as expected from linear

cosmological perturbation theory.
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5.3 Displacement Condition

In this section, we will obtain a stability condition which is based on displacements induced

by primordial Gaussian fluctuations. For simplicity, we will restrict the analysis of this

section to the matter-dominated period. In the next section, we will extend the validity

range to include dark energy in the evolution of the growth factor. The wake plane (formed

by the ψ1 and ψ2 lengths) can be subdivided into pieces of area (ψ3)2, where ψ3 is the

thickness of the wake in comoving coordinates. We will compute the displacement (in a

direction perpendicular to the wake plane) which is coherent on this scale. In order to do

this, we will integrate in time the fluctuation of the peculiar velocity field on the scale ψ3.

If Sψ3 is the induced physical displacement, then

Sψ3(t) < h(t, ti) (5.3.10)

is a local displacement condition for the stability of the wake. To compute Sψ3 consider

the continuity equation

δ̇ +
1

a
~∇~v = 0 , (5.3.11)

where δ is the relative matter density contrast and ~v is the physical peculiar velocity field.

Choosing a Fourier mode parallel to ~v and taking the modulus of the Fourier transform of

the above equation we obtain a relation between the amplitudes of the velocity and density

contrast fields in momentum space:

| vk(z) |= faH

k
| δk(z) | (5.3.12)

where we used δ(z) = g(z)δ(0), g(z) = D(z)/D(0) and D(z) is the growth factor [91]. For

the matter dominated period, g(z) = 1.29/(1 + z) and the function f(z) = a
D(z)

dD(z)
da

is

approximately one.

The contribution to the standard deviation of the peculiar velocity field on a scale

L = 2π
k

at redshift z is denoted by ∆v(k, z) and from the above equation we obtain

∆v(k, z) = aH(
L

2π
)∆(k, z) , (5.3.13)
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where

∆(k, z) ≡
√

k3

2π2
P (k, z) (5.3.14)

is the dimensionless contribution to the standard deviation of the matter density fluctua-

tions δ on a length scale corresponding to k, given the dimensional power spectrum P (k, z)

at redshift z. The induced physical displacement Sψ3 is given by

SL(z) = a

∫ z

zi

a−1(t′)∆v(k, z(t′))dt′ (5.3.15)

evaluated at k = k3 where k3 = 2π/ψ3 is the wavenumber associated with the comov-

ing thickness ψ3(z) of the wake. The integral will be dominated by the upper limit of

integration, therefore

Sψ3 = a
ψ3

2π
∆(ψ3(z), z) , (5.3.16)

and the displacement condition (5.3.10) becomes

∆(k3(z), z) < 2π . (5.3.17)

When the above equation holds, the coherent displacement in a region perpendicular

to the wake plane will be smaller than the wake thickness ψ3. This displacement condition

agrees to within one order of magnitude with the local delta condition of the next section

and gives a physical interpretation to it. The above condition is valid during the matter-

dominated period, but in the next section, this restriction will be extended to include the

dark energy period.

5.4 Local Delta Condition

Another criterium for the stability of a wake can be obtained by demanding that the r.m.s.

Gaussian mass fluctuations ∆ on the scale k3(z) of the wake thickness is smaller than unity,

i.e.

∆(k3(z), z) < 1 . (5.4.18)

We call (5.4.18) the “Local Delta condition”, which is stronger than (5.3.17). If this condi-

tion is satisfied, then the wake is locally stable. This condition can be justified by noticing

that the matter density contrast δ in a volume within the wake fluctuates around one inside
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the wake and around zero outside, so if the standard deviation σ of δ is of order one the

wake matter signal will be lost.

The late time power spectrum is obtained by multiplying the primordial power spec-

trum by the square of a transfer function T , which comes from the non-trivial evolution

of fluctuations on sub-Hubble scales. Specifically, for scales which enter the Hubble ra-

dius before the redshift zeq of equal matter and radiation the fluctuations in matter on

sub-Hubble scales grow only logarithmically since the universe is dominated by a smooth

radiation fluid at these times and on these scales.

The late time power spectrum for a model with Gaussian fluctuations with fixed spectral

index is obtained from ([4], page 184)

P (k, z) = 2π2δH
2 kn

H0
n+3T

2(k)g2(z) (5.4.19)

where we use the expression given by [91] in the growth factor, which now includes dark

energy , T (k) is the transfer function, n is the scalar spectral index, and δH is the amplitude

of ∆ evaluated for a Fourier mode that corresponds to the Hubble scale. We choose a

normalization that gives σ8 = 0.83, where σ8 is the rms fluctuation smoothed on a scale

8 Mpc/h using a top-hat window function. We use n = 0.97 and ΩΛ = 0.7 . At this point,

we will switch from natural units to units used conventionally in cosmology, namely Mpc for

lengths and seconds for time. In these units c = 9.6× 10−15 Mpc/s, and the expression on

the right hand side of (5.4.19) has to be multiplied by cn+3. We will also use vγ(v) = c/
√

3,

zi = 1000 and t0 = 4.35× 1017s

The transfer function T from ([92] page 60) is used to obtain an analytic expression for

∆(k3), which together with the approximation (k3(z))−0.0145 ≈ 1 gives

∆(k3(z), z) = 0.607 ln(1 + 22.7k3(z))g(z) . (5.4.20)

This computation of Delta can now be applied to either condition (5.3.17) or (5.4.18). For

example, using the “Local delta condition” (5.4.18), we find that the disruption redshift,

the redshift when ∆(k3(z), z) = 1 depends only logarithmically on the wake thickness and

hence on the value of Gµ. We see that wakes are stable to fairly late times.

In Figure 1 we plot the value of ∆(k3(z), z) (vertical axis) as a function of redshift

(horizontal axis) for the value (Gµ)7 = 1 (black line) and (Gµ)7 = 10−4 (gray line). The
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dashed horizontal line is ∆ = 1. We see that the wake is locally stable for z above

approximately 6 in the case of Gµ = 10−7 and for z above approximately 11 in the case of

Gµ = 10−11.
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z
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∆
(k
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Gµ = 10−7

Gµ = 10−11

Figure 5.1 Plot of ∆(k3(z), z) (vertical axis) as a function of redshift z
(horizontal axis) for Gµ = 10−7 (black line) and Gµ = 10−11 (gray line).

In Figure 2 we plot (the solid black line) the value of (Gµ)7 (vertical axis) for which the

stability condition of a wake ceases to be satisfied at redshift zd (horizontal axis). From this

plot it follows that at zd = 20 all wakes (Gµ) ≥ 10−14 are stable. The dashed horizontal

line is (Gµ)7 = 1, and we see that it intersects the solid black line (which gives the value

of Gµ below which the wake is disrupted) at z ≈ 6, confirming the result of Figure 1. To

obtain the value of (Gµ)7(zd) such that the wake will be disrupted at redshift zd (when the

equality of (5.4.18) is satisfied) we use

k3(zd) = 113(1 + zd)/(Gµ)7 (5.4.21)

in (5.4.20) to obtain

(Gµ)7(zd) =
2565(1 + zd)

e1/0.607g(z) − 1
. (5.4.22)
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Figure 5.2 The value of Gµ (vertical axis in units of 10−7) above which
the local Delta wake stability condition is satisfied as a function of redshift z
(horizontal axis).

5.5 Global Sigma Condition

The local Delta stability condition studied in the previous section is a very strict condition.

It is demanding that no section of the wake gets moved on a scale of the wake thickness. A

less restrictive condition is to demand that the wake remains visible if we probe space with

a filter which has the shape of the three dimensional, extended wake, i.e., which has two

large dimensions given by the length and depth of the wake, respectively, and one small

dimension given by the wake thickness. We call the resulting condition the “Global Sigma

Condition”.

The variance of δw for a non-isotropic window function W̃w is given by

σ2
w =

g2(z)

(2π)3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dk1dk2dk3P (‖~k‖)W̃ 2
w(~k, z) (5.5.23)

where g(z) is the growth factor and P is the power spectrum at the present time. Note

that we are working in terms of comoving momenta. The “Global Sigma condition” then
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is

σw < 1 (5.5.24)

when we consider a window function whose two large dimensions are given by the planar

size of the wake which is fixed in comoving coordinates. The first guess would be to choose

the small dimension to be given by the wake thickness which is increasing in comoving

coordinates. Before making this choice, however, let us choose the thickness of the window

to be fixed in comoving coordinates, and present a rough analytical analysis. The integral

(5.5.23) is essentially cutoff by the radial planar size that corresponds to the comoving

momentum kr, and the orthogonal size that correspond to k3, with k3 � kr. We then

obtain

σ2
w ∼ g2(z)

2π2

∫ k3

0

dk3

∫ kr

0

krP (
√
k2
r + k2

3)

∼ g2(z)

4π2
k2
r

∫ k3

0

dk3P (k3) . (5.5.25)

For a roughly scale-invariant power spectrum of Gaussian fluctuations, the final integral is

dominated by scales which enter the Hubble radius at around teq where the power spectrum

turns over (i.e. changes from scaling as k−3 for large values of k to scaling as k for small

values). Let us denote this value of k as kto. Then (5.5.25) yields

σ2
w ∼

g2(z)

4π2

( kr
kto

)2
∆(kto)

2 , (5.5.26)

where ∆(k)2 is given by (5.3.14). Note that the result is independent of kz as long as

kz � kto.

Our result (5.5.26) lets us draw important conclusions. Most importantly, the global

delta criterium (5.5.24) is independent of the thickness of the wake, and hence independent

of the string tension Gµ. The equation (5.5.26) also shows that wakes with larger planar

extent, i.e., those laid down later, are easier to identify that smaller wakes. The dependence

on kr is linear. This prediction can be used as a consistency check on the numerical analysis.

Another nice feature about our result is that it tells us that we can choose a window

function with a width greater than what we expect the local displacements of the wake to

be.

We now turn to the quantitative evaluation of the condition. First, the comoving planar
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dimensions of the wake can be read off from (5.1.3). They are

ψ1 =
c1t0√
1 + zi

, (5.5.27)

ψ2 =
vγt0√
1 + zi

, (5.5.28)

The wake thickness in comoving coordinates depends on z and is given by equation (5.2.9)

Considering a wake region V centred at the origin of coordinate space in the form of a

parallelepiped of volume Vw = ψ1×ψ2×ψ3 the wake window function in real space becomes

Ww(X, Y, Z) =

{
1
Vw

if (X, Y, Z) ∈ V
0 if (X, Y, Z) 6∈ V

(5.5.29)

and the Fourier transform of the above quantity is

W̃w(k1, k2, k3, z) =
1

Vw(z)
[
2 sin(k1ψ1/2)

k1

][
2 sin(k2ψ2/2)

k2

][
2 sin(k3ψ3(z)/2)

k3

] . (5.5.30)

The variance of δw is given by (5.5.23). Replacing (5.5.30) into (5.5.23) results in

σ2
w(z) = 1

(2π)3
( g(z)
Vw(z)

)
2 ∫∞
−∞
∫∞
−∞
∫∞
−∞ dk1dk2dk3

P (‖~k‖)([2 sin(k1ψ1/2)
k1

][2 sin(k2ψ2/2)
k2

][2 sin(k3ψ3(z)/2)
k3

])
2 (5.5.31)

Note that in the integrand above the 2 sin(k3ψ3(z)/2)/k3 term together with the ψ3 term

of Vw approaches 1 as Gµ→ 0. Since for large k3 the power spectrum also goes to zero, we

can take this last term as 1 and hence for small Gµ σw is independent ofGµ. This confirms

our expectation from equation (5.5.26). But this does not mean string wakes are visible at

arbitrarily low string tension. A wake should not be disrupted in order for it to be seen. In

this sense the global delta condition is a necessary but not a sufficient reason for detection.

Though very low Gµ wakes may not be disrupted, they are not necessarily detectable, since

cosmic string wake signals are proportional to the string tension (see introduction of Ref.

[71] for a more detailed discussion of this point). We explicitly verified the independence of

σw on Gµ by evaluating the above integral numerically for several values from Gµ = 0 to

10−7. It was assumed that vγ(v) = c/
√

3 and zi = 1000 . We find that σw(0) = 0.32. Note

that the entire z dependence for σwz) is given by the g(z) factor in front of the integral.
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Until the time when dark energy becomes important we have g(z) ∝ 1/(z + 1) and

σw(z) = 0.32g(z) . (5.5.32)

The plot of σw(z) is shown in Figure 3.We conclude that even if the wake is locally disrupted,

the overall density pattern remains manifest. Good strategies for cosmic string searches

need to take this result into account.
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Figure 5.3 The r.m.s. value of the density contrast of the Gaussian per-
turbations in an anisotropic region which corresponds to the size of a wake
produced at teq (vertical axis) as a function of redshift (horizontal axis). Note
that the density fluctuations remain smaller than one.

Note that the σ < 1 conditions (both the global and local ones) are good provided

the fraction of additional matter (due to the wake) that is within a region of the window

function is of order one. In this case, δ will fluctuate around 1 inside the wake and around

0 outside, so sigma < 1 will be a good condition to distinguish between the presence and

absence of a wake in a given region of space.
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5.6 Discussion and Conclusions

We have studied the disruption of a cosmic string wake by the gravitational effects of the

Gaussian fluctuations which dominate the current spectrum of cosmological perturbations.

At large redshifts, the wakes are stable whereas at smaller redshifts they are locally dis-

rupted. The crossover redshift depends on the string tension Gµ. For Gµ = 10−9 the

crossover redshift is z ' 11. At redshifts greater than z = 20, wakes are stable down

to tensions of Gµ = 10−14. To arrive at this result, we investigated both a local density

contrast criterion and a displacement criterion.

As an example, let us evaluate the possibility of seeing a Gµ = 10−9 cosmic string

wake in a particular slice of the 21 cm maps from the SKA. Just above its local disruption

of z ' 11, such a generically oriented wake has a projected wake thickness ∆zwake, two

orders of magnitude smaller than the SKA redshift resolution of ∆zSKA = 10−4. The

planar size of the wake is N = 105 times greater than the SKA angular resolution of

10−7 radians. Since the wake is not disrupted there is a slight overdensity over the entire

0.01 rad× 0.01 rad region in redshift space. Consider those N2 pixels that contain the wake

as N2 measurements in a no-wake theory. Knowing that the wake is undisrupted allows

us to calculate the χ2 between a no-wake theory and a theory with a wake for these pixels

[93]. We find that χ2 = N2 × (∆zwake/∆zSKA)2 = 106 . Such a large χ2 results because we

have assumed that all our pixels contain the wake. Obviously we have not addressed how

to choose such candidate pixels, however here we wish only to show that a wake is visible

in the scenario where our pixels do contain a wake.

The physical difference between the “Local delta condition” and the “Global sigma

condition” is due to the fact that in the local criteria, the relevant scale of the problem is

the wake thickness, and this scale is proportional to the string tension. On the other hand,

as discussed above, the relevant scale for the global criteria is the planar dimension of the

wake, which is independent of the string tension.

Even if Gaussian fluctuations locally disrupt a string wake, it could possibly be identified

using a “Global Sigma Condition”. We have computed the r.m.s. density contrast due to

the Gaussian fluctuations for an anisotropic window function whose planar dimensions

correspond to those of a wake, and whose thickness is much smaller than the scale where

the density power spectrum turns over and shown that the result is lower than 1 for all

redshifts. Hence, if we smooth the density field with such a window function, then the wake
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will be visible even if it is locally disrupted. This global condition is independent of the

value of Gµ. We are looking for the dark matter component, so we do not have to consider

(baryonic) diffuse wake corrections to the wake thickness.

Our work has implications for search strategies to find string signals. Local features

of wakes (e.g., discontinuity lines in CMB polarization maps or sharp edges in three-

dimensional 21cm redshift surveys) will only be visible for redshifts higher than the crossover

redshift determined by our local criteria. In contrast, searches for string signals using global

signals (e.g., statistical analyses of maps obtained by smearing the original maps by an

anisotropic window function of the shape of the expected wake signal) will be promising

even at very low redshifts. We are currently studying this question.
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Chapter 6

Dark Matter Distribution Induced by

a Cosmic String Wake in the

Nonlinear Regime

6.1 Introduction

Cosmic strings are linear topological defects which arise in a large class of quantum field

theory models describing physics beyond the Standard Model. If Nature is described by

such a model, then a network of strings inevitably forms in the early universe and persists

to the present time [94, 95]. Strings are thin lines of trapped energy density, and their

gravitational effects lead to specific signatures which can be searched for in cosmological

observations.

The network of cosmic strings 1 which form in a gauge field theory approaches a scaling

solution in which the statistical properties of the distribution of strings is independent of

time when all lengths are scaled by the Hubble radius (see e.g. [11, 15, 56] for reviews of

cosmic strings and their role in cosmology). The string distribution has two components:

firstly a network of infinite strings with mean curvature radius comparable to the Hubble

radius t (where t is the physical time), and secondly a distribution of string loops with

radii R < t. The loops result from the long string intersections which also are responsible

for maintaining the long string scaling distribution. Analytical arguments lead to the

1We are focusing on non-superconducting strings. In some quantum field theory models the strings can
be superconducting [96] which will lead to additional effects of non-gravitational origin.

2019/09/18
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conclusion that the number N of long string segments that pass through any Hubble volume

is of the order 1. The exact number must be determined in numerical cosmic string evolution

simulations (see e.g. [9, 58–64] for some recent results). Current evidence is that N ∼ 10.

Cosmic strings are characterized by their mass per unit length µ which is usually ex-

pressed in terms of the dimensionless quantity Gµ (where G is Newton’s gravitational

constant 2). The value of µ is determined by the energy scale η at which the strings are

formed (it is the energy scale of the phase transition leading to the strings)

µ ∼ η2 . (6.1.1)

The strength of the signatures of cosmic strings in the sky is proportional to Gµ. The

current upper bound on the string tension is

Gµ < 1.5× 10−7 (6.1.2)

and is derived from the features of the angular power of cosmic microwave background

(CMB) anisotropies [25, 26, 97] (see also [72–76, 78–80] for some older works). Searching

for cosmic strings in the sky hence is a way to probe particle physics beyond the Standard

Model “from top-down”, as opposed to accelerator searches which are more sensitive to

low values of η and hence probe particle physics “from bottom-up”. The current bound

on Gµ already rules out the class of “Grand Unified” particle physics models containing

cosmic string solutions with a scale of symmetry breaking which is on the upper end of

the preferred range. Improving the upper bound on the cosmic string tension will lead

to tighter constraints on particle physics models (see e.g., [57] for an elaboration on these

points).

The long string segments lead to non-Gaussian signals in the sky characterized by

specific geometrical signatures in position space maps. One set of string signatures comes

from lensing produced by a string. Space perpendicular to a long straight string segment

is a cone with deficit angle α given by [14]

α = 8πGµ . (6.1.3)

The deficit angle extends to a distance t from the string [98]. Cosmic strings are relativistic

2Note that we are using natural units in which the speed of light is c = 1.
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objects, and hence the curvature of the string segments (the curvature radius is of the order

t) will induce relativistic motion of the string in the plane perpendicular to the tangent

vector of the string. This will lead to line discontinuities in CMB anisotropy maps [33] of

magnitude
δT

T
= 4πvsγsGµ , (6.1.4)

where vs is the transverse speed of the string segment in speed of light units, and γs is the

corresponding relativistic gamma factor.

A moving long string segment will also induce a velocity perturbation behind the string

towards to plane determined by the tangent vector of the string and the velocity vector.

This leads to a region behind the string with twice the background density called a cosmic

string wake [27, 28, 65, 66]. A wake produced by a string passing through matter at

time t will have comoving planar dimensions given by the Hubble radius at time t, and a

comoving thickness which initially is given by the deficit angle (6.1.3) times the Hubble

radius and which grows linearly in time as given by the result of an analytical analysis

[30, 31] making use of the Zel’dovich approximation [29]. Hence, the comoving dimensions

of a wake produced at time t are

c1tz(t)× tz(t)vsγs × 4πGµvsγsz(t)t , (6.1.5)

where z(t) is the redshift at time t, and c1 is a constant of order unity which gives the

string curvature radius relative to t.

According to the cosmic string network scaling solution, strings lead to a set of line

discontinuities in CMB temperature maps. The overall distribution of these discontinuities

is scale-invariant. However, since cosmic strings are primordial isocurvature fluctuations,

they do not give rise to acoustic oscillations in the angular CMB temperature power spec-

trum, oscillations which are typical of adiabatic perturbations [23, 35, 70]. Hence, detailed

measurements of the CMB angular power spectrum leads to the constraints on the string

tension is given by (6.1.2). It is likely that the bound can be strengthened by analyzing

CMB temperature maps in position space using statistical methods designed to identify

linear discontinuities. Initial studies using the Canny edge detection algorithms [39, 41, 87],

wavelets [26, 52, 53], curvelets [53] and machine learning tools [46, 47] have shown that
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good angular resolution is key to obtaining improved constraints 3. Cosmic strings also

lead to direct B- ode polarization in the CMB sky [36] (see also [22] for a recent review of

signatures of cosmic strings in new observational windows) 4.

Cosmic strings also lead to distinct patterns in 21cm redshift surveys: a cosmic string

wake present at a redshift before reionization will lead to a three-dimensional wedge of

extra absorption in the 21cm maps because at these redshifts the wake is a region of twice

the background density of neutral hydrogen and CMB photons passing through a wake

suffer twice the absorption compared to photons which do not pass through the wake [37].

Strings also lead to a Wouthuysen-Field brightness trough in the integrated 21cm signal

[71].

In contrast, there has been little recent work on how well the cosmic string tension can

be constrained by the large-scale structure of the Universe at lower redshifts, well into the

nonlinear region of gravitational clustering 5. In this paper, we take first steps at studying

these signals. We will study how well a single cosmic string wake can be identified in

N -body dark matter simulations of gravitational clustering.

Specifically, we include the effects of a cosmic string wake in a cosmological N -body

simulation which evolves the dark matter distribution. We introduce a statistic which is

designed to pick out the signal of a cosmic string wake in the “noise” of the primordial

Gaussian fluctuations in a LambdaCDM cosmology. Since the string wake grows only in

the direction perpendicular to the plane of the wake, whereas the Gaussian fluctuations

grow in all three dimensions, the Gaussian fluctuations will eventually disrupt the wake,

as studied analytically in [32]. However, even once the wake has been locally disrupted, its

global signal will persist for some time. We study how the redshift when this global signal

ceases to be identifiable varies as the string tension changes. In the following, we shall call

the Gaussian fluctuations in a ΛCDM cosmology simply as “Gaussian noise”.

3See also [99, 100] for earlier searches for position space signals of cosmic strings in CMB temperature
maps.

4Searching for cosmic strings in position space has an additional advantage over analyzing only corre-
lation functions such as the power spectrum: searching for signals of individual strings in position space
maps leads to less sensitivity to the parameter N (number of long strings per Hubble volume) which is not
yet well determined).

5Most previous work on cosmic strings signals in the large- scale structure has been in the context of
string models [21, 67, 68] without ΛCDM fluctuations.
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6.2 Wake Disruption

The challenge of identifying cosmic string wake signals in the nonlinear regime of structure

formation was addressed in [32]. If a cosmic string wake is added to the initial conditions

of a cosmological model which is characterized by a scale-invariant spectrum of primordial

Gaussian cosmological perturbations, then the wake is clearly identifiable at high redshifts

since the Gaussian perturbations are all in the linear regime whereas the wake is already a

nonlinear density contrast. However, once the Gaussian perturbations become nonlinear,

they will start to disrupt the wake.

A first criterion for the stability of a wake is that the local displacement Sk of matter

on the comoving scale of the wake thickness k−1(t) due to the Gaussian fluctuations be

smaller than the physical width of the wake h(t), i.e.

Sk(t) < h(t) . (6.2.6)

If this condition is satisfied, then the wake should persist as a locally coherent entity. This

condition was called the local stability condition. A closely related condition is the local delta

condition which demands that the mean fluctuation ∆ due to the Gaussian fluctuations on

the scale k of the wake thickness be smaller than unity, i.e.

∆(k, t) < 1 . (6.2.7)

For a string tension of Gµ = 10−7 it was found that the local delta condition is satisfied

down to a redshift of z ' 5. The limiting redshift increases as the string tension decreases.

For Gµ = 10−11 the limiting redshift is z ∼ 11, and this limiting redshift increases only

slowly as the string tension is reduced further (for a string tension of Gµ = 10−14 the

limiting redshift is z ∼ 20).

The above result shows that in principle very high redshift surveys of the distribution

of matter in the universe such as what can be achieved by high redshift 21cm maps yield a

very promising avenue to detect cosmic strings [37]. The challenge, however, is to be able

to identify the very thin features (in redshift direction) which string wakes will produce.

As was also studied in [32], wakes might be identifiable through the global mass dis-

tribution which they induce even if they are locally disrupted. We can ask the question

whether the Gaussian fluctuations are able to induce a nonlinear overdensity in a box of
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the expected dimensions of a string wake. The contribution of the Gaussian fluctuations

to the variance in a such a box B(Gµ) is

σ2
w =

g2(z)

(2π)3

∫
d3kP (|k|)W 2

w(k) , (6.2.8)

where P (|k|) is the power spectrum of the Gaussian noise, g(z) is the cosmological growth

factor, and Ww(k) is a non-isotropic window function which filters out contributions from

modes which have wavelength smaller than the width of the wake in one direction, and

smaller than the extent of the wake in the two other dimensions. If σw < 1, then a string

wake can be identified by its global signal (it will produce a nonlinear density contrast in

this box). Thus, we can define the global delta condition for the identifiability of a string

wake:

σw < 1 . (6.2.9)

It was found [32] that for a roughly scale-invariant power spectrum of primordial fluctu-

ations the result for σw is to first-order independent of the thickness of the wake, and that

the condition (6.2.9) remains satisfied down to redshift 0. Hence, in the absence of noise

and with an unlimited resolution, a string wake should be identifiable even at present for

any value of Gµ. In practice, however, the limited resolution of a survey (and the limiting

resolution of numerical simulations) will limit the redshift range where the string wake can

be detected.

The goal of the present study is to determine to what value of Gµ cosmic string wakes

can be identified in practice. Ultimately we are interested in comparing the results of

numerical simulations of the distribution of matter, obtained if the usual initial conditions

for the primordial fluctuations are supplemented with the presence of a cosmic string wake,

with observational data. In the current project, we will study the distribution of dark

matter only. Any observational data set will have a limiting resolution in the same way

that any numerical simulation has a resolution limit. These limits will render the effects of

string wakes harder and harder to detect the smaller the value of Gµ, in spite of the fact

that the result (6.2.9) is independent of Gµ. In this paper, we wish to study whether the

wake of a string with tension Gµ = 10−7, a value just below the current upper bound, can

be identified with simulations having a resolution which can currently be achieved.

In the next section, we describe the simulation code and various performance tests of
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the code which we have performed. For these test runs, we use a value of Gµ, which is

larger than the current upper bound in order to better visualize the results. In Section 4,

we then present the output of runs or values of Gµ down to Gµ = 10−7, and study down

to which redshift the wake signal can be identified with various statistics. In Section 5 we

summarize the results and discuss prospects for deriving improved limits.

6.3 Simulations

6.3.1 The Code

This section describes the main features of the N -body simulations that we use to model

numerically the wake evolution and its impact on the density field. We detail our wake

insertion strategy and validate our results with consistency checks.

The simulations were produced with CUBEP3M, a public high performance cosmological

N -body code based on a two-level mesh gravity solver augmented with sub-grid particle-

particle interactions [101]. The initial conditions generator reads a transfer function con-

structed with the CAMB online toolkit6 and produces ΛCDM fluctuations at any chosen

initial redshift zi with the following cosmological parameter: ΩΛ = 0.7095, Ωb = 0.0445,

OmegaCDM = 0.246, nt = 1, ns = 0.96, σ8 = 0.8628, h = 0.70, Tcmb(t0) = 2.7255. The

initial redshift is chosen such that the initial fluctuations are in the linear regime for all

scales that we resolve. Except for a few cases, the initial redshift was zi = 63. Parti-

cles are then displaced using linear theory [29], then evolved with CUBEP3M until redshift

z = 0. Several test simulations were performed with various computational power on four

systems: a laptop with four processors, a 64 cores computer cluster in the McGill Physics

Department called irulan, and a set of 128 cores from the Guillimin Cluster and, finally, a

set of 128 cores from the Graham Cluster. The two last clusters are part of the Compute

Canada Consortium. The first two sets of simulations were launched as a single MPI task

job, whereas the two last ones were distributed over eight compute nodes. The cosmo-

logical volume and the number of particles were varied, as summarized in Table 6.1. The

most powerful simulation was performed in Graham, in a volume of Lbox = 64Mpc/h per

side, with nc = 2048 cells per dimension (corresponding to 1024 particles per dimension).

The phase space output data was saved for checkpoints chosen in equal spaced logarithmic

6CAMB:https://lambda.gsfc.nasa.gov/toolbox/tb camb form.cfm
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intervals for the scale factor. In addition to that, a few more checkpoints were added, cor-

responding in total to the following redshifts: 63, 31, 15, 10, 7, 5, 4, 3, 2, 1, 0.5, 0 (some other

simulations contain 255 and 127 as well).

Machine Lbox (in Mpc/h) nc
ACER 40 240
irulan 64 and 32 512 and 256

Guillimin 64 1024
Graham 64 1024 and 2048

Table 6.1 Configuration of the various N -body simulations. Lbox and nc
are the side of the cosmological box and number of cells per dimension, re-
spectively.

The ΛCDM part of the N -body code has been shown to match the predictions to

within 5% over a large range of scales. We verify this in Fig. 6.1, where we compare the

matter power spectrum P (k) with the predictions at z = 15 for a ACER simulation with

Lbox = 40Mpc/h and nc = 240. The power spectrum is computed by first assigning the

particles onto a density grid δ(x) using the cloud-in-cell interpolation, then squaring the

Fourier transformed field δ(k) and averaging over the solid angle Ω: P (k) = 〈|δ(k)|2〉Ω. The

mass assignment scheme has been removed in this calculation, but the shot noise was not

removed, which explains the large rise at k > 10h/Mpc. We observe that the agreement

is indeed as expected, with a 10% match for k < 3.0h/Mpc, corresponding to scales 1.04

Mpc/h.

The reason we cannot achieve 5% precision on P (k) is due to the fact that we do not

fully capture the linear scales, because we are considering a small box size. We would

normally need Lbox > 200 Mpc/h to get 5% precision on P (k). In our case, this is not an

issue, since we are still producing representative ΛCDM fluctuations from which the wake

must be extracted.

6.3.2 Wake Insertion

One of the goals is to produce particle distributions including the effects of a wake with a

cosmic string tension compatible with the current limit of Gµ = 10−7, which corresponds to

a comoving width of ≈ 0.003h−1Mpc at redshift 20, a redshift in which we have confidence

that the wake is not yet locally disrupted [32].
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Figure 6.1 Plot of fractional error of the dimensionless power spectrum
compared with the HALOFIT predictions of the online CAMB tool

For a given simulation without a wake, we evolved two independent simulations cor-

responding to wake insertions at redshifts z = 31 and z = 15 to test the sensibility of

the results on the time of wake insertion. The advantage of an early insertion is that the

dark matter distribution is in the linear regime. On the other hand, a late wake insertion

corresponds to a thicker wake at the time of insertion, giving a better resolution of its

thickness.

For each configuration, a ΛCDM-only simulation was evolved to z = 0, without the

wake, writing the particle phase space at a number of redshifts including the wake insertion

redshift. We next modified the particle phase space at the wake insertion redshift by

displacing the particles and also giving them a velocity kick towards the central plane. The

magnitudes of the velocity and displacement are calculated according to the Zel’dovich

approximation [29].

We consider a wake which was laid down at the time teq of equal matter and radiation

(such wakes are the most numerous and also the thickest). Their comoving planar distance
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d is given by the comoving horizon at teq, namely

d = z(teq)
−1/2t0 (6.3.10)

where t0 is the present time. This distance is larger than the size of our simulation box,

which justifies inserting the effects of a wake as a planar perturbation. The initial velocity

perturbation towards the plane of the wake which the particles receive at teq is

δv = 4πGµvsγs , (6.3.11)

where vs is the transverse velocity of the string and γs is the corresponding relativistic

gamma factor. Since cosmic strings are relativistic objects, we will take vsγs = 1/
√

3. In

the following equations, however, we leave vsγs general.

The initial velocity perturbation leads to a comoving displacement ψ(t) of particles

towards the plane of the wake. This problem was discussed in detail in [30, 31], with the

result that the comoving displacement at times t > teq is given by

ψ(t) =
3

5
4πGµvsγsteqz(teq)

z(teq)

z(t)
. (6.3.12)

The last factor represents the linear theory growth of the fluctuation, the previous factor

of z(teq) represents the conversion from physical to comoving velocity. The (comoving)

velocity perturbation is

ψ̇(t) =
2

5
4πGµvsγsteqz(teq)

z(teq)

z(t)

1

t
. (6.3.13)

In our simulations the displacement and velocity perturbations towards the plane of

the wake were given by (6.3.12) and (6.3.13), respectively, evaluated at the time t = ti of

wake insertion. We then reload this modified particle data into CUBEP3M and let the code

evolve again to redshift z = 0. This method ensures that the differences seen in the late

time matter fields are caused only by the presence of the wake. The ΛCDM background is

otherwise identical.

To test the wake insertion code, simulations were run with a large cosmic string tension

of Gµ = 4.0× 10−6. The following three panels each show a two-dimensional projection of
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the resulting dark matter distribution at redshifts z = 31, z = 10 and z = 3. The results

are from a Graham simulation with nc = 512 particles per dimension and a cubic lateral

size of 64 Mpc/h. The initial conditions for the ΛCDM fluctuations were generated at

z = 255, and a wake was inserted at z = 127.

The first figure shows the completely undistorted initial wake signal. At redshift z = 10

the wake is no longer perfectly uniform, and at redshift z = 3 the ΛCDM fluctuations have

caused major inhomogeneities in the wake, and some small deflections. However, for this

large string tension, the string fluctuations still dominate.

6.3.3 Known limitations

Our numerical modeling of a string-induced wake has multiple limitations. The first one

concerns resolution and results from the fact that we are not always able to resolve the

wake itself, which is increasingly thinner for lower string tensions. Ideally, the thickness

of the wake should be at least as large as the simulation cell size, but this is not always

feasible to achieve in a cosmological setup, given the computing resources at our disposal.

For example, supposing we would like to resolve a wake produced by a cosmic string with

tension Gµ = 1.0 × 10−7 at redshift z = 7, the grid size needs to be 0.01Mpc/h, which,

assuming a large simulation with 8192 cells per dimension, corresponds to a lateral size of

≈ 57 Mpc/h. We circumvent this computing challenge by noting that the wake has a global

impact on the matter field and that we do not need to resolve the initial wake exactly to

detect its presence.

A second, less intuitive, limitation arises from the wake insertion itself: once every

particle has been moved towards the wake, a planar region parallel to the wake is left

empty at the boundary of the simulation box. In other words, the number of particles in

the simulation is fixed, and the dislocation of the particles that is required to create the

wake (an overdense region in the central plane of the simulation) produce at the same time

an underdense region at the boundary plane. Although there is indeed a compensating

under density at large distances from the wake (this is required by the “Traschen integral

constraints”[102] on density fluctuations in General Relativity), the fact that the void

occurs at the boundary of our simulation box is unphysical. Note, in particular, that in

the simulations, the location of the underdensity depends on the box size, and it should be

pushed to the horizon size at wake formation [98]. In order to preserve the cosmological
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Figure 6.2 Density contrast of the two-dimensional projection of the dark
matter distribution for a Gµ = 4.0 × 10−6 wake at redshift z = 31, 10 and 3
(from top to bottom, respectively). The color bar on the bottom associates
each color with the corresponding density contrast
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background in the simulation, we cannot introduce new particles to fill this empty region,

and hence we have no way to get rid of this undesired effect.

Our approach is, therefore, to examine whether or not this void affects the evolution

of the wake. We achieve this by measuring the displacement of the particles induced by

the presence of the wake (and the corresponding void at the boundary) and comparing the

result with the Zel’dovich approximation formula (6.3.12). Each particle in the simulation

carries an identification number, and so it is possible to compute the position of a particle

in a simulation without a wake and compare with the position of the same particle in the

simulation that has an inserted wake. Since the only difference between the two simula-

tions is the wake insertion, by subtracting the two positions, it is possible to obtain the

displacement of this particle induced by the wake.

Figure 6.3 shows the displacement in the direction perpendicular to the wake induced

on the particles by the presence of the wake. A Guillimim simulation with Gµ = 8× 10−7,

number of cells per dimension nc = 512 and lateral size L = 64 Mpc/h was used and the

figure corresponds to z = 10, with a wake inserted at z = 31. The axis perpendicular to the

wake was divided into bins with the same thickness as the cell size and the displacement

associated to a given bin was computed by averaging over the displacements of all the

particles inside it. The particles on the left receive a positive dislocation (towards the wake

at the center), and the particles on the right side receive a negative displacement towards

the wake, as expected.

A number associated to the displacement associated to the above case was computed

by considering the mean of the positive part, the absolute value of the mean of the neg-

ative part and taking the average of those two quantities. The error associated with this

displacement computation was the average of the standard deviation of each part (positive

and negative). Figure 6.4 is a summary of this computation for different redshifts together

with the expected result from the Zel’dovich approximation.

It can be seen from the results that the displacement induced by the wake in the

simulation grows linearly in the scale factor as it should. However, in the worst case, it is

about two times higher than the expected value.
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Figure 6.3 Plot of the induced displacement due to the wake as a function
of axis position Z (horizontal axis) for redshift z = 10 and string tension
Gµ = 8× 10−7

6.3.4 Simulations

After these checks of the numerical code, we will turn to the Guillimin “production” runs.

We performed 10 simulations without wakes. From the 10 samples, the first three were

chosen for wake insertion and evolution, adding to the dataset three samples with Gµ =

10−7 wakes and three with Gµ = 8× 10−7 wakes. The lower value of Gµ was chosen to be

just slightly below the current limit on the string tension, the second one is a larger value

for which the string effects are manifest and which can be used as a guide for the analysis.

All simulations have a grid of 1024 cells per dimension and 512 particles per dimension.

The volume of the simulations is (64)3(h−1Mpc)3. The initial conditions were laid down

at a redshift of z = 63, and the wake was inserted at redshift z = 31. To obtain a better

resolution of the wake at the time of wake insertion, we also ran simulations where the

wake was inserted at redshift z = 15. A later time of wake insertion, however, then leads

to simulations where the effects of the ΛCDM fluctuations in the wake are neglected for a

longer time. We will show that our final results do not depend sensitively on the redshift

of wake insertion.

Figure 6.5 shows output maps of simulations at a range of redshifts. Output map

sequences of simulations without a wake, including a wake with Gµ = 8×10−7, and a wake
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Figure 6.4 Plot of the displacement induced by the wake (in blue) for dif-
ferent values of the scale factor. The expected displacement evolution from
Zel’dovich approximation is shown in red.

with Gµ = 10−7 are shown. The wake is placed at the center of the box along the x-axis

(the horizontal axis) and is taken to lie in the y-z plane. The y-axis is the vertical axis,

and the mass has been projected along the z-direction.

Note that the initial thickness of the wake is 5% of the resolution of the simulation. With

better resolution the wake would be more clearly visible, in particular at higher redshifts.

Given the same computing power, we could increase the local resolution at the cost of

reducing the total volume, and we could study the optimal values for the identification

of the string signals. This challenge is similar to the challenge on the observational side,

where observation resolution and sky coverage need to be balanced.

The leftmost column of Figure 6.5 shows the resulting mass distribution for redshifts

z = 10, 7, 4, 2, 0 in a simulation without a wake, the middle column gives the corresponding

output maps for a simulation including a wake with Gµ = 8 × 10−7, and with the same

realization of the Gaussian noise. The wake leads to a planar overdensity of mass which

is visible by eye as a linear overdensity along the y-axis. Until redshift z = 4 the wake is

hardly distorted by the Gaussian noise (it appears as an almost straight line in the plots).

At redshift z = 2 the linear overdensity is still clearly visible, although the Gaussian

perturbations dominate the features of the map. By redshift z = 0 the wake has been

disrupted, although the remnants of the linear discontinuity are still identifiable. The
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Figure 6.5 Each panel shows the density contrast of the density field pro-
jected in a (64h−1Mpc/h)2 area. Each row depicts a redshift snapshot, chosen
to be z = 10, 7, 4, 2, 0 from top to bottom. The left column corresponds to
pure ΛCDM , the middle contains a Gµ = 8×10−7 wake and the right column
contains a Gµ = 1× 10−7 wake. The color bar on the bottom associates each
color with the corresponding density contrast
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challenge for a statistical analysis is to extract the wake signal at the lowest redshifts in

a quantitative way. The rightmost column of Figure 6.7 shows the corresponding output

maps for a simulation including a wake with Gµ = 10−7, again with the same realization

of the Gaussian noise. In this case, the wake is a factor of 8 thinner and creates primordial

fluctuations which are suppressed by the same factor. The planar overdensity due to the

wake is only (and even then only extremely weakly) identifiable at redshift z = 10. The

challenge will be to extract this signal in a manifest way.

6.4 Statistical Analysis

6.4.1 1-d Projections

Our first step in the statistical analysis of the output maps is to consider a further projection

of the density, namely a projection onto the direction perpendicular to the wake. Figure 6.6

shows the resulting distributions for a selection of redshifts (decreasing from top to bottom)

for a simulation without a wake (left column), including an added wake with Gµ = 8×10−7

(middle column) and Gµ = 10−7 (right column), in both cases with the same realization of

the Gaussian noise. The vertical axis shows the relative density contrast, the horizontal axis

is the coordinate perpendicular to the wake. The wake corresponds to the peak located at

distance dz ' 32h−1Mpc At redshifts z = 15 and z = 10 the wake can be clearly identified

by eye at this redshift even for Gµ = 10−7.

As the wake gets disrupted by the Gaussian noise, the wake signal gets harder to identify

at lower redshifts. For Gµ = 10−7 the signal can be seen at redshift z = 10, but it has

disappeared by z = 7, while for Gµ = 8 × 10−7 the signal is still present at z = 3, but no

longer at z = 0.

Wakes are very thin compared to the scale where the power spectrum of the Gaussian

density perturbations peaks. This is particularly true for lower values of the string tension.

Hence, a promising method of rendering the wake signal more visible is to perform a wavelet

transform of the 1-d projection plots.

We have applied the continuous Morse wavelet transformation [103] to the above 1-d

projection plots, and below we show some of the results. The basis used for the continuous

wavelet transform is the Generalized Morse Wavelet [103] which has two parameters: β,

measuring compactness and γ, characterizing the symmetry of the Morse wavelet. We
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Figure 6.6 Each panel shows the density contrast of the density field pro-
jected in a (64 Mpc/h) axis perpendicular to the wake, when there is one.
Each row depicts a redshift snapshot, chosen to be z = 15, 10, 7, 5, 3, 0 from
top to bottom. The left column corresponds to pure ΛCDM , the middle con-
tains a Gµ = 8 × 10−7 wake and the right column contains a Gµ = 1 × 10−7

wake.
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choose γ = 3 (corresponding to the symmetric case). There are few oscillations if we

choose β close to γ, so β = 3.01 is suitable for discontinuities detection. The wavelets are

thus characterized by the position Z where they are centered and by their scale parameter

(width) w. In the following plots of figure 6.7), the horizontal axis is Z, the vertical axis is

the scale parameter. The color is a measure of the modulus of the wavelet coefficients.

A wake is a very thin feature at a particular value of Z. Hence, the wave signal will

be concentrated at the lowest values of the scale parameter. Figure 9 shows a comparison

between the wavelet transform coefficients in simulations without a wake (top) and includ-

ing a wake with Gµ = 10−7 (bottom) and Gµ = 8 × 10−7 (middle), all at a redshift of

z = 10. The Gaussian noise gives rise to features in the continuous wavelet map which

are mostly concentrated at large scale parameters, although there are some features which

also appear at small scale parameters. As seen in the bottom panel of Figure 7, the wake

adds a narrow feature at the value of Z where the wake is centered, which continues to

w ' 0.4h−1Mpc. It can be characterized as a narrow spike. The wake-induced spike and

the spike-like features in the no-wake simulation can be distinguished in that the features

coming from the Gaussian noise weaken as w approaches its minimum value, and are wider

than the wake-induced spike. Note that the color scaling is the same in the three panels.

We see that the wake signal stands out very strong at z = 10 for a wake with Gmu = 10−7,

and that it totally dwarfs all other features for Gµ = 8 × 10−7. The above maps are ob-

tained for a high-resolution sampling along the Z direction (we move the center position

of the wavelet in steps of 0.5 of the grid size).

Since the wavelet expansion is an expansion in a complete set of functions, it is possible

to reconstruct the original data from the wavelet transform. By setting to zero all wavelet

coefficients corresponding to scales higher than a given cutoff, here taken as 0.4h−1Mpc, we

can construct filtered 1-d projection graphs in which the long-wavelength contributions of

the Gaussian noise are eliminated and in which the string wake signal is more clearly visible.

If we apply the reconstruction algorithm to the filtered wavelet maps, we can construct a

filtered 1-d projection graph in which the long-wavelength contributions of the Gaussian

noise are eliminated and in which the string wake signal is more clearly visible.

Figure 8 show the reconstructed filtered 1-d projection graphs at redshift z = 10 in

the case of pure Gaussian noise (top panel), and including a string wake with Gµ = 10−7

(bottom panel) and Gµ = 8 × 10−7 (middle panel). As in the previous two graphs, the

horizontal axis is the coordinate Z, and here the vertical axis is the density contrast. The
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Figure 6.7 Continuous wavelet transforms of the density contrast of the 1-d
projected dark matter density. The horizontal axis is the position parameter of
the wavelet decomposition (with Z = 32 being the position of the wake), and
the vertical axis is the width of the wavelet. The top panel is for a simulation
without a wake, the middle panel includes a wake with Gµ = 8×10−7, and the
bottom panel has a wake with Gµ = 10−7. Note that the ΛCDM fluctuations
are the same in all three simulations.
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wake signals are greatly enhanced compared to what can be seen in the unfiltered projection

graphs. For the value of Gµ = 10−7, the wake signal is now almost an order of magnitude

higher in amplitude than the peak value in the case of pure ΛCDM fluctuations.

To show a comparison, we can apply the continuous wavelet transformation to the one-

dimensional projection filtered map, obtaining Figure 9. Comparing Figures 9 and 7, we

see that the wake signal has been greatly enhanced by filtering.

A statistic which can be used to quantify the significance of the wake signal is the signal

to noise ratio R which we define to be

R =
s − n̄
σ(n)

, (6.4.14)

where s is the peak value of the filtered 1-d projection graph with a wake, and n̄ is the mean

of the peak value of the filtered 1-d projection graph without a wake for the 10 samples

and σ(n) is the standard deviation of the peak value of the filtered 1-d projection graph

without a wake for the same 10 samples. We find that the average of the signal to noise

ratio is

R̄ = 17.07± 0.83 , (6.4.15)

at redshift z = 10 in the case of a wake with Gµ = 10−7 initially laid down at redshift

z = 15 (the error bars are the standard deviation based on three simulations). Hence, we

find that a cosmic string wake is identifiable with a 17.07σ significance. At redshift z = 7

the difference in the signal to noise is no longer statistically significant.

The results of the signal to noise analysis are given in the following figure (10). The

horizontal axis gives the redshift (early times on the left), and the vertical axis is the

signal to noise ratio. The bottom curve gives the results for a pure ΛCDM simulation,

the next pair of curves (counting from bottom-up) give the results of a simulation where a

wake with Gµ = 10−7 is added, and the top two curves correspond to adding a wake with

Gµ = 8× 10−7. The two members of the pair correspond to different redshifts of inserting

the wake. The difference in the predictions by changing the wake insertion time is not

statistically significant. This figure shows the signal to noise ratios of the reconstructed 1-d

projection graphs after wavelet transformation and filtering, for the high sampling scale.

For Gµ = 10−7 the wake effect can be clearly seen up to a redshift of z = 10, and for

Gµ = 8× 10−7 up to a redshift of z = 5.
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Figure 6.8 Reconstruction of the 1-d density contrast from the filtered
wavelet transforms. The vertical axis is the density contrast, the horizon-
tal axis is the distance of the projection plane from the wake plane. The top
panel is the result of a simulation without a wake, the middle panel has a wake
with Gµ = 8× 10−7, and the bottom panel has a wake with Gµ = 10−7. The
data is for a redshift z = 10. Note that the wake signal is greatly enhanced
compared to the original 1-d projection graphs of Fig. 8.
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Figure 6.9 Continuous wavelet transforms after filtering. The axes are like
in figure 7. The top panel is without a wake, the middle panel has a wake
with Gµ = 8× 10−7, and the bottom panel is for a wake with Gµ = 10−7.
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6.4.2 Spherical Statistic

In the previous analysis, the statistical analysis was based on an algorithm which pre-

supposed knowing the planar orientation of the wake. For applications to data, we need

an analysis tool which does not use this information. In this section, we develop such a

statistic, which is an adaptation of a 3D ridgelet analysis ([104]).

The idea is to take the filtered one-dimensional projection, similar to Figure 8, for

different directions on the sky and compute a relevant quantity. For choosing the angles, a

Healpix [105] scheme was used 7 with the help of S2LET [106] , a free package available at

www.s2let.org. The statistic is constructed in the following way: for any direction of the

sphere, we consider an associated projection axis passing through the origin of the box. We

then consider slices of the simulation box perpendicular to that axis at each point x of it

with thickness given by the grid size of the simulation, and we compute the mass density

δ(x) of dark matter particles in that slice as function of x. The range of x is half the

simulation box, so we avoid slices with a small area (compared with the face of the cubic

simulation box). A one-dimensional filter wavelet analysis similar to the one described in

the previous section is then performed in the mass density δ(x), giving a filtered version

for it, called fδ.

We then compute the maximum value S of fδ(x) for each direction on the simulation.

S is the map on the surface of the sphere which we now consider, and Ŝ is its maximum

value. For a simulation including a cosmic string wake with Gµ = 1 × 10−7 the resulting

map at redshift z = 10 is shown in the top left panel of Figure 11, whereas the analysis

without the wake is shown in Figure 12. The value of S is indicated in terms of color (see

the sidebar for the values).

The wake signal appears at the center of the box, and its associated S value is about 40%

higher than the maximum of the S value for the map without a wake. This can be better

visualized in figures 13 and 14, where the center in zoomed-in 40 times. For each map, a

peak Ŝ over standard deviation σ of S was computed, and it was found that Ŝ/σ = 8.68

for a simulation without wake and Ŝ/σ = 14.32 for the simulation with a 1× 10−7 wake.

A wake perpendicular to a particular direction will yield a high signal since the mass in

the slice which overlaps with the wake will get a large contribution localized at a particular

value of x.

7we choose Nside = 512,
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The Healpix scheme does not contain the angles (θ, φ) = (0, 0) where we know the wake

is located, so we never probe the orientation exactly were the wake is. The wake signal has

to be reached by increasing the resolution of the analyzed angles. This supports the idea

that the information regarding the orientation of the angles should not be included in the

analysis.

Figure 6.10 Signal to noise analysis for the 1-d projections after wavelet
transformation, filtering and reconstruction, and for the finer of samplings in
wavelet width. The horizontal axis shows the redshift, the vertical axis is the
signal to noise ratio. The two pair of curves in the bottom contains a wake
with Gµ = 10−7, and the top two curves are for a wake with Gµ = 8× 10−7.
The two members of a pair of curves correspond to different redshifts of wake
insertion (as is obvious from the starting points of the curves). The points
that are not shown correspond to values for the signal to noise equal to zero.

At the present level, our analysis shows that cosmic string wakes with a tension of

1 × Gµ = 10−7 can be extracted at redshift z = 10, as was found in our previous study

where knowledge of the orientation of the wake was assumed. In work in progress, we are

investigating whether string wakes are in fact visible at lower redshifts using this more

sophisticated statistic. One could first imagine that an analysis which uses the knowledge

of the wake orientation will yield better results than one which does not, but this may not

be the case here since the analysis of this section uses more properties which differentiate
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Figure 6.11 Reconstructed map for a simulation with wake tension Gµ =
1× 10−7 at redshift z = 10.

Figure 6.12 The same map for a simulation without a wake, at redshift
z = 10.
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Figure 6.13 40 × zoom of the reconstructed map for a simulation with wake
tension Gµ = 1× 10−7 at redshift z = 10.

Figure 6.14 40 × zoom of the the same map for a simulation without a
wake, at redshift z = 10.
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ΛCDM fluctuations and wake signals than the previous analysis did.

6.5 Conclusions and Discussion

We have presented the results from N-body simulations of the effects of a planar cosmic

string wake on the distribution of dark matter. We have demonstrated that cosmic string

signals can be extracted from the background of ΛCDM fluctuations by considering the

three-dimensional distribution of dark matter. Given the current resolution of the simula-

tions, a threshold of

Gµ = 10−7 (6.5.16)

can be reached if the dark matter distribution is considered at redshift z = 10. This value

of the string tension is competitive with the current limit, which stems from the angular

power spectrum of CMB anisotropies. With improved resolution, improved limits may be

within reach. This means that the string signal might be identifiable for Gµ = 10−7 even

at redshifts lower than z = 10, and for smaller values of Gµ at redshift z = 10.

Key to this work is that we are looking for the specific non-Gaussian signals which cosmic

string wakes induce in position space. Position space algorithms are much more powerful

at identifying cosmic string signals than by focusing simply on the power spectrum. It

is possible that with improved statistical tools, better limits on the string tension can be

reached. Work on this question is in progress.

Searching for signals of individual cosmic string wakes in position space has a further

advantage compared to studying only the power spectrum: the position space algorithms

are to first approximation insensitive to the number N of strings passing through each

Hubble volume. This number is known only to within an order of magnitude, although

we know from analytical arguments (see e.g., [15]) that N should be of the order one. In

particular, this means that the constraint (6.1.2) on Gµ from the angular power spectrum

of CMB anisotropies is sensitive to the value of N which is assumed, whereas our analysis

is not.

In this work, we have shown that by analyzing the distribution of dark matter, an

interesting threshold value of the cosmic string tension can be reached. In future work, we

plan to explore how changing the size of the simulation box, the spatial resolution of the

simulations, and the sampling width can lead to improved bounds.
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So far we have considered simulations with a single cosmic string wake. An extension of

our work will involve studying the effects of a full scaling distribution of strings. This work

will be conceptually straightforward but computationally intensive. Another extension for

the current work would be to consider curvelet-like signal extraction, in which segments

of the wake would be detected, possibly giving more information about the wake presence

when it is bent due to the ΛCDM fluctuations at low redshifts, and it is not a plane

anymore.

In order to compare our simulation results to observational surveys, we need to extend

our work in several ways. To compare our work with optical and infrared galaxy survey

results, we need to identify halos from our distribution of dark matter and run the statistical

tools on the resulting distribution of halos. The N-body code we are using already contains

a halo-finding routine. Hence, this extension of our work will also be straightforward.

As we have seen, the string signals are much easier to identify at higher redshifts. Hence,

21cm surveys might lead to tighter constraints on the cosmic string tension. At redshifts

lower than the redshift of reionization, most of the neutral hydrogen which gives 21cm

signals is in the galaxies. Hence, the distribution of 21cm radiation could be modeled by

considering the distribution of galaxy halos obtained from our simulations and by inserting

into each halo the distribution of neutral hydrogen obtained recently in the study of [107].

We plan to tackle this question in the near future.

The effect of cosmic strings on the 21cm signal from the Epoch of Reionization is a more

difficult question. Here, the ionizing radiation from cosmic string loops (e.g. via cosmic

string loop cusp decay [108]) will most likely play a dominant role. Finally, at redshifts

greater than that of reionization, string wakes lead to a beautiful signal in 21cm maps: thin

wedges in redshift direction extended in angular directions to the comoving horizon at teq

where there is pronounced absorption of 21cm radiation due to the neutral hydrogen in the

wake [37].

6.6 Peak Heights

In this appendix, we add a figure showing the distribution of peak heights used in the

statistic in Section IV.A. The horizontal axis gives the redshift, the vertical axis is the peak

height. Shown are the results for ten simulations without a wake (marked “o”) and for

three simulations each with a wake with tension Gµ = 10−7 inserted at redshift z = 31
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(marked “*”), with the same tension and insertion redshift z = 15 (marked “+”), with

tension Gµ = 8× 10−7 and insertion redshifts z = 31 (marked with inverted triangles) and

z = 15 (marked “x”).

Figure 6.15 The peak values for simulations without a wake are marked
by circles, for those with a wake with tension Gµ = 10−7 inserted at redshift
z = 31 and z = 15 by “*” and “+”, respectively, and for those with tension
Gµ = 8 × 10−7 inserted at redshifts z = 31 and z = 15 by inverted triangles
and “x”, respectively.

From this figure it is clear that wakes with Gµ = 10−7 are identifiable until redshift of

z = 10 while those with Gµ = 8× 10−7 can be identified down to below z = 7.
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Chapter 7

Cosmic String Wake Detection using

3D Ridgelet Transformations

7.1 Introduction

Cosmic strings [7] are topological defects [15] which arise in a range of relativistic quantum

field theory models (for reviews see [15] and [11, 16]) beyond the Standard Model of particle

physics. Good analogs of cosmic strings are vortex lines in superfluids and superconductors.

Like their condensed matter counterparts, cosmic strings form lines of trapped energy

density. This energy density can curve space-time and have important effects in cosmology

[21, 109].

Cosmic strings are relativistic objects that can be described by a unique number µ.

This quantity is the mass per unit length of the string, which is also equal to its tension.

Alternatively, the string can be described by the dimensionless number Gµ, where G is

Newton’s gravitational constant. The value of µ is determined by the energy scale η at

which the cosmic string is formed via the relationship [15]

µ ∼ η2. (7.1.1)

The cosmological signatures of cosmic strings are thus more substantial for larger values

of µ which implies larger values of the energy scale η. Hence, searching for cosmic strings

is a way to probe for new physics beyond the Standard Model of particle physics “from

top-down”, in contrast to accelerator experiments which are more sensitive to new physics

2019/09/18
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at lower energy scales.

Cosmic strings lead to specific non-Gaussian signals in cosmic microwave background

(CMB) temperature anisotropy maps, namely lines across which the temperature jumps by

a value proportional to Gµ [33, 110]. Edge detection algorithms [41] as well as wavelet and

curvelet statistics [26, 52, 53] have been shown to be promising ways to search for these

signals, and machine learning techniques [46, 47] have also recently been shown to have

great promise. The current robust limit 1 on the cosmic string tension is [25, 97]

Gµ < 1.5 x 10−7, (7.1.2)

which rules out some Grand Unified particle physics models with very high scale symmetry

breaking. This limit comes from the observational upper bound on the contribution of

cosmic strings to the angular power spectrum of cosmic microwave background (CMB)

anisotropies obtained by combining results of the WMAP satellite [113] with those of the

South Pole Telescope [114]. Both improving the constraint on the cosmic string tension or

detecting the signature of cosmic strings would help to constrain particle physics at high

energy scales.

Cosmic strings come in two different forms: loops and infinite segments [15]. Cosmic

string loops are formed when the infinite segments self-intersect. These loops then oscillate

because of their tension and slowly decay by emitting gravitational waves. Numerical

simulations lead to the conclusion that the number N of long string segments that pass

through any Hubble volume is of order N ∼ 10 [9, 58–64]. This is the so-called “cosmic

string scaling solution”. String segments which are present between the time teq of equal

matter and radiation and the present time t0 and which our past light cone intersects

produce wakes, overdense regions of dark matter and (after the time of recombination)

baryons which lead to signatures in the large-scale structure of the Universe [22]. Since

large-scale structure observations yield three-dimensional maps (position in the sky and

redshift), they potentially contain more information than the two-dimensional CMB maps.

In this work, we will be interested in the signatures of the long cosmic string segments.

Constraints on the string tension derived this way will be more robust than those which

make use of assumptions about the distribution of string loops.

1There are stronger limits which come from pulsar timing surveys [111, 112], but these depend on
assumptions about the distribution of string loops which are not universally accepted.
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The signatures of cosmic string wakes are highly non-Gaussian and have specific patterns

in position space. Hence, position space-based algorithms will be more effective in searching

for the signals of cosmic strings than traditionally used Fourier space techniques. Another

advantage of working with position space analyses is that the resulting bounds on the

string tension are less sensitive to the unknown number N than analyses operating in

Fourier space. This is because we are looking for signals of individual strings (which

are independent of N modulo superposition effects) rather than for signals in correlation

functions (which depend strongly on N).

String wakes are nonlinear from the outset, while the fluctuations in the Standard

ΛCDM model begin as Gaussian perturbations in the linear regime. On the other hand, at

late times the non-linearities from the ΛCDM fluctuations become dominant [32]. Hence,

searching for strings in high redshift data is, in principle, an easier avenue. For example,

string wakes lead to narrow wedges in 21 cm redshift maps (at redshifts larger than that

of reionization) with extra absorption [37]. On the other hand, data is harder to obtain

at high redshifts, and the measurement errors are larger. Hence, a key goal is to probe

down to which redshift any given statistic is able to extract wake signals for a fixed Gµ.

In this work, we will study the distribution of dark matter. This could, in principle, be

measured through weak lensing surveys. If baryons follow the dark matter distribution,

then we could also probe the model predictions through large-scale galaxy redshift surveys

and lower redshift 21cm studies.

At low redshifts, the density field is highly nonlinear on scales relevant to current cos-

mological observations of the distribution of galaxies. Hence, numerical simulations are

required in order to study the predicted signals. In a recent work, a state-of-the-art N-

body code [101] was extended to include the effects of a cosmic string wake [49]. These

effects were added to the initial fluctuations from a ΛCDM cosmology. Results of runs

with and without string wakes were compared, making use of a variety of specially de-

signed statistics, and it was found that string wakes are identifiable for a string tension of

Gµ = 10−7 down to a redshift of z = 7. Wakes are nonlinear density perturbations present

at arbitrarily early times with a distinctive geometric pattern in position space. In partic-

ular, the planar geometry of the wake suggests that such objects could be detected using

3D ridgelet statistics. In order to test this hypothesis, we analyzed part of the ridgelet

spectrum of multiple simulated cosmic strings wakes in cosmological N-body simulations.

The conclusion of our analysis is the following. The full 3D ridgelet transform is hard
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to compute as resolving a weak wake signal requires a very precise analysis. Since the

ridgelet transform has four parameters, the time required to compute the transform scales

as O(n4) where n is the number of values probed in our analysis for a given parameter.

This complicates the analysis on standard computers. However, a partial ridgelet transform

analysis shows that a cosmic string of tension Gµ = 10−7 can be detected at a high

significance (5σ level) at a redshift of z = 10. This bound is competitive to what was

obtained in [49].

The outline of this paper is as follows: In Sections 2 and 3, we present a brief review

of cosmic string wakes and how they can be recreated in cosmological N-body simulations.

Then, we discuss the 3D ridgelet transform and its implementation in cosmological N-body

simulation in Section 4. Finally, we show how cosmic string wakes appear in ridgelet space

in Section 5 and present our results for the detection of weak wake signals in Section 6.

We use units of which the speed of light c is set to c = 1. We assume a homogeneous and

isotropic cosmological background with vanishing spatial curvature and scale factor a(t),

where t is physical time. We set the scale factor to be a(t0) = 1 at the present time t0.

Thus, comoving lengths correspond to physical lengths today. The Hubble expansion rate

is taken to be h× 100km s−1Mpc−1, where h is a constant.

7.2 Cosmic String Wake Formation

Space perpendicular to a long straight cosmic string segment is conical with a “deficit

angle” [14] given by

α = 8πGµ . (7.2.3)

For strings forming in a phase transition, this conical structure extends to a Hubble length

from the string [98]. Hence, when a long string segment moves through a uniform matter

distribution of the early universe, the matter behind the string acquires a velocity pertur-

bation

δv = 4πvγ(v)Gµ (7.2.4)

towards the plane spanned by the tangent vector to the moving string and the direction of

motion, where v is the velocity of the string and γ(v) = 1/
√

1− v2. This, in turn, leads

to a wedge-shaped overdensity (density being twice the background density) behind the

string, a “wake” [27, 28, 65, 66]. A cosmic string at the time ti will lead to a wake with
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comoving size

c1ti x vγ(v)ti x δvti , (7.2.5)

where the factors are, from left to right, the length, the depth and the mean width of the

wake. Here, c1 is a constant of order 1. The geometry of the wake is shown in Figure 7.1.

Figure 7.1 Geometry of a cosmic string wake [27, 28, 65, 66]. In the figure,
vs is the string velocity v, γs is the gamma factor γ(v) and c1 is a constant of
order unity that depends on the length of the string.

Once formed, the cosmic string wake grows by gravitational accretion, which is studied

using the Zel’dovich approximation [29]. The idea behind this approximation is to consider

a thin shell of matter which is located initially at a physical height

H(ti) = a(ti)q (7.2.6)

above the center of the wake, where ti is the time when the wake is laid down. Here, a(ti) is

the cosmological scale factor evaluated at time ti and q is the initial comoving height. As a

consequence of the gravitational pull of the matter overdensity inside the wake, a comoving

displacement ψ(t) gradually builds up (where ψ(ti) = 0). The physical height at time t> ti

then can be written as

H(q, t) = a(t)(q − β), (7.2.7)

where β is a comoving displacement. If matter accretes via Newtonian gravity, the height

of the wake at a later time is determined by

Ḧ = − ∂Φ

∂H
, (7.2.8)
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where Φ is the Newtonian gravitational potential which is determined by the Poisson equa-

tion in terms of the mass overdensity. We then calculate the value q(t) (which we call

qnl(t, ti)) for which the shell stops growing in size at time t. This is given by

Ḣ(q(t), t) = 0 . (7.2.9)

After this turnaround point, the shell virializes at a physical height which is half the value

at its maximum. This virialized region forms the wake. For a cosmic string forming a

perfectly straight line, the wake will take the form of a region of planar overdensity. This

region of planar overdensity as a comoving height that grows linearly in the scale factor.

As a result of a straight-forward computation, we obtain

qnl(t, ti) =
a(t)

a(ti)

24π

5
vγ(v)Gµ(z(ti) + 1)−1/2ti, (7.2.10)

which gives half the height the shell would have if it was simply expanding with the Hubble

flow. Note that z(t) is the cosmological redshift. Finally, the comoving planar dimension

of the wake formed at time ti is given by the comoving horizon at ti, namely

d = z(ti)
−1/2t0 . (7.2.11)

A string segment only lives for one Hubble expansion time (before a string intersection

occurs). However, since cosmic string wakes are made of accreted matter, they persist after

the string segment has decayed. String wakes whose world sheet intersects the past light

cone lead to an observable signal. The following section will explain how to recreate this

signal in cosmological N-body simulations.

7.3 The Cosmological N-body simulations

The cosmological N-body simulations consist of a three-dimensional cubic box with a set

of N points (representing equal mass particles) labeled by an index i represented by their

coordinates ~xi and velocities ~vi. After setting up the initial distribution of points at redshift

zI (which is in general smaller than the redshift z(ti) when the wake is assumed to have

been created), they are evolved using the Newtonian gravitational force equations to a later

time tw when a cosmic string wake is inserted. Once the wake is inserted, we once more
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let the points in the box evolve according to Newtonian gravity to our current time while

keeping track of the position and the velocity of the particles inside the box throughout the

process. The simulations are described in more detail in [49]. In this section, we present

information about the data boxes relevant to the analyses presented in Sections 5 and 6.

The simulations are produced with a public high-performance cosmological N-body

code named CUBEP3M [101]. A data box is segmented in multiple cells and the number

of particles per dimension introduced inside the box is chosen to be half the number of

cells per dimension. To place the particles in the box, the initial conditions generator of

the program reads a transfer function constructed with the CAMB online toolkit2 and lays

out a distribution of points corresponding to ΛCDM fluctuations [4] at the initial redshift

zI with the following cosmological parameters: ΩΛ = 0.7095, Ωb = 0.0445, ΩCDM = 0.246,

nt = 1, ns = 0.96, σ8 = 0.8628, h = 0.70 and TCMB(t0) = 2.7255. Here, ΩΛ is the energy

fraction of dark energy, Ωb is the energy fraction of baryonic matter, ΩCDM is the energy

fraction of cold dark matter, nt is the tensor spectral index, ns is the scalar spectral index,

σ8 is the amplitude of the linear power spectrum on the scale of 8 h−1Mpc, h is the Hubble

parameter and TCMB(t0) is the temperature of the cosmic microwave background at our

current time t0. Each particle inside the box has a distinct ID number associated to it

which allows us to track its position inside the box. The initial redshift zI is chosen at a

point in time when the density fluctuations are in the linear regime.

As mentioned before, the particles move according to the gravitational interaction be-

tween them throughout the simulation. (See [101] for more information on how the gravi-

tational attraction on each particle is computed.) The wake is introduced at a later time tw

after tI . To produce a particle distribution corresponding to a wake overdensity, the par-

ticles are moved and given a velocity kick towards the central plane y = 0 h−1Mpc in the

simulation box. The goal of this process is to simulate the velocity perturbation δv given by

equation 7.2.4. We consider wakes laid down at the time of equal matter and radiation teq

because they have had more time to grow in thickness than those created later, and since

they are the largest among those present at teq. Since the comoving planar distance of such

a wake, given by equation 7.2.11, is much bigger than the size of the simulation box, it is

justified to insert the velocity perturbation as a planar perturbation. The exact magnitude

of the velocities and displacements given to the particles are calculated according to the

Zel’dovich approximation mentioned in the previous section, evolving the fluctuation from

2CAMB:https://lambda.gsfc.nasa.gov/toolbox/tb camb form.cfm
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ti = teq to the time tw of wake insertion. As a result of this computation, the comoving

displacement ψ(t) of the particles towards the plane at times t> ti is given by

ψ(t) =
3

5
4πGµvγ(v)tiz(ti)

z(ti)

z(t)
. (7.3.12)

The last factor represents the linear theory growth of the fluctuation while the other factor

of z(ti) represent the conversion from physical to comoving velocity. The comoving velocity

perturbation is

ψ̇(t) =
2

5
4πGµvγ(v)tiz(ti)

z(ti)

z(t)

1

t
. (7.3.13)

In the context of the simulations, the displacement and the velocity perturbation given

to the particles towards the central plane y = 0 h−1Mpc are computed respectively from

equation 7.3.12 and 7.3.13 at the time t = tw when the wake is inserted.

After the wake insertion, the modified data cube is evolved using CUBEP3M until

redshift z = 0. This way, the behavior of the wake overdensity can be studied at lower

redshift until it is completely disrupted by the other density fluctuations [32]. The next

section will introduce the statistics used in order to study the wake overdensity.

7.4 The 3D Ridgelet Transform

Like the Fourier transform, which is an orthogonal projection of a function onto the space

of phasors eikx, the 3D ridgelet transform [115] is an orthogonal projection of a function on

the space of ridgelet functions Ψ(~x), which are wavelet functions ψ constant along a plane

with normal vector

~n(θ1, θ2) = (cos θ1 sin θ2, sin θ1 sin θ2, cos θ2) . (7.4.14)

Here, the angles θ1 ∈ [0, 2π[ and θ2 ∈ [0, π[ determine the orientation of the plane in

spherical coordinates. For each plane with normal vector ~n(θ1, θ2), we can define the

trivariate ridgelet function evaluated at ~x by

Ψa,b,θ1,θ2(~x) = a−1/2ψ

(
~x · ~n(θ1, θ2)− b

a

)
, (7.4.15)
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where a, which satisfies a> 0, is a scale parameter and b ∈ R determines the position of the

ridgelet function. Given an integrable trivariate function f(~x), its 3D ridgelet coefficients

are defined by:

Rf (a, b, θ1, θ2) =

∫
R3

f(~x)Ψa,b,θ1,θ2(~x)d~x, (7.4.16)

Computing the ridgelet transform of a function means computing the ridgelet coefficients

Rf for all possible values of a, b, θ1 and θ2, which constitutes the ridgelet space.

Given the planar geometry of the ridgelet function, the 3D ridgelet analysis can be

constructed as a wavelet analysis in the Radon domain. In 3D, the Radon transform R(f)

of f is the collection of hyperplane integrals indexed by the orientation (θ1, θ2) in spherical

coordinates and a position coefficient t ∈ R. The value of R(f) is given by

R(f)(θ1, θ2, t) =

∫
R3

f(~x)δ(~x · ~n(θ1, θ2)− t)d~x, (7.4.17)

where δ is the Dirac delta function. Then, the 3D ridgelet transform is exactly the ap-

plication of a 1D wavelet transform along the slices of the Radon transform where the

orientation (θ1, θ2) is kept constant but t is varying:

Rf (a, b, θ1, θ2) =

∫
ψa,b(t)R(f)(θ1, θ2, t)dt, (7.4.18)

where ψa,b = ψ((t − b)/a)/
√
a is a 1-dimensional wavelet. Therefore, a good strategy for

calculating the continuous ridgelet transform in 3D is to compute the Radon transform R(f)

first and then apply a 1-dimensional wavelet to the slices defined by fixing the orientation

(θ1, θ2) in R(f).

In order to define a way to perform a ridgelet transformation on the 3D data box which

constitutes the cosmological N-body simulation, each point i at a position ~xi inside the

box can be considered locally as a Dirac delta function in the energy density ρ. Using this

representation, the local density ρ(~x) inside the box is given by

ρ(~x) =
N∑
i=1

δ(~x− ~xi) . (7.4.19)

Here, the local density is normalized in a way that the total mass M of the particles in the

box is a dimentionles quantity equal to the number N of particles in the box. This way,
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each particle has a mass m = 1. To perform the Radon tranform at a specific orientation

(θ1, θ2) inside the box, it suffices to redefine the position of each point inside the box as

their orthogonal projection ti(θ1, θ2) = ~xi · ~n(θ1, θ2) on a line spanned by ~n(θ1, θ2) passing

through the center of the box. We obtain

R(ρ)(θ1, θ2) =
N∑
i=1

δ(t− ti(θ1, θ2)) . (7.4.20)

Finally, each ridgelet coefficient can be computed using equation 7.4.18. The expression

for the coefficients trivially reduces to

Rρ(a, b, θ1, θ2) =
N∑
i=1

ψa,b(ti(θ1, θ2)) . (7.4.21)

A good choice of wavelet function ψ in the expression of ψa,b is one that satisfies the

following difference between two scaling functions φ:

1

8
ψ
(x

2

)
= φ(x)− 1

8
φ
(x

2

)
. (7.4.22)

Here, the chosen scaling function φ is a B-spline of order 3:

φ(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3

− 4|x+ 1|3 + |x+ 2|3) .
(7.4.23)

The B-spline, defined by the equation above, is shown in Figure 7.2.

Each ridglet coefficient has 4 independent parameters a> 0, b ∈ R, θ1 ∈ [0, 2π[ and

θ2 ∈ [0, π[. If we discretize ridgelet space into n intervals along each axis, then the time

required to perform the ridgelet tranformation grows as O(n4). This also means that the

time required to perform the ridgelet transformation grows as O(N4) for a fixed value of

n and a varying number of particles N. Therefore, the computation is very expensive for a

high number of particles.

In order to analyze the cosmic string wake signature in ridgelet space, we will for the

sake of simplicity restrict the numbers of unknown arguments in the ridgelet transformation

This will yield a bound on the string wake detection efficiency, as will be discussed in the
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Figure 7.2 Plot of the wavelet function ψ(x) in dimensionless units.

following section.

7.5 Plane Wakes signature in partial ridgelet transformations

The main idea behind using the 3D transform in order to detect cosmic string wakes is to

find a subspace of the ridgelet space where the wake appears as a maximum in the ridgelet

coefficients Rρ. A good way to do this is to perform the ridgelet transformation for a fixed

value of the parameters a and b while varying the orientation (θ1, θ2).

The values of a and b are chosen in a way that maximizes the ridgelet coefficients. Since

the wake and the ridgelet function Ψ have planar geometry, we expect that the ridgelet

coefficients Rρ, which are an inner product of the density ρ with Ψ, will be optimized for

the parameters a, b, θ1 and θ2 that match the characteristic width and position of the wake.

That is, we expect that a value of a close to the width of the wake, a value of b close to

the position of the wake and an orientation (θ1, θ2) normal to the plane made by the wake

will yield a maximum ridgelet coefficient. In our simulation, where the center of the box

is at the origin and the wake is located on the z-x plane, this means that b = 0 h−1Mpc,

θ1 = π/2, θ2 = π/2 and a value of a corresponding to the width of the wake should optimize

the value of Rρ.

We tested this hypothesis using a data box which describes a 32h−1Mpc× 32h−1Mpc×
32h−1Mpc cubic volume. The number of cells per dimension for the simulation and the

number of particles per dimension in the box was respectively 512 and 256. The simulations

started at redshift zI = 63 and the wake produced by a cosmic string of string tension

Gµ = 10−6 was introduced at redshift z = 7. The 2D density contrast of the box on the
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y-z plane at this redshift is shown in Figure 7.3. As we can see, the line overdensity visible

Figure 7.3 Density contrast of a 2D projection of the box on the y-z plane
[49]. The 32h−1Mpc × 32h−1Mpc × 32h−1Mpc data box contains a cosmic
string wake caused by a cosmic string of tension Gµ = 10−6 at the position y
= 0 h−1Mpc and the redshift z = 7. The color scheme, shown on the right,
depicts the range of possible values for the fluctuation ratio δS/S. Here, S
is the mean surface density and δS is the difference between the local surface
density and the mean surface density.

at the position y = 0 h−1Mpc is in the non-linear regime which indicates the presence of

the cosmic string wake.

The analysis was performed at the redshift of insertion of the wake (z = 7). Since the

wake can move to another position at later redshift, this ensures that the wake is at the

center of the box a the moment of the analysis. This position can be seen in the density

projection of the box on the y-axis (see Figure 7.4), where the peak at the origin exposes

the overdensity created by the wake. To find the value of a that maximises the ridgelet

coefficients, we imposed the parameters b = 0 h−1Mpc and θ1 = θ2 = π/2 and studied the

behavior of Rρ as the value of a was varied. A good way to do this is to plot the ratio of

Rρ at a specific scale a with respect to the average of Rρ over all orientations. Assuming

the ridgelet coefficients are described by Rρ = Rρ(a, b, θ1, θ2), this ratio can be defined as

R(a) =
Rρ(a, 0, π/2, π/2)

〈Rρ(a, 0, θ1, θ2)〉
, (7.5.24)
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Figure 7.4 For a wake caused by a cosmic string of string tension Gµ =
10−6 at redshift z = 7, the Radon transform R(ρ) = R(ρ)(θ1, θ2, t) where
θ1 = θ2 = π/2, is ploted for 10000 values of t between −15h−1Mpc and
15h−1Mpc. For this specific orientation and position, t corresponds to the y
axis which gives us a density projection on the y axis. The width of the wake
is (1.1382 ± 0.0003) × 10−1h−1Mpc, where the uncertainty is defined as half
the distance between two evaluated values of t.

where 〈Rρ(a, 0, θ1, θ2)〉 is the mean value of Rρ with respect to the orientation (θ1, θ2) and

a fixed value of a. For the present data box, the plot of this ratio is shown in Figure 7.5.

As we can see, R(a) as a maximum at amax = (1.168± 0.006) × 10−1h−1Mpc. This value

of amax is close to the physical width of the wake. Therefore, it makes sense to fix a to the

value of amax for the partial ridgelet transformation.

At this point, there should be no doubt that b = 0 h−1Mpc is also a good parameter

to fix. However, to ensure that b = 0 h−1Mpc yields a maximum coefficient in the ridgelet

transformation, we plotted Rρ for a = amax and θ1 = θ2 = π/2 and varied b around

the value of zero. As shown in Figure 7.6, the ridgelet coefficients have a maximum at

bmax = (0 ± 8) × 10−1h−1Mpc. Since the uncertainty of bmax includes the value of zero,

b = 0 h−1Mpc is a good fixed parameter. Finally, choosing a = amax and b = 0 h−1Mpc as

fixed parameters, we can compute the partial ridgelet transformation. To avoid any edge

effects that could be caused by the geometry of the box, we only consider the points inside

the largest possible sphere centered on the wake inside the box. Then, we compute Rρ

for n2 orientations (θ1, θ2) ∈ [0, π[× [0, π[. This process is shown in Figure 7.7. Here, the

orientations are constrained to a hemisphere in order to avoid any unwanted periodicities

in the ridgelet coefficients. The resulting subspace of the ridgelet space can be visualized
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Figure 7.5 For a wake caused by a cosmic string of tension Gµ = 10−6

at redshift z = 7, the ratio R(a) is depicted for 1000 values of a between
0 h−1Mpc and 1.5 h−1Mpc. The ratio has a maximum at amax = (1.168 ±
0.006) × 10−1h−1Mpc, where the uncertainty is defined as half the distance
between two evaluated values of a. As a becomes larger, R(a) eventually
converges to 1 as the wake signal becomes indistinguishable from the Gaussian
fluctuations.

as a surface plot. As shown in Figure 7.8, the ridgelet coefficients have a clear maximum

at θ1 = θ2 = π/2 which confirms our hypothesis that the parameters a = amax, b = 0

h−1Mpc and θ1 = θ2 = π/2 maximise the ridgelet coefficients. Coincidentally, we can use

this signal as a way to quantify at which level a cosmic string wake can be detected using

ridgelet transformations. In order to do this, we compute the how much the maximum

value of the ridgelet coefficients varies from its mean value, then compare this observable

to the same maximum value in simulations where no wake is inserted. The steps are the

following. Define the maximum fluctuation by

δRρmax = Rρmax − 〈Rρ〉, (7.5.25)

whereRρmax is the absolute maximum and 〈Rρ〉 is the mean value of the ridgelet coefficients

over all orientations in the subspace that we have defined. Using this definition, we compute

the maximum fluctuation for a simulation with a wake and multiple simulations without a

wake for comparison. Then, a good measure of detection for the cosmic string wake is the

confidence level C which we define as

C =
s− µ
σ

. (7.5.26)
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Figure 7.6 For a wake cased by a cosmic string of tension Gµ = 10−6 at
redshift z = 7, the ridgelet coefficents Rρ are plotted for 1000 values of b
between −0.5h−1Mpc and 0.5h−1Mpc while imposing that a = amax, θ1 =
θ2 = π/2. The ridgelet coefficients have a maximum at bmax = (0± 8) × 10−1

h−1Mpc. The uncertainty is defined as half the width at half maximum of the
peak.

Here, s is the maximum fluctuation for a simulation with a wake and µ and σ are respec-

tively the mean and the standard deviation of the maximum fluctuations without a wake.

This confidence level is the number of σ’s away from the mean of maximum fluctuations

without wakes.

7.6 Weak plane wakes detection in partial ridgelet

transformations

The method described in the previous section provides a way to detect wake signals which

would not be visible by eye in the three-dimensional density maps. As discussed at the

beginning of the paper, it is of interest to determine the lowest value of the string tension

which can be detected in data at a particular redshift or to ask down to which redshift the

string wake remains visible for a fixed value of the string tension. It is this second question

which we study here. We fix the string tension to be Gµ = 10−7, a value close to but

below the current limit. We find that given the limited resolution of the simulations of the

present study, string wakes remain identifiable down to a redshift of z = 10. We expect (as

in the work of [49]) that with an improved resolution the string wake will remain visible to
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Figure 7.7 Sketch of the partial wavelet transformation. The ridgelet trans-
form is computed inside a sphere the size of the box for different orientations
(θ1, θ2) ∈ [0, π[ x [0, π[. The ridgelet function is constant along the planes nor-
mal to the direction vector ~n(θ1, θ2) shown in black. Therefore, we expect the
ridgelet coefficients to be maximised when θ1 = θ2 = π/2; that is, when the
plane with normal ~n(θ1, θ2) coincides with the plane formed by the wake.

a lower redshift.

We studied two sets of 4 data boxes which describe a 64h−1Mpc × 64h−1Mpc ×
64h−1Mpc cubic volume. For both sets of simulations, the number of cells per dimensions

for the simulations and the number of particles per dimension in the box was, respectively,

512 and 256, and the simulations started at redshift zI = 63. In the first set of simulations,

the perturbations from a wake produced by a cosmic string of string tension Gµ = 10−7

was introduced at redshift z = 31. In the second set of simulations, no wake was introduced

in the data box. The purpose of having a second set of simulations without wake was to

expose and quantify the signal difference between a simulation with a wake and without a

wake.

At redshift z = 10, the typical 2D density contrast of a data box where a cosmic string

wake was introduced shows no wake signal which is observable by eye. This can be seen in

Figure 7.9. Even though the wake signal cannot be observed in the 2D density projections,

it can be extracted using ridgelet statistics. In contrast to the example in the previous

section where we study the wake at the time of insertion, we now study it at a later time.
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Figure 7.8 Surface plot of Rρ for a = amax, b = 0 h−1Mpc and 502 orienta-
tions (θ1, θ2) ∈ [0, π[× [0, π[. The plot has a clear maximum at θ1 = θ2 = π/2
for a wake cased by a cosmic string of string tension Gµ = 10−6 at redshift
z = 7.

The wake slightly moves in position along the y-axis between the time when it is inserted

(z = 31) and the time at which it is studied (z = 10). In order to track the position of the

wake between different redshifts, we index the ID of each particle in the overdensity made

by the wake at z = 31. Then, we let the system evolve to lower redshift while highlighting

the interval in which the points in the initial overdensity are situated. This process is

shown in Figure 7.10. For the set of 4 simulations where the effects of a cosmic string are

introduced, the mean value of the wake position at z = 10 is (0.1 ± 0.8)h−1Mpc which is

consistent with the fact that the wake is inserted in the middle of the box at y = 0h−1Mpc.

Once the wake is localized, the rest of the analysis is done on the points inside a sphere

of radius of approximately 30h−1Mpc centered on the wake. To make sure that the wake

was well centered in the sphere, we plotted the Radon transformation of this sphere for

the fixed orientation θ1 = θ2 = π/2 in order to obtain the density projection of the sphere

on the y-axis. Then, the density projection on the y-axis was fitted to a second-degree

polynomial. As shown in Figure 7.11, the studentized residuals of the fit exposes a peak at

the center which confirms the presence of the wake at the center of the sphere for one of the

simulations that were studied. For the set of 4 simulations where a wake was introduced,

the average measured width of the region of the peak was (4.8 ± 0.7) × 10−2h−1Mpc. In

comparison, the same density projection for the box without the wake has no region of

overdensity which confirms the presence of the wake in the data box and its location.
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Figure 7.9 Density contrast of a 2D projection of the box onto the y-z
plane at redshift z = 10 [49]. The 64h−1Mpc × 64h−1Mpc × 64h−1Mpc
data box contains a wake caused by a cosmic string of tension Gµ = 10−7 at
the position y = 0 h−1Mpc. The color scheme, shown on the right, shows the
range of possible values for the fluctuation ratio δρ/ρ (ρ being the density).
The wake is not visible by eye.

In order to find the scale amax corresponding to the wakes, we fixed the position pa-

rameter b at the center of the sphere (b = 0 h−1Mpc) for θ1 = θ2 = π/2 and plotted the

ratio R(a) for the set of data boxes with a wake and the set of boxes without the wake.

The mean value of the plots for the set of data boxes with a wake and the set of data boxes

without a wake is shown in Figure 7.12. The ratios for the data box with the wake show

a maximum at amax = (1.7 ± 0.1) × 10−2 h−1Mpc. Conversely, the ratios for the data

without the wake (in red) stay close to 1. Therefore, we conclude that amax = 1.7 × 10−2

h−1Mpc is a good fixed parameter for the scale parameter a. Also, Figure 7.12 gives us

information on the range of scale parameters a which allow the wake to be detected when

compared to a set of simulations without a wake. Indeed, if the lower bound on the mean

of R(a) for the data boxes with a wake is higher than the upper bound on the mean of

R(a) for the data boxes without a wake, we expect to be able to detect the wake for the

given value of a. In this case, we would be able to detect the wake for a value of a lower

than 0.90 h−1Mpc, which is where the bounds of the two curves meet in Figure 7.12.

To ensure that b = 0 h−1Mpc is a good parameter to impose for the Ridgelet trans-

formation, we plotted Rρ for a = amax and θ1 = θ2 = π/2 and different values of b. The
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Figure 7.10 For a wake caused by a cosmic string of string tension Gµ =
10−7 intruduced at redshift z = 31 at the center of the box in the x-z plane,
the Radon transform R(ρ) = R(ρ)(θ1, θ2, t) where θ1 = θ2 = π/2, is plotted
for 10000 values of t between -32 h−1Mpc and 32 h−1Mpc. For this specific
orientation and position, t corresponds to the y axis which gives us a density
projection onto the y-axis. The orange region shows how points in the original
wake spread in the density projection at lower redshifts.

mean value of Rρ for the set of data boxes with a wake and the set of data boxes without

a wake is shown in Figure 7.13. On average, the ridgelet coefficients have a maximum at

bmax = (−4 ± 4) × 10−3 h−1Mpc. This agrees with the fact that b = 0 h−1Mpc should

maximize the ridgelet coefficients. Therefore, b = 0 h−1Mpc is a good fixed parameter.

In the same way as Figure 7.12, Figure 7.13 gives us information on the range of position

parameters b which allow the wake to be detected when compared to a set of simulations

without a wake. This range of values, marked by dashed black lines in the figure, goes from

−0.01h−1Mpc to 0.01h−1Mpc.

Finally, choosing a = amax and b = 0 h−1Mpc as fixed parameters, we computed the

partial ridgelet transformation for each data box with a wake and each data box without

a wake. The result is shown in Figure 7.14 for one round of simulations with and without

wakes. For each simulation, the ridgelet coefficients of the data box with the wake have a

maximum at θ1 = θ2 = π/2. On average, the confidence level was C = (6.8 ± 0.9)σ for the
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Figure 7.11 For a wake caused by a cosmic string of string tension Gµ =
10−7 at redshift z = 10, the Radon transform of the data box with a wake (in
blue) and without a wake (in orange) is plotted for 10000 values of t between
−32h−1Mpc and 32h−1Mpc for the fixed orientation θ1 = θ2 = π/2. The
Radon transform is fitted to as a second degree polynomial shown in red. The
studentized residuals reveal the presence of a small region of overdensity at
t = 0h−1Mpc in the blue plot which is not found in the orange plot. We
conclude that this region of overdensity is caused by the wake.

simulations with a wake. This confirms that the weak signal observed was indeed created

by the cosmic string wake.

7.7 Conclusions and Discussion

We have applied 3D ridgelet transformations to output data from cosmological N-body

simulations in which the effects of a cosmic string wake have been added to the standard

ΛCDM fluctuations. The goal of our study was to determine down to which redshifts the

wake signals remain visible for a string tension of Gµ = 10−7, a tension slightly lower than

the current upper bound. Given the limited resolution of our simulations, we found that the

string signals can be extracted down to a redshift of z = 10. These results were reached by

comparing the output data of N-body simulations with and without the effects of the string

wake on the positions and velocities of the dark matter particles in the simulations. We

expect that with higher resolution simulations, the string signals remain visible to slightly

lower redshifts. Our results are based on statistical analyses of a two-dimensional subspace

of ridgelet coefficients, the other two having been fixed by independent considerations. An
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Figure 7.12 For a wake caused by a cosmic string of string tension Gµ =
10−7 at redshift z = 10, the mean value of the ratio R(a) is plotted for 3000
values of a between 0.01h−1Mpc and 0.20h−1Mpc. The dashed lines show
the standard deviation with respect to the means. The mean ratio for the
data boxes is plotted in blue while the mean ratios for the data boxes without
wakes are plotted in red.

analysis of the full four-dimensional space of ridgelet coefficients will likely yield stronger

limits.

Our simulations yield the distribution of the dark matter. This could be probed obser-

vationally using weak lensing surveys. In order to compare with galaxy or quasar redshift

surveys, our simulations would have to be extended with a halo-finding algorithm. On

the other hand, we have seen that the wake signals rapidly get swamped by the non-

Gaussianities due to the ΛCDM fluctuations. Hence, it may be more promising to study

cosmic string signals in 21cm surveys at redshifts approaching that of reionization.
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Figure 7.13 For a set of data boxes with a wake caused by a cosmic string
of string tension Gµ = 10−7 at redshift z = 10 (in blue) and a set of data
boxes without wake (in red), the mean ridgelet coefficients Rρ are plotted for
1000 values of b between −0.25h−1Mpc and 0.25h−1Mpc while imposing that
a = amax, θ1 = θ2 = π/2. The dashed lines show the standard deviation
with respect to the means and the vertical black lines show the interval in
which the peak caused by the wake can be detected when compared to a set
of simulations without wakes.
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Figure 7.14 Surface plot of Rρ for the data box with the wake caused by a
cosmic string of string tension Gµ = 10−7 at redshift z = 10 (on the left) and
without a wake at the same redshift (on the right). In both cases, the values
of the ridgelet coefficients are computed for a = amax, b = 0 h−1Mpc and 502

orientations (θ1, θ2) ∈ [0, π[× [0, π[. For this example of data box with a wake,
the coefficients have a clear maximum at θ1 = θ2 = π/2. This maximum is
not observable in the coefficients of the data box without a wake. Therefore,
we conclude that the maximum in the ridgelet coefficients on the left plot is
indeed caused by the wake.
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Chapter 8

Signature of a Cosmic String Wake at

z = 3

8.1 Introduction

Cosmic strings are linear topological defects in Quantum Field Theory which exist as so-

lutions in some models that go beyond the Standard Model of Particle Physics [15, 56].

A cosmic string consists of a one-dimensional region of trapped energy, having significant

gravitational effects for cosmology. If a model of nature admits cosmic string solutions,

strings will necessarily form during the early universe [94, 95]. For example, in some mod-

els, they form after the end of inflation, and in others, they form during a phase transition

in the early radiation phase of Standard Big Bang Cosmology. After the cosmic strings

form, they will persist as a scaling network. This means that the network of cosmic strings

will have the same properties at all times if we scale the length observables to the Hubble

radius [94, 95]. The network will consist of a few long strings moving near the speed of

light and also of loops of different sizes, and it will source sub-dominant fluctuations at all

times. The gravitational effects of a cosmic string are characterized by only one number

µ, its tension, which does not affect the scaling solution properties of the cosmic string

network. The tension can also be seen as the energy per unit of length of the cosmic string,

and it is related to the energy scale η at which the strings form by the following equation:

Gµ ' (η/mpl)
2 (8.1.1)
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where G is Newton’s constant and mpl is the Planck mass. The presence of cosmic strings

does not produce acoustic oscillation features on the Cosmic Microwave Background (CMB)

angular power spectrum. This fact contributes to the current upper bound 1 on the cosmic

string tension [25]:

Gµ ≈ 1.5× 10−7 (8.1.2)

A good study on the observational aspects of cosmic strings has two possible outputs

[57]. One possibility is observing a cosmic string, which would be a significant achievement

on probing particle physics models beyond the Standard Model of Particle Physics. The

other option is not to observe cosmic strings, which will lower the bound on the cosmic

string tension, thus ruling out classes of particle physics models. Besides this, cosmic strings

could produce interesting results for cosmology such as explaining the origin of Fast Radio

Bursts [116], primordial magnetic fields [117], and the origin of supermassive black holes

[118].

This work will concentrate on the Large Scale Structure (LSS) as a complementary (in

addition to the CMB) arena for probing cosmic string. The primary motivation is that

LSS data contains three-dimensional information, which includes many more modes than

the two-dimensional maps from the CMB. The disadvantage of LSS is that the effects of

non-linearities are essential, so theoretical predictions are harder to be obtained.

In a recent paper [49] (see also [50]) we began a study of the dark matter distribution

induced by string wakes [27, 28, 65, 66] inserted at z = 31, using a simulation box of lateral

size L = 64Mpc/h and np = 512 particles per dimension. We found that the string signals

for a wake with a string tension of Gµ = 10−7 can be identified down to a redshift of

z ≥ 10. A possible cause for not being able to identify the wake at lower redshifts comes

from the fact that the wake thickness was about one order of magnitude smaller than the

resolution length of the simulation grid at the time of wake insertion. The fact that the

wake survives down to redshift z = 10 supports the idea that the wake global signal remains

present despite losing its local signal [32]. In the current work, we take a complementary

1Note that there are stronger limits on the string tension which comes from limits on the stochastic
background of gravitational waves on length scales which the pulsar timing arrays are sensitive to (see
e. g. [112]). These bounds come from gravitational radiation from string loops, and assume a scaling
distribution of string loops where the total energy in strings is dominated by the loops [9, 58–64]. However,
field theory cosmic string simulations [20] do not yield a significant distribution of string loops. Thus,
bounds on the cosmic string tension from gravitational radiation from string loops are less robust than the
ones coming from the long strings.
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approach, and we use a box with a small lateral size (of L = 4Mpc/h) and a higher number

of particles (np = 1024 particles per dimension ), so the wake becomes well-resolved. The

downside of this approach is that we lose part of the global wake signal, and the advantage

is that the effect of the wake lasts for more time.

A cosmic string wake is a planar overdense region that forms behind a long string as it

passes by the matter distribution [27, 28, 65, 66]. This effect is a consequence of the fact

that a space perpendicular to the long string will have a missing angle given by α = 8πGµ

[11, 15], causing two test dark matter particles initially at rest to receive a velocity kick

towards behind the string as soon as it passes by between the two. The expression for the

velocity perturbation is the following:

δv = 4πγsvsGµ (8.1.3)

where vs is the transverse velocity of the string and γs is the associated Lorentz factor. The

velocity kick makes the particles meet behind the string, forming a wedge-like structure

with two times the average matter density. This is the wake. The initial geometry of the

wake after formation at t = twf will be a box of volume V , consisting of two large planar

dimensions of the order of the Hubble radius ≈ tf and one smaller thickness with a length

of the order of the Hubble radius multiplied by the deficit angle:

V ≈ tf × tfvsγs × 4πGµtfvsγs (8.1.4)

At early times it is possible to obtain an analytical understanding of the wake evolution

thanks to the fact that the matter fluctuation outside the wake was in the linear regime.

The Zeldovich approximation [29] gives the evolution of the comoving wake thickness ψ3

as a function of redshift z [30, 31] :

ψ3 =
24π

5
Gµvsγst0

√
1 + zeq

(1 + z)
(8.1.5)

where t0 is the present time and zeq is the redshift of matter and radiation equality. Note

that the wake produces a nonlinear density fluctuation at arbitrarily early times. Since

structures start to grow only after the time of equal matter and radiation, we choose this

time as the time for wake formation (so we will consider tf = teq). We use the value
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zeq = 1000. As the thickness grows as in linear theory, the planar dimension increases just

with the Hubble flow, and are fixed in comoving coordinates. For the formation time we

are considering, the planar dimension of the wake is about ≈ 100Mpc. If the analytical

thickness evolution remains valid up to today, we would have wakes with the thickness of

≈ 0.1Mpc at present (for Gµ = 1× 10−7).

Once the ΛCDM perturbations enter the nonlinear regime (at about the time of re-

ionization), the local mass distribution in the wake becomes highly nonlinear, the ΛCDM

fluctuations will disrupt the wake [32], and the subsequent dynamics has to be studied

numerically. In this paper, we simulate cosmic string wakes using an N-body code called

CUBEP3M [101] and apply a statistic that extracts the wake signal.

The paper is organized as follow: Section II contains a discussion on the previous works

regarding wake evolution in the nonlinear regime; Section III describes the simulations

performed in the present work, and the analysis of the data described in section III is

performed in section IV; Finally, in section V we summarize the essential results obtained

and indicate experimental prospects and possible paths for an extension of the analysis.

8.2 Review of Cosmic string wakes in the non-linear regime

The wake produces a planar non-linear density perturbation at arbitrarily early times, so

early on the wake is unambiguously distinguishable from ΛCDM fluctuations. Once the

ΛCDM fluctuations start to dominate, nearby halos begin to accrete material from the

wake, causing wake fragmentation. An analytical study regarding the wake disruption by

ΛCDM fluctuations was presented in [32], where two criteria for wake disruption were

introduced. The first one concerns local stability, which was studied by considering a cubic

box with the dimension of the wake thickness and computing the standard deviation of the

density contrast in this region from ΛCDM fluctuations. The second criterion takes the

global extension of the wake region into account, by computing the standard deviation of

the density contrast from ΛCDM inside a box with dimension V (see (8.1.4)) given by the

whole wake. Both conditions were computed, and the main result indicates that although

a Gµ = 10−7 wake could be locally disrupted at z ≈ 8 it could in principle be distinguished

from ΛCDM fluctuations at all times using the global information of the wake.

A method used to extract the wake signal from the dark matter distribution was pre-

sented in [49] and can be summarized as follows: for any direction of the sphere, we consider
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an associated projection axis passing through the origin of the box. We then consider slices

of the simulation box perpendicular to that axis at each point x of this axis with thickness

given by the grid size of the simulation, and we compute the mass density δ(x) of dark

matter particles in that slice as a function of x. A one-dimensional filter wavelet analysis is

then performed on the mass density δ(x), giving a filtered version of it, called fδ. We then

compute the maximum value S of fδ(x) for each direction (pair of spherical angles) in the

simulation box. S is a map on the surface of the sphere (which represent the spherical an-

gles), and Ŝ is its maximum value. The signal to noise ratio for the spherical peak(max(S))

divided by standard deviation (max(S)/std(S)) distribution for ten simulations without

wake and three simulations with a Gµ = 10−7 wake was found to be R̄ = 8.1 at redshift

z = 10 and insignificant at lower z.

The setup of the N-body simulation is the following. We used an N-body simulation

program called CUBEP3M, a public high performance cosmological N -body code based

on a two-level mesh gravity solver augmented with sub-grid particle-particle interactions

[101]. This code generates and evolves initial conditions (which are realizations of ΛCDM

fluctuations) containing positions and velocities of particles inside a cubic box. There is

an option to save the phase space of the distribution at any redshift and rerun the code

from this checkpoint. We use this feature for wake insertion, by modifying the saved phase

space distribution at time ti by including effects of a wake. The modification consists in

displacing and giving a velocity kick to particles towards the wake plane. The absolute

value of the displacement ψ(ti) and velocity perturbation ψ̇(ti) in comoving units can be

computed using the following equations (see [30, 31] for details)

ψ(ti) =
3

5
4πGµvsγsteqz(teq)

z(teq)

z(ti)
. (8.2.6)

and

ψ̇(ti) =
2

5
4πGµvsγsteqz(teq)

z(teq)

z(ti)

1

ti
. (8.2.7)

Once the wake insertion is made, the new modified distribution is further evolved by the

N-body code.

The primary goal of this paper is to find a statistic which can extract the wake presence

without using information about the simulation without a wake. In the next section, we

will describe the simulations in more detail.
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8.3 Simulations

We performed six N-body simulations without wakes with the following cosmological pa-

rameters: ΩΛ = 0.7095, Ωb = 0.0445, ΩCDM = 0.246, nt = 1, ns = 0.96, σ8 = 0.8628,

h = 0.70, Tcmb(t0) = 2.7255. Those simulations consists of np = 1024 particles per di-

mension, a lateral size of L = 4Mpc/h, and initial conditions generated at z = 31, with

checkpoints at z = 15, z = 10. z = 7, z = 5 and z = 3. The wake is inserted at the z = 10

checkpoint. All simulations used 512 cores divided into 64 MPI tasks and were run in the

Graham Cluster of Calcul Quebec, part of the Compute Canada consortium.

As pointed out in [32], if we displace all particles towards a central plane, this creates

a nonphysical void on the parallel planes at the boundary of the simulation box. Here we

circumvent this problem by using a suppression of the velocity and displacement pertur-

bations that starts halfway between the wake and the boundary and linearly decreases to

zero at the boundary. This procedure avoids the creation of a planar void at the boundary

since the particles are not displaced there.

Figure 8.1 shows the average displacement induced by the wake on each particle and

compares it with the analytical prediction. As in the previous work, the numerical simu-

lation results for the wake-induced displacement are about a factor of two higher than the

analytical prediction. We conjectured that this could be due to the nonphysical void, but

here it is evident that this was not the case since there is no void in our new simulations.

This fact indicates that the analytical prediction is incomplete, and we should trust more

in the numerical simulations. Another reason is that we are in the non-linear regime, where

the assumptions of the analytical predictions are not valid. Also, the analytical prediction

assumes a late time matter-dominated cosmology, whereas the numerical work is done in

the context of a ΛCDM background. The analytical prediction should be modified for the

cosmological constant dominated period. We plan to do that in the future.

A similar analysis was done for the induced velocity perturbation. As figure 8.2 shows,

the difference between the numerical and analytical velocity perturbations is not significant.

8.4 Analysis

The wake presence is not clear if we compare the visualization of a two-dimensional pro-

jection for a pure ΛCDM simulation with a ΛCDM plus wake simulation. Figure 8.3
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Figure 8.1 Average displacement induced by the wake (in blue), compared
with the analytical prediction (in red).

Figure 8.2 Average velocity perturbation induced by the wake (in blue),
compared with the analytical prediction (in red).

illustrates this at z = 3. Both figures show the density contrast of logarithm of two-

dimensional projections of the dark matter distribution (in simulation units). The upper

figure contains just ΛCDM fluctuations, and the bottom figure contains the same ΛCDM

fluctuations plus a Gµ = 10−7 wake. A trained eye could perceive that a wake is located

at the plane Z ≈ 2Mpc/h which under projection appears as a vertical line at the middle

of the panel (since we are projecting onto a plane perpendicular to the wake plane). It was

not possible to find a good statistics that extracts the wake signal for such projections.

This occurs because the Gaussian fluctuations displace the particles on the wake, and

these particles no longer form a straight plane. However, the wake can be better recovered

if we project not the entire x direction, but several slices of it. It was found that if we
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Figure 8.3 Logarithm of the mass of a two-dimensional projection of sim-
ulation particles for lateral size L = 4Mpc/h and redshift z = 3. The upper
plot shows the simulation without the wake, and the plot on the bottom shows
the simulation with a Gµ = 10−7 wake at the central position of the z axis.

slice the x direction in 32 different parts and perform a two-dimensional projection on each

slice, the wake can be better visualized. Figure 8.4 shows the slice number 31 associated

with the same simulations of figure 8.3. The wake presence is more explicit in this case and

corresponds to a clear vertical line at the middle of the panel on the bottom figure of 8.4.

Unfortunately, this does not mean that wake detection is granted since the wake pres-

ence should be obtained quantitatively and without previous knowledge of the simulation

without a wake.

In the next subsection, we will show the result of a statistic that analyses a set of two-

dimensional projections of the dark matter particles. We ask the question if it is possible

to differentiate the images of the two-dimensional projections perpendicular to the wake
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Figure 8.4 Logarithm of the mass of a two-dimensional projection of a slice
of the simulation box with lateral size L = 4Mpc/h and redshift z = 3. The
upper plot shows the slice without the wake, and the plot on the bottom shows
the slice with a Gµ = 10−7 wake at the central position of the z axis.

from any other projection without the wake.2

A sky map with a specific redshift layer can be further subdivided into several square

images (using small angle approximation), and in a universe with a cosmic string network,

there is a small non-zero probability that one of those images has a wake perpendicular

to it. We will see that this small fraction is still sufficient to pinpoint a universe with

Gµ = 10−7 cosmic strings at redshift down to z = 3.

2 One motivation for this approach is that some experiments, like SKA [119, 120] have a poor redshift
resolution compared with the angular resolution, so the data set can be better viewed as layers of two-
dimensional intensity maps with each layer corresponding to a redshift range.



8 Signature of a Cosmic String Wake at z = 3 115

8.4.1 A curvelet filtering of the two-dimensional projections

Here we describe the pipeline for the statistics that we use for wake detection. All com-

putations were performed using Matlab, together with the curvelet package CURVELAB

[121]. We will also use ridgelet transformation [122], which detects straight lines (ridges)

which cross an entire image. Similarly, the curvelet base functions are line segments, which

can be seen as a local version of the ridges.

The first of the filtering procedure step is, for each cubic simulation box, to slice it

into 32 different tiles (where the slice is perpendicular to the x direction, while the wake is

parallel) and to obtain a two-dimensional map of it by projecting the associated slice onto

the y − z plane.

For each two-dimensional dark matter map particle number (which is proportional to

the dark matter mass) pn (viewed as a two-dimensional array with the projected number

of particles as each one of its elements) we perform the following steps:

1-) Compute the logarithm of the dark matter mass pnlog = log(1 + pn). The number

one is added for the result to be strictly positive.

2-) Compute the curvelet-filtered transformation curv(s, w, i, j) = C(pnlog), were s

corresponds to the scale of the ridge, w to the angle, i and j to the positions. All the

curvelet coefficients with scales higher than the expected wake thickness were set to zero.

3-) A wake ridge corresponds to coefficients that are much higher than the others if we

fix the position, scale and allow the angles to vary. Therefore we would like to highlight the

maximum of the function fs,i,j(w) = curv(s, w, i, j) in the angle variable w. We implement

that for each (s, i, j) by multiplying the function g(w) = fs,i,j(w) by its own density contrast

g̃(w) = (g(w)−ḡ)/ḡ, where ḡ = mean(g(w)). The resulting new wavelet coefficient becomes

f̃s,i,j(w) = fs,i,j(w)× g̃(w).

4-) After the previous filter, the inverse curvelet transformation is taken and dm2d =

curv−1(f̃s,i,j(w)).

Once the 32 filtered images are computed, we combine them together again in a three-

dimensional map dm3d, where one of the dimension corresponds to the direction of slicing

(and go from one to 32) and the remaining two dimensions are the labels for the filtered

image pixels. The image of each slice corresponds to the filtered image obtained in the

steps above for each one of the slices.

5-) Compute a 3d curvelet decomposition curv3d = C(dm3d), and set the negative
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coefficients to zero. The motivation for this threshold is to consider just planar overden-

sity detection in the image since the negative curvelet coefficients represent planar under

densities (or planar voids, which are not important for us). After that, we do the inverse

curvelet transformation. This procedure will also highlight pixels with high density that

are next to each other. By doing the inverse curvelet transformation, we obtain 32 filtered

slices dmFilt(i, j, k) = C−1(curv3d) from the original 32 slices, where i and j range from

1 to 1024 and k range from 1 to 32.

Steps 3 and 5 are crucial since they highlight line segment discontinuities (as produced

by the wake). To see this, consider figure 8.5 which shows the result of the fifth step for

the maps of figure 8.4. The wake presence is clear now, with a large line segment on the

bottom panel indicating the wake position.

6-) Perform a ridgelet transformation [122] on each slice radk(l, a) = R(dmFiltk(i, j))

, where k indicates the slice, l the position of the ridge, a its angle and dmFiltk(i, j) =

dmFilt(i, j, k) its image before the ridgelet transformation. A ridgelet transformation is

suitable for detection such as the ones produced by the wake.

7-) The wake statistical signal indicator s(k) = pk(k)/std(k) of the slice k is the peak

pk(k) = max(radk(l, a)) divided the standard deviation std(radk(l, a)) of the Radon trans-

formation, where max(radk(l, a)) denotes the maximum value of the two dimensional array

radk(l, a) (with respect to (l, a)) and std(radk(l, a)) denotes the standard deviation of the

same array radk(l, a) (also with respect to (l, a)). A high peak means that there is a line

in the two-dimensional map with high contrast, such as the one produced by the wake.

8-) Finally, take the sum of s(k) as the wake indicator statistical signal of the (4Mpc/h)3

volume. The wake presence will increase each one of the s(k) systematically, so that is why

we take their sum as the wake signal S:

S =
∑
k

s(k) (8.4.8)

The analysis above is applied in two different situations: in the first one, the orientation

of the wake is used as prior information, and in the second situation, this information is

not used beforehand. Each case will be described in the next two subsections.
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Figure 8.5 Filtered version of the logarithm of the mass of a two-
dimensional projection of a slice of the simulation box with lateral size
L = 4Mpc/h and redshift z = 3. The upper plot shows the slice without
the wake, and the plot on the bottom shows the slice with a Gµ = 10−7 wake
at the center.

8.4.2 Wake signal extraction with wake orientation prior

We have inserted the wake at the plane Z = 2Mpc/h. Therefore, by choosing the axis x as

the projection axis for our analysis, we will be automatically selecting an axis perpendicular

to the wake plane and therefore, will have an optimal statistical analysis.

For each simulation and orientation aligned with the wake, we chose the wake indicator

S from 8.4.8. The result of the distribution of the signal S for each one of the ten simulations

(with and without wakes) is shown in figure 8.6.

This statistic has a confidence level of R̄ = 9.9, where R̄ = mean(R) is the mean of the
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Figure 8.6 Distribution of the wake indicator S for the wake simulations
(in red), and with pure ΛCDM (in blue).

signal to noise ratio for the wake simulation, defined as

R =
S − S̄nw
std(Snw)

(8.4.9)

where S is computed for a given simulation with a wake, S̄nw is the mean S of all simulations

without wakes and std(Snw) is the standard deviation of all S from simulations without a

wake. R̄ is the mean of R for all simulations with wakes.

8.4.3 Wake signal extraction without wake orientation prior

In this subsection, we consider various orientations for the two-dimensional projections,

without introducing the wake orientation information beforehand. For choosing different

angular orientations, we consider a Healpix set of spherical angles [105], which give equally-

spaced adjacent spherical angles. In addition to considering different orientations, we also

take advantage of the periodic boundary condition and perform random displacements and

rotations on the two-dimensional figures, so the wake line does not lie on the z = 2Mpc/h

plane anymore. By choosing the parameter Nside = 8 for the Healpix scheme, we can
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survey Nangles = 384 different projecting angles for each simulation (we are considering just

non-antipodal angles since they produce equivalent two-dimensional projections). Figure

8.7 shows an example for one of the simulations of a sphere in which each point is a

pair of spherical angles, and the color specifies the value of the wake indicator S for that

orientation.

Figure 8.7 Wake indicator S values for different orientations for a simulation
box with lateral size L = 4Mpc/h and redshift z = 3. The upper plot shows
the spherical map without the wake, and the plot on the bottom shows the
spherical map with a Gµ = 10−7 wake.

If we consider the wake indicator S value for all angles of the ten samples, we can

construct the histogram of figure 8.8, which shows the histograms for both the wake case

and also for the no wake case.

There are 10 outliers with S > 532 for the histogram without wakes and 833 outliers

for the histograms with wakes. We choose St = 532 as a threshold that indicates the

wake presence. In principle, we could have chosen a higher threshold, such as S = 590,

where there is just one outlier for the histogram without wake, and we would obtain better

results (because the probability of finding such an outlier would be much smaller). But

we want to construct our statistics based not in only one point, which could lead to a

non-robust result. Therefore if in a pure ΛCDM universe a random set of 32 dark matter
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Figure 8.8 Histogram in logarithmic scale of the S values for all 384 angles
and ten simulation boxes with lateral size L = 4Mpc/h and redshift z = 3.
The blue histogram correspond to the simulations without wakes, and the red
histogram correspond to Gµ = 10−7 wakes.

maps of (4Mpc/h)2 with a resolution of 10242 at redshift z = 3 is taken in the sky, the

probability of it to have S > 532 is pnw ≈ 10/3840 = 0.0026. We would naively expect that

the probability of finding a similar S > 532 dark matter maps for a universe with wakes

would be ≈ 833/3840 = 0.2169, but that is not true, since not every map of this kind will

intercept a wake. With the simplest (and most conservative) assumption that in a ΛCDM

plus cosmic string universe there is just one long string per Hubble volume, we would expect

that only a fraction of about 1/24 = 4Mpc/95Mpc of the boxes (95Mpc corresponds to the

comoving Hubble radius at wake formation) would contain a wake, so we have to multiply

the previous probability estimation by this factor. Therefore the expected probability of

finding a similar S > 532 dark matter map would be pw ≈ 0.2169 ∗ (1/24) = 0.0090, which

is 3.4 higher than in the no wake case.

We will assume that we can cover one-quarter of all angles in the entire dark matter

sky, so we have about N = 104 dark matter maps similar to the ones we are, and for each

one of them, we would find one wake indicator S value. Multiplying this number N by the

probability of finding S > 532 outliers we expect to obtain Nnw = 26 outliers in a universe

without wakes and Nw = 90 outliers in a universe with cosmic string wakes. With this

result now we can know what is the probability of discarding the null hypothesis that our

universe is pure ΛCDM in favor of an alternative hypothesis that our universe contains a

network of Gµ = 10−7 cosmic strings. The probability of a universe with wakes to have
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more than 45 (this is half the expected one, chosen to be sure the probability is very close

to one) outliers from the N quantities discussed above is very close to one (by one part in

107). On the other hand, the probability of having more than 45 outliers in a pure ΛCDM

universe is 4.5594× 10−4, which is a p-value equivalent to 4 sigmas of confidence level.

We showed above that it is possible to identify the presence of cosmic string wakes of

Gµ = 10−7 at z = 3 with a confidence level of four sigmas if a set of three-dimensional

dark mater maps covering one-quarter of the sky is given. Each map should consist of

32 consecutive slices (with respect of the field of view, and having 4Mpc/h of depth) of

(4mpc/h)2 squares with 1024 pixels per dimension. We argued that with the most simplistic

assumptions of one wake per Hubble volume, there would be 90 outliers indicating the wake

presence, whereas there will be 26 outliers in the case of a universe without cosmic string

wakes.

8.5 Conclusion

With this work, we can affirm that a sky map of the dark matter distribution can be

used do constrain the existence of cosmic strings with high statistical significance. It is

worth mentioning that the values used to construct this argument are conservative ones,

and increasing then (the number of maps in the sky (N), the wake indicator threshold

St = 532, the number of outliers 45 and the number of long cosmic strings per Hubble

volume (here taken as one)) will give better results than quoted in this paper.

We are investigating whether neural networks could improve the wake detection. The

hope is that they will be able to distinguish maps with and without wakes at redshifts

below z = 3 and lower string tension parameter.

The experimental prospects to find the wake signal will be analyzed in future works,

where resolution (angular and redshift) is essential together with intensity sensitivity. Fi-

nally, it remains to be seen if the dark matter tracers, such as halos and galaxies, will

maintain the wake signal. All of those aspects are under current investigation.
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Chapter 9

Conclusion

Cosmic strings are objects that are generated in many theories that go beyond the SMPP

characterized by a simple parameter, namely their tension. Therefore constraining this

parameter is an important way to see which of these models are acceptable and can be

further studied or must be discarded. The CMB power spectrum is the traditional window

for constraining the cosmic string parameter which is already complemented by a real-

spaced based approaches, giving similar results. Contemporary cosmology starts to have

extensive data sets available on the three-dimensional distribution of matter, which in

principle will contain much more power to constrain models since three-dimensional maps

encode more information than two-dimensional ones, opening the possibilities for better

testing fundamental physics using cosmological data.

The present thesis is devoted to finding strategies to search for effects of cosmic strings

on the LSS. Motivated by the fact that a cosmic string creates a wake with a planar

over-density pattern, locally changing the distribution of dark matter, developing specific

pipelines that show how to extract this signal is a fundamental step toward a realistic

forecast. This step will make it possible to constrain the cosmic string parameter using

LSS experiments, such as 21-cm or optical surveys.

The first important conclusion that can be drawn from this thesis is that although

wakes will be locally indistinguishable from other usual ΛCDM overdense regions, they will

still imprint a unique global characteristic that is unlikely to appear from usual ΛCDM

fluctuations. This conclusion opens the possibility to study the wake in the non-linear

regime, where the analytical predictions cease to be reliable.

2019/09/18
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The second important conclusion is that, beyond the existence of a wake of cosmic

string signal in the LSS, there exists a method for extracting this wake signal. More than

just a proof-of-concept this study confirmed the first conclusion above that albeit the wake

is locally disrupted, it is still reliably present in the dark matter distribution. In order to

show this, a novel threshold method was implemented on the curvelet coefficients.

The present work can be extended in many directions. Inspired by similar works on

CMB cosmic string detection in position space, a possible fruitful venue would be to use ar-

tificial intelligence methods, alongside with hybrid methods. The most important challenge

would be to extend the two-dimensional pipelines to three-dimensions.

The options above will point towards an optimal statistic for wake detection. Armed

with what was presented regarding curvelet analysis, it is already possible to forecast what

constraints experiments would give for the cosmic string tension. Both 21 cm intensity

maps (like SKA and HERA) and optical (such as EUCLID and WFIRST) experiments are

suitable for this task.
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