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ABSTRACT 


In the wireless, microwave, and satellite communications industry, guyed towers 

are one of the important structural subsystems. They support a variety of antenna 

broadcasting systems at great heights, or are themselves radiators in order to transmit 

radio, television, and telephone signals over long distances. Very tall towers are a 

fundamental component of post-disaster communication systems. Therefore, their 

protection during a severe earthquake is of high priority, and accordingly the seismic 

performance of such structures should be properly evaluated. 

To the best of the author's knowledge, there have been no simple rules to account 

for seismic sensitivity of guyed towers, and very limited attention has been paid to the 

seismic behaviour of such structures to date. Since guyed towers may exhibit significant 

geometric nonlinearities, their detailed nonlinear seismic analysis is complex and time­

consuming. In addition, climatic loads such as wind and ice are likely to govern the 

design in most cases. As a result, earthquake effects are often ignored or improperly 

evaluated (based on current procedures) by an equivalent static lateral load proportional 

to the tower weight, as it is done in most building codes. These effects, however, may 

yield to a loss of serviceability due to excessive antenna displacements resulting in an 

unacceptable signal attenuation, and in extreme cases, to permanent deformations. 

Therefore it is necessary to develop more complete guidelines for seismic design of tall 

guyed towers. 

The main objective of this research is to propose some seismic sensitivity 

indicators which may be used by tower designers to assess whether a particular tower is 

sensitive to earthquake effects, and if so, whether a detailed nonlinear modelling study 

is necessary. A detailed nonlinear numerical modelling study of eight existing tall guyed 

telecommunication towers (heights varying from 150 to 607 m) has been carried out. Each 

tower was subjected to three different classical seismic excitations (EI Centro, Parkfield 

and Taft earthquakes) for the seismicity level of the Victoria region, which has one of the 

highest seismicity levels in Canada. The conclusions drawn from this study are employed 

to propose some simplified models and develop some guidelines to relate the overall 



seismic sensitivity of tall guyed towers to their essential structural properties. The 

simplified models proposed are used to predict the maximum tower base shear, the 

distribution of horizontal earthquake forces along the tower height, and the distribution 

of the maximum dynamic component of mast axial forces along the tower height due to 

combined vertical and horizontal earthquake motions. The guidelines developed are used 

to estimate the maximum dynamic component of the mast axial force at the base due to 

combined vertical and horizontal earthquake motions, the seismic amplification factor of 

cable tension, and the maximum shear and bending moment in the mast. 
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SOMMAIRE 


Les py lones haubanes sont des compos ants importants dans les reseaux de 

telecommunication sans fil. Us peuvent supporter une variete de types d' antennes 

(recepteurs ou emetteurs) ades hauteurs appreciables, ou ils peuvent servir eux-memes 

d'emetteurs sur de longues distances. Les pylones haubanes tres eleves sont consideres 

comme des infrastructures essentielles des systemes de communications d'urgence. En 

consequence, leur protection est prioritaire durant un seisme majeur, de sorte que leur 

comportement sismique necessite une evaluation adequate. 

A notre connaissance, il n'existe pas de regles simples pour evaluer la 

susceptibilite sismique des pylones haubanes, et ces structures ont fait I' objet de tres peu 

d' etudes en ce sens a date. Comme les pylones haubanes peuvent presenter des non 

linearites geometriques importantes, leur analyse sismique detaillee est complexe. Aussi, 

dans la majorite des cas, il est probable que Ies charges de verglas et vent gouvernent Ia 

conception. 11 en resulte que la plupart du temps les effets des seismes sont ignores, ou 

incorrectement evalues par Ies procedures suggerees par les codes du b5.timent (ex. force 

horizontale equivalente proportionnelle au po ids de Ia structure). Les seismes peuvent 

cependant avoir des effets tres importants: ils peuvent produire des rotations et 

deplacements excessifs des antennes qui peuvent causer des interruptions du signal. Dans 

les cas extremes, des deformations permanentes peuvent meme etre induites dans les 

supports d'antennes ou dans les membrures du pylone comme tel. II apparait done 

necessaire et justifie de developper des regles de conception parasismique plus completes 

appropriees au pylOnes haubanes de grande hauteur. 

L'objectif principal de la recherche est de proposer aux concepteurs de pylones 

haubanes des indicateurs de susceptibilite sismique qui permettront d'evaluer si un pylone 

haubane particulier est susceptible aux effets des seismes, et si une analyse dynamique 

detaillee est necessaire pour bien quantifier son comportement. Cette these est basee sur 

l'analyse dynamique non lineaire par elements finis de huit pylones haubanes reels dont 

la hauteur varie entre 150 m et 607 m. Chaque pylOne a ete soumis a trois seismes 

classiques (EICentro, Parkfield et Taft) ajustes au niveau de seismicite de la region de 
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Victoria, qui est l'une des plus severes au Canada. Les conclusions de l'etude detaiIlt~e 

ont perrnis de suggerer des modeles simples et des recommandations pratiques basees sur 

les proprietes structurales de base des pylones. Les modeles simplifies qui sont proposes 

permettent de predire Ie cisaillement maximum a la base du pylone, la distribution des 

forces dynamiques horizontales Ie long du profil du pylone, ainsi que la distribution des 

forces dynamiques axiales dans Ie mat induites par des accelerations horizontales et 

vertic ales combinees. D'autres recommandations pratiques permettent d'estimer Ia 

composante dynamique maximale de Ia force axiale aIa base du mat sous l' effet combine 

d'accelerations horizontales et verticales, ainsi que les facteurs d'amplification dynamique 

de 1a tension dans 1es haubans, et les forces de cisaillement et les moments de flexion 

extremes dans Ie mat. 
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CHAPTER 1 


INTRODUCTION 


1.1 GENERALITIES 


Recent developments in the telecommunications industry have led to an extensive 

use of tall guyed towers in these systems. They support radio, television and telephone 

broadcasting antennas, or are themselves radiators to transmit communication signals. 

Guyed towers normally provide an economical and efficient solution for tall towers of 

150 m and higher, compared to self-supporting ones. The main component of these 

structures is usually a slender lattice steel mast of triangular cross section, which is 

pinned at its base. Sets of inclined pretensioned guy cables support the mast laterally at 

several levels along its height. The various components of a typical tall guyed tower are 

shown in Fig. 1.1. In some towers, in order to increase the torsional rigidity of the 

structure, the guy cables are connected to stabilizers or outriggers at some stay levels (e.g. 

cable Set 4 in Fig. 1.1). 

The structural behaviour of guyed towers is complex. This complexity arises ii'om 

significant geometric nonlinear behaviour due to, in the first order, the sagging tendency 

of the guy cables and the interaction between the cables and the mast, and in the second 

order, the slenderness of the mast (beam-column effects). Although geometrically 

nonlinear effects are negligible in most structures, they may be very important in guyed 

towers. 



y z 
Plan Lattice Mast 

. 
(I):

. x around Set 4 _ ' 
, 

198.12 m 

49.38 m 78.64 m 
i~I------------~--------------------+ 

Fig. 1.1. Typical geometry of tall guyed tower 

1.2 RESEARCH SIGNIFICANCE 

The study of the seismic behaviour of tall guyed towers has received very little 

attention to date. To the best of the author's knowledge, no simple rules have been 
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proposed which could account for the seismic sensitivity of guyed telecommunication 

towers. Therefore, researchers in this field have recommended a full nonlinear analysis 

under seismic load whenever the structure is located in a high-risk seismic zone and is 

a major installation due to its height or its relative importance in the reliability of the 

telecommunication network. In practice, because guyed towers exhibit significant 

geometric nonlinearities, their full nonlinear dynamic analysis is complex and time­

consuming. In addition, since climatic loads such as wind and ice are likely to govern the 

design in most cases, earthquake effects are often ignored in design or impropedy 

evaluated (based on current building code procedures) by an equivalent static lateral load 

proportional to the tower weight. These effects, however, may yield to a loss of 

serviceability due to excessive antenna displacements resulting in an unacceptable signal 

attenuation, and in extreme cases, to permanent deformations. 

A common type of damage observed during the 1995 Kobe earthquake (CAEE, 

1995), was the tilting of telecommunication towers. The tower oscillations during the 

earthquake were greater than the serviceability criteria and caused permanent deformation 

of the structure. These damages resulted in major interruptions in the communications 

system due to the loss of signaL 

The International Association for Shell and Spatial Structures (lASS) presents very 

general recommendations for the seismic analysis of guyed masts in a special report 

published by its Working Group 4 on Masts and Towers (lASS, 1981). This report 

suggests that guyed towers may be analyzed under a static lateral load proportional to 

their weight to model earthquake effects. This approach is used in most building design 

codes for base shear distribution. It recommends several simplifying assumptions in order 

to linearize the analysis and to use modal superposition. However, it recommends caution 

in its use for very tall guyed masts or for unusual towers, which may exhibit significant 

geometric nonlinearities. 

According to the Canadian Standards Association, CANICSA S-37 Antennas, 

Towers, and Antenna-Supporting Structures, (CANICSA, 1994) "earthquake effects should 

be considered for susceptible towers of critical importance (e.g. post-disaster 

communication systems) in high-risk earthquake zones". Referring to McClure et a1. 
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(1993) "very tall guyed towers are usually strategic points in a telecommunication 

network, and their preservation in the event of a severe seismic excitation is of high 

priority. They mayor may not be required to be serviceable during a major earthquake, 

but they should suffer only minor damages in order to resume normal operations shortly 

after the event", and be protected from local permanent deformations at the antenna 

attachment locations. Therefore, a proper evaluation of the seismic response of such 

structures is necessary and, in order to develop more complete guidelines, a 

comprehensive study of the behaviour of these structures under seismic excitation is 

required. 

1.3 OBJECTIVES 

The two main goals of this thesis are: 

1) 	 To provide an improved understanding of the seismic behaviour of tall 

guyed telecommunication towers; 

2) 	 To propose some simple seismic sensitivity indicators which may be used 

by tower designers to assess whether a particular tower is sensitive to 

earthquake effects, and if so, whether a detailed nonlinear dynamic 

analysis is necessary. 

The development of tower seismic sensitivity indicators is based on the following five 

specific research objectives: 

1) 	 To propose a simplified model for predicting the maximum tower base 

shear; 

2) 	 To estimate the maximum dynamic component of the mast axial force at 

the base due to combined vertical and horizontal earthquake motions; 
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3) 	 To propose a simplified model for the distribution of horizontal earthquake 

forces along the tower height; 

4) 	 To propose a simplified model for the distribution of the maximum 

dynamic component of mast axial forces along the tower height due to 

combined vertical and horizontal earthquake motions; 

5) 	 To propose some simple design guidelines to estimate the seismic 

amplification factor of the cable tension , and the maximum shear and 

bending moment of the mast. 

1.4 THESIS ORGANIZATION 

This thesis is comprised of six chapters as follows: 

Chapter 1, "Introduction" presents the general aspects of this research and its 

importance. It also lists the objectives of the research, and outlines the organization of the 

thesis. 

Chapter 2, "Literature Review" begins with a general review of the previous 

research on static analysis of guyed towers. Dynamic analysis is then presented in more 

detail, and finally, because of the importance of recent research, a separate section deals 

with "Survey of Recent Studies". In aU sections of this chapter, the references are 

introduced in chronological order. 

Chapter 3, "Detailed Nonlinear Modelling Study" describes the numerical finite 

element modelling of guyed towers subjected to base motion. It begins with an outline 

of the methodology of the research and then summarizes the properties of the eight 

existing towers studied. The input ground accelerograms, the scaling method used, and 

the procedure for combining vertical and horizontal earthquake motions are presented 
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next. The modelling of the mast and the guy cables, along with a special section on 

damping, are then discussed in more detail. The computer programs used in this research, 

namely the dynamic nonlinear finite element software ADINA and a special in-house 

post-processor program developed by the author, are briefly presented at the end. 

Chapter 4, "Seismic Response of the Towers" explains in detail the seismic 

behaviour of each tower studied. It begins with the results of the frequency analyses and 

then presents the most important response indicators. Results of the detailed seismic 

nonlinear analysis of each tower are summarized in the next section. The sections 

"Typical Behaviour" and "Serviceability Considerations" highlight the seismic features of 

the towers response .. 

Chapter 5, "Results and Discussions" presents the important results of this study. 

In the first section, the essential characteristics of the eight guyed towers are outlined, 

grouped under six sections: 1) contribution of mast and cables to the total weight of the 

guyed towers, 2) mass distribution of mast, 3) initial sag of guy clusters due to self 

weight and initial prestress, 4) equivalent lateral stiffness of guy clusters, 5) sensitive 

region in the mast, and 6) anticipated predominant mode shape of mast. The fundamental 

parameters of seismic response of the towers are explained next in the four sub-sections 

entitled 1) base shear, 2) seismic component of mast base axial force, 3) seismic 

amplification factor of cable tension, and 4) maximum shear and bending moment of 

mast. A presentation of simplified models for maximum base shear, distribution of 

emthquake forces, and distribution of maximum dynamic component of mast axial forces 

along tower elevation follows. Finally some seismic sensitivity indicators are proposed 

as important results of this research. 

Chapter 6, "Conclusions" summarizes the results of the thesis and highlights its 

key conclusions. It also makes some recommendations for future work. 
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CHAPTER 2 


LITERATURE REVIEW 


2.1 STATIC ANALYSIS 


Most of the eady investigations on guyed towers (Cohen and Perrin 1957, Hull 

1962, Poskitt and Livesley 1963, and Goldberg and Meyers 1965) studied their static 

analysis by considering the tower as a continuous beam-column resting on nonlinear 

elastic supports where the spring constants are provided by the lateral stiffness of the guys 

attached to the shaft. They used solution techniques based on linearized slope-deflection 

equations. 

Shears and Clough (1968) considered a finite element idealisation for an integrated 

guyed tower analysis in which parabolic cable elements were used for the guys and beam­

column elements for the mast. An iterative procedure was used to obtain the nonlinear 

static response. Aspects regarding the stability of guyed towers were not considered. 

Later, Goldberg and Gaunt (1973) studied stability of guyed towers L1smg 

linearized slope-deflection equations to analyze a multi-level guyed tower. They 

considered the secondary effects due to bending and changes in the axial thrust in the 

mast based on the small deflection theory. Their results confirmed that instability in guyed 

towers is not of the bifurcation type, but happens as a relatively large increase in lateral 

deformation for a small increase in applied loads. 

Chajes and Chen (1979) and Chajes and Ling (1981) investigated mainly the 
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behaviour of short guyed towers. Schrefler, Odorizzi and Wood (1983) proposed a method 

of analysis for combined beam and cable structures. They used a unified formulation for 

the geometrically nonlinear analysis of two-dimensional beam and line elements using a 

total Lagrangian approach. The geometrically nonlinear behaviour was considered 

especially when the cables become slack due to the loss of prestress. 

Also, various approaches for static analysis have been presented by Fiesenheiser 

(1957), Odley (1966), Williamson and Margolin (1966), Reichelt, Brown and Melin 

(1971), Rosenthal and Skop (1980, 1982), and McClure (1984). 

Raman et al. (1988) considered static analysis using substructuring and finite 

element techniques for large displacement analysis of guyed towers. Two-node (12 

degrees of freedom) 3-D beam-column elements and two-node (six d.o.f.'s) 3-D truss 

elements are employed in the finite element model to discretize the mast and the cables 

respectively. The equilibrium of the guys and mast is resolved separately and alternately 

the compatibility of displacements at the guy support points is applied until the final 

equilibrium configuration is obtained. The nonlinear effects due to axial load and bowing 

of the mast, pretension of the cables, and eccentric moments due to the cable reactions 

were considered in the formulation. A tinear elastic material behaviour was considered 

for the mast, and trilinear elasto-plastic behaviour for the guy cables. The study used both 

small and large displacement theories (but small strains) for the mast. 

Ekhande and Madugula (1988) studied modelling aspects concerning geometrical 

nonlinear effects. They presented a three-dimensional nonlinear static analysis of guyed 

towers consisting of cable, truss and beam member combinations. A linear isoparametric 

formulation for the elements within an updated Lagrangian coordinate framework was 

employed. Straight line elements with an equivalent reduced modulus of elasticity were 

used instead of the continuous catenary. Reduced-order integration and a modified elastic 

shear modulus in the mast were considered to avoid shear locking in the elements. In 

addition to the cables, the mast was also considered as a geometrically nonlinear element. 

Issa and Avent (1991) lIsed a discrete field analysis approach to develop a solution 

procedure for the analysis of guyed towers. The assumptions of small kinematics and 

linear elastic behaviour were used for modelling of the tower. The effects of nonlinear 
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cable/tower interaction were also included. The discrete field analysis approach is an 

alternative to either approximating a space truss as an equivalent continuous beam or for 

repetitive space truss analysis. This procedure is used to obtain closed-form or field 

solutions for the space truss by discrete field mechanics. This technique was applied to 

determine the bending stiffness matrix of a truss rather than using equivalent beam 

properties. 

Ben Kahla (1993 and 1995) has recently proposed a method for static analysis of 

guyed towers under wind. An assembly of truss and catenary cable elements was 

considered in the modelling, and the equivalent beam-column model of the mast was also 

used. 

2.2 DYNAMIC ANALYSIS 

Many attempts have been made to model the dynamic response of guyed towers. 

Davenport (1959) developed a linear model to describe the vibration of the guys under 

wind loads, assuming that the static deflected shape of the guy is parabolic. 

McCaffrey and Hartman (1972) also proposed a mathematical model to predict the 

dynamic response under wind. They analyzed a 302 m (990 ft) tower with fixed base and 

five guying levels, using truncated modal superposition (the structure was assumed to 

oscillate linearly about its static equilibrium position). The lowest three transverse modes 

of the guy wires were considered in the response. The mast was modelled as an 

equivalent beam-column with a lumped mass idealization. They studied the effects of the 

following parameters on the free vibration response: (1) assuming a parabolic rather than 

a catenary static deflected shape for the guys; (2) the number of degrees of freedom of 

the mast; (3) the ambient temperature; and (4) the higher guy modes, such as, second and 

third transverse modes. They simplified the analysis by assuming that the mast could 

vibrate only in one plane and that all the guys attached to the mast at a given level have 

the same dynamic characteristics. Important results of their study are as follows: 

(I) The natural frequencies calculated using a parabolic guy model are essentially the 

same as those obtained with a catenary guy model; 
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(2) The difference in the two models lies in the calculated mode shapes of the mast 

corresponding to the various frequencies; 

(3) As most of the lower natural frequencies are due to the mass inertia of the guys, it 

is desirable to consider more than just the first mode for each guy in the dynamic 

analysis; 

(4) The even (asymmetric) guy modes may be important in calculating the dynamic 

response when the slope of the cable is steep or the cable is very heavy. 

Irvine (1981) also investigated the dynamic behaviour of guyed towers, with 

emphasis on analytical expressions for linearized cable vibrations. 

Very general recommendations were made by the International Association for 

Shell and Spatial Structures (lASS) for the seismic analysis of guyed masts, in a special 

report published by its Working Group 4 on masts and towers (lASS, 1981). This report 

suggests that a static lateral load proportional to the weight of the structure may be used 

to model earthquake effects, as is considered in most building design codes for the base 

shear distributions. Designers are then advised to use their national standards for more 

specific guidelines on dynamic amplification factors and force distribution. There are 

several simplifying assumptions in the lASS report such as considering that the tower 

oscillates linearly about a given static equilibrium position. This assumption cannot be 

used when the tension in leeward guys becomes very small and also when the dynamic 

displacements of the guy attachment points on the mast become large compared to the 

displacements of the static equilibrium position. Sonie lASS recommendations are related 

to modelling considerations applicable to the detailed dynamic analysis for the various 

loads. Simple linear springs are suggested to represent the guys, and are associated with 

moving masses that properly model the inertia effects of the cables (Fig. 2.1). The Llse 

of a random vibration approach in load mode11ing and the assumption about neglecting 

of wave propagation effects at the ground surface (synchronous ground motion at all 

supports) are particular recommendations for the seismic analysis. Since seismic loads are 

already extreme events, their combination with dead loads only is suggested, and it is 

assumed to occur in still air conditions. 

Gerstoft and Davenport (1986) established a simplified procedure to analyze 

10 




a) Guyed Tower b) Spring-Mass Model c) Spring-Mass-Damper Model 

Fig. 2.1. Guy Cable Model (Ben Kahla 1993) 

nonlinear guyed towers under wind load. The guyed mast itself was modelled as a beam 

on elastic supports. These guy supports have nonlinear behaviour for large deflections but 

linear behaviour was considered for small amplitude dynamic motions. A complicating 

factor in the treatment of guys is the effect of their mass. This was simplified using the 

equivalent spring-mass-spring lumped parameter model (Fig. 2.1 b), which represents 

accurately the first transverse mode of a taut cable. As the cable slackens, however, 

contributions to the response from the higher modes increase and this model is no longer 

satisfactory. Because the springs are connected on the vertical axis of the mast, the model 

does not account for the torsional vibrations, nor for the additional forces due to guy 

attachment eccentricities. Kama (1984) improved this spring-mass-spring model to include 

a viscous dashpot with each lumped parameter unit (Fig. 2.1c). His model can be 

employed in a linear three-dimensional dynamic analysis of guyed masts. The frequency 

response method and a substructuring technique where frequency-dependent springs and 

dashpots are substituted for the guys were used in this regard. He studied the three­

dimensional motion of the guy attachment point on the mast and also the two-dimensional 
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sectional guy motions under the influence of structural and aerodynamic damping. 

Augusti et al. (1986) modelled a 200 m guyed mast with three guying levels lIsing 

equivalent linear elastic springs for the guy cables. The spring stiffness depends on the 

frequency of oscillation; therefore, successive iterations had been lIsed in the calculation 

of the response to obtain an appropriate stiffness. However, the inertia effects of the 

cables were ignored, and the mast was modelled as a space truss with seven lumped 

masses along its height. The Newmark-~ (trapezoidal rule) integration operator was Llsed 

to calculate the horizontal displacements of the mass points. This formulation is not 

appropriate for a full dynamic cable-mast interaction. 

Buchholdt, Moossavinejad and Iannuzzi (1986) studied time domain methods and 

compared them with frequency domain methods for structures subjected to wind loads and 

guy ruptures. They assumed: (a) the structural elements have linear elastic behaviour, (b) 

the guys can be treated as assemblies of Hookean pin-jointed link elements, (c) structural 

damping may be expressed as equivalent viscous damping, (d) the dynamic loads may be 

applied as equivalent concentrated point loads. The mast was assumed to vibrate linearly 

about the static equilibrium configuration. 

Augusti, Borri and Gusella (1990) reported the results detailed geometrically 

nonlinear analyses of two guyed towers under wind loading. They analyzed a 130 m tall 

guyed mast with four stay levels, and another one, 275 m tall, with five stay levels. The 

mast was modelled by tridimensional beam finite elements. The guy cables were 

represented by a mesh of five to twelve two-node cable elements. Both types of elements 

may account for the second-order phenomena. Since in the presence of nonlinearities, 

dynamic analysis cannot be carried out in the frequency domain, direct step-by-step 

integration in the time domain was used. The implicit Newmark-~ integration operator 

(trapezoidal rule) was used, combined with the classic Newton-Raphson equilibrium 

iteration procedure at each time step. 

Argyris and Mlejnek (1991) analyzed a 152.5 m transmitter tower with two guy 

stay levels subjected to an idealized sinusoidal earthquake loading (as a rough simulation 

of an earthquake). The amplitude of the acceleration was 0.5g (half of the gravity 

acceleration) and the period of loading was one second. Their results indicated that the 
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computed displacements have large amplitude (about 1.5 m), and therefore serviceability 

conditions might be exceeded during the earthquake. 

2.3 SURVEY OF RECENT STUDIES 

The geometrically nonlinear seismic response of antenna-supporting guyed towers 

has been investigated recently by Guevara and McClure (1993), Guevara (1993), McClure 

and Guevara (1994) and McClure, Guevara and Lin (1993). They have analyzed three 

towers: 24 m tall with two stay levels, 107 m tall with six stay levels, and 342 m tall with 

seven stay levels. A detailed numerical model of both the guy cables and the mast was 

employed. The SOOE 1940 EI Centro and N65E 1966 Parkfield accelerograms were used 

in the simulations. Each earthquake record was scaled down to match the elastic design 

spectra of the 1990 National Building Code of Canada for the Montreal region. The 

combination of lateral and vertical ground motions for the tallest (342 m) tower was also 

studied. In addition, the effects of surface wave propagation were considered for the 

tallest tower by using asynchronous input motions at the ground anchorage points and at 

the base of the mast. Guevara and McClure have used ADINA - Automatic Dynamic 

Incremental Nonlinear Analysis - (ADINA R&D, 1992), a nonlinear dynamic analysis 

finite element software with direct integration in the time domain to solve the equations 

of motion. A lumped mass model was employed. The small and intermediate masts were 

modelled as equivalent Timoshenko beam-columns, whereas a detailed three-dimensional 

truss model was used for the tallest mast. Three-node tension-only, isoparametric truss 

elements with initial prestress were used to model the guy cables. In order to account for 

geometric nonlinearities, a large kinematics (but small strains) formulation was used for 

the cable mode1. 

Due to the difficulties associated with realistic time-domain modelling of damping 

(structural and aerodynamic) for nonlinear analysis, Guevara (1993) used artificial 

numerical damping instead of structural damping. In his study, numerical damping was 

also employed to filter out numerically generated high frequency components, recognizing 

that in reality spurious high frequency components would likely be filtered out quickly 
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by physical damping (structural damping). However, the problem is that numerical 

damping cannot be calibrated with physical damping in nonlinear multiple-degree-of­

freedom systems. Algorithmic damping (numerical damping) can be generated by direct 

integration operators (e.g. Newmark-~ operator). To generate numerical damping with the 

Newmark-~ integration operator, Guevara (1993) tested two sets of values of parameters. 

The first set was Y=0.6 and ~=0.3025 which reduced displacement amplitudes by more 

than 35% with respect to the trapezoidal rule solution. Because this reduction was 

exceSSive, a second set of parameters with y=0.55 and ~=O.3 was studied. This 

combination proved to be sufficient to eliminate the spurious high frequency components. 

However, artificial damping is not an ideal substitute for the cables and mast damping. 

Especially in very tall towers for which the natural frequencies are relatively small, 

algorithmic damping may not be sufficient to filter out the response peaks. 

Their results indicated that the high frequency components of the excitation affect 

only the shortest tower. However, the magnitude of the peak response was not 

considerable because of the low seismicity level of the Montreal region. They found more 

important dynamic amplifications in the extreme guy clusters (top and bottom) for the 

response of the two other towers. Asynchronous base motion was found to have 

significant effects only in the guy wire tensions of the bottom cluster. From the point of 

view of reducing the required total analysis time, the use of the equivalent model 

formulation for the tall mast was not effective due to the large number of different 

member properties along the height of the mast. Furthermore, the detailed structure 

exhibits a warping torsional behaviour that cannot be reproduced in the equivalent beam­

column formulation. Therefore, detailed modelling of tall masts is recommended instead 

of equivalent beam-columns. Also, their results indicated that cable-mast interactions are 

significant in the frequency range of the lower axial modes of the mast. They found some 

important dynamic interactions between the mast and the guy wires where combined 

vertical and horizontal ground accelerations were llsed as input. 

A numerical study of the transient dynamic response of guyed telecommunication 

towers subjected to sudden ice shedding from the guy wires has been carried out by Lin 
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(1993) and reported by McClure and Lin (1994) and McClure, Guevara and Lin (1993). 

Guevara used the ADINA commercial software for detailed nonlinear dynamic analyses. 

They analyzed three towers with heights of 24.4 m, 60.7 m and 213.4 m, with two, four 

and seven stay levels respectively. In one case, artificial numerical damping was 

employed to compare the response with the undamped results. Since only relatively short 

towers were studied, beam-column elements were used to model the mast with stiffness 

properties equivalent to those of the three-dimensional truss model. As in Guevara's work, 

the guy wires were modelled by tension-only three-node isoparametric truss elements with 

initial prestress and large kinematics (but small strains). 

Since there is only very little guidance for considering the earthquake effects of 

guyed· towers in the Canadian Standard CAN/CSA-S37-94 for structural design of 

antenna-supporting structures, its recommendations are quoted below: 

"4.11 Earthquake Effects (E) 

The effects of earthquake are not covered by this Standard. In most cases 
earthquake effects on towers are less than the effects due to wind, but they 
should be considered for susceptible towers of critical importance (eg, 
post-disaster communication systems) in high earthquake zones (See 
Appendix M). 

[.....J 

Appendix 1"11 - Seismic Analysis of Towers 

Note: This Appendix is not a mandatory part of this Standard. 

[.....] 

M4. Seismic Analysis of Guyed Towers 

Recent numerical studies reported by Guevara (1993) and Guevara and 
McClure (1993) have indicated that if one wishes to perform a detailed 
dynamic analysis of a guyed tower, modelling of the structure must allow 
for geometric nonlinearities and potential interactions between the mast 
and the guy wires. These interactions can be properly assessed only if 
inertia properties of both the mast and the guy wires are correctly 
modelled. The simplified model of a continuous beam on elastic supports, 
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which is still used by some designers to carry out static analyses, is 
therefore not appropriate. The mast itself is relatively lightweight (wind 
forces will be greater than gravity forces) and since its mass is more or 
less linearly distributed over its height, the lateral inertia forces generated 
by seismic excitations of this distributed mass are not going to be as 
significant as the wind forces. The most important seismic effect appears 
to be induced by cable-mast interactions, as transverse cable vibrations 
induce a vertical dynamic force in the mast that may excite its lowest axial 
modes and, as a result, may create significant vertical forces. These effects 
are amplified when vertical input accelerations are combined with the 
usual horizontal accelerations; the vertical effects induced in the mast also 
propagate into the guy wires and generate additional amplifications in the 
cable tensions. Numerical studies have shown that dynamic amplifications 
in the guy wire tensions are more likely to be significant in the top and 
bottom clusters of multi-level guyed towers. 

Detailed nonlinear seismic analyses are far more complex than 
response spectrum analyses, and not always necessary. A frequency 
analysis, as suggested in Section M3, for the initial configuration can help 
to identify the sensitive frequency range of the tower and potential 
interaction effects due to clustered frequencies. This information will help 
the designer decide whether it is necessary to proceed with a more detailed 
nonlinear dynamic analysis. II 

Dynamic analysis of guyed towers under wind loading has been studied recently 

by Ben Kahla (1993, 1994). An equivalent beam-column model with lumped mass has 

been used for the guyed tower. Cable elements were assumed to be perfectly flexible and 

of uniform cross-section between their attachment points. The exact mathematical model 

of an elastic catenary was employed for the formulation of these cable elements. The 

towers studied were subjected to arbitrary combinations of wind, ice and dead weight. A 

fictitious linear viscous damper with 5% critical damping was applied parallel to each 

cable element. The energy dissipation in the material and the friction due to the inner­

strand rubbing can be modelled with these discrete damping elements, and so can the 

aerodynamic damping. Because in moderate and high winds, aerodynamic damping is 

significantly greater than structural damping, aerodynamic damping was modelled and 

structural damping was neglected. Two towers were analyzed using a two-dimensional 

modeJ, both are 146.3 m (480 ft) tall towers with one and three stay levels, respectively. 

Ben Kahla's results have shown that large amplitude oscillations of guy cables are 
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possible. These large oscillations are accompanied by large guy tensions that would likely 

result in the failure and collapse of the structure. These failures could be by breakage of 

one or several guy cables or by local buckling of some of the mast members. Also, the 

lowest cable modes of vibration proved not to be the critical frequencies. This observation 

suggests that the spring-mass model could be invalid to represent guy cables in transient 

analysis, since only the fundamental mode of vibration can be represented by the model. 

Because of the potentially severe consequences of the large amplitude oscillations of guy 

cables, Ben Kuhla recommended detailed dynamic analysis for guyed structures under 

wind loads. It is noted that the Australian code (AS3995(Int)-1991 , 1991) for the design 

of steel lattice towers and masts suggests full dynamic analysis under wind loads for those 

iowers and masts with a fundamental frequency less than I Hz. 

The modelling of tall guyed towers has also been recently studied by Gantes et 

a1. (1993), in relation to an investigation on the collapse of a 579 m (1900 ft) tall guyed 

tower under ice and wind loads. Based on their investigation, some structural analysis 

recommendations relating to the loading and modelling concerns were proposed. Their 

results have shown that an equivalent beam model would be a simple and acceptable 

solution for the mast, while equivalent springs are satisfactory for cable modelling for 

preliminary analysis. A nonlinear truss representation in the sagged configuration was 

suggested for a more exact finite element analysis when cable elements are not available. 

Moossavi Nejad (1996) just published a study of the nonlinear dynamic response 

of guyed masts due to strong ground motion. In this work, a 327 -m guyed radio tower 

with triangular cross-section and five stay levels has been analyzed. Three ground 

accelerograms (two orthogonal horizontal components and one vertical) were generated 

which have a 30 second duration with intensities of 0.3g in the horizontal and 0.2g in the 

vertical directions. Step-by-step integration in the time domain has been used in this 

study. The mast was modelled as an equivalent beam-column, and a mesh of five to nine 

two-node elements is used for guy cable modelling. Two values of logarithmic damping, 

8=4% and 8=8% equivalent to the structural damping ratios of 1;=0.006 and 1;=0.012 were 

employed in the model. The results of this study have indicated that the strong ground 

motion produces a large tension in the guy cables. The results of the seismic analysis 
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were compared to those of static wind analysis. It was found that the maximum base axial 

force and the maximum moment in the mast due to the earthquake load were much larger 

than the corresponding results of the wind load analysis (30% and 170%, respectively). 

However, the maximum tensions in the guy cables due to the earthquake load were 

smaller than those of the wind load analysis (but in the same range). 
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CHAPTER 3 


DETAILED NUMERICAL MODELLING STUDY 


3.1 METHODOLOGY 


In order to develop more complete seismic analysis and design guidelines, a 

comprehensive study of the behaviour of guyed towers under seismic excitation is 

required. It was decided to rely on numerical experiments (Le. detailed full scale 

simulations using the finite element method) in this research, for the following reasons: 

1) 	 Experimental results relating to the overall seismic behaviour of guyed 

telecommunication towers are very rare (not to say that they are 

inexistent); 

2) 	 Since tall guyed towers exhibit significant geometriC nonlinearities, 

experimental studies of scaJed-down physical models of such structures are 

very complex. Also, experimental work on full scale tall guyed towers is 

not feasible at present. 

In this regard, a detailed numerical modelling study of existing guyed 

telecommunication towers subjected to different seismic excitations has been carried out. 

The models include geometric nonlinearities and allow for potential dynamic interaction 
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between the mast and guy wires. The results will be used to develope a simplified method 

to characterize the overall seismic sensitivity of the towers in terms of their essential 

structural properties and the input ground motion, and finally, to propose seismic 

sensitivity indicators. 

3.2 DESCRIPTION OF TOWERS 

In this study, eight existing guyed telecommunication towers were selected for 

detailed modelling. These towers represent different heights, different number of guying 

levels and different geographic locations, as listed in Table 3.1. In practice, guyed towers 

taller than 150 m usually provide economical solutions compared to the self-supporting 

towers. Therefore, the lower height limitation for tall towers could be 150 m, which is a 

common criterion to classify towers with respect to their heights. In this regard, available 

guyed towers taller than 150 m were selected for the simulations. The geometry of each 

tower is illustrated in Figs. 3.1 to 3.8. All the towers are located on level ground. It 

should be mentioned that the 607-m tower is located in Sacramento, California, and is one 

of the tallest guyed telecommunication towers in North America. 

3.3 INPUT GROUND MOTIONS 

3.3.1 Earthquake Accelerograms 

In this research, three classical earthquake accelerograms have been selected for 

use in the numerical simulations. They represent different types of earthquake loading. 

The fIrst is the SOOE 1940 El Centro earthquake containing a wide range of frequencies 

and several episodes of strong ground motion; the second is the N65E 1966 Parkfield 

earthquake representing a single pulse loading with dominant lower frequencies; finally 

the third is the S69E 1952 Taft earthquake with high frequency content and strong 

shaking with long duration. These earthquakes were selected to renect realistic frequency 

contents as exhibited by real ground motions. The three earthquake accelerograms 
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Table 3.1. Guyed towers used in numerical simulations 

_._._ ......... _-_._._-­

Tower Height Number of Guying Number of Number of Panel Width Panel Height 	 Location 
(m) Stay Levels Anchor Groups Outriggers (m) (m) 	 (Source) 

607.1 	 9 3 0 3 2.250 U.S.A., California, Sacramento 
(LeBLANC & Royle Telcom Inc.) 

342.2 	 7 2 1 2 1.524 Canada 
(Wahba et al. 1992) 

313.9 	 5 2 0 2.140 1.524 Canada 
(Wahba et al. 1992) 

213.4 	 7 2 0 1.524 1.524 Canada 
(Wahba et al. 1992) 

200 8 3 0 1.800 1 Argentina, Buenos Aires 
N (Estudio Ing. M. Oberlander) ........ 


198.1 	 6 2 1 2.134 1.524 Canada, Prince Edward Island, Charlottetown 
(Trylon Manufacturing Co. Ltd.) 

152.4 	 8 2 2 0.838 0.610 Canada, Alberta, Elk River 
(AGT, LeBLANC & Royle Telcom Inc.) 

150 7 2 3 1.300 I Canada, Alberta, Little Buffalo 
(LeBLANC & Royle Telcom Inc., AGT) 

Note: All the towers have a triangular cross section of mast, except that of the 200-m tower which is square. 



Fig. 3.1. Geometry of 150-m tower 
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I----------------------------------------------------~----------

ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 

152-m Tower 


Fig. 3.2. Geometry.of 152-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
198-rn Tower 

Fig. 3.3. Geometry of 198-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
200-m Tower 

Fig. 3.4. Geometry of 200-m tower 
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213-m Tower 

Fig. 3.5. Geometry of 213-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
313-m Tower 

Fig. 3.6. Geometry of 313-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
342-m Tower 

Fig. 3.7. Geometry of 342-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
607-m Tower 

Fig. 3.8. Geometry of 607-m tower 
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are shown in Fig. 3.9. Since most of the strong ground motion occurs within the first 

twenty seconds of excitation in these three earthquakes, only the first twenty seconds of 

ground excitation for each reco~d were used for scaling procedure. It should be noted that 

the earthquake direction was selected to coincide with the principal direction of the mast 

cross-section to create maximum seismic effects in bending. This was indicated in Fig. 

1.1 on the plan view of the tower. 
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Fig. 3.9. Earthquake accelerograms 
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3.3.2 Scaling Method 

The earthquake records were scaled to fit as much as possible the elastic design 

spectra of the 1995 National Building Code of Canada (NBC C) for the Victoria region 

(Peak Horizontal Ground Acceleration =0.34g and Peak Horizontal Ground Velocity = 
0.29 mls) which has one of the highest seismicity levels in Canada. The scaling allows 

comparison of the response of the towers for different accelerograms with the same 

intensity. Schiffs scaling procedure (Schiff, 1988) is used. According to Schiff, a scaling 

method based on structural response with respect to peak ground motions, gives less 

dispersion in the response from several earthquake records. Also, for classifying the 

intensity of a ground motion, peak ground motions cannot be an accurate parameter. 

Figure 3.10 illustrates the elastic response spectra for a 5% damped single-degree­

of-freedom system for the first twenty seconds of each earthquake excitation. 
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Fig. 3.10. U nscaled elastic response spectra for five percent damping (Schiff, 1988) 
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The calculation of the scaling factors for the acceleration values of each record is 

done in two steps. The first step is to normalize the earthquake accelerograms so that they 

have the same spectrum intensity (SIv) in the velocity range. Slv is the area under the 

elastic spectrum curve normalized over the specified frequency range. From Dussault's 

thesis (Dussault, 1991): 

1 (T4O ps en.dT (3.1)SI.,. 3.0 -0.5 JT..a.s v 

where PSvis the spectral pseudovelocity and T is the period in seconds. The first scaling 

factor (F t ) can be calculated by normalizing Slv for these earthquake records. They are 

adopted from Dussault's thesis and shown in Table 3.2. These factors tend to group the 

elastic response spectra together. 

Table 3.2. Scaling factors for earthquake accelerograms 

Records SIv F t SIa (g) F2 I F =Fl * F2I I I I I I 

EI Centro 0.613 1.73 1.246 1.19 

Parkfield 1.059 1.00 1.216 0.69 
0.69 

Taft 0.273 3.88 1.676 2.68 

NBCC 1995 0.945 

The second step positions the earthquake records around the NBCC elastic spectra 

by a unique scaling factor of F2• For calculating F2, the spectral intensity in the 

acceleration range (SI,.) of NBCC should be divided by the average of SIll for the three 

records already scaled by F I , given by: 

81 '" 1 (T.0.5 PS (n ·dT (3.2) 
• 0.5 -0.25 Jr..o.25 • 
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where PSa is the spectral pseudoacceleration. The values of F2 for the three accelerograms 

are also shown in Table 3.2. 

The final scaling factor is the product of Fl and F2• 

3.3.3 Combination of Vertical and Horizontal Motions 

Numerical studies reported by Guevara (1993) and Guevara and McClure (1993) 

have indicated that combined horizontal and vertical accelerations may cause adverse 

effects in very tall towers. As reported in Chapter 2, this is now discussed in the most 

recent edition of the Canadian Standard CAN/CSA-S37-94 for structural design of 

antenna-supporting structures. To further verify this phenomenon, the coinbined vertical 

and horizontal earthquake motions are studied in this research. Referring to the National 

Building Code of Canada 1995 (Commentary J), and considering that the ratio of vertical­

to-horizontal accelerations depends on site conditions and varies widely, an average range 

of 2/3 to 3/4 was proposed for this ratio. In this study, a ratio of 3/4 is assumed in the 

absence of real vertical accelerograms. The vertical accelerogram is considered to be 

synchronous with the horizontal one. 

3.4 MODELLING CONSIDERATIONS 

3.4.1 Modelling of Mast 

The mast is a spatial structure with response in all three dimensions. The elements 

making up the masts studied are rolled steel sections. A detailed three-dimensional truss 

model is used for the mast where all elements are pin-ended. This model is more realistic 

than the beam-column model with equivalent properties (using Timoshenko's beam and 

St. Venant torsion theories). When there is asymmetry in the pattern of the diagonals for 

the mast, lateral loading in a principal direction induces coupled bending and torsion in 

the mast: this phenomenon cannot be replicated in the equivalent 3-D frame model which 

does not account for warping torsion (McClure and Guevara, 1994). 
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It should be noted that the cross section of the mast is an equilateral triangle 

(except for the 200-m tower which is square) and its three legs have the same cross­

sectiona,l area; therefore, there are two principal axes and the second moments of area in 

the two principal directions are ~qual to each other. A lumped mass matrix formulation 

is used at the element level, and the material properties are assumed to be linear elastic. 

Treating each element of the mast as a beam element with semi-rigid connections would 

be the most accurate model; however, the more traditional solution of using truss elements 

has proven to provide sufficient accuracy (Gantes et al. 1993). As the displacements and 

rotations of the mast may be large, the large kinematics formulation (with small strains) 

is also considered for the mast in order to account for potential geometric nonlinearities. 

3.4.2 Modelling of Guy Cables 

In the author's opinion, the modelling of the guy cables is as important as that of 

the mast because of the inherent geometric nonlinearities of the guy wires. These 

nonlinearities increase as the guy cables slacken and the amplitude of their oscillations 

becomes larger. Proper simulation of mast and cable interactions is achieved by using an 

appropriate type and number of elements in the cable model, and also the correct 

modelling of inertia properties of both the mast and the guy wires. The wave propagation 

effects along the guy wires and the interactions between the guy cables and the mast 

should be captured by the finite element model. The guy cables are modelled as a linkage 

of truss elements with prestress. There are three types of truss and cable isoparametric 

elements in the ADINA program (two-node, three-node, and four-node elements). Guevara 

and McClure (1993) have conducted a convergence analysis on guy cable meshes that 

proved the three-node element to be the best compromise in terms of accuracy and 

numerical efforts. They have also indicated that 10 to 35 tension-only cable elements are 

required to model the first five transverse modes of a guy cable (since transverse 

vibrations of the guy wires are likely to dominate the axial high-frequency modes). Also, 

Gantes et al. (1993) have suggested that ten straight elements per cable can provide 

satisfactory accuracy. 
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In this research, guy cables are modelled with ten three-node truss elements 

(tension-only). A large kinematic fonnulation (with small strains) is used for the cable 

stiffness to account for full geometric nonlinearities. The stress-strain law is defined only 

in tension to allow for cable slackening effects to be modelled during the earthquake 

vibrations. The lumped mass formulation is employed in the analysis, and material 

properties are assumed to be linear elastic. It should be noted that, because the guy cables 

are initially pretensioned to approximately 10% of their ultimate strength, the initial 

stiffness matrix is always nonsingular. 

3.4.3 ModeHing of Damping 

The damping forces in a guyed tower arise mainly from two sources. The first 

source is structural (material or hysteretic) damping. This damping is partly due to 

frictional damping within t,he twisted strands during any flexing action, mostly when it 

is subjected to transverse vibrations, and partly due to the structural damping in the 

connections of the mast. The other source of damping is aerodynamic, which is caused 

by the viscosity of air. 

Because of the geometric nonlinearities in the cables, their frictional damping is 

both frequency dependent and nonlinear with respect to the amplitude of the motion and 

also varies with the nature of the motion (transverse, axial, or both), which makes it very 

difficult to model in the time domain. Experiments on somewhat lighter cables [10 mm 

(0.375 in.) and 8 mm (0.297 in.) diameters, carbon steel cable] used in power. 

transmission, which had been conducted by Yu (1952), indicated that the equivalent 

viscous damping from this source is not more than 5% of critical equivalent viscous 

damping in the 8-mm cable and 3% in the lO-mm one. 

Damping in the lattice mast depends on the material and the form of construction 

(welded, riveted, bolted). Bolted structures exhibit more damping than welded ones 

because of the energy dissipation at the joints, due to friction in the bolted connections. 

In the case of fully welded structures, the International Association for Shell and Spatial 

Structures (lASS, 1981) recommends equivalent damping values of 1.2% of the critical 
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viscous damping fOf the mast, 2% for high strength friction-bolted steelwork, and 3% for 

normal bolted and riveted steelwork. Nakamoto and Chiu (1985) have suggested that the 

critical damping ratios are of approximately 2-5% for frequencies between 0 and 0.5 Hz, 

and approximately 1-2% for 0.5-5 Hz. 

In this study, an equivalent viscous damper with a value of 2% of critical viscous 

damping is used in parallel with each element to model structural damping. Since the 

earthquake loads are assumed to occur under still air conditions (lASS, 1981), 

aerodynamic damping has not been modelled. Nonetheless, this model is an improvement 

compared to previous studies in the field. 

3.4.4 Numerical Methods 

The nonlinear dynamic analysis is done by direct step-by-step integration in the 

time domain. The numerical integration procedure selected is the Newmark-~ method 

(with 1-0.5 and ~=0.25, i.e. the constant average acceleration method or trapezoidal fule). 

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) equilibrium iteration procedure is 

employed in combination with the Newmark-~ method to solve the nonlinear equations, 

which is very effective compared to the other iteration procedures available, and stiffness 

matrix updates are performed at every time step. Also, the energy convergence criterion 

is used to bound the iteration process. The subspace-iteration procedure is used i~ the 

frequency analysis. 

3.5 COMPUTER PROGRAMS 

3.5.1 Dynamic Nonlinear Finite Element Program 

The nonlinear finite element software ADINA (Automatic Dynamic Incremental 

Nonlinear Analysis) is used in this research (ADINA, 1992). ADINA is a nonlinear 

dynamic analysis software to solve the equations of motion with direct step-by-step 

36 




integration in the time domain. This program is used for displacement and stress analysis. 

3.5.2 Post-Processor Program 

The results of the ADINA program are in the form of time-history records for 

each selected response indicator. Also, the results are given for each element of the mast 

(e.g. legs, diagonals and horizontal elements), and each" cable element. In order to find the 

maximum values of the response along the tower elevation, a post-processor program 

(2300 FORTRAN instructions) was developed during the course of this study. This 

program was created to process detailed results of the following elements of response: 

1) Total Base Shear 

2) Total Weight 

3) Earthquake Force (the resultant lateral force generated by an earthquake 

on the mast at the cable attachment points) 

4) Dynamic Component of Cable Tension 

5) Mast Shear 

6) Dynamic Component of Mast Axial Force 

7) Mast Bending Moment 

8) Dynamic Component of Cable Oscillation 

9) Mast Horizontal Displacement 

10) Dynamic Component of Mast Axial Displacement 

11) Mast Rotation 

This program also calculates the initial values of the above response indicators due to self 

weight and initial cable tension. Since the initial values of total base shear, earthquake 

force, mast shear, mast bending moment, mast horizontal displacement, and mast rotation 

should be zero, they can be used to verify the accuracy of the analysis. 
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CHAPTER 4 

SEISMIC RESPONSE OF GUYED TOWERS 

4.1 FREQUENCY ANALYSIS 


A frequency analysis in the deformed configuration under self weight (tower 

attachments are not included) and cable prestressing forces has been carried out for each 

of the eight guyed towers, and the results of the natural periods are summarized in Tables 

4.1 and 4.2. The five lowest natural periods of the towers are shown in Table 4.1, and the 

period of their fundamental flexural mode is identified in Table 4.2. As it can be seen in 

Table 4.1, there is at least one torsional mode among the five lowest natural modes in 

most of the towers. It is also noted that the 200-m tower has more torsional modes than 

the other towers in its lowest five modes. In this study, since the earthquake 

accelerograms are centric and assumed along a principal direction of the tower, the 

torsional mode is not excited by seismic motions. 

Figure 4.1 represents Table 4.2 graphically. This figure shows an almost linear 

increase of the first flexural period of the towers with height. The only exception is the 

200-m tower,which is very flexible with respect to the other comparable towers. As it will 

be explained in Chapter 5, Sections 5.1.3 and 5.1.4, the initial tension of the guy cables 

of the 200-m tower is relatively small compared to that of the other towers (much less 

than 10% of their ultimate tensile strength). This results in a relatively large initial sag 

in the cables, which makes the equivalent lateral stiffness of the guy clusters small 
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Table 4.1. Lowest five natural periods (s) of towers 

(F =Flexural mode T =Torsional mode) 

Tower Height Mode No. 

(m) 
1 2 3 4 5 

607 4.27 (F) 3.59 (T) 3.58 (F) 2.77 (F) 1.85 (F) 

342 2.21 (T) 2.10 (F) 1.98 (F) 1.58 (F) 1.21 (F) 

313 2.31 T) 2.06 (F) 1.57 (F) 1.24 (T) 1.22 (F) 

213 0.88 (T) 0.80 (F) 0.68 (F) 0.58 (F) 0.50 (F) 

200 2.36 (F) 1.82 (T) 1.48 (F) 1.25 (T) 0.84 (T) 

198 1.22 (T) 0.80 (F) 0.68 (F) 0.56 (T) 0.56 (F) 

152 0.58 (F) 0.53 (F) 0.47 (F) 0.45 (F) 0.37 (F) 

150 0.69 (F) 0.58 (F) 0.50 (F) I 0.40 (F) 0.30 (F) 

Table 4.2. First flexural natural periods of towers 

Tower Height (m) First Flexural Natural Period (s) 

607 4.27 

342 2.10 

313 2.06 

213 0.80 

200 2.36 

198 0.80 

152 0.58 

150 0.69 
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compared to that of the other towers studied. 

To get an estimate of the lowest flexural natural period of guyed towers (whose 

cable initial tension is about 10% of their ultimate tensile strength), the following formula 

is suggested: 

T =0.0083 H - 0.74 (4.1) 

where T is the lowest flexural natural period in seconds and H is the height of tower in 

meters. This formula is applicable for guyed towers with height in the range of 150 to 

607 m. Figs. 4.2 to 4.9 illustate the four lowest flexural natural mode shapes of all eight 

towers. The predominant mode shapes excited by seismic loads will be discussed in 

Chapter 5, Section 5.1.6. 

4.2 RESPONSE INDICATORS 

The results of the detailed numerical simulations of the towers have been analyzed 

in terms of amplitude, time at peak response, and frequency content. The response 

indicators representing the behaviour of the guyed towers are listed below: 

1) Earthquake Force 


2) Dynamic Component of Cable Tension 


3) Mast Shear 


4) Dynamic Component of Mast Axial Force 


5) Mast Bending Moment 


6) Dynamic Component of Cable Oscillation 


7) Mast Horizontal Displacement 


8) Dynamic Component of Mast Axial Displacement 


9) Mast Rotation. 


These response indicators have been chosen to study the seismic behaviour in 
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Fig. 4.1. Lowest flexural natural period versus tower height 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
150-m Tower 

MODE 1 MODE 2 

Fig. 4.2. Four lowest flexural mode shapes of the lS0-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
152-m Tower 

MODE 1 MODE 2 

MODE 3 MODE 4 

Fig. 4.3. Four lowest flexural mode shapes of the 152-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 

MODE 2 


MODE 3 MODE 4 


Fig. 4.4. Four lowest flexural mode shapes of the 198-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
200-m Tower 

MODE 1 


MODE 3 MODE 4 


Fig. 4.5. Four lowest flexural mode shapes of the 2OG-m tower 
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VERSION 6.1.6, 20 OCTOBER 1996 
213-m Tower 

MODE 1 MODE 2 

MODE 3 MODE 4 

Fig. 4.6. Four lowest flexural mode shapes of the 213-m tower 
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20 OCTOBER 1996 

1 MODE 2 


MODE 4 


Fig. 4.7. Four lowest flexural mode shapes of the 313-m tower 
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1I~,~-I-I,lJl VERSION 6.1.6, 20 OCTOBER 1996 

MODE 1 MODE 2 


MODE 4 


Fig. 4.8. Four lowest flexural mode shapes of the 342-m tower 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
607-m Tower 

MODE 1 MODE 2 

MODE 3 MODE 4 

Fig. 4.9. Four lowest tlexural mode shapes of the 607-rn tower 
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details, in order to obtain a proper knowledge of the response of the towers. The first five 

response indicators are the results to use for strength and stability analysis of these 

structures, whereas the last four are used for serviceability considerations. The followings 

define these response indicators more precisely: 

Earthquake Force: The earthquake force is the resultant horizontal cable reaction force 

generated by an earthquake on the mast at the cable attachment points. It therefore 

accounts for inertia effects in both the cables and the mast. 

Dynamic Component of Cable Tension: The dynamic component of cable tension is the 

total cable tension less the initial tension due to self weight and initial prestressing. This 

is the net cabie tension generated by the earthquake. 

Mast Shear: The mast shear is the horizontal resultant force at a cross section of the 

mast due to seismic loading in the earthquake direction. This force is calculated by the 

vector summation of forces in the mast elements at a cross section (i.e. diagonal elements 

are included). 

Dynamic Component of Mast Axial Force: This force is the vertical resultant force at 

a cross section of the mast due to the seismic excitation. It is the total force less the 

initial axial force due to the gravity load and the initial prestressing of the cables. The 

mast axial force is also calculated by the vector summation of forces of the mast elements 

(i.e. diagonal and leg elements). 

Mast Bending Moment: The mast bending moment is obtained by the vector summation 

of forces of the mast elements at a cross section. Both diagonal and leg elements are used 

in this calculation. 

Dynamic Component of Cable Oscillation: This variable represents the magnitude of 

the oscillation of a cable point due to earthquake motion only, and does not include the 
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initial cable sag due to self weight and initial prestressing. This displacement variable 

corresponds to the force variable of the dynamic component of cable tension. 

Mast Horizontal Displacement: This parameter shows the lateral displacement of the 

mast due to the earthquake accelerogram. This displacement parameter corresponds to the 

force parameter of the mast shear. 

Dynamic Component of Mast Axial Displacement: This variable represents the total 

axial displacement minus the initial axial displacement due to self weight and the initial 

prestressing of cables. This displacement corresponds to the force variable of the dynamic 

component of mast axial force. 

Mast Rotation: This parameter is the rotation (tilting) of the mast due to the earthquake 

excitation. It corresponds to the mast bending moment. 

4.3 DETAILED NONLINEAR DYNAMIC ANALYSES 

In this section, 18 figures are presented for each of the eight towers [for example 

Figs. 4.10, 4.11(a,b,c, and d), 4.l2(a,b,c, and d), 4.13, 4. 14(a,b,c, and d), and 4. 15(a,b,c, 

and d) for the 150-m tower]. The first nine figures shows the results of analyses due to 

horizontal earthquake accelerograms only, and the last nine present the results of analyses 

due to combined horizontal and vertical earthquake motions. All results are due to the 

three earthquake excitations of El Centro, Parkfield, and Taft. The vertical axis of all 

figures shows the tower elevation and the locations of guy cluster stay levels. These stay 

levels are marked with two different signs (diamond and asterisk) representing two 

different groups of guy clusters, with reference to their ground attachment points. The 

inner group includes guy clusters which are connected to the inner anchorage points on 

the ground and the outer group comprises guy clusters which are connected to the outer 

anchor. For the towers with three groups of ground anchors, the intermediate group is also 

shown separately (e.g. Fig. 4.28, filled square sign for the 200-m tower). The portion of 
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the mast between two consecutive groups of cables is called the transition zone. 

The first figure (e.g. Fig. 4.10) illustrates the variation of the earthquake forces 

with tower elevation. The next four figures {e.g. Figs. 4. 11 (a, b, c, and d)} shown depict 

the variation of the dynamic component of cable tension, mast shear, dynamic component 

of mast axial force, and mast bending moment along the tower elevation. On a third page, 

there are four figures of four displacement variables {e.g. Figs. 4.12(a, b, c, and d)} 

which correspond to the four force variables of the figures on the previous page {e.g. 

Figs. 4. 11 (a, b, c, and d)}. These figures illustrate the variation of the dynamic component 

of cable oscillation, mast horizontal displacement, dynamic component of mast 

displacement, and mast rotation along the tower elevation. 

Since the variables of the earthquake forces, dynamic component of cable tension 

and dynamic component of cable oscillation are discrete parameters along the tower 

elevation, their data points are connected by dashed line in order to show the trend of 

variation. The solid lines in the other figures are not meant to show that the variation of 

the response indicator between two data points is linear. It only illustrate the trend of that 

response indicator and its continuous nature. 

The parameters of dynamic component of cable tension and dynamic component 

of cable oscillation are the maximum response among the cables of each set and also 

along the cables. For this purpose, four points along the cable were monitored: the two 

end points, the middle point, and the top-quarter point of each guy cable. The other 

response indicators are measured at guy stay levels and at midspan between two stay 

levels. It should be mentioned that all of these responses are envelope curves of the 

maximum amplitudes. 

The figures showing results due to the horizontal earthquake and the corresponding 

figures due to the combined horizontal and vertical earthquake motions, have the same 

scale on their horizontal axis for ease of comparison (with the exception of the dynamic 

component of the mast axial force, where a large effect is expected due to the combined 

horizontal and vertical accelerograms). 

It should be mentioned that all the detailed results of the eight guyed towers 

studied are available in technical reports published by Amiri and McClure (1997, No. 97­
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1, 97-2, 97-3, 97-4, 97-5, 97-6, 97-7, and 97-8). 

4.3.1 IS0-m Tower 

Figures 4.10 to 4.15 show the results of the detailed seismic nonlinear analysis for 

the 150-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results under the horizontal earthquake and the 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.10 and 4.13, the earthquake forces at the stay levels of the 

outer group are larger than those of the inner group. The Parkfield accelerogram has the 

most effect on the earthquake forces, and the EI Centro and Taft accelerograms would be 

in the second and third order in this regard. The intermediate cable Set 5 (from the base) 

at the transition zone is the most excited. There is a discontinuity in behaviour around the 

transition area, between stay levels of Sets 4 and 5. 

In Figs. 4.11(a) and 4. 14(a), it can be seen that the intermediate cable Set 6 (from 

the base) close to the transition part is more excited than the other ones. The Parkfield, 

EI Centro and Taft accelerograms are again in the first, second and third order, 

respectively, in terms of amplitudes of seismic effects. In general, the response increases 

with the tower elevation, and there is a discontinuity in the behaviour around the 

transition zone, between stay levels of Sets 4 to 6. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.11(b and d) and 4.l4(b and d), respectively. These two response indicators increase with 

the tower elevation and their maximum value occurs close to the transition area. There 

is again a discontinuity in behaviour around the transition region, especially in the 

envelope curve of the bending moment. In general, the maximum shear occurs directly 

at the stay levels and the minimum shear occurs at midspan between the two stay levels, 

and vice versa for the mast bending moment (the only exception is stay level #1). The 

responses are consistent for the three accelerograms. 

Figures 4.11 (c) and 4.14( c) represent the dynamic component of mast axial force 

along the tower. As expected, there is no significant axial effect from the load case of 
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horizontal earthquake motion. However, in the case of combined horizontal and vertical 

accelerograms, the El Centro and Taft earthquakes cause considerably larger axial effects 

than the Parkfield earthquake. 

The dynamic component of cable oscillations is shown in Figs. 4.12(a) and 

4.15(a). It is noted that the behaviour is nonuniform around the transition zone. The 

oscillations of the cables of the outer group are larger than those of the inner group 

(except for the Taft accelerogram for which they are about the same). Also, the El Centro 

and Parkfield accelerograms are considerably more exciting than the Taft accelerogram 

for the cables of the outer group. The maximum response occurs around the transition 

area. 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.12(b and d) and 4.15(b and d), respectively. There is also a discontinuity in the 

behaviour around the transition region for both responses, and the maximum horizontal 

displacement occurs close to the transition area. The top part of the tower experiences the 

maximum rotation. The EI Centro and Parkfield accelerograms are more exciting than 

Taft as far as these response indicators are concerned. 

As it can be seen from Figs. 4.12(c) and 4.15(c), the dynamic component of mast 

axial displacement along the tower elevation is negligible in the case of horizontal ground 

motion, and very small (about I cm) in the case of combined horizontal and vertical 

accelerations. 
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4.3.2 152-m Tower 

figures 4.16 to 4.21 show the results of the detailed seismic nonlinear analysis for 

the 152-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results under the horizontal earthquake and the 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.16 and 4.19, the earthquake forces at the stay levels of the 

outer group are smaller than those of the inner group. The Parkfield and EI Centro 

accelerograms have more effect on the earthquake forces than the Taft accelerogram. The 

intermediate cable Set 3 (from the base) close to the transition zone is the most excited. 

There is a nonuniform behaviour around the transition area. 

In Figs. 4.17(a) and 4.20(a), it can be seen that the intermediate cable Set 6 (from 

the base) close to the transition part is more excited than the other ones. The Parkfield 

and EI Centro accelerograms have more effect on the behaviour than the Taft 

accelerogram. There is again a discontinuity in the behaviour around the transition zone. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4. 17(b and d) and 4.20(b and d), respectively. The maximum dynamic effect of these two 

response indicators occurs close to the transition area between stay levels of Sets 3 and 

4. There is a definite discontinuity in these figures around the transition region. The 

maximum shear occurs directly at the stay levels and the minimum shear occurs at the 

midspan between the two stay levels, and vice versa for the mast bending moment. The 

responses are consistent for the three accelerograms. 

Figures 4.17(c) and 4.20(c) represent the dynamic component of mast axial force 

along the tower. As expected, there is no significant axial effect from the load case of 

horizontal earthquake motion. However, in the case of combined horizontal and vertical 

earthquake accelerograms, the Taft accelerogram has the most effect on the dynamic 

component of mast axial force and the El Centro and Parkfield accelerograms would be 

in the second and third order in this regard. 

The dynamic component of cable oscillations is shown in Figs. 4.18( a) and 

4.21 (a). The oscillations of the cables of the outer group are larger those that of the inner 
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group (except for the Taft accelerogram for which they are almost uniform). Also, the EI 

Centro and Parkfield accelerograms are considerably more exciting than the Taft 

accelerogram for the cables of the outer group. In general, this variable increases with the 

stay level elevation (except for the Taft accelerogram). 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.18(b and d) and 4.21(b and d), respectively. There is an obvious discontinuity in the 

behaviour around the transition region for both responses, and the maximum horizontal 

displacement occurs close to the transition area. Again the top part of the tower 

experiences the maximum rotation. The El Centro and Parkfield accelerograms are more 

exciting than Taft as far as these response indicators are concerned. 

As it can be seen from Figs. 4.18(c) and 4.21(c), the dynamic component of mast 

axial displacement along the tower elevation is negligible in the case of horizontal ground 

motion, and very small (about 1 cm) in the case of combined horizontal and vertical 

accelerations. 
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4.3.3 198·m Tower 

Figures 4.22 to 4.27 show the results of the detailed seismic nonlinear analysis for 

the 198-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results under horizontal earthquake and the 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.22 and 4.25, the Taft accelerogram has the most effect on 

the earthquake forces, and the EI Centro and Parkfield accelerograms are in the second 

place. The intermediate cable Set 4 (from the base) at the transition zone is more excited 

than the others. There is a nonuniform behaviour around the transition area, between cable 

Sets 3 and 4. 

In Figs. 4.23(a) and 4.26(a), it can be seen that the intermediate cable Set 5 (from 

the base) close to the transition zone is more excited than the other ones. The Taft 

accelerogram has more effect on the behaviour than the others. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.23(b and d) and 4.26(b and d), respectively. The maximum dynamic effect of these two 

response indicators occurs close to the transition area. There is also a discontinuity in 

behaviour around the transition region. In general, the maximum shear occurs directly at 

the stay levels and the minimum shear occurs at the midspan between the two stay levels, 

and vice versa for the mast bending moment. The responses are consistent for the three 

accelerograms. 

Figures 4.23(c) and 4.26(c) represent the dynamic component of mast axial force 

along the tower. As expected, there is no significant axial effect from the load case of 

horizontal earthquake motion. However, in the case of combined horizontal and vertical 

earthquake accelerograms, the Taft accelerogram has the most effect on the dynamic 

component of mast axial force, and the EI Centro and Parkfield accelerograms would be 

in the second and third order in this regard. 

The dynamic component of cable oscillations is shown in Figs. 4.24(a) and 

4.27(a). It is noted that there is a nonuniform behaviour around the transition zone 

between stay levels of Sets 2 and 3. The oscillations of cables of the outer group are 
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smaller than those of the inner group for all three accelerograms. The Parkfield 

accelerogram has the most effect on the dynamic component of cable oscillation and the 

El Centro and Taft accelerograms would be in the second and third order in this regard. 

The maximum response occurs around the transition area at the lower stay levels. 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.24(b and d) and 4.27(b and d), respectively. There is a discontinuity in the behaviour 

around the transition region for both responses, and the maximum horizontal displacement 

occurs close to the transition area at the upper stay levels. The top part of the tower 

experiences the maximum rotation. The Taft accelerogram is more exciting than the other 

ones as far as these response indicators are concerned. 

As it can be seen from Figs. 4.24(c) and 4.27(c), the dynamic component of the 

mast axial displacement along the tower elevation is very small (1 to 2 cm). 
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4.3.4 200-m Tower 

Figures 4.Z8 to 4.33 show the results of the detailed seismic nonlinear analysis for 

the ZOO-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference (in terms of maximum response) between the results of dynamic 

analysis under the horizontal earthquake and the corresponding results for the combined 

horizontal and vertical earthquake motions. One of the important observations is that the 

response due to the Taft and Parkfield horizontal accelerograms will be interchanged in 

the load case of combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.Z8 and 4.31, the earthquake forces at the stay levels of the 

intermediate group are larger than those of the other two groups. The Taft accelerogram 

has the most effect on the earthquake forces and the EI Centro and Parkfield 

accelerograms come in the second and third order in this regard (in the load case of 

horizontal earthquake). The intermediate cable Sets 4 to 6 (from the base) at the transition 

zones are more excited than the others. There is a nonuniform behaviour around the 

transition areas. 

In Figs. 4.29(a) and 4.3Z(a), it can be seen that the intermediate cable Set 6 (from 

the base) close to the top transition part is the most excited. This response increases with 

the tower elevation. There is a discontinuity in the behaviour around the transition zones, 

and the effect in the top one is more obvious than in the bottom zone. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.29(b and d) and 4.3Z(b and d), respectively. These two response indicators increase with 

height and their maximum dynamic effect occurs close to the top transition area. There 

is also. a discontinuity in these figures around the transition regions. In general, the 

maximum shear occurs directly at the stay levels, and the minimum shear occurs at 

midspan between the two stay levels, and vice versa for the mast bending moment. The 

responses are consistent for the three accelerograms. 

Figures 4.29(c) and 4.32(c) represent the dynamic component of mast axial force 

along the tower. As it can be observed, there is no significant axial effect from the load 

case of horizontal earthquake motion. However, in the case of combined horizontal and 
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vertical accelerograms, the Taft accelerogram has the most effect on the dynamic 

component of mast axial force, and the EI Centro and Parkfield accelerograms come in 

the second and third order in this regard. 

The dynamic component of the cable oscillations is shown in Figs. 4.30(a) and 

4.33(a). As shown, there is a nonuniform behaviour around the transition zones, and it is 

more pronounced in the top region, between stay levels of Sets 5 and 6. The oscillations 

of the intermediate group are larger than those of the other groups. Also, the El Centro 

and Taft acceierograms are considerably more exciting than Parkfield for the cables of 

the intermediate group (in the load case of horizontal earthquake). The maximum response 

occurs around the top transition area, at the stay level of cable Set 5. 

The mast horizontal displacement and rotation are summarized in Figs. 4.30(b and 

d) and 4.33(b and d), respectively. There is a discontinuity in the behaviour around the 

top transition region for both responses, and the maximum horizontal displacement occurs 

close to the top transition area. The top part of the tower experiences the maximum 

rotation. The Taft accelerogram is the most exciting as far as these response indicators 

are concerned (in the load case of horizontal earthquake). 

As it can be seen from Figs. 4.30(c) and 4.33(c), the dynamic component of mast 

axial displacement along the tower elevation is negligible to very small (1 cm) in the case 

of horizontal acceleration, and tends to increase (1 to 3 cm) in the case of combined 

horizontal and vertical accelerations. 
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4.3.5 213-m Tower 

Figures 4.34 to 4.39 show the results of the detailed seismic nonlinear analysis for 

the 213-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results due to the horizontal earthquake and the 

corresponding results due to the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.34 and 4.37, the Taft accelerogram has the most effect on 

the earthquake forces, and the Parkfield and El Centro accelerograms come in the second 

and third order in this regard for the cables of the outer group. The intermediate cable Set 

5 (from the base) close to the transition zone is more excited than the others. There is a 

nonuniform behaviour around the transition area, especially for the Taft input. 

In Figs. 4.35(a) and 4.38(a), it can be seen that the intermediate cable set close to 

the transition part (i.e. Set 3 from the base) is more excited than the other ones. The 

responses are consistent for the three accelerograms, and there is a discontinuity in the 

behaviour around the transition zone. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.35(b and d) and 4.38(b and d), respectively. The maximum dynamic effect of these two 

response indicators occurs close to the transition area. There is a discontinuity in these 

figures around the transition region, especially in the bending moment envelope. In 

general, the maximum shear occurs directly at the stay levels and the minimum shear 

occurs at midspan between the two stay levels, and vice versa for the mast bending 

moment. The responses are consistent for the three accelerograms. 

Figures 4.35(c) and 4.38(c) represent the dynamic component of mast axial force 

along tne tower. As it can be seen, there is no significant axial effect from the load case 

of horizontal earthquake motion. However, in the case of combined horizontal and vertical 

earthquake accelerograms, the Taft accelerogram has the most effect on the dynamic 

component of mast axial force, and the EI Centro and Parkfield accelerograms come in 

second and third order in this regard. 

The dynamic component of cable oscillation is shown in Figs. 4.36(a) and 4.39(a). 

As shown, there is a nonuniform behaviour around the transition zone for the response 
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of the Taft and EI Centro earthquake excitations. This oscillation is larger for the outer 

group than for the inner group (except for the Taft accelerogram for which it is almost 

uniform). The Parkfield accelerogram has the most effect on the dynamic component of 

cable oscillation, and the EI Centro and Taft accelerograms would come in second and 

third order in this regard. The maximum response occurs around the transition area. 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.36(b and d) and 4.39(b and d), respectively. There is a discontinuity in the behaviour 

around the transition region for both responses. The maximum horizontal displacement 

occurs close to the transition area, and the top part of the tower experiences the maximum 

rotation. The Parkfield and Taft accelerograms are more exciting than EI Centro as far as 

these response indicators are concerned. 

As it can be seen from Figs. 4.36(c) and 4.39(c), the dynamic component of the 

mast axial displacement along the tower elevation is negligible to very small (1 to 3 cm). 
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Fig. 4.39. Response of 213-m tower to three base accelerograms (Horizontal + Vertical) 

92 



4.3.6 313-m Tower 

Figures 4.40 to 4.45 show the results of the detailed seismic nonlinear analysis for 

the 313-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results due to the horizontal earthquake and the 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.40 and 4.43, the intermediate cable Set 2 (from the base) 

close to the transition zone is more excited than the others for the earthquake forces. 

There is a nonuniform behaviour around the transition area. The responses are consistent 

for the three accelerograms. 

In Figs. 4.41(a) and 4.44(a), it can be seen that the intermediate cable Set 4 (from 

the base) close to the transition part is more excited than the other ones. As described 

earlier for the earthquake force diagram, there is a discontinuity in the behaviour around 

the transition zone, and the responses are consistent for the three accelerograms. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.41(b and d) and 4.44(b and d), respectively. The maximum dynamic effect of these two 

response indicators occurs close to the transition area, in the bottom part of the mast. 

There is a discontinuity in these figures around the transition region. In general, the 

maximum shear occurs directly at the stay levels and the minimum shear occurs at 

midspan between the two stay levels, and vice versa for the mast bending moment. The 

responses are consistent for the three accelerograms. 

Figures 4.41 (c) and 4.44( c) represent the dynamic component of mast axial force 

along the tower. As expected, there is no significant axial effect from the load case of 

horizontal earthquake motion. However, in the case of combined horizontal and vertical 

earthquake accelerograms, the El Centro and Taft earthquakes have considerably larger 

seismic axial effect than the Parkfield earthquake. 

The dynamic component of cable oscillation is shown in Figs. 4.42(a) and 4.45(a). 

As shown, there is a nonuniform behaviour around the transition zone, in the bottom part 

of the tower. The oscillation of cables of the outer group is smaller than that of the inner 

group. The responses are consistent for the three accelerograms. 
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The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.42(b and d) and 4.45(b and d), respectively. There is a discontinuity in the behaviour 

around the transition region for both responses. The maximum horizontal displacement 

and maximum rotation occur .close to the transition area. The Parkfield and Taft 

accelerograms are more exciting than El Centro as far as these response indicators are 

concerned. 

As it can be seen from Figs. 4.42(c) and 4.45(c), the dynamic component of the 

mast axial displacement along the tower elevation is negligible for the load case of 

horizontal earthquake. This displacement is 3 cm at the top of the tower for the load case 

of combined vertical and horizontal earthquake motions. 
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4.3.7 342·m Tower 

Figures 4.46 to 4.51 show the results of the detailed seismic nonlinear analysis for 

the 342-m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results under the horizontal earthquake and its 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.46 and 4.49, the earthquake forces of stay levels of the 

outer group are smaller than those of the inner group. The responses are consistent for the 

three accelerograms. Cable Set 2 (from the base) is more excited than the others. There 

is also a nonuniform behaviour close to the transition area. 

In Figs. 4.47(a) and 4.50(a), it can be seen that the intermediate cable Set 4 (from 

the base) close to the transition part is more excited than the other ones. As described 

earlier for the earthquake force diagram, there is a discontinuity in the behaviour around 

the transition zone, and the responses are consistent for the three accelerograms. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.47(b and d) and 4.50(b and d), respectively. The maximum dynamic effect of these two 

response indicators occurs in the bottom part of the tower. There is also a discontinuity 

in these figures around Set 2. In general, the maximum shear occurs directly at the stay 

levels and the minimum shear occurs at midspan between the two stay levels, and vice 

versa for the mast bending moment. The responses are consistent for the three 

accelerograms. 

Figures 4.47(c) and 4.50(c) represent the dynamic component of mast axial force 

along the tower. As it could be observed, there is no significant axial effect from the load 

case of horizontal earthquake motion. However, in the case of combined horizontal and 

vertical earthquake accelerograms, the Taft accelerogram has the most effect on the 

dynamic component of mast axial force and the El Centro and Parkfield accelerograms 

come in the second and third order in this regard. 

The dynamic component of cable oscillation is shown in Figs. 4.48( a) and 4.51 (a). 

As shown, there is a nonuniform behaviour around Set 2. The oscillation of cables of the 

outer group is smaller than that of the inner group. The maximum response occurs around 
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Set 2. The responses are consistent for the three accelerograms. 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.48(b and d) and 4.51 (b and d), respectively. There is a discontinuity in the behaviour 

around the transition region for both responses, and the maximum horizontal displacement 

occurs close to the transition area. The top part of the tower also experiences the 

maximum rotation. The responses are consistent for the three accelerograms. 

As it can be seen from Figs. 4.48(c) and 4.51(c), the dynamic component of the 

mast axial displacement along the tower elevation is negligible for the case of the 

horizontal earthquake. This displacement is up to 4 ern at the top of the tower for the load 

case of combined vertical and horizontal earthquake motions. 
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4.3.8 607-m Tower 

Figures 4.52 to 4.57 show the results of the detailed seismic nonlinear analysis for 

the 607 -m tower. Except for the dynamic component of mast axial force, there is not a 

significant difference between the results due to the horizontal earthquake and the 

corresponding results for the combined horizontal and vertical earthquake motions. 

As illustrated in Figs. 4.52 and 4.55, the earthquake forces at stay levels of the 

intermediate group are larger than those of the other groups. The EI Centro and Taft 

accelerograms have more effect on the earthquake forces than the Parkfield for the guy 

cables of intermediate and inner groups. However, the response for the EI Centro and 

Parkfield accelerograms are reversed for the guy cables of the outer group. The 

intermediate cable Set 4 (from the base) at the bottom transition zone is more excited than 

the others. There is again a nonuniform behaviour around the transition areas. 

In Figs. 4.53(a) and 4.56(a), it can be seen that the intermediate cable set close to 

the bottom transition part (i.e. Set 2 from the base) is more excited than the other ones. 

There is also a discontinuity in the behaviour around the transition zones. 

The mast shear and bending moments along the tower elevation are shown in Figs. 

4.53(b and d) and 4.56(b and d), respectively. The maximum dynamic effect of mast 

shear occurs close to the bottom transition area (i.e. Set 2). The maximum dynamic effect 

of mast bending moment occurs close to the transition zones (i.e. Sets 2 and 7). There is 

a discontinuity in these figures around the transition regions. In general, the maximum 

shear occurs directly at the stay levels and the minimum shear occurs at midspan between 

the two stay levels, and vice versa for the mast bending moment. The responses are 

consistent for the three accelerograms. 

Figures 4.53(c) and 4.S6(c) represent the dynamic component of the mast axial 

force along the tower. As expected, there is no significant axial effect from the load case 

of the horizontal earthquake motion. However, in the case of combined horizontal and 

vertical earthquake accelerograms, the El Centro accelerogram has the most effect on the 

dynamic component of mast axial force, and the Parkfield and Taft accelerograms come 

in second order in this regard. 

109 



The dynamic component of the cable oscillation is shown in Figs. 4.54(a) and 

4.57(a). As shown, there is a nonuniform behaviour around the transition zones. The 

responses are consistent for the three accelerograms. 

The mast horizontal displacement and the mast rotation are summarized in Figs. 

4.54(b and d) and 4.S7(b and d), respectively. There is a discontinuity in the behaviour 

around the transition regions for both responses. The maximum horizontal displacement 

occurs close to the top transition area, and the top part of the tower experiences the 

maximum rotation. The Parkfield accelerogram is the most soliciting accelerogram as far 

as these response indicators are concerned (in the load case of horizontal earthquake). 

As it can be seen from Figs. 4.S4(c) and 4.S7(c), the dynamic component of the 

mast axial displacement along the tower elevation is negligible for the load case of 

horizontal earthquake. This displacement is up to 11 centimetres at the top of the tower 

for the load case of combined vertical and horizontal earthquake motions. 
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4.4 TYPICAL BEllAVIOUR 

For most of the guyed towers studied, there are two groups of cable sets 

corresponding to the two groups of anchorage points on the ground. For example, for the 

198-m tower (Fig. 1.1), Sets 1, 2, and 3 are connected to the inner anchor points and Sets 

4, 5, and 6 to the outer ones. In general, there is a nonuniformity in the trend of the tower 

lateral stiffness in the transition portion from inner to outer anchor points (e.g. between 

Sets 3 and 4 in the 198-m tower), and this area is a sensitive portion of the tower. For 

guyed towers with three anchorage points on the ground (e.g. the 200-m and 607-m 

towers), there are two transition zones along the mast. 

From the previous section, the figures of the earthquake force, dynamic component 

of cable tension, mast shear, mast bending moment, dynamic component of cable 

oscillation, mast horizontal displacement, and mast rotation show a nonuniform behaviour 

around the transition area, which reflects the sensitivity of the transition section. Also, 

with the exception of the dynamic component of mast axial force and the mast rotation, 

the maximum dynamic response of the other indicators occurs close to the transition area. 

Except for the response of the dynamic component of mast axial force, there is not 

a significant difference between the results for the horizontal earthquake load case and 

the corresponding results for the load case of the combined horizontal and vertical 

earthquake motions, for all of the guyed towers (with the exception of the 200-m tower). 

Generally, the maximum values of the mast shear occur directly at the stay levels 

and the minimum shear occurs at midspan between two stay levels, and vice versa for the 

mast bending moment. Also, there is no significant axial effect from the load case of 

horizontal earthquake motion. 

4.5 SERVICEABILITY CONSIDERATIONS 

Antenna-supporting towers must meet strict serviceability criteria that are 

established by their owners in view of the particular use of the tower. Seismic 

amplifications of displacements and rotations may affect the top part of the tower where 
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the antennas are attached, but they should not result in any local permanent deformation 

after the earthquake. Such deformations may result in a loss of serviceability resulting in 

unacceptable signal attenuation. Table 4.3 summarizes the maximum horizontal 

displacement along the tower height. Generally, the lateral displacements in the 

earthquake direction are small, in the range of 0.05% to 0.12% of the tower height. This 

result confirms that the towers are not very flexible. It should be mentioned that due to 

serviceability requirements, the mast, in spite of being slender, cannot be very flexible. 

The displacement of the top (a usual antenna location) is smaller than that of some other 

locations, which emphasizes the imp0l1ance of serviceability at this location. 

Table 4.3. Maximum horizontal displacement of the towers along mast 

Max Horizontal Max Horizontal Displacement 

Tower Height (m) Displacement (m) ---------------------------------------­ % 
Tower Height 

607 0.31 0.05 

342 0.26 0.08 

313 0.23 0.07 

213 0.21 0.10 

200 0.22 0.11 

198 0.23 0.12 

152 0.14 0.09 

150 0.16 0.11 

Moossavi Nejad (1996) has recently reported the seismic response of a 327-m 

tower. From his results, the maximum horizontal displacement along the mast was found 

to be about 0.10% of the tower height. It should be noted that the intensity of the 
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resultant horizontal ground motions used was 0.42g, whereas the one used in this thesis 

is 0.34g (Peak Horizontal Ground Acceleration of Victoria). After comparing the two 

values, ~t can be concluded that his result for the maximum lateral displacement of the 

mast is comparable to the one obtained here. 

As shown in Table 4.4, the tilting of the top of the mast in each tower is less than 

0.5 0 
, which is the usual serviceability criterion for most reflector antennas. It should be 

mentioned that this part of the tower usually experiences the maximum rotation. 

Table 4.4. Maximum rotation of the towers along mast 

Tower Height (m) Maximum Mast Rotation (degree) 

607 0.27 

342 0.28 

313 0.29 

213 0.34 

200 0.31 

198 0.37 

152 0.36 

150 0.33 

The maximum dynamic component of cable oscillation of the eight towers is 

illustrated in Table 4.5. It is observed that these quantities are small with respect to the 

tower heights. Therefore, very large oscillations of guy cables would not be expected. 

The dynamic component of the mast axial displacement along the tower elevation 

is very small (inferior to a few centimetres) for most of the guyed towers. 
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Table 4.5. Maximum dynamic component of cable oscillation for the towers along mast 

Tower Height (m) Maxi~um Dynamic Component of 

Cable Oscillation (m) 

607 1.01 

342 0.80 

313 1.31 

213 0.35 

200 0.48 

198 0.43 

152 0.31 

150 0.31 
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CHAPTER 5 


RESULTS AND DISCUSSIONS 


5.1 ESSENTIAL CHARACTERISTICS OF THE TOWERS 

5.1.1 Weights of Mast and Cables 

The detailed weights of the mast and the cables for the eight guyed towers studied 

are summarized in Table 5.1 and shown graphically in Fig. 5.1. It is observed that the 

mast accounts for 69% to 77% of the total tower weight, leaving 23% to 31 % to the guy 

cables. Tower attachments such as antennas and accessories (e.g. ladder, transmision lines, 

lights for aircraft warning, etc.) are not included in the total weights. 

5.1.2 Mass Distribution of Mast 

The mass distribution along the mast for the eight towers is illustrated in Table 

5.2 and Figs. 5.2 to 5.9. It is seen that the variation of the mass of the mast along the 

height of the towers is almost uniform for most towers. Exceptions are due to the 

presence of torsional resistors (or outriggers) in the 150-m (Fig. 5.2) and 152-m (Fig. 5.3) 

towers. In the 607-m tower (Fig. 5.9), the mast becomes lighter in the top portion around 

the top three guy stay levels. 
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Table 5.1. Detailed weights of mast and cables of the eight towers 

Tower Structural 
Component 

Cable 

607-m Mast 

Total 

Cable 

342-m Mast 

Total 

Cable 

313-m Mast 

Total 

Cable 

213-m Mast 

Total 

Cable 

200-m Mast 

Total 

Cable 

198-m Mast 

Total 

Cable 

152-m Mast 

Total 

Cable 

150-m Mast 

Total 

Weight (kN) % of Total 
Weight 

1595 31 

3578 69 

5173 100 

287 28 

754 72 

1041 100 

306 23 

1033 77 

1339 100 

91 31 

205 69 

296 100 

95 28 

249 72 

344 100 

180 25 

535 75 

715 100 

36 28 

91 72 

127 100 

105 31 

229 69 

334 100 

122 




650 


600 


550 


500 


450 


400 


--e 
'-" 350
.E 

QI) 

~ ... 
Q) 

300
~ 
~ 

250 


200 


150 


100 


Cable Mast 


• 0 

o 
o 	 10 20 30 40 50 60 70 80 90 100 


(WeightITotal Weight)% 


Fig. 5.1. Weight of mast and cable versus tower height 


123 


50 



Table 5.2. Mass distribution of mast of the guyed towers 
(* stabilizer location) 

=========================================================== 

Cell No. 

o 
9 
17.5 
25 
32.5 * 
43.5 
54.5 
65 
75.5 
85.5 
95.5 * 
106.5 
117.5 
129 
140.5 * 
150 

Tower Height em) ;' 150 

Mast Weight (kN) Mass per unit length (kg/m) 

207.93 105.25 
198.64 128.48 
187.93 111.35 
179.74 239.28 
162.14 170.56 
143.74 138.12 
128.84 103.13 
118.22 130.91 
104.74 73.31 
97.55 188.44 
79.07 143.31 
63.61 124.86 
50.14 108.97 
37.85 107.38 
25.74 276.28 
o 

Panel Height = 1 m Average Mass; 141.35 kg/m 
=========================================================== 

Tower Height (m) ; 152 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 

o 87 64.76 
14 81. 58 69.78 
28 75.74 69.58 
43 69.5 69.81 
58 63.24 56.14 
74 57.87 114.41 
89 * 47.61 60.67 
100 43.62 61.00 
115 38.15 53.30 
130 33.37 57.47 
144 28.56 44.94 
159 24.53 48.40 
174 20.19 47.99 
190 15.6 64.71 
206 * 9.41 36.06 
224 5.53 40.52 
242 1.17 24.46 
250 o 

Panel Height = 0.6096 m Average Mass = 58.21 kg/m 
=========================================================== 
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Table 5.2. (Continued) 

Tower Height (m) = 198 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 

0 501.28 248.62 
9.5 465.98 297.07 
19.5 421. 58 306.20 
30.5 371.24 302.79 
41. 5 321. 46 280.41 
52.5 275.36 269.27 
63.5 231.09 226.27 
74.5 193.89 295.06 
85.5 145.38 310.15* 
96.5 94.39 228.34 
107.5 56.85 177.49 
118.5 27.67 168.30 
129.5 0 

Panel Height = 1.524 m Average Mass = 258.99 kg/m 

Tower Height (m) = 200 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 

0 244.84 105.90 
7 237.57 148.29 
14 227.39 145.51 
24 213.12 148.31 
33 200.03 128.11 
44 186.21 118.18 
54 174.62 121.51 
66 160.32 120.88 
77 147.28 120.49 
89 133.1 124.91 
101 118.4 130.68 
114 101.74 134.60 
127 84.58 129.43 
141 66.81 111.15 
155 51.55 106.32 
170 35.91 119.81 
184 19.46 124.02 
200 0 

Panel Height = 1 m Average Mass = 124.83 kg/m 
=========================================================== 
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Table 5.2. (Continued) 

=========================================================== 
Tower Height (m) = 213 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 
-----­ ---------------------­ ------­ _.... _---­

o 194.4 104.88 
8 181. 86 131.52 
15 168.1 120.10 
25 150.15 108.73 
35 133.9 101. 27 
46 117.25 108.73 
56 101 76.81 
66 89.52 96.12 
75 76.59 90.86 
85 63.01 83.10 
95 50.59 75.20 
105 39.35 83.10 
115 26.93 69.99 
125 16.47 83.03 
135 4.06 54.33 
140 0 

Panel Height = 1.524 m Average Mass = 92.91 kg/m 
=========================================================== 

Tower Height (m) = 313 

Cell No. Mast weight (kN) Mass per unit length (kg/m) 

o 1004.13 323.09 
17 922.04 373.61 
32 838.28 359.24 
54 720.16 363.63 
75 606.03 360.50 
100 471. 33 362.33 
117 379.27 265.08 
139 292.11 329.19 
160 188.79 298.66 
184 81.66 251.65 
201 17.72 237.12 
206 o 

Panel Height = 1.524 m Average Mass 326.14 kg/m 
=========================================================== 
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Table 5.2. (Continued) 

=========================================================== 
Tower Height (m) = 342 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 

0 740.13 270.1.8 
15 679.56 286.03 
29 619.71 272.67 
46 550.43 336.63 
62 469.93 266.02* 
79 402.34 239.53 
95 345.06 228.1.2 
112 287.1 229.45 
128 232.23 1.84.21 
144 188.18 190.86 
160 142.54 162.63 
177 101.22 157.32 
1.93 63.6 1.33.02 
209 31.. 79 1.32.94 
225 0 

Panel Height = 1.524 m Average Mass 220.09 kg/m 
=========================================================== 

Tower Height (m) = 607 

Cell No. Mast Weight (kN) Mass per unit length (kg/m) 

0 3468.88 673.90 
1.1 3305.31 748.81 
21 3140.08 746.89 
36 2892.87 805.51 
SO 2644.03 692.59 
66 2399.51 768.07 
81 21.45.29 667.81. 
97 1.909.52 61.0.99 
112 1.707.29 555.90 
128 1511.. 03 599.45 
143 1312.62 597.64 
1.58 1114.81 751.. 24 
173 866.16 615.69 
189 648.79 479.45 
204 490.1 353.15 
220 365.42 369.56 
235 243.1 341.. 25 
251. 122 .. 62 301. 83 
266 22.72 257.41 
270 0 

-------- - -- -------- --------- ------ ----_ .... -­
Panel Height = 2.25 m Average Mass 582.25 kg/m 
=========================================================== 
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5.1.3 Initial Sag of Guy Clusters due to Self Weight and Initial Prestress 

The initial sag of guy clusters due to self weight and initial prestress is 

summarized in Table 5.3 and Figs. 5.10 to 5.15. There are two different parameters in the 

table and figures. The first one is the initial cable sag in m for each stay level. This is 

shown in Figs. 5.10 to 5.12. The second parameter represents the percentage of the initial 

sag of each cluster to the total cable length. This is illustrated in Figs. 5.13 to 5.15. These 

curves also represent the degree of geometric nonlinearity of the towers. For easier 

comparison of the results, the 607-m tower is taken out of Figs. 5.10 and 5.11. The 342-m 

and 313-m towers are taken out of Figs. 5.11 and 5.12, for the same reason, in order to 

focus the study on the 200-m height. The same is done for Figs. 5.13 to 5.15. As it can 

be seen in Figs. 5.11 and 5.14, the lower guy cables of the 342-m tower have larger 

initial sags than those of the other tower with comparable height (313-m tower). One 

important observation from these results is that the 200-m tower has a significant initial 

cable sag (with maximum difference about 2 to 2.5%) compared to the other towers of 

comparable height, especially for the longest guy cables (Figs. 5.12 and 5.15). 

The initial tension of each guy cluster is listed in Table 5.4 for all eight towers. 

It is also expressed as a percentage of the cable ultimate tensile strength. For all cases the 

initial tension varies from 8% to 12% of ultimate strength. However, it is in the range of 

3% to 6% for the 200-m tower. This is consistent with the previous observation that the 

200-m tower has relatively slack cables. 

5.1.4 Equivalent Lateral Stiffness of Guy Clusters 

The lateral stiffness of each guy cluster is summarized in Table 5.5, and it is also 

illustrated separately for each tower in Figs 5.16 to 5.23. It should be noted that there are 

two different stiffness values in Table 5.5. The first one is 1<:0, the lateral stiffness of taut 

guy clusters (without sag), and it represents the stiffness of a straight rod. Since the cables 

are prestressed, all the cables in a cluster will contribute to the lateral stiffness, according 

to 
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Table 5.3. Initial sag (m) of guy clusters due to self weight and initial prestress 

Tower 
Height (m) 

1 2 3 4 

Set No. 

5 6 7 8 9 

Anch Inner Intermediate Outer 

607 Sag 

% 

1.49 

1.01 

2.12 

1.18 

2.67 

1.16 

10.2 

2.58 

11.4 

2.57 

12.7 

2.56 

24.3 

3.74 

26.4 

3.77 

31.1 

4.13 

Acnh Inner Outer 

342 Sag 

% 

2.21 

1.12 

4.20 

1.95 

4.33 

1.78 

4.93 

1.78 

7.66 

2.20 

9.03 

2.34 

9.84 

2.31 

Anch Inner Outer 

313 Sag 

% 

1.21 

0.90 

1.79 

1.06 

2.25 

1.03 

7.51 

2.32 

8.61 

2.31 

Anch Inner Outer 

213 Sag 

% 

0.41 

0.53 

0.48 

0.53 

0.60 

0.53 

2.43 

1.18 

2.68 

1.20 

2.94 

1.20 

3.16 

1.18 

200 

Anch 

Sag 

% 

Inner 

0.25 o~ 
0.59 0.71 

Intermediate 

2.08 2.74 3.06 

1.83 2.17 2.15 

5.47 

2.88 

Outer 

5.70 

2.72 

8.19 

3.53 

Anch Inner Outer 

198 Sag 

% 

0.58 

0.69 

0.68 

0.67 

0.84 

0.67 

1.97 

1.08 

2.22 

1.07 

2.49 

1.06 

Anch Inner Outer 

152 Sag 

% 

0.85 

0.94 

0.90 

0.95 

0.92 

0.89 

1.01 

0.90 

1.12 

0.90 

1.76 

1.13 

1.89 

1.12 

2.11 

1.13 

Anch Inner Outer 

150 Sag 

% 

0.40 

0.60 

0.41 

0.57 

0.55 

0.65 

0.64 

0.65 

1.51 

0.99 

1.84 

1.10 

1.82 

0.99 

Anch =Guy clusters attached to Inner, Intermediate or Outer anchor 
Sag =Initial sag of guy clusters due to self weight and initial prestress (m) 
% =(initial sag/cable length) 100 

137 



........ 
e 
'-" 

l! 
'0 
~ 

::c: 
loot 

~ 
0 

f-< 

650 

600 

/ •/ 

/ 
/ 

550 / 
/ 

/ 
/ 

I 

f *'500 

f 

I 


I 

I 


450 -'* 
400 
 .­I 


I 


350 

•I 


300 I 

I 


I I 

I I 


I I 


~ I 


II 

I


II 


250 
II 


{ij,,*/ , 
// /, 

/,/ I ./ 
/ /' 


~ ,/ ,/'

200 I/;:[J 

I I
~,' 
,I 

CJ 
'150 

" ' 

, 

100 


50 


0 
0 4 8 12 16 20 24 28 32 


Initial sag of guy clusters (m) 


150-m 152-m 198-m 200-m 213-m 313-m 342-m 607-m 

- - 0 -- - --- --* - -)<E --0 - - -* 
Fig. 5.10. Initial sag of guy clusters due to self weight and initial prestress versus 

tower elevation 

. 138 




650 


600 

550 

500 

450 

,-., 
e 
'-"-..c 
00 
'0 
::c: .... 

Q,) 

~ 
~ 

400 

350 

300 

250 

200 

150 

100 

50 

0 
0 2 

150-m 

- -0-­

152-m 

--tt­

/ 

/ 
I 

o 
/ 

/ / 

I // 

I / 

8 
/ 

, 
! -.- ­_---r 

4 6 8 10 

Initial sag of guy clusters (m) 

198-m 200-m 213-m 313-m 342-m 

--'0-­-*-­
Fig. 5.11. Initial sag of guy clusters due to self weight and initial prestress versus 

tower elevation 

139 




---

220 


198 f ­

,, 
176 I ­ X 

154 f-	 , +
I 

XI 

-132 

.....,a 
..... 
..t:: 
00

'Q) 110 
{:I: 

­

I

"'" 
~ 
~ 

-88 

{ 

! 

66 I-	
I 

I 
{ 

I 

~.
,"
I: 	 . / 

/ 


/


44 ~ ::: 
I I 

22 

Io 
o 	 2 4 6 8 10 

Initial sag ofguy clusters (m) 

150-m 152-m 198-m 200-m 213-m 

Fig, 5.12. Initial sag of guy clusters due to self weight and initial prestress versus 
tpwer elevation 

140 



650 


600 
I 

I•
I 

I 
I 

550 /•
500 

450 * 
400 

--. 
g 
~ 350 

~! 300 

250 

200 

150 

100 

50 

o 
o 2 3 4 5 

Ratio of initial sag to cable length (%) 

150-m 152-m 198-m 200-m 213-m 313-m 342-m 607-m 

--*-­0-- ---11--­

Fig. 5.13. Ratio of initial sag of guy cluster to cable length versus tower elevation 

141 




650 


600 

550 

500 

450 

-­E 
'-" ..... 
...s:: 
0.0 
'0 
::z:: 
'"' Q) 

~ 
0 

Eo-< 

400 

350 

300 

250 

200 

150 

100 

50 

\ 

\ 

\ 
\ ,_ 

.J= T 
+- ' 

-1-- ­

" 
\ 

---+ 

o 
o 1 2 

Ratio of initial sag to cable length (%) 

3 4 

150-m 152-m 198-m 200-m 213-m 313-m 342-m 

o - -­

Fig. 5.14. Ratio of initial sag of guy cluster to cable length versus tower elevation 

142 



220 

>.( 

198 

I 
*'I 


176 I :A( 

I 


* 
I 


154 
 , 

:;X 
, 

Q I' 

I I
\ I; 

I 

I 
I 


132 " I
*:t\ i I 


I \' I 
-e 
l: 
'"-' I~I 


I 


,I,
00
'Q) I 

I 

V ,
110 
 I 

II
::I: 

I 
III 


/ / I ;
I 


I I I 
'"' I
~ / It 

0 / 
I 


f-o 
 15 

II 


~ 

I 


I 

88 I~ 

I 


I
I 

I 


d 
" 


I 


, I 

I 


66 


" Ci1 1\1 
,I 

, , , I ,
44 , ,, , 

I, 

•~y I I 


K? 
, I 


22 XI' 

III
~ 

o 
o 1 


+­
/ 

/ 
/ 

/ 
/ 

/ 

+' 

4­
/ 

/ 
/ 

/ 

I 


/ 

/ 

I 


I 


I 


;f
I 


2 3 


Ratio of initial sag to cable length (%) 

150-m 152-m 198-m 200-m 213-m 

0-- --*--tl-- ­

Fig. 5.15. Ratio of initial sag of guy cluster to cable length versus tower elevation 


143 


4 



Table 5.4. Initial tension of guy clusters 

Tower Set No. 
Height (m) 

1 2 3 4 5 6 7 8 9 

Anch Inner Intermediate Outer 

LT. 130 108 108 108 108 108 97607 108+108 
% 12 10 10 10 10 10 10 10 9.0I 

Anch Inner Outer 

I.T. 159 91 100 100 103 97 97342 

% 15 8.4 9.3 9.3 9.5 9.0 9.0 

Anch Inner Outer 


LT. 129 108 108 85 86
313 
% 12 10 10 7.9 I 7.9 

Anch Inner Outer 


LT. 129 129 129 129 127 127 129
213 

% 12 12 12 12 12 12 12 

Anch Inner Intermediate Outer 

LT. 62 51 51 43 43 44 47 35200 

% 5.7 4.7 4.7 4.0 4.0 4.1 4.4 3.2 

Anch Inner Outer 


LT. 105 107 107 107 108 108
198 

% 9.7 9.9 9.9 9.9 10 10 

Anch Inner Outer 

LT. 87 87 92 92 91 91 91 90152 
% 8.1 8.1 8.5 8.5 8.4 8.4 8.4 8.3 

Anch Inner Outer 


LT. 108 105 106 105 108 108 108
150 

% 10 9.7 9.8 9.7 10 10 10 

Anch =Guy clusters attached to Inner, Intermediate or Outer anchor 
LT. = Initial tension of guy clusters (MPa) 
% =(Initial Tension/Ultimate Tensile Strength) 100 
Ultimate Tensile Strength =1080 MPa 
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leo =2AE*Cos2a/L (5.1) 

leo =lateral stiffness of guy cluster without sag 

A =cross sectional area of cable 

E =modulus of elasticity 

a. =angle of cable to horizon 

L =length of cable 

Equation (5.1) is derived for towers with three or four cables symmetrically arranged in 

each guy cluster. 

The second parameter in Table 5.5 is k, the lateral stiffness of guy clusters 

accounting for the sag. A comparison of these two parameters indicates the importance 

of geometric nonlinearity. Since the variation of the effective lateral stiffness of a guy 

cluster (k) is nonlinear with the amplitude of the horizontal displacement of the anchor 

point on the tower, the lateral stiffness was evaluated for a range of lateral displacements 

of the mast from 10% to 100% the maximum displacement observed in seismic analyses. 

Since there is no significant variation in the measurements (in general, variations are in 

the range of 10 to 15%), their average value is taken to represent the lateral stiffness of 

each guy cluster. The percentage values in Table 5.5 represent the ratio of k to ko. 

In the 150-m (Fig. 5.16), 152-m (Fig. 5.17), 198-m (Fig. 5.18), 213-m (Fig. 5.20) 

and 342-m (Fig. 5.22) towers, it is observed that the equivalent lateral stiffness of the guy 

clusters generally decreases with the elevation. However, since the guy clusters are 

designed to control the serviceability of the mast, more stiffness is provided close to the 

antenna attachment levels than at the intermediate levels. This is not the case for the 200­

m and 313-m towers. Also in the 607-m tower, the stiffness of the guy clusters decreases 

with the elevation for the cables connected to the inner ground anchor point, but it is 

more or less constant for the two other clusters. In all the towers, the stiffness of the 

bottom guy clusters is relatively large such that they mimic a fixed support. 
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Table 5.5. Lateral stiffness of guy clusters (kN/m) 

Set No. 
Tower Height (m) 

1 2 3 4 5 6 7 8 9I I I I I I I I I I I 

k, 1886 2006 1166 610 590 664 338 558 290 

k 1054 855 509 79 81 98 23 40 17 
607 

% 56 43 44 13 14 15 7 7 6 

Anch. Inner Intermediate Outer 

620 350 348 320 290 218 

k 386 liS' 72 86 56 44 36 
342 


% 80 19 21 25 18 15 17 


Anch. Inner Outer 

k., 1026 906 470 810 356 


k I 639 410 216 125 54 

313 


% 62 45 46 15 15 


Anch. Inner Outer 

len 810 492 312 278 256 266 266 

k 517 330 209 126 114 84 117 
213 


% 64 67 67 45 45 32 44 


Anch. Inner Outer 

ko 804 602 374 348 244 304 226 288 

k 441 302 49 31 24 17 16 10 
200 

% 55 50 13 9 10 6 7 3 

Anch. Inner Intermediate Outer 

1438 1226 650 1096 514 510 


k 821 747 400 499 • 239 219 


~ 

198 

% 57 61 62 46 46 43 


Inner Outer 

k, 272 230 490 188 182 156 244 142 

k 188 117 230 • 94 92 64 97 • 54 
152 


% 69 51 47 50 51 41 40 38 


Anch. Inner Outer 

988 1264 700 584 560 478 1030k" 


k 907 887 ' 480 399 284 ' 238 
 406 • 
150 


% 92 70 69 68 51 50 39 


Anch. Inner Outer 

k" lateral stiffness of guy cluster without sag == 2AE*Cos2a1L 
k lateral stiffness of guy cluster 
% == (klko) I00 
Anch. == guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

Outrigger location 
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Fig. 5.20. Lateral stiffness of guy clusters versus tower elevation in 213-m tower 
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152 



I I I Io 
o 50 100 150 200 250 300 350 400 

Lateral Stiffness (kN/m) 

Inner Anchor Outer Anchor 

• 
Guy clusters attached to: 
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5.1.5 Sensitive Region 

As it was pointed out in Section 4.4, there is a common feature in all eight towers 

studied. Six of the towers (all e:x,cept the 200-m and 607-m towers) comprise two groups 

of cable sets corresponding to the two groups of anchorage points on the ground. For 

example, for the 213-m tower in Fig. 3.5, cable sets 1,2, and 3 are connected to the inner 

anchor points close to the base of the mast, and Sets 4, 5, 6, and 7 are connected to the 

outer anchor points. This results in a nonuniformity in the trend of the tower lateral 

stiffness in the transition portion (e.g. between Sets 3 and 4 in the 213-m tower). This 

non uniformity tends to force the mast to behave as two independent sections, above and 

below that transition zone. In terms of the transverse shear, this area becomes a sensitive 

portion of the tower. For the 200-m and 607 -m towers, there are three groups of cables 

(inner, intermediate and outer anchor points), and as a result one can identify two 

sensitive regions along the tower. It can also be seen in Table 5.5 that there is a clear 

discontinuity in the lateral stiffness of each group of guy clusters. 

5.1.6 Anticipated Predominant Mode Shape of Mast 

The frequency analysis of the towers was discussed in Section 4.1. One important 

observation obtained was the shape of the lowest flexural mode. It has been found that 

for most of the towers (lSO-m, 152-m, 198-m, 213-m and 342-m towers), one of the guy 

clusters close to the top region is stiffer than the other intermediate ones, as discussed in 

Section 5.1.4. As a result, the top part of the towers behaves more or less like a pinned 

support, as it is shown in the mode shapes of Figs. 5.24 to 5.28. Therefore, the lowest 

flexural mode of the mast is similar to the second lowest mode of a cantilever structure. 

Clearly, the location of the ground anchorage point cannot alone explain the observed 

behaviour as the relative lateral stiffness of guy clusters also plays a major role. However, 

this is not true for the 200-m, 313-m and 607-m towers which have more flexible upper 

guy clusters. As a result, the first flexural mode of these towers is similar to the lowest 

mode of a cantilever structure, and the second flexural mode is then similar to the first 
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flexural mode of the other towers. The lowest two mode shapes of these three towers are 

shown in Figs. 5.29 to 5.34. 

5.2 FUNDAMENTAL PARAMETERS OF SEISMIC RESPONSE 

5.2.1 Base Shear 

Tables 5.6 and 5.7 list the maximum base shears calculated for the eight towers 

subjected to the three earthquake accelerograms studied. The base shears were obtained 

by the summation of all horizontal reactions at the ground supports of cables and mast. 

In both tables, the detailed weights of cables and mast are indicated separately. Table 5.6 

presents separately the contributions of the mast and the cables to the base shear. These 

contributions are also expressed as a percentage of the total weight of the towers. Table 

5.7 is similar to Table 5.6, except that the contributions of the mast and the cables are 

calculated as a percentage of the total base shear instead of the total weight of the tower. 

All these numerical results are graphed in Figs. 5.35 to 5.38. The total base shears vary 

in the range of 40% to 80% of the total weights for towers shorter than 213 meters, and 

in the range of 15% to 30% of the total weights for towers taller than 313 meters. 

According to Fig. 5.37 the contribution of the mass of the cables to the total base shear 

is almost constant in the range of 3% to 5% of the total weight of tower. It is interesting 

to note that although 25% to 30% of the total mass is contributed by the cables in the 

case of towers shorter than 213 meters, only 5% to 10% of the total base shear is 

contributed by the cables. For the towers taller than 313 meters the relative contribution 

of the cables compared to that of the mast increases with height, especially for the El 

Centro input acceierogram. As it is shown in Fig. 5.38, the 607-m tower has a different 

response compared to that of the other towers, in which its cables are more excited by the 

El Centro earthquake. 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
150-m Tower 

MODE 1 

Fig. 5.24. First flexural natural mode shape of mast in the 150-m tower (T =0.69 s) 

157 




ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
~'52-m Tower 

MODE 1 

Fig. 5.25. First flexural natural mode shape of mast in the 152-m tower (T = 0.58 s) 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
198-m Tower 

MODE 1 

Fig. 5.26. First flexural natural mode shape of mast in the 198-m tower (T = 0.80 s) 
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OCTOBER 1996 

MODE 1 


Fig. 5.27. First flexural natural mode shape of mast in the 213-m tower (T = 0.80 s) 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
342-m Tower 

MODE 1 

Fig. 5.28. First flexural natural mode shape of mast in the 342-m tower (T =2.10 s) 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
200-m Tower 

MODE 1 

Fig. 5.29. First flexural natural mode shape of mast in the 200-m tower (T = 2.36 s) 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
200-m Tower 

MODE 2 

Fig. 5.30. Second flexural natural mode shape of mast in the 200-m tower (T = 1.48 s) 
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ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
313-m Tower 

MODE 1 

Fig. 5.31. First flexural natural mode shape of mast in the 313-m tower (T = 2.06 s) 
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MODE 2 

Fig. 5.32. Second flexural natural mode shape of mast in the 313-m tower (T = 1.57 s) 

165 




ADINA-PLOT VERSION 6.1.6, 20 OCTOBER 1996 
607-m Tower 

MODE 1 

-----------------------~~~---

Fig. 5.33. First flexural natural mode shape of mast in the 607-m tower (T =4.27 s) 
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Table 5.6. Base shears (B.S.) and detailed weights (W) of towers in kN 
(Reference to total weight) 

Accelerogram 
Tower Weight 

EI Centro Parkfield Taft 

%W B.S. %W B.S. %W B.S. I %W 

Cable 1595 31 253 5 198 4 172 3 

Mast 3578 69 489 9 812 16 743 14607-m 
Total 5173 100 742 14 1010 20 915 17 

Cable 287 28 44 4 37 3 40 4 

Mast 754 72 214 21 196 19 235 22 . 342-m 
Total 1041 100 258 25 233 22 275 26 

Cable 306 23 44 3 36 3 41 3 

Mast 1033 77 247 19 295 22 339 253l3-m 
Total l339 100 291 22 331 25 380 28 

Cable 91 31 14 5 11 4 15 5 

Mast 205 69 l30 44 142 48 161 542l3-m 
Total 296 100 144 49 153 52 176 59 

Cable 95 28 15 4 11 3 15 4 

Mast 249 72 146 43 142 41 156 45200-m 
Total 344 100 161 47 153 44 171 49 

Cable 180 25 25 3 22 3 22 3 

Mast 535 75 348 49 274 38 440 62198-m 
Total 715 100 373 52 296 41 462 65 

Cable 36 28 6.7 5 5.4 4 5.2 4 

Mast 91 72 93 74 100 79 75 59152-m 
Total 127 100 100 79 105 83 80 63 

Cable 105 31 16 5 15 4 14 4 

Mast 229 69 217 65 219 66 127 38150-m 
Total 334 100 233 70 234 70 141 42 
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Table 5.7. Base shears (B.S.) and detailed weights (W) of towers in kN 
(Reference to total base shear) 

Accelerogram 
Tower Weight 

El Centro Parkfield Taft 

%W B.S. %B.S. B.S. %B.S. B.S. %B.S. 

Cable 1595 31 253 34 198 20 172 19 

Mast 3578 69 489 66 812 80 743 81607-m 
Total 5173 100 742 100 1010 100 915 100 

Cable 287 28 44 17 37 16 40 15 

Mast 754 72 214 83 196 84 235 85342-m 
Total 1041 100 258 100 233 . 100 275 100 

Cable 306 23 44 15 36 11 41 11 

Mast 1033 77 247 85 295 89 339 89313-m 
Total 1339 100 291 100 331 100 380 100 


Cable 91 31 14 10 11 7 15 9 


Mast 205 69 130 90 142 93 161 91
213-m· 
Total 296 100 144 49 153 100 176 100 

Cable 95 28 15 9 11 7 15 9 

Mast 249 72 146 91 142 93 156 91200-m 
Total 344 100 161 100 153 100 171 100 


Cable 180 25 25 7 22 7 22 5 


Mast 535 75 348 93 274 93 440 95
198-m 
Total 715 100 373 100 296 100 462 100 


Cable 36 28 6.7 7 5.4 5 5.2 7 


Mast 91 72 93 93 100 95 75 93
152-m 
Total 127 100 100 100 105 100 80 100 

Cable 105 31 16 7 15 6 14 10 

Mast 229 69 217 93 219 94 127 90150-m 
Total 334 100 233 100 234 100 141 100 
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Fig. 5.37. Base shear contributed from cables versus tower height for three base accelerograms 
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5.2.2 Seismic Component of Mast Base Axial Force 

The maximum dynamic component of the axial force at the base of the mast is 

reported in Table 5.8. It is also expressed as a percentage of the total weight of the tower. 

Since the axial effects are significantly excited with the vertical component of the 

earthquake, Table 5.8 is prepared for the case of combined vertical and horizontal 

accelerograms for the three earthquake motions studied. The results shown in Table 5.8 

are illustrated in Figs. 5.39 to 5.41. The horizontal axis of these three figures has the 

same scale in order to facilitate their comparison. Table 5.8 shows the contributions of 

the mast and the cables separately, and the dynamic component of the axial compression 

in the mast at the base is also expressed as a percentage of the total tower weight. The 

base axial force varies in the range of 44% to. 75% of the total weights for the EI Centro 

earthquake, 21 % to 43% for Parkfield and 38% to 125% for Taft. As shown in Fig. 5.41, 

the contribution of the mass of the cables to the total dynamic component of mast base 

axial force is small, in the range of 4% to 15% of the total weights. Its maximum 

envelope can be taken as 10% of total weight for all the towers except for the 200-m for 

which it is 15%. Therefore, the contribution of the cables can be assumed to be constant. 

From Fig. 5.39, it can be concluded that regardless of the tower height, the 

maximum value of the dynamic component of the axial force at the base of the mast is 

almost constant at about 80% of the total weights, with the exception of the 200-m tower 

which is much more sensitive. 

5.2.3 Seismic Amplification Factor of Cable Tension 

Tables 5.9 to 5.16 summarize the maximum dynamic component of cable tension 

in each guy cluster for all eight towers due to the three earthquake accelerograms studied. 

These results were calculated for two load cases, horizontal earthquake and combined 

horizontal and vertical earthquake accelerograms. The dynamic component of cable 

tension is also expressed as a percentage of the initial cable tension. Tables 5.9 to 5.16 

are graphically represented by Figs. 5.42 to 5.57, respectively. It is noted that these 
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Table 5.8. Dynamic component of mast base axial force (B.A.) and detailed weights 
(W) of towers in kN (Horizontal + Vertical accelerograms) 

Accelerogram 
Tower Weight 

El Centro Parkfield Taft 

%W B.A. %W B.A. %W B.A. %W 

Cable 1595 31 272 5 219 4 436 8 

607-m Mast 3578 69 3619 70 2003 39 1532 30 

Total 5173 100 3891 75 2222 43 1968 38 

Cable 287 28 89 9 48 5 101 10 

342-m Mast 754 72 443 42 304 29. 627 60 

Total 1041 100 532 51 352 34 728 70 

Cable 306 23 121 9 69 5 89 7 

313-m Mast 1033 77 752 56 254 19 961 71 

Total 1339 100 873 65 323 24 1050 78 

Cable 91 31 30 10 16 5 18 6 

213-m Mast 205 69 102 34 54 18 176 59 

Total 296 100 132 44 70 23 194 65 

Cable 95 28 44 13 50 15 53 15 

200-m Mast 249 72 170 49 77 22 379 110 

Total 344 100 214 62 127 37 432 125 

Cable 180 25 55 8 26 4 43 6 

198-m Mast 535 75 303 42 194 27 522 73 

Total 715 100 358 50 220 31 565 79 

Cable 36 28 11 9 12 9 13 10 

152-m Mast 91 72 54 42 15 12 86 68 

Total 127 100 65 51 27 21 99 78 

Cable 105 31 41 12 21 6 28 8 

150-m Mast 229 69 161 48 62 19 158 47 

Total 334 100 202 60 83 25 186 55 

175 



650 

600 


550 


500 


450 


400 


250 


200 


150 


100 


EI Centro Parkfield Taft50 


• 8 ~I~ 


I
o 
o 	 15 30 45 60 75 90 105 120 135 150 


(B.A.lTotal Weight)% 


Fig. 5.39. Dynamic component of mast base axial force (B.A.) versus tower height for 
three base accelerograms (Horizontal + Vertical) 
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figures have the same scale on their horizontal axis. The percentage of the dynamic 

component of cable tension to the initial tension is defined in these figures by the seismic 

amplification factor. It is observed that, except for the 200-m tower (Fig. 5.48 and 5.49), 

all graphs are comparable and vary more or less in the same range of amplification (30% 

to 150%). The 200-m tower has twice as much amplification compared to the others. This 

can be explained by considering Table 5.4 which gives the ratio of initial tension to 

ultimate tensile strength. Since the 200-m tower has relatively slack cables in its initial 

configuration, its cables are more excited. The same conclusion can also be reached from 

Table 5.3 which presents values of cable sag. In the 152-m (Figs. 5.44 and 5.45) and 342­

m (Figs. 5.54 and 5.55) towers, the second lowest guy stay level has a significant seismic 

amplification factor compared to the others. This can also be explained by a smaller initial 

tension with respect to those of the cables of the other levels. 

5.2.4 Maximum Shear and Bending Moment of Mast 

Tables 5.17 and 5.18 summarize the results obtained for the maximum mast shear 

and bending moment for the eight towers studied. For ease of comparison, these values 

have been normalized. Accordingly, in Table 5.17, the maximum mast shear is divided 

by the maximum base shear of the towers, and the maximum mast bending moment is 

divided by the product of the panel width and the maximum base shear. Since the bending 

moment in the mast is in direct relation with the width of the mast (the spacing between 

the legs), it is reasonable to use the panel width to normalize the moment. Table 5.18 

presents the same results-as in Table 5.17, but the maximum base shear is substituted by 

the total weight of the towers to normalize the maximum mast base shear and bending 

moment. 

Figures 5.58 and 5.59 illustrate the content of Table 5.17, and Figs. 5.60 and 5.61 

represent that in Table 5.18. As shown in Figs. 5.58 and 5.59, in the lower range of tower 

heights (150 to 213 m), the ratio of maximum mast shear to maximum base shear varies 

from 8% to 12% and the ratio of maximum mast moment to the product of panel width 

and maximum base shear varies from 57% to 73%. In the upper range of tower heights 
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Table 5.9. Tension of guy cables (kN) in 150-m tower 

Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical) 
Anch Set To 

EI Centro Parkfield Taft El Centro Parkfield TaftNo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

7* 76 29 38 26 34 16 21 29 38 22 29 17 22 

6 51 42 81 50 98 25 48 44 86 48 93 28 55Outer 
5* 23 21 90 24 105 12 50 22 93 23 100 -13 57 

4 43 33 76 31 72 21 47 33 76 30 70 21 49 

3 31 22 71 25 78 23 74 23 73 25 80 23 73 
I-" 

00 o 	 Inner 2' 17 9.6 56 9.8 57 11 62 8.9 51 9.2 54 11 66 

1 22 4.9 23 5.6 26 5.8 27 6.2 29 4.8 22 6.3 29 

To =Cable tension due to self weight and initial prestress (kN) 

Tctyn =Dynamic component of cable tension (i.e. Ttotal - To) 

% =(TdynlT0) 100 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



---

Table 5.10. Tension of guy cables (kN) in 152-m tower 

_ ..... __ ..... __ ... -

Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical) 
Anch Set To 

El Centro Parkfield Taft EI Centro Parkfield TaftNo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

8 20 7.7 38 7.5 37 4.9 24 8.0 39 6.2 30 4.8 24 

7' 13 9.1 71 9.5 73 4.9 38 9.2 71 8.6 67 5.9 46Outer 
6 13 15 120 14 108 6.9 54 15 119 12 96 7.9 62 

5 12 12 97 12 98 6.4 52 12 95 12 94 6.3 51 

4 9.4 7.6 81 7.7 82 6.0 64 7.2 76 7.4 79 6.1 64 
..­
00 3*..- 9.4 8.0 85 8.2 87 9.2 99 8.0 86 7.9 85 9.2 99 

Inner 
2 6.3 11 177 12 188 12 195 11 178 11.6 184 12 194 

1 6.3 6.3 100 6.3 99 6.0 95 6.1 96 6.3 99 6.4 101 

To =Cable tension due to self weight and initial prestress (kN) 

Tdyn =Dynamic component of cable tension (i.e. Ttotal - To) 

% = (Tdy/To)100 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



Table 5.11. Tension of guy cables (kN) in 198-m tower 

Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical) 
Anch Set To 

El Centro Parkfield Taft EI Centro Parkfield TaftNo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

6 140 56 40 56 40 62 44 55 39 61 43 60 43 

5 96 71 74 59 62 92 96 71 74 63 66 100 104Outer 
4* 68 59 87 59 87 86 127 61 91 62 91 82 121 

3 65 61 93 74 113 79 121 61 94 75 115 79 121 

2 64 84 131 83 130 75 117 88 137 83 129 76 118Inner .­
00 1 41 57 137 57 138 42 101 57 138 59 142 39 94tv 

To =Cable tension due to self weight and initial prestress (kN) 

Tdyn = Dynamic component of cable tension (i.e. Tlotal - To) 

% = (Tdy/fo)100 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



Table 5.12. Tension of guy cables (kN) in 200-m tower 

~-~- ~.- ~.-~.-~.-.. .. ~- ......--.... .. .. .......... -


Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical)
II
I Anch Set To 

EI Centro Parkfield Taft EI Centro Parkfield TaftNo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

8 25 25 101 36 146 42 171 25 102 47 191 38 155 

7 17 26 150 19 110 34 199 24 143 35 203 22 127Outer 

6 16 25 161 24 154 42 267 31 195 45 289 25 159 

5 9.8 21 210 16 168 26 260 20 202 27 274 17 177 

4 9.4 19 201 16 167 24 259 22 238 25 267 17 179Inter . ...... 
00 
w 3 7.8 14 176 9.9 126 14 184 14 178 14 182 9.2 118 

2 7.9 13 171 14 172 13 171 14 174 13 170 14 175 
Inner 

1 6.7 6.2 92 7.7 115 8.6 128 6.7 100 8.7 129 7.5 113 

To = Cable tension due to self weight and initial prestress (kN) 

Tdyn =Dynamic component of cable tension (i.e. Ttotal - To) 

% = (TdynIT0) 100 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



Table 5.13. Tension of guy cables (kN) in 213-m tower 

--_..............-


Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical) 
i 

I 

Anch Set To EI Centro Parkfield Taft EI Centro Parkfield Taft 
INo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

7 74 17 23 21 29 22 30 22 30 19 26 24 32 

6 55 21 37 21 38 31 56 25 45 22 39 39 70 

Outer 5 41 24 58 34 83 36 90 22 55 36 89 40 98 

4 34 21 62 29 84 29 85 20 58 28 82 30 88 
I 

3 32 29 90 38 117 28 85 31 95 41 125 28 86 
....... 

00 
.J:>. 2 26 29 110 30 113 24 91 29 111 30 114 23 87Inner 

1 26 . 20 78 17 65 15 58 20 78 17 65 15 57 

To =Cable tension due to self weight and initial prestress (kN) 

Tdyn =Dynamic component of cable tension (i.e. Ttotal - To) 

% = (Tdy/T 0)100 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



Table 5.14. Tension of guy cables (kN) in 313-m tower 

- - _._ ..............- - --.......... - ...........-.-..... ...... ..........--..........--..........--..... ... - --.-.-... ..........--.............--.......... - ........ - ­~.- ~.- -.-.~.-.- -.-.~-

Accelerogram (Horizontal only) Accelerogram (Horizontal + Vertical) 
Anch Set To 

El Centro Parkfield Taft El Centro Parkfield TaftNo. 
Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

5 122 58 48 60 49 59 48 55 45 62 51 57 47 
Outer 

4 174 86 49 83 48 108 62 77 44 79 46 134 77 

3 107 53 50 89 83 83 78 60 56 93 87 92 86 

2 93 77 83 71 77 100 108 77 83 77 83 98 106Inner 
1 59 55 93 47 80 51 86 57 96 50 83 55 92 

,.... 
00 
l.Il 

To = Cable tension due to self weight and initial prestress (kN) 
= Dynamic component of cable tension (Le. Ttotal- To)TdYII 


% = (Tdy/fo)lOO 

Anch =guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 



Table 5.15. Tension of guy cables (leN) in 342-m tower 

Anch Set 
No. 

To 
Accelerogram (Horizontal only) 

EI Centro Parkfield Taft 

Tdyn % Tdyn % Tdyn % 

Accelerogram (Horizontal + Vertical) 

EI Centro 

Tdyn % 

Parkfield Taft 

Tdyn % Tdyn % I 

7 96 32 33 15 16 21 22 32 34 16 17 23 24 

Outer 6 

5 

93 

77 

38 

49 

41 

64 

37 

51 

40 

66 

39 

54 

42 

70 

36 

60 

39 

78 

40 

54 

43 

70 

42 

54 

45 

71 

4 65 52 80 48 74 57 87 49 75 50 77 57 88 I 

,..... 
00 
0\ Inner 

3 

2* 

43 

24 

36 

35 

84 

148 

34 

19 

78 

80 

36 

23 

84 

96 

36 

36 

84 

151 

35 

20 

83 

86 

35 

25 

82 

104 

1 47 25 54 15 33 18 39 27 58 17 35 19 40 

To = Cable tension due to self weight and initial prestress (leN) 
Tdyn = Dynamic component of cable tension (i.e. Tlolal - To) 
% = (Tdynffo)100 
Anch = guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 
* Outrigger location 



Table 5.16. Tension of guy cables (kN) in 607-m tower 

--~-

AcceJerogram (Horizontal only) AcceJerogram (Horizontal + Vertical) 
Anch Set To 

EI Centro Parkfield Taft EI Centro Parkfield TaftNo. 

Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % Tdyn % 

9 232 57 25 60 27 48 21 100 45 63 28 101 45 
Outer 

8 372 87 23 123 33 98 26 127 34 119 32 112 30 

7 175 66 38 84 48 57 32 89 51 80 46 62 35 

6 329 147 45 144 44 113 34 210 64 154 47 111 34 
Inter. 

5 203 96 47 124 61 85 42 121 59 132 65 91 45 
....... 
00 4 144 79 55 119 82 92 64 93 65 130 90 97 67-.l 

3 245 131 53 168 68 168 68 145 59 181 73 178 72 
Inner 

2 195 168 86 152 78 187 96 179 92 151 78 199 102 

1 116 106 91 83 71 96 82 110 94 81 70 101 87 

To = Cable tension due to self weight and initial prestress (kN) 

Tdyn =Dynamic component of cable tension (i.e. Tlolal - To) 

% =(TdynlTo)lOO 

Anch = guy clusters attached to Inner, Intermediate or Outer anchor points on the ground 

* Outrigger location 
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accelerograms (Horizontal + Vertical) 

189 




160 


*,E @, 
, \144 , \ 

", \ \ 
\ " 

\\ 

128 
\\ 

" " 

* " , ~ 
, "\, 
\ , 

\ 

112 
\ 

* 
\ 

,.-. 96 

S I 

s:: *0 
.~ 
;> 
Q) 80 

\ -W \ 

Q) '"' 
~ 
0 

E-< 
64 

48 

32 

16 

o 
o 30 60 

Inner Anchor 

" \ , 
\ , 

, ! 

, ! 

,I / 
' 

, f 

'/
/ 

'I 
'/

iJ 

,ItI" 


,I 
II 


II 

1/ 

I' 
~ 

, ~ 

'<::';~* 
, " 

,,'" //:""'~""///// /' 

90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Outer Anchor EI Centro Parkfield Taft 

* Guy clusters attached to: Base Accelerograms: 

Fig. 5.44. Seismic amplification factor of cable tension in 152-m tower to three base 
accelerograms 

190 



160 


• ~ . 
\ \ \ 
\ \ \ 


\ \ \ 

\ \ \ 


\ \ \ 


144 r ­

\ \\ 
\ \ \ 


\ \ \ 

\ 
 \ \ 

\ \ \


128 r ­ \ \ \ 

* 
\ \ 

~ 	 ~\\ 
\ , 


\ ' 

\ " 

\ \ \ 

\ 
 \ 

112 

• 
r- \ 

\ 

\ 

\ 

, , 
\ 

\ 

* 
\ ,

0 I•I 
I 

96 f-- I I 

,-... 	 ! I 

'-' 
E 	 ! 

I 

s::: ~,9 	 \ ..... 	 *I:':l 
> r-

r:ij 
II) 80 

II) '"' 
~ ~ 0 

E-< 
~-64 

~ 

48 c-­

~~ ~" ," , ,,~ 

,~

" 
, 

, 

::':a'(:;Yw~ 	 / /71"':
32 -	 /;::::/// 

/ / /
"/ /

'/ / 

-"/ '" " 

16 ~-

I i 	 I I I io 
o 	 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield Taft 

• - 0 ­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.45. Seismic amplification factor of cable tension in 152-m tower to three base 
accelerograms (Horizontal + Vertical) 

191 



200 II ®K" 
I' 

, ,\ 


I I 

\

I'
\ \ 


I I \ 

I I \ 


- I I
180 	
II 


\

I \ \ 
\ I 

I 
 \ 

I 

I I 


II Q I.. 
I I160 -	 , * 

\ I I 
I I, , I 

, I 

, I I 
I 

I I I 

-
I,

' 
\ 
, 

I 

\
140 , \ 


\1 

II 	
I' 

~ 
" I I *
-	 I ,120 	
I \ 

--. 	 I 
IE 	 , 

\'-" 
s:: 
0 \ 


I
.-1i$ 
> - I \ 

~ 
100 

~ 	 • b*CIJ 

\ 
I I 

$.0 	 \ 
, I

\ 

~ 	 \ 

, 

\I 

j 

0 	 \ •E-< 	 \ n 

80 f-	 \ 

\ I , 

\ ~ \ 
" 
'\ ' 
, \ I 

I \1 
\1 

* 
I 

()~ 
'- ­60 	 " 

40 ­
\I 

@) 

20 

I I 	 I Io 
o 	 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield Taft 

• ..--- - 0­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.46. Seismic amplification factor of cable tension in 198-m tower to three base 
accelerograms 

192 



---

200 Ir 

180 r-

Ir 
160 r ­

140 r-

Ir 

120 f- ­-.. 
E 
s:: 
0

':g 
>
II.) 100 r ­

~~ 
.... 
II.) 

~ 

~ 
80 1-­

~ 
60 r­

40 '- ­

~ 

20 ~-

o 
o 

~ 
I I' 

I , 

" I ~ 

\ 
, 
' 


\ " 

I, 

I, 
 , ,
II 

, I 


I I 

I I 
 , 
I I , ,, I 

QI. 

, 

I\ I , \ 


\ 
 I * 
I \ 

1\ 
1\ 

1\ 
I I I 
I I \ 
\I I 

" 
II " 
" ~ , 

, I" * 
' I, \ , I 

\ 
\ 

I 

\ 

I 

•, 
I 

GK , 

, 
I 

\ \ , 
" 
I, 

I I 
I " I , 

\~ \ 

, I' 

I \ 
, I, 

I ' I 
I \

*- 0"
I I' 

I , 
I 

\ , , 
I ' , 


I ' ' 

I 
I I',I 


I 

I " I 
\ 

" 
/ 

* i(l) 

II 

" 

I I J J I J J 

30 60 90 120 150 180 210 240 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield 

-0 ­• ---­-

Guy clusters attached to: Base Accelerograms: 

270 300 

Taft 

Fig. 5.47. Seismic amplification factor of cable tension in 198-m tower to three base 
acceierograms (Horizontal + Vertical) 

193 




• • 

200 


~ •, 0 
\180 f-

\ 

, I, * 
, I \ 

'/ 
, \ 

\ 

\ 
\ 

I , 
I , 

/ , 
,I160 f-

I , 

~ 0 
I •\ 

\ 

, 
\, , 
\ , , * ,, 

\140 f- , 
\ , 

, \ 

\ 
, I 

~ 0·, 
,120 f-

\ \ , 
,-. 

8 , , 
'-' 
c:: ,0 ,
.~ 

lI)> 100 •I 
I~ -­ I 

lI)"'" 
~ 
0 

E-< 
I80 .- o ~ 

I 

I 
I * 

/ 
I 

Ic- I60 I 

I 

I 
J J 

J I 

40 ­

~ 

20 
~ 

I I J I I I I0 
0 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Intermediate Outer Anchor EI Centro Parkfield Taft 

-0 ­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.48. Seismic amplification factor of cable tension in 200-m tower to three base 
accelerograms 

194 



• • 

200 


• G) 
,i- ­• *180 

\ 

I I 

\ 
\ 

\ I 
1\ 

\ 
\ I 

\ 

• * 
, I 

\ 
I 

\I 

160 1\ 
\ \I 

\ 

•, G, 
\ \ 

\ 
\ 

\ \ 

\ 
\ \140 

\ 
\ 

, 

• 
\ 

, 
\ , 

\ 

I 
I120 !- * 

\ 

• 
-.. I 

I 
'-" 

I 
I 

I 

e I 

s:: 
\ 

\ 

I.~ \ 
II 

cu> 100 
I ., 0 

I , ,iij I , I 

0 

• * 
\ 

\ I 

, 

I 

cu I , '"' 
~ 
0 ,

E-
I \

80 .- :II /0 
/ -* 

/ 

/ 

• 
/ / 

/ 

/ 

/ 
/ / / 

60 ,- / 

/ 

/ 

~/*­
" I 

40 r ­
, " 


~ J* 
-- /;;/ 

'i 

/ / / 

.... ~ ,,"" / 

20 
 i-- / 
/ 

/ 
/ 

/ 
/ 


/ 
/ / 

/ 

~ .'*,
/ 

/ 

G 

I I I I i I0 
0 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Intermediate Outer Anchor El Centro Parkfield Taft 

- 0 

Guy clusters attached to: Base Accelerograms: 

Fig. 5.49. Seismic amplification factor of cable tension in 200-m tower to three base 
accelerograms (Horizontal + Vertical) 

195 



220 

198 i ­

176 ~ 

154 i ­

lIO ~ 

88 f 

66 ­

44 ­

22 ~ 

o 
o 

\ 1\ 
,I,I \ \ 
" \\, \ 


\' \ 


\1
I, 

\ 


\"I, 
~ 

\ \ 


\ \ \ 


\ \. ,\. 
*\ \ \ 


\ 

, 

\\ 

\ \ 
\ 

I \ \ 

\ 
 \ \ 


\ 


~ , ,, , 
, , , 
, , 
, , 
" 

" 
" 

~ 
\ '\ 

I \ 

I \ 


\ 
\ 

\
\ 

\I 

\ 


\ 

\ I 
\

\ I 

"t 
~ CD 

I \ , 
\ 

I 

I 

\ 

\ 

\ 

\ I 


I " 

I' * 10 
I / 


I /' 

I I 


/ I 

I 


/ / I 

/ I 


/ // I 


I , I 

I , I
*0/ .1 

I i 

30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor El Centro Parkfield Taft 

• -0 ­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.50. Seismic amplification factor of cable tension in 213-m tower to three base 
accelerograms 

196 



--- - -

220 


\ \ ,• ~ 
198 i- \ \ ' 

\ \ \ \. 

\ \ \ 

\ \ 


\ \ 


\ \ ,

\ \ ,
, \ , 

176 It-
\ \ 

~~ 
\" * 

" , \ 

\ , \ 

\
\ ' 

\\ ' 
\\ 

\ 
\154 r-

" 
\ 

I8*
! f 

I ' 
f f 

, 
, 

I 
' 
f132 I ­

Ig 
I : 

§ ,I 
f , 

f 

.~ ~ ~ ,
~ 110 c­ I' 

1 '\ '\ 

! 
IJJ 

,'"' , 
I 

, ,, I , 
~ , ,,88 ~­
f, 

~ *\~ a 
!\ 

I 
!\ 
I\ 
I\ 
I ,66 -

\ I 

\ I 

* 
f 

I 
f 

441- I 

I / I 


I / / 

I / / I 


I / I 

I I I 


I / I 


22 ~­ *0 • 

I I I I Io 
o 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield Taft 

• 0­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.51. Seismic amplification factor of cable tension in 213-m tower to three base 
accelerograms (Horizontal + Vertical) 

197 



320 


~ ~ 
.'II' 

288 f--
I' 
, 

I 

I 

I 
I I 

II ,
I 

I 


I 
1 ,256 t---- [I 

I[I 

@ 
I 

~ , 
I 

I' ,
I I * 

III 

I224 f--
I 

, 
I 
I 

I 
, I 

II 

I I 

I,I, 


I, 


192 t----
\ 
I' 

I 


I " 

'-" 
--8 

IIs:: ~ 
I 

, ~ I 
0 I. 

I )
.~ 

" 

> I I 
I, 

QJ 160 r--
\ , I 

I 
\ ,~ \ 
I I \ 

QJ I'""' I , 
I ,,~ I , 

~ 
, 
, ' 

- I' ,128 I' 

, 

I, 

*~ 0," 
I 

, , / 

I 
t I ,

96 - I 
\ I 

I 
I I 
I I 
j I / 

I / 
I I 
1/

64 t---- • 

I " 


/
I'

I 

~.~ 

32 t---­

J J I J Io 
o 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor El Centro Parkfield Taft 

* Guy clusters attached to: Base Accelerograms: 

Fig. 5.52. Seismic amplification factor of cable tension in 313-m tower to three base 
accelerograms 

198 



320 

• ~ 
, ' 
'
I " 

, I' 

288 I , ' ' ' , ' 
, I 

, ' ,I' , ,I'" 
, I I 

• 
, I 

, \ * 
256 r­

," 
" ~ 

!I' 
\ 

I 

L­224 \ , 

\ , 
\ \, 

l-	 I ,-. 192 	
\ 

\' 
'-" 
E 	 , 
c ~ 	 •, 
0.;:; 	 fl*" ca 	 , f I 
;> 	 I \ 

Q) 160 l ­
, -tJ;.l.. I 


I 

Q) 	 , 
~ 
0 

E-	 , 
I128 l-	 , 

, f 

* 
I" 

~ ~ 
'I 
f, 
f, 

' ,96 f, , , 
\ , , , 
\ 
\ I 

\ , 
\ I I 

II64 l-

I !I 

~ 	 C)~ 

32 I ­

I I 	 Io 
o 	 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield Taft 

• -0­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.53. Seismic amplification factor of cable tension in 313-m tower to three base 
accelerograms (Horizontal + Vertical) 

199 



350 "~.\ \ \ 

315 c­

280 c­

245 Ir­

175 ­

105 - ­

~ 

70 r ­

35 

o 
o 

1\ ' 
\ \ ' 

\ \ \ 

I I \ 

I , \ 


\ \' 

1\\ 

\ II 
\I,I, 

\1 

\\ 
*\ I 


\ \ 

\ I 

\ \ 


l' 
~ 
I

\ 

I 

~ I 


~ I 


~ 
\~ , 
\
"

\ 

\ \\ 

1\ ' 
1\ \ 

\ \ 


\ \ \ 

\ \ 

\ \ \ 


I \ 

~ I I 

I I 


I I 


0-* 
I 1: 
\ II; 
I I 
j

I I: 
1II I: 
4*\ ,

I , 

I ' , , , , , , , , , , , 

/ / 


/ / 


/ 


/ / 

/ 

I J I I I i 

30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor EI Centro Parkfield Taft 

• ~ 0 ­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.54. Seismic amplification factor of cable tension in 342-m tower to three base 
accelerograms 

200 



350 " ~: 


315 ­

280 ~ 

245 J­

210 r­-.. 
g 
c: o 
.~ 

~ 175 r­
~ 

105 ­
~ 

70 ­

o 
o 

\ \ I 
I , 

I I 
,
",
I' 

I I' 

1\ 

Iii 


" "' 
\\\ 
\\\ 

\1 
\1 

~\ 
"\

1\ \ 
1\ I 
II \ 
II \ 

~.. 
\I' 

'I'
,II , \

," 
" I 
II \ 

" ' .\ \ 

' 

~* 
li f " 
" I'\I 
II \ 
, I 

\ ' 
I' 

"I' 
i 

)l, 
" ,,\ 
, , 
, I , ,, 
I , 
\ , 

, / 
/

/ / 

/ 

/ 
/ / 

/ / 

, / 
/ 

/ 

/ ,/ 
/ / 


/ / 


~. 

i 

30 60 90 

, 

, , , ,, , ,
\ 

\ 

* 
I , ,,­

/ 

I I I I I 

120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Outer Anchor El Centro Parkfield Taft 

• - -II- - - 0 ­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.55. Seismic amplification factor of cable tension in 342-m tower to three base 
accelerograms (Horizontal + Vertical) 

201 




• • 

610 
~ 

, I 

I 
I 

549 
I 

~ 
I I 

'I
I \ 

I 

\ 
 , 
I, 

'\ 
I488 	 " I 

\ 

I, 

I I 
 , 


*~ 
I 

0,
, I 

II 
I I ,

427 ' I 

I " ,I, , ,
*e,

I ,I 

, I 


I , I 

366 " 

"""' 	 I , IE 
, , 	I'-' ,s::: 	 I0 ~ (;).~ 
I, 

> I, 

II.) 305 ,
\ 

I'fij " I, 
I III.) '"' I, 


~ \ \ 


0 I 


E-
244 	 ~* O 

I 

, I 

183 	
" 

, I \ 
•I ,*

\ 

, 
/ 

I 

\ I \ 

I 


, I , 
\ I I , 

\ ",, 
\ \122 	

, 

Q'.\ *iJ 
I I , 

'/ 

, " / ! 

I I I61 / , " ,
0* Ii 


o 
o 	 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Intermediate EI Centro Parkfield Taft 

Guy clusters attached to: Base Accelerograms: 

Fig. 5.56. Seismic amplification factor of cable tension in 607-m tower to three base 
accelerograms 

202 



• • 

610 

Q ,/ 


, " 

I /1,

549 	 - \

1/ I 


II ~,

'II
'II 
, I I 

I, \ \ 

,488 	 !-- 1\ 

\ \ \ 
, \ \ 


w (;)'.~ 7i' 	 \I , \ , \ 

'- ­ \ ,427 I \ 

I 

\ 

\ 

.. 
I 

\ 

366 	 - \ 
\ 

, 
"....., 

\ I I 
'-" \ V 
S 	 \ \ 

, 

c: 1\ 

0 ' I 
.~ I .Q 

\> 	
I \ 

\ 
\(1) 305 *\ , 

\ \ ,EiS 	 \ 
\ , 

\ 

,.... 	 \, \ 
\~ I', 

E-
\ 

<;) 
0 

244 l 	 ~ 
,I, 

\ 
I 

, , 
\ , I 

183 	 ~ ~\ ~ 
\ \ \ 


\ \ 

\ \ \ 


\ \ , 

I 
1\ 

\ \ 

,122 	 !- ­
\ \ 

Q 
\ 

'.)(~ 
, , , I 

I ,, , , 
I ,I, 

II 

61 

i 	 I I io 
o 30 60 90 120 150 180 210 240 270 300 

Seismic Amplification Factor (%) 

Inner Anchor Intermediate Outer Anchor EI Centro Parkfield Taft 

- 0­

Guy clusters attached to: Base Accelerograms: 

Fig. 5.57. Seismic amplification factor of cable tension in 607-m tower to three base 
accelerograms (Horizontal + Vertical) 

203 



(313 to 607 m), the response is slightly higher, with the mast shear in the range of 13% 

to 17% and the corresponding bending moment in the range of 73% to 123%. As 

illustrated in Figs. 5.60 and 5.61, where the results are expressed in terms of tower 

weight, the ratios vary from 6% to 7% for the shear in the lower towers and from 36% 

to 48% for the bending moments. For the taller towers (313 to 607 m), the corresponding 

shear is in the range of 2.5% to 5% and the bending moment parameter varies from 14% 

to 35%. 

5.3 SIMPLIFIED MODELS PROPOSED FOR SEISMIC BEHAVIOUR 

5.3.1 Maximum Base Shear 

Since one of the most important response indicators for design purposes is the 

total base shear of the structure due to earthquake loading, the maximum base shear of 

the towers for the three earthquake responses is investigated more precisely. Figure 5.62 

summarizes the percentage ratio of maximum base shear to the total weight of the towers 

versus the tower height. A curve fit is suggested on the figure to predict the maximum 

base shear for different heights of towers in the range of 150 to 607 meters. The curve 

obtained has the following formulation: 

B.S. =28300 H -1.17 . (5.2) 

where B.S. is the maximum base shear as a percentage of total weight of tower and H is 

the tower height in meters. This formula is proposed for a quick evaluation of the 

maximum base shear of guyed towers due to an earthquake which is comparable to the 

sensitivity level of the Victoria region in Canada (Peak Horizontal Ground Acceleration 

= 0.34g and Peak Horizontal Ground Velocity = 0.29 mls). 
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Table 5.17. Maximum mast shear and bending moment of the towers (% of base shear) 

Tower Height (m) 

607 

342 

313 

213 

200 

198 

152 

150 

Max Mast Shear 

---------------------- % 
Max Base Shear 

13 

14 

17 

11 

12 

10 

8.0 

9.8 

Max Mast Moment 

---------------------------------------- % 
Panel Width * Max Base Shear 

73 

95 

123 

71 

73 

61 

58 

57 

Table 5.18. Maximum mast shear and bending moment of the towers (% of total weight) 

Max Mast Shear 
Tower Height (m) ---------------------­ % 

Total Weight 

607 2.5 

342 3.7 

313 4.7 

213 6.3 

200 5.8 

198 6.7 

152 6.6 

150 6.8 
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Max Mast Moment 

-------------------------------------~-- % 
Panel Width * Total Weight 

14 

25 
i 
I 

35 

42 

36 

39 

48 

40 
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5.3.2 Distribution of Earthquake Forces with Tower Elevation 

Aconcept of simplified model will be developed for the distribution of earthquake 

forces along the tower height. In this regard, three fundamental aspects should be 

considered in order to propose a valid model. These aspects are as follows: 

1) Predominant mode shape of mast (Figs. 5.24 to 5.33) 

2) Distribution of mass of mast (Figs. 5.2 to 5.9) 

3) Sensitive region between the different guy cluster groups. 

As discussed in sections 5.2.1 and 5.2.2, the contribution of the mass of the cables to the 

total base shear and to the seismic component of the mast axial force at the base is almost 

constant and is small compared to that of the mast. Therefore, only the inertia of the mast 

has a major effect on the earthquake forces. As a result, the mass distribution of the mast 

is a significant factor. The predominant mode shape of the mast can represent the 

horizontal acceleration profile along the tower height. The presence of sensitive regions 

(i.e. transition zones between stay levels of different trends of lateral stiffness) can also 

affect the overall seismic behaviour. 

Figures 5.63 to 5.70 illustrate the distribution of the horizontal earthquake forces 

induced along the tower elevations for all eight towers due to the three accelerograms. 

The earthquake forces are expressed as a percentage of the total base shear. It is noted 

that the scale of the abscissae is identical in the eight graphs for easier comparison. In 

general, the predominant mode shape of the mast, which can explain the distribution of 

earthquake forces along the towers, is the lowest flexural mode of the mast which is close 

to the first flexural mode of a simply-supported beam on flexible supports. As discussed 

in Section 5.1.6, this mode shape is the lowest flexural mode for the I50-m, 152-m, 198­

m, 213-m and 342-m towers, and the second lowest mode for the 200-m, 313-m and 607­

m towers. 

The second aspect which should be used to explain the distribution of the 

earthquake forces is the mass distribution in the mast. For exmnple in Fig. 5.63 for the 

iSO-m tower, the graph of earthquake forces at the top of the tower does not follow the 

predominant mode shape, because at that location there is a concentrated mass (presence 
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of an outrigger) which increases the earthquake force. There is also an outrigger at the 

lowest third level of the 152-m tower, which explains the large earthquake force at that 

location in Fig. 5.64. Also, it is useful to employ the concept of the sensitive region in 

addition to the two other concepts in describing the nonuniform behaviour around cable 

Sets 4 and 5. Using the same procedure the response of all the other cases can be 

explained. 

The above-mentioned simplified model (predominant mode shape and mass 

distribution) is similar to that used in building codes for seismic forces. In general, the 

response of a lightly damped system follows the fundamental mode shape. The main 

difference between guyed towers and common buildings is the shape of the predominant 

mode, which is close to that of cantilever beams for tall buildings, while for guyed towers 

it is closer to that of simply-supported beams on flexible supports. The other difference 

is the concept of sensitive region for guyed towers for which no reference has been made 

in building codes. 

It is noted that the earthquake forces along the mast are an envelope of maximum 

amplitudes, and therefore their summation is not equal to the total base shear. The 

maximum earthquake force along the mast for most of the towers is in the range of 23% 

to 33% of the total base shear. This value is 13% of the total base shear for the 200-m 

tower and 42% for the 198-m tower. As a result, the total base shear of a guyed tower 

can be calculated approximately using equation (5.2), and the distribution of earthquake 

forces along the tower could be figured out by. using the three concepts explained above. 

Recall that in the absence of better guidelines, the lASS (lASS, 1981) suggested 

to use the seismic design provision of usual buildings for the earthquake effects of guyed 

towers. The distribution of base shear along the tower based on usual building codes 

would therefore be according to the lowest flexural mode of a cantilever structure. This 

is not reconcilable with the results of this study. 
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5.3.3 Distribution 	of Maximum Dynamic Component of Mast Axial Forces with 
Tower Elevation 

The distribution of the maximum dynamic component of the axial forces in the 

mast along the height for all eight towers is summarized in Fig. 5.71. The response to 

combined horizontal and vertical earthquake motions is considered here. In this graph the 

horizontal axis represents the ratio of the maximum dynamic component of the mast axial 

forces to the maximum dynamic component of mast base axial force. This ratio is 

expressed as a percentage. The vertical axis shows the ratio of the sectional elevation of 

mast to the total tower height. It can be seen in Fig. 5.71 that the results of all the towers 

are relatively close to each other and form a narrow band. They can be appropriately (and 

conservatively) represented by a parabolic curve fit (darker line in Fig. 5.71). The 

parabola has the following equation: 

(PdynlMax B.A.) = 100 - 95 (hlHi 	 (5.3) 

where (Pdy/Max B.A.) is the percentage ratio of the maximum dynamic component of 

axial force in the mast at a section of given elevation (h) to the maximum dynamic 

component of the axial force at the base of the mast. It is noted that H is the total height 

of the tower. 

As discussed in Section 5.2.2, the maximum dynamic component of the axial force 

at the base of the mast is almost constant at about 80% of the total weight of the towers 

(except for the 200-m tower). 
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5.4 SEISMIC SENSITIVITY INDICATORS 

Some seismic sensitivity indicators can now be proposed which may be used by 

tower designers to assess whether a particular tower is sensitive to the earthquake effects, 

and if so, whether a detailed nonlinear modelling study is necessary. The followings are 

the important aspects of tower behaviour for seismic sensitivity: 

1) Total base shear 

2) Dynamic component of mast axial force 

3) Seismic amplification factor of cable tension. 

As shown in Fig. 5.35, guyed towers shorter than 250 meters exhibit a relatively large 

base shear in the range of 40% to 80% of their total weight. Therefore, from the 

viewpoint of total base shear, this range of guyed towers may be sensitive to seismic 

effects. Since the amount of the total base shear can be predicted (for the seismicity level 

studied here), a detailed modelling study may not be necessary. As shown in Fig. 5.38, 

the contribution of the mass of the cables and the mast to the base shear is unpredictable 

for the 607-m tower, and therefore a detailed study may be necessary to assess the 

response of towers of 400 meters and taller. 

As illustrated in Fig. 5.39, the maximum dynamic component of the axial force 

at the base of the mast for all the towers is about 80% of their total weight, with the 

exception of the 200-m tower. From the point of view of strength and stability of the 

mast, these guyed towers may be sensitive to earthquake effects. However, the behaviour 

of the 200-m tower is unpredictable, mainly because it has a relatively small initial cable 

tension compared to that of the other towers. This fact can also be explained from Table 

5.3 in which the 200-m tower has a relatively large initial cable sag. Therefore, guyed 

towers with relatively small initial cable tensions (i.e. much less than 10% of their 

ultimate tensile strength) may be very sensitive to seismic effects in the axial direction. 

For these towers, a detailed modelling study would be necessary. 

Also, as shown in Figs. 5.48 and 5.49 and explained in section 5.2.3, the 200-m 

tower has a significant seismic amplification factor of cable tension compared to that of 

the other towers. This also confirms the necessity of a detailed modelling study for this 

223 




tower. 

Comparing Figs. 5.48 and 5.49, it can be concluded that the cables are more 

excited by the Taft accelerogram than the other two in the case of horizontal earthquake 

motion. However, when combined vertical and horizontal earthquake motions are studied, 

the Parkfield accelerogram governs the cable response. For this combined load case, as 

shown in Fig. 5.39, the axial effects in the mast of the 2oo-m tower are largest with the 

Taft accelerogram. Comparing Figs. 5.39 and 5.49, this time the Taft accelerogram 

governs for the vertical behaviour of mast, while the Parkfield earthquake governs for the 

vertical oscillation of the cables. In conclusion, the behaviour of the 200-m tower is not 

predictable and only a detailed modelling study can provide insight to the response. 

It was mentioned in Section 2.3 that Moossavi Nejad (1996) had recently reported 

the seismic response of a 327-m tower. From the results of his paper, the initial tension 

of the guy cables was found to be relatively small, around 3.5% of the ultimate tensile 

strength. The maximum dynamic component of the base mast axial force of the tower was 

calculated and found to be around 100% of the total weight of the tower. This conclusion 

is confirming the proposed idea of this thesis regarding the sensitivity of guyed towers 

with relatively small initial cable tension (i.e. inferior to 10% of the ultimate tensile 

strength) to vertical seismic load. It should be recalled that the maximum intensity of the 

vertical accelerations used in this thesis is 75% of 0.34g (Peak Horizontal Ground 

Acceleration of Victoria). When comparing this value (0.26g) to the 0.2g used by 

Moossavi Nejad, it is seen that his result for the ratio of the maximum dynamic 

component of mast base axial force to the total weight of tower (100%) is comparable to 

the corresponding result of this thesis for the 2oo-m tower (125%). Also, from the results 

of Moossavi Nejad, the seismic amplification factor of the cable tension was found to be 

in the range of 55% to 250% which is comparable with that is obtained in this thesis for 

the 200-m tower (Le. 90% to 290%). It is worth mentioning that in Moossavi Nejad's 

work the maximum axial force at the base of the mast due to the earthquake load was 

found to be much larger than the corresponding result of the static wind load analysis. 

However, the maximum tensions in the guy cables due to the earthquake load were 

smaller (but comparable) than those of the static wind load analysis. 
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According to the Canadian Standard CAN/CSA-S37-94 for structural design of 

antenna-supporting structures, the initial cable tension (at the anchorage points) is 

normaHy 10% of the ultimate tensile strength. However, it may vary from 8% to 15%. 

Because of the temperature variations and some other practical reasons, there may be a 

significant difference between the design value of the initial tensions and their actual field 

value. As a result, guyed towers with initial cable tensions of much less than 10% of the 

cable ultimate tensile strength (say 5%) may exist in reality. A recent study reported by 

Wahba et al. (Wahba et aI., 1996) is addressing the issue of the variability of the initial 

guy tension. They have investigated the effect of changing the initial cable tension on the 

design of guyed towers under wind load. Variations from 5% to 20% of the ultimate 

tensile strength of the cables have been studied. They have found some important effects 

from the variation of initial tension in the guys on the design of guyed towers under wind 

load. 
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CHAPTER 6 

CONCLUSIONS 

6.1 SUMMARY OF MAIN CONCLUSIONS 


This chapter summarizes the findings of this thesis. It should be recalled that all 

the results are obtained for the seismicity level of the Victoria region in Canada with 

POA =0.34g and POV = 0.29 mls. The horizontal accelerograms with 75% of their 

amplitude are used for the vertical earthquake. The height of the guyed towers studied in 

this research varied in the range of 150 to 607 m. Since these guyed towers exist and are 

typical of other towers, some of the observations can be generalized. However, whenever 

a reference is made to the magnitude of a response indicator, it should be kept in mind 

that it corresponds to the specific seismicity level considered. Since the seismic zone 

selected is one of the most severe ones in Canada, these results can be interpreted as 

upper bounds for applications in Canada. 

6.1.1 Seismic Sensitivity Indicators 

The followings are some seismic sensitivity indicators which may be used by 

tower designers to assess whether a particular tower is sensitive to earthquake effects, and 

if so, whether a detailed nonlinear modelling study is necessary. 
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1) When seismic vertical effects are considered, guyed towers with slack 

cables, i.e. with small initial cable tension (less than 5% of the ultimate 

tensile strength), are very sensitive to the combination of vertical and 

horizontal earthquake motions. Since their behaviour is unpredictable, a 

detailed nonlinear modelling study is recommended. 

2) 	 For guyed towers with usual initial cable tension (i.e. around 10% of their 

ultimate tensile strength), the maximum dynamic component of the axial 

force at the base of the mast due to combined vertical and horizontal 

earthquake motions, is about 80% of their total weight. From the point of 

view of the strength and stability of the mast, these guyed towers may be 

sensitive to seismic vertical effects. Their behaviour is predictable, and a 

detailed nonlinear modelling study would not be necessary. 

3) 	 When the total base shear is considered, guyed towers shorter than 250 m 

have a relatively large base shear in the range of 40% to 80% of their total 

weight. Therefore, this range of towers may be considered to be sensitive 

to the seismic effects. Since the magnitude of base shear can be predicted, 

a detailed nonlinear modelling study would not be necessary. 

4) 	 The relative contributions of mass of the cables and the mast to the base 

shear is unpredictable for guyed towers taller than 400 m. This may be due 

to the small number of towers modelled in that range. Therefore, until 

.more knowledge is available, a detailed nonlinear modelling study is 

recommended for towers higher than 400 m. 

6.1.2 Simplified Models Proposed for Seismic Behaviour 

Three simplified models are proposed in the thesis for predicting the seismic 

behaviour of tall guyed towers in the 150 - 600 m range. These are: 
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1) 	 The following equation is proposed to evaluate the maximum base shear: 

B.S. =28300 H -1.17 	 (5.2) 

where B.S. is the maximum base shear as a percentage of total weight of 

tower and H is the tower height in meters. 

2) A simplified model for the distribution of earthquake forces along the 

height of the towers has been presented. This model is based on the 

following three concepts: 

a) Predominant mode shape of the mast; 

b) Mass distribution of the mast along the height; 

c) Transition region between two guy cluster groups. 

The distribution of earthquake forces along the mast is proportional 

to the product of the distributed mass of the mast and its predominant 

mode shape. Also discontinuities in behaviour are expected in the 

transition region between guy cable clusters of different trends of lateral 

stiffness. 

The predominant mode shape is the lowest flexural mode of the 

mast which is close to the lowest flexural mode of a simply-supported 

beam on flexible supports. Usually guyed towers have a uniform mass 

distribution along their mast, except for the presence of outriggers which 

locally increase the mass. 

The maximum earthquake force (lateral force) along the mast for 

most of the towers studied is in the range of 23% to 33% of the total base 

shear. 

3) 	 A simplified model in the form of an equation is proposed for the 

distribution of the maximum dynamic component of the axial force in the 

mast along the height of the tower due to combined vertical and horizontal 
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earthquake motions: 

(Pdy/Max B.A.) =100 - 95 (h/H)2 (5.3) 

where (PdynlMax B.A.) is the percentage of the ratio of the maximum 

dynamic component of axial force in the mast along the height to the 

maximum dynamic component of the axial force of the mast at the base; 

h is the sectional elevation along the mast, and H is the total tower height. 

6.1.3 Estimate of Maximum Dynamic Component of Mast Base Axial Force 

For guyed towers with usual initial cable tension (i.e. around 10% of the ultimate 

tensile strength), the maximum dynamic component of mast base axial force due to 

combined vertical and horizontal earthquake motions, is almost constant at about 80% of 

their total weight. 

6.1.4 Sensitive Region 

There is a sensitive region along the guyed towers in the transition zone between 

guy clusters anchored to the ground at different points. This area connects two portions 

of the tower with different trends of lateral stiffness, which causes nonuniformity in most 

aspects of the tower seismic behaviour. Also, with the exception of the dynamic 

component of the axial force in the mast and the rotation (tilt) of the mast, the maximum 

amplitude of the response indicators occurs in the vicinity of a transition region. 

6.1.5 Serviceability Considerations 

The usual serviceability requirements (normally the maximum rotation of the mast 

at specific antenna locations) are met in all the towers studied in this research. 
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6.1.6 General Observations 

I) 	 The contribution of the mass of the cables to the total base shear is almost 

constant in the range of 3% to 5% of the total weight of tower. 

2) 	 Generally, the maximum values of the mast shear occur at stay levels and 

the minimum ones occur at midspan between two stay levels, and vice 

versa for the mast bending moment. 

3) 	 The predominant mode shape observed is not similar to the one suggested 

by lASS (lASS, 1981), which is according to the lowest flexural mode 

profile of a cantilever structure (based on usual building codes). 

For guyed towers with usual initial cable tension (Le. around 10% of their ultimate tensile 

strength): 

4) 	 The lowest flexural natural period of the towers can be predicted by the 

following equation: 

T = 0.0083 H - 0.74 	 (4.1) 

where T is the lowest flexural natural period in seconds and H is the total 

height of the tower in meters. 

5) 	 The maximum contribution of the mass of the cables to the dynamic 

component of the axial force at the base of the mast due to combined 

vertical and horizontal earthquake motions is 10% of the total weight of 

the tower. 

6) The maximum amplification factor of cable tension is in the range of 
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100% to 130%. These percentage values are with respect to the initial 

cable tension. 

7) 	 Except for the dynamic component of mast axial force, there is no 

significant difference between the results from a dynamic analysis with 

only the horizontal earthquake and those from the combined horizontal and 

vertical earthquake motions. 

For guyed towers of total height in the range of 150 to 213 m: 

8) 	 For the towers with usual initial cable tension (i.e. around 10% of their 

ultimate tensile strength), more lateral stiffness is provided close to the top 

antenna attachment points than at the intermediate levels. This makes the 

tower behave like a simply-supp0l1ed beam on flexible supports. In that 

case, the lowest flexural mode of the mast is similar to the second lowest 

mode of a cantilever beam. 

9) 	 Most of the base shear is contributed by the mass of the mast, which is 

more than proportional to its weight compared to cable weight. The 

average contribution of the mast to the total weight of guyed towers is 

72%, which leaves an average of 28% for the contribution of the cables, 

for the towers studied. 

10) 	 The ratio of maximum mast shear to the total weight varies from 6% to 

7% and the ratio of maximum mast moment to the product of panel width 

and total weight varies from 36% to 48%. 

For guyed towers of total height in the range of 313 to 607 m: 

11) 	 The ratio of maximum mast shear to the total weight varies from 2.5% to 
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5%, and the ratio of maximum mast moment to the product of panel width 

and total weight varies from 14% to 35%. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

Many interesting conclusions have been derived from this thesis, and some of 

them may lack generality due to the specific parameters considered. It is recommended 

to investigate the following aspects of the problem in order to increase the applicability 

of some of the findings of this study. 

1) 	 Consider different levels of seismicity other than that of the Victoria 

region. 

2) 	 Add the effect of antennas and accessories (e.g. ladder, transmision lines, 

lights for aircraft warning, etc.) to the models. This will also create 

torsional effects which have not been addressed so far. 

3) 	 Model more real guyed towers (especially above 400 m). 

4) 	 Simulate the effect of more earthquake accelerograms. 

5) 	 Experiment with the modelling of damping. 
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STATEMENT OF ORIGINALITY 


This research program has been conducted in order to study the seismic sensitivity 

of tall guyed telecommunication towers, and to provide an improved understanding of the 

seismic behaviour of these structures. Eight existing guyed towers of heights varying from 

150 m to 607 m have been analyzed in detailed using nonlinear dynamic finite element 

models. Three different classical earthquakes (EI Centro, Parkfield and Taft) have been 

used with the seismicity level of the Victoria region which is among the zones in the 

highest seismic risk in Canada. In addition to the horizontal excitation, the combined 

vertical and horizontal earthquake motions have been investigated. The followings 

summarize the original contributions of this thesis to the engineering knowledge in this 

field: 

1) 	 Proposing simple seismic sensitivity indicators which may be used by 

tower designers to assess whether a particular tower is sensitive to 

earthquake effects, and if so, whether a detailed nonlinear modelling study 

is necessary; 

2) 	 Developing a simplified model in the form of an equation for predicting 

the· maximum base shear; 

3) 	 Finding an estimate of the maximum dynamic component of the axial 

force at the base of the mast due to the combined vertical and horizontal 

earthquake motions; 

4) 	 Presenting a simplified model in the form of a conceptual approach for the 

distribution of earthquake lateral forces along the tower height; 

5) 	 Suggesting a simplified model in the form of an equation for the 

distribution of the maximum dynamic component of the axial forces in the 

mast along the tower height due to the combined vertical and horizontal 

eaI1hquake motions; 

6) 	 Introducing some guidelines to evaluate the seismic amplification factor of 

the cable tension , and the maximum shear and bending moment in the 

mast. 
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