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Abstract 

The work reported in this thesis is motivated by the need for wireless powering of a 

miniaturized implantable device for neurophysiological research and possible clinical 

applications. The antenna used in such applications must be studied in the context of 

biological tissue media. In this thesis, we perform a preliminary study of antenna 

behaviour in the complex tissue environment. Our test cases are the wire dipole antenna 

chosen for its structural simplicity and the spiral antenna, selected for its wide bandwidth. 

The simulation tool SEMCAD-X, is based on the Finite-Difference Time-Domain (FDTD) 

method and is used throughout this work. To have an in-depth understanding of the 

characteristics of different solvers implemented in SEMCAD-X and relevant for our 

applications, we first simulate the antenna structures in the free-space region using both 

SEMCAD-X and HFSS (a Finite-Element Method (FEM) simulation software). The 

cross-platform comparison between these two simulation tools helps us identify the 

advantages of using conformaI FDTD solver over the conventional staircase FDTD soiver 

in SEMCAD-X. We then embed the antennas in tissue-like non-homogeneous lossy media 

to observe the terminal voltages induced by an impinging plane-wave. These numerical 

experiments will help us with the assessment of the following: variations of antenna 

properties with the in-tissue locations, and more importantly the dependence of the 

induced voltage on the depth of the implant. 
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Sommaire 

Cette thèse présente un travail motivé par le besoin de "fournir de l'énergie sans fil à un 

appareil miniaturisé implantable" pour la recherche neurophysiologique et pour des 

applications cliniques. L'antenne utilisée dans telles applications doit être étudié quant au 

tissu biologique. Dans cette thèse, nous réalisons une étude préliminaire du comportement 

d'antenne en ce qui concerne le domaine complexe de tissu. Nous avons étudié l'antenne 

dipôle, choisi pour sa simplicité (structurelle), et l'antenne spirale, choisi pour sa largeur 

de bande. SEMCAD-X, un instrument de simulation, est fondé sur la méthode de 

"Finite-Difference Time-Domain" et cette méthode est utilisée pendant le cours de ce 

travail. Pour comprendre plus profondément les différentes caractéristiques des 

résolutions que SEMCAD-X applique et celles qui sont pertinentes à nos applications, 

nous commençons par simuler les antennes utilisant SEMCAD-X aussi bien qu'HFSS 

(fondé sur la méthode de «Finite Elements »). La comparaison des deux outils de 

simulation nous permet d'identifier les avantages d'utiliser la résolution FDTD conforme 

au lieu de la résolution « staircase» FDTD conventionnel utilisé par SEMCAD-X. De 

plus, nous avons enfoncé les antennes dans un médium « lossy » non homogène répliquant 

du tissu, en effet pour observer la tension au terminal causé par « impinging plane-wave » 

Ces expériences numériques nous aideront avec l'évaluation de ce qui suit: les variations 

des propriétés d'antenne en fonction de son endroit dans le tissu, et plus important encore, 

la dépendance de tension induite avec la profondeur de l'implant. 
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Chapter 1 
Introduction 
Recent research has demonstrated the new areas of antenna applications in biological 

devices [1], [2]. In these applications, the antenna is usually in close proximity with 

biological structures. In sorne cases, the antenna is implanted in the body [3], [4]. In 

particular, our motivation cornes from the emerging technology that aims to use telemetric 

systems for neurophysiological research. 

Currently there are limits to the technologies to stimulate and acquire data remotely 

from a variety of implanted bio-sensors for a relatively long period of time. Alternate 

technologies include non-te1emetric solutions where external cab les are used to supply 

power to the implanted electrodes and to connect the sensor to the data acquisition system. 

Existing telemetric solutions are not designed specifically to provide significant bandwidth 

for multi-channe1 high-bandwidth data collection and the wire1ess transmission is usually in 

the centimetre range. In the proposed future telemetric solution, the antenna has dual 

functionalities including transmitting bio-signaIs to the data acquisition system as weIl as 

receiving microwave energy to power any implanted subsystems. One of the main technical 

challenges is the design of a miniaturized high-efficiency broadband rectifier-antenna with 

re1atively long lifespan. This requires careful studies of the antenna behaviour in the 

complex biological tissue structures. 

This thesis presents a study of the antenna behaviour in non-homogeneous lossy media 

using high-precision electromagnetic simulation software. A brief introduction to the 

finite-difference time-domain (FDTD) method (numerical foundation of the SEMCAD-X 

tool) is included in Chapter 2 along with the literature review. 

In Chapter 3, we present the SEMCAD-X conformaI solver treatment of the curved 

boundaries by a cross-platform comparison with HFSS (finite-e1ement-based tool). 

Chapter 4 summarizes parametric simulation results to study induced open-circuit 

voltage of a simple dipole antenna as weIl as a spiral antenna in layered tissue-like media 

with a plane-wave excitation. 

Finally in Chapter 5, we make concluding remarks about the work presented here, and 

point to possible direction for further investigations. 
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Chapter 2 
Background Review 

2.1 RF Bio-Telemetry and Antenna Behaviour 

A telemetry system is used to colle ct data at a place that is remote or inconvenient to access. 

It often utilizes wireless transmitting channels. A typical telemetry system is composed of a 

data collection subsystem, a multiplexer, a transmitter/receiver, a de-multiplexer and a data 

processing unit [6]. Telemetry itself has a long history of development over 200 years [7]. 

It has been widely accepted in the field of military applications (e.g. missile tests) and 

industrial applications (e.g. power utility monitoring) [7]. However, it is not until the late 

1950s that the biologists and physicians started to realize the potential of telemetry for 

measuring pH and temperature from internaI cavities [9]. A series of lectures and 

demonstrations were organized world-wide by the scientific and engineering communities 

from 1960s to 1970s [8], contributing to the overall increase of interest in telemetric system. 

In the following sections, a very brief review and introduction to RF bio-sensing telemetry 

is presented followed by a section dedicated to a literature survey of antennas embedded in 

biological tissues. 

2.1.1 RF Bio-Telemetry 

Telemetric solution has been used in biological sensing as early as the late 1950s in animal 

tests. These early bio-sensing telemetric systems used Hartley oscillator as the basic RF 

building block [8]. It has been shown by Mackay and Jacobson in 1957 that a Hartley 

oscillator can be configured to work as a pressure sensor as weIl as a temperature sensor in 

frequency modulation (FM) [8]. Analog pressure information is modulated onto the carrier 

signal as a small variation of the resonant frequency, while temperature information is 

represented by a pulse train at a much lower frequency. It is not until 1970s that 

measurements from human subjects were shown to be feasible for fetal monitoring in utero, 

electrocardiogram (ECG) telemetry and gastrointestinal pressures [9]. In these applications, 

bio-sensing telemetry utilizes RF transmitting channels exclusively as it is vital to leave the 
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subject in his normal physiological and psychological state with as little interference as 

possible with his normal pattern of activities. 

Due to the low data bandwidth required in the early bio-sensing telemetry system, the 

transmittinglreceiving antenna is usually a fairly simple resonant structure. Often, it is a 

dipole or a loop antenna. In the early systems, antennas were not specifically designed to 

work in the biologically embedded environment, but they were rather studied in a 

simplified dielectric medium. The design work emphasized the position, orientation and 

physical size of the antenna [8] but largely neglected investigations of its interaction with 

the living (ho st) tissue. In the early bio-sensing telemetric systems, batteries were used as 

the primary power source. This often imposed a trade-off in the design of systems for 

long-range animal experiments, as the engineering solution frequently represented a 

compromise between transmitter life, size, weight and transmission range [8]. 

Although the feasibility of using wireless technology to communicate vital signs was 

demonstrated more than 30 years ago, the above mentioned limitations in system design 

have greatly delayed its wide deployment in both research and clinical applications until 

recent advantages in miniaturized, integrated digital system design. In 2000, Gavriel Iddan 

et al demonstrated a wireless capsule capable of recording 5,000 images over a period of 

7-8 hours and transmit the images back to a wearable antenna array [10]. This system had a 

huge impact on scientists and physicians who were puzzled by the small intestine which 

was extremely difficult to study using the traditional scope test due to the complicated 

convolution. In 2005, RF System Lab announced its next generation wireless capsule 

endoscopy (codename Sayaka) which uses RF inductive power instead of the harmful 

battery and it is capable to transmit 870,000 images for its 8 hours lifecycle [11]. A sketch 

ofthis capsule, demonstrating its dimensions, is shown in Figure 2.1. 

Figure 2.1 Sayaka from RF System Lab [11]. 
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Miniaturized bio-sensing telemetry also finds its use in physiological studies. This has 

been a particular interest to the National Aeronautics and Space Administration (NASA) 

where scientists and engineers are trying to develop telemetric-based implantable sensing 

systems to monitor the physiological parameters of astronauts during space flights [5]. 

These related researches also utilize inductive power as the energy source for the sensor 

system. Sorne examples of resulting bio-sensing telemetric systems are summarized in 

Table 2.1. 

Table 2.1 Summary of sorne existing bio-telemetric systems. 

On-Chip Inductor Wireless Link 
Reference Dimensions (mm) Distance (mm) 

2 x 10 30 Von Arx and Najafi [5] 

5x5 5 Eggers et al. [5] 

10.3 diameter 30 
Ullerich et al. 

Mokwa and Schnakenberg [5] 

1 x 1 100 Rainee et al. [5] 

Notice that the existing systems above only have very short transmission ranges in the 

order of 1/10th of a meter making them not suitable in sorne cases where relatively long 

transmission ranges are required. Due to the relative low operating frequency (VHF band), 

a square spiral loop is used as the inductor/antenna combination where the ideas of 

transformer are more relevant than the usual considerations of radiation fields [8]. 

The proposed new system will operate at a higher frequency to pro vide wider data 

bandwidth with an extended transmission range in the order of meter. In 1999, Federal 

Communications Commission (FCC) and European Telecommunications Standards 

Institute (ETSI) standardized Medical Implant Communication Service (MICS) band at 

402-405MHz. This frequency band is carefully chosen to avoid interference with other RF 

traffic and to minimize the coupling with living tissues. Implanted antennas have also being 

designed to operate in the 2.4GHz ISM band. However, due to the high water content in 

living tissues, the 2.4GHz band has a relatively high conduction loss; therefore it is not a 

favourable choice for implanted antennas. Last proposed frequency band is at 6.5GHz ISM 

band [32]. This frequency has the minimum tissue attenuation. In the following section, a 
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brief literature survey of these biologically-embedded antennas is presented after an 

introduction to the two common numerical methods used to model these antennas. 

2.1.2 Numerical Analysis of Embedded Antenna in Biological Tissue 

Antennas used in bio-sensing telemetry function differently from the traditional free-space 

operation. Their behaviour must be studied in a manner that includes the complex 

biological environment and its interaction with the near-field antenna ration. In the 

literature, biological embedded environment is often modeled as a lossy material with high 

permittivity. Two numerical methods are commonly used in the analysis. In this section, 

we present a brief introduction to both of these two methods followed by sorne published 

example antenna analysis results. 

2.1.2.1 Spherical Dyadic Green's Functions (DGF) 

Spherical DGF is often used to model wire antennas in the human head. In this method, the 

human head is represented by a multi-Iayer lossy dielectric sphere as shown in Figure 2.2. 

Skin 

Fat 

Bone 

Dura 

CSF 

Brain 

Figure 2.2 Ruman head model [12]. 

The total electric field E , generated by CUITent density of the implanted source Js, can be 

calculated by the volume integration over the source in terms of the spherical dyadic 

Green's Functions 

(2.1) 

where Jis is the permeability of the source layer, 

-
r(r,B,rp) is the field location, 
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-1 

r (ra, (Jo, ((Jo) is the source location, 

8fs is the Kronecker delta function, 

= --1 

GeO(r,r )is an unbounded spherical DGF in the source region, and 

=(fs) - -1 

Ges (r,r) is a scattering spherical DGF in the field layer from the source. 

- -1 

The detailed derivation of the formulation together with the expressions of GeO(r, r ) and 

=(fs) __ 1 

Ges (r,r) can be found in [13], [14], results are also summarized in [12]. 

To facilitate the numerical implementation of Equation 2.1, the Wlre antenna is 

decomposed to represent a superposition of infinitesimal CUITent elements lining up along 

the antenna. Each infinitesimal CUITent is then decomposed into a rotated local coordinate 

system as shown in Figure 2.3 . 

. \ 

• , \ 
\ 

\\~ , , , 
\ 

\ , , , 
\ 

\ 
\ 

+ 
,~ 

t .' " .... ", . 
"'\ "' .. ..-

\ '\ 
.i; fi, \ ..... .", 

.:.H. 

Figure 2.3 Decomposition ofwire antenna with local coordinate rotation [12]. 

Then, the source integration in Equation 2.1 can be approximated by a finite summation of 

the electric field contributions from aU CUITent elements. Each one of the CUITent element 

contributes to the total electric field by: 

Ef(-;'/) ~ - jœJlf [ GeO(-;', -; lofs + GCf:) (-;., -;.' ) }[ ~lx + ;d7x 1 ] 

(2.2) 
-i - -s - -i - -s-

= Ex(n) + Ex(n) + Ez(n) + Ez(n) 
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-i - -s -
where Ex (ri) and Ex (ri) are the incident and scattering electrical fields from the x-directed 

-i - -s -
infinitesimal current element. E z (ri) and E z (ri) are the incident and scattering electrical 

fields from the z-directed infinitesimal CUITent element. 

-i - -i -

Incident fields Ex (ri) and E z (ri) can be found directly using analytic solution of an 

-s - -s -

infinitesimal electric dipole while scattering electric fields Ex(rI) and Ez(n) can be 

calculated as following [12]: 

-s - . =(ft) - -' ~ (OJPfI1x ) 1 00 (2n+1) 
Ex(rI)=-JOJpfIlxGes (rI,rt)·B=- -;-I---

4ll" 'Î n=1 n(n + 1) 
-(4) '(4) , '(1) , 

(1-0 jN)M Oln(fJf)[An,J(1- OSN)P'iZ(n) (P'i) + Bn,J(1- OSI)P'iZ(n/pr[)] 

(1 5: )N(4)(fJ )[C (1 s: )8[p'i'Z(~?(P'i')] D (1 s: )8[p'i'Z(~~(P'i')]] + -vjN eln f n,f -vSN , + n,f -vSI --~-:---
8(p'i ) 8(p'i') 

x 
-(1) '(4) , '(1) , 

+(1-ofl)M Oln(fJf)[En,f(1-0IN)P'i Z(n) (P'i) + Fn,J(1- OSI)P'iZ(n)(P'i)] 

(1 s: )N(I) (fJ )[G (1 5: ) 8[pr;zg?(p0] LI (1 S:) 8[p'i'Z~~(P'i')]] + - v fI eln f n, f - v SN , + I1n, f - V SI , 
8(pr[ ) 8(p'i ) 

, j(js ' 
where P'i = OJ ps8s(1--)r

l 
and 

OJ8s 

-s - =(ft) - -' ~ (OJPfIlz ) 1 00 

Ez(rt)=-jOJpfIlzGes (rt,rt)·rt=- -;- I(2n+1) 
4ll" r[ n=1 

[ 

-(4) (4) , (1) , ] (1-0 jN)NeonUh)[Cn,f(1-0SN)Z(n) (P'i) + Dn,J(1- OSI)Z(n)(P'i)] 
X 

-(1) (4) , (1) , 
+(1- 0 f l)NeonC,Lh)[Gn,p(l-osN)Z(n) (P'i) + Hn,J(1- OSI)Z(n)(P'i)] 

(2.3) 

(2.4) 

where [An,f, Bn,J, ... , Hn,J] are unknown coefficients determined by boundary conditions, 
-(il -(il 
M emn and N emn are the spherical vector wave functions, 

Z(~r) and Z~~) are Bessel and Hankel functions. 

Spherical DGF method is only applicable to wire antennas embedded in the simplified 

head model. This is due to the fact that the formulation of this method utilizes dyadic 

Green's functions for spherical wave exclusively. In the next section, we will introduce a 

much more flexible method known as the Finite-Difference Time-Domain (FDTD) method, 

which can be used to analyze more complicated antenna structure in arbitrary shaped 

dielectric settings. 
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2.1.2.2 Finite-Difference Time-Domain (FDTD Method) 

The FDTD method is a popular numerical electromagnetic modeling technique. It solves 

Maxwell's curl equations explicitly by discretizing the problem in both the time domain 

and the spatial domain. The finite difference technique is applied to update both E and 

Hfield in a leap-frog scheme [15], [16]. 

Maxwell's curl equations relate the spatial derivative and the time derivative of electric 

and magnetic fields as follows: 

aH =-lVxE-P' H 
at J.l J.l 

aE 1 - (J'-
-=-VxH--E at e e 

(2.5) 

(2.6) 

Where E is the electric field intensity in V lm, H is the magnetic field intensity in A/m, e 

is the electrical permittivity in F lm, J.l is the magnetic permeability in Hlm, (J' is the 

electrical conductivity in Sim, p' is the equivalent magnetic resistivity in O/m. Notice 

that E and H are vectors of three orthogonal components, therefore each of the above 

equations can be decomposed into three scalar equations. 

E and H components are positioned along the side of the unit lattice cell as shown in 

Figure 2.4. In the primary grid, the magnetic field is computed by using the circulating 

electric fields (implementing thereby directly Ampère's law for that specifie grid cell). In 

the secondary grid, the electric field is computed using the circulating magnetic fields 

(implementing Faraday's law of induction for that specific grid cell). 

Figure 2.4 FDTD Yee's ceIl [17]. 

8 



Using finite difference scheme, the first-order spatial derivate and time derivative reads: 

aF(i,j,k,n) = FI7+1/2,),k -FI7-112,),k +0[ox2] 
ax ox 
. . Fln+1I2 Fln-1/2 

aF(l,j,k,n) = l,),k - l,),k +0[0 2] 
at OX ( 

(2.7) 

(2.8) 

With F n as the electric (E) or magnetic (H) field at time n· 01' where o( is the time 

step. Ci, j, k) are the indices of the spatial lattice. 0[( &Y ] and 0[( &y ] are high order error 

terms. 

1 

12 Exln+l,k+Exln.,k 
Using Equation 2.7 - 2.8, together with linear approximation: Exn+l,k R:i l,) l,) 

l,) 2 

Equation 2.5 and 2.6 are discretized component-wisely: 

~tp:k 1- l,j, 

Hxln+1I2 = ( 2 JL i,/, k )Hxln~lkI2 + 
I,j,k ~t l,j, 

( 

and 

1 + Pi,J,k 

2JLi,J,k 

~t 

JLi, J,~ )[ Ezl7,J+1I2,k -Ezl7,J-1I2,k _ Eyl7,J,k+1I2 -Eyl7,J,k-1I2 ] 

~tPijk ~y ~y 1+ ' , 
2JLi, J, k 

1- ~t(Yi, J, k 

Exln+l = ( 2Si, J, k )Exln. + 
I,j,k /j.tcy. 'k I,j,k 1 + l,j, 

2Si,J,k 

~t 
-, -, - Hzl n+1I2 _Hzln+1I2 H y ln+1I2 _Hyln+1I2 

( S" j, k )[ l,j+1I2,k l,j-1I2,k _ l,j,k+1I2 l,j,k-1I2] 

1 + /j.tCYi, J, k /j.y ~y 
2ei,J,k 

(2.9) 

(2.10) 

Computational domain in FDTD must be truncated in both the time domain and the 

spatial domain. In time domain, broadband simulation is terminated when the excitation 

signal dies out as shown in Figure 2.5(a). This broadband excitation signal is a Gaussian 

modulated sinusoidal pulse chosen for its flat spectrum content across all frequencies. 
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Responses at any arbitrary frequencies can be simulated with one simulation run. This is a 

significant advantage of FDTD over the frequency-domain numerical methods. For 

harmonic simulations, the excitation signal is a ramped sinusoidal which terminates itself 

after a user-defined period of simulation time. 

0.5 

....-
fj) 

.:t::= 
0 0 > "--" 

> 
-0.5 

-1 ,,,"""""""''''''''''-'''''''''''','''',,''''''~'''''-'''''~'''',''',,'''''~'''''''''-",,,,,,~_L,,,,,,_, __ ,,,,,,,,_,,"- """""'-"'~"'" ••• ,.--

o 0.5 1 1.5 2 2.5 3 
t (nsec) 

(a) Broadband simulation excitation signal 

1 l 
1 
1 

-la 
'0 
> -
> 

1 
1 

1 
"" __ " ___ "'''''~''_'' ___ '''''''''''''''''~''''''''''_'''''''''''''''''''''''''''''''''''''''''''''''''''''_'''''''''''''''''''''"""""''''_'''''''''''''''''''~''''''''''''''' "'",L"'" ..... """',,, __ ,J o 0.5 1 1.5 2 2.5 3 

t (nsee) 
(b) Harmonie simulation excitation signal 

Figure 2.5 Excitation signaIs in SEMCAD-X. 
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In spatial domain, Absorbing Boundary Conditions (ABC) are necessary to truncate 

the problem to a finite-size computational domain. In all our simulations, the ABCs are 

perfectly matched layers (PML). 

To guarantee a stable solution in FDTD method, the time evolution step size (tS, ) must 

be upper bounded by the Courant-Friedrich-Levy (CFL) criterion. For Maxwell's equations, 

this constraint is: 

(2.11) 

Where & , 0; and & are the minimum steps size in X-, y- and z-direction of a Cartesian 

coordinate system and c is the speed of light in the material of a cell. 

2.1.2.3 Sam pie Studies of Antenna Behaviour in Embedded Environment 

Several types of antennas embedded in the human tissue have been studied using FDTD 

method. In the following section, the antennas are all designed to operate in MICS band at 

403.5 MHz. This section presents a brief digest of relevant antennas found in [18]. 

• Wire Antenna 

One of the antennas used for implants is an embedded simple wire antenna. The impedance 

of the antenna is determined by the length of the antenna together with the reflection from 

the far end [18]. One way to reduce the attenuation introduced is to use insulation around 

the antenna because the lossy material is then removed from the close proximity region of 

the strong near-field [18]. To reduce the reflection, an electrical path is established by 

connecting the far end of the antenna to the living tissue. This structure then becomes the 

well-known case of travelling wave antenna. The main drawback for this solution is that 

the characteristics of the antenna vary considerably as the electrical properties of the living 

tissue varies [18]. 

• Circumference Antenna and Variations 

Circumference antenna is popularly used in heart pacemakers because it naturally conforms 

to the shape of the device. In this case, the circumference antenna is a variation of a 
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quarter-wavelength monopole antenna where the pacemaker case serves as the ground [18]. 

Insulator is used to reduce the attenuation as described in the case of wire antennas. The 

resonant frequency of the antenna is scaled by 1/ J;; , where Gr is the dielectric constant of 

the material hosting the antenna. The antenna length must be scaled by the same factor to 

result in the specific electrical size. However, the impedance of the antenna will also be 

scaled down from approximately40 Q at resonance to about 5 Q [18]. To increase the 

bandwidth of the antenna and the impedance at resonance, sorne classical antenna design 

techniques can be applied. In Figure 2.6, two variations of circumference antenna are 

shown together with the original model. In (b), the radiator is made thicker to pro vide a 

wider bandwidth. The new design has an increased bandwidth of 33% compare to (a) [18]. 

In (c), the feed structure is modified to bring the impedance at resonance close to 50 Q 

[18]. 

(a) (b) (c) 

Figure 2.6 Circumference antenna and its variations [18]. 

• Patch Antenna 

It has been shown that a patch antenna is not very suitable for implanted devices [18]. The 

resonance of the structure is compromised by the fact that the antenna is surrounded by 

conducting tissue materials with high permittivity. To overcome this, a very thick layer of 

insulation must be used which makes the antenna profile too big to be used in implanted 

devices. 

2.2 Parameters of Tissue Layers 

To characterize the behaviour of embedded antenna, several parameters of living tissues 

must be studied to produce an accurate model. In this section, we present a summary of the 

12 



literature survey on related topies. Thickness of different tissue layers can be found in [18], 

[22] and [23]. Detailed studies of dielectric constants and conductivities of different tissues 

can be found in [20]. 

2.2.1 Thickness of Tissue Layers 

Depending on the specifie applications, antennas are implanted in different organs; 

therefore they operate in very different environments. One of the most common implanted 

devices is the pacemaker which is normally implanted directly under patient's skin tissue, 

typically between the subcutaneous fat tissue and the major pectorals muscle [18]. In the 

related literatures, these embedded antennas are studied in a three-Iayer skin-fat-muscle 

model [21], [22]. The third layer, the muscle tissue, is extending to infinity in the 

z-direction by using absorbing boundaries. 

Notice that each of these three layers has its own complicated structure. For example, 

the skin tissue is composed of the epidermis, dermis and hypodermis. Each of these 

sub-Iayers has slightly different dielectric properties. However, the thickness of each of 

these sub-Iayers is much less than a wavelength at either MICS band or ISM band in a 

dielectric environment withsr = 48; therefore spatial resolution beyond skin-fat-muscle 

model is irrelevant. In Chapter 4 of this thesis, we will verify this by comparing the 

single-layer skin model with a two-Iayer skin mode!. 

The thickness of different tissue layers varies considerably from individual to 

individual and from time to time. In literature, skin thickness is normally reported to be in 

the range from Imm - 5mm with a typical value close to 3.7mm [2], [12], [18], [22], [23] 

while the fat layer is usually treated as a parametric variable from Omm - 15mm [18], [22]. 

2.2.2 Relative Permittivity and Conductivity of Tissue Layers 

Dielectric spectrum of tissues has been weIl studied and summarized in several 

publications [20], [24]. In general, permittivity & is a complex function of frequency 

written as: 

Sc = s' - js" complex pennittivity 

• Œ'e 
=Se-J­

O) 

13 

(2.12) 



Ge is the effective permittivity and (J"e is the effective conductivity 

Relative permittivity Ger is defined as: 

Ce 
Cer=-

Co 

Co =8.8541878176 X 1012 F/m 

Loss due to finite conductivity is expressed as loss tangent 

tan8=- Im[cc] =_ ae =_ c" 
Re[ cc] OJCe c' 

(2.13) 

(2.14) 

Complex permittivity GC can be approximately expressed as a function of frequency by 

Debye relaxation expression: 
Cs - [ft, 

Cc = [ft, + j---
1+ jarr 

where 

coo is the permittivity at the high frequency limit, 

Cs is the low frequency (static) permittivity, 

r is the characteristic relaxation time of the medium. 

Hurt modeled the dielectric spectrum of the muscle using a summation of five Debye 

dispersions in addition to a conductivity term as followed [25]: 

5 Î'1Cn ai 
Cc = [ft, + l +--

n=1 1 + jOJrn jOJco 

where 

rn is the n th characteristic relaxation time ofthe medium 

Î'16n is the change in the relative permittivity (6s - 600) associated with rn 

O'i is the static ionic conductivity 

Î'161,Î'162 .. can be normalized respect to one constantÎ'16 and Equation 2.16 becomes 

~ An 0-, 
6e = 600 + (6s-[ft,)..L.. +--

n=1 1 + jOJrn jOJ60 

(2.15) 

(2.16) 

(2.17) 

Due to the complex nature ofbiological tissues, each of the Debye terms is broadened by 

introducing an empirical distribution parameter an, the result is known as the multi-term 

Cole-Cole expression: 
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~ !J.&n (Yi 
&c=&oo+ L. +--

n=J (1 + jOJrn)(I-an) jOJ&O 
(2.18) 

where 

an is the measure ofhroadening of the dispersion 

AlI the constants for the Cole-Cole model can he found in [20]; therefore using Equation 

2.18, complex permittivity can he calculated at any given frequency. The folIowing values 

are taken from [26] calculated using Equation 2.18 at 403MHz and 6.5GHz with the 

exception of the unified skin tissue where the relative permittivity and conductivity are 

calculated using the weighted average of the dry skin and wet skin over their thickness. 

Table 2.2 Parameters of different tissue layers at 403MHz and 6.5GH. 

403MHz 6.5 GHz 

Tissue Ber (J" (%) Ber (J" (%) 

Muscle 57.104 0.79708 47.544 5.8201 

Fat 5.5785 0.041167 4.8917 0.33955 

Skin (dry) 46.718 0.68934 34.519 4.3433 

Skin (wet) 49.85 0.67004 37.761 5.0544 

Skin (averaged) 48.0603 0.6811 35.91 4.6481 
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Chapter 3 
Verification of Conformai FDTD Scheme 
Implemented in SEMCAD-X 
SEMCAD-X (Schmid and Partner Engineering Company [17]) is a 3-D fuIl-wave simulator 

based on the Finite-Difference Time-Domain (FDTD) algorithm. In SEMCAD-X, several 

variations of standard FDTD method are implemented. One of these variations is the 

conformai FDTD solver. Unlike the standard staircase formulation used to treat the curved 

boundaries, the conformaI FDTD solver treats the media on the two sides of the boundary 

in a manner that results in a smaIler approximation error. In the staircase FDTD algorithm, 

one ceIl can only represent one single type of material in contrast to the conformaI FDTD, 

where weighted averages of electrical constants are used for the boundary ceIls. This 

allows the discretized boundaries to "foIlow" the geometric boundaries of the structure 

more closely as illustrated in Figure 3.1 below. 

(a) (b) 

Figure 3.1 Illustration ofa curved antenna edge modeled using (a) the conformaI grid and (b) the 
conventional staircase grid [29]. 

Using the conformaI scheme with a coarser spatial resolution produces the same accuracy 

as a much tiner staircase mesh, but with signiticant savings in memory requirements and 

simulation time [17]. Two case studies are presented in this section to help understand the 

characteristics of conformaI FDTD solver implemented in SEMCAD-X. The reflection 

coefficient (S Il) was simulated for a disk dipole antenna first and then a spiral antenna. 
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These two antennas were chosen for their curved boundaries which best differentiate the 

conformaI and the conventional staircase FDTD soivers. 

3.1 Disk Dipole Antenna 

The geometry of disk dipole antenna is shown in Figure 3.2 together with its dimension and 

its orientation relative to the coordinate system. The antenna is 70llm in thickness with 

1mm spacing between disks to accommodate the feed structure. The reflection coefficient 

(SIl) was first simulated in HFSS as the reference and then in SEMCAD-X using both 

conventionai staircase FDTD soiver and conformaI FDTD sol ver. The simulated S Il in this 

section is normalized with respect to 50 Q . The results are shown in Figure 3.3. 

30 mm 

1 mm 

z 

X 
l 

/L_~y 

Figure 3.2 Geometry, dimension and orientation ofthe simulated disk dipole antenna [29]. 

-20 

-25 c, 

-30 o 2 

-.. ... -_.-'" 

-,~~""- HFSS (reference) 
"', "SEMCAO conformai FOTO solver 
-- SEMCAD staircase FDTO solver 

4 6 8 10 12 
Frequency (GHz) 

Figure 3.3 Simulated SIl using SEMCAD-X staircase FDTD solver and conformaI FDTD solver shown 
together with the HFSS result as reference. 
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The same very dense mesh was used for both the staircase FDTD and confonnal FDTD. 

The free-space region was discretized with maximum step 2mm while the minimum step 

was O.2mm in x- and y-direction. The step size in the antenna region was uniformly set to 

0.2mm in x- and y-direction. In z-direction, the minimum step was uniformly set to 

0.035mm and the maximum to 2mm. This grid generated a spatial computational domain of 

5 million cells. The simulations were carried out on a Dell Precision 670 computer 

(Dual-Core 2.80 GHz Intel Xeon, 4 GB DDR2 SDRAM) with an aXware accelerator card 

[17]. Simulation time was 1 :27:34 for the confonnal solver and 0:40:22 for the 

conventional staircase FDTD solver. The longer simulation time for the conformai solver 

was due to the fact that the time evolution step size was only 50% of the maximum allowed 

time step size determined by CFL in Equation 2.11. The relatively long simulation time for 

conformaI solver can be significantly improved by using a smaIler reduction factor. The 

simulated Sil results are shown in Figure 3.4 using 50% CFL (0.501), 70% CFL (0.70/) 

and 100% CFL (01) with HFSS result as the reference. As shown in Figure 3.4, the 

simulation maintains accurate even when no time step reduction is used (i.e. 100% CFL). 

-al 
'C -
'l"" 
'l"" 
CI) 

o~~~~------~--------------~------~----~ 

-5 

-10 

-15 

-20 

-25 

2 

. . ...... ~ ... . , 

,._'- HFSS (reference) 
. SEMCAO conformai solver with 50% CFLi 

- - -SEMCAD conformai solver with 70% CFLI 
SEMCAD conformai solver with 100% CFLi 
4 6 8 10 12 

Frequency (GHz) 

Figure 3.4 SEMCAD-X simulation results with various time step size reduction factors. 
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A further investigation showed that with conformaI solver, a coarse grid can be used 

instead of the very dense one with acceptably accurate results. The coarse grid was setup to 

discretize free-space region with maximum step size 2mm while the minimum step size 

1mm for both x- and y-direction. The maximum step size in the antenna region was 2mm in 

x- and y-direction while the minimum step size was 1.5mm in x-direction and 1mm in y­

direction. In z-direction, the setup was the same as in previously described study. This grid 

generated a much smaUer spatial computational domain of 0.3 million ceUs. The simulation 

result is shown in Figure 3.5 together with the HFSS reference. As a comparison, the 

conventional FDTD solver is also engaged here with the same coarse grid. The conformaI 

FDTD recovers the solution very weIl while the conventional FDTD has a progressively 

increasing error of more than 5dB. The computation time has also dramaticaUy reduced to 

0: Il: 14 with a 50% CFL (0.551) time step reduction. In conclusion, the conformal FDTD 

solver implemented in SEMCAD-X for treatment of curved boundaries enables remarkable 

savings in memory requirements and simulation time without compromising any 

simulation accuracy. In the next section, we will apply this rule to simulate a spiral 

antenna. 

-al 
'0 -
'f"" 
'f"" 

tn 
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-15 

-20 

-25 -,,,- HFSS (reference) 
" "' "SEMCAO conformai FOTD sol ver with coarse 
-- . - SEMCAD staircase FDTD solver with coarse 

~o'~~,-""'''''~"'''''''''''"··~,·,,,,·,''' ",,,, """""~'''''''''''~''~~~~"'''''~'''~ 

o 2 4 6 8 10 12 
Frequency (GHz) 

Figure 3.5 SEMCAD-X simulation results with a coarse grid [29]. 
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3.2 Spiral Antenna 

Spiral antenna is a self-complementary radiating structure. In theory, the behaviour of a 

spiral antenna should be independent of frequency. The theoretical impedance of a 

self-complementary antenna in free-space is: 

1 1~0 Zspiral = - Zjree _ space = - - = 607r ~ 188Q 
2 2 &0 

(3.1) 

Due to its complicated curved boundaries, simulation of the spiral antenna is commonly a 

challenge. In practice, spiral antennas have been suggested for use in the RF energy 

recycling applications [27]. This recycling RF energy concept may be effectively extended 

to the embedded bio-telemetric system discussed in Chapter 2 as the main or backup power 

source. In this section, we simulate spiral antenna in free-space. 

2 1'l11l 

Figure 3.6 Geometry and dimension of the simulated spiral antenna. 

The above spiral antenna can be mathematically described as: 

{

rI = eO.25 q> 

Arm 1 7r 
O.25('1'-~ ) 

r2 = e 2 

{

rI = (rV(J -~) 
Arm 2 _ 7r \1'0 ~ ((J ~ 47r 

n - (n,((J - 2) 

The antenna is 35)..lm thick with a 0.508mm thick Rogers Duroid substrate (&r = 2.2, f.Jr = 1). 

The reflection coefficient SIl was first simulated in HFSS as the reference and then in 
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SEMCAD-X using both the staircase FDTD sol ver with a dense grid and the conformaI 

FDTD solver with a coarser grid. The spatial discretization parameters are summarized in 

Table 3.1 and the results are graphed in Figure 3.7. The simulation time for the staircase 

FDTD solver with the dense grid (9.19 million cells) was 8:24:23; while the conformaI 

FDTD solver with the coarse grid (5.35 million cells) and 50% CFL (high accuracy setting) 

required 4:32:38. The case of the spiral antenna confirmed that the conformaI FDTD 

introduces significant computational time and memory savings with respect to the staircase 

FDTD scheme. 

Dense 

Coarse 

Table 3.1 Spatial resolution setup for spiral antenna simulation. 

Antenna R~gion Free-space Region 
Maximum Minimum Maximum Minimum 

step size (mm) step size (mm) step size (mm) step size (mm} Grid size 
x-dir: 0.1 x-dir:0.001 x-dir: 0.1 x-dir:10 537x402x80 
y-dir: 0.1 y-dir:0.001 y-dir: 0.1 y-dir:10 = 9.19 Mcells 

z-dir:0.035 z-dir:0.035 z-dir:0.01 z-dir:10 
x-dir: 0.1 x-dir:0.3 x-dir:0.1 x-dir:10 

521x387x64 
y-dir: 0.1 y-dir:0.3 y-dir:0.1 y-dir:10 = 5.35 MCelis 

z-dir:0.035 z-dir:0.035 z-dir:0.01 z-dir:10 

HFSS (reference) -251~··· 
1 " - - SEMeAD conformai FDTD solver with a coarse grid 

-- .•. =:. .. ~~~gAD ~!~.!~~~~~~Q!Q.~C?I~~~~~ ,,-!i!~ .. ~ .. ~ense~~j~ 
3 4 5 8 7 8 9 10 

Frequency (GHz) 

Figure 3.7 Simulated SIl (normalized to 188 n) using SEMCAD-X staircase FDTD solver and conformaI 
FDTD solver shown together with the HFSS result as reference. 
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Chapter 4 
Parametric Studies- Results and Discussion 
Instead of focusing on the radiating characteristics of an antenna, in this section, we focus 

on its receiving properties. In particular, this antenna will be used as part of the 

rectifier-antenna (i.e. rectenna). As the name suggests, this structure rectifies the received 

RF signal to provide its DC component. Therefore, utilizing a rectenna can effectively 

eliminate external cables or batteries for the embedded bio-telemetric devices and provide 

internaI power source. Preliminary studies of miniaturized rectenna in free-space have been 

published [27], [30] and [31]. In this thesis, we demonstrate a study of the receiving 

characteristics of the rectenna in the context of its proximity to the biological tissues. Our 

test cases are the wire dipole antenna chosen for its structural simplicity and robustness, 

and the spiral antenna chosen for its wide bandwidth. The incident wave is a plane-wave 

with specified frequency and magnitude. The excitation frequencies of interest are 

403.5MHz and 6.5GHz. The magnitude of electric field is set to 1 V/m for aIl cases. This 

value is weIl below electromagnetic field exposure limits set by IEEE, FCC and 

International Commission on Non-Ionizing Radiation Protection (lCNIRP) outlined in 

Table 3.1 at both frequencies. 

Table 4.1 Exposure limits set up by various agencies for general public (non controlled environment). 

-Power density Equivlent plane wave E 

(mW/cm2
) field amplitude CV lm) 

403.5MHz 6.5GHz 403.5MHz 6.5GHz 

IEEE Std C95.1 [33] 0.269 4.33 31.8 127.8 

FCC OET Bulletin 65 [34] 0.269 1.0 31.8 61.4 

ICNIRP Std, [35] 0.202 1.0 27.6 61.4 

4.1 Methodology 

There are several variables of particular interest in terms of their effects on the induced 

voltage on the receiving antenna terminaIs. These variables are summarized in Table 4.2. 

One of the most important parameters is the location where the antenna is embedded. The 
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antennas are simulated when placed in different tissue layers: skin, fat and muscle. Within 

the relatively thick fat layer, we examine the antenna at four different locations relative to 

its position to the skin/fat interface. For an additional parametric study, we fix the antenna 

in the skin layer and vary the thickness of the undemeath fat layer from 5mm to 20mm to 

investigate the change of the dielectric distribution in the near-field of the antenna on its 

properties. Similar procedure has been reported in [18] and [19]. Both the wire dipole and 

the spiral antenna are simulated for the settings noted above. Our further investigations 

consider miniaturized dipole and spiral antenna, more appropriate for implant applications. 

The dipole antenna is scaled down by 1/1 Oth and the spiral antenna by ~ of their initially 

studied size. In practice, metals are not directly implanted in tissues and thus the study of 

the insulation layer around the antenna is of particular importance. Literature indicates that 

the insulation layer can help improve the radiation efficiency when the antenna is 

embedded in a lossy material [18]. Hence, part of our study focuses on detecting any 

possible effect of the insulation layer on the induced voltage of the embedded antennas via 

simulations. Finally, all the simulations are performed at both 403.5MHz and 6.5GHz. We 

selectively present the representing results from our simulations in section 4.3 and 4.4. 

Table 4.2 Simulation setup variables. 

Variable Value 

Type of antenna dipole spiral 

Locations of the 
one location in skin layer (z = -1.7mm) 

four locations in fat layer (z = -5.7, -7.7,-11.7, -19.7mm) 
antenna 

one location in muscle layer (z = - 25.7mm) 

Thickness of fat layer 5mm,10mm,20mm 

Insulation layer with insulation layer without insulation layer 

Size of the antenna 
Original: 53mm (length) Original: 45mm (diameter) 

Scaled:5.3mm (length) Scaled: 22.7mm (diameter) 

Excitation frequency 403.5MHz 6.5GHz 
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4.2 Simulation Model Verifications 

Three-layer tissue model is shown in Figure 4.1. The exciting plane-wave signal is 

propogating in -z direction (i.e. perpendicular into the plane of the page) within the 

plane-wave excitation region. 

y 

Plane-wave excitation region 

(a) Top view of the three-layer tissue model 

(b) Side view of the three-layer tissue model 
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(c) 3-D view of the three-layer tissue model 

Figure 4.1 Three-layer tissue mode!. 

4.2.1 Thickness of Muscle Layer 

Ideally, Absobing Boundary Conditions (ABCs) should be applied on the four side-walls as 

well as the bottom face of the model to elminate reflecting waves. However, due to the 

limitation of the aXware accerelator card on the computers available, this model cannot be 

implement when plane-wave excitation is used. For the side-walls, as the incident wave is 

propagating in the -z direction, we assume that the reflection from these faces is small 

enough to be safely neglected as they are mainly reflection of scattering field caused by the 

embedded antenna structure. To eliminate the reflection from the bottom muscle/air 

interface, we use a muscle layer with extended thickness such that the conduction loss 

introduced by the finite conductivity of the muscle consumes most of the wave energy, 

reducing the reflected wave to a negligible level. To valide the thickness of muscle layer 

required to safely ignore the reflection from the bottom, a Matlab script is wrtten to 

calculate the I-D electric field magnitude as a function of z (depth into the tissues) (see 

Appendix B). The program utilizes the continuity of tangential electric field and magnetic 

field on dielectric boundaries to form a set of linear equations. Solving these equations 

gives the magnitudes of the electric field at these boundaries. The complete solution can 

then be interpolated according to the theoretical formula. The magnitude of electric field 

across tissue layers are shown in Figure 4.2. 
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~kin/Fat interface (ds=3.7mm) 

IFatlMuscle interface (df=5mm) 

Il Muscle/Air interface (dm=20mm) 
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Figure 4.2 Electric field magnitudes as a function of depth into tissue layer when illuminated by a normal 
incident plane-wave at (a) 403.5MHz and (b) 6.5GHz with different muscle thickness. 
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As shown in Figure 4.2(a), at 403.5MHz the magnitude of electric filed changes 

significantly when the thickness of muscle layer varies from 20mm to lOOmm. However, 

the magnitude of eleetrie field does not change very mueh when the thiekness of the muscle 

layer grows from lOOmm to 200mm. This statement is especially true when the magnitude 

of electric field is measured at depth into the tissues smaller than 25mm. From these results 

we infer that a lOOmm thick muscle layer (dm = lOOmm) is sufficient to eliminate 

unwanted reflections from the muscle/air interface through the loss meehanism at 

403.5MHz. At 6.5GHz, we expect that, due to higher conductivity loss (Table 2.2), a 

thinner muscle layer should provide sufficient attenuation to safely ignore the reflection 

from the bottom muscle/air interface. This is clearly confirmed by the overlap of relevant 

results graphed in Figure 4.2(b). As a conclusion for 6.5GHz, a 20mm thick muscle layer 

( dm = 20mm) is sufficient to reduce the reflection from the bottom muscle/air interface to 

a negligible level and thus emulate the absorbing boundary conditions. 

4.2.2 The Effect of Spatial Resolution on the Skin Layer 

The skin layer shown in Figure 4.1 (b) ean be further deeomposed into wet skin and dry 

skin. They have slightly different relative permittivities as shown in Table 2.2. The 

thickness ofwet skin is around 1.5mm and that of the dry skin is approximately 2mm [36]. 

However, we expect that this marginal increment of spatial resolution on the skin layer 

should not have a signigicant effeet on our simulations. This statement holds true at both 

403.5MHz and 6.5GHz, as the wavelengths corresponding to both frequencies in the 

dielectric environment are much larger than the thickness of the skin layer. Therefore, the 

wave can hardly distrigush between wet skin and dry skin. To validate the single-layer skin 

model, a two-Iayer skin model is tested for a comparision. The thickness of single-layer 

skin is 3.7mm (ds = 3.7mm) with undemeath fat layer of 20mm (d! = 20mm), and the 

muscle layer has the thickness described in previous section. The magnitude of electric 

field is again calculated using the Matlab script described in previous section. Results are 

shown in Figure 4.3. Field calculations confirm that the single-layer skin model with 

averaged (&er,(J) is accurate enough to model the field distributions at 403.5MHz and 

6.5GHz. 
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Figure 4.3 Calculated electric field magnitude using a two-Iayer skin model and a single-layer skin model 
at (a) 403.5MHz and (b)6.5GHz. 

Further simulations in SEMCAD-X confirm that an ideal voltage sensor embedded in 

the single-layer skin mode! and the two-layer skin mode! yeilds practically identical 
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induced voltage level as shown in Figure 4.4. The voltage sensor is embedded 1.7mm into 

the skin layer (z = -1.7mm). This again confirms that the detailed, two-Iayer skin mode! 

may not be necessary to use for accurate results. 
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Figure 4.4 Simulated induced voltage waveform on a voltage sensor using a two-Iayer skin model and a 
single-layer skin model at (a) 403.5MHz and (b) 6.5GHz. 
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4.3 Dipole Antenna 

In this section, we simulate the induced open-circuit voltage of a small dipole antenna 

when illuminated by the plane-wave described previsouly. The dipole antenna is placed in 

different positions in the layered tissue model as shown in Figure 4.1. The orientaion of the 

dipole is chosen to match the polarization of the incoming plane-wave (i.e. y-oriented). The 

geometry and dimension of the dipole antenna is shwon in the Figure 4.5. 

L 5,3tnm 

o ::::: 0, lmm 

r :: O.2mm 

Figure 4.5 Geometry and dimension ofthe modeled wire dipole antenna. Above: wire dipole shown in the x-y 
plane; Below: wired diple cross-section view. 

4.3.1 The Effect of Insulation Layer around the Dipole Antenna 

Dielectric coating is commonly used to isolate the implanted antenna from the surrounding 

tissues. Radiation efficiency of the antenna can be improved as the lossy tissue media is 

removed from the close proximity of the near field region of the radiating antenna. This 

design principle is applied widely to embedded radiating antennas [18]. In this section, we 

examine the effect of a such insulation layer, however, we are not concemed about the 

radiating efficiency improvement, but rather the effect of this insulation layer on the 

induced open-circuit voltage at the antenna terminais. The dipole antenna with the 
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insulation layer is shown in Figure 4.6. The inner, metallic section of the antenna has the 

same dimensions as the one shown in Figure 4.5. 

L2 = 5.4mm 

rz::: O.3mm 

Insulation layer 

Insulation 
layer 

Figure 4.6 Wire dipole antenna with insulation layer. Above: insulated wire dipole shown in the x-y plane; 
Below: insulated wired diple cross-section view. 

In our simulations, we matched the insulation layer dielectric constant Ber with its 

immediate surrending environment to minimize wave reflections due to dielectric matieral 

discontinuity. This might not be the case in real applications as the manifacturer might use 

one generic insulation material for devices implanted in different layers of the living tissue 

to reduce the production cost. The antenna is placed 1.7mm into the skin layer (z = -1.7mm) 

and it is 2mm to the skin/fat interface. The thickness of the fat layer is 20mm and 

undemeath muscle layer has the proper thickness as discussed earlier. The induced voltage 

waveforms are shown in Figure 4.7. At both 403.5MHz and 6.5GHz, the induced voltage 

on the antenna with insulation layer is higher than the one without insulation layer. Smiliar 

behavior has been observed when the antenna is embedded in the fat and muscle layers as 

well. This effect of the insulation layer on the induced open-circuit voltage is more visible 

when the surrounding tissue media have high conduction loss. An illustration of this point 

is offered in Figure 4.8, where the induced open-circuit voltages are graphed for excitation 

at 6.5GHz in the muscle tissue. The same dipole antenna with insulation layer produces an 

open-circuit voltage about 50% higher than the voltage level of the non-insulated antenna. 
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Figure 4.7 Simulated induced voltage on the dipole antenna with and without insulation layerat at (a) 
403.5MHz and (b) 6.5GHz. 
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Figure 4.8 Induced voltage on the dipole antenna in muscle layer at 6.5GHz with and without insulation. 

4.3.2 The Effeet of Fat Layer Thiekness 

The thickness of fat layer varies considerably among human individuals and with body 

locations. In this part of the thesis, we study the effect of the fat layer thickness on the 

induced voltage. The antenna used in this section is the same as the one used shown in 

Figure 4.5. The antenna is placed 1.7mm into the skin layer (z = -1.7mm) and it is 2mm to 

the skin/fat interface. The thickness of fat layer varies from 5mm to 10mm to 20mm. The 

undemeath muscle layer is 100mm thick at 403.5MHz and 20mm thick at 6.5GHz. The 

induced voltage waveforms at 403.5MHz with various fat layer thicknesses are shown in 

Figure 4.9(a). The simulation results suggest that at 403.5MHz the thicker the fat layer is, 

the higher voltage induces on the antenna embedded in skin layer. This is due to the fact 

that the reflection at the skin/fat interface increases with the increase of the fat layer 

thickness from 5mm to 10mm to 20mm. The electric field magnitude in the skin layer 

increases accordingly. This is again confirmed by the field calculation using the Matlab 

script developed eariler. The field is plotted in Figure 4.9(b) showing the tendency of 

higher electric field magnitude at z = -1. 7mm with thicker fat layer. 

33 



1.5: ........................................................ m" ...................................... ...........•...... ....., . 

m.~' 5mm fat layer 
~ - -10mm fat layer 
- ' -- 20mm f~tlélY~~ .. 

.. ", ~ , .. ; 0.6755 

-1.5
1
'0 ......... ...... m· ........................... m ...... , ....................................................... m' .............. mm ... m ..................................................... m •••••••• 

12 14 16 18 20 

\ 

\ 

01:7' 20 

Time (ns) 
(a) 

.~,,- 5mm fat layer . 
~ ... , 10mm fat layer 
. -- 20mm fat layer 

40 60 80 100 120 140 
Depth into tissue layers (mm) 

(b) 

Figure 4.9 Effect ofincreasing fat layer thickness at 403.5MHz on (a) induced voltage and (b) electric field 
magnitude. 

Induced voltage waveforms at 6.5GHz are shown Figure 4.10(a). Simulation indicates that 

at 6.5GHz, a 5mm thick fat layer results in the highest induced voltage on the dipole 
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antenna followed by a 20mm and a 10mm thick fat layer. This result does not suggest a 

simple increasing or decreasing relation between the thickness of the fat layer and the 

induced open-circuit voltage. For verification, the subsequently calculated electric field 

magnitude is shown in Figure 4.1 O(b). 
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Figure 4.10 Effect of the increasing fat layer thickness at 6.50Hz on (a) induced voltage and (b) electric field 
magnitude. 
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Field calculations in Figure 4.1 O(b) suggest that a 10mm thick fat layer results in the 

strongest electric field at z = -1.7mm, followed by a 20mm and a 5mm thick fat layer. This 

does not intuitively relate to the voltage simulation results shown in Figure 4.10(a). The 

electric fields calculated in Figure 4.1 O(b) are under the assumption that no scatter field is 

present. This is clearly not the case when the antenna is embedded. Due to this reason, the 

calculated electric field magnitude does not suggest the same tendency as the voltage 

simulated in SEMCAD-X. To clarify this, we use the SEMCAD-X build-in field sensor to 

monitor the field distribution. This numerical sensor can calculate the field distributions in 

the presence of the antenna structure. The results are shown in Figure 4.11 and they 

confirm that, with the scatter fields present, a 5mm thick fat layer results in the strongest 

electric field at z = -1.7mm followed by a 20mm and a 1 Omm thick fat layer. These results 

are consistent with the induced voltage results shown in Figure 4.10(a). 
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Figure 4.l1 Electric field magnitude distribution at 6.5 GHz simulated with SEMCAD-X. 

4.3.3 The Effect of Antenna Embedded in Different Tissue Layers 

In this section, we place the antenna in different locations in the tissue mode!. The 

thickness of the skin and fat layer is 3.7mm and 20mm, respectively. The underlying 

muscle layer is 100mm thick at 403.5MHz and 20mm thick at 6.5GHz. The antenna used in 

this section is depicted in Figure 4.5. 
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As suggested in the previous sections, the induced voltage is highly correlated with the 

electric field magnitude. At 403.5MHz, the electric field magnitude decreases with the z 

coordinate (with increase depth into the tissues). This is shown in Figure 4.12(a). The same 

trend is observed in Figure 4.12(b) as the induced open-circuit voltage drops with the 

antenna moved progressively deeper into the tissues. At 6.5GHz, the field distribution is 

more complicated as shown in Figure 4.13(a). Induced voltage waveforms are shown in 

Figure 4.13(b). Field calculation indicates that the electric field magnitude reaches the 

maximum at z = -7.7mm and followed by z = -5.7mm, -19.7mm, -11.7mm, -1.7mm and 

reaches the minimum at z = -25.7mm. This is consistent with the order of the simulated 

open-circuit voltages from highest to lowest as shown in Figure 4.13(b). Induced voltages 

at both frequencies are summarized in Table 4.3. 
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Figure 4.12 (a) Calculated electric field magnitude and (b) simulated induced voltage waveforms at 
various locations at 403.5MHz. 
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Figure 4.13 (a) Calculated electric field magnitude and (b) simulated induced voltage waveforms at various 
locations at 6.5GHz. 

Table 4.3 Simulated induced peak voltages at various locations at 403.5MHz and 6.5GHz. 

Tissue Implant locations 
Induced peak voltage 

403.5 MHz 6.5 GHz 

Skin 1.7mm to airlskin interface (z = -1.7mm) 0.8201 mV 0.5773 mV 

2mm into fat (z = -5.7mm) 0.7878 mV 2.334 mV 

4mm into fat (z = -7.7mm) 0.7666 mV 2.566 mV 
Fat 

8mm into fat (z = -11.7mm) 0.7156 mV 1.045 mV 

16mm into fat (z = -19.7mm) 0.6236 mV 1.811 mV 

Muscle 2mm into muscle (z = -25.7mm) 0.5882 mV 0.09822 mV 

4.3.4 Dipole Antenna with Different Length 

ln this section, we simulate two dipole antennas with different length. The long dipole 

(original size dipole) is 53mm in length and the short dipole (scaled 1/lOth of the original) 

is 5.3mm in length as shown in Figure 4.5. The antennas are placed 1.7mm into the skin 
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layer (z = -1. 7mm). The thickness of the skin layer and the fat layer is 3. 7mm and 20mm 

respectively. The underlying muscle layer is 100mm at 403.5MHz and 20mm at 6.5GHz. 

Induced voltage waveforms are shown in Figure 4.14. At 403.5MHz, the induced voltage 

on the original dipole is higher than the scaled dipole. At 6.5GHz, voltage induced on the 

scaled dipole is higher than the original dipole, as the scaled dipole embedded in skin tissue 

behaves as a half-wave resonant dipole around 6.5GHz. 
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Figure 4.14 Simulated induced voltage on the open tenninals of the 53mm-Iong dipole and 5.3mm-Iong 
dipole at (a) 403.5MHz and (b) 6.5GHz. 
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4.4 Spiral Antenna 

A set of studies parallel to those outlined for the dipole antenna are carried out for a spiral 

antenna. The results, practically identical, are omitted here in the interest of saving space, 

with the note that they bring us to the conclusions previously drawn for the dipole antenna. 

In this section, we use the features of the spiral antenna to discuss the effect of polarization 

of the impinging waves on the induced voltage at the antenna terminaIs. 

4.4.1 Effeet of Incident Wave Polarization 

Unlike the linearly polarized wire dipole antenna, polarization of spiral antenna is a 

function of frequency. In this part of thesis, we observe polarization mis-match for the 

spiral antenna at 403.5MHz and 6.5GHz. The geometry and dimension of the spiral 

antenna are shwon in Figure 4.15. The spiral antenna is modeled to be 70Jlm thick. 

Q,675mm 
Figure 4.15 Geometry and dimension of the spiral antenna. The antenna is modeled to be 70~ thick. 

At both frequencies, this spiral antenna is placed 1.7mm into the skin layer (z = -1.7mm). 

The thickness for relevant tissue layers are: 3.7mm for the skin layer, and 20mm for the fat 

layer. The muscle layer is lOOmm at 403.5MHz and 20mm at 6.5GHz. The plane-wave 

polarization was altered between Left Hand Circular Polarization (LHCP) and Right Hand 
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Circular Polarization (RHCP) at both frequencies. To generate these circularly polarized 

plane-waves in SEMCAD-X, two overlapped plane-wave sources are used. One of the 

sources is linearly polarized in horizontal direction (x-direction) and the other one is 

linearly polarized in vertical direction (y-direction). The two sources are out of phase by 

0.25 periods for RHCP and 0.75 periods for LHCP. The complete field is a -z propagated 

circularly polarized plane-wave. The induced voltages on the spiral antenna with various 

polarizations are shown in Figure 4.16. 
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Figure 4.16 Simulated induced voltage waveforms with a LHCP plane-wave and a RHCP plane-wave for two 
frequencies ofinterest: (a) 403.5MHz and (b) 6.5GHz. 
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At 403.5MHz, the spiral antenna is linearly polarized, therefore, the wave reception 

resulted in approximately the same level of voltage from either RHCP incoming 

plane-wave or LHCP incoming plane-wave. However, at 6.5GHz, the spiral antenna itself 

is circularly polarized, therefore, the induced voltages are signiciantly different between the 

RHCP incoming wave and LHCP incoming wave. Figure 4.16(b) suggests that this spiral 

antenna is LHCP at this frequency. 

4.5 Impedance Consideration - Dipole and Spiral Antenna 

For maximum power transfer, the impedance of the antenna must match with the 

impedance of the rectifier in the next stage in a complex conjugate manner. In this section, 

we excite the antenna structure with an edge source and simulate the feed point impedance. 

Due to the broadband nature of this group of simulations, the dispersive characteristics of 

the tissue materials must be taken into account. In section 4.5.1, we discuss how the 

dispersive material can be implemented in SEMCAD-X and in section 4.5.2 we show the 

simulated impedance results. 

4.5.1 Cole-Cole to Debye model Conversion for Dispersive material 

Due to the time-domain nature, FDTD scheme cannot handle the multi-term Cole-Cole 

expression (Equation 2.18) with ease. This difficulty originates largely from the fact that 

the empirical distribution parameter an is introduced as a fraction number in the exponent. 

This fractional exponent translates itself into time domain as the sol ver needs to access 

field data at unavailable time instance that is in-between the integer time steps of the FDTD 

scheme. Therefore, SEMCAD-X does not support Cole-Cole model directly for the 

dispersive material. Unfortunately, most of the parameters found to model dispersive tissue 

media are for the Cole-Cole model [20]. Therefore, a mathematical conversion from the 

Cole-Cole model ta the Debye model (Equation 2.17) is necessary if a broadband 

simulation involving dispersive material is needed. An algorithm developed in [37] 

accomplishes this conversion by using Minimum Square Error (MSE) curve fitting 

technique. MSE is applied to fit a Debye model to the data points calculated using the 

Cole-Cole model. A Matlab implementation of this algorithm is developed and presented in 
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Appendix C. A three-pole Debye model is used to curve fit the imaginary part of the 

complex permittivity from 1 GHz to 100GHz. The real part of the complex permittivity is 

then automatically fit with the model. As an example shown in Figure 4.17, relative 

permittivity and conductivity of the fat tissue is calculated using both the Debye model and 

the Cole-Cole model and plotted on logarithmic scale from 1 GHz to 100GHz. The two 

curves match very well over the broadband frequency range. The Debye model parameters 

for the skin, fat and muscle tissues are shown in Table 4.4. These parameters are used in 

Equation 2.17 (with n = 3) to calculate the relative permittivity and conductivity of the 

corresponding tissues. 

10 
Frequency (GHz) 

100 

Figure 4.17 Relative permittivity and conductivity of fat calculated using Cole-Cole model and Debye model. 

Table 4.4. Debye parameters used to model tissue materials. 

Tissue Relaxation time (ns) Weight 

Tl =0.07958 AI =1.8870 

Skin T2 = 0.00114 A2 = 0.6759 

T3 = 0.00035 A3 = 0.3121 

Tl =0.7958 Al = 1.4628 

Fat T2 = 0.0133 A2 = 0.5332 

T3 =0.0032 A3 = 0.3599 

Tl = 0.01592 AI =3.1676 

Muscle T2 = 0.0001 A2 = 0.6695 

T3 = 0.00003 A3 =0.2965 
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4.5.2 Impedance of Dipole and Spiral Antenna 

In this section, we present the simulated impedances for the dipole antenna and the spiral 

antenna when they are embedded in different tissue layers. The two antennas have the same 

dimension and geometry as shown in Figure 4.5 and Figure 4.15 respectively. The 

impedances are shown on the Smith chart with normalization to 50 n. The markers 

indicate the impedances at both 403.5MHz and 6.5GHz. The results are shown in Figure 

4.18 and numerical summaries are shown in Table 4.5. 

As the Smith chart suggests, the 5mm-Iong dipole in muscle or skin layer is relatively 

easy to match at 6.5GHz as it behaves as a resonant half-wave dipole around this frequency. 

Spiral antenna is much more difficult to match, especially at 403.5MHz. We also notice 

that, without insulation layer, the spiral no longer operates as a frequency independent 

antenna in the lossy dielectric media. 
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Figure 4.18 Simulated impedance of (a) wire dipole antenna and (b) spiral antenna at both 403.5MHz and 

6.5GHz. 

Table 4.5 Summary of the impedance values for dipole and spiral antenna at 403.5MHz and 6.5GHz. 

Dipole embedded location 
Impedance (normalized with respect to 50 n) 

403.5MHz 6.5GHz 

(z = -1.7mm) Skin 0.319-j5.001 0.77-jO.153 

(z = -7.7mm) Fat 14.311-j26.163 0.658-j 1.824 

(z = -25.7mm) Muscle 0.675-j3.738 0.5999-jO.301 

Spiral embedded location 
Impedance (normalized with respect to 50 n) 

403.5MHz 6.5 GHz 

(z = -1.7mm) Skin 11.833-j25.953 0.897-j2.378 

(z = -7.7mm) Fat 115.l9-j212.782 4.248-j20.277 

(z = -25.7mm) Muscle 12.765-j22.31 0.665-j 1.923 
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Chapter 5 
Conclusions and Directions for Future Work 
In this work, we studied the possibility of utilizing an antenna as part of the 

rectifier-antenna system to power up implants for bio-te1emetry applications. To design 

such system, it is important to study the behaviour of antennas when embedded in 

biological tissues. In particular to this thesis, we studied the induced open-circuit voltage 

when the antenna was embedded in different locations in a layered-tissue model and 

illuminated by a plane-wave. 

We first built the c1assic three-layer tissue model in SEMCAD-X, electromagnetic 

simulation tool based on the finite-difference time-domain method. To complete this 

layered tissue mode1, we then verified the necessary muscle layer thickness which would 

be sufficient to yie1d negligible reflections from the muscle/air interface (mode1 boundary) 

through the propagation loss mechanism. FinaIly, we determined that at our chosen 

frequencies, it was unnecessary to resolve the skin tissue beyond its single-layer mode1 

with dielectric constants that combines, in an average-sense, the dielectric constants of 

individual thinner layers. 

Next, a simple wire dipole antenna and a spiral antenna were embedded and 

illuminated with a plane-wave. Each of the two antennas had two versions with different 

physical sizes. AIl four antennas were simulated with and without an insulation layer at 

both 403.5MHz and 6.5GHz. In total, we simulated 16 groups of antennas and for each 

group, the antenna was placed at various locations in the tissue mode!. A linearly polarized 

1 V /m plane-wave was used to illuminate the structure and the induced terminal voltage was 

observed for aIl cases. From the observed results, we conc1ude the following: 

• At 403.5MHz, the magnitude of electric field is a decreasing function as the 

depth into tissues increases. Therefore, as expected, the induced voltage drops 

when the antenna is placed deeper and deeper into the tissue layers. Another 

observation at this frequency indicates that within our fat layer thickness range 

[5mm-20mm], induced open-circuit voltage on a skin-layer-embedded antenna 

terminais increases when the thickness of undemeath fat layer increases; 
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• At 6.5GHz, the electric field distribution is very sensitive to the location 

(depth) where the observation is made. From a practical point of view, this high 

sensitivity might be problematic because very little variation in the location could 

cause significant change of the induced voltage on the antenna terminaIs; 

• For the wire dipole antenna, the highest induced voltage resulted from the 

original size dipole (53mm-Iong) at 403.5MHz. However, if limited by physical 

size to the short dipole (5.3mm-dipole), the maximum induced voltage happens at 

6.5GHz. For spiral antenna, the general conclusion foIlows the same pattern as the 

dipole antenna; 

• For aIl the cases, using an insulation layer has a desirable effect on the 

induced open-circuit voltage at both frequencies, in the sense of increased induced 

terminal voltage with respect to the case of no insulation. As expected, this effect 

is more notable when the antenna is placed in a very lossy material. 

The work presented in this thesis has demonstrated the potential and limitations of 

using an antenna to receive RF energy when embedded in biological (tissue) complex 

media. From the simulations, we can estimate that power received by one single antenna is 

not sufficient to power up existing implanted devices. Further, we suggest the following 

directions for future studies: 

• Design of novel miniaturized broadband antenna structure that can be easily 

matched at 403.5MHz in a biologicaIly embedded environment; 

• Identification of difficulties and related strategies when the incident wave is 

randomly polarized and/or from a randomly-incident angle; 

• Design an antenna array instead of a single antenna element to coIlect the 

impinging wave. This strategy is clearlylinked to the first suggestion, as the size 

of the antenna element within the array needs to be further decreased. 

Utilizing a miniaturized implanted antenna to receive RF energy to power up a 

bio-telemetry system is a novel technique still at its infant stage. We hope that our work 

will contribute to the future development of systems that can effectively replace the usage 

of batteries and cables in the bio-telemetry systems, allowing for advanced research in 

neurophysiology and the consequent applications. 
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Advantage of Modeling Broadband Antennas with "SENCAD X" 
FDTD Conformai Solver 
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McGill University, Montreal Quebec, Canada 
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Abstract: This paper presents an assessment study of the accuracy and speed of modeling a curved broadband 
structure with the finite-difference time-domain (FDTD) conformai solver in "SEMCAD X". In particular, the 
test structure is a disk dipole antenna, chosen for its simplicity, symmetry and curved boundaries which best 
differentiate and compare results of the conformai and the standard staircase FDTD solvers. The disk dipole was 
first simulated with the finite-element software (HFSS). Simulation results confirmed that the conformai model 
provided significant improvement over the staircase version even when using a very coarse spatial resolution. 

Keywords: finite elements, standard FDTD, conformai FDTD, disk dipole 

1. Geometry of the Model 

Disk dipole antenna was frrst proposed in 1994 [1]. The curved boundaries of the antenna motivated our 
choice to use it as a test case for the conformai versus the staircase FDTD solvers. In addition, disk dipole 
antenna exhibits broadband behavior [2] which enables us to compare the different solvers over a broad 
frequency range. Figure 1 shows the antenna structure used in our study and its orientation relative to the 
coordinate axes. The radius of each disk is 15 mm and the antenna is 70 !lm thick (in the z-direction). The 
Imm spacing between disks (in the x-direction) accommodates for the feed. The antenna was analyzed in 
free space. 

30 mm 

1 rmn 

Fig. 1. Geometry, dimensions and the orientation ofthe disk dipole antenna used in the study. 
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2. Finite-Element Simulation 

The disk dipole antenna described in the previous section was initially simulated in HFSS [3]. HFSS is 
based on a full-wave finite-element method (FEM), intrinsically conformai in its mesh generation. Two types of 
metallic materials were used for simulations: copper, with electric conductivity o-Cu= 5.8xl07 Sim and relative 
permeability J1r-cu = 0.999991 and the perfect electric conductor (PEC). The feed structure was modeled as a 
lump port on a rectangular section of size 0.07 mm x 1 mm. A radiation boundary was constructed on the 
surfaces of a large free-space box containing the disk dipole antenna. The structure was analyzed at 12 GHz 
with a frequency sweep from 0.5 GHz - 12 GHz. Two metallic types yield nearly identical return loss S11 
results as graphed in Figure 2. This outcome is expected due to very small conduction loss of copper in the 
specified frequency range. Next, we simulated the same structure with the FDTD software using the conformai 
and standard FDTD methods and compared the results with HFSS PEC as the reference. 

-10 f' 
m 
~ , 

-15 f·· ..-..-
CI) 

! 

-30 ~" 
o 

••• mm •• HFSS PEe 
.. """"",,,,,,,,,,,,",.' "" ... """".,., .. """""""."'.' ,.;, .. ,.,,:,~.= .. ~!S,~._2.~pP!!J 

2 4 6 8 10 12 
Frequency (GHz) 

Fig. 2. Finite-element method results (HFSS): Retum loss of the antenna in Figure 1 modeled as perfect electric 
conductor (PEC) or as copper, with o-Cu = 5.8xl07 Sim and relative permeability J1r-Cu = 0.999991. 

3. Simulations in SEMCAD 

SEMCAD is a full-wave simulation tool that deploys the FDTD method [4]. The source model does not 
necessitate actual physical port but is defined by the terminal tine only. Two grid-generating schemes are 
available: (1) the conformaI solver (CFDTD) and (2) the staircase grid generator for the standard solver (FDTD). 
The conformai solver, as the name suggests, follows the curved portion of the model closely by introducing 
changes to the appropriate FDTD coefficients [5], in contrast to the staircase mesh, which approximates the 
curve by following it in a step-like manner but only in the direction of the main coordinates. Figure 3 illustrates 
the boundary of the antenna of Figure 1 me shed using the conformai (Figure 3(a» and the staircase (Figure 3(b» 
technique. In each case, the grid generation is controlled by adjusting the maximum step size in each of the 
three dimensions ofthe coordinate system. 
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(a) (b) 

Fig. 3. SEMCAD model of antenna in Figure 1: a sample of a curved antenna edge modeled using (a) the 
conformaI and (b) the staircase grid. Both schemes were tested with the antenna modeled as a perfect electric 
conductor (PEC) 

4. Results and Discussion 

To study the effects of different schemes, we simulated the structure using the conformaI and the staircase 
grid. The test cases, with the relevant grid and computing information, are summarized in Table 1. It should be 
noted that the discretization in the antenna region and the free space region were treated differently. The free 
space region has the same spatial resolution setup in aIl cases (in both x- and y-direction) as follows: maximum 
step 2 mm while the minimum step is defined by the minimum step size in the antenna region. In antenna region 
the maximum step size is adjusted to generate dense and coarse grids while the minimum step size in antenna 
region is computed automatically by SEMCAD and reported accordingly in Table 1. For aIl regions, in 
z-direction, the minimum step is set to 0.035 mm and the maximum to 2 mm. 

With reference to Table 1, we report the following results for the SEMCAD computation of the retum loss 
of the disk antenna depicted in Figure 1. 

Figure 4 compares SEMCAD fine (dense) staircase grid results with the results obtained by HFSS. We note 
a ~ 1 dB difference exists between the SEMCAD and HFSS simulations for the frequency range 2 GHz - 12 
GHz. 

Figure 5 compares SEMCAD fine (dense) conformaI grid results with the results obtained by HFSS. In this 
case, we note a ~ 0.3 dB difference exists between SEMCAD and HFSS simulation for the frequency range of 
interest. In subsequent graphs, we will therefore refer to the results for the dense conformaI grid as our reference 
SEMCAD computation of the retum loss. 

Figure 6 shows that using the same (coarse) grid density, SEMCAD conformaI scheme recovers the solution 
with less than ~ 2 dB difference compared to HFSS over the frequency range of interest. In contrast, staircase 
scheme has a progressively increased error of more than 5 dB. 

FinaIly, we note in Table l, that for the same mesh density, the conformaI model requires about twice the 
computational time of that needed for the staircase simulation. This is because we have chosen the highest 
predefined accuracy option for the conformaI solver which translates into one-half of the time-step (0.5M) 
required by the Courant stability condition (50% CFL). However, it is important to note here that the CFDTD 
solver available in "SEMCAD X" is stable even when using the conventional stability criteria without any time 
step reduction, and a time step reduction ofO.7.1.t (70% CFL) is enough to produce highly accurate results [5]. 
The simulation results are presented in figure 7 where retum loss of the disk antenna with time step reduction of 
lM, 0.7M and 0.5M are shown. As we can see that iftime step is chosen to be lM (i.e. no time reduction) 
instead ofO.5M as predefined high accuracy in SEMCAD, the total simulation process is speed up by a factor of 
2 with only a slightly degrade of accuracy about 0.5 dB. 
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Fig. 4. SEMCAD result for the retum loss computed with the dense staircase model of the disk antenna 
curvature. The result deviates from the HFSS solution (shown as weIl for comparison) by ~ 1 dB in the 2 
GHz-12 GHz range. 

.10 

ii 
"C 

- -15 ..... ..... 
(Il 

-20 

-25 

-30 o 2 

--,,,-- H FSS (reference) 
~ ~ SEMCAD ConformaI Dense 

4 6 B 10 12 
Frequency (GHz) 

Fig. 5. SEMCAD result for the retum loss computed with the dense conformaI model of the disk antenna 
curvature. The result deviates from the HFSS solution (shown as weil for comparison) by ~ 0.3 dB in the 2 GHz 
- 12 GHz range. 
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Fig. 6. SEMCAD results for the antenna retum loss computed with coarse grid. As can be seen, the coarseness 
of the grid results in a large degradation of solution accuracy for the staircase model, however, the conformaI 
solver recovers the solution very weIl with an accuracy of less than ~ 2 dB error over the entire frequency range. 
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Figure 7. SEMCAD results for the antenna retum loss computed with the same coarse grid but with different 
Courant-Friedrich-Levy (CFL) criterion. 
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_ Summary of parameters and the resulting computational resources needed for the SEMCAD 
models used to assess the accuracy of return loss calculations for antenna of Figure 1. The free space region has 
the same spatial resolution in aIl cases (in both x- and y-direction) as follows: maximum step 2 mm while the 
minimum step is defined by the minimum step size in the antenna region. In antenna region the maximum step 
size is adjusted to generate dense and coarse grids while the minimum step size in antenna region is computed 
automatically by SEMCAD as shown in the table. For all regions, in z-direction, the minimum step is set to 
0.035 mm and the maximum to 2 mm. The calculations were carried out on a Dell Precision 670, CPU: 
Dual-Core 2.80 GHz Intel Xeon, Memory: 4 GB DDR2 SDRAM. Average speed and Simulation time 
are shown for simulations with and without AxFDTD accelerator card [6]. 

Conformai FDTD 
(50% CFL) staircase FDTD 

Max step size Min step size in 
in the x- and the x- and Average Average 
y-direction in y-direction in speed Simulation speed Simulation 

antenna region antenna region Grid size (M cell/s) time (M cell/s) time 

x-dir: 0.2 mm 203x357x69 = 58.06/ 1:27:34/ 63.35/ 0:40:22/ 
Dense 0.2 mm y-dir: 0.2 mm -5 M cells 8.78 9:36:00 9.08 4:39:18 

x-dir: 1.5 mm 59x76x69 26.89/ 0:11:14/ 28.55/ 0:05:20/ 
r.n~re:"" ?mm l/_rlir· 1 mm = _0 ~ lIiI ('""Ile: ALlLl 0·~1;·?1 A ~1 0·17·?~ 

5. Conclusion 

In this case study, we examined different FDTD solvers implemented in SEMCAD by comparing the results 
of the simulated retum loss for a disk dipole antenna in the 0.5 GHz -12 GHz range. Our results confirm that, 
for a structure with curved boundaries, the conformaI scheme solution introduces a significant improvement in 
accuracy when compared with the result from the staircase model of the same FDTD grid density. Further, 
when the conformaI solver is used with a coarse resolution and compared with standard FDTD with a dense 
FDTD grid, the conformaI solution has an excellent accuracy with an order of magnitude reduction in usage of 
memory and computational time. 
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Appendix B 
Matlab script used to calculate the 
magnitude of electric field as a function of z 
(depth into tissue layers) 

% Skin(3.7mm) - Fat(20 mm) - ~JjuscIe(20rnm) model @ 403.5 MH 
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------
clear; 
cIc; 
Frequency = 403500000; 
Omiga = 2*pi*Frequency; 

% region 1: Air 
ReIativeEpsilonAir 1; 
SigmaAir = 0; 
ReIativeMuAir = 1; 
MuAir = ReIativeMuAir*4*pi*10 A-7; 
EpsiIonAir = ReIativeEpsiIonAir*8.8541878176*10 A-12; 
EpsiIonAir1 = EpsiIonAir; 
EpsilonAir2 = SigmaAir/Omiga; 
GamaAir = j*Omiga*sqrt(MuAir*(EpsilonAirl-j*EpsilonAir2)); 
AIphaAir = real(GamaAir); 
BetaAir = imag(GamaAir); 
ZAir =sqrt (MuAir/EpsilonAir)/(1+(EpsilonAir2/EpsilonAirl) A2 )AO.25 
*exp(j/2*atan(EpsiIonAir2/EpsilonAir1) ); 

% region 2: Skin 
ReIativeEpsiIonSkin 
SigmaSkin = 0.6811; 
ReIativeMuSkin = 1; 
ThickSkin= 0.0037; 

48.0603; 

MuSkin = RelativeMuSkin*4*pi*10 A-7; 
EpsiIonSkin = RelativeEpsilonSkin*8.8541878176*10 A-12; 
EpsilonSkinl = EpsiIonSkin; 
EpsilonSkin2 = SigmaSkin/Omiga; 
GamaSkin = j*Omiga*sqrt(MuSkin*(EpsiIonSkinl-j*EpsilonSkin2)); 
AlphaSkin = real(GamaSkin); 
BetaSkin = imag(GamaSkin); 
ZSkin = sqrt(MuSkin/EpsiIonSkin)/(1+(EpsilonSkin2/EpsilonSkin1)A2)AO.25* ... 
exp(j/2*atan(EpsilonSkin2/EpsilonSkinl)); 

% region 3: Fat 
ReIativeEpsilonFat 5.5785; 
SigmaFat = 0.041167; 
ReIativeMuFat = 1; 
ThickFat= 0.02; 
MuFat = ReIativeMuFat*4*pi*10 A-7; 
EpsiIonFat = ReIativeEpsiIonFat*8.8541878176*10 A-12; 
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EpsilonFat1 = EpsilonFat; 
EpsilonFat2 = SigrnaFat/Orniga; 
GarnaFat = j*Orniga*sqrt(MuFat*(EpsilonFat1-j*EpsilonFat2)); 
AlphaFat = real(GarnaFat); 
BetaFat = irnag(GarnaFat); 
ZFat = sqrt(MuFat/EpsilonFat)/(1+(EpsilonFat2/EpsilonFatl)A2)AO.25* ... 
exp(j/2*atan(EpsilonFat2/EpsilonFatl)); 

% region 4: Muscle 
RelativeEpsilonMuscle 57.104; 
SigrnaMuscle = 0.79708; 
RelativeMuMuscle = 1; 
ThickMuscle= 0.02; 
MuMuscle = RelativeMuMuscle*4*pi*10 A-7; 
EpsilonMuscle = RelativeEpsilonMuscle*8.8541878176*10 A-12; 
EpsilonMuscle1 = EpsilonMuscle; 
EpsilonMuscle2 = SigrnaMuscle/Orniga; 
GarnaMuscle = j*Orniga*sqrt(MuMuscle*(EpsilonMusclel-j*EpsilonMuscle2)); 
AlphaMuscle = real(GarnaMuscle); 
BetaMuscle = irnag(GarnaMuscle); 
ZMuscle 
=sqrt(MuMuscle/EpsilonMuscle)/(1+(EpsilonMuscle2/EpsilonMusclel)A2)AO.25 ... 
*exp(j/2*atan(EpsilonMuscle2/EpsilonMuscle1)); 

Coefficient 
0; ... 

0; ... 

[1 -1 -1 o 

l/ZAir l/ZSkin -l/ZSkin 0 

o o o 

o o o 

o l*exp(-GarnaSkin*ThickSkin) l*exp(GarnaSkin*ThickSkin) ... 
-l*exp(-GarnaFat*ThickSkin) -l*exp(GarnaFat*ThickSkin) 0 0 
0; ... 

o l/ZSkin*exp(-GarnaSkin*ThickSkin) ... 
-l/ZSkin*exp(GarnaSkin*ThickSkin) -l/ZFat*exp(-GarnaFat*ThickSkin) 
l/ZFat*exp(GarnaFat*ThickSkin) 0 0 0; ... 

o 0 0 exp(-GarnaFat*(ThickSkin+ThickFat)) ... 
exp(GarnaFat*(ThickSkin+ThickFat)) 
-exp(-GarnaMuscle*(ThickSkin+ThickFat)) ... 
-exp(GarnaMuscle*(ThickSkin+ThickFat)) 0; ... 

o 0 0 l/ZFat*exp(-GarnaFat*(ThickSkin+ThickFat)) ... 
-l/ZFat*exp(GarnaFat*(ThickSkin+ThickFat)) ... 
-l/ZMuscle*exp(-GarnaMuscle*(ThickSkin+ThickFat)) ... 
l/ZMuscle*exp(GarnaMuscle*(ThickSkin+ThickFat)) 0; ... 

o o o o o 
exp(-GarnaMuscle*(ThickSkin+ThickFat+ThickMuscle)) .. . 
exp(GarnaMuscle*(ThickSkin+ThickFat+ThickMuscle)) .. . 
-exp (-GarnaAir* (ThickSkin+ThickFat+ThickMuscle) ); .. . 
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o o 0 o o 
l/ZMuscIe*exp(-GamaMuscIe*(ThickSkin+ThickFat+ThickMuscIe)) ... 
-l/ZMuscIe*exp(GamaMuscIe*(ThickSkin+ThickFat+ThickMuscIe)) 
-l/ZAir*exp(-GamaAir*(ThickSkin+ThickFat+ThickMuscIe))]; 

E1p = 1; 
E = inv(Coefficient)*[-E1p;E1p/ZAir;0;0;0;0;0;0] 
E1n E(l); 
E2p E(2); 
E2n E(3); 
E3p E(4); 
E3n E(5); 
E4p E(6); 
E4n E(7); 
E5p E(8); 

for z = 1:100 
d = (z-100)*10/99*0.001; 
E1(z) = E1p*exp(-GamaAir*d)+E1n*exp(GamaAir*d); 

end 

for z = 101:137 
d = (z-101)*3.7/36*0.001; 
E1(z) = E2p*exp(-GamaSkin*d)+E2n*exp(GamaSkin*d); 

end 

for z = 138:338 
d = (z-101)*0.1*0.001; 
E1(z) = E3p*exp(-GamaFat*d)+E3n*exp(GamaFat*d); 

end 

for z = 339:539 
d = (z-102)*0.1*0.001; 
E1(z) = E4p*exp(-GamaMuscle*d)+E4n*exp(GamaMuscle*d); 

end 

for z = 540:640 
d = (z-103)*0.1*0.001; 
E1(z) = E5p*exp(-GamaAir*d); 

end 

plot ([-10:0.1:53.9], abs(E1),'r'); 
% Skin(3.7JThll) - Fat(20 mm) - Muscle (20mm) model @ 403.5 MH end 
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------

61 



Appendix C 
Matlab script used to convert Cole-Cole 
model to Debye model for SEMCAD-X by 
Minimum Square Error curve fitting 
% Fat 
% pole 
clear; 

[0.2*10"9 12*10"9 50'''10'''9]' *2*pi; 

cIe; 
load (' D; \. Yi 1.:' \ 'T'h.,,·· c:' TT,<".t:,·r , ' ) ; 

Sigrna = 0.01; 
ColeEpsilonInf 2.5; 
DebyeEpsilonInf = ColeEpsilonInf; 
ColeEpsilonS = [3 15 3.3*10"4 1.0*10"7] '+ColeEpsilonInf; 
DebyeEpsilonS = ColeEpsilonS(l); 
ColeTao = [7.96*10"-12 15.92*10"-9 159.15*10"-6 7.958*10"-3] '; 
ColeAlpha = [0.2 0.1 0.05 0.01]'; 

pole = [0.2*10"9 12*10"9 50*10"9] '*2*pi; 
relaxationTirne = 1./pole 

% ColeCole Calculation 
for freq = 10"9:10"9:10"11 

Ternp = ColeEpsilonInf + 
surn((ColeEpsilonS-ColeEpsilonInf) ./(1+(j*2*pi*freq*ColeTao) ."(l-ColeAlpha)) 
)+Sigrna/(j*2*pi*freq*8.8541878176*10"-12); 

EpsilonCole (freq/10"9,:) = [real(Ternp),-irnag(Ternp)]; 
end 

frequency = [10"9: 10"9: 10"11] '; 
orniga = frequency*2*pi; 

c = EpsilonCole(:,2)/(ColeEpsilonS(1)-ColeEpsilonInf); 

for index = 1:100 
for jndex = 1:3 

D(index,jndex) 
orniga(index)/pole(jndex)/(l+(orniga(index)/pole(jndex))"2); 

E~nd 

end 

a = inv(D'*D)*D'*c; 

ternp = 0; 
for index = 1:100 

ternp = ternp + 
EpsilonCole(index,l)-ColeEpsilonInf-(DebyeEpsilonS-DebyeEpsilonInf)*surn(a./ 
(1+ (orniga (index) ./pole) ."2)); 
end 
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average = temp/l00; 

% Verfication of the Debye model 
for freq = 10 A 9:10 A 9:10 A ll 

Temp = 
DebyeEpsilonlnf+(DebyeEpsilonS-DebyeEpsilonlnf)*sum(a./(1+j*2*pi*freq./pole 
) ) +average; 

EpsilonDebye (freq/l0 A 9,:) = 
[real(Temp),-imag(Temp)*2*pi*freq*8.8541878176*10 A -12]; 
(~nd 

semilogx (Fat (:,1), Fat (:,3), , , " Fat (:,1), Fat (:,2), , . ') 
hold 
semilogx (frequency,EpsilonDebye(:,l), ': ',frequency,EpsilonDebye(:,2),!: ') 
semilogx 
(frequency,EpsilonCole(:,1),frequency,EpsilonCole(:,2) . *frequency*2*pi*8. 85 
41878176*10 A -12, ! c') 

legend (' c~ 20.L00 '00bye 

,'lu·· .. ~. 
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