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The kinetics of interfacial roughening, and its effect on the complete wetting of a substrate, are
studied theoretically. Dynamical interface models are used to analyze the effects of fluctuations on
the late stages of wetting for several different cases: at high temperatures (far from the roughening
transition), near the roughening transition, in the presence of a random external field, as well as for
the case where a local conservation law is present. The time dependence for the growth of the
diffuse wetting layer which is predicted can be tested experimentally or by numerical simulation.

I. INTRODUCTION

Wetting has become a topic of considerable theoretical
and experimental interest in recent years.!~> The effect
of fluctuations on the kinetics of complete wetting will be
the subject of this paper. Recently, the growth of wetting
layers has been studied by Lipowsky.* In this paper, I
generalize his results to consider some of the salient
features which the roughening transition, random impur-
ities, and local conservation of the order parameter have
on the dynamics of wetting.

In a liquid-vapor system, complete wetting occurs
when a thin layer of liquid film is adsorbed on a substrate,
at the bulk phase coexistence of the liquid and vapor.
The physics is dictated by the interaction of the substrate
with the liquid film’s interface. That interaction causes
the liquid-vapor interface to the “repelled” from the sub-
strate, as more liquid is adsorbed. Thus, in equilibrium a
length diverges, namely the thickness of the wetting layer
(the distance between the substrate and the interface).
During complete wetting, this length grows as time goes
on.

The physics of complete wetting is somewhat analo-
gous to that of the kinetics of a first-order phase transi-
tion, where the average size of an ordered domain grows
and diverges as time proceeds.® In that case, one often
idealizes the situation by imagining a quench from a very
high temperature, to a very low one. This gives a set of
initial conditions for the interfacial configuration (i.e., a
random configuration). Here, in complete wetting, a
similar device is useful;* one may imagine that the system
can be prepared such that the deviation §u of the bulk
chemical potential from its value at coexistence, can be
rapidly changed from some large value to zero. This has
the following result. When 8y is large, the interface is
flat and coincident with the substrate, which gives the ini-
tial conditions. When 8u is rapidly changed to zero,
however, the interface must become diffuse (provided one
is below the upper critical dimension for roughening) and
infinitely thick, as it is in equilibrium, by a kinetic pro-
cess.

These two effects arise from different origins; fluctua-
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tions cause the film’s interface to wander and become
rough,’~'* while the repulsive potential of interaction be-
tween the liquid film’s interface and the substrate causes
the layer thickness to diverge. Explicitly, if the interface
is a distance { from the substrate, then as time ¢ — oo,
((£—(£))*)— o due to fluctuations and ({) — « due
to the substrate interaction, where the angular brackets
denote an ensemble average. Herein, I shall determine
how the thickness of the diffuse wetting layer grows in
the late stages of complete wetting. I shall be especially
concerned with the effects of fluctuations on growth.

A brief outline follows.!> In Sec. II, I study the dy-
namics of roughening. I consider a single isolated inter-
face, in the absence of a substrate, and present a theoreti-
cal analysis of the kinetics which occur as the interface
roughens. First, results for the effects of fluctuations in a
continuum model are obtained (which are related to ear-
lier work of Lipowsky?). The effect of the roughening
transition is then considered in a simplified manner. Fi-
nally, the effect of random impurities (modeled by a ran-
dom external field!%) is studied, and results involving a lo-
cal conservation law are presented. In Sec. III, the re-
sults for the dynamics of roughening are applied to com-
plete wetting. Lipowsky’s previous results are recovered
in a somewhat more transparent (but equivalent) way.
New results, involving behavior near the roughening
transition, random fields, and a local conservation law,
are also given. Possible ways to test theory experimental-
ly or by simulation are discussed.

II. DYNAMICS OF ROUGHENING

A. Fluctuations above the roughening transition

In this section I shall consider the kinetics by which an
isolated interface roughens. In Sec. III, this will be relat-
ed to complete wetting.

Consider an interface located in the (d —1)-
dimensional x plane, which is orthogonal to the y axis. I
will assume that the system can be prepared such that the
interface corresponds to the y =0 plane, at time ¢ =0.
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That is, the interface is flat initially, as compared to its
rough equilibrium shape. Some ways to experimentally
make the interface initially flat are discussed in Sec. III.
Since solutions will be presented for late times (when the
thickness of the diffuse interface diverges), the details of
the initial conditions are irrelevant, and simple ones may
be chosen. A single-valued variables §(x,?) gives the in-
stantaneous position of the interface, relative to the y
axis, as time goes on. Thus I neglect “overhangs” and
“bubbles” (i.e., the possibility of a multivalued §). This
assumption should be of little consequence provided /L
is small, where L?~! is the area of a flat interface. The

dynamical interface model studied in this paper
jsh12,13,17-20

a5(x,t) ——D S8F 1

an SE(x.1) +7n(x,t), (1)

where F is the surface free energy, D is a constant, and 7
is the thermal noise. The fluctuation-dissipation relation
for n is

(n(x,t)q(x',t")) =2k TD8? ~1(x—x")8(t —t') , )

where kp is Boltzmann’s constant, T is temperature, and
the angular brackets denote an ensemble average.
Higher-order moments are assumed to be determined by
a Gaussian distribution. In general, Egs. (1) and (2) will
require additional factors to ensure Euclidean invari-
ance®!® (that is, physical invariance under rotations and
translations of the prescribed coordinate system), but
these are negligible to the order in which I shall work.

Dynamical equations of this form have been used to
study the kinetics of first-order transitions,%'*~?2 as well
as the kinetics of roughening.'>!3 Equation (1) can be de-
rived from the corresponding equation of motion for the
order parameter in model A4 (the continuum noncon-
served Ising model), or it can simply be obtained from
symmetry arguments. It requires modification when con-
servation laws are important,”‘25 as will be discussed, or
when other topological defects, such as vortex lines, ver-
tices, or monopoles, are present.?5?’

In this section, I consider a standard continuum model
for F: the surface free energy is assumed to be propor-
tional to the (d — 1)-dimensional area of the interface.

F=o [ d~'x[1+(V¢?]'?
(3)
~oL? " 'tlo [ a9 x(VO 4 -,
where the proportionally constant o is the surface ten-
sion, and the gradient is with respect to x. For small de-

viations from {=0 (that is, {/L <<1) one obtains from
Egs. (1) and (3),

aL(x,1) _ i1, 8F )
Vit D[d x——————-——aé_(x)aé_(x,)g(x,t)+7/(x,t).

4)

The kernel is diagonal in Fourier space, so the Fourier
transform

(@)= [ d?x e'i%g(x)
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is introduced. The integral has a cutoff at small x of &,
where £ is the thermal correlation length, and for large x
of L. Likewise, then, in Fourier space there is an infrared
wave-number cutoff 27 /L, and an ultraviolet cutoff
27 /€. In Eq. (4) one has

as(q,t) _  8F
Y Dagzé(q,twrn(q,t) (5)

so that

(tlq,neg,0)= [ [ drde” (n(q,t')m(q,t")

_ o ms2 2
Xe D (2t —t'—1t")86°F /8§ ,

where it has been assumed that the initial value of (£?) is
of negligible importance at the late time ¢. Using Egs. (2)
and (3) (which gives 8°F /8(2=0¢?) and introducing the
notation

(&(q,E(q, 1)) =(2m)? 189 "N (q+q' ) (&2 ) (q,t)

one obtains the equal-time correlation function

—e —2Daq21) ) (6)

(&*)(q,

The result for thermal equilibrium is found by taking the
t—>o limit of this expression, which gives
(& )eq(q)sz T/(ocg?). It may be possible to directly
observe the nonequilibrium result by elastic scattering ex-
periments. Often, such experiments measure fluctuations
in the order parameter ¢. When the system has a single
interface

déy
zfﬁo—!-é'(X,t)‘(‘j;‘-f- e, @)

where ¢, is the bare profile.?
around ¢, 6¢, satisfy

é(x,y;t)

Thus the fluctuations

¢o

((8¢)?) ={£*)(q,t) (8)

The root-mean-square fluctuation of a position on the
interface is given by

[ o0 )d () (g,0)

Before obtaining the results for the nonequilibrium be-
havior, I shall review the results for thermal equilibrium
[which are found by taking the ¢ — o limit of Eq. (6)].
One obtains, {my(t— 0 )~L®~4"2 for d <3. Ford =3,
$rms~VInL. These are standard results for roughening
in a continuum model. While they imply that interfaces
are rough, and so diffuse, for d <3, the results do not
necessarily mean that phase coexistence is destroyed,
since & pe/L ~1/L'*~172, Thus for d > 1, £/L is small
in the thermodynamic limit of L — «, and phase coex-
istence and long-range order persist. The calculation is
consistent with the known lower critical dimension d;, =1
(that being the dimension below which there is no long-
range order). It does not prove that result, since the as-
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sumptions of the theory, e.g., {/L <<1, break down
there.

The time-dependent root-mean-square fluctuation of
the interface is found from Egs. (6) and (9). If the system
is sufficiently large that the limit L — « can be taken (so
that the infrared cutoff vanishes), one obtains

grms~t(3-—d)/4 , (10)

for “late” times in d <3, which has previously been ob-
tained by Lipowsky* in a discussion of fluctuation-driven
dynamics of complete wetting. For d =3, &, ~Vnt.
Analogous manipulations to the above have been given
by Desai and Grant,'* which involve the dynamics of
capillary waves on a liquid-vapor interface in three di-
mensions.

The result is valid for late times in the following sense.
The time ¢ in Eq. (10) must be sufficiently large that ini-
tial conditions, and corrections to this result are negligi-
ble [e.8., Srms(t =0)/8 ms(t) << 1]. (It is in anticipation of
this limitation that I have chosen particularly simple ini-
tial conditions.) It may also be worth mentioning that, if
the analog of Eq. (16) is required for the case with L
finite, this is simply accomplished by including an in-
frared cutoff, as well as the usual ultraviolet one.

Finally, let me note that an experimental or numerical
study of (£%)(g,t), which is predicted above by Eq. (6),
could possibly test theory more severly than a determina-
tion of {,,,(¢). The exponentially decaying part of Eq. (6)
is the signature of a linear theory. The subsequent result
Eq. (10) may, however, be slightly more general than this,
in the following sense. If the exponentially decaying part
is replaced by g(g2t), where g (@ — o )—0, then the same
results are obtained for thermal equilibrium, and for

Erms(1)-

B. Fluctuations near the roughening transition

The results given above apply to systems where lattice
structure is unimportant. This provides a complete
description of the long-time, long-wavelength properties
of a system, even if there is lattice structure, provided one
is above the roughening transition temperature Tp.
Below Ty, however, there is no longer an infrared diver-
gence in £, and interfaces are no longer rough. The un-
derlying lattice causes facets to form on droplets.” For
the Ising model, Tz =0 in d =2, and 0< TR <T, in
d =3, where T is the critical temperature.

Below T, the absence of an infrared divergence in §
implies that dynamics is limited to large fluctuations. It
is natural to expect that the rate of such fluctuations is
proportional to their probability, as in nucleation theory.
Thus, if the free energy of an interface is proportional to
£", where n depends on the form of the free energy, then
the time scale 7 over which such fluctuations occur is

T~econst><§" ,
so that one would expect that
Erms~ (Int)17" (11

below Tx. An exponent n =2 corresponds to a quadratic
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surface free-energy below Tz. Presumably the exponent
would be difficult to determine numerically or experimen-
tally, however.

At low temperatures above Ty, but close to the
roughening transition, I expect crossover behavior over
intermediate length scales. For the dynamics of roughen-
ing, this implies crossover behavior over intermediate
times, although the ¢ — « behavior studied in Sec. IIC
should be unchanged. A model for “lattice” effects
which can be used for this purpose has been introduced
by Grinstein and Ma??

F=o [d?~'x(1+|VE]) . (12)

This model has limited validity, since it is not clear that a
coarse graining of a lattice Hamiltonian will lead to a free
energy of this form. To be explicit, while this model is
plausible on intermediate length scales for T'X T, where
remnants of the underlying lattice are modeled by the
absolute-value signs, it is not correct on long length
scales. In that case Eq. (3) above applies. Despite this
drawback, this model is useful for examining crossover be-
havior near Ty. In principle, a better approach would be
to use a known anisotropic surface tension like o for the
two-dimensional Ising model.” However, such a calcula-
tion appears quite formidable. For our present purposes
Eq. (12) provides a well-defined model from which some
qualitative results concerning crossover near T can be
obtained.

Analysis of this model is complicated because it in-
volves the absolute value of a function. It is obvious,
though, that F is minimized for {=0. Also analytic rep-
resentations of | V§| will lead to a free-energy quadratic
in §, for small ¢, i.e., for small distortions of the inter-
face). The difficulty, however, involves finding the form
of the coefficient of that term, or in other words, one
must obtain (8?F /8£%)(g). I will do this by assuming that
(8*F /8£%)(q)~q°, for long wavelengths. Then I shall
?etze)rmine the exponent a self-consistently by working out

&%)

In the same manner as shown above, I obtain
(&%)(g,t) < g ~°[1— exp(—Cq°t)], where C is a constant.
Now, to determine a I write | V¢ | =[(V£)?]'/2 and ob-
tain®

_&¥F
8E(x)8E(x')

[T—af] |-V8(x—x'),

1
| V& |

(13)

where I is the unit tensor, and A=V¢/|VE|. By
translational invariance, the Fourier transform of this
will be a function of ¢ alone. To find the wave-number
dependence, I count dimensions. From the formula
above (8?F/8*)(q)~q[&"(x)]yniese Thus, given the
solution  for (£%)(q,t) above, one obtains
[EX) Junics~g ~ @ +1=972. Self-consistency with the as-
sumed form of (8°F /8£%)(q) gives a =3 —d. This implies
that

3—d

(E2)g,t)~qg B~ (1—e—Ca ) (14)

The dynamical results for roughening can now be easily
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found. For d =2,
£ (1) mp2md/3=d),

These results suggest that there is rich behavior near
the roughening transition temperature Tx. Below Ty, I
predict slow activated growth, while above that tempera-
ture, much faster growth occurs. In the vicinity of Ty,
however, I predict strong crossover behavior, over inter-
mediate time scales, due to the vicinity of the roughening
transition. Of course, since the analysis is only self-
consistent, and is based in part on dimensional argu-
ments, the result is more suggestive than it is definitive.
The other limitations and qualifications of this result are
the same as noted above.

Ems~VInt, while for d <2,

C. Fluctuations in the presence
of a random external field

I will now study the effects of random impurities by
considering a simple, but nontrivial, model of those im-
purities: the random-field Ising model.'2%30-33 Ip this
model, there is a random external field H in the free ener-
gy, which is linearly coupled to the order parameter ¢.
The statistics of this field are assumed to be given by
(H)=0, and

(H(x,y)H (x',y"))=h%%* "N x—x)8(y —y'), (15

with higher-order moments determined by a Gaussian
distribution in the present treatment. The field is in-
dependent of time, if one models impurities which are
fixed in position. It is a simplified model because, in
many cases, impurities also cause the free energy to have
a random part which is quadratically coupled to the or-
der parameter, giving a spin glass. Nevertheless, many
controlled experimental realizations of the random-field
Ising model are known,** 3¢ such as dilute antiferromag-
nets in a uniform magnetic field, gels in binary fluids, and
chemisorbed systems with small frozen impurities.

The equation of motion satisfied by { is the same as Eq.
(1) above provided one adds to F a term F),, which gives
the surface free energy due to the random field.>’—% (I
shall neglect thermal noise in comparison to the random
field.) From the analysis of, e.g., Grinstein and Ma?%-3%:3!
one has

Fo=2[d*'x [fdyH(xy), (16)

where a step-function-like profile has been assumed for
the order parameter ¢y(y).
Following the same strategy as above gives,

(&)gn= [ dr’ fdt"<’g§—(t) %

' 82 2
Xe-—D(Zt-—l —t")8°F /8¢ , a7

(t”))(q)

where the average is over the random field. [Recall that
(8%F /8£*)(q)=0q? from above, where o is now the bare
surface tension.] It remains to evaluate {(8F, /8£)%). 1
will approximate this quantity by its time-independent
equilibrium value, which has been previously cal-
culated by  Grinstein and Ma,®  namely

((8F, /8L)*) =~h*3q®~9/3  This is justifiable because
the integral’s major contributions are for ¢’ and t" close
to t. Also, the approximation is self-consistent in that the
time-dependent corrections to Eq. (17) would be exponen-
tially decaying, and so negligible in the integrand. Using
this above gives the result,

(E*)gq,1) q

The equilibrium results are well known, and are con-

sistent with a lower critical dimension of?%3%33 g, =2.

Namely, by taking the t — o limit of the above expres-

sion, one obtains (£?) . ~g ~‘“*773, and §,p\~L 9"
The dynamical result for roughening is

Eoms( 1) ~R 35D /6 (19)

~h 4/3  —(d +7)/3( 1—

e —Dodlty (18)

for late times and d <5. [For d =5, &,,.(t)~h?/*VInt ]
The analysis of Sec. II B, for roughening over intermedi-
ate length and time scales near the roughening transition,
can also be generalized. I obtain §, ~t?~%"“4=? for
d <3, and £~ VInt for d =3. This growth is much
faster than the corresponding result for the continuum
model in the absence of a random field. As in hetero-
geneous nucleation, where the fluctuation-limited rate of
droplet formation is enhanced by impurities, the
fluctuation-driven growth here is faster in the presence of
impurities.

An important qualification of the result (besides those
mentioned in previous sections) concerns the possibility
of anomalously slow equilibration for very late times. It
is found experimentally,* and predicted theoretical-
ly,*'=4%3! that a random-field system quenched from a
disordered state to a low temperature (called field cool-
ing) can get trapped in a metastable state.** While this is
different from what is considered here (the present
analysis assumes coexisting phases separated by a flat in-
terface, and so may be more closely related to** zero-field
cooling), I cannot rule out the possibility of a crossover to
such slow equilibration. Thus, the present results would
be valid for late times which precede that regime.*

It should also be mentioned that the kinetics of interfa-
cial motion in the presence of a random field is an in-
teresting problem in its own right. A test of the predic-
tions above could give insight into the origins of the slow
equilibration which is seen experimentally in diluted anti-
ferromagnets, and other representations of the random-
field Ising model. Finally, I note that in a recent paper,
which is related to the present one, those metastable
states have been investigated theoretically.*

D. Fluctuations in the presence of a local conservation law

To conclude this section, I shall briefly mention results
for the case where the interfacial dynamics is constrained
by a local conservation law. Kawasaki and Ohta?*?’
have shown that model B of critical dynamics*’ (where
the order parameter is conserved) implies an interface
equation involving a nonlocal kernel. This kernel allows
the conservation law to be satisfied by either long-range
diffusion between widely separated interfaces, or short-
range diffusion across parts of an interface. If, however,
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there is a single interface present and the conservation
law is only enforced locally, the equation simplifies
significantly. It reduces to a dynamical model of sinter-
ing due to Mullins.?> This dynamical model, which in-
volves a local conservation law, is obtained from Egs. (1)
and (2) with the replacement D — —D'V?, where D' is a
constant. Additional factors are required to preserve Eu-
clidean invariance, but to the order of the present calcu-
lations, that substitution is sufficient. The modification of
the results above is that Dt —g2D’t in the equations for
(&*)(q,t) [Eqs. (6), (14), and (18)], and the growth of the
root-mean-square fluctuation obeys,

‘blc

grms( t ) ~1t ) (20)

for late times, where ¥, is half the exponent calculated
above for a given model of the free energy. The crossover
results [where £ . (t)~VInf] remain unchanged. I
suspect that “late times” here is true under more restric-
tive qualifications than the case without the conservation
law: For late times when the interface becomes extreme-
ly rough, long-range diffusion [between two neighboring
peaks in §(x)], which is neglected in this model, could be-
come comparable to short-range diffusion.*®

III. DYNAMICS OF COMPLETE WETTING

I shall now apply the results of Sec. II to the late
stages of complete wetting. Of course, those results pro-
vide a description of roughening kinetics which can be
tested experimentally, regardless of their relevance to
wetting.

In complete wetting, the substrate on which the liquid
film is absorbed plays an important role. The equation of
motion is the same as Eq. (1), provided F | {| is replaced
by F |&| +V ||, where V gives the interaction with the
substrate. Thus the motion of the wetting layer is
modeled by allowing it to minimize its surface free ener-
gy, as well as respond to the repulsive substrate interac-
tion (which, of course, attracts the bulk liquid phase).
For a short-ranged interaction with the substrate the po-
tential can be modeled* by, V = 4 exp—{ /&, where 4 is
a positive constant, and £ is the bulk correlation length.
Since I will not consider temperatures close to a second-
order transition, § will be of the order of the lattice con-
stant. Long-ranged interactions depend on the particular
system of interest. For example, long-range van der
Waals interactions*?’ are of the form V = 4 /£?, where
p =5—d or 6—d for forces where the radiation field in
the electromagnetic interaction is nonretarded or retard-
ed,?” respectively. Note that ¥ is minimized by {— oo

The mean-field results, previously given by Lipowsky,*
will now be recovered.* If V£=0, so that the effects of F
can be neglected, as compared to V,then one obtains,

CE() Yyp~t M 1)

The mean-field exponent is ¥p=1/(7—d), 1/(8—d), or
O(log), if the substrate interaction is long-range retarded,
long-range nonretarded, or short range, respectively. If
there is a local conservation law, as in Sec. II D, there can
be no mean-field growth.
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On the other hand, if the substrate interaction ¥ can be
“neglected,” the results involving roughening from Sec.
IT apply. In which case
¥q

grms ~t (22)

where for convenience I introduce the alternate notation

2 =(&*)4. From Sec. II, the exponent for growth due
to fluctuations is Yq=(3—d)/4 or (5—d)/6, above a
roughening transition, where the second exponent applies
to the case of a random external field.’® Below a
roughening transition, growth due to fluctuations is limit-
ed by large fluctuations, which leads to logarithmic
growth (or powers of logarithms). For temperatures
above, but close to the roughening transition Ty, I expect
crossover for intermediate length and time scales (but not
for the limits ¢ —0 and ¢— «). The exponent which
characterizes that crossover is ¥a=(2—d)/(3—d) or
(3—d)/(4—d), where the second exponent again applies
to the case of a random external field. It is worth em-
phasizing again, however, that these results only apply to
intermediate times for T X T. For t— oo the previously
mentioned results apply. If there is a local conservation
law, then all ¢4’s are halved, and at the crossover dimen-
sions where the ¢4’s vanish, & .~ VInz.

During complete wetting in real systems, both the sub-
strate interaction and the surface free energy play impor-
tant roles. In the late stages, however, these effects can
be separated, as will now be shown. First, I shall inquire
as to where the predictions for §,(¢) are relevant to wet-
ting. Clearly, the corrections to this result will be due to
the neglected substrate interaction. Dimensional analysis
implies that the leading order correction to the root-
mean-square result for § is

(E—(EN)=(E)q+0(EVyp)

24, — 20— Ypgp)

~t [14+0( ], (23)

as t — . Thus, provided that (3 — ) is positive, the
root-mean-square value of { can be consistently calculat-
ed to leading order, in the late-time limit, from the results
involving roughening. Alternatively, the leading-order
correction to the mean-field result for {£) will be

<§) —_—<§>MF+O[((§2>5)I/2]
~t"MF o MET ) (24)

Thus, depending on the sign of (Yq—Yyg) (.e., the
Ginzburg criterion), one may obtain either (({—(£))?)
or {£) in the late-time limit, from the results summa-
rized above.*°

Note, though, that there is a qualitative difference de-
pending on whether the late-stage dynamics is dominated
by the substrate interaction or fluctuations. In the
mean-field limit, growth by layers ({{) increasing) takes
place, with negligible inhomogeneity in that growth. On
the other hand, growth by fluctuations implies that the
time dependence due to the increase of ((£—(£))?) is
stronger than that due to (¢)?, for late times. This cor-
responds to the rather different physical picture of an in-
terface becoming rougher and more diffuse. Also, note
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that, since I have presented solutions for late times, I
have excluded the possibility of early time depinning.’’
In that case, the amplitude of £, due to roughening,
would be of the order of the distance of the interface
from the substrate. This could occur for early times if
the substrate interaction is weak in absolute value, and of
exceedingly short range.

The most interesting predictions involve the rich be-
havior near T;. For example, in two dimensions, for all
T >Ty (where Ty, =0 for the Ising model), Lipowsky’s
result* £, ~!74 should be true as t — . However, for
intermediate times and T R Ty, I expect crossover behav-
ior due to the proximity of the roughening transition; my
analysis gives §,ms~\/ir—1? . This would lead to an
effectively temperature-dependent ¢, with ¢ close to O for
low T, rising to § for high T, for analysis over a limited
time regime.

A test of this, and the other predictions requires a sys-
tem prepared with a flat interface of large extent separat-
ing coexisting phases, as in the late stages of complete
wetting. By flat, I mean in comparison to its rough equi-
librium shape. The difficulty then, in simulation or ex-
periment, is to prepare the system in this fashion. In
complete wetting this is accomplished by rapidly chang-
ing the chemical potential from a value far from bulk
coexistence, to its value at coexistence, as discussed
above. I will now briefly describe some other ways to do
this, which directly test the results for 4.

Numerical simulation of these initial conditions is
straightforwardly accomplished by pinning the system at
the boundaries of the y axis. The main drawback to nu-
merical studies is that the finite size of L can be impor-
tant, although the results above can be straightforwardly
modified to account for non-negligible 1/L. A Monte
Carlo study of the kinetics of complete wetting in the
two-dimensional chiral Potts model has already been
done by Grant, Kaski, and Kankaala'’ (a short discussion
of the theory given here was also presented in that paper).
The results found there are in qualitative agreement with
the predictions of this study for two-dimensional lattice
systems. The data showed a pronounced crossover, from
slow late-time growth at low temperatures, to faster
growth at high temperatures. For T XO0.6T,, the
effective growth exponent was approximately indepen-
dent of temperature, being ¥=0.251+0.03 (where T, is
the critical temperature), which is in agreement with
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Lipowsky’s prediction of =1 [Eq. (10) in d =2]. Below
this temperature, however, the effective ¢ becomes small-
er as the temperature is decreased, as is predicted by the
above analysis. [For example, (T =0.4T,)~0.12, and
Y(T=0.3T,)<0.05.] It should be emphasized, however,
that this temperature dependence of §,,,; was due to the
limited time regime over which simulations were done;
for t — o, I expect this crossover to only take place at
the roughening transition T =0.

Many experimental systems will have no significant
finite-size effects. However, it will be more difficult to
prepare them with a flat interface to test the results in-
volving roughening kinetics. (Complete wetting will in-
volve a flat interface, but in many cases the late-stage
growth will be determined by the mean-field results).
One possible method of preparation would be to
“quench” from a small value of ¥ to a larger one. For
example, one could prepare a system in d =3 with a flat
interface at a low temperature below T, and then sud-
denly quench it to a significantly higher temperature 7,
where Ty <T'<T,.. Alternatively, one could suddenly
turn on a random field in a system which has been
prepared with a flat interface. For example, a three-
dimensional diluted antiferromagnet could be prepared in
a state of two-phase coexistence,”” and then a uniform
magnetic field applied (which acts as a random field for
this system®). This is somewhat analogous to zero-field
cooling. It is worth noting that such an experiment may
provide further insight into the kinetics of the random-
field Ising model, which is of current interest. Finally, it
may be worth repeating that an experimental test of
(&*)(q,t) would test theory more stringently than a test
of its integral § . (2).
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