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ABSTRACT

The aim of this thesis is to present coherently the
theory of ringoids from a purely ring theoretical point

of view.

Chapter 1, 2 and 3 are devoted to extend the

results in theory of non—caommutative rings to ringoids.

In Chapter 4 we characterize torsion theories in

abelian categories by using techniques in topos theory.

In Chapter S5 and & we apply the results in previous
chapters to characterize torsion theories in ringoids

and prove the additive BGiraud’s thszorem.
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RESUME

Le but de cette thése sst de présenter de fagon
cohérente la théorie des annoides vue & travers la

théorie des annsaux.

Dans les trois premigrs chapitres nous prolongeons
des résultats de la théorie des annsaux non—-commutatifs

a la théorie des annoides.

Dans le gquatriéme chapitre, nous donnons une
caractérisation des thfories de torsion en utilisant des

méthodes de la théorie des topos.

Dans les chapitres S et &, nous appliquons les
résultats des chapitres antérieurs au probléme de la
caractérisation des théories de torsion et démontrons

une version additive du théoréme de Giraud.
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PREFACE

The notion of ringoids was introduced by B.
Mitehell in 1972 as a generalization of rings with

unity. The aim of this thesis is to present coherently

-the theory of ringoids from a purely ring theoretical

point of view. The language of cateqory theory is
adopted in the presentation. That is instead of
considering a ring as a set with algebraic structures,
we regard elements of a ring as maps between objects in

a small preadditive category.

Chapters 1,2 and 3 are devoted to constructions
such as tensor products, calculus of fractions, and
characterizations of special objects such as the prime
rradical, the Jacobson radical, injectives, flat objiects
and such classical results as Watt s thecorem and Morita

equivalence in ringoids.

Chapter 4 is concentrated on the characterization
of torsion theories in abelian categories. But I have
adopted a topos theorstical approach, by observing the
notion of a topology in Topos can be defined for any

category with pullbacks!

In Chapters S5 and & I use the technique and results
of Chapter 4 to characterize torsion theories in

ringoids and prove the additive Giraud‘'s theorem.



All results are original unless otherwise stated.
I would like to point out that this work is inspired by
B. Mitchell ‘s paper "Rings with several acbijects" in

1972,

Finally, I would like thank my research director
Professor Michael Barr for his valuable assistance and

Adam Barr for his excellient job of typing.



CHAPTER 1
PRELIMINARIES
8§1. Basic definitions.

Definition. A ringoid & consists of a small category
together with an abelian group structure on each of its

hom sets such that composition is bilinear.

Notation. (1) The sets of objects G will be denoted by
1&l.

{2) Suppose A,B € |a|,oAB denaotes the zero element of
the abelian group Q{A,B} and 1, denotes the identity
map of A € |Q].

(3) The additive functor category Ab% will be denated

by mod—-& and similarly Aba" will be denocted bv Q—mod.

Suppose 8 is another ringoid the additive functor

category Aba"xa will be denoted by G-mod—8. We next

obtain a few easy properties of Q.
Propasition. For every a € A(A,B) and b,c € 4A(8,0)
{1) alb+c) = ab+acy

{2) aOBC - OAC - OABb;

(3)  a(=b) = (—a)b = —ab;
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(4) (—a) (=D) = ab.
Praoof. (1) is trivial;

(2) aOBC = a(OBC+OBc) = aOBC+aOBC S0 OAC = aOBC.

Similarly, OABb = OAC;

(3] Ouc = a0ge = alb—b) = ab+al-d), so —ab = a(-b).

Similarly (—a)b = —ab.

(4) Replacing a by —a we have (—a) (-b) = —(a(-d))
= —((—ab)). A

Remark. The composite

a b
A——B———>C

is denaoted by ab. {1) implies that for any @ (which
need not be small), there is a distinguished element

0g-

I+ A€ (&1, Q(A,—) is denoted by hy and Q(—,A) by
rfl. Clearly hy € mod—@ and h# € @-mod.
Definition. A left ideal L of & is simply a subobject

of hA in &-mod for some A € |Q|l. This means for every
B € j&}, L{(B) is a subgroup of A(B,A) and if a € L(B),
b € A(B’,B)Y then ba € L(B’). 8Similarly, a right ideal



R of @ is a subobject of hA for some A € |&| and an

ideal I is simply a subobject of &{—,—-) in &-—mad-Q.
Examples.

1. Oa is an ideal.

2. If a € @{A,B), the right ideal of & generated by a

is given by
a(x) = {ax € A{A,X)|x € A(B,X) for every X € |&].

Similarly the left ideal (a generated by a is

given by
Gal{X) = {xa € A{(X,B)|x € R{(X,A) for every X € |4}|.
The ideal [al generated by a is given by

Lal(A’ ,B') = {Z;;,(i)2'ab’ € QA’,B')|a’ € Q(A’,A),b’

€ &(B,B’' )X

where fint(i) means over some finite index i. It is

easy to check a € h,, Qa & A and [al € A{—=,=-).

3. Let F:@—>8 be an additive functor, then

(kerF) (A,B) = {a € Q(A,B)|F{a) = Ogx>
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is an ideal of Q.

Operations on ideals.

i. 1f L € b is a left ideal and R € hg a right ideal,

then the product RL is given by

RL is a subgroup of R(A) and L(B).

2. If I, I’ are ideals of &, the product II’ is given

by

(II')(A,B) = {Eginqir3;b;1a; € ICAX;), by € I(X;,B),

i

X; € 1&13.

I’ is alsa an ideal and II’' € 1, II’ € I'.

Remark. In particular, if a € QA{(A,B), a° € Q(A' ,B’)
then

€ (Ga) (XI-),XI- € |aly = Zfin(i)a’uvalu € G.(B',XI-),V

€ R(X;,A),X; € |GI} € Q(A’,B).

Hence if we regard 4@ as a diagram, {(a’d&) (da) is
the abelian subgroup of A(A’ ,B) generated by all finite

paths



82. The category @-mod.

Lemma (Yoneda). For avery A € |Q| and T € Q@—mod, there

is a natural isomorphism

X
a-mod (hA,7) —— T(A).

~ Proof. See [B. Stenstrdm, 19721. B

Notation. (1) Given T € &@-mod and x € T{(A4A), the
correspaonding map hA———éT will be denoted by <x>. Then

<x>(B){a) = T(a){x) for every a € rAE = Q(B,A).

(2) If f € Ad—mod (M ,N) and g € &—mod(¥,K), the

composition is denoted by geof.

Suppose ¥ € |Q-—modl. A set {x; € H(Ai)li € I
generates # if for every x € M(A), there exists a;
€ a(A,Ai) such that x = zfin(i)”(ai)(xi) i.e. the map
p:E}eIhA'———éﬁ is an epimorphism in &-mod where p is

induced by <x;> : h#*——3#. M is finitely generated if

I can be finite and M is cvyclic if I can be taken a



singleton set. Notice that for every ¥ € @—mod there

always exists a set of generators UM = UAGIQI”(A) -

the underlying set of M.

Proposition. For every # € G-mod,¥ = colimieth' for

some set of I.

Proof. See [Mac Lane, 19711. B

In particular ¥ is free if M = E;EIhA‘ for some

set 1.
Operations on G—wod.

1. Suppose M € d—mod and x € H(A), the subobject Qax

generated by x is given by

(@x) (X) = {M(a)(x) € H(X)]a € a{x,As.

2. I+ # € @—mod, x € M{(A) and L & h is a left ideal,

the product Lx is given by
(Lx) (X)) = {H(a)(x) € M(X)]la € L(X)I.
Then Lx € @—mod and Lx & M.

3. I+ # € @G—mod and R & hy a right ideal, the product

MR is given by



Then MR is a subgroup of M(A).

4, I+ M € @—mod and I an ideal, the product I is

given by

(IM (X) = (SginyMla) (x;)la; € I(X,X7) ,x; € H(X;),X;

€ [AlY.
Then IM € @—mod and IM € H.

5. I+ M is a subobject of ¥ in &mod and x € M(A),

then the left ideal [M‘:x]1 S hA obtainad'by pulling

back M’ along <x> is defined by
[M :x1(X) = {a € A{X,A) A (a) (x) € M (X))},
§3. Jacobson radical, Prime radical and the center.

M €E @—mod is non—-zero it there is an A € Q| such that

MA) # 0.

Lemma. Every nan-inro finitely generated ¥ has a

maximal proper subobject.

Proof. Let o be the set of all proper subobject aof =
partially ordered by inclusion. If v is a totally
ordered subset of @, let ¥’ be the sum of all N € w.
If we can show that #’ # H, then #’' will be an upper



bound for v in @, and Zorn's lemma can be applied to
give a maximal proper subobject of #. If M’ =M, there

exists a finite set of generators {xy,---,x,7 for M.
Each x; lies in some object belonging to v, and then
for some ¥ € v we have {x;, " ,x, & U(N) since v is

totally ordered. This implies N = M a contradiction. R

Corollary. For evary A € |Q&i, h® has a proper maximal

left ideal.

Now we shall extend some classical results of non-

caommutative ring theory to Q.

(1) The Jacobson radical (Mitchell).

Let A4 € |&| and JA be the intersection of all

proper maximal left ideals of hA. Then we have

Propaosition. J4(B) = (a € a(B,A) |14ba is left

invertible for all b € Q(A,B8)}
= {a € R(ByA) |14ba is invertible for all &

€ A(A,B)).

Proof. I+ 1,-ba has no left inverse for some b
€ Q(A,B), then a(lA—ba) is a proper left ideal and it

is contained in some proper maximal left ideal L. If a

€ L(B) then ba € L{(A) which implies 1, € LLA). Hence a



€ T B).

Conversely, if a € JA(B), there exists some proper

maximal left ideal { such that a € L(B) which implies
Ga+L = hA. In particular 1, € (Qa+l) (A) there exists b
€ A(A,BY and ¢ € L{A) such that 1A = hpa+c. 8Since L is

proper, ¢ = 1,-ba is not left invertible.

To complete the proof, it suffices to show that if

l1,-ba has a left inverse for all b € Q(A,B), then the

left inverse is also the right inverse.

If x € Q{A,A) such that x(lA—ba) = 1A we have x
= 1A+(xb)a = 1,—(—{xb)) so x also has a left inverse vy
€ G(A,A). Hence 1,(1,-ba) = yx(14ba) =yly =y. This

implies x(1,;-9a) = xy = 1,. R

Lemma. Given a € &(B,A) and b € &(A,B), then l,-ba is
right invertible if and only if ig—adb is right

invertible.

Proof. Suppose x € G(A,A) such that (1l balx = 1,.

Then IA = x—bax and

(IB—ab)(18+axb) = 13—3b+axb—abaxb = IB—a(lA—x+bax)b

=18.-



If Jg denotes the intersection of all proper

maximal right ideals of hg, then the last two results

show JA(B) = Jg(A). Thus if we define J(B,A) = J4@®,

J is an ideal.

Lemma (Nakayama). If ¥ € @—mod is finitely generated

and JN = N, then N = O,

Proof. Suppose N(A) # O for some A € |Ql, and let {x;
€ N(Ai)}?=1 be a minimal set of generators of N. Then
x, € (JN)(A,), hence we have x, = T]_;Nla;)(x;) where

a; € J(A,,A;). This implies

Nl —3,) (xp) = TIZINGa) (x).

Since a, € J(An,An) s0O lA"—an is invertible.

Hence N is generated by {x; € N(A4;’37Z},a

contradiction. A

Definition. a € Q(A,A) is nilpotent if a” = O for some

n € N. A left ideal L € hA is nilpotent if every

element of L(A) is nilpotent.

Proposition. Suppose a left ideal L S hl is nilpotent,
then L & J(—,A).

Proof. Suppose B € |G| and a € L(B). Let b € QG(A,B),
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then ba € L(A). Since L is nilpotent, so (ba)” = 0 for
some n € N, and hence (lﬂ—ba)—l = E?;%(ba)i+1A. This

implies a € J(B,A). A

{(2) The Prime Radical.

Definition. An ideal P is prime if given ideals I and

I’ such that II’ € P then I €S Por I' & P.
Theorem. P is a prime ideal if and only if whenever a
€ G(A,B’) and b € R(A’ ,B) such that {(ald)(Qb) & P(A,B),
than a € P(A,B’) or b € P(A’ ,B).
Proocf. Suppose P is a prime, a € Q(A,B’) and b
€ QLA’' ,B) such that (ad) {(@b) € P. 1t suffices to show
Callbl £ P, then simply observe a € [al(A,B’) and b
€ [bI1{A’,B). Recall
Lal{X,Y) = {3einiyXjayilx; € QX A),y; € Q(B',Y)2
CbliX,Y) = Geineiyujibvilu; € AIX,A),v; € A(B,Y)Y

Lallbl(X,Y) = {F¢inarecliler € [aliX,X, ), € [B1(X;,Y)3

Since composition is distributive over addition
enough to consider each summand of [al[bl1(X,Y), we have

the following diagram
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b
X >A »B’ 2K 28! —— > B——>Y

But

a
A————8" Xy —>A’ >8

belaongs to (aQ) (@b) € P{(A,B), and since P is an ideal

we have [alldb]l &€ P.

Conversely, suppose I, I’ are ideals such that II’
€SP. I+ I € P, there exists A,8 € |Q]| such that I{(A,B)
% P(A,B). Choose a € I1(A,B) such that a € P(A,B) and
suppose b € I’ (A’ ,B’), it suftfices to show (ad) (Ab)
€ P(A,B’) since in that case we have b € P(A’ ,B'). We
can use the same argument as before. (Clearly we have
all & I1(A,—), [al € I and [b] € I’ so Lallbl & II' & P.
But a2 € P(A,B) so b € [b1(A’,B’) & PLA’,B’'1.

Definition. (1) rad{Q) = N{P|P is a prime ideal of &

(2) a € Q(A,B) is strongly nilpotent if every seguence

€ao,a1,---} such that it is constructed by ap = a and
a,4+q1 € (ana)(aan) is eventually zero. 0Obviously a,,

€ QA(A,B) for all n € N.

Theoram. rad(Q) (A,B) consists of all the strongly
nilpotent elements in &(A,B).



Proof. Suppose a € 2(A,B) and a € rad(A,B), then there
exists some prime ideal P such that a € P(A4,8) so

(a) (@a) & P(A,B), select a; € (a){Qa) and a;

& P(A,B). Continue this construction so we have a

sequence {a,aj,ap433,y°""} such that a, # 0 for all »,

n

since a, € P(A,B), so a is not strongly nilpotent.

n

Conversely, if a € @A(A,B) is not strongly'
nilpotent, which means that there exists a sequence

{agsajsap,a3,° "3 such that a, # 0 for all » and a, .y
€ (ana)(aan). Let £ denote the sequence then consider

the family § = {I an ideal of A|I(A,B)ne = B&}. Clearly
4 # 0 since the zero ideal of & has nothing in common
with €. Order § by inclusinn, then the usual Zorn's
lemma argument says § has a maximal element P. If we
can shaoaw P is prime we are done, let I and I’ be ideals
of @ such that I 2 P and I'  P. 8Since P is maximal,
(I+P)ne # & and (I'+P)ne # & hence a; € (I+P) (A,B) and

a; € (I'+PY(A,B) for some i,7 € N. Put a = max(i,j)

J

then we have

2g41 € (ay@) (Bay) € L(I+P) (I'+P)1(A+B) € (II'+P)(A,B).

But a_,, € P(A,B) implies ap4y € (II’){(A,B), s0 II’

& FP. R
Dbserve if a € A{A,A) is strongly nilpotent, then

it is nilpotent. Then the result in last example on

the Jacobson radical says:



Carallary. rad(Q) S J.

{3) The center of Q.

Before we consider the center of &, recall the
following result of ring theory: Let R be a ring with

unity and IR—mod denote the identity functor. Then

there is an isomorphism
=

S0 we have this result to guide us.

Given e € Nat(la—mod'la—mod) we shall to describe

e in terms of morphisms of d. By definition e should
satisfy the condition: for every M € Q—mod, there is a

map ensﬁ———éﬁ such that for all ¥ € G—mod(#,N) the

diagram

ey .

e

lf

~
T X

€N 5

Cd

commutes. In particular, for every A € |Q|, let e,

denote eja. Then ey € a—mod(hA,hA) x &{A,A). Hence
for every ¢ we get a set of endomorphisms {eA

€ Q(A,A A € Q1. But e also implies the following



relationship among €4t for every b € Q(A,8)

= a—mad(hA,hB), we have the following commutative

diagram:

x
p S
N

QA(—yb) Q{—yb)

I ——
N
o ae—

Evaluating this diagram at 1, € &(A4,A), we have
epdb = beg. We define a set of endomorphisms £ = {eyztA

€ |&lF is a central element if and only if for all b

€ Q(A,B), eypb = beg. The collection Z(Q) of all

central elements of @ is called the center of Q.

Suppase £ = {ez4lA € Q1Y € 2(&) and # € G—mod,
define eH=H———%H if x € M{A) then eH(A)(x) = H(eA)(x).

Suppose b € R(A,B) and x € M{(B). Then

M(bleey(B) (x) = M(bleMleg) (x) = M(beg) (x) = M(2zb) (x)

= MHlegleH(D) (x) = ey(AloH (D) (x).

Hence ey € G-mod(M,H). Now suppose ¥

€ G-mod (H,N), A € {&] and x € H(A).

TlAYey(A) (X) = T{A M eg) (X) = N(e)T(A) (X) = ey(A)T(A)(X).

This implies Z(@) & Nat(lg_ . 4+lg-mod’ -

- 15 -



Suppose £ = {ej4 € Q{A,A) 1A € Q1> € Z(Q). Detfine
an i1deal [E£1 by [EI1(A,B) = {eAb € A(A,BYIb € QA(A,B)3
= {beBIb € A(A,B)>. If a € A(A*,A) and C € (B,), it

is easy to check the following diagram commutes.

[E1(A,B)—LE1(A,C)

LEJ(A’ B)—>L[E1(A’ ,O)

E = {eAIA € 1Al € Z2(A) is idempotent if e% = eL5

for every A € |Q]. Let B(QA) denote the set of
idempotent central elements of &, then B(Q) has a
Boolean algebra structure (EvE’ = E+E’'—EE’ ,EAE’ = EE)
moreover [£] is an idempotent ideal that means LEIJLE]
= [El. Clearly [EILE]1 € [EE1. On the other hand, if

beg € LEI(A,B), then beg = be§ = bej = (beg) (e§)

€ [EILEI(A,B).
§4. Calculus of fractions

Given &, we shall construct the ringoid of
fractions of 4 with respect to a certain set I' of
morphisms &, moreover given M € &-mod we shall contruct

its functor of fractions.
Definition. A set I of morphisms of @ is called an RMC

set (RMC stands for right multiplicatively closed) if

the following conditions are satisfied:



(1) I' is closed under composition and 1A €0 for all A

€:> € lal.

(2) A diagram

Y
4

BI
s l
)

p

in @ with s € I can be embedded in the commutative

square

with s’ €T.

(3) For every a € Q{(A,B) with as = 0 for some s
€ 'n@(B,B’) there exists s’ € Mn{A4’ ,A) such that s’'a

= 0.

Definition. A non—-empty cateqgory D is called quasi-~

directed if the following conditions are satisifed:

{a) Any diagram in the form of a co—angle

O - 17 -



A >A’

A r”

can be embedded in a commutative square

2>A’

b s

" A

(b) For any a.,a’ € D{(A,B8), there exists b € D(B,B’)
such that ab = a’b.

Given ringoid @, ' an RMC set of morphisms of Q&
and A € (Ql, let (,A) be the full subcategory of the
comma category (@,A), which means an obiject of ([ A) is
of the form s:A’'—>»A € "'y and if t:A"—3A € T is

anather abject then

(F,A) (5,t) = {2 € A(A" ,A’) |as = t}.

lLemma. If M is an RMC set of morphisms in &, then for

any A € |&l, (FyA) is quasi—-directad.

Proof. Suppose that every diagram in Q

- 18 -



B ”

/
bll/
e
B’ s”
b
Biil——————iA

with both triangles commute and s,s’,s” € ' Then it

can be embedded in

in which the outer square commutes and ¢t € I'. Then ts
€ 'y hence the co—-angle has been embedded in a

commutative square in (IF,A4}.

To show second condition of quasi-directedness, if

in (F,A) we have

a
&

B) — ¥
) a’ d
\>\\ 5’

/
¥ K
A

such that as = a’s = 5’ with s,5/ € I'. Since I' is RMC,

there exists t:8“—3»8’ such that ta = ta’. Clearly

- 19 -



belongs to I' and it equalizes a and a’ in (4.

Definition. A category £ is connected if it is non-
empty and if for any two objects I and i there is is a

finite set of objects Iyyigy"""4i, and a diagram

in &.

This means that any two objects may be connected
by a path containing a finite set of oriented
morphisms. Obviously (I"',A) is connected for any A

€ 1ai.

Definition. A category D is directed if the fallowing

conditions are satisfied:

(a) for any pair of objects D and b’ of D, there is a

diagram

D’ D" ¢— D

- 20 —



(b} for every parallel pair of arrows d,d’':0——D’,
there is a map d”:0’——>D” such that dd” = 4d’/4”.

It is easy to show that if D is quasi-directed and

connected, it is directed. Hence (IF,A) is directed.

Definition. Let I' be a RMC set of morphism of 4, a

ringoid of fractions of @ with respect to " is a
ringoid r~1lcay together with an additive functor

p:d——>r~1(q) satsifying:
Fi. g@{s) is invertible for evervy s € .

F2. For every g:0—8 such that @(s) is invertible in

8 for every s € I' then there exists a unique

ag:r~1 (@) —>8 such that deqp = w.

Clearly if '1(Q) exists then it is unique up to

isomorphism. Now we shall confirm its existence.

Let A,8 € |Q} define €(A,B): (',A)—>Ab by
€ (A,B) (X—>A) = A(X,B) and if x:X'—>X is a map
sending (s:X—>A) to (s':X'—A) in (,A) then

€ {(A,B)(x) = &(x,B). Naw we can construct F“l(a), let

ir~l(| = |&l and given A,8 € iIrtcary, put

1@ 4,8 = colimgg gy (A,B) (s:X—A)

= COlimse (F’A)G(X,B) -



The explicit construction of F_l(a)(A,B) is given

by putting

P = zse(r"A)a(x,B)

thén impose an equivalence relation on P: i+ b
€ €(A,B) (s:X—>A) = Q{(X,B) and b’ € e€(A,B) (s’ :X'—>A)

= &(X’,8) then b~d’ if and only if there exist

(t:Y—A) € (F,A) and maps x:s—t, s’ —>»t where x

€ alY,X), x’ € &({¥,X’) such that Qi{x,B) (b)

= Q{x’ ,B)Y{(b’) that is x'b’ = xb. All this amounts to

is that we have the following diagram

Y\
N\
"4 p*)
X X
AN ,//
s
s \\ b’
b
wz/ \&v
A B
= ¢ € .

such that x'b’/ = xb and x’'s’ = xs

It is routine to check ~ is an equivalence

relation. Now we have a less confusing picture of

P"l(a)(A,B), a map between A and B consists of the
equivalence classes aof a pair of maps in Q, namely

(b,s) with s:x—A, bz:X—>8 and s € I'.



Suppose (b,s) and (b’ ,s’) € F—l(a)(A,B) that is we

have

L+ ]

in &, since I" is RMC we have the following commutative

diagram

in @ with ¢t € ', the define (b,s)+(b’,5’) = (ab’+tb,ts)

€ r-iwa a,m.

Suppase (b,s) € " l(a) 4,8, (c,t) € I 1) B,0)

that is we have

in &, since I' is RMC we have the following diagram



in & such that ub = at and u € I then define (b,s){c,t)

(ac,us) with (ac,us) € F"lta)(A,C). It is routine to

check these operations respect the equivalence relation

~. Moreaover P“l(a)(A,B) is an abelian group with

(0,18) as the zero element for addition and (IA,IA) is

the identity for composition.

Now we shall construct @:@——r~1(@) . Obviously
we put @{A) = (A) for A € |Q| and if a € @(A,B) we put

pla) = (a,1,). It is easy to verify that ¢ is

additive. Moreaver if s € G(A,B) and s € ', then g(s)

= (s,1,) so it is represented by

A
15

3
Bé&—A
in 4. Since I is RMC we can embed it in

b
7

b
,




with ¢+ = as, then (a,t) € P—l(a)(B,A). Consider
the composition (s,1,){(a,?) € F"l(a)(A,B). We have the

following diagram

with ¢t/ € ' and both squares commute. That implies

that (s,1,)(a,t) = (ba,t’). Moreover we have t’s

= bas. Hence there exists u:Z—Y € ' such that ut’

= wba. This implies that (ba,t’)~(1A,1A) sa g@(s)

= (5,1,) is invertible in r~1e. Now suppose y:ad—>8

is an additive functar such that wv(s) is invertible in

8 for all s € . We define an additive functor

a:r (@) ——8 as follows: o(A) = w(A) for all A

€ Irtwyy, if b,s) € r'1(a)(a,B) for some b € A(X,B)
and s € A(X, Aol then put o(b,s) = V(s)‘lv(b). This

shaws that F~1(@) together with @:@——r"1(@) has the

desired properties.

I+ M is an RMC set of morphisms in Q@ and #

€ 0—mod, we would like to construct the functor of

fractions r~1un € r~1(a)-mod.



Definition. Given a RMC set I' of morphisms in & and #
€ @-mod, then M1 € r1(a)-mod is a functor of
fractions of # if there exists py € G-mod(M,M 1 .q)
with the following universal property: for every N

€ r'1(a)-mod and 7 € a-mod{#,N @) there exists a unique

o € 'Y (@)y-mod(r~! (M ,N) such that the following

diagram commutes:

Notice we regard o € a—mad(F—I(H),N) by
restriction and the definition of r~1un simply states

that I (- —(~rsq.

Now we take on the construction of Pl . For A

€ I®] consider the functor §,4:(F,A)—>Ab given by

&A(s=x———9A) = M(X) and suppase x € A{(X’,X) has the

property that «: (s: X—3A) (s’ X" —3A) in (", A.
Then 46 4(x) = H{a):#(x)—>M(X’'). We put

Fm () = colimeg gy64(s:X—A) for A€ IFTH@ |

= col imse(r’A)H(X) -



The explicit construction of r~lun A is given by

letting

P =Zse(qr,mtx

and then imposing an equivalence relation in P: 1f x

€ S(s:X—A) = M(X) and x’' € § (s’ : X' —>A) = HX")

then x~x‘ if an only if there exist (s7:X"—A4)
€ (ryA) and maps a:is—»s", a‘:1s’'—»s”, where a

€ AX”,X), a’ € QR(X’',4,X) such that M(x) (x) = Mla’)(x’).

Again it is routine to verify ~ is an equivalence

relation and elements of o consist of
equivalence classes of pairs (x,s5) where x € H(X) and

s2X—A € T.

I+ (x,5), (x',5') € r~l(# (A then we have

in @& which we can embed it in

” }-X ’

A



with ¢ts = as’ and ¢t € I', then we define (x,s)+(x’,s’)

= (M) (x)+M(a) (x'),ts).

If (x,5) € Il (A and b,t) € I~ L) (8,4, we

have

in &, since I' is RMC we can embed it in

s
b W
Ca

W
o,

W
R L a——
o
"

with s’b = b’s and s’ € ", then define I 1(M (b,t) (x,s)

= (MBI (x),s't) € rLun .

Now we shall construct py, € R—mod(H,P_l(H)oQ).
Let x € M(A) and put py(A)(x) = (x,1,). If a € QA(B,A)

we must show the following diagram commutes.



(A) _
H(A) i Sl () ep )

M(a) r~1lme. (a)

M(B) Sl (e p(B)

If a € &(8B,A), then @(a) = (a,lg), we have

Flimegalopytd) ) = rtunca,1mn 3x,1p

= (M(a’) (x),s)

for every x € M(A) and a’ is obtained from the

following diagram:

with s € I'. Since 518 = ixs = 5,
(H(a)(x),18)~(H(a’)(x),s) = (Misa) (x),5)

= (M(s)eM(a) (x},s).

Now if N € I 1(@)-mod and ¥ € G-mod(#,Nq), we
must construct o € P—lta)—mod(r—l(n),ﬂi. Suppose A4

€ Irl(a)yt and (x,5) € 1) (4 where x € #{(X) and
s:X—>A € (F,A). Since ¥ € G—mod(#,N-p) we have that

the diagram



A

M(A) SNo @ (A)
M{s) Neg(s)
f{X)
H{X) SNo @ (X)
commutes and @(s) = (s,1ly) is invertible, so define

og(A) (x,5) = N(s,lx)-lof(X)(x) € Nog(A) = NCAY. Biven

(a,t) € F_l(a)(B,A) where (a,t) is represented by

with ¢t € ', we have to verify that the square

¢ (A)

1l 3N (A)
r~1m a,t) N(a,t)
-1 § (B)
r~1on >N (B)

is commutative. Let (x,s) € r~lom (A be represented

by ssX—>A and x € M{X). Then
N(a,t)ed (A) (x,8) = N(a,t)eN(s,1,) " Lar ) (x).

On the other hand we have a diagram



S
o

Y

> A

in & with s’a = a‘s and s’ € ', hence

J(B)oF*I(H)(a,t)(X,S) = §{B) (M(a’)(x) s't)

= Nis't, 1) tar(Zrokta’) (x)
= N(s't,1,) " LalNe@I(a’)er (XD (x)

= Nis't, 1) laN(a’ ;1) F(X) ()

for ¥ € G—mod{(M Noqg). So we must shaw that
ta,t) (5,10 Lutsst e 7’ , 1 in I ha) 8,%) or

equivalently (s’'t,13) (a,t)~(a’,17)(s5,15) in

r~la z,4.

Observe the follawing diagram in &

4 z
N\ g/
p]
/z\ /x\ /z\
1 a’ 1 1 ‘
2 E;/ \X K&/ R‘JA Ky/ \§Y

Using the fact that s’a = a‘s, we have

(s't,17)(a,t) = (s'a,ly) = (a's,17).



€:> Hence o € M1 (a)—mod(r~l(#) ,N). Moreover if X
€ M(A) then

TCAY oy (A) (X) = @A) (xy1) = N(1gy12) Lot (A) ()

= F{A) (x).



CHAPTER 2
81. Projectivity and Injectivity

P € @—mod is a projective if
aA-mod(P,—) :d—mod—>Ab is exact, which means that for
every epimorphism g:M—>N and every @p:P—>N, there
exists @’ : P—>*M such that p#m’ = @.

Clearly, for all A € |al, hA is projective.

Lemma. :EEIPi is projective if and only i+ each FQ ims

projectivea.

Proof. A simple application of the isomorphism

Corollary. (a) Every free functor is projective.

(b) Every direct summand of a free functor is projective.

Propasition. The faollawing are equivalent for P € G-mod
(a) P is projective;
(b)Y P is direct summand of a free functor;

(c) Every exact sequence 0—>N——N—>P—>0 splits.

Corollary. P is projective if and only if there exists

a seat {x; € P(A;)|i € I} and maps {g@; € a—mod(P,hA‘)li



€ I} such that for all A € |Q| and x € P(A) one has x
= TrerPle; (X)) (x;), plx) = 0n for all but a finite

numnber of i € I.

Proof. Let p:E&erhA‘———%P be an epimorphism of a free
functor onto P. Since a—mod(EQGI(hA‘,P)

2 ;¢ ;@—mad (hA7 ,P) = M;c;P(A;), ¢ induces a set {x;

€ P(A;) i € I3, If P is projective, there exists

@: P—T; ¢ th* such that g = 1 But @-mad (P, ;¢ rh )

p*
= iera—mod(P,hA‘) says that ¢ induces a set {g;

€ a—mod(P,hA’)!i € I} with stated property. R

Note that the set {(x; € P(A;)|I € I} generates P,

and that it can be chosen finite if P is finitely

generated.

E € @—mod is injective i+
&-mod (—,E) : (B—wmod)**——>Ab is exact, which means that
for every monaomorphism a:4—>N and evervy g:M—E,
there exists @9’ :N—>E such that 9'a = g. Dually we

have the lemma:

Lemma. A direct produ:t.njEIEi is injective if and

only i+ msach Ei is injective.

When determining whether a madule is injective, it

suffices to consider a very restricted clas of



monomarphisms: (A generalization of Baer’'s testing

lemma) .

Theorem. £ € @—mod is injective if and only if for all

A€ |&] and L S hA a left ideal of @, if @ € A—mod(L,E)
there exists an x € E(A) such that the diagram

Ly———hA

@ <x>

commutes, which means that for all x € {Q&l, a € L(X),

e(X)(a) = E(a) {x).

Proof. The stated condition means simply that every L

€ hA and @ € a—ﬁod(L,E) can be extended to m:hA———%E,
50 it is of course a necessary condition. Assume that
E satisfies the condition. Let a:¥——>N be a
monomorphism and ¢ € A-mod(M,E). Consider the set €
= {p’:N'—2E|H &S N & N and p’ extends @9i. <€ can be
partially ordered by declaring @’ £ @” if @” further
extends @’. If & is a totally ordered subset of ¢, we
define N¥ as the sum of all N’ € 4, and define

@V: NY——>F so that it extends all @’ € §. g™ then is
an upper bound for §. The set € is thus inductive, and
we can apply Zorn’'s Lemma to obtain a maximal

PoiNg—E in €. We must show that Ny = N. Clearly N,

S N. Let x € H(A) and A € Q| put LX) = {a



€ AX,A) IN(a) (x) € Np(X)3. It is easy L & 22 and L is

a left ideal. There exists g € A-—mod(L,E) given by

g (X)(a) = @5(X)L[N(a){x)]1, and by hypothesis there

exists vy € E(A) such that g(X) {(a) = E(a)(y) for all X
€ |&] and a € L(X). Recall that if x € N(A), “Ax the
subfunctor functor generated by x is given by (Qx) (X)

= {N(a)(x) € N(X)]a € A{(X,A)}. Now define wid,

+ Ax—3E as wi(X){z + N(a){x)) = mo(X)(z) + Efa) {y)
where z € Np(X). We claim that v is wellfdefined.
Suppose z + N(a)(x) = 0 in (Ng + &x) (X)), then -z

= N(a){x) € NO(X) implies a € L{(X), and then E(a) (y)

= p(X){(a) = go(X)I[Nla){x)1, so we have v(X)(z

+ N(a) (x)) = @gp(X)(z) + E(a)ly) = @lX)(2)

+ @ (X)IN(a) (x)] = @g(X)[x + N(a)(x)1 = 0. Furthermoare
v € G-mod(¥, + Qx,E) and extends g@gy. This contradicts

the chaoice of No. n

Definition. # € @-mod is divisible if for every 0, # a

€ G(A,B) and x € M(A) there exista y € M(B) such that x
= M(a)(y).

Corollary. If E € @mad is injective then £ is

divisible.

Proof. If a € M(A,B) and x € M(A), we can define o
€ A-mod{Ra,E) by @(X) (ba) = M(b) (x) then apply the

lemma. W



8§2. Tensor products.

Let # € mod—Q®& and N € @G-mod. We shall define the
tensor product of ¥ and N as an abelian group with

universal mapping property.

Put MxN = Ehela'EH(A)XN(A)] and let G be an

abelian group. A map @:M*N—>G will be called -

bilinear if

(1) The composite

i
@A) 2 H(A) BN (A) —A S usN—— 3G

is F-bilinear, which means @(A) factors through

H{AY@HN(A) for all A € |A].

(2) For all x € M(A), v € N(B), a € ®{A,B) we have
(A Ix,N(a){y)]l = @(B)LH(a) (x),y]l.

Pefinition. A tensor product of # and ¥ is an abelain
group 7 taogether with a G-bilinear map T:#xXN——>G, such
that for every abelian group 6 and &-linear map

Pz MXN—>G there exists a unique homomorphism a:7—G

such that at = g@.

It is easy to check that the tensor product is

unique up to isomorhpism. As for existence, let 7



= Zgeiq| [MLAYAN(A) 1 /~, where ~ is the abelian subgroup

generated by elements of the form M(a) (x)®y
— x@(a)i{y), x € H{A), v € N(B) and a € A(A,B). 1t is
rautine tao check that T:#xN——>7 has the desired

universal property.

Because is it unique (up to ismorphisms), we will
speak of the tensor product of M and N and denocte it by
MR,N.

Theorem. For all A € |&]|, M € mad-Q, HduhA = MA.

Proof. First we notice #xhf = Spo g, M (BYxNA(B) ]

= Zgeq | M (BY*A(B,A) 1. Define T MxhA—H (A) by

T(B)Ex,al] = M{a){x), B € |&|. Since M is additive T(B)

is bilinear. To check that T satisfies (2), let x

€ M{X), ¥ € RAr) = &{Y,A) and b € A(X,Y) then we have

TIYIIM(D) (x) ,¥y] = M(y)eM(b) {x) = M(by) (x) = T(X)[x,byl

= T(X)[x,hZ2(b) (¥)]

Hence T is G-bilinear. Suppose m:Hth———eG is
also A-bilinear. Define a:M(A)——>G by alD)

= plA)LZz,1,4], we have to verify asT = @. It suffices
to show for all X € |Q]l, e T(X) = g@i(X). Let [x,y]

€ HX)xhALX) = M(X)x@(X,A), then

ae T(XIIx,y1 = aM(y) (x) = QLAY LH(Y) (x),1,]

- 328 —



= @(X)Ix,10%]1 = @(X)[x,y1. W

Similarly, we can show h ;N = N(A) for all A € (&1, N

€ G-mod.
Corollary. For all A,B € 1&1, h,@h% & atA,s).

We will now look at tensor product from a
functorial point of view and show that the tensor
praoduct mav be considered as a functor
mod—-&x&-—mod—>Ab. Let A € d-mod{(M,M4’) and p
€ A—-mod(N,N’). We claim that there is an induced

homomorphism a:H@uH———%H’QuM’. Define m:HXN———én'QuN'
by (X)Lx,vy1l = A (X)@u(X) (y). o(X) is clearly

bilinear on M(X)xN(X). Suppose x € M(AY), v € N(B), a
€ QR(A,B) then

p(AYIx N(2){(y)] = 2 (A (x)BRr{AN(a) (y)
= X (A) (x)@DN’ (@a)ep(B) (vy) = M {(2)e XA (A (XX (B) (y)
= AR MY XIBu(B) (y) = @(BIIM(a) (x),y].

Hence ¢ is A-bilinear, so there exists a unique

a:ﬁ@hﬂ———éﬁ’@aﬂ’. The homomorphism & is denoted by
A®u. Also cbserve in the construction of H@uﬂ it is

generated by elements of the form x®y where x € M(X)
and vy € (X)) then A(x@y) = (A@u) (x@y)
= A{X)(x)@u{X) (y).

Proposition. 1If M; € mod-& for f € I, and ¥ € @—maod,



then there is a natural isomorphism

(S @gN & T;e7(M; 0N .

Proof. See [Mitchell, 19721. R
Moreover, Mitchell has shown:

Proposition. The tensor product is a right axact

functor in each of the two variables.

Corollary. Suppose A; € |&|, i € I and ¥ € G-mod then
zjeIhAlﬂaN = ziex(hA‘QaN) o Xy N(A;).
Similarly if # € mod—Q

MO (S ph™) & Tyer MO & T pMtAp) .

Corollary. If #; € mod—Q is a direct system of objects

and N € G-mod, there is a natural isomorphism

(:nlimﬁi)ﬂhﬂ = :olim(HiOuH).

Examples



1. Tensoring with cyclic functors.

Let L < hA be a left ideal and M € Ad-maod. From

the exact segquence 0———9L———éhA———%hA/L———%O we get an

exact seqgquence
H®,L—E—3H (A) —3H®y (hA /L) —>0

where Im(x)

€ I1Qi%

HL.

It follows that Hﬂh(hAfL) = H{A) /HL.

2. Direct Unions.

If ¥ € mod—Q4 is a direct union of subfunctors Hi
for i € I, then M@pN = colim(¥;@yN), but it should be

noted that #;®pN is not in general a subgroup of MON.

3. 5Split exact sequences.

I+ 0——¥H —H—H"—30 is a split exact
sequence of functors in &—wmod, then it follows that the

sequence of abelian groups



O———%H’Quﬂ———%”@uﬁ———éﬂ”QaN———éo is also split exact.

4. Dual functors

Let # € mod—Q® and G € Ab the dual functor MLG]
€ @-mad is defined by MLGI1(A) = Ab{M(A) ,G) for A € |Ql.
If N € A—mad we also have NIG]l € @-—mod defined by

NLGI(A) = Ab(N(A) ,G) for A € Q).

Proposition. If ¥ € mod-Q, there is a natural

isomorphism

Ab (HDaN ,G) % G—mad (N,MLG1)

which means #®; - M[—-]1. Similarly, if N € @-mod we

have the adjoint functors BN NL-].

Proof. Since M@;— preserves direct limits, it suffices
to show the isomorphism for the representables. For A4

E |1Q), we have hA € a-mod and then

Ab(HQahA,G) X Ab(M(A) ,6) = HLG1(A) = a—mod(h,H[G1). W

§3. Characterization of flatness.

Definition. F € @-mod is flat if the functor —BpfF is



axact.

Since the tensor product is always right exact, F

is flat i+f and only i+ —BpF preserves monomorphisms.

Proposition. If F; € @-mod, then I;c;F; is flat if and

only if each F; is flat.

Proof. If M'—>M be a monomorphism of functors in

mod—2 there is a commutative diagram

M Qp{;crF;? PU® (T 7F

The upper raow is a monomarphism if and only if the
lower one is, and this happens if and only if each

H'QhFi———éﬁqui is a monomorphism. B
Corollary. Every projective P € Q-mad is flat.

Proaof. For all A € 1&l, h? is flat since #@h? = H(A)
tfor # in mod—Q&. It follows that every free functor in
&-mod is flat. Then uéé the fact that every projective

is a direct summand of a free functor. N

Corollary. Every direct limit of flat functors is
flat.



Proof. Direct limits are exact in @d-mod. [ ]

Definition. N € @-—mod the character functor of N is

given by NLR/Z]1 € Q-mod.

Since B/Z is an injective cogenerator of Ab, there
is an intimate connection between flat functors in

d—mod and injective functors in mod—Q.

Theorem. F € @-mod is flat if and only if FLOG/Z] is an

injective functor in mod-4.

Proof. If F € @—mad is flat, which means —®;F is
exact. But we know —@uF -+ FE—-1 and Q/Z is injective in

Ab, hence FL[-] sends injective to injectives, in

particular FIR/Z]1 is injective in modA.

Assume instead that FIQ/Z) € mod—& is injective.
Let a:#'—>H be an arbitrary monomorphism in mod-Q.

It induces a commutative diagram

mod—aA{a,1 )
mod—Q (M,FLO/ZI) 2 FLOAA] ypnd—q (M’ FLR/ZD)

= X

: Ab (a®z1p .10 )
Ab (H®F , QD) Q-F° QT 5pn (1 @pF ,0/2)

Since FIB/Z1 is injective, mod—a(a,lF[u/z]) is an
epimorphism, and so is Ab(a@th,lu/z). But B/ is an

injective cogenerator which implies that a@glp is a



monomorphism in Ab, which is what we want. B

Corollary. F € Q—mod is flat if and only it for all A
€ I and R & hA the cannonical map ROAF———éhAOuF

% F(A) is a monomorphism in Ab.

Proof. A simple application of the dual version of

Baer ‘s testing lemma. A

Carollary. (Ih5|a|hA)tn/Z] is an injective cogenaerator

for G-mod.

Proaf. Clearly (S q;h)L0/Z3 is injective in G-mod.
We have to show that if 4 € @-mod and ¥ # 0 then

a-mod (M, (Tpeq M LO/Z1) # 0. But

A = A
mod—A(H, (Sge | q hD IR/ZD = Ab(MB(Tye g P ,0/D

= Ab(Tge q| MO ,R/D) = Ab(Tye g " (A QD

which means that for all A4 € 4], #{A) =0, i.e. H = Q,

a contradiction. B

Corollary. Every # € Q-mod is a subfunctor of an

injective.

Proposition. F € @-—mod is flat if and only if for all

A€ JAl and R & hA such that R is finitaly generated



right ideal the cannonical map R®pF—>h ,®pF =% F(A) is

a monomorphism in Ab.

Praoof. It suffices to show that if R@®pF—>F (A) is
monic for finitely generated right ideals R & h,, then

it is monic for arbitrary right ideals. Let R € h, be

an arbitrary right ideal and E?=lai°axi € R@yF where a;

€ R(Aj) and Xy € F(Ai)' Then z‘}_.._.,lala < hA is finitely

generated with E?=1aja———9R———%hA and the composed map

37 =2 0@pF PROpF »F (A) is monic, then so is
S =2;0@F—R®F. Hence if T Fla;)(x;) = 0 in

F(A), then Z‘;‘=131@ax1 =0 in R@aF- n

Lemma. Let (y; € N(A;) |1 € I} be a sat of generators
of ¥ € @-mod and (x; € H(A;)|i € I} be a set of

slemants of ¥ € mod—( such that all but finitely many
x; are 0. Then Z;crx;®py; = 0 in MOsN if and only if

thers exists {uj € H(Aj)lj-l,---,n} and a family {ajj

€ a(Aj,Ai)li € I, j=1,""+*,n} such that:

(i) All but finitely many Aji = 0O,

(ii) zjepv(a”)(vi) =0 € N(Aj) for j = {,"**.n,

(1ii) TugMta;;) ;) = x; € H(Ay) for i € I.



Proof. 1t is clear that the given conditions are

sufficient to make a E;erximayi = 0, because they give

Sierxi®y; = T;erl T Hia;;)) (u;)@yy; ]

= Flogu ;830 = 0.

Suppose E;ezximyi =0 € HQaN. Since {yi € NAp L]
€ I} generates N, there is an epimorphism
p:5; e rh*—>N induced by <y;>:hA"—>N where
y;j>(Arta;) = Nla;)({y;), in particular <7i>(Ai)(1A,)

= N(IA’)(yi) =y Tensor the exact seguence

1"-

«x
0——ker (p) ——F; ¢ (hA* ——N—30

with M. We have the exact sequence

14@za 14®
nepker (p) —H B sua, s, hAr M0 sug v 50

in Ab. The hypothesis S;c;x;®y; = O implies
z&EIxiwhlA, € ker (148pe) = Im(1,®,x), hence some finite

J =1,=+=,n such that u; € H(Aj), z; € ker(p)(Aj) and

=gt ;@A) (2;) = F;epx;®pl, . But for each J,
A =
R(Aj)(Zj) € El-‘—‘l,h “(Aj) = ZIEIG(A_,,AI), s0 Eierajj
= a(Aj)(zj) for some a;; € a(Aj,Ai) and the fact that

J1
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sa = 0 implies that

(ﬁ’ﬂ) (AJ)(zj) = ﬁ(A-’)(EieIaji) = Ejerﬂ(a_“-)(yl) = 0,
which is condition (ii). We also have

= D=0 er2;510, = TierTi=ui®a;ila,

Under the isomorphism ﬁ@a(zieIhA') = ziEI"(AI.)’ this

gives x; = E§=1H(aji)(uj) for each 1 € I, i.e.

condition (iii). B
Now we can characterize flat functors internally.

Theorem. F € Q-mod is flat if and anly if it
satisfies: 1f X0, Fla;)(x;) = 0 for a; € Q(A,A;) and x;
€ M(A;), then there exist u € F(AJ), Jm] e, m and blj

€ Ca(Ai,Aj)li £ 7 2 n,1 £ % a) such that
(@) T]mgagb;; = 0 € @(A,A;) for each j.

;. for each I.

(b) T]miFid; ;) (uy) = x;

Proof. Suppose F is flat and I} F(a;) (x;) = 0 for



some a; € Q(A,A;) and x; € F(A;). Put R = T]_,2;Q and

then R € h4 is a finitely generated right ideal. The
flatness of F implies RXpF——F (A) is monic, sO we must
have Eg=laimhxi = 0 in R®uf and we can apply the

previous lemma.

Conversely, if F € @—mod satisfies the condition,

let R & hy be an arbitrary right ideal and consider the

map RAzF—F (A) in Ab. 1If §g=aaj@uxi € R@uF where a;

€ R{(A;) and x; € F(A;) goes to zero in F(A), this means

1=yFla;) (x;) = 0. Then there exist u;

j € FLA;)} for

'

i=ly===,» and bij € (A; ,A) for 1 =i =n,1 £ j £ » such

that (a) and (b) are satistied. We have

= D=1 Tj=1 (a;BgF (b ;) (uy)) = TP Ty (a;b; ;@qu ;)

= Tj=y (=20 j@qu;) = Tjy (OBgu;) = 0.

Hence the map is monic. B

84. Regular ringoids.
Definition. (1) A ringoid @ is v.N.-regular (for von

Neumann) if for each a € Q(A,B) there exists some b

€ &(B,A) such that a = aba.



(2) @ € R(A,A) is idempotent if e = e.
Proposition. The following are squivalent:
(i) @ is v.N.-regular

(ii) Every principal right ideal of @ is generated by

an idempotent.

(iii) Every finitely generated right ideal of Q@ is
generated by an idempotent.

Proof. {(iii)=»{ii) is obvious.

(i)=9(ii): Suppose & is v.N.-regular and a € @(A,B),
choose b € @(B,A) such that a = aba then ab is

idempotent since (ab)? = (ab)(ab) = (aba)b = ab. Now
recall that ad(X) = {ax € A{A,X)|Ix € QR(B,X)} and
observe that al = (abal) € (ab)& & al. Hence {(ab)Q&

= (a.

{(i1)==(i): BGiven a € R(A,B) choose an idempotent e
€ QA(A,A) such that el = al. But a € eQ(B) = aQ(B)
implies a = ea’ for some a‘’ € (A,B) then ea = el{ea’)

= e%3’ = ea’ = a. Similarly e € e(A) = al(A) implies

e = ab for some b € A{(B,A). Hence a = ea = aba.
(ii)=(1ii): It suffices to show that if e,e’ € A{A,A')

are idempotent then e + ¢'Q is principal. First we

observe e + (e/ — ee’')A & el + e’Q. 0On the other



hannd if ex + e’x’ € {eQ + e’Q) (B) then

ex + e'x’ = ex + (IA — e + ele’'x! = ex + (IA — ele'x’

+ ee’'x’! =e(x + e’'x’') + (¢ —ee’')x & (e + (e’

- ee’)Q) (B)

Hence equality holds. Consider the principal right

ideal (e’ — ee’)R, there exists ¥ € A(A,A) such that e’

— ee’ = (¢’ — ee)fle’ — ee’). Put ¥’ = (e’ — ee’)T,
then ¥’ is idempotent and (e’ — ee’)Q& = ¥'Q, moreover
ef’ = ele’ — ee’)f = ee’'f — eZe’f = 0. Hence (e + f’
+ fre)f! =72 = ¥/, B;t we also have (e + ¥/ — f'ede

=e + f'le —f'e? = e, 50 (ed + F'Q) S (e + T — Flela.
This implies e + ¢’'Q = el + (e’ —ee’')R =ed + Q&

= (e + ' — F’a)ll.

Corollary. If Q@ is v.N.-regular, then every ¥ € Q-mod

is flat.

Proof. If & is v.N.-regular, then condition (iii) in
the previous proposition says that every finitely
generated right ideal is generated by an idempotent.

Let R € hy a finitely generated right ideal, then R

= e® for some idempotent e € Q{(A,A). Hence (1,
—ell3,q = = hg. Now let # € &-—mod and tensor it with
hy we have h@pH = ((1,4 — e)A@pM) T(eQ@pH) = M(A) so

eQ@@gH>—IH(A) . B

Definition. (1) A #-ringoid is a pair (Q,#) where & is



a ringoid and #12——>Q*" is an additive functor such
that #¥=i,. Given a € Q(A,B) we shall denote #*(a)

€ a(B,A) by a¥*.

(2) Let a € A(A,A), then a is a self-adjoint if a* = a
and a is a projection if it is both self-adjoint and
idempotent.

Here are some useful properties of #*:

Proposition. (a) 023 = Op,4 and 12 = 1, for all A,8

€ a.
(b) (a+d)™ = a* + »* and a** = a for all a,b € a(4,B).
(c) If a € Q(A,B) and b € Q(B,C), then (ab)™® = p¥*a*,

(d) If a € @(A,B) and a* = 0 € Q(B,A), then a = a**

= OAB.

(@) If RS hy is a right ideal, then R* ¢ hP is a laft

ideal where R¥(®3) = ta® € (8,4 1a € R(B) & AA,B)3.

Praoof. The only statement that requires proof is (e):
let a € R(B) and b € Q(B',B), then a* e R* @ ¢ (B, A)
and we must show ba® € R*B"). But ba¥* = p*¥*g*

= (ab®)*, hence b*® € @(B,B’) and R being a right ideal
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implies that a®b € R(B’) and ba® € R*(B"). =

Definition. Let @ be a ringoid, a € A(A,B) ,"\R & h,y a

right ideal and L S »4 a left ideal then

(i) The left annihilator of a is given by
L(a)(X) = {x € R(X,A) |xa = 0};

(ii) The right annihilator of a is given by
ria)(X) = {a € QA(B,X)|ax = 0O},

Moreover we can define

(iii) The left annihilntnr of R is given by

B(RI(X) = {x € R(X,A)| for all A’ € |Q] and a € R(A"),
xa = 033

(iv) The right annihilator of L is given by

reL)(x) = {x € Q(A,X)| for all A’ € |Q] and a € L(A),

ax = 0},
Remark. It is easy to verify that

(a) A left annihilator is a left ideal and a right

annihilator is a right ideal.



(b) If @ is a *ringoid, then r(a) = (2(a*))¥* and t(a)

‘:} = (r(a®¥* for a € a(4,B).

Definition. Given a #-ringoid &, then

(i) # is proper if for all a € G(A,8), aa* = 0, implies

*

a = 0,5. It follows that if a*a = 0g, then a* = 0 and a

= 0 as well.

(ii) 4 is Rickart if for all a € A(A,B)t(a) = Qe for
some projection ¢ € Q(A,A). 1t follows that r(a)

= (t(a™) )" = (Ge’)* = o’Q.

Lemma. If @ is a proper ¥%-ringoid then adb = 0 if and

only if a*ab = 0.

Praoaf. a¥ab = implies b¥a®ab = 0 which implies that
tab)*ab = 0 and hence that ab = 0. Similarly, ab = 0

if and only if abb™ = 0 if * is proper. B

L.emma. If & is *—-Rickart then #* is praoper.

Proof. Let a € A(A,B) and a%a = OB, then choose e

€ A{A,A) a projection such that {a) = Qe. Hence a*

€ t(a)(B) = (e@)(B). So a* = xe for =zome x € Q(B, A}

2

which implies a¥e = xe* = xe = a*, and hence a *

a

= (a®e)¥® = e®3 = ea. But e € (Qe)(A) = L(a)(A) so a
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=¢ea = 0. B

Dafinition. Given a #—-ringoid Q@ we say that 4 is »-
regular if # ie proper and @ is v.N.~regular. Clearly,
if @ is v.N.~reqular and #—Rickart, then & is *-

regular.

Theoram. The following are equivalent for a *—category

a:
(1) 4@ is #—regular.

(2) For all a € Q(A,B) there exists a projection e

€ R(A,A) such that ad = eaQ.

(3) & is v.N.-regular and ¥Rickart.

Proaf. (3)=(1) is done.

To show (1)=(2) we need the following lemma:

Lemma. If Q@ is a proper #-category and a € Q(A,R),

then ria) = r{Qa) and t{a) = g{(a).

Proof. Clearly r(a) &€ r{a). Let x € ri{Qa) (X)), then
for all A € |Gl and a‘’ = R{(A" A, a’ax = 0. In

particular pick A’ = B and a’' = a¥* e @(B,A) we have

a*ax = 0 s0 ax = 0. Hence x € ria). Similarly & (a)

= fakt). N1



Now let a € Q(A,8), then we can show &a = Qe for
some idempatent e € Q(B,B) and then it is easy to

verify r(e) = (1p — e)Q and 2e = i{lp — e). 5o we have
r{a) = r(@a) =r@e) = (lgp — e)@ and 2(r(a)) = t{(1g
—e)d) = t({lg — e) = Qe = Qa. Hence for all a

€ R(A,BXL(r(a)) = Ra, in particular for all a € G(A,B),
t(rta®a)) = ata®a). But since ab = 0 if and only if
a*ap = 0, ria) = r(a*a) and @a = ata*a). Since a

€ atA) = a*ara implies there exists b € QR(A,B)

such that a = ba*a. Now put ¥ = ba* then ¥ = ab™ and

f = ba* = bba*a)* = ba*adb™® = rf*. This implies ¥*
= (Ff* = fF* = ¥ and 2 = ff = ff¥ = f. Moreover we

fa and f = ¥ = ap¥*.

have aQ = @& since a = ba*a

(2Y=(3) Let a € R{A,8) then el = al for some
projection e € Q(A,A). This implies &t(a) = 2 {(al)
= 1(e@) = 2(e) = Q{15 —e). 5o & is a Rickart *—

ringoid. On the other hand, e = aQ implies there
exist b € A(B,A) and ¥ € @(A,B) such that e = ab and a
= ef. S0 we have ea = aba and ea = e(e¥f) = ef = a.

Hence a = aba. M



CHAPTER 3
81. The category G-mod—8.

Recall that if @ and 8 are ringoids, then the

additive functar category Aba"xa is denoted by G-mod—8.
If K € @—maod—8 and ¥ € G—mod, the tensor product KON '

€ @-—mod is given by

(K@N) (A) = K(A,—)@pN for every & € |4].

Similarly if ¥ € G@—mod, then HG&K € mod—8 is given

by

(H@K) (B) = M@K (—,B) for every 8 € |8].

It is easy to verify the desired functorial
property, moreover we have KQhB X K(—,B) and hA@K

Z K(A,~-) for every A € |Q] and B € |8|.

If K € @G—mod—& and 7 € @—mod, the hom functor
Hom(X,7) € 8-mod is given by

Hom{(K,7T) (B) = @—mod{(K(—,B),7) for every B € |8].
Similarly if 5 € mod—8, then Hom(X,S) € mod—Q

Hom(K,5) = B—mod(K{(A,-),5) for every A € |Q].



Proposition. If M € @-mod, N € @-mod and K € QA-mod-8,

there is a natural isomorphism

a—mod (KON ,#) ——>8-mod (N ,Hom (K , 1) ) .

Proof. First we observe that it is routine toc show K@
is right exact and preserves exact sums. Since K@

preserves direct limits, it suffices to show the
isomorphism for the representable. If N = h8 for some B
€ j8l, then a—mod(KQhB),H) X @-—mod{(K, (—,B) M)

= Hom(K,M) (B) = E—mod(hB,Hom(K,H). n

The above proposition states that every X

€ d—mod—8 induces a pair of adjoint functors:

KoD—
8—-mod “@-maod
Ham (K ,—)

4

e o)

The next proposition says every pair of adjoint

functors as above is induced by saome K € Q—mod--8.

Proposition. The following assertions are equivalent

for a functor 8-mod—>&-mod:

(1) F has a right adjoint.
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(2) F is right exact and preserves direct sums.

{(3) F % KO~ for some K € A—mad—8 which'is unique up to

isomorphism.

Proof. {1)=={2) and (3)={1) are clear. Suppose F is
right exact and preserves direct sums. Fut K(A,B)

= F(hB) {AY, then clearly K € G—mod—8. If N € 8-mod,

there is an exact seqgquence

B B
E_,-eJh F—3T; e ph™*——>N—>0.

Applying both functors K® and F to this sequence,
we obtain the following commutative diagram with exact

rows.

TiggK(—B;)——3%; ¢ ;K (—,B)) 3K @H )

Tjeaf (h?7) ———5, o 17 (hB4) —5F () ———0

Hence there is an induced isomorphism K@N—3F (N).

Corollary. 1If # € @—mod, K € @—mod—8 and N € B-mod,

there is a natural isomorphism

(HEOK) QN—>HD(KDN)

Proof. Let G € Ab then for every B € [B| we have
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Hom(K,MLG1(B)) = G-—wmad(K(—,8),#0G1) = Ab (M@K (—,8),G)
= (MOK)LG1<(B).

This implies that

Ab (HD(KAN) ,G) = R-mad{(KAN,MLG]1) = 8-mod (N,Hom(K,MLG])
= B-mod (N, (HAK) [G]) = AD((MRKIBN,G). W

If Ky € @—mod—8 and K, € &mod—¥, the tensor

product K;®K5, € @—mod— is given by

(Ky®Ko) (A,C) = Ky (A4, ®K(—,C) for every A € |A] and C

€ &

Corcllary. 1f N € Z-mod, there is a natural

isomorphism
(K ®K5) BN—K ; D(K,®N)
in @-mad.
Proof. I+ M’ € Q@—mod, we aobserve that for every C
€ |1&i,

Hom (K, ®Ko,N’) (C) = @—mod ( (K, ®Kp) (—,C) ,N*)

X @-mod (K, @Ko (—,C) ,N’) = B-mod (K5 (—,C) ,Hom(Ky,N')).

This implies that Hom(K;®Ko,N)

= Hom (K, ,Hom(K; ,N’)) in f-mod. Now if N € Q-mod we
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have

a-mod { (K;@K)@N,N’) = E—mad (N,Hom (K, ®K,N*))
2 £-mod (¥,Hom (K ,Hom (K; ,N/)) 2= B-mod (K@ ,Hom(K{,N’))

= @-mod (Ky®(Ko0N) ,N*) . W

I+ K € @—mod—1, we shall construct 'a ringoid a(KX)
as follows: ja{KY] = |Q| and given A,B € |Q&{(K)| then

A(K) (A,B) = R(A,BYXK(A,B) = {(a,x)]a € A(A,B) ,x € K(A,B)3.

If (a,x) € QA{(K){(A,B) and (b,vy) € Q(K)(B,C), then

(a,x) (b,y) = (ab,K(A,b) (x)+K(a,C) (y)) € @(K)(A,C).

It is routine to verfiy the biadditivity of
composition. If {(a,x) € QR{(K)(A,B),(b,y) € A(K)(B,C)
and (c,z) € QAKYL(C,D),

[la,x)(b,¥)1{c,z) = (ab,K(A,b) (x) + K(a,C)(y){c,z))
= ({ab)c ,K(A,cYLK(A,b)Y (x) + K(a,C){y)]1 + K(ab,D)(z})
= (a(bc) ,K{A,c)K(Ab){x) + K(A,c)K(a,C) {(y)

+ K(ab,D) (z)) = (a(bc) K(A,bc) (x) + Kla,D)K{(B,c) (y)

+ K{a,D)K(b,D)(z)) = (albc) ,K(A,bc) (x)

+ K(a,D)LK(B,c){y) + K(b,D)(z)]) = (a,x3{bc,K(B,c) (y)
+ Kb ,Di{z)) = (a,x){{b,y){c,z)].

Hence composition is associative. The ringoid
A(K) is called the trivial extension of 4@ by K. There

are two obvious additive functors u:d—Q(K) and



v:Q&(K)—>Q such that veu = 1; where u(a) = (a,0) and
via,x) = a for a € Q(A,B) and (a,x) = Q(K) {(4,8).
Moreover w2 can embed K as an ideal K in Q(K) by

sending x € K(A,B) to (0,x) € QAK)(A,B) and KK = 0. M

§2. Additive Kan extensions.

Let F:@——>8 be an additive functor, then F

induces three additive functors.

At g

Q—-mod & T w--mod

¢

such that F* < F, - F!.

(1) The construction of F, is quite easy. Let N
€ 8-mod then put F (N)(A) = N(F(A)) and if a € QA{A,A")
we have F(a) € B(F(A) ,F(A’)) so we simply put F (N)(a)

= N{F(a)).

(2) Here is how.we construct F!. I+ M € @—mod and B

€ 18| then put F' (M) (B) = @-mod(F (hB) M) and if b

€ B(B,B’) = B-mod(h8,h8") =0 we simply put F'! () (b)
= G-mad (F, (b) ,M) .



We show that Q-mod(F  (N),M) = E—mod(ﬁ,F!(H)) for M

€ @—mod,.N € 8-—mad. First if N = hB for some B € el,
then

8-mod (hB,F! ) = Fl i (B) = a—mad (F (nB) 1.

The general case follows easily from the fact that

M can be written as a colimit of the representables.

(3) The construction of F*¥: Let ¥ € @-mod and B € |8]|

we put F¥(M)(B) = (hgeF)®H and if b € B(B,B")

2 @-mod (hg, ,hg) we simply put F¥(M) (b) = (beFI@1,.

We show that 8-—mod (F*(M) ,N) = G-mod(M,F (N)) for

all M € G—mod, N € 8-mod. Let H = h? for some A € |QI
then

a—mad (HA F, (N)) X F (N (A) = N(FLA)) X 8madhf (A a)

x @-mad (F* () , M.

The last equality is obtained by calculating

F*(hA), since
F* e = (haoF)@uhA = (hge FY LAY = BIB,F(A)).

Again the general case follows easily from the

fact that ¥ can be written as a colimit of the



representables

Since F¥ - Fy there exists, by the previous

theorem, K € 8—mod—Q such that F¥ x K®—, moreover

K(B,A) = F Ay By = 8(B,F(A)) as we have calculated

before. We also have F, = Hom(K,—).

Example. Recall in Chapter 1, given @ and I' a RMC set

of morphisms in @, we constructed r~1la the category

of fractions of @ together with an additive functor
¢=a———ar’1(a). Moreover ¢ induced a pair of adjoint

functors r1(-) — ¢, between G@-mod and r~1(a)-mod.

This implies i = o®. We also have &
€ rl(—)-mod—a with #8(4,4°) =r~ 1 4,904

=r—1¢a)(4,4’) such that N 1(-) = ®. Notice the maps

on the second variable are induced from (.

Definition. An additive functor Fi1@——8 is geometric

if F*¥ i left axact.

Since F* X K@ where K € 8-mad—Q and K(B,A)

= B(B,F(A)), it follows that if F is geometric, then
for all monomorphism a:M——>N in G@-—mad,

(K@#M) (B) —> (K®N) (B) is monic for all B € |Bl.
Equivalently K(B,—-)®—>K(B,—)®@¥ is monic for all B

€ j8l. Hence we have

Proposition. F:2—>8 is geometric if and only if when
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K € 8-mod—Q defined by K(B,A) = 8(B,F(A)), then K(8,-)
is flat for all B € |8]|.

Proposition. gi@—r"1(q) is geometric.

Proof. It suffices to show that if a:M—>N is monic
in @—mod then M@ :r 1 —r~l() is monic in
r~1(a)-mod. Let (x,5) € I"1(#) (4 be represented by
ssX—>A and x € M(X) then P—l(q)(x,s) = (@(X) {x),s5?

€ rlun . Suppose (a(X) (x) ,5)~(0,¢t) in rlon
for some t:Y—>A € I'. This means there exist usZ—>A4
€Tl and maps b € Q(X,Y}), b’ € Q{(Z,X) such that u = bt

= b’'s and N{(b’')ea{X)(x) = 0 in K(Z). But «

€ 8—mod{H,N) s N{b')ea(X)(x) = ald)eM(b’')(x) = 0. Now

use fact a is monic #Mb’'Y{x) = O in M(Z) hence

(x,2)~(M(b’) (x),u) = (O, inTlumn. m

83. Morita Equivalences for ringoids.

Let & and 8 be two ringoids. In this section we
will examine the significance and implications of an
equivalence between the functar categories &-mod and

8mad. First of all we note the following lemma.

Lemma. Let P be projective in G-mod so that A-mod(P,—)

prasarves direct sumes then P is finitely generated.

Proof. Let a:EEEIhA‘———éP be an epimorphism in d-mod.



Then there exists p € G-mod{(P,T;ch) such that aep
= lp since P is projective. But a—mod(P,EkerhA‘)

= E&era-mod(P,hA‘) S0 g = g+t "+g, where B

€ a—mod(P,hAJ). Thus we also have aegjtRegot="+aeg,

=1 This implies that if we restrict « to ZgzlhA’ it

p-

is still an epimorphism so P is finitely generated. R

Definition. An object P in an Abelian category Z is

called small if 2(P,~) preserve direct sums.
Dafinition. Two categories £ and D are called

mquivalent if these are functors ¢:18—>D and {:D—>E
such that €«d =% 10 and dee = 13.

Proposition. A functor «18—>D is an nquivallnci if
and only if ¢« full and faithful and for sach D € (D]
there is a ¢ € |8| such that «(C) 2% D.

Proof. See [Pareigis, 19701. &

Carollary. If £ and D are equivalent as in the

definition then ¢« 46 and ¢ - e¢.

Theorem. (Freyd) D is equivalent to Ab® for some
ringold @ if and only if D is an Abelian category with

coproducts and a faithful set of small projectives.
Proof (Sketch). If D is equivalent to Ab® then the



image of the set {h, 1A € |&|} is a faithful set of

small projiectives.

Conversely, suppose T = {P; € D]l € I} is a set

of small projectives. Considering 8 as a full

subcategory generated by Tt of D, let‘T=D———9AbB" be the

functor defined by

T (P;) = D(P;,D) for D € |D| and P; € T.

Then it is routine to verify 7 is an equivalence.

Now suppose that

<

a—mod! 8—mod

I

is an equivalence of categories.
there exist E € 8—mod—Q such that
X Hom(E,-). Since we also have ¢

€ G—mod—8 such that § = VW~ and ¢

we have €od = lg .4 so that given ¥ € 8-mod

€od (M) = e (VAN) = ED(VAW)

In particular, if ¥ = h8 for some

(zem @B x sEv(—.B)

Then € + 46 implies

E®— X e and &

)

b %3
—

e

B

N
=

€,

there exists V

Hom(V,-).

(EQV) DN

€

hB

18t,

4

Moreover

N.



By symmetry we aobtain

(VOE)®H = M far M € d-mod and (V@E) @A = vasan?)

X VBE(—,A) X hA.

Theorem. Let A, 8 be ringoids and € € @-mod—8. Then

the following assertions are equivalent:
(a) E@—:q—mod—>8—mod is an equivalances
(b) —@E:mod—E8—>mod—QA is an equivalences
{(c) Hom(Z,—):8-—mod—>@~mad is an aquivalence;
(d) Hom(E,—) imod-G—>mod—8 is an equivalences
(@) {E(—,A)IA € |Q|} is a met of faithful small
projectives and for each pair A,A’ € |G| there is an
isomorphism
QA(A,A’) % B8-mod(E(~,A) ,B(—,A"));
(f) (E(B,—)IB € |B|} is a mset of faithful small
projectives and for each pair 8,B’ € (8|, there is an

isomorphism

B8(B,B’) % G-mod(E(B',-),B(B,~)).

Proo¥f. (c)=3(a) and (d)={b) follow from the



discussion preceding the theorem.

To show (a)==(e) we let hA € @-mod be a

representable since gohA = E(—,A) and the fact that E®-
is an equivalence so {E(—,A)1A € |&]> form a set of
faithful small projectives. Moreover if we let A’

€ |4], since E@;— is an equivalence and E®— -~ Hom(E,—)

so Hom(E,-)e (E®@-) (hA") x hA°. But Hom(E,—)s (E®) (h4")
= Hom(E,(—,A‘)). 1In particular, if A € &}, A(A,A")

h4 (A) = Hom(E,(—,A’)) (A = B—mod(E(—,A) ,E(~,A7)).

Ta show (e)={c) let 8 be the full subcategory of
#8—maod with {(E(—,4)|A € Q1Y as the set of objects, then
T: 8-—mod—8' —mod defined by

T(N) (BE(—,A)) = 8-mod(E(—,A) ,N) for N € 8-mad.

is an equivalence. But by the second condition of (e),

£ X2 & sa T = Hom(E€,~) is an equivalence.

Dually we have (b)=(f) and (f)=(d).

To show (a)=}(f) requires a little work. First we
have Hom(E,-) - E®@— and E®— — Hom(E,-) so there exists
vV € G-mod—8 such that Hom(E,—) = W— Then the
associativity of tensor products gives EQV = 8(—,—-) and
V@€ = @(—,—). In particular we obtain E(B,—)@V(—,B)
= B(B,B) and V(A,—@€ = hy = R(A,~) for A € |&]| and B

€ I8l. This implies that if B € |8] we have 3" ;_,e,;®d;



= 1p for some e; € E(B,A;) and d; € V(A;,B). Let
w:E(B,—)———éE?=1hA‘ be given by @(A)(e) = I}_,d;® for

e € B(B,A) and let v:2?=1hAJ———9E(B,—) be induced by
v;:V(A; ,-1@E(—,—)—E(B,—), where v; is defined by: I+
A€ @) and Tgi,(;yd;%e; € VI(A;,—)®gE(—,A) for some d;
€ V(A;,B;), e;®E(B;,A), then w; (A (T (;)d;®e;)

= ;D in(ir)d;Pe;) = Tgin(y)e;0(d;0e;)

= T¢inj) (e;®d;)@e;. Notice that V € E(—,A) & hA

and

e

E(B,—)@hhA = E(B,A), soO Efin(j)(eiadj)cbj is indeed in
B{(B,A). SBince 2¥=lei@di = 1lg it is easy to check that

E(B,—)—>X]o1hy, —FE(B,) = lg(g ). This shows that

E{(B,—) is finitely generated and projective in mod—-4Q.

But in Grothendieck categories every finitely
generated and projective object is small, so E(B,-) is

small projective for each B € |[&8].

Next we show that &-mod(E(B‘,—),E(B,~)) = B(B,B’).
Clearly if b € B(B,B’'), b induces E(b,—) in
@-mod (E(B’ ,~) ,E(B,—)). If we fix B € |8| as before,

Sl =e;®d; = 1 for some e; € E(B,A4;), d € V(A;,B) and

then we can express b = T7_,E(b,A;) (e;)®d;. Suppose O

= E(b,~) € A-mad(E(B’ ,—3,E(B,—)). Then in particular
E(b,A;) = 0 for all i which implies b = 0; i.e. the

map 8#{(8,B’')——>A-mod(E(B’,—-) ,E(B,—)) is faithful. On
the other hand if g € @-mod(E(B’',-),E(B,—-)) and e



€ E(B’',A), we note that E(B’',—) = E(B',—)@(VAE)
= (8(B/,-)0V)®E and A-mod(E(B’,—) ,E(B,—-)) € &-mod-Q so

gAY (e) = 1}=1e,-mj@p {(A) (e) € E(B,A). But
Th=1e,;®d ;@ (A) le) = T)_ p(A)(e;)Bd;®e, where e;
€ E(B',A;)d; € V(A;,B’) such that Tj_je;®d; = 1g, is

obtained from the isomorphism B8(B‘,B)

= B(B’ ,—)@pV(—,8’). Since p(A)(ej) € E(B,Aj), we have

Tr=ye (A (e;)®d; € E(B,-)®(—,B’) X B(B,B’), so the map

8(B,B’')—>mod—Q(E(B’,—) ,E(B,—)) is onto.

Trivially {€(B,—)IB € |81 is a faithful set in
mod—Q since V(A4,-)1® = Q(A,~) = h, for each A € |&| and

ChAIA € [&]Y form a faithful set of small projectives

in mod-1.
Dually we can show that (b)=(e). R

Remark. We note that the key to the argument lies in

the existence of € € 8-—mod—A and V € 8—mad—2 such that
Ve = B(—,—) and BV = &{(—y—).

We called the 4-tuple (4,E,V,8) with the above

property a Morita context.

Corcllary. Given a Morita context (@,8,V,8), we have a

ringoid av@ with



Iave| = |]’lvi8l,

(AvB) (A, A’) = Q(AJA’),

(avl) (B,B’') = B8(B,B’'),

(avl) (A,B) = V{(A,B), and

(QvB@) (B,A) = E(B,A),

for A,A’ € |Q| and B,B’' € |8]|.

Proaf. Apply the associativity of tensor products. R

84, Epimorphism of ringoids.

In this action we shall study the general

properties of epimorphisms in the category of ringoids.

Recall that if @ and 8 are two ringoids and
F:@—>8 an additive functor, a functor F is an
epimorphism if for any ringoid € and additive functors

G H:8—>EL, GoF = HeF implies G = H.

If F:0—>8 is epic and A,A%¢Idl, it is well-known
that the map A({A,A’')—>8(FA,FA’) induced by F may not

be onto.
Lemma. Let F:@—>8 be epic, then for each B € |8|
there is some A € [&| such that F(A) = B; i.e. F is

onto on objects.

Praof. Suppose there exists Bg € 8| such that B

€ {(F(A)IA € |Q]}. Construct a ringoid 8 by letting lﬁl
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= |8)vi{*} and for B,B’ € |81,

8(B,B’), if

B # %

B(B.B') = 8(B,B'), if B==»
’ 8(8,8g) , if B # *
8(Bgy,By) , if B =+

and B’
and B’
and B-
and B’

Obviously Bis made by adding an identical copy of B8,

together with its additive structure in 8.

Now define H:8—>8 by H(B) =R if B € |8| and

H(b) = b if B € B(B,B").

Also define G:B———%ﬁ by

B, if B# B
G(B) = o
%, if B = B,

and if b € B(B,B'), H(b) = b.

Note that G # H, since G(Bg) = * and H(Bg) = B,.

But G6F = HF since By is not in the image of F by

assumption, which is a contradiction. M

Suppose F:3—»8 is epic. Define @ € g-mod—Q and

K € @—mod—8 by Q(B,A) = B(B,FA), K(A,B) = B{(FA,B) for A

€ |4l and B € |8Bl. Note that the morphisms of & acts

on @ and K via F.

+
X

)
*

X

*

“an e “



Now consider Q@K € 8=mod—8 and construct the
trivial extension B{(Q®K) of € by Q8K (see Chapter 3,
8§1). Let G,H:8——>8(Q@K) be two functors defined by
G(B) =B = H(B) if B € || and suppose b € 8(B,B'),
G(b) = (b,0) and H(b) = (b,b@lp.—1x@). It is easy to

check that 6 and H are additive and note that H makes

sense since F is onto on objects.

Observe that HeF = GeoF and F is an epic implies H

= 6. Hence for all b € 8(B,B'), bDlg, = 1g@b.

Now suppose F:2—8 is onto on objects and &, K
defined as above such that for all b € 8(3’',B), b®lp

= 15°@ in [QEKI(B’,B). But F induces a pair of

adijoint functors:

L

a—mod’ Fy 8—maod

with F*¥ < F,, where F (N)(A) = N(FA) and morphisms of &

act on F B via F, for N € 8&mod and A € |Q]. (See §

2.)

Since F is onto on objects,

8-mod (N,N')—>Q-mod (F N,F N’} is faithful. Suppose ¢
€ A-mad(F N,F.N’') and N, N’ € B-mod. Let B € 8|, x
€ N(B) and define @, € 8-mod(L[E®K]1(—,B),N’) as follows:

Let B’ € |B| and b’ € Q(B’',A) = B(B',FA), b € K(A,B)



= B(FA,B)Y. Then b'® € [A®KI(B’,B) and we put
P (B ) (L'@®) = N (b’), @(FAY+N(Db) (x) which is simply

the composite

N(b) @ (FA) N (b))
N{(B)——— N (FA)—3N’' (FA)—>N’ (B’)

applied to x. g, is well-defined since @ is Q-linear.

It is easy to see that ¢, is additive and &-linear.

Now let b € (B’ ,B) and A’' ,A € Q] such that FA’
= B’ and FA = B. Since b@ly = 15,@b, we obtain

P, (B) (b@1g) = N/  (b)oq(B) (x} = @(B')eN(D) (x)

= @, (B')(1z,@). Hence p € E-mod(¥,N’) as well.

Now suppose F:@——>8 is onto on cbijects of 8 such

that F:8-mod—>@-mod is full and faithful. Let & be

any ringoid and G,H:8——>€ be two additive functors
such that GeF = HeF. 1If B € |R| and HB € |&]|, then

H*(hHB) € 8-mod where Hy,:&-mod——8-—mod is induced by

H. We also have F,(hB),F eH, (0!'B) € Qa-maod.

Lemma. 6 induces a map in G-mod (F, (hB) F et (nlB)),
Proof. If A € |a&l,

FethB) (A) = hA(FA) = 8(FA,B).

and
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Futiy (hH8) () = hHB(H(FA)) = E(H(FA) ,HB) .

Since F is onto on objects of 8 and GoF = HeF,
H(B) = G(B) for any B € |8|. Then GA simply sends
8(FA,B) to E(G(FA) ,GB) = E(H(FA) ,HB). It is easy to

check that 6 is G-linear.

Since Fy is full and faithful, 6

€ 8-mod (W84, (h"By). 1f b € B(B’,B) we have the

commutative diagram.

GB
nB (@) >H, (hHB) (B3)
hB (b) H, (hHB) (b)
6B’
nB(3) >H, (hf18) (B*)
which is the same as
GB
8(B,B) >E (HB ,HB)
8(b,B) 2 (Hb ,HB)
GB'
8(B’ ,B) € (HB ,HB)

Then for 1p € 8(8,8), we have

E(Hb,HB)=GB(1g) = E(Hb,HB) (1yg) = Hb

GB'«8(b,B) (1,) = GB' (b) = Gb.
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Hence H = 6 and so F is am epimorphism. Combining

these results:
Theorem. Lct_an———ea be an additive functor between
two small preadditive categories. Then the following
are aquivalent:
(1) F is an espimorphism.
(2) The following two conditions are satisfied:

(i) F is onto on objects of B.

{(il) If Q@ € g-—mod—2Q and K € &mod—8 are defined by

@(B,A) = 8(B,FA), K(A,B) = B(FA,B), then for all b
€ 8(3’,B), b®ly = 15.® in [QAKI(E’,B).

(3) F is onto on objects of 8 and F, is full.

Corollary. Let F:@d—>8 be onto on objects of 8 and @
€ 8—mod-Q, K € G—mod—8 be defined as before. Then the

following are equivalent:

(1) F, iw full.

(2) eysF*eF N—>N is an isomorphism for each W
€ 8-mod, where e:F*F,—>1p is the counit of the

adjunction F* — F,,
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(3) The map @@K—>8(—,—) defined for b’ € 8(B’' ,FA) and
b € B(FA,B) as b'@®—>3»b’'b, is a natural isomorphism.

Proof. (1)=3(2). Since F is onto on aobjects, f, is

faithful as well.

(2)=3(3) Let H8 € 8-mod and A € 1a1, then F (8 (W
= hB(FA) = B(FA,B). Hence F (hB) = K(—,B) and

F*s F, (hB) = @a@K(—,B).

(3)=3(1) Since for all b € &(B',B), b@lg = 15® in

[Q@KI(B’' ,B). Then apply the implication (2)=(3) in

the previous theorem. A

Remark. In general, F, is full and faithful if and

only if the counit a:F*oF*———éia is an isomorphism and

they imply (3) in the coraollary. These arguments do
not depend on the fact F is onto on objects of 8. But

the following example will show the fact that F  is

full and faithful does not guarantee that F:3—38 is

an epimorphism in the cateqory of ringoids.

Given a ringaoid &, let & be the idempotent cover

of @ (introduced by P. Freyd.) where id| = {(Ae} |A
€ |&] and e an idempotent in (4,4} and

a[(A’,e’),(A,e)] = {a € QR(A’' ,A)le‘ae = a}. If
a: (A’ e’ Y—>(A,e) and a’: (A" ,e’")—> (A’ ,¢’),



O

—~ - . -
composition in & is same as composition in & and e acts

as an identity for (A,e). There is an obvious functor
F:@—>@3 such that F(A) = (As;1,) for A € || and which

is the identity on morphisms of Q4. 4 has the following

properties (see LFreyd, 19641):

(1) & is idempotent complete in the sense that every

idempotent in @ splits.

(2) If @ is a ringoid, so0 is @ and F is an additive

functor.

(3) I+ & is idempotent complete, the inclusion F

induces an equivalence of categories: Func(a”,&)

2 Func {2, 8).

Given &€ such that every idempotent may be factored
into an epimarphism followed by a monomorphism, then it

is easy to verify that € is idempotent complete. In

particular Ab is idempotent complete and so &-mad

= @-—mod such that (F), induces the equivalence.

Hence (F), is full and faithful, but clearly

F:0—>3 is not necessarily onto on objects of da.
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CHAPTER 4

This chapter is devoted to a comprehensive study
of the general aspects of torsion theorvy in Abelian

categories with injective effacements.

§1. Topologies and radicals.

Let @ be an Abelian category. We define

sub: Q"—>8et as follows:

For A € IQl, let sub(A) be the set of subobjects
of A. If a € A{B, A, A’ € sub(A) then B’ = sub(a){A’)

is given by the pullback

P S
S (——;——-ﬂb

in 4.

Definition. A topology is a natural transformation

j:sub—>sub satisfying

(1) j is increasing i.e. if A.—A4 in &, it can be

factored as Al ——3j4(A")—DA.
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(2) j is idempotent, i.@. JZ(A') m ja(ig(A%)) = §,40A%)

for A’ € sub(A).

(3) j is monotone, i.e. if AY—3A—>A then
JpAY Y] 4 (A’ ) —A.

Lemma. Suppose

o ¢—Dn

is a pullback in &. Then

b4

> i 404" )>

N €N

v

L

25481

are pullback squares.

Proof. Since j is a natural transformation we have

that

sub (B)
sub (¥) sub(¥)
sub (A) 4 —ssub (A)

g —Ssub (B)




commutes for all A,B € |&] and ¥ € Q(A,B).

Now follow B’ € sub(B) around two directions.

Clockwise gives sub(f)(jB(B’)) such that the square in

sub(f) (jz(87)) >A

B’ > ———>jg(B’) > »B

is a pullback. Counter—-clockwise we have

jA(sub(f)(B')) = jA(A') sc we have the following

commutative diagram:

Y

33 4¢A°) > >

o ¢———n
4

‘> >ig(B/ 1> >

in which the right hand square and the oguter sgquare are

pullbacks.

It follows that the left hand square is a pullback. N

Lemma. If A" & A’ S A, then j, (A") S ju. (A") & A.

Proof. A” € A’ & A inmplies
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(N 14

i
3 ¢——X

A"

A”> >

is a pullback in @. Now apply the previous lemma. B

Dafinition. Let A’ & A then A’ is j-closed in A if
jA(A') = A’. A’ is j-dense in A if ju(A’) = A.

Clearly, if A’ is both j—dense and j—-closed in A

then 4 = A’.

Lemma. Let A’ & A, then A’ is j-dense in j,u(A’) and

jA(A') is j~closed in A.

Proof. Clearly j4 (A’) is j-closed in A. Since A’

S jata) £ A

‘> —>3 4(A)

s ?A

is a pullback this implies

A’)——)jj‘(‘q,)(/l’)} >3 4(A%)
A’ > 234(A" ) > >
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are pullback squares. This gives Jj‘(A’)(A') = jaq¢A").

m
Lemma. Given a pullback in @,
B/ »———————>3B

Lo

A’ r—————3A .

Then (1) A’ j—closed in A implies B’ is j-closed in B.
(2) A’ j-—danse in A implies B’ is j~dense in B.

Proof. The hypothesis implies we have the pullback

squares:

4

> ——

>jg (B>

W

o €——0

33404 —

v

from which both results follow easily. ®

lLemma. Given A4* & A’ & A such that A” is j-dense in A’

and A’ is j-~dense in A. Then A” is j—dense in A.

Proof. Bv previous lemma Jgq- (A") & J4(A"). Since j is
monotone we have A4 = jA(A') = Anj (ig. (A"))

S J40I4(A™)) = j4(A") € A. ®
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Proposition. Suppase A", A’ € sub{(A), then

JACA"NA’) = §CA") 54040 ) .

Proof. Since j is monotone, it follows easily that

Ja(A"nA’) & jA(A”)njA(A'). Hence it is sufficient to
show A”nA’ is j—dense in jA(A”)njA(A’). First we have

the pullback squares:

A7 0AY > —23 4» (AY0A" ) > —> A"

A %jA(A’)> —A

which implies A’ 0j (A’) = j4(A”nA’) and A”0A’ is j§-

dense in it.
Similarly we have the pullback squares

A"N3 4CA Y >———35§ (ar) (AN 4(A")) >———>j 4(A")

| | |

A >2ig(A") > >

which implies jj_ () (A70J4(A")) = J4(A")nj4(A’) and

A”th(A’) is j—-dense in it.

Hence A”"nA’ is j-dense in j (A")nja(A’). So we

obtain



JAAI NI 4UAY = 3§ canynjaqAr) (ATOAT) S 34(A"0AT)

S J4AINI4(A). B

Trivially, if A" & A’ & A, then J (A"nA’) = j,4(A")
= jA(A”)njA(A’) = jA(A'). Therefore the monotonicity

axiom for j is equivalent to the above proposition.

Definition. A radical is a pair («,§) such that
€¢:@—Q is a left exact functor, die—>1,; is a

natural transformation satisfying

(1) c(A/&iA)) = 03

(2) 42(A) = ¢(a(A)) = e(A)}

(3) ¢(A)1e (A)—>A is manic for all A € |Q&]|.

Given an Abelian category &, we are going to show

there is one to one correspondence between topologies

and radicals.

Suppose j is a topology. Let A € |Ql and put

ej(A) = j4(0) and let Jj(A) be the inclusion map.

Suppose f € A(A,B) we form the pullback



ker () >

0>

which implies we have the pullback squares

W

o €———0n
~4

ker (f) >——————>j g (ker (£) > %I
o> =jg(0) > —>B

But 0 &€ ker(f) & A s0 j4(0) &€ jalker(f)). Hence
define ej(f) to be composition
Jq0)— i (ker (F))—>jg(0). Under this definition Jj

is trivially a natural transformation.

To show €5 is left exact we need the following

lemma:

Lemma. If the commutative diagram

is such that that the bottom row is exact, then the
square is a pullback if and only i+
0——)81 1'—9812———)823 is exact.



Proof. See [Freyd, 19641, p. 54. R

Now suppose 0—2A——B——C—>0 is exact. Then

we have a commutative diagram

A480)—————3j5(0) 330 (0)
§ 54A) sy | § (0
0 —>A >8 >C

in which the bottom row is exact and the left hand

square is a pullback so that 0———9JA(0)———9jB(0)———éO
exact. But aj(C) is monic, hence
ker (jgp(0)—=>4,(0)—=>C) = ker (jg(0)—j,(0)). This

implies that 0——=>j(0)——=23gp(0)—>j(0) is exact. W

To shaw ej(A/%j(A)) = 0 we need the following

lemma:

Lamma. If A S B, then A is j-closed in B if and only
if Ja4,p¢0) = 0.

Proof. If A is j-closed in B, consider the pullback

This gives the pullback squares



-

—>3ig {A) >

L

r————3 g g O) >———B/A .

Q

But jp(A) = A, so

1
0 PA—A——a——33p 4 (0)

is exact. Since B—>»B-A is epimorphic, so is

A—%jB/A (o) . hence

1
0———A—4——5a——jg (A —>0

is exact which implies jB/M(O’ = Q. The other

implication is immediate.

Now given A € |Q], J4(0) = ej(A) is clearly j-

closed in A and so eJ(A/EJ(A)) = jA/j.(O)(O) = Q.

Evidently €§(A) = ej(A) and Jj(A):eJ(A)———QA is

monic for all A € |Q4}.

Suppose (e¢,d) is a radical and A € B define

i5(A) = ker (B——B/A—>(B/A) /e (B/A)) .



Then we have an exact sequence

<:; 0—>3{ (A) ——>B—> (B/A) fe (B/A) —>0.

Trivially there is a monic map A—éj%(ﬁl), s0 j§
is increasing and (B/A) /¢ (B/A) = B/’j§(A). Notice

e(B/jjLA) =0 since e ,8) is a radical.
By definition j§(jB(A))_=
ker (B——3B/i§ (A —— (B/3§(A) ) /e (B/i§(A)) .
Since €(B/j§(A)) = 0,
0—> (§§) 2 (A) —>B—>B/j§ (A) —>0
is exact, so j§ is idempotent.

To show jﬁ is monotone; if A" € A € A, then

0—A' J/A"—2A/A"—3A /A" —>0

is exact. Since € is left exact,
O—¢ (A’ JA”) —e (A/A”)—2e (A/A')

is exact, which induces the following commutative

Q diagram



O——e (A/A") ——2A/A"—> (A/A”) /e (A/AY ) —>0

O———»e (A/A’ ) —3A/A' —>(A/A’) /e (A/A' ) —>30

This implies that the following diagram

—A/AT—> (A/A”) /e (A/AY) —30

X

—A/A—3(A/A ) /e (A/A ) —0

h -

is commutative. So we have a map j§(A4")—>35§(A’) such
that j§(A")—ji§a’)—A4 = j§(A")—A, hence

J%(A")—>3%(A’) must be monic.

To show j€ is a natural transformation, given A’
€ Aand ¥ € A(B,A), we must show the following diagram

is commutative:

jﬁ
sub (A) 4 s5cub(A
sub () sub ()
ji
sub (B) B 5cub(®)

First we abserve i1f C’' & C then
O——e(C')—e(C)—>e(C/C’) is exact. Since
€e(C/C")—>C/C’ is monic, O——>e (C’')—e {(C)—2C/C’ is
exact. From the previous lemma we have the pullback

diagram



e{C’) P& ()

Now follow A’ € sub(A) around two directions: let
B’ = sub(r}{(A’); i.e. the following diagram is a

pullback

B’ 38
l (#*) 1f
A’ >A

Then j§(5ub(f)(A')) =.j§(8’). On the other hand

we have a pullback

sub () (j5(A’)) —B8 -

I

34A) >

Hence it suffices to show the following squares

commute:
Jg(8')—=8 sub(F) (j§A’))——»
l (L l‘f 1 (2) l
JaA ) ——A O0———>(B/B”) /e (B/B’)

For (1), the fact that (#) is a pullback implies



there is a monic map B/B'—»A/A’ such that

0 >8 }T %BIB' >0
0 >A’ »A PA/AT ———>0

commutes. This induces a

(B/B’) /e (B/B')—>(A/A") /e

monic map

{A/A°) such that

O0—>¢ (B/B’)—>B/B’'—3(B/B’') /e (B/B’ )—>0

(3)

O0—>e (A/A’ ) —2A/A'—>(A/A" ) /e (A/A’ ) —>0

commutes, since (3) is a p

ullback. Then so does

>{(B/B’) /€ {(B/B’)

—>8/8’

~
» ¢———

>A/A°

Hence (1) commutes.

the commutative diagram

sub () (§%(A’))—8

>(A/A’) /e (A/A")

On the other hand, we have

——3B/B' —>»(B/B’ ) /e (B/B’)

f

iHAn) —>A

But
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Ji(A)———éA———éA/ﬂ’———%(A/W’)/E(A’A’) =0

then so is

sub(f)(jﬁ(A’)) »>B—>B /B’ —>{(B/B’ /e{B/B‘) =0

since (B/B’)/€(B/B')—>(A/A') /e {A/A’) is monic. Hence

(2) commutes and this shows that j€ is indeed a

topology.

Let Top () denote the collection of topologies on
& and R{(Q) denotes the collection of radicals on &. We

are going to show the constructions we have done give a

one to one correspondence between Top(Q) and R{Q).

Let (e,d) € R(Q) and A € (4] then

J3(0) = ker (A——3A/0—>(A/0) /e (A/0))

= ker (A—>A/e {A)) = eJ.(A).

This implies € (A) = ej.(A), s0 we have

R(Q)—=>Top (Q) —3R(A) = 1g(q)-
On the other hand, let j € Top(Q) and A € |&]| then

i%2(0) = ker (A——3A4/0—>(A/0) /e { (A/0))

= ker(A———éA/EJ(A)) = ker (A—>3A/j4(0}).



This implies jj (0) = jﬁJ(O) for all A € |QR]. Now let

A € A then

© €——D>n

>A/A’
is a pullback, which implies
JptAry———A iG2an ?
L |
3a, at0)—A/A7 'jjjﬂ,(é)———————aA/w'

are both pullbacks, since j and j¢? are tnﬁologies.

But 4,47 (0) = J324.(0) 50 ja(A’) X jg2(A’) for any A

€ I&] and A’ € sub(A). Hence Top(d) > () >Tap (Q)

= lTop(a)' This establishes the one to one

correspondence between Top (A} and R(Q).

§2. Construction of sheaves

Definition. A torsion theory on an Abelian category &

is a pair (J,%) of classes of ocbjects of £ satisfying

(1) 2(7,¥) = O for all 7 € J, F € &;

(2) If €C € |&8] such that 8(C,F) = Q for all F € F then
C € J;



(3) If C € |&8| such that 2(T,C) = 0 for all 7 € J then
C € ¥;

(4) T is closed under the subobjects.

J is called a torsion class and its objects are
torsiaon abjects while & is a torsion—free class

consisting of torsion-free aobjects.

If £ is a complete and cocomplete Abelian

category, then we have the following well-knaown result:

Theoram. There is a one to one correspondence betweaen

(1) Torsiaon theories on €3

(2) Radicals on E.

Proof. For a formal proof see [Stenstrédm, 19751. But
we would like to point out the main idea of the proof.
Given a radical {(e,d) we associate a torsion theory
(Je,Fc) by putting T, = {C € (€l1ell) =CF and ¥, = {C
€ {€lle(C) = 0. On the other hand if (J,¥) is a
tarsion theory then it is easy to verify that T is
closed under guotient objiects and coproducts as well as

subab jects. Now suppose C € €] and ez(C) equals the

sum of all subaobjects of € belonging to J. Then

clearly €g5(C) € J. Finally, one verifies €7 is a

radical with the usual inclusion 63. |



Corollary. There is a one to one correspandence

between torsion theories and Top(A).

Similarly, given j € Top(A) the corresponding
torsion theory (31,33) can be described by

F; = (A€ (@] 13 (0) = 03
33 = {A € [Q] 1J4(0) = A}.
Definition. Given an Abelian category &, then G has

injective effacements if for every A € |G| there is an

I € |Q] and a monic map A——>1 such that the diagram

N~
W
¥
@

» ¢——W

"3
W
~

can be completed toc a commutative square

\L{(———m

oy (11

w

by some map B——>I.

Example. If @ has enough injectives, clearly @& has



injective effacements.

Given @ with injective effacements and jJ € Top(Q)

we shall construct a full reflexive subcategory Shj(a)

with exact left adjoint in this section.

Dafinition. A € |Q| and j € Top(R), then A is a j-
sheat if

(1) 34(0) = 0y

(2) If A € sub(B) and jg(0) = O then jg(A) = A.

We let Shj(a) be the full subcategory of &

generated by the collection of j-sheaves.

We shall construct the left adjoint P:d———éShJ(a)

in two stages. First let S:4——>Q@ defined by 5{A4)

= A/ja(0). Evidently S is a functor, since €y is a

functor.

Lemma. S preserves monomorphisms and jg(gq) (0) = O for

all A € |al.

Proof. If A’ € sub(A), we have a commutative diagram



Jpq- (O} ~2A’ PA’ /3 44 (O)

|

0O———3j 4(0)

By G

3¢

—3A/§ 4(0)

in which the left square is a pullback and the bottom

row is exact. Hence 0———9JA;(0) —A’ *%AfjA(O) is
exact so the induced map A’fjA(O)———%A/jA(O) is monic.

=0. B

Now we restrict curselves to ?1 = {A € |AIIj(0)

Or.

Lemma. If X € Tj, then we can choose an injective

effacement I for X such that I € 71.

Proof. Suppose X € 55 and X>——>I be an injective

effacement for X, then we have a commutative diagram

>SX

by o3¢

351

in which X>—>7I implies that X = SX>——3SI, since S

preserves monic maps and i+f jx(O) = 0 then X = SX. hNow

given a diagram
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Y’ p———3Y

x> 1 —2»>517

it can evidently be completed to a commutative square

Y p————3Y

Xop————>51I

Lemma. If A’ € sub(A) and A € SJ, then A’ € fj.

Proof. A’ € sub(A) implies there is a pullback diagram

O 0

Then we obtain a pullback

14/ (0)> 3

400> >

But j4(0) = 0 and A’ £ A imply that i ' (0) =0. B
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Lemma. If A € FJ and B € Jj, then R(R,A) = O,

Proof. Since j induces a radical (ej,aj) we have a

commutative diagram for any ¥ € Q(B,A),

o ¢&——
W

But ej(B) = B and ej(A) = ) so the abave diagram

reduces to

L+ ]
N

il
~,
I €

v
¥

from which the conclusion is evident. B

Lemma. If A’ € sub(A), then A’ is j—dense in A if and
anly i+f jA/AI (O) = A/A'-

Proof. Since j4(A’) = A and

J4(A%) = ker (A——3A/A"—(A/A") /3G 40 (01D (%)

we have an exact seguence

- 101 -



0——AL—3A——3(A/A") /3 g sp. (O)—0.

Hence A/A’ = jA/ﬂ,(O). On the other hand (#)
implies 0——>j (A’ )—>A—>0 is exact if A/A

Corollary. If A € sub(A) and f:A—>B are such that
A* is j-dense in A, B € ¥; and A*>—>4—I1>8 = 0, then

T = Q.

Proof. A">—>4—1L3B = 0 implies A" € A’ = ker(f). A”
j-dense in A implies A’ is j—dense in A. Furthermore ¥

induces a commutative diagram

A————3A/A' ——3 (A’ FA") [ g sps (O)

1 /

B >B/ig (O

e

Hence ¥ = 0. A

Now we are ready for the second stage of the

construction. Given A4 € 31, let A>—>1 be an
injective eftacement of A such that I € 3j (such choice
of I is always possible) put T(A) = j;(A). Notice 4 is
J-dense in T{(A4) and jI(A) = T(A) € $j since T{(A)

€ sub(l). Now we shall show 7T{(A) is in Shj(a).
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O

Lemma. T7{(A)>—>] is an injective effacement for T(A).

Praof. Let T(A)>——>1I’ be another injective effacement

for T(A) and I’ € 3)' Then we have a commutative

diagram

A—3T (A)———> 1’

] l

A—IT(A)—————>1

and the two maps T{(A)——>I agree on the dense subobject
A, hence are equal since A>—=>1 is an injective

eftacement of A. This implies T(A4)>—>1

= T{A > 2T’ > >»] since A is j-dense in T(A). B

Lemma. The following are squivalent for A € |4]

(1) A € Sh; ()

(2) Any diagram of the form

¥ r——>B

such that 8’ is j—dense in B can be completed to

- 103 -



! y—38

with a unique map B—>A.

Praoof. {1Y=3(2) Choose an injective effacement Ar——>]

such that I € Fj. Then we have a commutative square

which gives a commutative diagram

B ”

N

N

|
B! y————>B

b
N
'
~

in which the square is a pullback. This also implies

B’ is j-dense in B. Then we have two pullback squares
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O

B! 3—>jg(B’)> >B

A> —>1 (A > —>1

But j (A) = A and jg(8’) = B since A € Shj(a). So

B! >—>3B—>A is our choice. The uniqueness follows

from the fact B” is j—~dense in B.

(2)=(1) Since 0 is j—dense in jA(O) there is a
unique map j4(0)——>A such that 0——j4(0)——>A

= 0—>»A. But both the cannonical injection and zero

map have this praoperty, sa ja (0)——3A = j4(0)——20——=A4
which implies j;4(0)——>0 and hence j, (0) = 0. This

shows that 4 € 31.

Suppose B € 3j and A € sub{(B), since A is j—-dense

in jg(A) there is a unique map Jjg(A)—>A such that

1 I
A—A = A>—2jg{A)—3A

This implies that jp(A) = A. B

Lemma. Suppose A>—>] is an injective effacement for

A such that

(1) A, I € ¥4
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(2) A is j~closed in I.

Then A € Sh;(Q).

Proof. Suppose we have a diagram

W
o
G

H€E—O

such that B” is j-dense in B. We can embed it in the

commutative sguare

LY
3

N S—,
L —" |

¥

and follow the same argument as in the previous lemma.
to obtain a unique B—>A such that B"——A
= BY>——>B—A. N

Corollary. T(A) is a sheaf.

Proposition. Let A € & j then

(1) there exists an object T(A) € Shj(a) such that A

€ sub(7(A4)) and A is j—-dense in T (A);
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(2) for. any map F:A—>8 such that 8 € Shj(a), there

exists a unique map T(4A)——B and A>—>8
m A>—3T (A) —3B. .

Proof. The proof is trivial. B

This shows Shj(a) is a coreflexive subcategory of

$j. It is shown in [Barr, 197?71 that Fy is
coreflective in &, hence so is Shj(a). Let P = (P,a,¥T)

be the triple corresponding to the coreflector.

Evidently PV = 7TSX where PX is simply jI(SX) in any
injective effacement SX—>I such that I € FJ. Now we

are going to show £ is exact.

Lemma. Let A’/ >—>A>—>1, where the second map is an
injective effacement. Then so is the composite

A’ >r»—>]I.
Proof. The proof is trivial. B
Lemma. If A’>—>A, then PA’' >»—>PA.

Proof. We have shown that SA‘>——>SA. Suppose

SA>——>»I is an injective effacement such that I € Ij

then so is SA’ >—>SA>——>1. Hence we have
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SA’ y—>S8A

PA’ PA
1 —

where PA’ = jI(SA') and PA = jI(SA) s0 we have

PA’ >—»PA. R

Lemma. The following are squal for a monic map

A’ >—>A:

(1) A/A* € Fy3
(2) §4(A’) = A3

(3) A’>—>A is a regular monomorphism in $j {or

Sh;@)).

Proof. The only non—trivial implication is (3)=9(1).

I+ O >R’ »A—8 is exact and B € :j' then A/A'

€ sub(B). Hence A-A’ € Fj as well. B

Proposition. P is left exact.

Proof. Suppose 0—»A” >4 24 is exact in Q. We

knaow that PAY>—>PA’. Note that in the above lemma we

can replace 3J by Shj(a) in (3) (since A/A’ >—3T(A/A")

is monic) so PA“>——>PA’ is a regular monomorphism in
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O

Shj(a) as well. Hence it is the kernel in Shj(a) of
its cokernel in Shj(a). The coreflector preserves

colimits, so that the cokernel of PA">—3PA’ is
PA’—PA, and the sequence is exact in Shj(a). The

inclusion preserves limits, so that the sequence is

exact in 4. H
Combining these results, we have

Theorem. Let j € Top(d) and @ have injective
effacements. Then the full subcategory Shj(a) is

coreflective such that the coreflector is exact.

Corollary. Let & be an Abelian category with injuctive

effacements.
Then

(1) Shj(a) is Abeliang
(2) Shj(a) has injective effacements.

Proof. (1) See [Mitchell, 19635]. Mitchell has also

shown that if @ is cocomplete then so is Shj(a).

(2) Let A € Shj(a) and A>—>1 be an injective
effacement with I € Fj. Then it is clear that

Ar——21>——>T (1) is an injective effacement in Shj(a).
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Remark. If @ is a complete Grothendieck categary, then
a full coreflective subcategory 8 with exact
coreflector is called a Giraud subcategory of d. It is

also a complete Grothendieck category.

We have shown that a radical (e¢,§) induces through

j% a left exact idempotent triple P = (P¢,0%,7t%) on Q.
Now if we are given a left exact idempotent triple P

= (P,0,T}, we would like to find our way back.

Let P = (P,o0,T) be a left exact idempotent triple
on d and A € |4]l. Put'ep(A) = ker(g(A):A—>P{A)). If

f € A(A,B), we have a commutative diagram

A———>8
oA aoB

PA———>PB
PF)

in a. This induces a map ep(-f)=ep(a)——+ep(8) such

that €, (A) > —>A—8 =

D ep(A)———éep(B)>———9B.

Obviously we let Jp be the cannonical injection.

To show €p is left exact we suppose

0O >A—>B >C is exact in A. Then we have the
following commutative diagram with two lower rows and

all columns exact:
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Then PA>——PB and 0——)ep (A)—>A—PA exact imply
0-———>ep (A ——>A—FB is exact; 0——9£p (B) ——B—PB

exact implies

€, {A) -—-)ep (B)

n

>5

is a pullback. This implies O0—>¢ (A)——)ep(B)——-B'C

P
is exact. But ep(C) 3C, so we have

0————‘."ep {A) i.fep(B) ——B'ep(C) is exact.

Corollary. 1+ A € sub(B) then

L) (A) >——¢ , (B)

p

is a pullback.
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Corollary. For any A € A}, cptcp(A)) = ¢p(A).

Proof. Apply the previous corollary to ep(A)>———9A. |
Lemma. For any A € |21, cp(PA) = 0,

Proof. The triple identity TA.o(PA) = lp,; implies that

o(PA) is monic. But

al{FPA)
0 >e p, (PA) SPA >P2.

is exact, hence ep(PA) = Q0. N

Suppose A € |QAl. Then 0———9ep(A)———%A———9PA is
exact, so we have a monic map A/%p(A)———éPA. Then the
corollary implies that ep(A/ep(A)) € sub(ep(PA)) s0

ep(A/%p(A)) = 0. This shows that (ep,dp) is a radical.

Note that in the construction we did not use the fact

that P = (P,0,7T) is idempotent.

Theorem. A left exact triple P = (P,o,T) induces a

radical (gp,c ).

p

Corollary. A laft exact triple P = (P,o0,7T) induces a

topolagy jiP on &.

Remark. The only assumption required for these results

is that @ be Abelian.
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Definition. If & is an Abelian category, then a full
replete coreflective subcategory D is a Giraud

subcategory of € if the éorcfle:tor is exact.

Remark. If j is a topology on Q@ where @ is Abelian with

injective effacements, then Shj(a) is a Biraud

subcategory.

Proposition. Let («,8) be a radical on & whare & is
Abelian with injective effacaments, Sh(2) be the
corresponding Giraud subcategory with coreflector P and
(e’ ,4’) be the radical induced by the left exact
idempotent triple associated to Sh(Q). Then (¢,d)

- (e’ ,8%).

Proof. I+ A € |31, then €(A) = ker{gcA:A—>PA) = €’ (A).
n

Proposition. Lat 0 be a Giraud subcategory af Q& with
coreflector P’ where & is Abelian with injective
effacements, («,§) be the corresponding radical and
8h(Q) be the Giraud subcategory of @ with coreflector
P. Thus D is equivalent to Sh(Q).

Proof. We have a diagram
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where i and i’ are inclusion functors. We first note
that P'ejoeP X P, for if A € A} then the exact

sequence

oA
O—>ker (gA) —>2A—> (j 2 P) (A) —m>coker (gA) —»0

gives P'A X P ' {(ieF) (A)) since ker (cA) and coker (cA)
are torsion. Similarly we have Psi’eP’ X P, because the

adjunction g’:l,—>i’«P’ gives the exact sequence

oA
O0—ker (g’ A) —PA—> (i '« P’ ) (A) —>coker (g’ A) —>0

and P’ (o’ A is an isomorphism, so ker{(oc’A) and
coker (o' A) are torsion, and it follaows that FP{(g’A) is
an isaomorphism. From these two natural equivalences we

obtain (P'ei)e (Pei’) X P’'ei’ = 1y and (Pei’)e (P’ei)

= Pol = ISh(a)' |

M. Barr has also shown

Theorem. Let @ be an exact category with injective

effacements. There is a one to one correspondence
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between natural equivalence classes of left exact
idempotent triples and Giraud subcategories of € which
associates to each triple the category of algebras and
to a Giraud subcategory the corresponding idempotent

triple.

Proof. See [Barr, 1984]1. But observe that given ¥

= (T,n.p), Y is the full subcategory of £ consisting

of those obijects C for which n€ is an isomorphism. A
Combining these results we have,

Theorem. Given an Abelian category Q@ with injective
effacements. There is a aone to one correspondence

batwean
(1) left axact idempotent triples on Q,
(2) radicals on @,

(3) full coreflective subcategories of @ with exact

coreflector,
(4) topologies on 4.

Corallary. Let P = (P,o0,T) be a left exact idempotent

triple on @. The category aP has injective

effacements.
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§3. Geometric morphisms.

In this section, we introduce the notion of a
geometric morphism between Abelian categories and study

its factorization.

Definition. A geomatric morphism F:@——>8 betweaeen two
Abelian categories is an additive functor F,:8—Q

which has an exact left adjoint F*:a—8.

Examples.

1. 1+ j is a topology on &, then Shj(a)——i——éa is

a geometric morphism with left adjoint Pj.

2. If 6:8—2D is a geometric functor between two

ringoids, then G :D-mod—>E-mod induced by G is a

geametric morphism.

Let P = (P,o,T) be a left exact triple on @ and A4
€ @. Then for any A’ € sub(A), we define jAA' so that

the following diagram is a pullback.

jqar 34

PA’ > >PA
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Clearly j is increasing. Since P is left exact,

SPLIS >PA

PaoA

P2A’ >————P24

is also a pullback and hence there is a unique map

PA>———+PJAA' such that

PA’

Pj A > —FPA

PgA’ PoA

P2A’ > >P2A

commutes. Now for any A’ € A in (41, the outer square

of

PA'————PA

is a pullback and the lower one is a monaosquare, so

that the upper one is a pullback. Comparing this with
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P applied to the square defining jjA’, we see that PA’
= PjJA’, from which it is immediate that j is

idempotent.

If A”> >A’ > 2A, the map to the pullback in the

square

3 4A"
JpgA’ > >A
aA
v
PA” > PPA’ » >PA

gives the required inclusion jAA” < jAA'. Hence j is

monotane.

Finally we are going to show j:sub{()——>sub() is

natural; i.e. if f:1B—>A then the diagram

subA> jA —rsubAd
sub () sub (F)
subB> 32 s ubE

commutes. Now follow A° € subA around two directions:

let B’ = gubi{f){A’'), i.e. the following diagram is a

pullback
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W

x ¢———0
b Uy
*

g

Then stub(f)(A’) = jBB’. On the other hand we

have a pullback

sub{F) (J 44’ ) o—>B

I

Hence it suffices to show the following squares

JgA’ > 34

commute:
j88'> —35 sub(f)(jAA’)>—————aB
(1) 1f {(2) aB
jAA' —A FPB’ > >PB

To show (1) commutes:; observe the following commutative

diagram:

TpB’'> —
aBl\\\<;

PB‘ > >PB //A

Pfl oA
v /
PA’ > >PA
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S0 jpB' ——>PB' ——3PA’' >—>PA = jgB’ >—38-L—34—pPA.
By definition of jgA’ there is a unique map

jBB'———éjAA' such that (1) commutes.

On the other hand since

sub(f) (j 44’ )—8 |

f\(f
\ 4

JAA’ A FB
v
PA’ >PA
commutes and
PR’ —>P
PA’ >PA

is a pullback, there is a unique map sub(f) (j 4’)—>FB

such that (2) commutes and this shows that j is a

topolagy.

Next observe the radical induced by j is precisely

the radical (¢ Gp) induced by P and, since there is a

p*
one to one correspondence between radicals and

topologies, we have:
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Theorem. The topology jP induced by (ip,lp) is j.

Corollary. A monic map a:A’>—8—2A in d is jP;dansn of

and anly i¥f

1
A A__5,4
1 luﬁ
P
PA'——R_3p2

is a pullback.

Lemma. Let j be a topology on & with cannonical

geomaetric morphism i:Shj(a)———ea. Then a geometric

morphism f:8——>Q factors through i if and only i#f F*
takes j-dense monics to isomorphisms i.e. Fr M = Q

for all T € Jj in Q.

Proof. Let a:A’'—>A be j—dense in &, and B be an

object of 8. We have a commutative diagram
x
RCALF  B)—B(F¥A,B)
Q LA’ F B ——8(F¥A’ ,B)
where the left map is induced by a and the right by

_ F*¥(a). The left map is an isomorphism of and only if

FuB is a j—sheaft. The right map is an isomorphism for
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all B € 8| if and only if F¥(a) is an isomorphism. It

follows that if F factors through i, F* takes J—dense

monics in @ to isomorphisms.

Conversely, i+f F* has this property, then F

factors through i, let F, = feu, for some

ug:@—3Sh (@). Put u* = F¥i. Then u” is left exact
and it is left adjoint to uy since for any A

€ lShJ(a)l, B € |8l we have

Shj(a)(A,u*B) = QUIAFB) = B(F*iA,B) = BWu®4,B). W

Lemma. Let j be the topology on @ induced by the qgeometric

morphismF: 8—>G. Then a monic a:A’'>—>A in & is j~-

dense if and only if F¥(a) is an isomorphism.

Proof. As a corollary of previous lemma, since

i:ShJ(a)———éa factors through itself, the
sheafification of a dense monic is an isomorphism, so a
j-dense implies F*(a) is an isomorphism. Conversely,
if F¥(a) is an isomorphism, let P = (P,o0,T) where P

= F*oF* is the left exact triple induced by F. Then

FuoF¥A = F o oF*A’, s0 A’ is j-dense in A. B

Theorem. Every geometric morphism Fi8——>Q can be

factorized into a—ﬁ—ae-ﬂ-aa where G* reflects
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isomorphism and H#, is full and faithful.

Proof. Let #:8—4 be i:Shj(a)———éa where j is the

topology on & induced by F. By two previous lemmas F
factors as HeG with H full and faithful.

Suppose F:A—8 in Shj(a) is such that 6%(f) is
an isomorphism. In the following diagram, A is the
diagonal map, 7 = G*oG* and d° and dl are the

prajections from the pullback. All vertical maps are

camponents of the unit 1 corresponding to the

adjunction of 6* and G,.

40
A — f
A—————>AxgB d C A———B
749 J
TA —_—
TA——— ST AxygTA TA———— >TB
Td

The composite acraoss the top is ¥ and T¥ is an

isomorphism by assumption, so Td%=rql. Thus TA is an

isomorphism. But A € Shj(a), s0 A € $j, and hence the
left square is a pullback. That means A is an
isomorphism, so0o ¥ is monic. But that implies ¥ is j—

dense, and so ¥ = H*-H*f is an isomorphism. W

Moreover, we have,

- 123 -



Proposition. let F:8—>Q be a geometric morphism for

which F* reflects isomorphisms and Fe is full and

faithful. Then F, and F* are adjoint squivalences.

Proof. Let p and € be the front and end adjunctions.

Since F, is full and faithful, p is an isomorphism, so

F*p is an isomorphism. But F* reflects ismorphisms, so

g is also an isomorphism. N
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CHAPTER S

§1. Basic definitions.

In this section we shall introduce the notion of
Grothendieck topology on a ringoid @ and show there is
a one to one correspondence between Grothendieck

topologies on @ and topologies on 8-mod.

Suppose £ is a Grothendieck cateqory then it is
well~known for each C € |E| there is an essential
monomorphism from € to an injective abject E{(C) where
E(C) is an injective envelope of €C and it is unique up
to isomorphism. And we have an alternative definition

of a torsion theory (J,%#) on € (see Chapter 4, 8§82).

Lemma. Given (J,¥) a torsion theory on €. Then the
property that J is closed under subobjects is

equivalent to ¥ is closed under injective envelopes.

Proof. Since € is a Grothendieck category and (J,#) is

a torsion theory on € we have a radical (e€,§) on &€

associated to (J,¥). Then e€(E(F))nF = e{F) = O for any

F € F, which implies €(E(F}) = O that is E(F) € #.

Conversely, let 7 € J and €C € sub(7T). Since J is

closed under coproducts we can construct () € sub(C)

such that t(C) is the sum aof all tarsion subobjects of
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C

C then CAT(C) € F. Hence there is a map
mT——=2E£(C/t{C)) such that

>T

CrACYy—————2E(C/T(C))

commutes. But E(C/T(C)) € &, so w/ = 0. This implies
wm =0 and hence C = t{(C) € J. B

Lemma. Let § be a class of objects in & closed under
subob jects and quatients, §# = {C € |&|{8(T,C) = 0 for
all T € ¢ and T = {C € |8||8(C,F) = O for all F € &3.

Then (J,¥) is a torsion theory on 2.

Proot. It suffices to show & is closed under injective
envelopes. I+ Fe€ F and f € E(T,E(F)) for some T € §.
Then Im(f) € & and FnImi{f) € sub(F). But & is closed

under subabjects so FnIm(f) € dnF = {0} s0 E(F) € #. R

Proposition. The following properties of a class T of

abjects aof & are equivalent:
(a) ©¥ is a torsion class for some torsion theorys;

(b) T is closed under subobjects, quotient objects,

coproducts and extensions.

Proof. A class 6§ is said to be closed under extension

of for every exact sequence 0——3C/'—C—>C*"—)
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with C’,C” € §, then C € §.

Suppose (T,p) is a torsion theory, € is obviously
closed under quotient objects, subobjects, and it is

closed under coproducts because €(X;¢7;.F)

= N;eg8(T;,F). Let O—=C'——C——>C"—>0 be exact in

€ with C¢”,’ € T. 1¥ F € @ and f € E(C,F), then f is
zero on C, so ¥ factors over C”. But also E{(C”,F) = 0,

so f = 0. Hence C € .

Conversely, assume (b) holds. let & = {C
€ |1211&(t,CY =0 for all 7T € > and J = {c € |8IIE(C,F)
=0 for all F € ¥}, then (J.,¥) is a torsion theory. We
must show that T = T¥. Suppose E(C,F) = 0 for all F
€ #F. 8ince T is closed under coporaoducts, there is a
largest subobject T of C belonging to T. To shaw C
=T, it suffices to show C/T € F. Suppose T
€ 8T’ ,C/T) for some T’ € T. Then Im(¥) € T, and if ¥
# O then we would get a subibject of C which strictly
contains 7 and belongs to T, since T is closed under
extensions. This contradicts the maximality of 7, and

s0 we must have ¥ = 0, and C/T € . R

Thearem. Suppose £ is a Grothendieck category. Then

there is a one to one correspondence between
(1) topologies on &,

(2) radicals on 2,



(3) torsion classes of objects of &,
(4) torsion theories on &.

Notice the previous proposition allows us to
define a torsion class to be a class of objects closed
under subabjects, quotient objects coproducts and

extensions.

I+ & is a ringoid, then @—mod is a Grothendieck
category. From now on we shall restrict our attention

to this cateqory.

Definition. Suppose a € Q] and I & sub(h?) is a left
ideal of &. Then if a € Q(A’' ,A), the left ideal (I:al

€ sub(h?’) is defined by [I:al(B) = (b € A(B,A’) |ba
€ I(B))., Equivalently, [I:al] is the left ideal in the
pullback diagram

Clsal >hA’

>hA

(-

in d—mod.

Definition. A Grothendieck topology on & is a set
{6(A)|A € |Q]}) such that for each A, G(A) is a set of

subfunctors of hA, that is the left ideals of Qa,
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satisfying

(1) h® € GtA) for each 4 € |Q|.

(2) If I € G(A) and a € R(A’,A), then [I:al € G(A’)

(3) If I € sub¢h?) and there exists J € G(A) such that
for all A’ € || and a € J(A’), which implies [I:al
€ G(A’), then I € G(A) as well.

Note that a € J(A’) & A(A’' JA).

Lemma. Suppose {G(A)]A € |Q|} is a Grothendieck
topology. Then

(1) If I, J € sub(b®) such that I € G(A) and I>—J,
then J € G(A).

(2) 1+ I, J € G(A), then InJ € G(A).

Proof. (1) Suppose I, J € sub(h®) such that I € G(A)
and I>—>J. Let A4’ € 1Q] and a € I(A’) € Q(A’A) then
[J:al(B) = b € Q(B,A’) |ba € J(B)} = A(B,A), since I is

a left ideal. So [J:al = h? € GtA’), hence J € G(A).

(2) Suppose I, J € G{(A). I a € I(A’) then

L(Ind):allI:alnld:al = M atJ:al = [J:al € G(A’) so Ind
€ G(A). W
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Definition. Suppose ¥ € @—mad and x € #(A). The

annihilator of x is defined by
Ann(x) (A’) = {a € Q(A’A) |M(a)(x) = 0 € M(A’)}

Equivalently, Ann(x) = ker({<x>). Clearly Ann(x)

€ sub(hd) is a left ideal.

Suppaose {G{(A)|A € |Q|} is a Grothendieck topology
on &. Letting Jb = {M € A-—mod|VA € |A]l, ¥x € H{A),

Ann(x) € 6(A)}, we are going to show J; forms a torsion

class of objects.

Clearly, J; is closed under subobjects. To shaw

it is closed under quotient objects we need:

Lemma. Suppose M,N € Q-mod, ¥ € A-mod(M,N) and x
€ M(A). Then the square

hA <x>

>M

|
YA _STLA (>

>N

is commutative in 4-mod.

Proof. Let a € hA(A’) = @(A’,A). Then

FIA’)a<x>(A')(3) = F(A')oM(a)(x) = NlaleT(A) (x)
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= <FLA(X)>(A)(a). M

Corollary. Suppose H,M € @-mad, ¥ € Q-mod{#,N) and x

€ M(A). Then there is a monic map

Anni{x) >—2>Ann(f(A) (x)).

This corollary implies J; is closed under quotient
ocbjects. Now if #¥,N € 8-mod such that M#,N € J; and

suppose {(x,y) € (M®N) (A) = M(AYBN(A), then aAnnix),
Ann{y) € G(A). But clearly Ann{x)nann{y) is a

subobiject of Annl{x,vy)1 this implies Sb is closed under

coproducts. R

Lemma. Suppose ¥ € G@-mod, x € #(A) and a € Q(A’,A).
Then Ann(#(a) (x) = [Ann(x):al.

Proof. Ann{M(a)(x))(B) = {b € R(B,A’) IM(b)eH(a) (X)
=0} =

b € QR(B,A') M (ba)(x) =0} = (b € A(B,A") |b

€ Annix) (B)} = [Ann(x):al(B).

Now suppose 0o——#' L 34-¢ 54— 30 is exact in
&-mod such that M7 .4’ € Jb. Let x € M(A). Then

g{A) (x) € H"(A) and M" € Tz implies Ann(g(A) (x)) € G(A)

where

Ann{(g(A) (x)) (B) = {b € A(B,A) |M”(b)ag(A)(x) = 0} for B
€ |&l.
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O

Let b € Ann(g(A) (x)) (B) then M7”(blegl{A) (x)
= g{B)a#H(b)(x) = 0. This implies #(b) {x) € ker(g(B))
= Im(Ff(B)) so there exists some y € ¥’ (B) such that
T(B) (y) = M(b)(x). Since M’ € Jgz, Annly) € G(B).

Since J; is closed under homomorphic images,

Ann(F(B) (y)) € G{B). Then AnNn(Ff{(B) (y)) = Ann{M{d) (x))

= [Ann{x):zb]l] € G(B). Since this is true for any b

€ Ann(g(A) {x)){(B), B € |Q&l, and Ann{(g(A) (x)) € G(B) sa

Annix) € G(A). This shows Jb is closed under

extensions.

Suppose J is a taorsion class of aobjects of &mod.
Then for each A € |A]l we let GJ(A) = {I € sub(hA)!hA/I
€ J; and we shall show that {GJ(A)IA € [&|Y forms a

Grothedieck topology on Q.

Evidently, hA € Gy(A) for each A € |&]|. Suppose I

€ Gy(A) and a € Q(A’,A). Since

CLI:al >5hpA’
1 ]
I >hA
is a pullback in G&-mod so O—>[ I:al—>hA’ SHA/T is

exact. Hence hA' /LI:2]1 € sub(hA/I) which implies [I:al
€ G(A').
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Lemma. Suppose i € sub(hA) and a € Q{(A’ ,A). Then

HA' st I3al % Gas(InGa).

Proaof. Since Ga(B) = {ba € A(B,A)|b € A(B,A’')}, we

always have an epimorphism hA —>aa given by composing

with a, hence an epimorphism A’ >Qa »Ra/s/(Inla).

Now suppose we let K

= ker (h®' ——>@a—>aa (Inka)). Then

K(B) = {n € Q(B,A’))ba € (InRa)(B)} = {b € A(B,A’) |ba
€ I(B)} =[I:al. N

Corollary. Suppose i € sub(h?) and a € Q(A’ ,A). Then

A’ /LItal & Qas(InGa) & (I+aa)/I.

NMow suppose I € sub (hA) such that there exists

some J € G3(A) and for all a € J{(A"), [I:al € Gg(A").
We consider the exact sequence
I+J hA hA

0 — >
I I I+J

3
A

Clearly hA/(I+J) € J since it is a quotient object aof
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hA/7 € T. Since a € J(A’) implies

I+Qda rA’
I [Izal

ke

and J is closed under coproducts, (I+J)/I € J. Hence

the fact that J is closed under éxtensions implies hA/I

€ J, so I € G3(A) as well. H

Proposition. Let J be a torsion class and (Gg(A) |A

€ |Q)} be its induced Grothendieck topology. Then J
- 0-60'"

Proof. If M € J5, then each cyclic subobject of # is
in T so# € J. Conversely, if M € J and x € M(A) then

M /8nn(x) € sub(M so hA/Bnn(x) € T, hence Ann(x)
€ GJ(A) and it fallows M € ch. ]

Lemma. Suppose I € sub(hd). Then every cyclic

subfunctor of HA/I has the form hA'/[I:aJ for some a
€ GLA’ ,A).

Proof. Let x € (M 3/11(A’) and a € aca’ Ay = rA(Aa’) be

a preimage of x under the map hA(A')———%—é(hA/I)(A').

Then the diagram
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x>

h/I

commutes in &-—mod. Hence
Ann(x)(B) = {b € QR{(B,A’)Iba € I(BY} = L[I:al(B). N

Proposition. Let (G(A)|A € |Q]1) be the Grothendieck
topolaogy on @ and J5 be the associated torsion class.

Then G(A) = qu(A) for all A € |4].

Proaf. I € G(A) then by previous lemma h/I € J; so
hA/I € Gs;- on the other hand, if I € Gab(A) then hA/I

€ Jg, so for each x € (hA/I)(A'), Ann(x) = [I:al € G(A)

for some a € Q(A’,A) and thus I € J;. W

Combining these results we have

Theorem. There is a one to one correspondence batween
(1) topologies on G-mod,
(2) radicals on Q-mod,

(3) torsion classes of objects of G&-mod, and
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(4) Grathendieck topologies an Q.

Remark. Given {G(A)IA € |Ql} a Grothendieck topology

on & then €6 the associated radical is defined for M
€ A-mad by (egh) (A) = {x € M(A) |Ann(x) € G(AY}. And jg

the associated topology is defined for M’ € sub (M) by
Jg(H’) = ker (H—3M/H' —>(H/N') /eg{H/H' ).

Remark. Let £ € G-mod be injective. Suppose Jp = M

€ @-mod|&-mod(M,E) = 0} and &g = {H € Q&-—mad|d-mod(T,H)
=0 for all 7 € Jg¥. Then (Jg,¥¢) forms a torsion
theory on @-mod, since if #° € sub(M) and # € Jg, then

consider ¥ € @&—mad{(M’'E). T must factor through M which
implies ¥ = 0.

On the other hand, if (J,#) is a torsion theory on
G-mod. Put F(A) = €I € subh™ 1hA/1 € ¥ and E
= Waeia|T1ermEHA/D . Then £ € #, so @-mad(#,E) = 0

for all M € J. Now if M € J there exists some cvyclic
subfunctor C of ¥ with a non—-zero ¥ € Q-mod(C,F) for
some F € F. The image of f is cyclic and tarsion free,
so ¥ induces a map C——>E which can be extended to a
non—-zero map M—»E. Hence M € T if and only if

d—mod(M,E) = O. Combining these results we have
Proposition. J is a taorsion class of objects in G-mad

if and only if there exists an injective £ € @-mod such
that
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I = {M € Q-mod|&-mod(M,E) = O}.

Remark
1. Principal Grothendieck topologies.

Definition. A Grothendieck topology (G(AYA € [Ql} is
principal if for each I € G(A) there exists a € I{A’)
such that da € G(A).

Suppose {G6(A)A € |&]} is a principal Grothendieck
topology. Put T(G) = {§ € A{A’ A lIqs € GlAY, A’ ,A
€ |&l}. Clearly for each A € (dl, 1,4 € I'(G). Suppose

s € Q(A’ ,A) and t € A(A”,A’) are such that s,t € (G).

Let b € W4 (B) = @(B,A’). Then for any D € &, we

have
LA&{Ets)ebs1(D) = {d € A(D,B)|dbs € A(+s){M7?
=2 {d € A(D,BY|db € (ALY (DY} = L[At:b1(D).

Since At € G(A’) so [At:b] € G(B) and [A(E+s):=bs]
€ G(B)Y. But this is true for all bs € As(B), hence
Gi{ts) € G(A) so ts € T{(G).

On the other hand suppose a € 2(A4° A}, a’

€ A{A”,A’) such that a‘a € T(6). Then since &(a‘’a)
€ sub(@a), we have Qa € G{(A) hence a € T{(G).
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If s € T(GINA{(A’ ,A) and a € A(A”,A), then [ds:al
€ G{(A”). Since G is principal there exists t
€ L[ds:al(B) such that At € G(A”). Notice at
€ sub(l&s:al). Consider the following diagram in

d-mod:

at> >C[As:al> —>pA”

as> —~hA

such that the square is a pullback. Clearly t
€ (At) (B) and ta € (Gs)(B) so there exists some b
€ R{(B,A’) such that ta = bs.

Conversely, suppose " is a set of morphism

satisfvying

(1) 1, €1, for all A € 1al;

(2) T is closed under compositiong

(3) if a € ALA’' JAY, @’ € QA(A”,A’) such that a‘a € T,
then a € I;

(4) if s € TNA(A’ JA) and a € A(A” ,A), then there exists
t € 'n@{B,A”) and b € &(B,A’) such that ta = bs.

Put 6~(4) = {I € sub(h™) | for some A’ € 1al,

I(A’YN” # @3. Clearly A € Gr(A). Suppose I € Gp(A)
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then there exists s € I(A4’)Yalr, Let a € AQ{A”,A). Since
s € I(A"Yy & (A’ ,A), there exists ¢t € Mn@Q(B,A”) and b
€ @(B,A’) such that ta = bs. Now consider [I:al(B®)

{d € @(B,A”)Ida € I(B)}. This implies t € [I:al1(®)
so [I:al € Gp(A”).

Now suppose I,J € sub(h?) and J € G (A) such that
for all a € J(A’)LI:al € G(A’). Since J € G-(A) there

exists B € |Q| such that s € 'nd(B). Then in

particular [f:al € G-(B), so there exists D € |Q&] such

that ¢ € MnLI:51(D). But ¢t € [I:51(D) implies ts
€ I(DY, and ts € " we have I € G(A). Hence we have

shown G~ is a Grothendieck topology; moreover it is

principal.

Proposition. Let 6 be a principal Grothendieck

topology and 'z be the set of morphisms associated to

Proof. Let I € G(A). Then there exists some s € I(A’)
such that &s € 6(A), so s € Ng. But clearly &s

€ 6~ (A and Qs € sub(I), so I € G~ _(AY. On the other
r‘a rﬂ
hand, suppose I € GPG(A). There exists s € MgniI(A’).

Clearly s € 6(A) and Qs € sub{I) sa I € G(A). &

Proposition. Let I' be a set of morphisms satisfying

the four conditions and G- be the associated principal

Grothendieck topology. Then ' = -
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Proof. Let s € 'n@(A’,A). Then clearly s € 6~(A) so
s € PGF. UOn the other hand if s € FGrna(A’,A) then as
€ GF(A) s0 there exists ¢t € As(B)nlC. Hence there

exists b € A{(B,A’) such that ¢t = bs € T s0 5 € . B
Combining these two results we have:

Theorem. There is a one to one correspondence between

{1) Principal Grothendieck topologies on @

(2) Sets ™ af morphism of & satisfying

(a) 14 €T for all A € |al;

() T is closed under composition:

(c) if a € R(A’' ,A), @’ € Q(A”",A’) such that a’‘’a
€Er, then a € I;

(d) if 5§ € FnQ(A’ ,A) and a € R(A”,A) then there
exist ¢t € 'nQ(B,A”) and b € QA{(B,A’) such that ta = bs.

Remark. (1) Notice in the construction of GF we did

not need the property (c) of ', 50 in particular it T

is a RMC set of morphisms of @ then G~ is a principal

Grothendieck topology.
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(2) let G be a principal Grothendieck topology on

@ and (J;,F5) be the associated torsion theory. Then M
€ Jg and x € M(A) implies Ann(x) &€ 6(A), so there
exists s € A(A’ ,A)nl"; such that Gs € sub(Ann(x)).

Hence M € Jg if and only if for all x € H(A) there

exists some s € TgnA(A’ ,A) with H(s) (x) = 0.

2. Bounded topologies.

Lemma. Suppose {6(A)|A € |Q]Y is a Grothendieck
topolagy on @ and put ng(B,A) = Nicr(q)I(8). Then 14

is an ideal of Q.

Proof. Clearly ng(—,A) = Niegeay r € subh?) for all A

€ j&}. On the other hand suppose a € @(A,A’). Then
CI‘':a2l € G(A) for any I’ € G(A'), soO Mg (8B,A)

= Nzea) I(B) & Npregep-H)ELI7:a1(B). This implies that
for any b € n(B,A) ba € ng(B,A’). And it is easy to

check if a € G(A,A’)Y and b € &(B’ ,8) then the diagram

BG(B,A) >“G(B A

ng (B’ A M5B ,A")

commutes, so ng € &(—,~) and hence ng; is an ideal. B

Definition. A Grothendieck topology G is bounded if
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for all A € |&l, ng(—,A) € G(A) as well.

Suppose 6 is a bounded Grothendieck topology and

ng be its associated ideal. Evidently ng € ng- On the
other hand if a € n;(A’ ,A) then nz(—,A") & [n%(—,A):a]
s0 9g(—,A) € 6tA). This implies ng(—,A) S ng(—,A),

hence g = ng.

Conversely, if n is an idempotent ideal put Gn(A)

= €I € sub(hP) In(—,A) € I}. Clearly A ¢ Gy (A). Now
suppose I € GH(A) and a € (A’ ,A) then [I:al(B) = (b

€ A{B,A’')Iba € I(B)}. Let d € n{(B8,A’) we have da
€ n(B,A) & I(B) so [I:al contains n(—,A’), hence [I:al
€ GW(A ).

Let I, J € sub(h?) and J € 6,(A) such that for all

n
a € J(A') [Izal € Gﬁ(A’) then we must show I € Gn(A).
But J € GH‘A) implies n(—,A) € J so without loss of
generality we can take J = n3(—,A4), aince n(—,A4)

€ Gn(A). Hence for all a € (A’ ,AY n(—,A4°) & [I:al.
this implies n2(—,4) € I. But p is idempotent so I

€ GB(A)' fhis shows G, is a Grothendieck taopology and

n
evidently it is bounded by n since nIEG“(A)I = p{—,A).

This construction of Gn also implies

Proposition. Let n be an idempotent ideal and 6“ be
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the associated bounded Grothendieck topology. Then n
- no.

Proposition. Let G be a bounded Grothendieck topology
on @, n; be its associated idempotent ideal and G’ be

the Grothendieck topology associated to ng. Then 6

-G,

Proof. Let I € G(A) =0 ng(—,A) £ I which implies I

€ 6/'(A). On the other hand I € G’ {(A), by definition.
n{—,A £€1I. So I € 6GA). =N

Combining these results we have
Th.ﬁr.m. There is a one to one correspondence batween
(1) Baounded Grothendieck topologies on Q.
(2) Idempaotent ideals of Q.
Definition. Given ¥ € G-mod then the annihilator of M
is given by Ann(M) (B,A) = {a € R(B,A)| for all x

€ M(A).M(a) (x) = Q).

It is easy to check Ann(M) is a two sided ideal of

@ and Ann(#) (B,A) = N, cyg)Pnnix). hence suppose G is
a bounded Grothendieck topology on &, then # € J; if

and only if ng € Ann(M.
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Theoram. The following are equivalent for G a

Grothendieck topology in Q.

(a) G is bounded:

(b) J; is closed under productss

(c) there is an ideal o; such that # € J5 if and only

if og & Ann(M);

{(d) there is an idempotent ideal ng such that # € J; if

and only if ng S Ann(M).

Proof. (a)=(d) and {(d)=3(c) are clear. To shaow

{b)=(c)={d), consider the cannonical map

hA"ﬁ"IEG(A)hA/I then Im{a) is also in (J’G SO ﬂIEG(A)I

= ker (a) € G(A). Hence put ogz(B,A) = Nicp(gqy) I{B) and
we have shown Og is an ideal; furthermore it is

idempotent. This also shows (b)=(a).

To show (d)=(b), suppose {M;1i € IY & T so for
all i1 € I, ng € Ann(#;). This implies that ng

Remark. Suppose {eg € Q{A,A)|A € |1&1} € Z2(Q) (Recall

Z{A) is the center of &) such that e% = e, for all A

€ &} i.e. it is a central idempotent of &. Then the
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ideal generated by it is idempotent so we can associate
each central idempotent element of @ to a bounded

Grothendieck topology on Q.

82. GT(Q&) farms a Heyting algebra.

In this section we shall show the collection of
Grothendieck topologies on & forms a complete Heyting
algebra. But first we observe from &1:

Propasition. Suppose Q@ is a ringoid. Then the
collection G6T(Q) of Grothendieck topologies on Q is a

set.

Definition. Suppose G, G’ € GT(Q) then we say G’ £ G
if for all A € |al, G'(A) & G(A).

Lemma. The following are equivalent for 6’, G € 6T7(Q).
(1) 6’ £ G

(3) F5; S Fg..

Proo+t. (1)==(2): it M € Jb, then for all x € H(A)
Ann(x) € G'(A) so M € Gb. (2)=(1) is evident.

(2)=(3) follows easily from the fact that &-mod(T,F)
=0 for all 7 € J; and F € 5. 0
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Suppose % is a collection of Grothendieck

topologies we define Gns(A) = nGESG(A)' Then clearly
Grg € GT(Q) and we have T, = NgeeJg- It is easy to

verify:

Lemma. If 6’ < G for all G € 3, then 6’ 5 G,q.

To define v$ on G7T(Q), suppose G € 5. We denote
the generalization of G by the set gen(G) = {6’
€ GT(Q)IG £ 6’y then put w = MN{gen(&) |G € 32 and Gvs

= an.

Lemma. If G = 6’ for all G € 3, then G ,¢ £ G’.

Proof. G = 6’ for all § € $ implies G’ € gen(G) for
all 6 €%, so G € w and hence G,, = 6'. B

Let 6' = 6,¢. Then it is easy to verify that for

all G € S, G £ G’ and 361 = nGe-SZIG-

Lemma. Let 6 € 67T(Q) and 3 be a non—-empty collection
of Grothendieck topologies on 4. Then

Gavy = V{(GNG’ |G’ € .

Proof. Let G” =V{GnG' |G’ € $3. Then GnG’' = G for all
G’ € ¥ and GnG’ £ G’ +for all G’ € ¥ s0 G” £ G and G*
£ V3; hence G” = GnVy.
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To show the reverse inequality we are going to

show Jgavg € Jgv. Suppose ¥ € Jgpyg and # € Jgn.
Without loss of generality we can assume ¥ € &;., sonce
Jgavg is closed under quotient objects. So # € Ty
which implies there exists G’ € ¥ such that ¥ € &4,
since Fsne = NGreg¥g-- Hence 0 # ez M € Jg., and since
Jg is closed under subobjects eg. (M) € J; so we have
eG,(H) € UG'hG' But €5, (#) is clearly in Fga = nweixm
where 2 = {6nG’' |G € $} so it is in Fg/ a5 and Jgrppe s

which is a contradiction. N

Evidently, G67(Q) has a unit with respect to n
namely, U{A) = {all left ideals of hA3and a unit with

respect to v namely 8{(A) = {the zero ideal of rA3.

Combining all these we have: -

Theorem. G7(Q&) together with £ forms a complete
Hayting algebra.

§3. The categoary Shg(G-mad).

In this section we shall characterize the full

reflective subcategory ShG(a—mod) with respect to a

Grothendieck topology G on Q.

Lemma. Suppase G € GT(Q) and 4’ >—>M in G-mod. Then

the topology j corresponding to G is given by
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Iy’ )(A) = {x € M{A)|[H' :x] € GCA)} for all A€ |a]l.

Recall that [M:x1(B) = {b € QA(B,A) |M(b) (x)
€ M (A)}; equivalently

LM’ 1 x1—pA

|

M —d

is a pullback in Q-mod.

Praoof. Recall that given G € 67(Q), then the
corresponding redical (e,o) is defined by e (M) (A = {x
€ M(A|IANn(x) € G(AYX. And the associated topology J
is defined by: I+ M sub{M) then

Ju#’) = ker (l—H/H' —>(H/H' ) /e (H/H)) .

Now suppose x € ju(#’)(A). Then it induces <x>

€ a—mnd)hA,j")H’)) and pulling back along H'>———9jH(H’)
the cannonical dense monomorphism. So the monic map

[M :x1>—>hA must be dense as well, hence [M/:x1]
€ G(A) .

Conversely, suppaose x € M{(A) such that [H#’ :x]

€ 6{(A). Consider the following commutative diagram in

a-mod
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[M’=x1> A ShA/TH 1 x]

hd

¢ X ——

>M /M (MM ) e (M/H)

| i >

such that the left hand square is a pullback. Then the

compasite RA/TH 2 x] MM >(M/M) /e (/) is O

since hA/[H’sz € J and (/M ) /e{M/M') € F. Hence x
€ ker (M——>H/M' —>(H/H') /e (M/H') = (') (A). B

Definition. Suppose G € 67(&) and ¥ € Q-mod. Then M
is 6-injective if and only if for every I € 6(A) and ¥

€ G-mod(I,M) there sxists some ¥’ € a—mod(hA,H) such
that the diagram

I >—pA
7 1 ’
"

commutes in Gd-mod.

Remark. (1) The existence of ¥’ is naot necessarily

unique, and by the Yoneda lemma, there exists some xg
€ M(A) such that if d € I(B) then F(B) (b) = M(b) (xy)

€ M(B).

{2) Equivalently, M is G-injective if and only i+

for all I € G(A) the map M(A)
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2 a-mad (KA M) ——>a-mad (I, M) is epic in Ab.

Praposition. The following are equivalent for ¥

€ A-mod:
(1) ¥ is G~injective;

(2) for all N’ € sub(N) such that jN(N’) = N and

€ Q-mod (N’ M), there exists some ¥ € A-mod(N,M) such

N
fJ t’
M

is commutative in Q@-mod:;

that

(I) M is j-closed in its injective enevliope E(M);

(4) I+ M € sub{(M’) then there exists ¥’ € sub(M’) such
that MON’ is j—-closed in M’.

Proof. (1)=3(2): Let N’ € sub(N) such that jy(N’) =N
and f € @—mod{(N’,M). Consider the set of all pairs
(K,p) where N € K €E N and ¢ € d—mad{X,M) extends f.
Order this set by putting (K’ ,p’) £ (K,p) if and only

if K’ € XK and o9i{K’ = ¢’. Then this set is inductive

under £ and so by Zorn's Lemma it has a maximal
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element (K,p). We must show K = N. If not, there
exists A € Q| such that K(A) € N(A). Let x € N(A) and
x € K(A). Since N’ is j-dense in N so K is j-dense in

¥. Hence [K:x1 € 6(A). Define w:[K:x]1—¥M as

follows: Given B

€ iai,

w{(B) (D) = @(BIN(L) (x) for all b € [K:x1(B).

It is easy to check v € @-mod([K:x1,M), so there
exists y € M(A) such that w(B) (b) = PBIN(D) (x)

= M(b)(y) for all » € [K:x1(B).

Now define g;:K+@x—>H4 (Recall: (4x)(B)

= {Nb)(x)|Db € AR(B,A)}) as follows: @4 (B) (z+N(b) (X))
= P(B) (z)+H(b) (y) for all B € |Ql. I claim @; is well-

defined: suppose z € K(B) and N(b){(x) € (Gx)(B) such
that z+¥(b)(x) = 0. Then N(b)(x) = —z € K(B)n(Qx) (B)
€ K(B) so b € [K:x] which implies M(d) (y)

= @(BIN(b) (x). Hence

Py (B) (z+N (D) (x)) = @(B) (2)+M (D) {y)

= @(BY(Z)+(BIN (D) (x) = P(B) (z+N (D) {x)) = O.

It is easy to check p; € @-mod(K+&x,H) and

evidently @; extends K so K = M.
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(2)==(3) If M>——E (M) then we have
M>25p 44y (M) >—PE(H) and a is a j—dense
monomorphism so there exists a’ € G@-—mod{jgy) (M M
such that a’ea = 1. Since ¥>——>E(M) is essential, so

is «, and hence &’ is monic. Evidently «’ is epic so

&’ is an isomorphism.

(3)=3(1) Suppose ¥ € &-mad(I.M) and I € G(A).

Then since E(M) is injective, there exists a unique ¢

€ @-mod (hA,E(M)) such that

——3pA

commutes in @-mod. Since the top map is j-dense and

the bottom map is j-closed, there exists a map M ——on

with the required property.

(3)=3(4) I+ M € sub (M) then there exists N
€ G—-mod such that E(M’') = E(M)DN. I¥f N = M’ 0oN then
H /(MBN’) is a subfunctor of EM ) /(MEN). But

E(M’ ) /(MON) = (E(M)+N) /(MDN) = EXM) /M. Thus EMI/M € &
inplies M’ /(M + N') € ¥.

(4)=(3) Since M—IE(M), there exists N’ sub(E(M))
such that M@&’ is j-closed in E(H). But MI—E(M) is
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essential hence N’/ =0, so M is j—closed in E(M). 1

Theorem. The following are equivalent for ¥ € G, ,4-
(a) # € Shgz(@-mod);

(b) M € F and M is G-injective;

(e if I € G(A) and ¥ € A-mod(I.M), there axists a

unique ¥’ € a—mod(hA,H) such that

>——3pA

commutes in Q-mod.
Praot. Evidently (a)=(b) and (a)={(c).

(bY={a): Suppose M € sub(¥’) and ¥’ € F. Then
there exists N’ € sub(M’) such that MBN’ is j-closed in

M. Consider the exact sequence

MDN o [

o]
L 2
W

W
W
o

in @—mad. But (M®N')/M X N € F and M’ /(MEBN') € F sO
/M€ F. Hence M € ShG(a—mad).
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(c)==(b) Clearly M is G-injective. Suppose x

O

£ M(A) is such that Ann(x) € G(A). Consider the

- compasition Ann{(x) —>hA —>M. There exists a unique

map hA—>M such that the diagram

Ann (x)—::;h"‘

hA r

commutes in d-—mod. Thus x = 0 € M(A) and hence €{#)

=0. .

Corollary. Suppose ¥ € Shp(d-mod). Then the following

are equivalent for N € sub(M):

(1) ¥ € Shg(Q-mad);

(2) N is j-closed in M;

(3) N is G-injective.

Proof. (3)={1) and (1)=3(2) are evident since N € #.
(2)=(3) Suppose k' is j—dense in K. Since M is G-

injective, if f € &-mod(K’' ,N) we have a map ' :K—>H

such that the diagram
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commutes in @-—mad. But the top map is j—-dense and the
bottom map is j-closed. Hence there exists a map

K>—>N with the required property.

84. The category ag5.

In this section we shall construct the category of

quotients &; with respect to G € G7T(Q).

Suppose M € @—mod and 6 € 6T(Q). Let F be the

radical corresponding to 6 and put Sy = M/e (i), so SH
= F. Let P:d—mod———%ShG(a—mod) be the left exact
reflector. Then PH = JE(SH)(S”) since & is claosed

under injective envelopes. So we have

PM(A) = {x € E(SM) (AINLSH:x] € G(A} for all A € |(Q}].

In particular we shall denote 5S4 = hA/é(hA) and PA

= P(hA) for A € 1al.

Now we can construct Q; the category of quotients;
the aobjects of Q; are the same as those of &. 1If A’, A

€ |&] we put Gz(A’,A) = PA(A’). Evidently it is an

abelian group and we note that PA(4’) = a—mod(hA,PA)
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C

= Shg(@-mod) (PA’ ,PA) so if a’ € Qz(A' ,A) and a”
€ Gz (A”,A’) then the composite a‘a” is simply defined
by composing their corresponding maps in ShG(a—mod).

And it is easy to check the composition is distributive

over addition so Q; is small and preadditive.

We also have an additive functor v:a———éaaz If A

€ idl, w(A) = A. Suppose a € Q(A’ ,A) = hA(A’). Let 3
be its image in PA(A’) then we put w(a) = a

€ Shg(@—mod) (PA’ ,PA). Note that a is an element of

E(5A) (A’) such that [SA:al € G(A’).

So v induces a pair of adjoint functors

a—mod, IQG—mod

/

and ¥ € @z;-mod—Q such that v*  ¥@-, v, = Hom)¥,—) and

PIA’ JA) = Bz (A’ ,wA) = Q;(A’ ,A) for A’ € 8z1, A E I&].

If M € Shs(A-mod) we define TH € Qz—mod by TH(A)
= M(A). Note that TH#(A) = (hA,ﬁ) = Shg (@-mod) (PA,HM) .
Then suppose x € TH(A) and a € Qz(A’ A
= Shgz(Q-mod) (PA’ ,PA). We let TH(2a){x) be the
composition of maps in Shgz(@-mod). So we have the

following diagram
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4
a-mod , " @g—mod
b £
P4
/
\ &
K
Sh G {(Q—mod)
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CHAPTER &

§1. The Grothendieck topology by &.

Let @ be the ringoid 2 &€ d—mod (not necessarily a

set) and N € G-mod.

Definition. N is #-torsion if for all x € N(A) and all

M € & the cannnanical morphism

. M(A) &% A-mod (hA,4) ——>a-mod (ker (x) ,#)

is an isomorphism. The col}.ctian of $-torsion objects

in 0-mod is denoted by Jjy.

Lemma. N € J‘ if and only if for f:L—N in G-mod and

any M € % the cannonical map
Q-mad (L ,#) —>Q-—mad (kerf ,#)
is an isomorphism.

Proof. The "if" direction is obvious. Now suppose

f:L—>N and N € Ji. lLet I be the disjoint union of
the underlying set of abelian groups {(M{(AIA € (4],

and Af = 5_.,8(~,4,). Then there is an epimorphism

p:AI———éﬂ. Now consider the commutative diagram
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k i
ker (fopei 5)——25a(—, A ) ——3>4T

L a D

k f

¥
P.
&
z

QO—————kerf

with exact bottom row, & i,y k cannonical injections

a?

and f, induced by the bottom row.

Let M € £ amd u:lL—>»4 such that uek = 0. Then

for any @ € I, Uekef, = uepei ek, = 0. Since N € Jz we
have uspei, = O which implies wep = 0. But p is epic

so u = 0. Hence Gwmad(L M)—>&-mad(kerf,M) is monic.

Suppose u:kerg—H#. We have

f

geuzker (fopei )—>M which implies there exists a

unique ay € M(Ay) X G-—mod(&(—,A,),1), such that agek,
= faou for each a € I. That is if b € ker(f-poiaftB)

we have <ag>(B)«K,(B) (b) = M(b) (ay) = u(B)ef (B) (D)

= u(B)elL(b)(a). The set of morphisms {arla € I3

induces a unique map $=AI———9H. Hence we must show 7
vanishes on kerp. For a finite subset J £ I, let A’

= Zjegl{(—A;3). Define PJ=AJ———9L to be the cannonical
map induced by p and K; = kerP; with hJ:KJ———QAJ the
canonical inclusion. Also let vazAJ———éa(—,Aa) and

ia=a(—,Aa)———éAI the canonical projections and

inclusions such that EEEJia°“a = IAJ. Hence if b
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€ Kz(B) & @-modhB,K;) we have

PJﬂhJ‘:b} = PJO (zaeaiai‘ll’a)bhr <b>

where b, = wehje<b>:hB——a(—,A4,) and so b, € (B,Ay).

This implies f(B)e (T L (b)) (a))

= F(BYeL(S e by) (a) = 0. But ker (fep)
= colimgy, (g ker (AV—2>L-TL3N) s0 T,cgizeb,

< ker(foPazAJ———éL———éH). Hence we have

chhJ¢<b> = 'fJo ((EaEJ'ia"“a)’hJ’{b}) = fJ- (IaeJiaoba)

= Foegu(BYeLiby) (a) = ulB)eT, eyl iba)ta) = O.

This completes the proof. B

Obviously, if N € Jg and N’ € sub(N) then N’ € T3
as well. Suppose p:N—2N' is an epimorphism and

f:hA—5N’. Consider the commutative diagram

i 7’
0————kerf’ ——>hxy, N———N

FE

o Skerf >hA SN’

The rows are exact and p” is an isomorphism.
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If M € & and u:h"—># such that usi = 0, then

Uoekop” = Wop’eji’ = 0. But N E€ 3§ s0 wep’ = 0 and p’ is

epic implies u = 0.

Since p’ is epic and nl is projective in Q-mod
there exists q:hA———ahAXN{N such that p’eq = 1pa. Then
a simple diagram chase shows that geiep” = i’. Now if
urkerf——H, there exists E:hﬂxﬂlﬂ———%ﬁ such that udei’
= yop”., This implies E}q=hA———9H and we have up”

= Uoi’' = Ueqeiop” S0 U = Ueqei. Hence N’ € JTj.

1§ 0—N' L oN-L 34"— 30 is exact in G-mod with

Ny, N” € 3;, f:hA———QN, then consider the commutative

diagram

where (ker¥,j) is the kernel of ¥/, (kerf,k) is the

kernel of ¥ and (ker{pe7¥),i’) is the kernel of p-f.

If W €  and u:h?"——>M, then uek = 0 implies
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ei’ej = 0, but N’ € Tz implies uei’ = 0 and N” € Jg

implies u = 0.

If u:kerf———%ﬁ, then ¥’ € Jz implies there exists

gz ker (pe¥)—>M such that @i = u and N” € Jg implies

there exists u’:hA———éH such that u’ei’ = &&. Hence u

Goj = u’0i’ej = u’ek so N € Jg. It is routine to
show by induction that Jg is closed under coproducts.
Hence Jg forms a torsion class. There exists a
Grothendieck topology G corresponding to Jz (see

Chapter 353) such that I € G(A) if and only if for all M

€ |€|], the cannonical marphism M(A)

= a—mod(hA,H)———éa—mod(I,H) is an isomorphism. This

implies ¥ & Shz(G-mod). In particular, when £ = |4

= {hAIA € |Ql3. G is known as the cannonical topology

on &.

When 2 is a full preadditive subcategory of Q-mod
there is an obvious full and faithful additive functor

Fizi———éshe(a—mud) and we have a diagram of functors

¥ rd
ShG(a—mod), a—mod
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with F’ = feFg and poFf’ = Fg.

82. Embedding Grothendieck categories.

Let £ be any category, C an object of € and a

= {f;:C;—>Cli € I} a set of morphisms in € with

codemain C. & is epimorphic in € if whenever

g.h:C——>C’ such that hef; = gef; for each I € I, then

g =h. A set ' of objects of & is said to be a set of
generators for € if far every C € |€| the family of all

morphisms with domains in ' and codomain,

{Ff:A—>CIA E T}

is an epimorphic family. Obviocusly if € is cocomplete

then {f;:C;——>Cli € I} is epimorphic if and only if

Z;e7C;—C induced by f;’s is an epimorphism in Z.

Recall that a cocomplete abelain category € is a
Grothendieck categoary if direct limits are exact in &

and & has a set of generators.

Praoposition. The following statements are equivalent

in a cocomplete abelian category &:

(a) Direct limits are exact in &3

(b) € satisfies ABS, that is directed unions preserve

finite intersections;
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(c) for every morphism 7;Ci—>C, and direct family

{Cili € I} of subobjects of C2 one has

7 EerCs) = TyertHC)

Proof. See [B. Stenstriém, 19751 W

Suppose £ is a Grothendieck categary with a set of
generataors I and @ a small full preadditive subcategory
(i.e. a ringoid) such that I' € |QA]. We construct the
functor S§:&8——>Q&-mod by: if C € €, A € 2], then
S(C) (A = B(A,0) and if f:C——>C’ then S(C) (¥)
= E(A,T).

Proposition. § is full and faithful.

Proof. Since the family of all morphisms {f:A——>CI|A
€ "'} is epimorphic, then so is the family {f:A——>CIlA
€ |&13. Hence § is faithful.

Now suppose § € @-mad(S(C) ,S{C’)). We must show
there exists a unique F:C——=C’ such that for any a
€ S(C)Y{(A) = E(A,C), d{AY(a) = fea. If I is the set of
all morhisms with domain in |Q] and codemain €, then I
is epimorphic. Hence there is an epimorphism

P:Xe7A3—>C such that the diagram

- 164 -



v p )
ZpeRa—>¢C

commutes for any a € I. Then 4 induces q:3 g A;—2C’

such that the diagram

. a\\\\

§ (AL (a)

v q
—_—
Zae 1Aa c

is commutative for each a € I. I+ ¢ vanishes on ker (p)
then there exists a unigue ¥:C—>C’ such that f.p = g¢g
and hence § (A){a) = fea for any a € I. Let J be any
finite subset of I and Kj; be the kernel of the

cannonical morphism Pj:¥,c5A,—>C induced by p with a
cannonical monomarphism kJ”(J__)EaEJAa' We also have
the usual injections I_ :A,—2?%_ cjA5, Projections

My T,eg8— A5 such that T cqgijew, is the identity of

Zaedl;-

Suppose B € |21 and b:B—>K;. We have
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Pgehged = Pgo (TeqigoMydhged = T Pgeigemgohyed

= Zzegacby = 0,

where b, = m ehjeb € E(B,Ay). If qyiTycgA,—3C’ is

the cannonical morphism indiced by g, we have

qyelged = qgo (TaegigeMalohgeb = Tagglageigle (Myehyeb)

= Taegf (Ag) (a)eb, = §(B)(a)e (T ggaeby) = O.

We conclude that ajh; = 0, and hence Ky is

contained in kergqg.

Now let & = {S(C)IC € |E|}. There is a
Grothendieck topology G induced by #. Since every C

€ |8y S(C) is a G-sheaf, there results a diagram of

/N
5/ \
S i

Shg (@—mad) | “@-mad
TP

functors

with 8§/ = PeS and 1+8’ = S. Since S5 is full and
faithful, 8’ is also a full and faithful. B

Proposition. S8’ is exact.
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Proof. Since S/ = PS is left exact so it suffices to

shaow s’ preserves epimorphisms. Hence if p:Ci—>C5 is

epic in £ we must show cokerS(p) € Jg. If x

€ coker (S(p)) {4 = a—mnd(hA,cokerS(p)) we have the

following commutative diagram.

[ImS(p):¥x1 >hA

;l Lx>

O—>Im(p) — 35 (Cp) —2cokerS (p) —0

With ¥ induced by x since A is projective in
@-mad, the square is a pullback and the bottom row is
exact. This implies ker (x) = [ImS{pl:x1. Hence we

have to show for all C € .|€| the cannonical morphism
S(C) (A = a—mod(hA,S(C)———éa—mod([ImS(p)=xJ,S(C)) is an
isomorphism. Let y € S(Cp) (A) = &(A,Cop)

= a—mod(hA,S(Cz)) correspand to %. Then we have the

following commutative diagram in €

1' , 2
5 3Cy Xp  A———3a >0
i P
o——K 5C, >Co 50

with exact rows and the right hand square a pullback.
Now apply the left exact functor S we have the

following commutative diagram in @-—mod
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‘:}

Si%) S(p*)
0——>S(K) R >hA
= X
S{p)
0——35 (K) >S(Cy) >S5 (Cq)

with exact rows and the right hand square a pullback.

Note that S(4) = hA. Now consider the following

commutative diagram in d-mod.

ImS{(p’)

q \Q\&
S(i") / S(p’)

0——35 (K) ———>5(CH) x pA-—L "~ 3pA
17785 (Cx)

1 X <xD>
S(p)

0 25 (K) 25(Cy) ?S(Cx) —>cokerS(p)—0

where
A ‘. 3 A

is the epi—-mono factorization of S{p’) in @—-mod. Hence

ImS(p’) = [ImS{pl=x].

Now suppose u € @-mad(hA,5(C)) = R—mod(S5(A) ,5(C))
such that wej = 0. Since S5 is full and faithful, there
exists a unique u’ € L(A,C) such that S5(u’) = u. Then
ue j = 0 implies uojeogq = weS(p’) = S{u’)eS{p’)

= S(u‘ep’) =0 hence u’sp’ =0 in &.
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But p’ is epic in € so u’ = 0 and then u = S(u’)
= 0. Now suppose u € @-—mod({(ImS{p‘),S5(C)). Then us.q
1) a—mod(S(CixczA),S(C)). So there is a u’

€ 8(Cy*%p_A,C) such that S(u’) = usgq. But ge5(f’) =0

implies uegeS{i) = S{u’d)eS{i’) = 0, hence u’«fi’ =0 in
€. So there exists g:A—>»C such that u’ = Uep’. Then
S{@)ejeq = S(T)eS(p’) = S(Tep’) = S(u’) = ueq since q

is epic in ®@-mod, S(W)-j = u. B
Proposition. §‘ preserves direct unions.

Proof. Let {C;li € I} be a directed family of
subobjects of Co € |€l. We must show the cokernel of
the monomorphism 6:3;¢S(C;)—>5(X;c;C;) is in Jg. As
in the proof of the previous propaosition it suffices to
show for all x € S(Z;c;C;) (A = a—mod(hA,S(E;EICi)) the
cannonical morphism S(C) (A)

= ﬂ—mod(hA,S(C))———éa—mad(tlmﬁzx],S(C)) is an

isomorphism for every € € |€]. Let y € 8(A,Z;¢C;)
such that S(y) = x. Then if €’ = ¥;;C;, we have, for

all £ € I, the following pullback diagram.

a’ ;
0———A%p., C;—2——A
lY
R
RN, p 3 L)
c Ibi J"I-'j

with exact rows. Since S is a leftt exact we have the
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pullback

O—————3S (A%, Cy) 1 >hA

<x>

s
0————35¢(C;) »SC”

+or each I € I with exact rows. 8Since @—mod satisfies

AB3 the square

0——%; ¢ 1S (A%, C;) —>h”A

<x>

X

is also a pullback with exact rows. Hence we have

[LImézx] = Ima’ = €S A%, C;) and if C € &)

a-mod (F; ¢ 1S (AXp: €;) ,S(0)) 2 lim [@—mad (S (A%, C;) ,S(C))

% @-mod(S(A) ,S(C)) & A-—mod(hA,5(C)). m

Corollary. S5’ preserves direct sums.

Let M € Shi(a—mod) & @—mod we can choose an exact

sequence
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in @—mod. But p’ € A—mod(3; e ;R(—yA;) 4T ;e R (—,A;))

= Q-mod (Z; ¢ ;5 (A;),T;e35(A;))

X @-mod (S(S; g 7A;) ,S(TjggA;)) = B(T;¢1A;+55¢g4;) SO
there exists u € S(EEGIAi’szJAj) such that S(u) = p’.
Now let M = coker (u) that is

TierA; K OTggA;—IH—0

is exact in & then so is

’ 5w} SO ’ ]

But S’ (A;) = Q(—,A;) = S(Ai) and S'(Aj) = a(—,Aj)
= S(Aj) for each £ € I, j € J, 8/ {(u) = p’ and since
P:a—mod———%Shi(a—mod) is exact so S'(M) =X P(M). But M

= P(M) so S”(M) X M.
Combining these results we have

Theorem. Lat £ be a Grothendieck category with a set
of generators C and @ be any small full preadditive
subcategory such that I S |Q]l, then there is an

equivalence between £ and Shg(Q@-mod) where G is the

Grothendieck topology induced by Z.
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Corcllary. The following assertions are equivalent for

a category Z:
(1) 2 is a Grothendieck abelian categorys
(2) There exists a ringoid @ such that € is a left

@xact retract of the functor category @-—mod i.e. € is

the category of sheaves for some topolagy 6.
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