
National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des a~quisitions et
Bibliographie serviees Braneh des se, ..'ces bibliographiques

395 Wclllnqlon Strœl 395. rue WellIngton
Cna....a.OnI3fIO Ottawa (Onlano)
K1AON.: K1AON4

>"" f ... • \,~".,,'~.' .•~,.,.

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

Complexity Doctrines

James R. Otto, Jr.

Department of Mathematics and Statistics

McGili University, Montreal

A thesis submitted to the Faculty of Grad·
uate Studies and Research in partial fulfill·

ment of the requirements of the degree of
Doctor of Philosophy.

June 13, 1995
@James R. Otto, Jr., 1995

I~I
National Library
of Canada

Bibliothèque nalionale
du Ca~ada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa.Ontano Onawa (Ontano)
K1A ON4 K1A QN4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownersh:p of
the copyright in hisjher thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
hisjher permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-0B143-5

Canada

•

•

11

•

•

111

Contents

Résumé v

Abstract VII

Introduction IX

1 Tensor and Linear Time 1

Introduction. .. 1

1.1 Almost Equational Specification 3

1.1.1 Sketches.................. 3

1.1.2 Orthogonality............... 5

1.1.3 Essentially Algebraic Specification. 8
1.2 Tensor and System T 10

1.2.1 Seriai Composition 10
1.2.2 Parallel Composition Il

1.2.3 Unary Numbers 13

1.2.4 System T 13
1.3 Comprehensions and Tiers 15

1.3.1 Comprehensions...................... 15

1.3.2 Extents 18

1.3.3 Dyadic N"mbers 19
1.3.4 Tiers............................ 19

1.4 Linear Time .. 20

1.4.1 A Linear Time Doctrine " 20
1.4.2 Formai Linear Time 25

• IV

1A.:3 Dyadic Regisler :'.lachines 26

1.-1.-1 Turing l\lachines .)--,
1.-1 ..5 Enough :'.laps 28

1.4.6 Safety · . · . 30

IA.7 Kot Too Many :'.1aps 30

1.5 The Linear Time Hierarchy 33

LA Sketches as Presheaves 34

I.B Initial Models · . · 35

I.C Coherence . . · . · 38

I.D Linear Implication 38

I.E Cotensor . 39

I.F Gluing · . 41

2 V-Comprehensions and P Space 49

Introduction . · . · . · 49

2.1 V-Comprehensions . · . · . 50

2.1.1 Unary and Dyadic Numbers 50

2.1.2 2 Tier O's · . · 51

2.1.3 Cotensor ... · . 51

2.1.4 2-Comprehensions . 52

2.1.5 V-Comprehensions 52

2.1.6 Extents 55

2.1.i Tiers . 56

2.2 P Space 57

2.3 Enough Maps · . · . · . 61

2.3.1 Getting Big . · . 61

2.3.2 Coding Machines 63

2.3.3 Next State .. 63

2.3.4 Long Enough 64

2.4 Not Too Many Maps 64

2.A Linear Space . 70
2.B P Time 71

•

•

•

3 Dependent Products and Churé Numerals

Introduction .

3.1 Dependent Products .

3.1.1 Comma Objects .

3.1.2 LCC Sketches .
3.1.3 Pb and Dp Stacking
3.1.4 ~lartin-Lof Choice .
3.1.5 Puli-Back is LCC

3.1.6 Prcsheavcs.......... .

3.Li Yoneda is LCC .

3.1.8 Toposes and Locally Connected Maps .

3.2 LCC 2-Comprehensions. . . .

3.3 A Little Lambda Calculus .

3.4 Church Numerals .

4 3-Comprehensions and Kalmar Elementary

Introduction .

4.1 3-Comprehensions......... . .

4.1.1 Comprehensions .
4.1.2 Extents .

4.1.3 Tiers.......................

4.2 Three Doctrines .

4.2.1 .!t •••.•.••••••.•.•.•..••.•.

4.2.2 cE.......
4.2.3 cE'
4.2.4 ESpace .

4.3 Enough Maps .

4.4 Not Toc Many Maps .

BibIiography

\'

j·t

j·1

75
j9

82

83

8·1

86
8j

88
95

9i

101

101

103

103

105

106

107

lOi
109

III
112

113

114

117

•

•

\'1

•

•

\"ii

Résumé

On caractérise diverses classes de complexité comme des images dans setZ,

setv, et set3 de catégories initiales dans des doctrines de complexité. (U Ill'

doctrine est constituée des modèles d'une théorie de théories.) On caractérise
de cette façon les fonctions de temps linéaire, d'espace polynômial, de temps

polynômial, élémentaires dans le sens de Kalmar et les relations de hiérarchie

de temps linéaire, (Notre modèle de machine sera les machines de Turing

à plusieurs bandes, avec un nombre constant de bandes.) Ces doctrines

étendent, en utilisant des compréhensions, les doctrines de premier ordre 6911

et;r:p, On montre, en utilisant des diagrammes de produit dépendant, com

ment on peut étendre de cette façon la doctrine d'ordre supérieure .c~~.

D'autre part, en utilisant les numéraux de Church, on démontre que les

compréhensions LCC résultantes n'apportent pas assez de contrôle sur les

types d'ordre supérieur pour caractériser des classes de complexité, On mon·
tre aussi comment utiliser les esquisses et l'orthogonalité pour la spécification

presque équationnelle.

•

•

\'111

•

•

Abstract

We characterize various complexity classes as the images in set~, set\', and

set3 of categories initial in various complexity doctrines. (A doctrine consists

of the models of a theory of theories.) We so characterize the linear time, P

space, linear space, P time, and Kalmar elementary functions as well as the

linear time hierarchy relations. (Our machine mode! is multi-tape Turning

mach:nes with constant numbers of tapes.) These doctrines extend, using

comprehensions, the first order doctrines 691l and W. We show, llsing de

pendent product diagrams, how to so extend the higher order doctrine .!:<!:<!:.

However, using Church numerals, we show that the resulting LCC comprL~

hensions do not provide enough control over higher order types to characterize

complexity classes. We a1so show how to use sketches and orthogonality for

almost equational specification.

•

•

x

•

•

Xl

Introduction

A doctrine consists of the models of a theory of thcories. We do not

directly repeat the old horror story of the student who proves many marvelous

theorems about a theory with no models, as the theories in our complcxity

doctrines trivially have as models functor categories such as set2, setl', and

set3 • (Here V is the partial order -+ +-.) However, set2, setV
, and set3, whilc

reasonable from a NewtonianfPlatonic point of view, are, except for their low

ends, much too big to easily fit into a physics limited by the spced of light

(special relativity), hydrogen atoms (quantum theory), and round off error

(chaos). So we use the images of initial categories in complexity doctrines to

characterize fairly physicallow ends of set2, set!', and set3• (Sorne theories

are categories.) That is, we so characterize the linear time, P space, linear

space, P time, and Kalmar elementary functions as weIl as the linear time

hierarchy relations, all on multi-tape Turing machines with constant numbcrs

of tapes.

These complexity doctrines extend, using comprehensions, the SM (= sym

metric monoidal) and the FP (= finite products) doctrines. We show, using

dependent product diagrams, how to so extend the LCC (= locally cartesian

closed) doctrine, However, using Church nurnerals, we show that the result

ing LCC comprehensions do not provide enough control over higher order

•

•

XII

lypes to characterize complexity classes. (We e\'enlually hope to o\'ercome
this using a cornbination of comprehensions and fibrations.) Along the way,
we view sketches as certain preshea\'es, and show how to use sketches and
orthogonality for almost equational specification.

This thesis is organized as four chapters/papers, each with its own intro
duction. We invite the reader to consider these introductions. (Chapter 2 is a
variant of a proceedings paper.) Now we indicate the originality of this thesis.

The other work on categorical characterizations of complexity classes that

we know of is [Huw76, HuwS2]. We differ from it by using initial categories
and gluing as in [RomS9, PRS9, LSS6], by using comprehensions, and by

characterizing linear time.
Comprehensions descend from [Pav90, JMS91, Law70]. \Ve free them from

fibrations and relate them to the partial orders 2, V, and 3. We use compre

hensions to understand tiers [BC92, Lei94, LM92] and to restrict the internal

initiality of (base 1 and 2) NNO (= natural numbers objects): the partial
orders 2, V, and 3 indicate how 'for loops' are allowed to nest. NNO [LSS6,
BW90, CRCMSO], as weU as comprehensions, are due to F. Lawvere.

The \inear space, P time, and Kalmar elementary characterizations de

scend from [BeI92, Rit63, BC92, Cob65, LM92], but differ b~' using categories
and (2- and 3-) comprehensions. We also distinguish betwecn safe recursion
and dependent safe recursion. (Sec the introduction to Chapter 4.) The

P space characterization descends from [Tho72, Huw76], but differs by using

V-comprehensions. Wbile the P space characterization here pumps up linear
space, that in [LM95] pumps up P time.

The linear time characterization descends from [Bl092, LM92, Lei94], but
differs from [Bl092] by not having diagonal at tier 0, and from [Lei94] by not
allowing machine registers to be copied in unit time. (Sec the introduction

to Chapter 1.) We sec the distinction betwecn the SM and the FP doctrine

as leading to the distinction between very safe recursion (for linear time) and

safe recursion (for the other function classes), with diagonal necded to read

the pararneters more than once in safe recursion.

The characterization of the linear time hierarchy relations descends

from [Wra7S], but differs by using tiers rather than explicit bounds. There

•

•

X111

arc similar characterizations of the P time hierarchy functions in [Bd!l~]. and

of the NP and the N linear space functions in [Lei94].

Dependent product diagrams (but not dp stacking) app,'ar indep,'nd,'ntly

in [Ndj92]. (Our dp stacking proposition is from 1991.) Our use of sketches

and orthogonality is our understanding of the use of sketches and injecti"ity

in [Mak94]. (For the complex history of sketches sec [~lak94, AR94. BW90,

MP89].)
1 thank my wife H. Tan, my paren,s J. Otto and R. Otto, my advi

sor M. Barr, my latest teacher M. Makkai, the tiers pioncers S. Bellantoni,

S. Bloch, and D. Leivant, my teachers M. Bunge, R. Da"is, D. Jurca, J. Lam
bek, C. Moore, W. Nico, and D. Thérien, as weIl as A. Blass, R. Blute,

W. Boshuck, R. Cockett, D. èubrié, V. Harnik, J. Loveys, F. }'Iagnan, R. Paré,

R. Squire, R. Secly, C. Wells, and A. Zappitelli for their help.

We have used xy-pic, latex2(, and aue-tex.

• XI\'::.:-.--------

•

•

•

Chapter 1

Tensor and Linear Time

Introduction

One might wonder, for e.xample, how to c1eanly combine functional and 10gic

programming. Categorical logic may help answer such questions. Both func

tions f : X Y and relations (or types) !/J on X are maps, and higher order

types !/J' are from dependent product diagrams (Chapter 3), or more generally,

from fibrations [BW90, Mak93, Bor94, Pav90]:

X~Y

lw /1~1'"
X "---; ----4

Thus categorical semantics of programming languages is an industry [P+91].

After seeing a draft of [BC92], we soon realized that the Bellantoni-Cook

composition is the seriai composition in (the category which is) the Kripke

structure on the partial order 2 (Section 1.3.1).

In categories having higher order types, recursion is defined by natural

numbers objects (NNO) [LS86, BW90, CRCM80]. Categories having higher

order types and NNO characterize GOdel's system T (Section 1.2.4). Without

the higher order types, but with a compatibility with tensor or product which

would fo!low from having higher order types, categories with NNO and tensor

or product characterize the primitive recursive functions [Rom89, PR89]. ln-

• 2 Tensor and Linear Time

•

deed, the image in set, the category of small sets, of a category initial among

sllch categories, is the set of primiti\'e recllrsive fllnctions.

H. Huwig uses bounded recursive characterizations of complexity classes

and fragments of base 1 and 2 ~NO to describe the corresponding sub

categories of set [Huwi6], and uses tensor rather than product to obtain

an interesting mode! of such systems [Huw82]. Our work on complexity

starts from [Rom89, PR89] and from tiered characterizations of complexity

classes [BC92, Be192, Bl092, Lei94].

We use tensor rather than product, But rather than view tensor as a bro

ken product, we view it as a paraUel composition, even though we implement

it sequentially. Thus we can have both seriai and parallel compositions of

programs:

fI 0 fa f00f1

~t- t-
h Jo Jo

t-
h

We formalize these combined compositions as symmetric monoidal (SM) cat

egories (Section 1.2).

We understand tiers in terms of comprehensions [Pav90, JMS91, LawiO]

(Section 1.3). In particular, we abstract SM 2-comprehensions from the Kripke

structure over the partial order 2. SM 2-comprehensions consist of modalities

(or endo-funetors) T, Gand coercions (or natural transformations) 7/,~, where

T erases tier 0 inputs and outputs, G boosts them to tier 1, 7/ forces safety,

and ~ coerces tier 1 data to tier O. We use T and 0 to restrict the internai

initiality of NNO to Leivant's fiat and Bloch's very safe recursions. Then the

image, in the Kripke structure over the partial order 2, of a category initial

among SM categories having SM 2-comprehensions, tiers, and base 2 fiat and

very safe recursions, consists of the !inear time funetions on deterministic

multi-tape Turing machines with constant numbers of tapes (Section 1.4).

Replacing tensor by product in our charaeterization of the !inear time fune

tions on multi-tape Turing machines recovers D. Leivant's charaeterization of

the !inear time funetions on bis register machines [Lei94]. These machines

•

•

1.1 Almost Equational Specification

allow registers to be copied in unit time'. In [l3lo~l:~] (from which our USl' of

very safe recursion starts). there is an attempt to characterizl' the linear tillll'

functions on multi-tape Turing machines by what is essen:ially D. Leivant's

chara::terization. We suspect that. in [BI092J. vector iteration is not fully

considered. In particular. there is the 'diagonal issue' (Section 104.7).

Tbere is the general heuristic that tier °operations such as quantifications

and minimizations are automatically bounded. Indced, [Bel92] 50 charactcr

izes the P time hierarchy functions, and [Lei94] so characterizcs the NP and

N !inear space functions. We so cr.aracterize the linear time hierarchy rela

tions (Section 1.5), thus improving on [\VraiS]. By the way. on multi-tape

Turing machines, the li!lear time relations are not the N linear time rela

tions [P+S3, BDG90], and the linear time hierarchy relations are the boundcd

arithmetic relations [HP93, WooS6].

We construct initial categories using almost equational specification based

on two layers of restricted equational specification: sketches and orthogonal

ity [Mak94, AR94, Bor94] (Section 1.1, Appendices LA, LB).

We have attempted (in this chapter) to be largely accessible to non

specialists. Thus we have pushed technical details to appendices. For back

ground information and further details we suggest [BW90, Bor94, LSS6, AR94,

BVv·S5].

1.1 Almost Equational Specification

1.1.1 Sketches

We modify [Mak94]. A sketch theory is (or see Appendix LA) an equational

specification with a function height : sorts -+ N from sorts to natural numbers,

such that

1. Operators (= function symbols) have arity 1. In particular, there are no

constants.

• ·1 TL'n,or and Linear Time

2. Opcrators go to sorts of lower height. I.e. gi\'en an operator f to sort

X' from sort X, which we write as

f x: X' [x: X]

wc ha\'e heightX' < heightX.

3. Only finitely many operators come from (as in 2.) any ,)ne sort.

•

Suppose that S is a sketch theory. Then an S sketch is a mode! (in set,

as in Appendix LA) of S. Thus an S sketch s has

1. for each S sort X, a set s X,

2. for each S operator f x : X' [x ; Xl, a function s f ; s X -+ s X',

such that, for each S equation to = t1 : X' [x : Xl, the functions s to, s t1 :

s X -+ s X' are equaI, where s interprets terms (i.e. strings of S operators

applied to S sorted variables) t by s x =id, s (f t) = (s f) 0 (s t).
An S homomorphism h : s -+ s' is a map between models, i.e. h consists

of, for each S sort X, a function h X : s X -+ s' X such that, for each S

operator f x : X' [x : Xl, the diagram

hX
sX--->s' X

• J1 1·' J
s x' hX" s' x'

commutes.

An S sketch s is finite if!' the disjoint union I:s ..rt x s X is finite.

We can specify any S sketch s by

1. taking enough parameters x E s X, for S sorts X, 50 that ail such are

obtained by applying S operators,

2. taking enough equations to =t1 : X' true in s to imply the rest, where

the ti are S terms with the variables replaced by parameters and evalu

ation in s is by s x = x, s (f t) = (s f) 0 (s t).

•

•

1.1 Almast Equationa! 3Pl'cificat ion

\Ve write this as the con/al

[•.. /0 = t, : X'r : X ...]

s is then, up to isomorphism. the initial mode! (in set) of the cquational

specification el'tending S with constants x : X and equations to = t l : X'.
Thus an S homomorphism h : s --. s' amounts to assigning paramcters .r : X

to h x E s' X in such a way that the equations to = t l : X' arc truc in s'

under the evaluation s' x = h x, s' (f t) = (s' J) 0 (s' 1).

1.1.2 Orthogonality

Suppose that S is a sketch theory and that M is a set of S homomorphisms.

An S sketch s is orthogonal to M if!" S homomorphisms to s el'tend uniqucly

along m E M, i.e. if!" 'v'

with m E M, 3! commuting

(Orthogonality is a restricted form of equational specification as it, given

enough colimits, induces idempotent triples.)

A basic almost equational specification (S, M) consists of

1. a sketch theory S,

2. a set M of S homomorphisms between fini te S sketches.

The models of (S, M) are the S sketches orthogonal to M, and the maps

between them are the S homomorphisms between them.

• 6 Tt'nsor and Lint'ar Time

As an example, we begin to specify seriaI composition (fol!owing [~lak94]).

5 has sorts (wherc ~ is our comment symbol)

Co ~ objects

CI ~ maps

C2 ~ triangles

and operators

di x : Cj [x : Cj+d for 0 ::; j ::; l, 0 ::; i ::; j + 1

(The face operator di omits vertex i.) Final1y, 5 has equations

for 0 ~ i ~ j ::; 1

•

As the triangles will be the graph of a seriai composition partial func

tion (namely 0 below), we wish to specify associativity. For this we use the

tetrahedron

3

--~

~i
O~l

with faces Xi (which omit vertex il. The associativity is that dl XI = dl X2 if

one has the conjunction of dj Xi = di Xj+l for 0::; i ~ i ~ 2, (i, i) f:. (1, 1).
We write this as the assertion

{dl Xl =dl X2 : Cl

[do Xo =do Xl : Cl

dl Xo = do X2 : Cl

d2 Xo =do X3 : Cl

d: Xl =dl X3 : Cl

d 2 X2 =d 2 X3 : Cl

Xo : C2 Xl: C2 X2: C2 X3: C2]}

An 5 sketch s models this assertion precisely when it is orthogonal to the 5

homomorphism

•

•

1.1 Almos! Equational Specification

[do Xo = do XI : CI
dl Xo = do X2 : CI
d 2 Xo = do X3 : CI
d 2 Xl = dl X3 : CI
d 2 X2 = d 2 X3 : CI
Xo : C2 XI: C2 X2: C2 X3: C2l

[dl XI = dl X2 : CI
do Xo = do XI : CI
dl Xo = do X2 : CI
d 2 Xo = do X3 : CI
d 2 Xl =dl X3 : CI
d 2 x2 = d 2 X3 : CI
Xo : C2 Xl: C2 X2: C2 X3: C21

where ma Xi = Xi. Indeed, the assertion is just notation for the homomor

phism.

Further, we wish to specify that the triangles are the graph of a seriai

composition partial function. Given

we want a unique triangle ft ëi fa =

/fil
->

Jo

We write this as the ëi assertion

{! fI ëi fa : C2

do (fI ëi fa) =ft : Cl d2 (fI ëi fa) = fa : Cl
[dl fI =do fa : Co fI: Cl fa: Cl]}

•

•

Tcnsor and Linear Time

where the! indicates uniqueness. namely that the following llniqueness asser

tion is implicd.

{x =x': C2

[do x = fI : CI do x' = fi : Cl
d2 x = fa : Cl d2 x' = fa : Cl
dl fI =do fa : Co x: C2 x': C2 fi: Cl fa: Cd}

An S sketch s models the ë assertion iff sis orthogonal to the S homomorphism

[dl fi = do fa : Co fi: CI fa: Cl]

[do x = fi : CI d2 x = fa : Cl
dl fi = do fa : Co x : C2 fi: Cl fa: Cd

where ml fi =J;. (The uniqueness assertion results from the transformation

ml t-+ mi of Appendix LB.)

1.1.3 Essentially Aigebraic Specification

Basic a1most equational specifications (Section 1.1.2) are painfully low

level. We sugar them to a variant of Freyd's essentially algebraic speci

fications [FS90]. For example, we respecify the above fragment of seriai
composition by

Co -- objects

Cl -- maps

d x: Co [x: Cl] -- domain (was dl)
ex: Co [x : Cl] -- codomain (was do)
{fI 0 fa: Cl

d (fI 0 fa) = d fa : Co c (fI 0 fa) = c fi : Co
[d fI = cfa: Co fi: Cl fa: Cl]}

{(f2 0 fI) 0 fa = h 0 (fI 0 fa): Cl
[/2 : Cl fi: Cl fa: Cl]}

•

•

1.1 :\ Imost Equat ional Specificat ion

This last assertion has, from th,' occurrenc,'s of 0, the impli,'d condit ions

d (h 0 fI) = c fa : Co
d f~ = C fi: Co
d h = C (fI 0 fa) : Co
d fI = c fo: Co

We recover the previous basic specification by replacing the eonditional

operator

by the sort and operators

C~

:;/+~
Cl Cl Cl

and by unnesting (12 0 fI) 0 fI =h 0 (fI 0 fol to dl Xl =dl X~ if one has the

conjunction of
Xo = hëfl
XI = (dl xo) ë fo

X3 = fi ëfo

x~ = hë(dl X3)

Similarly, given suitable layers of conditional operator (= function symbol)

assertions and conditional equation assertions on top of a sketch theory, we

cao inductively unsugar to the basic form (S, M) by

1. using graphs of conditional operators,

2. unnesting [Hod93] equations.

Given the conditional operator assertion

{... f Xo Xl ••• X,,_l : X
[•.. to = t l : X' ... Xi : Xi ...]}

• 10 Tensor and Linear Time

•

whl'rl' the context has already bccn unsugared. add the sort and operators

to 5 and then unsugar the conditional operator assertion to assertions

{! .. , ï Xo Xl ••• Xn-l : f ... di ï Xo Xl '" Xn-l = Xi : Xi ...

[... to = t l : X' ... Xi : Xi ...]}

{ to= t l : X' ...
[di X = Xi : Xi ... x: f ... Xi : Xi ...]}

After unncsting (which introduces variables for subterms)

[... y = f Xo Xl ... Xn_l : X ...]

can be unsugared to

[... y =d X : X ... di X =Xi : Xi ... x: f ...]

(Sometimes there e.xist more efficient unsugarings having equivalent categories

of models.)

1.2 Tensor and System T

1.2.1 SeriaI Composition

We finish specifying seriai composition by adding (to the specification of Sec

tion 1.1.3) the identity maps.

{id X : Cl d id X = X : Co c id X = X : Co [X : Co]}
{f 0 id d f =f : Cl (id c J) 0 f =f : Cl [J: Cl]}

Models of this specificatioo are called categories. E.g. set is the category of

(small, for a coovenieot Grothendieck universel sets and functioos.

• 1.2 Tensor and System T

1.2.2 Parallel Composition

11

As we said in the introduction. the tensor is paralld composition. ln ordl'r to

have examples such as vector spaces (Appendix I.D). we abstract combincd

serial and parallel composition (0 and 0) as sY11lmdric 11lonoidal (= SM)

categories, which we almost equationally specify following [Tr092].

An SM category is (or sec the specification below) a category C together

with tensor and unit functors

0:CxC-+C T:1-+C

as weil as associativity, symmetry, and left identity natural isomorphisms

Q X Y Z: X 0 (Y 0 Z) -+ (X 0 Y) 0 Z
uXY:X0Y-+Y0X

>'X:T0X-+X

satisfying

(uY X)o(uXY)=id uT T =id

•

as weil as the pentagon, triangle, and hexagon coherence conditions of Ap

pendix l.C. E.g. set (Section 1.2.1), with T = {O} and 0 = x (where

X x Y = {(x, y) 1 x E X, Y E Y}), is an SM category. (Actually, for

SM categories, but not for SMC categories (Section 1.2.4), there is no loss of

generality in taking the Q'S and >"s to be identities PS91].)

As the special cases f 0 Y = f 0 id Y, X 0 9 = (id X) 0 9 suffice, we

leave the general case f 0 9 implicit. We also use that, given the hexagon

condition and that u is natural, for Q to be natural it is enough that Q X Y Z

be natural in X. (Apply the hexagon twice.) Thus SM categories are specified

by the categories assertions of Sections 1.1.3, 1.2.1, the coherence assertions

of Appendix l.C, and the following. (We omit empty contexts [].)

-- Tensor and unit

{X 0 Y: Co [X: Co Y: Co]}
{f 0 Y : Cl Y 0 f : Cl
d (f0Y) =(df)0Y: Co c(f0Y) =(cl) 0Y: Co
d (Y 0 1) = Y 0 (d 1) : Co c (Y 01) = Y 0 (c 1) : Co
[J : Cl Y: Co]}

•

•

12 Tensor and Linear Time

{T : Co}
..,.. Associativity, symmetry, and left unit

{Q X Y Z: CI QI X Y Z: CI coX Y Z = (X 0 Y) 0 Z : Co
d QI X Y Z = (X 0 Y) 0 Z : CO
(QI X Y Z) 0 (0: X Y Z) = id (X 0 (Y 0 Z)) : Cl
(0: X Y Z) 0 (0:1 X Y Z) = id ((X 0 Y) 0 Z) : Cl
[X : Co Y: Co Z: Co]}

{u X Y: Cl

d 00 X Y = X 0 Y : Co euX Y = Y 0 X : Co
(00 Y X) 0 (00 X Y) =id (X 0 Y) : Cl
[X : Co Y: Co]}

{u T T = id (T l8i T)}

{À X : Cl Àl X : Cl

c À X = X : Co d Àl X = X : Co
(Àl X) 0 (À X) =id (T 0 X) : Co
(À X) 0 (Àl X) =id X : Co
[X: Co]}

-- Functorality

{((c f) l8i g) 0 (f l8i (d g)) =(f l8i (c g)) 0 (d f) 0 g) : Cl

[f : Cl g: Cl]}

{(id X) l8i Y =id (X 0 Y) : Cl [X : Co Y: Co]}
{(fi 0 fol l8i Y = (fI 0 Y) 0 (fo l8i Y) : Cl

[fo : Cl ft: Cl Y: Co]}
-- Naturality

{(o: (c f) Y Z) 0 (f l8i (Y l8i Z)) = «(f l8i Y) l8i Z) 0 (0: (d f) Y Z) : Cl

[f : Cl Y: Co Z: Co]}
{(u (cf) Y) 0 (fI8iY) = (YI8if)o(u (d f) y): Cl
[f : Cl Y: Co]}

{(À cf) 0 (T l8i f) =f 0 (À II f) : Cl [f: Cl]}

• 1.2 Tensor and System T

1.2.3 Ul1ary Numbers

13

We write N for the set of natural numbers {O. 1. 2.... }. The initial modd

in set of unary

IS

.l'v' {O: N} {sn:N[n:N]}

•

T~N--!-.N

where s n =n +1. The terms sn 0 can be identified with the unary (= base

1) numerals.

1.2.4 System T

In set we have the abstraction (= Currying)

f:WxX-+Y
Af: W -+ yX

where (A f) w = (x t-+ f w x). In SM categories we abstract this to the linear

implication

Af:W-+X-oY

SM categories having ail Iinear implications are called ~-ymmetric monoidal

closed (= SMC) categories and are specified in Appendix 1.D.

In an SMC category C, a natural numbers object (= NNO)

is an initial mode! of unary in C, which is that, It g: T -+ Y, h : Y -+ Y, 3!

C commuting

• 14

Wc spccify t his by

Tensor and Linear Time

•

{! R 9 h : CI d R 9 h = N : Co
(Rgh)oO=g:C I (Rgh)os=hoRgh:C I

[d 9 =T : Co d h =cg: Co ch =cg: Co g: CI h; CI]}

where, roughly as in Section 1.1.2, ! indicates uniqueness.

This last assertion, together with those of Sections 1.1.3, 1.2.1, 1.2.2 and

Appendices 1.C, 1.D spccify the doctrine 'r of SMC categories having NNO

and witnessed structure. E.g. set (Section 1.2.1), with T = {O}, 0 = x,
N = {O, 1, 2, ... }, 0 = 0, s = (n ~ n + 1), is in 'r. By the arguments in
Appendix LB, there exists an initia! category 1 in 'r. Thus there is a unique

'r functor i : 1 -+ set. We also have the functor

r = I(T, _); 1-+ set

X ~I(T, X) ={I map f 1df= T, cf= X}
f~fo -

Proposition 1.2.4.1

For 1 initial in 'r

1. r T = {id T}.

2. r(X 0 Y) ={(z 0 y) 0 (À Ttl 1z E r X, y E r Y}.

3. r N = {sn 0 1n EN}.

4. Even up to natural isomorphism, r is not a 'r functor.

5. Tbe functions NI -+ NI' in set of G5de1's system T [GLT89, Ros84] are

precise1y tbose of tbe form i f for 1 maps f : NOl -+ NsI'.

Proof. 1.-3. Sec Appendix 1.F.

4. r (N -0 N) is countable while NN is not.

5. NsI is defined by NSO = T, NS(I+l) = N 0 NsI. By 1.-3., i agrees, up

to na.tura! isomorphisrn, with r on 1 ma.ps f : NSI -+ NOl'. By Appendix l.B

• 1.3 Comprehensions and Tiers

and (as in [PRS9])

15

•

terminal maps T and diagonal maps 8 are definable in I. T and 8 convert the
SMC structure to a CC (= cartesian c1osed) structure. Thus system T differs
from i only in that T specifies just fragments of the uniqueness (the !'s) for R
(above) and A (Appendix 1.D). 0

A starting point for Bloch's very safe recursion (Section 1.4.1) is

Proposition 1.2.4.2

In an SMC category witb NNO, 'ri g: X -+ Y, h : Y -+ Y, 3! commuting

Proof. Consider

o

1.3 Comprehensions and Tiers

1.3.1 Comprehensions

We understand tiers in terms of comprehensions. (In Chapter 3 we begin to

think about comprehensions in conjunction with higher order types.) Our

• 16 Tensor and Linear Time

slarting point for this was recognizing that the Bellantoni-Cook composi

tion [BC92] is the serial composition in the Kripke structure on the partial

order 2. This Kripke structure is the cotensor 2 -0 set (Appendix l.E), and

has as objects the functions X : Xo -+ XI> and as maps the set commuting

squares

xo-A.. Yo

xl ly
Xl-YI

"
In 2 -0 set we have the 2 tiers of numbers

No

We first abstract 2 -0 set to 2 -0 C, with C an SM category and thus a

O-cell in the 2-category 69J! (Appendix l.E). Notice that the ordinal 2 is the

partial order 0 ~ 1. Thus the endomorphisms end(2) of 2 form a partially

ordered monoid. Reversing the multiplication, but not the partial order, set

M = end(2)o. Then the right action of M on 2 induces a left action of

M on 2 -0 C, i.e. a 2-functor M -+ 69J!. Abstracting from 2 -0 C, SM 2

comprehensions are just (or sec the specification below) 2-functors M -+ 69J!.

(In Chapters 4, 2, instead of starting from the partial order 2, we start

from the partial order 3 to characterize the Kalmar elementary functions, and

from the partial order V = ~ +- to characterize the P space functions.)

M has the elements T (x >-+ 1), id, G (x >-+ 0). We name the point-wise

partial order E : G ~ id, Il : id ~ T.

Proposition 1.3.1.1

M bas generators T, G, Il, E and relations

•
TG=G
GT=T

as a 2-category.

Il T = id

EG =id

Til = id

TE=lI oE
GII=lI oE

GE=id

• 1.3 Comprehensions and Tiers li

Proof. E.g. TZ = T (G T) = (T G) T = G T = T and t T = t (G 1') =

({ G) T = id. 0

So an SM !!-comprchcnsion consists of

1. an SM category C,

2. functors (indeed, modalities) T, G : C ~ C prescrving, up to identity.

T, 0,0<, u, >. and satisfying the relations of Proposition 1.3.1.1,

3. natural transformations (indeed, coercions) Tf : id ~ T, { : G ~ id

satisfying

Tf T =id

Tf (X 0 Y) =Tf X 0 Tf Y

{T = id

{ (X 0 Y) ={X 0 { Y

•

as well as the relations of Proposition 1.3.1.1.

Thus an SM 2·comprehension is specified by Sections 1.1.3, 1.2.1, 1.2.2, Ap

pendix 1.C, and the following.

-- l-cells
{T X : Co [X : Co]}

{T 1: Cl dT 1 = T dl: Co cT 1 = Tel: Co [1: Cd}

{T id X = id T X : Co [X : Co]}

{T (f1 0 la) = T fI 0 T la : Cl [11 : Cl la: Cl]}
{TT = T: Co}

{T (f 0 Y) = T 1 0 T Y : Cl [1: Cl Y: Co]}

{T 0< X Y Z =0< (T X) (T Y) (T Z) : Cl

[X : Co Y: Co Z: Co]}

{T u X Y = u (T X) (T Y) : Cl [X : Co Y: Co]}

{T >. X = >. T X : Cl [X : Co]}

. " similar for G ...

-- 2-cells
{Tf X: Cl d Tf X = X: Co C Tf X = T X: Co [X : Co]}

{(Tf cf) 01= (T 1) 0 Tf dl: Cd/: Cl]}
{TfT=id T:C1}

• 18 Tensor and Linear Time

h (X 0 Y) = TJ X 0 TJ Y : Cl [X: Co Y: Co]}
{(X : CI d (X = G X : Co c (X = X : Co [X : Co])
{((cf) 0 G 1 = 10 (d 1: CI [1: Cl])
{(T = id T: Cd
{dX 0 Y) = (X 0 (Y: Cl [X: Co Y: Co])
..... Relations

{T G 1 = G 1 : Cl G T 1 = T 1 = Cl [1: Cl]}
{TJ T X = id T X: Cl (G X = id G X: Cl
TT) X = id T X: Cl T (X = (TJ X) 0 (e';") : Cl
G TJ X = (TJ X) 0 ((X) : Cl G (X '= id G X : Cl
[X: Co])

1.3.2 Extents

Given an SM 2-comprehension (C, T, G, T), () (Section 1.3.1), we define,

modifying [Pav90], an extent functor X : C -+ 2 --0 C which commutes with

the canonical M actions (and is thus a 2-natural transformation). Set X = T)O(.
By the definition of cotensor (Appendix I.E), the natura! transformation

defines a unique functor X: C -+ 2 -0 C such that r. X = X. This boils down

to

X(J:X-+Y)

•

Proposition 1.3.2.1
Tbe lunctor X commutes witb tbe C4.!'1onical M actions.

Proof. E.g. X T X = (X T X : G T X -+ T T X) = (id T X : T X -+
TX)=TXX. 0

• 1.3 Cornprehensions and Tiers 19

1.3.3 Dyadic Numbers

N (Section 1.2.3) is the disjoint union {O}U{2n+ lin E N}U{2n+2 1 Il ES}.

Thus each n E N is unique!y represented by a dyadic (= base 2 with digits 1.

2) numeral. The initial mode! in set of

lS

N {O: N} {SI n : N [n : Nl} {S2 n: N [n: lVl}

T~N~N~N

where SI n = 2n + 1, S2 n = 2n + 2. Thus the term Sko SkI ••• Sk._1 0 can he
identified with the dyadic nurncral x = kn _ l ... kt ko of Iength Ixl = n.

1.3.4 Tiers

In 2 -<l set we have the 2 tiers of dyadics

•

0"",,T ---'--+ "0 ---+ J'O

ON" NT ---'--+ 1 ---+ 1

These satisfy

T(T~No~No)

G(T~No~No)

T~N~N

111
T---+T-T

T~N~N

l lid lid
T(ï"N N

• 20

1.4 Linear Time

1.4.1 A Linear Time Doctrine

Tensor and Linear Time

The objects of the linear time doctrine ~in'.timt are (or sec the specification
below)

1. SM 2-comprehensions (C, T, G, TJ, f) (Section 1.3.1)

2. with dyadics

°N-""""T-. 0-"0--;"0

in C such that

T(T~No~No)

and satisfying

3. Leivant's fiat recursion (as below) and

4. Bloch's very safe recursion (as below).

Weset

G(T~No~No)

Thus T Nl =TG No =G No =Nt.
The tier 0 category CIO)' which we need for 3. and 4., has as objects the

C commuting

X TX

i,rli
T

and as maps (X, i, il) ~ (X', i', iD the C commuting

•
X-.!.......X'

• lA Linear Time

C(O) has 51\1 structure by taking T to be

(f: (X, i, il) -+ (X', i', i~)) 0 (Y, i, id to be

X0Y~X'0Y TX0TY
T J0TY

1 T X'0TY

'
0jl l" 0j

T0T T0T

nl ln
T id

IT

and e.g. q (X, i, il) (Y, i, il) to be

21

•
Coherence for C(O) fol1ows from Mac Lane's coherence theorem [Tro92].

• 22 Tensor and Linear Time

Flat rccursion [Lei94] is that (using a remark of R. Cockett's) Tf C(O)

objects (X, i, id, the

No0X

l"0x

T 0 X 00X: No 0 X :.,ex No 0 X

T0TX

lid
T~$lT X7T0T X7T0T X

lT0i

T0T

lu
T

are sum cocones in C(O)' (This is case analysis as in Section 1.3.3. The taïl of

chosen isomorphisms is part of being in C(O)') In other words, fiat Tecursion

is that Tf C commuting (with k =1, 2)

x 9 IY No0X h. 1 Y

T0TX~TY

TC~il 1;
T0T u lT

3! C commuting

T 0 X OCllX, No 0 X •• Cll""; No 0 X

ul Il ~11
X :Y Y9

In particular we define de/ete D : No -+ No such that (dropping o's), for
n: T -+ No,

•
DO=O D Skn= n

• 1.4 Lincar Timc

by the fiat rccursion

o " 't '"T --. "0-~ "'0

~Dl ~lD
No ,Vo

Very sale recursion [Bl092] is that "i C commuting (with k = 1. 2)

3! C commuting

(Compare this with Proposition 1.2.4.2.)

In particular we define tier 1 diagonal 0: Nl -+ N0 0Noand concatenation
e : Nl 0 No -+ No such that (dropping 0'5 and ignoring À T, (No), for

n: T -+ Nl , x: T -+ No,

on=n0n

Oex =x (Sk n) ex = Sk (nex)

by the very sare recursions

T
a

J Nl
-. INl

Hi 1- 1-
T0T 000

1 N0 0No "110"11
1 N0 0No

T0No
00No

1 N1 0No
slc0No

1 N1 0No

À Nol 1- 1-
No id

,No -. INa

•

• 24 Tcnsor and Lincar Time

•

Putting together the layers. the linear time doctrine ~in'rimc, both objects

and maps, is specificd by Sections 1.1.3, 1.2.1, 1.2.2, 1.3.1, Appendix I.e, and

the following.

- Dyadics

{No: Co 0: C, d 0 = T : Co cO = No : CO
SI : C, d SI = No : Co c SI = 1'1'0 : CO
S2 : C, d S2 = No : Co C S2 = No : Co
T 0 = id T : C, T SI = id T : C, T S2 = id T : C,
N, : Co N, =G No : Co}

- Flat recursion

{! Ro 9 hl h2 i i, i i, : C,
d Ro 9 h, h2 i i, i i, = l\ioe dg: Co
(Ro 9 h, h2 i id i,) 0 (0 e d g) =9 0 À dg: C,

(Ro 9 h, h2 i id i,) 0 (SI e d g) = h, : C,
(Ro 9 h, h2 i id i,) 0 (S2 e dg) = h2 : CI
i 0 (T Ro 9 h, h2 i il i j,) =(À T) 0 (T e i) : CI
li 0 Tg =i: CI
i 0 T hl =(À T) 0 (T e i) : CI i 0 T h2 =(À T) 0 (T e i) : CI
il 0 i =id T dg: CI i 0 il = id T : CI
il 0 i = id T cg: CI i 0 il =id T : CI
d hl = No e dg: Co c hl = cg: Co
d h2 = No e dg: Co c h2 = cg: Co
9 : CI hl: CI h2 : CI i: CI il: CI i: CI il: CI]}

• lA Lincar Time

~ Very safe rccursion

{! RI 9 hl h2 i il : CI

d RI 9 hl h2 i il = NI ~ dg: Co

(RI 9 hl h2 i iJ) 0 ((G 0) 0dg) = go>' dg: CI

(RI 9 hl hd il)o((G sd0dg)= hl oRI 9 hl hd il: CI

(RI 9 hl h2 i il) 0 ((G S2) 0dg) = h2 0 RI 9 hl h2 i il: CI

fi 0 T hl = i : Cl i 0 T h2 = i : CI

jl 0 j =id T cg: CI j 0 jl =id T : CI

d hl =cg: Co c hl =cg: Co

d h2 =cg: Co c h2 =cg: Co

9 : Cl hl: Cl h2 : Cl i: CI il: Cl]}

1.4.2 Formai Linear Time

.)--"

•

By the arguments in Appendix LB and Section 1.4.1, there is an initial catc

gory 1 in ~in'Iime. Further, 1 is the quotient of a Herbrand univcrse colimi Pi.

We cali the 1 maps lormallinear time maps and think of their reprcsentativcs

in the Herbrand universe as programs. The standard model r 2 = (2 --0 f) 0 X

of these formai maps is the composition

f.
1 ;2--oset

~~
2--01

of the extent X (Section 1.3.2) and the cotensor with 2 of r, where r is

r:l-+set

X 0-+ I(T, X) ={1 map 1 1dl =T, cl =X}
10-+/0_

(Thus r consists of the no inputs formai maps.)

Proposition 1.4.2.1

For 1 initial in the doctrine 5n'!ime (Section 1.4.1)

1. r T = {id T}.

• 26 Tcnsor and Lincar Time

2. r (X 0 Y) ={(x 0 y) 0 (A T)-l 1 x E r X, yE r n.
.3. r No = {stdo n 1nE N}, where stdo 0 = O. stdo(2n + k) = Sk 0 stdo n.

4. Up to natural isomorphism, the unique -Cin'lime functor i : l -+ 2 -0 set
is f 2 •

Proof. Sec Appendix 1.F. o

Proposition 1.4.2.2

The linear time functions NI -+ NI' on deterministic multi-tape Turing ma

chines with constant numbers of tapes are precisely those of the form f G J
for l maps J, where lis initial in the doctrine -Cin'!ime (Section 1.4.1).

Proof. Sec Sections 1.4.3-1.4.i.

1.4.3 Dyadic Register Machines

A dyadic register machine has state consisting of

instruction pointer ~

data vector d

program vector P

and has the run algorithm

i:= 0

load inputs into sorne of the d;

zero the rest of the d;

load the program into the Pi

while i < Ipi
execute Pi

look at outputs among the d;

o

•
The vectors d, Phave (big enough) finite lengths Idl, Ipi and their components

di, Pi for 0 ::; j < Idl, 0 ::; i < Ipl are registers. The i, d; contain natural

• 1.4 Lincar Timc .)~-,

•

numbers. The Pi contain instructions. The instructions and thcir actions arc

Sk J a di := Sk di 1:= a

D j a di := D di 1:= a

C j abc i := a if dJ = 0
i := b if di is odd
i := c if di is non-zero even

where Sl n = 2n+ 1, S2 n = 2n+2, D 0 = 0, D (2n+ 1) = n, D (2n+2) = n.

(Compare this with Section 1.3.3.)

1.4.4 Turing Machines

We show that the dyadic register machines (Section 1.4.3) and the determin
istic multi-tape Turing machines with constant numbers of tapes [BDGSS,
BC94] compute the same !inear time numeric functions.

1. Suppose we have an n tape deterministic Turing machine with tape

alphabet {#, 1, 2}, where # denotes blank. Simulate the tape

tj = '" # a_on ... a_2 a_l ao al ... a,,-l # ...
l:::.

where a_on and a,,_l are the leftmost and rightmost non-blank symbols and
l:::. is the head, by a pair of data registers containing the dyadic numerals

d ' "dd -' "h' d b2j = a_on '" a_2 a_l an 2j+t - a"_l ... al ao' w ere ai co es ai Y

a' # 1 2J,
11 12 22a;

E.g. simulate move head j right by popping ao from d2j+t (viewed as a stack)

and then pushing aoto d2j and simulate hait by (out of range) address Ipl.
2. We simulate a dyadic register machine (i, d, p) by a Idl tape deter

ministic Turing machine with tape alphabet {#, 1, 2}. Simulate the data

register dj = a,,_l ... al ao by the tape

tj = ... # ao al ... a..-l # ...
l:::.

• 28

E.g. simulate Sk dj a by

move head j left
write k at head j

if a < Ipl
set control state to a

else
haIt

Tensor and Linear Time

•

3. The simulations 1., 2. change execution times only by constant fac
tors, but the numbers change formats. However, reversai and alternate 2
(un)padding can be done in linear time on either of these machine models
(with enough registers or tapes). Further, reformatting needs to be done only
at input and output.

1.4.5 Enough Maps

We will show that every !inear time numenc function has the form r G f' for
sorne 1 map f'. We do this by coding dyadic register machines (Section 1.4.3)
inside 1 (Section 1.4.2). We drop o's and work modulo Q'S and).'s [JS91,
Jay89].

ln fact, with inputs X = Nfl and state (instruction pointer and data)
and program Y = N:(I+ldl+!pll (where e.g. NIeD = T, Nle(l+l) = NI 0 Nl@l),

we will code the initialization by an 1 map 9 : X -+ Y, and the next state

transition by an 1 map h : Y -+ Y. The state vector J n 0 XD 0 Xl ••• , for

n : T -+ NI, Xi : T -+ NI> is then defined by the very safe recursion

So we will also code a big enough linear time bound by an 1map t : X -+ NI,
We then use (1' (Section 1.2.2) and G 6 (Section 1.4.1) to define 6 : X -+ X 0X

such that, for X : T -+ X, 6 X = X 0 x. Putting ail this together, we define J'

•

•

1.4 Linear Time

by the composition

x~ X 0 X~ NI 0 X ..E.!.... G }..
!'

Actually, we still need to get the outputs out of Y. But tensor together an

id No for each output and an TI No for each non-output.

We define 9 as a tensor of { No 's, to load inputs, D's, to zero work space,

and sko Ski '" D's, to load program instructions.

We use SI and • (really G • with • from Section 1.4.1) together with Cf

and G 8 to define t : X -r NI such that, for Xi : T -r Ni,

t Xo ® XI .•• =SI SI •.. Xo. Xo '" XI • XI

With enough SI'S and .'s, t will output any given linear time in the sense that

(using Section 1.3.3 and Proposition 1.4.2.1)

It Xo ® XI "'\ = L Ailxil +B
i

for any given Ai, BEN.

Finally, we define h by coding execute Pi. This last looks at a constant

amount oflow end (= least significant) digits and then, depending on what it

sees, modifies a constant amount of low end digits. We code this as fo11ows.

1. Use Cf to permute a Yj (the state vector is Yo ® YI 0··· : T -r Y by

Proposition 1.4.2.1) into position (the Oth) for an Ra.

2. Use Ra to destructively read:

Ra ... : No 0 Y' -r Y = No 0 Y'

In order to not destroy more than 1 digit of Yj, route D Yj to the Oth

position. (Ra's cases can osee' this much of the Oth position.)

3. Undo the permutation of 1.

4. Use 1.-3. to destructively 'address decode'.

5. At the leaves of the 'address decode' of 3. place a 'rom' of tensored

actions Sko SI<, ••• D D ... to modify, and possibly restore, low end

digits.

• :l0

1.4.6 Safety

Tensor and Linear Time

•

The essential feature of the Bellantoni-Cook composition [BC92] is safe/y:

that tier 0 inputs (T -t No) can not affect tier 1 outputs (NI -t). We now
show safety in 1. Consider l map f : Nf!0N~J -t Nf!'. Applying TI: id -t T
wc gct (as T No = T and TI T =id) commuting

rve! ~ ,,0J _!_: rvlil!'
• l '<:>"'0 • l

~ -1 lid
NO! 0 T0J ----> .viii!'

l T! • l

1.4.7 Not Too Many Maps

We will compile l maps f (actually their Herbrand universe representativcs)

to dyadic register machine codes which compute r G f. At the same time we

will bound the time and space used. We work modulo o:'s and À's.

By Proposition 1.4.2.1, l maps T -t Nf! 0 N~J decompose as l maps

Xi : T -t Nb Yi : T -t No and we can identify the components Xi, Yi with

dyadic numerals. We calI the components Xi, Yi variables and write IXil, IYil

for their lengths (Section 1.3.3). Thus given

f : N?! 0 N~J -t Nr 0 N~J'

we have

,~, " f ()Xo '01 Xl '" Yo 0 YI ... = 0 Xo 0 Xl •.. Yo 0 YI '"

and by safcty (Section 1.4.6)

X~ 0 x; .•. = f 0 (xo 0 Xl ..• 0 0 0 ...)

We will show that

time(f 0 (xo 0 Xl ..• Yo 0 YI ..•)) ~ 'EA;\Xil +B
i

where this is the computation time not counting zeroing. We will account

for zeroing separately. (Alternatively, [Bl092] codes 50 that, at the expense of

•

•

1.4 Lincar Timc

producing a lincar amount of garbagc. zcroing can bl' donc in constant tillll'.)

To show this time bound. wc will also nccd the output bounds. for i' El'.

i' E J',
Ix:-1 $ L A;\xil +B

\yj,\ $ 2:. Ailx ;\ +maxi IYi\ +B

(Wc use max to get by with just 1 set of Ai, BEN for each f.)

By Appendix l.B, 1 is built up by id, 0, 0, Q. <7. ,\. T. G. T}. (. Ho, RI
from No, 0, Sb S2 (with the codomain and domain c, d rcducing away). Wc

do induction on this build up.

We wish to compute e.g. Y00Yt >-+ Yt 0 (00T} No) in, exccpt for the zcroing
of Yo, constant time. Thus we represent variables Yi by pairs of data rcgisters

where names 'Yi have constant length while values Yi need not. Then we

implement Yo 0 Yt >-+ Yt 0 (0 0 T} No) by

o

Yt YI

We compile symmetries <7 and variables Xi similarly.

We do not 50 compile Yo 0 Yt >-+ Yt 0 Yh which is not in I. lt may be

impossible to implement Yo 0 Yt >-+ Yt 0 Yt in constant time on deterministic

multi-tape Turing machines with constant numbers of tapes. The diagonal

issue consists of not accounting for this.

We implement a, '\, id, ~ by doing nothing. We implement T, G by

doing nothing different. In bounds involving G, Yi's may become Xi 's, but not

conversely. This works by weakening max (or nothing) to +.
We implement St, S2 by the instructions Sh S2.

We implement ft 0 fa, where fa '5 output variables are ft's input variables,

by fust running the compilation of fa and then that of ft. Even though fa

• 32 Tensor and Linear Time

may grow the inputs to fI, the induction step works due to safety and the

inductive hypothesis for output bounds.

We implement fo (9 fI, where fo's variables are disjoint from those of fI,

by running the compilation of one of them and then that of the other.

We implement (Ra h hl h2 ...) 0 (Yo (9 Xo 0 Xl '" YI 0 Y2 ...) using
instructions C, D:

Cyogh\h;
h~: Dyo hl

h;: DYo h2

We implement (RI 9 hl h2 ...) 0 (xo 0 Xl '" Yo 8 YI •..) using loops.

Since (RI 9 hl h2 •..) 0 «Sico 0 sI:, 0 •• , 0) 0 ...) =hlco 0 hk• o •.. go ... we
first need to reverse control digits:

~
>-+~

•

So, with the scratch data. register tmp initially zeroed, the code is

Being tier 0, hl> h2 take (ignoring zeroing) constant time. Thus

time{(R1 9 hl h2 •••) 0 (xo 0 Xl •••)) < K"lxol +LAflx.\ +K"'
.>0

• 1.5 The Linear Time Hierarchy

jyj.\ :s 1\lxol +L Aflxi\ +max IYJ\ +1\'
i>D J

for constants K, K', 1\", 1\'" E N. (There are no x:;s.)
Finally, we consider zeroing

",No 0 •
iVa -+ T -- .1.\'0

The code
f: C y next f' f'
f': Dy f

33

•

takes time 21yl + 1. lnside a loop RI only the first zeroing of y needs to
be charged this much time. Additional zeroing just counteracts writings Sk

within the loop. Thus we can divide up the time of this additional zeroing
and charge it, in advance and in constant amounts, to the writings Sk within

the loop.

1.5 The Linear Time Hierarchy

As a corollary of the proof (Sections 1.4.3-1.4.i) of Proposition 1.4.2.2, we will
characterize the linear time hierarchy relations. As usual, we simulateconstant
numbers of alternations by adding data registers to deterministic machines.

However, by typing these added registers tier D we implicitly, rather than
explicitly, provide the needed bounds.

Proposition 1.5.1

Tbe linear time bierarcby relations are precisely tbose of tbe form

{(ao, al, •.•) e NI 13 Yo VYl ••• r G Cf 0 (xo 0 Xl •.. Yo 0 Yl ...)) = D}

for 1 maps f : N?I 0 N~J -+ No. Xi =stdl ai : T -+ Nlo Y; : T -+ No. wbere

1 is initiai in the doctrine ~in~me (Section 1.4.1).

Proof. 1. One gets enough relations as one does for the polynomial time

hierarchy [BC94, BDG88, BDG9D]. Pop digits from y; to decide the 'or' or
'and' branching. Increment i at alternations between 'or' and 'and'.

• 34 Tensor and Linear Time

2. Only the loops RI can pop off and read more than a constant number
of digits from the Yj' But, by the arguments in Section 1.4.i, the number of

these iterations is !inear in the lx". Thus the quantifications Q Yj are implicitly

linearly bounded by the lx". Thus we do not get too many relations. 0

l.A Sketches as Presheaves

Suppose that v' is a model of ZFC [JeciS, KunSO]. With Set the category of
sets and functions in V' and 0 denoting opposite, we have the power set functor

p : SetO -+ Set. With the singleton maps Sx : X -+ P X by x t-+ {x}, we
have a cumulative hierarchy U : ordinals -+ V' by

Uo= {} U' = colimU'
J i<.j "

•

We assume there exist strongly inaccessible cardinals Qo < QI < Then

the U",. are models of ZFC. (Thus the U"" are Grothendieck universes [Bor94].

With 17 : id -+ p2 the unit of the adjunction po -; P, can the 17u. : Ui -+ Ui+1 =
p2 Ui, which are natural, be used in place of the Su, : Ui -+ Ui+l = P Ui,
which are not?) We say that the sets in U"" are Qi small and we write set;

for the category of sets and funetions in U",•• set (small) will be whichever of
seto, set1 , • •• (Qo small, QI small, . ..) is convenient.

Given a category S and an object s of setS, we say that s is finite if the

disjoint union Es object X S X is finite. An object X of S has finite fan-out if

S(X, _) is finite. A sketch theory is a small category S such that

1. Ali S objects have finite fan-out.

2. Sis acyclic (= 1-way). I.e. all endomorphisms in S are identities.

3. S is skeietaL I.e. isomorphic objects in S are equal.

(2. and 3. are due to F. Lawvere. In particular, finite partial orders sucb as

2, V, and 3 are sketch theories.)

• 1.B Initial Modc1s

Proposition l.A.l

Given a sketch theory S, 3 a function height : Sobj -t N. from the objects of

S to the natural numbers. such that 'V non-identity S maps f : X -t X' we

have height X' < height X.

Proof. Suppose that, 'V S objects X, 3 a largcst n E N such that 3 non
identity S maps

x~~ ... 1"-1:

Set height X = n. Then

X J X' Jo 11 J.'_I-t ~ ---+ ... ---+

shows that heightX' < heightX.

Suppose that 3 an S object X and an w indexed chain

Jo 11X ---+ ---+ ...

of non-identity S maps. Then, with I1i<O fi =idx, I1i<j+l fi = Ji 0 I1i<j fi, as

X has finite fan-out, 3 j < k such that I1i<j fi = I1i<k f;. Thus I1i<k-i fi+i

is an endomorphism. Therefore fi is an isomorphism, and thus an identity,

contrary to hypothesis. 0
So, taking S objects as sorts and enough S maps as operators, sketch the

ories S are the equational specifications of Section 1.1.1. Thus S sketches and

homomorphisms forro the category setS, which is the category of presheaves
on SO.

Proposition 1.A.2

For a sketch theory S, the finite S sketches are preclse1y the finite1y presentable

abjects (AR94) in sets.

Proof. Finite colimits of representables in setS are linite.

l.B Initial Models

o

•
Given a. basic almost equational specification (S, M) (Section 1.1.2), we will

construct (in set) an initial mode! 1 of (S, M). Then we will show, using

•

•

Tensor and Linear Time

projective covers, that 1 is a quotient of a Herbrand universe [LloSi], (EIse·

where Wc will show thatthe set models of the (5, '''1) are precisely the locally

finitely presentable categories,)

Suppose that for each m E M we add m" to M, where

id

commutes and po denotes push·out, Then. to check for orthogonality, it is

enough to check for injectivity (AR94], (A sketch S is injective relative to M
iff maps to s extend along m E M. The m- then force the uniqueness.)

So we add the m- to M. For m E M, the instances mof mare from the
push·outs

With 0 the sketch empty at each S sort and the mi instances of elements of

M,lis the colimit of the tree of all fini te deductions from 0 [Mak94, AR94],
a fragment of which is - -mo mlo----+ So - SI

~~
S2 S3

CalI sums of representable sketches (=, up to isomorphism, the S(X, _))

free. As the representables are projective, relative to the regular epimor·

phisms, so are the frees. (An object P is projective relative to a set of maps

E iff maps from P lift over e E E, where h lifts h over e iff

commutes.)

•

•

l,B Initial ~Iodds

Given a sketch s. cali xE s X. with X an 5 sort. p"illlili,'" itf it is not of

the form (s J) x' for some 5 operator f x' : X [x' : X'] and SOllle x' E .' X/,
With P the sum of representables s(X.•l <.s ind,'xed by the primitivel'1"l1Ients

xE s X (i.e. [.. , x : X ., ,] for primitive xE s Xl. a finit" sketch s has the

projective co,'er c : P -+ s. where c assigns parameter x to primitive clement

x. (A projective cover c : P -+ s is il. regular epimorphism c such that P is

projective, relative to the regular epimorphisms, and such that V commllting

if e is a regulax epimorphism and i is a monomorphism, then i is an isomor·

phism.)

From a projective cover c : P -+ S we can form a kerncl pair

_ k. Ps ----.

h l'b le- -p-c-. S

where pb denotes pull-back. Then, \l'hen s is fini te, we can take a projective

cover ë: P -+ sof s. Thus homomorphisms between finite sketches lift as

With this presentation

of the tree of finite deductions from 0, l is a quotient of the Herbrand univcrse

colilOi Pi.

• .18

l.e Coherence

Tensor and Linear Time

•

The pentagon, triangle, and hc:ragon conditions are that. with 0's and the

arguments of the a, 0", À omitted,

W (X (Y Z)).-2....., (W X) (Y Z) _0_ «11' X) n Z

wol loz- .w «X Y) Z) 0 . (l-V (X }')) Z

T (X n 0 • (T X) Y

~~
XY

X(YZ) XaIX(ZY)~(XZ)Y

oJ. laY
(X Y) Z ---v" Z (X Y) (Z X) }..

commute. We specify these by

{(a W (X® Y) Z) o(W®(aX Y Z))

= «a W X Y)® Z) o(a (W®X) Y Z)o(a W X (Y®Z)): Cl
[W:~ X:~ Y:~ Z:~}

{À (X ®Y) = «ÀX)®Y)o(a T X y): Cl [X: Co Y: CD]}
{(a Z X Y) 0 (0" (X l8i Y) Z) 0 (a X Y Z)

=«0" X Z) l8i Y) 0 (a X Z Y) 0 (X ® (0" Y Z)) : Cl
[X : CD Y: CD Z : CD]}

l.D Linear Implication

Small vector spaces over a field k (or small modules over a commutative ring

k) forro not onlyan SM category (with unit T = k), but an SMC category,
i.e. "1 objects X 3 a linear implication adjunction

• 1.E Cotensor 39

For vector spaces over k, X ." Y = hom(X. Y). where hom(X. }') is the set

of k·linear maps from X to Y given the point.wise \"Cetor space structure.

Indeed, for "ector spaces one defines the tensor 1:) by

. 0 X -i bom(X, _)

Having a!l tbe adjunctions

C(-. X -0 }')

9
t-+ A f = (X -0 J) 0"

C(. 0X, Y) :::::
@o (g0X)

f

is specified by

{X -0 Y : Co @ X Y : Cl
d @X Y = (X -0 Y) 0 X : Co c @X Y = Y : Co
[X : Co Y: Co]}

{! A W X f: Cl
dA W X f =W : Co cA W X f =X -0 (c J) : Co
(@ X (c J)) 0 «A W X J) 0 X) = f : Cl
[d f =W 0 X : Co W: Co X: Co f: Cl]}

{" W X : Cl "W X = AW X id (W 0 X) : Cl
[W : Co x: Co]}

{X -0 h: Cl
X -0 h =A (X -0 (d h)) X (h o@X (d h)) : Cl
[X : Co h: Cl]}

l.E Cotensor

•

The 2-category cat of sma!l categories is the prototypical example of a 2

category [MP89, Bor94], with O-cells = smaIl categories, l-cells = functors,

and 2-cells = natura! transformations. Whereas a category C has hom sets

CCX, Y) = {C map f 1 d f = X,' c f = Y}, a 2-category ~ bas hom
categories ~(X, Y). Vertical composition is inside bom categories, while

• 40 Tensor and Linear Time

horizontal composition is of hom categories. Thus horizontal composition is

similar to the tensor 0 of SXI categories. Indeed. both 2-categories and SM

categories are special cases of hicategories.

Implicit in the linear time doctrine ~in'rimc (Section 1.4.1) is the 2

category 6!m of smail SM categories with witnessed structure. The models (in

set) of the specification of Sections 1.1.3, 1.2.1, 1.2.2 and Appendix Le give

6!m except for the 2-cells. As 2-cel1s we take those natural transformations

v preserving T, 0 up to identity in the sense that

v T =id v (X 181 Y) = v X 181 v Y

In a 2-category :l:> with O-cell C, the cotensor 2 -0 C is defined by a

2-natural isomorphism [Bor94, KeI89]

:l:>(-. 2 -0 Cl

l v ; 1

2 -0 C •

•

In cat, 2 -0 C exists and is the functor category C2 with the additional

structure of the comma category c/C. There T. views an object of C2 as a

map of C.

Proposition I.E.I

2 -0 C exists in 6!m and bas tbe underlying category C2.

Proof. Form 2 -0 C in cat. As T take id : T -4 T. As 181 on

• loF Gluing 41

take

Xo 0}o 1001'0
X~ 0}o

X0yl lX'01'

X I 0 YI X' }'
!J0Y,

1. 1 0 '1

As e,g. q X Y take

X0 0 Yo
(f Xo Yo

1 Y0 0Xo

XCi)Yl 11'0X

XI l8i Yi
(f Xl Yl

! Yi I8iXI

0

l.F Gluing

Gluing (= Freyd covers) [L586] is a. partial alternativeto reduction techniques.

First we apply gluing to 1 initial in -Cin'!ime and then to 1 initial in '3:.

Proof of Proposition 1.4.2.1. Form in cal the comma category

(2 -0 set)/r2 -...::",,-'~l1

~1 :l~
2-oset id 12-oset

We proceed to add structure to (2 -0 set)/r2 in such a way that 11"1 will end

up in -Cin'!ime.

Maps f: X -+ Y in (2 -0 set)/r2 are 2 -0 set commuting

•

• 42

In set this is commuting

Tcnsor and Lincar Timc

•

Xo~_~o~_
1 X, ~ , Yi

r Gx - - -1- - ~ r GY, 1
....... - " -rTX !rTY

with faces

cover (= 1:"0 projection)

base

rGXrG~fGY

rxxl lrxY
fT X rT}fTY

which 'remembers' the 1:", projection to the 1 map f : X -+ Y. (We have

overioaded the symbol f to denote both a (2 -<> set)jf2 map and an 1

map).

stage 0

stage 1

• l.F Gluing

(and 2 more).

As T take

T 'T

o....idl 10.... id
rTid"'rT

(Recall that X T = id and that in set T = {D}.)
As (f : X -+ X') 0 Y take, writing x 0 y for what is rcally (x, y) ~

(x x 0 yy) 0 p. T)-l,

cover

- - ÏoxYo - Xo x Yo _o.:-..:--;! X~ x la

Xxyl lx·xY

Xl x fi. ---=_=-=_-1 X; x :Plil xY,

base

stage 0

r G (X0 Y)

r" (X0Yjl
r T (X 0Y)

r G (J0Y) : r G (X' 0 Y)

Ir" (X'0Yj

r T (J0Yj 1r T (X' 0 Y)

•

stage 1

Xo x fa 1 x~ x fa

zo0~l IZ.0~
r G (X 0 Y) ---; r G (X' 0 Y)

Xl X fi. 1X; x fi.
z'0;;l IZi 0Vi

r T (X 0 Y) ---; r T (X' 0 Y)

• 4·1

E.g. as q takc

coyer

base

Tcnsor and Lincar Time

For !, 71 take
coyer

r G(X®Y)

rx<x0Yll
r T (X ®Y)

r G ~ X Y J r G (Y ® X)

Ir" (Y0X)

r T ~ X Y 1 r T (Y ® X)

base

For No take

•

N IT

"<hl lo-+id
r N1r"Nor T

where std1 0 =0, std1 (2n + 1) = Sl 0 stdl n, std1 (2n +2) =S2 0 std1 n•

• l.F Gluing

For
o ,. " ,.T ---- J't'o -- ~\'o

take
stage 0

stage 1

Given g: X -t Y, hk: No I8iX -t Y,

•

for Ra take

stage 0

r(NI I8iGX) rGRa h h" .. ,rGY
9 1 :: , '1 J JI

stage 1

- tl -T X Xl ----..::...----41 Yi

(O"'id)0ii1 1~
r (T l8i T X) rT Ra h h 1 r T y

9 1 2"IJJl

• 46

Givcn g: X -t Y, hk : Y -t y,

for RI take

stage 0

T"nsor and Lincar Tim"

•

N xXo
R1 90 h10 h~o

Ça

std10Xo1 i-
11/0
1

f(N1 0G X) r G R, 9 h, h, i i, rGY

stage 1

N xX1
RI 91 hll h21

Çi

Itd1 ~Xl1
,
\..,.

r (N1 0T X)
rTR'9h, h,jj,

,rTY

Thus, since 1 is initial in .ein'!imc, 3! commutiog

(2 -0 set)jr2

y~
1 id 1

in .ein'!imc.

1. Start with f : T -+ T in L Then, as 1l"1 0 j = id, i f has stage 0

T IT

Oo-+id1 lo"'id

rTm rT

•

•

I.F Gluing

So, starting from 0 in the the upper lert. G J =G J 0 id = id. while

T-~·i>T

'T=idl l' T=id
T-T

J

also commutes.

2. Start with J : T -lo X \9 Y in 1. j J has stage 0

Thus GJ = (xo x \9 Yo y) 0 (À Tt!' while

T~GX\9GY

'T=idl l'X0'Y

T J 1 X\9Y

also commutes.

3. Start with J : T -lo No in 1. j f has stage 0

Thus G f =std1 n, while

T~Nl

'T=idl l,No
T~No

also commutes.

4i

• 48 Tensor and Linear Time

•

4. !nductively define a natura! isomorphism v : i -+ r~ with v T by 1.,

v (X 0 Y) by 2., and v N; by 3. 0

Proof of 1.-3. of Proposition 1.2.4.1. We modify the above 1.-3. argument.

Use the comma category

set/r " ·1

.ol==1r
set id J set

For (x : X -+ r X) -0 (y: 'Y -+ r Y) use the natura! bijection

ïWxX J'Y

ws=l Iv
r (W0X)rrr-y

where 'U = (x 0-+ @ 0 (9 0 xx) 0 (À T)-l) and pb denotes puII-back. 0

•

•

49

Chapter 2

V-Comprehensions and P Space

Introduction

Român [RomS9] characterized the primitive recursive functions as the image

in set (the category of small sets) of categories initial in the doctrine which
adds stable NNO to the FP doctrine (the doctrine of categories having fi·

nite products and witnessed structure). (Doctrines are often categories or
2-categories cf categories.) We have characterized the !inear time functions
(Chapter 1) and the !inear space, P time, and Kalmar elementary functions

(Chapter 4) as the images in set2 or set3 of categories initial in doctrines.
Here we characterize the P space functions as the image in setv of categories

initial in a doctrine, where V is the partial order

This tiered characterization of P space pumps up linear space by running
machines longer. Instead, the tiered characterization of P space in [LM95]

pumps up P time by making machines more powerful.
From set2 and seë we abstract (2- and V-) comprehensions (Section 2.1).

Unary and dyadic NNO have the fragments fiat and very saie recursions for

SM comprehensions (Chapter 1) and fiat and saie recursions for FP compre
hensions (Section 2.2). (In Chapter 3 and elsewhere we willstudy working over

• 50 V-Comprehensions and P Space

Lee and librational doctrines rather t.bu over the SM and FP doctrines.)

Our P space doctrine consists of FP V-comprehensions having unary fiat re

cursion and compatible unary and dyadic safe recursions. In this doctrine V

joins at tier 1 u!Jary anà oyadic numbers which have separat.e tier O's. We

show that the image in setv is big enough (Section 2.3) by coding machines

and running them long enough. We show that the image in setv is small

enougll (Section 2.4) by inductively, relative to the Herbrand structure of the

initial category (Chapter 1), deriving bounds on space, time, and output sizes.

We also characterize (in Appendices 2.A, 2.B) the linear space and the P time

functions using FP 2-comprehensions_ Our P space doctrine glues these two

doctrines together along the two sides of V.

We stand on many shoulders. For comprehensions we stand on [Pav90,

JMS91, LawïO], for initial categories and gluing (or Freyd covers) on [Rom89,

LS86], for fiat recursions on [Lei94], for very safe recursions on [BI092], for

safe recursions on [BC92, Be!92], for !inear space on [BeI92, Rit63], for P time

on [BC92, Cob65], and for P space on [Thon, Huwï6].

We write or for terminal maps, and J, 9 for the tuple map of maps J and
9 having a common domain.

2.1 V-Comprehensions

2.1.1 Unary and Dyadic Numbers

Unary numbers are specified by sort and operators

N {O: N} {S x: N [x: Nj}

The initial mode! in set has

N= {O, 1,2, ... } 0=0 sx=x+1

Dyadic numbers are specified by sort and operators

•
N {O: N} {SI X : N [x : Nj}

• 2.1 V-Comprehensions

The initial modcl in set has

N = {D,!, 2, ... }

2.1.2 2 Tier O's

set2 has the 2 tiers of numbers

0=0 -'k x = 2.r + k' for k = 1. 2

51

No = N

l
1

•

with No a quotient rather than a subobject of NI' Linear space can be char

acterized using 2 tiers of unary numbers while P time can be characterized

using 2 tiers of dyadic numbers (Appendices 2.A, 2.B). We will use sorne of

the P time characterization to pump up linear space to P space by having 2

tier D's, one unary and one dyadic. Thus our target will he setv, rather than

set2, where V is the partial order 0.1 -4 1 +- 0.2. In setl
' we have the

tiers of numbers
NO•I = N--+ 1 +---1
NI - N~N,...!LN

NO•2 - 1 ---+ 1 +--- N

2.1.3 Cotensor

The 2-category cal has O-cells = (sma.!l) categories, 1-cells = functors, and 2

cells =natura.! transformations. The sub-2-category ;r;J3 of FP categories with

witnessed structure has 0- and 1-cells as specified in a basic a.!most equationa.!

specification (Section 1.1) (in particular the functors are strict) and is full on

2-cells.

In cat the cotensors [Bor94, Ke189] 2 -0 C and V -0 C exist and are C2

(with the additiona.! structure of the comma ca.tegory C/C) and CV. In ;r;J3
the cotensors 2 -0 C and V -0 C again both exist and are C2 and Cv.

• 52

2.1.4 2-Comprehensions

V·Comprehensions and P Space

•

Sincc the ordinal 2 is the partial order 0 -t 1. the endomorphisms end(2)

of 2 form a partially ordered monoid. Reversing the multiplication, but not

the partial order, set M =end(2)o. Abstracting from 2 -0 set to 2 -0 C
and then from the left M action on 2 -0 C induced by the right M action

on 2, an FP 2-comprehension is a 2·functor M -t W. (For more details on

2·comprehensions see Section 1.3.)

2.1.5 V-Comprehensions

M v is the sub partial!y ordered monoid of end(Y)O generated by

TI - 0.1 0.1 Gl - 0.1---+ 0.1

1~1 ,1,
0.2 ---+ 0.2 0.2 0.2

T2 - 0.1---+ 0.1 G2 - 0.1 0.1

1 ! 1 1 1

/
0.2 0.2 0.2---+ 0.2

and full on 2-cells. An FP Y-Comprehension is a 2-functor Mv -t ~.

Proposition 2.1.5.1

.4.s a monoid, Mv bas generators Tl, Gl, T2 , G2 and relations (for i = l, 2)

7?=T;
Gl T2 = T2 Gl = Tl Gl = G2Gl = Gl
G2Tl =Tl G2=T2 G2=Gl G2 = G2

Gl Tl = G2T2 = T2 Tl = Tl T2

• 2.1 V-Comprehensions 53

Proof. E.g. C/ = Cl (Tl Cd = (Cl TI) Cl = (TI Tz) CI = TI (Tz Cd =

TI Cl = Cl' 0
Applying Cl, C2 , id, T2 • Tl, TI T2 to (0.1. 1,0.2) wc sec that the partial

order underlying Mv is (generated by)

Cl,

The compositions

will be important (Section 2.1.6).

Proposition 2.1.5.2

As a 2-category, in addition to the generators and relations of Proposi

tion 2.1.5.1, Mv has generators llh 1'h 112, 1'2 and relations (for i = l, 2 and

with Xl, X2 as just above)

Proof. From

li. T; =T. li. =id

1'1 T2 = T2 1'1 =1'1

T. 1'. =C. li. = X.

Tl 112 =112 Tl
Cl 1'2 =X2

1'. T. = id

12 Tl =TI 1'2 =1'2

Ci 1'i =id

T2 111 = 111 T2

C2 1'1 = XI

•
id id

".

•

•

V-Comprehensions and P Space

we have that

id-~T2
1 1"'1 lOI T,

T, ---; T, T2
T, '"

commutes and thus that ('12 T,) 0 '11 = ('11 T2) 0 '12·

E.g. '12 G, ='12 T2 G, =id, G2 '11 =G2 T, '11 =id. 0
Thus we can view an FP V-comprehension as strict FP functo,s

TI, G" T2 , G2 : C -+ C

and natura! transformations

Gl G2

1

'jy"",-'
T2 T,

satisfying the relations of Propositions 2.1.5.1, 2.1.5.2.

With Mt the sub-2-category of Mv generated by TI,
doctrine of 2-functors and 2-natural transformations

(C, TI, T2 , '1" '12) : Mt -+ ;r.j3

allows generically adding C maps 1 -+ X, given C object X. For C in ;r.j3

one generica.lly adds 1 -+ X by passing, by pull-back along X -+ 1, to the full

subcategory CilX in ClX of the r.o : X x Y -+ X [LS86]. (One chooses FP
structure on CIIX such that the pull-back along X -+ 1 is strict FP.) One

defines Ti by Ti (r.o: X X Y -+ X) = (r.o : X x Ti Y -+ X) and lIi by

Xxy--Xxny--nXxny
~l ql- l~
X id IX ~.x lTiX

where pb denotes pull-back. This is implicit in the delinition of safe recursion

(Section 2.2).

• 2.1 Y-Comprchcnsions

2.1.6 Extents

55

Ch'cn an FP Y-comprchcnsion (C. Tk. Gb '1k. 1k). th,· Ml' action on \!

also induces an FP V-comprehcnsion (V -0 C, Tk• Gk • 'lb 1k), Using thc

definition of cotensor. we ha"e a unique strict FP functor. which wc cali thc

e:rtent,
x:C-tV-oC

such that 2-naturally

Thus

::::: ~(C, V -0 C)

C

~ [.
V-oC

x(f: X -t Y) = GI X C, J 1 GI Y

,,,xl lx, y
Tl 1'2 X 1i:!l!Tl T2Y

,,,xI 1'"y
G2 X G,J IG2 Y

•

Proposition 2.1.6.1

The extent fU!lctor X is a 2-natural transformation between V-comprehensions.

Proof. We have the multiplication table

Tl GI T2 G2

GI Tl T2 GI GI G2

G2 G2 GI Tl T2 G2

TIn Tl T2 GI Tl T2 G2

Thus e.g. X applied to

• 56

1S

which is

V-Comprehensions and P Space

with the arrows (including their names) working out right as the 2-cells in

Mv are unique. 0

2.1.7 Tiers

We abstract properties from V ~ set. There we have tier 0.1 unary

•

1~ No.! -!...., No.!

tier 0.2 dyadic (for k = l, 2)

= 1-2.....N-!....,N

1 1 1
1--41---+ 1

r r r
1--41---+1

• 2.2 P Space

and tier 1

l.V = s
1;d
...
N

Î;d

N

Thus we have

Tl NO•l =1

Tl NO•2 =NO•2

2.2 P Space

C M -!\'l "0.1 -. l

T2 No.2 = 1

T2 NO•l =NO•l

C2 No.2 =NI

The objects of the P space doctrine <.j36pacc are (compare this with Sec
tion 1.4.1.)

1. FP V-comprehensions

2. with unary

1E-, NO•l~ NO•l

in C such that

Tl NO•l =1

3. and dyaclic (for k =1, 2)

T2 NO•l =No.l

0' .Ill:
1-- NO•2 ---; NO•2

in C such that

Tl NO•2 =NO•2

•
satisfying

4. unary fiat recursion (as below)

• 58

.5. unary sare rccursion (as below)

6. dyadic sare recursion (as be1ow)

ï. 5. and 6. are compatible (as below).

We set

V-Comprchcn~ionsand P Spacc

GI (1....L. No.1~ No.l)

G2 (1~No.2~Nd

= l.2....,NI~NI
0' "Il ~

l~NI-NI

The tier O.k categories C(o.kl (for k = 1, 2), which we need for 4.-6., have

as objects C commuting

and as maps (X, i) -+ (X', i') C maps f : X -+ X'. C(O.k) has FP structure

1

(X, i) x (Y, i)

= 1

XxY

•

Unary fiat recursion [Lei94] is that (using a remark of R. Cockett's) YI

C(o.ll objects (X, i)

NO•1 X X

l·xx
1 x X oxx' NO•1 X X

• 2.2 P Spacc

is a sum cocone in C(o.l), i.e. "1 C commuting

3! C commuting

X_",,-9~, i' ,. v h }'
;'''0.1 X ~'\ _--4 .

X oxX N' v .xX" v1 x ---,' 0.1 X .'\ ---+ "0.1 X.'\

~11 Jl ~lJ
X 9 'i' Y

We write Ra.l 9 hi j for this f.
Unary safe recuTsion [Be192] is that "1 C commuting

XxY~Y

3! C commuting

1 X oxx N v O;.X N Xx -- lX.,\---+ IX

W,l 1~1' J l~.. J

X IXxY--+h Xxi'id. 9 1fo.

We write RI 9 h j for this f.
sare recursion differs from very saie recursion [Blo92] (Section 1.4.1) by

using diagonal 0 = id, id to repeatedly, rather than just once, read the pa·

rameters X. (The saie recursion in [BC92, Be192] is actually doser to what

we call dependent sare recursion in Chapter 4.)

Dyadic safe recuTsion [BC92] is that V C commuting (for k = l, 2)

•
XxY~Y

• 60

3! C commuting

V-Comprehensions and P Space

1 X o'xx" X .,xx" XX -1j't'tX --+-)lX

,,1 \.,.f l"l.f. .
X 'd • X x Y ---I-h X X Y

1 • 9 1.'a. II:

We write Ir" 9 hl h2 j for this J.
Compatibi/ity is that at tier 1 the (0, s) and the (0', SI, S2) can be defined

in terms of each other using safe recursions. This is that

G1 0 = G2 0'
(G1 s) 0 (G2 SI) = G2 S2

(G1 s) 0 (G2 S2)

=(G2 SI) 0 (G1 s)

G2 (SI 0 0') =G1 (s 0 0)
(G2 SI) 0 (G1 s)
= (G1 (s 0 s)) 0 (G2 SI)

•

We can give an essentially algebraic specification (Section 1.1.3) of the

objects, and thus the maps, of '.136pacE. Thus there exists an initial category

1 in '.136pacE. Further (Appendix 1.B), 1 is the quotient of a Herbrand uni

verse colim; P;. We calI the 1 maps formal P space maps and think of their

representatives as programs. The standard mode1 fv = (V -0 f) 0 X of these

formai maps is the composition

1 rv V---'---__+1 -0 set

~~
V -01

of the extent (Section 2.1.6) and the cotensor with 2 of the no inputs formai

maps f = 1(1, .).

Proposition 2.2.1

For 1 initial in tbe doctrine '.136pacE (as above)

1. f NO•1 = {stda.l n 1 n EN}, wbere stdO•1 0 = 0, stda.l (n + 1)

S 0 stda.l n.

2. f NO•2 = {stda.2 n 1 n EN}, wbere stdo.2 0 = 0', stda.2 (2n + k) =
Sk 0 stda.2 n.

• 2.3 Enough Maps 61

3. Up to natural isomorphism. the unique <:j36pacc fUllelor i : 1 -+ V -<> set

is r v.

Proof. Apply gluing to the comma category

(V -<> set)/rv ---'"::-'."-->, 1

"°1 :ir
,.

V -<> set -""7id:--"';: V -<> set

as in Appendix 1.F. As No.}, No.2 we take

N III l

l·'d 10>-+id 10>-+id
r NI ---+ r l ;- r l

III N

lO"'id lO...id l·'d
r l ---+ r l <- r NI

where std makes sense because the unary and dyadic are compatible at tier

1. 0

Proposition 2.2.2

The P space functions N 1 -+ N l' are precise1y tbose of tbe form r Tl T2 f for

1 maps f, where 1 is initial in the doctrine <:j36pace (as above).

Proof. Sec Sections 2.3 and 2.4.

2.3 Enough Maps

2.3.1 Getting Big

o

•

We will code (Section 2.3.2) machines (Section 1.4.3) inside 1. To run these

coded machines long enough, we need big enough 1 rnaps. By unary saCe

recursion we ha.ve addition

OXNO.l axNo.ll X NO•I -.:..;,;:,;,:::,--;.) NI X No.1 -""""='---+1 NI X No.1

~1 lrlo + lrlo +

No•1 id, id 1 NO•I X NO•I "0. U, 1NO•I X NO•I

• 62

and multiplication

V·Comprehensions and P Space

•

Analogously, by dyadic saie recursion we have concatenation

1 x NO•2
O'xNo.:

1 NI X NO•2
",/r;X""·O.:l

1 NI x .fI'O.2

~Il lro,._ lro,._
NO•2 id. id 1 NO•2 X NO•2 roo. :Ile 'l'l'l ; NO•2 X NO•2

and smash

1 x NI
O'XNl

! NI X NI
.s~XNl

1 NI X NI

~Il lro,.# lrol .#
NI

id. 0' T'
! NI X NO•2 21'0•• ! !'r't X NO.2

The 1 maps N/ ~ NI built up from the standard numbers sn 0 : 1 ~ NI

by GI +, GI *, G2 # are the # polynomials. Similarly we have # polynomials

in set.

For n E N in set, n is the number of unary digits in n and we write Inl
for the number of dyadic digits in n. As

Inl-l
L: 2'k = (21nl -l)k
i=O

we have that

Inl ::; log2(n +1) ::; Inl + l

Thus, given an N coefficient polynomial p in vector Inl with components Inil,
there are # polynomials qo, ql such that

E.g.

ln #nl = Inl2

Thus 1 initial in \ll6pacc begins to look like [Tho72]•

• 2.3 Enough Maps

2.3.2 Coding M<.chines

We code dyadic register machines (Section 1.4.3) by unary safe rccursions

l v~" v~" vX.-'''IX...J'IX.-,

~II I~I.J I~.. J- - -
X ----:-ôd:-.-g-tl X X Y ~o. h: X X Y

63

•

with X = N/ containing the inputs and the program and Y = No./ con·
taining the outputs and the instruction pointer and data registcrs. Thus, for

n: l -+ NI, x: 1 -+ X, f (n, x) is the state at time n.

We code the space bound by a time function t : X -+ NI, Then the P

space functions will have the form (modulo tupling inputs in and projecting

outputs out) r GI f' for composition

X ôd. ôd X v .xX N v J y
- X.-.- IX."'-

1
l'

9 initializes and is coded e.g. using '"YI and O.

2.3.3 Next State

h (from Section 2.3.2) codes the next state transition and decomposes into

components hj whieb compute the next value 1 -+ No.\ of the instruction

pointer or a data register. (We cao assume the outputs will be in data regis

ters.) We need to simulate the dyadic operators SI. S2, C, D (Section 1.4.3).

By unary fiat recursion we have predecessor

1 -.J!.--; No.I!-. NO•I

~l~lp
NO•I No.I

and conditional on test for zero

1 X (No.I x No.I)~No.I x (No.I x No.I)~NO.I x (No.I x No.I)

~zl ~lz
No.I No.I

• 6·1 V·Comprehensions and P Spacc

•

Thus wc can simulatc .'1, 82, C, D using oS, Z. P and unary safe recursion.

Wc can run the unary safe recursion (loops) long enough as. given the space

bound, we can compute time bounds from the inputs in 1 -+ X. (This is

similar to t in Section 2.3.2. See Section 2.3.4.)

Now (similarly to Section 1.4.5) hi looks at a constant arnount of low end

dyadic digits and then, depending on what it sees, modifies a constant amount

of low end dyadic digits. hj can do this as follows.

1. Use C, D, 'Yb and projections to read and decide.

2. Use 5t, 52, D and projections to modify.

2.3.4 Long Enough

With the inputs n. : 1 -+ Nt the components of a vector n : 1 -+ Nt l' , a space

bound polynomial in the Ind (implicitly using Proposition 2.2.1) implies a

time bound 2P Inl with p an N coefficient polynomial (and Inl the vector with

components In.1) and thus implies, by Section 2.3.1, a time hound q n with q

a # polynomial. (As is c1assic [BC94, BDG88], count the states and note that
repeated states imply infinite loops.) Thus, by Section 2.3.1, we have the t of

Section 2.3.2 as weil as the Section 2.3.3 variant of t.

2.4 Not Too Many Maps

Safety [BC92], in the case of V-comprehensions, is that in 1 tier 0.1,0.2 inputs

(1 -+ No.lo 1 -+ No.2) can not affect tier 1 outputs (-+ NI) and that tier 0.1
(0.2) inputs can not affect tier 0.2 (0.1) outputs. Safety follows by applying

Tl T2 and using the naturality of (l'/l T2) 0 l'/2 and by applying Tl (T2) and

using the naturality of l'/l (l'/2). E.g. consider

NO•l!...... No.2

~1 No.>l l~1 No.o=id

1 T,j 1 No.2

• 2.4 Not Too illany illaps 65

We will compile 1 maps f (actually their Ht'rbrand unin'rst' r,'pr,'s,'nta

tives) to dyadic register machine codes which compute r C, f and r C~ f.
At the samc t;me we will obtain spacc and time bounds. For the induct.ion

on the structure of the Hcrbrand universe of 1 (as in Chapter 1) we will also
need unary and dyadic output bounds.

For 1 maps
f : N/ x No./ -t No.1

f ' N l' 1\' J' 1\': .. 1 x .. '0.'2 -r 1 0.'2

f" : N/" -t NI

(which are enough by safety as abo\'c and tuples as below) and variables

Xi: 1 -t Nt, Yj : 1 -t NO.k we will show that (dropping o's and ,'s)

space(f X y) :::; Iq' x Yi
time(f' x y):::; p'lxllyl

space(f" x) :::; Iq'" xl

f x y :::; q x +maxj Yj

If' x Yi :::; p Ixl +maxj IYjj
f"x:::;q"x

where the # polynomials q, q', q", q'" and the N coefficient polynomials p, p'

depend only on f, f', f".

Unlike in Chapter l, we do not separate the names and values of vari

ables into separate registers, Further, we keep inputs and outputs in separate

registers, rather than sometimes totally overlapping them, e.g. to compute

identities by doing nothing. But here, unlike there, we have the time and

space to make copies. By the way, we count outputs, but not inputs, in the

space.

Tuples f, 9 : X x Y -t U X V (which combine diagonal, symmetry,

and tensor) simply add the space and time involved. As, by the inductive

hypothesis,

space(f x y):::; Iqi x Yi
time(f' x y) :::; pi,lxllYI

space(g x y) :::; Iq~ x Yi
time(g' x y) :::; p~,lxllyl

•
it fo11ows, using that Inl :::; log2(n + 1), that

space(f x y, 9 x y):::; 1(1 +qix y)(l +q~x y)1
time(f' x y, g' x y) :::; pi,lxllYI +p~,lxllyl

• 66 V-Comprehensions and P Space

Gh G, work right. Indecd. from

J x y ::; q x +max, y,

II' x yi::; p Ixl + max, IYil

it fol!ows that
GI (f X y) ::; q x+Li Yi

IG, (f' x y)1 ::; p Ixl + Li IYil
Among the base functions, the vilIiables Y: 1~ No.k satisfy

y::; y Iyl::; Iyl

and take, to copy from an input register to an output register, linear space
and time. Further

0::;0 sy::;l+y

and 0 and s take !inear space while

10'\ ::; 0

and 0' and Sk take linea.r time.

The coercions 7]i, "fi affect t~"ping but not space, time, or output size.

However, Gi, "fi, together with Section 2.3.1 and the fact that time bounds

imply space bounds, do mean that we do not need to consider the case f" :
Nt ~ Nl • E.g. we have

"fl No.l : N l -+ No.1

•

Unary fiat. recursion d(.~omposes into scalar unary fiat recursions

OxY "xY1 x Y ----+ No x Y -No x Y

~Il ,1~ l,
y 9 1 No No

which cau be solved by

fny::. Z n (gy) (h (Pn) y)

• 2.4 Not Too ~lany ~laps 67

using the prcdcccssor P and the conditional on test for zero Z frolll Sec

tion 2.3.3. But

Z Yo YI Y~ ::; max YJ
J

•

and P and Z take linear space.

C 'd . h X "J Y "J VI "J' }'I ,. J' 1 .onSl er! \Vlt .. = ':'1, = .n'o.l , ..'\. = 1'1'1 , . = 1\0.1 ,t le compos!-

tion

V Y g. h V, Y' ---.!.-. 1\'.'\ X -;.'\ X .• 0.1

As, by the induction hypothcsis, We have the vector incqualitics

9 x ::; qg x
h X Y ::; qh X +ma.Xj Yj

f x' y' ::; ql x' + ma.Xj' Yj,

it follows that

Further, as
space(g x) ::; Iq; xl

space(h x y) ::; Iqi. x Yi
space(f x' y') ::; Iq, x' y'l

we have, taking the input registers of f to be the output registers of g, h and

using that Inl ::S log2(n +1), that

space(f (g x) (h x y)) ::S
1(1 +q;x)(l +qi.xy)(l +q,(qgx) (qh x +EjYj))1

Similarly consider, with X = N/, Y = No./, X' = N/', Y' = No./', the
composition (where we now drop sorne primes)

X X Y~ X' x Y'~ NO•2

As we have the vector inequalities

Ig xl ::S pglxl
Ih x Yi ::S Ph Ixl +maxj IYjl

If x' y'l ::S Pllx'l + maxj' Iyj,\

• 68

it follows that

V·Comprehensions and P Space

IJ (g x) (h x y)1 :s Pi Pa !xl +LPt." Ixl + ma.x IYil
i' J

Further, as

time(g x) :s P~ lx1
time(h x y) :s Ph Ixllyl

time(J x' y') ::; Pl Ix'lly'l
we have, taking the input registers of J to he the output registers of g, h, that

time(J (g x) (h x y)) ::;

P~ Ixl + Ph Ixllyl + Pl (Paix!) (Ph Ixl + Li IYi!)

For safe recursions we need to consider 1 commuting

Applying i : 1 -+ V -<> set and looking at the O.k component, we have that

Y::::: NO.kJ for sorne J E N.

Thus consider, with X = NIl, Y = No./, Y' = No./', the dyadic safe

recursion

1 x (X x Y) Ox(XxY) , NI X (X X Y)

~'l l~"i
X x Y ----.,..,....--..., (X x Y) x Y'

id.g

•

We have the varying composition

f (sko sI<, ••• 0) x y =hko x Y hk, x Y .•• 9 x Y

As, by the inductive hypothesis, we have the vector inequalities

19 x Yi :S Palxl + maxi IYil
Ihk x y y'l :S Ph.lxl +max(maxi IYil,maxi' Iyj.\)

•

•

2.4 Not Too ~Iany Maps

it follows that

Further, keeping in mind the time it takcs to reverse n, control the loop, and

move the yj. to the inputs of the hk,j" wc have that

time(f n x y) ::;

Inl(A(lnl Lk,j' Ph'o.lx\ +Lj' pg,.lxl +Lj IYj\) + B

+Lk,j' Ph.o' Ixllyl (Inl Lk,j' Ph.o' Ixl +Lj' pg,.lxJ +Lj \Yjl))

+Li' p~. Ixllyl +C,
with A, B, C E N.

Finally consider, with X = NIl, Y =No./, Y' = No./·, the unary sare

recursion

1 x (X x Y) ox(XxY) 1NI X (X X Y) .X(XxY). NI X (X x n
w1l lWl'! lWh!

X x Y -~---; (X x Y) X Y' ---,---;1 (X X Y) x ln
id.g 1I'o.h

We have the varying composition

f (s s ... 0) x y = h x y h x y .•• 9 x y

As we have the vector inequalities

9 x y ::; qg x + maxj Yj
h x y y'::; qhX + max(maxj Yj, ma.'Cj.yj.)

it fol1ows that

Further, as we have that

space(g x y) ::; q~ x y

space(h x y y') ::; qh x y y'

• iO V-Comprehensions and P Space

•

Wc have, kœping in mind the space needed for the intermediatesfoutputs Yi'
and using that Inl ~ log2(n + 1), that

space(J n x y) ~
J'1(1 +nLj' qh

J
• x +Lj' q9

J
' X +Lj Yj)

(1 +Li' qh
J

• x Y (n Lj' qh
J

• X +Lj' q9
J

' X+Lj Yj))

(1+ Lj' q;J' x y)1

2.A Linear Space

The objects of the linear space doctrine ~in6pacc (this descends from [BeI92,
Rit63]) are

1. FP 2-comprehensions

(C, T, G, 7], e)

2. with unary

1~ No -..!..-; No

in C such that T No =1 satisfying

3. unary fiat recursion and

4. unary sare recursion.

The maps are those preserving witnessed structure and are thus strict.

As for ~in'!imc in Chapter l, there exists an initial category 1 in ~in6pace

and functors
f.

1 '2-oset

~~
2-<>1

with Xthe elCtent and r = 1(1, _).

Proposition 2.A.l

For 1 initial in ~n6pacc (as above)

• 2.B P Time 71

•

1. Up to nat,ural isomorphism the unique -Cin6pacc fUIlc/or i : 1 --t 2 -<> set

is r 2 •

2. The linear space functions N / --t N J'are those of the forIll r T f for 1
maps f.

Proof. Modify the proofs for <;J36pacc. In Section 2.3. + and * no\\"

run the machine long enough. ln Section 2.4, replace # polynomials q by N

coefficient polynomials p. 0

2.B P Time

The objects of the P time doctrine '.jr.timc (this descends from [BC92, Cob65])

are

1. FP 2-comprehensions

(C, T, G, 7/, f)

2. with dyadic

l~No~No~No

in C such that T No = 1 satisfying

3. dyadic fiat recursion as (in Chapter 1) and

4. dyadic sare recursion.

The maps are those preserving witnessed structure and are thus strict.

As for -Cin'!imc in Chapter 1, there exists an initial category 1 in '.jr.timc

ànd functors
f,

1 12-<>set

~~
2-01

with X the extent and r =1(1, _).

Proposition 2.B.l
For 1 initial in <;p'!ime (as above)

•

•

V-Comprehensions and P Space

1. Up to natural isomorpllism tlle unique <;J3'Iime functorl : 1 -7 2 -0 set

is r2.

2. Tlle P time functions NI -7 NI' are tllose of the form r Tf for 1 maps

J.

Proof. Modify the proofs for <;J36pacc. In Section 2.3, • and # now run

the machine long enough. The initialization and next state are now coded as

in Section 1.4.5 using dyadic fiat recursion. In Section 2.4, check that dyadic

fiat recursion respects the output and time bounds. 0

•

•

Chapter 3

Dependent Products and

Church Numerals

Introduction

In Section 3.1 we use dependent product diagrams to study LCC (= locally

cartesian closed) categories. In particular, we specify LeC categories using
sketches and orthogonality, show Awodey's semantic version of Martin-Lof's
axiOlll of choice, show that the Yoneda embedding is LCC, and recall how
LCC functors generalize locally connected topological spaces. Although de

pendent product diagrams appear independently in [Ndj92], our dp stacking

(Proposition 3.1.3.1) is from 1991.

Previously (in Chapters l, 2) we have characterized complexity classes
using SM and FP 2-comprehensions. In Section 3.2 we easily define FL 2·

comprehensions, and with more work, define LCC 2-comprehensions. How
ever, in Section 3.4, using ideas from [Lei94, LM92], and a little lambda
ca1culus from Section 3.3, we find that Church numerals prevent LeC 2·
comprehensions from characterizing complexity classes. We eventually hope

to overcome this using a combination of comprehensions and fibrations.

As in ehapter 2, we write T for terminal maps, and l, 9 for the tuple map

of maps 1 and 9 having a common domain.

• ï4 Dependent Products and Church NUIllerals

•

3.1 Dependent Produets

3.1.1 Comma Objects

Given a map f : X __ Y in a category C. we have a dependent sum functor

ds, : C/X __ C/Y

eo-+foe

The pull-back functor is defined by the adjunction ds, -1 pb,. which we sorne

times write as E, -1 r, and is thus determined by terminal objects in the

comma categories

ds,/g 11

1 19

C/X , C/Y
da!

The terminal objects in the comma categories ds, /g are just the pull-back
diagrams

Thus a category C is FL (= having finite limits) if!' it has terminal objects
and ail pull-back diagrams.

Now suppose that the category C is FL. Then the dependent product
functor is defined by the adjunction pb, -1 dPi' which we sometimes write
as r -1 n" and is thus determined by the terminal objects in the comma
categories

pb,/e--....ll

1 :l-
e/y 1 C/X

pb!

• 3.1 Dependent Products

These terminal objects are the dcpcndcni produci diagmms

75

•

(ln the future, but not here, we will instead place the dp in the right upper

corner, as suggested by A. Blass.) Thus a category is LCC (= LocaUy caricsi<17l

closed) iff it is FL and has ail dependent product diagrams.

ln set, the category of small sets, any K J 1 splits as indexed

sets J = {J;}ieI, and dependently indexed sets K = {Kji}jeJ"iel with Ji the
liber over i E] and K j • the liber over j E Ji. Then the dependent product

diagram has the form

/1
- {TIjeJ, Kji},eI
pb 1

~ _ l
K--+J 1]

thus justifying the terminology 'dependent product'.

3.1.2 Lee Sketches

We deline a sketch theory as (in Section 1.1) for LCC sketches. The sorts are

Co objects

Cl maps

C2 triangles

] identities

Lo terminais

L2 pull·backs

P dependent products

• 76

the operators are

do x : Co [x : CI)

dl x : Co [x : Cd

do x : CI [x : C2l
dl x : CI [x: C2)

d2 x : CI [x : C2)

d x: Cl [x: 1)
d x : Co [x : La)
do x : C2 [x : L2)

dl x : C2 [x : L2)

do x : C2 [x : Pl
dl x : L2 [x : P)

and the equations are

Dependent Products and Church !Iiulllerals

~ codomain

~ domain

~ to map: 1 -T 2

""' composite map: 0 -T 2

""' from map: 0 -T 1

""' as pictured below

~ as pictured below

•

do do x =do dl x : Co [x : C2)

dl do x = do d2 x : Co [x : C2]

dl dl X = dl d2 x : Co [x : C2]

do d x =dl d x : Co [x : 1]
dl do x = dl dl x : Cl [x : L2]

dl do x = d2 do dl x : Cl [x : Pl

The Lee categories with witnessed structure are then those Lee sketches
orthogonal to the Lee sketch homomorphisms corresponding to the follow

ing basic almost equational assertions. We sometimes cali such assertions
entailments.

""' Associative composition

{! fi 0 fa: C2

do (fI 0 fa) = fi : Cl

d2 (fI 0 fa) = fa : Cl

[dl fi = do fa : Co "JI: Cl Jo: Co]}

•

•

3.1 Dependent Products

{dl XI = dl X~: Cl
[do Xo = do XI : CI

dl Xo = do x~ : CI
d~ Xo = do X3 : CI
d~ XI = dl X3 : CI
d2 x~ = d2 X3 : Cl
Xo : C2 Xl: C~ X2: C~ X3: C~]}

""' Identity maps

{! id X : 1
do d id X = X : Co
[X: Co]}

{dlx=dox:Cl

[d y = d2 X : Cl y: 1 x: C2]}

{dl X = d2 x : Cl
[d Y =do x : Cl y: 1 x: C~]}

""' Terminal objects

{! l : Lo}

{! T X Y: CI
doTXY=dY:Co
dl T X Y =X: Co
[X : Co Y: Lo]}

""' Pull-backs, as pictured below

{! fo x fi: L2

do do (Jo x ft) = fo : Cl

do dl (Jo x ft) = fi : Cl

[do fo = do fi : Co fo: C, fi: Cd}

,,

•

•

78 Dependent Products and Church Nurnerals

{! Llo Xo XI y : C2

LlI Xo XI y : C2
do Llo Xo XI y = d2 do y : CI

do Ll I Xo Xl y = d2 dl y : CI

dl Llo Xo XI y = d2 Xo : Cl

dl LlI Xo Xl y = d2 XI : Cl

d2 Llo Xo Xl y = d2 Lll Xo XI y : CI

[do Xo = do do y : Cl

do Xl = do dl y : Cl

dl Xo = dl Xl : Cl
Xo : C2 Xl: C2 y: L2]}

."... Dependent products, as pictured below

{! il fI fa: P
dodoilflfo=fo:Cl
do do dl il fI fa = fI : Cl

[do fa =dl fI : Co ft· Cl fa: Cl]}

{! Ao Xo Xl y : C2

Al Xo Xl y : L2

A2 Xo Xl y : C2

do Ao Xo Xl y =d2 do y : Cl

dl Ao Xo Xl y = d2 Xo : Cl

d2 Ao Xo Xl y =d2 do Al Xo Xl y : Cl

do do Al Xo Xl y =d2 dl dl y : Cl

do dl Al Xo Xl y =d2 A2 Xo Xl y : Cl

d2 dl Al Xo Xl y = dz d, Xl : Cl

do A2 Xo Xl y = do dl dl Y : Cl

dl A2 Xo Xl y = do dl Xl : Cl

[do Xo = do do y : Cl

dl Xo = dz do Xl : Cl

do do Xl = do do dl y : Cl
Xo:Cz xl:L2 y:P]}

• 3.1 Dependent Products

Two of these entailments have the pictures

j~l

1 i

'1
, 1

/ ro 1 rI'" . .
-!O~

•

Thus, \Vith S the above sketch theory of Lee sketches. and M the set

of maps between finite Lee sketches which the above assertions amount to,

M .L setS, the full subcategory of Lee sketches orthogonal to M, is the

category of (small) LCe categories with witnessed structure, and strict LCe

functors. More generally, a functor between LCC categories is LCC iff it

preserves terminal objects, pull-backs, and dependent products (although not

necessarily any choices of witnesses). Similarly one has FL (strict FL) functors

between FL categories (with witnessed structure).

3.1.3 Pb and Dp Stacking

Given

c
Fl~ IG

l--y-'D

the counit fy : F G Y -+ Y is a terminal object in FlY. Further, G on maps

9 : 1'0 -+ Yi arises from the stacking diagram

FG1'O FGg 1FGYt

<yo1 l<Yl
1'0 ---,g:----+I Yi

• so D"lwndl'nt Prod\lcts and Ch\lrch :\ll1l1l'rab

ln particular, gÏ\"Cll an FL catl'gory C with a map f : X)" w,' ha\'<'

CIX
1 -

d~Jl-l \PbJ

1 -----g' CI}'

•

Then the stacking diagram for

is an outer puII-back decomposp.d as

---+: --+ Xl lpb "1
7-!:-.Z 91. y....0 . 1~

90

Pb stacking computes the outer pull-back by saying that the left inner square

is a puII-back.

Similarly, given an LCe category C with a map f : X -+ Y we have

C/Y

Pb/loi idPI

l--.-.C/X

Then the stacking diagram for

• :3.1 D"fwnd('nl Prodllcl5

;5 an ollter dependcnt product dccompo5ed as

/
/,

pb //ldP

.-/ ~ -
wo--. w\--x--· yd e, !

~l

Dp stacking computes the outer dependent product by claiming that the upper

triangle and pull-back form a dependent product.

Proposition 3.1.3.1

The outside of

-----;

/ldP
1. - -

/Pb71~1
~ \: - ...
----+ ----+ --.

is a dependent product.

Proof. \Vith the names
d' l'

/Pb71~1
~ ---+---+
de!

it is enough ta show that the functor

F: pb!, If -+ pb! I(e 0 d)

which on maps is

•

• Dqwndent Prodnets and Churd. :\ unwrab

is an equi\'al<'nce, as cquivalcnccs prCSl'n'l' and rdkct terminal ohjects, But,

as pb and dp diagrams are termina! comma objl'c!s, wc ha\'l' bijections ll[

maps

" 1/i pb i
l' l.

,1 / ...
l ' 1 pb 1

,i{. . l' l
/Pb71~1
~ L-.....--lo...

d' .' J

•

=...-.; --+..---l>...
d • J

Thus F is faithful full. Removing the top comma object, we sce that F is
surjective on objects. 0

3.1.4 Martin-Lof Choice

As a special case of dp stacking (Section 3.1.3) we have Streicher's [Str92,

Awo94] semantic form of Martin-LOf's axiom of choice.

•

•

:l.l Dependent Products

Proposition 3.1.4.1

Thc outcr comma objcct in

"/1 dp In-..>.

d......yx xX2_yx
/Pb /\dP

1

/,.. /' ~ -
~YxX " ·X 1

is a dependent product. Thus the right hand composition is

TI x : X E Y : y tt, x y ::::: E f : yX TI x : X l/; x f x

Proof. We view t/J as a type dependent on Y x X whose sections witnes: its

truth [SeeS4]. Thus we write TI x : X t/J x f x for TI.. ,p'. (We reverse the

arguments of t/J as in Section 3.3.) 0

This can also be viewed as a Skoiemization or as a distributive law, and is

a basis for the extraction of programs from specifications as in Nuprl [C+S6].

3.1.5 Pull-Back is Lee
Consider a map f : X -+ Y in an LCC categor:r C. By

pbl and dPI are FL. Further

Proposition 3.1.5.1

pbl is LCC.

Proof. As pbl is FL, it remains to see that pbl preserves dependent product

diagrams. Start \Vith

1

•

•

Dependent Prodllct~ and Chnrch :\llnH'r;,b

and get

, 1\'. ~"
, pt:> 1

I\"~

~""I"l. ~... "bl ,~l'b.
~---~l ,\1 l " ,

1

pb 1 P, b...:. Pb,..!. 1

d -- 11, ,'d. l "...,.,
C '-d- -c-'

in which a comma object over the pu\l·back of the bottom linc llniqllc1y Illap~

to the pu\l·back of a dependent product over the bottom line. 0

3.1.6 Presheaves

\\'ith C a category, the category of preshcaves setc· has objcct·wisc FL struc·
ture. It also has Lee structure. lndeed, given

Q,..-.R----g-'S

in setc ·, we describe the dependent product

-p

/T· ln. 1

Q,..-.R----g->S

Think of C objects W as Joyal·Kripke worlds and C maps 1 : W' -+ W as

localizations (or possible futures).

Proposition 3.1.6.1

With notation as above

1. The elements of P W (= P at world W) are the comma objects

_yW

/1"' li
Q ,..-. R ----;--> S

where y : C -+ setCO is the Yoneda embedding y X = C(-> X) .

• 3.1 D"pPlId"lI! Products 85

•

2. PI (for localizatioll 1: IV' -t Ho') maps clements of PlI" ro clements of

P W/ by commutillg

3. 0 9 f and @ are defined by

(09 !lI\' (i, j) = jw idw
@w (r, (i, i)) = i w (r, id\\'l

where r E R ~ll is sucb that 9w r =iw idw.

Proof. 1. and 2. As dependent products are termina! comma objects, and

by the proof of the Yoneda lemma,

PW::::: setCo(y W, P)

with corresponding elements

---10 Y W

/1"' Ij
Q-y+R--g-'S

Aij:yW-tP

(A i j)w idw E P W

3. We have commuting

• 86

and thus commuting

Dependent Prùducts and CIl\lrch ;\unH'rals

_~C(lIO. 11")
,//[pb 1
, 1 \ ' '

/ 1 l' • J
in: / ...

//-\-Pb--P\W
!/~I\" . .(n,nl\"

Q IF -f-"o-: R IF 91>' : S W

3.1.7 Yoneda is Lee

~ (;\ i j)n- id\\"

o

•

We now have, using Proposition 3.1.6.1, an easy proof of the well known [Pit8ï]

CA. Joya! circa 19ï4)

Proposition 3.1.7.1

The Yoneda embedding

y: C -+ sete'

X Ho C(., X)

is Lee.

Proof. That y is FL is essentially the definition of finite limits. Given

in C, by the Yoneda lemma, the comma objects

--+yW

/1"b 1
"----+)
vf V9

• :1.1 lkpenc!"nt Pruducts

llniqllely dccompose as commuting

3.1.8 Toposes and Local1y Connected Maps

Si

o

•

Although we will not need this below, it may be important elsewhere to know,

as we recall here, that Lee functors generalize locally connected topological

spaces.

Suppose that C is an FL category. Then a C map m is a monomorphism

iff

is a pull-back. Further, a monomorphism T is a subobject classifier iff "1

monomorphisms m, 3!

By a mildly tricky lemma [BW8S], we cao assume th...t T has the form

T:l-l-fl

By an easy lemma, any map 1 -l- fi is a monomorphism.

A topos is an FL category C sucb that

1. C has a subobject classifier T : 1 -l- fi and

• ss Dependent l'racine!, and Cl.ureh ""tlll'rals

2. 'i C objects X. 3

. ------. PX
, i dp 1

./ l l
X X n --;:0' X --. 1

(P X is the power object.)

•

Thus we can specify toposcs with witnessed structure using sketches and or·

thogonality (as in Section 3.1.2). Toposes are Lee [BW85].

A functor F : E -+ S betwcen toposcs is gcomctric iff it has an FL ldt

adjoint and is locally conncetcd iff it has an Lee left adjoint [Joh85]. When S

is set, E is the sheaves of sets over a topological space X, and F is the global

sections, X is locally connected iff Fis.

3.2 LCC 2-Comprehensions

With M = end(2)O and .!:l!:l!: the 2·category of Lee categories with wit

nessed structure, we will not define LCC 2·comprehensions to be 2·functors

M -+ .!:l!:l!:, as

Proposition 3.2.1

Tbe domain functor

d : set2 -+ set

(X : Xo -+ Xl) Xo

is not Lee.

Proof. set2, set are LCC by Section 3.1.6. With N = {D, l, 2, ... } the

natural numbers in set, in set2 we have No = N -+ 1 and Nl = id : N -+ N.

Consider

• :l.~ Lee 2'('Ulllpwl","siols

Il)' Proposition 3.\.6.\. d (NI""O):::::: the set of commuting

/

--.1 =2(0..)
\ pb 1

,i ;
~. ~

No x NJ ---;;0' No 1

:::::: set2(No, Nd :::::: the set of commuting

89

•

:::::: N. But (d N,)(d Nol =NN is uncountable while N is not. 0

Instead, we define FL 2-comprehensions to be 2-functors M -+ ~~,

where ~~ is the 2-category of FL categories with witnessed structure, and

Lee 2-comprehensions to be FL 2-comprehensions (C, T. G, TI, (), as in

Chapters 1, 2, where C is LCC and the extent functor À : C -+ C2 (by

X >-+ X X with X =TI 0 () is LCC. So we need, given an LCe category C,

1. to show that C2 is LCC,

2. to describe the LCC structure on C2, and

3. to show that C2 is canonically an LCe 2-comprehension.

(1. and 2. may be related to results in [DayiO, Mak93].)

Proposition 3.2.2

Given an Lee category C, C 2 is Lee. Indeed, over

• 90

•

wc Il<l\'C thc dcpcndcnt prod<Jct

p' i k' __ , -----•
._-- JOb JI J ;.~

,.--- • l ," i Z. ,.
l' -1,- " - 9rc- " ! J ,

1 1'" l ,'"

X 1 ..;:~ J-;:Z-'-,
...~ ...",-_...""

il 9'

where @, i, j, j', k. k', p, p'. q arc dcfincd by

-_.

x

q

Proof. To verify that the above is a terminal comma object, wc succcssivcly

transforrn.

1.

•

•

3.2 Lec 2-Cornpr"hcnsions

2.

.,/l,b 1 _'b
~ ---;. ----:0 -.--Ir l'b l'b d'I~

..... ;,.j
-_.~---;-

'-Jo .~v' Iv'

~
X

3.

with

•

•

4.

x

Thus in particular

Proposition 3.2.3

Given an LCC category C,

1. the codomain functor

C:C2-+C

(X: Xo -+ Xl) Ho Xl

and

2. the identity functor

id: C -+ C2

X Ho (id: X -+ X)

are LCC.

Proof. 1. This is immediate from Proposition 3.2.2.

o

•

•

3.2 Lee 2-Compr<·hensions

2. Directly. we have the bijections of comma objects

~'-b-,
~ - - ~ ~ -1- ~ ~ :

: 1 1 : ,

1 1 ~ 1

;dl~·d,. -id--,..
/ pb /

.... ~....~
J 9

~

! ipb Il
lI~Il

/1:;-+1
/-r-g

Alternatively, \Vith a little effort, we can use Proposition 3.2.2. Consider

~I:;-+'
/p)(\:;-+\
~~_--
Cl. i~; Ip,«/1,pl

.v - .
~---+

J 9

By dp stacking (Proposition 3.1.3.1) and f' (@, id) = id, it is enough to show
that q is an equalizer of ..

P •

Cl' i

q so equalizes as p' i q = p' (@, id) i' = @ i' = @ f' (@, id) i' = @ f' i q.

Given q' such that p' i q' =@ f' i q', we have commuting

if we can show that (@, id) f' i ri = i q'. But p' (@, id) f' i q' = @ f' i q'
which =p' i q' by assumption, while f' (@, id) f' i q' =f' i q'. 0

• 9·1 D"p<'ndent Pro<!llcts and C'hllrch :\lllll"rab

Proposition 3.2.4

Ch'cn an Lee catcgory C. C~ is callonical1y ail Lee 2-comprl'iI'·lIsioll.

Proof. \Vith the FL structure

l

l
l

on C2, the functors

~ ~--_ ..
~!pb /'

~""""

•

T: C2 -? C~

(X: Xo -? Xl) (id: Xo -? Xtl

G: C2 -? C2

(X: Xo -? Xl) (id: Xo -? Xo)

are strict FL. The extent functor

takes

to
1.Xo 1 Va

idl ~Xl id~ 'f})
Xo- JIid- .. Yo lid...... ,Y

X '" ,.
Xl I})

h

Thus, since id : C2 -+ (C2)2 is LCC(by Proposition 3.2.3), so is X (due to

the symmetry 2 x 2 -+ 2 x 2). 0

• 3.3 A Little Lambda Calculus

3.3 A Little Lambda Calculus

Suppose that C is an Lee category containing

o ,. , "
1-- "'0 -- JVo

95

•

We recall a little lambda calculus so that we can easily name sorne of the

objects and maps in C.
A type is one of (by well·founded induction)

1. No

2. Y t X, which we sometimes write as Yx, where X and Y are types.

The binary operation t associates to the right. Thus X t y t Z is X t (Y t
Z). Type No names the object No. Type Yx names as pictured.

We write

as sugar for

A context is a square brackets enclosed set of declarations x : X with x a

variable unique within the context and X a type. A coatext

[xo : Xo Xl: Xl '"]

names the product cone

• 96 Dependent Produrts and Churdl :'\ullll'rab

•

Bere. unlike in the other chapters. we ha\"e re\"erSc.'d th" order of thl' arguments.

as abstraction will pop and push betwecn starks of arguments. In partkular.

[xc : Xo] names

Xo

lro=id

Xo

and [] names 1.

A lambda term J of type X relative to a context C, aIl of which wc write

as J : XC, is one of

1. a variable x, if there is a declaration x : X in the conlexl C.

2. the constant 0, if X is No,

3. the constant s, if X is NoNo,

4. an application J g, which we sometimes write as J @ g, if J : X Y C and

g: Y C,

5. an abstraction [u: U] J, if J: y [u: U] C and X is yu.

Here, when C is

[Xc : Xo XI: XI ...]

[u: U] C is

[u : U Xo: Xo XI: XI ...]

Application associates to the left. Thus J 9 h = (f g) h. With the object X

named by the type X and the object C the limit of the product cone named

by the context C, lambda terms J : X C name maps C -+ X by

1. A variable names a projection, as pictured above, in the product cone

named by the context C.

2. 0 names 0 0 T : C -+ No.

• 3.4 Church !\ limeraIs

3. s names the Curried map s 0 .. as pictured.

4. Applications f @ 9 name as pictured.

J'Cg ,

5. Abstractions [u : U] f name as pictured.

We write

[uo : Uo UI: U1 •••] f
as sugar for

3.4 Church Numerals

9ï

•
Suppose tbat (C, T, G, 7/, e) is an Lee 2-comprebension (as in Section 3.2)

sucb tbat C contains

1--2-; No -.!.-t No

• 98 Dependent Products and Church :"un1l'rals

with T No = 1 and satisfying unary sare recursion. (Compare this with the
doctrine 'cin6pacc in :\ppendix 2.:\.) Recall that unary sare recursion is that

with

o N' • "1·~ .. 1~1"1

'cl commuting

= G (1~ No --!...... No)

X~Y

3! commuting

X x y 2...., y

XxO ~ Xx~
X x 1--t X X NI --t X X NI

'01 l'O
'! l'O

'!
X IXxY-h·XxYid. 9 :ro.

In set we have addition +, multiplication *, exponential t, and super

exponential il' by

x+O=x

x*O = 0

xtO=sO
xil'O=sO

x+(sn)=s(x+n)

x*(sn)=x+(x*n)

xt(s n) = x* (xtn)

x il' (s n) =x t (x il' n)

We will use Church numerals to simu!ate these in C. Thus we will show that

the numeric functions representable by C can grow too fast to allow them to

form a complexity class.

Define 'Leivant tiers' of Church numerals Ci by

Deline

Co=No C C CxC c, xc, xcc,.+1 = i 1 1 1

l~Ci....!...+Ci

by, keeping argument reversai in mind,

•
Oghx=gx (sn)g hx =hx (ng hx)

• 3.4 Church :\umcrals

Thus, givcn 9 : Ci -t Ci, h : Ci X Ci -t Ci, WC can solve for commuling

C C.xo CCc,.. C C
i X 1 ----7- i X i+l --+ i X i+l

-01 l-·· f l-··f
d . Ci X Ci h : Ci X Ci

i ,9 ~o.

by, wilh j: CiC'+l xc,, 9 : CiC;, h: cF' xc. the Curried forms of J, g, h,

jxn=nghx

In particular, we cao solve for commuting

1i., Ci+!~ Ci+!

l le; le.
1 --0-+ Ci • 1 Ci

by, with ei confused with its Curried form,

ei n = n ([x: Cil 0) ([= : Ci y: Ci] s y) 0

Proposition 3.4.1

With assumptions as above, deiine

99

g. • C'c;•• •
gox=x

91 X = 0

9i+2 X =SO

h.. C'c,xc;•• •
fi+l : CiCi+1xC.

hoxy=sy

hi+1 xy 9 hx'= Ji+! (e;x) y

/;+1 X n =n gi 11; X

•

Theo

1. JI (S2 0) (sn 0) = sn+2 0

2. eo (12 (S2 0) (sn 0» =s2n 0

3. eo (el (13 (S2 0) (sn 0))) = s2'ln 0

4. eo (el (e2 (J4 (S2 0) (sn 0»))) =s21ln 0

Proof. Use induction on n.

• 100 Dependent Product$ and C'hurch 1"llnwral$

fI (SZ 0) a= SZ a= so+z O.

fI ("Z 0) (sn+1 0)
= ho (SZ 0) (fI ("Z 0) ("n 0)) = S ("n+Z 0) = s(n+I)+Z O.

fO (fz (SZ 0) 0) = fo a= a= ,,(ZO) O.
fO (fz (SZ 0) (sn+1 0))

= fo (hl (SZ 0) (12 (SZ 0) (sn 0))) = fI (SZ 0) (sZn 0) = "Z(.+I) O.

fO (fI (13 (S2 0) 0)) = fO (fI (S 0)) = s a= ,,211l O.
fO (fI (13 (S2 0) (Sn+l 0)))

= fO (fI (h2 (S2 0) (13 (S2 0) (sn 0))))
= fa (12 (S2 0) (S2in 0)) = S2T(n+l) O.

fO (fI (f2 (f4 (S2 0) 0))) = fO (fI (f2 (S 0))) = S 0 = S21lO O.
fO (fI (f2 (f4 (S2 0) (Sn+l 0))))
= fO (fI (f2 (h3 (S2 0) (14 (S2 0) (Sn 0)))))
= fO (fI (13 (S2 0) (S21ln 0))) = S21l(n+l) O.

o
Now the T Ci are terminal. Thus we can apply unary safe recursion to

•

to get commuting

l~Nl~Nl

1 le le
1 """"'il' C4 -..C4

Thus, by Proposition 3.4.1, the numeric functions representable by C can

grow too fast to alIow them to forro a complexity c1ass.

•

•

101

Chapter 4

3-Comprehensions and Kalmar

Elementary

Introduction

[LM92) related tiers to the Grzegorczyk hierarchy (as in [RosS4)). In

Appendix 2.A, we used FP 2-comprehensions to characterize the linear space

functions. These form the second level of the Grzegorczyk hierarchy. (Thus
many complexity classes are variants of the second leveI.) Here we use

FP 3-comprehensions to characterize the Kalmar elementary functions (as

in [Ros84)). These form the third level of the Grzegorczyk hierarchy. Thus
we translate some of [LM92) to category theory. The third level seems to be

needed to reason (deterministica1ly) about, e.g. prove the consistency of, the
second level [Ros84).

The basic idea is to p=p up linear space to Kalmar elementary using
x t y =xY essentially as we pumped up linear space to P space in Chapter 2

using x # y. However, rather than use 2 tier O's, one unary and one dyadic,

compatibly joined at a single tier 1

0.1 0.2

~1/

• 102

wc use 3 linearly ordcred tiers

3-Comprchl'nsions and Kalmar Elementary

o

l
1

l
2

•

each of which may as wel! be unary, as numeric base and space versus time

do not matter for Kalmar elementary functions. The partial orders V and
3 roughly describe how loops may nest. The partial order 3 leads to FP 3
comprehensions (Section 4.1).

Working out this basic idea will be slightly technical. We introduce the
three doctrines ~ lE, and lE' (Section 4.2) as wel! as the complexity class
Espace. .R simply describes the Kalmar elementary maps. lE consists of

FP 3-comprehensions with fiat recursion (although it is not actually needed)

and tier 1 and tier 2 sare recursions. lE' differs from lE by using dependent

sare recursions (as below) rather than sare recursions. .R and lE' are clearly
related whereas .R and lE are not. t polynomials are built up from N in set

using +, *, and t. The Espace functions are those computable (on Turing
machines) within space bounded by an t polynomial. The images in set
and set3 of initial categories in .R and lE are big enough to include Espace
(Section 4.3), while the image in set3 of an initial category in lE' is within

Espace (Section 4.4).

Much as safe recursion differs from very sare recursion (Section 1.4.1) by

being able to read the parameters (X) more the once, namely during iteration,

dependent sare recursion differs from sare recursion by being able to read

the control (or 'time') variable (Ni) during iteration. Thus the vector (or

simultaneous) safe recursion in [BC92, Be192, LM92, Lei94] is essentially our
dependent safe recursion, while our safe recursion has become (through its

sufficiency and naturalness) independent of 'time'.

This chapter, together with Chapter 2, replaces [Ott94] which in tum
replaced [Ott93]. We assume knowledge of Chapters 1 and 2.

• 4.1 3-Comprehensions

4.1 3-Comprehensions

4.1.1 Comprehensions

103

•

Wc abstract from set3 (which is the colensor 3 -0 set in~ as be!ow) and

ils 3 tiers of numbers

No = N NI = N N2 - N

l lid lid
1 N N

l l lid
1 1 N

Thus with M 3 =end(3)O the partial!y ordered monoid of endomorphisms of

the partial order 3 with the 1-ce1ls reversed (i.e. acting on the right, rather
than the left, of 3), an FP 3-comprehension is a 2-functor M3 -+ ;r.j3, where

;r.j3 is the 2-category of smal! FP categories with witnessed structure, strict
FP functors, and natural transformations.

Now we present M 3 =end(3)O as a 2-category. As generators we choose
thp. 1-cells (acting on the right of 3)

To - 0 0 Go - 0--+0

~ /~

1--+1 1 1

2---+2 2---+2

Tl - 0---+0 Gl - 0---+0

1 1 1---+1

~ /
2---+2 2 2

and the 2-cel1s (naming the element-wise partial order)

G 'i 'd ~i 'T'i --+1 ---+.Li

• 104

We also define

3-Comprehensions and Kalmar Ekn1l'ntary

The partial arder underlying M 3 is (generated by)

Gl Go

lGo Gl (0

Go Gl~Ga

leoGl
oe
' leo

Gl e, : id -,-,-+: Tl

l"Gl 1.. lTl"
Ta Gl -:z; Ta ----+:z; Tl Ta --=:-=--+: Ta Tlo (1 'JI 0 TJ To '11

We then choose as relations

Gi Ti = n
Ti Gi =Gi

Tl Ga=Tl
GaTl=Ga

Ta Gl = Gl Ta

Ta Tl Ta = TaTI
GIGaGl=GlGa

T. Tf. = Tf. Ti = id
Gi Ei = Ei Gi = id

n Ei = G. Tf. = X.

Ea Tl = Tf1 Go = Tf1 0 Ea

Ta El = El Ta

Tfa Gl = Gl Tfa
Tfa Tl Ta = Tl Ta Tf1

Go Gl Ea = El Go Gl

In particular we have the adjunctions

Ta -i Go -i Tl -i Gl

triples Ta, Tl' Ta Tl, and cotriples Go, Gl , Gl Go- We also have the non·
idempotent ((Tl Ta)2 = Ta Tl) modalities

•

o 0

~
1 1

~
2---+2

0---+0

/
1 1

/
2 2

• 4.1 3-CoTllprei}('nsions

Sorne of the 2-calegory assertions needed arc not complete!)" obvious. E.g.

from
id id

~ ~"'
~ot---.--

Ta TJ Ta

we have commuting

4.1.2 Extents

Suppose that (C, :li, Gi, 7ji, ei) is an FP 3-comprehension. We define an

extent 2-natura1 transformation

c

by the component, over the unique O-cell of M 3 ,

X:C~3--oC

3~~(C, C)

a

l
1 >-+

l
2

in~

in cat

G1 Go

lG, Xo

To G1

ITox,
ToT1

•
Proposition 4.1.2.1

The extent functor Xis a 2-natura! transformation between 3-comprehensions.

• 106 3-C'omprdlt'nsions and l,a!m<tr EIl'l1ll'lltary

Proof. Use the multiplication table

To Co Tl Cl

Cl Co To Cl Cl Co Cl Co Cl Co
ToC, To Cl C, Co ToT, To Cl

ToTl To Tl ToTl ToT, To C,

and that the 2-ceBs are unique.

4.1.3 Tiers

From

No - N N, = N N2 = N

1 lid lid

1 N N

l l lid

1 1 N

in set3 we abstract

Ta No =1 G, No =No Go No =N, G, N, =N2

o

•

Proposition 4.1.3.1

For an FP 3-comprehension (C, T" G" 1/" Ei) and objects N, in C, given the

above equations, we .!lave the multiplication table

No NI N2

Ta 1 N, N2

Go N, NI N2

Tl No No N2

G, No N2 N2

o

• 4.2 Thrce Doctrines 107

4.2 Three Doctrines

4.2.1 .R

.4: abjects consist of

1. FP categories C

2. with

1 ° ,. • ,.
~J" --: l"

in C and

3. +, ~, *, TI, P, - as below.

jt maps are the functors preserving witnessed structure and are thus strict.

+ satisfies

x+O=x x + (s n) = s (x + n)

which is that

NxN
Nx~

·NxN

1'0. + l~o.+
iNxN

:':'0. " :':'1
NxN

N x l _..:.N:..;'X:::.O..-;

~o1
N---..-;

id, id

commutes in C.

~ satisfies

(~f) x 0 =0 (~ f) x (s n) =f x n + (~ f) x n

which is that, given f : X x N N in C,

•

X x l XXO) X x N . Xx. 1 X x N

(X~ lid.!:! }d.!:!

(X x N) x N (Xx.)~o.+ (J~0.~1\ (X x N) x N

commutes in C .

• lOS 3'('ompn'h<'n~ion~ and Kalmar EIl'm<'ntary

* satisfics

which is that

commutes in C.

TI satisfies

(TI f) x 0 = s 0 (TI f) x (s n) = (f x n) * (TI f) x n

which is that, given f : X x N -+ N in C,

XxO XX3X x 1 , X x N ----"-=----;, X x N

(X~ lido n f lido n f

(X x N) x N . . (X x N) x N
(X x.) '0.· (f '0.•,)

commutes in C.

P satisfies

po=o P(sn)=n

which is that

commutes in C.

Finally - satisfies

x-O=x x - (s n) =P (x - n)

which is that

INxN
Nx. INxN

l~o.- l~o.-
INxN

71'0. P 1:']
INxN

NxON x 1 --'-'--'-'-->

~ol
N ---""jd,'"'j"'"d--+

•

• 4.2 Tluee Doctrines

commutes in C.

Proposition 4.2.1.1

1. There is an initial category 1 in.R (as above).

109

•

2. Up to natural isomorphism. the unique.R (unctor i : 1 -+ set is r =
1(1, _).

Proof.

1. Use almost equational specifications as in Section 1.1.

2. Use gluing as in Appendix l.F. Thus consider the comma category

set/r ::'1
1

~ol ir
set id

1 set

We indicate some of the structure needed on set/r. As N take std : N -+ r N
where std 0 =0, std (s n) = s 0 std n. As

take

As + take

NxN + IN

l",vl-'d". stdvl l"d

r(NxN)~rN

o

4.2.2 l!:

tE objects consist of

1. FP 3-comprehensions (C, Ti, Gi, 7]i, ~)

• 110

2. with unary

in C such that

3-Comprehensions and Kalmar Ell'ml'lltary

o ,. , ,.
1 --:" J"0 -----0. j,'0

satisfying

To 1'1 = 1

3. unary fiat recursion (as in Chapter 2) and

4. tier 1 and tier 2 unary safe recursion (as below).

<E maps are the functors preserving witnessed structure.

Define

l~Nl~Nl

1~N2~N2

Notice that

= Go (l~No~No)

Gl (1~ 1'11 -!-.. 1'11)

To No = 1 ToTl No = 1

To 1'11 = 1'11 ToTl 1'11 = 1

To 1'12 = 1'12 To Tl 1'12 = 1'12

Thus tier 1 unary sale recursion is that 'tI C commuting

X...!....;Y

3! C commuting

XxY~Y X xToY

id·jl l~·
X

Xxo Xxa
X x 1-X X 1'11 - X X 1'11

~·l 1,,··1 1~··1
X IXxY-;hXxY

id.g "'0,

while tier 2 unary sale recursion is that 'tI C commuting

•
XxY~Y

• 4.2 Three Doctrines

3! C commuting

v I~~v ,,~v IV./\. X ' .."\ X J'f2 ' ~"\ X ~ 2

"01 1"o. J 1"o. J. . .
X ----,id,-,-g~ X x y' "o. h X X Y

\Vith 1 initial in lE, define r3 by commuting

r,
1 •3 -0 set

~ ~'
3-01

where X is the extent (Section 4.1.2) and r = 1(1, .).

Proposition 4.2.2.1

1. There exists an initial category 1 in lE (as above).

III

2. Up to natural isomorphism, the unique lE functor i : 1 --t 3 -0 set is r3.

Proof. Proceed as with Proposition 4.2.1.1, but with r 3 replacing r. 0

4.2.3 re'
lE' dilfers from lE by replacing the sare recursions by dependent saie recursions.

Tier 1 unary dependent sale recursion is that '<1 C commuting

3! C commuting

(X x NIl x Y--l:.....y (X x NI) x To y

id'iÎ 1·"
X xNI

•
x x 1 XxO J X X NI __....::X.:.x:...---lI X x NI

. lid.1 licl. 1
(XXO).g~

(X x NI) x Y (XX.) hl (X x NI) x Y

• 112 3-Comprdlt'IlSions and Kalmar Elt,tlll'tltary

while licr f! unary dcpendcnl sale rt'Cursion is that V C commtlting

X~y

3! C commuting

(X x ;V~) x }- _h_}. (X x N~) x '1'0 T, }'

id_ JIl,.
X x N~

Proposition 4.2.3.1

1. Tbere exists an initia! category 1 in (E' (as above).

2. Up to natura! isomorpbism tbe unique (E' functor i : 1 -+ 3 -0 set is ['3.

Proof. Proceed as with Proposition 4.2.2.1.

The point of introducing (E' is that we have a funetor
o

•

Given C in (E' let C(2) be the full subcategory in C of X such that Ta TI X =
X. Deline +, *, P as in Chapter 2 and then apply GI Go. Similarly deline
-. Then deline E, II using tier 2 unary dependent safe recursion, (El NI) 0 /,

and +, * with just Go applied.
We also have the underlying funetor

4.2.4 ESpace

t polynomials and Espace were defined in the introduction.

• 4.3 Enough ~laps 113

Proposition 4.2.4.1

With I}" lE, lE' initial in .~ lE, lE' (as above) the Kalmar eIementary functions

are prcciseIy of the forms

1. r J for IK maps J,

2. r To TI J for lE maps J,

3. r To TI J for lE' maps J,

4. the Espace numeric funetions.

Proof. 1. This follows from Proposition 4.2.1.1.

2.-4. Sce sections 4.3 and 4.4.

4.3 Enough Maps

o

Proposition 4.3.1

With IK, lE initial in J\, CS (as in Section 4.2) ail the Espace functions have

the forms

1. r J for IK maps J,

2. r To TI J for lE maps f.

Proof. Given an Espace function, we ron it on a dyadic register machine

as in Chapters 1, 2 with an t polynomial time bound. Then 1. follows by

Theorem 3.1 in [Ros84]. ln lE we define t such that

xto=so

•

by the tier 2 unary safe recursion

NI X 1
N,xO

1 NI X N2
N1 Xa

1 NI X N2

~ol l~o. 't 1'"" 't
NI id." OT

1NI X NI
11'0. Go •

1NI X NI

Thus t polynomials are definable in lE, These allow, as in Chapter 2, running

s}, S2, D, C simulations and dyadic register machines long enough. 0

• 114 3-Comprehensions and Kalmar Elem"lltary

4.4 Not Too Many Maps

By Chapter 2 il. remains 1.0 enumcrate the Herbrand univcrs,' (as in Ap.

pendix l.B) of lE' initial in lE' (as in Section 4.2) and inductivcly cstablish

unary output bounds.

Up 1.0 isomorphism, the objects "f lE' have the form

with J, J, KEN. Due 1.0 Gi, Ei and tuples, il. is enough 1.0 consider maps

1 J Kf : N2 X NI X No -+ No

With vectors x : 1 -+ Nl, y : 1 -+ N/, Z : 1 -+ NoK, we will show that

(modulo r GI Go)

f x y z::; q x y + mFzk

with the t polynomials q (which depend only on f) not having yj's within the

right hand scopes of their t's.

Set Ci = Ei Ni. Applying 7]i, Ei ta Nj we gel.

7]0 No =T

eo No = Co

7]1 No =id

El No =id

Applying Ti, Gi ta Cj we gel.

7]0 NI = id

eo NI =id

7]1 NI = CO

El NI = CI

7]0 N2 =id

EO N2 = id

7]1 N2 =id

El N2 = id

Toco=T

Goco=id

Tlco=id

GICO=COCI

Tocl=cl

GOCI=CI

TI CI = CO CI

GI CI = id

•
Safcty, for 3-comprehensions, is that, for i < i, tier i inputs (1 -+ Nj)

cao not affect tier i outputs (-+ Ni). This safety follows (as in Chapter 2) by

applying Ti and using the naturality of 7]i•

• 4.4 :-':ot Too Many Maps 115

Wc refine dependent safe recursion in lE" By applying i : lE' -+ 3 -:> set

and looking at the 0 componenl, lE' commuting

~o

(X X Nt) x To y = X X NI
'id. i

implies that Y is isomorphic to sorne N/'. Sirnilarly, lE' cornrnuting

irnplies that Y is isornorphic to sorne N/ x NoK. Thus it is enough to apply

lier 1 dependent safe recursion to

g:X-+Y

and tier 2 dependent safe recursion to

g:X-+Y

Using safety, tier 2 dependent safe recursion can be further refined by

1. obtain the N/ pl'rt separately by tier 2 dependent safe recursion,

2. substitute the N/ part away,

3. obtain the NoK part using tier 1 dependent safe recursion.

Thus it is enough to apply tier 2 dependent safe recursion to

g:X-+Y h : (X x N2) x Y -+ Y =N/

Most of the inductive cases are essentia.lly the sarne as in Chapter 2. So

consider the dependent safe recursions.

With x: 1 -+ X = Nl, y: 1-+ Y = N/, z: 1 -+ Z = NoK, n: 1 -+ Nt.
:;' : 1 -+ Z' = NoK', apply tier 1 dependent safe recursion to

•
g:XxYxZ-+Z' h:XxYxZxN1xZ'-+Z'

-.'

• 116

Then

3-Comprchcnsions and Kalmar Elcnwntary

f:i Y : (sn 0) = h X Y : (5,-1 0) h X Y : (5.-2 0) ... 9 :r y :

Thus from the vector inequai;t,ies (from the inductive hypothcsis)

9 X Y : :5 qg x y + ma.Xk :k

h x y : n :'qh x Y n + ma.x(ma.xk :k, ma.Xk' :i,,)

we have

f x y: n :5 n(L:qh., x y n) +L:qg., X!i +max:.
k' k' k

With x : 1 -t X =N2
1

, y : 1 -t }' =N/, n : 1 -t N2, y' : 1 -t Y' =N/' ,
apply tier 2 dependent safe recursion to

g:XxY-tY' h : X x Y X N2 X Y' -t Y'

•

(There are no No's due to safety.) Then

f x y (sn 0) = h x y (S'-1 0) h x y (S·-2 0) _.. s' x y

Thus from
gxy:5qg xy

h x y n y' :5 qh x n y y'

:5 (qh x n +Lj Yj +maxj' yj.)q~ ""

with qhJ•, qZJ' independent of j'l we have that

fxyn

• 117

Bibliography

[AR94] J. Adamek and J. Rosick)·. Locally Presentable and Accessible

Categories. Cambridge University Press, 1994.

[Awo94] S. Awodey. Axiom of choice and excluded middle in categorical

logic. A talk at the Kansas City ASL meeting, 1994.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic character

ization of the polytime functions. In STOC Proceedings. ACM,

1992.

[BC94] D. Bovet and P. Crescenzi. Introduction to the Theory of Com

plcrity. Prentice Hall, 1994.

[BDG88] J. Balcazar, J. Diaz, and J. Gabarrô. Structural Complcrity l.

Springer-Verlag, 1988.

[BDG90] J. Balc<izar, J. Diaz, and J. Gabarrô. Structural Complcrity Il.

Springer-Verlag, 1990.

•

[Be192]

[Blo92]

S. Be1lantoni. Predicative Recursion and Computational Complez

ity. PhD thesis, Department of Computer Science, University of

Toronto, 1992.

S. Bloch. Altemating function classes within P. Technica1 Report

92-16, Department of Computer Science, University of Manitoba.,

1992.

• 118 BIBLlOGR:\PHY

•

[Bor94] F. Borceux. A Handbook of Calegorical Algebra. Cambridgl' lini

versity Press. 1994. Volumes 1-3.

[B\V85] M. Barr and C. Wells. Toposes, Triples. and Theories. Springcr

Verlag, 1985.

[BW90] M. Barr and C. Wells. Category Theory for Compuling Science.

Prentice Hall, 1990.

[C+86] R. Constable et al. Implementing Mathematics. Prentice Hall,

1986.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions.

In Y. Bar-Hi1Iel, editor, Proceedings of the 196-1 International

Congress for Logic, Methodology, and the Philosophy of Science.

North-Holland, 1965.

[CRCM80] M. Coste-Roy, M. Coste, and L Mahé. Contribution to the study

of the natural number object in elementary topoi. Journal of Pure

and Applied Algebra, 17:35-68, 1980.

[Day70] B. Day. On c10sed categories of functors. In S. Mac Lane, editor,

Reports of the Midwest Category Seminar IV, volume 137 of LNM.

Springer-Verlag, 1970.

[FS90] P. Freyd and A. Scedrov. Categories, Allegories. North-Holland,

1990.

[GLT89] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge

University Press, 1989.

[Hod93] W. Hodges. Model Theory. Cambridge University Press, 1993.

[HP93] P. Hlijek and P. Pudlak. Metamathematics of First-Order Arith

metie. Springer-Verlag, 1993.

• BIBLIOGRAPHY 119

[Huw76] H. Huwig. Bc=ichungcn ZlCischen Bcschriinktcr Syntaktischcr und

Bcschriinkter Primitivcr Rekursion. PhD thesis, Informatik, Uni

versitiit Dortmund, 1976.

[Huw82] H. Huwig. Ein modeli des P = N P-problems mit einer positiven
losung. Acta Informatica, n:221-243, 1982.

[Jay89] B. Jay. Languages for monoidal categories. Journal of Pure and

Applied Algebra, 59:61-85, 1989.

•

[Jec78] T. Jech. Set Theory. Academie Press, 1978.

[JMS91] B. Jacobs, E. Moggi, and T. Streicher. Impredicativetypetheories.
In D. Pitt et al., editors, Category Theory and Computer Science,

volume 530 of LNCS. Springer-Verlag, 1991.

[Joh85] P. Johnstone. How general is a generalized space? In 1. James

and E. Kronheimer, editors, Aspects of Topology. Cambridge Uni
versity Press, 1985.

PS91] A. Joyal and R. Street. The geometryof tensor calculus, 1. Ad

vances in Mathematics, 88:55-112, 1991.

[KeI89] G. Kelly. Elementary observations on 2-categoricallimits. Bulletin

of the Australian Mathematical Society, 39:301-317, 1989.

[Kun80] K. Kunen. Set Theory. North-Holland, 1980.

[Law70] F. Lawvere. Equality in hyperdoctrines and comprehension
schema as an adjoint functor. In A. Helier, editor, Applications of

Categorical Aigebra. AMS, 1970.

[Lei94] D. Leivant. Ramified recurrence and computational complexity 1:

Word algebras and poly-time. In P. Clote and J. Remmel, editors,

Feasible Mathematics II. Birkhiiuser, 1994.

[11087] J. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1987.

• 120 BlBLlOGRAPlIY

•

[LM92] O. Lcivant and J. Marion. 1992. l'npubli$lll'd nott'$.

[LM95] O. Leivant and J. Marion. Ramificd recurrence and cOlllputational
complexity II: Substitution and polY·$pace. l'reprint. 1995.

[LS86] J. Lambek and P. Scott. Introduction to Higher Order Catcgorical

Logic. Cambridge University Press, 1986.

[Mak93] M. Makkai. The fibrational formulation of intuitionistic predicate

logic 1: Completeness according to Godel, Kripke, and Liiuchli,

part 1. Notre Dame Journal of Formai Logie. 3-l:334-3iï, 1993.

[Mak94] M. Makkai. Generalized sketches as a framework for complcteness

theorems. Preprint, 1994.

[MP89] M. Makkai and R. Paré. Accessible Categories, volume 104 of

Contemporary Mathematics. AMS, 1989.

[Ndj92] M. Ndjodo. Systèmes de Réécriture et Cohérence des Isomor

phismes de Types dans les Catégories Localement Closes. PhO

thesis, L'Universite d'Aix-Marseille II, Faculté des Sciences de Lu

miny, 1992.

[Ott93] J. Otto. Kalmar elementary and 2·simplices. Oraft, 1993.

[Ott94] J. Otto. Kalmar, linear space, and P. Oraft, 1994.

[P+83] W. Paul et al. On determinism versus Don-determinism and rc

lated problems. In FOCS Proceedings. IEEE Computer Society,

1983.

[P+91] D. Pitt et al. Category Theory and Computer Science. Springer

Verlag, 1985, 1987, 1989, 1991. LNCS volumes 240, 283, 389,

530.

[pav90] D. Pavlovié. Predicates and Fibrations. PhD the'lis, Faculteit der

Wiskunde en Informatica, Rijksuniversiteit Utrech, 1990.

• BIBLIOGRAPHY 121

.'

[Pit8i]

[PR89]

[Rit63]

A. PiUs. Polymorphism is set theoretic. constructi\·e!y. In D. Pitt

et al., editors, Ca/cgory Thcory and Computa Science. \'o!ume

283 of LNCS. Springer.Verlag, 198i.

R. Paré and L. Roman. Monoida! categories with natura! numbers

object. Studia Logica, XLVIII:361-3i6, 1989.

R, Ritchie. Classes of predictab!y computable functions. Trans

actions of the AMS, 106:13i-li3, 1963.

[Rom89] L. Roman. Cartesian categories with natura! numbers object.
Journal of Pure and Applied Algebrll, 58:26i-2i8, 1989.

[Ros84] H. Rose. Subrecursion: Function..o and Hierarchies. O:-..-ford Uni

versity Press, 1984.

•

[See84] R. Secly. Local!y cartesian closed categories and type theory.

Mathematical Proceedings of the Cambridge Philosophical Society,

95:33-48, 1984.

[Str92) T. Streicher. Dependence and independence results for (impred

icative) calculi of dependent types. Mathematical Structures in

Computer SCIence, 2:29-54, 1992.

[Thoi2] D. Thompson. Subrecursiveness: Machine-independent notions

of computability in restricted time and storage. Mathematical

Systems Theory, 6:3-15, 19i2.

[Tro92) A. Troelstra. Lectures on Linear Logic. CLSI, 1992.

[Woo86) A. Woods. Bounded arithmetic formulas and Turing machines

of constant a1ternation. In J. Paris, A. Wilkie, and G. Wilmers,

editors, Logic Colloquium '84. North-Holland, 1986.

[Wrai8] C. Wrathall. Rudimentary predicates and relative computation.

SIAM Journal on Computing, i:I94-209, 19i8.

