l & E National Liprary

of Canada

Acquisiions and

Bibliolhaque nationale
du Canada

Direction des acquisilions et

Bibliographic Services Branch des serces bibliographigues

395 Welingion Street
Otawa, Ontano
K1A ON2 KA ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Welkngton
Onawa (Oritano}

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila these soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a Paide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Complexity Doctrines

James R. Otto, Jr.
Department of Mathematics and Statistics
McGili University, Montreal

A thesis submitted to the Faculty of Grad-
uate Studies and Research in partial fulfill-
ment of the requirements of the degree of

Doctor of Philosophy.

June 13, 1995
©James R. Otto, Jr., 1995

i 4 I National Library

of Canada

Acquisitions and

Biblicthéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
QOttawa, Ontario
K1A ON4 K1A ONd

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis avaiiable to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Onlano)

Your hite W00 retAren

Dur s Aedlige il rpece

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a2 la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protéege sa
thése. Ni la these ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-08143-5

Canada

i

1

Contents

Résumé
Abstract
Introduction

1 Tensor and Linear Time

Introduction
1.1 Almost Equational Specification
10.1 Sketches
1.1.2 Orthogonality
1.1.3 Essentially Algebraic Specification
12 Tensorand SystemT
1.2.1 Serial Composition
1.2.2 Parallel Composition
123 Unary Numbers
124 SystemT
1.3 Comprehensions and Tiers
1.3.1 Comprehensions.
132 Extents
1.3.3 DyadicNembers
134 Tiers v v vt i i it i e i e
14 LinearTime
1.4.1 A Linear Time Doctrine
142 Formal Linear Time

.........

1.4.3 Dyadic Register Machines
144 Turing Machines 0o o oo
145 EnoughMaps o o oL
146 Safety e
14.7 NotTooMany Maps
The Linear Time Hierarchy,
Sketches as Presheaves 0 oo oL oo
Initial Models L o
Coherence i i e e e
Linear Implication

COleNSOT & v v v i ot et e e e e e e e e e e e e e

V-Comprehensions and P Space

W v

ot

(RN
W o

Introduction e
V-Comprehensions
2.1.1 Unary and Dyadic Numbers
212 2TierQs .. . o i v i e e e e
213 Cotensor. . . .« it ittt e e e e e e
214 2-Comprehensions.
21.5 V-Comprehensions
2.1.6 Extents e e
217 Tiers . . . ot i e e e e e e e
PSpace i i e e
EnoughMaps,
231 GettingBig i oo e oy
23.2 CodingMachines
233 NextState.,
234 LongEmough,
NotTooManyMaps ittt enennnnn
Linear Space. . . . v v v vt i it i e e e
PTime. i i e e e

3 Dependent Products and Church Numerals

Introduction
3.1 Dependent Products

3.1.1 Comma Objects

3.1.2 LCC Sketches

3.1.3 Pb and Dp Stacking
3.1.24 Alartin-Lof Choice
3.1.5 Puli-Back is LCC

3.1.6 Presheaves . .
3.1.7 Yonedais LCC

3.1.8 Toposes and Locally Connected Maps
3.2 LCC 2-Comprehensions
3.3 A Little Lambda Calculus

3.4 Church Numerals . .
4
Introduction
4.1 3-Comprehensions . .
4.1.1 Comprehensions
4.1.2 Extents ...
413 Tiers.....
4.2 Three Doctrines . . .
421 R.......
422 E€.......
423 ¢
424 ESpace ...
4.3 Enough Maps

4.4 Not Too Many Maps

Bibliography

.......................

......................

......................

.......................

....................

..........

......................

....................

.......................

3-Comprehensions and Kalmar Elementary

.......................

73
3
Iz
k!

(R

32
83
S
36
87
33
95
97

101
101
103
103
105
106
107
107
109
111
112
113
114

117

vi

Vi

Résumé

On caractérise diverses classes de complexité comme des images dans set?,
setV, et set® de catégories initiales dans des doctrines de complexité. (Une
doctrine est constituée des modéles d'une théorie de théories.) On caractérise
de cette facon les fonctions de temps linéaire, d'espace polynomial, de temps
polyndmial, élémentaires dans le sens de Kalmar et les relations de hié¢rarchie
de temps linéaire. (Notre modele de machine sera les machines de Turing
4 plusieurs bandes, avec un nombre constant de bandes.) Ces doctrines
étendent, en utilisant des compréhensions, les doctrines de premier ordre SO
et FB. On montre, en utilisant des diagrammes de produit dépendant, com-
ment on peut étendre de cette fagon la doctrine d’ordre supérieure L£CCE.
D’autre part, en utilisant les numéraux de Church, on démontre que les
compréhensions LCC résultantes n’apportent pas assez de contrble sur les
types d’ordre supérieur pour caractériser des classes de complexité. On mon-
tre aussi comment utiliser les esquisses et 1'orthogonalité pour la spécification
presque équationnelle.

Abstract

We characterize various complexity classes as the images in set®, set', and
set® of categories initial in various complexity doctrines. {A doctrine consists
of the models of a theory of theories.) We so characterize the lincar time, P
space, linear space, P time, and Kalmar clementary functions as well as the
linear time hierarchy relations. (Our machine model is multi-tape Turning
machines with constant numbers of tapes.} These doctrines extend, using
comprehensions, the first order doctrines G and FL. We show, using de-
pendent product diagrams, how to so extend the higher order doctrine £¢€¢.
However, using Church numerals, we show that the resulting LCC compre-
hensions do not provide enough control over higher order types to characterize
complexity classes. We also show how to use sketches and orthogonality for
almost equational specification.

X1

Introduction

A doctrine consists of the models of a theory of theories. We do not
directly repeat the old horror story of the student who proves many marvelous
theorems about a theory with no models, as the theories in our complexity
doctrines trivially have as models functor categories such as set®, set", and
set>. (Here V is the partial order = +.) However, set?, set”, and set?, while
reasonable from a Newtonian/Platonic point of view, are, except for their low
ends, much too big to easily fit into a physics limited by the speed of light
(special relativity), hydrogen atoms (quantum theory), and round off error
(chaos). So we use the images of initial categories in complexity doctrines to
characterize fairly physical low ends of set?, set¥, and set®. (Some theories
are categories.) That is, we so characterize the linear time, P space, linear
space, P time, and Kalmar elementary functions as well as the linear time
hierarchy relations, all on multi-tape Turing machines with constant numbers
of tapes.

These complexity doctrines extend, using comprehensions, the SM {= sym-
metric monoidal) and the FP (= finite products) doctrines. We show, using
dependent product diagrams, how to so extend the LCC (= locally cartesian
closed) doctrine. However, using Church numerals, we show that the result-
ing LCC comprehensions do not provide enough control over higher order

xii

types to characterize complexity classes. (We eventually hope to overcome
this using a combination of comprehensions and fibrations.) Along the way,
we view sketches as certain presheaves, and show how to use skeiches and
orthogonality for almost equational specification.

This thesis is organized as four chapters/papers, each with its own intro-
duction. We invite the reader to consider these introductions. {Chapter 2is a
variant of a proccedings paper.) Now we indicate the originality of this thesis.

The other work on categorical characterizations of complexity classes that
we know of is [Huw76, HuwS§2]. We differ from it by using initial categories
and gluing as in [Rom89, PR8Y, LS86], by using comprehensions. and by
characterizing linear time.

Comprehensions descend from [Pav90, JMS91, Law70]. We free them from
fibrations and relate them to the partial orders 2, V, and 3. We use compre-
hensions to understand tiers [BC92, Lei94, LM92)] and to restrict the internal
initiality of (base 1 and 2) NNO (= natural numbers objects): the partial
orders 2, V, and 3 indicate how ‘for loops’ are allowed to nest. NNO [LS86,
BW90, CRCMS80], as well as comprehensions, are due to F. Lawvere.

The linear space, P time, and Kalmar elementary characterizations de-
scend from [Bel92, Rit63, BC92, Cob63, LM92], but differ by using categories
and (2- and 3-) comprehensions. We also distinguish between safe recursion
and dependent safe recursion. (See the introduction to Chapter 4.) The
P space characterization descends from [Tho72, HuwT76)], but differs by using
V-comprehensions. While the P space characterization here pumps up linear
space, that in [LM95] pumps up P time.

The linear time characterization descends from [Blo92, LM92, Lei94], but
differs from [Blo92] by not having diagonal at tier 0, and from [Lei94] by not
allowing machine registers to be copied in unit time. (See the introduction
to Chapter 1.) We see the distinction between the SM and the FP doctrine
as leading to the distinction between very safe recursion (for linear time) and
safe recursion (for the other function classes), with diagonal needed to read
the parameters more than once in safe recursion.

The characterization of the linear time hierarchy relations descends
from [Wra7§), but differs by using tiers rather than explicit bounds. There

Xt

arc similar characterizations of the P time hicrarchy functions in [Bel92], and
of the NP and the N lincar space functions in {Lei94].

Dependent product diagrams (but not dp stacking) appear independently
in [Ndj92]. (Our dp stacking proposition is from 1991.) Our use of sketches
and orthogonality is our understanding of the use of sketches and injectivity
in [Mak94]. (For the complex history of sketches see [Mak94, AR94, BW90,
MP89].)

I thank my wife H. Tan, my paren.s J. Otto and R. Otto, my advi-
sor M. Barr, my latest teacher M. Makkai, the tiers pioneers S. Bellantoni.
S. Bloch, and D. Leivant, my teachers M. Bunge, R. Davis, D. Jurca, J. Lam-
bek, C. Moore, W. Nico, and D. Thérien, as well as A. Blass, R. Blute,
W. Boshuck, R. Cockett, D. Cubri¢, V. Harnik, J. Loveys, F. Magnan, R. Paré,
R. Squire, R. Seely, C. Wells, and A. Zappitelli for their help.

We have used xy-pic, latex2¢, and auc-tex.

Chapter 1

Tensor and Linear Time

Introduction

One might wonder, for example, how to cleanly combine functional and logic
programming. Categorical logic may hely answer such questions. Both func-
tions f : X — Y and relations {or types) 1 on X are maps, and higher order
types v’ are from dependent product diagrams {Chapter 3), or more generally,
from fibrations [BW90, Mak93, Bor94, Pav90:

x 1y —

L) ATk

x | V/——

Thus categorical semantics of programming languages is an industry [P¥91].

After seeing a draft of [BC92], we soon realized that the Bellantoni-Cook
composition is the serial composition in (the category which is) the Kripke
structure on the partial order 2 (Section 1.3.1).

In categories having higher order types, recursion is defined by natural
numbers objects (NNO) [LS86, BW90, CRCM80]. Categories having higher
order types and NNO characterize Gddel’s system T (Section 1.2.4). Without
the higher order types, but with a compatibility with tensor or product which
would follow from having higher order types, categories with NNO and tensor
or product characterize the primitive recursive functions [Rom89, PR89}. In-

| £

Tensor and Linear Time

deed, the image in set, the category of small sets, of 2 category initial among
such categories, is the set of primitive recursive functions.

H. Huwig uscs bounded recursive characterizations of complexity classes
and fragments of base 1 and 2 NNO to describe the corresponding sub-
categories of set [Huw76), and uses tensor rather than product to obtain
an interesting model of such systems [Huw82]. Our work on complexity
starts from [Rom89, PR89] and from tiered characterizations of complexity
classes [BC92, Bel92, Blo92, Lei94).

We use tensor rather than product. But rather than view tensor as a bro-
ken product, we view it as a parallel composition, even though we implement
it sequentially. Thus we can have both serial and parallel compositions of
programs:

fiofo fo®h

:fz " " fo

—

bj

We formalize these combined compositions as symmetric monoidal (SM) cat-
egories (Section 1.2).

We understand tiers in terms of comprehensions [Pav90, JMS91, Law70]
(Section 1.3). In particular, we abstract SM 2-comprehensions from the Kripke
structure over the partial order 2. SM 2-comprehensions consist of modalities
(or endo-functors) T, G and coercions (or natural transformations) 5, €, where
T erases tier 0 inputs and outputs, G boosts them to tier 1, 5 forces safety,
and ¢ coerces tier 1 data to tier 0. We use T and @ to restrict the internal
initiality of NNO to Leivant’s flat and Bloch’s very safe recursions. Then the
image, in the Kripke structure over the partial order 2, of a category initial
among SM categories having SM 2-comprehensions, tiers, and base 2 flat and
very safe recursions, consists of the linear time functions on deterministic
multi-tape Turing machines with constant numbers of tapes (Section 1.4).

Replacing tensor by product in our characterization of the linear time func-
tions on multi-tape Turing machines recovers D. Leivant’s characterization of
the linear time functions on his register machines [Lei%94]. These machines

1.1 Almost Equational Specification 3

allow registers to be copied in unit time. In {Blo92] (from which our use of
very safe recursion starts). there is an attempt to characterize the linear time
functions on multi-tape Turing machines by what is essentially D. Leivant's
characterization. We suspect that, in {Blo92], vector iteration is not fully
considered. In particular, there is the *diagonal issue’ (Section 1.4.7).

There is the general heuristic that tier 0 operations such as quantifications
and minimizations are automatically bounded. Indced, [Bel92] so character-
izes the P time hierarchy furctions, and [Lei94] so characterizes the NP and
N linear space functions. We so characterize the lincar time hierarchy rcla-
tions (Section 1.5), thus improving on [Wra78]. By the way. on multi-tape
Turing machines, the linear time relations are not the N linear time reia-
tions [P*83, BDG90], and the linear time hierarchy relations are the bounded
arithmetic relations {HP93, WooS86].

We construct initial categories using almost equational specification based
on two layers of restricted equational specification: sketches and orthogonal-
ity [Mak94, AR94, Bor94] (Section 1.1, Appendices 1.A, 1.B).

We have attempted (in this chapter) to be largely accessible to non-
specialists. Thus we have pushed technical details to appendices. For back-

ground information and further details we suggest (BW90, Bor94, LS86, AR94,
BWS5].

1.1 Almost Equational Specification

1.1.1 Sketches

We modify [Mak94]. A sketch theory is (or see Appendix 1.A) an equational

specification with a function height : sorts = N from sorts to natural numbers,
such that

1. Operators (= function symbols) have arity 1. In particular, there are no
constants.

) Tensor and Linear Time

2. Opcrators go to sorts of lower height. lLe. given an operator f to sort

X' from sort X, which we write as
fz:X'z:X]
we have height X’ < height X.
3. Only finitely many operators come from (as in 2.} any one sort.

Suppose that S is a sketch theory. Then an S sketch is 2 model (in set,
as in Appendix 1.A) of S. Thus an S sketch s has

1. for each S sort X, a set s X,
2. for each S operator f z: X' [z: X], afunctions f:s X = s X,

such that, for each S equation tp = t; : X' [z : X], the functions s fo, s #; :
s X = s X’ are equal, where s interprets terms (i.e. strings of S operators
applied to S sorted variables) t by sz =1id, s (ft)=(s flo(s).

An S homomorphism h : s = s’ is a map between models, i.e. k consists
of, for each S sort X, a function A X : s X' = s’ X such that, for each $
operator f = : X' [z : X], the diagram

hX
sX——X

-'fl ' f

SX'TAT,'*S'X'

commutes.
An S sketch s is finite iff the disjoint union 35,0 x 5§ X is finite.
We can specify any S sketch s by

1. taking enough parameters z € s X, for S sorts X, so that all such are
obtained by applying S operators,

2. taking enough equations #p = ¢; : X’ true in s to imply the rest, where
the t; are S terms with the variables replaced by parameters and evalu-
ationinsisbysz==z,s(ft)=(s flo(st).

1.1 Almost Equational 3pecification

o

We write this as the contert
[oto=t1: X" .1 X L]

s is then, up to isomorphism. the initial model (in set) of the equational
specification extending S with constants z : X and equations tp = t; : X',
Thus an S homomorphism k : s — s’ amounts to assigning parameters r : X
to h z € s’ X in such a way that the equations to = #; : X’ are true in &'
under the evaluation sz =hz,s (ft)=(s" [lo(s'¢).

1.1.2 Orthogonality

Suppose that S is a sketch theory and that M is a set of S homomorphisms.
An S sketch s is orthogonal to M iff S homomorphisms to s extend uniquely
alongm e M, ie iff V

with m € M, 3! commuting

(Orthogonality is a restricted form of equational specification as it, given
enough colimits, induces idempotent triples.)

A basic almost equational specification (S, M) consists of
1. a sketch theory S,
2. a set M of S homomorphisms between finite S sketches.

The models of (S, M) are the S sketches orthogonal to M, and the maps
between them are the S homomorphisms between them.

6 Tensor and Linear Time

As an example, we begin to specify serial composition (following [Mak94)).

S has sorts (where ~= is our comment symbol)

Co ~- objects
C: ~= maps
C. ~- triangles

and operators
diz:C;[z:Cip] for0<7<1,0<i<j5+1
(The face operator d; omits vertex i.} Finally, S has equations
didiz=didis;2:Co[z:C2] for0<ig<j<1

As the triangles will be the graph of a serial composition partial func-
tion {namely © below), we wish to specify associativity. For this we use the
tetrahedron

with faces z; (which omit vertex z). The associativity is that dy z; = dy 2 if
one has the conjunction of d; z; = d; 2j4, for 0 <1 <7 <2, (¢, 7) # (1, 1).
We write this as the assertion
{izi=d1z2:Cy
[do Zo — do I C1
dzo=dpz2:)
dgEo:doIa:C:l
dozi=d z3:C
d2za=drz3: Cy

20:Cy 1:C2 22:C 33:02]}

An S sketch s models this assertion precisely when it is orthogonal to the S
homomorphism

1.1 Almost Equational Specification T

[do-ro=d01‘1161
d-lJ:o:doIgICl
dx 2o = dp 23 : Cy
drzy=dy z3: Cy
d2$2=d213=C1
70:C2 z1:C2 22:C2 13:Cy)

™y

-

[d] $1=d1 $2:Cl
dozo=do 11 : 4
dyzo=doz2: O
d2x0=doz3:01
dz.'r;:dlzaZC';
dora=daza: Cy

T9:C2 21:Cy z2:Ca2 23:C]

where mp z; = z;. Indeed, the assertion is just notation for the homomor-
phism.

Further, we wish to specify that the triangles are the graph of a serial
composition partial function. Given

L h

—

we want a unique triangle f10 fo =

/!:
.fo.

We write this as the © assertion

{! i%f0:C2
d (iSf)=fi:Cr 2(fivfo)=fo: Cn
[d1f1=dofo=co fl:cl fO:Cll}

8 Tensor and Linear Time

where the ! indicates uniqueness. namely that the following uniqueness asser-
tion is implied.

{z=2":C

[doz=fi:C1 doz'=fi:C,

d2$=fo=c1 daz' = fo:Cy

dyfi=dofo:Co z:Co 2':Co f1:C1 fo:Ch]}

An S sketch s models the S assertion iff s is orthogonal to the S homomorphism

[d1f1=dofoico Hh:G fD:Cl]

|

-

[do-?-‘=fticx daz=fo:(Ch
dfi=d fo:C 2:C fi:C fo:C)

where m; f; = fi. (The uniqueness assertion results from the transformation
m, = m; of Appendix 1.B.)

1.1.3 Essentially Algebraic Specification

Basic almost equational specifications (Section 1.1.2) are painfully low
level. We sugar them to a variant of Freyd’s essentially algebraic speci-
fications [FS90]. For example, we respecify the above fragment of serial
composition by

Co ~+ objects
Cy ~+ maps
dz:Co[z:Cy ~ domain (was d;)
cz:Cy[z:Cy] ~ codomain (was do)
{hofo:Ch
d{fiofo)=dfo:Co c(fiofo)=chH:Co
dAho=cfo:Co fi:C fo:C]}
{(fz0fi)ofo=fao(fio fo}: (4
f2:C A:C fo: GiJ}

1.1 Almost Equational Specification 4

This last assertion has, from the occurrences of o. the implied conditions

d(fofi)=c fo: Co

dfa=cfi:Co
dfa=c(fiofo):Co
dfi=cfo:Co

We recover the previous basic specification by replacing the conditional
operator

by the sort and operators

Ca
VDN
Cl C1 Ch

and by unnesting (fo0 fi) o fi = fao (fi 0 fo) to dy z; = d) z2 if one has the
conjunction of

Ig = fzafl
I = (dl Io)afo
Ia = flafo

z2 = f26(dy z3)
Similarly, given suitable layers of conditional operator (= function symbol)
assertions and conditional equation assertions on top of a sketch theory, we
can inductively unsugar to the basic form (S, M) by

1. using graphs of conditional operators,
2. unnesting [Hod93] equations.
Given the conditional operator assertion

{... f2zoz1 oo 21 : X ...
[(coto=t: X Lozt X L)

10 Tensor and Linear Time

where the context has already been unsugared. add the sort and operators
i
|

. Y
d - ~ du—l
d’o dl ..
) / \
X,

X Xo Xnoy

to S and then unsugar the conditional operator assertion to assertions

{r... f.ro;n cee Tpr 2 f .- d.-f:ro:; e Ty =T X .
[ccto=0:X" ozt X L)
{...fo‘—‘t::X’ -

[eediz=zi: X; ooz f oozt X L)
After unnesting {which introduces variables for subterms)
[feey=fzoz1 cos a1 X L]
can be unsugared to
Leey=dz: X ...diz=x2;:X; ... z:f ...]

(Sometimes there exist more efficient unsugarings having equivalent categories
of models.)

1.2 Tensor and System T

1.2.1 Serial Composition

We finish specifying serial composition by adding (1o the specification of Sec-
tion 1.1.3) the identity maps.

{dX:C, didX=X:Cp cidX=X:Co[X:Co]}
{foiddf=f:C, (decflof=Ff:C[f:C]}

Models of this specification are called categories. E.g. set is the category of
(small, for a convenient Grothendieck universe) sets and functions.

1.2 Tensor and System T 11

1.2.2 Parallel Composition

As we said in the introduction. the tensor is parallel composition. In order to
have examples such as vector spaces (Appendix 1.D). we abstract combined
serial and parallel composition (0 and @) as symmetric monoidal (= SM)
categories, which we almost equationally specify following {Tro92].

An SM category is (or see the specification below) a category C together
with fensor and unit functors

®:CxC=C T:1=2C

as well as associativity, symmetry, and left identity natural isomorphisms

aXYZ:XQY¥YQ2)=-(XeY)eZ
cXY: XY 2YQ®X
AX:TRX- X

satisfying
(cY X)o(e XY)=1id cTT=id

as well as the pentagon, triangle, and hexagon coherence conditions of Ap-
pendix 1.C. E.g. set (Section 1.2.1), with T = {0} and @ = x (where
XxY ={{z y)z€X, y €Y}, is an SM category. (Actually, for
SM categories, but not for SMC categories (Section 1.2.4), there is no loss of
generality in taking the a’s and X’s to be identities [JS91).)

As the special cases fQY = f@idY, X @ g = (id X) ® g suffice, we
leave the general case f @ g implicit. We also use that, given the hexagon
condition and that ¢ is natural, for & to be natural it is enough that a X Y Z
be natural in X. (Apply the hexagon twice.) Thus SM categories are specified
by the categories assertions of Sections 1.1.3, 1.2.1, the coherence assertions
of Appendix 1.C, and the following. {We omit empty contexts [].)

~+ Tensor and unit

{(XQY:C [X:Co Y:Co}

{feyY:C, Yeof:G

d(fQY)=([df)®Y:Co c(fRY)=(cf)®Y:Co
dY®f)=YRUEf):C c(YRf)=Y®(cf):Co
[f:C Y:Col}

Tensor and Linear Time

{7 :Co}

~~ Associativity, symmetry, and left unit

{«eXYZ:Ch e XY Z:Ci caXYZ=(XOY)®Z:(
doy AYZ=(X8Y)®Z:(,

(n XY Z)o(a XY 2)=d(X@(Y®2):C,
(XY Z)o(ey XY Z)=d((X®Y)R 2Z):C
[X.‘Co Y:Co Z:Co]}

{e XY:C

do XY=XQY:Cs ccXY=YRX:(y

(cY X)o(c XY)=d(XQY):C

[X:Co Y:Co]}

{cTT=id(T®T)}

ADX:C W X: Gy

cAX=X:Cp dMNX=X:(
MX)e(AX)=1d(TO®X):Co

(AX)o(M X)=id X : Gy

(X : Col}

~~ Functorality
{(cf)@g)o(fO(dg)=(f@(cg)e((df)®g):C
[f:Cl g:Cﬂ}

{[dX)®Y =id(XQY):C: [X:Co Y:Cy}
{(iof)®Y =(A8Y)o(fo®Y):C

[foicl H:G YiCO]}

~~ Naturality

{(a(cNHY Z)o(fOYB®Z)=((fRY)®Z)o(a(df)Y Z):Cy
[f:G Y:Co Z:G)}
{6(cNY)o(fOY)=(Y®flo(c(df)Y):C,
[f:Cl Y:Co]}
{Aef)o(TRN=fo(Adf):Ciif: 1]}

1.2 Tensor and System T 13

1.2.3 Unary Numbers

We write V for the set of natural numbers {0. 1. 2, ...}. The initial modecl
in set of unery

N {0:N} {sn:N[n:N]}
is
T——N—=N

where s n = n + 1. The terms s™ 0 can be identified with the unary (= base
1) numerals.

1.2.4 System T

In set we have the abstraction (= Currying)

fiWxXY
Af: WYX

where (A f) w = (z = f w z). In SM categories we abstract this to the linear
implication
f:WRX=Y
Af WXy

SM categories having all linear implications are called symmetric monoidal
closed (= SMC) categories and are specified in Appendix 1.D.
In an SMC category C, a natural numbers object (= NNO)

T2+ N—=N

is an initial model of urary in C, which isthat,¥V¢: T—=Y,h:Y =Y, 3
C commuting

14 Tensor and Linear Time

We specify this by

{'Rgh:Cy dRgh=N:(p
(Rgh)o0=g:C, (Rghl)os=hoRgh:(,
[dg=T:Co dh=¢cg:Co ch=cg:Co ¢g:Ci h:Ci]}

where, roughly as in Section 1.1.2, ! indicates uniqueness.

This last assertion, together with those of Sections 1.1.3, 1.2.1, 1.2.2 and
Appendices 1.C, 1.D specify the doctrine T of SMC categories having NNO
and witnessed structure. E.g. set (Section 1.2.1), with T = {0}, ® = x,
N=1{0,1,2 ...},0=0,s=(n+ n+1),isin T. By the arguments in
Appendix 1.B, there exists an initial category I in . Thus there is a unique
T functor 7 : I — set. We also have the functer

P=YT, J):I— set
XmXT, X)={Imapf|df=T,cf=X}
f=fo.

Proposition 1.2.4.1
For 1 initial n ¥

1. T T={d T}
2TX®Y)={{z®y)o(AT)?|2eT X, yel'Y}.
3. TN={s"0|n€eN}.

4. Even up to natural isomorphism, I is not a T functor.

5. The functions N¥ — N*' in set of Godel’s system T [GLT89, Ros84] are
precisely those of the form i f for I maps f : N® o N®F',

Proof. 1.-3. See Appendix 1.F.

4. T (N —o N) is countable while NV is not.

5. N is defined by N®° = T, NOU+) = N@ N®/ By 1.-3., 7 agrees, up
to natural isomorphism, with I" on X maps f : N8 — N8I By Appendix 1.B

1.3 Comprehensions and Tiers

and (as in [PRS9))

T2 NN

N

T—=—N

-l

TO®T 5t NON = No N

3

T T

— ¢

Tid'

3

* N
E

terminal maps 7 and diagonal maps é are definable in I. 7 and & convert the
SMC structure to a2 CC (= cartesian closed) structure. Thus system T differs
from 7 only in that T specifies just fragments of the uniqueness (the !'s) for B

(above) and A (Appendix 1.D). a
A starting point for Bloch’s very safe recursion (Section 1.4.1) is

Proposition 1.2.4.2
In an SMC category with NNO,Vg: X =Y, h:Y =Y, 3 commuting

TeoxZvegx 2 NeXx

i

X—5—Y—FY

Proof. Consider

0N -,
T AN,y Xy oy

1.3 Comprehensions and Tiers

1.3.1 Comprehensions

We understand tiers in terms of comprehensions. (In Chapter 3 we begin to
think about comprehensions in conjunction with higher order types.) Our

16 Tensor and Linear Time

starting point for this was recognizing that the Bellantoni-Cook composi-
tion [BCY2] is the serial composition in the Kripke structure on the partial
order 2. This Kripke structure is the cotensor 2 — set (Appendix 1.E), and
has as objects the functions X : Xy = X, and as maps the set commuting

squares

In 2 — set we have the 2 tiers of numbers

No = N N = N
ln-—»o id
T N

We first abstract 2 — set to 2 — C, with C an SM category and thus a
0-cell in the 2-category &I (Appendix 1.E). Notice that the ordinal 2 is the
partial order 0 — 1. Thus the endomorphisms end(2) of 2 form a partially
ordered monoid. Reversing the multiplication, but not the partial order, set
M = end(2)°. Then the right action of M on 2 induces a left action of
M on 2 — C, i.e. a 2-functor M = &I, Abstracting from 2 — C, SM 2-
comprehensions are just (or see the specification below) 2-functors M — S91.

(In Chapters 4, 2, instead of starting from the partial order 2, we start
from the partial order 3 to characterize the Kalmar elementary functions, and
from the partial order V = — < to characterize the P space functions.)

M has the elements T (z ~* 1), id, G (z = 0). We name the point-wise
partial order ¢ : G =+ id, n:id = T.

Proposition 1.3.1.1

M has generators T, G, 1, ¢ and relations
TG=G nT=1id Tp=id Gn=noe
GT=T ¢G=id Te=pgoe¢ Ge=id

as a 2-category.

1.3 Comprehensions and Tiers

—
-1

Proof. Eg. T°=T(CT)=(TGT=GT=TandeT =c¢(GT)
(eG) T =id.

(M

So an SM 2-comprehension consists of

1.

2

an SM category C,

. functors (indeed, modalities) T, G : C = C preserving, up to identity,

T, &, a, 0, A and satisfying the relations of Proposition 1.3.1.1,

natural transformations (indeed, coercions) :id = T, ¢ : G — id
satisfying

nT=id eT=1id
1(XQ@Y)=7XQ®nY (XQY)=¢XQ¢eY

as well as the relations of Proposition 1.3.1.1.

Thus an SM 2-comprehension is specified by Sections 1.1.3, 1.2.1, 1.2.2, Ap-
pendix 1.C, and the following.

~+ 1-cells

{TX:Co[X:Col}

{Tf:C, dT f=Tdf:Co ¢cTf=Tcf:C[f:C1]}
{TidX=idTX:Co[X:Co}
{T(hofo)=ThoT fo:Ci[ii:C1 fo: G}
{TT=T:Co}

{T(RY)=TfRTY:C(f:C: Y:C)}
{TaXYZ=a(TX)(TY)(T2):C

(X:Co Y:Co Z:0Co)}
ToXY=c(TX)(TY):C1[X:Co Y:(Co]}
{TAX=ATX:C [X:C}

... similarfor G ...

~ 2-cells

X:C dpX=X:Co enX=TX:C[X:Co]}
{ef)of=T Hondf:Clf:Cl)
{nT:idT:Cﬂ’

18 Tensor and Lincar Time

(XeY)=0XenY : Ci[X:C Y:Co}
{€X:Ch deX=GX:Co ceX=X:C{X:Co}}
{lecfloG f=foecdf:Ci{f:Ci]}
{¢eT=idT:C}
{(X@Y)=eXQeY:C,[X:Cy Y:(Co|}
~~ Relations

{TGf=Gf:C. GTf=Tf=C[f:0]}
hTX=dTX:C, eGX=WdGX:(
TnX=dTX:C, TeX=0@X)o(eX):(,
G X=nX)o(eX):Ch GeX=WdGX:(C,
[X : Coj}

1.3.2 Extents

Given an SM 2-comprehension (C, T, G, n, €) (Section 1.3.1), we define,
modifying [Pav90], an eztent functor x : C = 2 — C which commutes with
the canonical M actions (and is thus a2 2-natural transformation). Set x = goe.
By the definition of cotensor (Appendix 1.E), the natural transformation

C
cl=x=»lr
C

defines a unique functor x : C = 2 — C such that = x = x. This boils down
to

cx=ley
xxl lx}’

bd

TX5TY

x(f:X=Y)

Proposition 1.3.2.1
The functor x commutes with the canonical M actions.

Proof. Eg. x T X =(xTX:GT X >TT X)=WdTX:TX =
TX)=TxX. O

1.3 Comprehensions and Tiers 19

1.3.3 Dyadic Numbers

N (Section 1.2.3) is the disjoint union {0}U{2n+1 |n € NJU{2n+2 |[n € N}.
Thus each n € N is uniquely represented by a dyadic (= base 2 with digits 1,
2) numeral. The initial model in set of

N {0:N} {s1n:Nn:NJ} {s2n:N[n: N}

is
T N2 NN

where s; n = 2n 4+ 1, s n = 2n + 2. Thus the term sy, ¢, ... $k,_, 0 can be
identified with the dyadic numeral x = k,—; ... k; ko of length |z]| = n.

1.3.4 Tiers

In 2 —o set we have the 2 tiers of dyadics

T 0 No 3 I\ro - T 1] N 1 N
T—T—7T
T _}0 N1 . B 3 N1 = T ____}0 N__”n N
l id J‘id
T—* NN
These satisfy
T(T-29N-24Np) = T-h7-4T

G(T—=No—9Ny) = T-N—2N

20 Tensor and Linear Time

1.4 Linear Time

1.4.1 A Linear Time Doctrine

The objects of the linear time doctrine £inTime are (or see the specification
below)

1. SM 2-comprehensions (C, T, G, 7, €) (Section 1.3.1)

2. with dyadics
T 9 .*.N-o 2 r.No 2 }‘N'o

in C such that

T(T—==Ng—=+Np) = 7177
and satisfying
3. Leivant’s flat recursion (as below) and
4. Bloch’s very safe recursion (as below).
We set
G(T—=N—22N) = T-N-2nN

Thus TNy =T G Ny =G No = N,
The tier 0 category Cyg), which we need for 3. and 4., has as objects the
C commuting

X TX
I}
T

and as maps (X, 7, #1) = (X', ¢/, i]) the C commuting

x-Lsx TxZirx

T—T
id

1.4 Linear Time 21

C(o) has SM structure by taking T to be

(F: (X, 3y) =+ (X5 7, 1)) @ (Y, 4, 71) to be

TieTY
—_—

xeYy&x'gy TxeTY TX'QTY
iejJ' li‘@j

TQT TQT

A Tl J'.\ T

T — ' T

and €g. o (X'r i'l il) (}’1 j& jl) to be

XYy Xivex TXTY22TY . rveT X

!‘@J‘l ‘jei

TeT eTT=d T éT

ATl 1AT
T id T

Coherence for Cpy follows from Mac Lane’s coherence theorem [Tro92].

(R
b

Tensor and Linear Time

Flat recursion [Lei94] is that (using a remark of R. Cockett’s) ¥ Cyg
objects (X, 2, #;), the

No@®@X
a;ex

TeX 0sX :N0®X:3234\'

NoX

TeTX

id
TETX—~TeT X~ TOT X
Tei

TOT

AT

:i'

are sum cocones in Cygy. (This is case analysis as in Section 1.3.3. The tail of
chosen isomorphisms is part of being in Cygy.) In other words, flat recursion
is that ¥V C commuting (with k =1, 2

X —<—y No@X 2y
Tx-ILTy TTXIMTY
ilIli Jr l.'i T@il lJ'
T—T T@T—T

3! C commuting

TEXZEMeX2E NeXx TeTxZIhry

| | \ | el J

X 7 *Y Y T@T-—:\T-}T

In particular we define delete D : No — Np such that (dropping o’s), for
n:T = Np,
D0=0 Dsin=n

1.4 Linear Time 23

by the flat recursion
T 0 \'0 _ A \-0

No
Very safe recursion [Blo92] is that ¥ C commuting (with k =1, 2)

XSy 2y

TY —4TY
II n\
L

i

3! C commuting

T®X0®XA @Xus.\ N1®X

AX l I II
X Y Y
(Compare this with Proposition 1.2.4.2.

In particular we define tier 1 diagonal & : Ny =+ Ny® N and concatenation
e : Ny ® Ny =+ N, such that (dropping o’s and ignoring A T, ¢ Ny), for
n:T—).Nl,.'L‘:T—}No,
dn=n®n
Qez=z (skn)ez=s;(nez)

by the very safe recursions

Ik

T 9 + Ny » Ny

ATI ls J’s
TOT 55— MON — 55— N @ N

T®No—oﬁﬁ—*Nx ®No-l@‘m—+N1 @ No

S
Ny 3 » No r — No

24 Tensor and Linear Time

Putting together the lavers, the linear time doctrine LinTime, both objects
and maps, is specified by Sections 1.1.3, 1.2.1, 1.2.2/1.3.1, Appendix 1.C, and
the following.

~~+ Dyadics
{No:Co 0:C1 d0=T:Co c0=Ny:Co
51:C, ds;=No:Cop cs1=0My: Gy
s2:0, dsa=No:Co csa=Nyg:Co
TO0=i1dT:C, Tsi=1dT:C, Tsa=1dT:C,
."\rl : Co .N1 =G .No : Co}
~ Flat recursion
{!Roghihaity j1:Ch
dRoghihyiiy j 1 =No®@dg:Cy
(Rogh h2ity j1)o(0@dg)=goAdg:C
(Roghih2itijii)o(s1@dg)=h:Cy
(Roghyheity ji)o(s2@dg)=ha:Cy
Jo(TRoghiheith jA)=(AT)o(TO): G
foTg=1i:C
JoTh=(AT)o(TR):C: joTh=(AT)e(TQ):Cy
$10i=1dTdg:Cy iot;=dT:(;
hoj=i1dTc¢g:Cr jojh=idT:0
dhy=No®dg:Co chy=cg:Cy
dha=No®@dg:Co cha=cg:Co
g:C1 hi:Cy ha:Cy 1:Cy 41:C1 j:C1 j:Ghl}

1.4 Linear Time 25

~~ Very safe recursion
{!Righyhajji:C

dRyghihaj i =N18dg:Cy
(Righihajji)o((G0)Rdgl=go0Adg:C4
(Righih2jn)o((Gs)Odgl=hioRigh hajji:C
(Bighihaji)o((Gsx)@dg)=hroRigh hajh:C
[jOTh)_:j:Cl jOTh2=jZC1
f10j=1dTcg:C; jon=dT:G

dhy=cg:Co chi=cg:Cy

dho=cg:Co cha=cg:Cy

9:C1 h:Cy h:C j:C0 5i:G}

1.4.2 Formal Linear Time

By the arguments in Appendix 1.B and Section 1.4.1, there is an initial cate-
gory Iin LinTime. Further, I is the quotient of 2 Herbrand universe colim; £;.
We call the I maps formal linear time maps and think of their representatives
in the Herbrand universe as programs. The stendard model T2 = (2 = T)ox
of these formal maps is the composition

T2

I »2 —o set
X‘ A
2—=]

of the extent x (Section 1.3.2) and the cotensor with 2 of T, where I is

[:1- set
X=IT, X)={Imap fldf=T,cf=X}
fefo.

(Thus T consists of the no inputs formal maps.)

Proposition 1.4.2.1
For I initial in the doctrine £inTime (Section 1.4.1)

L.TT={(d T}

26 Tensor and Linear Time

2T (XgY)={(z@y)o(AT) ' |zeT X,yeT Y}
3. T No={stdg n |n € N}, wherestdg 0 = 0, stdo (2n + k) = sz o stdy n.

4. Up to natural isomorphism, the unique £inTime functor i : I — 2 —o set
is Fz.

Proof. See Appendix 1.F. O

Proposition 1.4.2.2

The linear time functions N! —+ N on deterministic multi-tape Turing ma-
chines with constant numbers of tapes are precisely those of the form T G f
for I maps f, where I is initial in the doctrine £inTime (Section 1.4.1).

Proof. See Sections 1.4.3-1.4.7. O

1.4.3 Dyadic Register Machines

A dyadic register machine has state consisting of

instruction pointer | ¢
data vector d
program vector P

and has the run algorithm

1:=10
load inputs into some of the d;
zero the rest of the d;
load the program into the p;
while i < |p]|

execute p;
look at cutputs among the d;

The vectors d, p have (big enough) finite lengths |d|, |p| and their components
d;, pi for 0 £ 7 < |d|, 0 < 7 < |p| are registers. The ¢, d; contain natural

1.4 Lincar Time 27

numbers. The p; contain instructions. The instructions and their actions are

skja dj :=skd_,- i:=a
Dja d_,':=DdJ' ti=a
Cjebc t:=aifld;=0

i:=bif d; is odd

:= ¢ if d; is non-zero even

.

wheres;n=2n+1,5:0=2n4+2,D00=0,D(2n+1)=n, D (2n+2)=n.
(Compare this with Section 1.3.3.)

1.4.4 Turing Machines

We show that the dyadic register machines (Section 1.4.3) and the determin-
istic multi-tape Turing machines with constant numbers of tapes [BDGSS,
BC94] compute the same linear time numeric functions.

1. Suppose we have an n tape deterministic Turing machine with tape
alphabet {#, 1, 2}, where # denotes blank. Simulate the tape

L= . F G +0n 622621 800) ot Gy F .o

JAN

where a_r, and a,.; are the leftmost and rightmost non-blank symbols and
A is the head, by a pair of data registers containing the dyadic numerals

dyj =al,, ... a_,e_; and dajyy = @), ... @] ag, where @} codes ¢; by
a;j |[F# 1 2
o 11 12 22

E.g. simulate move head j right by popping ag from da;41 (viewed as a stack)
and then pushing e to dy; and simulate halt by (out of range) address |p|.

2. We simulate a dyadic register machine (i, d, p) by 2 |d| tape deter-
ministic Turing machine with tape alphabet {#, 1, 2}. Simulate the data
register d; = @,y ... @1 ¢p by the tape

= ...%#aa ... Gy F ...
A

28 Tensor and Lincar Time

E.g. simulate sk d; a by

move head j left
write k at head j
if a < |p|
set control state to a

else
halt

3. The simulations 1., 2. change execution times only by constant fac-
tors, but the numbers change formats. However, reversal and alternate 2
(un)padding can be done in linear time on either of these machine models
(with enough registers or tapes). Further, reformatting needs to be done only
at input and output.

1.4.5 Enough Maps

We will show that every linear time numeric function has the form T’ G f' for
some I map f'. We do this by coding dyadic register machines (Section 1.4.3)
inside I (Section 1.4.2). We drop o’s and work modulo a’s and A’s [JS91,
Jay89].

In fact, with inputs X = NPT and state (instruction pointer and data)
and program Y = Nc}euﬂdlﬂ" D (where e.g. Ny®0 =T, NN = N @ Nlel),
we will code the initialization by an I map ¢ : X = Y, and the next state
transition by an Imap h: Y — Y. The state vector fn® zo® z; ..., for
n: T = Ny, z:: T = Np, is then defined by the very safe recursion

ToXZENex 2 Nex
;xj 1; lf
X—5—Y———Y

So we will also code a big enough linear time bound by an Imapt : X — M.
We then use & (Section 1.2.2) and G § (Section 1.4.1) todefined: X =+ X@X
such that, for z: T = X, é z = z @ z. Putting all this together, we define f’

1.4 Linear Time 29

by the composition

xS xoxnexiley
I ‘

Actually, we still need to get the outputs out of Y. But tensor together an
id Ng for each output and an n N, for each non-output.

We define ¢ as a tensor of € Ny's, to load inputs, 0's, to zero work space,
and sk, S, ... 0's, to load program instructions.

We use s; and e (really G o with e from Section 1.4.1) together with ¢
and G ¢ to define t : X — Ny such that, for z;: T = N,

tzo®Ty - =818 ... Zg®Tp ... 182 ...

With enough s;’s and e's, t will output any given lincar time in the sense that
(using Section 1.3.3 and Proposition 1.4.2.1)

[t 20 ® 24 ...l=ZA;|z:.-l+B

for any given A;, B € N.

Finally, we define h by coding execute p;. This last looks at a constant
amount of low end (= least significant) digits and then, depending on what it
sees, modifies a constant amount of low end digits. We code this as follows.

1. Use ¢ to permute a y; (the state vectoris o @y ®---: T = Y by
Proposition 1.4.2.1) into position (the Oth) for an Ry.

o

Use Rg to destructively read:
Ry - : Ng®Y' 2 Y =N®Y'

In order to not destroy more than 1 digit of y;, route D y; to the Oth
position. (Rg’s cases can ‘see’ this much of the Oth position.)

3. Undo the permutation of 1.
4. Use 1.-3. to destructively ‘address decode’.

5. At the leaves of the ‘address decode’ of 3. place a ‘rom’ of tensored

actions sy, Si, ... D D ... to modify, and possibly restore, low end
digits.

30 Tensor and Linear Time

1.4.6 Safety

The essential feature of the Bellantoni-Cook composition [BC92] is safety:
that tier 0 inputs (T — Np) can not affect tier 1 outputs (N; —). We now
show safety in I. Consider Imap f: NSIQAN$’ = NEY, Applyingn:id=T
we get (as T No= T and 7 T = id) commuting
NP @ N§? L ner
- |id

NBl g T8/ =7 N®F

1.4.7 Not Too Many Maps

We will compile I maps f (actually their Herbrand universe representatives)
to dyadic register machine codes which compute I' G f. At the same time we
will bound the time and space used. We work modulo a’s and A's.

By Proposition 1.4.2.1, I maps T — N® @ N$’ decompose as I maps
z;: T = Ny, y; ¢+ T = Ny and we can identify the components z;, y; with
dyadic numerals. We call the components z;, y; variables and write |z:|, |y;]
for their lengths (Section 1.3.3). Thus given

f:NP'@ N®T = N © N7
we have
To®cy ... Yo ®uyy -r=fo(zo®z1 ... % ®W -..)
and by safety (Section 1.4.6)
2o ®2) - =fo(2o®z1 ... 000 ...)
We will show that

time(fo(a:o®:r1 ens yo®y1 ...))SZ:A;]?.‘,"-!—B

where this is the computation time not counting zeroing. We will account
for zeroing separately. (Alternatively, [Blo92] codes so that, at the expense of

1.4 Linear Time 31

producing a lincar amount of garbage. zeroing can be done in constant time.)
To show this time bound, we will also need the output bounds, for i’ € I,
e J,
lzie| € i Ailzil + B
lyls| £ s Ailzi| + max; |y;| + B
(We use max to get by with just 1 set of A;, B € N for each [.)

By Appendix 1.B, Iis built up by id, o, ®, a. 6. A. T. G, 7, ¢, Ry, R\
from Ny, 0, s, s2 (with the codomain and domain ¢, d reducing away). We
do induction on this build up.

We wish to compute e.g. yo®@y1 — ¥ ®(0on Np) in, except for the zeroing
of yo, constant time. Thus we represent variables y; by pairs of data registers

[}

¥
Yi

where names 'y; have constant length while values y; need not. Then we
implement yo @ 1 — 31 © (00 No) by

"Yo 'yl
0
==
n Yo
hn n

We compile symmetries ¢ and variables z; similarly.

We do not so compile yo ® ¥y1 — ¥ ® 11, which is not in I. It may be
impossible to implement yo @ y1 — ¥1 ® ¥ in constant time on deterministic
multi-tape Turing machines with constant numbers of tapes. The diagonal
issue consists of not accounting for this.

We implement o, A, id, € by doing nothing. We implement T, G by
doing nothing different. In bounds involving G, y;’s may become z;’s, but not
conversely. This works by weakening max (or nothing) to +.

We implement s,, s; by the instructions sy, s;.

We implement fi o fo, where fy's output variables are f;’s input variables,
by first running the compilation of fy and then that of f;. Even though fo

32 Tensor and Linear Time

may grow the inputs to fi, the induction step works due to safety and the
inductive hypothesis for output bounds.

We implement fo @ f1, where fy's variables are disjoint from those of fi,

by running the compilation of one of them and then that of the other.

We implement (Ro h hy h2
instructions C, D:

Ry :
ks, :

We implement (R; ¢ h k2 ..

Since (Ry g hy k2 ..

...)0(3}0@30@21

Jo({(sposko...0® ...)=hyohy 0...g0 ...

s 1 O y2 ...) using
Cyog b by

Dyoh1

D yo hs

Jo(z0®21 ... Yo &y .-.) using loops.

we

first need to reverse control digits:

[To

"tmp

voo kg Ry

—

koky ...

So, with the scratch data register tmp initially zeroed, the code is

f:
revy :

Teévs :

f':

C z4 g rev; rev,
sy tmp f'

sz tmp f'

Dz f

g: ...

Ip’:

ip

: Ctmp next ky ks

Dtmplp

Being tier 0, k,, k2 take (ignoring zeroing) constant tirae. Thus

time((Ry g by bz ...)0 (2@ 21 ...)) € K”lzo] + 3 Afjze| + K™
>0

1.3 The Linear Time Hierarchy 33

95 € Klzol + T A%lzi] + maxfy, | + K
i>0

for constants K, K', K", K" € N. (There are no zl's.)

Finally, we consider zeroing

No BLLN T2
The code

f: Cynext f' f'

f'e Dyf
takes time 2|y| + 1. Inside a loop R; only the first zeroing of y nceds to
be charged this much time. Additional zeroing just counteracts writings s,
within the loop. Thus we can divide up the time of this additional zeroing
and charge it, in advance and in constant amounts, to the writings s, within
the loop.

1.5 The Linear Time Hierarchy

As a corollary of the proof (Sections 1.4.3-1.4.7) of Proposition 1.4.2.2, we will
characterize the linear time hierarchy relations. As usual, we simulate constant
numbers of alternations by adding data registers to deterministic machines.
However, by typing these added registers tier 0 we implicitly, rather than
explicitly, provide the needed bounds.

Proposition 1.5.1
The linear time hierarchy relations are precisely those of the form

{(ao, a1, ...) eNflilyoVyl .en rG(fO(Io®$1 s Y@ --.))=0}

for I maps f: N®' @ N§7 = No, zi =stdy ¢;: T = My, y;: T = No, where
I is initial in the doctrine LinTime (Section 1.4.1).

Proof. 1. One gets enough relations as one does for the polynomial time
hierarchy (BC94, BDGS8, BDGS0]. Pop digits from y; to decide the ‘or’ or
‘and’ branching. Increment j at alternations between ‘or’ and ‘and’.

34 Tensor and Linear Time

2. Only the loops R, can pop off and read more than a constant number
of digits from the y;. But, by the arguments in Section 1.4.7, the number of
theseiterations is linear in the |z;|. Thus the quantifications @ y; are implicitly
linearly bounded by the |z;|. Thus we do not get too many relations. O

1.A Sketches as Presheaves

Suppose that V' is a model of ZFC [Jec78, Kun§0]. With Set the category of
sets and functions in V’ and o denoting opposite, we have the power set functor
P : Set® -» Set. With the singleton maps sy : X =+ P X by z — {z}, we
have a cumulative hierarchy U : ordinals — V' by

Uo = {} Sy, : U,' — U.'.H =P U" U_f = Cc‘_ili}'nU,'

We assume there exist strongly inaccessible cardinals ¢p < &y < Then
the Uy, are models of ZFC. (Thus the U,, are Grothendieck universes [Bor%4].
With 5 :id = P? the unit of the adjunction P° 4 P, cantheny, : U; = Uiy =
P? U;, which are natural, be used in place of the sy, : U; = Uy = P U,
which are not?) We say that the sets in U,; are a; small and we write set;
for the category of sets and functions in U,,. set (small) will be whichever of
sety, sety, ... (g small, & small, ...) is convenient.

Given 2 category S and an object s of setS, we say that s is finite iff the
disjoint union g gbjece x 8 X is finite. An object X of S has finite fan-out iff
S(X,) is finite. A sketch theory is a small category S such that

1. Al S objects have finite fan-out.
2. S is acyclic (= 1-way). lLe. all endomorphisms in S are identities.
3. S is skeletal l.e. isomorphic objects in S are equal.

(2. and 3. are due to F. Lawvere. In particular, finite partial orders such as
2, V, and 3 are sketch theories.)

1.B Initial Models 35

Proposition 1.A.1

Given a sketch theory S, 3 a function height : Syp; = N. from the objects of
S to the natural numbers., such that ¥ non-identity $ maps f : X —= X' we
have height X’ < height X.

Proof. Suppose that, ¥ S objects X, 3 a largest n € N such that 3 non-
identity S maps
Jo) ‘

X
Set height X = n. Then

i Jo N Jataa

shows that height X’ < height X.
Suppose that 3 an S object X and an w indexed chain

x-b, 5,

of non-identity S maps. Then, with [T;co fi = idx, Tlicjsa fi = f5 0 [lig; fiy as
X has finite fan-out, 3 j < k such that [1;; fi = Iick fir Thus [Tick—; fi4i
is an endomorphism. Therefore f; is an isomorphism, and thus an identity,
contrary to hypothesis. O

So, taking S objects as sorts and enough S maps as operators, sketch the-
ories S are the equational specifications of Section 1.1.1. Thus S sketches and
homomorphisms form the category setS, which is the category of presheaves
on S°.
Proposition 1.A.2
For a sketch theory S, the finite S sketches are precisely the finitely presentable
objects [AR94] in setS.

Proof. Finite colimits of representables in set® are finite. (i

1.B Initial Models

Given a basic almost equational specification (S, M) (Section 1.1.2), we will
construct (in set) an initial model I of (S, M). Then we will show, using

36 Tensor and Linear Time

projective covers, that [is a quotient of a Herbrand universe [Llo87]. (Else-
where we will show that the set models of the (S. M) are precisely the locally
finitely presentable categories.)

Suppose that for each m € A we add m" to M, where

commutes and po denotes push-out. Then, to check for orthogonality, it is
enough to check for injectivity [AR94]. (A sketch s is injective relative to M
iff maps to s extend along m € M. The m" then force the uniqueness.)

So we add the m™ to M. For m € M, the instances 7 of m are from the
push-outs

With 0 the sketch empty at each S sort and the m; instances of elements of
M, I is the colimit of the tree of all finite deductions from 0 [Mak94, AR94],
a fragment of which is

-~

mo m
0_--_}30.—1\51

ma ma
Sa 83

Call sums of representable sketches (=, up to isomorphism, the S(X, .))
free. As the representables are projective, relative to the regular epimor-
phisms, so are the frees. (An object P is projective relative to a set of maps
E iff maps from P lift over ¢ € E, where & lifts & over e iff

P

tA

PR
e

commutes.)

1.B Initial Models A7

Given a sketch s, call z € s X, with X an S sort, primitive HT i is not of
the form (s f) 2’ for some S operator f 2 : X [: X'] and some £ € s X',
With P the sum of representables s{ X) s indexed by the primitive elements
z€s X (le. [... 2:X ...] for primitive z € s X), a finite sketch ¢ has the
projective cover ¢ : 2 — s, where ¢ assigns parameter 7 to primitive element
z. (A projective cover ¢ : P — s is a regular epimorphism ¢ such that P is
projective, relative to the regular epimorphisms, and such that ¥V commuting

if e is a regular epimorphism and 7 is a monomorphism, then { is an isomor-
phism.)

From a projective cover ¢: P = s we can form a kernel pair

- k.
§—P
pb

h ¢
P——s

where pb denotes pull-back. Then, when s is finite, we can take a projective
cover : P — 5 of 5. Thus homomorphisms between finite sketches lift as

With this presentation

-~ h_“.i,, 'X
P P —s;
ko0,

of the tree of finite deductions from 0, I is a quotient of the Herbrand universe
colim; P;.

33 Tensor and Lincar Time

1.C Coherence

The pentagon, iriangle, and hcragon conditions are that. with §'s and the

arguments of the a, o, A omitted,

W (X (Y Z)) == (W X) Z
Wa{ .aZ
W (X Y) Z) . (W (X Y) Z

T(XY) = (T X)Y

\./

X(Y2)2uXx @z~ (Xx2)Y

o

(XY)Z—=Z(XY)——=(ZX)Y
commute. We specify these by

{(eW(XQY)Z)o(WR(aXY 2))
=((eWXY)®@2Z)o(a(WRX)Y Z)o(aWX(YR2Z)):C
W:Co X:Co Y:Cy Z:Go)}
PXY)=(AX)®Y)o(aTXY):C1[X:Co Y:Co)}
{{(aZXY)o(e(XQY)Z)o(a XY 2Z)
=((eXZ)BY)o(aX ZY)o(XQ(cY 2): 4

[X:Co Y:Co Z:Cy)}

eY

1.D Linear Implication

Small vector spaces over a field k (or small modules over a commutative ring
k) form not only an SM category (with unit T = k), but an SMC category.
i.e. V objects X 3 a linear implication adjunction

®XAX — _

1.E Cotensor 39

For vector spaces over k, X' '« ¥ = hom(X.Y). where hom(X.Y) is the set
of k-linear maps from X to Y given the point-wise vector space structure.
Indeed, for vector spaces one defines the tensor © by

- ® X 4 hom({X, .}
Having all the adjunctions

C(- ®X~ Y) = C(‘? 'Y - }.)
@o (g® X) g
f - _n\f:(j\’—of)on

is specified by

{X—=Y:C, €XY:C
d@XY=(X—-Y)®X:(;, c@XY=Y:(
[X:Co Y:Co}
{1AWX f:G
AAWXf=W:0 cAWXf=X—-(cf):Co
@X (c)o(AW X @ X)=1:C
[df=WQX:Co W:(Cy X:Cy [:CGi}
{fWX:C, eWX=AWXUWd(WRX):C,
(W:Co X:Co)}
{X—Oh:C1
X—oh=AX—-o{dr)X (ho@X (dR)): 4
[X:Co h:Ci]}

1.E Cotensor

The 2-category cat of small categories is the prototypical example of a 2-
category [MP89, Bor94], with 0-cells = small categories, 1-cells = functors,
and 2-cells = natural transformations. Whereas a category C has hom sets
C(X, Y)={Cmapf|df= X, cf=Y} a2category D has hom
categories D(X, Y). Vertical composition is inside hom categories, while

40 Tensor and Linear Time

horizontal composition is of hom categories. Thus horizontal composition is
similar to the tensor @ of SM categories. Indeed. both 2-categorics and SM
categories are special cases of bicategories.

Implicit in the linear time doctrine LinTime (Section 1.4.1) is the 2-
category &9 of small SM categories with witnessed structure. The models (in
set) of the specification of Sections 1.1.3, 1.2.1, 1.2.2 and Appendix 1.C give
SIN except for the 2-cells. As 2-cells we take those natural transformations
v preserving T, © up to identity in the sense that

vT=id v(X9Y)=v X@vY

In a 2-category © with 0-cell C, the cotensor 2 — C is defined by a
2-natural isomorphism [Bor94, Kel39]

DO = D(,2-C)

=,
2—-C = = “_
- C

In cat, 2 — C exists and is the functor category C? with the additional
structure of the comma category C/C. There = views an object of C* as a
map of C.

Proposition 1.E.1
2 «—o C exists in ©M and has the underlying category C>.

Proof. Form2 - Cincat. As Ttakeid: T—=T. As®on

XX, Y

"

Xa ‘—ﬁ"*xi h

1.F Gluing 1

take

r - GV ’ *

Xo®Y, ——-—fE-——o-——%.\(; Y

xev| Xigy
o rt - -

Xioh hen Xoh

Aseg. o X Y take

Xo® Yo —22 o Yo Yo® Xo

Xev ‘lrax
X;9N T YieX;

1.F Gluing

Gluing (= Freyd covers) [LS86] is 2 partial alternative to reduction techniques.
First we apply gluing to I initial in £inTime and then to Iinitial in T.

Proof of Proposition 1.4.2.1. Form in cat the comma category

(2 —o set)/T, — 22—

o =¢==>lf‘z

2—oset--iT—+2—oset

We proceed to add structure to (2 — set)/T'; in such a way that m; will end
up in £in%ime.
Maps f: X = Y in (2 — set)/T; are 2 — set commuting

.y

1k

I‘gXWl"gY

Tensor and Lincar Time

42

In set this is commuting

with faces

cover (= my projection)
~ fo =

base
rexirgy
lr xY

Ty X
ITX 770 TY

which ‘remembers’ the 7, projection to the Imap f: X = Y. (We have
overloaded the symbol f to denote both 2 (2 — set}/I'> map and an I

map).
stage O
S
FGX 57T GY
stage 1
e J_?;

1.F Gluing 13

(and 2 more).
As T take
T—T
OHid,l. lo-)id
I T-—TT7
(Recall that ¥ T =id and that in set T = {0}.)
As (f : X = XY QY take, writing T ® § for what is really (z, y) -
(Fz®Fy)e(AT),
cover

base

re(xeyY)—Y,rexey)

I'x (-\'GY)l J’T‘ x (X'gY)

stage O
X-o X]7'6 _—— 5{_6 X }'-'E.
;."OQFDJ‘

TG(X8QY)—TG(X'®Y)

Zhh

stage 1
X xHh——X'x¥,
E:@F:l jz; o

IT(XQY)— T T(X'QY)

44 Tensor and Linear Time

E.g. as o take
cover
Xy x Ty 22 & %
base
FrG(XeY)LTXY.T G (Y 9 X)
T'x (XoY) ‘I‘xﬂ'ﬁz\’)
[TXQY) 575 T (YO X)
For ¢, 7 take
cover
XXX
1dJ‘ 1} ‘16
5{-0_?"‘5{1 X
base
rex-4rex4rrx
ml lrxx 1m
PGXFgTTX—TTX
For Np take
N——mT
ltd:J‘ 0=id

r .N]_ m I'T
where std; 0 = 0, std; (2r + 1) = s; 0 std; n, std; (2n 4+ 2) = s 0std n.

1.F Gluing 45

For

T —"‘"‘O ' .'\'.0 —*’h .’\'.D
take
stage O

T——N——N
Qrsid ’ laldg atd,

T MgpTM

stage 1
T + T T

o |

I‘TTFVTTPT

Giveng: X Y, h: Ng@X Y,

TXI5TY TeTXIiry

S

for Ry take
stage 0
_ SoFo & .
NxX, Ry go hio Ao 'Y,
ntd:@zol l;o
I'(M®GX) pamgh,hgiilj:'x;rcy
stage 1
TXja = ;?1
(o-—»id)@gzl J,;'
I(T®TX) ITY

TTRyghihaidy i

46 Tensor and Linear Timie

Giveng: X 2 Y, h:Y =Y,

:’:)'. T‘ };
a2 ni|d
Tv id T
stage 0
— Ri 9o kyo Ba -
NXXQ e "}'0
stdy @fo l';D
F(N1®GX) I'GRygh hai iy ‘TGY
stage 1
- Ry g Ay k v
NxZX, E—
sd; Gfll lﬁ
r'(MeTX) TTY

FTRighi hajsn
Thus, since I is initial in LinTime, 3! commuting

(2 —o set)/T,

PN
I id *1
in LinTime.

1. Start with f: T — T in L. Then, as #; 05 = id, j f has stage 0

T—T

O—bidl J-O-rid

I‘TWI'T

1.F Gluing

So, starting from 0 in the the upper left, G f = G foid = id. while

Gf

T T
] T=id\ ¢ T=id
T—T

S

also commutes.
2 Start with f: T+ X®Y in L j f has stage 0

O£, 4} oy
T—Xo x Yo

Om+id]';QG;Q

T Trg7T(GXOGY)
Thus G f = (Fo 2 ® Fo y) o (A)2, while

tflexecy
e'l‘:id]> J'c.X@:Y
T——'}—*X QY

also commutes.
3. Start with f: T = Noin L. 7 f has stage 0

T O=bn N

Ombid stdy

TT1e7 M
Thus G f = std; n, while

G
T=LnN,

€ T=idl‘ lt N

T

also commutes.

48 Tensor and Linear Time

4. Inductively define a natural isomorphism v : i — I'a with v T by 1.,
v{(X®Y)by 2., and v N; by 3. 0

Proof of 1.-3. of Proposition 1.2.4.1. We modify the above 1.-3. argument.
Use the comma category

set/T —— 1

7o

E—— ————S)

- -

set - set

For (: X =T X) — (7 : ¥ = T Y) use the natural bijection

~

FxX—I1-y
o]

v

T (WOX)~5rTY

w-b{;m-rfw) .
W - 3%
;j |

I‘WmI‘(X—oY)-—.,-}(rY)f

i
'

L4

where vy g =(z— Qo (¢ ®Z z)o (A T)™?!) and pb denotes pull-back. O

19

Chapter 2

V-Comprehensions and P Space

Introduction

Romdn [Rom89)] characterized the primitive recursive functions as the image
in set (the category of small sets) of categories initial in the doctrine which
adds stable NNO to the FP doctrine (the doctrine of categories having fi-
nite products and witnessed structure). (Doctrines are often categories or
2-categories of categories.) We have characterized the linear time functions
(Chapter 1) and the linear space, P time, and Kalmar elementary functions
(Chapter 4) as the images in set? or set® of categories initial in doctrines.
Here we characterize the P space functions as the image in set" of categories
initial in a doctrine, where V is the partial order

N

This tiered characterization of P space pumps up linear space by running
machines longer. Instead, the tiered characterization of P space in [LM35]
pumps up P time by making machines more powerful.

From set? and set" we abstract (2- and V-) comprehensions (Section 2.1).
Unary and dyadic NNO have the fragments flat and very safe recursions for
SM comprehensions {Chapter 1) and flat and safe recursions for FP compre-
hensions (Section 2.2). (In Chapter 3 and elsewhere we will study working over

50 V-Comprehensions and P Space

LCC and fibrational doctrines rather than over the SM and FP doctrines.)
Our P space doctrine consists of FP V-comprehensions having unary flat re-
cursion and compatible unary and dyadic safe recursions. In this doctrine V
joins at tier 1 unary and dyvadic numbers which have separate tier 0’s. We
show that the image in set’ is big enough (Section 2.3) by coding machines
and running them long enough. We show that the image in set" is small
enough (Section 2.4) by inductively, relative to the Herbrand structure of the
initial category (Chapter 1), deriving bounds on space, time, and output sizes.
We also characterize (in Appendices 2,A, 2.B) the linear space and the P time
functions using FP 2-comprehensions. Our P space doctrine glues these two
doctrines together along the two sides of V.

We stand on many shoulders. For comprehensions we stand on [Pav90,
JMS91, Law70], for initial categories and gluing (or Freyd covers) on [Rom89,
LS86}, for flat recursions on [Lei94], for very safe recursions on [Blo92], for
safe recursions on {[BC92, Bel92), for linear space on [Bel92, Rit63], for P time
on [BC92, Cob63}, and for P space on [Tho72, HuwT6).

We write T for terminal maps, and f, g for the tuple map of maps f and
g having a common domain.

2.1 V-Comprehensions

2.1.1 Unary and Dyadic Numbers

Unary numbers are specified by sort and operators
N {0:N} {sz:Nz:N]}
The initial model in set has
N={0,1,2...} 0=0 sz=z+1
Dyadic numbers are specified by sort and operators

N {0:N} {s;z:N[z:N]} {s2z:Nz:N]}

2.1 V-Comprehensions 51

The initial model in set has

N={0,12 ...} 0=0 spr=2r+k fork=1.2

2.1.2 2 Tier 0’s

set? has the 2 tiers of numbers

N, 0 = N !\71 = N
|
1 1{"

with Ny a quotient rather than a subobject of NV;. Linear space can be char-
acterized using 2 tiers of unary numbers while P time can be characterized
using 2 tiers of dyadic numbers (Appendices 2.A, 2.B). We will use some of
the P time characterization to pump up linear space to P space by having 2
tier 0’s, one unary and one dyadic. Thus our target will be set", rather than
set?, where V is the partial order 0.1 — 1 + 0.2. In set" we have the
tiers of numbers

Noa = N—/1+—1
N, = N id N id N
Noa = 1—1+—N

2.1.3 Cotensor

The 2-category cat has 0-cells = (small) categories, 1-cells = functors, and 2-
cells = natural transformations. The sub-2-category FB of FP categories with
witnessed structure has 0- and 1-cells as specified in a basic almost equational
specification (Section 1.1) (in particular the functors are strict) and is full on
2-cells.

In cat the cotensors [Bor94, Kel89] 2 — C and V —o C exist and are C?
(with the additional structure of the comma category C/C) and CV. In P
the cotensors 2 — C and V —o C again both exist and are C* and CY.

V-Comprchensions and P Space

[t
w

2.1.4 2-Comprehensions

Since the ordinal 2 is the partial order 0 -+ 1. the endomorphisms end(2)
of 2 form a partially ordered monoid. Reversing the multiplication, but not
the partial order, set M = end(2)°. Abstracting from 2 - set to 2 — C
and then from the left M action on 2 — C induced by the right M action
on 2, an FP 2.comprehension is a 2-functor M — FPB. (For more details on
2-comprehensions see Section 1.3.)

2.1.5 V-Comprehensions

My is the sub partially ordered monoid of end(V)® generated by

T, = 0.1 0.1 Gy = 0.1 —=0.1
1——1 1 1

0.2—0.2 0.2 0.2

T = 0.1—0.1 Gz = 0.1 0.1
1——1 1 1

0.2 0.2 0.2—=0.2

and full on 2-cells. An FP V-Comprehension is a 2-functor My — §P.

Proposition 2.1.5.1
As a monoid, My has generators Ty, G, T2, Gz and relations (fori =1, 2)

T?=T,
G1T2=T2G1=T1G1=G201=G1
G:Th=T1G:=ToG2=G1Ga=G2

G1T1=G2T2=T2T1=T1Tz

2.1 V-Comprechensions 53

Proof. Eg. G’ =G (N G=(G TG =TT TG =T (T:G) =
T, G, =6Gh. o

Applying Gy, Ga, id, T2, Ty. Th T2 to (0.1, 1, 0.2} we sec that the partial
order underlying My is (generated by)

/\
SN A

T; T»

The compositions

xi=(mT)om x2=(mT)om
will be important (Section 2.1.6).

Proposition 2.1.5.2

As a 2-category, in addition to the generators and relations of Proposi-
tion 2.1.5.1, My has generators m, "1, 12, 72 and relations (fori =1, 2 and
with x1, X2 as just above)

nTi=Tini=id % Ti=id
nh=Tanm=m mh=Tin="
Tv=Gin=x Givi=id
Lime=nTh Lm=mT;
G112 = X2 Gam=x1
Proof. From
id id

Pk

< b3

T Ta

54 V-Comprehensions and P Space

we have that
. m
id-—— T
! |

m ‘ lm T:

-

T; ?,—mr T1 Tg
commutes and thus that (n2 Ti)om = (m T2} o 2.

E.g. 2 Gl =1 Tg G] = l'd, Gz m= Gg T1 m= id. a
Thus we can view an FP V-comprehension as strict FP functors

Tl, G], Tz, Gz:C—>C

and natural transformations

G1 Gg
I

- id ”
N
T, T,
satisfying the relations of Propositions 2.1.5.1, 2.1.5.2.

With My the sub-2-category of My generated by T3, T2, m, 72, the
doctrine of 2-functors and 2-natural transformations

(Ca Th T23 T, T]g) :M.\t - W

allows generically adding C maps 1 =+ X, given C object X. For C in §P
one generically adds 1 = X by passing, by pull-back along X - 1, to the full
subcategory C//X in C/X of the =g : X x Y = X [LS86]. (One chooses FP
structure on C//X such that the pull-back along X — 1 is strict FP.} One
defines T; by T; (o : X xY =2 X)=(70: X xT: Y = X) and »; by

(m X)x(m Y) .
XxY—XxT.Y—T.XxTY
pb
|k
X id * X mX — T‘ X

where pb denotes pull-back. This is implicit in the definition of safe recursion
(Section 2.2).

2.1 V-Comprchensions

(4]
[4]

2.1.6 Extents

Given an FP V-.comprehension (C, Ti. Ge. 7% %), the My action on V
also induces an FP V-comprehension (V. — C, Tk, Gi. M. 7). Using the
definition of cotensor, we have a unique strict FP functor, which we call the
ertent,

x:C=2V—-C
such that 2-naturally
FP(C, C)V = JFBC,V —-C)
C C
G | |, X
T;'Tg
C V=C
Thus
Xf:X=Y) = G x-2ay
X1 X' xanY
T LXAE{n Yy
%2 X| I"’ Y
G2 X—— G, Y

Proposition 2.1.6.1

The extent functor x is a 2-natural transformation between V-comprehensions.

Proof. We have the multiplication table

i G T G
Gl T1 Tz Gl GI G2
G | G2 G L' G,

NLNTTL: Gi ' T; G

Thus e.g. x applied to

GXx2Ehnx2X x

56 V-Comprehensions and P Space
is

Gl.\"——“‘“’Gl.X’- G]X

G X—T LX—TTX

GG X—NTLX—G X
which is

Gix X—Tx X+——xX

with the arrows (including their names) working out right as the 2-cells in

My are unique.

2.1.7 Tiers

We abstract properties from V —o set. There we have tier 0.1 unary

0 F]
1 —— Npy — Noa

tier 0.2 dyadic (for k =1, 2)

'} 3x
1 —— No2— No2

1l

s
——

l

!
|

0O

2.2 P Space

(o1]
~]J

and tier 1

Thus we have

Ty Noa =1 G1 Noa = Ny Ty Noy = Noa
Ty No2 = No2 o No2=1 Ga Noa=MNy

2.2 P Space

The objects of the P space doctrine PSpace are (compare this with Sec-
tion 1.4.1.)

1. FP V-comprehensions
(Ca T:h G‘h T'h G21 My Y1y U2y 72)

2. with unary
1— Noy —— Noy
in C such that
i Na=1 T2 Noa= Noa

3. and dyadic (for k =1, 2)
125 Noz ~2 Noa
in C such that
Ty Noa=Noz TalNoz=1 G2 Noa= Gy Noa
satisfying

-l

4. unary ﬂat";écursion (as below)

58 V-Comprehensions and P Space

5. unary safe recursion {as below)

(o}

. dyadic safe recursion (as below)

7. 5. and 6. are compatible (as below).

We set
Gy (1 =2 Noy —— Npy) = 1 —— N, = Ny
Gz (1 =% Nopp =2+ Npa) = 12N, 2N,

The tier 0.k categories Coy) (for k = 1, 2), which we need for 4.-6., have
as objects C commuting

X T, X
N
and as maps (X, i) = (X', ') C maps f: X = X'. C(o.x) has FP structure

1 = 1 T 1
o |
1
(X, i) x (Y, J) = XxY Te X xT: Y
:‘.j‘.
-

Unary flat recursion [Lei%4] is that (using a remark of R. Cockett’s) V
Coo.) objects (X, 2}

No,1 x X

Jo

1XXWN0_1XX

2.2 P Space 59

is a sum cocone in Cyq), i.e. ¥V C commuting

_Y J ; }'. .'\"0‘] x .\’ "'i—.* }"
X Y
R

1 1

3! C commuting

OxX . , X r
1xX =20 Nog x X225 Ngy x X

ml f\ \ lf
il k
X—Y Y
We write Roy g ki j for this f.
Unery safe recursion {Bel92] is that ¥ C commuting

x4y XxY-2sy XxTQY
id, jI l*o
X
3! C commuting

Ix X 22X N x X 25N x X

le m, § 1‘3‘1.!
X=X xY—pXxY
We write R, g k j for this f.

Safe recursion differs from very safe recursion [Blo92] (Section 1.4.1) by
using diagonal § = id, id to repeatedly, rather than just once, read the pa-
rameters X. (The safe recursion in [BC92, Bel92] is actually closer to what
we call dependent safe recursion in Chapter 4.)

Dyadic safe recursion [BC2] is that V C commuting (for £ =1, 2)

x—=y XxY 257y XxDhVY

l-:o

X

id, j

60 V-Comprehensions and P Space

3! C commuting

%X XX ..
1x X 5N x x 228 N x X
b
8;1 i, {:!1,!
X o « X xY-—-——-*mhk XxY

We write R} g R, ks j for this f.
Compatibility is that at tier 1 the (0, s) and the (0, sy, s2) can be defined
in terms of each other using safe recursions. This is that

Gl 0= Gg o

(G1 s) o (Gg 51) = Gg S2 Gz (31 0 0') = G1 (S o 0)
(G; 3) o (Gz 32) (Gg 31) e (Gl S)

= (G2 s1) 0 (Gr 8) = (G1 (s05))0 (G2 1)

We can give an essentially algebraic specification (Section 1.1.3) of the
objects, and thus the maps, of PGSpace. Thus there exists an initial category
I in PSpace. Further (Appendix 1.B), I is the quotient of a Herbrand uni-
verse colim; P;. We call the I maps formal P space maps and think of their
representatives as programs. The standard model I'v = (V — T') 0 x of these
formal maps is the composition

I fv — V —o set
\ A\
V-1

of the extent (Section 2.1.6) and the cotensor with 2 of the no inputs formal
maps [’ = I(1, .).

Proposition 2.2.1
For I initial in the doctrine PGpace (as above)

1.T Noa = {stdoan | n € N}, where stdg; 0 = 0, stdoa{(n +1) =
sostdgy n.

2. T Ngp = {Stdo_2 n l n e N}, where stdg2 0 = 0, stdos (211. -+ k) =
s o stdpo n.

2.3 Enough Maps 61

3. Up to natural isomorphism, the unique PSpace functori: 1 = V —s set
is Pv.

Proof. Apply gluing to the comma category
(V — set)/Ty — 2]

“01 »
-~

V —o set 3 +V —o set

Ty

as in Appendix 1.F. As Np,, No2 we take

N *]1 < 1 1 *1+ N

std lﬂ—hid Jf)—vid lOﬂid lOﬂid J,“d

'Ny—=T1+—T1 F1—T1+—TM

where std makes sense because the unary and dyadic are compatible at tier
1. O
Proposition 2.2.2

The P space functions N' — N are precisely those of the form T Ty T: f for
I maps f, where I is initial in the doctrine PSpace (as above).

Proof. See Sections 2.3 and 2.4. O

2.3 Enough Maps

2.3.1 Getting Big

We will code (Section 2.3.2) machines (Section 1.4.3) inside I. To run these
coded machines long enough, we need big enough I maps. By unary safe

recursion we have addition

OxNo.; No.
1 x Npg ——=2— Ny X Noj ———22— Ny x No;

| [s

Noa 357 Noa X Noa — 577 Noa x Noa

62 V-Comprchensions and P Space

and multiplication

Ox ij 3K .'\.1

1 x N, Ny x Ny Ny x Ny

1]1-'1-" 1.
— = N, Jg.g ————— N

Nl id,0r Nl x J\O-I o, + N1 X VO.]

Analogously, by dyadic safe recursion we have concatenation

0'x Np.» . 3, % Ng 2 -
1 x Noa Ni x Noa Ny x Noaz
ﬂ';l T, .
T 7
N0_2 ——Td'—ld—'—") No.g X .No,g ""W l\o.z X N0.2
and smash
O'XNl - J,\XN}, -
lle -.N1><N1 .N1XA'1

“11 lﬂln# =|’ll#

T i
N TRor Ny x Nog =5 I x Noz2

The X maps Ny = Ny built up from the standard numbers s* 0: 1 = Ny
by G1 +, G1 *, G2 # are the # polynomials. Similarly we have # polynomials
in set.

For n € N in set, n is the number of unary digits in » and we write ||
for the number of dyadic digits in n. As

Inl=1 .
3 de=l 1)k

i=0
we have that
In| < loga(r +1) < |nf +1
Thus, given an N coefficient polynomial p in vector |n| with components |ni,
there are # polynomials ga, ¢ such that
lgon| S pin| < g1 n
E.g.
I # n| = |nf?
Thus I initial in PSpace begins to look like [ThoT72].

2.3 Enough Maps 63

2.3.2 Coding Machines

We code dyadic register machines {Section 1.4.3) by unary salc recursions

, OxX . . X ,
].X..X —_ -A’;X.\ LLLE -J'\'l)(_‘.
1 = . f

X X x¥Y —p X xY

with X = N’ containing the inputs and the program and ¥ = Noy? con-
taining the outputs and the instruction pointer and data registers. Thus, for
n:1—= Np,z:1 =X, f(n, z)is the state at time n.

We code the space bound by a time function ¢ : X — N;. Then the P
space functions will have the form (modulo tupling inputs in and projecting
outputs out) I' G; f' for composition

x 28 x e x 2Ny xx Loy
I '

g initializes and is coded e.g. using 1 and 0.

2.3.3 Next State

h (from Section 2.3.2) codes the next state transition and decomposes into

components k; which compute the next value 1 — Np; of the instruction

pointer or a data register. (We can assume the outputs will be in data regis-

ters.) We need to simulate the dyadic operators s;, s2, C, D (Section 1.4.3).
By unary flat recursion we have predecessor

0 LI
1 » Noax » Noa

and conditional on test for zero

1 % (Nox % Noj) &?No.l X (Noa X Noa) i*No.l x (Noa x Npa)

I

Noa Noa

64 V-Comprehensions and P Space

Thus we can simulate s;, s2, C, D using s, Z, P and unary safe recursion.
We can run the unary safe recursion (loops) long enough as, given the space
bound, we can compute time bounds from the inputs in 1 = X. (This is
similar to t in Section 2.3.2. See Section 2.3.4.)

Now (similarly to Section 1.4.5) k; looks at a constant amount of low end
dyadic digits and then, depending on what it sees, modifies a constant amount
of low end dyadic digits. ; can do this as follows.

1. Use C, D, v, and projections to read and decide.

2. Use s1, s2, D and projections to modify.

2.3.4 Long Enough

With the inputs n; : 1 = N; the components of a vectorn:1 = N Foa space
bound polynomial in the |n;| (implicitly using Proposition 2.2.1) implies a
time bound 27 "l with p an N coefficient polynomial (and || the vector with
componeants |n;|) and thus imglies, by Section 2.3.1, a time bound ¢ n with g
a # polynomial. (As is classic [BC94, BDGSS], count the states and note that
repeated states imply infinite loops.) Thus, by Section 2.3.1, we have the ¢ of
Section 2.3.2 as well as the Section 2.3.3 variant of £.

2.4 Not Too Many Maps

Safety [BC92], in the case of V-comprehensions, is that in I tier 0.1, 0.2 inputs
(1 = Noa, 1 = Np2) can not affect tier 1 outputs (= N;) and that tier 0.1
(0.2) inputs can not affect tier 0.2 (0.1) outputs. Safety follows by applying
I, T, and using the naturality of (m 1) o 72 and by applving T1 (T2) and
using the naturality of m (72). E.g. consider

I
Noy ~— N2
m No.:l lm No.a=id

1 .1.—”,-* Noa

2.4 Not Too Many Maps 65

We will compile I maps f (actually their Herbrand universe representa-
tives) to dyadic register machine codes which compute I' Gy [and ' G2 f.
At the same time we will obtain space and time bounds. For the induction
on the structure of the Herbrand universe of I (as in Chapter 1) we will also
need unary and dyadic output bounds.

For I maps

f: N x Noy? = Noy
' NP x Noa?' = Noo
fmt e m

(which are enough by safety as above and tuples as below) and variables
z;:1 = Ny, y; 11 = Ny we will show that (dropping o’s and ,’s)

space(f z y) < l¢'z ¥ fzyLqz+max;y;
time(f'zy)<plzlly] |f zy| <plz]+ max; |y
Spa-ce(f" x) S |ql” I] f" T S ql‘l T

where the # polynomials ¢, ¢, ¢”, ¢" and the N coefficient polynomials p, ¢’
depend only on f, f', f".

Uniike in Chapter 1, we do not separate the names and values of vari-
ables into separate registers. Further, we keep inputs and outputs in separate
registers, rather than sometimes totally overlapping them, e.g. to compute
identities by doing nothing. But here, unlike there, we have the time and
space to make copies. By the way, we count outputs, but not inputs, in the
space.

Tuples f, ¢ : X xY = U x V (which combine diagonal, symmetry,
and tensor) simply add the space and time involved. As, by the inductive
hypothesis,

space(foy) < lgjzyl space(gzy) < lgjz 3l
time(f'zy) S p)plzllyl time(g'zy) < o] Iyl

it follows, using that |n| < log,(n + 1), that

space(fzy, 9z y) S [(1+ g5z y)(1 + gy)|
time(f' z y, ¢’z y) < P 12| Iy + Bl I=| [yl

66 V-Comprehensions and P Space

Gy, G2 work right. Indeed. from
fzy<gx+mayy;
|f" = y| € plz| + max; [y}

it follows that
Gi{fzy)Lqz+Z;y;
Gz (f'z)l S plzl + Z5 lysl

Among the base functions, the variables y : 1 = Ny satisfy
y<y =yl

and take, to copy from an input register to an output register, linear space
and time. Further
00 sy<l+y

and 0 and s take linear space while
01<0 Jseyl<1+]y

and 0’ and s take linear time.

The coercions 7;, <; affect typing but not space, time, or output size.
However, G;, i, together with Section 2.3.1 and the fact that time bounds
imply space bounds, do mean that we do not need to consider the case f” :
N!" = Ny. E.g. we have

N Noa: N2 Noa G ((m Naa)o f")=§"
Unary flat recursion decomposes into scalar unary flat recursions

1xY 2L NyxY 2Ny xY

AN

Y ——— No No
which can be solved by

fry=Zn(gy)(h(Pn)y)

2.4 Not Too Many Maps 67

using the predecessor P and the conditional on test for zero Z from Sec-
tion 2.3.3. But

Py<y Zyoyxy:Sm;‘txy,

and P and Z take linear space.
Consider, with X = N/ Y = Noy7, X' = le, Y' = Noy? . the composi-

tion
, A, f .
X xY-25 X x Y'—— Nog

As, by the induction hypothesis, we have the vector inequalities

gT < gz
h zy < gr z + max; y;
fz'y < gz’ + maxy,
it follows that

floz) (hzy) S argez+) qu, o+ maxy;
J'

Further, as
space(g z) < |g; 7|
space(k 2 y) < gz
space(f z'y’) < lgy 2’ ¥'|
we have, taking the input registers of f to be the output registers of g, h and
using that |n| £ log,(n + 1), that

space(f (g 2) (h o)) <
[(1+ggz)(1+ gz y)(1 + ¢f (95%) (qaz + Z;93))l
Similarly consider, with X = My, Y = N/, X' = N/ ', Y’ = Ny,7', the
composition (where we now drop some primes)
XxY 25 x vy Lo N,
As we have the vector inequalities
lg z| < pg |2}
|k = y| < pn || + max; ly;}
If 2 ¥'| < ps 2’| + maxy |y}

68 V.Comprchensions and P Space

it follows that
[(g2) (k2 9)| S prpolzl + 2 pr,, [l + maxy;)
Jf

Further, as
time(g z) < p} lz|
time(k z y) < i, 12! |y
time(f z'y") < p} 1’| ¥|

we have, taking the input registers of f to be the output registers of ¢, k, that

time(f (g) (hzy)) <
p; 1 + pi =] 19] + P} (pg Izl (i 2] + 5 L5

For safe recursions we need to consider I commuting

T

XXT]:Y+__X

id j
Applying i : I — V —o set and looking at the 0.k component, we have that
Y = Ny’ for some J € N.

Thus consider, with X = N/, Y = Noo?/, ¥’ = Nyo”', the dyadic safe
recursion

0x(XxY) s x(X xY)
— ——

1x{XxY) N x (X xY) M x (X xY)

“!l Wllf lzh-r

XXYT(X XY)XY'T(XXY)XY'

We have the varying composition
f(skspy ...0zy=bpyzyhep,zy...g92y
As, by the inductive hypothesis, we have the vector inequalities

lg = ¥ < py || + max; |y;
thez y ¥'| £ pa, I2| + max(max; |y;|, max; y])

2.4 Not Too Many Maps 69

it follows that
If nzyl <inl D pa,, lel+ 2 b, ol + max ;1
kg 3

Further, keeping in mind the time it takes to reverse n, control the loop, and
move the y) to the inputs of the ki j, we have that

time(f n 2 y) <

[nl(A(m| Te g P, |21+ g £, le] + S5 ly51) + B

+ &-Jr p;;,':, =] 1y (lnlzk.j' Ph, lz| + %5 P, |z} + E:‘ vl
+ 5y lel] +C

with A, B, C € N.
Finally consider, with X = NLY = Noi?, Y = Noa?', the unary safe
recursion

] % (X x ¥) 22, N x (X x Y) 2N x (X x YY)

w1 l""l oI l-“l oI

X XY ———— (X XY) XY ——— (X X Y) x "

We have the varying composition
f(ss...0)zy=hzyhzy...g2y
As we have the vector inequalities

gy < g+ max;y;
hzyy < gnz+ max(max; y;, max; y})

it follows that
- fazy<nd) az+) g+ max y;
K 3 I
Further, as we have that

space(gzy) S gz y
space(hzy y') < gz yy

70 V-Comprehensions and P Space

we have, keeping in mind the space needed for the intermediates/outputs yi
and using that [n] < log,(n + 1}, that

space(fnzy) £

(l+nTign, 2+ 5 g2+ 2597
I+Zpan, cy(rEegn, T+ 5,09, 7+ L;95))
1+, 9;,, z y)|

2.A. Linear Space

The objects of the linear space doctrine LinGpace (this descends from [Bel92,
Rit63]) are

1. FP 2-comprehensions
(C, T, G, n, ¢

2. with unary
12 No—— Ny

in C such that T Np =1 satisfying
3. unary flat recursion and
4. unary safe recursion.

The maps are those preserving witnessed structure and are thus strict.
As for £inTime in Chapter 1, there exists an initial category Iin LinSpace

and functors
LY}

I +2 —o set
x A‘
21

with x the extent and T' =1(1, .).

Proposition 2.A.1
For I initial in CinGpare (as above)

2.B P Time Ti

1. Up to natural isomorphism the unique CinGpace functori : 1 = 2 —o set
is F:.

2. The linear space functions N —+ N1 are those of the form T' T f for 1
maps f.

Proof. Modify the proofs for PSpace. In Section 2.3, + and x now
run the machine long enough. In Section 2.4, replace # polynomials ¢ by N
coefficient polynomials p. a

2.B P Time

The objects of the P time doctrine PTime (this descends from [BCY2, Cob65])
are

1. FP 2-comprehensions

(C9 Ta G, 171 6)

2. with dyadic

1 0 ‘rNo 2 iNo %2 ?No
in C such that T Np =1 satisfying

3. dyadic flat recursion as (in Chapter 1) and
4. dyvadic safe recursion.

The maps are those preserving witnessed structure and are thus strict.
As for £inTime in Chapter 1, there exists an initial category I in PTime

“and functors
T2

I +2 —o set
N
2—1

with x the extent and I' = I(1,).

Proposition 2.B.1
For I initial in PTime (as above)

-]
| 5]

V-Comprehensions and P Space

1. Up to natural isomorphism the unique PTime furctor ¢ : I — 2 —o set
is rg.

2. The P time functions N' = NT' are those of the form T' T f for I maps

f.

Proof. Modify the proofs for PSpace. In Section 2.3, ¢ and # now run
the machine long enough. The initialization and next state are now coded as
in Section 1.4.5 using dyadic flat recursion. In Section 2.4, check that dyadic
flat recursion respects the output and time bounds. a

Chapter 3

Dependent Products and
Church Numerals

Introduction

In Section 3.1 we use dependent product diagrams to study LCC (= locally
cartesian closed) categories. In particular, we specify LCC categories using
sketches and orthogonality, show Awodey’s semantic version of Martin-La{’s
axioia of choice, show that the Yoneda embedding is LCC, and recall how
LCC functors generalize locally connected topological spaces. Although de-
pendent product diagrams appear independently in [Ndj92], our dp stacking
(Proposition 3.1.3.1) is from 1991.

Previously (in Chapters 1, 2) we have characterized complexity classes
using SM and FP 2-comprehensions. In Section 3.2 we easily define FL 2-
comprehensions, and with more work, define LCC 2-comprehensions. How-
ever, in Section 3.4, using ideas from [Lei94, LM92], and a little lambda
calculus from Section 3.3, we find that Church numerals prevent LCC 2-
comprehensions from characterizing complexity classes. We eventually hope
to overcome this using a combination of comprehensions and fibrations.

As in Chapter 2, we write 7 for terminal maps, and f, g for the tuple map
of maps f and ¢ having a common domain.

74 Dependent Products and Church Numerals

3.1 Dependent Products

3.1.1 Comma Objects

Given amap f: X = Y in a category C. we have a dependent sumn functor

dsy: C/X = C/Y
e— foe

The pull-back functor is defined by the adjunction ds; 4 pb,, which we some-
times write as £y < f*, and is thus determined by terminal objects in the
comma categories

dsy /g ——1

8

|—

The terminal objects in the comma categories dsy /g are just the pull-back
diagrams

 —

.

Thus a category C is FL (= having finite limits) iff it has terminal objects
and all pull-back diagrams.

Now suppose that the category C is FL. Then the dependent product
functor is defined by the adjunction pb, - dp;. which we sometimes write
as f* - Iy, and is thus determined by the terminal objects in the comma
categories

ijle———-—*l

|—

3.1 Dependent Products

-1

e

These terminal objects are the dependent product diagrams

(In the future, but not here, we will instead place the dp in the right upper
corner, as suggested by A. Blass.) Thus a category is LCC (= locally cartesian
closed) iff it is FL and has all dependent product diagrams.

In set, the category of small sets, any K — J — I splits as indexed
sets J = {J:}ier1, and dependently indexed sets K = {Kj;};eu,. ier With J; the
fiber over ¢ € I and Kj; the fiber over j € J;. Then the dependent product
diagram has the form

T {H:'e.l. KJ‘ i}ief

S

K rJ T

thus justifying the terminology ‘dependent product’.

3.1.2 LCC Sketches

We define a sketch theory as (in Section 1.1) for LCC sketches. The sorts are

Co -~ objects

Cy ~ maps

C2 ~~ triangles

I -~ identities

Ly ~+ terminals

L, ~~ pull-backs

P -~ dependent products

76 Dependent Products and Church Numerals

the operators are

doz:Colz:Cy] -~ codomain
diz:Co[z:C;] =~ domain
doz:Crz:Cy] ~ tomap:1—=2

drz:C [r:Cy)
d2z:C [x:C7)
dz:Cy[z: 1]
dz:Colz: Lo
doz:Ca[z:Ly] ~» as pictured below
diz:Cz[z: Ly}

doz:Calz:P] =~ as pictured below
dyz:La[z: Pl

§

composite map: 0 — 2

§

from map: 0 = 1

—_— —_—
d; z :/

do = ‘.Ao{, dy z]

— S} oy

and the equations are

dodoI=dod1$:Cg[I:C'2]
dhdgz=dydrz:Cylz:Cal
didiz=dydaz:Colz:Col
dodz=d1dz:Co[z:]]
didoz=d dyz:C [z: La]
ddz=dddz:Clz:P

The LCC categories with witnessed structure are then those LCC sketches
orthogonal to the LCC sketch homomorphisms corresponding to the follow-
ing basic almost equational assertions. We sometimes call such assertions
entailments.

~~+ Associative composition
{'fiofo:C:

do (iofo)=H:C

d2 (fiofo)=fo: C1

[dh fi=do fo:Co =f1:Cr _fo: Col}

3.1 Dependent Products

{d11‘1=4132261

[do 2o =dp 2, : Gy
d;:co=domg:C1
dg.‘to:dg.‘t;;:cl
dazy=dy z3: Cy

d2 22 =drz3: Cy

20:C2 2::C2 22:C2 z3:Ch)}
~~ Identity maps

{tidXx:7J

dodid X=X:Cp

(X = Col}

{hhz=doz:Cy
dy=diz:C y:I z:Chj}
{dyz=drz:Cy
dy=doz:Cy y:I z:Ci}
~+ Terminal objects

{'1: Lo}

{!TXY:Cl

doT XY =dY :C

LT XY=X:C

[X:Co Y:Lg}

~ Pull-backs, as pictured below
{1foxfi: L

dodo (fox i) =fo: Ch
dod(foxfH)=hH:C
[dofo=doi:Co fo:C. fi:Gl}

Dependent Products and Church Numerals

{!Aozozyy: Ca
Avzozyy: Co
dAozoniy=dadoy: G
doDyzoziy=dadyy: Gy
di Dgzotiy=d2z0: (1
d1511021y=d231201
d Doy y=da Dy 2o y:Cy
[dozo=dodoyfcl
don=ddy:C
dizo=dy2,:Cy
20:C: z1:C2 y:Lj}
~+ Dependent products, as pictured below
{!Hf;foip
bodlfifo=fo:C
dododi I f1 fo=fi:Cy
dofo=di i:Co f1-C1 fo:GCi}
{!Aol’.’gl‘}y:Cz
Mzoziy: Ls
Arzoziy:Co
dvoo1y=dzdoy-'CI
dy Ao o2y =d2 20: Cy
d2Mhpzoniy=dedodazoriy: Gy
dodoA1o1y=d2d1d1y:C-'1
dodiMzoziy=drAazony:Cy
ddi Mz y=dady 23 : Cy
dbAzonny=ddidiy:C
d Aszoziy=dody21:Cy
[dozo=dodoy:Ch
dizo=dadoz:: 4
dodozi=dodpdyy:Cy
Io!Cz 31:L2 y:P]}

3.1 Dependent Products w9

Two of these entailments have the pictures

&

AN 4

-~

DO
¥

Thus, with S the above sketch theory of LCC sketches, and M the set
of maps between finite LCC sketches which the above assertions amount to,
M L setS, the full subcategory of LCC sketches orthogonal to M, is the
category of (small) LCC categories with witrassed structure, and strict LCC
functors. More generally, a functor between LCC categories is LCC iff it
preserves terminal objects, pull-backs, and dependent products (although not
necessarily any choices of witnesses). Similarly one has FL (strict FL) functors
between FL categories (with witnessed structure).

3.1.3 Pb and Dp Stacking

Given

C
i T
4
1-—1,—’D

the counit ¢y : F G Y — Y is a terminal object in F/Y. Further, G on maps
g : Yo — Y arises from the stacking diagram

FGY, S8, FrGY,

cvol ey
-

Yo——h

Dependent Products and Church Numerals

N

In particular, given an FL category C withamap f: X' — Y we have

C/X

-

{
dsy i 4 |pby

»

I—E—*C/}

Then the stacking diagram for

Zo 2 2,

N

is an outer pull-back decomposed as

Pb stacking computes the outer pull-back by saying that the left inner square

is a pull-back.
Similarly, given an LCC category C with 2 map f: X — Y we have

c/Y
pb,lq Idw

1—C/X

Then the stacking diagram for

3.1 Dependent Produets 81

is an outer dependent product decomposed as

// s

A
e
Xt

e

Dp stacking computes the outer dependent product by claiming that the upper

triangle and pull-back form a dependent product.

Proposition 3.1.3.1
The outside of

—

/1“ \

Y - -

—_—
/,b/
Y N -

—_—
dp

is a dependent product.

Proof. With the names

it
d f:
/pb/dp
L\' \v
4 ¢ f

it is enough to show that the functor

F :pbg [d' = pby [(e0d)
which on maps is
—_ —_—
pd ‘ Pb
- - i—} - d
pb 1 Pb
- d + Il
d' I /pb/ dp_'}

o
[&)

Dependent Products and Church Numerals

is an cquivalence, as equivalences preserve and reflect terminal objects. But,

as pb and dp diagrams are terminal comma objects, we have bijections of
maps

|
|
i
. |
/ pb
AN
/'pb yaEs
//
% , X > -
d c I
1 on i
/ pb ~
+
/ 1l s =
v Lx/ . L
e
—_—
ph
pb
< = 7

Thus F is faithful full. Removing the top comma object, we see that F is
surjective on objects. a

3.1.4 Martin-L5f Choice

As a special case of dp stacking (Section 3.1.3) we have Streicher’s [Str92,
Awo094] semantic form of Martin-Laf’s axiom of choice.

3.1 Dependent Products 33

Proposition 3.1.4.1

The outer comma object in

d
1p Inﬂﬂv
o v T
YA x X —=YX
pb e idP
/ -‘. -
— Y XX —— X 1
R 1

is a dependent product. Thus the right hand composition is
Mz:XCy:Yvzy=Sf: Y Nz X fz

Proof. We view 3 as a type dependent on Y x X whose sections witnes: its
truth [See84]. Thus we write Il z : X ¢ z f z for I, ¥'. (We reverse the
arguments of 3 as in Section 3.3.) a

This can also be viewed as a Skoiemization or as a distributive law, and is
a basis for the extraction of programs from specifications as in Nuprl [C*86].

3.1.5 Pull-Back is LCC

Consider 2 map f: X = Y in an LCC category C. By
ds; 4 pb, -1 dp;

pb; and dp; are FL. Further

Proposition 3.1.5.1
pb, is LCC.

Proof. As pb, is FL, it remains to see that pb, preserves dependent product
diagrams. Start with

F s
e

Dependent Products and Church Numerals

and get

i T \R| ’ Al 1
pb ;pb:'\' lpb*" |
— e I
ﬁl e | ‘
- i -
[d 4

in which a2 comma object over the pull-back of the bottom line uniquely maps
to the pull-back of a dependent product over the bottom line. a

3.1.6 Presheaves

With C a category, the category of presheaves set®” has object-wise FL struc-
ture. It also has LCC structure. Indeed, given

Q S5 R S
in set®’, we describe the dependent product

—_— P

yl"’
| s f

Q——f—"R—g—*S

Think of C objects W as Joyal-Kripke worlds and C maps [: W' — W as
localizations {or possible futures).

Proposition 3.1.6.1
With notation as above

1. The elementsof P W (= P at world W) are the comma objects

—y W

S
@Q——R——S

;G g
where y : C — set® is the Yoneda embedding y X = C(_, X).

oL
W

3.1 Dependent Products

2. Pl {for localization | : W' = W) maps clements of P W to clements of

P W' by commuting

e A

/7 b
s
/// i !J

3. I, f and @ are defined by
(Ig fhw (4, 7) = jw idw
@w (r, (1, 7)) = tw (r, idw)
wherer € R W s such that gw r = jw idiy.

Proof. 1. and 2. As dependent products are terminal comma objects, and
by the proof of the Yoneda lemma,

PW = set®(y W, P)
with corresponding elements
—_—y W

i pb
/ 1:‘
Q—f—-‘R—g—-‘S

AijiyW—=P
(Aij)widw€€PW

3. We have commuting

36 Dependent Products and Church Numerals

and thus commuting

. p—b“—"“—"' C(li. H) a2 idy
/'/ l i A
iw ,/ l. -, .. .
/, P PW 3 (A2)y dw
/K My Nw
QW ——RW——SW > jw idw

3.1.7 Yonedais LCC

We now have, using Proposition 3.1.6.1, an easy proof of the well known {Pit87
(A. Joyal circa 1974)

Proposition 3.1.7.1
The Yoneda embedding

y:C— set®
X = Cl., X)

is LCC.

Proof. That y is FL is essentizlly the definition of finite limits. Given

in C, by the Yoneda lemma, the comma objects

—y W

/I

) ——
v Ve

3.1 Dependent Products 37
uniquely decompose as commuting
Ty W
i pb
/| |
2 pb !
vy | v (M 1)
N/ A
vl vy
d

3.1.8 Toposes and Locally Connected Maps

Although we will not need this below, it may be important elsewhere to know,
as we recall here, that LCC functors generalize locally connected topological
spaces.

Suppose that C is an FL category. Then a C map m is 2 monomorphism
iff
o

-

is a pull-back. Further, a monomorphism T is a subobject classifier iff V

b
S

By 2 mildly tricky lemma [BW§5], we can assume that T has the form

monomorphisms m, 3!

T:10Q

By an easy lemina, any map 1 — ! is a monomorphism.
A topos is an FL category C such that

1. C has a subobject classifier T : 1 =+ £} and

v 4]
[¥7]

Dependent Products and Chiurch Numerals

2. ¥ C objects X, 3

(P X is the power object.)

Thus we can specify toposes with witnessed structure using sketches and or-
thogonality (as in Section 3.1.2). Toposes are LCC [BWS3].

A functor F : E — S between toposes is geometric iff it has an FL left
adjoint and is locally connected iff it has an LCC left adjoint [Joh83]. When S
is set, E is the sheaves of sets over a topological space X, and F is the global
sections, X is locally connected iff F is.

3.2 LCC 2-Comprehensions

With M = end(2)° and £EC the 2-category of LCC categories with wit-
nessed structure, we will not define LCC 2-comprehensions to be 2-functors
M = £€¢, as

Proposition 3.2.1
The domain functor

d : set? — set
(XZXQ —)'.XI)F—}XQ

is not LCC.
Proof. set?, set are LCC by Section 3.1.6. With N = {0, 1, 2, ... } the

natural numbers in set, in set? we have No=N = land Ny =id: N = N.
Consider

— NINO

S

NoXNl ‘:No —]

o

o
()

3.2 LOC 2-Comprehensions

By Proposition 3.1,6.1, d (V™) = the set of commuting

N—=N
ll {1
l=——N
2~ N. But (d Nl)(d No) = NV is uncountable while N is not. O

Instead, we define FL 2-comprehensions to be 2-functors M — F&,
where F£ is the 2-category of FL categories with witnessed structure, and
LCC 2-comprehensions to be FL 2-comprehensions (C, T. G, 7, €), as in
Chapters 1, 2, where C is LCC and the extent functor y : C = C? (by
X = x X with y =no0¢) is LCC. So we need, given an LCC category C,

1. to show that C? is LCC,

(&4

. to describe the LCC structure on C?, and
3. to show that C? is canonically an LCC 2-comprehension.

(1. and 2. may be related to results in [Day70, Mak93].)

Proposition 3.2.2
Given an LCC category C, C* is LCC. Indeed, over

90 Dependent Products and Church Numerals

we have the dependent product

ﬁ P k|
V9 e !
e L
avelys
p,l?b pb » pb ’ dp V‘
0. 90 z XQV\ _fi/"‘
q
_—
L Peom Y o
Xpi&yY';

X id, id X

Proof. To verify that the above is a terminal comma object, we successively
transform.

1.

3.2 LCC 2-Comprehensions

91
2
]| eb S
o i !
» - -__.-— -
Lod e | ¢,,r.\
o4l . LN
o o Z TR
\}-'/
g
3.

-
- - ~ ~
-~ A
'l
, ph pb
-
14 l? - ~w-
i ap Y
i’ S A
- Y
Lw-/ ‘qr 1-4. \“q-
T v
.l ee pb pb dp @
?
N - QVJ -

with

—
J"b lx PiLOY S

Xigm X

Dependent Produets and Church Numerals

4.
P b1
o T
. 1 |
Sl l
A |
v q - k
i /,; dp !
el i l
eb pb | pp) dp 'w
P |
l R
o AR
- .
a
Thus in particular
Proposition 3.2.3
Given an LCC category C,
1. the codomain functor
c:C* 2 C
(X : .Yo - X1) - .){1
and
2. the identity functor
id:C = C?

X (d: X = X)
are LCC.

Proof. 1. This is immediate from Proposition 3.2.2.

3.2 LCC 2-Comprchensions 93

2. Directly, we have the bijections of comma objects

———————

--—-n—.‘h
dp

A

[-
—— | ————
thy dp
w® x I’ .- -
€. |0
2
-~ 1

I;]

By dp stacking (Proposition 3.1.3.1) and ' (@, id) = id. it is enough to show
that ¢ is an equalizer of

dp

P
——

Y
gsoequalizesas p’ig=p'(Q,id)!=@¢7 =@ f'(@,id) =@ f' iq.
Given ¢’ such that p'i ¢’ = @ f'1 ¢’, we have commuting

J'idh e
q

q

if we can show that (@, id) f'i¢ =i¢q". Butp' (@ id) fiqd =@ f'iq
which = p’ 7 ¢’ by assumption, while f' (@, id) f'i¢'= f'iq".]

(]

94 Dependent Products and Church Numerals

Proposition 3.2.4

Given an LCC category C. C* is canonically an LCC 2-comprehension.

Proof. With the FL structure

| = di]
— .
N
Tt
1

on C?, the functors
T:C*=C?
(X : Xp—= .\’1) —} (ld : .YQ - -X‘l)
G:C* = C?
(X : Xo = X}) —r (id : Xo — .\’0)
are strict FL. The extent functor

x: C* = (C?)

takes
Xo —f—u-Y[,
X IY
X%
to
, Jo
Xo— Yy

id X —— Y]

h

Xo- - Tid =+)70 lid

Y

AN | o
X1 ——N

Thus, since id : C* — (C?)? is LCC (by Proposition 3.2.3), so is x (due to

the symmetry 2 x 2 =+ 2 x 2). O

e

3.3 A Little Lambda Calculus 95

3.3 A Little Lambda Calculus

Suppose that Cis an LCC category containing

] —2= No —— N,

We recall a little lambda calculus so that we can easily name some of the
objects and maps in C.
A type is one of (by well-founded induction)

1. Ny
2. Y 1 X, which we sometimes write as ¥, where X and Y are types.

The binary operation T associates to the right. Thus X 1Y 1+ Z is X t(Y ¢
Z). Type No names the object No. Type ¥'* names as pictured.

Y¥x X T, yX
T,m o
2

- -~

YxX——X +1

We write
Y.\',._; %X o XX1%Xo

as sugar for

(¥ .%o

A context is a square brackets enclosed set of declarations z: X with z a
variable unique within the context and X a type. A context

[Io:Xo $1:X1]

names the product cone

T3

(-0 % Xy) X Xo— (- % X1} — X;

ol l

Xo + 1

96 Dependent Products and Church Numerals

Here. unlike in the other chapters, we have reversed the order of the arguments,
as abstraction will pop and push between stacks of arguments. In particular,
[z0 : Xo] names

and [] names 1.
A lambda term f of type X relative to a context C, all of which we write
as f: X C, is one of

1. a variable z, if there is a declaration z : X in the context C,
2. the constant 0, if X is N,
3. the constant s, if X is No™,

4. an application f g, which we sometimes write as f @ g, if f : X¥ C and
g:YC,

5. an abstraction [u: U] f,if f:V [u: U} C and X is VY.

Here, when C is

[Zo: Xo z: X7 ...]

[u:U]Cis
[u:U z2o:Xp z: X1 ...]

Application associates to the left. Thus f ¢ h = (f g) k. With the object X
named by the type X and the object C the limit of the product cone named
by the context C, lambda terms f : X C name maps C = X by

1. A variable names a projection, as pictured above, in the product cone
named by the context C.

2. OnamesQoT:C = N,.

3.4 Church Numerals a7

3. s names the Curried map §o 7 as pictured.

No-
rf

a.id - " No
— N

. dp

No x Nog —— Np +]

4. Applications f @ g name as pictured.

S ¥ :
CWXY xY—+X

5. Abstractions [u : U] f name as pictured.

CxU s C
pb
J' (U] f
fim —— X = OV
]
VX‘.U = r[} ~1
We write
[UQ:UU U1:U1 ...]f
as sugar for

[‘U.o : Uo] ([‘Ul M U1] “aa f)

3.4 Church Numerals

Suppose that (C, T, G, 7, ¢) is an LCC 2-comprehension (as in Section 3.2)
such that C contains

1 =25 Ny —~2u Ny

93 Dependent Products and Church Numerals

with T Ny = 1 and satisfying unary safe recursion. (Compare this with the
doctrine LinGpace in Appendix 2.A.) Recall that unary safe recursion is that
with

1-—2= N, == N, = G (1 2= Ny —>— No)

V commuting

Xy XxY sy XxTY

id, j]. o

A

3! commuting

X x1258 X x Ny 222 X x N,

4

XTXxY X %Y

X0, h

In set we have addition +, multiplication *, exponential 1, and super-
exponeatial {} by

z+0=¢z z+(sn)=s(z+n)

zx3=0 zx(sn)=z+ (z*n)

z10=s0 zt{sn)=z=*(z1n)

zt0=s0 zf(sn)=zt(z{n)
We will use Church numerals to simulate these in C. Thus we will show that
the numeric functions representable by C can grow too {ast to allow them to

form a complexity class.
Define ‘Leivant tiers’ of Church numerals C; by

CO — No C.,'+1 = Cici xC.Ci X XC.‘C'

Define
124 C—=C;

by, keeping argument reversal in mind,

Oghz=gz (sn)ghz=hz(nghz)

3.4 Church Numerals

99

Thus, given g : C; = C;, h : Ci x C; = C;, we can solve for commuting

ci x lfﬂc‘ X C,‘..[.] E-'ic, x Cl"H
To wo. f mo. S
C.‘ id, g 'C,'XC{ P fC,'XCi

by, with f: GO+ %% §: CS, k: C:S*% the Curried forms of f, g, h,
fzn=nghze

In particular, we can solve for commuting

0 3
1 r» Cir + Cip

L

[
1—; »C; —— C:

[N

by, with ¢; confused with its Curried form,

gn=n{{z:C]0)(z:C; y:Cisy)0
Proposition 3.4.1
With assumptions as above, define

gi: Cgc‘ h;: C'_C.-xc.-
goT=2 fory 1 GEXG
az=0 hhzy=sy

gi+2z=50 hinzyghe'=fin(az)y
finzn=nghz
Then
1. fi (s20)(s" 0) = s™*2 0
2. & {f2(s*0)(s"0)) =s*" 0
3. e (&1 (fa(s°0) (s 0))) =s*™0
4. e (a (&2 (fu (7 0) (s 0)))) =™ 0

Proof. Use induction on n.

100 Dependent Products and Church Numerals

fH(sf0)0=s"0=3s%0.
fi (87 0) (5771 0)
= ko (s* 0) (f1 (§0) (s" 0)) = s (s7+2 0) = st™*1+2 0,

o (f2 (52 0) 0) =¢ld=0= 20,
€0 (f2 (8% 0) (s™*1 0))
= ¢p (h; (52 0) U'2 (32 0) (s" 0))) = fi (32 0) (Szn 0) = s3n+1) g

€0 (&1 (f3(s20)0)) = ¢o (€ (s 0)) =50 =50,
&0 (1 (fa (s*0) (s**1 0)))

= ¢ (€1 (h2 (s? 0) (f3 (s* 0} (5™ 0))))

= ¢ (f2 ($% 0) (s*™ 0)) = s*T("+N) g,

€0 (€1 (2 (fs (520} 0))) = €0 (&1 {€2 (s 0))) = s 0 =570 Q.
€0 (€1 (e2 (fa (2 0) (s™+ 0))))

= eo (& (€2 (Ra (5% 0) (fu (s2 0) (s O))}))

= ¢ (&1 {f3 (5% 0) (s*™ 0))) = s*Nntll g,

G
Now the T C; are terminal. Thus we can apply unary safe recursion to
1—Cy—C,
to get commuting
1— N, = N,
I
1 _0* C4 r— C4

Thus, by Proposition 3.4.1, the numeric functions representable by C can
grow too fast to allow them to form a complexity class.

101

Chapter 4

3-Comprehensions and Kalmar

Elementary

Introduction

[LM92] related tiers to the Grzegorczyk hierarchy (as in [RosS4]). In
Appendix 2.A, we used FP 2-comprehensions to characterize the linear space
functions. These form the second level of the Grzegorczyk hierarchy. (Thus
many complexity classes are variants of the second level.) Here we use
FP 3-comprehensions to characterize the Kalmar elementary functions (as
in [Ros84]). These form the third level of the Grzegorczyk hierarchy. Thus
we translate some of [LM9Z] to category theory. The third level seems to be
needed to reason (deterministically) about, e.g. prove the consistency of, the
second level [Ros84].

The basic idea is to pump up linear space to Kalmar elementary using
z T y = z¥ essentially as we pumped up linear space to P space in Chapter 2
using = # y. However, rather than use 2 tier 0’s, one urary and one dyadic,
compatibly joined at a single tier 1

0.1\ | /0.2

102 3-Comprechensions and Kalmar Elementary

we use 3 linearly ordered tiers

FICY em— ey =

each of which may as well be unary, as numeric base and space versus time
do not matter for Kalmar elementary functions. The partial orders V and

3 roughly describe how loops may nest. The partial order 3 leads to FP 3-
comprehensions (Section 4.1).

Working out this basic idea will be slightly technical. We introduce the
three doctrines £, &, and &' (Section 4.2) as well as the complexity class
E space. R simply describes the Kalmar elementary maps. € consists of
FP 3-comprehensions with flat recursion (although it is not actually needed)
and tier 1 and tier 2 safe recursions. & differs from € by using dependent
safe recursions (as below) rather than safe recursions. & and € are clearly
related whereas £ and € are not. | polynomials are built up from N in set
using +, *, and 1. The E space functions are those computable (on Turing
machines) within space bounded by an 1 polynomial. The images in set
and set® of initial categories in & and € are big enough to include E space
(Section 4.3), while the image in set® of an initial category in € is within
E space (Section 4.4).

Much as safe recursion differs from very safe recursion (Section 1.4.1) by
being able to read the parameters (X) more the once, namely during iteration,
dependent safe recursion differs from safe recursion by being able to read
the control (or ‘time’) variable (N;) during iteration. Thus the vector (or
simultaneous) safe recursion in [BC92, Bel92, LM92, Lei94] is essentially our
dependent safe recursion, while our safe recursion has become (through its
sufficiency and naturalness) independent of ‘time’.

This chapter, together with Chapter 2, replaces [Ott94] which in turn
replaced [Ott93]. We assume knowledge of Chapters 1 and 2.

4.1 3-Comprchensions 103

4.1 3-Comprehensions

4.1.1 Comprehensions

We abstract from set® (which is the cotensor 3 — set in §B as below) and
its 3 tiers of numbers.

No = N M = N Na = N
\ id . id
1 N N
| l Ju
1 1 N

Thus with M3 = end(3)° the partially ordered monoid of endomorphisms of
the partial order 3 with the l-cells reversed (i.e. acting on the right, rather
than the left, of 3), an FP S-comprehension is a 2-functor M3 — FB, where
5B is the 2-category of small FP categories with witnessed structure, strict
FP functors, and natural transformations.

Now we present M3 = end(3)° as a 2-category. As generators we choose
the 1-cells (acting on the right of 3)

To = 0 0 Go = 0—0
N /
1—1 1 1
2—2 2 ——t2

I = 0——0 G = 0—0
1 1 1—1
N /
2—2 2 2

and the 2-cells (naming the element-wise partial order)

G; —=—=id—T;

104 3-Comprehensions and Kalmar Elementary

We also define
Xi =7:0¢

The partial order underlying Mj is (generated by)

G1 Go
Gy Gy o
—_—
Go Gy g Go
w &y €
Gy ——id——Th
0 Gy I’?° Tino

—_— Ty —— —_—
To Gl Toa To m To T T T1 Tom L'

We then choose as relations

GTi=1T; Lni=nTi=1d
1. G =G: Gie=6Gi=id
Tie=Gin=x:
LGo=1h ch=mGo=nmoe
G0T1=Go
LGi=GiTp Thoa=aTlp
0 Gr = G110
LhTh=1T nhlh=T1Tim

G1 Go G1=G1 Go GoG1 =& Go G;
In particular we have the adjunctions

ThAG 1N 1Gy

triples Ty, T3, To T, and cotriples Go, G1, G1 Go. We also have the non-
idempotent ((T1 To)? = Tp T1) modalities

T T = 0 0 Go G = 0—0

AN

1 1 1 1

N /

2—2 2 2

4.1 3-Comprehensions 103

Some of the 2-category assertions nceded are not completely obvious. E.g.

from
id id
. L
|1m L
R

we have commuting

4.1.2 Extents

Suppose that (C, T;, Gi, ni, &) is an FP 3-comprehension. We define an
extent 2-natural transformation

by the component, over the unique 0-cell of M3,

x:C4+3—-C in§P
3=FP(C,C) imcat

0 G1 Gy
l J.G; Xo
1 = T G
I Toxa
2 To Ty

Proposition 4.1.2.1
The extent functor x is a 2-natural transformation between 3-comprehensions.

106 3-Comprehensions and Kalmar Elementary

Proof. Use the multiplication table

To Go I, G,

G1Go|To Gy G, Goe Gy Go GGy
ToGi |ToGy GiGo ToTh To G
Toh |Toh Thh ToTy ToGh

and that the 2-celis are unique. 0

4,1.3 Tiers

From
No = N N = N N, = N
id id
1 N N
l I 1&«1
1 1 N

in set® we abstract

To No=1 Gl .N0=No Go N0=N1 Gl l\rl =N2

Proposition 4.1.3.1

For an FP 3-comprehension (C, T;, G;, i, &) and objects N; in C, given the
above equations, we have the multiplication table

No i Ny
Toil M N
Go| M N N,
Tl NO -NO N2
Gi|No N2 N

4.2 Three Doctrines

107

4.2 Three Doctrines

421 R

R objects consist of
1. FP categories C

2. with
] == N =N

in C and

3. +, &, %, II, P, — as below.

& maps are the functors preserving witnessed structure and are thus strict.

+ satisfies

z+0=z z+(sn)=s(z+n)

which is that

Nx0 . Nx)
Nxl———NxN ~—+NxN
*ol ™o, + To.+

N—ga NXN—Fm5q— N xN

commutes in C.
¥ satisfies

(N20=0 Eflzsn)=fzn+(Ef)zn
which is that, given f: X x N= N in C,

Xx12° . xxN Xxs — X xN

(X x N) xN{xmm_'_(”o.zj(X X NYx N

commutes in C.

108 3-Comprehensions and Kalmar Elementary

= satisfies

z*x0=0 rx(sn)=r+zrsn
which is that
. Nx0 \ . N .
Ax]— NxN—"2 N xN
1 b |
ﬂol Iﬁo-' ‘ﬂo.-

+ N x .NT.’\'. x N

commutes in C,
IT satisfies

(MMf)z0=s0 (Df)z(sn)=(fza)»x(1f)zn
which is that, given f: X x N = N in C,

Xx122 . xxN Xxs » X x N
U‘m lid.ﬂf lid,n I
(X x N)x N (X x N)x N

(Xx3)mp.» (fm0. ™)
commutes in C.
P satisfies

which is that

commutes in C.
Finally — satisfies
z—-0=z z—-(sn)=P(z—n)
which is that

Nx1—® NyN—TX . NxN

’rﬂl TOs ™ l-go' -
-

N——WNXNWNXN

4.2 Three Doctrines 109

commutes in C.

Proposition 4.2.1.1
1. There is an initial categorv I in K (as above).

2. Up to natural isomorphism, the unique K functori : I =+ set isT =

K1,).

Proof.
1. Use almost equational specifications as in Section 1.1.
2. Use gluing as in Appendix 1.F. Thus consider the comma category

set/l ——1

EAE———————

» -

set —-;a—-* set

We indicate some of the structure needed on set/I'. As Ntakestd: N> TN
where std 0 =0, std(s ») = sostd n. As

E:X=2TX)x(F:Y=TY)

take
(z,)= Ez, Jy: X x¥Y 2T (X xY)
As + take
NxN—t—n
(z, yystd z, td yl l;td
T'(N xN)T!jI‘.N
O

422 ¢

€ objects consist of

1. FP 3-comprekensions (C, T3, Gi, 7, &)

110 3-Comprchensions and kKalmar Elementary

a

. with unary
1 2 Np —— N,
in C such that
TohN=1 Gy No = Ng

satisfying
3. unary flat recursion (as in Chapter 2) and
4. tier 1 and tier 2 unary safe recursion {as below).

€ maps are the functors preserving witnessed structure.
Define
12Ny Ny = Go (1 =2 No —— Np)
1 =2+ N, == N, = Gy (1 == Ny ——= Ny)

Notice that
ToNg=1 ToTy No=1

T0N1=N1 TQT1N1=1
To N2=N2 T0T1 N2=N2

Thus tier 1 unary safe recursion is that ¥V C commuting

X—yY XxY-2°¥ XxTY

a, ,-I 1

X

3! C commuting

Xx128xx N, 25 X x N,

"°l lﬂ.; l;

X-TS*XXYWXxY

while tier 2 unary safe recursion is that V C commuting

x—=-Y Xxy—2tsy XxT, LY

id, J'I

X

o

4.2 Three Doctrines 111

3! C commuting
A x0 Xxs

Xx1—=Xx N, - X x Ns
o ”ﬂv! -'-O-f
X s - X xY RO'h‘XxY

With I initial in €, define I'; by commuting

*3 —o set
\

I L
\,A

3—I
where x is the extent (Section 4.1.2) and I’ = I(1,).

Proposition 4.2.2.1
1. There exists an initjal category I in € (as above).

2. Up to natural isomorphism, the unique € functori : I = 3 —o set is I's.

Proof. Proceed as with Proposition 4.2.1.1, but with I'; replacing I'. O

423 ¢

¢ differs from € by replacing the safe recursions by dependent safe recursions.
Tier 1 unary dependent safe recursion is that V C commuting

xX—2uy (X xN)xY Loy (XxM)xTY

id, 5 lﬂo
X x N1
3! C commuting
X x1—22, X 5N, Xxe L XxM

(-"m‘ lid..f de. !

(XxN;)xY---———hr(Xle]xY

(X xs) %,

112 3-Comprehensions and Kalmar Flementary

while tier 2 unary dependent safe recursion is that ¥ C commultin
Y

Xy (XxN)xY 2oy (XxN)xThY

id, ;I

.\’ x .'\rz

To

3! C commuting

X x0 Xxs
X x1 + X x N, » X x N,

(-\'m |katd Ii"‘ !

(.X X Nz) X Ym(.}{ X Arz) xY

Proposition 4.2.3.1
1. There exists an initial category I in €' (as above).

2. Up to natural isomorphism the unique €' functori: I —+ 3 — set is [';.

Proof. Proceed as with Proposition 4.2.2.1. 0
The point of introducing &' is that we have a functor

¢ R
C C(g)
Given C in & let C(y be the full subcategory in C of X such that o Th X =
X. Define +, =, P as in Chapter 2 and then apply G Go. Similarly define
—. Then define ¥, II using tier 2 unary dependent safe recursion, (¢; Ny)o f,
and +, * with just Gy applied.
We also have the underlying functor
¢ ¢
C—C

4.2.4 E Space

4 polynomials and E space were defined in the introduction.

4.3 Enough Maps 113

Proposition 4.2.4.1
With I, Ig, Iz initial in K&, €, € (as above) the Kalmar elementary functions
are precisely of the forms

1. T f for Iy maps f,

2. TTy T, f for Xg maps f,

3. I'To T, f for1g: maps f,

4. the E space numeric functions.

Proof. 1. This follows from Proposition 4.2.1.1.
2.-4. See sections 4.3 and 4.4. a

4.3 Enough Maps

Proposition 4.3.1
With X, X initial in &, € (as in Section 4.2) all the E space functions have
the forms

1. T f for Iy maps f,
2 TT T, f for Ig maps f.

Proof. Given an E space function, we run it on a dyadic register machine
as in Chapters 1, 2 with an 1 polynomial time bound. Then 1. follows by
Theorem 3.1 in [Ros84). In Iz we define 1 such that

zT0=s50 zt(sn)=zx(ztn)
by the tier 2 unary safe recursion

N1 Xl—m'ﬂ‘—*Nj, XNg—-E',—"Nl XNg

o] [Jn

—_— —_—
Nl ids0r N1XN1 0. Go = N1XN1

Thus 1 polynomials are definable in Xz. These allow, as in Chapter 2, running
$1, $2, D, C simulations and dyadic register machines long enough. O

114 3-Comprehensions and Kalmar Elementary

4.4 Not Too Many Maps

By Chapter 2 it remains to enumerate the Herbrand universe (as in Ap-
pendix 1.B) of Iz initial in & (as in Section 4.2) and inductively establish
unary output bounds.

Up to isomorphism, the objects of Ig- have the form

Nof x Ny x NoK
with I, J, K € N. Due to G;, ¢; and tuples, it is enough to consider maps
i N2 x Ny? o NP = N

With vectors z: 1 = Nl y: 1 = N,z:15 No¥. we will show that
(modulo I' Gy Gy)

fryzSqzy+maxz,
with the 1 polynomials ¢ (which depend only on f) not having y;’s within the

right hand scopes of their 1's.
Set e; = ¢; N;. Applying 7;, € to N; we get

NNo=7 nM=id nN=id
EoNo=eo 60N1=id 60N2=id
7]1No=id U1N1=eo 171N2=id
€1 No=id € N1=61 3] N2=id
Applying T;, G; to e; we get
Toeo=T1 Toei=e
Goeo=1d Goer=¢
T180=id T1e1=e031
G1e0=eoc1 G161=id

Safety, for 3-comprehensions, is that, for j < %, tier j inputs (1 = N;)
can not affect tier 7 outputs (— ;). This safety follows (as in Chapter 2) by
applying T; and using the naturality of ;.

4.4 Not Too Many Maps 113

We refine dependent safe recursion in Ig.. By applying i : Igr — 3 —o set
and looking at the 0 component, I commuting

(X x N1) x To }'__i_X * .’Vl

i, 5
implies that Y is isomorphic to some No®. Similarly, I commuting

(XxN)xT LY =X x N,

id, j

implies that Y is isomorphic to some N7 x NoF. Thus it is enough to apply
tier 1 dependent safe recursion to

g: XY R:(XxN)xY-=aY=NF
and tier 2 dependent safe recursion to
g:X=2Y RhR:(XxMN)xY-=Y=N!xNF
Using safety, tier 2 dependent safe recursion can be further refined by

1. obtain the Ny’ pert separately by tier 2 dependent safe recursion,

(-]

. substitute the N;” part away,

3. obtain the No™ part using tier 1 dependent safe recursion.
Thus it is enough to apply tier 2 dependent safe recursion to
g: X=Y h:(XxN)xYaY=nN’

Most of the inductive cases are essentially the same as in Chapter 2. So
consider the dependent safe recursions.

With z : 1—>X=Ng‘r,y:1—>Y=N1J,z:1—>Z=N0K,n:1—>N1,
211 = 2' = No®', apply tier 1 dependent safe recursion to

9: X xXYXZ=2Z' h:XXYXZxXNMxZ =2

116 3-Comprehensions and Kalmar Elementary

Then
Fiyz ("0 =hzyz ("' 0 heyz(s""0)...9ry=
Thus from the vector inequatities (from the inductive hypothesis)

9Ty X gy Ty + maNg
hzyznqzyn+ max(maxg 2, maxg o)

we have

fryznSn(} g zyn)+3 gg,zy+maxz
k! k!

Withz: 1 X=N y:1=2Y=N n:1aN,y:102Y =N,
apply tier 2 dependent safe recursion to

g: XxY Y R XxYxNyxY' =Y
(There are no Ny’s due to safety.) Then
fzy(s"0)=hzy(s" 0 hzy(s"20)...5Ty
Thus from
gTy< gy
hzyny Squznyy
< (ghz n+ T, y; + max; yl)h ="

with qﬁj,, qﬂj, independent of j’, we have that
fzyn
< (9;:3n+2jyi+(9;;3n+2jyj+ e Qg TY e)‘a's"")'?;."“

S(n(gyzn+ ;) +g zy)anr’

Bibliography

[AR94]

[Awo94]

[BC92]

[BCo4]

[BDGSS]

[BDG90)

[Bel92]

[Blo92]

J. Addmek and J. Rosicky. Locally Presentable and Accessible
Categories. Cambridge University Press, 1994.

S. Awodey. Axiom of choice and excluded middle in categorical
logic. A talk at the Kansas City ASL meeting, 1994.

S. Bellantoni and S. Cook. A new recursion-theoretic character-
ization of the polytime functions. In STOC Proceedings. ACM,
1992,

D. Bovet and P. Crescenzi. Introduction to the Theory of Com-
plezity. Prentice Hall, 1994.

J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I
Springer-Verlag, 1988.

J. Balcazar, J. Diaz, and J. Gabarrdé. Structural Complezity II.
Springer-Verlag, 1990.

S. Bellantoni. Predicative Recursion and Computational Complez-
ity. PhD thesis, Department of Computer Science, University of
Toronto, 1992.

S. Bloch. Alternating function classes within P. Technical Report
92-16, Department of Computer Science, University of Manitoba,
1992.

118

BIBLIOGRAPHY

{Bor94]

[BWS3]

(BW90]

[C*86]

[Cob65]

F. Borceux. A Handbook of Categorical Algebra. Cambridge Uni-
versity Press, 1994. Volumes 1-3.

M. Barr and C. Wells. Toposes, Triples. and Theories. Springer-
Verlag, 1985.

M. Barr and C. Wells. Category Theory for Computing Science.
Prentice Hall, 1990.

R. Constable et al. Implementing Mathematics. Prentice Hall,
1986.

A. Cobham. The intrinsic computational difficulty of functions.
In Y. Bar-Hillel, editor, Proceedings of the 1964 International

Congress for Logic, Methodology, and the Philosophy of Science.
North-Holland, 1965.

[CRCM80] M. Coste-Roy, M. Coste, and L Mahé. Contribution to the study

[Day70]

[FS90]

[GLTS9]

[Hod93)]

[HP93]

of the natural number object in elementary topoi. Journal of Pure
and Applied Algebra, 17:35-68, 1980.

B. Day. On closed categories of functors. In S. Mac Lane, editor,
Reports of the Midwest Category Seminar IV, volume 137 of LNM.
Springer-Verlag, 1970.

P. Freyd and A. Scedrov. Categories, Allegories. North-Holland,
1990.

J. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
University Press, 1989.

W. Hodges. Model Theory. Cambridge University Press, 1993.

P. Hajek and P. Pudldk. Metamathematics of First-Order Arith-
metic. Springer-Verlag, 1993.

BIBLIOGRAPHY 119

[HuwT8)

[Huws2)

[JayS9]

[JecT8]

[IMS91]

[Johs3]

1591

[Kel89]

[Kun80]
[Law70]

[Leig4}

[L1o87]

H. Huwig. Bezichungen Zwischen Beschrankier Syntaktischer und
Beschranktier Primitiver Rekurston. PhD thesis, Informatik, Uni-
versitat Dortmund, 1976.

H. Huwig. Ein modell des P = N P-problems mit einer positiven
lésung. Acta Informatica, 17:221-243, 1982.

B. Jay. Languages for monoidal categories. Journal of Pure and
Applied Algebra, 59:61-85, 1989.

T. Jech. Set Theory. Academic Press, 1978.

B. Jacobs, E. Moggi, and T. Streicher. Impredicative type theories.
In D. Pitt et al., editors, Category Theory and Compuler Science,
volume 530 of LNCS. Springer-Verlag, 1991.

P. Johnstone. How general is a generalized space? In L. James
and E. Kronheimer, editors, Aspects of Topology. Cambridge Uni-
versity Press, 1983.

A. Joyal and R. Street. The geometry of tensor calculus, I. Ad-
vances in Mathematics, 88:55-112, 1991.

G. Kelly. Elementary observations on 2-categorical limits. Bulletin
of the Australian Mathematical Society, 39:301-317, 1989.

K. Kunen. Set Theory. North-Holland, 1980.

F. Lawvere. Equality in hyperdoctrines and comprehension
schema as an adjoint functor. In A. Heller, editor, Applications of
Categorical Algebra. AMS, 1970.

D. Leivant. Ramified recurrence and computational complexity I:
Word algebras and poly-time. In P. Clote and J. Remmel, editors,
Feasible Mathematics I1. Birkhduser, 1994.

J. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1987.

120

BIBLIOGRAPHY

[LM92]

{LM95]

[LSS6]

[Mak93]

[Makod]

[MPS9)]

INdj92]

{O1t93]
{Ott94]

[P+83)

[P*91]

{Pav90]

D. Leivant and J. Marion, 1992. Unpublished notes,

D. Leivant and J. Marion. Ramified recurrence and computational
complexity II: Substitution and poly-space. Preprint, 1995,

J. Lambek and P. Scott. Introduction to Higher Order Calcgorical
Logic. Cambridge University Press, 1936.

M. Makkai. The fibrational formulation of intuitionistic predicate
logic I: Completeness according to Godel, Kripke, and Lauchli,
part 1. Notre Dame Journal of Formal Logic, 34:334-377, 1993.

M. Makkai. Generalized sketches as a framework for completeness
theorems. Preprint, 1994.

M. Makkai and R. Paré. Accessible Categories, volume 104 of
Contemporary Mathematics. AMS, 1939.

M. Ndjodo. Systémes de Réécriture et Cohérence des [somor-
phismes de Types dans les Catégories Localement Closes. PhD
thesis, L’Universite d’Aix-Marseille I, Faculté des Sciences de Lu-
miny, 1992.

J. Otto. Kalmar elementary and 2-simplices. Draft, 1993.
J. Otto. Kalmar, linear space, and P. Draft, 1994.

W. Paul et al. On determinism versus non-determinism and re-
lated problems. In FOCS Proceedings. IEEE Computer Society,
1983.

D. Pitt et al. Category Theory and Computer Science. Springer-
Verlag, 1985, 1987, 1989, 1991. LNCS volumes 240, 283, 389,
530.

D. Pavlovié. Predicates and Fibrations. PhD thesis, Faculteit der
Wiskunde en Informatica, Rijksuniversiteit Utrech, 1990.

BIBLIOGRAPHY 121

[Pit87)

[PRS9]

[Rit63]

[Rom89]

[Ros84]

[Sees4]

[Str92)

[ThoT2)

[Tro92]
[Wooss]

[WraT§]

A. Pitts. Polymorphism is set theoretic, constructively. In D. Pitt
et al., editors, Catcgory Theory and Computer Science, volume
283 of LNCS. Springer-Verlag, 1987.

R. Paré and L. Romain. Monoidal categories with natural numbers
object. Studia Logica, XLVIII:361-376, 1989.

R. Ritchie. Classes of predictably computable functions. Trans-
actions of the AMS, 106:137-173, 1963.

L. Roman. Cartesian categories with natural numbers object.
Journal of Pure and Applied Algebra, 58:267-278, 1989.

H. Rose. Subrecursion: Functions and Hierarchies. Qxdord Uni-
versity Press, 1984.

R. Seely. Locally cartesian closed categories and type theory.
Mathematical Proceedings of the Cembridge Philosophicel Society,
95:33-48, 1984.

T. Streicher. Dependence and independence results for (impred-
icative) calculi of dependent types. Mathematical Structures in
Computer Science, 2:29-54, 1992.

D. Thompson. Subrecursiveness: Machine-independent notions
of computability in restricted time and storage. Mathematical
Systems Theory, 6:3-15, 1972.

A. Troelstra. Lectures on Linear Logic. CLSI, 1992.

A. Woods. Bounded arithmetic formulas and Turing machines
of constant alternation. In J. Paris, A. Wilkie, and G. Wilmers,
editors, Logic Colloquium ’84. North-Holland, 1986.

C. Wrathall. Rudimentary predicates and relative computation.
SIAM Journal on Computing, 7:194-209, 1978.

