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Abstract

Conventional computer speech recognition systems use models of speech acoustics

and the language of the recognition task in arder ta perform recognition. For ail but

trivial recognition tasks, sub-word units are modeled, typically phonemes. Recogniz­

ing words then requires a pronunciation dictionary (PD) to specify how each word is

pranounced in terms of the units modeled. Even if the acoustic madeling compo­

nent is perfect, the recognizer will still be prone to misrecognition, most often

because the speaker can use a pronunciation other than that in the PD. This different

pranunciation may be due ta the speaker being a non-native speaker of the language

being recagnized. having 'mispronounced' the word, coarticulatory effects, recog­

nizer errors in phoneme hypothesization, or any combination of these. One way ta

overcome these misrecognitions is to use a dynamic PD, able to acquire new pronun­

ciations for words as they are encountered and misrecagnized. The thesis examines

the following questions: can automated methods be found that produce reliable

alternate pranunciations? If so, does augmenting a PD (which originally cantains anly

canonicat pronunciations) with these aJternate pronunciations lead to improved rec­

ognizer performance? [t shows that using even simple methods. average reductions

in word error rate of at least 45% are possible, even with speakers who are not native

speakers of the recognition task language.
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Resumé

Les systèmes de la reconnaisance de la parole traditionels utilisent des modèles

acoustiques ainsi qu'un modèle pour la langue d'intêret lors de la reconnaissance.

Ces systèmes peuvent modèliser différentes unités acoustiques : des mots entiers

pour les tâches simples, ou des unités moins sophistiquées comme des phonèmes

pour les tâches plus complexes. Ainsi, la reconnaissance des mots exige un

dictionnaire des prononciations (DP) qui spécifie comment chaque mot est prononcé

en utilisant les unités modèlisées. Même si la composante du système effectuant la

modélisation acoustique est parfaite, le système demeure sensible aux erreurs de

reconnaissance, surtout lorsque le locuteur utilise une prononciation autre que celle

qui est décrite par le DP. Ceci peut arriver si le locuteur ne parle pas dans sa langue

maternelle, si le mot a été malprononcé pour une raison quelconque, s'il y a eu des

effets de coarticulation, si les phonèmes postulés sont inexacts, ou n'importe Quel

combinaison de ces causes. Une façon de surmonter ces erreurs de reconnaissance

est d'employer un OP dynamique, qui est capable d'acquérir de nouvelles

prononciations pour les mots mal reconnus. Cette thèse examine les questions

suivantes: peut-on trouver des méthodes automatisées qui génèrent des

prononciations alternatives fiables? Si oui, peut-on améliorer la performance d'un

système de reconnaissance en ajoutant ces prononciations alternatives à un OP qui

n'est basé que sur des prononciations canoniques? La thèse démontre qu'il est

possible de reduire d'au moins 45% le taux d'erreur lors de la reconnaissance des

mots par l'utilisation de méthodes simples et ce méme si la langue maternelle du

locuteur n'est pas celle d'intéret.
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1. Problem and Proposed Solution

ln spoken communication, a speaker communicates by formiDg a message and deliv­

ering it using an error-prone 'speech channel.' While the message may have been

formulated with ideally pronounced words, the received spoken utterance may end

up being less than ideal. A variety of factors, operating at different levels in the

speech channel, may affect the message 50 that what is received is a distorted ver­

sion of the original message. The research work described here is aimed at finding

ways to improve the ability of computer speech recognition (CSR) systems to deal

successfully with the distortions of ideal pronunciations which occur in real speech

and are a source of diffieulty, often leading ta misrecognition.

Nearly ail contemporary CSR systems are based on recognition of sub-word

units, mast commonly, of phonemes. Here, the recognizer must rely upon a pronun­

ciation dietianary which, for eaeh word known to the system, contains a pronuncia­

tion expressed in the hypothesized sub-word units. It is here that a weakness is

introduced into the recognizer, Le., the dependence upon a pronunciation dictionary

with, almost ubiquitously, a single pronunciation for each word.

The weakness is that to the extent that a given speaker pronounces words in the

same way the pronunciation dictionary prescribes, the reeognizer May be expected

to work weIl. But where the speaker uses a different pronunciation, either erro­

neously, or as the result of the speaker's dialeet, or because the language being used

is not the speaker's native language, misrecognition increases with the disparity

between what the speaker speke and what the pronunciation dictionary led the ree­

ognizer to expeet. This becomes a serieus problem hampering the widespread

deployment of speaker independent recognition systems, particularly in cases where

speakers are not expected to have any particular training beforehand, or be required

to honour specifie syntax constraints.

- 1 -
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An obvious suggestion is to use multiplet pronunciations (canonical plus vari­

ants) for words in the pronunciation dictionary. What is not obvious is what specifie

variants to use. One reason for this is that variants introduced to accommodate a

particular speaker or group of speakers (e.g.• with Austrian-accented English) may

not be suited to accommodate a different speaker or group of speakers (e.g.• with

Pakistani-accented English). A set of such variants may, in fact. induce errors beyond

what the canonical pronunciations alone would have provided in terms of recogni­

tion accuracy. Civen. though. that the use of multiple pronunciations has been found

use fui (see section 1.3), is there a procedure for identifying which multiple pronun­

ciations it is helpful ta add? Can such a procedure, if it is found, be automated?

The research work described here examines these questions, concluding that it

is possible to automate - if not fully, then nearly so - such a procedure and. as a con­

sequence, improve recognition accuracy for small vocabulary tasks. The methods

proposed can achieve average reductions in bath word and string error rates of more

than 45% on an air trafflc control task.

1.1 Problem Overview

Let WS be a ward string to be recognized Ce.ge. transcribed into text). WS is for­

mulated by a speaker, then uttered using the speaker's vocal tract and articulators ta

produce sounds communicating WS. The stream of acoustic events comprising the

utterance travels through air (at least) to a Iistener who interprets them as, ulti­

mately, words of an utterance. The process of recanstructing WS from this stream of

acoustic events is recognition, ill the minimal sense (Le., no interpretation or conse-

quent action).

t Also called 'alternate' pronunciations in the literature. The terrns will be used interchangeably in
this thesis.

- 2 -
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One obvious way for a computer ta recognize speech wauld be ta store aIl pos­

sible ward strings and then identify which one carresponded ta a particular utter­

ance. This is infeasible as natural spaken languages can generate a countably infinite

number of such strings.

A second suggestion would be ta store ail words W and by cancatenating

sequentially recognized individual words conveyed by the acoustic events, recog­

nize WS . This approach has been exploited with sorne success, but is ultimately lim­

ited due ta the problem of variabiHty in the acoustic events representing the individ­

ual words and their juxtaposition.

lndeed, this problem of variability is the essence of the speech recognition

problem. The acaustic events representing a single ward, spoken in isolation of any

other ward, will never be identical across multiple utterances, even for one speaker.

This problem becomes monumentally worse when one strives to perform recogni­

tion of speech which is:

(l) continuous: words spoken without unnatural pauses between them, as is the

case in isolated word speech,

(2) speaker independent: irrespective of the age, gender, or dialect of the speaker,

recognition must be correctly performed,

(3) large vocabu/ary: for mast real-world problems, a recognizer must work car­

rectly with a vocabulary of several (~ 10) thousand words.

Recognizer performance is subject to further requirements, such as:

(4) Qccuracy: human users have exceedingly high expectations for the accuracy

of a system,

- 3 -
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(5) speed: correct recognition must he rendered in real time, Le., at the speed the

speaker speaks.

Successful recognition systems are used today which do not handle aIl of the

above effectiveJy. For many specialized applications, acceptable performance may be

achieved with recognizers that handle only one or two of the above points. Butin

the case of more general purpose applications (and particularly where users are not

specially qualified), it is difficult ta envision successful deployment of speech recog­

nition technologies which do not deal with the above problems in a realistic way.

An inspired - and now the dominant - approach ta the recognition problem

[4] uses probabilities as follows: let the stream of acoustic events in an utterance be

represented as the observation Y=YI. Y2' ... ,Yr for an utterance of duration T. The

speech recognition problem can then be simply formulated as finding the word

string WS having the highest probability given the observation Y:

P(WSI Y) =maxws P(WSj y)

pewS) peYI WS)
= maxws PeY) . (1)

•

For a given observation Y, the optimal WS can be found withaut knowing P(Y}. The

two remaining probabilities, P(WS) and pey 1WS) are estimated from a language

model (LM) and an acoustic model (AM). respectively.

The details of how these twa models are constructed and used may be found

elsewhere (see Chapter 2). For the present it suffices to say that mast recognizers

actually recognize sub-word units, most often phonemes. In order to produce mean­

ingful recognition this string of phonemes must then be rendered as the string of

words WS. To do this. one must have sorne dictionary-style rnapping between each

word and the phoneme string which corresponds to its pronunciation(s).



•

•

•

One might assume that if the string of phonemes hypothesized by the above

recognizer (Le., the string having the highest global probability amongst ail possible

strings suggested by Y ) is perfect - corresponds exactlyand unfailingly ta what the

speaker really spoke - that recognition would similarly be perfecto This is not the

case.

Firstly, a speaker may have used a valid pronunciation which does not occur in

the recognizer's pronunciation dictionary (PD). For example, the ward "vian may be

pronounced t /v iV ae/ or /v av ae/. The ward "zero" may be one of /z ih r ow/. /z iy r

ow/, or /z ih r iX/. Recognition systems typically only support one pronunciation per

word.

Secondly, a speaker may have mispronounced a word. The resulting stream of

uttered phonemes is faithfully recognized as the (incorrect) phoneme string for a

ward. This incorrect string will either not appear at aIl in the PD, or, worse, appear as

the correct pronunciation for sorne other word. An example is a native English

speaker's pronunciation of the airline name "Air Mexico". The spectrogram of Figure

1 makes it c1ear that the speaker pronounced the name as:

/eh r m ih kcl k 5 kcl k ow/,

where the expected /ih/ in the canonical

/m eh kcl k 5 ih kcl k OW/

is totally absen t.

Thirdly, another form of mispronunciation unique ta continuous speech recog­

nizers arises from between-word coarticu!ation, where the last phoneme of word ;

and the first phaneme of ward i + 1 interfere with each other. For example, in the

string "6 17", the ward final /5/ of '6' and the ward initial /5/ of 117' may be merged

by the speaker - only a single /5/ is spoken, resulting in /s ih kcl k s eh v eh n tel t iy

t A table describing the notation for phonemes used throughout this thesis is round in Table 2.

- 5 -
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Figure 1 Spectrogram of "Air Mexico" The airline name is pronounced by an American native­
English speaker and is very c1early pronounced 'correctly' to a human lîstener. The spectro­
gram shows, with equal cJarity, that the phoneme ih, expected in m eh kcl k s ih kcl k ow is
missing entirely.

ni. In other cases the effect is more dramatic, e.g., in udid you", the ward final/dl of

'did' and ward initial Ivl of 'you' often merge into the single affricate Ijhl resulting

in Ide! d ih jh uw/.

A fourth prablem is that natural speech cantains non-speech events which

human listeners ignore, but which are awkward for recognition systems ta cape

with. 5uch events include throat clearing, coughs, pauses, lIum" noises, corrections

and restarts.

Finally, the phoneme string hypothesized by the recognizer will, in reality, be

imperfect, thereby adding recognition errors ta the above problems. Recognition

errors may be due ta any or aH of the following: weaknesses in the recagnizer itself,

factors in the acoustic enviranment Ce.g., background noise, especially speech fram

other speakers), flaws in the transduction of the acoustics to the electrical signal.

conversion to digital form, signal analysis. etc.

·6-
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Extensive on-going work in the speech recognition research community aims ta

improve robustness, accuracy, power and flexibility of recognition systems. While

improvements in acoustic modeling, where much of this effort is directed, can be

expected to yield improvements in recognizer performance, even pertect acaustic

madeling cannat assure perfect recognition. As described in § 2.2, establishing the

parameters of these models is time consuming and costly. There is somewhat of a

Ildiminishing marginal return" quality to continued work on these models, as

increasing amounts of person and computer Ume eke out small gains in recognizer

performance. Before describing a different area in the recognition process where

even modest effort may improve performance (§ 1.3>, let us take a brief look at what

is currently available in the way of CSR systems.

1.2 Recognition Systems Past and Present

The ultimate goal of speech recognition technology is to produce a system with

which spoken interaction is as effortless as it would be with another human. That is,

it would need to provide 'human quality' performance in the five categories listed in

the previous section, as weil as satisfying:

(6) system training: users cannat be required to 'train' Cenroll') the system to rec­

ognize their speech before using it for recognition,

(7) user training: users need not be instructed in haw ta interact with the system

(e.g., requiring a user ta pause between each ward),

(8) natura/ speech: users do not have to adopt a particular syntax (beyond that of

the language being used) in arder ta interact successfully.

There :s also the pragmatic consideration that the recognition system must have an

implementation that bath renders it readily affordable and permits it ta fit weil with

existing, familiar suites of applications.

- 7 -
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Speech recognition, as a technology, can be split into two main categories: (i)

systems where an exact transcription of the spoken utterance is required, and, (ii)

systems where the primary concern is acting upon the meaning of a spoken mes­

sage. Note that in this latter case, exact recognition is not necessary (and may be

undesirable) so long as the content of the utterance is correctly interpreted. A vari­

ant of the first categary is ward- or topic-spatting systems, which 'listen' ta a stream

of speech, but recognize only particular wards identified as lof interest' either them­

selves or in that they relate to a topic. The first category is narmally split on vocab­

ulary size, with large vocabulary systems referred ta as dictation systems.

A common application of contemporary small vocabulary recognition systems

is control and command of sorne system, where spoken input supplements tradi­

tional input modalities. This may include simple one ward commands. or digits, or

both. Current accuracy of single digit recognition (lI word vocabulary, with

perplexityt Il) where the length of digit string is known, is reported to be 0.3% ward

efror rate (66).

The research cammunity has established standardized recognition tasks that

allaw direct and meaningful comparisons to be made of different recognition sys­

tems. The ATI5 (Air Travet Information System) task is designed ta assess perfor­

mance on u •••spontaneous gaal-directed..." [231 natural language spoken queries

related ta air travel. It ariginally featured a vacabulary of under 1.500 words. From

the spoken utterance is derived a query which is processed on a standard subset of

the OAG (Official Airline Guide) database. Assessment of the recognizer is based on

the correctness of the result of the query. Recent ward error rates reported on this

task are between 2 and 396 (14).

t Perplexity is a measure of the average number of ward chaices possibJe from a given ward. and is
dependent an the task grammar. For digit recognition. any digit can follow any ather, hence the perpJexity
is equaJ to the vocabuJary size. For a more detailed description of perplexity see section 2.3.

- 8 -
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For assessment of dictation systems, a papular task is the Wall Street Journal

(WSj) task [44,48]. This task, consisting of many components (see Appendix 1), pro­

vides utterances that are read text from the Wall Street Journal newspaper. These

texts are divided inta those using a S,OOO ward vocabulary, and those using one of

20,000 words. Ward error rates reported far the S,OOO ward task are typically in the

9 ta 1096 range [19,38] thaugh sorne report higher rates (16%) [36].

Another task popular in the late 1980's and early 90's was the Naval Resource

Management (NRM) Task created by the U. S. Defense Advanced Research Projects

Agency (DARPA). This task, with a vocabulary size of 967 wards, accepted natural lan­

guage queries cancerning naval vessels and resources. A typical sentence is IIIs

Rathburne located in Wellington or Aberdeen?" One of the notable recognition sys­

tems ta emerge from that period was Kai Fu Lee's SPHINX system [321, developed at

Carnegie Mellon University. which provided a best ward errar rate of 6.3%. SPHINX is

noteworthy also in that it replaced in its lexicon the canonicat form of each word

with the mast frequently observed form. While the gain in accuracy was reportedly

a 27.496 improvement in WER, SPHlNX still provided ooly one pronunciation per word.

A growing number of CSR systems are now commercially available. Currently.

several vendors have isolated-word systems, and a growing number are now releas­

ing continuous speech recognizers. Whereas CSR systems used ta be expensive,

stand-alone devices - general purpose computers of the day lacked the power ta

perform reasanable recognition - contemporary systems are almast universally

software packages that wark with the standard CPU and memory of a host campu ter

(e.g., a PC, Macintash, or workstation) and use the computer's standard audio hard­

ware ta deal with audio input.

Small vocabulary, template-based systems, suitable for command and control

functions, but nat for general dictation, and intended for speaker-dependent use, are

available for under SI 00.
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Dictation systems with vocabularies of over 10,000 words, isolated-word or

continuous, are available for under $1,000 and provide rather good performance.

Word accuracy rates (percent words correct) quoted by vendors, and by independent

reviewers appearing in promotional material, are invariably in the high 90s. It is not

uncommon, however, to see such systems perform best on native American-English

speakers, and less weil as a speaker's manner of speaking (Le., dialect or accent)

diverges from this 'standard.'

1.3 Multiple Pronunciation as a Solution

Of the many areas within CSR where research activity is on-going, one area that, until

very recently, appears ta have been largely averlaoked is that of the pronunciation

dictionary. The research work described here targets this area specifically by examin­

ing several methods for generating and managing multiple pranunciations for each

word. The objective is to improve a PD dynamically, making use of real data from the

recognizer as it aperates. The benefits of multiple pronunciations include:

(1) accommodating multiple vaUd pronunciations for words, eliminating the first

of the abavementianed (§ 1.1) four problems.

(2) accommadating multiple 'invalid' pronunciations of a ward, largely mitigat­

ing the second of the abovementioned four problems. Primarily this point

addresses cases where a large number of users pronounce a word differently

than the PD as a result of dialect, e.g., the Austrian city name 'Klagenfurt' will

be pronounced by a native English speaker from North America differently

than by a native Austrian who is a non-native English speaker. This can aiso

be used to correct sorne major coarticulation errors.

known, consistent errors in the recognizer could be compensated for at the

level of the PD, and generally for lower overall cast than repairs elsewhere in

- 10-
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the recognizer (e.g., retraining of acoustic models; see § 2.2.7).

The case for the beneficial effects of multiple pronunciations on recognition

rates is now fairly weIl established [28.30.53,60.65] - and not just for English

[25,57], [32] notwithstanding. In each of these cases. the multiple pronunciations

were either determined by application of rules suggested by phoneticians. or trained

on a corpus so that the recognizer has multiple pronunciations of 'ail' words. While

it may be concluded that support for multiple pronunciations is desirable, this sup­

port is not, by itself, adequate to provide overall improved recognition. This is true

for several reasons. Fil'stly, a system which allows multiple pronunciations but can­

not provide the actual variants to be added in an informed way is of IittIe value. Sec­

ondly. a system which allows blind introduction of variants for any case of misrecog­

nition quickly becomes unusable because the PD becomes bloated with variants;

incorrect recognition of acoustically confusable words eventually increases as more

and more variants are introduced [lO).

The work described here not only examines support for multiple pronuncia­

tians, but also the managing of these pronunciations. Suppose that the uttered string

WS = W1W2 ... Wi • •• W" is incorrectly recognized as WS = W1W2 ••• Wj • •• Wn, where "J

is incorrectly recognized for Wi. Upon being notified of this error, the system should:

(1) generate a smalt, plausible set of variant pronunciations for Wi and test these

sa as to obtain a measure of each variant's suitability; generating variant pro­

nunciations is done using knowledge about English pronunciation, either

provided a priori or observed from on-going recognition and/or sorne corpus

of utterances. as weil as using 'knowledge' obtained from previously intro­

duced variant pronunciations,

(2) for those variants which correct the misrecognition, determine which one or

ones will be introduced iota the PD•
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To do this, the system begins with a dictionary of ideal (canonical) pronuncia­

tions of words and expects users' pronunciations of words will be distortions of

those in this dictionary. The origins of these distortions can be modeled using a

probabilistic mechanism (belief networks (46)) which integrates nicely into the over­

ail stochastic recognition approach.

BeIie f networks provide a means of modeling the way in which one thing influ­

ences another (e.g., the waya speaker's choice of phonemes influences the pronunci­

ation of the word) and the way in which observed evidence can affect the belief in

something, measured as a probability (e.g., the way acoustic evidence can affect the

belief a particular word distortion was spoken).

ln brief, our original approach may be summarized as follows. In recognizing

an utterance, suppose word W; has been misrecognized as K). Let W; represent the

canonical pronunciation of word W;, and W y the phoneme string hypothesized for

W; t. With W; we can generate, using sorne mechanism, a set of distortions W;k among

which is wy , or, a group of one or more pronunciations that are 'close' enough ta wy

that use of any one of them leads to correct recognition of W;.

To correct the misrecognition, we wish ta add to the set of canonical pronuncia~

tions in the PD. In order to know which of the pronunciation candidates W;k to add,

we select the one having the maximum Be/(w;k)' the belief that Wik is a distortion of

W;. We show (in Chapter 3) that this belief can be determined as:

(2)

•

The acoustic modeling component of the recognizer provides RYIWik), the probabil­

ity that uttering Wik 'explains' the observed acoustic description Y. Ways of estimat­

ing ~W;"IWi) are developed.

t w, may. in fact be Wj. in which case the misrecognition will be difficult to correct. It is much more
Iikely that w, is a phoneme string intermediate between W; and Wj but 'close' to Wjl hence the
(mis)recognition of ~ for W;•
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By using this approach, we are also able to ensure that (1) the system can infer

generaJizable quaJities from corrections it has applied, so that it does not accumu­

late a large number of pronunciations for words, and, eventuaJly, (2) a correction

observed to be successful in a particular context could be more broadly applied

(automatically) to similar pronunciation contexts, hopefuJly avoiding future mis­

recognitions of other words.

Clearly, not aH such generalizable qualities will prove ta be correct, so a means

for retracting an application must be provided as weil.

Pragmatically, the 'generalizable qualities' are represented as rules. Positive

justification for a rule occurs whenever a variant pronunciation suggested by appli­

cation of the rule results in correct recognition. Similarly, negative justification

occurs when misrecognition is due to the use of the rule-derived variant pronuncia­

tian.

The use of multiple pronunciations was expected ta be particularly valuable in

situations where non-native speakers of English have to use an English language rec­

ognizer. Preliminary work [40] bore out this expectation: see Table 1. These results,

from use of manually introduced multiple pronunciations on a smaJl number of sen­

tences, were intended to serve as a demonstration of the utility of multiple pronun­

ciations, and inspired the more formaI investigation described here.

1.4 Thesis Organization

The remainder of this thesis provides more details on the mechanics of both acous­

tic and language models, and describes each of the following problems encountered

when using multiple pronunciations: how to generate them, how to assess them, and

how ta utiJize them effectively. Chapter 2 provides background information on

- 13 -



• Table 1 Effect of introducing multiple pronunciations: The table shows the effect upon ward error
rates in an air trafflc control task of introducing multiple pronunciations over the use of pure­
Iy canonical pronunciations. Two of the speakers were native English speakers (l and 3); two
non-native English speakers had very pronounced accents (Greek (2) and (taHan (5». The other
speaker (4) is a native French speaker. Note not only the reduction in overall error rate, but al­
so the compression of the range of word error from 60.7 to only 12.3 (8096 reduction) [40) .

Speaker
1
2
3
4
5

Error Rate
CanonicaJ Multiple

19.9 1.3
70.0 11.9
26.9 9.4
39.9 10.0
80.6 13.6

96
Improvement

93.3
83.0
64.9
74.7
83.1

•

•

speech and speech recognition, describing the acoustic modeling methods currently

in widespread use. as weIl as the language modeling component of a recognition sys­

tem. Chapter 3 looks more particularly at the role of multiple pronunciations in a

recognizer, at how other work in the area uses them, and describes a metric that can

be used to assess the quality of particular variant pronunciations. Chapter 4 dis­

eusses several methods that can be used to generate multiple pronunciations, and

Chapter 5 presents results of using these methods. The thesis concludes with Chap­

ter 6, which discusses the effectiveness of the use of the different methods of gener­

ating multiple pronunciations, the strengths and weaknesses discovered. and sug­

gests future work which can be based on the work presented here. Two appendices

follow: the first describes the recognition tasks discussed in the thesis. the second

presents the recognition system used for ail experimental work.

Results are shown for an air-traffic control task developed for a local company. t

It has a vocabulary of about 100 words wÎth average perplexity of 3.3. The nature of

the task, recognizing air traffle control sentences. allows the use of a fairly rigid syn­

tax.

t AT5 Aerospace Inc., St. Bruno, Québec
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2. Speech Recognition

The speech recognition problem may be formulated as follows. For an observation

string Y =YI, Y2t···, YT representing the stream of acoustic events for an utterance of

duration T, the selection of the sequence of word hypotheses WS is chosen, using

Bayes' formula. as:

P(W"SI y) = P(WS) pey 1 wS)
maxws pey) .

p(Y 1 ws) is estimated using an acoustic model ta provide the posterior probability of

the observation given the word string. P(WS), estimated by a language model, is an

independent measure of the probability of WS assuming sorne language constraint.

While the latter is not strictly necessary ta a recognizer, e.g., one can set ail words ta

being equiprobable, the improvement in recognition accuracy brought about by the

constraining power of a LM is dramatic. This chapter provides a brief introduction to

the general theory underlying acoustic and language modeling.

2.1 Sorne Characreristics of Speech

Before looking at how the acoustics of speech are modeled. let us briefly review the

acoustics of speech, and phenamena which can lead to misrecognition. This review

is not meant ta be comprehensive, but focuses on background material relevant to

the thesis work.

2.1.1 Acoustics of Speech

These acoustics are generated by air f1aw through the (l) vocal tract (VT: throat,

nasal cavity. mouth), (2) articulators (lips, teeth, tangue, veJlum), and, (3) vocal falds.

The vocal folds, lacated in the larynx, can impart an oscillatory excitation (voicing)
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to the system. by opening and closing in the outgoing air flow. Thus the system may

be thought of as a set of connected tubes or cavities of variable size and shape

(vocal tract). in which are located movable objects (articulators) which can direct air

f10w and. in sa doing. introduce turbulence. The air f10w through these cavities,

around and aver the articulators, may be accornpanied by an oscillatory excitation or

not.

The motion of the articulators is continuous, involving the coordinated activity

of over 100 muscles, hence there is the potential for a very large range of different

sounds to be generated. In examining sounds related ta speech it is common to

group them in terms of the articulatary features from which they arise. In 50 doing.

approximately 60 distinct groupings of 50unds, called phonemes. are identified, dis·

tinguished by three articulatory differences: place of articulation. manner of articula­

tion, and the presence or absence of voicing. Each spoken language uses sorne sub­

set of these phonemes, generating words by concatenating the appropriate

phonemes; North American English uses approximately 40 of them (see Tables 2, 19).

Based on their acoustic characteristics, phonemes may be grouped into the classes:

1. vowels and diphthongs,

2. fricatives and affricates,

3. nasals.

4. glides and Iiquids.

5. stops

Each class has fairly distinctive qualities, e.g., vowels being characterized by strong

voicing as opposed ta stops which have a typical silence followed by a burst of

energy. The voicing observed in vowels is the contribution made by the excitation of

the vocal folds oscillating in the outward air flow, at a frequency FO. with resonances

imparted by the vocal tract. These resonances are numbered beginning with the res·

anance having the lowest frequency, i.e., FI, F2, F3 and occasionally F4, and are
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Table 2 Phonemes used in North American EngJiBh: The table shows the place and manner of ar­
ticulation for phonemes used in North American English. The place of articulation is the point
at which the vocal tract is most constricted. For vowels, the nature of the constriction is also
relevant. and sa the tongue position and rounding of the lips is used in describing place of ar­
ticulation. The tongue body may create the greatest constriction at Front. Middle. or Rack of
the mouth cavity; further, it may be High (close to roof of mouth cavity) or Low. The lips may
be Rounded in forming the vowel. or not. Vowels requiring the tangue ta move far from a cen·
tral, neutral position are designated Tense; those having doser places and/or shorter dura­
tions, are called laX. In sorne vawels, the place of articulation moves during pronunciation of
the vowel; these appear as starting ~ ending places. Notes: (I) retroflex (the tangue tip curis
upward and backward), (2) schwa (a weak mid vowel). - appears where no letter label applies.
Table adapted from [39].

Example Articulation
Phoneme Ward Place Manner Voiced

iY sEAt HFl V +
ih slt HFX y +
ey sAte MFT Y +
eh set MFX y +
ae SAt LFT V +
aa sot LBT V +
uw saon HBTR V ~

uh soot HBXR V +
ow sOAk MBTR V +
ao sought MBXR V +
ah sub MBX V +
er sERVe M - T (1) V +
ax SOfA M - X (2) V +
ix sunkm HBX V +
ay site LB ~ HF 0 +
oy SOY MB~HF D +
aw sow LB ~H B 0 +
y YOU front unrounded G +
w woo back rounded G +
1 LOO alveolar L +
r Rue retroflex L +
m Maa labial N +
n New alveolar N +

ng siNe velar N +
f FOX labiodental F -
v vox labiodental F +
th THief dental F -
dh THeY dental F +
s sue alveolar strident F -
z lOO alvealar strident F +

sh sHock palatal strident F -
zh measure palatal strident F +
hh HaY glottal F -
p POX labial S -
b BOX labial S +
t rcllks alveolar S -
d DOcks alveolar S +
dx siTTer alveolar S -
k cox velar S -
g cawks velar S +

ch coocks alveopala tal A -
jh jOcks alveopalatal A +
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referred ta as formants. Farmants depend on the shape of the vocal tract during the

pranunciatian of the given phaneme. and are quite distinctive from one vowel ta the

next; see Figure 2.

A distinction is made between the phoneme, as an atomic speech unit different

from other such units, and the phone which is simply a speech sound. One may

think of the phoneme as an idealized form of what a particular speech sound should

be, whereas the phone is the spoken, acoustic realization of a phaneme. Since the VT

and articulatars represent a continuous system, many different phones reaJizing a

phoneme are possible.

2.1.2 Sorne Factors Affecting Speech

Speech may be thought of as a stream of phonemes generated by a speaker.

Since articulatory movement is continuous, this stream is not a 'clean' sequence of

clearly distinct phones. Rather, the articulators move smoothly from one phone con­

figuration, 'through' the next (Le., briefly assuming the configuration for that phone)

and thence ta (through) the following phone, and so on. Consequently, the ;th

phone's configuration can affect that of at least its immediate predecessor (and suc­

cessor). In nasals, for example, the vellum tends ta lower before the constriction in

the oral cavity is complete, and be raised after the oral re-opening, leading to nasal­

ization of the phones on either side of the nasal [42]. Another example is the

sequence IIdid you" in which the Ivl of 'vou' and the second Id/ in 'did' tend to

merge (palatization of /d/), resulting in /d ih jh uwl rather than the anticipated Id ih

d V uwl [Il].

The rate at which the speaker speaks can influence the character of the speech.

As the rate increases, the time a phone remains in a steady state decreases. The

articulators tend not sa much ta move faster as move Jess (Le., over shorter dis­

tances) [20). Increases in rate have littJe effect on FD and formants [62]. but can

affect intelligibility by reducing durational contrasts that help cueing of phonemes
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Figure 2 Illustrat:ive acaustic featu.. of sorne phC11W1'188 The first spectrogram shows the word
"Seattle" being spoken in isolation; total duration shown is 507 ms. Intense high frequency
frication marks the word initial /5/. The following /iV/ is marked by four high energy bands
that are parallel throughout (at approximately 125 (Fa), 312 (Fl), 2125 (F2) and 2812 Hz (F3));
the lowest two are merged into a single dark band in this spectrogram. separating only in the
/ae/ following the /iV/. with FI rising to approximately 562 Hz while Fa remains relatively
fixed at 125 Hz. The formant that in /iV/ appeared at 2125 Hz drops through the /ae/ to about
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1400 Hz. The stop for the /t/ is very clear, and the follow on /ah 1/ shows the FI and F2 con­
verging to approximately 600 Hz. F3 stops at the /t! dosure and is not present thereafter.
Note that the trajectories of these two formants towards their final positions began before the
stop and continues after il.

The second spectrogram shows the nonsense phrase "forts vords" spoken as an isolated pair
of words; duration is approximately 1270 ms. Note the frication with which these words begin
is different from that observed in "Seattle", and is different in each word (in part since the Iv/
is voiced whereas Ifl is not). The central portion in each, though identical, appears different
in both duration and formant behaviour. Note, tao, the difference in the stops of the It! and
the Id/.

The third spectrogram shows the words "weed wed" spoken as an isolated pair; duration is ap­
proximately 1150 ms. This pair of words serves primarily ta showcase the difference between
a 'long' and 'short' vowel sound: liy/ in tweed' as opposed to lehl in ·wed'. As in the first case
above. note that trajectories of formants in 'weed' begin a drop toward a ward final position
before the stop of Id/ and continue afterward. The analogous trajectory in 'wed' is a fixed in­
tensity. heId level thraughout the remainder of the ward.

[50). This translates into increased recognition errors - two to four times the word

error rate of average speakers [43] due to increases in deletions and substitutions,

when the phoneme rate is as little as one standard deviation above the mean rate

[56]. Slower than normal speech consists mostly of increased pauses (16) and so dif·

fers Iittle from normal rate speech.

Another factor which affects speech is whether the speaker is conversing natu·

rally (spontaneous speech) or is reading a text aloud (read speech). While there may

not be appreciable effects on the spectral qualities of individual phonemes, there are

qualitative differences in the overall speech, including:

rate is more consistent in read speech; spontaneous speech is characterized

by frequent between·word pauses, often punctuated by sounds Iike "um",

volume is more consistent in read speech,

annunciation is typically dearer for read speech.

Ali of the above descriptions assume a speaker speaking at a 'normal' volume.

Very low volume speech (whispering) is different in that the voicing excitation
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provided by the vocal folds is replaced with frication at the glottis (the same effect

which produces /h/). Phonemes which are normally voiced are now much weaker in

amplitude, often sounding less loud than fricatives; phonemes which are normally

unvoiced are unaffected.

Shouted speech is loud primarily because the speaker is forcing more air

through the VT, which is more open than in normal speech, raising FI (by 43 ta 113

Hz, and F2 as weil in femaJe 'shouters' [27]), increasing amplitude, and affecting the

spectral properties of vowels, glides, liquids and nasals. fD is also raised and vow­

els are lengthened in shouted speech. The changes in relative intensities of for­

mants make vowel sounds more intense but Jess distinctive. The distortion of for­

mant frequencies can have a significant effect on recognition performance: one study

reported a 3496 drop in recognition accuracy with respect to unshouted (34).

A third variant of ordinary speech is singing. Singing differs from ordinary

speech in that duration of phonemes (usually vowels rather than consonants) are

modified ta suit musical rhythm requirements, and FO, rather than varying cantinu­

ously, is heId fixed for periods of time corresponding ta the musical notes being

sung. Singers face the same problem as 'shouters' when they need ta sing loudly,

namely, increased air flow through the glottis tends ta raise fO, which the singers are

trying ta control more rigidly. In overcoming this problem, singers Iower the larynx

in vowels [7J, resulting in the introduction of a 'singer's formant' in the range of

2300 Hz to 3200 Hz [54) boosting by roughJy 20 dB energy in the F3/F4 range. The

presence of this formant appears ta be key ta a singer being heard over an accompa­

nying orchestra since there is otherwise little significant difference in the maximum

intensity of voice between trained and untrained voices .
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2.1.3 Dialect and its Effect on Pronunciation

Speakers of a language pronounce a word by pronouncing a concatenation of

phonemes corresponding to the ward. A number of factors, described above, can

influence the sound of the phonemes (generation of different phones) and resulting

word. Another factor which influences the sound of words is dialect.

A dialect is a distinctive form of a language which. while intelligible as the par­

ticular base language, differs in any or aIl of pronunciation, vocabulary and gram­

mare Dialects can usuaJly be attributed to a particular ethnie or social group, or ta a

particular region.

Of prime relevance ta the work described here are differences due to pronuncia­

tion. Such differences result from the use of a 'distinctive' phoneme string in pro­

nouncing a ward either through use of one (or more) different phones and/or the

insertion or deletion of phones. For example, the words 'marry merry Mary' tend ail

ta be pronounced as /m eh r iy/ throughout most of the U. S. , particularly so on the

west coast, except in the east (especiaJly the northeast) where they are pronounced

distinctly as /m ae r iy/, lm eh r iy/, lm ah ry y/ [l}.

Another regional exarnple is a dialect found in the New York City area character­

ized by aberrant use of Ir/. For sorne words, the Irl is dropped completely, e.g., 'car',

'four.' Other words have inserted Irl sounds at the end, e.g., 'idea' becomes lay d iy

ri, 'saw' becomes Is aa rI. The Irl appearing above represents the effect of merging

lahl with an /rl which immediately follows it, producing a new sound (an "r-colored

vowel" (1)).

When a speaker speaks a language other than its native tongue, dialect-Jike

effects (in pronunciation) are imparted to the non-native tangue. One of these

effects occurs when phonemes used in the non-native tangue do not exist in the

speaker's native tangue. This becomes a problem since after a certain age the
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speaker can no longer easily learn how to generate new phonemes, and may be

unable to perceive a phoneme as being distinct from ones in the native tongue, e.g.,

Japanese has no /1/ and native Japanese speakers usually report perceiving such a

sound as Ir/.

2.1.4 Speaking Environment

A speaker never speaks in absolute isolation From influences of its surroundings.

The speaker's environment can have a dramatic effect on the recognition accuracy of

speech.

The first contribution made by the surrounding environment is echo and rever­

beration. Assume a speaker in an ordinary room speaking to either another person

or into a recognition system, Le., there is a particular location in the room at which

the speech is being observed. The acoustic signal reaching that observation point is

a combination of what emanated from the speaker's VT, as weil as acoustical energy

reflected fram fIoor, ceiling, and walls of the room. There can be quite complex inter­

actions of constructive/destructive interference between the 'direct' speech with the

multiple reflections. This situation can be made much worse by allowing the

speaker's position with respect to the observation point to vary, since there will

cease ta be a fixed pattern of distortion introduced by the constructive and destruc­

tive interference of reflections. AIsa, different types and sizes of room will have dif­

ferent effects: a carpeted raom will tend ta deaden high frequency reflections com­

pared ta a room with a hardwood f1oor.

Inde pendent of roam 'colouration' of the speech signal, there may occur noise.

Noise can be steady (e.g., ventilation fan) or bursty (e.g., 'click' of a door closing).

Most office environments feature steady white noise (energy evenly distributed

across entire spectrum) arising from building and equipment ventilation, sorne hum

(60 Hz [in North America) and multiples thereof) from electrical and fluorescent
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Iighting, as weil as burst noise such as telephones ringing, doors opening and clos­

ing. Further, there is typically speech from other speakers in the vicinity of the

observation point, and this mixture of multiple-speaker speech is highly variable.

For analysis and discussion purposes, the amount of noise is quantitatively

reported either as an intensity level, e.g., 90 dB, or as the signal-ta-noise ratio:

= 20 1 ( average energy in noise-free signal 1dB
SNR 0 ...

glo average energy ln nOise corrupttng the signal)

Room colouration and the cacophony of noise which may accompany it can

have serious degradatory effects on recognition systems. Low frequency companents

in the noise can be mistaken for voicing, thereby 'converting' an unvoiced phoneme

inta a voiced one, e.g., confusing a /b/ for a /p/.

Speech recognition systems may find their way into Jess hospitable environ­

ments than offices. In moving automobiles, noise levels are typically much higher,

and the SNR can be < 5 dB [47]. Speech carried over teIephone systems is band­

limited to a pass band of roughly 4 kHz (thus particularly affecting the intelligability

of fricatives), and may be subject to amplitude compression and other spectral dis­

torting effects.

On factory shop floors noise levels May be high. with burst noise figuring

prominently. Jet fighter cockpits can reach noise levels exceeding 90 dB. A speaker

will be forced ta shout in either of these noisy settings, adding distortion due to the

Lombard effect to the growing difficulty of recognizing the speech.

2.2 Acoustic Modeling

2.2.1 Units to Model

Because phonemes are relatively few in number, and since any word in a language

can be generated as a concatenation of them, phonemes are an obvious choice as the
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acoustic units ta model. In modeling phonemes one may choose to model context

dependent (CD) or context independent (CI) phonemes. In the case of the latter, there

is one acoustic model for each distinct phoneme. and training such models is

straightforward: one instance, in any context. of a phoneme is an instance of training

data for the model. But. as context exerts a great influence on the articulation of a

phoneme. these CI models remain sensitive to context. A large amount of training

data, presenting the phoneme in many different contexts, is hence necessary.

Since the CI model needs to capture 50 much contextual variabiIity, and this

variability influences the beginning and ending but not much the middle of the

phoneme, models with richer modeling power for begin and end sections are some­

times used.

(ontext dependent models aim to provide much more accu rate modeling of

acoustics by providing a model for each context in which a modeled phoneme may

appear. In principle this would require n3 models, n being the number of phonemes

to be modeled as:

<Ieft phoneme context> targeLphoneme <right phoneme context>

Le., a triphone. Even though the majority of these triphones never occur. e.g., Many

combinations are not physiologically possible, while others never occur in the lan­

guage whose phonemes are being modeled. there remains a very large number of tri­

phones to train (typically several hundred or a few thousand [32]). Very large train­

ing corpora May still only provide an insignificant number of occurrences of a tri­

phone, hence a c1ustering technique May be used to provide a 'generalized triphone'.

An intermediate strategy between triphones and context-independent units that

still captures sorne context effects is the use of a diphone Madel.

One may also choose to use 'word dependent phones'. where a particular

phoneme model is trained in the context of a particular ward. While not suitable for

large vocabulary tasks, for small vocabularies or small subsets of words which May

be difficult to recognize, e.g., function words (like 'a', 'the', etc.) these models May be
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of benefit [32]. Various combinations of these phoneme models may be used.

One need not, of course, choose the phoneme as the acoustic unit to model.

Acoustic modeling of whole words is rarely done since there may be tens of thou­

sands to he modeled for a task. Cases where whole word acoustic modeling is suc­

cessfully used are typically very small vocabulary tasks, e.g., spoken digit recogni­

tion [51), and simple command function tasks with a small set of imperatives, e.g.,

"yes", "no", (e.g., as in Nortel's Automated Alternate Billing Service), or "stop", IIgo",

"left", "right", "up", "down", etc.

Other possibilities include linguistically inspired units Jike syllable, demi­

syllahles or pseudo-syllabic segments, as weil as acoustically motivated units like

fenones [9].

ln this thesis, unless mentioned otherwise, it may be assumed that any mention

of units being acoustically modeled refers to context independent t phonemes.

2.2.2 Fearures: Representing Acoustics

This section does not aim to discuss the relative merits of various sets of features

which can be derived from acoustics for the purposes of recognition, but rather to

describe why features are computed, and what features are ta be used for experi­

mental work during the research.

The stream of acoustic energy carrying speech must, to become accessible to

software manipulation, be converted first to an analag electrical signal, and then to

digital form. Any reasonable quality microphone has a response curve which

assures that the range of frequencies where speech energy occurs is transduced with

t While greater recognition accuracy would be expected by modeling context depdendent units, such
models were unavailable with the recognition system used in experimental work reported on in this the­
sis.
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adequate linearity. This signal is sampled, typically at 16,000 samples/second; the

sampled version thus correctly represents components of the speech signal up ta 8

kHz in frequency. Sample values are represented linearly in 16 bit signed integers.

The feature extraction step, perfarmed next, is intended ta reduce the amount

of data by selectively representing characteristics of the signal relevant ta speech.

Samples are grauped into frames, typically af 20 ms. duratian and a set of Qcoustic

features is computed for each frame. The features are selected sa as ta provide infor­

mation useful in identifying what phonemes may be present in the part of the signal

corresponding ta that frame. Commonly used features include the overalJ energy in

the frame. E, and its first time derivative, t,.E: these are particularly useful in identi­

fying stop consonants.

The spectrum of the signal - the distribution of energy with respect to time

and frequency - along with its first and second time derivatives, conveys informa­

tion useful in identifying phanemes, e.g., the time course of farmants through a

voweI. or the presence of high frequency frication noise in a fricative.

ln camputing spectral information from the speech signal, one first determines

the frequency domain representation of the signal, computed using a discrete

Fourier transform, DIT, applied frame by frame. With this representation, one usu­

aJly attempts to emulate the behaviour of the ear's basilar membrane 50 as to extract

spectral information that wou Id be perceptually relevant for the recognition of

speech. Perceptual tests on humans demonstrate that the individual component fre­

quencies of a complex sound cannot be distinguished if ail components lie within a

particular bandwidth. To be distinguishable, a component frequency must lie out­

side of this critica! bandwidth [37]. Critical bandwidths are reported ta be 10% ta

20% of the sound's center frequency (49). This feature suggests that one can mimic

the basilar membrane's characteristics using a series of triangular filters with center

frequencies spaced one critical bandwidth apart.
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A common choice for the spacing of these filters follows the mel scale, which

aims to transform the signal's frequency scale into a perceptually meaningful and

Iinear scale. This is most often done by spaciug the filters Iinearly at frequencies

below l kHz, and logarithmically at higher frequencies.

Now one computes the energy in each filter. One way to do this would be to pro­

vide the inverse DFT of the value in each filter. Another involves viewing the overall

speech signal as being the result of a convolution of an excitatory source (periodic

pulses or noise) and a Iinear. time-varying system (vocal tract). Were it possible to

de-convolve these two signais, one would have useful information about how the

speech was generated, in particular, whether the speech is voiced or not, and if sa, a

good basis for estimating the fundamental period of the voicing. This can be done

(for speech) from the signal spectrum by taking its logarithm. The result of using

such a homomorphism is that the originally convolved signais are now additive,

hence the effects of each can be Iinearly separated following an inverse transform. In

practice, following the log computation, the real cepstrum [49) is computed by a dis­

crete transform, e.g.,

l ~l j2ft/en
cd(n) = N l: logIX(k)le N • n =0, l"",N-l .

/(=0

ln the case where mel-scaled filters have been used, each cepstral coefficient is com­

puted using the energy value in each filter. Thus, the spectrum of the speech signal

is reported as a set of n mel-scaled cepstral coefficients.

The total number of features computed per frame is typically anywhere from 25

to 50. Thus, a frame of speech 20 ms in duration (16 kHz sampling x 16 bits/sample

= 640 bytes) is now represented by a feature vector of length 100 ta 200 bytes. In

addition ta data reduction, the features capture the essence of the signal based upon

physiological and acoustical analysis. [t is this set of features, chosen to represent

the speech acoustics, that the acoustic models will Madel.
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2.2.3 HMM Based Acoustic Models

The Hidden Markov Model t (HMM) has been found to be highly successful for model­

ing the acoustics of phonemes: see Figure 3.

Briefly, the model consists of states and transitions. The model generates an

output value, observable from 'outside,' whenever a state change (to the same or

sorne other state) occurs. If the output values are chosen from the domain of obser­

vations of the object being modeled, then the HMM may be viewed as generating a

sequence of observations.

ln addition to the above, the HMM has two sets of probabilities. One set is asso­

ciated with the transitions: each transition from astate has a probability of being the

transition chosen. The other set is associated with each of the possible values gen­

erated as output when taking a transition. The effect is that a generated sequence of

observations has a certain probability associated with it resulting from the combined

products of transition probability and output value probability for that transition for

ail transitions taken.

The models are called uhidden" since there may be many possible state

sequences which can result in a particular output sequence, but observing the model

Figure 3 Illustration of an HMM having 4 states, 6 transitions {allieft ~ right}

t This section provides an elementary overview of how a Hidden Markov Model is used to model
speech. Readers familiar with HMMs may wish to proceed directly to the following section.
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• from the outside, it is not possible to know which state sequence was, in fact, used.

For example, in the HMM in Figure 3, let us suppose that the event being mod­

eled is coin tossing, Le., the values output by the model are either 'H' or 'T'and that

there are the following transition and symbol probabilities:

From
1
1
2
2
3
3

Transition
To Probability
2 0.6
3 DA
2 0.3
3 0.7
3 0.8
4 0.2

Symbol Probability
H T

0.5 0.5
0.9 0.1
0.2 0.8
0.5 0.5
0.9 0.1
0.5 0.5

Overall
Probability

•

An arbitrary sequence of observations, e.g., 'HTH', can be generated by this model:

the following state sequences aIl generate 'HTH' from initial statel: 1222, 1223,

1233, 1234, 1333, 1334. The probability of the generated 'HTH' sequence varies,

though, according to the state sequence used. Note, tao, that of the possible state

sequences, only two end in the final state (4). The probabilities for the sequences are

computed as the products of the transition probability and the output symbol proba­

bility for each transition along the path; this yields:

State Path
Sequence Probability

1222 (0.6)(0.5) (0.3)(0.8) (0.3)(0.2)
1223 (0.6)(0.5) (0.3)(0.8) (0.7)(0.5)
1233 (0.6)(0.5) (0.7)(0.5) (0.8)(0.9)
1234 (0.6)(0.5) (0.7)(0.5) (0.2)(0.5)
1333 (0.4)(0.9) (0.8)(0.1) (0.8)(0.9)
1334 (0.4)(0.9) (0.8)(0.1) (0.2)(0.5)

0.0043
0.0252
0.0756
0.0105
0.0207
0.0029

•

From this it is c1ear that the best state sequence, i.e., the one having the highest

probability, is 1233. It is also clear that the probability with which this model gener­

ates the sequence 'HTH' is 0.1392, the sum of the probabilities of each path capable

of generating the observation. This probability is referred to as the HMM'S score for
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the particular observation sequence t.

The parameters (transition probabilities, emission probabilities) of this model

determine that a particular sequence of 'H' and 'T' is more probable than another.

The same topology of model, with different parameters, might provide a high proba­

bility for generating a different string of 'H' and 'T.' It should be apparent that a set

of these models could also be used to provide a probability measure for how Iikely

an arbitrary sequence of 'H' and 'r is. For example, suppose there are several HMMS

like that in Figure 3. Each has different probability values associated with transitions

and symbol generation. One model's parameters May lead it to generate a sequence

of 'H' with very high probability, and any other sequence with very low probability.

Another May similarly favour sequences of 'T', another alternating 'H' and 'T', etc.

Suppose we have an observation consisting of an arbitrary sequence of 'H' and

'T.' Each HMM can generate this observed sequence and provide the probability with

which the model generates that sequence. Suppose that the observation sequence

consists only of repeated 'H'. If we look at the scores From each of the HMMS, there

should be one that is distinguishably higher, that provided by the HMM whose param­

eters lead it to generate a repeating sequence of 'H' with highest probability. The

probabilities reported by ail of the other HMMS will be much lower. If we adopt the

policy of selecting from the scores reported by the different HMMS only the highest

score, then we are implicitly selecting one of the HMMS from the set. One might,

then, say that the observed sequence has been 'recognized' as being a repeating

sequence of 'H' by one of the HMMS. Of course, this assumes that the probabilities

involved have (somehow) been correctly assigned within each model.

We can summarize the process of recognizing sequences of 'H' and 'T' with HMMS

as follows. Let the observation be Y =YI' Y2' ... 'YT, and assume we have a set of

t This score is that of the overall model, and is not ta be confused with the score of an individual
path. A path's score may be reported at any state qj as the accumulated products of (transition x emission
probabilities). For example, the score of the first path shown above (stare sequence 1222) after the first
transition is (0.6)(0.5), after the second (0.6)(0.5) x (0.3)(0.8), etc.
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HMMS, Z= {Hl, H2 ,···, Hk}. We want to find the model HjeZ for which P(YI H}. l '5:j'5: k

has the highest value. We will then daim that Hj has 'recognized' the observation Y.

To compute these probabilities, we begin with the initial state 'lo of Hl, For each

transition from this state a search path is begun. In the case of the HMM of Figure 3.

two paths would be begun: one from 'Il to '12, the other from 'Il ta "3' Each path will

have a score which is the product of the transition probability x probability of emit­

ting the observation symbol YI' Now, for each current path, take transitions from the

current state to states reachable from that state. In Figure 3, for the path now 'at' 'l2'

extend that path to indude a next state 'l3' The path ending at q2 may also be

extended to new state 'l2- Similarly, the path ending at 'l3 may be extended to new

state q4; it may also be extended to new state '13' Thus, there are now four individual

paths being explored: '11'12'13 • 'Il'l2q2 , '11"3"4, and, '11'13"3' For the most recent

expansion step, the scores of the paths are updated to be the current score x (proba­

bility of the chosen transition x probability of emitting Y2 on the particular transi­

tion).

This procedure continues, advancing one state at a time, 'reading' one input

symbol (y;) at a time, untîl the input observation string is exhausted, and HMM Hl has

produced an output string of length T for each path explored, and from these the

model's score is computed. The procedure is said to be 'time synchronous' because

each forward step in the search occurs by consuming one input symbol, which itself

corresponds ta sorne discrete event (e.g., a coin toss) or a discrete amount of time in

the interval 1.. T.

Once this exercise has been performed over all Z, the HjeZ with the highest

score is said to be the model 'recognizing' the observation Y.

For an HMM modeling a phoneme in a speech recognizer, the model is similarly

time synchronously driven. Rather than a sequence of 'H' and 'T'observation sym­

bols, the HMMS 'see', as an observation, a sequence of feature vectors. Each symbol Yi

in the observation Y = Yb Y2' . _. ,Yr, is a u-dimensional vector, where u is the number
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• of features computed by the feature extractor per frame of speech (see § 2.2.2). The

great power behind the success of HMMS as speech recognizers lies in their ability to

model the two critical sources of variation in speech: duration and spectral energy.

The probabilities associated with the state transitions in the HMM model the Ume

(durational) variability of a phoneme, and the symbol emission probabilities model

the spectral variability.

2.2.4 Hidden Markov Models

Formally, a hidden Markov model is a finite automaton generating output:

M= (Q, r,.1, 5,)." qo)

•

•

where:

Q is a finite number of states q;I

is a finite input alphabet of symbols CJ;,

is a finite output alphabet, here chosen ta be the same as t,

is a transition function performing a mapping Qx 1: --+ Q, Le.,

5(q;, CJk) =qj: q;, qj, E Q for any CJk in t,

is a mapping function from Qx 1: -) L1, Le., À(q;, Ok) -) output symbol as·

sociated with transition from state q; on input symbol C1k.
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is an initial state chosen from a set of initial states.

1t = ht;}. 1t; = 1'('10= 1). 1 ~ i~ nt where n = IQI

ln general. an output generating finite state automaton may be characterized as

either a Mealy machine or a Moore machine[24]; here we adopt the former view, as

the definition above reflects f .

Two fundamental assumptions pertinent to an HMM are:

(l) the probability of being in a particular state at time t+ 1 depends only on the

state at time t (Markovian assumption),

(2) the probability that a particular symbol is emitted at time t depends only on

the transition taken at Ume t (output independence assumption).

Models used in speech recognition tend to be 'left to right' models. reflecting

the time evolution of the process being modeled, so i~ j transitions occur where

j~ it .

The mappings ô and À are based on probabilities which are parameters of the

model. Typically these probabilities are described as:

aij the probability of taking the transition from q; to qj. From a given state,

the probabilities across ail outgoing transitions must sum to 1.

t The Moore machine outputs symbols upan arriving in a state, as opposed ta the Mealy machine
which outputs symbols upon taking a transition. The models are provably equivalent. but the definition of
À. is different between the IWo.

t This assumes an implicit ordered labeling of the states in the model. from left-to-right (as seen in
Figure 3). In the general case. there May be transitions from a state ta any other state in an HMM. Due ta
the nature of the process being modeled (speech). the transitions between states are such that no state
other than the current state is visited again. This leads to models that are depicted as a left-to-right string
of states. with an intuitive ordered labeling.
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the probability of outputting symbol 0' when taking the transition from

q; to qj. For a given transition, the sum of the probabilities of outputting

symbols must sum to 1.

For any transition, the probability of outputting each of the k possible symbols is

drawn from a distribution d(X). In cases where the observations to be modeled con­

sist of discrete symbols (as, e.g., coin tossing, or, when acoustic features have been

vector quantized t ) the output distribution d(X) provides probabilities for each of the

K possible symbol values:

d(X) = P{XI d), X E {l, 2,···, K}.

When the observations consist of continuous-valued observations (e.g., u­

dimensional vectors of real numbers from a feature extractor), continuous distribu-

tions are used. The most popular choice of distribution function is a multi-variate

Gaussian:

where

m is the dimensionality of observation vector X,

Jl is the mean vector of distribution d,

'1' is the covariance matrix of distribution d.

Since acoustic feature distributions are not unimodal, a single Gaussian does

not model them weil. More accurate modeling is possible using a weighted mixture

of Gaussians [41]:

t Vector quantization is a way to represent values in a continuous space more economically as dis­
crete values. One constructs a codebook containing sorne number of prototype vectors or codewo,ds. Pow­
ers of [wo are popular sizes for codebooks: eight is often used, for a codebook of 256 codewords. The
prototype vectors are distributed throughout the space of continuous-valued data. Each continuous·
valued datum can then be represented by the index in the codebook of the codeword to which it is closest
in the space. See [21] for a complete description.
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K
where ~ Wk = 1.

k=l

The 'richness' of distributions need not be constant across an HMM, Le., not ail

transitions need have the same number of distributions associated with them.

The transition and emission distributions for a phoneme modeling HMM cannat

be precisely determined. They are, rather, estimated through the use of data and a

training procedure (see § 2.2.7). (n sorne cases it may be desirable to reduce the

number of emission distributions, e.g., when adequate training data is unavailable.

This can be done by sharing distributions between related transitions. Distributions

so shared are said to be lied.

An HMM may also contain transitions which have no corresponding output distri­

butions; such transitions are said ta be empty (see, e.g., the 'loop transition' of Fig­

ure 5).

There are three c1assic problems related ta HMMS and their use: evaluation,

decoding and training. The evaluation problem is concerned with determining the

probability with which an HMM generates an observation. The decoding problem con­

cerns how ta determine the optimal sequence of state transitions through a network

of HMMS. Training of HMMS is concerned with how to use training data ta derive esti­

mates for the parameters of the model. These are discussed in the next three sub-

sections.

2.2.5 Evaluation

For a moment. consider an HMM which models not a phoneme but a short ward, say a

single digit. 5uch a digit recognizer May be built (see Figure 4) by feeding the acous­

tic feature stream as input to each of the word models in parallel. At the end of the
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acoustic input for the word, the model which has the highest score is picked as sig­

naling the digit that was spoken. How is this score computed?

Let A be an acoustic observation QI, Q2" • " ac obtained from the uttering of one

of the words in the digit vocabulary. From this Qcoustic observation a corresponding

observation vector of features is derived (see § 2.2.2). Each of the models in the rec­

ognizer will generate a string of 'observation symbols' Y=YI,Y2,''',YT with sorne

probability. Assuming that the rnode!s have been weIl trained, one mode! should

show a distinguishably higher probability of generating a string 'close' to Y.

The prabability that a model generates a particular output string Y is obtained

by surnming the probabilities of aH paths capable of generating such a string, Le., aIl

Rgure 4 Isolated digit f'8cognizer using HMM·based whole ward models
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paths having T transitions through the mode!. At a transition from state qt-l ta qt

along a state sequence Q= qQ, ql' q2. ... , qr. symbol Yt is emitted as output. The prob­

ability of a particular sequence Y on a particular sequence of states Q under the out­

put independence assumption is:

T

=n bt-l.l(Yt) .
1=1

The probability of the state sequence Q itself is given by

T

= n at-l. t •
t=1

Combining these gives the probability that the model produces the observation

sequence y using the particular state sequence Qunder consideration:

T
p(Y, Q)= nQt-Ubt-u(Yt) .

t=l

But any state sequence having T transitions can generate the observation sequence

(with sorne probability), sa it is necessary ta sum over ail such state sequences

through the model. Let Qr be the set of ail state sequences having T transitions for

the model. Then:

p(Y) = 1: P(Y, Q) •
QeQr

This is the probability that the model generated the observation Y, Le., the score

reported for the model and used in choosing the best scoring mode!. Unfortunately,

the fanout resulting from enumerating ail paths of length T is exponential, 2TNT, N
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• being the number of states reachable from a current state, making direct evaluation

of this product prohibitively expensive.

Fortunately, a more cost effective, recursive, technique is available: the forward­

backward algorithm [5]. Let CleU) = P(Yl' Y2"", Ye, 'li)' the probability of the partial

observation string Yb Y2, . ", Yr. and being in state j at Ume t. Let

o

I: ae-1 (l)QijbiiYe), t> 0
i

if t =0 and 'lj not an initial state

if t =0 and 'Ij is an initial state

otherwise.

•

•

The idea here is that in arder ta be in state 'li at time c, one need only consider

each of the possible states from which 'Ii may be reached From time t - 1. Being in

sorne state 'Ii at (- l implies having already generated sorne partial observation

sequence ending with Yt-1; the probability of this situation is ae-l (1). The probability

of reaching state '1) at Ume t from state 'li at Ume (- l is Qu. The probability of gener­

ating the new observation symbol Yt on this transition is simply biiYt). Thus the

probability of arriving at state qj at time t from state 'li at time c- l with this partial

observation string is at-l aU bij(Ye). This quantity is summed over ail i reflecting the

different 'li from which qj is reachable in one time step.

The computation cast has now been reduced to a more reasonable N2 T.

This section began by presenting an application of the 'evaluation problem' of

HMMS: determining the probability that a model generates a particular observation

sequence. The forward-backward algorithm provides a feasible means of performing

this computation. For the digit recognizer, this computation is performed on each of

the models and the model for which the probability (score) is highest is hypothe­

sized as the digit spoken.

- 39-



•

•

•

2.2.6 Decocling

Consider an improvement to the previous section's digit recognizer - the ability ta

recognize a cantinuous stream of spoken digits of unknown length. The improve­

ment is simple in principle: loap each digit's model back to an initial state (see Fig­

ure 5). Since an unknown number of iterations through this looped model will have

occurred. knowing the one highest scaring model at the end of spoken input is not

helpful. Recognition now requires knowing the best sequence of states through the

digit models. By Ibest' is meant the sequence of states providing the highest (global)

Rgure 5 ContinUDU8 digit recagnizer using HMM-based whole word models, looped ta allow
recognition of digit strings of arbitrary length.
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score for the overall observation string. as opposed tO, e.g., the sequence of individ­

ual (local) highest scoring states. A now popular algorithm for determining this

sequence was introduced by Viterbi [63].

Let the globally best state sequence be Q= (qo, Q2.···. qT) corresponding to the

observation sequence Y=(YI. Y2" ". YT)' Then

ar(" =max'fQ.41.···.4r_l PCqoql ... qC-I, qr = i, YI Y2 ... Yr)

is. at time c. the path with the highest probability generating the first t observations

and ending in state i. [t is then the case that

ar+1(j) = [max;ar(l)aijJbij(YI+d

If. at each time t and for each J. the argument which maximizes the above is kept. it

will be possible to backtrack through the kept arguments to hypothesize the highest

probability state sequence .

The procedure as described above keeps track of every possible path 'explored'

during recognition. ln doing this. it assures that the globally optimal path will be

identified, Le.. it is an admissible search procedure. In practice. many of these paths

are wrong. As a way to prune the search space, a parameter is introduced which tiro­

its the paths (based on their scores-to-date) that will be accepted for further propa­

gation. Use of this threshold, called a beam, renders the search inadmissible, but in

practice, can result in very large savings in search Ume with little impact on recogni­

tion accuracy. If, early in exploring a path, the score is very low, it is very unlikely

that the path is correct. The value of the beam threshold is determined manually, as

a tradeoff between speed and accuracy, and tuned for a particular task.
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2.2.7 Training

Previous sections have described how HMMS can be used to provide probability

'scores' for observations they model. Crucial ta the model's success is having correct

parameter values - transition and emission probabilities. For HMMS used as acoustic

models. it is not possible ta determine these parameters directly, sa they must be

estimated from training data.

Let us suppose that we wish ta train a model for the vowel /ae/. Having

decided on a model topology and feature set, the next step is ta have training data

ready. Typically this data consists of a set of spoken utterances where instances of

individual phonemes have been (manually or au tomatically) labeled. Training now

consists of presenting instances of the target observation ta the model and re­

estimocing the model's parameters 50 as to increase the probability of the observa­

tion string being generated by the model. If the probability of observing Y from ini­

tiai model M is pey 1 M), training aims ta adjust Ms parameters ta produce M' such

that pey 1M') > pey 1M). Training iterates, replacing M with each improved M' until

no further improvement is made.

With each iteration in the re-estimation, one is hoping (eventually) ta produce

optimal values of oij and b;(k) using (for the case of discrete HMMS [52}):

dP
Q"-

1) daij
a'ij=~-""";;"'-

N dP
~Q;Ic-

It= 1 dail,

àP
bij(k) abij(k)

b'ij(k) = M ap
1: biJ{l) ab..(l)
1= 1 1)

where N =1QI and M=1~ 1. These re-estimation formulae lead anly ta lacally optimal

parameter values, ultimately providing the maximum likelihood estimate (MLf) of the
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HMM. MLE training is the most popular method in current use: others include maxi­

mum mutual information estimation [3], and minimum discrimination information

[17]. Gradient descent techniques like simulated annealing [45] can also be used.

A persistent difficulty in training models is the availability of data which ade­

quately cavers the range of values ta which the recognizer may be exposed. A

speech corpus collected in the state of Alabama cannat be expected to present sam­

pte observations corresponding ta speech from Cork County, lreland. The TIMIT

[18,31] corpus has come inta near ubiquitous use for training madels for U. S.

English because it contains speech data collected from eight dialectically distinct

regions of the U. S.. and contains sentences which were designed ta be 'phonetically

balanced', Le.. to ensure a reasonable number of occurrences of ail phonemes.

A huge amount of the research work in speech recognition is devoted ta various

aspects of model training: corpus collection, labeling, and training algorithms. While

models and modeling benefit from this effort, the research work described in this

thesis is. in large part. not overly affected by model Quality. To be sure. as model

quality varies. a recognizer (with or without multiple pronunciations) will perform

better or more poorly. However. the argument has already been made that even if

acoustic models were perfect, recognition errors would still occur. The use of multi­

ple pronunciations can mitigate these types of misrecognitions. Further, since mod­

els are imperfect, sorne misrecognitions attributable to weaknesses of models can be

corrected using multiple pronunciations. The cast of a correction at the PD level May

be much lower than the alternative: retraining of models using the re-estimation pro­

cedures described above.

2.3 Language Model

The AM is able ta provide a score of how weIl the observed acoustics match words.

Since this match is based solely on acoustic constraints, it may not yield a
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syntactically or semantically meaningful string of wards. It is desirabIe, therefore,

ta require the recagnizer's hypothesized word string ta be subject not only to acous­

tic constraints, but also to constraints inherent in the language of the task. A lan­

guage model supplies such a set of constraints on words and the sequences in which

they may appear.

Let L be a language whase spoken utterances are ta be recognized. A generative

grammar, G, where L = L(G), is described as:

where:

V is a finite set of variables,

T is a finite set of terminais,

P is a finite set of productions,

S is a start variable.

Productions in grammar G are of the form a ~ ~ where ae(VuT)+ and where

*~e(VuT) . G is generative in that from the start variable S. Se V, repeated application

of productions generates ail strings of terminais possible in L. If ail the productions

in G have the property that a cantains no terminais. Le., (le V+, G is said to be contex{

{ree since a production may be applied to any a. without regard ta the context in

which a appears.

Unfortunately. such formai grammars are of Iimited utility for mast natural lan­

guage pracessing (NLP) tasks. This is mainly due ta the extreme difficulty in creating

a grammar which has gaad caverage. Le.• can generate a suitably large variety of

sentences in the natural language LNL• and. at the same Ume. not over-generate,

yielding sentences not in LNL' One or the other of these is relatively easy to accom­

plish, but oot both simultaneously. An example af an aver-geoerating grammar is

Gwp, generating ail pairs of words in the vocabulary of LNL•
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The attraction of an over-generating grammar lies in its breadth of coverage of

LNL• By assaciating probabilities ta the productions in G, it is possible to provide

probabilities for each generated string of terminais sa that those strings not truly in

LNL have low probabilities compared ta those that are in LNL • In this way the coverage

provided by G is exploited profitably while the impact of Cs over-generating is

reduced.

Some of these grammars may be utilized effectively in speech recognition by

representing them as stochastic finite state automata (SfSA). In sa representing a

grammar, states of the SfSA correspond ta collections of variables and transitions are

labeled with terminais: see Figure 6. For each transition designated by a terminal,

one may substitute an automaton which realizes the terminal. In the applications of

interest here, each terminal (a ward in a presumed sentence in LNÛ can be replaced

by an automaton representing the time evolution of the terminal's pronunciation.

This automaton, with each state corresponding to a phoneme, may then itself be

replaced by a series of other automata, namely, the HMMS modeling the acoustics of

the individual phonemes. The result is a SfSA which has sequences of phoneme mod­

els labeling transitions. Such an automaton enforces the word-choice constraints

desired of a LM and cantains, embedded, those sequences of acoustic models legal in

the language. That is, the SfSA combines into one integrated stochastic network both

the LM and AM components of the recognizer.

The introduction of multiple pronunciations per ward in such a network is

straightforward: one substitutes the single phoneme sequence for a network of pro­

nunciations for the word, ail in parallel. !mprangram. What is less straightfarward

is how prababilities associated with the transition ta one or anather of the pronunci­

ations are determined. Initially, one must assume that each of the pronunciations is

equiprobable. Refinements ta individual pronunciation probabilities can be made

using observed frequency-of-occurrence counts fram a set of training data, as, e.g.,
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Figure 6 Segment of SFSA for airtine callsigns Shawn is the beginning portion of the SfSA, from
'S' start symbol through different airline names, then ta segments of flight numbers, etc. The
productions in the grammar which correspond to this segment resemble (terminais in HaUc):

S -. calLsign command
calLsign -. airlintUlame fLnum
airlïntUlame -. ML 1 ACA 1 ••• 1VRG
tLnum -. tirst second
tirs t -. 1 1 2 1 3 1 ••• 1 9
second -. 101 III 121 ... 1 19
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(64). More difficult is establishing context-sensitive pronunciation probabilities. The

frequency-of-occurrence based technique reassigns transition probabilities ta indi­

viduai alternate pronunciations based on averages of observed numbers of occur­

rences over a training data set. But, in sorne cases, one pronunciation may be highly

preferred over others, while in other cases it is not, e.g., /dh iy/ is a favoured pro­

nunciation when the following word begins with a vowel, though in general, /dh ah/

may be observed to occur more often.

The introduction of more parallel branches within the network also has an

unpleasant impact on the fanout of legai phoneme sequences.

ln those cases where a rigid syntax is not practical, the SFSA based LM may be

infeasible. For example, in natural language tasks users do not have ta conform to

anything more formaI than the accepted base grammar for the natural language. As

mentioned above, over generating grarnrnars like Gwp are better suited to such cases

because of their coverage, if suitable probabilities can be found to provide meaning­

fui distinction between word pairs in LNL and those not in LNL•

One successful and widely used LM that aims ta fulfill these requirements is

that based on trigrams [26]. In the general case, the LM provides:

Le., the probability of word W; given the n words which precede it. This is infeasible

to compute in the general case; in practice, it is rare for n to be greater than 2 (tri­

grams); a bigram model uses n= 1. The probabilities are estimated from counts of

how often each m-gram appears in the training text.

A scarcity of training data often means that some trigrams may have zero or

atypically low probabilities. One strategy, suggested by Jelinek, for dealing with this

problem is the use of weighted frequency counts:
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where CCx) is a count of the number of occurrences of x, and, q3 + q2 + qI =1.

ln natural language tasks, e.g., WSJ, a bigram language mode) is a popular choice

since it is easily trained and provides good coverage. In tasks where a more restric­

tive grammar can be used, e.g., ATS2, the option of an integrated stochastic network

is bath feasible and preferred.

One may have a choice of different LMS for a particular recognition task, e.g.,

bigram and trigram rnodels may be available. How does one assess the quality of dif­

ferent language rnodels for a task?

Consider a hypothesized ward string W1, W2 , ••• , W" as generated by a language.

If one adopts the view of a language as an information source with output symbols

W;, one can establish a measure of the entropy of the source as:

The information content of this source is that of sorne other source (language) which

outputs words from a vocabulary of size 2H with equal probability. Put differently, H

is the (average) difficulty faced by a recognizer when it must determine a ward fram

the source (task language).

ln practice, only estimates of the probability of a ward sequence are available,

hence one may obtain the estimated entrapy:

The particular estimate P, and hence Hp, depends upon the particular LM adopted. As

no estimated ward sequence probability will be better than the true (and unknow­

able) one, no estimated entropy Hp will be better than H. That (i.e., Hp ~ H) being the
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case, a LM which results in an Hp closer to H is judged to be a better LM than one

yielding a higher Hp.

[t is common ta assess LM performance using these notions, but expressing it as

a metric called perplexity:

The difficulty of the recognition task, using a particular LM that gave rise to P, is that

of recognizing strings originating from sorne other language (source) having pp

equiprobable words. The perplexity of a task may thus be viewed as the average

number of possible ward choices from a given point.
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3. Multiple Pronunciations and Belief

The core issue addressed in this research work is how to improve accuracy and relia­

bility of recognition by endowing a recognizer's PD with a judicious selection of mul­

tiple pronunciations. For example, in the framework of the finite state grammars

described above, each variant pronunciation is added in parallel with the canonical

pronunciation so as to offer a path through the particular word which scores highly

enough to keep the path under consideration and so prevent a competing and incor­

rect path from overtaking the correct one.

While it is true that the area of multiple pronunciations is not weil explored, it

is not unexplored. This chapter briefly examines work done in this area, and shows

how this research work is distinct.

One early effort developed a procedure for discovering spelling-to-sound rules

by predicting a word's pronunciation from its spelling and a sample utterance [35).

The idea was that a word's spelling is in sorne way indicative of its pronunciation,

and the transformation may be modeled using a noisy channel model. In developing

the rules, it is important to find the pronunciation ~ maximizing:

f1~ 1s) P(u 1~)

f1su)

where s is the spelled farm of the word, and u is an utterance; P(u I~) is computed by

a phaneme recognizer. This is, in essence, the belief metric introduced in the section

3.4. Lucassen and Mercer develaped the parameters for their noisy channel model

using pronunciations derived from on-lîne dictionaries and one utterance per ward.

They alsa made use of binary decision trees to guide the selection of the best pro-
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nunciation given a contextt in their of a noisy channel. The proposed work will use

different means of determining the analog ta ~, Wi./t' Le., deriving these from observa­

tions in cases of misrecognition.

More recent work at IBM [2] improved on the earlier work in a number of ways,

e.g., better decision trees, a larger collection of pronunciations and use of multiple

utterances. The objective remained determination of pronunciation from a small

number of utterances and a spelled farm using spelling-to-sound rules.

3.1 Rule Driven Approaches

One might argue that phoneticians and linguists have, for many years, studied pro­

nunciation, and that advantage could be taken of their observations; Table 3 shows

sorne representative rules of this type. There are a number of impediments ta using

such observationally based rules. Firstly, while such rules are part of a body of pub­

lished knowledge, they are not generally represented in ways that make them

amenable ta integration into automated recognizers. Their application can, however,

be undertaken manually. Doing this by hand for a very small task may be reasonable,

but, in general, manual construction of variants from rules is perilous. As Sioboda

[57] points out, manual application of rules from one or more phoneticians opens

one to the following problems:

(1) inconsistent use of phonetic units as number of words in PD grows

[also as number of phoneticians grows],

t They define a channel conrext ta be the ..... current letter together with its literai [adjacent (etters]
and phonemic [phonemes associated with adjacent (etters) contexts ..." It is a feature vector representa·
tian of this channel context for which the best pronunciation is sought. The decision trees are used to
suggest which features ta examine (and in which order) 50 as to arrive at a determination of the pronunci~

ation 1t best suiting this particular channel context, while (ooking (preferably) at as few of the individual
features as possible.
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(2) the phonetically plausible pronunciation recommended by a phoneti­

cian may not be the most frequent or most Iikely pronunciation actu­

ally encountered,

(3) the number and variety of multiple pronunciations used in sponta­

neous speech may be difficult ta predict using only phonological

rules,

(4) maintaining correct information about which pronunciations are fre­

quently used (Le., relevant), for ail pronunciations, is hard for hu­

mans ta do consistently and reliably.

Hence, one requires an automatic means 01 developing and applying these rules,

implying that they must be suitably represented. Moreover, given points (2) and (4)

above. a data-driven scherne may perform better for a particular recognition task

than rules drawn from more general purpose observations of phoneticians. Further,

any effect observed ta occur often enough ta result in generating and enforcing a

rule should resemble one suggested by a phonetician or Iinguist.

Secondly, even if expert phonetician rules are expressed in sorne suitable

machine representation, not ail of the 'expertise' lies in the rule itself. There is also

the question of when ta apply a particular rule, as not ail rules are 'obligatory', i.e.,

apply in ail cases. In addition to the rule itself, one wants ta have sorne quantitative

notion of how applicable a rule is, ta guide when one might use it.

Other rules or sets of rules may be appropriate or inappropriate depending on,

e.g., the dialect of the speaker. Recall the substitution 'rule' ae r ~ eh r as described

in § 2.1.3: this rule would have a high probability of being applicable for a native

English speaker from the United States west coast, but not from the northeast [l j.

Any approach which aspires ta speaker independence should be able to accommo­

date such dynamic shifts in rules or rule sets in preference ta aiming for rules 50

broad in their coverage that they fail ta provide adequate discriminability.
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Many of the true speech-related misrecognitions are identifiable using optiona[

phonological rules. For example, one might have a rule for reduction of a syllabic /n/

of form

/[ax ix) n/ -+ /en/

5uch rules explain how a particular variant pronunciation may occur, but are

optional in that the speaker may or may not always follow the fuie, resulting in one

or another pronunciation of the word. Thus, having a set of optional rules tells one

that a particular pronunciation may occur instead of the canonical pronunciation (or

another variant), but does not provide any measure of the likelihood of a particular

variant pronunciation occurring. One solution is to attribute to each rule a probabil-

ity of it being applied.

Civen a set of optianaJ phonological rules, Tajchman, Jurafsky and Fosler [61]

describe a technique for learning the probabilities of such rules (see Table 3). Begin­

ning with the rules whose probabilities are to be determined, they apply each of the

rules ta a large merged lexicon (> 75 K words) to generate an expanded lexicon of

surface forms. This latter lexicon is then used in recognition experiments on a large

corpus (WSJO) to establish counts of how often each surface forrn in the expanded lex­

icon occurred. From these couots, and knowing which of the optianal rules led ta the

particular surface form, count-based probabilities for the individual rules were

Table 3 Optional rules whose probabilities are determined in [61]

Type Rule
Reduction: mid vowels -stress [aa ae ah ao eh er ey ow uh] -4 ax
Reduction: high vowels ·stress [iy ih uw] ~ ix
Reduction: R-vowel -stress er ~ axr
Reduction: syllabic n [ax ix] n ~ en
Reduction: syllabic m fax ix] m ~ em
Reduction: syllabic 1 fax ix] 1~ el
Reduction: syllabic r fax ix] r ~ axr
Flap: [tel dcl][t d] ~ dx IV .•• [ax ix axr]
Flap r: (tel dcl][t d] ~ dx IV r ... [ax ix axr]
H-voicing: hh ~ hv 1 [+ voiced] .•• (+ voicedl
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established.

The technique must be given the rules a priori, it does not discover or infer

them from data. The ruIes, once assigned probabilities, can be IJsed to generate

variant pronunciations such that each pronunciation has an associated probability.

They conducted two tests on the female speaker subset of the WSJ task (1993 devel­

opment set; 5,000 word vocabulary). In the first, which compared a PD with multiple

pronunciations having ail words equiprobable against one in which the pronuncia­

tion probabilities had been set based on rule probabilities, the observed 6.7% reduc­

tion in word error rate was claimed to be statistically insignificant. A second test

used a PD in which pronunciation probabilities were computed based on rule proba­

bilities and pronunciations having sub-threshold probabilities were removed.

Depending on the value of the threshold, a 16% to 20% reductian in ward error rate

was reported. Smaller PDS which outperform larger ones are attractive.

Other work does aim ta discover rules from actuai speech data. A speaker

dependent system developed for Japanese [25] uses training speech from the target

speaker, S, accompanied by a phonetic transcription, Pt containing only canonical

pronunciations for the utterances in S. Viterbi alignment of sentences in P ta the cor­

responding recognized phoneme string provides the Iikelihood L(S" 1Pk) for sentence

k. In addition, individual phoneme Iikelihoods and durations for each phoneme m

(average fJ.m, standard deviation Om and minimum duration t m ) are determined from

the (HMM) models used for recognition. These models are trained on a large corpus

of speakers, Le., are not specifie to the speakers for whom rules are sought. Tenta­

tive phonologicai rules are deduced from the recognizer output in the categories of

insertion, deletion and substitution (of 1 or 2 consecutive phonemes).

The notion for a tentative rule is, for the case of deletion, that if 1 a clis recog­

nized for 1 abc l, then the acoustic model for the deleted 1 b 1 should show either a

shorter duration or lower likelihood than the canonical case would. If, in sentence k,

Xi is the ilh phoneme in canonicat phoneme string P", an instance of phoneme m,
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having duration l;, and one of

l; < J.1m - 2am

or l; < t m

or L(x;) < L(m)

is true, then there are grounds to support generation of P'k which contains the dele­

tian. A new tentative rule is then introduced if L(Sk 1P'k) > L(Sk 1Pk)'

Substitution and insertion rules are analogously introduced. Each tentative rule

is then tested on the entire set of training sentences. Two criteria are applied to the

result of this test. The tentative rule becomes a 'full-fledged' rule if (l) the likelihood

scores for other speech that matches the left hand side of the rule are improved by

use of the rule. or, (2) use of rule-defined multiple pronunciations applied to training

speech sentences improves discriminability. If a tentative rule fails bath of these

conditions, it is deleted.

The authors report an average improvement of 2.496 in recognition using a mul­

tiple pronunciation dictionary constructed using rules they inferred (in one case,

1,026 tentative rules, reduced ta 599 'real' rules). A weakness of this approach,

though, is that no rules can be inferred for contexts not encountered in the training

data. Also, no generalization is made from the ru les that are retained ta produce a

smaller sized. more general set of rules. Lastly, inferred rules are speaker depen­

dent.

3.2 Non..Rule Driven Approaches

The point in having rules is ta have a constrained means of generating multiple pro­

nunciations. But use of rules, either discovered or assigned Q priori (without proba­

bility), is not the CJnly way to accomplish this. Taking the view that multiple
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pronunciations are the result of a learnable mapping between a canonical farm and a

particular realization of that form, Le., a phoneme ~ phone mapping, Riley [53]

describes a technique for using classification trees [8] to predict phoneme realiza­

tion (in context). The trees are grown on a context labeled set of over 100,000

phonemes drawn from TIMIT'S si and sx sentences. On a reserved independent set of

336 si and sx test sentences, the tree predicted correct phonemic realizations 84.1%

of the time. Handling of insertions is largely special-cased in this approach, and for

TIMIT where the 37 most common insertions account for 9596 of ail insertions, this

turns out not to be unreasonable. The resulting prediction rate is slightly reduced. ta

83.3%, when trees are grown containing insertion pairs (the phoneme and associated

insertion treated as a pair).

Riley's approach is interesting aise in that no speech recognition was used to

develop the trees. Rather, Bell Lab's text-to-speech system [131 was used ta generate

phonetic transcriptions from the text transcriptions of the TlMIT sentences. and these

compared against the phonetic transcriptions in TIMIT. One supposes that if a recog­

nition system were used that the trees would acquire sorne predictive power based

on idiosyncrasies of the recognizer, in addition to that based on genuine speech

events.

Another automatic approach for building multiple pronunciations directly is

described by Wooters [64]. His approach begins with, for each word, a model which

is the concatenation of phonerne models representing a single (canonical) pronuncia­

tian. Then, using a PD derived from combining several sources, including TIMIT, pro­

viding 160,000 words with 300,000 pronunciations [61], pronunciation models are

augmented by adding a new path (in parallel) for each novel pronunciation encoun­

tered. To the resulting augmented model containing multiple pronunciations of the

word is applied an adaptation step which adjusts probabilities within the model to

reflect training data more realistically. Following adaptation, the pronunciation

probabilities are re-estimated using an algorithm proposed by Stolcke and
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Omohundro [59]. In this step, the probabilities are not only re-estimated, but the

model structure changed by merging of states sa as ta yield a model more general

than its predecessor. These two sequential steps can be iterated to produce models

which better fit the recognition task. The result is a smaller model which may even

be able ta model novel pronunciations, by virtue of paths which do not correspond

ta variants observed in the training data.

Tests of this approach, performed in the BeRP system [28], showed a 21% reduc­

tian in word error rate using a multiple pronunciation PD over a single pronunciation

version.

More recent work also aimed to build alternate pronunciations from a corpus of

reaJ speech (l0}. The authors report investigating the use of classification trees

trained on data from the Switchboard and TIMIT tasks. A new dictionary was coo­

structed containing canonical entries plus those obtained from application of the

trees (one tree per phoneme). Trees were trained on both hand labeled and a few dif­

ferent automatically transcribed data sets. Use of the dictionaries sa generated

yielded a reductian in ward error rate of 0.9% from a baseline reference of 44.796.

Use of the dictionary generated with the trees trained on the hand labeled data

resulted in a higher WER, leading to the authors' suggestion .....either the ... tTees gen­

eralize incorrectly or do a poor job of assigning costs ta the alternate pronuncia­

tians, which is crucial ta the success of dictionary enhancement methods. We there­

fore examined a more conservative approach ta dictionary enhancement."

That more conservative approach involved the construction of dictionaries

from each of the hand labeled and automatically transcribed data sets used in the

previous effort, but keeping only the most frequently observed pronunciations,

which included sorne lmultiword' words ta deal with between word coarticulation.

Once again, the best WER reduction was 0.996.
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A WER reduction of 2.296 was reported following the retraining of acoustic mod-

els.

3.3 Dialeet and Accent Work

Speech recognition systems need to be robust to wide variations of dialect not only

in native English speakers, but also in speakers for whom English is not a mother

tangue. Multiple pronunciations play a natural role in providing this robustness, by

contributing pronunciations peculiar to the different non-native English speakers'

dialects. [ncreasing the number of variant pronunciations per word is not without

expense or risk: larger PDS are more time- and space-consuming, and increasing num­

bers of variants increase the chance for error arising from confusability of variants

for different words. Ideally, then, one might wish to have a ·standard' PD, featuring a

modest number of multiple pronunciations for ·standard' dialects, while having the

ability to augment, dynamically, this PD with pronunciations found to increase accu­

racy when speakers of a particular dialect use the system. 5uch an ability requires

not only the gathering and classification of such pronunciations, but, also, the ability

to make a reliable determination of a speaker's dialect.

Work on the BeRP system includes handling of accents and dialects. Having

shawn that a system trained on American English experiences Il •••significantly more

errors with non-native accents" [29], the foeus of support for dialects is identifica­

tion and subsequent modeling of the dialect. The authors report interesting results

on identification, using either acoustic features alone (a multi-Iayer perceptron [MLP]

network with one output unir per accent), or, using an analysis of sentence syntaxt.

t BeRP is a naturallanguage task, i.e., with no imposed sentence structure. The authors studied syn­
tactic constructs which proved highly discriminative of accent. For example, American English speakers
were found to he twice as likely as German English speakers to end a quel'\' with 'please' whereas the lat­
ter group was found to be 200 times more likely to begin a query with ·please.'
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Once reliable determination of a speaker's accent or dialect is made, the recognizer

can pick appropriate pronunciation models. Use of either technique produced

roughly equivalent success, 6296 for acoustic and 6096 for syntax, at correct identifi­

cation of speaker accent (at the sentence level). Use of a confidence measure and

threshold for rejection of ambiguous sentences improved the rate at the 50% rejec­

tian level to 70% acoustic, 6896 syntax, or, 7396 combined.

Whereas BeRP can afford to rely on syntax, tasks where speakers have con­

strained syntax (e.g., AT52) need ta rely more heavily on acoustic means of distin­

guishing accent. Other recent work on the use of acoustics alone ta identify a

speaker's dialect does better than the abovementioned MLP, providing a (poorest)

accuracy of 81.5% distinguishing between 'neutral', German, Turkish and Chinese

accented English (22).

3.4 Belief

One observes, in speech recognition, an acoustic stream originating from sorne

speaker. By the time it reaches the observer, this acoustic stream may be consider­

ably altered - by various forms of stationary and non-stationary noise, by patterns

of constructive and destructive interference from reflections off walls, floors and

ceilings, and from other sources of speech. It may even reach the Iistener indirectly,

e.g,. by telephone, with further modifications introduced by the mediator of the indi­

rection. Even though the acoustic stream may have originated from the speaker in a

comparatively pure state and is received without adulteration, it may not have con­

tained the phoneme sequences for words one would expect from using only canoni­

cal pronunciations.

One way in which this speech process may be modeled is shawn in Figure 7.

Each 'transition' between 'states' in this figure suggests that the originating state in

sorne way influences the value of the destination state. For example, the choice to
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conceptual formulate

1

occurrence of 1 preverbal grammatical
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message
message encoding

generation (word sequence)

surface
form

pronunciation formulate
speech mechanics phonological

(acoustics) generate acoustic encoding
forro for each word (phoneme sequence)

Figure 7 A causal network view of speech production from originating the concept ta be cammu­
nicated ta the acaustic event of speech. The speaker's mental lexicon (not shown) is implicat­
ed at the two 'formulation' stages. A more complete characterization of the process would also
include the speech recognition components the speaker itself uses to monitor its own speech
(where. again. the lexicon is involved). The acoustic event 'speech' refers, minimally, to the
spoken utterance as would occur in a quiet room in such a way that the hearer can perceive
and recognize the speech. In reality. the 'room' May not be quiet (e.g., office background noise,
a moving car). and the hearer May be remote to the speaker so that the speech is actually can­
veyed via telephone or radio, adding channel noise characteristic af the communication medi­
um to the channel noise of the existing error-prone 'speech channel.' consisting of the last
stages (bottom row) in the above causal network. (Figure adapted from levelt [33]).

speak a particular word W; directly influences the set of phonemes chosen which, in

turn, affects the operation of the speech articulators. The result of this chain of influ­

ence is externally observable evidence, acoustics.

Of particular salience to this research work is the step in which sorne pronunci­

ation Wik is selected for the chosen word W;. In cases where W;k corresponds to the

canonical pronunciation, Wi' a recognizer should readily succeed in recognizing the

word. In cases where this is nat true. it is expected ta fail unless the recognizer has

the ability to handle multiple pronunciations and hast among its multiple pronuncia­

tions. the variant chosen by the speaker. Examining this step may lead to a reliable

means of providing the recognizer with the means of handling multiple pronuncia-

tians.
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Figure 8 focuses attention on the particular step in the speech generating pro­

cess concerned with selection of a specifie pronunciation. For a fixed Wi there is one

state representing the process by which a pronunciation Wi" is selected. The conse­

quence of this action is the generation of sorne sequence of acoustic events as the

phoneme string comprising Wi/t is realized, with the result that externally observable

evidence, A, is generated.

A formai model of this type of causal stream might provide a means of objec­

tively assessing the relationship between the various Wi/t and Wi. Fortunately, just

such a model exists: Pearl's stochastic inference networks (SIN) [46]; see Figure 9.

SINS have states characterized by variables (traditionally having upper case

names) which can assume any one of the mutually exclusive values in the domain

associated with that state. Connecting one state to another is a directed arc which

conveys the concept that the value of the variable in the originating state influences

choice of
word Wi

A

•

Figure 8 Selection of a pronunciation

Figure 9 Simple stoeha&tic inference network States are identified by random variables Wand V; the direct­
ed edge captures the notion that the value of W from the domain of values it May take on in its state, in­
fluences the value V may take on in its state. e is extemally visible evidence that V has a particular value.
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the value of the variable in the destination state. In addition, a quantity called belief

is defined; it conveys, as a probability, the belief in a variable having a particular

value:

Be/(x) =P(x 1 e).

In the simple SIN of Figure 8, the Bel(wi,) is Bel(w;,) =P(Wi" 1e) where the evidence, e, is

observations from the acoustic stream, Y, and the speaker's intention ta utter W; as

W;. That is, e represents the combined effect upan the target variable in the SlN of

other instantiated variables able to influence it: in this case, thase variables are Y

and W:::: Wj. Thus.

P(WiYWi
k

)

- P(WjY)

_ P(Y 1Wjlc Wi) P( Wilc 1 Wi) 1'(Wi)

- P(WjY)

Here it may be argued that the acoustic observation Y depends directly upon the

phoneme string uttered which is exclusively a consequence of Wifc' and not of Wi•

hence p(Y 1w;" W;) =P(Y 1Wjk). Further. when considering different variant candidates

of W;, the denorninator term P(W;Y) is constant, and may be ignored. This leaves

If, in the case of a misrecognized ward, one generates variant pronunciations

according ta sorne set of constraints, this belief can serve as a metric of how 'good'

each generated variant is. and one may select the n ~ 1 variants having the highest

belief scores for inclusion in the PD.

Since Wi is now allowed ta be represented by one of its several variants, then:
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A reasonable approximation ta the above equality is:

P( W j 1Y) =maxk P( w;" W; 1y)

ln the above,

Thus, the probability that W; can be hypothesized through w;r.: may be expressed as

P(Ylw;,) P(W;Ic 1 W;) P(W;)
maxk p(y) = maxk Bel(w;,)

For a given ward. ~~;) is constant across ail variants of Wjo so the above may be

reduced ta:

which is the maximization of the same quantity as in (35].

The first of these two probabilities is provided by the acoustic modeling compo­

nent of the recognizer.

Given an observation Y of speech and a word Wh finding the most Iikely pro­

nunciation w;" implies knowing ail K pronunciations of W;. In general, these cannat

be known, e.g., data sparseness is an inescapable problem, and consequently,

P(w;" 1 W;) cannot be directly estimated from data. There are, fortunately, Many ways

of generating candidates w;" and there are many models which can be considered for

computing P(w;" 1 W;).

Making the simple assumption that any phoneme may be replaced with any

other phoneme and that neither deletions nor insertions occur, W;1c can be found by a

Viterbi search. If W; = fil (;z .•. fi}··' fi) and PUk is the probability of phoneme

(k' k = 1, 2,· .. ,K being a substitution of fil' then the HMM having the structure shawn

in Figure 10 can be used to compute the last term in the Belief expression.
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Figure 10 Simple HMM for deriving P(w;,) The structure shawn in the figure is used at each
phoneme position i in P(w;) to compute the probability that fil, replaces fij, where j is in the
canonical pronundation at position i. The transition probabilities. P;jk' reflect the probability
of such a substitu tian.

This assumption is. however, too crude and more complex models have to be

considered to generate ail variant pronunciation candidates w;m. This is the case

since, firstly. insertions and deletions with respect to the canonical pronunciation do

occur, and, secondly, because of context-dependent substitutions. Thus a problem

that emerges as very important is the strategy chosen for the generation of variant

pronunciation candidates.
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4. Making and Assessing Variant Pronunciations

Given the beneficial effect of multiple pronunciations, the critical question is how to

determine which pronunciation variants to add to the PD.

An expert phonetician can look at the recognition errors that arise and generally

provide insightful variant pronunciations that correct the error (see Table 1). The

focus of this thesis work is ta examine ways in which such expertise can be inte­

grated into a recognition system at the level of the PD, and show that this is a viable

means of improving recognizer accuracy. Rather than attempt to integrate an expert

system in the domain of pronunciation, the hypothesis is made that inexpensive

(compared ta an expert system) rule-based or statistical (or hybrids of the two) gen­

erative methods can provide adequate performance improvements. This chapter

looks at a variety of such inexpensive techniques.

Given that a pronunciation Wj has been identified as a misrecognition of ward

Wi , with canonical pronunciation W;. and is indicated in the observation string by its

starting and ending frame numbers, (tb. te). the first step in correcting the misrecog­

nition is ta generate a set u of variant pronunciation candidates (vpcs). The specifie

method used ta generate this set is what distinguishes the techniques described

here. Naturally, it is hoped that there is at least one Wk EU able to correct the mis­

recognition.

At issue are the composition and size of the set of variant pronunciation candi­

dates. In terms of composition, one inclination is ta use phonological rules, often

determined by phoneticians. ta guide construction of plausible multiple pronuncia­

tions [15]. Another possibility is ta rely upon a data-driven approach in which the

recognizer acquires variant pronunciations for words as it encounters and recovers

from misrecognition.
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As for lui, a large set is more likely ta include a VPC that corrects the misrecogni­

tion than is a small set; moreover, a large set may contain several good candidates,

allowing selection of the 'best' among the good. Unfortunately, in arder to assess

the merit of a candidate requires running recognition on part or ail of the sentence

again, with the VPC added to the PD. As this process is expensive, one wishes to per­

form it as few times as possible. AIso, larger sets are more likely to contain pronun­

ciations confusable with variant or canonical pronunciations of different words,

increasing vulnerability to misrecognition. Hence, small sized sets of variant pro­

nunciation candidates are desirable.

Nearly aIl of the experimental work described in this chapter was performed on

the ATS2 task. Scores shown are log probabilities reported by the recognizer using a

SfSA representation of the task grammar. The collection of recordings comprising the

AT52 set, some 84 sentences uttered by several speakers, was partitioned into 47

training sentences, 27 evaluation sentences and a test set of la sentences. For more

details of the task and recognition system, see appendices land 2.

4.1 Scoring

[rrespective of the method used ta generate a VPC, a way of objectively assessing its

value is needed. The belief score described in chapter 3 is central to the scoring.

The objective is to introduce "successfulu vpcs into the PO of a recognition system.

As will be seen later, this needs to be done somewhat conservatively.

The initial procedure for evaluating a VPC begins by determining if the VPC suc­

ceeds in correcting the misrecognition in sentence context. That is, if the variant is

introduced into the PD and recognition on the entire sentence is re-tried, is the mis­

recognized word now correctly recognized using the newly introduced candidate? If

not, then this candidate can be dismissed from further consideration.
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Candidates retained from this first step are ranked in arder of their belief

scores, a pey 1Wj,,) P(Wi
k

1W j). The value of a allows one ta adjust the contribution of

the two component (acoustic, pronunciation) probabilities. For ail work reported

here a fixed value of a was used.

The acoustic component of the belief score, returned by the recognizer itself, is

the log probability of the best state sequence explaining the (acoustic) observations.

The pronunciation component of the belief score is determined using pronunci­

ation performance models (see § 4.7). These models are trained on a corpus of

labeled pronunciations of words - TIMIT in this case - to provide models analogous to

the phoneme models used by the recognizer's acoustic matcher. These pronunciation

models capture, for a given phoneme, how often it was observed as (i) itself, (ii) sub­

stituted by another phoneme, (iii) being deleted, (iv) having sorne other phoneme

inserted before it (see Table 9).

A feature of the TlMlT corpus is that it contains labeled utterances collected in

eight separate 'dialect' regions (see Appendix 1 for details). As such, pronunciation

performance models can be made distinctive for individual regions capturing differ­

ences in pronunciation characteristics. Figure 12 illustrates the different pronuncia­

tion behaviour for /iy/ over the different dialectic regions. Figure Il shows the effect

of using the dialectic region specifie probabilities upon the pronunciation compo­

nent of the belief score. Note. in particular, the wide differences in the probabilities

in the pronunciation of place names - one of the original motivations for this work.

For nearly ail work reported here, a single pronunciation performance model set,

made by pooling the raw counts from ail the individual dialectic regions. has been

used.
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Figure 12 Regional Variations in Substitution and Deletion of a Phoneme The plot shows the cu­
mulative distribution function for the probability of the phoneme /iy/ as substituted by the
phonemes shown on the y-axis. While the largest contribution is, as expected, made by /iy/ it·
self, notable contributions are made by different vowels in the different dialectic regions. Note
also that phonemes not in the class of vowels make no contribution ta the cdf. Not ail
phonemes are shawn: those not appearing on the y axis made no further contribution to the
cdf.

4.2 An Obvious Suggestion

•
Suppose W; has been misrecognized as Wj • The most obvious suggestion would be

to add the observed phoneme string as a variant pranunciatian of W; ta the PD. This

is nat a constructive strategy. Firstly, the hypothesized phoneme string often

diverges signiftcantly from the canonical forms for either of W; and Ki. For example,
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in the sentence "KAL 19 contact new york approach on one two zero point niner, If

(spoken by a Bangledeshi speaker of English)1 the word 'contact' is misrecognized as

'climb to.1 The hypothesized phoneme stringt where 'contact' should have been rec­

ognized is: gel 9 aa dei d ey kel k. Seeondly, the observed phoneme string, as a dis­

tortion of Wj , is highly speaker specifie.

Adoption of this strategy might be suitable for a case where the vocabulary is

small, containing words of low confusability, and one speaker will use the system. It

is not suitable for medium or larger sized vocabuIaries l or where speaker indepen­

dence is required.

Introduction of this pronunciation into the PD, while not recommended in prac­

tice, does perform one use fuI thing. The acoustic score of a recognition performed

using this pranunciation for the misrecognized word is the best acoustic score a cor­

rect recognition of this sentence can have with the particular misrecognized ward

now correctly recognized. The acoustic score provided when the canonical score

alone is used, and misrecognition resulted, is the worst score that may be reason­

ably expected (if one is attempting ta obtain correct recognition). Thus, between the

canonical pronunciation and the particular observed pronunciation, bounds are

established for the value of acaustic score. These bounds are also the bounds (but

opposite in 'polarity') for the belief component P(w;1t 1Wj ). That is, use of the best

pronunciation (Le., canonical) yields the worst acoustic score. The value of a May be

used ta vary the way belief values change within the range, but the bounds are fixed.

This case is typical, however, of misrecognitions in that the observed string is

not obviously suggestive of 'contact' or 'climb toi. Apart from its utility in establish­

ing bounds on belief scores, it should be evident that filling the PD with such 'far

removed' and speaker specific alternative phoneme strings would not be fruitful.

t as determined by a pure phoneme recognition using a simple bigram language model l not trained
on the ATS2 rask <trained on TIMITI.
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4.3 Iterative Transformation

Nor, as it turns out, is it necessary to add such 'far flung' pronunciations. If one

begins with this hypothesized phoneme string and introduces variant pronuncia­

tions by transfornling it. phoneme by phoneme. back towards the canonical form,

one observes that the only critical difference is the last vowel (see Figure 13).

This suggests the following procedure:

(l) isolate phoneme string corresponding to misrecognized word.

(2) align misrecognized segment with canonical pronunciation of ward.

(3) perform relaxation of observed pronunciation back towards canonical

until sorne plausible variant w,. is round such that no pronunciation Ws

is doser (e.g.• in edit distance) ta the canonical pronunciation and still

able to correct the misrecognition.

Step l in the procedure is relatively straightforward if the correct version of the

utterance is available since a rough segmentation of the hypothesized phoneme

canonical: kcl k aa n tel t ae kel k tel t
observed: gel g aa dei d ev kel k
varl: gel 9 aa dei d ev kel k
var2: gel g aa Ici 1 ev kel k
var3: gel g aa tel t ev kel k Ici 1
var4: kcl k aa tel t ev kel k tel t
varS: kcl k aa ft tel t ev kel k tel t

Figure 13 Relaxation of misrecagnized farm taward canonical Shown are five variant pronuncia­
tians. The first is the observed phoneme string. now added as a valid pronunciation of the
misrecognized ward. Each subsequent variant represents one incremental step transforming
the observed phoneme string back toward the canonical form (in no particular order). Ail five
variants correct the misrecognition: varS shows the smallest distance from the canonicaJ
form, and relaxation stops (since the next change would reproduce the canonical form which
is known not to lead to correct recognition in this case). varS leads ta the suggested protorule
(see § 4.6) that lael may be substituted by levl in the context shawn (which might be ab­
stracted to a context of, e.g., 'between two stop consonants').
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string is then possible. Thus, e.g., in the sentence "UAL 7 14 maintain heading 0 4

0", misrecognized as "USA 1 14 maiotain heading 0 4 0", the raw (bigram) phonemic

transcription:

sil v tel t sil v V ah ev s eh v ah zh f ao r dei jh iv

can be segmented as:

sil v tel t sil v V ah ev 1 s eh v ah zh 1 f ao r dei jh iV •..
united 7 14

In practice. for this technique (and most others suggested here) it is the case that the

recognizer is told which ward is misrecognized. This provides a bracketed segment

of the phoneme sequence which must correspond to the misrecognized ward.

Step 2 requires identifying, within the isolated segment, the Iikely boundaries

for the ward. In the example above, the word 'united' (canonically: Iv uw n av tel t {ah

1 ih} dei dl) must be located within Isil v tel t sil v y ah evl. The subsegment Iy ah eyl

is identified as the best fit, and the alignment shawn in Figure 14 is established.

Step 3 can be performed as a straightforward left-to-right correction of errors,

with each successful correction retained and each failure reverted ta its original

state. The left-to-right sweep can be performed as often as is necessary to arrive at

the 'best' variant, determined as that variant differing least from the canonical form,

correcting the misrecognition, and being a plausible pronunciation. This last condi­

tion arises in cases where two (or more) successful variants are derived satisfying

the first two criteria as, e.g., Ide! d eh 1 t ah/ and Idel d eh 1 tcl ahl for 'DAL.' Fortu­

nately, the belief score embodies these three criteria, and it suffices to select the

variant with the best belief score:

Pronunciation
(i) dei d eh 1DEL t ah
(in dei d eh 1tel DEL ah

Log Prob. Pron.
-1.216358e+01
-l.216687e+01

Log Prob. Acoust.
-4.640420e+04
-4.638151e+04

Log Belief
-4.641636e+04
-4.639368e+04

•
Figure 14 shows this being performed for 'united.'

- 74-



•

•

•

It may happen that even when the abserved phaneme string is introduced at the

beginning of this step as a variant pronunciation that recognition is not corrected.

This indicates that the segment flagged as containing the misrecognized word is

incorrectly positioned with respect to the signal, or, that the error is caused by an

effect of the previous and/or following word. This is almast always a coarticulation

effect, commonly observed in cases like "JAL 7..." where the word final /z/ of 'JAL'

merges with the ward initial /5/ of '7'. In such a case the procedure first tries to get

a gaod variant pronunciation for the misrecognized ward Wi before beginning on

W i+1 or W ~ls as the case may be. A final pass of relaxation might then be undertaken

on the combined word pair, using the best obtained variant for each, in an attempt

to determine if any better variant pair is obtainable.

It certainly seems apparent that introducing variant pronunciations which are

'close' (e.g., in edit distance) to canonicat forms, as opposed to the more distant

canonical: V uw n av tel ah/ih dei d -4.327788e+04
observed: V ah ev -4.309143e+04
var1: y uw ah ev -4.312302e+04 +
var2: y uw n ah ev -4.31790Se+04 +
var3: y uw n ay ey -4.317000e+04 +
var4: y uw n ay tcl ev ·4.3200 13e+04 +
varS: y uw n ay tel t ev -4.327788e+04 x
var6: y uw n av tel ah -4.327788e+04 x
var7: y uw n av tel ih -4.321269e+04 +
varS: y uw n av tel ih dei -4.320S10e+04 +

var9: V uw n av tel ih dei d ·4.32290ge+04 +

Rgure 14 Iterative Ieft.to.right correctiGl1 of misrecognïzed form toward cananical Shown are the
nine steps of a first left-to-right pass adjusting the observed phoneme string, which differs
from the canonical by six deletions and two substitutions. No subsequent passes were needed
in this case as the result of the first pass is one deJetion away from the canonicaJ forme The
acoustic scores reported by the recognizer for each variant (log probability) include the score
for the misrecognized string using the canonical pronunciations. Except for variants 5 and SI
each variant corrects the misrecognition l with variant 9 being best (smaUest distance from
canonical, 1 deletion). ft is expected, as each variant is tried, that the acoustic score worsens
with respect ta the score for the observed phoneme string. Unusual in this particular exampJe
is the improvement in score observed between variants 2 and 3. The protorule (see § 4.6) in­
ferred from this operation is that a It! may be deleted following a Itcl/: tel t ~ tel E•
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misrecognized strings. is preferable. This method of generating ypcs yields the one

best variant given. as starting point, the observed phoneme string for the word.

Automating the procedure described here was not explored in this work. although it

might prove use fui as a strategy for producing variant pronunciation candidates.

One of the particular attractions of this technique, even performed as a manual exer­

cise, is that it can handle cases where a misrecognition cannat be corrected with a

single phoneme change, a limitation of other methods introduced.

4.4 The Phoneme Lattiee

During recognition, as state sequence paths are built and extended, it is possible to

snap-shot the state of the above-threshold paths in a useful way. That is. at each

time frame one can note which phonemes are active in some path. A table of such

activations with respect to frame number (time), called a /attice, may be constructed;

see Figure 15. In the figure, where the word Ithree' occurs, one sees that in addition

to the canonicat pronunciation Ith r iy/, many other phonemes are active through

part or ail of the interval (tb. te) for ward Ithree.' Thus, for example, a variant pronun­

ciation Itel t r ivl such as an Irish speaker of English might say, is feasible since ail of

these phonemes are also active in (tb, te).

This raises two possible uses for the phoneme lattice. In either case, the lattice

is used in conjunction with other information, in order to provide a set of variant

pronunciation candidates. If one already has some means of generating variant pro­

nunciation candidates. one can use the lattice as a filter ta cuH from a generated set

those candidates for which there is no acoustic evidence. Alternatively, one may use

the lattice to hypothesize a set of variant pronunciations, based on acoustic evi­

dence. and then apply sorne set of constraints to eliminate those sequences of

phonemes which are implausible.
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Use of the phoneme lattice as a post-variant generation filter is discussed in

other sections of this chapter. Use of the lattice as a primary means of generation is

not examined here.

4.5 A Substitution Rule Approach

A simple approach ta generating variant pronunciation candidates that does not use

observation data directly, as the abovementioned techniques did, is to begin with

pronunciations differing from the canonical form by one phoneme. A common obser­

vation when working with the relaxation-to-canonical technique described above (§

4.3) was that substitution of a single phoneme was usuallyt successful at correcting

misrecognition. Moreover, the canonical phoneme and the phoneme with which it is

substituted are nearly always members of the same 'c1ass', Le., a fricative is replaced

by another fricative, a vowel by a vowel, etc. (see Table 9). This also suggests the

basis for a simple generative technique for rating variant pronunciation candidates.

A simple class division of phonemes is shown in Table 4. One can introduce a

special phoneme to represent deletion of a phoneme, making it a member of each

class. thus making deletion a special case of substitution. One may also introduce

special classes to allow modeling of particular classes of substitution. e.g.. a class

containing {teLt th} would permit this method to propose /tcl t r iy/ as a variant pro­

nu nciation for the ward "three."

Admittedly. this approach only handles single phoneme errors. Yeti on an evalu­

ation subset of AT52 (26 sentences x 3 speakers). single phoneme substitutions and

deletions account for 83.396 of the misrecognitions. A simple and inexpensive

approach such as this one, able to correct over 80% of misrecognitions. is worthy of

t ~ 70CJ6 of the time in various tests conducted on subsets of AT52 and other corpora during the the­
sis work.
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garbage
aa
ae
ah
ao
aw
ax
ay
b
bel
ch
d
del
dh
dx
eh
el
en
epi
er
ey
f
9
gel
hh
ih
lx
iy
jh
k
kcl
1
m
n
ng
CM

ay
p
pel
qel
r
s
sh
si 1
si lv
si"
t
tel
th
uh
uw
v
w
y
Z

•

•

Rgure 15 Sample Phoneme Lattice showing activation of different phonemes in frames ('+' 4

active. '.' -+ inactive). Shown is part of the lanice (frames 100 ta 189); gaps appear between
blocks of 10 frames. The highlighted region corresponds to the ward 'three' in the sentence
"Continental 3 16 affirmative flight level 4 2 O." The 'garbage' model is an acoustic model
trained 50 as to score highly on non-speech acoustic information, e.g., to match coughs, ticks,
Iip-smacks, etc., thereby, in effect. preventing a phoneme model from scoring highly enough
to introduce misrecognition.
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• Table 4 Initial Phoneme-byoClass assignments

pursuit.

vowel
diphthong

glide
liquid
nasal

fricative
stopclosure

stop
affricate

iy ih ey eh ae aa ax uw uh ow ao ah er ix
av ovaw
yw
1 r
m n ng
f v th dh s z sh zh hh
pel bel tel dei kel gel
pbtdkg
chjh

•

•

A simple algorithm for generating variants is then:

for each phoneme ; in canonical pronunciation Wk

for each phoneme j in the c1ass of phoneme ;

generate one variant pronu nciation in which
phoneme ; is substituted with phoneme j

Using such a scherne, the word 'contact' yields 72 variant forms, as shown in

Table 5.

Even though the number of variants generated is Iinearly proportional to the

length of the ward (see Figure 16), this rule is sufficiently prolific at producing vari­

ants that sorne forro of filtering may be desired to reduce the number of candidates.

One available filtering mechanism is the lattice of active phonemes (see Figure 15)

generated during recognition: it indicates which phonemes had above threshold acti­

vations (Le., scored high enough to be kept as part of a path through the network of

HMMS) for each time frame. Variant pronunciation candidates containing phonemes

for which there is no acoustic evidence, i.e., which were never active in the interval

(tb 1 te)' or even (tb- e, te + e), are culled From the list of candidates; see Table 6.
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• Table 5 Variant Pronunciation Candidates Using Wlthin-Cass Substitution The Iist below shows
ail variants generated using this simple technique for the word ·contact.' Note that the first
listed variant is the canonical form for the word.

ke1 k aa " tel t ao kcl k tel t
kel k aa " tel t ah kel k tel t
kel k aa n tel t er kel k tel t
kel k aa n tel t ix kel k tel t
kel k aa n tel t ae pel k tel t
kel k aa n tel t ae bel k tel t
kel k aa n tel t ae tel k tel t
kel k aa n tel t ae del k tel t
kel k aa n tel t ae DEL k tel t
kel k aa n tel t ae gel k tel t
kel k aa n tel t ae kel p tel t
kel k aa n tel t ae kel b tel t
kel k aa n tel t ae kel t tel t
kel k aa n tel t ae kel d tel t
kel k aa n tel t ae kel DEL tel t
kel k aa n tel t ae kcl g tel t
kcl k aa " tel t ae kel k pel t
kel k aa n tel t ae kel k bel t
ke1 k aa n tel t ae kcl k DEL t
kel k aa n tel t ae kel k del t

kel k aa " tel t ae kel k kel t
kcl k aa n tel t ae kel k gel t
kel k aa " tel t ae kel k tel th
kel k aa n tel t ae kel k tel DEL

kel k ah n tel t ae kel k tel t
kel k er n tel t ae kel k tel t
kel k ix " tel t ae kel k tel t
kel k aa m tel t ae kel k tel t
kel k aa DEL tel t ae kel k tel t
kel k aa "g tel t ae kel k tel t
kel k aa " pel t ae kel k tel t
kel k aa n bel t ae kel k tel t
kel k aa " DEL t ae kel k tel t
kel k aa n del t ae kel k tel t
kel k aa n kel t ae kel k tel t
kel k aa " gel t ae kcl k tel t
kel k aa n tel th ae kel k tel t
kel k aa n tel DEL ae kel k tel t
ke1 k aa n tel t iy kel k tel t
kel k aa n tel t ih kel k tel t
kel k aa n tel t ey kel k tel t
kel k aa n tel t eh kel k tel t
kel k aa n tel t DEL kel k tel t

kel k aa " tel t aa kcl k tel t
kel k aa " tel t ax kel k tel t
kel k aa n tel t uw kcl k tel t
kcl k aa n tel t uh kel k tel t
kel k aa n tel t ow kel k tel t
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bel k aa n tel t ae kel k tel t
tel k aa n tel t ae kel k tel t
del k aa n tel t ae kel k tel t
DEL k aa n tel t ae kel k tel t
gel k aa n tel t ae kel k tel t
kel p aa n tel t ae kel k tel t
kel b aa n tel t ae kel k tel t
kel t aa n tel t ae kel k tel t
kel d aa n tel t ae kel k tel t
kel DEL aa n tel t ae kel k tel t
kel g aa n tel t ae kel k tel t
kel k iy " tel t ae kel k tel t
kel k ih n tel t ae kel k tel t
kel k ey " tel t ae kel k tel t
kel k eh n tel t ae kel k tel t
kel k ae n tel t ae kel k tel t
ke1 k DEL n tel t ae kel k tel t
ke1 k ax n tel t ae kcl k tel t
kel k uw " tel t ae kel k tel t

ke1 k uh " tel t ae ke1 k tel t
ke1 k ow n tel t ae kel k tel t
kel k ao n tel t ae kel k tel t
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Figure 16 Relation of Number of Generated Variants ta Length of Canonical Fonn The • represen t
variants generated using the rule based method (see § 4.6); the + represent variants generated
using the substitution rule method.
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Table 6 Lattice Filtering of Subsâtution-Aule Generat:ed Variants ln recognition work reported
elsewhere [58] variant pronunciations were developed on a set of 26 sentences in the ATS2
task uttered by three speakers. The table below shows, for words that were misrecognized.
the number of variant pronunciation candidates generated using the 'substitute one phoneme
with another of the same dass' rule. and the number that remained after filtering with the
phoneme lanice for the interval (lb, le). [n cases where the lattice eliminated ail candidates,
the technique exhaustively tests ail of the originally proposed candidates. and often finds
variant pronunciations successful in correcting the misrecognition. [n those cases where 0
successful candidates were found. correction of the misrecognition was achieved by using
(manually) the iterative transformation process described in § 4.3. Note that Many of the mis­
recognized words are single digits or numbers; these remain a particularly challenging com­
ponent of a vocabulary ta recognize.

Number of Number of Number of
Speaker Variants Post-lattice Successful

Word [0 Generated Variants Variants
2 JA 23 9 1
2 VP 23 14 1
3 JA 19 Il 1
3 VP 19 Il 1
3 OS 19 3 2
5 JA 22 0 3
6 JA 45 12 2
7 lA 50 0 0
8 VP 23 7 0
9 OS 10 0 2
12 VP 36 8 5
12 OS 36 7 3
13 VP 42 27 1
15 VP 58 0 7
17 VP 75 0 5
19 VP 35 1 1
affirmative VP 86 4 4
avianca JA 81 Il 3
avianca VP 81 12 1
conti nen tal lA 96 Il 0
continental OS 96 Il 0
flight level lA 64 0 17
roger VP 33 19 3
speed bird JA 86 0 3
traffle VP 60 3 1
turn VP 26 13 3
united JA 114 0 2

4.6 Rule Based Variant Generation

A generalization of the substitution rule based method of § 4.5 is the use of a set of

rules to guide construction of vpcs. One begins with the canonical pronunciation, as
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•
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before, but now searches a set of rules to find those that are applicable to the case at

hand, and through application of the subset of found rules, generates distorted

forms of the canonical pronunciation as vpcs.

The rules suggested by phoneticians and Iinguists should, in the general case,

prove ta be effective as a basis for creating variant pronunciation candidates. But,

for particular recognition problems, as was pointed out earlier, the pronunciation

recommended by a phonetician May not be the Most frequent or Most likely pronun­

ciation encountered. The work of Tajchman, Jurafsky and Fosler [61] establishes

probabilities for optional rules based on a particular corpus and sa can patentially

provide rule probabilities adapted to a particular task. That they independently corn­

puted rule probabilities on a different corpus (TIMIT) and found the probabilities were

highly similar is a good reflection of the general applicability of the rules. Their tech­

nique relies on being provided phonological rules a priori, and subsequently learns

how applicable the rules are as the respective rules' probabilities are determined.

An alternative approach is to begin with no rules and acquire rules through,

e.g., training on a corpus of labeled recordings. An intermediate approach might

begin using the simple substitution rule (§ 4.5) or iterative transformation (§ 4.3) ta

generate variants. From those candidates found to be successful, one may infer rules

and so accumulate a set of rules that, at sorne point, is rich enough ta be used by

itself ta suggest what variants ta generate. For example, a comparison of the canoni­

cal forrn with the best variant (e.g., minimal edit and c1ass distance) produced using

iterative transformation suggests the rule:

n tcl t ae kcl k tcl t ~ n tcl t ey kcl k tcl t.

5uch a formulation is refered to as a protorule, and it is entered ioto a collection of

similar protorules.

ln the more general case, beginning with no rules, one must first acquire pro­

torules before being able to generate variants. The set of protorules consists of rule

statements of observed (eligible) distortions of words. Once the set of protorules has

- 82-



•

•

•

been acquired, one begins using it in recognition work and can thus begin assessing

the utility of the individual protorules. With each protorule is kept a set of counts

(nu rnber of Urnes applied, successes, failu res, etc.) from which probabilistic scores

can be computed, and on the basis of which the (now) rules can be assessed and

ranked. Thus, after an initial training run on sorne set of corpora ta acquire pro­

torules, and subsequent use of the protorules in a recognition training run, one has a

set of rules to use to guide the generation of vpcs.

A training run on a suitable corpus (WSJo) was perforrned ta generate a collection

of protorules. Rules were distilled fram a set of 315 utterances in the wSJO task train­

ing sentences (35 sentences x 9 speakers were used). The procedure obtains. for

sorne utterance X, the best observed phoneme segmentation provided by the WSJO

bigram-based recognizer (see Appendix 2). It also uses the canonical phoneme string

and ward segmentation provided by a forced Viterbi alignment recognition. A

weighted dynamic alignment between observed and canonical phoneme sequences is

used to generate the protorules for that utterance. The weightings reflect the fact

that different misalîgnments can, acoustically. have different costs. For example, a

within-class substitution of one vowel for anather has lower substitution cast than a

substitution of a fricative for the same vowel. Protorules are generated without

regard as to whether a particular word may have been misrecognized, but rather, for

any difference between the observed and canonical phoneme strings. Each gener­

ated protorule is then compared against the existing set of protorules: if it is novel,

it is introduced into the collection; otherwise the count of its occurrences is incre­

mented to reflect another independent observation of the protorule.

Each of these protorules has a target phoneme as weil as left and right contexts

consisting of sorne number of predecessor and successor phonemes (context width).

Special tokens were introduced to indicate, in these contexts, when a word boundary

was crossed, as weil as start and end of an utterance. In forming the set of pro­

torules, the context width was chosen to be two. This resulted in the generation of
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7.158 distinct protorules for the 315 sentences examined. Table 7 shows sorne exam­

pies typical of these protorules.

One notes as weil that among the protorules acquired there are sorne suggest­

ing substitutions or deletions that the substitution rule method of § 4.5 also

described Ce.g.• the four substitution rules about target /5/). There are other distor­

tions described by protorules that the substitution method couId not have produced.

e.g., the Irl substitution. and the IYI insertion before /uw/, a commonly observed

distortion in speech. Coarticulation is captured in this set of protorules. e.g,. the last

example of In/. White the substitution method could also handle such coarticulation

(since DEL is a vaUd phoneme in every class). it could not have provided any context

information ta suggest that the proposed candidate should be used only in certain

contexts.

The training procedure is susceptible to alignment errors in the forced recogni­

tion. If the misalïgnment is not a consistent problem in recognition. then any pro­

torules proposed as a consequence of the misalignment will be poorly substantiated.

If the misalïgnments are consistent, then the more strongly supported protorules

which result will reflect a true artifact of the recognizer, potentially a use fui source

of misrecognition correcting information.

The number of protorules, k, may be unwieldy. It may, consequently, be

reduced using a compression procedure which selectively merges together pro­

torules having. e.g.• common Ieft or right contexts, common contexts and common

classes of target phoneme. etc. Note. for example. in Table 7. those cases that have

/51 as their target. These. ail substitutions of 15/ with /z/, show that a significant

reduction in the number of rules may be achieved by compressing rules of a com­

mon target. type and value with similar left and right contexts. These might be

reduced to s -+ z in context:

<liquid> /aa/ /5/ <mid/lax vowel> <fricative>
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• Table 7: Typical Protorules leamed on wsjO su'" The 'target phoneme' is the phoneme to
which the protorule applies; 'type' is one of (nsertion, Deletion or Substitution; 'ait value' is.
for type S, the phoneme which is substituted for the target, and for type l, the phoneme in­
serted before the target (this column has no meaning for type D); 'context' shows the context
(2 phonemes right and left) of the target. The special symbol '<1>' indicate a word boundary,
so cross-word contexts are preserved in this representation. The last column reports the num­
ber of times this particular rule (same targe t, same right/left context and same word) was en­
countered.

Target Type Ait Num. of
Phoneme (I,D,S) Value Context Obs.
aa S ae d ay AA cl k 10
aa 5 ao vcl d AA cl k 1
ae 1 y vcl 9 AE n <1> cl 1
d D ah vcl 0 iy <1> ah
iy 5 ey ao r IV <1> ah v 1
n 5 m vc1 d <1> N ao r 1
n 5 m dh ;y <1> N ey ch 1
n 5 m dh ;y <1> N ey cl 2
n D w aa N <1> n ae 1
r 5 eh f aa R m z 1
s S z 1 aa 5 ah f 1
s S z r aa 5 eh 5 3• s S z 9 ae 5 <1> vcl d 1
5 S z k ae 5 cl t 1
uw 1 y vcl d UW 5 ih 2

or

<stop> /ae/ /5/ <closure (voiced or unvoiced» <stop>

Variant pronunciation candidates are generated according to:

for each phoneme m in canonical pronunciation Wj

for each protorule in ruleset

if pratorule applicable ta m in context
generate variant
if this variant is navel

add new variant ta list
else

add this protorule's id ta list of rules
substantiating this variant

•
One may choase, of course, how a protorule is 'applicable': e.g., merely has the

same target phaneme, or, same target + same contexts. One may also establish a
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criterion such that a particular variant pronunciation candidate must be suggested

by a rules before being accepted. This affects the quality and quantity of the variant

pronunciation candidates generated. As one relaxes constraints on the matching of

context in a pratorule ta the context in the canonical pronunciation, it is evident that

mare rules will match and, cansequently, more variant pranunciation candidates will

be generated.

4.7 Performance Models as Variant Generators

The rule based approaches described above constitute a 'prescriptive' approach to

generating variant pronunciation candidates. A different approach, inspired by the

acoustic model architecture used in the recognizer, is ta model the pronunciation of

a ward, providing probabilistic scores for each different pronunciatian.

The performance model (see Figure 17) is an output generating automaton of

the Mealy machine type. Transition and emission probabilities are learned from

observations drawn from any suitable corpus. The pronunciation of a ward repre­

sented using performance models embodies observed substitution, deletion and

insertion events from observations of real speech. It may not include possible vari­

ants arising from idiosyncrasies of the particular recognizer, but these may be

added. Nor does it include context sensitivity, e.g., the model will report the proba­

bility of a particular substitution as the pooled probability of that substitution from

ail contexts in which it was encountered.

A first set of performance models was trained on TIMIT. Substitution, insertion,

and deletion counts were obtained for each phoneme by aligning ideal and observed

phoneme transcriptions of each utterance. This was done by for each district (drI ­

dr8), whence global counts were derived. For the word 'contact' (see example in §

4.5), the performance model variants scoring above threshold probability are shown

in Table 8 (compare with Table S).
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Figure 17 A phoneme performance madel The transition and emission probabilities are leamed
from training material in a speech corpus. Pd is the probability that the phoneme being mod­
eled is deleted (so only emits E). Pi is the probability of an insertion before the phoneme being
modeled and the associated emission probabilities. 1 per phoneme. are based on what was ob­
served in the training data, i.e.• where insertions occurred before the target phoneme. Ps is the
probability that tht: phoneme being modeled is unchanged or substituted for sorne other
phoneme. and the emission probabilities are based on observed substitutions for the target
phoneme.

Selection of an acceptance threshold is essential as, without one, the full set of

variant pronunciation candidates is u nreasonably large (Le., the full Cartesian prod­

uct of observed substitutions). In the case of 'contact', 1,397,088,000 variants are

possible in drl alone; with a threshold of l e-s, 88 candidates are proposed.

ln the absence of a clear suggestion as to a 'good' value for the threshold, a

value such that the performance model generates roughly the same number of vari­

ants as more conventional methods is chosen. Examining the sets of variants pro­

duced by performance model and rule based methods shows relatively minore but

interesting, differences.

As described above (§ 4.1), the performance models trained on individual

dialectic regions capture 'local' differences which affect variant pronunciation candi­

date scores; see Figure 18.
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• Table 8 Variant Pronunciation Candidates Using Performance Madel Generator Substitution The
list below shows aIl variants generated using a performance model trained on the dr1 district
af TIMIT. Shown is the canonical form far the word, the substitution sets farmed (Le., non­
zera substitutions for each af the canonical phonemes). and the variants so generated (88 in
total, with a threshold set at 1e-s).

Word "contact" kcl k aa n tcl t ae kcl k tel t

Lists of substitutions:
1 1 41 kcl = { t pel kcl DEL }
21 71 k ={d dx p k q gel DEL }
31 101 aa ={ih ix ax ah uh aa aa er axr DEL}
41 81 n = { 1en eng m n ng nx DEL}
51 51 tel = { q tel kcJ del DEL}
61 91 t = { d dx p t k q hv del DEL}
71 III ae ={ih eh ae ix ax ah aa ey er ax-h DEL 1
81 41 kcl ={t pel kcl DEL}
91 71 k ={d dx p k q gel DEL }
10 1 51 tel ={q tel kcJ del DEL}
Il 1 91 t ={d dx p t k q hv dei DEL}

No threshald max number af variants: 1397088000

• kel k aa n tel t eh kel k tcl t kcl k aa m tel t ae kel k tel t kcl k aa n tel t er kel k tel t
kel k aa n tel t ae kel k tel t kel k aa n tel d eh kel k tel t kel k aa n tel k eh kel k tel t
kel d aa n tel t ae kel k tel t kel k aa n tel d ae kel k tel d kcl k aa n tel k ae kcl k tel t
kel p aa n tcl t eh kc1 k tel t kel k aa n tcl d ae kcl k tel t kel k aa n tel del eh kel k tel t
kel p aa n tel t ae kel k tel t kel k aa n tel p eh kel k tel t kel k aa n tel del ae kel k tel t
kel k ih n tel t ae kcl k tcl t kel k aa n tel p ae kel k tel t kel k aa n kel t ae kel k tel t
kel k ah n tel t eh kel k tel t kcl k aa n tel t i h kcl k tel t kel k aa n del t eh kcl k tel t
kel k ah n tel t ae kel k tel t kel k aa n tel t eh pel k tel t kel k aa n del t ae kel k tel t
kel k ah ng tel t ae kel k tel t ke1 k aa n tel t eh ke1 p tel t kel k aa ng tel d eh kel k tel t
kel k uh n tel t eh kel k tel t kc1 k aa n tel t eh kel k tel d kel k aa ng tel d ae kel k tel t
kel k uh n tel t ae kel k tel t kel k aa n tel t eh kel k tel p kel k aa ng tel p ae kel k tel t
kel k uh ng tel t eh kel k tel t kel k aa " tel t eh kel k tel t kel k aa "g tel t ih kel k tel t
kel k uh ng tel t ae kel k tel t kc1 k aa n tel t eh kel k tel k ke1 k aa "g tel t eh kel k tel d
kel k .10 n tel d eh kel k tel t kc1 k aa n tel t eh kel k tel del ke1 k aa "g tel t eh ke1 k tcl t
kel k ao " tel d ae kel k tel t kel k aa n tel t eh kel k del t kel k aa ng tel t eh kel k del t
kel k ao " tel t ih kel k tel t kel k aa n tel t eh kel gel tel t kel k aa ng tel t ae kel k tcl d
kel k ao n tel t eh kel k tel d kel k aa n tel t ae pel k tel t kel k aa ng tel t ae kel k tel p
kel k ao n tel t eh kel k tel t kcl k aa " tel t ae kel d tel t kc1 k aa ng tel t ae kel k tel t
kel k ao n tcl t eh kcl k del t kel k aa n tel t ae ke1 p tel t kel k aa "g tel t ae kel k de1 t
kel k ao " tcl t ae kel k tel d kcl k aa n tel t ae kel k tel d kel k aa "g tel t ah kel k tc1 t
kel k ao " tel t ae kel k tel t kel k aa n tel t ae kcl k tel p kel k aa ng tcl t aa kel k tel t
kel k ao n tel t ae kel k del t ke1 k aa n tel t ae kel k tel t kel k aa "g tel t ey kel k tcl t
kel k ao " del t eh kel k tel t kcl k aa n tel t ae kel k tel k kel k aa ng del t eh ke1 k tel t
kel k ao n del t ae kel k tel t ke1 k aa n tel t ae kel k tel del kel k aa ng del t ae kc1 k tel t
kel k ao "g tel d ae kel k tcl t kel k aa n tel t ae kel k kel t kel k er " tel t eh ke1 k tel t
kel k ao "g tel t eh kel k tel t kel k aa n tel t ae kel k del t ke1 k er n tel t ae kel k tel t
kel k ao "g tel t ae kcl k tel d kel k aa " tel t ae kel gel tcl t kel gel aa n tel t eh kel k tel t
kel k ao ng tel t ae kcl k tel t kel k aa n tel t ah kel k tel t kel gel aa " tel t ae kel k tel t
kel k aa 1 tel t ae kel k tel t kcl k aa n tel t aa kel k tel t
kel k aa m tel t eh kcl k tel t ke1 k aa n tel t ey kel k tel t

•
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• Table 9 Perfonnance Madel Substitution and Insertion Statistics Drawn from ail eight 'dialectic
districts' over which the TIMIT corpus is collected t the table shows how often a given phoneme
is observed to occur as itself as opposed to how often it appears as a member of its own or
sorne other phonernic class. The classes are fairly broad: Vowel. Liquid/Glide. Nasal. Fricative.
Stop (either c10sure or consonant). The insertions colurnn shows the distribution of occur-
rences of insertions by class. e.g.• for /aa/. 189 of its 3.653 occurrences had a stop inserted
before the /aa/.

Occurs As As Nonself Insertions
Phoneme Class (Total) Itself V LG N F S V lG N F 5

aa 3653 2629 999 1 a 0 0 4 46 2 9
ae V 6141 3932 2116 1 0 a a 18 113 11 5 1013
ah V 11582 2014 7840 86 a a a 77 118 23 20 461
ao V 3342 2291 1032 a a a a 7 33 2 209 443
aw V 80S 716 73 2 0 0 0 2 21 a 1 82
av V 2519 2352 155 a a a a 2 22 2 a 167
b 5 2474 2151 0 0 0 0 7 3 60 0 1 a
bel 5 2474 1878 0 0 0 a 10 7 9 6 8 4
ch F 813 757 a a 0 41 a 0 1 a a 640
d 5 6402 3404 a a a 0 834 29 31 3 1 2
dei S 6402 3993 0 0 0 0 S5 24 20 4 0 14
dh F 3211 2807 0 a 0 178 a 6 82 4 3 4
eh V 3054 2604 430 a 0 a 0 11 23 2 3 241
er V 3740 1432 2077 168 a a a la 25 2 13 86
ev V 2156 2059 93 a 0 a a 1 23 0 4 81
f F 2192 2167 a a a 10 a 12 52 2 6 9
g 5 2373 1985 a a a a 20 2 11 a 0 a
gel S 2373 2177 a a 0 a 8 4 0 a 2 1
hh lG 2230 869 3 20 1 a a 13 46 2 4 6
ih V 7744 3677 3761 18 0 a 0 31 141 15 39 538
IV V 7177 6126 974 10 0 0 0 13 35 7 10 158

• jh F 1040 957 a 0 0 57 0 0 3 8 0 795
k 5 6376 4811 0 0 0 a 48 1 29 1 0 0
kel 5 6376 5795 0 0 0 a 28 38 7 2 7 9
1 lG 6847 5725 5 924 0 a 0 41 69 11 19 7
m N 4014 3814 4 9 122 a a 14 393 3 9 26
n N 8977 6867 8 6 1891 0 a 43 156 3 a 31
ng N 1258 1129 1 1 118 0 a 1 2 a 2 1
aw V 2160 2036 lOS 6 0 0 0 4 13 a 3 139
av V 763 666 96 a a 0 0 30 3 a 0 250
P S 2946 2551 a 0 a a 27 0 14 0 a 0
pel S 2946 2596 0 0 a 0 18 6 0 2 3 1
r lG 8449 6141 653 35 20 0 0 28 61 12 11 13
s F 7556 7101 a 0 a 217 0 14 86 9 8 194
sh F 2141 2102 0 0 a 17 a 2 59 0 0 28
t S 10263 4240 0 0 a 0 2911 35 39 4 3 1
tel 5 10263 5748 a 0 a 0 155 34 8 14 7 7
th F 616 584 0 a a 11 0 0 39 1 a la
uh V 564 336 208 a 0 0 a 5 4 0 1 6
uw V 3363 514 2795 2 1 a a 21 20 7 41 43
v F 2064 1937 a a a 19 a 2 14 1 0 a
w LG 3192 3086 1 16 2 0 a 19 708 2 2 32
V LG 2066 1644 5 2 1 a a 3 27 a Il 18
z F 4142 3572 a a a 357 0 3 63 0 1 27
zh F 82 68 a 0 0 13 0 0 1 0 0 9

•
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Phonemie Transcription of word 'contact'

Figure 18 Dialectic Variation in Candidate Probabilities For the word ·contactt
• the figure shows

the probability of observing each of the phonemes in the canonicat pronunciation in each of
the eight districts in which data were collected. Note that sorne phonemes are subject to
greater variation than others. See also figure Il.

4.8 Summary

Based on ail of the above. it is possible ta formulate a general procedure for obtain­

ing rules to generate variant pronunciations:

1. a priori knowledge is used ta formulate plausible phoneme substitutions,

insertions, and deletions in terms of a set of possible replacements for

each phoneme.

2. these sets are refined by the results of using performance models.
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3. new ruies involving left and right contexts are inferred from examples of

effective variant pronunciations able to correct recognition errors and. per­

haps, consistent with human expert expectations.

4. rules are generalized by factoring or introducing symbols for phoneme

classes inta the left and right contexts.
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5. Recognition Using Variant Pronunciations

The previous chapter presented a few simple methods for generating variant pro­

nunciations of a ward. This chapter is concerned with how these methads can be put

ta use in improving recognition accuracy. Specifically, it looks at how the PD can be

augmented in an automatic fashian with a reasanable set of variant pronunciations,

the ultimate aim of which is ta improve recognition accuracy. The chapter begins

with a look at the data structure central ta this work t then describes the procedure

used to acquire variants, reports results of recognition tests using the pronuncia­

tians so acquired t and cancIudes with a look at what the successful variant pronunci­

ations indicate about making variants.

5.1 The Pronunciation Dictionary

The pronunciation dictionary begins by containing the canonical pronunciations for

each word in the task. These pronunciations were taken fram the CMU 100,000 ward

pronunciation dictionary [121, which provides multiple canonicat pronunciations for

only very few words t. The intention îs that this PD will grow as it acquîres neW vari­

ant pronunciations for words.

The PD is maintained as an ordered list of entries of this form:

ward label pron class success (ail used

where:

ward is the orthographie (or other convenient) farm of the ward,

t For example, the pronunciation of the digit 0 is provided as Iz ih r owl or Iz iV r ow/.

- 93 -



success

pron

class

•

•

•

label is a structured string which is:

null if this entry is the only canonical form for the word,

a single digit if there are> 1 (and < la) canonical pronunciations of

the word. In the AT52 task, no word has more than 2 canonical pronun­

ciations,

a number followed byan alphabetic string if this is a variant pronun­

ciation. e.g., '3AC.' The number identifies which method generated the

variant pronunciation:

1 rule-based (see § 4.6)

2 substitution rule based (see § 4.5)

4 coarticulation model (see § 5.4)

8 iterative transformation (see § 4.3)

160ther

Pronunciations that arise from more than one method have a numeric

subfield which is the result of oRing the contributing methods' tags,

e.g., method 3 denotes a pronunciation generated by both rule-based

and substitution fuie based methods. The alphabetic string identifies

which particular variant pronunciation this is using the convention A,

B•...• Z, AA, AB, ... , AZ. BA, BB•... BZ ... and 50 on.

is the pronunciation of the word (currently expressed in TIMIT units),

identifies the 'pedigree' of the pronunciation, with a denoting a canonical

pronunciation. Variant pronunciations that have been generated and are

undergoing evaluation belong initially ta class 3, but may end up in class

1, 2 or 4 (see below).

a count of the number of times this pronunciation has been used that re­

sulted in ward being correctly recagnized,
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a count of the nurnber of tirnes this pronunciation has been used that re­

sulted in the word being recognized incorrectly, Le., the ward for which

this is the pronunciation was recognized but a different word should have

been recognized,

used a count of the total number of times this pronunciation has been used (re-

dundant at present since it must be the sum of the two previous fields).

A variant pronunciation may be demoted in class if it is deemed 'tao unlikely' a

pronunciation Ondependently of the acoustics). If, for pronunciation W;j'

P(w; 1 W;) < a, the pronunciation is rejected. Le., is demoted to class 4. The thresh­
J

old, a, is a=a NI f P(w;ltc: 1W;) where w;" is the k th of N canonicat pronunciations of
k=l C

word i. At present Cl is chosen, arbitrarily, as 10-36 •

The probability of the particular pronunciation, P(w;j 1W;) is determined using

sorne set of statistics on pranunciations. At present the pronunciations provided

with TlMlT serve as the basis of these statistic (see § 4.7). Used for the results cited in

this chapter was a merged set of aIl eight of TIMlT'S dialectic regions.

Of variants that remain in class 3 after the above filtering step, those that are

found in subsequent recognition tests to be highly successful may be promoted to

class 2. If a pronunciation is observed ta be successful across many speakers it may

be promoted to class 1. No variant will ever be made a dass 0 PD entry.

For AT52 the canonical PD contained 179 entries. These pronunciation entries,

with a file expressing the task syntax, are combined by a program to produce the

stochastic finite state auto maton used by the recognizer (see § 2.3). A consequence

of this organization is that changes to the PD have no effect upon recognition until

the pronunciations and syntax are 'compiled' into a new network.
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5.2 Training

The purpose of training is to acquire alternative pronunciations for words which

have been misrecognized when only the canonical pronunciations appearing in the

initial PD are available. Table 10 presents a summary of recognition scores on the

training, evaluation and test sets of the AT52 task using only canonical pronuncia­

tians; these serve as the base reference to which ail other results presented here are

ta be compared.

Training was performed on a subset of the ATS2 task designated as a training set

(3 speakers x 47 sentences), and later on the evaluation set (9 speakers x =26

Table 10 Summary of Canonical Recognition Rates on ATS2 Task The table presents error rates
for Sentence and Ward recognition on the three partitions of the AT52 set. The dialect classifi­
cations are approximate, and are NAE . native American-English speaker, NAE-MW native Amer­
ican-English speaker with strong U. S. Mid-West accent, NAE-f native American-English fast
speaker, QF native Québec French speaker, and MIX refers to a speaker whose mother tangue
is not EngJish, but who learned English in both the UK and the UAR.

Speaker Dialect Phoneme Train Set Eval Set Test Set

ID Class Rate S W S W S W
JA NAE 11.9 10.87 2.78 12.00 2.16 9.09 0.97
MS NAE 9.8 27.27 9.11 - - - -
PV NAE-MW 10.5 40.48 14.29 - - - -
ZA Iight Ara- 11.1 - - 14.29 2.81 25.00 4.62

bic ac-
cent

JB NAE-F 12.9 - - 38.46 6.25 45.45 10.68
MB QF 11.7 - - 20.00 2.70 11.11 1.23
OS NAE-F 12.7 - - 30.77 5.00 30.00 5.75
QM NAE 10.0 - - 20.00 6.44 11.11 2.78
VP strong 10.2 - - 57.69 22.50 70.00 18.39

Bangladeshi
accent

TS MIX 11.8 - - 24.00 3.06 20.00 4.60
W moderate 10.9 - - 57.14 13.90 44.44 17.11

(ndian ac-
cent
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sentences). A rough classification of the speakers by dialect appears in Table 10.

The rate of speech was highly variable across the speakers; the table shows speaking

rate measured in phonemes per second averaged over the evaluation set (except for

speakers MS and PV averaged over training set).

Training is performed beginning with a pure canonical version of the PD. Suc­

cessfui variants are accumulated as a set of 'preferred pronunciations' which may be

saved (separately) following training. Thus a training session may be run for an indi­

vidual speaker, a group of speakers, or an entire population of speakers, with the

variants favoured by the user group (of one or more) kept distinct.

The procedure followed for training is:

for each utterance in the training set

perform recognition on this utterance

if recognition was incorrect

di splay ward and phoneme segmentation

prompt for correction to make

generate variant pronunciation candidates for correction

do

build new task SfSA with ail eligible variants in parallel

re-run recognizer

if recognition is correct

increment count of 'winners'

mark this pronunciation ineligible

until no more winners found or maximum count of winners reached

update list of preferred-pronunciations

The displaying of the ward and phoneme segmentation when soliciting the cor­

rection from the user is an anachronism from previous versions of the training
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procedure. In fact, as currently implemented, it suffices merely to indicate which

word in the sentence is to be corrected. Figure 19 shows a sample of the training

procedure being used.

Testing recognition accuracy is done using adynamie alignment scoring algo­

rithm which compares the recognizer's hypothesized word string with the transcrip­

tion obtained from the signal file. t The algorithm provides the number of insertions,

deletions and substitutions needed to transform the observed (recognizer output)

string into the reference (transcript) string. The algorithm is based on string compar­

ison alone, so provides an edit distance, although this may not always be truly rep­

resentative of the errors that Dccurred. For example, in Figure 19, the word VRG is

misrecognized as the pair of words 'reduce speed'; this will be counted as two

errors, a substitution and an insertion, rather than a single substitution of one word

for two other words. In any case, use of this scoring method to count errors is made

in a consistent and egalitarian way across ail recognition experiments sa meaningful

comparisons can be made.

Two distinct training series were performed. The first used only the three

speakers in the originally designated training set, with one set of preferred­

pronunciations kept for ail speakers. These variants were tested on that training set,

and on the evaluation set of nine speakers (eight of whom were different from train­

ing set speakers). The second run was performed on the nine speakers from the eval­

uation set individually, with preferred-pronunciations kept for each speaker. These

variants were then utilized in recognition experiments on the test set of 9 speakers x

:; Il sentences (same nine speakers as evaluation set). The outcome of the second

training exercise is summarized in Table Il, below.

t The signal files are stored using NIST's SPHERE format which allows headers ta contain arbitrary
fields. Each signal file in ATS2 contains a transcript of what the speaker in faet said. and the prompting
text for the sentence. For more information on the corpus, see Appendix 1.
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SCORE:84:*-7.024306e+04
COMPARING REFERENCE: VRG 2 Il main~ain heading 3 3 0 degrees
TO RECOGNIZED: reduee speed 2 1 3 3 indica~ed 4 sequeneing 2 runway 0
RAW: reducee2 speed 2 1 3 3 indieated@2 4 sequenc;ng 2 runway oœ2
11 1 i ds: (3 / 0 / 8) <84
.......................................................................................................................................................................................................... .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
ERROR IN RECOGNITION
84: VRG 2 Il ma;ntain heading 3 3 0 degrees

1:
2:
3:
4:
5 :
6:
7:
8:
9:
10:
Il:
12:

160 640 @sil
640 6880 @.sil
6880 9280 @sil
9280 16000 reduee@2
16000 30880 @sil
30880 33440 speed
33440 36960 2
36960 38880 @sil
38880 47200 1
47200 52000 @sil
52000 56000 3
56000 57600 @sil

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

57600 60960 3
60960 63520 @sil
63520 80640 ;ndieated@2
80640 84480 4
84480 88320 @s;l
88320 98400 sequene;ng
98400 100160 @sil
100160 101920 2
101920 102720 @sil
102720 107520 runway
107520 112320 0@2
112320 116960 @sil

•
BIGRAM SEGMENTATION:

160 640 sil
640 4960 th
4960 5600 v
5600 7360 hh
7360 8800 uh
8800 10880 r
10880 12800 ih
12800 13600 gel
13600 14400 dh
14400 15040 ;h
15040 16480 dx
16480 17120 ; x
17120 20160 v
20160 23520 th
23520 30720 sil
30720 32320 jh

32320 34560 uw
34560 36640 ow
36640 39040 qel
39040 41760 1
41760 43680 ae
43680 44640 dh
44640 45440 eh
45440 46880 n
46880 47040 dcl
47040 47520 d
47520 49120 th
49120 51680 f
51680 53440 epi
53440 54080 m
54080 56160 ey
56160 57120 n

57120 57280 tel
57280 58240 t
58240 59360 i h
59360 61600 iy
61600 63360 hh
63360 65120 uh
65120 65600 dx
65600 67040 iy
67040 68800 uw
68800 73280 si l
73280 74720 th
74720 75360 ih
75360 76640 r
76640 78400 i Y
78400 80960 th
80960 81760 Y

81760 82720 ao 107520 111200 z
82720 83680 r 111200 116960 sil
83680 87520 ;y
87520 90560 z
90560 91680 iy
91680 94240 r
94240 94880 ah
94880 96960 l
96960 97120 dcl
97120 98080 d
98080 100320 sil
100320 101760 iy
101760 102400 gcl
102400 103040 9
103040 104640 r
104640 107520 iy

•

Enter corrections as b.exw or hit return if is all correc~

b.e are word numbers. x is one of i. d. or s. w;s the word that should be there (for S)
4960.14400sVRG
VARIANT: '·/home/speeeh2/charles/speech/bin/pa-ri sc/dovaru uVRG" 52 variants
VARIANT: '·/home/speech2/charl es/speech/bin/pa-ri sc/rul evar" uVRG" 64 vari an~s
VRG has 1 eanonical prones)
Average eanonical pronprob ;s -1.9491. mak;ng eutoff -84.8422
VPC LIST RETURNED HAS 96 en~ries

ICW: VRG*2CN;s 1
ICW: VRG*3AI;s 2
ICW: VRG*2CJ;s 3
ICW: VRG*2BI;s 4
ICW: VRG*1CE is 5
rcw: VRG*3AG is 6
rcw: VRG*2CG is 7
ICW: VRG*2BT;s 8
rcw: VRG*2AE is 9
ICW: VRG*2K is 10

REWROTE /home/speeeh2/charles/ATS2//Pronsets/v7A/PD.txt: pu~ 448 wordpron entr;es

Figure 19 Output From a Training Run Shown is a sampIe of the output from a typical training
run. Words having more than one canonical pronunciation are displayed as word@nn where
nn denotes which particular canonical pronunciation was used. The misrecognized word. [air-
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• fine name] VRG, is supplied in response to prompt with a guess as to where the utterance the
correction is ta be made. In the current version of the training procedure it is sufficient to
specify only the word. The VARIANT procedure is invoked with each method requested. here
resulting in twa sets of generated variants: the former is from use of the substitution·based
method. the latter from use of the rule-based method. Each of the lists is sorted and contains
unique entries. but there may be duplicates between the two lists. In this case. it turns out
that the merged list contains ooly 96 distinct variants. The list of winning variants follows. in
order of highest scoring to lowest scoring. and is stopped when 10 successful variants have
been identified.

Table 11 Successful Variant Pronunciations by Speaker The table shows the number of variants
round to be successful (as class 3 variants) at correcting misrecognition by speaker and by
method of origin.

• 5.3 First Set

Speaker
ID

JA
ZA
lB
MB
DS
QM
VP
TS
W

Winning Variants Generated Using
Rule-Based Substi tu tian Combined

6 3 2
Il 0 6
542
o 7 3
2 6 1
1 14 2

13 20 20
1 7 2

14 30 33

•

The objective of the training was ta obtain from the set of ail variants generated a

subset of reliable pronunciations to add to the canonical PD. The PD so augmented

would then be tested on the nine speakers in the evaluation set. many of whom are

not native American-English speakers.

Initial training of variant pronunciations was performed on the 3 speaker x 47

sentence training set. Ail three speakers in this set are native American-English

speakers who differ in speaking rate and dialect (see Table 10). As such, their pro­

nunciations were expected to be more or less 'standard' for native American EngJish

speakers.

Variants were generated using bath the rule-based and substitution methods

described in chapter 4. For the former, the 'supported-by-rules-observed-n-times'

threshold was set ta 2. Note that the training procedure used for developing variant
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pronunciations was slightly different from that described above. In this (earlier) ver­

sion, rather than test ail the candidates in parallel, each was tested individually and

designated an 'in-context-winner' if it succeeded in correcting the misrecognized

work in the context in which it appeared in the sentence. Table 12 shows typical

behaviour of the rule-based method with different threshold values.

At the conclusion of the training phase, the winning pranunciations were added

to the PD and recognition performed on the training set to measure behaviour and ta

look for variant pranunciations that induced errors (Le., more than they corrected

errors). Following eliminatian of offending variant pronunciations, the updated PD

was tested on the evaluation set; see Table 13.

Examination of misrecognitions suggested many were the result of a formerly

inoffensive variant pronunciation now inducing errors. Speakers whose speech devi­

ated far from that of native American-English speakers appeared particularly ill­

served by the set of variants augmenting the canonical PD.

5.4 Second Set

Reflection on the poor showing reported above suggested that it was, perhaps,

overly ambitious to expect a small number of pronunciations from a smalt, non­

representative (with respect ta the evaluation set) set of training speakers to provide

good corrective power. It seemed apparent that the approach should be less ambi­

tious, and that variant pronunciations should be subject to more scrutiny before

being made eligible for more widespread access in the PD. The notion of c1ass for

entries in the PD was introduced as a consequence (see § 5.1).

Certain recognition errors which arase during these recognition experiments

were difficult or impossible ta overcome. Sorne of this difficulty arase from between-
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Table 12 Comparison of Rule-Based and Substitution Variant Generating Medtods Sucœss Rates
Shown is the proportion of in-context-winner pronunciations to the total number of variants
proposed by a variant generating method. The ICW rates are averages since, while variants
may have been generated for more than one speaker, different speakers may have had differ­
ent degrees of success (numbers of ICWs). The rates are computed relative to the total number
of variants generated, not ta those variants retained as class 3 pronunciations (see text).

Substitution Rule Based
9=2 9=3

1

9=4
Num. of 1 % which Num. of 1 %which Numaf 1 % which Numo! % which

variants are ICW variants are [CW variants are ICW variants are ICW

Ward generated (total) generated (avg) generated (avg) generated (total)

3 19 0.0 34 5.9 17 5.9 12 8.3
5 22 4.6 23 4.3 12 0.0 6 0.0
6 45 0.0 46 0.0 27 0.0 21 0.0
7 50 2.0 67 3.0 34 5.9 26 7.7
8 23 4.4 23 8.7 15 6.7 9 1LI
12 36 5.6 57 3.5 31 3.2 16 0.0
15 58 8.1 72 13.9 36 16.7 27 14.8
ML 77 7.8 138 5.1 80 7.5 60 10.0
AVA 81 4.0 61 3.3 38 5.3 24 8.3
COA 96 0.2 148 0.0 84 0.0 60 0.0
DAl 51 15.7 82 4.9 44 9.1 30 10.0
JAL 79 8.9 141 5.7 83 9.6 S3 9.4
KAl 93 7.9 143 6.3 81 9.9 S5 10.9
UAL 57 0.0 80 0.0 50 0.0 35 0.0
VRG 52 9.6 64 14.1 38 18.4 36 25.0
affirmative 86 5.2 129 4.7 44 4.5 53 1.9
approach 45 15.6 72 6.9 44 6.8 31 9.7
cleared_for 68 20.6 88 9.1 52 5.8 36 8.3
contact 72 lA 81 0.0 54 0.0 32 0.0
flighLleve1 64 5.6 114 14.9 56 17.9 36 25.0
reaching 36 2.8 60 1.7 35 2.9 27 3.7
ta 23 4.4 23 13.0 16 0.0 12 0.0
EastTexas 24 20.8 118 5.1 65 6.2 45 4.4
Flann 29 6.9 39 2.6 19 5.3 13 0.0
Modena 61 47.5 86 0.0 44 0.0 30 0.0
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Table 13 Summary of Carnlction Rates on Training and Evaluation Set Using the procedure de­
scribed in the text. the first recognition results using the variant generation procedures de­
scribed in chapter 4 are presented. Results are shown as the percentage change with respect
to the canonicat recognition rate, hence positive values imply the error rate increased. nega­
tive values that it decreased.

Train Set Evaluation Set
Speaker Rule-Based Substitution Rule-Based Substitution

ID SER WER SER WER SER WER SER WER

JA -41.18 -66.25 -58.82 -68.75 -40.00 -42.86 -20.00 -14.29
MS -58.82 -14.47 -76.47 -53.95 - - - -
PV -40.00 -30.12 -30.00 -28.92 - - - -
ZA - - - - -11.11 -3.85 0.00 -15.38
JB - - - - -47.06 -40.54 -29.41 -47.30
MB - - - - +33.33 +15.38 +33.33 +69.23
OS - - - - +11.11 0.00 +11.11 +29.41
QM - - - - +11.11 -10.71 -22.22 -14.29
VP - - - - +13.33 +31.65 0.00 +18.99
TS - - - - +50.00 +87.50 +33.33 +25.00
W - - - - -5.88 -10.42 0.00 +20.83
Average -46.67 -36.95 -55.10 -50.54 +1.65 +2.91 +0.68 +8.02

ward caarticulation effects, something the variant generating methods were not par­

ticularly suited ta fielding. A better solution was to allow the introduction af coartic­

u/ation pranunciatians into the PD. The mast egregious affender of this type was

observed in the sentence beginning "japan Airlines 6 17 ...", for which the canonical

transcription is: /jh ah pel p ae n eh r 1 av n z s ih kcl k s s eh v ah n tel t

iV n /' The fricatives occurring at the ward boundaries were merged in 75.096 of the

cases resulting in misrecognition. Two coarticulation pronunciations were intro-

duced as a result: a 6_17 word and a JAL6_17 word. Of the 75.096 where misrecogni­

tian occurred, 66.796 use the former pronunciation when it is made available. When

both pronunciations are available, 83.396 of the misrecognition cases use JAL6_17.

Coarticulation pronunciations can be generated automatically from the task

grammar following simple rules for cases known to be susceptible to coarticulatory

distortion. On the other hand, such pronunciations may be introduced (as here) on

an 'on-demand' basis. This, too, may be done automatically: a misrecognized word

may first be subjected to a rule-based test to see if it qualifies as a case susceptible
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• Table 14 Summary Df Recognition PerfDnnance on Evaluation Set The upper section reports
ward error rates, the lower section string error rates. on the 9 speaker evaluation set. Canoni-
cal error rates are reproduced here from Table 10 for convenience. "Method 3" is the combi-
nation of methods 1 and 2. Le.• the combination of rule-based and substitution based variant
generating methods. Similarly, Method 7 is everything in Method 3 with the addition of coar-
ticulation pronunciations for certain combinations of words (see § 5.4). Method F is method 7
ta which are added variants produced by iterative transformation. The rightmost column
shows the percentage change in error (with respect ta canonical) of the best of the methods
used.

Speaker Total Base Rule Substitution Method Method Method Best
Id Words Canonical Based Rule Based 3 7 F Correction

lA 231 2.16 1.30 1.30 0.43 0.00 -100.00
ZA 178 2.81 0.00 1.12 0.00 0.00 -100.00

lB 240 6.25 5.83 5.83 5.00 4.58 0.42 -93.28
MB 222 2.70 2.70 2.25 2.25 2.25 -16.67
OS 240 5.00 4.58 3.75 3.75 3.33 '33.40
QM 233 6.44 6.44 0.86 0.86 0.86 -86.65
VP 240 22.50 9.58 7.08 5.42 5.00 -77.78
TS 229 3.06 0.87 0.44 0.00 0.00 -100.00
VV 187 13.90 3.74 2.67 2.67 1.60 ·88.49

Average 222 7.20 3.89 2.91 2.26 1.96 0.42 ·77.63

Speaker Total Base Rule Substitution Method Method Method Best• Id Sentences Canonical Based Rule Based 3 7 F Correction

lA 25 12.00 8.00 8.00 4.00 0.00 -100.00
ZA 21 14.29 0.00 9.52 0.00 0.00 -100.00

JB 26 38.46 34.62 38.46 30.77 26.92 3.85 -89.99
MB 25 20.00 20.00 16.00 16.00 16.00 -20.00
DS 26 30.77 26.92 26.92 26.92 23.08 ·24.99

QM 25 20.00 20.00 8.00 8.00 4.00 -80.00
VP 26 57.69 30.77 34.62 26.92 23.08 -59.99
TS 25 24.00 4.00 4.00 0.00 0.00 -100.00
W 21 57.14 23.81 23.81 23.81 14.29 -74.99

Average 24 30.48 18.68 18.81 15.16 11.93 3.85 -72.22

to coarticuJatory distortion. If so, an appropriate coarticuJation pronunciation for

that word pair can be generated and tested before recourse is made to variant pro-

nunciations.

ln an effort to see just how close to perfect recognition automated methods

could go, a separate recognition run was made using aIl of the above described

methods, with the addition of pronunciations generated using the iterative transfor-

• matian method described in § 4.3. Even if successful at improving otherwise trouble-

sorne errors, this method should be kept as a method of last resort since it generates
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pronunciations that are sometimes highly specifie to a particular speaker and a par­

ticular utterance. With the introduction of ways ta distinguish pronunciations on the

basis of class and method, pronunciations arising from iterative transformation

became less objectionable ta use.

Table 14 shows the effect on recognition of using the methods described above

on the evaluation set of sentences; Table 15 shows the corresponding results for the

test set of sentences.

Table 15 5ummary of Recognition Performance on Test Set The upper section reports ward er­
ror rates, the lower section string error rates, on the 9 speaker test set. Canonical error rates
are reproduced here from Table 10 for convenience. "Method 3" is the combination of meth­
ods land 2, i.e., the combination of rule-based and substitution based variant generating
methods. Similarly, method 7 is everything in Method 3 with the addition of coarticulation
pronunciations for certain combinations of words (see § 5.4). Method F is method 7 ta which
are added variants produced by iterative transformation. The rightmost column shows the
percentage change in error (with respect to canonical) of the best of the methods used.

Speaker Total Base Rule Substitution Method Method Method Best
Id Words Canonical Based Rule Based 3 7 F Correction

jA 103 0.97 0.97 0.97 0.97 0.97 0.00
ZA 65 4.62 4.62 4.62 4.62 4.62 0.00
JB 103 10.68 10.68 10.68 10.68 10.68 9.71 ·9.08
MB 81 1.23 1.23 0.00 0.00 0.00 -100.00
OS 87 S.75 4.60 5.75 5.75 5.75 ·20.00
QM 72 2.78 2.78 0.00 0.00 0.00 -100.00
VP 87 18.39 9.20 9.20 9.20 9.20 ·49.97
TS 87 4.60 2.30 1.15 1.15 1.15 -75.00
VV 76 17.11 7.89 7.89 7.89 7.89 -53.89

Average 84 7.35 4.92 4.47 4.47 4.47 9.71 -45.33

Speaker Total Base Rule Substitution Method Method
Id Sentences Canonical Based Rule Based 3 7

lA 11 9.09 9.09 9.09 9.09 9.09
ZA 8 25.00 25.00 25.00 25.00 25.00
lB 11 45.45 45.45 45.45 45.45 45.45
MB 9 11.11 11.11 0.00 0.00 0.00
OS la 30.00 20.00 30.00 30.00 30.00
QM 9 11.11 11.11 0.00 0.00 0.00
VP la 70.00 40.00 40.00 40.00 40.00
TS la 20.00 20.00 10.00 10.00 10.00
vv 9 44.44 33.33 33.33 33.33 33.33

Average 9 29.58 23.90 21.43 21.72 21.43

•
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5.5 Summary

Consideration of the training method developed in this chapter, and of the two sets

of experiments whose results appear here, suggests the following as a procedure for

training of variant pronunciations, beginning with a set of canonical pronunciations.

for each new speaker

for each misrecognition

determine if this misrecognition may have between-word
coarticulation as a cause and, if so, introduce a
'coarticulation pranu nciation' ta the (now empty) set of
variant pronunciation candidates

to the (possibly still ernpty) set of VPcs introduce variant
pronunciatians generated using (at least) rule-based and
substitutian-based methods

re-run recognition of the sentence with ail VPcs in parallel until:
(i) N successful variants have been observed,
(ii) na successful variants are observed

ln the latter case, abandon further effort.

introduce the 1 ~ n ~ N best successful variants into the
set of speaker-specifie pronunciations for that particular user

After sorne number of training speakers has been encountered, and at intervals

thereafter, it will be desirable to scan the sets of speaker-specifie pronunciations in

an atternpt to observe trends useful for developing, e.g., accent specifie clusters of

variants.

The next chapter discusses the results presented in this chapter, including what

may be built with learned variants, and suggests sorne directions for work extending

that which is presented here.
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6. Observations, Furure Work and Conclusion

This thesis looks at the question of whether it is possible ta provide, autamatically,

alternate pronunciations ta a recognizer's PD and so improve recognitian perfor­

mance. To do this, it proposed a mechanism composed of the fallowing steps:

(1) correct misrecagnized wards by praposing alternate pronunciations as candi­

dates for membership in the PD,

(2) filter the candidates so proposed ta eliminate unlikely pranunciations given

sorne set of statistics about pronunciations,

(3) test candidates that survive the previous step in recognition to obtain acous­

tic scores for them, and,

(4) retain the N best alternate pronunciations in a 'managed' PD.

This chapter discusses issues surraunding each of these points, the results the

recognition system was able ta realize, and looks briefly at possible future work

based on that described here.

6.1 The Pronunciation Dictionary and Alternate Pronunciations

6.1.1 Adding te the PD

The PD is a data structure central to the warking of the speech recognizer. It cantains

ane, or occasionally (in the case of multiple canonical pronunciations) two or three,

pronunciations per word in the task. There is an interest in keeping this structure

small, as the recognizer search space grows in proportion to the PD size. As more

words are introduced, the chance of confusing added words with existing canonical

proounciations and/or each other increases. Thus, an increase in PD size not ooly

increases space and time costs, but can increase misrecognitioo as weil.
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On the other hand. if the canonical pronunciations alone were sufficient. there

would be no need to introduce alternate pronunciations. It is, however, a plain fact

that not every user of a recognition system will pronounce aH words 'canonicaHy,'

hence there is the need to augment the purely canonicat set of pronunciations.

Ta tradeoff these two constraints, the notion was adopted to update pronuncia­

tians 'on-demand,' Le., when a misrecognition occurs.

The introduction of multiple pronunciation entries into the PD is not the ooly

way of providing alternate pronunciations to a task. A popular technique is the use

of pronunciation models [64) where an HMM models the phoneme sequences which

may be used to pronounce a word. The principle advantage to adding multiple indi­

vidual entries aver modeling pronunciations is that the former is a 'lightweight'

method. Both methods require a training step, but madels have many parameters to

train, and the training is typically done as a batch job prior ta system use. The tech­

nique of using individual pronunciations is a much simpler training procedure and

the results can be used immediately in recognition; moreover the entire process can

be performed while the system is being used. It is also possible ta provide, dynami­

cally, alternate pronunciations to accommodate new speakers, even those whose

speech is notably different from that found in the previous training material. Model

based approaches are more ponderous in response to speakers with different accents

or dialects, and unless they have been trained on pronunciations featuring the differ­

ent accents and dialects, may not perform at ail weil, as the model parameters may

not adequately represent characteristics of the new pronunciations. Finally, individ­

ual pronunciations developed using the methods described here (or in a simïlar fash­

ion) are highly portable, and may be 'dropped-in' to virtually any recognizer at no

cost. Pronunciation models may only be added ta recognizers using compatible

means of representing pronunciations.

Individual pronunciations may be grouped in any functionally meaningful way

desired. For example. if a number of speakers of a common dialect have developed
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the same (or possibly only similar) alternate pronunciations, those common pronun­

ciations can be collected into a set of pronunciations known to be 'good' for that par­

ticular dialect. If one has a method of identifying a speaker's dialect or accent (see,

for example, [6,22» then a set of pronunciations known ta be suited ta that

dialect/accent group can be applied ta augment the canonical PD for that speaker's

use of the recognizer.

6.1.2 Generating AIœmaœ Pronunciations

Two principle methods of generating variant pronunciations were explored. The

main design criteria for these methods were that they should be usable with 'live'

recognizer data, Le.. used as someone is using the recognizer, and that they produce

a smali set of plausible variant pronunciations for a given ward. The rules directing

the generative process constitute a priori knowledge used by the variant generator.

They are inferred from a data-driven process, Le., the suggestions of what distor­

tions ta make to the canonical form to generate a variant pronunciation must be

based on observed instances of such distortions.

The first method developed was that which performed within-class substitu­

tions, one at a time. The introduction of a DEL phoneme made it possible to handle

single substitution and deletion errors with this method. The method is attractive

not only for its simplicity but also in that it is speaker, dialect and accent neutral. In

its current form, no one within-class substitution is considered more likely than any

other, hence variants suggested by this method are equally suited (or unsuited) ta

any speaker.

The rule-based method was developed shortly after to provide pronunciations

that could not be proposed by the earHer method, and would reflect actual speech.

ln particular, this method can dea! with insertion errors, in sa much as such errors

have been observed to occur in the training data.
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The rules developed for generating variants may be trained on any suitable cor­

pus 50 as to provide a truer reflection of distortions in the speech ta he recognized.

ln ail experimental work reported here. the rules were derived from WSJ sentences

spoken by native American-English speakers. Such rules might be expected not ta

perform sa weil for speakers whose accent is not represented in the training corpus.

lndeed. speakers VP and W show exactly this: the relative contribution to the set of

successful variant pronunciations made by method l is much lower in their cases

than it is in cases of native American-Englîsh speakers like JA and DS.

The behaviour of the rule-based method is controlled by a number of parame­

ters. One may control the selection of which rules to use in generating variants by

specifying how exact a context match is desired. [n ail the work reported here. exact

target phoneme matches were reQuired. but no constraint was applied to left or right

context. The rnethod. as currently irnplernented. allows constraints to be applied ta

target phoneme (same or any). left and right contexts individually (same or any). the

ward from which the rule is drawn (same or any). and what error type (same or any).

One might expect this list ta be refined ta include. for the target. left and right con­

texts (each individually) whether there is a match based on class of phoneme. where

classes might be user supplied or generic. The point ta the plethora of choices is

that the set of rules invoked can be made more or less specifie in content. The

eotire rule set was sufficiently small Uust over 7.000 rules) that experimental work

conducted here used rather lax constraints.

Another parameter affecting the size of rule set used ta generate variants is a

threshold of how many tirnes a rule has been observed in the training data. Table 12

shows the effect of choosing different values for this threshold. a corresponding to

the number of distinct occasions on which the rule is observed. Good results were

obtained with a= 2. suggesting that rules observed ta occur only once in the training

data do not make effective contributions to the set of rules used ta generate vari­

ants.
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Several useful operations (none explored here) might be performed on the rule

set ta provide more powerful rules, and reduce the size of the set. In some cases,

two rules may be generated at the same or adjacent locations in a ward. For example,

in the WSJ sentence uThe female produces a litter of two ta four young in November

and December", a commonly observed pronunciation for the word 'produces' was

Ipel p er deI d uw 5 ih zl, as opposed to the canonical Ipel p r oh dei d uw 5 ih si.

Looking at only the first five phonemes, the rule training procedure recognizes this

as a case where two changes have been made, and so proposes two separate rules.

This is unfortunate since the rule based variant generator, as used in this work, will

never propose the observed pronu nciation since it involves (at least) two phoneme

changes. It would be easy ta merge the two rules:

(1) Ipcl p r oh dei dl: Ir/ -:; /erl

(2) /pcl p r oh dei dl: /ohl ~ e

into one which better represents the actual distortion:

/pcJ p r oh dei dl: Ir oh/ -:; ler/

Each of these two methods is Iimited in that it only proposes variant candidates

that differ by one phoneme from the canonical form. This need not have been the

case, Le., ail rules, for either method, found applicable ta a ward could have been

applied ta ail phoneme positions, thereby generating a variant pronunciation set

with richer coverage, but also of exorbitant size. The choice to Iimit the methods to

a single application of a rule per proposed candidate limits the set size ta a manage­

able number. It was found ta be a reasonable choice since the great majority of

errors are found ta be 'off-by-one-phoneme' errors.

One other method was developed but not implemented, that of iterative trans­

formation. This method is able ta handle arbitrary errors in the observed pronuncia­

tian. The choice not to make this an automatic part of the procedure was based pri­

marily on the expectation that variant pronunciations produced using this method

would be 'brittle' since they would be unduly inspired by the acoustics of an
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individual sentence and speaker. Such pronunciations were. in early testing, found

to be poor candidates for generalization. Nevertheless, the power of the method to

correct misrecognition remained alluring. and the later introduction of individual

speaker specifie sets of variant pronunciations largely mitigated brittleness these

variants showed.

It became apparent during recognition experiments that, in sorne cases where

between word coarticulation was responsible for misrecognitions, no method was

able to provide reasonable alternate pronunciations. For example, in the case cited in

Chapter S. "japan Airlines 6 17 ...", the only credible variant of the misrecognized ·6'

was /ih kcl k/. While this corrected misrecognitian. it did not do sa as satisfyingly as

the introduction of a new ·coarticulation-word' ta the grammar did (see Figure 20).

The suggestion is that, where appropriate. it is preferable to introduce a coarticula­

tion-word than ta perform extensive mutilation of the ·word caught in the middle.'

While the results reported in Chapter 5 introduced coarticulation words only as

needed. it May be preferable ta introduce them task-wide (where possible) in a pre­

processing step to reduce cases where the variant generation mechanism must be

resorted ta. Cases susceptible to coarticulation problems may be identified with a

simple set of rules (e.g., cases of word final/s, z/ followed by word initial/s, z/).

One May also supplement such a set with coarticulation effects used by a particular

accent or dialect of speaker(s).

6.2 Pronunciation Likelihoods

Many of the generated variant pronunciations are implausible with respect to sorne

reference, and can be eliminated from further consideration. The reference used

throughout the research work was derived from TlMIT'S dialect-regian pronunciations

(see Appendix 1). The eight dialect regions over which TIMIT sentences were recorded

were merged into one common set, on which statistics for insertions, substitutions
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Figure 20 Effect on Acoustic Score of a Coarticulation Pronunciation The figure shows the

change in acoustic score using 'coarticulation words' H6_17" and uJAL6_17" with respect to
the acoustic scores obtained using discrete words "JAL 6 17." For each speaker the value plot­
ted in the difference in log probability obtained as (acoustic score using coarticulation ward) ­
(acoustic score using discrete words), hence positive values represent improvement in the
score.

•

and deletions were based. It can be seen from Figure 21 how the probability of a

given pronunciation varies with the dialect region against which it is assessed. In

the case of the word "19", one of the pronunciations shown (19*381: ln av ng tel t iy

ni) is highly probable across ail districts, whereas anather of the variants 09*1 M: ln

av n v tcl t iy ni) is highly unlikely except in district dr2. hinting that speakers from

dr2 may be mare inclined ta vaicing during what should be the silence of the tel. For

the second word, "flann," three variant pronunciations are shawn. One (fIann*2BB:

Izh 1ae ni) enjoys universal unpopularity, another (flann*lZ: If 1eyae ni) is reason­

ably successful in four of the districts, and the other (fIann*3AY: /th 1ae ni) is Iikely
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Figure 21 Effect of Dialect Region on Pronunciation Ucelihoad Shown is the (log) probability of
observing a particular pronunciation of three words in the different TIMIT dialect regions (drO
is an artificial region created by pooling data from the 8 original regions). See text for explana­
tion.
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• in only one district.

For the last word, uBAW", pronunciations preferred by speaker VP, with heavily

accented Bangladeshi English, are plotted. Each of the four variants differs only in

one vowel:

BAW*2CC

BAW*3AV

BAW*3AX

BAW*3AY

s pel p iy dei d bel b ow dei d

s pel p iy dei d bel b aa dei d

s pel p iy dei d bel b ah dei d

s pel p iy dei d bel b ao dei d

•

•

While BAW* 3AV fares better than the others, no one variant can be seen as reliably

favoured. This may be more a reflection of the unsuitability of the TIMIT-based statis­

tics, than of how likely native American-English speakers might be ta pronounce the

word in this fashion .

6.3 Recognition

Once a set of class 3 pronunciations is established, the ftnite state network for the

task grammar is rebuilt with ail of the variant pronunciation candidates appearing in

parallel. The ensuing recognition provides, if the misrecognition is corrected, the

acoustic score for the best of the candidates. Iteration of this procedure, with the

previous iteration's 'winner' deleted, provides scores for as Many candidates as suc­

ceed, or the N-best, whichever occurs first.

This recognition step is relatively straightforward. One possible improvement

would be the use of context dependent acoustic models in the recognition. Apart

from providing outright better recognition, proposed variants would be more

refined, though possibly more expensive to generate.
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6.4 Preferred Pronunciations

The best pronunciations From the recognition step are preserved in a set of speaker

specifie preferred pronunciations. The conclusion from the first set of experiments

(§ 5.3) is that these pronunciations are not necessarily safe for general consumption.

This first set faiIed due to variant pronunciations trained on a limited and non­

representative training set. Indeed, the results for those speakers whose accents are

different from the native American-Englîsh spoken by the members of the training

set bear this out (see Table 13).

The lesson From this first exercise is that a pronunciation developed for one

speaker cannot safely be generalized until it is seen ta be 'good' for other speakers.

With this in mind, a more refined pronunciation dictionary was developed to allow

maintaining distinct canonicat and acquired pronunciations (see § 6.1). Alternate

pronunciations are now aCQuired by speaker, and post acquisition, may be processed

ta determine if they capture samething more general.

This differs from speaker dependent systems, which also develop pronuncia­

tians by speaker, in that the latter typically require users to utter sorne number of

words to train the system befare it is used. The pronunciations so acquired are

intended for use only by that speaker, without any effort to find ways of generalizing

pronunciations for use by other speakers. The system developed in this thesis

begins with at least a fully developed canonical PD, and can use, at a stroke, one or

more sets of variant pronunciations.

6.5 Generalizing Alternate Pronunciations

The central question posed in this thesis concerns updating the PD automatically.

The first set of experiments argued against a very general approach, at least with the
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• amaunt of training data availabIe. As a resuIt, a change in approach was made such

that each speaker's alternate pronunciations are tied to that speaker. Is it, then, pos-

sible to generalize from the pronunciations so acquired, ta capitalize on what can be

learned from the correction of individual misrecognitians?

One might first look, as a broad test of 'generalizabilitv: at how weil variants

from speaker )( perform on speaker y. Table 16 presents sorne cross-speaker tests

(compare with the calumn for Method 7 in Table 14).

A different way to answer this question is to examine the pronunciations

acquired ta observe how ubiquitous the corrections are (see Table 17). As can be

seen t no pronunciations lend themselves to universal appeal, and few are shared

Table 16 Effect of Mismatehing Variants ta Speakers The tables show the WER (upper) and SER
(1ower) when a particular speaker is assessed using variants generated for a speaker other
than itself.

Recogni tion for Using Variants from Speaker

• Speaker JA ZA JB MB OS QM VP TS W

JA 1.73 0.43 1.73 0.87 1.73 4.33 1.73 1.73
ZA 2.25 1.69 2.25 1.69 2.25 2.25 1.68 1.12
JB 5.83 6.67 6.25 3.75 6.25 12.92 6.67 11.25
MB 2.70 2.70 2.70 2.70 2.70 2.26 2.25 3.15
OS 5.00 4.17 2.92 4.58 4.58 10.83 4.17 10.00
QM 6.44 7.30 6.44 5.58 7.30 6.01 6.01 6.01
VP 20.00 20.83 21.55 23.75 22.08 21.67 24.17 14.17
TS 3.06 2.62 3.49 2.62 1.31 3.06 3.06 0.87
W 13.90 13.37 12.83 12.83 13.37 11.76 9.63 11.76

Recognition for Using Variants from Speaker
Speaker JA ZA JB MB OS QM VP TS W

JA 8.00 4.00 8.00 4.00 4.00 8.00 8.00 8.00
ZA 14.28 14.29 14.29 9.52 14.29 14.29 9.52 9.52
JB 34.62 38.46 38.46 23.08 42.31 50.00 38.46 34.62
MB 20.00 20.00 20.00 20.00 20.00 16.00 16.00 24.00
DS 30.77 23.08 23.08 26.92 26.92 26.92 23.08 26.92
QM 20.00 28.00 20.00 12.00 24.00 20.00 16.00 16.00
VP 50.00 53.85 53.85 53.85 50.00 50.00 57.69 50.00
TS 24.00 16.00 28.00 24.00 8.00 24.00 32.00 8.00
W 52.38 47.62 47.62 57.14 47.62 52.38 52.38 42.86

•
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Table 17 Ubiquitousness of Variant Pranunciations The table shows, for selected misrecognized
words. how widespread across different speakers is a particular variant pronunciation's suc­
cess. The labels appearing in a speaker's column indicate that the pronunciation of the word
with that label is in the set of successful variants for this speaker and sentence. The best scor­
ing pronunciation appears first in each list.

S leaker
Ward lA ZA lB MS OS QM YP TS YV
13 3BX IR 31 2l

31 lB 2BS 3BN
3N 3H 2BO

3BX 2BY
3K 3Bl

19 3Bl 3M 3Bl 3Bl 3Bl 3Bl
AYA 2BK 20Q 2AD lU 2BX 2BQ 2AP 280 2BO 2BP 30 3CR

2CK 2DS 2Y 2AH 2C 28P 2BM 2BN 2BM 2BN 3AN 2X
2Dl 20X 2AR lAQ 2BO 201 2BW 2BR 3E 100
2DP 2AP 2AK 2BW lCN 2ER

IG 1K

across many speakers. There are, nonetheless, sorne learned pronunciations that can

be prornoted ta c1ass 2. e.g. , 19*3BI.

6.6 Results

The evaluation set results shawn in Table 14 argue campellingly in favour of the the­

sis. with an average reduction in WER of 77.4%, in SER of 72.2%. The results on the test

set (Table 15) are not sa striking. being 45.3% and 37.7% respectively. Note. too, that

neither domain nor speaker adaptation were performed. Further irnprovement in

recognition should be expected by adding the use of these techniques.

One of the first questions raised by the results, even on the evaluation set, is

the unevenness of success at correcting misrecognition. What this really demon­

strates is that variants derived using data reflecting native American-English speak­

ers work best on native American-Englïsh speakers: high rates of correction are

shown for speakers lA, lB. QM and TS. Much lower rates of correction are shawn for

speakers MB, and VP. Speaker lB, without use of the iterative method, would post a

WER improvement of only -26.72%, and of -30.00% for SER. This, apart from favourably

showing the corrective power of iterative transformation. suggests that something
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about J8's speech puts it on a par with a speaker like VP. That something is his rate

of speech. Table 10 shows the rate of speech of the nine speakers in the evaluation

and test sets, expressed as phonemes/second. The average speaker rate across

these nine speakers is 11.5 phonemes/second. This puts both J8 (12.9) and OS

(12.7) more than one standard deviation above this average. Some of the difficulties

posed by fast speech were discussed in § 2.1.2. Is the speech of speakers J8 and DS

fast enough to incur these errors? Apart from the suggestion in the affirmative

shown in the results, it is reported that a phoneme rate as little as one standard

deviation above the average is enough to increase error rate [561, and the increase

can be dramatic [43]. Interestingly, Siegler and Stern tried introduction of multiple

pronunciations to their PD in an attempt ta allow for the effects of fast speech on

intra-word transitions. They report observing no improvement, but suggest .... .it is

possible that such an approach could be more successful with a more complete and

systematic set of transformation rules." While the substitution and rule-based meth­

ods do not appear ta have been dramatically effective, iterative transformation did

show effective reduction in error rate; study of rules suggested by pronunciations so

derived may praye useful in dealing with fast speakers.

There are a few points ta cansider when interpreting the test set results. The

first is that the test set is small (see column 2 in Table 15); in many cases there are

fewer than 10 sentences, sa a single error is enough to push the string errar rate ta

10% or more. Secondly, not ail of the wards appearing in the test set appear in the

evaluation set, and so there can be no variants available ta correct their misrecogni­

tion. This occurs in four sentences affecting four speakers. Thirdly, the training data

for the test consists of a relatively small number of sentences. In the one case where

it is possible, that of speaker JA, the introduction of additional training material (on

the original 47 sentence training set) eliminates the one word misrecognized in his

test sentences. Were one ta discount sentences with wards not present in the evalua­

tion set, and allow JA's additional training data, the test set results are impraved (see
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• Table 18). Alternatively. if one performs training on the novel words as the appear in

the test sentences, the results are also improved.

6.7 Future Work

The current system for developing and using alternate pronunciations has several

parameters that may be adjusted. A great deal of work can be done expia ring what

Table 18 Improved Test Set Resulta The table shows how the test set results reported in Table
15 are affected by removal novel words. by using additional training material, and by use of
variants trained on the novel words appearing in the test set. ln the upper table (WER). the
number of words originally and following deletion of novel words is shown. In the lower table
(SER). the number of sentences originally and following deletion of sentences containing novel
words is shown. Error rates shown are those obtained by beginning with the lowest error rate
provided by any of the methods reported earlier, and applying the indicated operation.
Canonical error rates are reproduced here from Table la for convenience.

Speaker Words Base Delete Use Extra With Variants
Id Original After Canonical New Wds Train Based of New Wds• JA 103 97 0.97 1.03 0.00 0.97

ZA 65 63 4.62 1.59 1.54

JB 103 97 10.68 10.31 8.74

MB 81 79 1.23 0.00 0.00
DS 87 84 5.75 4.76 4.60

QM 72 70 2.78 0.00 0.00
VP 87 84 18.39 7.14 6.90

TS 87 84 4.60 0.00 1.15
VV 76 73 17.11 5.48 5.26

Average 84 81 7.35 3.37 0.00 3.24

Speaker Sentences Base Delete Use Extra With Variants
Id Original After Canonical New Wds Train Based of New Wds

JA 11 7 9.09 14.29 0.00 9.09

ZA 8 6 25.00 16.67 12.50

lB 11 7 45.45 28.57 27.27

MB 9 7 11.11 0.00 0.00

OS la 7 30.00 28.57 20.00

QM 9 6 11.11 0.00 0.00
VP la 7 70.00 28.57 30.00
TS 10 7 20.00 0.00 10.00
W 9 6 44.44 33.33 22.22

Average 9 7 29.58 16.67 0.00 14.56

•
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parameter settings work best overall, for a collection of speakers, and/or for an indi­

vidual speaker.

It has become nearly axiomatic in speech recognition ta argue that more train­

ing data is required t. Certainly, there is much that can be done in developing variant

pronunciations for speakers that can be grauped into accent- or dialect-based sets.

Ideally, one can foresee constructing 'standard' sets of alternate pronunciations for

specifie groups, e.g,. Bangladeshi-accented English speakers. A recognition system

with sorne ability to identify a speaker's accent would be able to instantiate such a

set, dynamically, during recognition when used by a speaker 'from' that set. These

sets couJd even be used by other recognition systems, so long as they used a com­

patible representation for word pronunciations. This would require the use of a

large amount of clearly segregated data, sorne to serve as fodder for the recognizer

50 as ta develop alternate pronunciations, and sorne to be used in developing pro­

nunciation statistics for use in assessing the likelihood of pronunciations.

Another aspect of the system which would benefit from further exploration is

the set of rules distilled from pronunciations and used as the basis of the rule-based

variant generator. Ta what extent may specifie detail be dropped from this set, Le.,

what is the tradeoff between making a smaller, more general rule set, and power at

generating useful variant pronunciation candidates?

There are performance issues that can be explored to make the acquisition and

deployment of alternate pronunciations fast enough to be used in a practical way

during live recognition. The current system, constructed as a research work-bench,

performs its variant generation and testing off-lïne. The former could be performed

easily enough in faster-than-real-time, and the testing sped up by making use of the

search space already built during the (mis)recognition. One would splice ioto the

t As eloquently expressed by L Rabiner, "There's no data like more data"
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space the parallel collection of variants. and run the recognition forward from the

state immediately prior to the point of insertion.

Beyond these issues. in the case of pronunciations that are found ta be success­

fui - for an individual speaker or for sorne colIection of speakers - a reasonable

Question to ask is: do these pronunciations have any generalizable quality? That is.

can what is learned about correcting one misrecognition be used to correct others,

whether from the sarne speaker or anather? Does the corrective power generalize so

as to allow other words having the same or similar contexts to he 'pre-emptively' cor­

rected, before they are misrecognized?

In addition to ail of the above, a pressing question is how weil these techniques

scale to use in large vocabulary systems: tasks having tens of thousands of words

and no grammar so constraining as the finite state network used far the compara­

tively straightforward air trafflc control task investigated here. A promising directian

ta fallow is the use of the methads described here in improving the ward candidate

set size in a ward lattice far large vocabulary tasks.

6.8 Conclusion

Automatic speech recognition has advanced a great deal in the last 20 years. Benefit­

ing from almost unimaginable improvements in processor speed and memory capac­

ity, as weil as intensive research work on representation and search problems. CSR

systems today are at the threshold of wide-spread, general use. Many systems are

already deployed productively in settings where they are used by one (or a small

number) of speakers in highly circumscribed applications. The next majar leap will

be to systems that can perform cantinuaus ward recognition of ever less uncon­

strained speech. A necessary step leading to this leap will be the ability to handle

widely varying pronunciations for words from the large user community envisaged.
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This thesis takes precise aim at this necessary step, investigating the Question

of whether a pronunciation dictionary can be updated automatically sa as to

imprave recognition accuracy. From investigation of quite simple techniques applied

ta a small, but highly diversified, set of speakers, the conclusion is that this can, in

fact, be done. It can be done in such a way that alternate pronunciations can be

learned and made available immediately for future recognition, without resorting ta

extensive and computationally expensive model retraining. Further, it suggests that

much greater improvement than was possible to achieve with the data available may

be attained with development of sets of accent- or dialect- specifie alternate pronun­

ciations.

These qualities were reQuired for the air traffic control application explored in

the thesis research. The setting for this application is a training facility which may

be installed anywhere in the world, and sa encounter users speaking a language

which is foreign ta most of them, English. The features which make this system suc­

cessful for this application make it suitable for many others.

The system as currently developed provides many opportunities for future

research and development work which can improve its corrective power and perfor­

mance.

- 123 -



•

•

•
- 124-



•

•

•

Appendix 1: Speech Recognition Tasks and Corpora

AI.I AT52 Task and Corpus

The AT52 task was developed with Loral Federal Systems Company (FSC). of Rockville.

MD., during the winter of 1994/1995. The application is an ATC simulation of

approach scenarios for JFK International airport in New York.

Sentences in this task are entirely determined by a grammar (see Figure 22). The

task has 116 words and a perplexity of 3.3. Words in the task are modeled as con­

catenations of TIMIT phoneme units.

The AT52 corpus consists of two distinct sets of recordings. In bath cases.

recordings were made at Loral of read speech from a small number of speakers. As

not ail of the available speakers were 'fluent ATC speakers·, sentences to be read were

generated from the grammar. The prime consideration in generating the sentences

was to provide broad coverage of the grammar.

The first set of recordings (September, 1994) consists of three speakers reading

47 sentences each. Recordings were made using a Shure DY-ID headset mounted,

c1ose-talking microphone, sampled directly by a Gradient Technologies DeskLab 216

A/O converter at 16 kHz, and represented as 16 bit (linear) signed integers. The

recordings were made in an active machine room. with a high content of background

white noise, but Iittle of this noise is detectable in the recordings. Ali speakers were

North American native English speakers. but of very different dialects.

The second set of recordings (January. 1995) consists of nine speakers reading

37 sentences each. Recordings were made using the same Shure DY-10 microphone,

under the same conditions, sampled at 48 kHz by DAT recorder, and later downsam­

pied to 16 kHz. These speakers provide a variety of accents including: Bangladeshi.

Québec French (an employee of ATS Aerospace). Indian. Arab/British. and several
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• native North American EngJish dialects.

The total collection of sentences was divided inta three sets for the work con-

ducted here:

Sentence
Numbers
01 - 47
70 - 95
96 - 106

Nurn. of
Sentences

47
26
Il

Num. of
Speakers

3
9
9

Total num.
of Sentences

138
228
99

Disposition
training
evaluation
test

•

•

Sorne of the sentences are 'misread' with respect to the prompting text; of

these, those that are still grammatical are retained, the others discarded, thus the

total number of sentences does not correspond, in ail cases, to the product of sen­

tences x speakers. No sentences numbered 48 to 69 were recorded.
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CALLSIGN =

COMMAND =

Ml { <110 - 119> <210 - 219> }
ACA ( <110 - 119> <910·919>}
AMX { <310 - 319> <4 10 • 4 19> }
AVA { <S 10 - 519> <610 - 619> J
BAW { <710 - 719> <810 - 819> J
COA {<210-219> <310-319>}
DAL ( <410 - 419> <S 10 - 519> }
ElN { <310 - 319> <410 - 419> J
JAL { <610 - 619> <710 - 719> J
KAL { <810 - 819> <910 - 919> J
NWA {<110 - 119> <210 - 219> 1
SAB { <S 10 - 519> <610· 619> 1
VAL {<710 - 719> <810 - 819>}
USA { <110 - 119> <910 - 919> }
VRG { <210 - 219> <310 - 319>}
5 2 lima papa
1 0 echo charlie
2639 x-ray
papa juliet quebec alpha
2 1 a charlie lima
6 1 7 zulu
1 0 1 5 delta
X-ray X-ray lima quebec
6 6 2 Mike golf

{ descend 1 c1imb 1 ( to 1 and maintain }flightlevel FUGHTLEVEL [altimeter <0 - 2><0 - 9><0 - 9><0 - 4
{ fly 1maintain J heading HEADING [ degrees l [ vector for New York approach ]
turn { left 1 right 1[ heading ] HEADING [ degrees J
{ increase 1 reduce }speed [ to ] SPEED [ knots ] [ indicated [ for sequencing to runway 04 { left 1 righ
c1eared for { ils 1 visual }0 4 { right Ileft }approach
proceed [directly J ta FIX [on the HEADING [ degree radial] at <1-9><0-9><0-9> dme ]
resume own navigation via [ FIX 1 ROUTE ]
affirmative [ flightlevel J FLIGHTLEVEL [ ident 1
report {( reaching ] [ flightlevel ] FLlGHTLEVEL II {[ the] outer marker inbound 1
contact AIRPORT on 1 2 <0,3-4> point 9
traffic <1-12> oclock <0-10> miles [ ROUND] TYPE at [flightlevel] FUGHTLEVEL
rager contact tower 1 2 <0,3-4> point 9
idem

FLlGHTLEVEL= { { 1 <5-9> 1 <2-9><0-9> 1 <1-5><0-9><0-9> 1 60011 { <1-9> 1 <1-5><0-9> 16 0 thousand} J

SPEED= { <6-9><0-9> 1 <1-4><0-9><0-9> 1

HEADING- <0-359>

BOUND= ( north [ east 1 west] 1 east 1 south [ east 1 west) 1 west} bound

AIR PORT-

•

TYPE= airbus
boeing 7 {oh 120 130 140 150 1 7
bac 1 11
citation
d c {8 IIO}
king air
gulfstream
110 Il
lear jet
[Win commanche
md 80
westwind

ROUTE= jet 1 7 4
alpha 5 2 3
jet 6 0

Figure 22 ATS2 Task Grammer

FIX...
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The prompting texts of the sentences appear below:
01 American 1 Il descend and maintain flightlevel 1 9 0
02 Air Canada 1 12 Oy heading 1 5 0 degrees
03 Air Iingus 3 13 tum left 2 4 0 degrees
04 Air Mexico 3 14 increase speed 1 8 0 kno ts
05 Avianca 5 15 cleared for 1L 5 0 4 left approach
06 Continental 2 16 resume own navigation via Solberg
07 Delta 4 17 affirmative 5 thousand
08 lapan Airlines 6 18 report reaching f1ightlevel 2 9 0
09 Northwest 1 19 contact New York Center on 1 2 0 . 9
10 Sabena 5 Il traffie 12 o'dock 5 miles northbound Airbus at 1 0 thousand
Il Speed Bird 7 12 roger contact tower 1 2 3 . 9
12 U S Air 1 13 climb ta flightlevel 3 5 0 altimeter 2 9 9 2
13 United 7 14 maintain heading 0 40
14 Varig 2 15 turn right heading 1 4 5
15 Korean Airlines 8 16 reduce speed 2 2 0
16 American 9 17 deared for visual 0 4 lett approach
17 Air Canada 9 18 resume own navigation via J 1 7 4
18 Air lingus 4 19 affirmative flightlevel 1 8 0
19 Air Mexico 4 Il report reaching flightlevel 1 8 0
20 Avianca 6 12 contact New York approach on 1 2 4 . 9
21 Continental 3 13 traffic 7 o'dock la miles southbound Boeing 7 57 at 2 70
22 Delta 5 14 rager contact tower 1 2 O. 9
23 japan Airlines 7 15 descend and maintain 1 1 thousand
24 Northwest 2 16 fly heading 1 00 vector for New York approach
25 Sabena 6 17 turn left heading 2 0 5 degrees
26 Speed Bird 8 18 increase speed 3 2 0
27 U 5 Air 9 19 c1eared for 1LS 0 4 right approach
28 United 8 Il resume own navigation via Wavey
29 Varig 3 12 affirmative flightlevel 3 9 0 ident
30 Korean Airlines 9 13 report flightlevel 4 1 0
31 American Airlines 1 14 contact New York Center on 1 2 3 . 9
32 Air Canada 1 15 traffic 8 o'dock 9 miles eastbound M D 80 at flightlevel 3 3 0
33 Air Lingus 3 16 roger contact tower 1 2 4 . 9
34 Air Mexico 4 17 resume own navigation via Bermuda
35 Avianca 5 18 resume own navigation via Champ
36 Continental 2 19 resume own navigation via East Texas
37 Delta 4 Il resume own navigation via Carmel
38 lapan Airlines 6 12 resume own navigation via Bergh
39 Northwest 1 13 resume own navigation via Dixie
40 Sabena 5 14 resume own navigation via J F K
41 Speed Bird 7 15 resume own navigation via Modena
42 U 5 Air 1 16 resume own navigation via Linnd
43 United 7 17 resume own navigation via Camm
44 Varig 2 18 resume own navigation via Coyle
45 Korean Airlines 8 19 resume own navigation via Flann
46 American 9 Il resume own navigation via Daner
47 Air Lingus 4 12 resume own navigation via J 6 0
70 American 1 10 descend and maintain flightlevel 2 2
71 Air Canada 9 12 tly heading 1 7 0
72 Air Mexico 3 14 turn right 0 8 0 degrees
73 Avianca 5 16 increase speed 2 5 0
74 Speed Bird 7 18 cleared for 1L5 0 4 left approach
75 Continental 3 Il proceed to Wavey
76 Delta 4 13 resume own navigation via Flann
77 Air Lingus 3 15 affirmative 1 8 0
78 Japan Airlines 6 17 report reaching 2 30
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79 Korean Airlines 8 19 contact New York approach on 1 2 0 . 9
80 Northwest 1 12 trafflc 2 o'dock 7 miles northbound D C 8 at 1 4
81 Sabena 5 14 roger contact tower 1 2 0 . 9
82 United 7 16 ident
83 U S Air 1 18 cHmb and mainrain 2 7 thousand
84 Varig 2 Il mainrain heading 3 3 0 degrees
85 American 2 13 turn left heading 1 40
86 Air Canada 9 15 reduce speed 1 6 0
87 Air Mexico 4 17 deared for visual 04 right approach
88 Avianca 6 19 proceed directIy to Dixie on the 2 9 0 degree radial at 1 0 9 D ME
89 Speed Bird 8 12 resume own navigation via jet 60
90 Continental 3 16 affirmative flightlevel 4 2 0
91 Delta 5 18 report reaching the outer marker inbound
92 Air Ungus 4 Il contact New York Center on 1 2 3 . 9
93 lapan Airlines 7 13 trafflc 9 o'dock 3 miles sou thbound Airbus at 1 6
94 Korean Airlines 9 17 rager contact tower 1 2 3 . 9
95 Northwest 2 19 ident
96 Sabena 6 12 descend and maintain f1ightlevel 1 2 0 aItimeter 2 9 9 2
97 United 8 14 fly heading 0 2 0
98 U S Air 9 16 turn right 2 1 0 degrees
99 Varig 3 18 increase speed 6 5

100 American 1 Il c1eared for 1 LS 0 4 right approach
101 Air Canada 1 13 proceed to Solberg
102 Air Mexico 3 17 resume own navigation via Bermuda
103 Avianca 5 19 affirmative 4 2 thousand
104 Speed Bird 7 12 report 1 7 0
105 Continental 2 14 contact New York approach on 1 2 4 . 9
106 Delta 4 16 traffle 4 o'dock 1 mile eastbound Boeing 7 57 at 2 2

Al.2 WSJ Task and Corpus

The Wall Street Journal task was begun in the early 19905 as an effort to provide a

large, multi·purpose corpus to the speech research community: (initially) 400 hours

of speech and a corresponding large text corpus (47 million words) for training lan­

guage models. The task featured natural language with high perplexity. Data were

organized into at least two levels of vocabulary size, 5,000 and 20,000 word. The

speech was collected under clean recording conditions using, simultaneously, a

Sennheiser HMD414 close-talking microphone and a secondary microphone (of vary­

ing type). Data was collected by MIT, SRI and Texas Instruments. The speech is read,

by equaJ numbers of male and female speakers, from articles appearing in the Wall

Street Jou rnal neW5paper. Speakers were Il •••chosen for diversity of voice quaJity and

dialect" [44].
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Care was taken with organizing the data so as ta provide materiaJ for training

and testing of speaker dependent and speaker inde pendent recognizers, as weil as

the providing of extra training mate rial - lIphonetically rich u sentences - for the

development of speaker adaptive systems.

The corpora are reJeased through the Linguistic Data Consortium (wc) on CD­

ROMS.

AI.3 TIMIT

ln the mid-1980s Texas Instruments and MIT collaborated to produce what has

become, in aIl likelihood, the most used corpus in the speech recognition commu­

nity, TIMIT. The problem addressed by TIMIT was the Jack of consistent, abundant,

phonetically labeled data suitable for training acoustic models. The solution was to

obtain a set of high quality recordings of read speech and provide the phonetic seg­

mentation of each utterance. The text of the sentences was chosen so as to be

·•...phonetically rich. Care was taken ta have as complete a coverage of left- and

right-context for each phone as possible" [551. A further objective of sorne of the

sentences was to afford an opportunity to observe Il •••dialectical and phonological

variations across speakers."

Ali told, each of 630 speakers read 10 sentences. In an early status report the

ratio of male to female speakers fs reported as 2:1 [18). The speakers were catego­

rized as being from one of eight different 'dialectic regions:'
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• Area
Designation

1
2
3
4
5
6
7
8

Area
Location

New England
Northern
North Midland
South Midland
Southern
New York City
Western
Army Brat

•

•

White this categorization may have been somewhat ad hoc, it does resuJt in measur­

ably different pronunciation probabilities between dialectic regions (see, e.g., Figure

21)

Since the objective of the set of sentences was primarily ta provide good cover­

age of phonemes for training of acoustic models, including in-context occurrences, it

is debatable how weil the ward sequences in the corpus reflect Inormal speech.' Con­

sequently, a bigram language model trained on TIMIT sentences may not be a good

representation of 'normal' conversational speech. Nonetheless, much of the work

reported in this thesis uses just such a bigram language model for "raw' phoneme

recognition (see, e.g., Figure 19).

Another consideration of TIMIT as a corpus for training acoustic models is that it

provides a richer set of acoustically labeled units than sorne other recognition cor­

para use, e.g., WSj. Table 19 shows the full set of phonemes used in the TIMIT corpus.

The ATS2 task uses ail of these units except /axr, ax-h, nx, em, eng, uX/.
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• Vowels Nasals

eh e ih l m m em n:t
ao J ae re n n en ~
aa a ah A ng IJ eng IJ
uw u uh u nx f
er 3" ux Ü

av aY av JY (JY)

eV eY (e) iV iY (i)
aw aW ow OW (0) Stops
ax ~ axr 'li"

ix f ax-h :J pel p° bel hO
p p b b
tel tO dei dO
t t d d
kcJ kO gel 9°Fricatives
k k 9 9

s s sh s (f)
z z zh Z ~)
ch ë (tI) jh j (d3)
th 8 dh ô
f f v v
h h

• Liquids. Clides

1 el
r r w w
y y

•
Table 19 TIMIT phoneme units Shown are the phoneme labels used in the TlMIT corpus, and
their corresponding symbols as in common use among linguists {with (PA symbols in paren·
theses where they differ). See text for details (also Table 2).
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Appendix 2: The Roger Speech Recognizer

The recognition system used for ail experimental work reported in this thesis was

developed over several years in the Speech Laboratory at McGill University's School

of Computer Science (part of the Center for Intelligent Machines, ClM). The recog­

nizer was built by several individuals (including the author) over this period. The

system. called ROGER, is a classical HMM based recognition engine. fed by an equally

classical feature extractor.

Al.l System Architecture

ROGER is implemented entirely in software, using no special purpose hardware (save

the A/D converter). It is written in C to run under the UNIX operating system, and cur­

rently runs on Sun, Hewlett-Packard, IBM RISC System 6000 and (at least Intel-based)

Linux platforms.

The main recognition component of ROGER consists of three processes which

communicate using two virtual channels (control, data) implemented over UNIX

pipes. This design was chosen for ease of use in a research setting; a more practi­

cally-oriented implementation might choose more efficient means for inter-process

communication.

Al.2 System Components

A2.2.l Recorder

This component performs data acquisition and acts as a crude command interface

and file-manager for the overall recognizer. In that it is the ooly component that has
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ta deal directly with the hast camputer's hardware, it is the component requiring the

most effort in parting ROGER ta a new platform, given that no standard (Le., multi­

platform) interface has yet emerged for application interaction with audio hardware.

The recorder places onto the data channel sampled audio to be presented to the

recognizer. This audio may be from a previously stored file, or 'live' input from

microphone or line-Ievel sources. The sampling rate is currently fixed at 16 kHz, and

only 16 bit linear (monaural) data are supported.

The recorder places onto the command channel tags for use by downstream

processes (e.g., ·start-of-utterance', 'end-of-utterance" etc.). A more elaborate graphi­

cal command interface is available, though it is nothing more than ·window dress­

ing', Le., a graphical layer wrapped around the basic recognition engine. It receives

output From the recagnizer component for display, as weil as keyboard input from

users, and sends its output ta the recorder component as input. The graphical inter­

face was not used during the experiments reparted in the thesis.

A2.2.2 Fearure Extractor

Sampled audia data is blocked inta frames of 20 ms. duration (320 samples). Ta

these data is applied a Hamming windaw. Successive applications of the window

overlap by 50%, Le., there is new windowed data for every 10 ms. of audio data.

Computation of features is performed in bath the time and frequency damain.

The Ume damain features are the grass energy per windaw, computed as the sum of

the squared values in the windaw, and normalized with respect ta the peak energy of

the utterance. As ROGER aims ta perfarm live recognition, it is not possible ta wait

until the entire utterance has been heard ta determine the peak energy against which

ta normalïze. Instead, ROGER uses a guess at what the peak energy is likely ta be. In

addition ta the overall energy E, the first derivative with respect ta time , L\ Ei for
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window i is computed simply as the difference E; - Ei-l.

ln the frequency damain, 12 met cepstral coefficients (see § 2.2.2) are com­

puted. Here, tao, the first derivative with respect ta time is provided. derived for

window i and coefficient jas:

where m is the width of window used in computing the difference.

From these computations, a feature vector of 26 elements is produced for each

window, and serves as the actual data modeled by the recognizer's acoustic models.

Al.2.3 Recognizer

The recognizer uses continuous Gaussian distributions for both symbol emission

and transition probabilities. The models were trained on the TlMIT corpus. The topol­

ogy of these context independent models provides for a greater number of transi­

tions to appear near the beginning and end of a model, with comparatively few inter­

nally, as a way ta modeJ better the greater variation experienced at the 'extremities'

of a phoneme (Le., as it is used in different contexts).

The recognizer uses a stochastic finite state grammar. Auxiliary utilities sup­

plied with ROGER include a program for compHing grammars into the form required

by the recognizer. The network for the AT52 task, for example, contains 5,606 states

and 7,519 transitions.

Recognition behaviour may be controlled with severa) parameters, including

adjustment of the beam threshold used in the Viterbi search, and whether the coo­

straint that a search path must end in a final state of the grammar in arder ta be

hypathesized is enforced or not. In experiments reported in the thesis, partial paths

were allowed (henee patentially reducing word error rates but not impaeting string
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