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 8tand alone system using fixed priority scheduling,
"designed as a\h controller ' in a ;eriesi of
neurophysiological éxpérimenta in a Apsychdlpgy
labq}afqry. The overall scheme ‘calls * ﬁor lonew
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. Abstract’ ‘
' ' <«
A simple sgpaphoré based operating system for the .-

B Y

?
Mdtorola M6800 microprocessor is described. It 48 a | |
. ’ . 1

microprocessor controlled station for each experimental
. -

Rk o

animal (rat) with an LSi-11 (equipped with floppy -
disks) choosing experimé;t parameters’ and recordihg the .
;Lsulting' data. iInterrprocesqp; comﬁ&nication‘ 'Lé
performed vi; serial links Setﬁeeﬁ ea¢h M6800 based

system and the LSI-1] master.
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Resume
, . N R hs
‘On decrit un systeme simple a base de semaphore pour
o

e

le microprocesseur Motorola M6800. Ce systeme est

concu poutr le gontfble d'une serie dJexpeiiences
neurophysiologiquesedans un laboratoire de psychologie;
11 st capable d'operation individuelle, wutilisant wun

programme de priorites fixes. L'arrangemexpt &'ensemble

prevoit un ¢poste commande par microprocedseur pour
B LN 7 .

.chaque animal experimenthl (rat); un \LSI—il (muni de

disquettes souples) effectue le choix des parametres de

. ] .
l'experience et enregistre les donnees qui en

‘resultent. La communication inter-processeur est

assuree par un jumelage en serie entre chaque systeme a
- . .

base de M6800 et la‘machine maitresse LSI-11.
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Chapter 1
T INTRODUCTION

The purpase of~this project i3 to provide a oomphher
system (har@ware and software) to automate a series of
deurophysiological experiments - using rats as
e;perimental sub jects. h large amount of data are
needed to allow inferences to be drawn about some of

the structures (and properties of these structures)
) .

- found in the rats' brains, The décisi‘“‘gto dndertake

this development effort was that of associate professor
Peter Shizgal of Concordia University's Psycﬁolqu
Department'fg\facilitage his research and that of his

students. K

1.1 Reasons for developing the systenm
5

-1.1.1 Experimental paradigm

The type of experiments being undertaken involve the

direct electrical stimulation of discrete regions
/ .

within a rat's brain, while observing the behaviour of

the rat ([GSY81]). The stimulation is of a sort that

~

the rat finds rewarding, and which it can trigger

-y

N

itself by pressing on a bar in its cage. Sequences of
pulses ake applied to various sets of implanted

e%ec rodes;]and stimulation parameters are adjusted

«

while keeping track of the rat's bar-pressing activity
i f
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" in oqder to tést various hypotheses concerning neural

v {
s%%uctures. \

Y
1 B ;

1.1.2 Justificé&{ng{or computerization ' (//r*~

The way these types of experiments were carried dhj;

in the past is atwﬂgilows:

A student would " sit begire several (typically two)

cagesi containing rats, “and “an instrument panel
containing switches for electrode selecti;n. pulse
timing, ﬁulse current - ...etc.,. and a 'counter for
accumulating bar presses over each trial. The student

would 1) set up the next stimulation parameters, 2)

trigger a priming stimulation to condition the rat, 3)‘

N
wait for the duration of an experimental tirial (usually

one minute), and 4) at the end of the trial period
record the number of bar presses -and stimulations
delivered. This sequence would be repeated hour after
hour with stimulation parameters changini gradually in

order to determine the threshold of effective

stimulation and to trade parameters off against each

other.

This manual sequence is extremely slow, tedious, and
error prone.” Also, since data are gathered so slowly,
it is sometimes necessary to use the same rat in tests
spanning many days, thus increasing the probability of

an electrode becoming dislodged, an infection, or some

i1



ap rendering theg;at._and perhaps even the

- data gathered to that point, wuseless, The computer

system eliminates the tedium and inaccuracy, can test
as many as eight rgts at once, and apply more.” complex
algorithms for computing successive sets of stimulation
parameters in order to reduce the number of ¢trials

required to determine a threshold.

[

a ’

1.2 System overview

. The system is conceptually partitioned into three

levels. in lével'I is the master computer overseeing

all iﬁ-progress experiments, its hardware: ' gnd'
software. Level II consists of eight microprocessor

systems "~ (one per rat cage), their software, and

interface hardware. The third and final level consists

of the rat cages themselves, and all special purpose

hardware associated with thenm.

-

[
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1.2.1.1 Level I hardware

1.2.1 Level I (L3I-11)

‘The level I processor is a Digital Equipment
Corporation LSI-11 with dual double density eight 1inch

floppy~disk drives, running the RT-11 operating systenm.

A CRT terminal acts as the system console, and an %ﬂ

LA-120 Decwriter is available for hard copy. AS  well

as interfaces for the above devices, the L3SI-11 1is
equipped with two DLV=-11J quad serial interfaces for

communications with the eight level II processors.

1.2.1.2 Level I software

The LSI~11 software is itself partitioned into two

-

major levels. The u;hé} level software has to actually
. ~

)

run the experiments - i.e. download the 1level II

‘processors, decide on parameters for each trial,

collect and 1log data, and provide reports to the
experimenter/operator. The lower level software
supports communication with ﬁhe o;ge controller
processors. The LSI-11 software was developed (and in

part is still being developed) under RT-=11 in Macro-11

and FORTAN by David Morton.

PR - Ve o v A as 2 e ey e
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1.2.2 Level II (H6800) . ‘ R

1.2.2.1 Level II hardware

3 o .

The level II hardwarencohdasta of eight processors

based on the ﬁbtorola M6800, each equipped with 8k

bytes of static RAM, an ﬁﬁ$z1 (peripheral interface

S el e

adapter), -an M6840 (triple programmable timer), an
M6850° (asynchronous communications interface adapter),

and a dual 12-bit digital to analog converter board.

The 6821 PIA is used to interface various devices “on
the cage, the 6850 ACIA provides communication with the
master, the 6340 timers are used to_maintain a Systgm
time _énd generate’ pu;ses. and the digital-analog

converters cont;pl pulse’ current magnitude.
1L..2.2.2 Level II software

The level II processors _mus€ be able to haﬁdle
communications “from Jdevel I (receive commands and
parameters, 3étd data generaéed by trials), respond to
rat activity 1n.the~£orm of lever presses, deliver very
accurate qtimulation pulse sequences, ana keep track of
passing time (a trial can be minutes long). For this
purpose a general‘; semaphore-based mulbi-tasking

operating system was written for .the M6800Q0. This L
) \ i

A

system was designed, inplementéd. and debugged by the ‘

author, and is the primary foeus of this paper.
¢

“
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1.3 Major design choices .

1.3.1 Level I R
¢4

The choice of RT-11 for the maatbr Lsi:T44Qas mainly

A

didtated by the fact that it was easily available ' and

documented in sufficient detail.. There were also other

°

f
RT-11 users within the Coficordia community whose
e / :
experience would be availabl% if problems should be’
encountered with the systemj
communications

The decision ta en&gpsxl7ke he '’
. {
portion of the LSI-11 software/ arose naturally from the

fundamentally the

fact that it functiqn woﬁ d remain

| .
same no matter what type of higher level experimental

driver were added. lfn all’ experiménts the 1level II

ust be ;oaded. and essages from/to " them

must be queued until pﬁoce#sed/ ent,

b= e o
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1.3UF.1 Generality

\

The justification for investing the extra resources
inyolved in writing a general‘purpose operating systenm,

rather than one designed ;gﬂ directly implement the

.experimenta™ paradigm to be handled (although 1t 1is

quite debatable whether this would, in fact, be
si pie}) lies in the fact that the qystem is research
oriented. This implies that future experimental
br cedures will likely depend, in part, on the rpsuits

of previous experiments carried out with the system,

This being the case, it 1is 1likely that a specially’

designeq set of prégramé would have to be re-written
from scratch as soon as the experiments to be performed
changed in any non-trivialm detail, Such a re-write
requires more time and thhnﬂcal expertise to perform
than re-designing the| experiment tasks given the

facilities provided by the operating system.

A} [
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1.3.2.2 The hardnard?so?tuaré functional split

o -

)

One of the more difficult choices which arose early

.in the design phase was the question of how much work

would each of hardware, software, and O0S° software
contribute to the actual pulse generation and timing.
To understand this cléarly it is necedséry to explain

in more detail the format of the stimulation pulses.

-

At the lowest level, pulses are delivered in pairs
called the "C" (for "conditibning") pulse ands the nT0
(for "test"™) pulse (if a single pulse only is desired,
it is arbitrarily designated a C pulse). The; pulse
widths and the C-T interval could conceivabgf' be as
sqall as some tens of microseconds, and therefore must

be very accurately timed - sSo much 8o that an

instruction execution time is significant (ranging from

2 usecs. to 12 usecs. - with instructions of- over. 7.

usecs. being comparatively rgrely used).

. These C-T pairs are combined 1into i}ains. and a

sequence of trains comprises a stimulation. The
[}

resolution of thg C=-C interval must be 1less  than /100
usecs., while the resolhtlon of the inter-train delays

can be as coarse as Tens of milliseconds. A typical

-

stimulation is long enough to watch directly® on the

face of an ordinary oscilloscope (typically, between-

0.1 and 2.5 seconds). .
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, accuracy, and' elegance the C-T pairs vere best

£

‘ .

<

[y
LI 4

-

It was decided that for reasons of reliabdility,

generated by hardware. The rejected option i1in this

case dﬁs the use of specially timed instruction loops -

-

with different pieces of code required for different

timing ranges. ¥For this purptse custom hardware was

-

developed (the prototype by the author, later dimproved

by Peter Shizgal).

For the next interval, the C-C 1interval, it was

. clear that the opetating system overhead would be too

great to achieve the necessary resolution wusing a

system call. A timed delay 1loop with interruﬁts

disabled was settled on as acceptable.

‘'For both of the largest intervals - the inter-train
delay and the experiment trial duration - the time
resolution provided by the operating system was

acceptable.

.4
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1.3.3 Level III - ,

L - - - -

Level III was specified by Petér Shizgal, and was
dictated by ©previous experience - with manual
experimental setups,‘and 1nstr;mentation requirements,
Thiﬁ equipment included the rat cages, the switches,
ligﬁts. and other devices built into them, . voltage
controlled constant éurfent amplifiers for aenerﬂting
pulses, electr;de switchers, ete., The cages,
distribution panels, etc. were constructed by students,
and the electronic design and construction was doné by

William Mundl, the technical officer for the PsyohOlogy

Departﬁent of Concordia University. Thliﬁ;evfl,of the.

//
system is viewed as a black box by the higher levels.

- 10 -
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Chapter 2 '
OPERATING SYSTEM SOFTWARE K
2.1 System design
) ' /
2.1.1 Style of system - 4

The operating system supports multiple processes,
with process_s;nchrénlzation being handled by semaphore
primitives, Both for aesthetic reasons, and to

»

simplify maintenance, reduce development and
implementation time, and reduce user learping time,
consistency and simpliciti were the primary goals when

designing the system.
2.1.2 Data structures

Each process within the system is assqeiated with a
process block which holds‘itSvpriority.‘conteit‘(in the
form af a stack pointer)./and wake-up time (not always
used). There are a fixed number ‘of process *“ blocks
within a region of memory reserved for sistem use, and
this number.determin;s the maximum number of processes
yﬁich can exist at any one time. Each of these. bBlocks
is ;denéified by a. (fixed) number which serves as a
process identifier. A process can be in one of four
states: (1) dead (inactive)- the process block is free,

(2) brocked- the process cannot run until some event

occurs, (3) ready- the process can run as soon_ 8as the

“e- 11 -
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CPU is available, and (4) running.

1t

A running process has its context installed in the-

mgchine registers, and its process block pointed to by
a system variable (PBCRNT). All.processes in the ready
state are kept in the ready queue, sorted in order of
priority (so that the next process to run is at'the top
of the. list), A blocked process can be( either in a
semaphore queue (again sorted according to priority)
awaiting an explicit evgnt signal, or 1in the Sleep

queue awaiting i@s wake-up time. ‘

Likg process blocks, there are a fixed number *of

,semaphorel blocks available in an area of memory

reserved for the systen, Each of ¢thege blocks 1is
referenced by a number which is always used to refer to
the associated semaphor; in system calls, Semaphore
blocks contain a count.(the number of abstract resource

units currently available), and a queue pointef.

- 12 -
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2.1.3 System services

i

The following paragraphs outline the services which

&

thé operating system kernel provides to user processes.
2.1.3.1 Synchronization

"The syncﬁhgﬁization primitives are referred to as P
(ﬁaits and ’V (signal) as they were originally
designated by Dijkstra ([Dijk68]). Each call passes to
the system the number of the semaphore to be used.
Semaphore numbersfmust be assigned during application
system design, since the kernel es not keep track of

el

which semaphores aré in use.

2.1.3.1.1 P (wait)

The "P"™ operation requests a single unit of
resource, .If the semaphore count is non-zero when the
call is perfo;med. then the count 1is decremented by
one, and the caller is allowed to resume executioﬁ. A
caller will never 1lose the CPU as ~a result of
performing a "P" operation on 'ar semaphore with a
non-zero count. \

]

If the semaphore count is zero when a "P" oberation
is performed on i1t, the calling process 1is idserted
into the semaphore's quéue in order of, process
priority. (In the case of moré than one pr;cess of the

same priority, ties are broken on a first-come

- 13 -
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first-served basis.)
2.1.3.1.2 V (signal)

The "V" operation produces (releases) a single unit
of resource., If the semaphore queue is empty, then its
count is incremented and the caller cannbot loge the CPU
(at least not as a result of the call), If the queue
i3 not empty, then the process‘at the top 6f the 1list
will be able t; run, Since this process may be of
equal or greater priority than that of the\calleﬁ. both
processes must be entered into the ready queue so that
the dispatcher\can decide which should run ﬁext. The
walting process is inserted into "regdy" first, since

N .
if both are of equal priority the one which was waiting

should be scheduled first.
2.1.3.2 Process birth and death

Except during initialization, processes aldays come
i;to existence by ahn already existing brocess
geneéating a "start" systenm cail. The parent process
must supply & context for the new process, in the form
of a stack pointer, and a priority, which will stay
with the new process for life. The id-number of the
new process is returned to the parent, if the 'birth'
is successful. The id-number must be saved 1if the

offspring is to eventually be killed, or some higher

level meas&ge passing protocol added to the system.

et

- 14 -
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A pr;cesa is destroyed by some process (perhaps
itself) performing a "kill" system call specifying the
prooes; id-number of the process to be destroyed. It
should be noted that the family tree of processes
within the system is not stored. Thus a process ;hich
c(ea&eé several others can be destroyed without

affecting 1ts offspring. o

<

To make process suicide possible without any special
arrangements for communicating id-numbers, a system

call ("who") is provided which returns the process

id-number of the caller.
2.1.3.3 System time and the sleep queue

The system maintains a four-byte count of the
elapsed time since system initialization. Since this
is intended ¢to provide comparatively 1large scale
intervals, the time base is supplied by an external 10
msec, oscf?iator to all (eiéht) M6800 CPU's in the
system. The purpose of maintaining a system time 13 to
allow processes to place themselves 1n‘; dormant state,
possibly for a 1long time (from minutes to days).
Consequently, the argumenfa provided for a "sleep"
system c¢all are a two-byte count and a four-bit
exponent. Thus, the farther. in the’' future 1is the

wake-up time, the lower will be the ultimate resolution

of the actual time of reactivation. This is not seen
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as a serious limitatidn, since the i}ten\ time 1itself

~

will drift due to the accumulation of small ‘Eélayg in

hai one through two distinct versions involving a

\\ N
1eta\:g§?44§p for reasons outlined below.

\\\\ . \\\\\\ -

~. -

In the i 1&1\\\§\iteg\\ design, one_Z of the

‘&\

~.

T

~ . S~ R
~.programmable tiﬁergxhﬁyplied the-M6840 chip was used
\\ \\\\\ T~
S ~ -
ah\a\jiée\gunning oscillatorg;h£Ch EZEP*QQf nterrupts

e \\\ ~— \\ .
at reguli;?inﬁgfvals. At each interfﬁﬁg, EEE\\§§§ten\
COT T \\\ \\\\\ —

~. \\

whose wake~up time had co would ; be then

moved to the ready queue. : X ded\g\system fime

~
of the same accuracy as the crystal time 5332\\for the
.

\\\\\ .
CPU (since a free running oscillator re-starts.

automatically without intervention by a- service

routine).

This timing system worked effectively from an

opérating system viewpoint, However, upon testing

stimulation pulse generation, it was discovered that

the frequent interrupts generated by the clock caused

. s &
an unacceptable jitter in the timing of C-C 1intervals

(these are timed by progranm loops). Disabling
interrupts during pulse trains would have resulted in a

possibly lﬁrgfi\aqd generally unﬁré&igtable nunber of
o - \\ .

. \\\ ) ~ /\
lost clock 1interrupts. . Both types of error were
unacceptable. I \\f\\\\\

\‘\ R
\\\\\\
\\\\
‘\\\V
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The following

solution

running the' programmable timer

was

devis

freely,

e mws W R WW M

ed, Instead

it would be

of

run

the timer is re-started, ,

(1)

as a one-shot. Now, each time

it is set for the minimum of the maximum time

and (2) the time to the next process

¥
7

/

Y
N
i

~ interval possible,

wake-up..time,
\

interval programmed into the ¢t

clock interrupt occur

Il

by this amount, and the next intervgl cbmputed.

~ S

"sleep" call occurs during an interval, t

t}ﬁt\syaggg\gime.

If this time system had been run using the CPU ti

___only 65 msees.-

timers used for the system clock.

e —

so it

The system must

was

keep track

decided

A time

dware,

that

m3ecs.

was decided upon,

and therefore an

of the 1last

and when a

ystem time \must be updated

If a

er must

a longer

grain_ o 10

msec, time base

timers.

the ability to run for as long as (approximately) 10.9

minutes before having to service an interrupt

system clock.

The cost of

was

proviaed

for

This gives the current version of

the

he

for

externfal 10 .
. ‘/ﬂ

programmable

the

this techniqué’ia that some small amount

system-

et 2 ~'\ —



)
?

D o .- 53
N

o e e e i oy

Pr——— o e rteop

/// of time 1quoat every time a clock interrupt ;;curs, or
when the clock interval must be artificially ended
because of a "sleep” system call, This causes, the
system time t&*gradually“fall behind 1ts correct value,
and this error will 1increase linearly with the
frequency of clock interrupts and “sleep” calls.
Fortunately, this error is not great enough to cause
any serious concern, especially over the magnitudes of

intervals required for these types of experiments

(generally on the order of ninutes).
2.1.4 System characteristics
2.1.4.1 Scheduling

As mentioned above, all processes are assigned a
fixed priority ‘at birth. :Whenever a process is
inserted in the ;eady queue, or a gueué gshoggated with o
a semaphore,_it‘is inserted after the last’/process on
\\I the queue of tge same or greater priofiti. Thus,
processes of greater priority are always skrved before
those of 1lower priority, and /processe; of equal
priority are dealt with on a first-come first-gerved
basis. These rules of scheduling are applied
identically to‘allocation of the CPU and ;qmaphore

resources.

With queues for semaphores and the CPU kept sorted

¢

in-tﬁis manner, allocation of resources.becomes _simply

-—
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B a “a case of‘:emoving t@g/ftrst processr in a queue and
( e allocating it the resource (either by inserting 1t in
the ready queue if the resource is> a semaphore, or
making 1t‘thf ;;rrent process if the resource is the
CRU). So that there are no exceptioni‘*to this
iallocation scheme an idle process is (must always be)

provided to consume unused CPU time. WhehL the sya}em

) ' ,

o reaches this state (i.e. the idle process is running)
\ it can only be changed by an 1interrupt allowi gome
|  waiting process to start again.
’ 1 /
The priority is cdntained in a one-byte numbér. A
) fr\v | '
f / process of priority of 0 is dead (i.e. the process

’ block is free). Priorities of 1..254 are 'ordinary'
priorities, where a greater number indicates greater

priority. It was decided that it would be wuseful " to

) ‘have the highest priority designate "infinite' -

priority, agd S0 a priority of g55 is considered

'Qon-interruptible' . and the dispatcher will
. aaﬁpmatically mask further interrupts whgn assign%ﬁg
the CPU to a process ;f ghis priority. Thg ‘prime
reason for this decision is that 1t\makes_°1t possible
to h#ve theiinterrupt poller, the program Qﬁich polis
thHe inierfaees to see which ones require Qervice. un
as an ordinary process. This improves s steﬁ

consistency by reducing the number of exceptionsto the

sehgduling rules.
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2.1.48.2 Interrupts

P d

The M6B00 processor does not provide any hardware
fdr prioritizing or vectoring interrupts, All devices
share a Q%mmon interrupt request line normally held at
+5 volts (a logie "1"). An interrupt is caused by a
device grounding this common line, at which point the
processor stacks all registers, and Jﬁmps to the
location it recovers from the top twa bytes of 1its
address space (usually contained in read only memory).
The determination of the cause of the 1nterrup§ must
then be done by code which interrogates device status
registers. This iterrogation is ‘usually referred to as
"polling", and it is only at this p;int that priorities
are normally introduced (either implicitly by the
polling order, or explicitly as in the system under

discussion).

Both for aestpetic reasons, and practical ones (i.e.
simpiicity of design, maintenance, and learning), it
was decﬁ¢ed to translate, hardware interrupt signals
into software semaphore signals as early as possible,
This was done by having an interrupt poller process run

bJQ an &;dinary system process, ft infinite priority.
Thus, when an interrupt occurs, all that 1is necessary
is to meke it seem as though the running process had
giénnll;d, the semaphore assigned to the interrupt

=
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poller process. So simple is this to do, that it takes

only two machine instructions to achieve.:

At this point, the interrupt poller can interrogate

¢

each device capable of generating an 1ntgrrupt and

signal a special handler process for each device,
Device priority is explicitly controlled by the general

priority mechanism.

As pleasing as this system is aesthetically, i1t 1is
quite possible that a device requiring high speed
interrupt service cannot wait for the system overhead
involved in running the interrupt poller and system

dispatcher (twice),

A high~speed dd;ice can be checked ‘and serviced
before passing control to the system, storing details
of the interaction in a set of memory locations. The
code executed before the operating system's priority
mechanism is imposed and the memory locations used can
be conceptually considered to be another 1layer of
device interface, providing a 'virtual device'. The
higher level portion of the handler for the device 1in
question (i.e. the normally scheduled handler process)
can then use'the assigned memory locations as though
they were additional device registers. As an example

of this, suppose some sort of input device presents

ﬁnratched data to a set of input lines for only a very

- 21 - N
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brief :I:e after it generates an interrupt., When this
device genergtes an interrupt, the datea can bhe read
rrom’the input lines and stored in memory, along with a
flag indicating that ¢this has 'been done, before
signalling the interrupt poller. The interrupt paller
could then interrogate this software flag as though 1t
were the device 1n£errupt flag, signal the appropriate
+device handler, and turn off the flag. The handler
cduld then move the data into whatevgf buffer was

designated to hold it,

Although this technique can improve thé time
required to service a device, it cannot 1increase the
average ‘data rate that the system can handle (in fact

it slightly decreases it). This type of flexibility

%

must be provided within the syste } however, especilally
considering the unpredictable anq7 sometimes haphazard

hardware arrangements that c¢an arise in 1laboratory

/
situations.. ' ‘

- 22 -
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2.1.5 Kernel processes ) Q1

4]

‘Apart from the code reguired to implement the system
calls ("p", myn, "stfrt". "sleep", "who", and "kill"),
and the dispatcher, several processes must be
considered an integral part of the system kernel. Two
of these are the 1idle process, and the interrupt

poller, whose functions are discussed above. The two

other system processes of 1interest are the clogf&

interrupt hanpler, and the initialization process,

|
Lt an interrupt generated by tpe prpgréémabie. timer
used to maintain the system elaPsed time, the ciock
process updates the system time, and activates all
érocesses in the sleep queue whose wakeup ti;e has
come, by moving them into the ready queue. The current
system time is o¥tained by simply adding the last time
interval to the old time value. Sleeping processes
whiceh should be reactivated'a;e discovered by scanning
the sleep queue. Since this queue is kept sorted in
order of increasing wakeup time, it 1is not always
necessary to scan the entire queue. If the first@
proce;s in the queue should be activated, then it 13\
deleted froﬁ the sleep queue and moved to the ready
queue. This is repeated until the first process in the
queue is one which is not ready to reawaken, or the

quede is empty, at which point the job is done. The

next interval is then computed according to/i the same
AL N
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algorithm used by the "sleep" call, and the timer

- restarted.

The priority of the clock process is 254~ 4i.e, the

kY

highest priority less than infinity. Since the clock,

. process can bde interrupted, the interrupt is explicilty
masked when manipulating system data structures. This
1s a compromise between being forced to wait until the

clock handler finishgh its Jjob, completely before

¥

accepting another inierrupt. and risking damage to
R )

important system data structureéﬁ

The remaining important systenm process, ‘the
initialization process, is, as 1its name impl{es.
responsible for starting the necessary application
processes, and initializing semaphore values. The

system initialization séghence is as follows:

(1) Important system variables on page zero

are initialized.

(2) All process blocks are marked as free,
7

and all semaphore counts set to zero,
(3) All queues are set to null,

{(8) IRQ and SWI interrupt vectors are set to

transfer control to the prgper locations,

(5) The ,initialization process 1is started

y -
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with a priority of infinity (i1.e. 255).

The 1initialization process mnust then afg}t the

interrupt poller and clock handler, configure th
system for the user applicatibn. and commit suiclde,

since it is no longer needed.

2.2 System implementation

1

2.2.1 Development & maintenance

The system was originally developed on Concordia
University's Control Data Cyber 176 computer using the
Motorola» supplied cross assembler. Testing ‘and
debugging was/performed on ane of the M6800's. Later
in the project when an Apple II microcomputer system
became. avajlable, and because of difficulties with the
Cyber system, support was transferred to the Apple,

using a cross assembler written for the purpose by the

author.

The Apple computer with one disk drive has proven
'perfectly adequate for supporting the operating systen.
A 9600 baud serial line has been insballed to link the
Apple to the master LSI-11 computer. Object files
generated on the Apple are transferred to the LSI-11,

which in turn downloads the M6800 systems.

- 25 ~
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2.2.2 Debdbugging

The firmware used to load, test, and debug the. 0s
software is tyé "Mikbug" monitor supplied by Motorola,
The monitor provides routines to examine and change
meméry. set breakpoints, accept downloaded programs,
and send "uploaded" dumps of memory regions., The read
only memory containing the firmware® also traps restart
interrupts, ahd vectors NMI (non-maskable 1interrupts),
IRQ (interrupt requests), and SWI (software interrupts)
through locations in normal.re;d-write memory so that
they can be trapped by software other than the moénitor.
Although the breakpoint facility wagrsomewhat useful in
testing and debugging indiviual routi#es and 1isolated
pieces of code, it proved virtually useless in testing
the running system sin&e its wuse 'of the software
interrupt as a break 1nst;uction conflicted with the
system's use of the software interrupt as the mechanism
fqy making system calls (system calls are done by
loading a fupction code into the A-register and

generating a software interrupt). This made debugging

very difficult until the system was runnable. The

’
primary debugging techniques in the early stages were
the use of carefully constructed test cases, analisis
of the system state via examination of memory contehts,

and thinking.

- 26 ~

[ PN R NN,




. g

gy e >

&

5
by
4

[PPSR PESIEL LSS

Cha}ter 3

4

APPLICATION CONFIGURATION

b

3.1 Inter processor communications.

Each  M6800-based rat cgﬁe controller must

communicate with the master LSI-11 computer to receive
instructions and parameters, and to feport results,
Since all proiesaors involved in the system are ’uithin
several feet of each other within the same room, direct
interconnection of RS-232 ~ serial ports of  the
respective computers produee?\reliable communicaﬁioﬂ'on
the hardware level, with a low probability of er;&r.
It was decided, nevertheless, that some eéror checking
should be built into the comﬁﬁnication. and so a simple

packet system was designed for the purpose..

o ,
Low overhead, in both the implementation tjime and

‘4

usage of resources when running, was and is “important-
so the packet system has been kept quite "simple. A

packet consists of:

1) A start character (arbitrarily éhosen to

be an ASCII colon).

2) A count of the nuamber of data characters

in the packet (0..16).

4

3) The data.

- 27 =
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3) A one-byte checksum such that the sum of
the count, all data bytes, and the checksum

will be zero (mod 256).

transmission 1is accomplished by a simple

1) The processor wanting to transmit a packet

sénds a "ready-ﬁo-send" character.

2) The sender waits until the receiver

responds with a "ready~to-receive"™ character.

3) The sender then transmits the packet and

walts for an acknowledgement.

4) 1If the sender receives a positive
acknowledgement, then the transfer is
complete; if the sender rgeeives a negative
acknowledgement,.the procedure begins again

at step 1.

Until the transfer is complete, the process at whose

request the data is being sent remains blocked. The

data rate

was established by trial and error, and it

was found necessary to introduce a small

inter~character delay in the LSI-11's transmission to

allow time for overhead (the 6800 is not known for 1its

speed).

- 28 -
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3.2 The experiment

~

3.2.1 Format

° A single experimental trial consists of:

1) A priming stimulation intended to bring._ '

the rat into a known state before ¢the trial

proper starts,

2) A period during which the rat'; lever s
L .

pressing the lever, During this period both
lever presses and stimulations must be
counted (these may be different, since a
lever press during a stimulation does not

trigger another stimulation).
Ed

3) A period during which stimulation 1is not

available.

The parameters of the pulse train used for priming
generally differ from those used for self-stimulation.
Therefore two sets of parameters are necessary for each
trial. A set of parameters for a stimulation (either
priming or self-stimulation) is h;ndled as a block, and
refered to as a "stimulation parameter bloek™

{
(abreviated SPB).
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3.2.2 Commands

1

An experiment is driven by .commands issued by the

-~ _L8SI-11. A command consists’ of a single byte code,

~—
~—

folisiiy\hy any data required for the performance of
the command. \\}ﬁi\~cg§3 controller system always
acknowledges commands by ;;;;dting\\phe command being
acknowledged to the master systenm, fgiisﬁédkpy\any data

which the command requires be sent,

There are currently five commands in the repertoire,

described in the following paragraphs.
3.2.2.1 The "null" command

The null command does nothing other than acknowledge
execution. It is useful in verifying that the system
has not crashed or deadlocked, and proved useful 1in

debugging the LST-11 end of the communication system,

- 30 -
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3.2.2.2 The "aé&ept" command

"New stimulation parameter blocks .are sent by issuing

§;kWaccep§j command, followed by the priming SPB, and

\\\ »
the self-stimulation SPB. Both are stored internally
in a common area to be referenced implicitly by other

commands, ™

4
3.2.2.3 The "echo" command

As an additional verification, the master can

Cal

request that the SPB's sfored by a cage controller be
repeated to it for comparison to the originals.  This
command causes both SPB's to be sent out from the M6800
exactly as they were received. This facility also
makes it easier for the LSI-11 to recover from a crash
without losing the last experiment (since the cage

controéger remembers the parameters for it).

e ety ety
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3.2.2.4 The "report™ comBand

3]

This command causes  two two-byte numbers

representing the lever press count, and the stimulation

count to be‘ reported,. These counts are the data

B
gathered from a trial. -

3.2.2.5 The "cancel" command

a

Should a need arise to cancel a trial (perhaps the

rat is having a Belzure) before its time elapses’

}ormally. the cancel command has the effect of

-

terminating the trial,
3.2.2.6 The -*begin® command—- -

The command to begin a trial has the most complex
action, and so has ;;en saved for last. Ail other
commands execute in a comparatively short time, and
therefore are implemented as simple subroutines of the
executive process. The running of a triai; however, 1is
sufficiently complex and lengthy to warrant a process
(or, rather, a set of processes) of its own. This
allows the executive process t6 remain 'responsive to

commands while a trial is in progress., It is in this

way that the current érial eaﬂ be cancelled.

There are two semaphores associated with a trial.
One, named "SMSGO" is used to trigger a stimulation

sequence, The second, named "3SMSLCK", ensures that
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stimulatloﬂs are atomic. (A cancel command is the -

exception to the atomicity of stimulations, and can

cause a halt in mid-stimulation.) These are discussed

further in the deacriptloﬁs of the trial processes

below.

3.2.2.6.1 The lever.interrupthhéndler

F 3
The lever interrupt handler is activated whenever

the rat presses down on the HYar in its cage;///}t“x%hen
consults a pair of status flags which specify which of )

three actions it is to take:
aw
N~

1) It can ignore the lever press.

Ll

2) It can increment the 1lever press count,

but not trigger a stimulation. -

3) It can increment: both the lever press
count.and the stimulation count and trigger a

stimulation.

Tt e
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3.2.2.6.2 Tﬁe,triai process

The trial pro;ess is responsible for sequencing and
timing events within the trial (distinct from events
within a stimulation). It selects the approriate SPB
for ea:h stgp. trigéers priming, and for the trial
duration it enables lever press and stimulation
counting, and goes to sleep, leaving the stimulation
lock (SHSLCK) open so that the stimulation process can
be triggered by the lever interrupt process. At the
end. of the ¢trial 1nterva1\ it disables further

stimulation and lever press ébunting, and acknowledges

the "begin" command to the master.

The acknowledgeme;t of the command to begin a ¢trial
signals to the master that the trial is complete and
the data may now be examined. 1Its job finished, the
trial process kills the stimulation process, and

ffself.
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3.2.2.6.3 The stimulation process
..

Once it is triggered, and permission to séimulate
unlocked, the stimulation process generates the
agquence of pulse pair ¢trains specified by the
(currently selected) parameter block (SPB). It 1is
responsible for confiéuring the hardware involved 1in
pulse generation, counting and timing pulse pairs and
trains, and keeping count of lever presses during the

critical C-C interval, when interrupts are masked.

Stimulation is triggered via the SMSGO semaphore
from only ¢two places: 1) the trial process (for
priming), and 2) the lever interrupt process (if the
appropriate flag 1is set- recall that the lever
interrupt process's ability to act as a tiigger can be
disabled). The semaphore SMSLCK serves to synchronize

the trial process to the end of a stimulation.
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Chapter 4

SOME FINAL COMMENTS

4.1 The 6800 processor

4

The experience provided‘by this project in the use
of the 6800 processor emphatically underlined some of
its weaknesses, Several 1important capabilities are
missing from the 6800~ some 380 obvious th;t their

omission is puzzling.

Chief among these is the missing ability to pish and
pop the X register (the sole 1index register) on the
processor stack. It was also noted that the form which
indexing takes in the 6800 makes it ’difficult to
address a location using a computed offset from the
index register (the ability to specify one or both of
the accumulators as an offset to the index register

would have been useful).

Motorola must have beeﬁ aware of the weaknesses of
Ahe 6800, for they fixed these problems, and added many
other features in their next major eight-bit processor-
the 6809. The 6809 architecture is extrénély
attractiy but‘still misses one feature the 1lack of

%gelt in this operating system., This 1is the

i

ability to have the hardware transfer control to an

which was

interrupt processor without the need for polling. This.
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would reduire that each hardware interrupt have
associated with it an address and a priority, and was

probably not possible with the technology availabdble

TERE > o W

when the 6800 was designed, though a common feature :i;}

larger computers, ‘ éaxjf

4.2 System design

In general, the operating system seems to achieve
the goals of cleanliness and simplicity of design and

the author is satisfied with it.

The configuration of processes running the
application is also satisfactory.' It has been cpnnged
several times usually in small ways, with on;"larger
organisational change. This 1larger change was the
decision to run a trial process distinet from the

command executive process, thus allowing <the addition

of the "cancel" command.

The weakest part of the entire system is the packet
comnmunication subsystém. In retrospect, and in view of
the amount of effort spent on inter-computer
comnuﬁiéatlons in general ([TanB81)), some of the
difficulties which this subsystem can encounter could
have been forseen- but they were not. It is possibdle,
given the right conditions, for the existing

-

communication system to get itself into serious

trouble. For example, an incorrect data byte count can
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result {n the receiver waiting for some characters
which will never arrive. If another packet 1is then
sent soon after the first, the two computers can get
oﬁt of phase with their packet transfers- resulting in,
at the very least, a lost packet. - What is more, this
problem cannot be e11m1£ated completely -5y simply
timing out packets, since the time to the next packet
might be less than a reasonable time-out interval. The
same type of problem can arise if several characters
are lost due to overflow of the character buffer in the
interface chip. (The chip can indicate th;t a
character was lost-ﬂbut not how many.) This problem
could reasonably be expected to e;entually ocecur (it
has not happened yet, ¢to anybody's knowledge) since

interrupts are masked during C-C intervals.

The establishment of more reliable communications
would be made easier if the RS-232 standard lines were
more completely implemented in the hardware. As it |is
only the three most essential lines (transmit data,
receive data, and signal ground) were used in
connecting the computers., The lines which establish =
character by character handshaking protocol would have

been invaluable.

Although the overall system has not yet been used in
full scale experiments (it will eventuaIly include

eight rat cages), 1t is currently being used with
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two rats while experimentat%on takeq/place with how to
make the best use of the system. New algorithms (for
the selection of stimulation parameters based on the
rat's behaviour), which were too complex to run

manually, can now be triéd to speed up the gathering of

useful data.

The system works- and the people who have spent many
hours staring at a rat pressing on'a bar in a small

cage are happy about that.
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Chapter 5

A BRIEF REVIEW OF CONCURRENT PROGRAMMING

The purpose of this secéion is to sketch the most
important landmarks in the development of ﬁultiftasking
systggi design (of which the subject of this thesis |is
an example) in the opinion of the author. The diagram
opposite presents the apparent ancestral relationships

of the programming concepts chosen for discussion.

5.1 Semaphores & critical regions

]
The most elementarfg-and the earliest, techniques

are the semaphores and critical regions, both presented
in [D1jk68]., Although not identical, since critical
regions directly implement only the mutual exclusion
aspect of semaphores, these two concepts are of much
the same 1level of sophistication. It seems most
likely, however, that semaphores were originally
conceived with the mutual exclusion problem in mind,
then abstracted to a ﬁore general signalling concept.
Both can be 1mp1emen£ed quite simply, but have some
serious limitations in use, and tend ¢to result 1in ‘a
complexity analogous to that caused by the "goto"
construct in sequential programming. Both are elegant
in their simplicity (the prime requirement for being

included in this review).



5.2 Conditional critical regions

1

The next step, taken by Hoare ([Ho73], [BH72al], and
[BH72b}l), was to attach a boolean expression to a
critical region, describing the condition(s) which
should Se true for the critical region to begin (end)
execution., This adds the signalling abllity of the
abstract'semaphores to the critical region structure-
but in an improved and simplified form. One can quite
easily program, using the boolean expression of a
critical region, t:sks which require considerably more
complexity to accomplish with only the semaphore
primitives (although this can always be done, since it
is possible to simulate conditional ec¢ritical regions
using semaphores). It also results in a program text
which is more readable, whose behaviour 1is easier to
verify, and it maintains the structured form of the

critical regiGh.

Curn Pbmn s Waeph, § 4 =




5.3

Monitors

The monitor concept originated by Brinch-Hansen

([BH73], [Ho74]) makes another step by suggesting the

encapsulation of procedures which manipulate a shared

resource or set of resourées. In this scheme all

communication and synchronization between customer

processes is done via these common monitors, and n¢o

shared variables can exist outside of a monitor.

Mutual exclusion is enforced within a monitor, in as

much as a monitor may only be executing on behalf of

one process at any instant (other processes may be

suspended- their status to be re-evaluated as soon as

some monitor procedure completes). Hoare proves, 1in

[Ho74], that moniteors can be simulated with semaphores

and

one

one

vice-versa (thus the improvement over semaphores is
of understandability and verifiability rather than

of power).

- 32 -
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5.4 Distributed processes

In Brinch-Hansen's next ‘major contribution, the
concepts introduced in {BH78] ("distributed
processes™), a new influence 1is apparent- that of
Di jkstra's guarded command programming constructs
([Di jk75]). These constructs, although not originally
intended for concurrent programming applications,
proved such an elegant vay of ’introducing
non-determinism into sequential programming, that {t
now seems8 quite natural, iIn retrospect, that they
should be applied to the concurrent programming case

where non-determinism is inherent.

The fundamental entities described in [BHT78] are
processes, Displaying a surface similarity to monitors
in the sense that all interactions between processes
are done via procedure calls (and(their par,ameters) and
that shared variables are encapsulated within a
fundamental entity- the difference 18 nevertheless
g?eaq. The flow of control which passes through a
monitor is always that of one of its customer
progegoes. i.e. the monitor is not a process in its own
right, but only a sort of co;mon meeting ground: In
contrast, Brinch-Hansen's distributed processes

communicate directly by calling each other's

procedures, while within the code for a process the

functions of synchronization and sighalling are
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achieved by a combi;ed adaptation of both guarded
commands and conditional ecritical regions (embodied 1in
the ;when" and "cycle" statements). The result is very
aesthetically pleasing, and, due ¢to the relative
independence of processes, is particularly well suited
to systems involving a number of lossely-coupled
processors (i.e. processors which do not share a common

memory). '
5.5 Synchronizing resources

The finalacontribution to be discussed here is that
of Andrews in [And81)] (it might be wuseful to mention
that ¢this paper has an extensive and thorough
bibliography). Andrews re-introduces variables shared
among sSeveral processes, but uses the concept of a
"resource" to encapsulate a set of processes and common
variables to which all processes within the set have
free access. Communication (other than via shared
variables within a resource) is again accomplished via
calls, however here the calling mechanism provides for
the case in which the calling process does not wish to
walit éor its call to be processed before proceeding
(this is accomplished by_éiking the keyword "send"
instead of "call", and is clearly similar to the
message passing primitives used iIn some operating

systens),
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Synchronization 15 performed by the "in" statement,
which again strongly resenbles Dijkstra's gua?ded
command statements. It is within the guards of the
"{in" statement that calls (of either type) are
accepted. An interesting addition here is that as well
as entries and boolean synchronizing expressions, the
guards of "in" statements can also contain explicit
scheduling information. An arithmetic expression can
be specified with respect ¢to which multiple ﬁending
calls of an operation can be ordered. Andrews'
proposal seems to provide considerable flex;bilty,

while st1ll remaining readable.

5.6 Conclusion

-

Clearly, in this brief review - of <concurrent
programming concepts many peoples? work has been
omitted. Aﬁx\ such summary, however, requires a
selection, and a process of selection must necessarily,
and indeed should, reflect the opinion of the selector.
The above selection of concepts and ideas seem, to this
author, ¢the most elegant proposals for usable

concurrent programming languages.
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Appendix A:
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Appendix A: Illustrations

Priority
* Link to next block
0 |
3 .

(high) (low) c—— Stack pointer
4 5

(high)
6 7 Wakeup time

(low)

&

Process block
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count field

queue pointer

Semaphore block

- 51 -



TR 1 e Kb

Appendix A: Illustrations

Packet transmission protocol

Sender Receiver

Ready-to-send >
character

Ready-to-receive

-———
character

vy

Packet

Negative or positive
acknowledgement

(If acknowledgement is negative
then restart)
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Appendix A: Illustrations

! Packet foramat

tnd] ... dn ¢
' |
Checksum
\ Data bytes
Data byte count
v Start character
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Appendix A: Illustrations

/
Rat -
cage M6800
)
|
O \ |
|
1
O ' LSI-11
|
|
O |
|
i
|
Rat \
cage M6800 \
AN
’ \ /
\ /
A4
‘Serial
lines

System configuration
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Appendix B: Source Listings

* FILE: PAGEO

*®
ARARRRRARRRKNRRRRARARARAARRAARAARARAA
* 0S KERNEL FOR THE M6800 UPROCESSOR
®

* I. SHIZGAL

*
RARRRRAARKRARARARRARRRERARARAAR N A kkkd

ot ~EQUATES .
Rkkhhhhhhhdhhhiikh s kkidikkihiihkik

*
: SEMAPHORE ASSIGNMENTS

* #0 IS PERMANENTLY ASSIGNED TO THE INTERRUPT POLLER
* #1 IS PERMANENTLY ASSIGNED TO THE SYSTEM CLOCK

SMRCVR EQU 2 RECEIVER HANDLER - GO
SMXMTR EQU ' 3 XMITTER HANDLER - GO

SMRCVF EQU 4 RECEIVER ~ INPUT BFR FULL

SMRCVE EQU 5 RECEIVER - INPUT BFR EMPTY

SMXMTF EQU 6 XMITTER - OUTPUT BFR FULL

SMXMTE EQU 7 XMITTER - OUTPUT BFR EMPTY

SMSLCK EQU 8 STIMULATION LOCKOUT SEMAPHORE

SMSGO EQU 9 START STIMULATION SEMAPHORE

SMPIAl EQU 10 PIAO-CAl INTERRUPT SIGNAL

SMPIA2 EQU 11 PIAO-CB1 INTERRUPT SIGNAL

SMPCKO EQU 12 PACKET OUTPUT ACCESS LOCK

*

%*

*

gﬁl)gx EQU 0 DISPLACEMENT OF PRIORITY FIELD IN PROC.
LINK EQU 1 DITTO - FOR LINK FIELD .

SP EQU 2 DITTO ~ FOR STACK POINTER FIELD

»

* LOCATIONS OF PROCESS BLOCK AND SEMAPHORE BLOCK MEMORY
* BOTH ARE $100 BYTE FIELDS, AND MUST START AT A $100 BOUNDARY
* THERE ARE 32 PROCESS BLOCKS, EACH 8 BYTES, NUMBERED 0..31

* THERE ARE 128 SEMAPHORE BLOCKS, EACH 2 BYTES, NUMBERED 0..127
* PROCESS BLOCK: BYTE O: PROCESS PRIORITY (1..255), O=>DEAD

* BYTE 1: LINK USED WHEN BLOCK IS IN A QUEUE

* THIS IS THE LOW-ORDER ADDR., SINCE THE

* HIGH BYTE IS THE SAME FOR ALL

* BYTE 2-3: PROCESS'S STACK POINTER

* BYTE 4-7: WAKEUP TIME

* SEMAPHORE BLOCK: BYTE 0: SEMAPHORE COUNT

* BYTE 1: SEMAPHORE QUEUE ($FF => NULL)

* USAGE SAME AS LINK FIELD OF PB

PBS EQU $100
SBS EQU $200

* TMPORTANT ADDRESSES IN MONITOR'S RAM
I0v EQU $380 LOCATION OF VECTOR TO USER IRQ ROUTINE

/
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Appendix B: Source Listings

*
SWI1 EQU $ LOCAT OF VECTOR TO MAIN SWI ROUTINE
SWI2 EQU 8C ON OF VECTOR TO USER SWI ROUTINE

HARDWARE REGISTER DEFINITIONS

L B B BE B

ACIA

ACIAS EQU SEC14 ACTIA STATUS-CONTROL REGISTER
ACIAD EQU SEC15 ACTA DATA REGISTERS

* .

* 6840 TIMER

* EACH CHIP USES 8 ADDRESSES
TIMERA EQU SEC18

% ¢

* PIA

* EACH CHIP USES 4 ADDRESSES

PIAO EQU  SECIO

* DIGITAL TO ANALOG CONVERTER(S)
DAC1 EQU SEDOO

DAC2 EQU $EDO2

*

*
hkkhhhhkhhhkhkkhhhhkhkhkhh kA ARAkkAA kRt ik

L PAGE ZERO
e Je g de Je e e e dede ke o e e e e e v dedede ke e A K e ek ek e de ek k

*

ORG 0
*

JMP $800 INIT. SYSTEM
GETCH RMB 3 VECTOR TO CHAR INPUT ROUTINE

PUTCH RMB 3 VECTOR TO CHAR OUTPUT ROUTINE
*

* JMP VECTORS FOR SYSTEM ROUTINES
INSERT RMB 3

DELETE RMB 3 ’

*

PBAREA RMB 1 HIGH BYTE OF PBS

PBFREE RMB .1

SBAREA RMB 1 HIGH BYTE OF SBS

SBFREE - RMB 1

PBCRNT RMB 1 POINTER TO PB OF CURRENTLY RUNNING PROCESS
READY RMB 1 ROOT OF READY QUEUE

TIMER RMB 1 ROOT OF TIMER QUEUE

*

TMPX RMB 1 TEMPORARIES USED BY SYSTEM
TMP1 RMB 1

TMP2 EMB 1

T™MP3 RMB 1

TMPA BMB 2
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Appendix B: Source Listings

-

.

*

SYSTIM RMB & SYSTEM ELAPSED TIME CLOCK
LASTDT RMB 2 LAST TIMER INTERVAL
*

W

*

]

* CONTROL REGISTER -CONTENTS FOR DEVICES.

*

* 6840 TIMER CONTROL REGISTERS

*

CRIA RMB 1 CONTROL REGISTERS FOR
CR2A RMB 1 FIRST 6840

CR3A RMB 1

* ACIA STUFF ‘
ACIASV RMB 1 ACIA CONTROL REGISTER CONTENTS
ACIAVD RMB 1 ACIA VIRTUAL DATA REGISTER

*

*

* PIA CONTROL REGISTERS

PIAORA RMB 1 PIA 0, REG A

PIAORB —RMB — - 1 PIA 8; REG B- ,
*

*

* CHARACTER INPUT AND OUTPUT BUFFERS
* FOR ACIA HANDLERS
RCVBF  RMB 1

XMIBF RMB 1
*

*
*
* DAC REGISTERS
DACIR RMB 2
DACZR RMB' 2

B e I



Appendix B: Source Listings

* FILE: STACKS
kfdekdkidddokhkhhkihhihihhhkhd

ORG §400
RRRRARARERARLAR AR A AdhAi A AR

# ENTRY POINT/PRIORITY TABLE FOR
* PROCESS INITIALIZATION

B L el T

e e

*

XIDLE BRMB & 2

FCB 1 PRIO
XINITG RMB 2

FCB 255  PRIO
XINTPO EMB 2

FCB 255  PRIO
XCLOCK RMB 2

FCB 254  PRIO
XXMTR BMB 2

FCB 200  PRIO
XRCVR ERMB 2

FCB 201 PRIO
XEXAMI RMB 2

FCB 190  PRIO
XCMND RMB 2

FCB 50 PRIO
XTRIAL RMB 2

FCB 60 PRIO
XSTIM RMB 2

FCB 60 PRIO
XLVRl RMB 2

FCB 200  PRIO

]

Jede e o e Fe ke e e de e ey de e o e e e ok e e ok e Aok

* IDLE PROCESS STACK

IDLESP
*

*

RMB
RMB

6
8

*INITIALIZATION PROCESS STACK

RMB 20

ENITSP RMB 8

* -

* INTEBRRUPT PROCESS STACK ‘
RMB 20

INTPOS BRMB 8

*
%

* CLOCK PROCESS STACK

CLOCKS
*

20

-3

* ACIA XMITTER PROCESS

/

20

STACK

‘- 50 -
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" Appendix B: Source Listings ' »

XMTRSP RMB 6
X ,

* s . o
* ACIA RCVR PROCESS STACK
RMB. 20
BRCVRSP RMB 8
*
*
*EXAMIN PROCESS STACK
* STACK

RMB 30
EXAMSP RMB 8
*

*

* END OF SYSTEM PROCESS STACKS
*

* BEGINNING OF APPLICATION PROCESS
* STACKS .

* »

COMMAND PROCESS STACK ]
BMB 30 . -
CMNDSP RMB 8 .:
- . -
%, P
* TRIAL PROCESS STACK
. RMB 30
TRIALS RMB 8
%,

“rva

* STIMULATOR PROCESS STACK
RMB 30

STIMSP RMB 8
*

*

* LEVER]l PROCESS STACK
RMB 20 :

LVRIS RMB 8

*

* LEVER2 PROCESS STACK

RMB 20
LVR2S RMB 8 . .
* \ .
. ~ :
* STACK FOR EXAMIN'S SON
EXMSON EQU  $800-8

w
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M Appendfx B: Sonirce Listings

% FILE: KERNEL .
RRARRARAAAAARAEARRRARRANAARA R AR KA REX
* —-SYSTEM CODE
hedkdkhdeddeddihd it ddhhd dihhiihkdhihihnd
®

*

ORG  $800

*
*x

* SYSTEM STARTUP CODE
*

*
* INITIALIZE SYSTEM ROOT BLOCK

_LDAA  #PBS/256
-STAA  PBAREA
LDAA  #5BS/256
STAA  SBAREA
LDAA  #$FF
STAA READY  READY:=NULL
STAA TIMER  TIMER:=NULL
CLRA
STAA  SYSTIM CLEAR SYSTEM TIME
STAA  SYSTIM+!
- STAA  SYSTIM+2

STAA  SYSTIM43

*

* CLEAR ALL PROCESS BLOCKS

CLRA  LOOP COUNTER ’
POINTER TO AREA

LDX #PBS
INIT2 CLR 0,X
INX
INCA
BNE  INIT2
* A
* CLEAR ALL SEMAPHORE BLOCKS
: LDAB #1128 LOOP COUNTER
LDX #SBS START OF SEMAPHORE AREA
LDAA #SFP NULL POIRTER CONSTANT
INITI CLR 0,x " CLEAR SEM.COUNT
STAA 1,X SEM.QUEUE :=NULL
INX _ NEXT
INX )
DECB - "DONE? ——
BNE INIT1
* .

* INITIALIZE USER VECTORS FOR IRQ AND SWI
* IN MONITOR'S SPACE
*®

- LDX #IRQINT
STX Iov
LDpX #SWITRP
STX 5W11
+ 8TX SWI2
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Appendix B: Source Listings

* , N
* START UP INITIALIZATION PROCESS
LDX #PBS USE PB# O
LDAA XINITS STACK ROINTER
STAA SP,X
LDAA XINITS+1
STAA SP+1,X
LDAA #255 GIVE INTITIALIZATION HIGHEST PRIORITY
STAA PRIO;?%
LDX X1 INITIALIZE PC
STX INITSP+6
CLRA A:=POINTER TO PB# 0
LDX #READY
JSR INSERT INSERT IT IN READY QUEUE

JMP DISPAT AND GO!
#

*
*

XINITS FDB INITSP
*

* SWI TRAP INTERPRETTER FOR SYSTEM CALLS
* ALL SYSTEM CALLS ARE MADE VIA THE "SWI" INSTRUCTION.
* JINPUTS: A = CODE SPECIFYING WHICH SYSTEM CALL IS BEING
PERFORMED.
* OTHER INPUTS AND OUTPUTS ARE SPECIFIED INDEPENDENTLY FOR EACH
* SYSTEM CALL.
SWITRP CMPA #6
BCS *+3
RTI
ASLA FUNCTION CODE IS IN A — WANT TO USE AS TARLE INDEX
ADDA  XSWITB+]
STAA TMPX+1

CLRA

ADCA XSWITB

STAA TMPX

LDX TMPX X:=ADDRESS OF ROUTINE ADDRESS
LDX 0,X

JMP 0,X ’ .
* -

* SWI SYSTEM ROUTINE ADDRESS TABLE
XSWITE FDB SWITAB

SWITAB ' ¥DB XP

DB xv

FDB  XSTART 1
FDB  XSLEEP
FDB  XWHO |
w8 XL
*
. /
*
* N—
# DISPATCHER J
. xksmm TOP nmy{n PROCESS IN EEADY QUEUE
el

/ N

~- - : - 62 -

I R A NN AT e ) TR .

o
S e e T \ LRI IR R O —



re ™ AT R TR WP R g .

- e e e et i e . ——— —— —

nHE_ PRI ey L o -

N

P p— rme e s e e

Appendix B: ‘Source Listings

* _THIS ROUTINE IS ALWAYS 'JMP'ED TO, NEVER CALLED

* (NO PARAMETERS)

*

DISPAT LDX
JSR
STAA
STAA
LDX
LDS
FULA
LDAB
INCB
BEQ
ANDA
PSHA
RTI

DSPTR  ORAA
PSHA
RTI

#READY

DELETE DELETE TOP PB FROM READY
PBCRNT INSTALL IT AS THE CURRENT PB
PBFREE

PBAREA - X:=ADDR OF. BLOCK

SP,X RESTORE PROCESS'S STACK POINIER

PRIO,X GET PRIORITY

DSPTR IF IT 18 255 THEN DISABLE INTERRUPTS
#SEF ELSE ENABLE THEM

#510 DISABLE INTERRUPTS

* ¥ N ¥ »

INSERT

*

ROUTINE FOR SYSTEM USE.

* INPUTS: A = POINTER TO PB TO BE INSERTED

»

X = ADDRESS OF ROOT POINTER OF QUEUE

* INTO WHICH THE PB IS TO BE INSERTED
* IN ORDER OF PRIORITY.
* QUTPUTS: NONE o
* A,B PRESERVED :
% B
XINSER EQU  *

ORG  INSERT

JMP  XINSER
, ORG  XINSER

PSHB  SAVE REGISTERS
INS3  PSHA

STX  TMPX

LDAB  0,X IF

" INCB  QUEUE IS EMPTY

BEQ  INSR1 THEN GO DO INSERTIOR
* ELSE COMPARE INPUT PB'S PRIORITY WITH THAT OF TOP ELEMENT

DECB

‘STAB  PBFREE

IDX _ PBAREA

LDAB  PRIO,X B:=TOP ELEMENT'S PRIORITY

STAA  PBFREE

LDX  PBAREA . :

LDAA  PRIO,X A:=IKPUT PB'S PRIORITY

CBA

BLS

INSR2  INSERT HERE ONLY IF INPUT PRIO> TOP

- 63 -
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Appendix B: Source Listings

>
>

*

* ELEMENT'S PRIO-
* INSERT INPUT PB AT THIS POINT

A:=INPUT PB ADDRESS

INSRl  PULA
IDX  TMPX  X:=QUEUE ROOT ADDRESS
LDAB  0,X B:=POINTER TO TOP ELEMENT
STAA  0,X MAKE INPUT PB NEW TOP ELEMENT
STAA  PBFREE
LDX  PBAREA
. STAB  LINK,X COPY OLD TOP ELEMENT POINTER INTO
* INPUT PB'S LINK FIELD
PULB
RTS  AND RETURN
INSR2 ., LDX  TMPX  ADVANCE ROOT POINTER TO LINK FIELD
LDAB  0,X OF TOP ELEMENT
STAB  PBFREE
LDX  PBAREA
INX  X:~ADDRESS OF NEW ROOT
PULA  A:=POINTER TO INPUT PB
BRA  INS3  THIS IS REALLY A RECURSION
%*
*
*
- )
* DELETE
* ROUTINE FOR SYSTEM USE.
* INPUTS: X = ADDRESS OF QUEUE ROOT POINTER
* QUTPUTS: A = PB POINTER OF DELETED (IE. FIRST)
* QUEUE ELEMENT
* B,X PRESERVED
*
XDELET EQU  *
ORG  DELETE
JMP  XDELET
. ORG  XDELET
*
PSHB  SAVE REGISTERS
STX  TMPX
LDAB  0,X GET QUEUE ROOT
STAB  PBFREE
LDX  PBAREA X:=POINTER TO TOP ELEMENT
o LDAB  LINK,X B:=LINK FIELD OF TOP ELEMENT
LDX TMPX  RECOVER X
LDAA 0,X ' A:=POINTER TO TOP ELEMENT
STAB  0,X UPDATE QUEUE ROOT
* (ROOT=LINK FIELD OF TOP ELEMENT)
PULB  RECOVER B
RTS
*
at * !
*
*.
*p
* SYSTEM CALL.

- X
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Appendix B: Source Listings

* INPUTS: A= 0

* B = SEMAPHORE # : 0..127

* QUTPUTS: NONE

* ALL REGISTERS PRESERVED

%

Xp ASLB CONVERT SEM# TO OFFSET
STAB SBFREE
LDX SBAREA X:=SEM ADDRESS
TST 0,X IS SEM COUNT=0?
BEQ PFAIL YES - CALLER MUST WAIT
DEC 0,Xx NO - DECREMENT SEM COUNT
RTI AND RESUME CALLER

PFAIL LDAA  PBCRNT
STAA  PBFREE
LDX PBAREA X:=ADDRESS OF CURRENT PB
STS SP,X SAVE CALLER'S STACK
LDX SBAREA
INX X:=ADDRESS OF SEM QUEUE ,
JSR INSERT ENQUEUE CALLER IN SEM QUEUE
JMP DISPAT AND DISPATCH

’

L

SYSTEM CALL.
INPUTS: A= 1

B = SEMAPHORE # : 0..127
OUTPUTS: NONE
ALL REGISTERS PRESERVED
IF THE PRIORITIES OF THE CALLER AND THE
TOP PROCESS IN THE SEMAPHORE QUEUE ARE
EQUAL, THEN THE PROCESS WHICH HAS BEEN
WAITING WILL BE THE ONE TO RUN FIRST.

g*##i**%&#**l’ﬂ'*#

ASLB  CONVERT SEM# TO OFFSET
STAB  SBFREE
TDX  SBAREA X:=~ADDRESS OF SEM

LDAA I',X IS SEM QUEUE EMPTY?

INCA

BNE VGO NO

INC 0,X YES - INCREMENT SEM COUNT

ETI  AND RESUME CALLER
VGO  LDAA PBCRNT
STAA  PBFREE -
LDX  PBAREA X:=ADDRESS OF CURRENT PB
STS  SP,X  SAVE CALLER'S STACK
LDX  SBAREA'
INX  X:=ADDRESS OF SEM QUEUE
JSR  DELETE POP TOP BLOCK FROM SEM QUEUE

LDX #READY
JSR INSERT AND INSERT IT IN READY
LDAA PBCRNT .
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Appendix B: Source Listings

LDX #BREADY
JSR  INSERT INSERT CALLER IN READY
. JMP DISPAT AND DISPATCH
*
*
*
* START
* SYSTEM CALL.
* INPUTS: A = 2
* B = PRIORITY TO BE ASSIGNED TO NEW PROCESS
* X = STACK POINTER FOR NEW PROCESS
* OUTPUTS: CARRY = 0 => SUCCESSFUL
* CARRY = ] => NO FREE PB'S AVAILABLE
A IF SUCCESSFUL, A = NEW PROCESS'S ID#
* ALL ELSE PRESERVED
*
XSTART LDAA PBCRNT
STAA PBFREE
LDX PBAREA X:=ADDRESS OF CURRENT PB
STS SP,X SAVE CALLER'S STACK
LDAA #32 THERE ARE 32 PB'S
CLRB
SRCHLP STAB PBFREE
LDX PBAREA X:=ADDRESS OF NEXT BLOCK"
LDAB PRIO,X GET BLOCK'S PRIORITY
BEQ STRTSU IF ZERO THEN THIS ONE IS FREE
DECA ANY MORE BLOCKS TO TRY?
BEQ STRTFA NO=>FAILURE
LDAB PBFREE YES—ADVANCE TO NEXT BLOCK
ADDB #8
BRA SRCHLP
STRTFA PULA FATLURE~—-SET CALLER'S CARRY
ORAA #1
PSHA
RTI
STRTSU LDAB PBFREE
“ LSRB ° COMPUTE ID#
LSRB )
LSRB
PULA SUCCESS——-CLEAR CALLER'S CARRY
ANDA #SFE
PSHA .
TSX ‘
STAB 2,X RETURN PROC. ID# IN CALLER'S A
LDAA 1,X GET PRIORITY FROM CALLER'S B
LDX PBARERA .
STAA PRIO,X STORE IN PROC. BLOCK
TSX
LDAA 3,X ‘A:=SP (HIGH)
LDAB 4,X B:=SP (LOW)
LDX PB
STAA

S

SP,X STORE SP IN PB

o
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Appendix B: Source Listings

e R PR TE S T LATIRES A o v ) e b

STAB  SP+1,X
LDX fREADY
LDAA . PBFREE
LDAB  PBCENT
JSR INSERT ENQUEUE NEW PROCESS IN READY
TBA
LDX fREADY
JSR . INSERT ENQUEUE CALLER IN READY
. JMp DISPAT AND GO
*
*
%,
* SLEEP
* SYSTEM CALL.
* INPUTS: A = 3
* B = TIME EXPONENT (LOWER 4 BITS)
& X = TIME INTERVAL COUNT, X>1
* OUTPUTS: NONE
* ALL REGISTERS PRESERVED
* FUNCTION: THE CALLER IS PUT TO SLEEP FOR (TIME COUNT
* SHIFTED LEFT EXPONENT TIMES) CLOCK TICKS.
*
XSLEEP LDAA  PBCRNT
STAA  PBFREE
LDX PBAREA X:=ADDRESS OF CURRENT PB
STS  ,SP,X SAVE CALLER'S STACK
TSX
LDX 3,X
STX T™P2 STORE INTERVAL IN LOW ORDER WORK SPACE
CLR ™P1 CLEAR HIGH ORDER WORK SPACE
CLR TMPX
ANDB  #$F MASK SHIFT COUNT TO 4 BITS
BEQ SLP7 UNTIL SHIFT COUNT=0
SLP2 ASL ™P3 DO ’
ROL ™P2 SRIFT TIME COUNT LEFT
ROL ™P1
ROL ™PX
DECB
. BNE SLP2 oD
* SLEEP PERIOD MUST BE >= 2
SLP7 TST ™PX .
BNE SLP3 7
ST  ™P1 J/
BRE SLP3
TST ™P2 -
BNE SLP3
LDAA TMP3
CMPA  #2
BCC SLP3
RTI 7

* JPDATE SYSTEM TIME
* SYSTEM TIME:=SYSTEM TIME+(LASTDT-TIMER COUNT)

Gaten el

It
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SLP3

SLP4
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LDAA
LDAB
PSHB
PSHA
LDAA
LDAB
TSX

SUBB
SBCA
ADDB
ADCA
STAB
STAA
BCC

INC

BNE

INC

PULA
PULB

Appendix B: Source Listings

TIMERA+2 '
TIMERA+3

LASTIDT
LASTDT+]

SYSTIM+3
SYSTIM+2
SYSTIM+3
SYSTIM+2
SLP4
SYSTIM+1
SLP4
SYSTIM

* ADD COUNT TO CURRENT TIME 30 GET WAKEUP TIME
* AND COPY RESULT INTO PROCESS'S PB

LDX

LDAA
ADDA
STAA
LDAA
ADCA
STAA
LDAA
ADCA
STAA
LDAA
ADCA
STAA

* NOW INSERT

SLPNXT

{

}

LDX
STX
LDAA
INCA
BEQ
DECA
STAA
LDAA
STAA
LDX
LDAA
LDAB
LDX
CMPA
BCS
BHI
CMPB
BCS

PBAREA X:=PB ADDRESS
T™P3
SYSTIM43
7,X

TMP2
SYSTIMH+2
6,X

TMP1
SYSTIM+1
5,X

TMPX
SYSTIM
4,X

PB INTO TIME QUEUE IN WAKEUP TIME ORDER

#TIMER X:=ADDRESS OF QUEUE ROOT
TMPX TMPX,1 POINTS TO QUEUE ROOT
0,X IF QUEUVE IS EMPTY

SLPG0O THEN DO INSERTION HERE

T™P2 TMP2,3 POINTS TO TOP QUEUE ELEMENT

- 68 -
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BHI
LDX
LDAA
LDAB
LDX
CMPA
BCS
BHI
CMPB
BCS
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Appendix B: Source Listings

SLP1

PBAREA

6,X

7,X

TMP2 .

6,X

SLPGOD

SLP1 J
7,X &
SLPGO

* WAKEUP TIME OF INPUT PB >= THAT OF TOP QUEUE
* ELEMENT, ADVANCE TO NEXT QUEUE ELEMENT

SLPI  LDX  TMP2  TMP2,3 STILL POINTS TO TOP
INK  QUEUE BLOCK .
BRA  SLPNXT
* INSERT PB IN QUEUE
SLPG0 LDX  TMPX  X:=QUEUE ROOT ADDR
LDAA  PBCRNT INSERT CURRENT PROCESS
LDAB  0,X POINT B TO 1ST QUEUE BLOCK
STAA  0,X MAKE NEW BLOCK 1ST IN QUEUE
STAA  PBFREE
LDX  PBAREA ‘
STAB LINK,X FPOINT NEW PB'S LINK FIELD TO REST OF QUEDE
* LASTDT:=MIN(WAKEUP TIME OF FIRST BLOCK-SYSTEM TIME,SFFFF)
LDAA  TIMER
STAA  PBFREE \\
LDX  PBAREA
LDAA  6,X
LDAB  7,X
SUBB  SYSTIM+3
SBCA  SYSTIM#2
STAA  LASTDT
STAB  LASTDT+1
LDAY  4,X i
LDAE  5,X
SBCB  SYSTIM+1
SBCA  SYSTIM
*
TSTA  IF REMAINING TIME >
BNE  SLP5  MAX INTERVAL
TSTB THEN SET LASTDT
"BEQ SLP6  FOR MAX INTERVAL
SLP5 LDX  #$FFFF
STX  LASTDT
* TIMER LATCHES := LASTDT
SLP6 LDX  LASTDT
STX  TIMERA+2 START TIMER
®
JMP  DISPAT
®
*
®
*

- 69 - _
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Appendix B: Source Listings

* WHO

* SYSTEM CALL.

* INPUTS: A = 4

* OUTPUTS: B = CURRENT PROCESS'S (IE. CALLER'S) ID#
* ALL REGISTERS PRESERVED (EXCEPT B)

% |
WNHO  LDA}  pBCRNT _ (

LSRB
LSRB
TSX
STAB 1,X STORE ID# IN CALLER'S B
RTI

KILL
SYSTEM CALL.
INPUTS: A =5
B = ID# OF PROCESS TO KILL
OUTPUTS: NONE
ALL REGISTERS PRESERVED (AN IRRELEVENT PROPERTY, IF THIS
HAPPENS TO BE SUICIDE)

LN R N N I N B N N N W

&
£
[

LDAA  PBCRNT
STAA PBFREE
LDX PBAREA
STS SP,X SAVE CALLER'S STACK
LDX #READY ENQUEUE CALLER
JSR INSERT
* ZERO PRIORITY OF PROCESS TO BE DELETED
ASLB  CONVERT ID# TO POINTER
ASLB
ASLEB
STAB  PBFREE
LDX PBAREA
CLR PR10,X .-
* REMOVE PRIORITY O PROCESS FROM READY QUEUE

LDX #READY
BSR KILLS
BCC KILL5
* REMOVE PRIORITY O PROCESS FROM TIMER QUEUE
LDX #TIMER
BSR KILLS
BCC KILLS

* DELETE PRIORITY O PROCESS FROM SEMAPHORE QUEUES
+ LDAB  #128 LOOP COUNT
LDX #SBS SEM AREA START
KILL3 LDAA 1,X GET SEM.QUEUR
INX ADVANCE: PONTER TO SEM.QUEUE
INCA IS QUEUE NULL?
BEQ KILL4 IF YES THEN DON'T BOTHER WITH KILLS

B T e e
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Appendix B: Source Listings

STX T™MP4 SAVE REGISTERS

PSHB
BSR  KILLS
PULB
BCC  KILLS
LDX  TMP4
KILL4  INX
DECB .
BNE  KILL3

KILLS JMP  DISPAT

*KILLS - ROUTINE LOCAL TO KILL

*
*

INPUTS: X = POINTER TO QUEUE ROOT
DELETES A O-PRIORITY PB FROM THE GIVEN QUEUE

KILLS LDAA 0,X GET ROOT

INCA TIF IT IS NULL

BEQ KILLl] THEN WE ARE DONE
DECA

STAA PBFREE ELSE

STX T™MP2 SAVE ADDRESS OF ROOT
LDX PBAREA

LDAB PRIO,X GET BLOCK'S PRIORITY
BNE KILL2

LDX T™MP2 RECOVER ADDRESS OF ROOT
JSR DELETE DELETE BLOCK

CLC
RTS

KILL2 INX ADVANCE TO NEXT BLOCK IN QUEUE

BRA KILLS AND RECURSE

KILLI SEC

RTS

LN I Bk B N BRI NS N N N N N

IRQINT LDAB #0

* » * %

IRQ HANDLER

THIS IS THE CODE TO WHICH IRQ'S SHOULD BE VECTORED.

ITS SOLE FUNCTION IS TO WAKEUP THE INTERRUPT POLLER
PROCESS. IF THERE ARE VERY URGENT DEVICES ON THE
INTERRUPT BUS FOR WRICH THE SYSTEM RESPONSE WOULD BE
TOO SLOW, THEN THE SYSTEM CAN BE SHORT—-CIRCUITED AT
THIS POINT BY EXECUTING SOME DEVICE HANDLER CODE RIGHT
HERE — BEFORE TRANSFERRING CONTROL BACK TO THE SYSTEM
SOFTWARE. THIS SHOULD, HOWEVER, BE DONE WITH GREAT CARE
AND FORETHOUGHT IF IT IS TO MESH SMOOTHLY WITHOUT CAUSING
ERRORS, OR A CRASH.

INTERRUPT POLLER'S SEMAPHORE#

JMP v THE REST IS IDENTICAL TO A NORMAL

V OPERATION

-71 -

N\



SR,

P wam e

o

—

G

’

v oy e w

e

e e o e o e T 77 S Ene =

.y B

Appendimrce Listings

* FILE: PROCESSES
RARARARRARARARANRARAARARARARRRA AR kA kA

*-—_SYSEEM PROCESSES
ARRAAARRRRARRARARAARRERA AL A AkhhhRhdk il
*

*

ORG $C00
*
*

* IDLE PROCESS CODE
*

IDLE EQU * -
ORG  XIDLE

FDB IDLE

ORG IDLE
*

WAI

BRA IDLE

INITIALIZATION PROCESS CODE

% * XN %%

NITGO EQU *
ORG XINITG

FDB INITGO
ORG I/FITGO

* START UP IDLE PROCESS AT LOWEST PRIORITY
LDX XIDLE

STX IDLESP+6 .

LDX  #IDLESP

LDAB  XIDLE+2 PRIORITY
LDAA #2

SWI  SYSTEM(START)

* START INTERRUPT POLLER PROCESS
LDX XINTPO
STX INTPOS+6
LDX #INTPOS INTERRUPT POLLER'S STACK
LDAB  XINTPO+2 PRIORITY
LDAA #2
SWI SYSTEM( START)
* START CLOCK PROCESS
LDX XCLOCK
STX ‘CLOCKS+6
LDX #CLOCKS CLOCK PROCESS'S STACK .
LDAB  XCLOCK+2 PRIORITY
LDAA #2 .
SWI SYSTEM(START)

»

START UP ACIA RECEIVER HANDLER PROCESS

- e e
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.
!

LDX  #SMRCVE*24SBS INITIALIZE SEM TO 1 ¢

INC ng ?

LDX XRCVR

STX RCVRSP+6

LDX #RCYRSP .
LDAB  XRCVR+2 PRIORITY )
LDAA #2

SWI SYSTEM( START)

* START UP ACIA XMITTER HANDLER PROCESS
LDX # SMXMTE*2+SBS INIT SEM TO 1

INC 0,X

LDX # SMXMTR* 24SBS
INC 0,X

LDX XXMIR

STX XMTRSP46

LDX #XMTRSP STACK
LDAB  XXMTR+2 PRIORITY
LDAA #2

SW1 SYSTEM( START)

* .
* START UP 'EXAMIN' PROCESS
 LDX  XEXAMI
T STE  EXAMSP+6
LDX  #EXAMSP
LDAB  XEXAMI+2 PRIORITY
LDAA  #2 START FUNCTION CODE
SWI  SYSTEM(START)
*
* START UP LEVER INTERRUPT PROCESS
LDX  XLWRI
STX  LVRISH6
LDX  #LVRIS
LDAB  XLVRI+2 PRIORITY
LDAA  #2 START
SWI
*
* START UP COMMAND PROCESS
LDX  XCMND
STX  CMNDSP+6 L
LDX  #CMNDSP :
" LDAB _ XCMND+2 PRIORITY
LDAA  #2 START
SWI

*
* INITIALIZE PHYSICAL DEVICES/INTERFACES
« !

* CLEAR ALL 6840 CONTROL REéISTER SAVE LOCATIONS

LDAA #3

LDX #CRIA
CLRTIM CLR 0,X

INX

DECA

B L e
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Appendix B: Source Listings

‘ . BNE CLRTIY

* INITIALIZE CLOCK TIMER 1A

LDAA #$E0  16-BIT, SINGLE SHOT,
* OUT AND INT ENABLED, EXT CLOCK
LDAB  #901
STAB CR2A  SET FOR CRI ACCESS
'STAB  TIMERA+1 :
STAA CRIA
STAA  TIMERA
LDX  #SFFFF START WITH MAX INTERVAL
STX  LASTDT
© STX  TIMERA+2

®
# INITIALIZE ACIA

. LDAA  #3
STAA ACIAS
LDAA  #$91
STAA  ACIAS
STAA  ACIASY

*

* INITIALIZE PIAO
*CA2, CB2 ARE OUTPUTS

MASTER RESET CODE.

INT ON RCV ENABLED, RTS=0
8 BITS, NO PARITY, 2 STOPS,
300 BAUD '

R

*CAl, CB1 ARE INPUTS CAUSING INTERRUPTS

* ON UP TRANSITIONS.

*ALL OUTPUTS WILL BE CONSIDERED ACTIVE
*WHEN HIGH (EXCEPT THE CAGE LIGHT).

LDAB  #SFF
LDAA #2001110
STAA PIAO+]
STAA  PIAORA
STAB PIACO
LDAA PIAORA
#2100
IAO0+]1

11

SET FOR OUTPUTS

STAA PIAO
LDAA  #Z00110031
STAA PIAOH3 -
STAA PIAORB -
STAB  PIAO+2 -
LDAA PIAORB
ORAA #Z100 -
" STAA PIAO+H3 -
STAA PIAORB
LDAB #0
STAB PYAD0  SET ALL OUTPUTS
STAB PIAO+2 LOW : J
*®
* INITIALIZE DAC REGISTERS :
. LDX #0 -
STX DAC1
STX  DACIX
STX  DAC2
STX  DAC2R

4

g

—~—
ot
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®

ELSE IF ACIA YMITTER FINISHED

et o

.m1

JINTPL2

NTPL3 BRANCH IF NO INTERRUPT
GK RCVR STATUS .

‘ - TRY XMITTER
LDAA - ACIAD READ DATA CHAR \

- 78 -

PSSR VI

*
“h
*
* DIE — INITIALIZATION PROCESS IS NO LONGER NEEDED
LDAA #4
SWI SYSTEM(WHO) WHO AM I?
LDAA #5
SWI SYSTEM(KILL) COMMIT SUICIDE -
*
Jup INITGO
*
*®
*
™
* INTERRUPT POLLER PROCESS CODE
*
INTPOL EQU  * X
ORG  XINTPO P
FDB INTPOL
ORG INTPOL
*®
*
* P(IRQ)
CLRB SEM #0
CLRA
SWI SYSTEM(P)
*
* TEST 6840 #A "
LDAA  TIMERA+l
BPL  INTPL1 BRANCH IF NO INTERRUPT
ANDA #1 MASK FOR TIMER 1 FLAG
BEQ  INTPL1 BRANCH IF NO INTERRUPT
LDX  TIMERA+2 READ TIMER COUNT TO CLEAR FLAG
*
* V(CLOCK) SEMAPHORE #1
LDAA #1
TAB A=], B=l
SWI SYSTEM(V)
]
* ACIA INTERRUPT CHECK LOGIC
* PSEUDO-CODE
® TF ACIA RCVR INTERRUPT ,
* THEN READ CHAR INTO VIRTUAL DEVICE REGISTER
# SIGNAL RECRIVER PROCESS .
L 4

e o 8
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Appendix B: Source Listfngn . N
\

STAA  ACIAVD STdRE IN VIRT. REGISTER
LDAB  #SMRCVR

‘LDAA #1
SWI SIGNAL RECEIVER PROCESS
BRA INTPL3

INTPL2 LSRA CHECK XMITTER STATUS
- BCC INTPL3 CLEAR - DONE
LDAA  ACIASV DISABLE INT FROM XMITTER

ANDA  #89F
STAA  ACIASV
STAA  ACIAS
LDAB *  #SMXMTR
LDAA  #1 -

SWI SIGNAL XMTR PROCESS

INTPL3 LDAA PIAO+! GET INTERRUPT FLAGS FOR PIAO

ASLA
BCC - INTPL5S NO INT. FROM CAl
LDAA PIAORA SET FOR PERIPHERAL REG A

ORAA #4
STAA  PIAORA N
STAA  PIAO+1 -

LDAA PIA0  CLEAR INTERRUPT FLAG
LDAB  #SMPIAl SIGNAL FOR CAl INTERRUPT :
LDAA 41
SWI
*
* CHECK FOR PIAO, CB1 INTERRUPT
INTPLS LDAA  PIAO+3

_ ASLA
BCC  INTPL6.
* \‘
* SET FOR REG B ACCESS
LDAA PIAORB
ORAA #4
STAA  PIAORB

PIAO+3

B
* READ REG B TO INT.
~  LDAA, PIAO+

* SIGNAL CBl INT. .
| LDAB  #SMPIA2
’ ‘Lpaa A
WL V(SMPIA2)
* - .

INTPL6 JMP . INTPOL
.

CLOCK PROCESS CODX

* % ¥ % »

CLOCK EQU hod
ORG XCLOCK

- s w1 = e
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FDB  CLOCK s
ORG  CLOCK

*
LDAB #1 CLOCK PROCESS'S SEMAPHORE
CLRA

SWI1 SYSTEM(P) WAIT FOR CLOCK INT. SIGNAL
SEI BEGIN CRITICAL SECTION
* UPDATE SYSTEM TIME
LDAA  LASTDT+!
ADDA  SYSTIM+3
STAA  SYSTIM43
LDAA  LASTDT
ADCA  SYSTIM+2
STAA  SYSTIMH2

BCC CLCK1
INC SYSTIM+]
BNE CLCK1

INC  SYSTIM
CLCKlI LDAA TIMER GET QUEUE ROQT
INCA / ,
BEQ  CLCKé IF QUEUE EMPTY THEN WE ARE DONE
DECA \
STAA  PBFREE
LDX  PBAREA
LDAA SYSTIM COMPARE SYSTEM TIME TO BLOCK'S

CMPA  4,X WAKEUP TIME
BHI . CLCK3

BCS  CLCK4

LDAA  SYSTIM+]

CMPA 5,X

BHI  CLCK3

BCS  CLCK4

LDAA  SYSTIM#2

CMPA  6,X

BHI . CLCK3

BCS  CLCK4 .

LDAA  SYSTIM¢+3 .
CMPA 7,X -

BCC - CLCK3

* EITHER WAKEUP TIME HAS NOT ARRIVED YET,
* OR TIMER QUEUE IS EMPTY '

CLCK4 % TIMER IS QUEUE EMPTY?
I
BRE CLCK5 BRANCH IF NOT .

CLCK7 1IDK: #SFFFY YES-SET FOR MAX INTERVAL
STX  LASTDT
BRA  CLCK6

*QUEUEROTEIPT!—COMPUTE TIME R!HAINI!R}
* TO NEXT WAKEUP TIME

% (= MIN(WAKEUP TIME-SYSTEM TIME srm))
CLCKS LDAA TIMER

' STAA  PBFREE
G LDX  PBAREA
i &,
. i L - - 77 - !
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* START
CLCK6

*

* SYSTEM TIME >= WAKEUP TIME, SO PROCESS MUST

LDAA
LDAB
SUBB
SBCA
STAA
STAB
LDAA
LDAB

SBCB
SBCA

TSTA
BNE
TSTB
BNE
TIMER
LbX
STX

CLI
BRA

S TG CURSIER I AR ¢ Fre

:Appendix Bé Source Listings
n

6,X

7 » x
SYSTIM+3
SYSTIM2
LASTDT
LASTDT+1
4,X

5 [] x
SYSTIM+1
SYSTIM

CLCK7
CLCK7
LASTDT
TIMERA+2

CLOCK

* BE SCHEDULED TO RUN AGAIN
#TIMER DELETE BLOCK FROM TIMER QUEUE

CLCK3

*

*
*

Kk dedeRdededdek hied ik ek d ik ki ok kddkkkkk
* ACTA TRANSMITTER HANDLER PROCESS

*
XMTR

S e

LDX
JSR
LDX
JSR
BRA

-

BUBREE %pE 2Ep BdEr

DELETE
#READY

INSERT
CLCK1

*

XXMTR
IMTR
XMTR

#SMXMTF

VAITG OUTPUT BFR FULL

#20MTR

WAIT INTERRUPT SIGNAL

XMTBF

#8397
#820

TS e o I e =

AND INSERT IT INTO READY QUEUE

e i o s ———— =
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Lol

STAB  ACIASV
STAB . ACIAS
CLI
*
LDAA #1
LDAB  #SMXMTE
SWI SIGNAL OUTPUT BFR EMPTY
*
. "BRA  XMTR
%*
*

HARRKRIARRRAREAR AR RRRTIAALLR AR R
* ACIA RECEIVER HANLDER PROCESS

*
RCVR EQU *
ORG XRCVR
FDB RCVR
ORG RCVR
*
LDAB  #SMRCVR
CLRA
SWI P(SMRCVR) WAIT INTERRUPT
*®
LDAB  #SMRCVE
CLRA ~
SWI P(SMRCVE) WAIT INPUT BFR-EMPTY
*
LDAB  ACIAVD COPY CHAR INTO INPUT BFR
STAB  RCVBF
*
LDAB - #SMRCVF
LDAA #1
SWI V(SMRCVF) SIGNAL INPUT BFR FULL
*
BRA RCVR
*
*
*®

RARRRARARRARARRAARARRAAR A AR AR kAR
* CHARACTER INPUT SUBROUTINE

*
XGRTCH RQU  * ’
ORG  GETCH
JMP  XGETCH Cov
: ORC  XGETCH '
* -
PSHB - : .
CLRA /
LDAB  #SMRCVF -
SW1 P(RCVBF FULL)
, LDAA RCVBF READ BUFFER ,

\- z’_
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LDAA #1
LDAB  #SMRCVE

SWI  V(RCVBF EMPTY)
PULA GET BACK CHAR
PULB  RESTQRE B

RTS
*
%
*
* CHARACTER OUTPUT SUBROUTINE
*
XPUTCH EQU  *
ORG  PUTCH
JMP  XPUTCH
ORG  XPUTCH .
*
PSHB
PSHA
CLRA

LDAB  #SMXMTE
SWI  P(XMTBF EMPTY) <
PULA GET CHAR

PSHA
STAA XMTBF COPY INTO OUTPUT BFR
LDAA #1

LDAB  #SMXMTF

SWI V(XMTBF FULL)
PULA  RESTORE REGS
PULB )

RTS

TEST PROCESS.
THIS IS SORT OF A MILNI-MONITOR-WHICH
ALLOWS EXAMINING AND CHANGING umom.
COMMANDS -
NNNN <COLON> —-DISPLAYS 8 BYTES nzcrmnc AT NNNN
NNNN = NN, NN, NN, .... LOADS SUCCSSIVE BYTES
BEGINNING AT NNNN
NNNN=PPS —-START UP THE CODE BEGINNING AT NNNN AS
A PROCESS WITH PRIORITY PP. IF NOT
" SUCEGRSSFUL, A BEEP AND A "7 WILL BE
USED IRDI FATLURE. ‘
K —IF A S WAS SUCCRSSFULLY STARTED WITH THE
"3' COMMMAND, THIS WILL KILL THAT PROCESS, P
NNV -~ PERFORM A V" (SIGRAL) OPERATION
ON SEMAPHORE NN (0 <= KN <{= §7F)
Q - QUIT - THE MONITOR PROCESS IS NO LONGER NEEDED.

-

a-itg»a-»»w.»wwa-a-»u-wa— * %

e
oR¢ e
FDB . ~ EXAMIN

:
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Appendix B: Source Listings

ORG EXAMIN
*
LDAA #'#
JSR OUTCH
XAMR JSR INCH
" CMPA #'= )
BNB XAM]1 }
LDX N
STX ADDR
JMP XAMR
+ XAM1 CMPA #',
BNE ' XAM2
LDX _ ADDR
LDAA N+l
® STAA 0,X
INX
STX ADDR
JMP XAMR
XAM2 CMPA  #$0D CR
BNE  XAM3
XAMS5 LDAA (#)S%A
JSR CH
"JMP EXAMIN
XAM3 CMPA #$3A COLON
BNE XAM6
LDAB #8
LDX N

XAM4 LDAA 0,X
JSR PUTBYT

INX
DECB
BNE XAM4

STX N

XAM41 LDAA" #$0D
JSR OUTCH
JMP  XAMS

XAM6 CMPA #'V
BNE  XAM9
LDAB N+l )
LDAA 41 - .
SWI
JMP  XAMAL

XAM9 CMPA ~ #'S START?

. BNE - YAMIO KO

/ mm MYSON . SON ALREADY EXISTS?

BNE  XAM9]  YES=>REFUSE TO CREATE ANOTHER
IDX ADDR  INITIAL PC VALUE
STX  EXMSOMNG - COPY IT INTO STACK

< LDX  #EXMSON STACK POINTER .
LDAB Nl ORITY .

- LDAA #2 l"gcn ON CODE FOR 'START'

SWI . .

- al‘-.
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XAM91

XAM10

XAM61

XAM11

INCH

PUIBYT

BERZEER 8 5B

R e e b v e gy e = e —oneen . e s

BCS
STAA

LDAA
JSR

JSR

CMPA
BNE

LDAA

LDAB
INCB

BEQ
DECB

STAA

CMPA
BNE
LDAA
SWI

LDAA
SWI

CMPA\
BCS
ADDA

ASL

ROL
DECB

ORAA
STAA

B

JSR
JSR

Appendix B: Source Listings

XAM91 GO HANDLE FAILURE
MYSON  SUCCESS -~ SAVE ID#

XAM41  AND CONTINUE

#7 BEEP

OUTCH

#'?

OUTCH

XAM41

#'K KILL?

XAM61 NO

#5 FUNCTION CODE FOR 'KILL'

MYSON ' GET ID# TO KILL
XAM41 TF NULL THEN DO NOTHING

ELSE KILL IT
#SFF MYSON:=NULL
MYSON
XAM41  AND CONTINUE
#'Q
XAM11
#4
WHO AM I?
#5
DIE
EXAMIN
#'A
XAM7
#-'4+10
#SOF
f4
N1

N

4

XAMS
M1
N1
XAMR \

GETCH
PUTCH
#87F

i
\\"\
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PUTDIG

#30r
PUTDIG

#10
PUTDG1
#'0
OUTCH
#-10+'A
OUTCH

2

2
SFF

LSEA
LSRA
BSR
PULA
PSHA
ANDA
BSR
PULA
RTS
*
PUTDIG CMPA
BCC
ADDA
JMP
PUTDGI ADDA
JMp
*
* VARTABLES
ADDR  RMB
N RMB
MYSON  FCB
* END OF EXAMINE
*
*

3
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Appendix B: Source Lisifnés

* FILE: STIMULATION

*
*

ORG
*

dedede dedede ik ookt dede de otk ek e e g o d ko de e e e e

$1000

ARARAAARARERRAkhhRdhhhhhkidhihhikhhkihdhik

*
*

* DISPLACEMENTS FOR FIELD DEFINITIONS
* OF SPB FIELDS

*

‘PRWDDT EQU 0

PRCTDT EQU PRWDDT+2
PRCCDT EQU PRCTDT+3
ACRNT' EQU  PRCCDT+3
BCRNT EQU  ACRNT4H3
STEER EBQU  BCRNT4H3
ASELCT EQU STEER+1
BSELCT EQU ASELCT+1
‘GSELCT EQU BSELC'T+1
PRNUM EQU  GSELCT+1
TRNUM EQU  PRNUM+2
TRDTIR EQ TRNUM+2
FIXDT EQU  TRDTTR+2
LIGHT EQU  FIXDT+2
DURADT EQ LIGHT+1

*

*SPECIAL CHARACTERS FOR
*PACKET PROTOQCOL
*

* READY-TO-SEND CHAR

RTSCH EQU  $02 -

* READY-TO-RECKIVE CHAR

RTRCH ~EQU  $05 .
* NEGATIVE ACKNOWLEDGE

NACK EBQU = §15

* POSITIVE ACKNOWLEDGE CHAR ,

ACK  RQU  $06 !

*

I
&® i

* VARTABLES USED IN GENERATING
* STIMULATION

*

LVRICK RMB 2

*

* STIMULATION COUNT
STMCRT BMB 2

e

* MASK SPECIFYING IF LEVER IS TO BE

* COUNTED AND/OR TO TRIGGER . e

LEVER 1 COUNT

' % STIMULATION o
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Appendix B: Source Listings

LVRIM RMB 1
*

. * POINTER TO CURRENT SPB

CURSPB RMB 2

INPUT BUFFERS FOR PARAMETER BLOCKS

[y

*N 2

* PRIMER PARAMETER BLOCK
INPRM RMB 32

* STIMULATION PARAMETER BLOCK
INSTM RMB 32 .

*

*
ARRRRERRARER R R A R g Sk Rk KA ek de ek
* THLGET

* SUBROUTINE TO INPUT A CHARACTER
* RECEIVED PACKET

* NO REGISTERS PRESERVED.

* CHAR RETURNED IN A.

*

IHLGET TST NOB

* BUFFER MUST BE REFILLED

(%

. BEQ IHLG]

* GET NEXT CHAR FROM BUFFER
LDX NXTCH
LDAA 0,X
INX ADVANCE POINTER
STX NXTCH

* DECREMENT BYTE COUNT
DEC NOB
RTS

* .
* WAIT FOR READY-TO-SEND

IHLGlI JSR  GETCH
CMPA  #RTSCH CHARACTER

BRE  THLGI
* XMIT REAY-TO-RECEIVE CHAR .
LDAA  #RTRCH
JSR  PUTCH
*
_JSR  GETCH WAIT FOR COLON
CMPA  #§3A ’
. BNE  *-5

CIX INCHK  CLEAR CHECKSUM,

* GET NO. OF DATA BYTES
BSR

IHLINS
ora i
BCS

g s W e =

ot wr
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Appendix B: Source Listings

LDAA #0

TAB .
STAA  NOB
* X <- POINTER TO BUFFER
LDX  #INBFR
% INIT POINTER TO 1ST CHAR
STX  NXICH
TSTB  DONE?
BEQ *+10 B S0

* THLINS GET NEXT DATA B
BSR IHLINS

STAA 0,X
INX
DECB DONE?
BNE *-b BRANCH IF NOT
BSR IHLINS GET CHECKSUM
TST INCHK DID IT WORK OUT?
BEQ IHLG2  BRANCH IF YES
* ERROR- CLEAR BYTE COUNT
CLR NOB
* XMIT A NACK
LDAA  #NACK

BRA 4+,
® NO ERROR- XMIT ACK
IHLG2 LDAA #ACK

JSR- PUTCH
JMP THLGET

*

*

*

* LOCAL ROUTINE- GET CHAR ADD TO INCHK

IHLINS JSR GETCH
PSHA <
ADDA"~ INCHK |,
STAA INCHK
PULA
RTS
*
*
®
* VARTABLES FOR IHLGET
NOB FCB 0 BYTE COURT
INBFR RMB 16 DATA
INCHK RMB 1 CHECKSUM
NXTCH RMB 2 PNTR TO NEXT:CHAR
®

.

®

RARRRARARARARR AR AR AR AR RARARRRRARNIE
* IBLPUT ‘ !
* INTEL HEX CHARACTER OUTPUT ROUTINE.
* NO REGISTERS PRESERVED.

* CHAR TO OUTPUT PASSED IN A.

]
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Appendix B: Source Listings

*
IHLPUT PSHA
LDAA  PNOB BUFFER FULL?
CMPA  #16
BNE IHLP1
BSR - FLUSH

IHLP1 LDX  PPFILL
PULA
* ADD CHAR TO BUFFER

STAA 0,X .
INX ADVANCE POINTER
STX PFILL
INC PNOB INC BYTE COUNT
RTS ’
*
*
<.
* FLUSH .
* ROUTINE TO FLUSE PACKET OUTPUT
* BUFFER. NO PARAMETERS, REGISTERS
* NOT PRESERVED.
*
* XMIT REQUEST-TO-SEND CHAR.
FLUSH LDAA #RTSCH
JSR PUTCH
*
* WAIT FOR READY-TO-RECEIVE CHAR
JSR GETCH
CMPA  #RTRCH
BNE *-5
*
LDAA #':°
JSR  PUTCH
LDX #PNOB '
LDAA PNOB NO OF BYTES )
INCA
STAA PFILL
. CLR OUTCHK CHECKSUM
FLSHl LDAA 0,X
e .
TAB
ADDB  OUTCHK
STAB OUTCHK
JSR  PUTCH
DEC PFILL
. BNE FLSHl -,
CLRA -
SUBA OUTCEX

TIPS BB s ) sve TR W e
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[,
- \ |
(" CMPA  #NACK ik
, « BEQ FLUSH )
) \ CMPA  #ACK
' BNE  FLSH2
© % ENTRY POINT TO INITIALIZE POINTERS .
FLSHIN CLR - PNOB ;
LDX  #OUTBFR (-"‘
s PFILL
L 4
' RTS
&
* [ 3 '
x /'\ a j A ) ”T i
* VARIABLES FOR THLPT AND FLUSH ;
_PNOB  FCB 0 !
OUTBFR RMB 16 , i
OUTCHK RMB 1 ) - ;
PFILL RMB 2 - i
i * :
* ° I .'D
ARRRRRERRRRAAARKRRRAARARNARAAARARAR ° ) i
* ! .
* COMMAND INTERPRETTER MAINLINE | g
* THIS IS THE EXECUTIVE PROCESS FOR !
* THE RAT ;STIMULATION EXPERIMENTS ’
* -
1
CMND EQU * :
ORG  XCMND :
FDB  CMND . — |
ORG  CMND L
* / . i
‘ JSR  FLSHINT ) N
* INITIALIZE SMPCKO SEMAPHORE ) b
LDAB  #SMPCKO _ - - !|
.LDAA #1 Iy
SWI f
*
CMRDl1 JSR  IHLCET Fr NEXT CHAR . .
* - . »
% _ LDX_ #NULL ' X
CMPA #0  NULL COMMAND?
BEQ CMNDGO YES - ‘
* | N ",
o LDX  #ACCEPT @ - .
* ACCEPT NEW SPBS 1 i
. \ CMPA {1 . .
: BEQ CMNDGO . =
*
oy~ . LDX  #RPTSPB
(: % ECBO PARAMETER BLOCKS?
} CMPA #2
| )
! ‘ P
oo L
. . ... -8~ :
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BEQ  CMNDGO
&
LDX ~ #RDATA
* REPORT TRIAL DATA ? .
CMPA #3 N
. BEQ CMNDGO
. LDX  #EEG
* BEGIN TRIAL ? T
CPPA #4
R BEQ  CMNDGO'
LDX  #CA
* CANCEL TRIAL!? ; ‘
CMPA #5. -
BEQ  CMNDGO
® ,
. BRA  CMND1
CMNDGO JSR  0,X X
BRA  CMND1 {
] | .
. .

*************&i*#ﬁ****************ﬁ
* RDATA ~
* SUBROUTINE OF CMND TO REPORT DA
* FROM THE LAST TRIAL. ‘
* * - s

RDATA EQU * ,
* P(SMPCKO) WAIT FOR PACKET

CLRA .
LDAB  #SMPCKO '
- : w/
* RESPOND WITH 'REPORT' ACK.
LDAA #3 /
JSk IHLPUT
* SEND LEVER PRESS .COUNT
LDAA LVRICN
JSR IHLPUT
LDAA  LVRICN+]
JSE  IHLPUT
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- \ L' o . .
Qc li . ' ~ ) 1’
G I 2 T L :
' ¢ « - S o T ) ]
| .. nn*nt**u*»gunuﬁnanoun*u S, ' -
; .* RPTSPB iy ‘ !
* SUBROUTINE OF CMKD TO REPEAT SPB's = ' o o . «
\,; #ucxromsmmum B PR ' .
/. - N . ' ’ °! - [ {
' mspn oy ‘ ; - -
* P(SMPCKO) wm FOR PAcmr OUTPUT srs e T
- CLRA v '
. ' .. LDAB #SMPCKO . " . : A
1 < : m . * ‘ “! * i v "f\ € ,.
‘ * ) : ‘ - N { ’ ' . ¥
[ * RESPOND WITH 'REPEAT' CMND ACK.' J .
! - LDAA - '#2 . o Sy -
R JSR  TIHLPOT )
) . , }
’ 'LDX ~ #INPRM INIT POINTER . - ‘
; ; STX -~ ACPTV1 e
: i LDAA #64 - INIT COUNTER .o
'STAA , ACPTIV2 . B »
. - : 3 . ;
” . RPTS1 LDX  ACPTV1 \ ‘
LDAA 10,X ) |
- INX ;' , .o
» STX . ACPTVI .~ . T
ot © JSR .| IHLPOT ~ . .
y g DEC [ ACPTV2 '
! _ BRE | RPTSI
* } N .-
JSR { FLUSH : T
* : 1o ’, .
* V(SMPCRO) | . - -
LDAA/ #1
, m\n(\ #SMPCKO ‘ . |
&
*
RTS '
*
* ' -y
; n****n****nnntngnnmuunn
, ' % ACCEPT- ROUTINE TO ACCEPT NEW ;
! * SPB'S |
| ; \Accm Bu . *
i * 'P(SMPCRO) WAIT FOR PACKET OUTPUT SYS -
/i
] CLRA Lo
g LDAB  #SMPCKO * :
1 . SWI
i G - * y
i ‘ A LDX  #INPRM “BUFFER POINTER
rd p - - 't\ 4 T e e T
i . =7
! 4 )
] -9~

) by
oS S b
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Appendix B: Source. Listings

-~
il ”,

*

imm. EQU %

* P(SMPCK0)

\\" CI.RA !

LDAB  #SMPCKO 5
SWI1

* . B

* ACKNOWLEDGE NULL COMMAND - -
JSR IHLPUT

. JSR FLUSR

& y(SMPCKO)
1LDAA #1
IDAB  FSMPCXO
SWI .

* ot -

, RTS - ,

*® N .

*

4

. ® . -
L LDAB | #64 Y BYTE GOUNT
ST, ACPTVZ
% .
ACCPT1 JSR THLGET GET NEXT BYTE
) LDX  ACPTVI
STAA 0,X STORE BYTE
INX  AND ADVARCE POINTEK .
STX  ACPTV1 .
"% X L
DEC  ACPTV2 DEC COUNT
BNE  ACCPT1
& .
* ACKNOWLEDGE COMMAND .
LDAA  #1° COMMAND CODE v
JSR.  IHLPUT S
JSR  FLUSH
*Q
% V(SMPCKO)
- LDAA #1 y
LDAB  #SMPCKO
SWI ’ »
* . -
RTS
» * . -
& VARTABLES
ACPTIVI RMB 2
ACPTV2 BRMB
% .
I* o

L4

.gk,;_
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’ | ARARRRRREANAERRAR AR ARRENRA AR AN RS
* CANCEL- SUBROUTINE OF COMMAND
* INTERPRETTER TO DESTROY AN IN-
: PROGRESS TRIAL L
CANCEL EQU *
B
* KILL smmmsg TION PRQCESS
I
,  LDAB  STIMID
LDAA  #S8FF
STAA  STIMID
CMPB"  #SFF .
BEQ -#45 - :
LDAA #5 SYS(KILL)
8WI : \
* B
* EKILL TRIAL PROCESS
. ! .SEI ~ )
- LDAB TRIALI Y
LDAA  #SFF
. ‘ STAA TRIALI
‘ CMPB #SFF
BEQ  *45 .
LDAA #5 SYS(KILL)
SWI
* -
“* DISARM LEVER
. SET
CIR  LVRIM
* & TURN OFF LEVER LIGHT
LDAA  PIAO+2
. ARDA  #$BF
STAA , PIAOH2 .
CLI ‘
* . —
© #* ACKNOWLEDGE COMMAND .
* p(SMPCEKO)
° ‘ LDAB  #SMPCKO ¢
7 SWI !
/ * SEND CMND CODE - :
’ LDAA . #5
JSR  IHLPUT .
. f JSR  FLUSH
* 'v( SMPCKO) *
ILDAA #1
o LDAB  #SMPCKO
e
 * :
. v

-
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»

* BEGIN- SUBROUTINE OF ‘COMMAND
* INTERPRETTER TO BEGIN AN EXPER . ' ‘
* TRIAL ° .
* » a .
" BEGIN EQU * . I
* N . B \ - )
* DO NOTHING IF ALRBADY RUNNING .
‘ LDAA  STIMID ~ . )
’ CMPA  #$FF. - ., '
‘B *43 * *
.M 5
# , - JZ? i
* MNITIALIZE SEMAPHORES T :
LDX  #SMSGO*24SBS - ) y ) !
CLR 0,X. SMSGO:=0 . A P
LDX  #SMSLCR*24SBS. ‘ - :
CLR 0,X  SMSLCK:=0 X))
* - M .
* START STIMULATION PROCESS , . , -
LDK  XSTIM ENTRY POINT - .
‘ STX . STIMSP+6 ) .
LDX  #STIMSP STACK . ‘
LDAB  XSTIM+2 PRIORITY . ,
' LDAA #2 SYS(START) .
_* SAVE' IDF - 1 ’
. STAA STIMID !
‘Y | ‘ ‘ ‘
* START TRIAL PROCESS . . i
LDX JENTRY POINT. ' ) N '
LDX  #TRIALS STACK !
LDAB  XTRIAL+2 PRIORITY . - |
LDAA #2 SYS( START) , !
SWI -
* SAVE ID# X oo
STAA 1 . N
. )
RTS ' - :
* ) ' . : ] N
* ID#'S FOR STIMULATION & TRIAL PROC. S
STIMID FCB = §JF ) C
TRIALL FCB  $FF h ' ' ;
- 13
***t******t**itti*ﬂ*’t*t********i** > ;
* TRIAL , ' - .
* SUB-PROCESS OF COMMARD PROCESS TO 4 '
?* RUN EXPERIMENTAL TRIAL R . - D
*® u ) Y
TRIAL RQU * : y
ORG . XTRIAL , . v .

t? TRIAL '
. S}
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. R -
. ‘ N ‘
. P . K
A .
, o . .
* - o - J [
4 - . . - ©
. . * ®
v [ J s ‘
’ (k:} ‘ ..»«—\”’0/ . ’ ' - N
. ¥

~ #,PLASH CACE LIGHT FOR 1/2 SEC. = ; .
T - <

"V..u_

) ) ; « .
- t
’ 1 ’ - .
- . ' . ~ » . g s f‘
-

PIAORA * et L .

#830 ) o, ’ AN
#8F7 . . .

PIAORA . o e
_PIAO+] CA2 DOWN e

‘#50  1/2SEE€  y - .
[ ) - . ‘

} -

#3. ) ' - '
. SYS(SLEEP) .o Qﬁﬁ L

R Y vt . - . e
PIAORA ~ . ) .

#$38 . . | g
PIAORA ° - . D
PIAOH1" CA2 UP : : -

Q .. . % LEVER] LIGHT ON (=)>LEVER ARMED) /
: SEI1 ‘ .
T LDAA PIAOH2 REGB . )

* .
. ¥ .‘/ - .

- . /

ING BLOCK THE CURRENT ONE :
F#INPRM \ . .
CURSPB ‘ ‘
i * AND TRIGGER PR , -
f #SMSG0  V(SMSGO)
§ #1 . S,
; xe . ) .
i * UNLOCK STIMULATION LQCK ,
“ LDAB  #SMSLCK V(SMSLCK) :
' LDAA #1°
. SWI |
v x| J
l * WAIT FOR COMPLETION.OF PRIMING
| SWI  P(SMSLCK)
| * oL
| # ZERO LEVER COUNTS.
LDX #0 . . /
| STX  LVRICH -/
| STX  STMCWE _ N /
Y * a ' -
f ' * CURRENT SPB:= REWARD ° / o
; o LDX  #INSTM :
! STX  CURSPB .
1 . . -
i

’ ) .
1 ° . L

o - -\ ol .
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ot . - ' B e w : g
é - v . {
Q@ ' ORAR  #840 '*'
" 8T PIAO+2 p
i CLI N
i + o t
| *- UNLOCK STIMULATION LOCR -
i LDAA™ #1  V(SMSLCK)
[ : LDAB  #SMSLCK ‘ .
, y ‘ w*. - ' \ . { - .
: : * SLEEP FOR TRIAL DURATION , |
( } L1DX  #INPRM
N LDAB  DURADT,X )
: o LDX, ' DURADT+1,X o
| ; LDAL- #3  SLEEP CODE
) . . !I swl\I . 1
' Y s ; )
. .. . * WAIT FOR COMPLETION OF STIMULATION :
- - "LDAB  #SMSLCK / Co !
! CLRA  P(SMSLCK) ) . ) .
‘ 1) S . , i
‘ / * ~ . . f J
; * LEVER] LIGHT OFF - C g
i <l SEI y - ! / i }
p | LDAA "PIAOH2 . . ‘ 1
. . ANDA #$BF - C, ,
STAA PIAGH2 .- . . - / :
CLI !
; * “ .
: * SET LEVER MASK TO 'IGNORE LEVER' ’;
: CLR  LVRIM Y, |
* RS N :
* FINISHED TRIAL- ACKN SE COMMAND f
* TO MASTER . :
* :
* P(SMPCKO) (
CLRA ‘
LDAB  #SMPCKO _ -
* 3 N . .
% SEND -COMMAND # ‘l
" LDAA  #4 , ‘ / A
’ JSR  THLPUT b
_é JSR _ FLUSH s
* ' .
* y(SMPCKO) . ‘ 3
LIAA £l |
) LDAB  #SMPCKO j
. SWI
® . . o
v * KILL STIMULATION PROCESS
. * READ STIM PROCESS ID# .
'SBI < v
i i P N A g
- 9% « \ ' N
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T A LT A ! ’
/' . 4 . N [ . ,)A

l - i

{ < h .4 P8 ’s" . f _ ,
‘ , BRq %5, '
: * & KILL IT - Y
) . LDAA. - #5, " .
V‘( * . - . .
\ . SWI e . ;" ,
. * KILL SELF- TRIAL PROCESS' NOT NEEDED
: SEX ‘ ‘
f‘ LDAB  TRIALI
3 LDAA  #8FF ,
i\ STAA  TRIALI . /
¥ LDAA  #5 '
2 )
9**t“’****t**b*******l*******t****ﬁ’*** i
P * % STIMULATION PROCESS o
. « ‘
L *' .
a STIM  BQU  *
| ORG  XSTIM
‘ " FDB STIM:
! .. ORG ' STIM.
x - g
, * WAIT FOR GO SIGNAL
j “  LDAB  #SMSGO
‘ ! CLRA N
. ) SWI  _ SYS(P)
: * ) L

- *
. el Cn e » i, e e~
A = .

@

*

', » " TURN OFF

.

[N

# WAIT FOR STIMULATION LOCK -
7 T1DAB  #SMSLCK’

SWI

SEI

LDAA
ANDA

STAA
. CLI

LEVERI1 LIGHT

#orr o o

STIMID

-sys‘(lf) )

PIAOF2 REG B
-#$BF o -
PIAG+2 ‘

" . *PUSH # TRAINS ONTO STACK

1; .’ 1bpx, CURSPB ‘

A LDAA  TRNUM+1,X

;r PSHA .

! , LDAA® TRNUM,X

o PSHA

{ . & . N .

- , % SET UP CORRRCY PARAMETERS *
i ~~_STIMl JSR  STMPRM .
O . -

' * PUSH # PULSE PAIRS ONTO STACK
! .

\
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\ v A - ‘v -
f’ »
l' v, * ,m, - CURSPB -
. +*' - LDAA- PRNUM#1,X :
Lo . PSHA. - : N .
‘ - LDAA - PRNUM,X )
: . PSHA - -
* v
. * ! . , Co
‘ "% PULSE PAIR LOOP R
% TOTAL TIME AROUND PULSE PAIR Loor < .
v * =91 + 56*PRCCDT (CYCLES) s
* R L
* FIRE A PULSE PAIR A
SEI - o .
srnt_z LDAA PIAORE - )
~ ANDA - #§C7 . .
ORAA #3838 -
; ‘ STAA PIAOG+3 BRING CB2 UP - '
o - ANDA  #8F7 ”
STAA PIAO+3 AND THEN DOWN
. STAA PIAORB R o os
"+ % ANY MORE PULSE PAIRS?
. K TSX o . /
' . LDAA 0,X . et .
. 9 LDAB 1,X T . o
: . SUBB #1
ce SBCA #0 R LT
SR STAA. 0,X . .
’ STAB, 1,X ‘ i
) , ORAB' 0,X = .
L '+ BEQ s'rms miA IF NO MORE .
B
’\ * DELAY LOOP FOR INTER-PAIR &:‘zuw '
. . 'LDX  CURSPB
: LDAA PRCCDT,X DLY consr
ImA 't
STAA CCHI
. LDX  PRCCDT+l,X
& STIM3 LDAA PIAO+l .READ CRA . _
2 ROLA.  LEVER PRESS?
- " BCC  STIMA. BRANCH IF NOT
LDAA PIAO - CLEAR FLAG
INC  LVRICR+1 INCEEMENT
BNE %47 LEVER COUNT
INC - LVRICN -~ . \
o - BRA M7 S
. ) ' BRA 42 . o
BRA %42 .
- * *
.
. * .
' ® DELAY IN THIS BRANCE IS TO BALANCE <, ‘
\ - i . S- 97 -
S R ~H 3&* - e \ - -
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. e v ( B o i
‘ i - » " ; ' ! 3 - , ‘.
ey . , .
e * THAY IN THE OTHER ,
Kl "STIM4 LDAA #3 :
E : ~f ' DECA H
- BNE  *-1 . i
C ' BRA %42 4 'CYCLES !
‘- _ BRA:* %2 ° 4 CYCLES - f
| k‘\\ > o b ¢ :
N A ‘ ’
| ‘ ~ ' BEQ *47 ' oy )
- , Nop - : ‘
o : BRA. *4+2
; ¢ "BRA.  STIM3 o
P : b DEC CCHI . - .. ‘ . "o 4
| - BNE . STIM3 - | . : . ?
| """ BRA  STIM2 ' ' ‘
* . ¥
o % k " * POP # PAIRS OFF STACK -
| A STIM6 . PULA a : T
I : : PULA 4 * ! ’ . v
' i- N * , @ N ‘
* QF : - ’ . ‘
| * SET LEVER MASK.FOR COUNTING ONLY . /
L - LDAA * #3501 .
STAA LVEIM.
- * N Al B v " o
° < * ENABLE INTERRUPTS AGAIN - ' e
L L S . e
% . o ’ :
* MORE PULSE FHAINS TO DELIVER? ?
B S , ' \
; LDAA. 0,X X -
. 7. , " LDAB  1,X ,
SUBB #1 S ' L
SBCA #0. \ ‘ -
, STAA .-'0,X ' .
STAB 1’x ' d
< (  OBAB  0,X : |
' .. BEQ STIM7
\ - % SLEEP FOR INTER-TRAIN DELAY / , .
| . "LDX  CURSPB - *
! = LDX - ~ TRDTTR;X B
| . CIRB  -. \
\ LDAA #3 - . \)
, - ‘. SWI C
1 > A * t' ’ ! ]
; *, AND LOOP FOR NEXT TRAIN ,
y N JMP  STIMI
N ; , & - ) 5 . ‘ T . :
A % SLREP FOR FIXED INTERVAL DELAY
I STIM] LDX  CURSPB
G o LDX  FIXDT,X " .
CLRB ) .

~ *
‘ .
. " - 98 -
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LDAA #3 . SYS(SLEEP)

. SWI
* SET LEVER MASK TO ALLOW TRIGGERING AND COUNTING
" LDAA #3
. STAA . LVRIM
* SIGNAL STIMULATION -LOCKOUT SEMAPHORE
LDAB  #SMSLCK
LDAA #1
SWI
* 1]
* END OF STIMULATION
* 4]
) ’ %
* TURN ON LEVER] LIGHT
SEI - /
LDAA PIACH+2 REG B
RAA - #$40
STAA  PIAO+2
CLI
* N
* POP # TRAINS OFF STACK )
PULA
PULA 2
* & LOOP
JMP  STIM

>

* ‘ ) ]
CCHI RMB 1 l/‘
*

*

* STMPRM - SUBROUTINE OF STIM TO
*SET UP PARAMETERS FOR STIMULATION.
*

* CONFIGURE TIMERS 2A, 3A FOR PULSE
* PAJR GENERATION

STMPRM LDAA  #$B2

SET
STAA CR2A
STAA  TIMERA+1

" STAA  CR3A .
STAA  TIMERA .
CLI

*

* SET PULSE PAIR PRAMETERS INTO

* TIMER LATCHES
LDX CURSPB
LDAA  PRWDDT,X PULSE WIDTH
LDAB  PRWDDT‘+1,X
STAA  TIMERAH: .
STAB = TIMERA+5

* PULSE SEPARATION

LDAA  PRCTIDT+1,X

-
Al

- 99 .
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)

LDAB  PRCTDT+2,X

STAA - TIMERA+6

~. STAB TIMERA+7
*' SET TIMER .3 PRESCALER
“LDAA  PRCTDT,X

. :g;m 1

/' 'ORAA  CR3A
{ STAA CR3A
STAA  TIMERA
CLI
* , . .
, * ' SET PIA FOR PERIPHERAL REG. ACCESS
- SEI
s b ] \
L LDAA  PIAORA
)( © ORAA  #$04
e STAA  PIAORA
y _ STAA * PIAO+]
/ ' LI
* rd
* SET NT MAGNITUDES

e ‘ SEI
_/sTX DACIR

B

STX DAC1
CLI
*
LDX BCRNT+1,X
SEI
STX DAC2R
¥ STX DAC2
CLI
*
* CONRTRUCT REGISTER A CONTENTS
LDX CURSPB ~
(A ASELCT,X
ANDA  #7
ASLA
" ASLA
*
LDAB  BSELCT,X
RORB
RORB
RORB
RORB
ANDB  #$E0
ABA
®
. LDAB  BCRNT,X
ASLB
ANDB #2

b R R PR,

- 100 -

LDX  CURSPB SET 'A' CURRENT
-LDX  ACRNT+1,X

g

LDX CURSPB SET 'B' CURRENT
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»

ACRNT, X
M-

o

* COPY VALUE INTO PIK REGISTER

ABA
5 . *
ANDB
ABA
» *
A * 7>’STM
*

PIAQ

SET GROiTND ELECTRODE & PULSE STEERING

* BITS IN REG. B ‘ '
LDAA  GSELCT,X
o ~. LDAB  STEER,X
B , ASLB
ASLB
ASLB
ABA
ANDA #SIF
SE1
. ORAB  PIAO+2”
» STAA  PIAO+2
CLI
*
RTS |
* <
* . .
khkhkhhhkhkhkhhkhkihkhkkiihkkhkikikkikikik
- * LEVER INTERRUPT PROCESS
*
*
LEVERl EQU * ) '
] ORG _XLVRI
FDB  LEVER]L
‘ ORG  LEVER]
* '
LDAB #SMPIAl WAIT FOR CAl
: CLRA  INTERRUPT (FROM LEVER)
' SWI _ ’
N "
" LDAB LVRIM
" RORB ; /
BCC  LVRIl
* COUNT LEVER PRESS N
LDX  LVRICN -
INX )
. STX  LVRICK
LVR11l RORB
BCC  LEVER]
" * COUNT STIMULATION
LDX  STMCNT
- ) o INK ¢
STX  STMCKNT

* SIGN%. STIMULATION TO START

- o

S a3 "ot

3

Lok

-101 - .
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o . Appendix B: Source. Listings
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i . \ . !

o LMA A1 : : ~

- - a .

- i '
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