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ABSTRACT 

Important gender differences exist regarding affective disorders, and 

depression affects women two times more than men. Accumulating evidence 

suggests a functional interrelationship between ovarian steroids, the serotonergic 

(5-HT) system and depression. The objective of this thesis was thus to study the 

modulation of the 5-HT neuronal firing activity by neuroactive steroids and 

compare it between genders. It was achieved by means of in vivo extracellular 

unitary recordings of dorsal raphe nucleus (DRN) 5-HT neurons in anesthetized 

rats. 

The basal firing rate of DRN 5-HT neurons was significantly higher in 

males (M) and pregnant females (PI7) as compared to freely cycling females (F). 

During pregnancy, 5-HT1A autoreceptors were partially desensitized, which is 

consistent with the higher 5-HT neuronal firing activity. The GABAergic tonic 

inhibition of 5-HT neurons was lower in both M and Pl7 as compared to F, which 

is also in agreement with their greater 5-HT neuronal firing rate. 

In F, 5~-pregnane-3,20-dione (5~-DHP), 5a-pregnane-3a-ol,20-one 

(3a,5a-THP), dehydroepiandrosterone (DHEA), its sulfated form DHEAS, 

testosterone (T), 17~-estradiol (17~-E) and ganaxolone (a synthetic analog to 

3a,5a-THP) significantly increased the firing activity of 5-HT neurons. Of 

those, only DHEAS, T and 17~-E were also effective in M. The effect of 3a,5a-
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THP and ganaxolone in F, as well as ofDHEAS in both M and F, could be seen 

as early as after a 3-day treatment. Furthermore, 3a,5a-THP and ganaxolone 

prevented the initial decrease in firing activity caused by citalopram (a selective 5-

HT reuptake inhibitor), which is responsible for its de1ay of therapeutic action. 

However, DHEAS could prevent it only partially in both genders. 

These results constitute strong evidence of gender differences in both the 

basal firing activity of 5-HT neurons and in their modulation by neuroactive 

steroids. They also present sorne mechanisms of action by which gender and 

hormonal fluctuations influence the 5-HT neuronal function. Finally, the results 

of this thesis offer a cellular basis for the putative antidepressant effects of 

neurosteroids, which may prove important particularly for affective disorders in 

women . 
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RÉSUMÉ 

La propension à développer une dépression majeure est deux fois plus 

importante chez la femme que chez l'homme, suggérant un rôle des hormones 

stéroïdes dans cette pathologie. L'augmentation de la neurotransmission 

sérotoninergique (5-HT) observée lors des traitements par des antidépresseurs 

souligne également l'implication du système 5-HT. 

Pour étudier la modulation de l'activité 5-HT par les neurostéroïdes ainsi 

que son effet différentiel relativement au sexe, l'activité extracellulaire unitaire 

des neurones du raphé dorsal a été enregistrée in vivo, chez le rat anesthésié. Le 

taux de décharge de base des neurones 5-HT est plus élevé chez les mâles (M) et 

les femelles gestantes (PI7) que chez les femelles contrôles (F). Ce taux de 

décharge plus rapide durant la gestation pourrait s'expliquer par la 

désensibilisation partielle des autorécepteurs 5-HT1A. L'inhibition tonique 

GABAergique des neurones 5-HT est moindre chez les M et les Pl7 que chez les 

F, ce qui peut également contribuer aux taux de décharge accrus des neurones 5-

HT. 

Chez les F, la 5p-pregnane-3,20-dione (5P-DHP), la 5a-pregnane-3a­

ol,20-one (3a,5a-THP), la dehydroepiandrosterone (DHEA), son homologue 

sulfatée la DHEAS, la testosterone (T), le 17p-estradiol (17P-E) et la ganaxolone 

(un analogue synthétique de la 3a,5a-THP) induisent une augmentation du taux 
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de décharge des neurones 5-HT. Parmi ceux-ci, seule la DHEAS, la T et la 17B-E 

ont un effet notable chez les M. L'effet de la 3a,5a-THP et de la ganaxolone 

chez les F ainsi que de la DHEAS chez les deux sexes, est observé dès 3 jours de 

traitement. Par ailleurs, la 3a,5a-THP et la ganaxolone préviennent le 

ralentissement initial de la décharge des neurones 5-HT causé par le citalopram 

(inhibiteur sélectif de la recapture de la 5-HT) qui retarde son effet thérapeutique. 

En revanche, la DHEAS ne prévient que partiellement ce ralentissement chez les 

deux sexes. 

Ces résultats montrent des différences sexuelles tant sur le taux de 

décharge basal des neurones 5-HT que sur leur réponse à une modulation par des 

stéroïdes neuroactifs. Enfin, les données de cette thèse offrent une base cellulaire 

à l'effet antidépresseur potentiel des neurosteroïdes qui pourraient s'avérer 

important pour le traitement des troubles de l'humeur féminins . 
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1.1 Serotonin and depression 

Serotonin (5-HT) was first hypothesized to play a role in the 

pathophysiology of depression in the late 1960s (105,278). Since then, a large 

body of evidence has been accumulating to implicate the 5-HT system in mood 

disorders (424). Most of it derives from the observation that every antidepressant 

treatment enhances 5-HT neurotransmission. 

1.1.1 Dorsal raphe nuleus 

The dorsal raphe nucleus (DRN) is located in the brainstem, in the 

ventromedia1 region of the midbrain periaqueductal gray (281,555) below the 

cerebral aqueduct (235). It is one of the brain regions most densely populated 

with 5-HT neuronal cell bodies (235,281,500,555). Depending on the species, 5-

HT neurons constitute between 30% (rat) (4,555) and 70% (cat) (555) of the total 

number of DRN cells. The organization and types of cells forming the DRN as 

well as their projection networks are very similar across mammalian species 

(4,235). The DRN is also one of the nuclei (along with the median raphe nucleus) 

from which originate the majority of 5-HT neurons innervating the whole brain 

(4,235). It is noteworthy that DRN 5-HT neurons project extensively to limbic 

areas (235), which are involved in the control of emotions (113). 
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1.1.2 Basics of 5-HT neurotransmission 

DRN 5-HT neurons have a spontaneous firing activity, which can be 

modulated by different auto- and hetero-receptors located on the cell body and 

dendrites (87,235,410). The release of 5-HT by nerve terminaIs is directly 

influenced by the neuronal firing activity (4,410) and can be modulated by 5-

HTlB/lD receptors located on the axon terminal (4,223,312,410). The quantityof 

5-HT in the synaptic c1eft is also dependent on the rate of its reuptake by 5-HT 

transporter (SERT) and its degradation by mono amine oxidase (MAO) (387,410). 

Finally, different postsynaptic 5-HT receptors mediate a variety of effects 

characteristic of 5-HT neurotransmission . 

1.1.3 Mechanisms of action of antidepressants 

Antidepressant treatments can act through different mechanisms and at 

various points along this system to increase 5-HT neurotransmission (63,64). For 

instance tricyc1ic antidepressant (TCA) drugs and electroconvulsive therapy seem 

to increase the sensitivity of postsynaptic 5-HTIA receptors (63,64,94,114,115). 

Monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake 

inhibitors (SSRIs) both increase the amount of 5-HT available in the synaptic 

c1eft, the former by preventing its degradation and the latter by blocking its 

reuptake by the presynaptic cell (59,64,65,93,387). This increased extracellular 

amount of 5-HT is also present in the somatodendritic area where it activates 5-

HT lA autoreceptors (63,64,199,222,424). This leads to an initial inhibition of the 

3 
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5-HT neuronal firing rate but aiso to a subsequent graduaI desensitization of these 

receptors (59,63,64,93,199). The 5-HT neurons, eventually free from 

autoregulation, recover their initial frequency of action potentiai firing, and the 

dmg-induced increase in synaptic 5-HT concentration can finally be expressed as 

enhanced 5-HT neurotransmission (59,62,64,93,387,424). Indeed, it has been 

shown that chronic treatments with different types of antidepressants result in 

greater tonic activation of postsynaptic 5-HT lA receptors, indicating a net increase 

in 5-HT neurotransmission (198). This desensitization process takes about two to 

three weeks and is consistent with the delayed therapeutic onset of antidepressant 

action (59,63,64,93). The particular importance of 5-HTIA receptors in the 

neurobiology of depression is thus underscored . 

1.1.4 5-HT1A receptor levels in depression 

Postmortem studies have shown increased binding Ieve1s of 5-HTIA 

receptors in the DRN (21,505), but not pre frontal cortex or hippocampus (504), of 

suicide victims with major depression as compared to controis. There is new 

evidence showing that a gene polymorphism in the 5-HTIA promoter is associated 

with major depression and suicide (284). The biologicai consequence of this 

polymorphism is an impaired repression of the 5-HT lA autoreceptor gene 

expression (284), which would explain the above mentioned observation. 

However, this was contradicted by another postmortem study in suicide victims 

with major depression showing reduced number of DRN 5-HTIA receptors as 

compared to controis (21). Furthermore, other studies, using positron emission 
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tomography (PET) imaging, also reported lower 5-HTIA receptor binding 

potential in raphe nuc1ei as well as in different cortical regions in depressed 

patients as compared to healthy controls (123,458). A lesser number of cortical 5-

HT lA receptors would be consistent with reduced 5-HT neurotransmission in 

depressed patients. On the other hand, a reduction in 5-HTIA autoreceptor would 

expectedly lead to enhanced 5-HT neuronal firing activity rather than to 

depression. However, this might represent a homeostatic adaptation to 

compensate for the reduced neurotransmission, as reflected by lower postsynaptic 

5-HTIA receptor binding levels, or vice versa (21). Nevertheless, taken together, 

these studies indicate differences in 5-HTIA receptors between depressed and non­

depressed people and support an important role for this receptor in the 

pathophysiology of depression. 

1.2 Women and depression 

Gender differences in mood disorders have been extensively documented. 

It is well established that major depression affects women twice more often than 

men (19,53,57,73,250-252,301,434,439). The lifetime prevalence has been 

estimated to be around 21-23% for women and 11-14% for men 

(19,57,73,250,252). This 2:1 ratio appears to be constant across cultures 

(19,566,567). For seasonal affective disorder the difference was reported to be 

even greater, with a women: men ratio of7:2 (283). Differences in prevalence for 

major depression between sexes first appear at female puberty, around 12-14 

years old (73,478). Since puberty is the time when ovarian hormones start to 
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fluctuate, these hormones have long been hypothesized to play an important role 

in women's mood disorders (129,131,239,388,394). 

Furthermore, in female patients, depressive episodes seem to develop or 

exacerbate during periods associated with hormonal fluctuations such as puberty 

(208,394), menstrual cycles (129,130,208,394,567,585), the postpartum period 

(208,262,394,567) and menopause (75,262,567). For instance, during the lute al 

phase of the menstrual cycle (or premenstrual period) up to 70% of women 

complain of lowered mood and of emotional distress, varying in severity 

(203,207,291,449), while 2% to 10% meet the criteria for prememenstrual 

dysphoric disorder (PMDD) (48,131,291,520). Again, this seems to be true cross­

culturally (291). During the postpartum period, 10% to 22% of women suffer 

from major depression (378,379,381) while up to 85% experience mild to 

moderate depressive symptoms or "postpartum blues" (48,267,379,381). Women 

with a history of depression have higher risks of developing premenstrual 

depressive symptoms (130,201,585) as well as postpartum (378) and peri­

menopause depressions (397). 

It has been proposed that sorne women might be more vulnerable to 

depressive illnesses and that normal hormonal fluctuations, and their subsequent 

effects on the central nervous system, may be enough to trigger mood 

disturbances (129,204,208,239,388,394,464,501). This greater susceptibility of 

women to depression, especially during periods of hormonal variations, suggests a 

role for ovarian hormones in the pathophysiology of female affective disorders. 
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For c1arity purposes, the honnonal fluctuations during the menstrual cycle, 

pregnancy and menopause will be briefly summarized. The menstrual cycle 

begins with the onset of menses, which last about 5 days (310). This menstrual 

phase is characterized by low plasmatic levels of estrogen (E) and progesterone 

(P) (310). E levels increase during the follicular phase, which usually spans from 

the 5th to 14th day of the cycle, and then suddenly drop just before ovulation 

(around the 14th day) (310). The last phase of the menstrual cycle is the luteal 

phase (day 14 to 28), during which both E and P levels increase to peak in mid­

luteal phase (310). It should be noted that, during this phase, E levels do not rise 

as high as during the follicular phase and that the levels ofP are greater than those 

of E (310). During the late luteal phase, which represents the last 7 to 10 days of 

the cycle, the levels of both E and P drop dramatically, thus triggering the menses 

(310). Throughout pregnancy, there is a constant and important increase in 

plasmatic levels of both E and P (219). Just before parturition, P levels drop 

drastically (310) and during the postpartum period, there is an approximate 100-

fold and 10-fold decrease in plasmatic P and E levels, respectively (214). 

Menopause is also associated with decreased levels ofE and P (177). 

1.2.1. Gender differences in human 5-HT system and in response to 

antidepressants 

The gender differences in depression could result, at least in part, from 

anatomical and functional dissimilarities along the 5-HT system of men and 
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women. For instance, tryptophan depletion was shown to exacerbate depressive 

symptoms in women suffering from premenstrual syndrome (339) and to 

significantly lower the mood of healthy women (128,288) but not men (34,128). 

Furthermore, women seem to have a lower rate of 5-HT synthesis than men (372), 

which might make them more vulnerable to depression if there is greater need for 

5-HT, in which cases synthesis might not be sufficient to compensate for the 

reduction in cerebral 5-HT levels (372). Interestingly, women also seem to have 

higher 5-HT1A binding potential in several regions of the brain, inc1uding the 

DRN (395). AH these differences could contribute to women's greater 

vulnerability to mood disorders. 

5-HT system gender differences are also reflected by the distinctive 

response of men and women to various antidepressants. In the treatment of major 

depression, women were shown to better respond to sertraline (an SSRI) than to 

imipramine (a tricyc1ic) and the opposite was true for men (263). Fluoxetine (an 

SSRI) was also shown to be more effective than maprotiline (a selective 

norepinephrine reuptake inhibitor, SNRI) for treating premenopausal women 

suffering from major depression, while no such difference between these two 

drugs were found in men or in older women (311). It thus appears that SSRIs are 

better suited for the treatment of major depression in women. It could suggest a 

greater sensitivity of their 5HT system as compared to that of postmenopausal 

women and men, who are not exposed to hormonal fluctuations. AH this evidence 

emphasizes the intricate relationship between ovarian hormones, 5-HT system and 

women mood disorders. 
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1.2.2 5-HT and female mood disorders 

The premenstrual syndrome (PMS) or premenstrual dysphorie disorder 

(PMDD) is characterized by recurring depressive symptoms, which appear during 

the last week of the lute al phase of the menstrual cycle and remit shortly after the 

onset of menses (18). The time frame for the symptoms in PMS is different from 

that of major depression (18). However, since the depressive symptoms correlate 

with the hormonal fluctuations, the study of this condition could provide insight 

into the role of ovarian steroids in depressive symptoms and in mood disorders in 

general. 

As mentioned above, SSRIs are efficient treatments for major depression. 

Furthermore, they seem to have greater beneficial effects than other non­

serotonergic antidepressants in treating PMS (132,153,398). Interestingly, their 

beneficial effects are usually seen within a shorter timeframe in PMS than in 

major depression (132,153,503,517,570,584). Administration of SSRIs limited to 

the luteal phase of the menstrual cycle has also proven effective in reducing 

premenstrual psychological symptoms (205,237,516,586), and even more so than 

continuous administration (152,570). Taken together, these observations could 

suggest a different mechanism of action than in major depression. 

It was also suggested that SSRIs' therapeutic effects were mediated, at 

least in part, by their enhancement of the cerebrallevels of 5a-pregnane-3a-ol,20-
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one (allopregnanolone, 3a,5a-THP), a metabolite of P (see figure 1 for partial 

metabolic pathway) (180,187). Similarly, L-tryptophan infusions were shown to 

induce greater increases in 3a,5a-THP blood levels in women with PMS than in 

controls (430). This was thus suggested to uncover a blunted 5-HT activity in 

PMS women (430). This is also further evidence of a close relationship between 

neuroactive steroids, the 5-HT system and depressive symptoms. Other 

abnormalities of the 5-HT system, such as a blunted response to a fenfluramine 

challenge (144) or to tryptophan infusions (429), have been observed in PMS 

(56,336,502). 

Depressed menopausal women also had lower platelet and blood 5-HT 

contents, which could be retumed to control values by 17f3-E and synthetic 

progesterone supplementation, which also alleviated the depressive symptoms 

(186). These data suggest that sorne women may be have altered sensitivity to 

hormonal modulations of the 5-HT system (501). 

1.3 Steroids and depression 

1.3.1 Steroids, postpartum and menopausal depression 

Apart from the obvious fall in ovarian steroid plasmatic levels, there does 

not seem to be any correlation between estrogen or progesterone levels and 

postpartum depression since both depressed and non-depressed women have 
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similar plasmatic levels of these hormones (214,217,369,380). However, 

depressed women were reported to have lower serum levels of 3a,5a-THP as 

compared to non-depressed women during the postpartum period (369). 

Conceming menopause, depression was associated with low levels of DHEAS 

rather than with estrogen or progesterone (28). This could thus suggest a role for 

neuroactive steroids in the pathophysiology of female mood disorders. 

1.3.2 Steroids and premenstrual syndrome 

In the premenstrual syndrome (PMS), depressive symptoms occur during 

the late luteal phase of each menstrual cycle (209,397). Because of this cyclic 

recurrence, many have tried to find a link between levels of ovarian steroid and 

symptom severity. However, no distinct pattern has yet emerged. For instance, 

higher plasma concentrations of progesterone (P) (176,553), 3a,5a-THP (176) 

and 17p-estradiol (17p-E) (553) were observed in women suffering from PMS as 

compared to controls. This finding was partly contradicted by another study 

showing lower P and 3a,5a-THP levels but higher estradiol in women with PMS 

as compared to those who were symptom-free (355). An increase in negative 

mood symptom severity was also observed with increased plasma levels of 

pregnenolone (PREG) (553), pregnenolone sulfate (PS) (553), P (202,209) and 

17p-E (209,469,553) as well as with decreased levels of 5a-pregnane-3,20-dione 

(5a-DHP) (553) and 3a,5a-THP (428,553). Finally, others reported no 

difference in plasma levels of either P (56,428,466,469,518), PREG, 3a,5a-THP 
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(466,469,518), 17~-E (56,448,518), dehydroepiandrosterone sulfate (DHEAS) or 

dihydrotestosterone (5a-DHT) (448) between PMS women and controls, and no 

correlation between hormone levels and severity of depressive symptoms 

(397,466). 

Since no clear picture could be drawn from these studies, it has been 

proposed that ratios and variation rates were of greater importance than hormonal 

levels per se. Conceming the fluctuation of plasma 3a,5a-THP levels, the ratio 

between the lute al and follicular phases was three times less in women with PMS 

than in healthy women (355). The ratio of 3a,5a-THP to P during the late luteal 

phase of the menstrual cycle of PMS women was also lower than in controls 

(428). But, a third study showed the opposite; a greater plasma levels of both 

3a,5a-THP and P as well as enhanced 3a,5a-THP to P ratio in PMS women 

compared to controls (176). Halbreich et al. reported faster rates of decrease in P 

levels, but not in those of estrogen, in PMS women as compared to controls as 

well as a correlation between higher rates of P decrease with increasing symptom 

severity (202). Together, these studies show that, as was the case for hormonal 

levels, there is no consensus as to ratios or variation rates of ovarian steroids and 

PMS symptoms. 

It is c1ear from the lack of consistency that, although ovarian hormones are 

likely implicated in development or exacerbation of depressive symptoms, there is 

no simple correlation between hormonallevels or ratios and PMS. It is possible, 
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but unlikely, that such generalized inconsistency is merely due to protocol 

differences. Different sensitivities of the 5-HT system to honnonal variations 

have been suggested (502) and would represent a more convincing hypothesis. 

Considering the myriad of effects that multiple neuroactive steroids have in the 

CNS, through various mechanisms of action (as discussed in the following 

sections), this discrepancy could reflect individual imbalances, compensation 

mechanisms and/or vulnerabilities, allleading to depressive symptoms. 

1.3.3 Steroid levels in depression and following antidepressant treatments 

Altered levels of ovarian steroids were also observed during depressive 

episodes and were regularized by antidepressants. For instance, the CSF and 

plasma of depressed patients have been shown to contain lower levels of 3a,5~­

THP (440,542) and 3a,5a-THP (440,507,508,542) than those ofhealthy subjects, 

and they could be elevated back to nonnal levels by successful antidepressant 

treatments (440,507,508,542). Interestingly, the increase in CSF levels of 3a,5a­

THP was proportional to the mood improvement (542). Plasma levels of 3~,5a­

THP were conversely found to be higher during depressive episodes than in 

healthy controls, and again antidepressant treatments reversed this effect 

(440,507). Sorne studies found no differences in PREG (440,542), P 

(440,508,542), 5a-DHP (440,508) or DHEA (440) levels, while others showed a 

decrease in PREG in the CSF of depressed inpatients (173) and lower levels of 

DHEAS in the plasma of depressed elderly women (39). 
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Likewise, modulation of steroid levels by antidepressants was observed in 

rats. Injection of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine or 

paroxetine to male rats rapidly resulted in greater 3a,5a-THP cerebral content and 

concomitant decrease in 5a-DHP, without change in PREG, P or DHEA (541). 

Independent of extracellular 5-HT levels (187), this effect seemed to result from 

the interaction of SSRIs with the enzyme 3a-hydroxysteroid dehydrogenase (3a­

HSD), favoring the conversion of 5a- and 5p-DHP into their respective 3a­

reduced metabolites (3a,5a- and 3a,5p-THP) (180,187,541,542). Three different 

SSRIs (fluoxetine, paroxetine and sertraline) were shown to facilitate this 

conversion of5a-DHP in 3a,5a-THP bythe human 3a-HSD (180). These results 

were also reproduced in rat frontal cortical slices, with other classes of 

antidepressants such as amitriptyline (a tricyclic) and desipramine (a 

norepinephrine reuptake inhibitor), which both increased synthesis of 3a,5a-THP 

from 5a-DHP (236). This was apparently also due to direct interaction with 3a­

HSD (236). Other 5-HT reuptake inhibitors (clomipramine and fluvoxamine) have 

also been shown to decrease P and 17p-E serum levels in female rats (435). 

These data would suggest synergic interactions between neurosteroids and 

antidepressants to modulate the 5-HT system and/or induce beneficial effects on 

mood . 
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1.3.4 Antidepressant effects of steroids 

In both clinical studies and animal models, different ovarian steroids have 

been shown to have antidepressant (or antidepressant-like in the case of animaIs) 

effects. 

1.3.4.1 Clinical studies 

Removal of hormonal fluctuations, either by pharmacologically induced 

anovulation (464,519) or by ovariectomy (84), has been proven efficient in 

alleviating premenstrual symptoms. However, for obvious reasons, this treatment 

is not suitable for the majority. Several clinical studies have found estradiol to be 

efficient in treating PMS (560), postpartum (9,10,179,218) and peri-menopausal 

(186,465,494) depressions. On the other hand, progesterone was reported to not 

be more efficient than placebo in treating PMS (151). Estrogen administration 

improved the response to antidepressants in depressed elderly women (467) as 

weIl as in both pre- and post-menopausal women who were initially not 

responding to treatment (257). Conversely, treatment of breast cancer with 

tamoxifen (an estrogen receptor antagonist) was associated with higher rates of 

depression than in cancer patients not treated with tamoxifen (85). These data 

clearly suggest antidepressant properties for estrogens. 

DHEA was also shown to be beneficial in the treatment of dysthymia (68) 

and major depression (572-574). Patients treated with DHEA responded better 
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than those receiving placebo (68,572) and the response rates were similar to that 

obtained with other antidepressants (68). Interestingly, the plasma levels of 

DHEAS increased at least 3 times more than that of DHEA (68,573). 

Furthermore, the changes in mood ratings correlated with the increase in plasma 

DHEAS levels (68,573) rather than DHEA levels (68). This was attributed to the 

faster clearance ofDHEA (68). In middle-aged and elderly patients, improvement 

of depressive symptoms seemed to correlate with increases in both DHEA and 

DHEAS levels (574). 

1.3.4.2 Animal models 

Several studies using animaIs have shown antidepressant-like effects for 

neuroactive steroids. The Porsolt forced swimming test is widely used for 

screening potential new antidepressants (133,414). In this experimental model, 

animaIs are forced to swim and after a certain period of time, they become 

immobile, a behavior which is then considered to indicate lowered mood or 

despair (414). Since most antidepressant treatments can effectively reduce the 

length of time they remain immobile, this test is useful for evaluating putative 

antidepressant properties of a given compound (133,414). 

DHEAS was shown to reduce the mouse immobility time in this paradigm, 

suggesting an antidepressant-like effect (432,540). DHEA also reduced the 

immobility time in this paradigm but only in high-anxiety rats (415). In one study 

(432), PS had a similar effect in intact animaIs but in another, its antidepressant-
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like effect was only apparent in ADXlCX mice (540). Together, these data might 

suggest a lower efficacy for DHEA and PS as compared to DHEAS. However, in 

the case of DHEA, it could also be due to species difference and/or use of lower 

doses. 

Khisti and coworkers, using the same model, showed that 3a,5a-THP was 

also efficient in reducing the mouse immobility time (253,254). Interestingly, 

various 5-HT agents (SSRI, 5-HT releaser and respective 5-HT1A, 5-HTlB/1C and 

5-HT2A11C receptor agonists) all potentiated this antidepressant-like effect of 

3a,5a-THP at doses insufficient to affect the immobility time on their own (253). 

Conversely, decreasing 3a,5a-THP cerebral levels, by blocking P metabolism 

using finasteride, increased immobility time in proestrus rats, which otherwise 

swam more than diestrus females or males (see next paragraph for the rat's 

estrous cycle) (160). Administration of P to ovariectomized (OVX) rats also 

reversibly decreased immobility time (315), but whether this effect was mediated 

by elevated levels of 3a,5a-THP remains to be confirmed. 

For clarity purposes, a brief description of the rat's estrous cycle and its 

hormonal fluctuations is inc1uded here. The cycle lasts about 4 to 5 days and 

consists of four phases: estrus, metestrus, diestrus and proestrus (154). Ovulation 

occurs at the end of the proestrus (154). Plasmatic leve1s of 17p-estradiol are low 

at estrus and gradually increase during metestrus and diestrus, to peak at mid­

proestrus, and fall abruptly before ovulation (154). Progesterone is low during 
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most of the cycle, rises drastically at mid-proestrus and, like E, drops before 

ovulation (154). 

Castration of male and female rats significantly increased their immobility 

time (161,382), while estradiol supplementation decreased it, indicating an 

antidepressant-like effect (133,161,382,425). This reduction could be blocked by 

both the 5-HT1A receptor antagonist WAYI00635 and the selective estrogen 

antagonist RU58668 (133), thus supporting a close relationship between the 5-HT 

system and neuroactive steroids. Using the tail suspension test, it was shown that 

the antidepressant-like effects ofboth estradiol and P were only apparent in OVX 

animaIs, which had longer immobility time as compared to sham-operated mice 

(38) . 

Most studies assessing the immobility time in the Porsolt forced 

swimming test as a function of the estrous cycle found it to be longer during 

diestrus than proestrus-estrus (104,160,161,316,317). Interestingly, this 

difference could be prevented by treatment with clomipramine (316) and 

exacerbated by stressors (317). This could suggest that the females' mood is 

sensitive to stressors especially during diestrus (317) and that this more labile 

mood can be stabilized by antidepressants. Using the same paradigm, Galea et al. 

designed a model of postpartum depression, which showed that 3 weeks of P 

administration, followed by 3 days of withdrawal, significantly increased the 

immobility time of female rats (163). They also showed that if estrogen was 

administered during these 3 days of withdrawal, the immobility time was not 
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different from control females (163). In general, these data suggest a detrimental 

effect of hormonal withdrawal and fluctuation as well as a beneficial effect of 

steroid supplementation on mood. 

These studies, using the Porsolt forced swimming test, support a gender 

difference as well as an effect of estrous cycle in the susceptibility to develop 

depressive symptoms. Furthermore, both clinical studies and animal models 

indicate potential antidepressant effects for various steroids, including DHEA, 

DHEAS, PS, 3a,5a-THP and 17~-E. They also suggest a close interaction 

between neurosteroids and the 5-HT system as well as an important role in the 

neurobiology of depression . 

1.4 Metabolism and Synthesis 

Being lipophilic, most steroids can easily cross the blood-brain barrier 

(452). Moreover, several of them can also be synthesized by the brain and were 

thus named neurosteroids (452). In the CNS, the expression of steroidogenic 

enzymes is region- and cell type-specifie, and is developmentally regulated (101). 

Only enzymes involved in the synthesis and metabolism of sex steroids will be 

discussed here (for partial metabolic pathway see figure 1) . 
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1.4.1 Cytochrome P450 side-chain cleavage 

The first step in steroid synthesis is the translocation of cholesterol from 

the cytoplasm into mitochondria, by mitochondrial peripheral-type 

benzodiazepine receptors (PBR) (389). Inside mitochondria, cholesterol is 

converted into PREG by the rate-limiting enzyme cytochrome P450 cholesterol 

side-chain c1eavage (P450scc) (101,544). P450scc is present in the human (562) 

and the rat (162,256,258,280,337,509,539) brain, in which it is widely distributed 

(256,258,280,457,509) and has a constant expression across ages (258). In 

humans, but not in rats (258,337), a gender difference was observed as women 

have higher P450scc mRNA levels than men in the frontal lobe and temporal 

cortex (562). This enzyme is expressed by oligodendrocytes, astrocytes 

(242,243,255,337,457,562) and neurons (162,256,457,535,539,562), which were 

all shown to convert cholesterol into PREG (228,242,243,256,562). As expected 

from its function, P450scc is concentrated in mitochondria (242,243,337,539). 

1.4.2 3~-hydroxysteroid dehydrogenase 

Pis formed from PREG by the enzyme 3~-hydroxysteroid dehydrogenase 

(3~-HSD) (457,538). This enzyme is also widely distributed in the rat brain 

(162,185,258,457) but its mRNA levels seem to decrease with age (258,538). 

Neurons (125,162,185,457,535,538,598) as well as glial cells (457,598) express 
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3B-HSD and were shown to synthesize P from PREG (29,242,243,538,598) as 

well as androstenedione from DHEA (598). 

1.4.3 21-hydroxylase 

P can be converted into 21-hydroxyprogesterone (deoxycorticosterone, 

DOC) by the enzyme 21-hydroxylase (P450c21)(101,509). This enzyme's 

mRNA is found in the rodent cerebellum, hypothalamus and brainstem 

(293,509,593) as well as in the human hippocampus (45). Enzymatic activity was 

detected in the rat brainstem (232) and cultured cerebellar astrocytes (293), which 

actively metabolized Pinto DOC (232,293). There is no sex difference in the 

amount of rat or human P450c21 rnRNA (45,232) but it seemed to increase from 

childhood to adulthood (45). 

1.4.4 5a-reductase and 3a-hydroxysteroid dehydrogenase 

In the rat brain, Pis mainly metabolized into 5a-DHP and then, to a lesser 

extent, into 3a,5a-HTP (88,126). The 5a-reductase-catalyzed conversion of P, 

DOC and testosterone (T) into 5a-DHP, 5a-pregnan-21-01-3,20-dione (5a­

DHDOC) and 5a-DHT, respectively, is irreversible (88,286,452). Oxidation of 

5a-DHP into 3a,5a-THP by 3a-hydroxysteroid dehydrogenase (3a-HSD) is 

reversible but, although both reactions occur in the brain, the oxidative direction 
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predominates (88,90,261). 3a.-HSD also converts 5a.-DHDOC into 5a.-pregnan-

3a.,21-diol,20-one (3a.,5a.-THDOC) (450). 

The 5a.-reductase (89,266,403) and 3a.-HSD (96,403) enzymatic system 

appears to be widely distributed in the rat brain (96,266,403). Furthermore, there 

is evidence of functional cerebral conversion of Tinto 5a.-DHT (89,266,285) and 

then into 5o'-androstan-3a.,1713-diol (3a.-diol) (89). The rat olfactory bulb, 

striatum, hippocampus and frontal cortex were also shown to metabolize Pinto 

5o'-DHP and 3a.,5o'-THP to varying extent; the greatest enzymatic activity being 

observed in the olfactory bulb (95,236). Cultured astrocytes can also synthesize 

3o',5a.-THDOC from P (293). These data indicate a functional 5o'-reductase-3o'­

HSD enzymatic system with region-dependent activity. 

Although one study reported that 5o'-reductase was mainly expressed by 

astrocytes (403), others showed that neurons have greater 5a.-reductase activity 

than glial cells, independent of age (89,333-335). On the other hand, astrocytes 

(type 1) have a greater 3a.-HSD activity than the other types of brain cells 

(334,335). In rats (403) and hum ans (506), no sex differences were observed in 

brain 5a.-reductase (403) or 3a.-HSD mRNA, protein (403) or activity. 50,­

reductase seems to be located in cellular membranes (90) . 
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1.4.5 Cytochrome P450 aromatase 

Androgens are converted to estrogens by the cytochrome P450 aromatase 

(P450aro) (90,101,535). Evidence shows that P450aro is active in the adult rat 

brain (549). P450aro expression (456,598) and enzymatic activity (370,598,600) 

were found mostly in neurons (370,456,598) but also, to a lesser extent, in 

neonatal astrocytes (370,598,600). Although the extensive brain distribution of 

the enzyme is similar between sexes (456,509), female rats seem to have lesser 

P450aro mRNA (552) and activity (444,445) than males. No such gender 

differences were observed in the human brain (506). P450aro is located in the 

endoplasmic reticulum (101,456) . 

1.4.6 Cytochrome P450 17a.-hydroxylase 

The enzyme cytochrome P450 17a.-hydroxylase (P450c17) is mostly 

responsible for converting PREG into DHEA and, to a lesser extent, Pinto 

androstenedione (101). There is no consensus regarding the expression of the 

P405c 17 in the adult brain as sorne found that it was only transiently expressed 

during development (101) while others found its rnRNA expressed during 

adulthood (258,509). Astrocytes and neurons isolated from neonatal rat cerebral 

cortex and hypothalamus, express functional P450c17 and can produce DHEA 

from PREG, with astrocytes the being most active (598,599). P450c17 is located 

in the smooth endoplasmic reticulum (101) . 
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1.4.7 17J3-hydroxysteroid dehydrogenase 

Five types of 17J3-hydroxysteroid dehydrogenases (17J3-HSD) exist and 

they are responsible for the following reversible conversions: testosterone into 

androstenedione, androstenediol into DHEA and estrone into 17J3-estradiol 

(101,269,499). AlI of these reactions were shown to occur in the human brain 

(499). In several regions of the rat brain (402), 17p-HSD is expressed and active 

only in astrocytes (402,598). No sex differences were found in rats (402) or 

humans (499,506) conceming cerebral 17p-HSD expression or activity. 

1.4.8 Hydroxysteroid sulfotransferase and Steroid sulfohydrolase 

PREG and DHEA can be sulfated into PS and DHEAS by the enzyme 

hydroxysteroid sulfotransferase (HST), while the steroid sulfatase (STS) catalyses 

the reverse reaction (101). STS expression and enzymatic activity were found in 

several brain regions of the rat (12,101,102) despite apparent dec1ine during 

development (426). Active HST was found in hippocampal and cerebellar 

neurons (256). 

It is c1ear that the mammalian brain has the enzymes required to 

functionally synthesize and metabolize a wide variety of sex steroids. 

Furthermore, evidence shows that these enzymes can be co-localized in a cell . 
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For instance, astrocytes from neonatal rat cerebral cortex and hypothalamus can 

metabolize DHEA into T and then into E, demonstrating the enzymatic activity of 

3B-HSD, 17J3-HSD and P45Ûaro (599). Glial cultures can also synthesize PREG, 

P, 5B-DHP and 3a,5a-THP from cholesterol (242,243). 

These data confirm that the brain efficiently synthesizes and metabolizes 

various neurosteroids, including P, 17J3-E, T and DHEA, their precursors and 

metabolites. They also indicate that the brain does not need to rely on peripheral 

synthesis for its hormonal supplies. Furthermore, it would definite1y hint at 

neurosteroids playing a role in the cerebral functioning beyond the sole control of 

the hypothalamic-pituitary-gonadal axis. 

1.5 Mechanisms of action of steroids 

Ovarian steroids exert a myriad of effects on the central nervous system 

through multiple mechanisms of action. In this section, only those that have been 

shown to occur in the brain will be described. 

1.5.1 Classical genomic mechanism of action 

The action of steroids on the genome is well characterized. First, they 

enter the cell and bind their specific receptor, a ligand-activated transcription 

factor, located in the cytoplasm or nucleus, which then undergoes complex 
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conformational changes (31,46,277,292). Chaperone proteins, responsible for 

maintaining the receptor in a steroid binding conformation, then dissociate from 

the receptor (30,31). This leads to dimerization of the receptor, which can then 

bind DNA on a specifie sequence (the hormone response element) located in the 

promoter region of the target gene (30,31). Finally, with the interaction of other 

sequence-specifie transcription factors, there is an up- or down-regulation of gene 

expression (30,31) leading to a long-term cellular response. While only 

one receptor is known for P (PR), two types of active nuc1ear receptors have so 

far been recognized for E: ERa and ER~. It might be important to mention that in 

addition to P, both 5a- and 5~-DHP can bind PR and have genomic effects (453). 

1.5.1.1 Ovarian steroid receptors in the DRN 

ER and PR are present in the mammalian DRN. In the OVX monkey, 

both PR and ER~ (40,192,194), but not ERa (192,194), were detected in the 

DRN. Most 5-HT neurons were shown to express PR (40) and the mRNA for 

ER~ was detected in both 5-HT non-5-HT neurons (194). Hormonal replacement 

(E, P or E + P) do es not affect the mRNA or protein expression ofER~ (192,194). 

In the rat brain, the ERa is highly expressed throughout the brain, while 

the ~ isoform is more restricted to limbic regions (270) and its distribution is 

gender-independent (270). The rat DRN expresses very low levels of ERa 

(366,481) but higher levels of ER~ (366,475) and PR (16). ERa and PR are 
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undetectable on 5-HT ce1ls (16,294) and are rather found on adjacent neurons 

(16), which are immunoreactive for excitatory amino acids (17). On the other 

hand, about 40% of 5-HT neurons express ERp mRNA (294). ERp are mostly 

nuclear but are also found in the cytoplasm of a few neurons (294). The 

distribution patterns for ERa and PR are similar between genders and so is the 

number of ce1ls expressing ERa (16). However, 30% more female DRN ce1ls 

expresse PR than male's (16). E treatment decreases ERa expression and 

enhanced PR immunoreactivity in both sexes (16). It does not increase the 

number of ce1ls expressing ERp but intensifies its mRNA signal (294). 

In the mouse DRN, ERa and PR are expressed by 5-HT neurons as we1l as 

by non-5-HT neurons (14), which are immunoreactive for excitatory amino acids 

(17). No sex difference was observed in the number of ce1ls expressing PR but 

this number is increased fo1lowing E treatment, in both sexes (14). Interestingly, 

this is true for wildtype (WT) as we1l as for ERaKO mice (14). ERp are found in 

the DRN of male WT (375) and ERaKO (375,476,477) mice, and are confined to 

the nucleus (375). Gonadectomy or E replacement both failed to modify the 

number of ce1ls expressing ERp receptors in either genotype (375). ERp are more 

abundant than ERa in the DRN of OVX mice and are not restricted to the nucleus 

(349). 

In the DRN of OVX guinea pigs, immunoreactivity for ERp is restricted to 

the nucleus and ERa is barely detectable (556). ERp mRNA, but not ERa or PR, 
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is expressed by their 5-HT neurons (297). FinaUy, in the OVX cat, ER are present 

in the nucleus, cytoplasm of ceU body and dendrites of neurons in the 

periaqueductal gray (545). 

To summarize, in the DRN of monkeys, rats, mi ce and guinea pigs, the 

expression of ERj3 seems greater than ERa, which has a very low expression. PR 

is also expressed in the DRN of aU these species. This strongly suggests that the 

expression of ovarian steroid receptors was weU preserved during evolution. 

What appears to differ, however, is whether or not they are expressed by 5-HT 

neurons. Conceming ERj3, the information is only available for monkeys and 

rats, both ofwhich express this receptor on 5-HT neurons. It could presumably be 

expected for other species. ERa, on the other hand, was only detected in mice 5-

HT neurons. PR was found in 5-HT neurons ofmonkeys and mice, but not rats. 

Nevertheless, the cellular machinery necessary for steroid genomic effects to take 

place is present in the DRN. Furthermore, even ifnot directly occurring in 5-HT 

neurons, such effects in adjacent ceUs could lead to their subsequent modulation. 

1.5.2 Non-genomic mechanisms of action 

Sorne effects of steroids are too rapid (seconds to minutes) to be mediated 

by a genomic mechanism of action (46,137,367,368,529). Moreover, these 

effects are insensitive to transcription and translation inhibitors, thus further 

supporting independent processes (46,137,367). There is considerable evidence 
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indicating that steroids can initiate cellular responses at the neuronal cell 

membrane level through a variety of mechanisms of action. 

1.5.2.1 Steroid membrane receptors 

An increasing amount of data suggests the existence of progesterone and 

estrogen membrane receptors (mPR and mER) in the brain (292). An early study, 

using synaptic plasma membranes prepared from rat brains, showed specific 

binding sites for E, P and T (533). Bovine serum albumin (BSA) conjugated 

steroids, such as E-BSA and P-BSA, which cannot diffuse freely through the 

plasma membrane, have also been very useful to study putative membrane steroid 

binding sites and effects (246). Such studies have shown plasma membrane 

binding sites for both E and P in the rat brain (246,390,460,530), as weIl as a 

variety of membrane-mediated responses (47,81,121,157-159,340,363,460). For 

instance, 17~-E can enhance the excitability of rodent hippocampal neurons 

(81,148,149,183,363,529,575,576) by inhibiting Ca2+-dependent K+ channels 

(81), via reduced Ca2+ influx through voltage-gated Ca2+ channels (81). 

Furthermore, this effect appears to be initiated at the cell membrane level (81,149) 

by a specific ER (575). The steroid-binding membrane receptors can be classified 

into three types: c1assical "nuc1ear" ERIPR located at the neuronal membrane 

level (46,98), new specific membrane receptors which are different from the 

nuc1ear ERIPR (265,420,530,531) and other steroid-binding proteins, such as 

enzymes, neurotransmitter receptor, etc. (46) . 
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a) Membrane receptars identical ta nuc/ear receptars 

There is indication that sorne mERs might be structurally similar, if not 

identical, to nuc1ear ERs (292,390) and be the products of a single gene (431). 

This would explain why cells expressing membrane steroid receptors also have 

the nuc1ear counterpart (559). Of the classical ERs, only ERa (and not ERf3) has 

so far been detected in the plasma membrane of astrocytes (460) as weIl as 

hippocampal (98,346,558) and cuItured midbrain neurons (46). Activation ofthis 

membrane receptor in astrocytes, for instance, negatively regulates the glutamate­

aspartate transporter, which resuIts in the inhibition of L-glutamate uptake (460). 

It has been postulated that tissue- and cell-specific accessory proteins might also 

link this receptor to various intracellular signaling cascades (see section 1.5.2.2) 

(46). 

b) New specifie membrane receptars 

Specific mER, which are different from nuc1ear ER, have also been 

reported. For instance, a new mER (ER-X) has been shown to be present in the 

neocortex of neonatal WT and ERaKO mice but to be minimally expressed in 

adults (531). This receptor has a different molecular weight (62-63 kDa) from 

ERa (67 kDa) and ERf3 (60 kDa) and a greater affinity for 17a-E (531). Binding 

of 17f3-E or 17a-E to this receptor results in activation of the mitogen-activated 
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protein kinase (MAPK) cascade (531) (see section 1.5.2.2). There is also report 

of yet another novel transmembrane ER, which is coupled to a G protein (Gaq) 

and can activate an intracellular cascade, which finally results in phosphorylation 

and inhibition of inward rectifying K + channels (420). It is unclear whether these 

two novel mER are a variant of the same gene. However, they seem 

pharmacologically different since 17a-E seemed unable to activate the second 

(420). 

Recently, a 40-kDa PR was cloned from sea trout ovaries (597). This 

receptor appears to be a membrane receptor, coupled to an inhibitory G protein, 

and its mRNA was detected in the sea trout brain (597). A membrane protein of 

similar molecular weight (40-50 kDa), and with high affinity for P, had previously 

been shown in rat synaptosomal membrane preparations (530). Finally, another 

mPR, a 25-kDa protein called 25-Dx, is also expressed in the rat CNS (265,268), 

as well as in different brain regions of WT and PR knockout (PRKO) mice, where 

it seems to be localized in the membrane of neuronal cell bodies (265). 

c) Other steroid-binding membrane pro teins 

Steroids may act on a wide variety of proteins located in the cell 

membrane such as ion channels, enzymes, transporters, receptors for molecules 

other than steroids, etc (559). For instance, in the rat brain, 17~-E and P were 

shown to bind and modulate the enzymatic activity of the membrane-bound 
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mitochondrial ATP synthase/ATPase (592) and glyceraldehyde-3-phosphate 

dehydrogenase (238). A dual binding site for P and E, which is coupled to G 

proteins, was also reported in the plasma membrane fraction of OVX female rat 

medial preoptic area-anterior hypothalamus (MPOA-AH) (76). Interestingly, the 

G protein coupling to this receptor and subsequent conformational changes appear 

to determine its relative affinity for the two steroids (76). 

1.5.2.2 G proteins and intracellular second messenger systems 

a) G proteins 

As mentioned above, there is also accumulating evidence indicating that 

estrogen activates G-proteins and intracellular second messenger systems to 

rapidly alter synaptic transmission (247,271) and neuronal responses 

(248,340,363). 17J3-E potentiates kainate-induced currents (183,184,363,364,576) 

and depolarizes (575,576) hippocampal neurons without implication of either 

ERa or ERJ3 (183,363,576), but rather by involving a G protein-coupled 

mechanism (184,363,364). PREG and PS also inhibit hippocampal Ca2
+ channel 

currents via a pertussis toxin (PTX)-sensitive G-protein, through a mechanism 

initiated at an extracellular binding site (141). Similarly, in neostriatal neurons, 

17J3-E activates a G-protein-coupled membrane receptor, which triggers a second 

messenger cascade and finally inhibits L-type Ca2
+ channels (340). Selective 

coupling of mERa to Gai, but not Gaq or Gas protein was shown in endothelial 
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cells (580). Based on the above-mentioned results, a similar coupling could be 

expected in neuronal cells but needs to be confirmed. 

b) MAPK cascade 

17p-E can activate different proteins of the MAPK cascade, inc1uding B­

Raf and ERK, by inducing their phosphorylation, probably via a tyrosine kinase 

(50,51,482-484). This was observed in rat hippocampal (49,51,309) and thalamic 

(50) neurons, where it led to the phosphorylation of the N-methyl-D-aspartate 

(NMDA) receptor (49-51), enhanced this receptor function and long-term 

potentiation (LTP) (49,51), as well as conferred neuroprotection (49,50). It can 

also lead to other effects such as secretion of nonamyloidogenic amyloid p 

precursor protein (APP) (309). Interestingly, it seems that 17p-E can activate the 

MAPK cascade even in neurons devoid of functional ER (309). 

c) PKA and PKC cascades 

Estrogen treatments of OVX rats increase PKC enzymatic activity in the 

preoptic area (POA), which activates adenylyl cyc1ase (AC) and leads to elevation 

of cAMP levels (20). Kelly et al. proposed a model in which 17p-E non­

genomically activates PKC in hypothalamic neurons (247,248). Activated PKC, 

on one hand, uncouples J...l-opioid and GABAB receptors from G protein-activated 

inwardly rectifying K+ channels (GIRK) (247,248). On the other hand, it activates 
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PKA, through an AC-mediated increase in cAMP, and PKA also prevents the 

coupling of /J.-opioid receptors to GIRK (247,248). They also observed that 17p­

E potentiates the Pl-adrenoceptor mediated inhibition of Ca2+-dependent K+ 

channels (248). This led to the suggestion that 17p-E potentiates the response of 

Gus-coupled receptors (e.g. P l-adrenoceptors) (248,364), while inhibiting that of 

GUi/o-coupled receptors (e.g. /J.-opioid and GABAB receptors), thus leading, in 

both cases, to neuronal excitation (248). AlI of these estrogenic effects seem 

independent of the c1assical genomic mechanism of action (271,561,595) and 

appear to be mediated by a specifie receptor (271) on the celI membrane 

(248,595). 

1.5.2.3 Membrane-initiated genomic effects 

Accumulating data has also shown that, in the brain, estrogen has 

transcriptional effects, initiated at the membrane level (468,532), which involve 

various transduction pathways and result in modulating gene expression 

(468,484,532), inc1uding those devoid of estrogen response element (ERE) in 

their promoter regions (484,532). For instance, 17p-E has been shown to rapidly 

and non-genomicalIy increase intracelIular cAMP concentrations in neural celIs 

(561). This increase in cAMP activates PKA (271,561) and is folIowed by a rapid 

phosphorylation of the cAMP response element-binding protein (CREB) 

(561,595). In OVX rats, both 17p-E and Pean non-genomicalIy induce receptor­

mediated increase in phosphorylated CREB (PCREB) in neurons of different 
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brain regions (181,595). pCREB is the activated fonn of CREB, whichcan 

influence gene expression via cAMP response element (CRE) containing gene 

promoters (561). Interestingly, it has been suggested that upregulation of CREB 

is associated with antidepressant-like effects whereas its downregulation could be 

implicated in the pathophysiology of depression (124). Activation of the 

ERKIMAPK pathway by 17B-E can also, in addition to the above-mentioned 

effects, lead to modulation of gene transcription (287) since activated ERK can 

interact with nuc1ear transcription factors (532). An ER different from ERu and 

ERB has been suggested to trigger this enzymatic cascade (483). 

1.5.2.4 Neurotransmitter receptors 

In addition to these steroid-binding protein-mediated effects and the 

activation of intracellular cascades, steroids can also modulate the function of 

neurotransmitter receptors through various mechanisms of action. Nicotinic 

acetylcholine, glycine, dopamine and oxytocin receptors are all examples of 

receptors, which can be affected by steroids (452). Of greater interest for the 

purpose of this work, the modulation by neuroactive steroids of 5-HT, 

GABAergic, glutamatergic, noradrenergic and sigma receptors will be discussed 

in the following sections. 

Taken together, these examples underscore the multiplicity of steroid 

mechanisms of action, which can occur concomitantly and interact together (364) 
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to produce a variety of effects as weIl as a combination of rapid and long lasting 

cellular responses (463). Rapid non-genomic effects can precede and/or 

complement later genomic responses by acting on the same or different effector 

protein (463). Modulation of ion channe1s or neurotransmitter receptor responses, 

for instance, can rapidly alter neuronal response and synaptic transmission. The 

time frame concerning the triggering of intracellular second messenger cascades 

can range from rapid to slow, depending on the resulting cellular responses. Also, 

whether it is membrane-initiated or occurs via nuc1ear steroid receptors, 

modulation of gene transcription and/or translation, while slower, may lead to 

longer lasting effects. Furthermore, these data undeniably demonstrate that 

neurosteroids can have important impacts on the modulation of cerebral functions. 

1.6 Ovarian steroids and the 5-HT system 

Female rats seem to have a greater cerebral 5-HT synthesis 

(42,79,80,206,543) than males, especially in the hippocampus (42,206). They 

also have higher 5-HIAA/5-HT ratio than males in various regions of the brain 

(79), inc1uding the DRN (122). This ratio is usually considered as an index of 5-

HT turnover or metabolism (41). Increased synthesis and turnover rate, together, 

may suggest a greater potential for rapid 5-HT fluctuation in females. Indeed, the 

HIAA/5-HT ratio can be reduced by exposure of females to a stressor such as the 

elevated plus maze, whereas that of males is stable (122). This could thus suggest 

a more sensitive 5-HT system for females. These gender differences combined 

with those observed in humans (section 1.3.6), along with the putative role of 
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ovarian steroids in female affective disorders and the implication of the 5-HT 

system in the neurobiology of depression, all point to a modulation of this system 

by ovarian hormones. ID order to characterize it, numerous studies have been 

performed on the different steps involved in the 5-HT neurotransmission. 

1.6.1 Modulation of tryptophan hydroxylase 

Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis 

of 5-HT and it converts tryptophan into 5-hydroxytryptophan, which is the 

precursor to 5-HT (44). In the DRN of ovariectomized (OVX) monkeys 

(42,43,401) and guinea pigs (297), but not of rats (15), estrogen (E) has been 

shown to increase TPH expression, with no significant additive effect of 

progesterone (P) (43,401). One of the functional consequences ofthis could be an 

E-induced e1evation ofthe 5-HT content in the DRN. 

1.6.2 Modulation of monoamine oxidase A 

Most available data suggest that ovarian hormones negatively modulate 

the expression and/or activity of mono amine oxidase A (MAO-A), the enzyme 

degrading 5-HT and norepinephrine (NE) (4,387). For instance, E, P or E + P 

lowered the MAO-A mRNA levels in the DRN and hypothalamus of OVX 

monkeys (193). Both short- and long-term treatments of OVX rats with E or P 

alone, but not in combination, also reduced the hypothalamic MAO-A activity 

(225,383). In a human neuroblastoma cell line of neural origin (SK-ER3), E 
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significantly decreased the activity of MAO-A (299,300). Since MAO-A reduces 

5-HT levels, such negative modulation of its expression and/or activity could be 

expected to increase the amount of 5-HT available for 5-HT neurotransmission. 

1.6.3 Modulation of the 5-HT transporter 

The 5-HT transporter (SERT) is responsible for removing extracellular 5-

HT from the synaptic cleft, thus terminating synaptic transmission (4). In the 

DRN ofOVX monkeys, 4-week E treatments have been shown to decrease SERT 

mRNA expression, with !ittle additive effect ofP (43,400). In a recent study, the 

same group showed that, in the DRN, the density of SERT binding sites was not 

affected by either E, P or E + P (296). However, in certain DRN projection areas 

(hypothalamus and basal ganglia), these treatments (E, P or E + P) increased 

SERT binding sites and functional 5-HT uptake (296). The reduction in SERT 

rnRNA levels in the DRN and the increase in SERT density in projection are as 

may represent greater trafficking of SERT to terminal fields as an adaptive 

response to higher levels of 5-HT in the synaptic cleft (296). Indeed, as 

mentioned above (section 1.6.1), E increased TPH expression and 5-HT levels in 

different brain regions. Moreover, it has been shown that extracellular 5-HT, by 

activating the transporter, prevents SERT phosphorylation and subsequent 

intemalization (427). Conversely, long-term blockade of SERT, by SSRls, results 

in its downregulation (411) . 
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In vitro, 17p-E has been shown to inhibit 5-HT uptake within minutes of 

incubation (92,343). A 7-day treatment with E, starting 2 weeks after 

ovariectomy, was found to decrease SERT mRNA levels in the rat midbrain 

(594), as well as SERT binding sites in the hippocampus (338). This would be 

consistent with a blockade-induced down-regulation, as observed with long-term 

SSRI treatments. The discrepancy between the results obtained in rats and in 

monkeys conceming SERT binding sites density in projection are as could be due 

to species, brain regions or timeframe differences. However, since a reduction in 

mRNA levels in the DRN were observed in both species, brain region or 

timeframe specificity seem more likely. 

Studies investigating shorter timeframes have shown that, a single 

injection of E, just after ovariectomy, increased SERT mRNA levels in the rat 

DRN (329,330,515) and SERT binding sites in various projection areas (329,515). 

Similarly, castration of male rats reduced the levels of SERT mRNA in the DRN 

and this effect could be attenuated by administration of T and even more so by 

17p-E, but not 5a-DHT (143). These data suggests that this increase is mediated 

through aromatization of Tinto 17p-E (143) and further support an upregulating 

effect of short-term 17p-E administration on SERT expression. Interestingly, 

female rats seem to have less SERT binding sites than males, at least in the 

hippocampus and dentate gyrus (338) . 
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Taken together, these results regarding the effects of E on SERT 

expression and/or activity suggest species and brain region specificity. 

Furthermore, they appear sensitive to the timeframe of administration and long­

term effects are likely to result, at least in part, from indirect adaptive changes. 

Finally, these data could suggest that ovarian steroids promote 5-HT 

neurotransmission rather than reduce it. 

1.6.4 Modulation of 5-HT lA receptors 

1.6.4.1 5-HT1A receptors 

As previously mentioned (section 1.3.3) 5-HT1A receptors are ofparticular 

importance. The richest brain region in 5-HT1A receptors is the DRN 

(91,276,348), where they are mainly located on the soma and dendrites of 5-HT 

neurons (276,437,497,550) and regulate the firing activity of these neurons 

(116,497). These 5-HT1A autoreceptors are directly coupled to K+ channels 

through Gi/o proteins (8,66,229,230,276,442). Postsynaptically, they are present 

in high densities in the DRN and limbic regions (276,348,479), such as the lateral 

septum, entorhinal cortex and hippocampus, which is especially rich in 5-HT1A 

receptors (91,178,348,437,479). Activation of 5-HT1A receptors, pre- or post­

synaptically, triggers the opening of K+ channels, which hyperpolarizes the 

neuronal membrane and decreases the neuronal firing rate 

(4,7,8,83,108,230,497,498). In the case of 5-HT1A autoreceptors, this functionally 
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results in less 5-HT release and neurotransmission in the cell body and projection 

areas (83,224,472,473). 

Several lines of evidence suggest different properties for pre- and post­

synaptic 5-HTlA receptors (60,66,67,116,198,438). For instance, an important 

distinction is seen in the adaptive desensitization of the somatodendritic 

autoreceptors, which is not present in postsynaptic hippocampal and cortical 5-

HTlA receptors, following their sustained activation either by 5-HTlA agonists or 

increased 5-HT availability (59-63,93,94,116,198,220,241,276,480). There is 

also data suggesting a region specific and time-dependent modulation of 

particular types of G protein in response to administration of the SSRI fluoxetine 

(289). This could offer a basis for differential functional desensitization of 5-

HT lA receptors according to brain areas. 

1.6.4.2 Modulation of 5-HT lA autoreceptors 

Bethea and coworkers have shown that E or E + P decreased 5-HTlA 

receptor mRNA levels in the DRN of OVX monkeys; E reduced the number of 

cells expressing 5-HT lA mRNA, while P reduced the quantity of mRNA per cell 

(399). Interestingly, this decrease was associated with a reduction of 5-HTlA 

binding sites and G protein activation in the DRN of OVX macaques (295), 

indicating functional autoreceptor downregulation . 
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In OVX rats, a 3-week treatment with high levels of E and P also 

significantly reduced 5-HTlA autoreceptor mRNA levels in the DRN (54). On the 

other hand, a 2-week administration of E alone led to either a trend towards 5-

HTlA receptor downregulation in the midbrain (594) or no effect in the DRN 

(275). This could suggest that longer treatments or addition ofP would be needed 

to lower the 5-HT lA autoreceptor expreSSIOn III rats. However, 

electrophysiological experiments in the DRN of OVX rats showed a 

desensitization of the 5-HTlA autoreceptor following 48h of E administration 

(272,273). Moreover, ovariectomy seemed to increase the expression and 

functional response of this autoreceptor (70). Interestingly, 7 days of E 

supplementation reversed this effect (70). Together, these results support a 

functional desensitization and/or downregulation effect of E on 5-HTlA 

autoreceptors. Considering the autoinhibitory role of this receptor on the firing 

activity of 5-HT neurons, this estrogenic effect would facilitate 5-HT 

neurotransmission. 

1.6.4.3 Modulation of postsynaptic 5-HT lA receptors 

a) mRNA levels 

In OVX rats, acute E administration reduced 5-HTlA receptor mRNA 

levels in various brain regions (e.g. medial amygdala, piriform, perirhinal, 

cingulate and motor cortices) (385,386), while longer E treatments did not result 

in any expression change in these or other cerebral regions (hypothalamus, 

42 



• 

• 

• 

dentate gyrus, hippocampus, prefrontal and retrosplenial cortices) (275,384,594) . 

One study, however, did show a reduction of 5-HTlA mRNA levels in the dentate 

gyms and dorsal hippocampus (CA2 region) following 3 weeks of E 

administration, as weIl as an increase in mRNA levels in the CA 1 region of the 

hippocampus when P was added to this treatment (54). In spayed monkeys, two 

weeks of E or E + P administration does not modify the hypothalamic 5-HT lA 

receptor rnRNA levels (195). Therefore, in general, short-term, but not long-term, 

administration of E and P appears to modulate the mRNA expression of 

postsynaptic 5-HT lA receptors. 

b) Binding sites 

Four-week treatments with E or E + P, but not P alone, reduced 

hypothalamic 5-HTlA binding sites in OVX monkeys (295). Acute 

administrations ofE or E + P do not seem to affect 5-HTlA receptor binding sites 

in any of the rat brain regions investigated (hippocampus, hypothalamus, preoptic 

area, medial amygdala, piriform and perirhinal cortices) (150,233,385). Four days 

ofE also seemed insufficient to alter the number ofhippocampal 5-HTlA binding 

sites (100). However, a 2-week E treatment reduced this number in the amygdala, 

perirhinal and motor cortices (384), but not piriform, retrosplenial, prefrontal or 

cingulate cortex (275,384). Conceming the hippocampus, one study found no 

effect (275) while another one showed a reduction (384) in 5-HTlA binding sites 

after 2 weeks of E. This discrepancy could be due to the use of different 5-HT lA 
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receptor ligands ([3H]8-0H-DPAT and eH]MPPF (275) as opposed to 

eH]WAYI00635 (384)). 

These studies clearly indicate that the E-induced dowregulation of 5-HT1A 

receptor binding sites is region-specific. Furthennore, the timeframe difference 

between the rapid effect on mRNA levels and the later reduction in binding sites, 

strongly suggest a genomic mechanism of action. E probably inhibits the 5-HT1A 

receptor gene expression at a transcriptional level, which then translates into 

fewer 5-HTIA receptors being expressed at the cell membrane. The relatively 

slow (days) turnover of 5-HT1A receptors was suggested to account for this long 

time frame difference between the fast decrease in mRNA leve1s (hours) and later 

reduction (more than 4 days) in binding sites (384). 

c) Functional studies 

Two days of E replacement, in OVX rats, decreased the neuroendocrine 

response to 8-0H-DPAT, as well as hypothalamic levels of Gz, Gi1 and Gi3 (but 

not Gi2) proteins, suggesting that the E-induced desensitization of 5-HT1A 

receptors could be due to a lower number of G proteins (422). This hypothesis 

was only partly supported by other studies, which found blunted neuroendocrine 

(423) and behavioral (233,234,320,455) responses to 8-0H-DPAT but no change 

in Gz protein levels (423) or in coupling of the receptor to G proteins (233) 

following longer E treatments (4 and 14 days). Another group also showed that a 

single E injection, but not a 14-day treatment, decreased the 5-HT1A receptor-
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mediated activation of G proteins in the hippocampus, cortex and amygdala of 

OVX rats (350). However, this was not supported by other studies showing an 

enhancement of the 5-HTlA-mediated response to 5-HT in the hippocampus of 

OVX rats after a few (3-6) days of E replacement (32,99,100). Although these 

data indicate a functional modulation of 5-HTlA receptors by E, the exact nature 

of this effect remains unc1ear. Again, timeframe of administration, cerebral 

region specificity as well as the type of G proteins, which are coupled to the 

receptor, might account for these apparent discrepancies. 

Mize and coworkers have shown that activation of ER in vitro, in 

membranes prepared from the hippocampus and frontal cortex, resulted in rapid 

reduction of 5-HT lA receptor function without altering the affinity of the G 

protein Ga subunit for GTP, as assessed by agonist-independent e5S]-GTP-y-S 

binding (352). They also showed that 17~-E, through increased PKA and PKC 

activities, non-genomicaly induced the phosphorylation of 5-HTlA receptors and 

their consequential uncoupling (351). 

It thus appears from these studies that the downregulation of 5-HT lA 

receptors by E is paralleled by a reduced functional response and that genomic 

and non-genomic mechanisms of action are involved. In contrast to its beneficial 

presynaptic effect, this reduction ofpostsynaptic 5-HTlA receptors expression and 

function by E would suggest lesser 5-HT neurotransmission. It is also possible 

that the reduction in postsynaptic sites arises as a homeostatic consequence of the 
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enhanced 5-HT neurotransmission. The net result on neurotransmission would 

nevertheless depend on the balance of these two effects. 

1.6.5 Modulation of other 5-HT receptors 

1.6.5.1 5-HT1B/1D receptors 

5-HTlBIlD receptors are important III the mediation of 5-HT 

neurotransmission since they exert autoinhibitory control on the release of 5-HT 

in the synaptic cleft (63). Interestingly, these receptors also desensitize within 

two to three weeks of treatment with SSRIs, thus leading to greater 5-HT release 

and 5-HT neurotransmission (63). Unfortunately, !ittle data is available on the 

effect of ovarian steroids on these receptors. One study showed region-selective 

E- and P-induced elevation of 5-HTlB receptor binding sites in the ventromedial 

hypothalamic nucleus, but not in other regions of the hypothalamus, preoptic area 

or hippocampus in OVX rats (150). Such upregulation of 5-HT1B/1D receptors 

would expectedly reduce 5-HT release and neurotransmission in this area. 

Nevertheless, more studies would be needed to clearly establish the hormonal 

modulation of5-HT1BIlD receptor expression and function. 

1.6.5.2 5-HT2A receptors 

5-HT2A receptors are widely distributed in the rat brain with varying 

expression intensity, the highest being in the hippocampus (106). In the DRN, 
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they are not present on cell bodies but only on very few dendrites, which express 

low levels of 5-HT2A receptors (106). Their activation is mainly inhibitory for 5-

HT neurons as it reduces their neuronal firing activity (169,314) as well as the 

extracellular 5-HT levels in the DRN (169) and projecting area (314). However, 

this effect does not appear to be direct (169), which is consistent with the very 

low expression of 5-HT2A receptors by 5-HT neurons. Rather, DRN 5-HT2A 

receptors might be part of a local feedback loop and activate GABAergic 

intemeurons, thus leading to 5-HT neuronal inhibition (290). 

In the OVX monkey hypothalamus, a four-week administration of E 

decreased 5-HT2C, but not 5-HT2A, receptor mRNA expression (195). On the 

other hand, in OVX rats, a single dose of E was shown to increase 5-HT 2A 

receptor mRNA levels as well as receptor density in the DRN and various 

projection areas (e.g. hippocampus, hypothalamus, nucleus accumbens, caudate­

putamen, olfactory tubercle and cerebral cortex) (142,386,511-513,515). This 

effect could be blocked by the ER antagonist tamoxifen, which had otherwise no 

effect (515). Furthermore, the E surge occurring during proestrus was sufficient 

to increase forebrain 5-HT2A binding sites as compared to diestrus females or 

males (514). This rapid upregulation in the DRN, striatum and frontal cortex 

could also be observed after longer (two weeks) treatments (109). 

The elevation of 5-HT2A receptor binding site being paralleled by 

increased mRNA levels, a genomic mechanism of action might be involved in this 

estrogenic effect. However, it might be noteworthy that throughout the brain, 5-
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HT ZA receptors were found in the cytoplasm of neurons (dendrites and cell body) 

rather than in the plasma membrane, suggesting that they are normally 

internalized (106). Therefore, the E-mediated increase in binding sites may also 

represent a translocation of receptors from the cytoplasm to the cell membrane. 

As stated above, 5-HTzA receptors inhibit the activity of 5-HT neurons. 

Therefore, greater expression in the DRN could be expected to reduce 5-HT 

neurotransmission. Conversely, a similar upregulation in postsynaptic regions 

would probably increase it. For instance, activation of 5-HTzA receptors in the 

medial prefrontal cortex (mPFC) increased 5-HT release, probably by stimulating 

the release of glutamate, which can then activate AMP Alkainate receptors located 

on 5-HT terminaIs (314). These postsynaptic effects might then be enough to 

compensate for the inhibitory presynaptic effect, especially since there seems to 

be higher densities of 5-HTzA receptors postsynaptically. Again, the balance 

between these two opposite influences would determine the net effect on 5-HT 

neurotransmission. 

Castration of male rats decreased 5-HTzA receptor mRNA levels in the 

DRN and a single injection of T or 17J3-E, but not 5a-DHT, reversed this effect 

(143,511). The same was observed for 5-HTzA receptor binding sites in different 

brain regions (piriform, frontal and cingulate cortex, olfactory tuberc1e and 

nucleus accumbens) (143,511). Again, this suggests that the effect of T is 

mediated through its aromatization into 17J3-E (143), thus supporting an 

upregulating effect of E on 5-HT ZA receptors, irrespective of gender. In juvenile 
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rats, castration also induced a T-reversible reduction in 5-HT2A rnRNA levels in 

the hypothalamus but not in the hippocampus, thalamus, cortex, amygdala or 

DRN (591), which could suggest an influence of age. 

Indeed, a PET study on humans has shown that age reduces 5-HT 2 

receptor binding potential (342). Furthermore, PET studies supported what was 

observed in animaIs; several weeks of E and P administration increased 5-HT2A 

binding potential in various cerebral cortical areas of postmenopausal women 

(361,362). AIso, one PET study suggested reduced cortical 5-HT2 binding 

potential in depressed patients as compared to healthy controls (583). It would be 

interesting to see if E treatment could prevent the age- and depression-related 

reduction in 5-HT2(A) receptor expression and whether it would be associated with 

mood improvement. 

1.6.5.3 5-HT3 receptors 

5-HT3 receptors are excitatory ligand-gated cation (mainly Na+ and K+) 

channels (569,579). 17p-E and P, but not 3a,5a-THP, act as non-competitive 

antagonists of 5-HT3 receptors, possibly through allosteric interaction at the 

extracellular receptor-membrane interface (451,569,579). 17pE appears to be 

more potent than Pin inhibiting 5-HT3 receptor-mediated influx currents (27). 

49 



• 

• 

• 

The putative effect of ovarian honnones on the 5-HT neurotransmission 

through their modulation of 5-HT3 receptors is not c1ear. Since 17p-E and Pare 

antagonists at 5-HT 3 receptors, one would probably expect them to reduce this 

neurotransmission. However, there is evidence that it could actually be the 

opposite. First, no 5-HT3 antagonist has so far been shown to have anyeffect on 

the firing activity of DRN 5-HT neurons in vivo or in vitro (5), suggesting that 

they are not nonnally tonically activated (196). On the other hand, the 5-HT3 

agonist 2-Me-5-HT inhibits the firing activity of DRN 5-HT neurons when 

applied locally in vivo and in vitro, probably through indirect activation of 5-HT lA 

autoreceptors (5,196). In the DRN, 5-HT 3 receptors appear to be 

extrasynaptically located (23) and their activation stimulates 5-HT re1ease in the 

somatodendritic area (23). This greater extracellular 5-HT would likely activate 

5-HTIA receptors, which inhibit the firing activity of 5-HT neurons (23). This 

would explain the reduction in firing activity observed with 2-Me-5-HT. 

Systemic or local administration of 2-Me-5-HT in projection areas was also 

inhibitory on the firing activity of cortical and hippocampal neurons, thus 

suggesting the implication of inhibitory GABAergic intemeurons (196). This is 

supported by the in vitro observation that superfusion with 2-Me-5-HT stimulated 

5-HT release from frontal cortical, hippocampal and hypothalamic slices (58). 

Together these results suggest that even if excitatory, the 5-HT3 receptors' 

influence is mostly inhibitory. Their blockade by ovarian honnones would 

therefore likely result in a positive net influence on 5-HT neurotransmission. 

50 



• 

• 

• 

Taken together these data point to a beneficial effect for estrogen on 5-HT 

neurotransmission. It possibly increases the 5-HT pool by increasing the 

expression and/or activity of the synthesis enzyme TPH, while decreasing that of 

the degrading enzyme MAO-A. Of critical importance, E also appears to 

modulate functional desensitization and/or downregulation of the inhibitory 5-

HT1A autoreceptors. Moreover, E and P, as 5-HT3 antagonists, might also prevent 

a potential 5-HT3-mediated inhibition of 5-HT neurotransmission. The estrogenic 

modulation of SERT is less straightforward and may inc1ude species and cerebral 

region specificities. Nevertheless, a beneficial effect of ovarian steroids could 

still be speculated. The hormonal influence on 5-HT transmission through 

modulation of postsynaptic 5-HT1A and 5-HT2A receptors is, however, not as 

c1early beneficial. Conceming postsynaptic 5-HT1A receptors, E and P seem to 

induce a rapid region-specific downregulation of mRNA levels, which is later 

followed by a decrease in binding sites and is also translated in reduced functional 

response. Different mechanisms of action, inc1uding genomic and non-genomic, 

appear to be involved. The E-induced greater expression of 5-HT2A receptors in 

the DRN could reduce 5-HT neurotransmission, while in projecting areas it could 

have the opposite effect. In the end, the net result on 5-HT neurotransmission 

would depend on the balance of aIl these effects as weIl as on the cerebral region 

and the species investigated. Nevertheless, there is undisputable evidence of an 

ovarian hormonal modulation of several enzymes and receptors participating in 5-

HT neurotransmission . 
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1.7- Effect of steroids on different 5-HT afferent systems 

There are extensive projections to the DRN from various regions of the 

brain (407) and different afferent systems modulate the activity of 5-HT neurons. 

The best characterized heterologous modulatory systems of 5-HT neurons, if not 

the most important, are probably the GABAergic tonie inhibition and the 

glutamatergic and noradrenergic excitation. 

1.7.1 GABA 

1.7.1.1 GABA receptors 

GABAB receptors are metabotropic receptors, which are coupled, via a G­

protein, to inward rectifying K+ channels (3,229,230), while GABAA receptors are 

chloride ion channel complexes (302). Activation of either type of receptors leads 

to hyperpolarization of the neuron and reduces its firing activity (230,302). The 

GABAA receptor complex has a pentameric structure (331), which can be 

composed of various subunits: a1-a6, 131-~3, y1-y3, <5, E and 7t (274,331). The 

specifie combination of subunits determines the pharmacological properties of the 

receptor (274) and varies greatly across cerebral regions (331) . 
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1.7.1.2 GABAergic tonic inhibition ofDRN 5-HT neurons 

In the DRN, there is reciprocal inhibition between GABAergic and 5-HT 

neurons (22). Of interest here, is the well-characterized GABAergic tonic 

inhibition of DRN 5-HT neurons (3,524). Numerous GABAergic terminaIs make 

direct synaptic contact with 5-HT neuronal dendrites and cell bodies 

(167,212,554). These afferents originate from various brain regions (174), 

including local GABAergic intemeurons (174,290,548,555). Both GABAA and 

GABAB receptors could mediate this inhibition, as they are both expressed by 5-

HT neurons (2,167,471). 

Local infusions of GABA or a GABAA receptor agoni st (muscimol) in the 

DRN reduce the firing activity of 5-HT neurons (164,165,174,547) as well as the 

release of 5-HT locally (371,524,526) and in projection areas (e.g. nucleus 

accumbens, striatum, olfactory tubercle, substantia nigra and medial prefrontal 

cortex) (371,462,526). Conversely, application of GABAA receptor antagonists 

(bicuculline, picrotoxin or GABAzine) in the rat DRN enhances all of these 

parameters (174,245,523,524,526), indicating that 5-HT neurons are under tonic 

GABAA receptor-mediated inhibition. Activation of DRN GABAB receptors also 

inhibits 5-HT release (in both the DRN and nucleus accumbens) but to a lesser 

extent than that of GABAA receptors (526). Furthermore, the GABAB receptor 

antagonist phacolofen had no effect on 5-HT release, arguing against tonic 

activation of this receptor (2). Finally, blockade of GABAA receptors (with 

bicuculline or picrotoxin), but not of GABAB receptors (with pertussis toxin), can 

53 



• 

• 

• 

efficiently prevent the inhibitory effect oflocally applied GABA on 5-HT neurons 

(229). These data indicate that the GABAergic tonic inhibitory modulation of 

DRN 5-HT neurons is mainlymediated by GABAA receptors (229). 

1.7.1.3 Effects of neuroactive steroids on GABAA receptors 

a) Neuroactive steroid modulation of GABAA receptors 

At physiological (nM) concentrations, the following neuroactive steroids 

are positive allosteric modulators of GABAA receptors: 3a,5a-THP, 3a,5 p-THP, 

3a,5a-THDOC, 3a,5p-THDOC, androsterone and ganaxolone (a synthetic analog 

of 3a,5a-THP) (77,82,171,213,215,305,319,359,360,405,418,419,436,536,571). 

The structural requirement for this modulation appears to be reduction of the A­

ring in the 5a or 5p conformation, along with a hydroxyl group at position C3 in 

the a configuration (171,172,215,359). 3a,5a-THP, 3a,5a-THDOC and 

ganaxolone behave like barbiturates in displacing the binding of t­

butylbicyclophosphorothionate (TBPS) from the chloride channels and m 

potentiating GABA-induced chloride currents as weIl as the binding and potency 

of muscimol and benzodiazepines to GABAA receptors 

(82,172,215,305,359,405,536). However, they seem to act via a different binding 

site from that ofbarbiturates or benzodiazepines (302,405,418,536). Furthermore, 

at high concentrations (mM), 3a,5a-THP, 3a,5p-THP and 3a,5a-THDOC were 

shown to act as proper GABAA receptor agonists in the absence of GABA 
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(33,259,418,571). Consistent with these effects, 3a,5a-THP and ganaxolone 

have been shown to have anxiolytic (55,74) and anticonvulsant properties 

(111,259,433). 

P, PREG, 5a- and 5p-DHP, DOC, 5a- and 5p-DHDOC, 3p,5a- and 

3P,5p-THP, 17p-E and androstenedione, on the other hand, lack a 3a-hydroxy 

group within the A-ring and do not modulate GABAA receptors 

(77,155,172,215,306,405,419,453). However, as mentioned in section 1.4, they 

can be converted to 3a,5a- and 3a,5p-THP, and 3a,5a- and 3a,5p-THDOC, 

respectively, and thus modulate GABAA receptors. 

Sulfated steroids such as PS, 3a,5 p-THP sulfate, 3a,5a-THP sulfate, 

3p,5a-THP sulfate, 3p,5p-THP sulfate and DHEAS are GABAA receptor 

antagonists (11,119,127,303,306,307,332,344,391,474). DHEA can also, 

although less potently than DHEAS, inhibit the response to GABA (119) and 

binding of benzodiazepine, muscimol and TBPS (249). Because positive and 

negative modu1ators act on distinct sites on GABAA receptors, these receptors can 

be simultaneously potentiated and inhibited (391). It is thus c1ear that a slight 

shift in the equilibrium of the steroid metabolic pathway could result in an 

important difference in GABAergic modulation of a neuronal system, which 

could in tum significantly affect its activity . 
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b) Steroid-induced plasticity ofGABAA receptors 

Hormonal exposure and/or fluctuation can induce functional plasticity of 

GABAA receptors. For instance, chronic treatment of cultured neurons with 

3a,5a-THP or 3a,5[3-THP was shown to time- and dose-dependently reduce the 

efficacy of GABAA-mediated responses to GABA, neuroactive steroids, 

barbiturates and benzodiazepines, probably due to heterologous uncoupling 

between the GABA site, the modulatory sites and the chloride channel (155,588-

590). Furthermore, during pregnancy or P administration, there is a region­

dependent alteration in GABAA binding potential (78,568), affinity (304) and/or 

response (103), which is probably due to higher levels of 3a,5a-THP and 3a,5a­

THDOC (304). The effect of estradiol exposure on these parameters appears to 

depend on the endogenous hormonal levels since it increased eH]muscimol 

binding in various brain regions (hypothalamus, cortex, olfactory bulb and 

striatum) in OVX rats (279,404) but reduced it in intact females (210). Hormonal 

withdrawal, such as occurring following parturition or ovariectomy, is also 

associated with region-dependent changes in affinity (244,304), stimulated 

chloride currents (103) and receptor density (244,304). 

As mentioned above, the GABAA receptor's pharmacological properties 

are greatly influenced by its subunit composition (33), suggesting that these 

hormonally induced changes in GABAA response could be brought about through 

alteration of subunit expression. Indeed, there is a large body of evidence 

indicating that P exposure (or pregnancy) modulates the GABAA receptor subunit 
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expreSSIOn III a regIOn- and neuron-specific manner 

(103,139,140,145,147,319,565), probably VIa metabolism into 3a,5a-THP 

(103,147). Accordingly, 3a,5a-THP has also been shown to induce such changes 

(139,147,565,587). Furthermore, these changes were associated with consistent 

modifications of GABAA receptor's pharmacological properties (103,145,147). 

There are less studies assessing the effect of E on GABAA receptor plasticity but 

it also appears similarly region- and subunit-specific (221,565). Interestingly, 

fluctuations of E levels across the estrous cycle were shown to be sufficient to 

induce plasticity of y subunits (97). 

Abrupt faH in P and/or 3a,5a-THP cerebrallevels is also associated with 

region-specific dynamic changes in GABAA receptor subunits (146,147,319) and 

pharmological properties (145,147). The same was shown for the synthetic 

steroid ganaxolone (319). Smith and co-workers did a series of studies showing 

that initial exposure to P, as weH as withdrawal from it, lead to upregulation of the 

a4 subunit of the GABAA receptors in the hippocampus (188,486-488). This was 

associated with important loss of sensitivity to benzodiazepines (BDZ) 

(107,188,227,356,486,487) and 3a,5a-THP (486-488), and increased response to 

barbiturates (107,486). Furthermore, they showed that it was, in fact, exposure to 

3a,5a-THP that induced this GABAA receptor plasticity and cross-tolerance to 

both BDZ and 3a,5a-THP (107,188,486,488). However, since 3a,5f3-THP had 

the same effect (189), it could also be involved, as it is also a metabolite of P. 

These receptor changes also had measurable consequences on rat behavior, as 
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shown by increased anxiety, loss of BDZ anxiolytic properties 

(166,188,189,356,487,488) and greater seizure susceptibility (357,433). These 

data indicate that this neuroactive steroid can induce transient GABAA receptor 

plasticity after both short-tenn and tennination of chronic exposure, and that it is 

behavior relevant (188). In the hippocampus, there was no sex difference in this 

3a,5a-THP-induced GABAA receptor plasticity (189) but in the amygdala it was 

observed in females only (190). 

c) Subunits required for neuroactive steroid modulation 

As already mentioned, the differential assembly of various subunits gives 

rise to multiple GABAA receptors having different sensitivity to neurosteroid 

modulation (33). GABAA receptors containing the 8 subunit appear to be the 

most sensitive to positive modulation by THDOC, especially when in 

combination with the al subunit (52,571). Cerebral regions expressing GABAA 

receptors containing these two subunits might thus be especially sensitive to 

neurosteroid modulation (52). Furthennore, in 8 subunit knockout (8 KO) mice, 

GABAA receptor-mediated currents are less responsive to THDOC (551) or the 

synthetic steroid alphaxolone (496). Alphaxolone and ganaxolone also have 

greatly reduced anxiolytic effects in 8 KO mice (345). Interestingly, in these 

mice, there was also greater sensitivity to PS, thus reducing the total amplitude of 

GABAA receptor-mediated current (413). Onlyone study showed that 8 subunit 

greatly reduces sensitivity to neurosteroids (THDOC, 3a,5a-THP and PS) (596). 
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Conceming other subunits, GABAA receptors containing al or a3 seem more 

responsive to modulation by 3a,5a-THP than the a6-containing ones, while those 

expressing a2, a4 or aS are about 10 times less sensitive than those expressing 

al (33). Different y subunits influence the responsiveness to 3a,5a-THP (y2 

conferring greatest sensitivity, followed by y3 and then yI), while 131-3 subunits 

do not appear to affect it (33). 

Recent studies have shown that phosphorylation also determines the 

GABAA receptor's response to neurosteroids (213). Interestingly, stimulating 

PKC activity restored normal sensitivity to THDOC in cerebellar granule neurons 

from 8 KO mice (551). However, phosphorylation can lead to both greater and 

lesser sensitivity depending on the brain region, type of neurons, receptor 

composition and which amino acid residues are phosphorylated (213). For 

instance, in neurons of the cortex (213) and supraoptic nucleus (260), PKC­

mediated phosphorylation reduces sensitivity of GABAA receptors to 3a,5a-THP 

(213,260). Conversely, in hypothalamic magnocellular neurons, inhibition of G 

protein and PKC prevents 3a,5a-THP-mediated potentiation of the GABAA 

receptor response (138). In CAl hippocampal pyramidal cells and dentate 

granule neurons, PKA- or PKC-mediated phosphorylation also enhances 

sensitivity to neurosteroids, while its inhibition prevents it (213). 

In the rat DRN, the most importantly expressed subunits are al, ~2, y2, y3 

and 8, followed by, in order, a2 and ~l, a3, and finally by aS and 133 (412). The 
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expression of a4 and yI subunits is minimal if even present (412). An oIder study 

revealed a different pattern of expression: moderate expression of al, a3, 132,3 

and y2, low expression of a2, while a5 and ù were not detected (156). Despite 

contradictory results concerning the expression of the ù subunit, both these 

patterns of expression would suggest the DRN to be sensitive to neurosteroid 

modulation. Furthermore, most of the rat DRN 5-HT neurons express GABAA 

receptor a3 subunits on their dendrites and cell bodies (167), while only a 

minority expresses the al subunit (167). The latter is rather expressed by 

GABAergic neurons, along with a3 subunits (167). These observations represent 

other potential mechanisms of action for neurosteroid modulation of 5-HT 

neurons. 

It is clear from these findings that GABAA receptors mediate the 

GABAergic inhibition of 5-HT neurons and that they can, themselves, be 

modulated by several neurosteroids. Steroid-induced alterations of this 

GABAergic inhibition of 5-HT neurons would therefore be likely and might 

modulate their firing activity. Since many steroids can modulate the GABAA 

receptor response and since this modulation can be brought about by various 

mechanisms of action it would be difficult to speculate on the net impact this 

modulation would have on the activity of 5-HT neurons. However, it can be 

extrapolated from these studies that physiological hormonal fluctuations, such as 

occurring during the estrous cycle or pregnancy, would be sufficient to modulate 

5-HT neuronal activity through altered GABAergic inhibition. 
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1.7.2 Glutamate 

1.7.2.1 Glutamatergic excitatory modulation ofDRN 5-HT neurons 

The DRN receives glutamatergic afferents from vanous brain regions 

(4,240,281,282). This input on 5-HT neurons positively modulates their firing 

activity (4,240). Early studies showed that iontophoretic applications of 

glutamate in the DRN elevate the firing activity of 5-HT neurons (25,547). Later, 

studies using microdialysis showed that this increase in firing activity is mediated 

by local AMP Alkainate and NMDA receptors and that it also results in increased 

extracellular 5-HT in the DRN and projection area (nucleus accumbens) 

(524,525,527,528). Antagonism of these receptors had little or no effect of its 

own (200,524,525,528), thus suggesting that they mediate only a weak tonie 

excitation of 5-HT neurons (524,525,528). On the other hand, NMDA and 

AMP Alkainate receptors have been shown to mediate non-tonie stimulation of 5-

HT neuronal activity and release (87,522). 

1.7.2.2 Effects ofneuroactive steroids on glutamatergic receptors 

a) Sulfated steroids 

Various sulfated steroids modulate the activity of glutamatergic receptors. 

For instance, PS rapidly potentiates the NMDA receptor response 
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(1,71 ,86,231 ,393,578) by increasing the frequency and duration of channel 

openings (71). It is physiologically relevant since, for instance, this effect 

protects mice against NMDA antagonist-induced learning deficits and motor 

impairment (321). NMDA receptors are composed of an obligatory NRI subunit 

and modulatory NR2 subunits, which influence the receptor's pharmacological 

properties and its modulation by neurosteroids (292). The NR2 receptor subunit 

is particularly important in determining the effect of PS on the NMDA response; a 

p'otentiation is observed with receptors expressing the NR2A or NR2B subunit 

(86,308), whereas an inhibition was shown for the NR2C- or NR2D-containing 

receptors (308). 

Other sulfated steroids, such as DHEAS, have been shown to potentiate 

the NMDA receptor response but to a lesser extent than PS (71,392). PS also 

seems to dose-dependently and non-competitively inhibit the AMP Alkainate 

receptor (71,578,581). Conversely, sorne sulfated steroids such as 3J3,5J3-THP 

sulfate (231,393,581), 3a,5J3-THP sulfate (1,231,308,392,563,581) and 3a,5a­

THP sulfate (1) inhibit NMDA receptors. This inhibition was shown to be 

protective against glutamate- and NMDA-induced cell death as well as against 

NMDA-induced seizure (563). These antagonistic sulfated steroids and PS seem 

to act at different sites on the NMDA receptor, since no competitive interaction 

was observed between them (393). 
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b) 17~-estradiol and Progesterone 

The effect of 17~-E on NMDA and AMPA receptor expression is region 

specific (110,112). For instance, in OVX rats, a two-week administration of 17~­

E increased the NMDA receptor density in the hippocampal CAl area and the 

dentate gyms, decreased it in the frontal cortex and the dorsal striatum, and 

caused no change in the CA2/3 hippocampal regions, the nucleus accumbens or 

the hypothalamus (72,110). The hippocampal increase in NMDA receptors was 

already visible after two days of 17~-E administration, (170,564,577) and was 

associated with enhanced dendritic spine and synapse densities as well as greater 

functional NMDA receptor-mediated synaptic input (577). P had little or no 

additional effect (170,182,564). Interestingly, a functional estrogen responsive 

element (ERE) was found in the regulatory region of the gene coding for the 

NR2D subunit (557), thus offering a mechanism by which 17~-E can modulate 

the expression of NMDA receptors (557) and/or influence its pharmacological 

properties. Conceming estrogenic effects on AMPA receptor expression, 17~-E 

was shown to decrease AMP A binding sites in the frontal cortex, striatum and 

nucleus accumbens of OVX rats (110) without affecting them in the hippocampus 

(110,564,577). 

The rat DRN expresses high levels ofNMDA receptors (374,461) as well 

as mRNA for different subunits of non-NMDA glutamate receptor (GluRl-4) 

(459). A hormonal modulation oftheir expression, which could in tum affect the 
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activity of 5-HT neurons, is possible. However, there is no data available yet 

conceming the effect of ovarian steroids on glutamatergic receptors in the DRN. 

Smith and colleagues, using cerebellar Purkinje neurons from OVX rats, 

have shown that local (490) and systemic (491) administrations of 17~-E, but not 

of 17a-E (490), rapidly and dose-dependently potentiate the excitatory response 

to iontophoretic applications of glutamate (490,491), quisqualate and NMDA 

(485). P (489,492), 5a-DHP and 3a,5a-THP (493) had the opposite effect and 

reduced the excitatory response to local applications of glutamate (489,492). 

3~,5a-THP was without effect in this paradigm (493). Neither the ER antagonist 

tamoxifen nor a protein synthesis inhibitor (492) prevented these effects, thus 

suggesting a non-genomic mechanism of action (491,492). Furthermore, these 

17~-E- and P-induced effects were additive, indicating that they are independent 

(492). Interestingly, in freely cyc1ing females, 17~-E potentiated the excitatory 

response to glutamate during proestrus but not diestrus, i.e. when there are 

relatively high levels of 17~-E as compared to P (490). 

As mentioned above, the glutamatergic excitation of 5-HT neurons do es 

not seem tonic. Therefore, even if steroids induced a similar enhancement of the 

response of glutamatergic receptors expressed on 5-HT neurons, only a phasic 

effect on the firing activity would be expected. However, PS and DHEAS were 

shown to increase glutamate release from cultured hippocampal neurons (341). 
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Therefore, if these steroids similarly triggered glutamate release in the DRN, this 

might enhance the basal firing activity of 5-HT neurons. 

1.7.3 Norepinephrine 

1.7.3.1 Tonic noradrenergic excitatory input on DRN 5-HT neurons 

The noradrenergic (NE) and 5-HT systems exert a complex reciprocal 

modulation of each other (647, 875, 929, 1385). Ofparticular relevance for this 

thesis, is the excitation of DRN 5-HT neurons by NE (534). Anatomically, the 

DRN is extensively innervated by NE terminaIs, which make direct synaptic 

contact with 5-HT neurons (26,406). These NE terminaIs seem to originate 

mainly from the locus coeruleus (LC) (417). az autoreceptors, located on the cell 

body (446) and nerve terminaIs of NE neurons, exert a negative control on the 

firing activity of these neurons (875) and on NE release in the synaptic c1eft 

(69,197). Activation of az-adrenoceptors inhibits 5-HT neuronal firing activity 

(521) and 5-HT release in the DRN and projection are as (69,416,417), whereas 

antagonism of these receptors elevates all of these parameters (168,330). 

Chemicallesion of the NE system using 6-0HDA leads to a 70-80% reduction in 

DRN NE content (454), as well as a transiently lower firing activity of 5-HT 

neurons firing activity, which then recovers within a week (521). In vitro DRN 

5-HT neurons, devoid of afferents, also have a lower spontaneous activity and can 
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be stimulated by NE (546). Together these data support a non-obligatory NE 

excitation ofDRN 5-HT neurons. 

This tonic NE positive modulation appears to be mediated by al­

adrenergic receptors located on the 5-HT neurons (6,69,318). Indeed, systemic or 

local application of al adrenoceptor antagonists in the DRN decreases the 5-HT 

neuronal firing rate (24,25,318), as well as 5-HT release in the DRN (69,447) and 

projection areas (e.g. hippocampus, striatum and prefrontal cortex) (416,447), an 

effect which could be reversed by NE or an al-adrenergic agoni st (24,25,318). 

Application of NE or an al-adrenergic agonist in the DRN increases 5-HT release 

in the pre frontal cortex (416) but has little effect on the extracellular 5-HT in the 

DRN (69,416). This could suggest that this al-adrenergic receptor-mediated tonic 

activation is maximal (69,264,416,417,521) or that this excitatory effect is 

counter-balanced by the inhibitory effect of NE on terminal a2-adrenoceptor 

(4,417). However, inhibition of a2-adrenoceptors results in an increase in firing 

frequency of DNR 5-HT neurons (197), thus arguing against a saturated tonic 

activation. 

1.7.3.2 Effects of ovarian steroids on noradrenergic neurotransmission 

There is sorne evidence of a steroid modulation of the NE system. For 

instance, 17p-E was shown to increase the mRNA levels of two enzymes 

implicated in NE synthesis (tyrosine hydroxylase and dopamine p-hydroxylase) in 
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the Le of OVX rats and monkeys (396,470). This effect was associated with 

greater re1ease of NE in the monkey hypothalamus (396). A 2-day 17p-E 

treatment of OVX rats was shown to uncouple the hypothalamic terminal a2 

autoreceptor from its effector G protein, which reduces its function and also leads 

to greater NE release (135,136). Furthermore, 17p-E appears to selectively and 

competitively inhibit NE uptake in rat hypothalamic and cortical synaptosomes 

(175), suggesting that, in vivo, it might inhibit NE reuptake and thus increase its 

extracellular levels. Finally, two days of 17p-E administration increased al­

adrenergic expression and functional activation in the hypothalamus and preoptic 

area ofOVX rats (134,135). Taken together, these data suggest facilitation of the 

NE neurotransmission by 17p-E. It is unc1ear whether this is the case in the DRN 

but, if so, it would likely result in enhanced NE tonic activation of 5-HT neurons. 

The data presented here demonstrate that steroids can modulate the 

function of different neurotransmitter systems through different mechanisms of 

action, ranging from activation of ionotropic receptors to modulation of gene 

expression. The systems presented here are aH afferents of DRN 5-HT neurons. 

Therefore, in addition to direct modulation of the 5-HT system, steroids probably 

also impact on it indirectly through actions on these systems. The GABAergic 

inhibition has been suggested to be the most important tonic influence on DRN 5-

HT neurons (523,524,528) and might thus play a particular role. 
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1.8 Steroids and sigma receptors 

1.8.1 Sigma receptors 

The existence of sigma (cr) receptors was first reported in 1976 (313) and 

so far, there are two generally accepted subtypes of cr receptors: crI and cr2 (421). 

In 1996, the sigmal (crI) receptor was c10ned (211). To this day, however, the 

endogenous ligand(s) remains to be identified (117). The amino acid sequence 

and the deduced structure show homology with that of the product of the yeast 

gene encoding a sterol Cg-C7 isomerase (ERG2), which has high affinity for 

several cr ligands (211,353). Also, crI receptors share affinity for different 

compounds with a mammalian sterol Cg-C7 isomerase (the emopamil binding 

protein or EBF), which is, however, structurally unrelated to the yeast counterpart 

(353). Since this enzyme is necessary for cholesterol synthesis and the brain 

relies on de novo synthesis for its cholesterol supplies, it was suggested that crI 

receptors might be a brain-specific sterol Cg-C7 isomerase (353). 

Sigma receptors are widely distributed III the mammalian brain 

(13,191,328,409). They have a relatively high level of expression in the 

brainstem (327,409) and are moderately expressed in the DRN of guinea pigs 

(191,328). Their distribution being very similar between rats and guinea pigs 

(191), cr receptors may also be expressed in the rat DRN. cr binding sites appear 

to be limited to neurons (191,409), where they are found in both the cell body 
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and dendrites (13,191). More specifically, they appear to be located in the 

microsomal fraction (i.e. endoplasmic reticulum, mitochondrial and plasma 

membranes) (13,327,358) and concentrated in postsynaptic membranes (13). 

1.8.2 Steroids modulation of sigma receptors 

Several steroids (P, PS, T, DHEAS) have high affinity for cr receptors 

(324,326,327,510,582) and have been shown to dose-dependently and 

competitive1y inhibit the binding of the cr radio ligand eH]-(+)-SKF-1O,047 in 

mouse and rat brains (324,327,510). P has the highest affinityand is the most 

potent in inhibiting eH]-(+)-SKF-1O,047 binding (324,510). It has thus been 

suggested to be a potential endogenous ligand for cr receptors (510,582). 

Interestingly, eH]-(+)-SKF-I0,047 binding was also reduced during pregnancy, a 

period during which P levels are higher (324). 

In different behavioral models, inc1uding the conditioned fear stress (373), 

the Porsolt forced swimming test (432,540) and a model of leaming impairment, 

in which cr ligands have antiamnesic effects (322,323,325,408), DHEAS and PS 

have been shown to be functional agonists of cr receptors, and P to be a potent 

antagonist. In a cocaine-induced conditioned place preference paradigm, DHEA 

acted as a cr agoni st, as it facilitated acquisition of this preference, while P 

antagonized it (443). It was also confirmed by electrophysiological studies. For 

instance, different cr ligands (DTG, JO-1784 and (+ )-pentazocine), as well as 
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DHEA, potentiate the excitatory response of hippocampal CA3 pyramidal 

neurons to NMDA (35,36,118). While P, similarly to other cr antagonists, does 

not modify this neuronal activity per se, it prevents its potentiation by cr ligands 

and DHEA (35,36,118). A similar reduction in the cr receptor mediated 

potentiation of the NMDA response is also observed during late pregnancy, when 

plasma P levels are high (36). Conversely, during periods associated with an 

abrupt faB in P, such as the postpartum period and following ovariectomy, this 

effect was not only reversed but the potentiation of the NMDA response by 

DHEA, DTG and (+)-pentazocine is greater than in control females (35,36,118). 

This suggests a tonic inhibition of cr receptors by progesterone (35,118). 

There is data indicating that activated crI receptors translocate from the 

endoplasmic reticulum to the plasma membrane, where they can trigger 

intraceBular signaling cascades involving G proteins, PLC and PKC, and thus 

modulate neuronal excitability (35,354,358,365,376,441) and/or neurotransmitter 

release (120,365,376,377). This increase in PLC activity is region-dependent 

(441) and occurs in rat hippocampal, striatal and cortical neurons, as well as in 

neurons from the guinea pig brainstem (354,358,441). It might explain why 

others, using guinea pig cerebellar tissue or rat pituitary, could not reproduce 

these results (226,298). The cr receptor-mediated G-protein activation was shown 

to modulate intracellular Ca2+ concentrations (216) and also to result in inhibition 

of two types of K+ channels in frog pituitary cells, thus increasing their electrical 

activity (495). Interestingly, DHEA, DHEAS and PS dose-dependently 
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stimulated e5S]GTPyS binding in synaptic membranes obtained from the mouse 

prefrontal cortex (537). This effect could be prevented by pertussis toxin (PTX) 

and blocked by both NE-100 (a selective al antagonist) and P, which could also 

block the (+)-pentazocine-induced stimulation of e5S]GTPyS binding (537). PS 

was also shown to modulate inhibitory postsynaptic currents (IPSCs) by 

activating G protein-coupled 0'1 receptors in embryonic rat hippocampal neurons 

(365). These data strongly suggest that steroids can activate G proteins by 

binding a receptors (216,537). 

Activation of 0'1 receptors has been shown to modulate the electrical 

activity of different types ofneurons (347,358,365), inc1uding DRN 5-HT neurons 

(37). Ofparticular interest, two different 0'1 agonists ((+)-pentazocine and 4-IBP) 

were shown to increase DRN 5-HT neuronal activity when administered for 2, 7 

and 21 days (37). Thus, a receptors may represent an additional way by which 

neurosteroids can affect the 5-HT system. 

1.9 Overview 

In summary, evidence indicates that ovarian steroids and the 5-HT system 

are implicated in the neurobiology of depression. The data presented here also 

demonstrate that most sex steroids can be synthesized and metabolized by the 

brain, and that they can alter cerebral function via numerous mechanisms of 

action, both genomic and non-genomic. More specifically, they have been shown 
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to affect different proteins involved in 5-HT neurotransmission. Furthermore, 

they have the ability to modify the function of other receptor or neurotransmitter 

systems, which are afferents or modulators of DRN 5-HT neurons. Taken 

together, these data strongly suggest that physiological hormonal fluctuations 

could affect 5-HT neurotransmission. Women with a more vulnerable or sensitive 

5-HT system might thus be at greater risk of developing mood disorders . 
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1.10 Objectives 

hnportant gender differences exist regarding affective disorders and 

accumulating evidence indicates that ovarian steroids and the 5-HT system are 

implicated in the neurobiology of depression. It is also clear that neuroactive 

steroids can alter cerebral function and there are data strongly suggesting that 

physiological hormonal fluctuations could affect 5-HT neurotransmission. The 

activity of 5-HT neurons located in the dorsal raphe nucleus (DRN) is a decisive 

factor in 5-HT neurotransmission. However, a bridge between the clinical and the 

molecular studies regarding the effects of sex steroids on the 5-HT system is still 

needed. Therefore, the goal of this thesis project was first to evaluate the effect 

of gender, gonadectomy and pregnancy on the spontaneous firingactivity of DRN 

5-HT neurons and to examine different potential mechanisms of action underlying 

these differences. The second objective was to directly assess the modulation by 

various neuroactive steroids of the 5-HT neuronal firing activity and compare this 

modulation between males and females. Finally, potential therapeutic 

applications in the treatment of depression were investigated for sorne of these 

steroids . 
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Figure l: Steroids' partial metabolic pathways. Two-way arrows depict reversible 

reactions catalyzed by the same enzyme. Double arrows represent reactions, which are 

catalyzed by their respective enzyme. 
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Foreword to Chapter 2 

Gender and gonadal status modulation of dorsal raphe nucleus serotonergic 

neurons. Part 1: Effects of gender and pregnancy 

As mentioned in the introduction, there are important gender differences 

conceming mood disorders, with women being more vulnerable, and there is 

accumulating evidence of a role for ovarian hormones in female affective 

disorders. Furthermore, a large body of evidence indicates a functional 

interrelationship between depression, neuroactive steroids and the serotonergic (5-

HT) system, which has itself10ng been implicated in the neurobiology of affective 

disorders. The activity of 5-HT neurons located in the dorsal raphe nucleus 

(DRN) is crucial for 5-HT neurotransmission. The goal of this study was thus to 

assess whether ovarian hormones could modulate the activity of DRN 5-HT 

neurons. The effects of gender and different hormonal status on this activity were 

evaluated by measuring the spontaneous firing activity of DRN 5-HT neurons in 

male, freely cy1cing female, ovariectornzed female and pregnant female rats . 
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Chapter 2 

GENDER AND GONADAL STATUSMODULATION OF DORSAL 

RAPHE NUCLEUS SEROTONERGIC NEURONS. 

PART 1: EFFECTS OF GENDER AND PREGNANCY 

Ruby Klink, Ma1ika Robichaud and Guy Debonne1 

Neuropharmaco1ogy 43: 1119-1128,2002 
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SUMMARY 

Gender differences III susceptibility to affective disorders are weIl 

documented. The ovanan steroids, estrogen (E) and progesterone (P), may 

modulate the function of the serotonergic (5-HT) system, implicated in the 

etiology and treatment of affective disorders. We tested the hypothesis that 

ovarian steroid modulation of 5-HT function could result in a modification of the 

5-HT neuronal firing activity. Extracellular unitary recordings of dorsal raphe 

nucleus 5-HT neurons were obtained in male rats and in female rats during natural 

E and P fluctuations. The average firing activity of 5-HT neurons was 

significantly higher in males (41%) than in freely cycling (CF) and in 

ovariectomized (OVX) females. During pregnancy, it increased gradually and by 

up to 136% on gestational day 17, then declined before parturition. In the 

postpartum period (PP), the firing rate decreased markedly compared to P17 but 

remained 63% higher than in CF. During pregnancy, the firing rate variations 

were closely correlated with P plasmatic levels. Finally no modification of the 

basal firing activity of locus coeruleus noradrenergic neurons was found in any 

group tested. Our results thus reveal a gender and pregnancy-dependent 

modulation of 5-HT· firing rate that would impact 5-HT-mediated 

neurotransmission. 
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INTRODUCTION 

Susceptibility to affective disorders differs between genders; women are 

twice as likely to suffer from major depression than men (Weissman and Olfson, 

1995). In addition, women can experience dramatic swings in affective states 

during and following pregnancy. During pregnancy, women typically report 

feelings of elation and tranquillity and are at lower risk for developing affective 

disorders (Pugh et al., 1963), whereas following pregnancy, psychiatric diseases 

are likely to occur in predisposed individuals (Davidson and Robertson, 1985). 

Ovarian hormones have thus been recognized as having influences on mood and 

affective states. 

Serotonin (5-HT) is known to regulate mood and the 5-HT system is 

implicated in the etiology (Mann et al., 1996; Lesch, 1998) as weIl as the 

treatment of affective disorders. An enhancement in 5-HT neurotransmission is 

presumed to underlie the therapeutic effect of antidepressant medications (Blier 

and de Montigny, 1994; Owens, 1996). In view of the postulated role of ovarian 

hormones on mood, several indices of modulation of the 5-HT function by 

estrogen (E) and progesterone (P) have been sought for and demonstrated in many 

species. Most of these studies had focused on 5-HT levels and metabolism (Cone 

et al., 1981; Desan et al., 1988; Morissette et al., 1990) as weIl as on receptor 

binding in postsynaptic target areas (Biegon and McEwen, 1982; Frankfurt et al., 

1994; Sumner and Fink, 1995). However, until recently, the locus (i.e. terminal 

field versus cell body region) at which E and P could regulate central 5-HT 
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activity was unknown. Data from primates (Bethea, 1994) and rodents (Alves et 

al., 1998a) have now established that the dorsal raphe nucleus (DRN), the largest 

nucleus providing 5-HT innervations to the forebrain, is a site at which E and P 

receptors are expressed. Thus, ovarian steroids can exert a direct receptor­

mediated effect on the serotonergic function. 

Lately, E and P modulation of the expression of genes directly regulating 

serotonergic neurotransmission has been reported. The mRNA levels for the 

tryptophan hydroxylase (Pecins-Thompson et al., 1996), the serotonin transporter 

(McQueen et al., 1997; Pecins-Thompson et al., 1998), and the 5-HT1A somato­

dendritic autoreceptor (Pecins-Thompson and Bethea, 1997) were all affected by 

hormonal treatments. However, these studies did not provide direct, conclusive 

evidence that the 5-HT neurotransmission was affected. The release of 5-HT in 

terminal fields is highly dependent on the neuronal discharges in the cell body 

region (Wilkinson et al., 1991), which is strictly correlated with behavioral state 

(Trulson and Jacobs, 1979). We have therefore tested the hypothesis that ovarian 

hormones can directly modulate the 5-HT neuronal discharge, independently of 

the behavioral state. We monitored in vivo, the baseline spontaneous unit activity 

of 5-HT neurons in the DRN of anesthetized male and female rats during periods 

ofnatural ovarian hormone fluctuations. Indeed, 5-HT discharge rate was found to 

differ between genders and, in females, to vary dramatically during pregnancy and 

the postpartum period. To demonstrate the specificity of this modulation we also 

examined spontaneous activity in the noradrenergic (NE) neurons of the locus 

coeruleus (Le). 
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MATERIALS AND METHODS 

Animais 

Sprague-Dawley rats were purchased from Charles River (St. Constant, 

Québec) and kept under standard laboratory conditions. Experimental groups 

were: intact freely cyc1ing females (CF, 225-250 g); ovariectomized females 

(OVX, 225-250 g) used 15 to 21 days after surgery; pregnant females (250-350 g) 

used at 11 days (Pll), 14 days (PI4), 17 days (PI7), and 21 days (P21) of 

gestational age (delivery was on day 22); intact females (250-275 g) used 1 to 7 

days postpartum (PP); and males (275-325 g). We considered freely cyc1ing 

females as our control female group (CF). Since high levels of progesterone can 

be maintained during lactation as a result of the suckling stimulus (Smith, 1981), 

mothers were separated from their pups after delivery to ensure that progesterone 

levels in PP were back to CF levels. Ethical approval was given by the McGill 

University Animal Ethical Care Committee and aIl their mIes and regulations 

were followed. The suffering of animaIs as weIl as the number used were kept at 

minimum. 

Extracellular single unit recordings 

Rats were anesthetized with chloral hydrate (400 mglkg i.p.) and mounted 

in a stereotaxie frame. Body temperature was maintained at 37±0.5 2C. A 2 mm­

diameter section of bone was removed from the skull at the appropriate location 

and a glass micropipette, tip diameter 1-3 J..lm, filled with a 1 M NaCI solution 
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was lowered to the appropriate depth. When the identity of a neuron was 

ascertained, output voltage was passed through a window discriminator then 

recorded simultaneously on a chart recorder and an on-line computer using in­

house data acquisition software. Data were displayed as a lOs bin integrated 

firing frequency histogram. For each neuron, the mean firing rate, in spikes per 10 

s, was computed by averaging 5 or 6 consecutive bins. 

Dorsal raphe recordings. 

Unit activity was recorded along descents covering the nucleus from 300 

!lm anterior to lambda to 1500 !lm anterior to lamba or until no 5-HT neurons 

were encountered. 6 tracks were done on the midline and 2 to 4 tracks 200 !lm 

lateral to midline. Spontaneously active 5-HT neurons were encountered starting 

at the ventral border of the Sylvius aqueduct easily recognized by a sudden 

voltage drop, and could be seen for up to Imm below this landmark. 5-HT and 

non-5-HT neurons were identified according to the criteria of Aghajanian et al. 

(1978). Only 5-HT neurons were recorded. The occurrence ofnon-5-HT neurons 

was simply noted. 

Locus coeruleus recordings. 

Unit activity was recorded along 5 descents, separated by 200 !lm, 

centered on 1 mm posterior to lambda and 1 mm lateral to midline. Spontaneously 

active NE neurons were encountered right below the ventral border of the 4rth 

ventricle, and were identified according to the criteria of Cedarbaum and 
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Aghajanian (1976). No spontaneously active units other than NE were 

encountered. Recordings were interrupted 500 )lm below the 4th ventricle so as 

not to sample spontaneously active units of the sub-coeruleus nucleus. 

E and P plasmatie dosage 

At the end of single unit recordings, peripheral blood was drawn by 

cardiac tapping. After centrifugation, plasma was stored at -70 QC for later 

analysis. 17p-estradiol and progesterone concentrations were determined by a 

highly specific competitive immunoassay using the ACS:180 Automated 

Chemiluminescence System (Chiron Diagnostics, MA). 

Statistical analysis 

Statistical analysis was performed with "SigmaStat for Windows Version 

2.0" software (Jandel Corporation). Average values are given as mean ± SEM. In 

sorne cases, the coefficient of variation (CV=standard deviationlmean) was 

calculated to characterize the spread of a distribution. One-way ANOV A, with 

alpha = 0.05, followed by a post-hoc analysis using Tukey's method of 

comparison versus control (controls being CF) was used for evaluating statistical 

significance. Results (F) of statistical analysis are expressed in terms of number 

of groups compared (P) and degrees of freedom between groups compared (dt). 

Significance was considered for P<0.05. A correlation analysis was used to 

assess whether the firing activity of the 5-HT neurons in pregnant females 

followed the levels of plasma progesterone. This analysis was performed using 
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the software "GraphPad Prism version 3.0", with alpha = 0.05. Results of the 

correlation are expressed with r: correlation coefficient and P. Significance was 

considered for P<0.05 . 
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RESULTS 

Spontaneous DRN neuronal activity 

We compared the spontaneous firing activity of DRN 5-HT neurons of 

male rats, female rats during pregnancy and following ovariectomy to that of 

freely cyc1ing females. To quantify the 5-HT firing rate, electrode descents (Fig. 

lA) covering the DRN were perfonned and the mean firing rate for each unit was 

evaluated in spikes per 10 s (spk/10s). In anesthetized male rats, DRN 5-HT 

neurons discharge in a slow (2-30 spk/10s), c1ock-like manner (Aghajanian et al., 

1968; Aghajanian and Vandennaelen, 1982). The same rhythmic pattern was 

observed in females although a difference in firing rates was c1early apparent (Fig. 

lA). The mean number of 5-HT neurons per descent, however, did not 

significantly differ between groups. Neither did the mean number of non-5-HT 

neurons encountered per rat, which indicates that variations in mean firing rate 

from one group to the other were not accompanied by a significant change in the 

number of spontaneously active 5-HT or non-5-HT neurons. In addition, the 

within-group variability of firing rates was equally low for all groups (Table 1). 

Group comparisons revealed that the mean firing rates was significantly 

different between experimental populations using CF as the control. Indeed, a 

significant interaction was observed between CF, M and OVX [F(2,3) = 27.1, 

P<O.OOl]. This interaction was related to a higher mean basal firing rate for M 

(Tukey's test, q = 9.3, P<0.05). The mean firing rate in males was significantly 

higher (41%) than in CF while CF and OVX were not statistically different 
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(Tukey's test, q = 0.2, n.s.) (Fig. lB). During pregnancy, the mean firing rate 

increased steadily with gestational age to culminate at Pl 7, before dec1ining 

abruptly at P21 (Fig. 2B). At its peak value, at P17, the firing rate was 136% 

higher than in CF. At day 19 of pregnancy, median firing rate (13.0 spk/10s, 

n=47; data not shown) had already substantia11y dec1ined relative to P17 and was 

only 44% higher than in CF. The mean firing rates at PlI, P14, P17, and P21 

were a11 significantly higher than in CF [F(5,6) = 68.9, P<O.OOl, Tukey's test, q = 

7.9, P<O.05, q = 16.8, P<O.05, q = 24.0, P<0.05, q = 5.9, P<0.05, respectively]. 

Following parturition, the mean firing rate in PP remained significantly (63%) 

higher than in CF [Tukey's test, q = 10.8, P<0.05] (Fig 2B). Surprisingly, 

fo11owing parturition, the dec1ining trend seen between P17 and P21 seemed to be 

reversed (16.4 spk/10s for PP vs 13.7 spk/10s for P21) . 

Spontaneous Le neuronal activity 

Estrogen is known to possess CNS activating and proconvulsant properties 

(reviewed in Smith, 1994). To exc1ude the possibility of a generalized modulation 

of neuronal activity produced during natural hormonal variations, we also 

assessed the spontaneous firing activity of NE neurons in the Le. A particular 

reason for selecting the LC was that, by the same token, a potential influence on 

DRN 5-HT firing activity could be investigated. Pharmacological evidence 

suggests that the 5-HT neuronal discharge is dependent on a tonic excitatory NE 

input (Baraban and Aghajanian, 1980). Also, anatomical studies have 

demonstrated that the DRN receives one of the heaviest NE innervations in the 
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brain (Levitt and Moore, 1979) and that the LC does, indeed, project to the DRN 

(Jones and Yang, 1985). 

Electrode descents were therefore performed in the LC of CF, males, OVX 

and P17 (Fig. 3A), in a manner analogous to that in the DRN. The distribution of 

unit firing rates is shown in the bar graph of Fig. 3B, while Table 2 lists quantified 

parameters. No significant difference was found between the mean firing rates or 

between the mean number of spontaneously active NE units per descent of any of 

the groups [F(3,4) = 1.3, n.s.]. 

Relation of 5-HT firing activity to circulating E and P 

During the estrous cycle, plasma levels of E (as 17~-estradiol) and P peak 

at about the same time, on the aftemoon ofproestrus (Freeman, 1994). However, 

during pregnancy, the E and P maxima are shifted by several days (reviewed in 

Rosenblatt et al., 1988). To determine if the modulation of 5-HT neuronal firing 

activity during pregnancy and the postpartum period followed circulating levels of 

one or the other steroid hormone, plasma levels of E and P were assessed in the 

same animaIs used for electrophysiological recordings. Figures 4 and 5 show, for 

each group, mean plasma levels of E (Fig. 4) and P (Fig. 5). In keeping with 

Rosenblatt et al. (1988), during pregnancy, we found low circulating 

concentrations of E, and a steady increase in P that peaks at P 17 and then declines 

markedly before parturition. We have not been able to detect the sharp rise in E 

occurring immediately prior to parturition, although there was a trend for an 
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increase on P21. Aiso shown in these figures (4 and 5) are the mean firing rates of 

5-HT neurons, for each group, superimposed on the mean plasma levels ofE (Fig. 

4) and P (Fig. 5). There was a striking correlation between circulating levels of P 

and the 5-HT neuronal dis charge, but only during pregnancy (r=0.94, P<0.05; Fig. 

5B). No other relation between firing rates and levels of E or P could be detected. 

Notably, hormonal leve1s were similar in OVX and males but firing rate was 

significantly higher in males (Fig. lB); likewise, hormonallevels were similar in 

CF and pp but firing rate was significantly higher in pp (Fig. 2B) . 
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DISCUSSION 

Our findings demonstrate a clear modulation by gender and hormonal 

levels of the in vivo spontaneous firing activity of DRN 5-HT neurons. To our 

knowledge, this is the first report of a tonic variation in 5-HT neuronal discharge, 

which is not dependent on behavioral state. We have shown that the basal firing 

rate of 5-HT neurons is higher in males than in females. This difference does not 

seem to be solely tied to the circulating levels of E or P since the hormonallevels 

of OVX are similar to males while their 5-HT neurons firing activity is 

comparable to CF. We have also shown that in females, pregnancy and the 

postpartum period bring about dramatic changes in the basal discharge rate of 5-

HTneurons. 

Gender differences in the 5-HT system have long been demonstrated in 

rodents and humans (McEwen et al., 1998, Nishizawa et al., 1999). A study, 

using positron emission tomography (PET), showed that women have a smaller 

rate of serotonin synthesis, which is moreover, reduced about four times more 

than it is in men, following an acute tryptophan depletion (Nishizawa et al., 1999). 

In female rats, 5-HT levels, as well as, 5-HT function and receptor concentrations, 

were also shown to vary during periods of ovarian hormone fluctuations such as 

the estrous cycle, pregnancy and postpartum period (Biegon et al., 1980, Uphouse 

et al., 1986, Maswood et al., 1999). More specifically, in females, numerous 

studies were performed at different levels of the regulation of the 5-HT 

neurotransmission. Both E and P treatments lead to a decrease in DRN vesicular 

184 



• 

• 

• 

mono amine transporter (VMATz) mRNA levels (Rehavi et al., 1998). Moreover, 

E treatments have been shown to decrease the serotonin reuptake transporter 

(SERT) mRNA levels in monkeys and increase it in rats (McQueen et al., 1997, 

Pecins-Thompson et al., 1998). It is clear that ovarian steroids can modulate the 

expression of different genes of the 5-HT system. However, modulations of 

mRNA levels are not necessarily reflected by a modification in protein expression 

or by physiological or behavioral changes. Our present results show that ovarian 

hormones can indeed functionaUy modulate this system by affecting the firing 

activity of 5-HT neurons. 

The greater susceptibility of women to . affective disorders is weU 

documented (Weissman and Olfson, 1995). Moreover, sorne affective pathologies 

like the premenstrual syndrome, postpartum blues, postpartum depression, and 

postmenoposal depression are obviously selective to women. The significantly 

lower basal firing rates observed in CF relative to males would constitute the most 

parsimonious explanation for this clinical observation. It has been agreed upon, 

for sorne time, that the 5-HT system is the main common target of the different 

types of antidepressant treatments, and that they aU result in augmentation of 5-

HT neurotransmission (Blier and de Montigny, 1994; Owens, 1996). Impaired 5-

HI function has been implicated in the etiology of affective disorders (Lesch et 

al., 1996) and a blunted 5-HT brain response in untreated depressed patients has 

been reported (Mann et al., 1996). If the difference in the basal activity of 5-HT 

neurons that we observed between males and females is sustained across 
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behavioral states, a reduced activity of the 5-HT system in females could imply a 

greater vulnerability to impairment when this system is challenged. 

The most interesting and unexpected result of this study is, perhaps, our 

finding that, during pregnancy, a graded augmentation and diminution in 5-HT 

firing rate occurs, which mirrors that of circulating P concentrations. The striking 

parallelism between 5-HT discharge and P levels during pregnancy strongly 

suggests that P is implicated in the modulation of 5-HT neurons activity. 

However, during the postpartum period, even following the decrease of P levels, 

the firing activity of 5-HT neurons remained significantly higher than that of CF. 

This could be due to a sustained positive modulation of the in firing activity by 

different factors, which might take longer to retum to baseline. Indeed, P 

metabolites, which increase with P levels during pregnancy, are also implicated in 

the enhanced firing activity of 5-HT neurons in pregnant rats. During pregnancy, 

they accumulate in the brain and their cerebral levels probably do not fall as 

abruptly at parturition as the plasma levels. On the other hand, other 

neurosteroids may take over following parturition and contribute to maintain a 

relatively high 5-HT neurons firing activity. For instance, it is possible that 

during pregnancy, when P levels are high, E has little effect on the firing activity 

of 5-HT neurons. As E levels rise when P levels drop, just before parturition, the 

effect of E on the firing activity of 5-HT neurons might become apparent. It may 

also serve to prevent a too large decrease in the 5-HT neuronal firing rate 

following parturition. Nevertheless, this sustained increase of the firing activity 
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of 5-HT neurons suggests that P is not the only neurosteroid involved in the 

modulation of 5-HT neurons. 

The increased firing activity of 5-HT neurons in males seems to be a 

gender-dependent trait rather than due to lower leve1s of ovarian honnones as 

identicallevels of E and P in OVX and males resulted in lower discharge rates in 

OVX, which were similar to that of CF. Following ovariectomy, when P levels 

are low, a possible compensation by other neurosteroids may prevent a decrease 

of the firing activity of 5-HT neurons. Similarly, males, having constantly low 

levels of P, may have a different neurosteroid equilibrium, which could maintain 

their 5-HT neuronal firing activity higher than that of females. For instance, it 

would be interesting to assess if testosterone, levels of which are high in males, 

has a positive modulatory effect on the firing rate of 5-HT neurons. 

There is strong evidence supporting the hypothesis of a combined 

dysfunction of the noradrenergic (NE) and 5-HT systems in the pathophysiology 

of depression. For instance, antidepressant medications like desipramine or 

reboxetine, acting selectively on the NE system, have proved to be efficient in the 

treatment of depression. Moreover, clinical studies have shown that increasing 

both types of neurotransmission was c1inically more efficient then treatments 

aiming at only one (reviewed in Mongeau et al., 1997). This is not inconsistent 

with the reciprocal modulatory influence that the NE and 5-HT systems exert on 

each other. In the DRN, 5-HT neurons are innervated by NE tenninals, which 

make direct synaptic contacts with them and exert a tonic excitatory input on 
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these cells (Baraban and Aghajanian, 1980, 1981). 5-HT neurons also project 

back to the Le and tonically inhibit the firing activity of NE neurons (Szabo and 

Blier, 2001). 

However, our data suggest that the differences in 5-HT neurons basal 

firing rate, observed between genders and brought about during pregnancy and the 

postpartum period, are not due to, nor do they result in, a modification of the 

activity of Le NE neurons. Indeed, the firing rate of Le neurons was similar in 

. all our experimental groups. Obviously, one cannot totally rule out a possible 

involvement of the NE system in the modifications observed in the present study. 

However, even modifications such as the desensitisation of uj-adrenoceptors 

observed following application of P to rat hypothalamic slices would rather tend 

to decrease the firing activity of 5-HT neurons (Petitti and Etgen, 1992). This 

phenomenon in the DRN, if present, would strengthen our suggestion that the 

observed modifications of the activity of 5-HT neurons are not due to a difference 

in the NE input. These results could also suggest that the greater vulnerability of 

women to affective disorders is not due to a difference in the NE function. 

Furthermore, our observation of the absence of any change in the firing activity of 

Le NE neurons could indicate a certain specificity of action for ovarian hormones 

on the dorsal raphe nucleus. This is in keeping with the failure to detect the 

presence of E and P receptors in the Le following ovarian hormone treatments 

(Schutzer and Bethea, 1997), and strengthens the contention that the NE system 
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may not contribute significantly to affective states related to changes in ovarian 

hormones (Schutzer and Bethea, 1997). 

The presence of E and P nuc1ear receptors was reported in the DRN of 

primates (Bethea, 1994) and rodents (Alves et al., 1998a). The cellular substrate 

for the variation in 5-HT neuronal activity that we describe is therefore present in 

the DRN. Interestingly, the DRN of female rats was shown to contain 30% more 

PRs than males, while the amount of ERs seemed to be constant between sexes 

(Alves et al., 1998a). This could suggest a greater sensitivity of the female 5-HT 

system to P modulation. Interestingly, in rat DRN, the P receptors are not 

expressed by 5-HT neurons but by neighboring excitatory amino acid neurons 

(Alves et al., 1998a, Alves et al., 1998b). It could thus suggest a transsynaptic 

mechanism of action for the modulatory effects ofP on 5-HT neurons. 

Our results, however, may contrast with other studies. For instance, P has 

been shown to decrease the extracellular levels of 5-HT and its turnover rate in 

different regions of the hypothalamus and the midbrain central gray, following E 

priming (Gereau et al., 1993; Farmer et al., 1996; Maswood et al., 1999). 

Although the release of 5-HT in the projection are as is c10sely related to the firing 

activity of the 5-HT neurons, other mechanisms, such as nerve terminal 

autoreceptors, can contribute to the fine-tuning of the 5-HT release. Interestingly, 

one of these studies suggested that 5-HT terminal autoreceptors were implicated 

in the P-induced reduction in extracellular 5-HT (Maswood et al., 1999). Finally, 
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the possibility that the fetus or the placenta might play a role in modulating the 

firing activity of5-HT neurons during pregnancy cannot be ruled out. 

In conclusion, we demonstrated that the DRN 5-HT system significantly 

differs between genders and undergoes profound changes during pregnancy and 

the postpartum period. Furthermore, whether a neuroactive or genomic 

mechanism is implicated, it would be interesting to know what afferent or 

receptor modulating the firing activity of 5-HT neurons is also affected. 

Elucidating this question was the purpose of the second part of this study (see 

companion paper). Whatever the exact mechanism, the dramatic increase in basal 

discharge of 5-HT neurons during pregnancy is bound to bear an important 

outcome on various aspects of 5-HT-mediated neurotransmission. In particular, it 

could explain feelings of well-being and e1ation commonly reported by women 

during pregnancy . 
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FIGURE LEGENDS 

Figure 1. Effect of gender on the spontaneous firing activity of DRN 5-HT 

neurons. (A) Integrated firing rate histograms of 5-HT neurons recorded in one 

electrode descent along the midline of the DRN in CF (left) and male (right). For 

each unit encountered, the lOs bin integrated firing rate was displayed for 5 or 6 

bins. In this and the following figures, numbers under each unit indicate distance 

in !lm be10w the Sylvius aqueduct. (B) Mean firing rate of DRN 5-HT neurons 

expressed in spike per lOs (spklIOs, mean ± SEM) for each experimental group 

(CF, OVX and males). In this and the following figures, the number of neurons 

recorded is indicated in a box at the bottom of each bar. Significance compared to 

CF is indicated by an asterisk (P<O.OOI) . 
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Figure 2. Effect of pregnancy on the spontaneous firing activity of DRN 5-HT 

neurons. (A) Integrated firing rate histograms of 5-HT neurons recorded in one 

electrode descent along the midline of the DRN in CF (left) and Pl7 (right). (B) 

Mean firing rate ofDRN 5-HT neurons expressed in spike per lOs (spk/IOs, mean 

± SEM) for each experimental group (CF, PlI, P14, P17, P21 and PP). 

Significance compared to CF is indicated by an asterisk (P<O.OOI). 
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Figure 3. Spontaneous NE firing activity. (A) Integrated firing histogram of 

typical electrode descents in the LC of CF (left) and male (right). Numbers under 

each unit indicate distance in /-lm below the 4th ventric1e. (B) Mean firing rate of 

LC NE neurons expressed in spike per lOs (spk/lOs, mean ± SEM) for each 

experimental group (CF, males, OVX and P17) . 
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Figure 3 
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Figure 4. Plasma concentrations of E in relation to 5-HT neurons firing rate . 

Columns indicate the spontaneous firing rate of 5-HT neurons (spk/lOs, mean ± 

SEM), scale on the left of each panel, values from Table 1. Scatter and line plots 

indicate the levels of E in pglml (mean ± SEM), scale on the right of each panel. 

From 6 to 14 animaIs were used per group . 
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Figure 5. Plasma concentrations of P in relation to 5-HT neurons firing rate. 

Columns indicate the spontaneous firing rate of 5-HT neurons (spk/lOs, mean ± 

SEM), scale on the left of each panel, values from Table 1. Scatter and line plots 

indicate the levels of P in nglml (mean ± SEM), scale on the right of each panel. 

From 6 to 14 animaIs were used per group. During pregnancy, the rise and faH of 

5-HT neuronal discharge c10sely foHowed P levels (right). 
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• TABLE 1 

group total nb of mean firing coefficient meannb meannb of 

5-HT rate of variation of5-HT non-5-HT 

neurons (spkl10s) neurons/ descent neurons/rat 

M 219 14.2 0.08 4.0±0.4 3.0±0.1 

CF 

1 

248 

1 

10.1 

1 

0.2 

1 

3.5±0.5 

1 

4.5±0.9 

OVX 

1 

228 

1 

10.2 

1 

0.13 

1 

5.2±1.1 

1 

3.2±0.8 

PlI 

1 

193 

1 

14.7 

1 

0.06 

1 

3.6±0.2 

1 

3.8±0.9 

P14 

1 

198 

1 

19.9 

1 

0.15 

1 

3.1±0.4 

1 

3.4±0.8 

P17 223 23.8 0.19 2.0±0.4 4.5±1.5 

• P21 170 13.7 0.20 3.1±0.5 4.4±0.9 

PP 197 16.4 0.23 4.4±0.9 4.0±0.8 

Table 1. Parameters of spontaneous 5-HT neuronal discharge in the DRN. From 6 

to 9 animaIs were used per group. To quantify the variability of the firing rate 

within a group, the distribution of mean firing rates within each group was 

characterized with the coefficient of variation (CV=meanlSD); a low CV reflects 

an homogeneous distribution of firing rates from rat to rat within the same group. 

The mean nb of 5-HT neurons/descent (mean ± SEM) and the mean nb of non-5-

HT neurons encountered per rat (mean ± SEM) are a measure of the number of 

• spontaneously active 5-HT and non-5-HT neurons within each group . 
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TABLE 2 • 
group total Nb of mean firing meanNbofNE 

NEneurons rate (spk/10s) neurons! descent 

Male 88 20.9 4.0±0.8 

CF 

1 

92 

1 

18.8 

1 

4.7±1.5 

OVX 

1 

102 

1 

18.6 

1 

4.4±0.1 

P17 87 20 4.1±0.5 

Table 2. Parameters of spontaneous NE neuronal discharge in the Le. From 3 to 4 

animaIs were used per group. The mean nb of NE neurons!descent (mean ± SEM) 

• is a measure of the number of spontaneously active NE neurons within each 

group . 
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Foreword to Chapter 3 

Gender and gonadal status modulation of dorsal raphe nucleus serotonergic 

neurons. Part II: Regulatory mechanisms 

In the first part of this study, the spontaneous firing activity of DRN 5-HT 

neurons has been shown to be significantly higher in male rats than in freely 

cyc1ing female rats. AIso, during pregnancy, the 5-HT neuronal activity gradually 

increased, peaked at the 1 i h day of pregnancy and then dec1ined before 

parturition, thus paralleling circulating levels of progesterone. Ovariectomy, on 

the other hand, did not significantly modify the firing rate of 5-HT neurons. 

In order to understand the basis of these gender differences and hormonal 

modifications, the second part of the study focussed on the role of different 

mechanisms regulating the 5-HT neuronal firing activity (as detailed in the 

introduction). The function of 5-HT1A receptors and the GABAergic tonic 

inhibition of 5-HT neurons was pharmacologically assessed in males, 

ovariectomized females and pregnant females and compared to that of freely 

cyc1ing females. 
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GENDER AND GONADAL STATUSMODULATION OF DORSAL 
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SUMMARY 

In the companion paper, we showed that the spontaneous firing activity of 

DRN 5-HT neurons is significantly higher in male (M) than in freely cyc1ing 

female (CF) rats. Moreover, during pregnancy, it increased in parallel to 

circulating levels of progesterone, peaking at day 17 of pregnancy (P17). In this 

second part, we assessed the role of three regulatory mechanisms potentially 

involved in these modifications of the 5-HT neurons firing activity. During 

pregnancy, the ED50 for the response to LSD was decreased by about 70%, 

indicating a partial desensitization of 5-HT lA autoreceptors, which is consistent 

with the 5-HT neurons higher firing activity. The GABAergic tonic inhibition of 

5-HT neurons was assessed using the responses to GABA, bicuculline and 

isoniazid. Together, they indicate a lower GABAergic tonic inhibition in males 

and P17 as compared to CF, which is in agreement with their greater 5-HT 

neurons firing rate. Finally, the efficacy of the long feedback loop, involving 

postsynaptic 5-HTIA receptors, did not seem affected by gender, ovariectomyor 

pregnancy since the response to systemic 8-0H-DPAT was similar. These results 

constitute strong evidence of mechanisms by which gender and hormonal 

fluctuations can modulate the 5-HT neurons function and influence vulnerability 

to mood disorders . 
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INTRODUCTION 

Several studies strongly support a functional modulation of the 5-HT 

system by ovarian steroids (reviewed in Bethea et al., 1999). In order to further 

characterize this modulation, we used in vivo electrophysiology to study the effect 

of gender, ovariectomy and pregnancy on dorsal raphe nucleus (DRN) 5-HT 

neurons spontaneous activity. In the first part of this paper we have shown that 

the spontaneous firing activity of DRN 5-HT neurons is significantly higher in 

male (M) than in freely cycling female (CF) rats (companion paper). 

Ovariectomy (OVX), on the other hand, did not significantly modity the 5-HT 

neuron basal firing rate (companion paper). Interestingly, during pregnancy, the 

spontaneous firing rate increased gradually to peak: at the 1 i h day of pregnancy 

(P17) and then declined before parturition, thus following circulating levels of 

progesterone, but not of estrogen (see companion paper). 

In this second part of the study, as an attempt to explain how these 

differences in basal firing rate are brought about, we investigated different 

mechanisms regulating the firing activity of 5-HT neurons. Activation of pre- or 

post-synaptic 5-HT1A receptors triggers the opening ofK+ channels. This induces 

a hyperpolarization of the neuron and decreases its firing activity (reviewed in de 

Montigny & Blier, 1992). Several lines of evidence suggest different properties 

for the pre- and the post-synaptic 5-HT1A receptors (reviewed in de Montigny & 

Blier, 1992). Furthermore, several observations led to the hypothesis that 5-HT 

neurons are regulated by a small loop (the autoregulation via somatodendritic 
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autoreceptors) as well as by a long negative feedback loop involving postsynaptic 

5-HT1A receptors (Blier et al., 1987; Blier & de Montigny, 1987; de Montigny & 

Blier, 1992). Briefly, the long feedback loop hypothesis implies the activation of 

post-synaptic 5-HTIA receptors, which location still remains to be determined. It 

results in the activation of cortical neurons (presumably glutamatergic), which 

possibly activate inhibitory GABAergic intemeurons, which, in tum, inhibit DRN 

5-HT neurons (Blier et al., 1987; Blier & de Montigny, 1987; Haj6s et al., 1998; 

Haj6s et al., 1999). Even if there is only one gene for post-synaptic and 

somatodendritic 5-HT1A receptors, their pharmacologie al profile is different and 

this effect can be identified using two different 5-HT1A agonists. At low doses, 

the systemic administration of the agoni st R(+)-8-

hydroxydipropylaminotetralin hydrobromide (8-0H-DPAT), exerts its inhibitory 

effect on DRN 5-HT neurons partly through the long negative feedback loop, via 

the activation of postsynaptic 5-HT1A receptors, whereas diethylamide lysergic 

acid (LSD) causes the inhibition of 5-HT neurons through a direct activation of 5-

HT1A autoreceptors (Blier et al., 1987; Blier & de Montigny, 1987; Ceci et al., 

1994; Haj6s et al., 1998; Haj6s et al., 1999). 

The inhibitory effect of GABA on DRN 5-HT neurons is also well 

known. In this nucleus, GABAergic terminaIs are present in large numbers and 

have been shown to make direct synaptic contact with 5-HT neurons (Harandi et 

al., 1987; Wang et al., 1992). A local infusion of GABA or of muscimol (a 

GABAA agonist) into the DRN leads to a reduction of 5-HT neurons firing rate 

and of extracellular levels of 5-HT in the DRN (Gallager, 1978; Gallager & 

214 



• 

• 

• 

Aghajanian, 1976; Nishikawa & Scatton, 1985; Tao et al., 1996; Tao & Auerbach, 

2000; Vandennaelen et al., 1986). Conversely, infusions of bicuculline or 

picrotoxin (GABAA antagonists) in the DRN of anesthetized and freely moving 

rats, increase extracellular 5-HT in this nucleus and in the striatum (Kalén et al., 

1989; Tao et al., 1996; Tao & Auerbach, 2000). This supports the existence of a 

putative GABAergic tonic inhibitory modulation of DRN 5-HT neurons. 

Furthennore, in rats, the bicuculline-induced increase of DRN 5-HT neurons 

firing activity was observed during waking periods as well as during slow-wave 

and REM sleep periods, suggesting that in this species, the tonic GABAergic 

inhibition ofDRN 5-HT neurons is independent of the vigilance state (Gervasoni 

et al., 2000). 

Therefore, the effectiveness of these three regulatory mechanisms (the 5-

HT lA autoreceptors, the long feedback loop and the GABAergic tonic inhibition) 

of 5-HT neurons activity was assessed in different experimental groups of rats 

(CF, M, OVX and P17) and compared to that of CF. 
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EXPERIMENTAL PROCEDURE 

Animais 

All rats used were Sprague Dawleys weighing between 250g and 350g and 

kept under standard laboratory conditions (12:12 light-dark cycle with access to 

food and water ad libitum). The different rat populations used for the 

experiments consisted of the following: freely cycling females (CF); males (M); 

ovariectomized females operated at their lOth week of life (OVX); females at the 

l7th day of pregnancy (P17); and postpartum females (PP) separated from their 

pups immediately, or a few hours after delivery, and used 1 to 7 days following 

parturition. Ethical committee approval was obtained from the McGill University 

Animal Ethical Care Committee and all their mIes and regulations were followed. 

The suffering of animaIs as well as the number used were kept at minimum. 

Electrophysiological Experiments 

AlI rats were anesthetized by an intraperitoneal injection of chloral hydrate 

(400 mg/kg) and additional doses of lOO mg/kg were administered when needed. 

Rats were immobilized in a stereotaxie apparatus and their body temperature 

maintained at approximately 37°C throughout the experiment by a thermistor­

controlled heating pad. 

a) Extracel/ular recording 

Extracellular unitary recording of serotonergic neurons were obtained with 

single-barelled glass micropipettes filled with a lM NaCl solution and of final 
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impedance ranging between 2 and 6 Mn. A 4 mm-diameter hole was drilled in 

the skull of each rat at the appropriate location (about 1 mm anterior of lambda 

and centered with respect to the midline). DRN 5-HT neurons unit activity was 

recorded by lowering the micropipette along descents covering the nucleus from 

300/lm to about 1500/lm anterior of lambda. Spontaneously active DRN 5-HT 

neurons were identified by their slow and regular rythmical firing (Aghajanian et 

al., 1978). 

For each rat population, the basal firing rate of DRN 5-HT neurons was 

ca1culated by averaging the firing rate of each neuron measured in 1 to 5 complete 

descents in the DRN of 3 to 6 rats . 

b) Microiontophoresis 

In other experiments, the same approach was used for microiontophoresis, 

but with five-barrel micropipettes (ASI Instruments, Warren, MI), tip diameter 5-

7/lm. The central barrel, used for unit recording, was filled with a 2M Na-acetate 

solution. Two of the side barrels were used for drug ejection and were filled with 

y-aminobutyric acid (GABA) (2.5 mM in 200 mM NaCI) and bicuculline 

methiodide (BicuM) (3 mM in 200 mM NaCI). BicuM was used for 

iontophoresis because of the ionic charge it carries, whereas the blood-brain 

barrier permeable bicuculline was used for systemic administration (see below). 

The third side barrel was filled with 0.5 M Na-acetate and used for automatic 

CUITent balancing. A retaining CUITent of -1 nA was applied to each drug barrel 
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except during periods of active drug ejection. GABA was applied with CUITents 

of 2-8 nA for a constant duration of 100s. The number of spikes suppressed per 

nA, which consists in dividing the total number of spikes suppressed during drug 

application by the ejection cUITent, was used as an index of receptor 

responsiveness. BicuM was applied with currents of 3-6 nA for a constant 

duration of 100 s. The number of spikes generated per nA was used as an index 

of endogenous activation of GABAA receptors. The spikes suppressed per nA, 

and spikes generated per nA were ca1culated by homemade data acquisition 

software. From one to four neurons were tested in each animal. 

5-HTlA Receptor Activity Evaluation 

For each population (CF, M, OVX, and P17), a dose-response curve of the 

inhibitory effect of each oftwo 5-HT1A receptor agonists, LSD and 8-0H-DPAT, 

was constructed. The LSD and the 8-0H-DPAT doses used ranged from 1 ~g!k:g 

to 40 Ilg!k:g and from 0.5 Ilg!k:g to 4.0 Ilg!k:g, respectively. Each agonist was 

injected intraveneously via the tail vein after the basal firing rate of the neuron 

had been stable and recorded for at least 1 min. The inhibition was measured as a 

percentage of the initial firing rate. Following the stabilization of the inhibited 

firing rate, 100 Ilg!k:g of N-[2-(4-[2-methoxyphenyl]-1-piperazinyl)ethyl)]-N-2-

pyridinylcyc1ohexanecarboxamide (WAY 100635), a 5-HT1A antagonist, was 

injected in the same manner in order to bring the neuron back to its initial firing 

activity and ascertain that the decrease in the firing rate was solely due to the 

effect of the 5-HT1A agoni st. 
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Ricuccu/ine i. v. dose-response curve 

For CF, M and P17, a dose-response curve of the effects of the GABAA 

receptor antagonist (+ )-bicuculline was constructed with doses ranging from 50 

)..lg/kg to 400 )..lg/kg. (+)-bicuculline, dissolved in 10 % DMSO, was injected 

intraveneously (i.v.) via the tail vein after the basal firing rate of the neuron had 

been recorded for about l min. The increase in firing rate was measured in terms 

of percentage of the initial firing rate. For the dose-response curve, doses 

inducing convulsion and/or death of the rats were not used. The dose producing 

these effects was determined to be 450 mg/kg in males and 500mg/kg in females. 

Only doses inducing a stable response of the neuron were used . 

Effect of partial GARA depletion 

The glutamic acid decarboxylase (GAD) is the enzyme responsible for the 

synthesis of GABA from glutamate. In order to evaluate the effect of a partial 

depletion in GABA on the tonic GABAergic inhibition of 5-HT neurons activity, 

a 500 mg/kg dose of isoniazid (a selective GAD inhibitor) was injected 

intraperitoneally (i.p.), to CF, M, and P17, 45 minutes before descending the 

electrode in the rat DRN and measuring the spontaneous firing rate of 5-HT 

neurons . 

219 



• 

• 

• 

Statistics 

Average values are glVen as the mean ± S.E.M. In sorne cases, the 

coefficient of variation (CV=standard deviationlmean) was calculated to 

characterize the spread of a distribution. Statistical analysis were performed using 

the software SigmaStat Version 2.0 (Jandel Corporation). One-way ANOVA, 

with alpha = 0.05, followed by a post-hoc analysis using Tukey's rnethod of 

comparison versus control (controls being CF) was used for evaluating statistical 

significance. In the case of the experiment with isoniazid, the post-hoc analysis 

using Tukey's method allowed multiple pairwise cornparisons. Results (F) of 

statistical analysis are expressed in terms of number of groups cornpared (p )and 

degrees of freedom between groups compared (dt). The ED50 for each of the 

dose-response curves was calculated by a non-linear regression analysis, using the 

software Prism 3.0 (GraphPad). Statistical differences between the entire dose­

response curve for the effect of each of the three drugs (8-0H-DPAT, LSD and 

(+ )-bicuculline) was assessed using an F -test analysis of variance, with CF as the 

comparative control group. In each case, the F value and the total degrees of 

freedorn (dt) are indicated. In all cases, significance was considered for P<0.05. 

Drugs 

8-0H-DPAT, WAY 100635 (WAY), BicuM, (+)-bicuculline were 

purchased from RBI (Sigma-Aldrich, Ontario, Canada), GABA and isoniazid 

were purchased from Sigma (Sigma-Aldrich, Ontario, Canada) and LSD was 

obtained from U.S.P.C Inc (Rockville, MD). 
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RESULTS 

Assessment of the long feedback loop activity 

A dose-response curve was obtained for the effect of 8-0H-DPAT, a 

selective 5-HT1A receptor agonist, in CF, M, OVX and P17. The intravenous 

administration of8-0H-DPAT induced a dose-dependant and reversible inhibition 

of 5-HT neurons (Fig. lA). No statistically significant difference was found 

between the 8-0H-DPAT dose-response curves of the different groups as 

compared to CF (M: [F(9,2) = 0.9, n.s.]; OVX: [F(12,2) = 2.3, n.s.] and P17: 

[F(9,2) = 0.9, n.s.] (Fig. lB). The doses of8-0H-DPAT causing a 50% inhibition 

ofthe neuronal firing rate (EDso) in the various groups are the following: CF: 2.51 

f.lg/kg, M: 1.71 f.lg/kg, OVX: 1.91 Ilg/kg, and P17: 2.27f.lg/kg. 

Assessment of the 5-HTlA autoreceptor activity 

To assess the responsiveness of the 5-HT1A autoreceptor, a dose-response 

curve for the effects of LSD, a somatodendritic 5-HT1A agonist, was obtained in 

CF, M, OVX and P17. Intravenous injections of LSD caused a dose-dependant 

and reversible inhibition of the firing activity of 5-HT neurons (Fig. 2A). The 

EDso values for LSD were the following: CF: 6.94 f.lg/kg; M: 7.61 f.lglkg; OVX: 

10.10 Ilg/kg; and P17: 11.83 f.lglkg. An analysis of variance using an F-test 

indicated that the entire LSD dose-response curve was statistically different in M 

[F(1O,2) = 4.6, P < 0.01] and P17 [F(12,2) = 6.9, P < 0.01] but not OVX [F(12,2) 
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= 3.0, n.s.] when compared to that of CF (Fig. 2B). The dose-response curve was 

shifted to the right in both OVX and P17 as compared to CF, although reaching 

statistical significance only in P17. These results suggest a partial functional 

desensitization of the 5-HT1A autoreceptor during late pregnancy. Although the 

ED50 values are relatively similar in M and CF, the dose-response curves were 

statistically different. 

Assessment of the GABAergie tonie inhibition 

Many progesterone metabolites are GABAA receptor modulators. Since 

we observed a direct correlation between 5-HT neuronal activity and circulating 

levels of P from PlI to P2l, the responsiveness of the DRN 5-HT neurons to 

GABA, as weIl as their GABAergic tonic inhibition, had to be explored . 

In a first set of experiments, the response of DRN 5-HT neurons to 

microiontophoretic applications of GABA was examined in CF, M, OVX, P17 

and PP. GABA applications (2-8 nA, 100 s) resulted in a suppression ofthe firing 

activity (Fig. 3A), which was totally reversed by the concurrent application of the 

GABAA receptor antagonist BicuM (3-6 nA), in aIl the neurons tested (illustrated 

for P17, Fig. 3A, middle). The onset and offset of GABA action was fast. The 

number of spikes suppressed per nA was used as an index of GABAA receptor 

sensitivity. Responses to GABA were homogenous in CF (CV = 0.29, n =18), M 

(CV = 0.28, n =16) and OVX (CV = 0.29, n =16, Fig. 3B, left). However, the 

mean number of spikes suppressedinA was significantly larger in M (64.3 ± 4.5) 

than in CF (49.2 ± 3.3) [F(2,3) = 4.2, P < 0.05, Tukey's test, q = 3.8, P < 0.05]. 
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The difference observed between OVX (61.6 ± 4.2) and CF did not reach 

statistical significance (Tukey's test, q = 3.1, n.s. ). 

Responses to GABA were more variable in P17 (CV = 0.47, n =21) and in 

pp (CV = 0.58, n = 21) than in CF (Fig 3B, right). The mean number of spikes 

suppressed/nA was lower in P17 (39.4 ± 4.0) and pp (26.5 ± 3.5) than in CF (49.2 

± 3.3) but the difference reached significance only in pp [F(2,3) = 9.7, P < 0.001, 

Tukey's test, q = 3.8, P < 0.05]. 

In order to compare the GABAergic tonic inhibition of DRN 5-HT 

neurons, three sets of experiments were carried out. First, BicuM was 

microiontophoretically applied onto 5-HT neurons of CF and P17. In CF, BicuM 

ejections (3 nA, 100 s) caused a highly variable increase in firing activity while, 

in P17, BicuM (4 nA, 100 s) resulted in an non-significant increase of only a few 

percent (Fig. 4A). The number of spikes generated per nA was taken as an index 

of the extent of endogenous inhibition of basal firing rate due to the activation of 

GABAA receptors (Fig. 4B). The mean number of spikes generated per nA was 

drastically reduced in P17 (1.9 ± 0.6, n = 6) [F(1,2) = 51.3, P < 0.001, Tukey's 

test, q = 10.1, P < 0.05] compared to CF (13.1 ± 1.3, n = 8). These results 

indicate that, in P17, GABAA receptors are activated to a much lesser extent by 

endogenous GABA, than they are in CF. 

AIso, for CF, M and P17 rats, an i.v. dose-response curve was obtained for 

the effect of the blood-brain barrier-permeable GABAA receptor antagonist 
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(+)bicuculline (Bicu). Only the excitatory responses of 5-HT neurons were used 

in the curve (Fig. 5A). An analysis of variance using an F-test indicated that the 

Bicu dose-response curve was statistically different in M [F(5, 2) = 16.8, P < 

0.001] but not P17 [F(6, 2) = 1.6, n.s.] as compared to CF (figure 5B). 

Isoniazid is a selective inhibitor of the glutamic acid decarboxylase 

(GAD), the enzyme converting glutamic acid into GABA. The effect, on the 

spontaneous firing rate of 5-HT neurons, of a 500 mg/kg i.p. injection of 

isoniazid, which has been shown to induce depletion of about 50% of the GABA 

content of the DRN, was investigated (Bagdy et al., 2000). It was used to assess 

whether such a treatment would have an effect on the GABAergic tonic inhibition 

and, most importantly, whether it would affect the 5-HT neurons firing activity. It 

was also used as another mean to assess possible differences in the GABAergic 

tonic inhibition of the 5-HT neuronal firing rate between experimental groups. In 

CF, M and P17 rats, the basal firing rate ofDRN 5-HT neurons was ca1culated by 

averaging the firing rate of each neuron encountered a few descents in the DRN. 

This was done in control animaIs and in rats treated with isoniazid 45 minutes 

prior to the experiment (Fig. 6). In CF, the isoniazid treatrnent induced a 

significant increase in 5-HT neuron spontaenous firing rate: 1.55 ± 0.09 Hz vs 

0.98 ± 0.08 Hz [F(5,6) = 11.7, P < 0.001, Tukey's test, q = 5.8, P < 0.05]. In M 

and P17, isoniazid did not induce any significant change (M: 1.34 ± 0.65 Hz vs 

1.38 ± 0.10 Hz, [Tukey's test, q = 0.4, n.s.]; P17: 1.88 ± 1.03 Hz vs 1.99 ± 0.14 

Hz, [Tukey's test, q = 1.1, n.s.]. 
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DISCUSSION 

The dose-response curves of the effects induced by the systemic 

administrations of 8-0H-DPAT were not statistically different in M, OVX and 

P17 as compared to CF (Fig. 1). However, our results suggest a gender difference 

in the 5-HT lA autoreceptor-mediated response, as shown by the different dose­

response curves for the effect ofLSD (Fig. 2B). LSD is a non-selective agoni st of 

5-HT receptors and act on several other subtypes inc1uding the 5-HT2A and an 

antagonist of the 5-HT7.(Krebs-Thomson & Geyer, 1996, Chapin & Andrade, 

2001) However, there is no indication that post-synaptic 5-HT2A or 5-HT7 

receptors could be involved in a decrease of the firing activity of DRN 5-HT 

neurons and this effect of LSD is therefore assumed to be linked to its affinity for 

the 5-HTIA autoreceptor (Blier & de Montigny, 1987; Blier & de Montigny, 1990, 

Krebs-Thomson & Geyer, 1996). 

Strong evidence indicates that LSD and 8-0H-DPAT partly exert their 

effect through different mechanisms. For instance, in rats, long-term treatments 

with gepirone (a 5-HTIA agoni st) dampened the response ofDRN 5-HT neurons 

to microiontophoresis application of 5-HT, LSD, 8-0H-DPAT, and to the 

systemic administration of LSD but not to that of 8-0H-DPAT (Blier & de 

Montigny, 1987; Blier & de Montigny, 1990). Second, short-term lithium 

treatments were shown to reduce the ED50 for i.v. 8-0H-DPAT, while leaving 

unaltered the response of 5-HT neurons to i.v. LSD or to local applications of 

LSD and 8-0H-DPAT (Blier et al., 1987). Furthermore, ablation of the medial 
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prefrontal cortex (mPCF), which project to the DRN, was shown to dramatically 

increase the EDso for systemic, but not local, 8-0H-DPAT administration (Ceci et 

al., 1994; Haj6s et al., 1998; Haj6s et al., 1999). Also, systemic and local 

administration of 8-0H-DPAT in the mPCF inhibited 5-HT neurons, which was 

reversed by WAY-100635 (Casanovas & Artigas, 1999; Celada et al., 2001; 

Haj6s et al., 1999). Finally, the electrical stimulation of rnPCF results in an 

inhibition of the majority of DRN 5-HT neurons, which can be reversed or 

dampened by WAY-100635 and picrotoxin (Celada et al., 2001; Fletcher et al., 

1996; Haj6s et al., 1998). 

It has thus been hypothesized that, contrary to LSD, which produces its 

effect through the direct activation of 5-HT1A somatodendritic autoreceptors, the 

systemic administration oflow doses of 8-0H-DPAT exerts its effect on DRN 5-

HT neurons, partly through a longer feedback loop (Blier et al., 1987; Blier & de 

Montigny, 1987; de Montigny & Blier, 1992; Martin-Ruiz & Ugedo, 2001). 

According to this hypothesis, the systemic administration of 8-0H-DPAT would 

activate, not only 5-HTIA autoreceptors, but also post-synaptic 5-HT1A receptors 

located on inhibitory afferents to rnPCF pyramidal glutamatergic neurons, thus 

resulting in their excitation (Celada et al., 2001; Haj6s et al., 1999). The 

projection of mPCF glutamatergic neurons to GABAergic intemeurons in the 

DRN would then lead to the inhibition of 5-HT neurons (Celada et al., 2001; 

Haj6s et al., 1998; Haj6s et al., 1999). Moreover, sorne of the cortical neurons 

appear to stimulate a small portion of DRN 5-HT neurons, thus, causing 5-HT 
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release and consequently inhibiting surrounding 5-HT neurons through activation 

of5-HT1A autoreceptors (Celada et al., 2001). 

Our results are thus suggesting that the long feedback loop might not be 

affected by gender, ovariectomy, nor by pregnancy and might not be sensitive to 

ovarian steroids or their fluctuation. They also indicate that the long regulatory 

feedback loop does not appear to be implicated in the difference observed in the 

DRN 5-HT neurons basal firing activity of the four experimental groups (F, M, 

OVX and P17) (see companion paper). 

Indeed, the dose-response curves for the effects of LSD are significantly 

different between genders. The main difference appears to be in the slope of the 

curves, which is steeper in M (Fig. 2B). In order to interpret this in terms of 

physiological implications, further experiments will be needed. Nevertheless, one 

could speculate either that there is a gender difference in the autoreceptor 

expression, conformation and/or functional mechanism. For instance, there could 

be greater cooperativity in the binding of 5-HT molecules to the male 5-HT1A 

autoreceptor, thus resulting in a greater activation of the autoreceptor in the 

presence of high concentrations of 5-HT, as compared to the female one. This 

could account for the steeper slope observed in the dose-response curve for the 

effect of LSD. It is also possible that the male autoreceptor is tonically less 

activated by endogenous 5-HT than that of CF. A slightly greater tonic activation 

of 5-HTIA autoreceptor in CF, however insufficient to desensitize it, would be in 

agreement with the similar ED50 between genders. In such a situation, doses of 
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LSD, lower than its EDso, added to the slightly lower tonic activation in M, could 

lead to a lesser inhibition of the 5-HT neurons, as observed in the lower part ofthe 

LSD dose-response curve. Doses higher than the EDso might be large enough for 

the slight difference in tonic activation to become unapparent and thus lead to a 

similar inhibition of the 5-HT neurons, as is observed at the higher doses of the 

curve. Moreover, a slightly less tonically activated 5-HT1A autoreceptor in M 

would be in agreement with, and could partly explain, the higher basal firing rate 

of 5-HT neurons observed in M as compared to CF (see companion paper). 

In P17 rats, the LSD dose-response curve has the same overall shape and 

IS shifted to the right as compared to that obtained in CF, indicating that 

pregnancy leads to a partial desensitization of the autoreceptor without otherwise 

altering its functional properties (Fig 2B). In OVX rats, the same phenomenon is 

observed without, however, reaching statistical significance (Fig 2B). It could be 

hypothesized that P reduces the sensitivity of the 5-HT1A autoreceptors, whether 

directly or through its metabolites. This would be consistent with both the P17 

LSD dose-response curve, which is shifted to the right relative to CF, and the 

gradually increasing neuronal firing rate observed during pregnancy paralleling 

the increasing P levels (companion paper). It could be brought about through P 

neuroactive metabolites. A direct genomic mechanism of action seems unlikely 

since P receptors (PR) have not been found in the rat 5-HT neurons but have 

rather been shown to be present on neighbouring excitatory amino acid neurons in 

the DRN (Alves et al., 1998a, Alves et al., 1998b). A genomic action in those 

cells could result in a modulation of the firing activity of 5-HT neurons or of the 
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release of 5-HT in the DRN and remams a possibility, which could be 

investigated using PR antagonists. AIso, a putative difference in the excitatory 

amino acids modulation of the 5-HT neuronal function between the experimental 

groups used in the present study would be another interesting avenue to explore. 

A reduction of the expression of the autoreceptor gene could also be implicated as 

it has been shown that ovarian steroid treatments reduce 5-HTIA receptor rnRNA 

in the DRN of OVX rats and monkeys (Birzniece et al., 2001; Pecins-Thompson 

& Bethea, 1999). Different mechanisms of action could by hypothesized to 

explain this eventuality. For instance, an enhanced 5-HT release in the DRN 

could induce a desensitization / downregulation of the autoreceptor. 

In the DRN, GABAergic terminaIs are present in large numbers and have 

been shown to make synaptic contact with the cell bodies and dendrites of 5-HT 

neurons (Harandi et al., 1987; Wang et al., 1992). Several lines of evidence 

suggest that there is a tonic GABAergic inhibitory modulation of DRN 5-HT 

neurons, which is mostly mediated by GABAA receptors (Gervasoni et al., 2000; 

Innis & Aghajanian, 1987; Kalén et al., 1989; Tao et al., 1996; Tao & Auerbach, 

2000). Furthermore, gender differences in GABAA receptor binding and function 

have been demonstrated and have been shown to be region specific (Buj as et al., 

1997; Jüptner & Hiemke, 1990; Wilson, 1992). AIso, since many progesterone 

metabolites are GABAA receptor modulators, a putative gender- or steroid­

mediated modulation of the GABAergic tonic inhibition of 5-HT neurons had to 

be explored (Majewska, 1992; McCauley et al., 1995) . 
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M and P 17, having a higher basal firing frequency than CF, were expected 

to have a lower GABAergic tonic inhibition. This would translate into a smaller 

excitatory effect on the 5-HT neuron for a same dose of bicuculline (either 

systemically or locally administered). Indeed, the effect of iontophoretically 

applied bicuculline onto DRN 5-HT neurons was found to lead to a significantly 

smaller increase in firing rate in Pl 7 as compared to CF, indicating a lower 

GABAergic tone than in CF (Fig 4). A similar trend, although not reaching 

significance, was observed following i.v. administration of bicuculline (Fig 5B). 

This indicates that 5-HT neurons of P17 rats are receiving a lower GABAergic 

tonic inhibition than the ones of CF. 

Chronic neurosteroid treatments have been shown to induce important 

functional modifications of the GABAA receptor complex, which result in a net 

reduction of the efficacy of GABA-mediated cr influx as well as the 

pentobarbital, benzodiazepine and neurosteroid-induced potentiation of these cr 

currents (Le Foll et al., 1997; Majewska et al., 1989; Yu et al., 1996a; Yu et al., 

1996b; Yu & Ticku, 1995; Zhu & Vicini, 1997). Furthermore, the neurosteroid 

potentiation of muscimol binding to synaptosomal GABAA receptors is reduced 

following a 5a-pregnane-3a-ol-20-one treatment and during late pregnancy 

(Majewska et al., 1989). It could, thus, suggest that these modifications of the 

GABAA receptor function, induced by chronic neurosteroid treatments, are 

present during pregnancy, when levels of progesterone metabolites are high. This 
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would result in a lesser GABAA receptor responsiveness and would explain the 

lower GABAergic tonic inhibition of 5-HT neurons observed in the present study. 

M rats present a significantly higher excitatory response to the i.v. 

administration ofbicuculline than CF (Fig 5B). Although, at first glance, this data 

might suggest that M have a higher tonic inhibition than CF, the results obtained 

with isoniazid seem to argue against such conclusion (Fig 6). Following the 

administration of isoniazid, only in CF was there a significant increase in firing 

activity of the 5-HT neurons (Fig.6). A 500mg/kg dose of this inhibitor of GABA 

synthesis results in an approximate 50% depletion of the GABA content of the 

DRN (Bagdy et al., 2000). Since the study with isoniazid was performed in male 

rats, no information is available on the percentage of GABA depletion induced by 

this drug in CF or P17. Nevertheless, our results suggest that in CF, it induces a 

GABA depletion important enough to reduce the GABAergic tonic inhibition on 

5-HT neurons so that it results in an increase in firing activity (Fig 6). This could 

suggest that in males, the GABAergic inhibition is sm aller than in the females. In 

CF, such a strong tonic inhibition would also explain the relatively low excitatory 

response observed with i.v. bicuculline. A 400 Ilg/kg (i.v.) dose of bicuculline, 

would be enough to suppress the male GABAergic inhibition of DRN 5-HT 

neurons, but possibly not sufficient to do so in CF. CF would have a greater 

number of tonically activated GABAA receptors than M. Therefore, reducing the 

level of GABA in the synaptic c1eft (e.g. with isoniazid) would result in a greater 

excitatory response as is, in fact, observed in CF. Accordingly, a dose of 
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bicuculline important enough to block the majority of GABAA receptors in M 

would not do so in CF, explaining the relatively lower excitatory response. 

When compared to CF, the mean number of spikes suppressed per nA 

(ss/nA) of iontophoretically applied GABA was significantly greater in M, 

indicating an apparent higher sensitivity the inhibitory effect of GABA. Again, 

this data is consistent with male 5-HT neurons being under lower GABAergic 

tonic inhibition than CF and subsequent GABA application having more 

pronounced inhibitory effect. 

In summary, the present investigation of three different regulatory 

mechanisms suggest that the 5-HT1A somatodendritic autoreceptor is partly 

desensitized in Pl7 as compared to CF, which is consistent with their increase in 

5-HT neurons firing rate. Moreover, 5-HT neurons ofboth M and Pl7 appear to 

be under lower GABAergic tonic inhibition, which is also consistent with their 

higher basal firing rate as compared to CF. On the other hand, the long feedback 

loop does not seem to be affected by gender or by gonadal status and might not 

represent an important contribution to explain the difference in spontaneous firing 

rate observed between experimental groups. 
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FIGURE LEGENDS 

Figure 1: Responsiveness of the 5-HT1A receptor and effect on the 5-HT neurons 

firing activity. (A) Integrated firing rate histograms of DRN 5-HT neurons, 

showing the inhibitory effect ofa single dose of8-0H-DPAT (3.5 )lg/kg, i.v.) and 

its reversaI by the 5-HT1A antagonist WAY 100635 (100 )lg/kg, i.v.), in CF, M, 

P17. (B) Relationship between the degree of inhibition ofthe DRN 5-HT neurons 

firing activity and the dose of8-0H-DPAT administered intravenously in CF (~= 

0.80), M (~ = 0.83), OVX (r = 0.91), and P17 (r2 = 0.95) on a logarithmic scale. 

The initial response to the first dose of 8-QH-DPAT of a single 5-HT neuron in 

each rat was used to construct the curve . 
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Figure 2: Responsiveness of the 5-HT1A autoreceptor and effect on the 5-HT 

neurons firing activity. (A) Integrated firing rate histograms of DRN 5-HT 

neurons, showing the inhibitory effect of a single dose ofLSD (20 /-lg!kg, i.v.) and 

its reversaI by the 5-HT1A antagonist WAY 100635 (100 /-lg!kg, i.v.), in CF, M, 

and P17. (B) Relationship between the degree of inhibition of the DRN 5-HT 

neurons firing activity and the dose of LSD administered intravenously in CF, M, 

OVX, and P17 on a logarithmic scale. The initial response to the first dose of 

LSD of a single 5-HT neuron in each rat, was used to construct the curve . 
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Figure 3: Responsiveness of the GABAA receptor to GABA in 5-HT neurons. (A) 

Integrated firing rate histograms displaying the response to the microiontophoretic 

application of GABA (100 s) in CF, P17, and PP. In CF, GABA (2 nA) resulted 

in 55.4 ss/nA (left). In P17, GABA (3 nA) resulted in 41.4 ss/nA; the GABAA 

receptor antagonist BicuM (3 nA, BOs) ejected simultaneously with GABA, 

totally reversed firing inhibition caused by GABA, indicating that GABAA 

receptors are mediating responses to GABA (middle). In PP (7 days after 

parturition), GABA (2 nA) caused an almost imperceptible decrease in firing rate; 

GABA (8 nA) resulted in 7.5 ss/nA. (B) ss/nA corresponding to single 

applications of GABA in each group (colurnns of open symbols); the group mean 

is indicated by the horizontal bar . 
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Figure 4: Responsivess ofthe GABAA receptor to local BicuM 5-HT neurons of 

CF and P17. (A) Integrated firing rate histograms showing the response of5-HT 

neurons to the microiontophoretic application ofBicuM (100s). In CF, BicuM (3 

nA) resu1ted in 17.4 sg/nA (left). In P17, BicuM (4 nA) resulted in 2.7 sg/nA. (B) 

sg/nA corresponding to single applications ofBicuM (co1umns of open symbo1s); 

the group mean is indicated by the horizontal bar . 
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Figure 5: Responsivess of the GABAA receptor to intravenous Bicu and effeet on 

the 5-HT neurons firing aetivity. (A) Integrated firing rate histograms of DRN 5-

HT neurons, showing the exeitatory effeet of a single dose of bieueulline (400 

Ilg!kg, i.v.), in CF, M, and P17. (B) Relationship between the degree of 

enhaneement of the DRN 5-HT neurons firing aetivity and the dose ofbicueulline 

administered intravenously in CF, M, and P17 on a logarithmie scale. The initial 

response to the first dose ofBieu of a single 5-HT neuron in eaeh rat was used to 

construet the eurve . 
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Figure 6: Mean firing rate of DRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in CF, M, OVX, and P17 following, or not, an injection ofisoniazid (500 

mg/kg, i.p.). The number of neurons recorded is indicated in each box. 

Significance compared to the respective control group is indicated by a star (p< 

0.01). 
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Foreword to Chapter 4 

Modulation of the firing activity of female dorsal raphe nucleus serotonergic 

neurons by neuroactive steroids 

Ovarian steroids have been shown to modulate the expression of several 

genes of the 5-HT system (see introduction). Furthermore, the previous 

manuscripts of this thesis have shown that the spontaneous firing are of DRN 5-

HT neurons is significantly higher in males and in pregnant females than in freely 

cyc1ing females. Interestingly, during pregnancy, the 5-HT neuronal firing 

activity rate follows circulating levels of progesterone. These data strongly 

suggested a modulation of 5-HT neuronal activity by ovarian steroids, especially 

progesterone. The aim of this study was thus to assess a possible modulation of 

5-HT neuron firing activity by progesterone and its metabolites by preventing the 

synthesis and metabolism of progesterone as well as directly administering these 

steroids in the cerebrospinal fluid of female rats. 
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Chapter 4 

MODULATION OF THE FIRING ACTIVITY OF FEMALE DORSAL 

RAPHE NUCLEUS SEROTONERGIC NEURONS BY NEUROACTIVE 

STEROIDS 
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ABSTRACT 

Important gender differences in mood disorders result III a greater 

susceptibility for women. Accumulating evidence suggest a reciprocal 

modulation between the 5-HT system and neuroactive steroids. Previous data 

from our laboratory have shown that during pregnancy, the firing activity of 5-HT 

neurons increases in parallel with progesterone (P) levels. This study was 

undertaken to evaluate the putative modulation of the 5-HT neuronal firing 

activity by different neurosteroids. Female rats received intracerebroventricularly 

(i.c.v.), for 7 days, a dose of 50 f...lg/kglday of one of the following steroids: P, 

pregnenolone (PREG), 5~-pregnane-3,20-dione (5~-DHP), 5~-pregnane-3a-

01,20-one (3a,5~-THP), 5~-pregnane-3~-01,20-one (3~,5~-THP), 5a-pregnane-

3,20-dione (5a-DHP), 5a-pregnane-3a-ol,20-one (allopregnanolone, 3a,5a­

THP), 5a-pregnane-3~-01,20-one (3~,5a-THP) and dehydroepiandrosterone 

(DHEA). 5~-DHP and DHEA were also administered for 14 and 21 days (50 

f...lg/kglday, i.c.v.) as well as concomitantly with the selective (JI antagonist NE-

100. In vivo extracellular unitary recording of 5-HT neurons performed in the 

dorsal raphe nucleus ofthese rats revealed that DHEA, 5~-DHP and 3a,5a-THP 

significantly increased the firing activity of the 5-HT neurons. Interestingly, 5~­

DHP and DHEA showed different time-frames for their effects with 5~-DHP 

having its greatest effect after 7 days to retum to control values after 21 days, 

whereas DHEA demonstrated a sustained effect over the 21-day period. NE-100 

prevented the effect of DHEA but not of 5~-DHP, thus indicating that it (JI 
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receptors mediate the effect ofDHEA but not that of 5p-DHP. In conclusion, our 

results offer a cellular basis for potential antidepressant effects of neurosteroids, 

which may prove important particularly for women affective disorders. 

Abbreviations: 3a,5a-THP, 5a-pregnane-3a-ol,20-one (allopregnanolone); 

3a,5 p-THP, 5 p-pregnane-3a-ol,20-one; 3 p,5a-THP, 5a-pregnane-3 P-ol,20-one; 

3p,5p-THP, 5 p-pregnane-3P-ol,20-one; 5a-DHP, 5a-pregnane-3,20-dione; 5p­

DHP, 5p-pregnane-3,20-dione; 5-HT (serotonin), 5-hydroxytryptamine; DHEA, 

dehydroepiandrosterone; DRN, dorsal raphe nucleus; Fe, freely cycling females; 

GABA, y-aminobutyric acid; NE-IOO, N,N-dipropyl-2-(4-methoxy-3-(2-

phenylethoxy)phenyl)-ethylamine; OVX, ovariectomized females; P, 

progesterone; PREG, pregnenolone; SSRI, serotonin reuptake inhibitor. 
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INTRODUCTION 

There are important gender differences in susceptibility for mood 

disorders. Women experience depressive episodes earlier in life, more frequently, 

more recurrently and more persistently than men (Weissman & Klerman, 1977; 

Weissman & Klerman, 1985; Maes et al., 1986; Parry, 1989; Hamilton, 1993; 

Kessler et al., 1994; Weissman et al., 1996; Komstein, 1997; Joffe & Cohen, 

1998). The mechanisms underlying these gender differences are not understood. 

It has been suggested that the frequent hormonal variations experienced by 

women might contribute to their vulnerability to depression (Endicott, 1993; 

Pajer, 1995; Komstein, 1997; Joffe & Cohen, 1998). Although the etiology of 

major depression remains unclear, the enhancement of serotonergic (5-HT) 

neurotransmission observed with antidepressant treatments suggests the 

implication of the 5-HT system in the biology of depression (Racagni & Brunello, 

1999; Blier & de Montigny, 1999). . 

Ovarian steroids are known to affect brain areas not directly related to 

reproductive functions, such as the dorsal raphe nuclei (DRN) (McEwen et al., 

1998). This nucleus being a region rich in 5-HT neuron cell bodies, ovarian 

steroids may have a functional impact on the 5-HT system. Numerous studies, 

performed in females, indicate that ovarian steroids modulate the expression of 

several genes of the 5-HT system (e.g. tryptophan hydroxylase, vesicular 

mono amine transporter, serotonin reuptake transporter and different 5-HT 

receptors) (see review by Bethea et al., 1999). 
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Moreover, there is accumulating evidence suggesting that depressive states 

may beassociated with a decrease in 3a,Sa-THP (allopregnanolone) levels. For 

instance, in a mouse model of depression, long-term social isolation decreases the 

corticalleve1s of3a,Sa-THP and Sa-DHP (Dong et al., 2001). AIso, the levels of 

3a,Sa-THP and 3a,Sp-THP were shown to be significantly lower in the 

cerebrospinal fluid (CSF) and plasma of depressed patients as compared to 

controls (Romeo et al., 1998; Uzunova et al., 1998). Conversely, selective 

serotonin reuptake inhibitors (SSRIs) have been shown to increase the cerebral 

content of sorne neuroactive steroids both in rats and humans (Uzunov et al., 

1996; Griffin & Mellon, 1999; Serra et al., 2001). Furthermore, successful 

antidepressant treatments not only regularize the levels of neuroactive steroids, 

but the extent of the increase in CSF contents of 3a,Sa-THP and 3a,Sp-THP is 

also proportional to the mood improvement (Romeo et al., 1998; Uzunova et al., 

1998). 

Using an in vivo electrophysiological paradigm of extracellular recordings, 

we have previously shown that the spontaneous firing activity of DRN S-HT 

neurons is significantly higher in male (M) than in female (F) rats, while 

ovariectomy (OVX) did not significantly modify the female S-HT neuronal basal 

firing rate. Interestingly, during pregnancy, the spontaneous firing rate increased 

gradually to peak at the 1 i h day of pregnancy (P 1 7) and then dec1ined before 
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parturition, thus following circulating levels of progesterone (but not of estrogen) 

(Klink et al., 2002). 

Furthermore, we showed that, during pregnancy, 5-HT1A autoreceptors 

were partly desensitized and that 5-HT neurons were probably under a much 

lower GABAergic tonic inhibition as compared to that of freely cyc1ing females 

(Fe) (Robichaud et al., 2002). Both of these functional modifications are 

consistent with the enhanced firing activity of 5-HT neurons observed during 

pregnancy. They also provide possible mechanisms by which hormonal 

fluctuations can modulate the 5-HT neurons function and influence women 

vulnerability to mood disorders. 

Taken together, the literature and our previous data suggest a reciprocal 

modulation between the 5-HT system and neuroactive steroids. Therefore, the 

goal of the present studies was to assess a possible modulation of 5-HT neuron 

firing activity by progesterone (P) and its metabolites (see Fig.l). 
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MATERIALS AND METHODS 

AnimaIs 

Sprague Dawleys (Charles-River, St-Constant, Québec, Canada) weighing 

between 250g and 325g were kept under standard laboratory conditions (12:12 

light-dark cycle with access to food and water ad libitum). Freely cycling females 

(FC), and ovariectomized females (OVX) were used for the experiments. Ethical 

committee approval was obtained from the McGiU University Animal Ethical 

Care Committee and aU their mIes and regulations were followed. The suffering 

of animaIs as weU as the number used were kept at minimum. 

Treatment with inhibitors of progesterone synthesis and metabolism 

Ovariectomized females (OVX) operated at their 8th week of life were 

used for treatments with Trilostane (OVX-T) and Finasteride (OVX-F). 

Trilostane treatments began at the 9th week of life. Trilostane suspended in 

sesame oïl was administered by daily subcutaneous (s.e.) injections of 25 mg/kg 

for 14 days. Finasteride treatments began at the 10th week of life. Finasteride 

suspended in 1.5 % methyl cellulose was administered for 5 days by daily gavage 

of 20 mg/kg. These doses of Finasteride and Trilostane have previously been 

shown to efficiently the 5a-reductase and 3p-hydroxysteroid dehydrogenase 

enzymatic activities, respectively (Potts et al., 1978, Young et al., 1994, Phan et 

al., 1999, Micevych et al., 2003). Experiments were carried out on the day 

following the last administration of either drug. 
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Treatments with steroids 

AIl steroids were dissolved in 3% (v/v) ethanol/distiIled water and 

administered continuously and intracerebroventricularly (i.c.v.) by mean of a 

subcutaneous osmotic minipump connected to a canulae (ALZA, Palo Alto, CA, 

USA), which was implanted in the left lateral ventric1e of the rat brain. The 

surgery was performed as described by the manufacturer (ALZA, Palo Alto, CA, 

USA) and under chloral hydrate anesthesia. Each steroid was administered with a 

dose of 50)lg/kg!day. NE-lOO, a sigma 1 (crI) receptor antagonist, was dissolved 

in distilled water and administered subcutaneously (s.c.) by an osmotic minipump 

(ALZA, Palo Alto, CA, USA) for a daily dose of 10 mg/kg . 

FC received one of the following treatments: 7, 14 or 21 days with either 

5p-pregnane-3,20-dione (5P-DHP) or dehydroepiandrosterone (DHEA); 7 days 

with either progesterone (P), pregnenolone (PREG), 5p-pregnane-3a-ol,20-one 

(3a,5 p-THP), 5 p-pregnane-3 P-ol,20-one (3 P,5 p-THP), 5a-pregnane-3,20-dione 

(5a-DHP), 5a-pregnane-3a-ol,20-one (3a,5a-THP) or 5a-pregnane-3p-ol,20-one 

(3p,5a-THP); 7 days with either 5p-DHP or DHEA concomitantly with NE-lOO. 

A tirst control for the surgical procedure was obtained with i.c.v. administration 

of saline for 7 days. A second series of controls received 3% ethanol, i.c.v., for 7 

days. Experiments were carried out the day foIlowing the last day of 

administration and after removal of the canulae. FoIlowing experiments, every 
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brain was removed, frozen at -80oe and sliced using a microtome to confirm the 

position ofboth the canulae and the recording electrode. 

Electrophysiological Experiements 

AlI rats were anesthetized by an intraperitoneal injection of chloral hydrate 

(400 mg/k:g) and additional doses of 100 mg/k:g were administered when needed. 

Rats were immobilized in a stereotaxic apparatus and their body temperature was 

maintained at approximately 37°e throughout the experiment by a thermistor­

controlIed heating pad. 

ExtracelIular unitary recording of serotonergic neurons were conducted 

with single-barelIed glass micropipettes pulIed in a conventional manner, filIed 

with a lM NaCI solution and of final impedance ranging between 2 and 6 MQ. A 

4 mm-diameter hole was drilIed in the skulI of each rat at the appropriate location 

(about 1 mm anterior of lambda and centered with respect to the midline). DRN 

5-HT neurons unit activity was recorded by lowering the micropipette along 

descents covering the nucleus from 300~m to about 1500~m anterior of lambda. 

Spontaneously active DRN 5-HT neurons were identified according to the criteria 

of Aghajanian: a slow and regular rythmical firing rate and positive action 

potentials of long duration (Aghajanian et al., 1978). 

For each group of rats, the basal firing rate of 5-HT neurons was 

calculated by averaging the firing rate of each neuron measured. This was 
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achieved by recording, for at least 60 seconds, each 5-HT neuron encountered in 

complete descents in the DRN of 3 to 6 rats. 

Statistics 

Statistical analysis were performed with the software SigmaStat for 

Windows Version 4.0 (Jandel Corporation). Average values are given as the mean 

± S.E.M. One-way ANOVA, with alpha = O.OS, followed by a post-hoc analysis 

using Tukey' s method of comparison versus control was used for evaluating 

statistical significance. Results (F) of statistical analysis are expressed in terms of 

degrees of freedom between groups compared (di) and number of groups 

compared (p). Significance was considered for P<O.OS . 

Drugs 

Trilostane was obtained from Sanofi Research Division (Malvem, PA), 

NE-toO was kindly provided by Taisho Pharmaceutical Co. Ltd. (Tokyo, Japan) 

and Finasteride was prepared from Smg commercial pills of Proscar (Merck 

Frosst). Steroids used were: progesterone, pregnenolone, Sp-pregnane-3,20-

dione, S p-pregnane-3a-ol,20-one, Sp-pregnane-3 P-ol,20-one, Sa-pregnane-3,20-

dione, Sa-pregnane-3a-ol,20-one, Sa-pregnane-3p-ol,20-one (Steraloids), and 

DHEA (Sigma Aldrich). 
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RESULTS 

Two types of controls were separately carried out in order to assess the 

potential effect of the surgical procedure and of the vehic1e. Since the surgical 

control (saline, i.c.v.) were very similar to Fe (1.01 ± 0.07 Hz, n = 70, and 1.02 ± 

0.07 Hz, n = 72 (data not shown), respectively, the vehic1e control was used for 

comparison with the subsequent treatments. P, administered i.c.v. for 7 days to 

Fe did not significantly modify the firing activity of 5-HT neurons (1.21 ± 0.07 

Hz, n = 95 vs 1.18 ± 0.10 Hz, n = 52, [F(1,2) = 0.09, n.s.]) (Fig.2). 

Since in a previous series of experiments, ovariectomy did not decrease 

the basal firing activity of 5-HT neurons (Klink et al., 2002), we decided to 

investigate if the cerebral de nova synthesis of P was sufficient to maintain the 

basal 5-HT neuron activity. Thus, to prevent local P synthesis, OVX rats were 

treated with trilostane (an inhibitor of the 3f3-hydroxysteroid dehydrogenase, the 

enzyme responsible for converting PREG into P, see Fig.1). As reported before, 

the firing activity of 5-HT neurons was not significantly modified following OVX 

(as compared to Fe, [F(1,2) = 1.19 ± 0.12 Hz, n = 43 vs 1.02 ± 0.07 Hz, n = 72, 

n.s.], Fig. 3A). Following the treatment with trilostane (25 mg/kg/day for 14 

days), the firing activity of 5-HT neurons was increased by less than 10%, which 

was not statistically significant as compared to OVX (1.29 ± 0.11 Hz, n = 44 and 

1.19 ± 0.12 Hz, n = 43, respectively, [F(1,2) = 0.37, n.s.], Fig. 3B) . 
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As another way to assess the capacity of the cerebral de nova synthesis of 

P to influence the basal firing rate DRN 5-HT neurons, OVX were treated with 

finasteride (20 mg/kg/day for 5 days), a selective blocker of the 5a-reductase (the 

enzyme metabolizing Pinto 5a-DHP, see Fig.l). This was done to prevent the 

catabolism of P and, therefore, to increase its cerebrallevels. Increasing P leve1s 

with finasteride did not significantly increase in 5-HT neuron firing activity as 

compared to OVX (1.34 ± 0.08 Hz, n = 42 and 1.19 ± 0.12 Hz, n = 43, 

respectively, [F(1,2) = 1.00, n.s.], Fig. 3B). 

Since P does not seem to affect the firing activity of 5-HT neurons, the 

effects of its precursor and of sorne of its metabolites were investigated. As was 

the case with P, a 7 -day treatment with PREG led to a non-significant increase in 

5-HT neuronal firing rate (1.52 ± 0.17 Hz, n = 55 vs 1.19 ± 0.13 Hz, n = 41, 

[F(1,2) = 2.07, n.s.], FigA). 

In parallel to P, DHEA is also synthesized from pregnenolone (Fig. 1). The 

DHEA treatments led to an increase in firing activity, which persisted over time 

(Fig.5). After 7 days, the mean firing frequency of 5-HT neurons was increased 

from 0.96 ± 0.08 Hz, n = 52, to 1048 ± 0.11 Hz, n = 78 ([F(5,6) = 7.92, P<O.OOl, 

Tukey's test, q = 4.8, P<O.OlD, after 14 days, it was increased from 1.10 ± 0.09 

Hz, n = 54 to 1.66 ± 0.11 Hz, n = 68 ([F(5,6) = 7.92, P<O.OOI, Tukey's test, q = 

5.1, P<O.Ol]), and after 21 days it reached 1.82 ± 0.18 Hz, n = 40 as compared to 

1.21 ± 0.11 Hz, n = 54 ([F(5,6) = 7.92, P<O.OOl, Tukey's test, q = 4.9, P<O.Ol). 
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Since the increase in 5-HT neurons' firing activity, measured following P 

treatments, was not present as expected from the results obtained during 

pregnancy (Klink et al., 2002), the possible implication of different P metabolites 

was investigated. First, females were treated for 7, 14 and 21 days with 5f3-DHP. 

The 7-day treatment led to a significant increase in 5-HT neurons basal firing rate 

(1.64 ± 0.11 Hz, n = 45, [F(5,6) = 7.01, P< 0.001, Tukey's test, q = 6.0, P<O.Ol], 

Fig. 6). This was followed by a graduaI decrease towards control values (Fig. 6); 

after 14 days of administration, the increase in firing rate was still statistically 

significant as compared to its control (1.57 ± 0.09 Hz, n = 78, vs 1.10 ± 0.08 Hz, n 

= 63, [F(5,6) = 7.01, P< 0.001, Tukey's test, q = 5.2, P<O.Ol]) but not after 21 

days oftreatment (1.16 ± 0.13 Hz, n = 55, vs 1.22 ± 0.11 Hz, n = 46, [F(5,6) = 

7.01, P< 0.001, Tukey's test, q = 0.6, n.s.). 

The enzymes converting 5f3-DHP into its metabolites 3a,5f3-THP and 

3f3,5f3-THP are present in the brain (Guennoun et al., 1995; Celotti et al., 1992). 

Therefore, FC were administered for 7 days with these metabolites but neither 

treatment led to a statistically significant increase in the firing rate of 5-HT 

neurons as compared to controls (3a,5f3-THP: 1.47 ± 0.14 Hz, n = 50 vs 1.23 ± 

0.13 Hz, n = 47, [F(1,2) = 1.52, n.s.] and 3f3,5f3-THP: 1.51 ± 0.12 Hz, n = 68 vs 

1.23 ± 0.13 Hz, n = 47, [F(1,2) = 2.39, n.s.], Fig. 7). 

The effect of the other P metabolite stereoisomers was also investigated. 

FC received a 7 -day administration of 5a-DHP, 3a,5a-THP and 3 f3,5a-THP (Fig. 
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8). Neither 5a-DHP nor its metabolite 3~,5a-THP significantly modified the 

firing activity of 5-HT neurons (1.12 ± 0.09 Hz, n = 63, [F(1,2) = 0.33, n.s.] and 

1.35 ± 0.11 Hz, n = 75, [F(1,2) = 0.80, n.s.], respectively as compared to 1.20 ± 

0.10 Hz, n = 42 for the controls). However, 3a,5a-THP induced a pronounced 

increase in their firing rate (1.97 ± 0.13 Hz, n = 58 compared to 1.20 ± 0.10 Hz, n 

= 42, [F(1,2) = 18.23, P< 0.001). 

DHEA has been shown to have agonistic properties at sigma (cr) receptors 

in a model using the NMDA response in the hippocampus (Bergeron et al., 1996, 

Debonnel et al., 1996). For this reason, Fe were treated simultaneously with 

DHEA and the selective crI antagonist NE-100 to investigate if the higher firing 

rate induced by DHEA was mediated by crI receptors. NE-100, at a dose shown 

to block the effect of other cr ligands (Bermack & Debonnel, 2001), prevented the 

increase in firing rate induced by DHEA (controls: 0.96 ± 0.08 Hz, n = 52; 

DHEA: 1.48 ± 0.11 Hz, n = 78 [F(2,3) = 6.22, P< 0.005, Tukey's test, q = 5.0, P< 

0.05]; DHEA + NE-lOO: 1.22 ± 0.10 Hz, n = 70, [F(2,3) = 6.22, P< 0.005, 

Tukey's test, q = 2.5, n.s.], Fig. 9) indicating that this effect was mediated by crI 

receptors. Because the effect of 5~-DHP had a different time-frame, as compared 

to that of DHEA, the implication of crI receptors was also investigated for this 

steroid. However, NE-100 did not prevent the 5~-DHP-induced increase in firing 

rate (controls: 1.06 ± 0.07 Hz, n = 86; 5~-DHP: 1.64 ± 0.11 Hz, n = 45 [F(2,3) = 
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14.95, P< 0.001, Tukey's test, q = 6.4, P< 0.05]; 5J3-DHP + NE-100: 1.67 ± 0.14 

Hz, n = 40, [F(2,3) = 6.23, P< 0.001, Tukey's test, q = 6.2, P< 0.05], Fig. 10). 
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DISCUSSION 

The main findings of this study are 1) the increase in the firing activity of 

female 5-HT neurons following the chronic administration of sorne neuroactive 

steroids, i.e. 5p-DHP, 3a,5a-THP and DHEA, and 2) the effect ofDHEA but not 

of 5p-DHP is mediated, at least in part, by 0"1 receptors. Furthermore, the larger 

effects of sorne metabolites compared with those of P, and the fact that P is 

rapidly metabolized in the brain, suggest that the metabolites may play an 

important role in the modulation of the 5-HT neuronal activity. 

In a previous study, we have shown that during pregnancy the spontaneous 

firing rate of 5-HT neurons is more than doubled (Klink et al., 2002). Moreover, 

the firing activity of 5-HT neurons changes in parallel with the plasma levels of P 

(Klink et al., 2002). Our hypothesis was therefore that, progesterone could be 

responsible for increasing the 5-HT neuronal activity in females. However, in 

OVX rats, the plasma levels of P are much lower than in FC while the firing rate 

of DRN 5-HT neurons is unchanged when compared to FC (Klink et al., 2002). 

This was suggesting that the de nova synthesis of P, which is known to occur in 

the brain (Guennoun et al., 1995), might be sufficient to maintain a normallevel 

of the 5-HT neuron firing activity following an ovariectomy. 

In rats treated with P for 7 days, the absence of significant modification of 

the firing activity indicates that P is probably not directly involved in the increase 
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of 5-HT neuronal firing activity observed during pregnancy. Based on the 

literature, cerebral concentrations were extrapolated to be about four times higher 

than that reached by P during pregnancy (Corpéchot et al., 1993) and are thus in 

the high physiological range. However, P was administered only for 7 days and 

an effect ofP following a longer treatment cannot be ruled out. 

Surprisingly, blocking cerebral P synthesis in OVX rats, with a Trilostane 

treatment, did not decrease the firing activity of the 5-HT neurons and there was 

even a trend towards an increase. Using different in vivo paradigms, similar or 

lower doses of Trilostane were shown to efficiently inhibit the enzyme 3 J3-

hydroxysteroid dehydrogenase (Potts et al., 1978, Young et al., 1994, Phan et al., 

1999, Micevych et al., 2003). A possible explanation was thus that the blockade 

of P synthesis could lead to a shift of the biosynthesis equilibrium towards a 

greater synthesis of DHEA (see Fig. 1). Rats were therefore treated with the 

precursor PREG as well as with DHEA. Administration of DHEA, but not of 

PREG, resulted in an enhanced firing activity of the DRN 5-HT neurons, which is 

in keeping with our hypothesis. Moreover, this DHEA-induced increase in 5-HT 

neuronal firing rate might explain the antidepressant effect observed with DHEA 

in humans (Wolkowitz et al., 1997). 

Another way to assess the possible effect of the local P de novo synthesis 

was to block its catabolism, therefore increasing P cerebral levels in OVX rats. 

Finasteride, a selective 5a-reductase inhibitor, was used for this purpose. It has 
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previously been shown that the systemic administration of similar doses of 

Finasteride efficiently blocks the enzymatic activity of cerebral 5a-reductase 

(Phan et al., 1999). However, in our hands, this treatment did not significantly 

change the 5-HT neurons basal firing rate. This constitutes another indication 

that, contrarily to our previous hypothesis, P by itself is not involved directly in 

the control of the firing activity of DRN 5-HT neurons. This is also in keeping 

with the demonstration that following ovariectomy, despite local P synthesis, the 

cerebral content of P was decreased by more than 70% (Corpechot et al., 1993) 

but that there was no change in the firing activity of 5-HT neurons. Therefore, it 

appears that neurosteroids, other than P, are involved in the modification of the 

firing activity ofDRN 5-HT neurons observed during pregnancy . 

P can be metabolized into 5a-DHP and 5p-DHP by the 5a- and 5p­

reductase, respectively, and then further reduced into 3a,5a-THP and 3a,5p-THP 

by the enzyme 3a-hydroxysteroid oxidoreductase (3a-HSOD) (Kawahara et al., 

1975; Karavolas & Hodges, 1991; Celotti et al., 1992; Compagnone & Mellon, 

2000). These three enzymes (5a- and 5p-reductases, and 3a-HSOD) are present, 

and active, in the mammalian brain (Kawahara et al., 1975; 1981; Celotti et al., 

1992). It appears that the principal metabolic pathway for cerebral P is its 

reduction into 5a-DHP and 3a,5a-THP (Karavolas & Hodges, 1991; Komeyevet 

al., 1993) (see Fig. 1). Interestingly, 3a,5a-THP was the most potent steroid of 

the present study. Since this steroid is probably the principal metabolite of P, its 
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levels may be elevated enough during pregnancy to substantially contribute to the 

increase in the firing activity of 5-HT neurons observed in pregnant rats. 

A rather unexpected finding of this study was the different time-frame for 

the increase in firing activity of the 5-HT neurons caused by 5f3-DHP and DHEA. 

The 5f3-DHP-induced increase in firing activity was maximal after a 7-day 

treatment, followed by a graduaI dec1ine to finally lose statistical significance 

after 21 days of administration. On the other hand, the enhancement of the firing 

rate caused by DHEA was sustained over the 21-day period of time. This would 

support the hypothesis that more than one receptor is implicated in the effects 

seen with the different steroids tested in this study. Indeed, the DHEA-induced 

enhancement of the firing activity of 5-HT neurons seems to be mediated, at least 

in part, by Cil receptors, as shown by the fact that co-administration of the Cil 

receptor antagonist NE-100 prevented this effect. Interestingly, other sigma 

ligands have been shown to increase the firing rate of 5-HT neurons in similar 

period of times and this effect could be blocked by NE-100 (Bermack and 

Debonnel, 2201). Furthermore, the present results could suggest a physiological 

basis to the antidepressant-like effects observed for sorne neuroactive steroids in 

an animal model of depression, which effects were also shown to be mediated by 

Cil receptors (Reddy et al., 1998; Urani et al., 2001). On the other hand, NE-100 

did not prevent the effect of 5f3-DHP, thus indicating that other receptor(s) must 

mediate it. AIso, the time-frame for the 5f3-DHP-induced increase in firing 

activity could suggest a functional desensitization of the receptor mediating the 
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effect of 5~-DHP on 5-HT neurons, whereas in the case of DHEA, there is no 

such indication, which is also in agreement with what is found with other sigma 

ligands (Bermack & Debonnel, 2201). 

The mechanism(s) by which P metabolites increase the firing activity of 5-

HT neurons is still unc1ear. However, based on our previous studies with 

pregnant rats, a partial desensitization of 5-HT lA autoreceptors appears as a likely 

component (Robichaud et al., 2002). If neurosteroids, which levels rise 

dramatically during pregnancy, are indeed responsible for the pregnancy-induced 

desensitization of 5-HT lA autoreceptors, the intracerebral administration of 

neuroactive steroids could also lead to such desensitization. Since 5-HTIA 

autoreceptors are inhibitory, their partial desensitization would easily explain the 

enhanced firing activity of 5-HT neurons reported in the present study. 

On the other hand, recent studies have shown that DHEA promotes 

neurogenesis in the hippocampal dentate gyrus and protects it from 

glucocorticoids' detrimental effects (Karishma & Herbert, 2002). Interestingly, 

Santarelli and colleagues showed that inhibition of hippocampal neurogenesis 

prevents the behavioral effects of antidepressants in different animal models of 

depression (Santarelli et al., 2003). Together, these data offer another mechanism 

of action for the antidepressant effect of DHEA (Kaminska et al., 2000). Further 

studies assessing the effect of other steroids on neurogenesis would be needed to 
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assess whether this mechanism of action is specifie to DHEA or if it might extend 

to other neurosteroids. 

The effect of neuroactive steroids on 5-HT neurons activity could also be 

mediated through their interaction with GABAA receptors. It is well-known that 

3a-reduced steroids are GABAA receptor modulators and can even act as proper 

agonists (Harrison et al., 1987; Morrow et al., 1989; Puia et al., 1990; McCauley 

et al., 1995). P, 5a- and 5p-DHP, devoid of such property, are however rapidly 

converted into 3a,5a- and 3a,5p-THP, which can act on GABAA receptors 

(Bitran et al., 1993; Lancel et al., 1996). In rats, GABAergic neurons exert a 

tonie inhibition of DRN 5-HT neurons which seems to be mediated mostly by 

GABAA receptors (Innis & Aghajanian, 1987; Smith & Gallager, 1987; Gervasoni 

et al., 2000). Interestingly, during pregnancy, the GABAergic tonie inhibition of 

the 5-HT neurons was dramatically reduced when compared to that of FC 

(Robichaud et al., 2002). AIso, accumulating evidence suggest that sustained 

high levels of neuroactive steroids reduce GABAA receptor responsiveness and 

the efficacy of modulators to potentiate the chloride influx (Concas et al., 1998; 

Friedman et al., 1993; Yu & Ticku, 1995a; Yu & Ticku, 1995b; Yu et al., 1996; 

Gulinello et al., 2001). It is thus possible that sustained neurosteroids 

administration could cause both a desensitization of GABAA receptors and/or a 

diminution of the tonie GABAergic inhibition on 5-HT neurons and thus increase 

the firing activity of these neurons. Interestingly, 3a,5a-THP has the most potent 

agonistic properties on GABAA receptors and induced the greatest increase in 5-

273 



• 

• 

• 

HT neurons firing activity, whereas P and Sa-DHP were devoid of significant 

effect, which is in keeping with this hypothesis. 

The CSF and plasma of depressed patients have been shown to contain 

lower levels of 3a,Sp-THP and 3a,Sa-THP, than those of healthy volunteers, 

which could be brought back up to normal levels by successful antidepressant 

treatments (Romeo et al., 1998; Uzunova et al., 1998; Strohle et al., 1999). No 

differences in P levels were observed (Romeo et al., 1998; Uzunova et al., 1998). 

Lower serum levels of 3a,Sa-THP were observed in both women suffering from 

premenstrual syndrome (PMS), during the luteal phase of their menstrual cycle, 

and in women with postpartum blues as compared to corresponding controls 

(Rapkin et al., 1997; Nappi et al., 2001). It was suggested that fluoxetine and 

other SSRls interact with the enzyme 3a-HSD, responsible for the reversible 

conversion of Sa- and Sp-DHP into their respective 3a-reduced metabolites 

(3a,Sa- and 3a,S p-THP). This interaction would favor the reduction reaction and 

would reduce the rate of the oxidative reaction (i.e. conversion of 3a,Sa- and 

3a,Sp-THP into 5a- and SP-DHP), thus leading to enhanced levels of3a,Sa- and 

3a,Sp-THP (Uzunov et al., 1996; Uzunova et al., 1998; Griffin & Mellon, 1999). 

Together, these studies could suggest an association between depressive 

states with a decrease in 3a,Sa-THP levels, and mood improvement with an 

enhancement of the steroid levels. In agreement with this hypothesis, our results 

show that 3a,Sa-THP significantly increases the S-HT neuron firing activity in 
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females. Since aIl antidepressant treatments increase the efficacy of the 5-HT 

neurotransmission, these results could suggest a potential antidepressant effect for 

sorne neuroactive steroids. 

Even if a c1ear link has not yet been firmly established, recent reports have 

suggested that hormonal replacement therapy (HRT) could induce undesirable 

si de effects (see review by Annitage et al., 2003), which has led many patients to 

stop their HRT treatments. Natural hormones might, therefore, not be the best 

candidates as long-term adjuvants for antidepressant treatments, which would 

have to be administered presumably for several years to patients suffering from 

refractory depression. However, synthetic compounds having a similar 

pharmacological profile and the same effects on 5-HT neurons, which could be 

administered systemicaIly, become interesting candidates. Therefore, the 

modulation by neurosteroids of the firing activity of 5-HT neurons, reported here, 

may prove important for the treatment of female mood disorders. 
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Figure 1: Partial schematic representation of the progesterone metabolic pathway. 
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Figure 2: (A) Integrated firing rate histograms of 5-HT neurons, showing their 

spontaneous firing activity, recorded in one electrode descent in the DRN of 

females control (3% ethanol, i.c.v., 7 days) and following a treatement with P (50 

I-Lglkg/day, i.c.v., 7 days). (B) Spontaneous firing rate of female DRN 5-HT 

neurons expressed in Hz (mean ± S.E.M.) in controls and following a 7-day 

treatment with P. ID this and the following figures, the number of neurons 

recorded is indicated in each box. 
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Figure 3: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in Fe, OVX (A) and in OVX, OVX treated with trilostane for 14 days 

(OVX + Trilostane, 20mglkglday, s.c.) and OVX treated with finasteride for 5 

days (OVX + Finasteride, 25mglkg/day, p.o.) (B). 
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Figure 4: Spontaneous firing rate of femaie DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) in controis (3% ethanoI, 7days, i.c.v.) and following a treatment 

with pregnenolone (50 )lg/kg/day, i.c.v., 7days) . 
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Figure 5: Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) following different treatment durations with DHEA (50 

)lg/kglday, i.c.v.) or 3% ethanol (i.c.v.) for the controls. The stars indicate P < 

0.01 as compared to the respective control. 
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Figure 6: Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) following different treatment durations with 5p-DHP (50 

llg/kglday, i.c.v.) or 3% ethanol (i.c.v.) for the controls. The stars indicate P < 

0.01 as compared to the respective control. 
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Figure 7: Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) in eontrols (3% ethanol, i.e. v.) and following a 7-day treatment 

with either 3a,5p-THP (50 )lglkg!day, i.e.v.) or 3p,5p-THP (50 )lglkg!day, i.e.v.) . 
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Figure 8: Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) in eontrols (3% ethanol) and following a 7-day treatment with 

either 5a-DHP, 3a,5a-THP or 3p,5a-THP (50 Ilg/kg/day, i.e.v., in eaeh case). 

The star indieates P < 0.001. 
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Figure 9: Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) in eontrols (3% ethanoI) and following a 7-day treatment with 

either DHEA (50 )lglkglday, i.e.v.) or both DHEA (50 )lglkglday, i.e.v.) and NE-

100 (10 mglkglday, s.e.). The star indieates P < 0.05. 
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Figure 10: Spontaneous firing rate offemale DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) in controls (3% ethanol) and following a 7-day treatment with 

either 5j3-DHP (50 )lg!kglday, i.e.v.) or both 5j3-DHP (50 )lg!kglday, i.e.v.) and 

NE-lOO (10 mg!kglday, s.e.). The stars indicate P < 0.05 . 
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• Table 1 

Steroid Effeet on the firing 
aetivity of S-HT neurons 

Progesterone --
Pregnenolone --
DHEA l' 
Sf3-DHP t 
3a,Sf3-THP --

3P-,Sf3-THP --
Sa-DHP --
3a,Sa-THP t 

3f3,Sf3-THP --

Tablel: Summary of the effeet of eaeh steroid after a 7-day treatment 

(SO)lg!kg/day, i.e.v.) on the firing aetivity of female DRN S-HT neurons. Only 

statistieally signifieant inereases are identified by upward arrows. 
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Foreword to Chapter 5 

Gender differences in the neuroactive steroid modulation of the firing 

activity of dorsal raphe nucleus serotonergic neurons 

The first study of this thesis has shown that female rats have a slower 5-

HT neuronal firing activity than males. This observation may have implications 

in the greater vulnerability of women to develop depression. In the last 

manuscript, sorne neuroactive steroids were shown to modulate the firing activity 

of 5-HT neurons in female rats. As a difference in 5-HT neuronal spontaneous 

firing rate has been observed between sexes, a possible gender-dependent 

modulation of this activity by neuroactive steroids could also be possible . 

Therefore, the goal of this study was to further characterize the steroid modulation 

of 5-HT neurons. Male rats were thus treated with the steroids, which had been 

found to be effective in females (5j3-DHP, 3a,5a-THP and DHEA). AIso, the 

effects of estrogen and androgens were also assessed and compared between 

sexes . 
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Chapter 5 

GENDER DIFFERENCES IN THE NEUROACTIVE STEROID 

MODULATION OF THE FIRING ACTIVITY OF 

DORSAL RAPHE NUCLEUS SEROTONERGIC NEURONS 

Malika Robichaud and Guy DebonnelH 

Submitted to: Journal ofNeuroendocrinology, August 2004 



• 

• 

• 

ABSTRACT 

W omen are twiee as likely to suffer from mood disorders than men. 

Moreover, a growing body of evidenee suggests a reeiproeal modulation between 

sex steroids and the serotonin (5-HT) system. A previous study from our 

laboratory has shown that the progesterone metabolites 5~-pregnane-3,20-dione 

(5~-DHP) and 5a-pregnan-3a-ol,20-one (3a,5a-THP), as well as 

dehydroepiandrosterone (DHEA), inerease the firing aetivity of dorsal raphe 

nucleus (DRN) 5-HT neurons in female rats. The present study was undertaken to 

assess the effeets of these steroids in male rats as well as the effeets of 

testosterone and 17~-estradiol (17~-E) in both sexes, and finally to evaluate 

gender differenees in the modulation of the 5-HT neuronal firing aetivity by these 

different neuroaetive steroids. Male rats were treated i.e.v., for 7 days, with a 

dose of 50 Ilg!kg/day of one of the following steroids: progesterone, 5~-DHP, 

3a,5a-THP, DHEA, testosterone, 17~-hydroxy-5a-androstan-3-one (5a-DHT) 

and 17~-E. Sorne rats also reeeived a 3-day administration of testosterone (50 

Ilg!kg/day, i.e.v.). Females were treated in the same fashion with testosterone and 

17~-E. Extraeellular unitary reeordings of 5-HT neurons, obtained in vivo in the 

DRN of these rats, revealed that testosterone and 17~-E inereased the firing 

aetivity of 5-HT neurons in both males and females. In males, the effeet of 

testosterone eould already be seen after 3 days of treatment. Neither castration 

nor any treatment with other steroids signifieantly modified the firing rate of male 

5-HT neurons. The results of the present study, taken together with previous 
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findings, indicate both similarities and differences between sexes in the 

modulation of 5-HT neurons by sorne steroids. This could prove important in 

understanding gender differences in mood disorders . 
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INTRODUCTION 

Gender differences in mood disorders have long been documented. For 

instance, it is well established that major depression affects women twice more 

often than men (Robins et al. 1984; Maes et al. 1986; Regier et al. 1988; Kessler 

et al. 1993; Kessler et al. 1994; Breslau et al. 1995; Kessler & Walters 1998; 

Blazer et al. 2001; Angst et al. 2002; Bijl et al. 2002) and that this ratio appears at 

around 12-14 years of age (Breslau et al. 1995; Silberg et al. 1999). Since 

puberty is the time when ovarian hormones start to fluctuate in women, these 

hormones have been hypothesized to play a role in the differences between sexes 

in affective disorders (Pajer 1995; Joffe & Cohen 1998) . 

There is also increasing evidence suggesting a relationship between 

neuroactive steroids and depression, independent of sex. For instance, CSF and 

plasma levels of 5p-pregnan-3a-ol,20-one (3a,5p-THP) (Romeo et al. 1998; 

Uzunova et al. 1998) and 5a-pregnan-3a-ol,20-one (3a,5a-THP, 

allopregnanolone) (Romeo et al. 1998; Uzunova et al. 1998; Strohle et al. 1999; 

Strohle et al. 2000) are lower in depressed patients than in healthy volunteers, and 

can be elevated back to normal levels following successful antidepressant 

treatments (Romeo et al. 1998; Uzunova et al. 1998; Strohle et al. 1999; Strohle 

et al. 2000). Interestingly, the increase in CSF levels of 3a,5a-THP was 

proportional to the mood improvement (Uzunova et al. 1998). Inj ection of 

fluoxetine or paroxetine to male rats also resulted in a rapid increase in the brain 
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content of 3a,5a-THP and a concomitant decrease in 5a-DHP, without any 

change in pregnenolone (PREG), progesterone or dehydroepiandrosterone 

(DHEA) (Uzunov et al. 1996). hl a mouse model of depression, long-term social 

isolation was shown to decrease the cortical levels of 3a,5a-THP and 5a­

pregnane-3,20-dione (5a-DHP), but not progesterone or PREG, by reducing the 

5a-reductase's mRNA and protein expression (Dong et al. 2001) (for partial 

steroid metabolism, see Fig. 8). Finally, clinical studies have shown 

antidepressant properties for DHEA (Wolkowitz et al. 1995; W olkowitz et al. 

1997; Wolkowitz et al. 1999; Bloch et al. 1999). 

The serotonergic (5-HT) system has also long been implicated in the 

neurobiology of mood disorders since, amongst other evidence, most 

antidepressant treatments result, through various mechanisms of action, in an 

enhanced 5-HT neurotransmission (Blier & de Montigny 1994; Owens 1996). 

hlterestingly, numerous studies indicate that ovarian steroids modulate the gene 

expression and functional activity of different components of the 5-HT system 

(reviewed in Bethea et al. 1999). We have previously shown, using in vivo 

electrophysiology, that this modulation could be observed with the electrical 

activity of dorsal raphe nucleus (DRN) 5-HT neurons. hldeed, during pregnancy, 

the firing rate of 5-HT neurons gradually increases, peaks at the 1 i h day of 

pregnancy and then declines before parturition, thus directly reflecting plasma 

levels of progesterone (Klink et al. 2002). Furthermore, we have shown that a 7-

day administration of 5f3-pregnane-3,20-dione (5f3-DHP), 3a,5a-THP or DHEA 
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increases the firing activity of female 5-HT neurons (Robichaud & Debonnel 

2004). Together, these data strongly suggest a reciprocal modulation between the 

5-HT system and neuroactive steroids. 

Furthermore, several studies indicate gender differences in the 5-HT 

system (Rosecrans 1970; Carlsson et al. 1985; Kennett et al. 1986; Carlsson & 

Carlsson 1988; Haleem et al. 1990; Maswood et al. 1995; Ellenbogen et al. 1996; 

Nishizawa et al. 1999; Zhang et al. 1999; Li et al. 2000; Okazawa et al. 2000). 

Interestingly, we have shown that males have a faster spontaneous 5-HT neuronal 

firing activity than females (Klink et al. 2002). There is also evidence that 

testosterone can modulate the expression of different 5-HT receptors in various 

regions of the brain (Sandrini et al. 1989; Mendelson & McEwen 1990; Sumner 

& Fink 1998; Flügge et al. 1998) as well as the function of the 5-HT system 

(Sundblad & Eriksson 1997; Cologer-Clifford et al. 1999; Thiblin et al. 1999). 

The present study was thus undertaken to further characterize gender 

differences in 5-HT neuronal activity and in its modulation by neuroactive 

steroids since better understanding of these aspects could be important in 

elucidating the putative role of neurosteroids in mood disorders, the related sex 

differences and possibly new therapeutic approaches. Male rats were therefore 

treated with the steroids which had been shown to be the most potent on the 

female 5-HT neurons, i.e. 5J3-DHP, 3a,5a-THP and DHEA (Robichaud & 

Debonnel 2004) as well as with progesterone. Moreover, males having higher 

316 



• 

• 

• 

Ievels of testosterone than females, it was hypothesized that this honnone might 

also play a role in the gender difference observed in the spontaneous firing 

activity of 5-HT neurons (Klink et al. 2002). For this reason, the effects of 

testosterone on the firing activity of 5-HT neurons were also investigated in both 

male and female rats. Finally, since the putative effect of testosterone might be 

mediated through its conversion into estrogen, the effects of this honnone were 

also assessed in our paradigm . 
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MATERIALS AND METHODS 

Animais 

AH rats used were Sprague Dawleys (Charles-River, St-Constant, Québec, 

Canada) weighing between 250g and 325g and kept under standard laboratory 

conditions (12:12 light-dark cycle with access to food and water ad lib.). Freely 

cycling females, males and castrated males (CX) were used for the experiments. 

CX were castrated at their 10th week of life and used no sooner than one week 

after surgery. Ethical committee approval was obtained from the McGill 

University Animal Ethical Care Committee and aH their rules and regulations 

were foHowed . 

Treatments with steroids 

AH steroids were dissolved in 3% (v/v) ethanol/distilled water and 

administered continuously and i.c.v. by mean of a s.c. osmotic minipump 

connected to a canulae (ALZA, Palo Alto, CA, USA), which was implanted in the 

left lateral ventricle of the rat brain. The surgery was performed as described by 

the manufacturer (ALZA, Palo Alto, CA, USA) and under chloral hydrate 

anesthesia. Each steroid was administered at a dose of 50f.!gIkglday. 

Females were treated for 7 days with 3% ethanol (for the controls), 1713-

estradiol (1713-E) or testosterone. Males received one of the following steroids for 

7 days: progesterone, 513-pregnane-3,20-dione (513-DHP), 5a-pregnan-3a-ol,20-
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one (3a,5a-THP), dehydroepiandrosterone (DHEA), 17p-E, testosterone or 17p­

hydroxy-5a-androstan-3-one (5a-DHT). Sorne males were also treated with 

testosterone for 3 days. Experiments were carried out the day following the last 

day of administration and after removal of the canulae. Following experiments, 

each brain was removed, frozen at -80°C and sliced using a microtome to confinn 

the position of the canulae and of the recording site. 

Electrophysiological Experiments 

AlI rats were anesthetized by an intraperitoneal injection of chloral hydrate 

(400 mglkg). Additional doses of 100 mglkg were administered when needed. 

Rats were immobilized in a stereotaxie apparatus and their body temperature was 

maintained at approximately 37°C throughout the experiment by a thennistor­

controlled heating pad. 

Extracellular unitary recording of serotonergic neurons were obtained with 

single-barelled glass micropipettes pulled in a conventional manner, filled with a 

lM NaCI solution and of final impedance ranging between 2 and 6 Mn. A 4 mm­

diameter hole was drilled in the skull of each rat at the appropriate location (about 

1 mm anterior of lambda and centered with respect to the midline). The unitary 

activity of DRN 5-HT neurons was recorded by lowering the micropipette along 

descents covering the nucleus from 300 /lm to about 1500 /lm anterior of lambda. 

Spontaneously active DRN 5-HT neurons were identified according to the criteria 

of Aghajanian: a slow and regular rythmical firing rate and a shape of action 
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potential with a large initial positive spike of 1-2 msec duration and a postspike 

hyperpolarization (Aghajanian et al. 1978; Aghajanian & Vandennaelen 1982). 

For each group of rats, the basal firing rate of 5-HT neurons was 

calculated by averaging the firing rate of each neuron measured. This was 

achieved by recording, for at least 60 seconds, each 5-HT neuron encountered in 

complete descents in the DRN of at least 5 rats. 

Statistics 

Statistical analyses were perfonned with the software SigmaStat for 

Windows Version 2.0 (Jandel Corporation). Average values are given as the mean 

± SEM One-way ANOV A, with alpha = 0.05, followed by a post-hoc analysis 

using Tukey's method of comparison versus control was used for evaluating 

statistical significance. Results (F) of statistical analysis are expressed in tenns of 

degrees of freedom between groups compared and number of groups compared. 

Significance was considered for P<0.05. 

Drugs 

The steroids used were: progesterone, 5/3-pregnane-3,20-dione, 5a­

pregnan-3a-ol,20-one, 17/3-estradiol, testosterone, 17/3-hydroxy-5a-androstan-3-

one (purchased from Steraloids, New Port, RI, USA) and dehydroepiandrosterone 

(purchased from Sigma Aldrich, Oakville, Ontario, Canada) . 
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RESULTS 

In male rats, seven-day treatments with P, 513-DHP, 5a3a-THP and 

DHEA did not induce any statistically significant change in the firing activity of 

5-HT neurons as compared to controls (1.56 ± 0.14 Hz, n = 54, F(1,2) = 1.49, n.s.; 

1.32 ± 0.08 Hz, n = 112, F(1,2) = 0.01, n.s.; 1.37 ± 0.10 Hz, n = 71, F(1,2) = 0.04, 

n.s.; 1.51 ± 0.09 Hz, n = 69, F(1,2) = 1.47, n.s. and 1.34 ± 0.11 Hz, n =51, 

respectively, Fig. 1). 

The effect of testosterone was also investigated. First, males were 

castrated (CX) to assess if lowering testosterone levels would lead to a reduction 

in 5-HT neuronal firing rate. However, this surgery did not induce the expected 

reduction (1.63 ± 0.16 Hz, n=46 vs 1.37 ± 0.09, n = 62, F(1,2) = 2.27, n.s., Fig. 2). 

Treatment of males with testosterone led to an increase in their 5-HT 

neuronal firing rate (Fig. 3). A 3-day administration elevated the firing activity by 

more than 50% (2.23 ± 0.22 Hz, n = 105 compared to 1.41 ± 0.11 Hz, n = 53, 

F(1,2) = 6.39, P<0.05, Fig. 3A). The 7-day treatment also led to a similar 

statistically significant enhancement as compared to the respective controls (1.96 

± 0.14 Hz, n = 121 vs 1.36 ± 0.11 Hz, n = 57; F(1,2) = 10.96, P<O.OOl, Fig. 3B). 

Testosterone was also administered to females for 7 days and increased the firing 

activity oftheir 5-HT neurons by 28% as compared to the controls' (1.53 ± 0.12 

Hz, n = 71 vs 1.20 ± 0.10 Hz, n = 45; F(1,2) = 3.96, P<0.05, Fig. 4). 
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Interestingly, in males, but not in females, it seems that the T-induced 

enhancement of the mean firing rate was due to the dramatic response of only a 

few 5-HT neurons relatively to the whole neuronal population (Fig. 5). Indeed, 

the distribution of the firing rate of individual neurons shows that a small number 

of neurons are responsive to testosterone and acquire a very fast firing rate (Fig. 

5). It is not exc1uded that the same phenomenon is also present in females. 

However, if it is the case, it is less spectacular since no recorded neurons had a 

firing frequency comparable to that observed in males. 

In order to investigate if the effect of testosterone was mediated through 

its conversion into estrogen (see Fig. 8), females and males received a 7-day 

treatment with 17p-E, which induced, in both cases, an enhancement of the 5-HT 

neuronal firing activity (Fig. 6A, B). One-way ANOV As indicated that this 

increase was statistically significant for both females (1.68 ± 0.14 Hz, n = 67 vs 

0.99 ± 0.09 Hz, n = 68; F(1,2) = 19.13, P<O.OOl, Fig. 6A) and males (1.57 ± 0.11 

Hz, n = 71 vs 1.22 ± 0.10 Hz, n = 51; F(1,2) = 5.07, P<0.05, Fig. 6B) as compared 

to their respective controls. 

Males were also treated with 5a-DHT, which is another metabolite of 

testosterone. Unlike testosterone and 17p-E, 5a-DHT did not significantly 

modify the firing activity of males' 5-HT neurons (1.58 ± 0.15 Hz, n = 68 as 

compared to 1.39 ± 0.14 Hz, n = 45 in controls, F(1,2) = 0.80, n.s., Fig. 7) . 
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DISCUSSION 

The goal of this study was to assess potential gender differences in the 

modulation of the firing activity of 5-HT neurons by neuroactive steroids. Both 

similarities and differences were observed between males' and females' 5-HT 

neurons regarding their response to sustained steroid administrations. 

Testosterone and 17p-estradiol (17p-E) increased the firing activity ofDRN 5-HT 

neurons of both males and females (Figs. 3, 4 and 6). Moreover, in males, 

similarly to what was previously found in females (Klink et al. 2002; Robichaud 

& Debonnel 2004), neither progesterone nor gonadectomy significantly modified 

the firing rate of 5-HT neurons (Figs. 1 and 2). However, unlike what was 

observed in females (Robichaud & Debonnel 2004), 5p-DHP, 5a,3a-THP and 

DHEA, did not significantly change the firing activity of 5-HT neurons in males 

(Fig. 1). 

Testosterone 

Sorne of these ovarian steroids, which were ineffective on the 5-HT 

neuronal firing activity in males, have potent effects on those of female rats 

(Robichaud & Debonnel 2004). It was, therefore, plausible that male 5-HT 

neurons might be more responsive to other neuroactive steroids, such as 

androgens. This is why the effect of testosterone on the firing activity of 5-HT 

neurons was investigated . 
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First, males were castrated to see if a decrease of endogenous testosterone 

would decrease the firing rate of their 5-HT neurons. The rationale behind this 

expectation was the faster firing rate observed in males as compared to females 

(Klink et al. 2002), which might have been due to the higher levels of 

testosterone. However, no such reduction in firing activity was observed 

following castration (Fig. 2). Similarly to what was observed with females (Klink 

et al. 2002), removal of the gonads did not significantly affect the firing rate of 5-

HT neurons (Fig. 2). However, this is not completely surprising since the brain is 

known to produce neuroactive steroids and, thus, the reduction of steroid levels in 

the brain is less drastic than in the plasma (Aghajanian 1985; Guennoun et al. 

1995). On the other hand, males were castrated once they were adults. Had they 

been castrated earlier, an effect might have been observed, as castration at the 3rd 

week of life has been shown to increase the 5-HT lA mRNA leve1s in different 

brain regions, inc1uding the DRN (Zhang et al. 1999). In turn, this would reduce 

the firing activity of 5-HT neurons if indeed translated in greater expression of 5-

HT 1 A receptors on the soma. 

In both males and females, 7 days of testosterone administration increased 

the firing activity of 5-HT neurons (Fig. 3 and 4). In males, this increase could 

already be seen after a 3-day treatment (Fig. 3). What is of particular interest is 

the fact that in males, apparently only a subpopulation of neurons seemed 

sensitive to testosterone (Fig. 5). The DRN is formed of heterologous neuronal 

populations and there is data showing that neurons, which are normally presumed 

to be 5-HT based on their firing characteristics may actually not be (Kirby et al. 
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2003). It is thus possible that the hyper-responsive neurons recorded in the 

CUITent experiments be of another nature than 5-HT. However, other studies have 

shown subpopulations of DRN 5-HT neurons responding differently to a given 

pharmacological administration (Martin-Ruiz & Ugedo 2001; Lucas & Debonnel 

2002) or to an electrical stimulation of the medial prefrontal cortex (mPFC) 

(Celada et al. 2001). In all these cases, it was suggested that postsynaptic regions 

were implicated, as part of a longer feedback loop (Martin-Ruiz & Ugedo 2001; 

Celada et al. 2001; Lucas & Debonnel 2002). The location of the receptor 

mediating the effect might contribute to this phenomenon (Martin-Ruiz & Ugedo 

2001; Lucas & Debonnel 2002). Furthermore, direct synaptic contact on 5-HT 

cells by neurons projecting back to the DRN or, on the other hand, involvement of 

intemeurons, might also give rise to differential responses (Celada et al. 2001). In 

the present study, not only is it unc1ear whether the observed effect is mediated by 

androgen receptors or by a nongenomic mechanism, the location of the effector 

receptor is also unknown since steroids were administered in the cerebrospinal 

fluid. It is thus possible that the T -induced increase in firing activity could be 

mediated via afferents to 5-HT neurons. Moreover, the neurons, which were 

responsive to T, presented a very high firing frequency (Fig. 5). Although this 

was surprising, it has recently been reported that sorne DRN neurons, which were 

immunolabelled as 5-HT neurons, had a firing frequency of up to almost 8 Hz in 

basal conditions (Allers & Sharp 2003). In females, the increase in 5-HT 

neuronal firing activity following the administration of testosterone was less 

dramatic but more generalized (Fig. 5). Therefore, even though the mean firing 
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rate was increased in both genders, a sex difference was nevertheless observed in 

the response ofDRN neurons to testosterone. 

In the brain, testosterone is mainly metabolized into 17f3-E and 5a-DHT 

(Stoffel-Wagner 2001). In order to investigate if the T-induced enhancement of 

the firing activity could also be mediated by either one of these two metabolites, 

males were treated with 17f3-E and 5a-DHT (Figs. 7B and 8). 17f3-E but not 5a­

DHT increased the firing activity of 5-HT neurons, thus suggesting a role for 

aromatization of testosterone into 17f3-E rather than an androgenic effect. The 

lack of effect of 5a-DHT is in keeping with the report of McQueen et al. (1999), 

who investigated the effects of castration and hormonal (T, estrogen and 5a­

DHT) replacements on the expression of the serotonin transporter (SERT) in 

different brain regions of male rats. They showed, for instance, an increase in 

SERT rnRNA levels following testosterone or estrogen but not 5a-DHT 

administrations. If this increase in SERT rnRNA expression leads to a greater 

SERT protein density, it would result in less 5-HT being present in the vicinity of 

the soma of 5-HT neurons. This would reduce the activation of the 5-HTIA 

autoreceptor and lead to an increase in the neuronal firing activity. Such an effect 

might therefore represent one of the mechanisms of action through which 17f3-E 

and testosterone increase the firing activity of 5-HT neurons. These results also 

support the hypothesis that the effect of testosterone might be, at least in part, 

mediated by its aromatization into estrogen. However, since both estrogen and 

326 



• androgen receptors are expressed by DRN neurons (Simerly et al. 1990), a direct 

effect of testosterone is also possible. 

Estrogen 

The effect of estrogen on the 5-HT system has been extensively studied. 

For instance, E has been shown to alter the gene expression and binding sites for 

SERT in the DRN and other brain regions of ovariectomized (OVX) monkeys and 

rats (Mendelson et al. 1993; McQueen et al. 1997; Pecins-Thompson et al. 1998; 

McQueen et al. 1999; Sumner et al. 2000; Zhou et al. 2002; Bethea et al. 2002). 

Of particular interest is the effect of E on the 5-HT1A autoreceptor, which is 

responsible for regulating the firing activity of 5-HT neurons. Bethea and 

colleagues have shown that E decreases 5-HT1A receptor mRNA (Pecins­

Thompson & Bethea 1999), 5-HT1A binding sites as weIl as the G protein 

activation in the DRN of OVX macaques (Lu & Bethea 2002), indicating a 

functional downregulation of the autoreceptor. In rats, however, data are not as 

consistent. For instance, a 2-week treatment with E led to a trend towards a 

decrease in 5-HT1A receptor rnRNA levels in the midbrain (Zhou et al. 2002) but 

had no effect on 5-HT1A rnRNA levels or binding sites in the DRN of OVX rats 

(Landry & Di Paolo 2003). A 3-week treatment with high levels of E and P, 

however, caused a significant reduction in DRN 5-HTIA autoreceptor rnRNA 

levels (Birzniece et al. 2001). Most interestingly, however, 2 days of E 

administration led to a reduced 5-HT1A autoreceptor response in a paradigm 

identical to ours (Lakoski 1989), which could easily explain the higher firing 

activity of 5-HT neurons. 
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Other systems and receptors might also be implicated. For instance, E was 

found to reduce GABAA receptor binding sites in various brain regions of OVX 

females (O'Connor et al. 1988) and to have a region-dependent effect on 

glutamate receptors in females (Cyr et al. 2000). It is thus possible that 17/3-

estradiol decreases the GABAergic tonic inhibition and increases the 

glutamatergic input on 5-HT neurons, thus enhancing the firing activity of 5-HT 

neurons. Indeed such a reduced GABAergic tonic inhibition leading to faster 5-

HT neuronal firing has already been shown during pregnancy (Robichaud et al. 

2002). 

Ovarian Steroids 

Since 5a3a-THP lS a potent GABAA receptor modulator, we have 

previously proposed that 5a3a-THP modulated the firing activity of 5-HT 

neurons via GABAA receptors (Robichaud & Debonnel 2004). It is thus 

surprising that 5a3a-THP had no effect on the firing activity of male 5-HT 

neurons. Gender differences in the functional responses of GABAA receptors 

have, however, been reported (Jüptner & Hiemke 1990; Wilson & Biscardi 1992; 

Wilson 1992; Bujas et al. 1997) and might explain this unexpected result. For 

instance, we have shown earlier that male 5-HT neurons were more sensitive than 

female ones to the GABAA antagonist bicuculline as seen by their greater 

excitatory response following its administration (Robichaud et al. 2002). 

Interestingly, it has also been shown that, even though the basallevels of GABA-
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activated chloride influx were not different between genders in the amygdala and 

the hypothalamus, the potentiation by high doses of THDOC (a steroid with 

similar GABAA positive modulatory properties to 5a3a-THP) was greater in 

males than females (Wilson & Biscardi 1997). This indicates gender- and region­

specifie differences in the response of GABAA receptors to neuroactive steroids, 

which might explain the present observations. The subunit composition of 

GABAA receptor varies between brain regions and influences greatly the 

functional response of the receptor (see review 543). It is thus possible that a 

difference in GABAA receptor subunit assembly exists between sexes and leads to 

a greater sensitivity of females' 5-HT neurons to 5a3a-THP modulation as 

compared to that of males . 

In conclusion, the main results of this study are the increase in 5-HT 

neuronal firing activity induced by testosterone and 17J3-estradiol in both male 

and female rats. Taken together with previous findings, these data indicate not 

only similarities but also sex differences in the modulation of 5-HT neurons by 

sorne steroids, which could prove important in the understanding of gender 

differences in mood disorders . 
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FIGURE LEGENDS 

Figure 1: (A) Integrated firing rate histograms of S-HT neurons, showing their 

spontaneous firing activity, recorded in one electrode descent in the DRN of a 

male control (3% ethanoI, i.c.v., 7 days) and following a treatment with P, Sa,3a­

THP and DHEA (SO~glkg/day, i.c.v., 7 days, each). (B) Spontaneous firing rate 

of male DRN S-HT neurons expressed in Hz (mean ± SEM) in controls and 

following 7-day treatments with P, Sp-DHP, Sa,3a-THP and DHEA. In this and 

the following figures, the number ofneurons recorded is indicated in each box . 
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Figure 2: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

SEM) in controls and castrated males (CX) . 
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Figure 3: Spontaneous firing rate of male DRN 5-HT neurons expressed in Hz 

(mean ± SEM) following A) a 3-day treatment with testosterone (50 ~glkg/day, 

i.e.v.) and B) a 7-day treatment with testosterone (50 ~glkg/day, i.e.v.), and their 

respective eontrols (3% ethanoI, i.e.v., for 3 or 7 days). The star indieates P < 

0.05. 
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Figure 4: Spontaneous firing rate of femaie DRN 5-HT neurons expressed in Hz 

(mean ± SEM) in eontrois (3% ethanoI, i.e.v., 7days) and following a treatment 

with testosterone (50 Ilg/kg/day, i.e.v., 7 days). The star indieates P < 0.05 . 
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Figure 5: Distribution of the spontaneous firing rate of DRN 5-HT neurons 

expressed in Hz, in males treated with testosterone for 3 or 7 days (50 ).lg/kglday, 

i.e.v.), their respective eontrols (3% ethanol, i.e.v., for 3 or 7 days) and in female 

eontrols (3% ethanol, i.e.v., 7days) and following a 7-day treatment with 

testosterone (50 ).lg/kglday, i.e. v.) . 
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Figure 6: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

SEM) in A) females and B) males following a treatment with 17p-estradiol (50 

!-Lg/kg/day, i.c.v., 7 days) and their respective controls (3% ethanol, i.c.v., 7days). 

The single star indicates P < 0.05 and the double stars, P < 0.001 . 
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Figure 7: Spontaneous firing rate of male DRN 5-HT neurons expressed in Hz 

(mean ± SEM) in eontrois (3% ethanoI, i.e.v., 7days) and following a treatment 

with 5a-DHT (50 ~g/kg/day, i.e.v., 7 days) . 
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Foreword to Chapter 6 

Allopregnanolone and ganaxolone increase the firing activity of dorsal raphe 

nucleus serotonergic neurons in female rats 

Amongst the neuroactive steroids tested in female rats, the most potent one 

in modulating the firing activity of 5-HT neurons was found to be 3a-hydroxy-

5a-pregnane-20-one (3a,5a-THP, allopregnanolone). Interestingly, there is 

accumulating evidence suggesting antidepressant properties for this steroid (see 

introduction). The 3a,5a-THP-induced enhancement of the 5-HT neuronal 

activity could offer a biological basis for its antidepressant effects. This study 

was undertaken to assess the potential of this steroid in antidepressant treatments . 

First, the time frame of this modulation was better characterized. Second, the 

effects of ganaxolone, a synthetic analog of 3a,5a-THP devoid of hormonal 

properties, were similarly assessed. Since many women are reluctant to hormonal 

therapy, ganaxolone might be an interesting substitute. Finally, the potential for 

these two steroids to reduce the antidepressants' delay in therapeutic onset of 

action was investigated . 
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Chapter 6 

ALLOPREGNANOLONEAND GANAXOLONE 

INCREASE THE FIRING ACTIVITY OF DORSAL RAPHE NUCLEUS 
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ABSTRACT 

Accumulating evidence suggest a reciprocal interaction between 

neurosteroids, espeeially 5a-pregnan-3a-ol,20-one (3a,5a-THP, 

allopregnanolone), and the serotonergie (5-HT) system. Furthermore, both 5-HT 

and neurosteroids seem to play an important role in the pathophysiology of major 

depression. We have previously shown that a 7-day treatment with 3a,5a-THP 

drastically inereases the spontaneous firing aetivity of dorsal raphe nucleus 

(DRN) 5-HT neurons in female rats. This study was thus undertaken to better 

eharacterize this modulation and to assess the effeets of ganaxolone, a synthetic 

analog of3a,5a-THP. Female rats reeeived 3a,5a-THP or ganaxolone for 3 and 

7 days (50 Ilg/kg/day, i.e.v.). Others reeeived 3a,5a-THP eoneomitantly with the 

antiprogestin RU486 (50 Ilg/kg/day, i.c.v., 7 days, eaeh), whieh was also 

administered alone. Aeute experiments were done by means of a single injection 

of 3a,5a-THP (1 Ilg/kg, i.e.v). Finally, both 3a,5a-THP and ganaxolone were 

administered along with the selective serotonin reuptake inhibitor (SSRI) 

eitalopram. In vivo extraeellular unitary reeordings of 5-HT neurons from the 

DRN, revealed that 3a,5a-THP and ganaxolone inereased their firing aetivity 

after 3 and 7 days of treatment. A 7 -day treatment with RU486 had the same 

effeet. Furthermore, an inerease eould be seen as soon as after 30-60 minutes 

following a single injection with 3a,5a-THP. Interestingly, both 3a,5a-THP and 

ganaxolone prevented the eitalopram-indueed reduetion in firing aetivity after 3-

day treatments. These data demonstrate the ability of 3a,5a-THP and ganaxolone 
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to positive1y modulate the firing activity of DRN 5-HT neurons in female rats . 

Moreover, these results suggest that these neuroactive steroids might represent 

interesting adjuvants in the treatment of mood disorders in female patients . 
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INTRODUCTION 

Women are twice as likely to suffer from major depression than men 

(Angst et al. 2002; Bijl et al. 2002; Blazer et al. 2001; Breslau et al. 1995; Kessler 

et al. 1993; Kessler et al. 1994; Kessler & Walters 1998; Maes et al. 1986; Regier 

et al. 1988; Robins et al. 1984). Furthermore, onset or exacerbation of depressive 

episodes are more frequent during periods of hormonal fluctuations such as 

puberty (Hamilton 1993; Parry 1989), menstrual cycles (Endicott 1993; Endicott 

& Halbreich 1988; Hamilton 1993; Parry 1989; Weissman & Klerman 1985; 

Yonkers & White 1992), the postpartum period (Hamilton 1993; Komstein 1997; 

Parry 1989; Weissman & Klerman 1985) and menopause (Burt & Stein 2002; 

Komstein 1997; Weissman & Klerman 1985). Ovarian hormones have thus been 

hypothesized to play an important role in women mood disorders (Endicott 1993; 

Eriksson 1999; Joffe & Cohen 1998; Pajer 1995; Parry 1989). Serotonin (5-HT) 

has also long been implicated in the pathophysiology of depression (Coppen 

1967; Lapin & Oxenkrug 1969). The most compelling evidence probably is the 

enhancement of 5-HT neurotransmission seen following all antidepressant 

treatments (Blier & de Montigny 1999; Racagni & Brunello 1999). 

Interestingly, ovarian steroids have clearly been shown to modulate the 

expression of different proteins of the 5-HT system, including 5-HT receptors (see 

review by Bethea et al., 1999). Moreover, plasma and cerebrospinal fluid (CSF) 

levels of neuroactive steroids seem altered during depressive episodes and 

regularized by antidepressant treatments (Romeo et al. 1998; Strohle et al. 1999; 
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Strohle et al. 2000; Uzunova et al. 1998). This could suggest, in addition to their 

respective implication in depression, a functional interrelationship between 

ovarian steroids and the 5-HT system. 

More specifically, accumulating evidence suggest a link between lowered 

levels of 5a-pregnane-3a-ol,20-one (3a,5a-THP, allopregnanolone) and 

depressive states. Indeed, depressed patients have lower CSF and plasma levels 

of 3a,5a-THP (Romeo et al. 1998; Strohle et al. 1999; Uzunova et al. 1998) than 

healthy subjects (Strohle et al. 1999; Uzunova et al. 1998). Furthermore, in 

addition to being regularized by successful antidepressant treatments (Romeo et 

al. 1998; Strohle et al. 1999; Uzunova et al. 1998), the mood improvement was 

correlated with the increase of 3a,5a-THP levels in the CSF (Uzunova et al. 

1998). 

Studies in rodents also support these observations. In a model of 

depression, long-term social isolation decreased cerebral levels of 3a,5a-THP in 

mice (Dong et al. 2001) and rats (Serra et al. 2000). In rats, bilateral olfactory 

bulbectomy (OBX), a well recognized model of depression, also results in an 

important reduction of 3a,5a-THP leve1s in specific cerebral regions, which are 

relevant to depression such as the amygdala, the frontal cortex and the 

hippocampus (Uzunova et al. 2003). Chronic treatments (3 weeks) with various 

antidepressants (desipramine, fluoxetine, sertraline and venlafaxine) completely 

reversed this reduction in the cerebral cortex of OBX rats (Uzunova et al. 2004). 
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Furthennore, fluoxetine and venlafaxine also increased 3a,5a-THP levels in the 

cerebral cortex of sham-operated rats (Uzunova et al. 2004). This had previously 

been shown with the selective serotonin reuptake inhibitors (SSRIs) fluoxetine or 

paroxetine, which rapidly increased the rat cerebral content of 3a,5a-THP 

(Uzunov et al. 1996). 3a,5a-THP was also reported to have antidepressant-like 

effects in the Porsolt forced swimming test (Khisti et al. 2000; Khisti & Chopde 

2000). Conversely, inhibition of its fonnation, using finasteride (a selective 

inhibitor of 5a-reductase (Azzolina et al. 1997), which is the enzyme 

metabolizing progesterone into 5a-pregnane-3,20-dione), leads to depressive-like 

symptoms in the same paradigm as well as to anxious behavior in the open field 

task (Frye & Walf2002) . 

We have previously shown, usmg in vivo electrophysiological 

extracellular recordings, that a 7-day treatment with 3a,5a-THP drastically 

increased the spontaneous firing activity of DRN 5-HT neurons in female rats, 

thus offering a biological basis for the putative antidepressant properties of 

3a,5a-THP. The present study was undertaken to better characterize this 

modulation in tenns of time frame and mechanism of action. Similarly, the 

effects of ganaxolone, the 3p-methylated synthetic analog of 3a,5a-THP 

(Monaghan et al. 1997), were also assessed. Finally, potential therapeutic 

avenues were also investigated for these two steroids . 
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METHODS 

AnimaIs 

Freely cycling female Sprague Dawley rats (Charles-River, St-Constant, 

Québec, Canada), weighing between 250g and 325g and kept under standard 

laboratory conditions (12:12 light-dark cycle with access to food and water ad 

libitum), were used for the experiments. Ethical committee approval was obtained 

from the McGilI University Animal Ethical Care Committee and alI their rules 

and regulations were followed. 

Treatments with steroMs 

AlI steroids were dissolved in 3% (v/v) ethanolldistilled water and 

administered intracerebroventricularly (i.c.v.) by mean of a canulae (ALZA, Palo 

Alto, CA, USA), which was implanted in the left lateral ventricle of the rat brain. 

For acute administrations, the canulae was attached to a 5 !J.I Hamilton syringe, 

while for chronic treatments it was connected to a subcutaneous osmotic 

mmlpump (ALZA, Palo Alto, CA, USA), which continuously delivered the 

steroids. Surgeries were performed as described by the manufacturer (ALZA, 

Palo Alto, CA, USA) and under chloral hydrate anesthesia. Steroid doses used 

during acute and chronic administrations were 1 !J.g/kg and 50!J.g/kg!day, 

respectively . 
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Females received an acute injection, a 3- or a 7-day treatment with 50.­

pregnane-3a.-ol,20-one (30.,50.-THP, allopregnanolone). This steroid was also 

administered concomitantly with the progesterone receptor antagonist RU486 for 

7 days. Sorne females received only RU486 for 7 days. Ganaxolone was 

administered for 3 or 7 days. Controls were treated with the vehic1e (3% ethanol) 

for the appropriate period of time. FinalIy, 30.,50.-THP, ganaxolone and the 

vehic1e were co-administered with citalopram (a selective serotonin reuptake 

inhibitor or SSRI, 10mg/kglday) for 3 days. Citalopram was dissolved in distilled 

water and administered by mean of a subcutaneous osmotic minipump (ALZA, 

Palo Alto, CA, USA). 

Electrophysiological Experiments 

AlI rats were anesthetized by an intraperitoneal injection of chloral hydrate 

(400 mg/kg). Additional doses of 100 mg/kg were administered when needed. 

Rats were immobilized in a stereotaxie apparatus and their body temperature was 

maintained at approximately 37°C throughout the experiment by a thermistor­

controlled heating pad. 

Extracellular unitary recording of serotonergic neurons were obtained with 

singie-barelled glass micropipettes pulled in a conventional manner, filled with a 

lM NaCI solution and of final impedance ranging between 2 and 6 Mn. A 4 mm­

diameter hole was drilled in the skull of the rat about 1 mm anterior of lambda 

and centered with respect to the midline. The unitary activity of DRN 5-HT 
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neurons was recorded by lowering the micropipette along descents covering the 

nucleus from 300 /lm to about 1500 /lm anterior of lambda. Spontaneously active 

DRN 5-HT neurons were identified according to the criteria of Aghajanian: a 

slow and regular rythmical firing rate and a shape of action potential with a large 

initial positive spike of 1-2 msec duration and a postspike hyperpolarization 

(Aghajanian et al. 1978; Aghajanian & Vandermaelen 1982). 

For each experimental group, the basal firing rate of 5-HT neurons was 

calculated by averaging the firing rate of each neuron measured. This was 

achieved by recording, for at least 60 seconds, each 5-HT neuron encountered in 

complete descents in the DRN of at least 5 rats. Regarding acute experiments, 

however, at least 10 rats were used for each experimental group. 

Statistics 

Statistical analyses were performed with the software SigmaStat for 

Windows Version 2.0 (Jandel Corporation). Average values are expressed as 

mean ± S.E.M. One-way ANOV A, with alpha = 0.05, followed by a post-hoc 

analysis using Tukey's method of comparison versus control were used for 

evaluating statistical significance. Results (F) of statistical analysis are expressed 

in terms of degrees of freedom between groups and number of groups compared. 

Significance was considered for P<0.05. 
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Drugs 

Steroids used were: 5a-pregnane-3a-ol,20-one, RU486 (purchased from 

Steraloids) and 3a-hydroxy-3j3-methyl-5a-pregnan-20-one (Ganaxolone, a 

generous gift from Dr. Purdy, Department of Psychiatry, University of Califomia, 

San Diego, CA, USA). Citalopram was kindly provided by Lundbeck 

(Copenhagen, Denmark). 
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RESULTS 

As previously shown (Robichaud & Debonnel 2004), a 7-day treatment 

with 3a,5a-THP increased the firing activity of 5-HT neurons in female rats (1.88 

± 0.19 Hz, n = 77 compared to 1.26 ± 0.09 Hz, n = 63, [F(2,3) = 4.40, P<0.05, 

Tukey's test, q = 3.4, P<0.05], Fig. lB). In order to mIe out the implication of 

progesterone receptor (PR) in mediating this effect, sorne rats were concomitantly 

treated with the PR antagonist RU486. As expected, an elevated firing activity 

was still present after this combined treatment as compared to controls (2.04 ± 

0.26 Hz, n = 56 compared to 1.26 ± 0.09 Hz, n = 63, [F(2,3) = 4.40, P<0.05, 

Tukey's test, q = 3.9, P<0.05], Fig. lB). However, RU486 had an unexpected 

effect on its own and enhanced the firing activity of 5-HT neurons (1.75 ± 0.18 

Hz, n = 79 compared to 1.16 ± 0.09 Hz, n = 64, [F(1,2) = 7.85, P<O.Ol, Tukey's 

test, q = 4.0, P<0.05], Fig. 2). 

This 3a,5a-THP-induced elevation in 5-HT neuronal firing rate could also 

be observed following only 3 days of administration (1.92 ± 0.23 Hz, n = 51 vs 

0.98 ± 0.07 Hz, n = 58, [F(1,2) = 16.59, P<O.OOl, Tukey's test, q = 5.8, P<0.05], 

Fig. 3). Furthermore, acute experiments showed an increase in firing activity as 

soon as 30 to 60 minutes following a single injection of 3a,5a-THP (1 ).!g/k, 

i.c.v., Fig. 4). Before, and up to 30 minutes following the injection, no difference 

in 5-HT neuronal firing rate was observed between treated rats and controls (1.35 

± 0.13 Hz, n = 42 vs 1.23 ± 0.13 Hz, n = 25, [F(1,2) = 0.38, n.s.] and 1.49 ± 0.12 

Hz, n = 64 vs 1.20 ± 0.11 Hz, n = 50, [F(1,2) = 3.21, n.s.], respectively, Fig. 4). 
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However, in the following timeframes (i.e. 30 to 59 and 60 to 90 minutes post­

injection), this difference became statistically significant (1.80 ± 0.13 Hz, n = 79 

vs 1.24 ± 0.10 Hz, n = 66, [F(1,2) = 11.49, P<O.OOl, Tukey's test, q = 4.8, 

P<0.05] and 1.75 ± 0.11 Hz, n = 77 vs 1.28 ± 0.11 Hz, n = 54, [F(1,2) = 8.26, 

P<0.005, Tukey's test, q = 4.1, P<0.05], respectively, Fig. 4). 

It is weIl established that short-term administration of SSRIs decreases the 

firing activity of 5-HT neurons in male rats (Chaput et al. 1986; Romero et al. 

1996). This was also true in the CUITent experiments with females, as a 3-day 

administration of citalopram reduced the firing activity of 5-HT neurons (0.58 ± 

0.06 Hz, n = 54 compared to 1.17 ± 0.10 Hz, n = 51, [F(2,3) = 13.25, P<O.OOl, 

Tukey's test, q = 6.3, P<0.05], Fig. 5). It was thus hypothesized that 3a,5a-THP 

might prevent this initial reduction in firing activity. Indeed, the 5-HT neuronal 

firing rate of rats co-treated with 3a,5a-THP and citalopram did not really differ 

from that ofcontrols (1.16 ± 0.12 Hz, n = 50 compared to 1.17 ± 0.10 Hz, n = 51, 

[F(2,3) = 13.25, P<O.OOl, Tukey's test, q = 0.13, n.s.], Fig. 5). 

The effect of ganaxolone was then investigated. Both a 3- and a 7 -day 

administration of ganaxolone increased the firing activity of 5-HT neurons as 

compared to the appropriate controls; 1.55 ± 0.11 Hz, n = 72 vs 1.15 ± 0.09 Hz, n 

= 52, [F(2,3) = 6.99, P<O.Ol, Tukey's test, q = 3.7, P<0.05] and 1.52 ± 0.11 Hz, n 

= 56 vs 1.12 ± 0.09 Hz, n = 43, [F(1,2) = 7.54, P<O.Ol, Tukey's test, q = 3.9, 

P<0.05], respectively (Fig. 6). Ganaxolone was also able to partially prevent the 
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citalopram-induced decrease in firing activity of 5-HT neurons; the firing rate was 

significantly lower in citalopram-treated rats as compared to controls (0.51 ± 0.06 

Hz, n = 48 vs 1.08 ± 0.09 Hz, n = 51, [F(2,3) = 8.86, P<O.OOI, Tukey's test, q = 

5.7, P<0.05]) but this difference no longer reached statistical significance when 

ganaxolone was co-administered (0.94 ± 0.12 Hz, n = 57 vs 1.08 ± 0.09 Hz, n = 

51 [F(2,3) = 8.86, P<O.OOI, Tukey's test, q = 1.5, n.s.], Fig. 7). 
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DISCUSSION 

The first finding of this study is the enhanced firing activity of 5-HT 

neurons following a treatment with either 3a,5a-THP or ganaxolone. A greater 

firing activity of 5-HT neurons, which was previously shown in female rats after 7 

days of 3a,5a-THP administration, was confirmed by the present experiments. 

Furthermore, this increase was already present after 3 days of treatment and as 

soon as 30-60 minutes following an acute administration. This suggests a very 

rapid onset of action of 3a,5a-THP, which appears to be sustained during at least 

7 days of treatment. Similarly, both a 3- and a 7 -day administration of the 

synthetic analog ganaxolone also enhanced the firing activity of 5-HT neurons. 

The mechanism(s) by which 3a,5a-THP and ganaxolone increase the 5-

HT neuronal firing activity remains unc1ear. Nevertheless, the fact that 3a,5a­

THP induced a very rapid (within a few minutes) enhancement of the firing 

activity of 5-HT neurons suggests that a genomic mechanism of action, such as 

mediated via PR, is less likely. We have previously shown that during pregnancy 

the spontaneous firing rate of 5-HT neurons increases in parallel with plasmatic P 

levels, to finally reach an enhancement greater than a 100% in late pregnancy as 

compared to control females (Klink et al. 2002). In rats, the principal metabolic 

pathway for cerebral P seems to be its sequential reduction into 5a-DHP and 

3a,5a-THP (Karavolas & Hodges 1991; Komeyev et al. 1993). Furthermore, 

3a,5a-THP has often been shown to be responsible for various effects observed 

with P on neuronal activity (Costa et al. 1995; Gulinello et al. 2001; Smith et al. 
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1998a; Smith et al. 1998b). It is therefore possible that 3a,5a-THP mediates the 

modulation of 5-HT neuronal activity observed during pregnancy (Klink et al. 

2002). This is also supported by the lack of effect ofP itself on this firing activity 

(Robichaud & Debonnel 2004). During pregnancy, we showed that 5-HT1A 

autoreceptors were partially desensitized (Robichaud et al. 2002). If this 

desensitization was brought about by 3a,5a-THP, which levels rise dramatically 

during pregnancy, intracerebral administration of this steroid would also be 

expected to reduce the function of 5-HT1A autoreceptors. This could explain, at 

least in part, the enhanced 5-HT neuronal firing activity reported by the present 

study. 

The modulation of 5-HT neuronal activity by these neuroactive steroids 

could also result from their interaction with GABAA receptors since both of them 

are potent positive allosteric modulators (Carter et al. 1997). In rats, DRN 5-HT 

neurons are under a tonic GABAergic inhibition, which is mostly mediated by 

GABAA receptors (Gervasoni et al. 2000; Innis & Aghajanian 1987). 

Interestingly, the GABAergic tonic inhibition of 5-HT neurons was dramatically 

reduced during pregnancy as compared to virgin females (Robichaud et al. 2002). 

Again, if 3a,5a-THP was responsible for the reduced GABAergic tonic inhibition 

of the 5-HT neurons, it would probably occur in the present protocol. 

Furthermore, it is plausible that ganaxolone, having a very similar 

pharmacological profile at GABAA receptors, might have a comparable effect. In 

addition, it could explain the increase in firing activity of 5-HT neurons induced 
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by ganaxolone. Accumulating evidence suggests that high levels of neuroactive 

steroids reduce GABAA receptor responsiveness (Concas et al. 1998; Friedman et 

al. 1993; Gulinello et al. 2001; Yu et al. 1996; Yu & Ticku 1995a; Yu & Ticku 

1995b)(Yu & Ticku 1995a). This could thus be a mechanism of action whereby 

3a,5a-THP and ganaxolone could reduce GABAA receptor function and the tonic 

GABAergic inhibition on 5-HT neurons, and thus enhance the firing rate of these 

neurons. 

One of the objectives ofthis study was to mIe out the implication ofPR in 

the effects observed with 3a,5a-THP. Therefore, the PR antagonist RU486 was 

used. Not only was it not able to prevent the increase in 5-HT neuronal firing 

activity induced by 3a,5a-THP but RU486 also enhanced it by itself. Although 

puzzling, these results are interesting. RU486 is not selective to PR and can also 

bind glucocorticoid receptors (GR) (Nordeen et al. 1995). Antagonistic effects on 

GR are unlike1y to underlie this increase in 5-HT neuronal firing activity for two 

reasons. First, corticosterone was shown to impede the function of 5-HTIA 

autoreceptors via GR (Fairchild et al. 2003; Laaris et al. 1995; Laaris et al. 1999) 

and second, the GR antagonist RU38486 alone had no effect on the function of 5-

HT lA autoreceptors (Laaris et al. 1995). However, there is evidence of RU486 

acting as a full agonist at PR and GR in certain conditions such as stimulation of 

the cAMP cascade (Beek et al. 1993), activation of protein kinase A (Nordeen et 

al. 1995), or when more coactivators than corepressors are present in the cell (Liu 

et al. 2002). Agonistic properties of RU486 at PR are not likely to lead to an 
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increase in 5-HT neuronal firing activity since P itself was ineffective in this 

regard. On the other hand, since activation of GR reduced the 5-HT1A 

autoreceptor function, if the conditions for RU486 to act as an agoni st at GR were 

present in the present experiments in 5-HT neurons, it might explain the increase 

in their firing activity. Needless to say that further experiments would be needed 

to c1arify the mechanism of action underlying these observations. 

The third and most interesting finding of this study is the ability of both 

3a,5a-THP and ganaxolone to prevent the SSRI citalopram to induce a reduction 

of the firing activity of 5-HT neurons. It has been established for many years that 

treatments with SSRIs cause an initial decrease in the firing activity of 5-HT 

neurons (Chaput et al. 1986; Romero et al. 1996). The main mechanism of action 

whereby this occurs is well characterized (see review by Blier and de Montigny, 

1999). Briefly, SSRIs, by blocking reuptake, increase the amount of extracellular 

5-HT, which activates somatodendritic 5-HT1A autoreceptors. This leads, initially 

to an inhibition of the firing activity of 5-HT neurons and, later, to graduaI 

desensitisation of these receptors. Therefore, 5-HT neurons eventually recover 

their initial action potential firing frequency, and the SSRI-induced increase in 

synaptic 5-HT concentration can finally enhance 5-HT neurotransmission. This 

desensitisation process takes about two to three weeks, which is consistent with 

the delayed therapeutic ons et of action of antidepressants. This underscores the 

importance of developing adjuvant treatments, which could reduce this delay. 

The reduction of the firing activity of 5-HT neurons following short-term 
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administration of SSRIs has been repeatedly shown in male rats (Chaput et al. 

1986; Romero et al. 1996). However, to the authors' knowledge, this is the first 

report confirming that it is also true concerning females. Furthermore, the present 

report indicates that a 3-day treatment with either 3a,5a-THP or ganaxolone, 

concomitantly with the SSRI citalopram, can prevent this initial reduction of the 

firing activity of 5-HT neurons in females. If the delay in therapeutic onset of 

action of SSRIs is indeed due to the time that 5-HT neurons recover from the 

initial reduction in firing activity, then preventing this reduction might be very 

helpful in accelerating the beneficial effects of these antidepressants. Thus, 

3a,5a-THP or ganaxolone could be good candidate as adjuvants to SSRI for the 

treatment of depressed women. 

Both 3a,5a-THP and ganaxolone are potent positive allosteric modulators 

of GABAA receptors (Carter et al. 1997). Accordingly, both of them inhibit 

e5S]TBPS binding and enhance the muscimol and benzodiazepine binding to rat 

brain membranes (Carter et al. 1997), and they both potentiate GABA-induced 

chloride currents (Carter et al. 1997; Mascia et al. 2002). Furthermore their 

efficacy and potency are similar, with ganaxolone being just a little less potent 

than 3a,5a-THP (Carter et al. 1997). However, an important distinction between 

them is found in the fact that ganxolone is not metabolized into a hormonally 

active compound (Monaghan et al. 1999). For this reason, ganaxolone was 

expected to be a good candidate for treating epilepsy (Monaghan et al. 1999). 

Indeed, it was found to efficiently protect against a variety of seizure types in 

377 



• 

• 

• 

rodents (Carter et al. 1997; Gasior et al. 2000; Reddy & Rogawski 2000a; Reddy 

& Rogawski 2000b) and to have antiepileptic activity in humans (Laxer et al. 

2000). Combined with the present results, the fact that ganaxolone has already 

been used safely in humans in a therapeutic context suggests that this synthetic 

steroid could possibly be useful in the treatment of depression. Furthermore, high 

doses of ganaxolone (twice its EDso) did not induce tolerance after 7 days of 

administration (Reddy & Rogawski 2000a). AIso, based on experiments 

assessing changes in GABAA receptor subunit following withdrawal from long­

term exposure to these steroids, ganaxolone is expected to induce less withdrawal 

effects than those observed after discontinuation of chronic treatment with 3a,5a­

THP or other GABAA receptor positive modulators (Mascia et al. 2002). This 

lack of tolerance development and little withdrawal effects further supports 

ganaxolone as a good therapeutic candidate. 

There are data showing an inverse correlation between CSF and plasma 

levels of 3a,5a-THP and the intensity of major depression in humans (Romeo et 

al. 1998; Strohle et al. 1999; Uzunova et al. 1998). Moreover, animal models 

have shown that reduced cerebral levels of 3a,5a-THP are associated with 

depressive-like behavior (Dong et al. 2001; Frye & Walf 2002; Uzunova et al. 

2003; Uzunova et al. 2004) while administration of this steroid leads to 

antidepressant-like effects (Khisti et al. 2000; Khisti & Chopde 2000). 

Unfortunately, no study has yet assessed the antidepressant-like effect of 

ganaxolone. However, different pieces of evidence could suggest similar 
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properties as compared to 3a,5a-THP. For instance, the antidepressant-like effect 

of 3a,5a-THP in the Porsolt forced swimming test could be potentiated by the 

GABAA agoni st muscimol and prevented by the antagonist bicuculline, indicating 

that this effect is mediated, at least in part, by GABAA receptors (Khisti et al. 

2000; Khisti & Chopde 2000). Ganaxolone, having similar pharmacological 

characteristics at GABAA receptors as 3a,5a-THP (Carter et al. 1997), may 

potentially lead to similar behavioral effects. Furthermore, ganaxolone has 

anticonvulsant activity (Carter et al. 1997; Reddy & Rogawski 2000a; Reddy & 

Rogawski 2000b) similar to that of 3a,5a-THP (Finn & Gee 1994; Kokate et al. 

1994) and could be predicted from their respective in vitro pharmacological 

properties at GABAA receptors (Monaghan et al. 1997). Finally, the present 

experiments show that both 3a,5a-THP and ganaxolone increase the firing 

activity of 5-HT neurons, and that they both can prevent the citalopram-induced 

reduction of this activity. This not only offers a biological basis for the 

antidepressant-like effect of 3a,5a-THP but also supports that ganaxolone might 

have such beneficial properties. Furthermore, these data suggest that these 

steroids could be interesting adjuvant to reduce the delay before therapeutic onset, 

seen with SSRls. Interestingly, in clinical trials, ganaxolone was shown to have 

an interesting pharmacokinetic profile and to be safe and well tolerated, up to 

relatively high doses, in both men and women (Monaghan et al. 1997). Since 

naturally occurring neuroactive steroids are not suitable for chronic treatments 

(due to their very short half-life)(Gasior et al. 2000), if ganaxolone had 

antidepressant properties, it could be especially promising. 
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The present data c1early demonstrate the ability of 3a,5a-THP and 

ganaxolone to positively modulate the firing activity of DRN 5-HT neurons in 

female rats within a short period of time. Moreover, these results suggest that 

these neuroactive steroids could reduce the delay of therapeutic onset of 

citalopram and possibly of other SSRIs. Considering the pharmacological profile 

of ganaxalone, this neuroactive steroid might represent an interesting adjuvant in 

the treatment of mood disorders in female . 
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FIGURE LEGENDS 

Figure 1: (A) Integrated firing rate histograms of 5-HT neurons, showing their 

spontaneous firing aetivity, reeorded in one eleetrode deseent in the DRN of 

female eontrols (3% ethanoI, i.e.v., 7 days) and following a treatment with 3a,5a­

THP alone or eoneomitantly with RU486 (50llglkglday, i.e.v., 7 days, eaeh). (B) 

Spontaneous firing rate of female DRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in eontrols and following a 7 -day treatment with 3a,5a-THP alone or 

with RU486 (50llglkglday, i.e.v., eaeh). In this and the following figures, the 

number ofneurons reeorded is indieated in eaeh box. Stars indieate P < 0.05 . 
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Figure 2: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in controis and femaie treated with RU486 (50 J..lglkglday, i.c.v., 7 days). 

The star indicates P < 0.01. 
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Figure 3: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) following a 3-day treatment with 3a,5a-THP (50 f-lg/kg/day, i.e.v.) or the 

vehic1e (3% ethanol, i.e.v.). The star indieates P < 0.001. 
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Figure 4: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) before as well as at various time period (00-29, 30-59 and 60-90 minutes) 

following a single injection of 3% ethanol (controls) or 3a,5a-THP (1 /-lg!kg, 

i.c.v.). Stars indicate P < 0.05 . 
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Figure 5: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) following a 3-day eo-treatment with eitalopram (10 mg/kg/day, s.e.) and 

either the vehic1e (3% ethanol, i.e.v.) or 3a,5a-THP (50 Jlg/kg/day, i.e.v.). The 

star indieates P < 0.05 . 
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Figure 6: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) following A) a 3-day and B) a 7-day treatment with ganaxolone (50 

flglkg/day, i.c.v.), and their respective controls (3% ethanol, i.c.v. for 3 or 7 days). 

The stars indicate P < 0.001. 
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Figure 7: Spontaneous firing activity of DRN 5-HT neurons expressed in Hz 

(mean ± S.E.M.) following a 3-day co-treatment with citalopram (10 mg/kg/day, 

s.e.) and either the vehic1e (3% ethanol, i.c.v.) or ganaxolone (50 Ilg/kg/day, 

i.c.v.). The star indicates P < 0.05 . 
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Foreword to Chapter 7 

DHEAS modulation the firing activity of dorsal raphe nucleus 

serotonergic neurons 

The last study indicated a rapid increase in 5-HT neuronal firing activity 

following administration of 3a,5a-THP and ganaxolone to females. Furthermore, 

both these steroids were able to prevent the reduction in firing frequency induced 

by the SSRI citalopram. If also true in humans, these data would suggest that 

these steroids could be interesting candidates as adjuvants to SSRIs in the 

treatment of depression. However, one of the earlier studies had shown that the 

effect of 3a,5a-THP was limited to females . 

Evidence suggests antidepressant properties for dehydroepiandrosterone 

sulfate (DHEAS, see introduction). In hope of finding a steroid, which has 

antidepressant potential and which could be effective regardless of gender, the 

aim of this study was to assess the effects of DHEAS on the spontaneous 5-HT 

neuronal firing activity and its ability to prevent the citalopram-induced reduction 

of this activity in both males and females . 
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ABSTRACT 

Accumulating evidence suggest antidepressant properties for DHEA and 

DHEAS in both animal models and clinical trials. We have already shown that 

DHEA increased the firing activity of dorsal raphe nucleus (DRN) serotonergic 

(5-HT) neurons in female but not male rats. This study was thus undertaken to 

assess the effect of DHEAS on the 5-HT neuronal firing activity in both males 

and females. In vivo extracellular unitary recording of 5-HT neurons performed 

in the DRN of these rats revealed that the intracerebroventricular (i.c.v.) 

administration of DHEAS for either 3 or 7 days increased the firing activity of 5-

HT neurons in both males and females. Furthermore, when co-administered with 

citalopram (s.c.) for 3 days, DHEAS partially prevented the SSRI-induced 

reduction in firing frequency, irrespectively of gender. The present findings are in 

accordance with the putative antidepressant properties of DHEAS and also offer a 

physiological basis for these effects. Finally, these results could suggest a 

potential therapeutic application for DHEAS as an adjuvant to SSRls in the 

treatment of depression. 
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INTRODUCTION 

There is evidence suggesting that dehydroepiandrosterone and its sulfated 

moiety (DHEA and DHEAS) have antidepressant properties. For instance, 

DHEA was shown to be beneficial in the treatment of dysthymia (Bloch et al. 

1999) and major depression (Bloch et al. 1999; Wolkowitz et al. 1999; 

Wolkowitz et al. 1995; Wolkowitz et al. 1997). The response rate of patients 

treated with DHEA was greater than with placebo (Bloch et al. 1999; Wolkowitz 

et al. 1999). Interestingly, during these treatments, the plasma levels of DHEAS 

increased at least 3 times more than that ofDHEA (Bloch et al. 1999; Wolkowitz 

et al. 1995). Furthermore, the changes in mood ratings were correlated with the 

increase in plasma levels ofDHEAS (Bloch et al. 1999) rather than DHEA (Bloch 

et al. 1999). In older patients, improvement of depressive symptoms seemed 

associated with increases of both DHEA and DHEAS levels (Wolkowitz et al. 

1995; Wolkowitz et al. 1997). 

In the Porsolt forced swimming test, used to predict antidepressant effects, 

DHEAS was shown to reduce the immobility time, indicating antidepressant-like 

effects for this steroid (Reddy et al. 1998; Urani et al. 2001). DHEA also reduced 

the immobility time in this paradigm but only in high-anxiety rats (Prasad et al. 

1997), which might suggest a lower efficacy for DHEA as compared to that ofits 

sulfated counterpart. Taken together these data suggest antidepressant properties 

for DHEA(S) and that DHEAS might in fact be responsible for these effects . 
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The serotonin (5-HT) system has also long been implicated in the 

neurobiology of depression (Coppen 1967; Lapin & Oxenkrug 1969). The most 

compelling evidence relies on the enhancement of 5-HT neurotransmission 

observed with antidepressant treatments (Blier & de Montigny 1999). Supporting 

the putative antidepressant properties of DHEA, we previously showed that this 

neurosteroid increased the firing activity of 5-HT neurons from the dorsal raphe 

nucleus (DRN) in female rats (Robichaud & DebonneI2004). However, this was 

not true in males (Robichaud & Debonnel, submitted). Based on the ab ove­

mentioned literature, it deemed important to test DHEAS in our paradigm. The 

rationale was that if DHEAS was indeed the active molecule in that respect, it 

might have a more pronounced effect than DHEA in males and might be potent 

enough to modulate the firing activity of their 5-HT neurons. The goal of this 

study was thus to assess the effect of DHEAS on the spontaneous firing activity of 

DRN 5-HT neurons in both males and females, and to investigate a potential 

therapeutic application. 
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METHODS 

Animais 

AIl rats used were Sprague Dawleys (Charles-River, St-Constant, Québec, 

Canada), weighed between 225 g and 325 g and were kept under standard 

laboratory conditions (12:12 light-dark cycle with access to food and water ad 

libitum). Freely cycling females and males were used for the experiments. 

Ethical committee approval was obtained from the McGill University Animal 

Ethical Care Committee and all their rules and regulations were followed. 

Treatments 

DHEAS was dissolved in 3% (v/v) ethanol/distilled water. A dose of 50 

!-lg/kglday was administered continuously and intracerebroventricularly (i.c.v.) by 

means of a subcutaneous osmotic minipump connected to a canulae (ALZA, Palo 

Alto, CA, USA). The canulae was implanted in the left lateral ventricle of the rat 

brain and the surgery was performed as described by the manufacturer (ALZA, 

Palo Alto, CA, USA), under chloral hydrate anesthesia. Both females and males 

received a 3- or a 7-day treatment ofDHEAS. Controls received the vehicle (3% 

ethanol) for the same period of time. DHEAS and the vehicle were also co­

administered with citalopram (a selective serotonin reuptake inhibitor or SSRI, 

10mglkglday, s.c.) for 3 days. Citalopram, dissolved in distilled water, was 

administered by means of a subcutaneous osmotic minipump (ALZA, Palo Alto, 

CA, USA), for a daily dose of 10 mg/kg. 
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Electrophysiological Experiments 

AlI rats were anesthetized by an intraperitoneal injection of chloral hydrate 

(400 mg/kg). Additional doses of 100 mg/kg were administered when needed. 

Rats were irnmobilized in a stereotaxie apparatus and their body temperature was 

maintained at approximately 37° C throughout the experiment by a thermistor­

controlled heating pad. Extracellular unitary recordings of serotonergic neurons 

were obtained with singie-barelled glass micropipettes pulled in a conventional 

manner, filled with a lM NaCI solution and of final impedance ranging between 2 

and 6 Mn. A 4 mm-diameter hole was drilled in the skull of each rat at about 1 

mm anterior of lambda and centered with respect to the midline. The unitary 

activity of DRN 5-HT neurons was recorded by lowering the micropipette along 

descents covering the nucleus from 300 /lm to about 1500 /lm anterior of lambda. 

Spontaneously active DRN 5-HT neurons were identified according to the criteria 

of Aghajanian: a slow and regular rythmical firing rate and a shape of action 

potential with a large initial positive spike of 1-2 msec duration and a postspike 

hyperpolarization (Aghajanian et al. 1978; Aghajanian & Vandermaelen 1982). 

The basal firing rate of 5-HT neurons was ca1culated by averaging the firing rate 

of each neuron measured. This was achieved by recording, for at least 60 

seconds, each 5-HT neuron encountered in complete descents in the DRN of at 

least 5 rats. 
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Statistics 

Statistical analyses were performed with the software SigmaStat for 

Windows Version 2.0 (Jandel Corporation). Average values are given as the mean 

± S.E.M. One-way ANOV A, with alpha = 0.05, followed by a post-hoc analysis 

using Tukey's method of comparison versus control was used for evaluating 

statistical significance. Results (F) of statistical analysis are expressed in terms of 

degrees of freedom between groups compared and number of groups compared. 

Significance was considered for P<0.05. 

Drugs 

Dehydroepiandrosterone sulfate (DHEAS) was purchased from Steraloids 

and Citalopram was kindly provided by Lundbeck Canada (Montréal, Québec, 

Canada) . 
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RESULTS 

A 7-day treatment with DHEAS increased the firing activity of 5-HT 

neurons in both females (1.59 ± 0.12 Hz, n = 92 compared to 1.26 ± 0.09 Hz, n = 

75, [F(1,2) = 4.66, P<0.05, Tukey's test, q = 3.1, P<0.05], Fig. 1) and males (2.02 

± 0.18 Hz, n = 74 compared to 1.35 ± 0.11 Hz, n = 62, [F(1,2) = 8.73, P<0.005, 

Tukey's test, q = 4.2, P<0.05], Fig. 2). This increase could also be observed as 

early as after 3 days of treatment in both females (1.78 ± 0.17 Hz, n = 48 

compared to 1.38 ± 0.11 Hz, n = 61, [F(1,2) = 4.29, P<0.05, Tukey's test, q = 2.9, 

P<0.05], Fig. 1) and males (1.69 ± 0.10 Hz, n = 82 compared to 1.25 ± 0.11 Hz, n 

= 69, [F(1,2) = 8.88, P<0.005, Tukey's test, q = 4.2, P<0.05], Fig. 2). 

It is well known that the short-term administration of SSRIs decreases the 

firing activity of 5-HT neurons (Chaput et al. 1986; Romero et al. 1996). This 

was also observed in the present experiments, in both sexes, as a 3-day 

administration of citalopram significantly reduced the firing activity of 5-HT 

neurons in females (0.53 ± 0.06 Hz, n = 52 compared to 1.14 ± 0.10 Hz, n = 42, 

[F(2,3) = 9.33, P<O.OOl, Tukey's test, q = 6.1, P<0.05], Fig. 3A) and males (0.63 

± 0.07 Hz, n = 61 compared to 1.25 ± 0.11 Hz, n = 69, [F(2,3) = 11.97, P<O.OOl, 

Tukey's test, q = 6.8, P<0.05], Fig. 3B). It was then investigated whether the 

DHEAS-induced increase in firing rate could compensate for the suppressant 

effect of citalopram. In both sexes, co-treatment with DHEAS with citalopram 

only partially prevented the reduction in firing activity (females: 0.82 ± 0.10 Hz, n 

= 69 compared to 1.14 ± 0.10 Hz, n = 42, [F(2,3) = 9.33, P<O.OOl, Tukey's test, q 

= 3.4, n.s.], Fig. 3A; males: 0.87 ± 0.08 Hz, n = 69 compared to 1.25 ± 0.11 Hz, n 

= 69, [F(2,3) = 11.97, P<O.OOl, Tukey's test, q = 4.4, n.s., Fig. 3B). 
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DISCUSSION 

The main finding of this study is the increase in 5-HT neuronal firing 

activity following short (3 days) and longer (7 days) treatments with DHEAS in 

male and female rats. This supports the proposed antidepressant properties of 

DHEAS (Bloch et al. 1999; Reddy et al. 1998; Urani et al. 2001; Wolkowitz et al. 

1995; Wolkowitz et al. 1997) and offers a physiological mechanism through 

which they may take place. Interestingly, DHEAS seemed equally effective in 

both sexes as opposed to DHEA, which increased the firing activity of 5-HT 

neurons only in females (Robichaud & Debonnel 2004, submitted). This is in 

accordance with our initial hypothesis that DHEAS might be the active molecule 

in this respect. In males, there might not be enough of DHEAS formed from 

DHEA to modulate the firing activity of 5-HT neurons but when DHEAS itself is 

administered, such changes can occur. 

The mechanism of action underlying this effect of DHEAS is unc1ear. 

However, based on its pharmacological properties on various receptors, several 

hypotheses can be proposed. For instance, DHEAS is an allosteric antagonist of 

GABAA receptors (Demirgoren et al. 1991; EI-Etr et al. 1998; Hansen et al. 1999; 

Majewska et al. 1990; Mehta & Ticku 2001; Shen et al. 1999; Sousa & Ticku 

1997) much more potent than DHEA in this respect (Demirgoren et al. 1991; 

Imamura & Pras ad 1998; Mehta & Ticku 2001). The rat DRN 5-HT neurons are 

under a tonic GABAergic inhibition, which is mostly mediated by GABAA 

receptors (Gervasoni et al. 2000; Innis & Aghajanian 1987). DHEAS, by 
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negatively modulating GABAA receptors, might thus reduce this tonic inhibition 

of 5-HT neurons and increase their firing activity. The lesser antagonistic potency 

of DHEA as compared to DHEAS may be a reason for the lack of noticeable 

effect of DHEA on 5-HT neuronal activity in males. hl females, 5-HT neurons 

appear to be under greater GABAergic tonic inhibition (Robichaud et al. 2002), 

which may explain why DHEA nevertheless increased their neuronal activity 

(Robichaud & Debonnel 2004). 

DHEAS has also been shown to slightly potentiate the response ofNMDA 

receptors (Bowlby 1993; Park-Chung et al. 1994), which are involved in the 

glutamatergic stimulation of 5-HT neuronal activity (Jo las & Aghajanian 1997; 

Tao & Auerbach 2000). A greater NMDA-mediated glutamatergic excitatory 

input on 5-HT neurons could therefore explain their faster firing rate. However, 

the glutamatergic input on 5-HT neurons does not appear to be tonic (Tao et al. 

1997; Tao & Auerbach 2000). Therefore, it is less likely to be responsible for the 

DHEAS-induced increase in 5-HT neuronal activity. 

The presently reported effect of DHEAS could also be mediated by sigma 

(cr) receptors. Although DHEAS binds cr receptors with only low affinity 

(Maurice et al. 1996), its effects have often been shown to be cr receptor-mediated 

(Maurice et al. 1997; Maurice et al. 1998; Meyer et al. 2002; Noda et al. 2000; 

Ueda et al. 2001). For instance, DHEAS was shown to be beneficial in models of 

leaming impairment (Maurice et al. 1997), conditioned fear response (Noda et al . 

2000) and amnesia (Maurice et al. 1998), through activation of cr receptors. 
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Interestingly, the antidepressant-like effect of DHEAS in mice appears to be 

mediated, at 1east in part, by 0'] receptors since it was efficiently prevented by co­

administration a selective 0'] antagonist (Reddy et al. 1998; Urani et al. 2001). 

Studies from our lab have also shown that 0'] receptors were implicated in the 

DHEA-induced increase in 5-HT neuronal activity (Robichaud & Debonne12004) 

and that other sigma ligands had similar effects in this paradigm (Bermack & 

DebonneI2001). Together, these data could support a role for 0' receptors in the 

excitatory effect of DHEAS on 5-HT neurons. Additionally, DHEAS can 

increase glutamate release from cultured hippocampal neurons via 0'] receptors 

(Meyer et al. 2002). If this was the case in the DRN, it could increase the 

glutamatergic tone on 5-HT neurons and thus increase their firing activity as 

mentioned above . 

Another interesting finding of this study was that co-administration of 

DHEAS with citalopram for 3 days could partially compensate for reduction in 

firing activity of 5-HT neurons caused by this SSRI alone. Chronic treatments 

with SSRIs are known to cause an initial decrease in the firing activity of 5-HT 

neurons (Chaput et al. 1986; Romero et al. 1996). The underlying mechanism of 

action has been reviewed elsewhere (Blier & de Montigny 1999). Briefly, 5-HT 

reuptake blockade enhances extracellular 5-HT, thus leading to greater activation 

of somatodendritic 5-HT]A autoreceptors. This produces an initial inhibition of 

the 5-HT neuronal firing rate, which is followed by a graduaI desensitisation of 

these autoreceptors. 5-HT neurons can thus eventually recover their nonnal firing 
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activity, and the SSRI-induced greater extracellular 5-HT concentration can 

finally be expressed as enhanced 5-HT neurotransmission. This desensitisation 

process has a timeframe consistent with the delayed therapeutic onset of action 

seen with antidepressants, which emphasizes the importance of reducing this 

timeframe. 

In females, 3a,5a-THP and ganaxolone efficiently prevented this initial 

reduction of the 5-HT neuronal firing activity caused by citalopram {Robichaud 

& Debonne1, submitted}. However, 3a,5a-THP did not modulate the firing 

activity of 5-HT neurons in males {Robichaud & Debonnel, submitted}. 

Therefore, this effect of DHEAS, which is irrespective of gender, could be 

exploited in developing new therapeutic approaches for treating depression. For 

instance, this partial recovery of a normal firing activity following administration 

of both DHEAS and citalopram suggest that this combination might be helpful to 

accelerate the onset of therapeutic action of SSRIs in men, as well as women. 

DHEAS could thus be used as an adjuvant to already existing treatments. This is 

supported by the literature on clinical studies (Bloch et al. 1999; Wolkowitz et al. 

1995; Wolkowitz et al. 1997) and animal model of depression (Reddy et al. 1998; 

Urani et al. 2001), which suggests antidepressant effects for this steroid. 
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FIGURE LEGENDS 

Figure 1: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in females treated for 3 or 7 days with DHEAS (50 Ilg/kg/day, i.e.v.) and 

their respective controls (3% ethanol, i.e.v.). In this and the following figures, the 

number ofneurons reeorded is indieated in eaeh box. The star indieates P < '0.05 . 
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Figure 2: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) in males treated for 3 or 7 days with DHEAS (50 l-lg/kg/day, i.c.v.) and 

their respective controls (3% ethanol, i.c.v.). The star indicates P < 0.005 . 
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Figure 3: Spontaneous firing rate ofDRN 5-HT neurons expressed in Hz (mean ± 

S.E.M.) following a 3-day eo-treatment with eitalopram (10 mg/kg/day, s.e.) and 

either the vehic1e (3% ethanol, i.e.v.) or DHEAS (50 /Jg/kg/day, i.e.v.) in A) 

females and B) males. The star indieates P < 0.05 . 
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hnportant gender differences exist regarding affective disorders, with women 

being more at risk than men (5,12,14,17,31-33,42,59,60). There is strong evidence of a 

role for ovarian hormones in female mood disorders (20,21,29,52,54). Furthermore, a 

large body of evidence indicates a functional interrelationship between depression, 

neuroactive steroids and the serotonergic (5-HT) system, which has itself long been 

implicated in the neurobiology of affective disorders (15,56). Since the activity of 5-HT 

neurons located in the dorsal raphe nucleus (DRN) is crucial for 5-HT neurotransmission, 

the first goal of this thesis project was to evaluate gender differences in the spontaneous 

firing activity of DRN 5-HT neurons and to examine different potential mechanisms of 

action underlying these differences. The second objective was to assess the modulation 

of the 5-HT neuronal firing activity by various neuroactive steroids and compare this 

modulation between males and females. Finally, a potential therapeutic application for 

sorne of these steroids was investigated. 

As a whole, this thesis supports current molecular studies, which suggest that the 

5-HT system is modulated by neuroactive steroids. Furthermore, the results presented in 

this thesis suggest a biological basis for the greater susceptibility of women to mood 

disorders. Theyalso offer an explanation as to why sorne steroids have antidepressant 

properties. 

In the first study, a greater 5-HT neuronal firing frequency in males and pregnant 

females as compared to freely cycling females was shown. Interestingly, during 

pregnancy, the 5-HT neuronal firing activity c10sely paralleled the variations in 
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progesterone (P) plasmatic levels. Both gradually increased, peaked at the 1 i h day of 

pregnancy (P17) and then dropped just before parturition. In the postpartum period, the 

firing rate decreased as compared to P17 but was still greater than in freely cyc1ing 

females. These results demonstrated a c1ear modulation by gender and heightened 

h01TI1onallevels of the in vivo spontaneous firing activity ofDRN 5-HT neurons. 

A distinction was made between gender and hormonal status because, even 

though males have lower ovarian hormonal levels, reducing that of females through 

ovariectomy did not modulate their firing activity. This suggests that the sex difference 

in firing activity is not solely due to hormonal levels but is rather a gender-dependent 

trait, which probably arises from more complex and developmentally regulated 

mechanisms. The c1ear correlation between the neuronal activity and P levels during 

pregnancy strongly suggested an implication ofP and/or its metabolites in the modulation 

of 5-HT neurons. The involvement of P metabolites and/or other steroids was also 

suggested by the fact that following parturition, the firing activity ceased to correlate with 

P levels and did not retum to baseline as quickly. 

The second part of this study assessed the role of different regulatory mechanisms 

potentially involved in these gender differences and hormonal modifications of the 5-HT 

neuronal firing activity: 5-HTlA receptors and the tonic GABAergic inhibition of 5-HT 

neurons. The results indicated that during pregnancy, there was a partial desensitization 

of the 5-HT lA autoreceptor as well as a greatly reduced GABAergic tonic inhibition of 5-

HT neurons. Both of these observations are in accordance with and could explain the 
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greater firing activity of 5-HT neurons observed during pregnancy. In males, 5-HT 

neurons also appeared to be under a lesser GABAergic tonic inhibition, which is also in 

agreement with their faster firing activity as compared to free1y cyc1ing females. A 

gender difference in the function of the 5-HT1A autoreceptor was also observed but could 

not be simply expressed in terms of sensitivity. However, a lesser tonic activation of this 

receptor in males was hypothesized and could explain the pharmacological results as weIl 

as the faster firing frequency observed in males. These results constitute strong evidence 

of mechanisms by which gender and hormonal fluctuations could modulate the 5-HT 

neurons function and influence vulnerability to mood disorders. 

The following study investigated the modulation of 5-HT neuronal activity by P 

and its metabolites in females in order to elucidate which neuroactive steroids participate 

in the enhanced neuronal activity observed during pregnancy. The hypothesis was that 

these steroids could thus alter 5-HT neurotransmission and be relevant to mood disorders. 

Interesting findings conceming the steroid modulation ofthe 5-HT system were obtained. 

First, 7 days of administration of 513-DHP, 3a,5a-THP and DHEA c1early increased the 

firing activity of 5-HT neurons in females. Considering that P and its precursor PREG 

did not significantly modify the firing activity, and that P is rapidly metabolized in the 

brain, these results suggest that P metabolites, rather than P itself, play an important role 

in the modulation of the 5-HT neuronal activity observed during pregnancy. 

Second, the effects of 513-DHP and DHEA had a different timeframe. There was 

a net increase in firing activity following 7 days of treatment with 513-DHP, which 
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gradually faded and retumed to baseline values within 21 days. This could suggest that 

the receptor, which mediates the effect of 5~-DHP is desensitized within this time period. 

On the other hand, the effect of DHEA, which was already clearly present after 7 days, 

increased continuously during the 21-day period of investigation. Using the selective (JI 

antagonist NE-100, we showed that (JI receptors mediated, at least in part, the effect of 

DHEA but not that of 5~-DHP. Together these results indicate that more than one type 

ofreceptor is involved in the steroid modulation 5-HT neuronal activity. It is still unc1ear 

whether a given steroid acts via more than one type of receptor. However, given the 

variety of receptor-mediated effects of many steroids (see introduction), sorne of them 

could plausibly have a multiplicity of effectors. Furthermore, this could well differ 

between various steroids . 

The steroid which induced the greatest increase in 5-HT neuronal firing activity 

was 3a,5a-THP. Amongst steroids, this is also the most potent positive modulator of the 

GABAA receptor. Moreover, during pregnancy, the levels of this steroid increase 

dramatically while the GABAergic tonic inhibition of 5-HT neurons, which is mainly 

GABAA receptor-mediated, is greatly reduced. Together, these data could suggest that 

3a,5a-THP is important for the increase in firing activity observed during pregnancy and 

that it modifies the GABAergic tonic inhibition of 5-HT neurons through its action at 

GABAA receptors. They also further support the hypothesis of multiple types of 

receptors taking part in the steroid modulation ofthe 5-HT system . 
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Considering that antidepressant treatments increase 5-HT neurotransmission, 

these results, showing that 3a,5a-THP and DHEA enhance the firing activity of 5-HT 

neurons, offer a physiological basis for the antidepressant-like effects of 3a,5a-THP 

observed in animaIs (34,35) as well as the antidepressant property of DHEA in humans 

(16,80,81). 

Since a difference in 5-HT neuronal spontaneous firing rate had been observed 

between sexes in the first study, a possible gender-dependent modulation of this activity 

by neuroactive steroids was then investigated. In the third study, males were thus treated 

with the steroids which had been found to be effective in females. Surprisingly, neither 

5f3-DHP, 3a,5a-THP nor DHEA had an effect on the firing activity of 5-HT neurons in 

males. For this reason and the observation that the basal firing rate differs between sexes, 

the role of androgens was then investigated. Of castration and treatments with T and 5a­

DHT, only T enhanced the firing activity of 5-HT neurons in males. For the purpose of 

gender comparison, females received T and it also resulted in a faster firing frequency of 

their 5-HT neurons. Despite this similar net effect in both males and females, a gender 

difference was nevertheless observed. Indeed, in males, only a small proportion of 

neurons seemed responsive to T and they acquired a very fast firing activity, whereas in 

females, this effect seemed more generalized but less dramatic. This constitutes a further 

demonstration of intrinsic gender differences in the 5-HT neuronal modulation, which 

could potentially have dramatic physiological consequences regarding the neurobiology 

of depression. The results obtained in theses studies suggest that the female 5-HT system 

is more sensitive to neuroactive steroid modulation than that of males. This could 
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contribute to women's greater vulnerability to mood disorders, especially when 

considering the frequent hormonal variations that they experience throughout their life. 

In the brain, T is mainly metabolized into 17~-E and 5a-DHT (67) and since 5a­

DHT did not modulate the activity of 5-HT neurons in males, the effect of 17~-E was 

examined. It increased the firing activity of 5-HT neurons in both males and females, 

thus supporting the hypothesis that the effects of T could be mediated through its 

aromatization. These results are also in accordance with the antidepressant-like effects of 

17~-E (see introduction). In terms ofmechanisms of action, this steroid was shown to act 

on various proteins of the 5-HT system as well as on afferent systems. 

Since, in females, the most potent steroid was 3a,5a-THP, the time-frame ofits 

modulation of the 5-HT neuronal firing activity was further characterized. This study 

confirmed the previous findings and showed that this 3a,5a-THP-induced increase in 

firing frequency was already present after 3 days of administration and even appeared as 

early as 30 to 60 minutes following a single injection. This steroid thus seems to have a 

very rapid onset of action for sustained effects on the 5-HT neuronal activity. Not only 

did these results support the antidepressant-like properties of 3a,5a-THP but the time 

frame of its action also made it attractive as a potential adjuvant for treating depression. 

Naturally occurring hormones may, however, not be the best therapeutic candidates. It 

was thus important to assess whether ganaxolone, a synthetic analog to 3a,5a-THP, had 

similar effects on the firing activity of 5-HT neurons. Indeed, both a 3- and a 7-day 

treatment with ganaxolone enhanced the 5-HT neuronal activity. 
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There is a well-documented delay that precedes the therapeutic onset of action of 

antidepressants. In the case of SSRIs this delay is thought to be due to the initial 

reduction in firing activity of 5-HT neurons. Because of the rapid increase in 5-HT 

neuronal firing activity observed in our paradigm with 3a,5a-THP and ganaxolone, the 

potential of these steroids to prevent the reduction in firing frequency induced by the 

SSRI citalopram was then assessed. Interestingly, they blocked the citalopram-induced 

reduction in 5-HT neuronal firing activity. In humans, if this initial reduction is indeed 

responsible for the delay in therapeutic onset of action, these steroids could be interesting 

candidates as adjuvants to SSRIs in the treatment of depression. Ganaxolone might be 

particularly interesting in this regard since it is not metabolized into hormonally active 

compounds, does not seem to induce tolerance (58) and has been shown to be safe for 

humans (39,48). 

These exciting results seemed, however, limited to females. Therefore, we 

sought another steroid, which could possibly prevent the SSRI-induced initial reduction 

of 5-HT neuronal firing activity in both males and females. Sorne studies addressing the 

antidepressant properties ofDHEA have suggested that DHEAS might be the active form 

of this steroid. For this reason, the effect of DHEAS was assessed in this paradigm. In 

both males and females this steroid increased the firing activity of 5-HT neurons with a 

short onset of action and a lasting effect. However, in neither sex was it able to 

significantly prevent the citalopram-induced decrease in firing activity . 
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Possible mechanisms of action for the modulation of 5-HT neurons by steroids 

As mentioned in the introduction, steroids could modulate the 5-HT systems 

through different mechanisms of action, which could involve various types of receptors 

and different neurotransmitter systems afferent of DRN 5-HT neurons (for a schematic 

representation of the main modulatory inputs on 5-HT neurons see figure 1). 

The c1assical genomic mechanisms of action cannot be ruled out but is unlikely, at 

least in the case of 3a,5a-THP, because its action takes place within a very short time­

frame. Aside from this, 3a,5a-THP does not bind the c1assical steroid receptors such as 

ER or PR and P, which binds PR was not effective in our paradigm. On the other hand 

17j3-E was effective and can bind ER, indicating that ER might be involved. The rat 

DRN expresses very low levels of ERa (50,64) but higher levels of ERj3 (50,63) and, 

while ERa and PR are undetectable in 5-HT cells (4,41), about 40% of 5-HT neurons 

express ERj3 rnRNA (41). Therefore, if the mechanism for 17j3-E's effect is genomic, it 

is more likely to occur via ERj3 than ERa. Membrane steroid receptors and activation of 

intracellular signalling cascades could also constitute ways though which neuroactive 

steroids might influence 5-HT neuronal activity. No data is yet available to speculate on 

the details ofthese processes. 

It is well known that 5-HT neurons receive noradrenergic (NE) and glutamatergic 

(1,30) excitatory input. An involvement ofthese two systems in the modulation of 5-HT 

• neuronal activity by neuroactive steroids is thus possible (see introduction). However, 
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pregnancy did not modify the firing activity of locus coeruleus NE neurons, suggesting 

that the NE system was not the primary site of action of ovarian steroids. More studies 

would be needed to address these issue but they were beyond the scope of this thesis. 

Experiments were aimed at modulatory mechanisms, most likely involved in the steroid 

modulation of the 5-HT neuronal activity, such as 5-HTIA and cr receptors and the tonic 

GABAergic inhibition of 5-HT neurons. 

There is evidence of an ovarian hormonal modulation of several enzymes and 

receptors participating in 5-HT neurotransmission (see introduction). The data presented 

here point to a beneficial effect for estrogen in this regard. For example, evidence 

suggests that E reduces the function of 5-HT lA autoreceptors in female rats (13,83). This 

was confirmed by electrophysiological experiments, similar to ours, showing a 

desensitization of the 5-HTIA autoreceptor in the DRN of OVX rats following 48h of E 

administration (37,38). Considering the autoinhibitory role of this receptor on the firing 

activity of 5-HT neurons, this estrogenic effect might facilitate 5-HT neurotransmission. 

The results of this thesis support these findings. Indeed, during pregnancy a partial 

desensitization of this autoreceptor was observed along with an increase in basal firing 

activity. This increase in firing activity was also reproduced by administration of 

different ovarian steroids. These results suggest that the molecular effects on the 5-HTIA 

autoreceptor reported by others have functional consequences on the firing activity of 5-

HT neurons and possibly on the 5-HT neurotransmission efficacy. 
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Various steroids have high affinity for (J receptors (44-46,70,82) and activation of 

(JI receptors has been shown to enhance the firing activity of DRN 5-HT neurons in the 

same paradigm (10). Thus, (J receptors represented another potential way through which 

neurosteroids could modulate the 5-HT system. fudeed, the involvement of (JI receptors 

has been confirmed for the DHEA-induced enhancement of the firing activity of 5-HT 

neurons. These results thus suggest a physiological basis for the (JI receptors-mediated 

antidepressant-like effects obtained with sorne neuroactive steroids in rodents (57,72). 

They also suggest that (J receptors might be implicated in the antidepressant effect of 

DHEA observed in humans. P also has high affinity for (J receptors but seems to act as 

an antagonist (7,8). This could explain why P did not modulate the firing activity of 5-

HT neurons. What remains intriguing is the fact that other (J ligands were shown to 

increase the firing activity of 5-HT neurons in males (11) while DHEA did not. P levels 

are higher in females than males, which wou Id suggest that higher doses of DHEA might 

be necessary to compensate for P's antagonistic action at (J receptors and thus to have 

sigma-related effects in females. One would then expect that a given dose, which 

increases the firing activity of 5-HT neurons in females, would be enough to do so in 

males. However, (J ligands seem to have a bell-shaped dose-response curve, with high 

doses of agonists acting as antagonists (9,49). It is thus possible that the doses ofDHEA 

used in these experiments were too high for males and that reducing the dose might be 

effective in modulating the firing activity oftheir 5-HT neurons. 

DRN 5-HT neurons are under a GABAergic tonic inhibition, which is mainly 

mediated by GABAA receptors (27), whose function can be modulated by several 
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neuroactive steroids. The results of this thesis strongly suggest that the steroid-induced 

alterations of this GABAergic inhibition increase the 5-HT neuronal firing activity. 

Indeed, pregnancy was associated with reduced GABAergic tonic inhibition of 5-HT 

neurons and 3a,5a-THP, a potent modulator of GABAA receptors, was the most effective 

steroid in enhancing the firing frequency of 5-HT neurons. The putative GABAA 

receptor-mediated increase in 5-HT neuronal activity might also explain the report that 

GABAA receptors are implicated in the antidepressant-like effects of 3a,5a-THP (34,35). 

DHEAS and, although less potently, DHEA, act as GABAA receptor antagonists 

(18,43,47,53). Both of them increased the firing activity of 5-HT neurons in females, 

while DHEAS was also effective in males. This would support the greater potency of 

DHEAS as compared to DHEA and could thus suggest the involvement of GABAA 

receptors in mediating this effect. It is however puzzling that antagonists have the same 

net effect as the potent agonists 3a,5a-THP and ganaxolone, within very similar time 

frames. In the case of DHEA and DHEAS, considering the high affinity of DHEA and 

DHEAS for cr receptors, it is possible that these receptors are implicated in this effect. 

Nevertheless, these results would suggest a combination ofmechanisms of action. 

Further experiments will be needed to fully characterize the mechanisms of action 

underlying the effects of steroids on the activity of 5-HT neurons. However, the results 

of this thesis strongly suggest that multiple types of receptors are likely implicated. Each 

steroid possibly acts through one or more receptors to increase the firing activity of 5-HT 

neurons. And, based on these results, it appears that steroids might not aIl act through the 
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same mechanism of action. The results of this thesis indicate that 5-HT lA autoreceptors, 

and cr receptors contribute to this effect but there might also be others. 

Clinical implications 

Women are especially at risk of developing depression during period of ovarian 

steroid fluctuation and the data obtain herein show that the females' 5-HT neurons are 

more sensitive to ovarian steroid modulation. fu addition, altered levels of ovarian 

steroids were observed during depressive episodes and normalized by successful 

antidepressant treatments (61,68,69,76). futerestingly, the increase in CSF levels of 

3a,5a-THP was proportional to the mood improvement (75). Different types of 

antidepressants were shown to facilitate the synthesis of 3a,5a-THP from 5a-DHP 

(23,25,28,73) through direct interaction with the enzyme 3a-HSD (23,25,28,73). It has 

been suggested that the therapeutic action of antidepressants may involve increased levels 

of3a,5a-THP (23,25,74). The results ofthis thesis showing that many steroids increase 

the firing activity of 5-HT neurons would support this hypothesis. If, indeed this is the 

case, these steroids could prove good adjuvants in the treatment of depression, especially 

with such a fast onset of action. 

This is also in keeping with clinical studies and animal mode1s showing 

antidepressant (or antidepressant-like in the case of animaIs) properties for different 

ovanan steroids inc1uding estradiol (2,3,22,24,26,36,62,65,77,78), DHEA(S) 

(16,57,71,79-81) and 3a,5a-THP (34,35), which are c1early supported by the steroid-
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induced increase in 5-HT neuronal firing activity. Taken together with the literature, the 

present results support synergetic interactions between neurosteroids and antidepressants 

to modulate the 5-HT system and/or induce beneficial effects on mood. 

There is evidence of anatomical and functional dissimilarities between men and 

women's 5-HT systems (6,19,40,51,55), which might explain gender differences related 

to depression and women's greater vulnerability to mood disorders. The slower firing 

activity of 5-HT neurons in females as compared to males, if also occurring in humans, 

would further support this. Furthermore, data suggest that sorne women may be have 

altered sensitivity to hormonal modulations of the 5-HT system (66). The female 5-HT 

system appears to be especially sensitive to hormonal modulation. In women with a 

certain predisposition, this might be enough to increase their vulnerability to developing 

mood disorders. 

Finally, our results c1early show yet another gender difference in the function of 

the 5-HT system and in the ability of neurosteroids to modulate it. These findings, added 

to the previous data, further characterize not only similarities but also sex differences in 

the modulation of 5-HT neurons by sorne steroids, which could prove important in the 

understanding of gender differences in mood disorders. Furthermore, the present data 

offer a biological basis to the reported antidepressant properties of certain steroids and 

suggest that they could be used as adjuvants to antidepressants in the treatment of 

depression. 
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• Figure 1: Schematic representation of excitatory and inhibitory inputs on DRN 5-HT 

neurons . 
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