
Robust shortest path with local information
revelation

Edwin Meriaux

Center for Intelligent Machines
Electrical and Computer Engineering

McGill University
Montreal, Canada

September 2024

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Science.

© 2024 Edwin Meriaux

i

Abstract

In this thesis, a robust path planning method is developed to find optimal path traversal

policies in an uncertain environment. This method restricts itself to uncertainty in discrete

sets rather than distributions for the uncertain costs. Additionally, the uncertainty of

each edge does not remain independent, as a set of possible true worlds is known. This

formulation allows for the creation of feasible sets of possible true worlds. As information is

revealed about the true state of the world, the elements inside the feasible set are reduced

until only one possible true world remains. This state and information revelation is similar

to a Partially Observable Markov Decision Process (POMDP) structure.

The solution developed in this thesis shows that Value Iteration (VI) in infinite horizons

can have guarantees to converge to the optimal solution. The complication of this method

is that as the number of possible states grows in relation to the size of the environment

and the uncertainty in the world, the computational requirements grow exponentially. To

allow for a Robust Shortest Path (RSP) to be found in these cases, we show how a Monte

Carlo Tree Search (MCTS) method can be used. This method builds on previous examples

in the literature, which use MCTS in games such as Chess and Go. Furthermore, in larger

worlds, certain nodes and edges can be pruned if they cannot be used along an optimal

path. This pruning can reduce the computational requirements in both the VI algorithm

and the MCTS method.

ii

Résumé

Dans cette thèse, une méthode robuste de planification des chemins est développée pour

trouver des politiques optimales de traversée des chemins dans un environnement incer-

tain. Cette méthode se limite à l’incertitude dans des ensembles discrets plutôt qu’à des

distributions pour les coûts incertains. De plus, l’incertitude de chaque arête ne reste pas

indépendante, car un ensemble de mondes réels possibles est connu. Cette formulation

permet de créer des ensembles réalisables de mondes réels possibles. Au fur et à mesure

que des informations sont révélées sur l’état réel du monde, les éléments à l’intérieur de

l’ensemble réalisable sont réduits jusqu’à ce qu’il ne reste plus qu’un seul monde réel possi-

ble. Cette révélation de l’état et des informations est similaire à la structure d’un Partially

Observable Markov Decision Process (POMDP).

La solution développée dans cette thèse montre qu’une Value Iteration (VI) dans des

horizons infinis peut garantir la convergence vers la solution optimale. La complication de

cette méthode est que lorsque le nombre d’états possibles augmente en fonction de la taille

de l’environnement et de l’incertitude du monde, les exigences de calcul augmentent de

façon exponentielle. Pour permettre de trouver un Chemin le Plus Court Robuste (RSP)

dans ces cas, nous montrons comment une méthode de Monte Carlo Tree Search (MCTS)

peut être utilisée. Cette méthode s’appuie sur des exemples antérieurs dans la littérature

qui utilisent MCTS dans des jeux tels que les échecs et le go. De plus, dans des mondes

plus vastes, certains nœuds et arêtes peuvent être élagués s’ils ne peuvent pas être utilisés

le long d’un chemin optimal. Cet élagage peut réduire les exigences de calcul à la fois dans

l’algorithme de VI et dans la méthode MCTS.

iii

Acknowledgments

First and foremost, I would like to thank my thesis supervisor, Professor Aditya Mahajan.

Over the past two years, he has guided and taught me both in the classroom and in my

research work. He has shown me how to rigorously pursue and develop quality research.

During my studies, I worked extensively with Professor Silviu-Iulian Niculescu. He

invited me to France, where he supervised and contributed to my work during my stay at

the University of Paris-Saclay, CentraleSupélec, L2S Laboratory.

This thesis was reviewed by Professor Inna Sharf of McGill. I would like to thank her

for her review and feedback regarding this work.

I am deeply grateful to McGill University and the ECE department, which have sup-

ported my research through the Graduate Excellence Fellowship. Additionally, I have re-

ceived generous funding from the NSERC Alliance Mission Grant, the MITACS Globalink

Award, and the McGill Graduate Mobility Award. The experimental results presented in

this work were also partially facilitated by Compute Canada, which was incredibly helpful.

I would also like to thank my fellow students in the Systems and Control Lab, who

have contributed to my work through instructive presentations and discussions. Special

thanks go to Berk Bozkurt, Amit Sinha, Borna Sayedana, Raihan Seraj, and Reihaneh

Ghoroghchian.

Reaching the point where I could attend McGill and begin my master’s degree was made

possible by many individuals, particularly the professors who introduced me to research

and nurtured my interest during my undergraduate studies. I would like to thank Professor

Jay Weitzen, Professor Kshitij Jerath, Professor Thanuka Wickramarathne, and Professor

Jean-François Millithaler. During that time, Alok Malik also played a significant role in

my development through our research collaborations.

Special thanks to my incredible group of friends who were always there in my hours of

need: Daniel Abreu Fernandez, Renin Jose, Connor O’Rourke, Delbert Edric, Al W. Fox,

Derek Houle, Aparna Fitch, Elizabeth Spy, Mathew Mayger, Asa Losurdo, and Mohamed

Martini.

Finally, I would like to thank my family, who have encouraged me at every point in my

life.

iv

Contents

List of Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Claims of Originality . 3

1.3 Motivating Examples . 3

1.4 Literature Review . 5

1.5 Notation Section . 11

1.5.1 Symbols . 11

1.5.2 Conventions . 13

2 Robust Shortest Path 14

2.1 Preliminaries on Graphs . 14

2.2 Problem Formulation . 15

2.3 Dynamic Programming Decomposition . 18

2.3.1 Information State . 18

2.3.2 Dynamic Programming Solution . 19

2.3.3 Interpretation as a 2-Player ZSG 20

2.3.4 Value Iteration . 20

2.3.5 Illustration of the DP Solution . 22

2.4 Node Pruning . 23

3 Monte Carlo Tree Search 28

3.1 Upper Confidence Bounds . 28

3.2 Monte Carlo Tree Search [1] . 29

Contents v

3.2.1 Alpha Go . 34

3.3 MCTS+DNN Implementation . 34

4 Numerical Examples 36

4.1 Baseline Algorithms Compared . 36

4.2 Benchmark Models . 37

4.2.1 Model 1 . 37

4.2.2 Model 2 . 38

4.2.3 Model 3 . 39

4.2.4 Model 4 . 40

4.2.5 Model 5 . 41

4.2.6 Model 6 . 41

4.2.7 Pruning Models . 42

4.2.8 Size Comparison . 45

4.3 Results . 45

4.3.1 DNN + MCTS Training Curves . 47

4.4 Summary of Results . 47

4.5 Detailed Discussion of Results . 49

5 Conclusion 58

5.1 Future Work . 59

References 61

vi

List of Figures

2.1 Example directed Graph with node set N = {0, 1, 2, 3} and edge weight w 15

2.2 Example 1 grid of 3× 3 sample world. 18

2.3 Example 1 graph representation of Figure2.2. 18

2.4 Example 1 G1. Red line indicates shortest path. 18

2.5 Example 1 G2. Red line indicates shortest path. 18

2.6 Example 1 information state graph for example 1 where L = {1, 2}. Bound-
ing boxes at each node indicate the possible states at that node. 21

2.7 Example 1 Value Figure. 21

2.8 Path taken by the optimal policy in Example 1 when the nature picks G1 . 22

2.9 Path taken by the optimal policy in Example 1 when the nature picks G2 . 22

2.10 Example 4 grid-world. 25

2.11 Example 4 graph G1. 25

2.12 Example 4 graph G2. 25

2.13 Example 4 graph G2 after pruning. 26

2.14 Example 3 grid-world. 26

2.15 Example 3 graph G1. 26

2.16 Example 3 graph G2. 26

2.17 Example 3 graph G1 after pruning. 27

2.18 Example 3 graph G2 after pruning. 27

2.19 Example 1 grid-world. 27

2.20 Example 1 graph G1. 27

2.21 Example 1 graph G2. 27

3.1 Example Full MCTS Tree with the red line indicating discovery 31

3.2 Example of incomplete MCTS Tree . 32

List of Figures vii

3.3 Example MCTS Tree with the blue line indicating the backpropagation . . 32

3.4 Tic-Tac-Toe Game with grid indicating the action (A) to cover that space

by either player . 33

3.5 Example MCTS Tree for Tic-Tac-Toe with alternating rows between the

two players. This game is truncated: for the sake of space up to 7 rows are

removed. The actions are the same as seen in Figure 3.4 for this game. . . 33

4.1 5× 5 model 1 grid-world with uncertain edges in blue 37

4.2 Graph model 1 . 37

4.3 Model 1 graph G1 . 38

4.4 Model 1 graph G2 . 38

4.5 Model 2 grid-world with uncertain edges in blue 38

4.6 Model 2 graph . 38

4.7 Model 2 graph G1 . 38

4.8 Model 2 graph G2 . 38

4.9 Model 2 graph G3 . 38

4.10 Model 3 grid-world . 39

4.11 Model 3 graph . 39

4.12 Model 3 graph G1 . 39

4.13 Model 3 graph G2 . 39

4.14 Model 3 graph G3 . 39

4.15 Model 4 grid-world with uncertain edges in blue and edges of cost 7 in yellow 40

4.16 Model 4 graph . 40

4.17 Model 4 graph G1 . 40

4.18 Model 4 graph G2 . 40

4.19 Model 4 graph G3 . 40

4.20 Model 5 grid-world with uncertain edges in blue 41

4.21 Model 5 graph . 41

4.22 Model 5 graph G1 . 41

4.23 Model 5 graph G2 . 41

4.24 Model 5 graph G3 . 41

4.25 Model 6 grid-world with uncertain edges in blue, edges of cost 2 in yellow

and edges of cost 4 in red. 42

List of Figures viii

4.26 Model 6 graph . 42

4.27 Model 6 graph G1 . 42

4.28 Model 6 graph G2 . 42

4.29 Model 6 graph G3 . 42

4.30 Model 1 pruned with G1. 44

4.31 Model 2 pruned with G1. 44

4.32 Model 3 pruned with G1. 44

4.33 Model 4 pruned with G1. 44

4.34 Model 5 pruned with G1. 44

4.35 Model 6 pruned with G1. 44

4.36 Model 1 . 47

4.37 Model 2 . 47

4.38 Model 3 . 47

4.39 Model 4 . 47

4.40 Model 5 . 47

4.41 Model 6 . 47

4.42 Model 1 with G1 with VI solution. 49

4.43 Model 1 with G1 with Modified Dijkstra’s solution. 49

4.44 Model 1 with G1 with DNN + MCTS solution. 49

4.45 Model 1 pruned with G1 with VI solution. 50

4.46 Model 1 pruned with G1 with Modified Dijkstra’s solution. 50

4.47 Model 1 pruned with G1 with DNN + MCTS solution. 50

4.48 Model 2 with G1 with the VI, Modified Dijkstras and DNN + MCTS solutions. 51

4.49 Model 2 with G2 with the VI, Modified Dijkstras and DNN + MCTS solutions. 51

4.50 Model 2 with G3 with the VI, Modified Dijkstras and DNN + MCTS solutions. 51

4.51 Model 3 pruned with G1 for both the Modified Dijkstra’s and DNN + MCTS

solution. 52

4.52 Model 3 pruned with G2 for both the Modified Dijkstra’s and DNN + MCTS

solution. 52

4.53 Model 3 pruned with G3 for both the Modified Dijkstra’s and DNN + MCTS

solution. 52

4.54 Model 4 with G1 with VI and DNN + MCTS solution. 53

4.55 Model 4 with G2 with VI and DNN + MCTS solution. 53

List of Figures ix

4.56 Model 4 with G3 with VI and DNN + MCTS solution. 53

4.57 Model 4 with G1 with Modified Dijkstra’s solution. 53

4.58 Model 4 with G2 with Modified Dijkstra’s solution. 53

4.59 Model 4 with G3 with Modified Dijkstra’s solution. 53

4.60 Model 5 with G1 using Modified Dijkstra’s solution. 54

4.61 Model 5 with G2 using Modified Dijkstra’s solution. 54

4.62 Model 5 with G3 using Modified Dijkstra’s solution. 54

4.63 Model 5 with G1 using DNN + MCTS solution. 55

4.64 Model 5 with G2 using DNN + MCTS solution. 55

4.65 Model 5 with G3 using DNN + MCTS solution. 55

4.66 Model 6 with G1 with Modified Dijkstra’s solution. 56

4.67 Model 6 with G1 with DNN + MCTS solution. 56

4.68 Model 6 with pruned G1 with Modified Dijkstra’s solution. 57

4.69 Model 6 with pruned G1 with DNN + MCTS solution. 57

x

List of Tables

4.1 Size tables for Models 1-3 . 45

4.2 Size tables for Models 4-6 . 45

4.3 Policy Evaluation of Different Models . 46

4.4 Computational Time Comparison of Different Models (Seconds) 46

xi

List of Acronyms

MDP Markov Decision Process

POMDP Partially Observable MDP

MCTS Monte Carlo Tree Search

SP Shortest Path

RSP Robust Shortest Path

SSP Stochastic Shortest Path

DSP Deterministic Shortest Path

DRSP Distributionally Robust Shortest

Path

DP Dynamic Programming

VI Value Iteration

Spiral STC Spiral Spanning Tree

Coverage

AI Artificial Intelligence

DNN Deep Neural Network

RL Reinforcement Learning

UCB Upper Confidence Bounds

UCT Upper Confidence applied to Trees

UCT Predictor + UCT

NPC Non-Player Character

SL Supervised Learning

RL Reinforcement Learning

RHS Right Hand Side

ZSG Zero-Sum Game

1

Chapter 1

Introduction

1.1 Motivation

To move from a start to an end state, a series of steps, actions, or transitions through

intermediary states is required. This process forms a path from the initial state to the end

state. Path planning is the process of selecting an optimal path. The optimality of this

can be computed using various methods, with the most common being the selection of the

path with the least cost. The cost of a path is influenced by the environment and other

factors, such as the distance, time, or energy needed to traverse the path.

Path planning is important because when an entity moves from one location to another,

it is typically desirable to minimize the cost. For example, many different paths exist

between any two cities, but some are more costly than others. Time and resources can be

saved by selecting a more efficient path.

Path planning is traditionally solved using algorithms such as Dijkstra’s Shortest Path

[2] or A* search [3]. These methods represent the world as a graph, where each node corre-

sponds to a specific location and the edges represent transitions between adjacent locations.

Costs are embedded in the model by assigning weights to the edges. Dijkstra’s [2] and A*

[3] algorithms find the series of edges between the start and end nodes that result in the

lowest total cost. These methods assume that the world and the cost of moving through it

are fully known, meaning path planning is conducted with perfect information. However, if

this assumption does not hold, uncertainty exists in the world, and the algorithm must plan

with imperfect information. In such cases, Dijkstra’s and A* algorithms cannot guarantee

the shortest path.

1 Introduction 2

With the assumption of imperfect information, an outlook on the world is required. In

such cases, a pessimistic or optimistic outlook can be used when choosing the path. A

pessimistic outlook assumes the worst possible state of the world, while an optimistic one

assumes the best-case scenario. The advantage of using a pessimistic outlook is that it

establishes an upper bound on the cost of traversing the environment. In time-critical op-

erations, this approach can be essential for selecting the path that will reach the destination

the fastest, assuming the worst-case scenario. This upper-bound-focused method forms the

Robust Shortest Path (RSP) [4], a robust generalization of the Stochastic Shortest Path

(SSP) [5, 6, 7, 8].

When dealing with uncertain environments, there are two types of decision-making

models used for path planning. One set determines the final optimal path given the uncer-

tainty before the first action is taken. These solutions are often referred to as offline path

planning algorithms [9]. The other method generates a general solution before the first

action and updates it as observations of the environment are made. These are generally

referred to as hybrid path planning [10], which will be the focus of the method proposed in

this paper. A third type, called online path planning [11], requires no prior knowledge of

the world before making the first observation. However, this approach is generally outside

the scope of RSP.

Solving RSP problems can be done in an offline manner by developing a policy to find the

optimal path. Whether uncertainty exists or not, this has traditionally been addressed using

Dynamic Programming (DP) algorithms, such as Value Iteration (VI) or Policy Iteration

(PI)[12, 4]. Under certain assumptions, these algorithms converge to the optimal policy,

even in uncertain environments. These methods are generally used in three types of cases.

The first is entirely offline, where the policy is determined before the path is taken[13, 14].

The second is a hybrid online/offline method, where part of the path is predetermined,

but as more data is collected, the path is updated in real-time [10]. The third is entirely

online, where the path is determined on the move, with no prior knowledge [15]. The terms

“online” and “offline” refer specifically to path planning literature, not general AI online

or offline learning.

In this work, we present an online/offline infinite horizon VI algorithm that computes

the value of each node relative to the cost of reaching the terminal node, given the different

possible states of the environment. Using these values, the optimal policy for the agent at

each node/state combination is to move to the next node with the lowest cost, given the

1 Introduction 3

possible states. As information about the environment is revealed, certain possible states

are ruled out, altering the best-worst cost for each node. The policy then adjusts to take

the next best action. Due to the time cost of this approach, we will demonstrate how to

simplify the offline computation using Monte Carlo Tree Search (MCTS). Additionally, we

will present a pruning method to reduce computational costs by limiting the number of

possible graphs in a given environment and the number of nodes and edges within those

graphs.

The remainder of this work is structured as follows: The rest of this chapter will cover

motivating examples (Section 1.2) and a literature review on the path planning problem

(Section 1.3). Chapter 2 presents the theoretical and algorithmic contributions of this work,

along with a small-scale example. In this chapter, we introduce both the Robust Shortest

Path algorithm and the pruning method. Chapter 3 discusses how MCTS can be used

to generate approximate Robust Shortest Path solutions. Chapter 4 provides additional

numerical examples in larger and more complex scenarios.

1.2 Claims of Originality

1. Online/offline infinite horizon VI algorithm to solve Robust Shortest Path problems.

2. Pruning method to reduce environments utilizing the minimax structure of Robust

Shortest Paths to eliminate dominated edges, nodes, and graphs as permitted.

1.3 Motivating Examples

Let’s consider an example for path traversal. A person is moving through a building. This

is a known environment to them where they know all the possible passages. In this case,

a person is moving through a building to retrieve an object at a location which is known.

The person wants to minimize the time cost of the path to the object. This cost is a

function of the time needed to find the object. Given the person has perfect information

about the environment they know the cost of traversing each passage. The simplest way

to compute this cost would then be the length of the path divided by the average speed of

the person. Given the multiple possible paths and the cost associated with each one the

person optimizes their time by taking the path which has the least costly traversal.

1 Introduction 4

This cost analysis for each possible path was not very realistic. It assumed that every

detail of the passages for the path was already known and nothing was uncertain. There

were no objects out of place which could slow down the mission and there were no crowds

of people possibly blocking the way. Effectively the building was static and entirely known.

Now let’s imagine there is uncertainty in the building. This uncertainty can come in two

forms as aleatoric or epistemic uncertainty. The first is in the true state of the passages

(aleatoric uncertainty) and the second is uncertainty in the actions the person might take

(epistemic uncertainty). Let’s return to the example with the person in the building. The

uncertainty about the state of the hallways, doors, and location of obstacles along the path

falls under the concept of aleatoric uncertainty. There exists multiple possible states of

the building and since the person does not know the true state, the different state must

be taken into account. Epistemic uncertainty could come in the form of uncertain action

decision. This uncertainty does not fit in this type of problem since the agent will just

follow the path. At every position along the path, there is one action to take to get to

the next position. A different action would constitute a different path. The agent is not

deciding on the action and each action results in a deterministic outcome.

With this aleatoric uncertainty, the path traversal problem becomes more realistic.

There could be some objects blocking the way, doors could be locked or unlocked and

possible slowdowns in hallways because of crowds. The cost analysis for each path now

becomes much more complex due to the uncertainty. This makes the optimal path for path

traversal more complex to find, especially prior to the start of the path. Given the time of

day, or any other information of the building’s uncertainty, the person might take a path

they expect to be the quickest.

Let’s now modify the example. Given the possible uncertainty in the building state,

imagine there exists different parallel worlds with all the possible combinations of the

uncertain factors. Now imagine the person is pessimistic. They do not know the true state

of the uncertain factors in building, but they assume the worst-case. No matter which path

the person takes, the building state is in the worst possible state. This makes the traversal

or coverage as cost as much time as possible. If the person then wants to take the optimal

path given this worst-state case, it is said they are taking the robustly optimal path. In this

scenario, the person has multiple possible paths they could have followed. Each possible

path contains a certain time cost to it until the person gets to the end. Depending on the

state of the world, the optimal path is different. The robust optimization solution to this

1 Introduction 5

would develop a policy across the different possible paths to determine the best one across

all worst-case worlds. This would allow the person to know the maximum amount of time

they would need for the path regardless of the situation.

In the aforementioned examples, the person traversing or covering the building was ini-

tially making decisions before executing the path. This type of path planning is considered

offline path planning. This is generally done using all the knowledge that is known about

the building’s passages. In this case, that would mean the person already knows the map

of the environment. This does not necessarily mean the true state, but can include the

uncertainty as well. If the person moving around did not know the map of the building

and was discovering all the state information only once moving through the passages, the

agent would be operating in online path planning (again not to be mixed with online AI

learning). There exists a third case called hybrid path planning which makes a general

plan for the traversal prior to the mission start, but uses data collected while traversing the

passages to update the path. This is what the person was doing in the previous example

when the uncertainty was introduced.

1.4 Literature Review

The work presented in this thesis is centered around robust optimization in path traversal

and this section will present literature on that topic. A similar subject related to this is

path coverage. This will also be discussed alongside how a robustly optimal path traversal

solution can be used for path coverage.

Path Traversal

Path traversal entails finding a path from a given start point to a given ending point.

Traditional navigation solutions have often employed Dijkstra’s algorithm [2], Belleman-

ford algorithm [16] or the A* search algorithm [3] to plan the shortest path in a given

environment. These methods require representing the environment as a weighted graph

G = {N,w} with nodes N and weighted edges w. They generate optimal or suboptimal

policies for traversing the world in the absence of uncertainty, therefore we categorize them

as Deterministic Shortest Path (DSP) problems. DSP can be generalized to Stochastic

Shortest Path (SSP) problems [17] when the value of any weight comes from a distribution

1 Introduction 6

that can be unique to that edge. There is extensive literature on various algorithms designed

to address SSP cases [5].

Given that values from an SSP problem come from distributions an expected cost can be

formed for a given path. This entails the average value of each possible edge in the graph.

This expectation is not a worst-case cost bound for a path. The difference between the

worst-case and expected cost paths would be that the worst-case has the highest possible

cost of the path instead of the average cost. In both cases, there exists uncertainty in

the true value of each edge but these two cost models predict the edge costs differently.

In many situations picking the path with the lowest expected cost might be ideal but in

other cases the shortest worst-case path would be needed. This would mean finding the

RSP [4]. In this case, robustness pertains to cost uncertainty, and RSP methods identify

the shortest path assuming the worst-case environment state. In this kind of problem the

edge uncertainty is modeled as an adversarial game between two agents: one aiming to

minimize the path cost and the other seeking to maximize it.

The effectiveness of RSP methods fundamentally depends on the uncertainty model em-

ployed. Various types of aleatoric uncertainty exist in an RSP setting, such as uncertainty

in the cost of edges [4, 18], or the next transition [12]. For brevity, this thesis focuses on

uncertain edge weights, assuming known edge existence and transitions but with stochastic

edge costs. A crucial consideration is the relationship between uncertainties on different

edges, which may be independent [4] or correlated as a discrete set of scenarios [18]. This

work addresses the latter case due to computational cost considerations. When edge cost

uncertainties are independent, the number of potential cases grows exponentially, limiting

the manageable complexity and size of the world under evaluation.

RSP cases can be then expanded to have stochastic and uncertain worst-case costs. This

would mean the exists uncertainty of the true distribution of the weights. This means each

edge has a series of possible distributions which could be the true one. This forms the case

of Distributionally Robust Shortest Path (DRSP). There exists a multitude of methods to

solve this particular case.

In the realm of RSP in area traversing only offline or hybrid solutions can really be

used. There is, of course, online RSP online path planning [11], which assumes no prior

knowledge of the world before observations. However, this is generally beyond the scope

of RSP since the uncertainty of the world cannot be known if nothing about the world is

known.

1 Introduction 7

Having outlined the features of RSP, a model to set up a solution is required. Similar

to SSP, RSP can be modeled as a Markov Decision Process (MDP) of the form S,A, P,R,

where a state represents both the traversing agent’s location and the current structure’s

uncertainty [19]. These MDPs are typically solved using Dynamic Programming (DP)

methods such as VI or Policy Iteration, with solutions derived using finite horizons [20].

A simple example for the use case of Path Coverage was given earlier with a person

moving through a building. Here are some additional use cases:

• General Routing and Navigation [4]

When someone or something wants to get to a destination point, they usually want to

take the fastest path. This limits time loss and possible energy costs costs. In the case

of cars, given the information known about the streets and the possible congestion a

path traversal algorithm could take this into account to make an optimal path. This

can also be update live as route information changes and for example, accidents or

traffic is reported.

This type of case can also factor in a desire for a robust path if there is uncertainty

about the path and there is great urgency in the time cost of the path. Imagine an

ambulance is trying to drive to a hospital. While the fastest path outright to the

hospital would the best, given there is uncertainty in the state of the road the path

with the best worst-case guarantees would be best.

Routing and navigation is not only unique to cars, but to robots and humans as

well. Take the original example given in this thesis with a person navigating through

a building. A person needs to navigate from point A to point B while the path

is uncertain. They would therefore benefit from a path that assumes worst-case

conditions.

• Network Routing [4]

When messages are being sent across a data-network they need to be received as

quickly as possible. A path needs to be planned to do this. Also, in big networks, a

packet needs to go through many routers along a predetermined path. Given different

uncertain states of congestion of these routers, the time a packet would need to arrive

at its final destination may vary. Therefore, a path that takes these uncertain router

states into account can reduce the traversal time. This uncertainty does exist because

1 Introduction 8

even if the current state of each router is known before the packet is sent, this can

evolve and change as the packet goes from node to node.

• Route or Network Topology Design [4]

In the two previous cases of General Routing/Navigation and Network Routing an

optimal path is found along a current road/network. This is in contrast to network

or route design, in this case the worst-case path cost wants to be computed but in

hypothetical cities. Effectively, when a city’s transportation or a network is being

designed, finding the RSP between two important points can be needed to know

where to allocate more bandwidth. This case would have uncertainty in both the

given factors being considered for the path and any other uncertainty being taken

into account in the design.

Path traversal formed a problem that could be solved with exact guarantees using DP

solutions. This gives an upper-bounded cost to traversing a space that can be used in a

variety of important applications as previously described. As will be explained path cov-

erage problems are more computationally taxing given the same space and could generally

using a modified solution compared to path traversal. On top of this, the work presented

forms missing literature about RSP with discrete uncertainty, with DP in infinite horizons,

for path traversal. Therefore, this was the problem chosen for the sake of this thesis.

Path Coverage

Path Coverage does not have a single location as a final destination point. Instead it

generally has one of two possible goals. The first type of goal is to go to a set of points in a

given environment. The second type is stopping after something has been found. Imagine

searching a space until a desired object is found. Until the object is found all possible areas

need to be checked, but after finding the object nothing more has to be done. If a graph is

used to represent the possible locations in the world of interest with edges representing the

ability to move from one state to another, path coverage will go from one node to another

until the goal is attained.

In the case of imperfect state information, this type of problem is traditionally solved

with algorithms such as depth-first search [21] and Spiral Spanning Tree Coverage (Spiral

STC) [22]. These algorithms can use the partially known graph and find a coverage for it

1 Introduction 9

with minimal prior information about the graph. However, they do not take into account

costs associated with traversing edges. In the original office building example, these algo-

rithms would tell the person how to move around an environment without considering the

time it take between any two points. There are more sophisticated algorithms like Prim’s

algorithm [23, 24] or Kruskal’s algorithm [24]. These take the cost of the graph edges into

account and can give the shortest path to cover the space. However, these methods do not

take uncertainty about the graph edges into account. The only methods in literature which

could possibly take an uncertainty into account use various DP, Deep Neural Networks

(DNN), or Reinforcement Learning (RL) to solve the problem [25]. These methods can be

trained to develop solutions that take the uncertainty into account. These methods have

drawbacks. Aside from DP these methods only give an approximation of the cost and not

the true while DP can have a very expensive time complexity to its computation.

A simple example for the use case of Path Coverage was given earlier. Here are some

additional use cases:

• Spatial coverage (searching)

Spatial coverage and searching missions require all areas of a given world be investi-

gated. An example of this is with farming robotics [26]. There exists a known map

of the field to be covered and a machine needs to be sent out to distribute water

and fertilizer. While the map is generally known, new obstacles may arise preventing

movement through the space. A fence or tree might have collapsed onto the path, in

which case the agent will need to compensate accordingly.

• Finding operations (Rescue)

Finding operations such as rescue missions require a area to be covered until some-

thing is found. Then the mission can stop.

Imagine that in a tunnel environments or buildings, a rescue team needs to find an

person [27]. The location of the person is unknown inside the space. The rescuers

know the original map of the environment, but a series of events have occurred which

has change the dynamics. For example, a tunnel or passage could have collapsed.

Given this uncertainty of the state of the tunnels an optimal path is needed to cover

the area.

1 Introduction 10

Given the collapsed passages, there is a possibility that some portions of the map are

totally inaccessible. This would make it impossible for path coverage to be completed

in those areas. In such cases, the definition of path coverage would be the coverage

of the coverable space, where there exists a path from the starting point to the point

in question.

Another case of this would be with electric grids [28]. In the case of regularly main-

tained electric grids, all the lines need to be verified to validate if any repairs are

needed. This can also be necessary if there is damage to the network, but the loca-

tion of the damage is unknown. In this case, an agent such as a drone needs to fly

to inspect the lines until they are all inspected or the problem in question is found.

This requires a path that covers the area of the electric lines.

The uncertainty in this type of case can come from the possible usable paths. While

a drone can fly over most spaces, it would also need a good angle to properly view the

electric lines. This path becomes variable when there is a possible storm and certain

areas may become impassable for a drone.

• Spatial Mapping (unknown environments) [29]

The ability to have a map of a previously unknown area generally requires the whole

surface of the given space to be passed through and modeled. This is particularly

true in indoor or underwater cases. This type of case lends itself well to online path

coverage. In that case, very little prior information can be leveraged since there is no

known information.

• Software Security Testing [30]

Given a program, it can be broken up into a graph which shows the flow of the

code. This develops a control graph. Depending on the state of the code, differ-

ent branches of the graph might be used. These types of graphs are important in

software testing because all sections and conditions of the code need to be validated

for functionality and security reasons. Graph coverage algorithms are used in such

cases. In these cases, there can be uncertainty of when a particular edge will be used.

This uncertainty can make it take longer to test all following blocks with all possible

inputs.

1 Introduction 11

• Traveling Salesman [25, 31]

The Traveling Salesman problem is a traditional graph theory where the objective is to

find a path from a start point on a graph and go to all nodes without any repeat. This

is not exactly the problem solved with path coverage, but if the coverage algorithm

does not repeat any nodes it does solve this problem. This graph would then be a

Hamiltonian cycle.

Path coverage, as presented above, forms another interesting problem to solve that

can be used in many cases. It has an added issue where a state is a function of not just

uncertainty and location but also the unique positions the agent has covered so far. This

does increase the complexity of the problem which will grow faster than in the case of path

traversal. The greater interest in path traversal was that a solution to that more common

problem can be used to solve coverage cases. This would entail making the value of a state

not related to the cost to reach a terminal node but the cost of arriving to and covering

all as of yet not covered nodes. This last node to be covered is a terminal state. On top of

this, if an approximation solution is found for robust path traversal it can equally apply in

this case.

1.5 Notation Section

In the section we will specify the meaning of the symbols and conventions used in this this

work.

1.5.1 Symbols

1. R: set of natural numbers.

2. N: set of integer numbers.

3. C: a finite subset of positive real num-

bers which includes ∞ (R>0 ∪ {∞})

4. ∞: infinity.

5. min: function giving the minimum

value in a set.

6. max: function giving the maximum

value in a set.

7. argmin: function giving the element

number in the set with the mimimum

value.

8. argmax: function giving the element

1 Introduction 12

number in the set with the maximum

value.

9. G: a graph.

10. Gℓ: a graph Gℓ with ℓ ∈ L

11. N : the set of possible nodes in G.

12. n: a node from n ∈ N .

13. N+(n): the set of out-neighbors of

node n.

14. N+
ℓ (n): the set of out-neighbors of

node n in graph ℓ ∈ L.

15. N+
ℓ∗ (n): the set of out-neighbors of

node n from the true graph ℓ∗.

16. L: the number of weighted graphs in a

given environment.

17. L: the set of weighted graphs in a given

environment.

18. ℓ: a specific G from L.

19. ℓ∗: the element number for the true G
in L as chosen by nature.

20. w: a singular set of weighted edges in

graph G.

21. w(n,m): a weighted edge between

nodes n and m such that n,m ∈ N .

22. wℓ(n,m): a weighted edge from set

ℓ ∈ L between nodes n and m such

that n,m ∈ N .

23. k: the number of nodes in a path.

24. ns: the start node of a path.

25. nd: the end node of a path.

26. o = O(ℓ∗, n): the set of observation of

the out-going neighbors from node n

and the weight associated with going

from node n to these next nodes.

27. Θ: the set of all possible observations

the agent could make from any given

node in G across all L

28. A: the set of possible actions the agent

can take.

29. π: a particular control law the agent

can take with a policy π ∈ Π.

30. π∗: optimal control law the agent can

take.

31. Π: set of all possible Policies for the

agent.

32. π: a policy for the agent where π ∈ Π.

33. π∗: the optimal policy for the agent.

34. Tπ
ℓ : the first time when an agent start-

ing at node ns in graph Gℓ and follow-

ing policy π reaches the destination nd.

35. Jπ: the maximum cost of taking policy

π.

36. st: the true partially observed state of

the agent at time t.

1 Introduction 13

37. xt: the information state of the agent

at time t.

38. f : the function to update the state to

st+1.

39. Ft: the set of feasible states at time t.

40. ϕ: the function to update the set of

feasible states to Ft+1.

41. V : the unique bounded solution of a

given fixed point equation.

42. B: Bellman update for the V .

43. Λ: function to develop the optimal π

from a given V .

44. p: a particular path from ns to nd in a

given graph.

45. Cmax: the maximum cost of a given

path across all possible graphs.

46. Dmin: the minimum cost of a

path across all possible graphs going

through a particular edge.

47. Q: function giving the value of state

action pair

48. Ns: the number of times a given state

has been visited in MCTS.

49. Nsa: the number of times a given ac-

tion has been taken at a given state in

MCTS.

50. C: modifier on the RHS of the UCB

equation to proportionally incentive

increased exploration.

1.5.2 Conventions

1. Any variable marked as a1:t indicates because the instance of that variable from all

times (a1, . . . , at) with t > 1.

14

Chapter 2

Robust Shortest Path

In this chapter, we present the RSP problem over weighted graphs with uncertain weight

function and describe a DP solution for it. We then illustrate the algorithm via a small

example.

2.1 Preliminaries on Graphs

Definition 1 (Weighted Directed Graphs) A weighted directed graph G = {N , w} is
given by a finite set of nodes N and a weight function w : N ×N 7→ R ∪ {+∞}.

The weight function w implicitly encodes the edges of the graph. In particular, for

n,m ∈ N , if w(n,m) <∞ then (n,m) is an edge of the graph, otherwise it is not. For this

reason, we do not explicitly model the set of edges in the graph.

Given a graph (N , w), the set of out-neighbors of a node n ∈ N is defined as:

N+(n) := {m ∈ N : w(n,m) <∞}. (2.1)

As an example consider the graph shown in Figure 2.1 where N = {0, 1, 2, 3} and the

weight w can be represented by a 4 matrix

w =

∞ a ∞ ∞
∞ ∞ b ∞
∞ ∞ ∞ c

d ∞ ∞ ∞

 . (2.2)

2 Robust Shortest Path 15

Definition 2 (Paths and loopless paths) Given two nodes n,m ∈ N , we say that

there is a path between n and m if there exists an integer k and nodes n1, . . . , nk ∈ N such

that n1 = n, nk = m and for all i ∈ {1, . . . , k − 1}, ni+1 ∈ N+(ni). A path is said to be

loopless1 if all the nodes in the path are unique.

0 1

3 2

a

b

c

d

Fig. 2.1 Example di-
rected Graph with node set
N = {0, 1, 2, 3} and edge weight w

Take the nodes 1 and 3 from Figure 2.1. There exists a path between these two nodes

which from n = 1 to n = 3. In this case k = 4 where the path is {0, 1, 2, 3}.

Definition 3 (Undirected Graph) A graph G = (N , w) is said to be undirected if for

all n,m ∈ N , w(n,m) = w(m,n).

2.2 Problem Formulation

As mentioned in the Introduction, we are interested in finding the shortest path from a

source to a destination node when there is uncertainty about the weight function of the

graph.

We model this uncertainty as follows. Let C be a finite subset of R>0 ∪ {+∞} that

contains +∞. There are L weighted directed graphs, G1, . . . ,GL, where for ℓ ∈ L :=

{1, . . . , L}, Gℓ := (N , wℓ), wℓ : N ×N → C. The true graph is Gℓ∗ , ℓ
∗ ∈ L, where the value

of ℓ∗ is not known to the agent. We are given source node ns ∈ N and a destination node

nd ∈ N and it is assumed that the following assumption holds.

Assumption 1 For each graph Gℓ, ℓ ∈ L, there exists a path from ns to nd.

1Loopless paths are also called paths without cycles.

2 Robust Shortest Path 16

The agent starts with the knowledge of just G1, . . . ,GL and additional information about

the local neighborhood becomes available to the agent as it traverses the graph. In partic-

ular, when the agent is at node n, it obtains an observation y = (n, o), where

o = O(ℓ∗, n) := {(m, ,wℓ∗(n,m)) : m ∈ N+
ℓ∗ (n)}. (2.3)

The set of all possible observations an agent could make is defined by the set:

Θ = {O(ℓ, n) : ℓ ∈ L, n ∈ N} (2.4)

The agent can construct the out-neighborhood of n from the observation o. In particular,

A(o) := {m ∈ N : (m, c) ∈ o and c <∞} = N+
ℓ∗ (n) (2.5)

Based on the history of these observations, the agent chooses an action a ∈ A(o) =

N+
ℓ∗ (n) to decide where to go next. Let ot denote the observation of the agent at time

t and at denote the action at time t. The actions are chosen according to a policy π =

(π1, π2, . . . , πt, . . .) where:

πt : (n1:t, o1:t, a1:t−1) 7→ at, such that at ∈ A(ot). (2.6)

Let Π denote the set of all such policies.

Given policy π ∈ Π and ℓ ∈ L, let Tπ
ℓ denote the first time when an agent starting at

node ns in graph Gℓ and following policy π reaches the destination nd.

Definition 4 (Proper Policy) A policy π ∈ Π is called proper if for every ℓ ∈ L,
Tπ
ℓ <∞.

Assumption 2 There exists a policy π ∈ Π that is proper.

Remark 1 For undirected graphs Assumption 1 implies Assumption 2. The same holds

in a graph which has a finite-cost reverse edge for each finite-cost edge except for the edges

going into the terminal node.

The cost of a policy π ∈ Π in graph Gℓ, ℓ ∈ L, when the agent starts at ns and ends at

2 Robust Shortest Path 17

nd is given by:

Jπ
ℓ :=

Tπ
ℓ∑

t=1

wℓ(nt, at). (2.7)

The worst-case cost of a policy π ∈ Π when the agent starts at ns and ends at nd is

given by:

Jπ := max
ℓ∈L

Jπ
ℓ (2.8)

With the remarks and assumptions above, we address the following optimization prob-

lem.

Problem 1 Given N , and graphs G1, . . . ,GL and ns, nd ∈ N , find a policy π ∈ Π of the

form in (2.6) to minimize Jπ given by (2.8), i.e., solve

min
π∈Π

max
ℓ∈L

Jπ
ℓ .

We now illustrate the model via an example.

Example 1 Consider the grid-world shown in in Figure 2.2, where the agent (shown by

a red triangle) starts in the middle left side and has to go to the destination (shown as

a green square) on the middle right side. Three walls surrounding the middle node are

blocked. There are two blue doors around the destination, one of which is closed and the

other open; but the agent does not know their status. The agent is interested in finding an

policy which minimizes the worst-case cost of going from the source to the destination.

We model this scenario using the model presented in Sec. 2.2. We model the grid-world

as an undirected graph with N = {0, 1, . . . , 8} as shown in Figure 2.3. The uncertainty

about the status of the blue edges in Figure 2.3 is captured by considering two possible

states of the world G1 = (N , w1) and G2 = (N , w2) as shown in Figs. 2.4 and 2.5. When the

weight function wℓ is known, we can easily find a path from the source to the destination

which is shown in red. Hence Assumption 1 holds. Since the graph is undirected, in Figure

2.4 and 2.5, Assumption 2 holds.

2 Robust Shortest Path 18

Fig. 2.2 Example 1
grid of 3 × 3 sample
world.

0 1 2

3 4 5

6 7 8

1 1

1
1

1

1 1

?

?

Fig. 2.3 Example 1 graph
representation of Figure2.2.

0 1 2

3 4 5

6 7 8

1 1

1
1

1

1 1

1

Fig. 2.4 Example 1 G1. Red
line indicates shortest path.

0 1 2

3 4 5

6 7 8

1 1

1
1

1

1 1

1

Fig. 2.5 Example 1 G2. Red
line indicates shortest path.

2.3 Dynamic Programming Decomposition

2.3.1 Information State

The problem outlined in Problem 1 can be modeled as a uncertain dynamical system with

a partially observed state st = (ℓ∗, nt). The system starts in state s1 = (ℓ∗, ns) at t = 1

and the state evolves as:

st+1 = f(st, at). (2.9)

where the update function f is given by

f((ℓ, n), a) = (ℓ, a), ℓ ∈ L, n ∈ N , a ∈ N+
ℓ (n). (2.10)

At time t, the agents gets an observation ot = O(st) where O is given by (2.3). The

2 Robust Shortest Path 19

action at is chosen accordingly to a policy π = (π1, π2, . . .) as given in (2.6) where πt rep-

resents the control laws which output the specific action at a given state. The performance

of the policy is given by (2.8).

Following [20], we can convert the above partially observable uncertain system to a fully

observable uncertain system using an information state. The information state is given by

xt := (Ft, nt,A(ot)) where Ft is the set of feasible ℓ ∈ L consistent with the history of

observations and actions up to time t. The feasible set Ft evolves as follows:

Ft = ϕ(Ft−1, nt, ot) (2.11)

where the update function ϕ is given by

ϕ(F , n, o) = {ℓ ∈ F : O(ℓ, n) = o}, ∀F ∈ 2L, n ∈ N , o ∈ Θ (2.12)

At t = 0, F0 = L. At t = 1 an observation o1 is made and therefore F updates as

F1 = ϕ(F0, n1, o1). Thus, the information state starts at x1 = (F1, ns,A(o1)) and evolves as

xt+1 = (Ft+1, nt+1,A(ot+1)) = (ϕ(Ft, nt+1, ot+1), nt+1,A(ot+1)). For all t ≥ 0, Ft ⊆ Ft−1 as

the uncertainty of the true ℓ∗ can only reduce or stay constant with every given observation.

Remark 2 The cost of an outgoing edge at the current agent’s node nt with action at

is wℓ∗(nt, at). In (2.12), the sets Ft are constructed such that at each t all the possible

ℓ ∈ Ft are such that their out-neighborhood N+
ℓ is the same. Thus, for any feasible action

at ∈ A(nt), the agent knows the cost wℓ∗(nt, at).

2.3.2 Dynamic Programming Solution

Theorem 1 Suppose Assumptions 1 and 2 hold. Let V be the unique bounded solution of

the following fixed point equation, called the dynamic program:

V (F , n,A(o)) = min
a∈A(o)

max
ℓ∈F

{
wℓ(n, a) + V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a)))

}
. (2.13)

and let π∗(F , n,A(o)) denote the argmin of the RHS of (2.13). Then the time homogeneous

policy π∗ = (π∗, π∗, . . .), i.e., at = π∗(Ft, nt,A(ot)), is optimal for Problem 1.

2 Robust Shortest Path 20

Proof The DP solution follows from [20]. The analysis in [20] was for finite horizon

models. Following the arguments in [32] these finite horizon results can be extended to

infinite time horizons for stochastic shortest path problem under Assumptions 1 and 2.

2.3.3 Interpretation as a 2-Player ZSG

As the problem is solved as a minmax dynamic program, it can also be viewed as a 2 player

ZSG. In this case player one is the agent which is trying to take actions to arrive at the

destination while minimizing its total cost and player two is nature which is choosing the

state of the world to maximize the total cost. The robustly optimal solution computed in

Theorem 1 is a Minimax Equilibrium of this 2 player game.

2.3.4 Value Iteration

VI is an iterative algorithm for approximately finding the fixed point of a dynamic program.

The algorithm is initialized at an arbitrary V0. Then at each iteration k ∈ N, an updated

estimate is generated using

Vk+1 = BVk, k ∈ N. (2.14)

where the Bellman operator B is defined as:

[BVk](F , n, o) = min
a∈A(o)

max
ℓ∈F

(wℓ(n, a) + V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a))). (2.15)

We also compute a policy

πk = ΛVk. (2.16)

where the functional Λ is defined as:

[ΛVk](F , n, o) = argmin
a∈A(o)

max
ℓ∈F

(wℓ(n, a) + V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a))). (2.17)

The algorithm terminates when ∥Vk+1 − Vk∥∞ < ϵ, for a pre-specified accuracy level ϵ.

The policy πk+1 is returned as an approximately optimal policy.

2 Robust Shortest Path 21

({1},0,{1,3}) ({1},1,{0,2}) ({1},2,{1,5})

({1,2},0,{1,3}) ({1,2},1,{0,2})

({2},0,{1,3}) ({2},1,{0,2}) ({2},2,{1})

({1},3,{0,6}) ({1},4,{3}) ({2},5,{})

({1,2},3,{0,6}) ({1,2},4,{3})

({2},3,{0,6} ({2},4,{3}) ({2},5,{})

({1},6,{3,6}) ({1},7,{6,7}) ({1},8,{7})

({1,2},6,{3,6}) ({1,2},7,{6,7})

({2},6,{3,6}) ({2},7,{6,7}) ({2},8,{5,7})

Node 0 Node 1 Node 2

Node 3 Node 4 Node 5

Node 6 Node 7 Node 8

Fig. 2.6 Example 1 information
state graph for example 1 where
L = {1, 2}. Bounding boxes at
each node indicate the possible
states at that node.

Value = 3 Value = 2 Value = 1

Value = 9 Value = 8

Value = 5 Value = 6 Value = 7

Value = 4 Value = 5 Value = 0

Value = 10 Value = 11

Value = 4 Value = 5 Value = 0

Value = 5 Value = 6 Value = 7

Value = 9 Value = 8)

Value = 3 Value = 2 Value = 1

Node 0 Node 1 Node 2

Node 3 Node 4 Node 5

Node 6 Node 7 Node 8

Fig. 2.7 Example 1 Value Figure.

2 Robust Shortest Path 22

Algorithm 1: Value Iteration

1: Input: ϵ (a small positive number)
2: Initialize: V (x)← 0
3: repeat
4: Vold ← V
5: V ← BV
6: until |Vold − V | < ϵ
7: V ∗ ← V
8: π∗ ← ΛV ∗

9: Output: V ∗ (approximately optimal value function) and π∗ (approximately optimal
policy)

Fig. 2.8 Path taken by the
optimal policy in Example 1
when the nature picks G1

Fig. 2.9 Path taken by the
optimal policy in Example 1
when the nature picks G2

2.3.5 Illustration of the DP Solution

Consider the example in Figure 2.2. Since L = {1, 2}, there are 2|L|− 1 = 3 possible values

of F for each node n. For each (n,F), the possible values of A(o) is fixed. Thus, there

are |N | ×
(
2|L| − 1

)
= 9 × 3 = 27 possible values of information state. However, not all

of them are feasible: at nodes n ∈ {2, 5, 8}, the belief state Ft = {1, 2} is not possible.

Therefore, only 27− 3 = 24 states are feasible, which are shown in 2.6. Also note at states

({2}, 5, {5}) and ({1}, 5, {5}), which are the terminal states, the only action the agent can

take is to stay at its current location. This action has cost of 0.

The out-going edges at each information-state in Figure 2.6 correspond to feasible ac-

2 Robust Shortest Path 23

tions at that information-state. Note that some of the actions lead to uncertain outcomes,

e.g., information state ({1, 2}, 1, {0, 2}) and ({1, 2}, 7, {6, 7}). As can be seen in Figure 2.6,

the policy for RSP from source ({1, 2}, 3, {0, 6}) to {({2}, 5, {5}), ({1}, 5, {5})}, the termi-

nal states, is optimal for the original optimization problem.

2.4 Node Pruning

The complexity of VI depends on the size of the set of all feasible information states. In this

section, we propose a method to prune the graphs G1, . . . ,GL, which reduces the number

of feasible information states and thereby improves the computational complexity of the

algorithm. We start with some definitions.

For any path p in graph Gℓ, ℓ ∈ L, let Cℓ(p) denote the cost of the path. If the path

contains an edge with infinite weight, then its cost is infinity. For any path p, define

Cmax(p) = max
ℓ∈L

Cℓ(p)

For any edge (n,m), n,m ∈ N , let Dℓ(n,m) denote the cost of the shortest path from

the source to the destination in graph Gℓ that contains the edge (n,m). For any edge

(n,m), define:

Dmin(n,m) = min
ℓ∈L

Dℓ(n,m).

Definition 5 (Looped Path) A path p◦ from ns to nd with a loop is a path of k nodes

n1 . . . nk ∈ N where there exists at least 2 nodes ni and nj where ni = nj. This means that

there exists a set k′ of nodes from p◦ which can also form a loopless path p◦′ .

We consider three types of pruning:

1. Pruning of L. For every ℓ◦ ∈ L, remove the graph Gℓ◦ if there exists a graph Gℓ′ ,

ℓ′ ∈ L, ℓ′ ̸= ℓ◦, such that wℓ◦(n,m) ≤ wℓ′(n,m), for all nodes n,m ∈ N .

2. Pruning of edges in Gℓ, ℓ ∈ L. Take a node n ∈ N and a loopless path p◦ from n

to the destination such that Cmax(p◦) <∞. Consider an edge (n,m), which does not

lie on p◦, such that

Dmin(n,m) > Cmax(p◦).

2 Robust Shortest Path 24

Then remove the edge (n,m) from all graphs Gℓ, ℓ ∈ L. Note that removing an edge

is equivalent to setting its weight to +∞.

3. Pruning of nodes in all Gℓ, ℓ ∈ L. Remove all nodes n ∈ Gℓ that do not belong to

any finite-cost path from the source ns to the destination nd in any graph Gℓ, ℓ ∈ L.
Removing a node means that we remove it from the node set N .

Note that the pruning steps can be repeated. So, when we start with a problem, we

apply the pruning steps one by one, until they no longer lead to a simplification.

Proposition 1 The three pruning methods described above do not change the optimal so-

lution.

Proof We will separately establish that each of the pruning methods do not change the

optimal solution.

1. Fix an ℓ◦ ∈ L. Suppose there exists an ℓ′ ∈ L such that wℓ◦(m,n) ≤ wℓ′(m,n) for all

m,n ∈ N . Then, for any policy π, we have

Jπ
ℓ◦ ≤ Jπ

ℓ′

where we allow the right hand side to be infinity. Thus,

max
ℓ∈L

Jπ
ℓ = max

ℓ∈L\{ℓ◦}
Jπ
ℓ

Thus, nature can ignore ℓ◦ while picking its action.

2. Let p◦ and (n,m) be as in the definition of pruning. Consider any information state

x = (F , n,A(o)). Let (n,m◦) be the first edge of p◦. Since Cmax(p◦) < ∞, we

must have that wℓ(n,m◦) < ∞ for all ℓ ∈ L. Therefore, m◦ ∈ A(o) for all feasible

observations o at node n. Define

Q(F , n,A(o), a) = max
ℓ∈F

{
wℓ(n, a) + V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a)))

}
. (2.18)

Note that Q(x,m) ≥ Dmin(n,m) (because no path for n to the destination can cost

less than Dmin(n,m)) and Q(x, n) ≤ Cmax(p◦) (because following the path p◦ is a

2 Robust Shortest Path 25

feasible policy, hence the optimal policy must be at least as good as p◦). The fact

that Dmin(n,m) > Cmax(p◦) implies that

Q(x,m) ≥ Dmin(n,m) > Cmax(p◦) ≥ Q(x,m◦).

Hence, action m is never optimal, and can therefore be eliminated

3. Under Assumption 2, an optimal policy will never visit a node that does not belong

to any finite-cost path from the source to the destination. So, removing such a node,

does not change the optimal policy.

We now present some examples to illustrate pruning.

Example 2 Consider the example of Figure 2.10, where there are 2 possible graphs, G1
and G2, that differ in the weight of the edge (10, 15) which has value 1 in G1 or value +∞
in G2. These two graphs are seen in Figures 2.11 and 2.12.

Fig. 2.10
Example 4
grid-world.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2.11
Example 4
graph G1.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2.12
Example 4
graph G2.

In this example, the edge weights of G1 are always less than or equal to G2 such that

w1(n,m) ≤ w2(n,m). Therefore, the graph G1 can be pruned leaving only G2. In graph G2,
let p0 be the path through nodes {0, 1, 6, 11, 16, 21, 20}. All the edges which are not along

this path can be pruned as they would lie on a path which costs more than the Cmax(p0) = 6.

This then allows edges {(0, 5), (5, 10), (16, 17), (17, 18), (18, 19), (18, 13), (13, 8), (8, 3)}. Due
to this, many nodes such as {3, 5, 8, 10, 13, 15, 17, 18, 19} can be removed as they no longer

exist on a path from 0 to 20 meaning. The result of this pruning is the graph shown in

Fig. 2.13.

2 Robust Shortest Path 26

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1

1

1

1

1

1

Fig. 2.13 Example 4 graph G2 after pruning.

Example 3 Consider the example of Figure 2.14. This environment contains 2 graphs G1
and G2 as seen in Figures 2.15 and 2.16. In both cases there are 3 possible loopless paths

the agent could take from ns = 1 to nd = 7. These paths go through the left, middle or

right side of the map. Let these paths be defined as p1, p2, and p3 respectively.

Fig. 2.14
Example 3
grid-world.

0 1 2

3 4 5

6 7 8

1 1

1 1

10

10

4

1

5

5

Fig. 2.15
Example 3
graph G1.

0 1 2

3 4 5

6 7 8

1 1

1 1

10

1

4

10

5

5

Fig. 2.16
Example 3
graph G2.

At start, no graph Gℓ can be removed since neither w1(n,m) ≤ w2(n,m) for all nodes

n,m ∈ N nor w2(n,m) ≤ w1(n,m) for all nodes n,m ∈ N is true. Given the max cost of

the right most path is Cmax(p0) = 12, the edge (0, 1) can be removed as the Dmin(1, 0) = 13.

This then allows nodes {0, 3, 6} to be removed as they would no longer be attainable along

a path from ns = 1 to nd = 7. This also removes the uncertain edge (3, 6) after which

graphs G1 and G2 can be seen in Figures 2.17 and 2.18. In this current state, G1 can be

removed as w1(n,m) ≤ w2(n,m) for all nodes n,m ∈ N . The resulting graph for Example 4

is Figure 2.18

2 Robust Shortest Path 27

0 1 2

3 4 5

6 7 8

1

1

4

1

5

5

Fig. 2.17
Example 3
graph G1 after
pruning.

0 1 2

3 4 5

6 7 8

1

1

4

10

5

5

Fig. 2.18
Example 3
graph G2 after
pruning.

Example 4 Consider the example of Figure 2.19 or its equivalent graph representations

in Figures 2.20 and 2.21. In this example, either the top edge (2,5) or the bottom edge

(5,8) does not exist and is valued at ∞.

Fig. 2.19
Example 1
grid-world.

0 1 2

3 4 5

6 7 8

1 1

1
1

1

1 1

1

Fig. 2.20
Example 1
graph G1.

0 1 2

3 4 5

6 7 8

1 1

1
1

1

1 1

1

Fig. 2.21
Example 1
graph G2.

In this case, no graph can be removed, all nodes are attainable along a path ns = 0 to

nd = 5 and no edge has a value Dmin which is greater than a Cmax(p) for any possible path

p. Consider the edge (3, 4) and path p which goes through nodes {3, 0, 1, 2, 5}. The value

Dmin(3, 4) = 6 while there is no finite-cost Cmax(p) as the worst-case of this path has a cost

of ∞. The same is true for the path going through nodes {3, 6, 7, 8, 5}. Due to the lack of

prunable graphs, edges and nodes nothing can be done in this case. The final graphs are

the same as in Figures 2.20 and 2.21.

28

Chapter 3

Monte Carlo Tree Search

3.1 Upper Confidence Bounds

Upper Confidence Bounds (UCB) is a solution to a question in Reinforcement Learning

(RL) on how to balance exploration and exploitation [33]. UCB works by ensuring that, at

a given state, each action is explored at least once. After that, a proportional modifier is

added to the current estimated value of each state/action pair. This modifier is based on

how often a state/action pair has been used. It increases or decreases the estimated value

such that a less frequently sampled action is explored more often by becoming the greedy

action. This method contrasts with ϵ-Greedy algorithms, which take random actions with

a certain probability, ϵ. This ϵ can either remain constant or decrease over time.

An example of the UCB equation is shown in (3.1). In this equation, an arbitrary

Markov Decision Process (MDP) consists of states s and actions a ∈ A(s). Here, Nsa(s, a)

refers to the number of times an action has been taken at a state, and Ns(s) refers to the

number of times a state has been visited. Given this, the UCB function in (3.1) selects the

action that maximizes the next state’s Q-value function, using argmax. This maximization

is performed over the values of each state, which are modified proportionally to the number

of times that action has been taken relative to other actions at that state. The term C
modifies the value added, based on the state-action usage frequency.

UCB(s) = argmax
a∈A(s)

{
Q(s, a)

Nsa(s, a) + 1
+ C

√
2 ln(Ns(s) + 1)

Nsa(s, a)
+ 1

}
(3.1)

3 Monte Carlo Tree Search 29

If UCB was trying to minimize reward (with argmina) the whole term must be negated

as seen in (3.3) [1].

UCB(s) = argmin
a∈A(s)

{
−1×

{
Q(s, a)

Nsa(s, a) + 1

}
− C

√
2 ln(Ns(s) + 1)

Nsa(s, a) + 1

}
(3.2)

UCB(s) = argmin
a∈A(s)

{
−1×

{
Q(s, a)

Nsa(s, a) + 1

}
− C

√
2 ln(Ns(s) + 1)

Nsa(s, a) + 1

}
(3.3)

In certain MCTS examples where there are two players playing in an adversarial manner,

one player would want to maximize their reward while the other wants to minimize the

opponent’s reward. Because of this, both a maximizing UCB from equation (3.1) and a

minimizing UCB from equation (3.3) to build a full MCTS algorithm.

3.2 Monte Carlo Tree Search [1]

Monte Carlo Tree Search (MCTS) is a method focused on collecting samples from an

environment and building them into state/action trees, where each state has an associated

value. MCTS is typically used in conjunction with Upper Confidence Bounds for Trees

(UCT) to determine which action to take. In this case, UCT is analogous to UCB, with the

different branches of the tree representing the actions. This approach has been applied in

various parts of larger AI algorithms, one of the most notable examples being the AlphaGo

algorithms [34, 35]. MCTS was used in both the training phase and the live implementations

of the model.

In other instances, MCTS can be used to encourage exploration of less commonly sam-

pled states of the game or to rapidly conduct policy evaluations. Each state has a specific

value associated with it, and when a game reaches a particular state in the tree, the next

action can be selected as the greedy maximum of the subsequent states.

This method breaks down into 4 steps:

1. Selection: Select the next node to take. The tree is descended using the UCT al-

gorithm until a until it arrives at a node where there exists an action it has never

taken.

2. Expansion: If a new action is taken then the tree is expanded with the new edge and

3 Monte Carlo Tree Search 30

node.

3. Simulation: After the expansion the rest of the tree is followed or explored until a

terminal node is reached.

4. Backpropagation: The rewards or cost accumulated during the last simulation, re-

gardless if the tree was expanded or not, is backpropagated up the tree.

The selection algorithm in MCTS leads to one of two types of events: the Tree policy

or the Default policy. In the former case, expansion is conducted to create a new leaf

node, if possible, followed by a simulation of the value of that state. In the latter case,

greedy actions are taken, with the values derived from the UCT method. In some instances,

UCT is replaced by Predictor UCT (PUCT), which incorporates the belief about the next

state [36]. This belief state represents the probabilities based on past observations of all

possible next states. This process is illustrated in Algorithm 2. At the end of each iteration,

backpropagation is used to update the value of each state. The combination of selection,

expansion, simulation, and backpropagation ensures that, given enough time, the UCT

method will reveal the true value of all states.

This method has been applied in various settings, such as multi-armed bandit problems

and games like Scrabble, Bridge, Chess, and Go. These games benefit from MCTS because

it accounts for the adversarial nature of Zero-Sum Games (ZSG)[1]. The tree can represent

different nodes corresponding to the actions of different players. To model the games

properly in the tree, MCTS uses a maximizing UCB(3.1) to determine actions at one

player’s nodes and a minimizing UCB (3.3) at the other player’s nodes [37].

In all of these games, MCTS provides guarantees. As the number of samples in the tree

grows to infinity, the policy derived from MCTS converges to the optimal state values.

Let’s consider an example: a 2-person adversarial and sequential game. The first player

takes an action, and the second player responds accordingly. Each player has only two

actions to choose from. A tree representing this scenario is shown in Figure 3.1. Now,

consider Figure 3.2, where the tree has not been fully explored. As a result, the MCTS

algorithm explores the left side of the tree. Then, in Figure 3.3, backpropagation ascends

the tree, updating the nodes as it progresses.

This example can be applied to an arbitrary game, and the same principles work in

a game like Tic-Tac-Toe. Tic-Tac-Toe is a good small-scale example, as it has a limited

3 Monte Carlo Tree Search 31

Algorithm 2: General MCTS approach

1: function MCTSSEARCH(s0)
2: create root node with state s0
3: while within computational budget do
4: while bellow depth limit do
5: TREEPOLICY
6: DEFAULTPOLICY
7: end while
8: BACKUP
9: end while

10: return BESTCHILD
11: end function

Starting Point

Agent Action 1

Opponent Action 1 Opponent Action 2

Agent Action 2

Opponent Action 1 Opponent Action 2

Fig. 3.1 Example Full MCTS Tree with the red line in-
dicating discovery

3 Monte Carlo Tree Search 32

Starting Point

?

? ?

Agent Action 2

? Opponent Action 2

Fig. 3.2 Example of incomplete
MCTS Tree

Starting Point

Agent Action 1

? Opponent Action 2

Agent Action 2

? Opponent Action 2

Fig. 3.3 Example MCTS Tree
with the blue line indicating the
backpropagation

number of actions that are played sequentially. The board for this game is shown in

Figure 3.4. As the game progresses, there are fewer and fewer actions for each player to

choose from. A condensed version of this tree is shown in Figure 3.5.

If MCTS were to be used for a game with a very large, but still finite, size, the state

dimension problem associated with MCTS becomes apparent. As the action space grows,

the state space also grows. As the state space grows, the total number of nodes in the

MCTS tree increases, and it may become impossible to build and store the full tree. An

example of this is chess, which has a larger board and more possible actions compared to

Tic-Tac-Toe. The number of nodes required to fully build the MCTS tree for chess would

be on the order of 10120.

The storage issues of such trees can be mitigated by edge pruning as the tree is built

one run at a time [38]. To address memory-related problems in MCTS, a class of memory-

limited MCTS algorithms exists. Computer memory is typically limited to gigabytes,

and only a small portion of that may be allocated to an MCTS tree, depending on the

application. Video games, for example, may use MCTS trees to determine the next action

of AI actors (commonly called Non-Player Characters (NPCs)), but these trees must not

occupy too much space, especially if there are many different NPCs with separate trees.

Dynamic memory allocation is not ideal due to the complexities of constantly pulling and

pushing data to storage. Pruning and depth-limiting can help keep the tree to manageable

sizes, but these are often crude and arbitrarily set solutions. More advanced methods, like

“node recycling” or “garbage collection” [39], are used instead. These techniques operate a

normal MCTS tree until the maximum memory limit is reached, after which unpromising

nodes are removed, freeing up memory for further exploration. Unpromising nodes are

those that do not terminate (given a maximum tree depth) or that consistently lead to

game losses.

Depending on the game, another issue arises when the terminal state is not easily

3 Monte Carlo Tree Search 33

reached. In Tic-Tac-Toe, the game ends after a maximum of nine actions, with a win, loss,

or tie. This outcome can be backpropagated through the tree. However, in chess, a game

could last much longer or even indefinitely, making it challenging to determine when and

how to reward the system. In such cases, game length can be limited, similar to chess

tournaments, with a reward or penalty applied based on the game state at the end.

A1 A2 A3

A4 A5 A6

A7 A8 A9

Fig. 3.4 Tic-Tac-Toe
Game with grid indi-
cating the action (A) to
cover that space by ei-
ther player

Start

A1

A2

win

...

win

...

loss

...

win

...

loss

...

loss

...

loss

A8

loss

... A5

A1

win

...

win

...

loss

...

win

...

loss

...

loss

...

loss

A8

loss

... A9

A1

win

...

win

...

loss

...

win

...

loss

...

loss

...

loss

A8

loss

Fig. 3.5 Example MCTS Tree for Tic-Tac-Toe with alternating rows be-
tween the two players. This game is truncated: for the sake of space up to
7 rows are removed. The actions are the same as seen in Figure 3.4 for this
game.

In the default utilization of MCTS, it is assumed that each state contains perfect game

information. For example, when MCTS is applied to chess, the true state of the board is

fully known. However, as in the distinction between MDPs (Markov Decision Processes)

3 Monte Carlo Tree Search 34

and POMDPs (Partially Observable Markov Decision Processes), there is a difference when

the state contains uncertainty due to partial observability. Examples of games with partial

observability include Bridge or Poker, where each player observes some state information

but not the full state. In these games, there is uncertainty about the opponent’s cards

and the remaining cards in the deck. This type of state information can be represented by

an information state, which becomes the nodes in the MCTS tree. The same convergence

guarantees hold for MCTS with these information states [36].

3.2.1 Alpha Go

Go is an ancient board game that dates back over 3,000 years. The game is played on a

19× 19 board where players take turns placing black or white stones. The game results in

a vast number of possible board configurations, as each tile can end up being occupied by

either a black or white stone. Due to this immense state space, developing an algorithm

capable of playing Go optimally has been a long-standing challenge [1]. Chess presents a

similar challenge, as it also features a large board, numerous pieces, and many possible

actions per turn, leading to an exponentially growing state space.

In Go, these complexities were addressed using memory-limited MCTS methods and

tree pruning, alongside a neural network. The original AlphaGo algorithm [34] was built

using several components: Supervised Learning (SL), Deep Neural Networks (DNNs), Re-

inforcement Learning (RL), and MCTS. Initially, an SL policy was trained on expert Go

games, and this policy was further refined through self-play. The resulting policy network

then generated a corresponding value network. During actual gameplay, the value of each

subsequent state was derived from a combination of the value network and MCTS simu-

lations based on the policy network. This approach created an AI that could compete at

the highest levels of Go for the first time. The following year, a new version of AlphaGo,

called AlphaGo Zero, was introduced [35], which omitted expert data and relied solely on

MCTS for training through self-play.

3.3 MCTS+DNN Implementation

The algorithm outlined in the original AlphaGo paper [34] begins by leveraging expert

knowledge to train a policy network, which is subsequently improved through self-play.

This process then trains a value network, allowing an MCTS tree to be constructed without

3 Monte Carlo Tree Search 35

requiring the value of each node to come solely from potential descendants reaching a

terminal state. Instead, new nodes can be added to the tree, with their values derived from

the policy and value networks.

In the case of Robust Shortest Path (RSP), this approach needs modification. In Prob-

lem 1, there was no expert path traversal information available to train a policy network.

Therefore, in our MCTS+DNN implementation, a value network was constructed directly

through self-play. This self-play enables both the agent and nature actors to develop a

value estimation for each state using a single value network. During the expansion step,

this DNN-derived value is utilized. As the exploration of the state space progresses, back-

propagation along the tree updates the value of each state accordingly.

Since MCTS trees converge to the true solution only when the entire tree is fully built,

it is not always feasible to construct the complete tree in every scenario. For this implemen-

tation, MCTS will expand the tree a hundred times, followed by backpropagation, before

taking each action. In smaller worlds, such as in Figure 2.4, this may be excessive and can

be scaled down; however, in larger-scale examples, this level of expansion will be necessary.

36

Chapter 4

Numerical Examples

This section is structured as follows. Section 4.1 provides an overview of the three al-

gorithms being tested. These algorithms are evaluated on six benchmarks, discussed in

Section 4.2. These grid-world benchmarks vary in complexity, incorporating different sizes,

numbers of obstacles, and feasible sets. These environments were custom built for our work

to specifically show how the algorithms work at different scales of size and uncertainty. The

results are presented in Section 4.3, followed by a discussion in Section 4.4.

4.1 Baseline Algorithms Compared

3 Algorithms will be used in the comparison of results for this work. They are as follows:

1. DNN + MCTS: This method is described in Section 3.3, where a DNN is used

to approximate next state values in conjunction with a finite-depth MCTS with a

depth of 50. When a new expansion occurs in the MCTS tree, state approximation

is performed, followed by backpropagation in the tree. For smaller models, the full

MCTS tree is less than this depth, while for larger models, it exceeds this depth.

Larger paths are truncated at 50 actions; it is assumed that after the last action is

taken, the episode ends and incurs a terminal cost of 100.

2. Modified Dijkstra’s: This heuristic method employs a modified Dijkstra’s shortest

path algorithm to find the cheapest path within the environment’s possible graphs.

The algorithm assumes that the true graph is the one with the cheapest possible

path from start to end. As the agent follows this shortest path, it makes observations

4 Numerical Examples 37

similar to the other two algorithms. If it makes an observation inconsistent with the

assumed true graph, it updates the set of possible graphs to align with this and all

previous observations. The agent then re-runs Dijkstra’s to find the new cheapest

path among the updated set of possible graphs. This process is repeated until the

terminal node is reached.

This method is heuristic in nature and does not guarantee finding the robust optimal

path; however, it serves as a low-complexity benchmark for comparing the more

sophisticated algorithms.

The VI, Modified Dijkstras and DNN + MCTS algorithms were implemented from

scratch. The implementation of the modified Dijkstra’s algorithm was based on the python

library “NetworkX” [40]. The DNN for the MCTS model were built using Pytorch [41].

4.2 Benchmark Models

4.2.1 Model 1

Model 1 presents a 5×5 grid world, illustrated in Figure 4.1, alongside its equivalent graph

shown in Figure 4.2. In this model, one edge has an uncertain existence: the edge between

nodes 23 and 24 may either have a cost of 1 or be non-existent, indicating an infinite cost.

All other edges have a consistent cost of 1. This world accommodates two possible weights

for the true graph, denoted as L = {1, 2}, as depicted in Figures 4.3 and 4.4.

Fig. 4.1 5 ×
5 model 1 grid-
world with un-
certain edges in
blue

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1 ?

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.2 Graph model 1

4 Numerical Examples 38

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.3 Model 1 graph G1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.4 Model 1 graph G2

4.2.2 Model 2

Model 2 presents a 5 × 5 grid world, as shown in Figure 4.5, along with its equivalent

graph in Figure 4.6. In this model, there are 3 uncertain edges, with up to 2 of these

edges potentially being non-existent. All existing edges are assigned a cost of 1. This world

accommodates 7 possible true weights for the graph, denoted as L = {1, 2, 3, 4, 5, 6, 7}. The
three graphs where there are 2 blocked edges are illustrated in Figures 4.7, 4.8, and 4.9.

Fig. 4.5
Model 2 grid-
world with
uncertain edges
in blue

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 ? 1

1 1

1 1 ? 1

1 1

1 1 ? 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.6
Model 2
graph

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1 1

1 1

1 1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.7
Model 2
graph G1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1

1 1

1 1 1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.8
Model 2
graph G2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1

1 1

1 1 1

1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.9
Model 2
graph G3

4 Numerical Examples 39

4.2.3 Model 3

Model 3 presents a 4 × 7 grid world, as shown in Figure 4.10, along with its equivalent

graph in Figure 4.11. In this world, there are 4 uncertain edges, each representing a door

with a unique cost for opening it, which is initially unknown. The costs of the doors are

drawn from the set {1, 5, 10, 20}. All other edges are valued at 1, except for the edge from

nodes 12 to 13, which has a value of 7. This setup results in the set L = {1, 2, . . . , 24}, with
3 sample cases illustrated in Figures 4.12, 4.13, and 4.14. For this model, we will present

only 3 sample graphs. Models 5 and 6 will also include more than 3 such graphs, but it

becomes impractical to present all of them as the number of sets increases.

Fig. 4.10
Model 3 grid-
world

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 ? 1

?

?

17

1 ? 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.11
Model 3 graph

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 5 1

1

20

17

1 10 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.12
Model 3 graph
G1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 1 1

10

20

17

1 5 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.13
Model 3 graph
G2

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 10 1

5

1

17

1 20 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.14
Model 3 graph
G3

4 Numerical Examples 40

4.2.4 Model 4

Model 4 presents a 7 × 7 grid world, as seen in Figure 4.15, along with its equivalent

graph in Figure 4.16. In this world, the certain edges are directed, with some edges valued

at 10 while others are valued at 1. The values of 3 pairs of directed edges are initially

unknown. There are 3 possible graphs: either only edge (40, 41) is untraversable, (47, 48)

is untraversable, or both are untraversable. In the latter case, edge (27, 34) costs 3 instead

of 1. This results in the set L = {1, 2, 3}, with 3 sample cases illustrated in Figures 4.17,

4.18, and 4.19.

Fig. 4.15
Model 4 grid-
world with
uncertain edges
in blue and
edges of cost 7 in
yellow

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

?

?

1

10

1

10

1

10

1

10

1

10

?

?

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

??

11

1

Fig. 4.16
Model 4 graph

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1

Fig. 4.17
Model 4 graph
G1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

1

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.18
Model 4 graph
G2

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

1

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.19
Model 4 graph
G3

4 Numerical Examples 41

4.2.5 Model 5

Model 5 presents a 7 × 7 grid world, as seen in Figure 4.20, along with its equivalent

graph in Figure 4.21. In this world, there are 9 uncertain edges, which exist in 27 possible

configurations. In each case, 2 edges do not exist in each row, resulting in 3 possible

obstacle states per row. Given there are 3 rows, the set is defined as L = {1, 2, . . . , 27}.
Each edge that exists in the graph has a weight of 1. Three sample graphs can be seen in

Figures 4.22, 4.23, and 4.24.

Fig. 4.20
Model 5 grid-
world with
uncertain edges
in blue

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

?

1

?

1

?

1

?

1

?

1

?

1

?

1

?

1

?

Fig. 4.21
Model 5 graph

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.22
Model 5 graph
G1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.23
Model 5 graph
G2

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.24
Model 5 graph
G3

4.2.6 Model 6

Model 6 presents a 10×10 grid world, as seen in Figure 4.25, along with its equivalent graph

in Figure 4.26. In this world, there are 8 uncertain edges. The value of each uncertain edge

4 Numerical Examples 42

must be within the set {1, 2, 5}, with the total cost of all the uncertain edges equaling 30.

Aside from the uncertain edges, there exists a path of edges along the outside of the world,

where all edges are valued at 2, as illustrated in Figure 4.25. Additionally, the edge (89, 99)

is valued at 4, while all other existing edges are valued at 1. This creates a feasible set of

168 elements, where L = {1, 2, . . . , 168}. Three sample weighted edge graphs can be seen

in Figures 4.27, 4.28, and 4.29.

Fig. 4.25
Model 6 grid-
world with
uncertain edges
in blue, edges of
cost 2 in yellow
and edges of cost
4 in red.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 ? 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

?

1

1

1

1

1

1

?

1

1

1

1

1

?

1

1

1

1

1

1

?

1

1

1

?

?

1

1

1

?

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.26
Model 6 graph

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 5 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

5

1

1

1

1

1

1

5

1

1

1

1

1

2

1

1

1

1

1

1

2

1

1

1

1

5

1

1

1

5

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.27
Model 6 graph
G1

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 5 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

5

1

1

1

1

1

1

5

1

1

1

1

1

5

1

1

1

1

1

1

5

1

1

1

2

1

1

1

1

2

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.28
Model 6 graph
G2

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 5 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

2

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

5

5

1

1

1

5

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.29
Model 6 graph
G3

4.2.7 Pruning Models

The following Figures 4.30, 4.31, 4.32, 4.33, 4.34, and 4.35 display the modified pruned

versions of models 1−6. The nodes that are removed due to pruning are shown in black. It

4 Numerical Examples 43

can be seen only the models in Figures 4.30, and 4.35 have actually been modified from the

pruning. This is because models 2, 3, and 4 do not have any nodes that could be removed

per the pruning rules in Section 2.4.

In the cases of model 1, the pruned nodes are removed for similar reasons as in Exam-

ple 4. There are graphs G1 and G2 such that w1(n,m) ≤ w2(n,m). This removes graph G1.
Then edges:

{(0, 5), (5, 10), (10, 15), (15, 20), (20, 21), (21, 22), (22, 23)}

in G2 can be removed as they never exist on a path which has a Dmin through any of those

nodes which costs less than the Cmax(p0) where:

p0 = {0, 1, 6, 11, 16, 17, 18, 13, 8, 3, 4, 9, 14, 19, 24}.

Finally, after all the pruning conducted so far, nodes:

{2, 5, 7, 10, 12, 15, 20, 21, 22, 23}

never exist on a path from ns to nd and can be removed.

The nodes removed in model 5 are removed since they are never on any path from ns

to nd. There are just 12 nodes which meet this requirement. They are:

{7, 9, 11, 13, 21, 23, 25, 27, 35, 37, 41, }.

There are no other edges or graph that can be removed due to the structure of this model.

For example, there exists no finite-cost Cmax for any p0 as they would all have a worst-case

value of ∞. In the case of model 6, the edge

{(7, 8), (46, 47), (57, 58), (84, 85), (85, 86)}

never exists on a path which has a Dmin lower than the Cmax(p0) which goes along all nodes

valued at 2 forming path:

p0 = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99}.

4 Numerical Examples 44

The fact that edges {(7, 8), (46, 47), (57, 58)} are be pruned means nodes:

{8, 9, 17, 18, 19, 27, 28, 29, 37, 38, 39, 46, 47, 48, 49, 58, 59}

are no longer attainable along a path from ns = 0 to nd = 99. Along with this, the removal

of edges {(84, 85), (85, 86)} removes all edges going to nodes {85, 86} which allows these two

nodes to be pruned. Finally, nodes {11, 25, 42, 44, 54, 76, 87} in no graph have finite-cost

edges that can be removed. The pruning of uncertain edge (37, 47) reduces the uncertainty.

There exists no best-case or worst-case path for the agent to take through this edge. Nature

would therefore always play its least costly edge between these two nodes. This ends up

reducing the uncertainty from 168 possible combinations to 21.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1

1

1

1

1

1

1

1

1

1

Fig. 4.30
Model 1
pruned with
G1.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 ? 1

1 1 1

1 1 ? 1

1 1 1

1 1 ? 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.31
Model 2
pruned with
G1.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 ? 1

?

?

17

1 ? 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.32
Model 3
pruned with
G1.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

?

?

1

10

1

10

1

10

1

10

1

10

?

?

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

??

11

1

Fig. 4.33
Model 4
pruned with
G1.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

?

1

?

1

?

1

?

1

?

1

?

1

?

1

?

1

?

Fig. 4.34
Model 5
pruned with
G1.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1 1 ? 1 1

1 1 1 1

1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

?

1

1

1

1

1

1

?

1

1

1

1

1

?

1

1

1

1

1

1

?

1

?

?

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.35
Model 6
pruned with
G1.

4 Numerical Examples 45

4.2.8 Size Comparison

Tables 4.1 and 4.2 show a breakdown of the number of nodes, certain edges, uncertain edges,

and number of graphs in each Model. Across the models the number of edges, nodes, or

graphs are increased. This is mitigated by the pruning of each model.

Table 4.1 Size tables for Models 1-3

Model 1
Model 1

Pruned
Model 2

Model 2

Pruned
Model 3

Model 3

Pruned

Number of Nodes 25 15 23 23 28 28

Number of Certain Edges 21 14 35 35 26 26

Number of uncertain Edges 1 0 3 3 4 4

Number of Graphs 2 1 3 3 24 24

Table 4.2 Size tables for Models 4-6

Model 4
Model 4

Pruned
Model 5

Model 5

Pruned
Model 6

Model 6

Pruned

Number of Nodes 49 49 49 37 100 74

Number of Certain Edges 48 48 33 33 96 75

Number of uncertain Edges 3 3 9 9 8 7

Number of Graphs 3 3 27 27 168 21

4.3 Results

The results will be presented to show the policy evaluation from the 6 different models

across the 3 different algorithms, with and without node pruning. The overall methods will

be summarized in Table 4.3. For the DNN + MCTS method, an additional graph for each

model world will present the results from the training after each episode, averaged over 5

parallel runs. The time to run one instance of each algorithm is shown in Table 4.4.

Both the VI and Modified Dijkstra’s methods have deterministic outputs, resulting in

no variation between runs. The only variation arises from the 5 different random start

seeds used in the DNN in the DNN + MCTS model. This variation will be represented by

the standard deviation in the DNN + MCTS results.

4 Numerical Examples 46

Table 4.3 Policy Evaluation of Different Models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Value

Iteration
14 16 N/A 30 N/A N/A

Value Iteration

Pruned
14 16 N/A 30 N/A N/A

Modified

Dijkstra’s
28 16 26 250 42 41

Modified Dijkstra’s

Pruned
14 16 26 250 42 41

DNN +

MCTS
14± 0 16± 0 26± 0 30± 0 34.8± 1.8 36± 0

DNN + MCTS

Pruned
14± 0 16± 0 26± 0 30± 0 34.8± 1.8 36± 0

Table 4.4 Computational Time Comparison of Different Models (Seconds)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Value

Iteration
1.36 13.12 N/A 4.20 N/A N/A

Value Iteration

Pruned
1.34 2.28 N/A 4.63 N/A N/A

Modified

Dijkstra’s
1.12 1.25 1.82 1.61 69.37 376.72

Modified Dijkstra’s

Pruned
1.28 1.63 4.08 1.98 117.78 117.68

DNN +

MCTS
10.52 12.03 429.05 215.02 1,890.58 20,100.57

DNN + MCTS

Pruned
11.77 13.73 432.79 218.17 1,938.99 755.02

4 Numerical Examples 47

4.3.1 DNN + MCTS Training Curves

The following figures represent the policy training curves for the DNN + MCTS. The values

presented in the graphs indicate the policy of the agent under its worst possible conditions,

specifically the value that is highest across all possible graphs. In all of the graphs, the line

labeled “Optimal Cost” is derived either from the VI algorithm or by inspection.

Fig. 4.36 Model 1 Fig. 4.37 Model 2 Fig. 4.38 Model 3

Fig. 4.39 Model 4 Fig. 4.40 Model 5 Fig. 4.41 Model 6

4.4 Summary of Results

Given the results of the three algorithms across the different models, Tables 4.3 and 4.4

show that robust algorithms like the VI and DNN + MCTS models can find the optimal

robust solution, unlike greedy algorithms such as Modified Dijkstra’s. The only cases where

Modified Dijkstra’s finds the optimal policy are when the shortest path in the worst-case

graph is identical to that in the best-case graph, with or without pruning. This is evident

in Models 1, 2, and 3. If there is unrecoverable deviation from the best-case and worst-

case graphs in a greedy manner, then algorithms like Modified Dijkstra’s do not succeed

in finding the optimal path. They can find a finite-cost path, but it might significantly

deviate from the optimal cost.

4 Numerical Examples 48

As the environment scales up with larger graphs and more possible configurations, the

limitations of VI become apparent. Building all required feasible states eventually becomes

unfeasible, as the time taken to create all possible states increases. This was why Models

3, 5, and 6 could not be tested, as even different combinations of feasible states could not

be adequately stored in memory at the required scale. Even though Model 4 is larger than

Model 3 in terms of the scale of the graph as it does contain less uncertainty. Due to this,

VI is able to find the solution to Model 4.

Across Models 1, 2, 3, 4, and 6, the DNN + MCTS solution consistently found the

optimal solution. The only exception is in Model 5. In Figure 4.40, after about 3000

episodes, the average path value varied between 34 and 38, with the final value of the

path taken being 34.8. While Model 5 does not have the largest graph, Model 6 features

a larger graph and a greater number of possible configurations due to uncertainty. Yet,

the DNN + MCTS algorithm was able to always find the optimal path in Model 6, unlike

in Model 5. One reason for this is that in Model 5, more opportunities exist to deviate

slightly from the optimal path to a sub-optimal one. Model 5 has the most nodes with three

or more edges along the optimal path, and at each of these nodes, there are only slight

differences in cost when taking any sub-optimal edge. Since the DNN + MCTS model

provides approximations for the value of each edge, this opens the door to taking slightly

sub-optimal paths. In contrast, Model 6’s optimal path strictly follows edges valued at 2,

with no nodes along this path having two or more edges. This error could be reduced with

further DNN model training or more extensive exploration of the MCTS tree.

Across different graph sizes and uncertainties, in some cases, the DNN + MCTS algo-

rithm found the optimal cost with randomly initialized DNN weights. This was true for

Models 1 and 2, which had small graphs and a lower value for L. In this work, each MCTS

was given the same amount of expansion rounds regardless of the size of the space. In

these cases, the full MCTS tree was built each time before the first action was taken. If the

total number of expansions had been severely limited, the DNN + MCTS method would

not have found the solution using random DNN weights in Models 1 and 2. In larger-scale

Models 3-6, the full tree could never be built, so the algorithm relied more heavily on DNN

approximations.

Across all examples shown, the Modified Dijkstra’s algorithm is considerably faster at

finding solutions. The algorithm generally takes orders of magnitude less time to run, as

seen in Table 4.4. Unfortunately, the paths found can perform significantly worse than those

4 Numerical Examples 49

in the other two models, as shown in Table 4.3. Between the three algorithms—VI, Modified

Dijkstra’s, and DNN + MCTS—the latter is most capable of handling increasingly larger

graphs with higher levels of uncertainty while still finding an optimal or nearly optimal

path.

4.5 Detailed Discussion of Results

Model 1

The policies for the VI, Modified Dijkstra’s, and DNN + MCTS algorithms in G1 can be

seen in Figures 4.42, 4.43, 4.44, 4.45, 4.46, and 4.47. In this case, all three algorithms did

not find the optimal path in any of the non-pruned scenarios (Figures 4.42, 4.43, and 4.44).

This is partly due to the structure of the uncertainty and how nature will play. It is always

optimal for nature to block the only uncertain edge if the agent approaches. Therefore,

since a greedy algorithm like Modified Dijkstra’s does not take this into account, it follows

the shortest path in the best-case scenario, which ends up being impassable.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.42
Model 1 with
G1 with VI
solution.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.43
Model 1 with
G1 with Modi-
fied Dijkstra’s
solution.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.44
Model 1 with
G1 with DNN
+ MCTS solu-
tion.

4 Numerical Examples 50

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1

1

1

1

1

1

1

1

1

1

Fig. 4.45
Model 1
pruned with
G1 with VI
solution.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1

1

1

1

1

1

1

1

1

1

Fig. 4.46
Model 1
pruned with G1
with Modified
Dijkstra’s solu-
tion.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1

1 1

1

1

1

1

1

1

1

1

1

1

Fig. 4.47
Model 1
pruned with
G1 with DNN
+ MCTS solu-
tion.

The pruning method reduces the overall uncertainty in this model to a single possible

G1, as seen in Figures 4.45, 4.46, and 4.47. While this does not significantly impact the

computation times for any of the models, as seen in Table 4.4, the time it takes to run just

the VI algorithm in this case is similar to running the VI with the pruning method. This

is due to the fact that Model 1 is not large and there are not many graphs to be removed,

so the benefit of running pruning with VI is very small. A larger impact is seen in the

policy evaluation of the Modified Dijkstra’s algorithm, where reducing the uncertainty

allows Modified Dijkstra’s to find the correct solution, as shown in Figure 4.46, resulting

in identical values for all models, as seen in Table 4.3.

The training curves for the DNN + MCTS in Model 1 can be seen in Figure 4.36. Given

the small dimensions of the environment and the fact that there are only 2 possible graphs,

G1 and G2, the MCTS method was able to find the solution with randomly initialized DNN

values, both with and without pruning.

Model 2

The policies for the VI, Modified Dijkstra’s, and DNN + MCTS algorithms in G1 can be

seen in Figures 4.48, 4.49, and 4.50. In this case, all three algorithms found the optimal

paths with and without pruning. This was consistent across all possible Gℓ, even when

nature is not using the worst-possible graph, as seen in G1 and G2. This is partly due to

the structure of the uncertainty and how nature will play. It is always optimal for nature

to block the first two unique uncertain edges that the agent will approach. In this case,

it is optimal for the agent to start moving towards one of the three obstacles. When that

4 Numerical Examples 51

is blocked, the agent moves to the next closest until the final, initially uncertain edge is

visited. This is the solution found by the VI Algorithm. This is identical to a greedy

strategy, meaning algorithms like Modified Dijkstra’s will find the same solution as the VI

and DNN + MCTS Algorithms.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1

1 1

1 1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.48
Model 2 with
G1 with the
VI, Modified
Dijkstras and
DNN + MCTS
solutions.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1

1 1

1 1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.49
Model 2 with
G2 with the
VI, Modified
Dijkstras and
DNN + MCTS
solutions.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

1 1 1

1 1

1 1 1

1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.50
Model 2 with
G3 with the
VI, Modified
Dijkstras and
DNN + MCTS
solutions.

The pruning method does not impact this model at all. No nodes can be removed,

and therefore running the pruning method slightly increases the total time cost of the

algorithms, as seen in Table 4.4, with no impact on the path values, as shown in Table 4.3.

The training curves for the DNN + MCTS can be seen in Figure 4.37. For similar

reasons as in Model 1, the MCTS method was able to find the solution with randomly

initiated DNN values.

Model 3

The policies for the VI, Modified Dijkstra’s, and DNN + MCTS algorithms in G1, G2, and
G3 can be seen in Figures 4.51, 4.52, and 4.53. In this case, only 2 algorithms, Modified

Dijkstra’s and DNN + MCTS, could actually solve the policy. There exist 24 possible

graphs, which means that for VI, there are 224 ≈ 1.6 × 107 feasible sets. This is then

compounded by the 28 possible nodes, creating 224 × 28 ≈ 4.7× 109 possible states for the

agent to exist in. As previously explained, this cannot be loaded into the memory of the

computer.

4 Numerical Examples 52

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 5 1

1

20

17

1 10 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.51
Model 3
pruned with
G1 for both
the Modified
Dijkstra’s and
DNN + MCTS
solution.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 1 1

10

20

17

1 5 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.52
Model 3
pruned with
G2 for both
the Modified
Dijkstra’s and
DNN + MCTS
solution.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

1 10 1

5

1

17

1 20 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.53
Model 3
pruned with
G3 for both
the Modified
Dijkstra’s and
DNN + MCTS
solution.

Between the two models that were run, Modified Dijkstra’s and DNN + MCTS, both

were able to find the optimal policy. Regardless of the initial direction of the agent, it

is always optimal for nature to use the highest edge cost obstacle at the first uncertain

edge the agent approaches. Nature will then play the next highest remaining edge at each

subsequent turn. This leads the agent’s optimal policy to first move to the closest obstacle

and then to the next one after observing the cost of the first uncertain edge. This is because

moving from the first uncertain obstacle to the next may incur a lower cost than crossing

the obstacle valued at 20.

The pruning method does not impact this model at all; therefore, running the pruning

method followed by the algorithms actually slightly increases the total time cost, as seen

in Table 4.4, and does not affect the path values, as shown in Table 4.3.

The training curves for the DNN + MCTS can be seen in Figures 4.38. In this case,

the randomly generated DNN weights for episode 0 are insufficient for the algorithm to

find the optimal path. Given that there are ∼ 4.7 × 109 possible states for the agent, the

MCTS tree has this many possible nodes. This causes the algorithm to depend significantly

on the approximation values from the DNN, which can only improve after several training

episodes, unlike in Models 1 and 2.

4 Numerical Examples 53

Model 4

The policies for the VI, Modified Dijkstra’s, and DNN + MCTS algorithms in G1, G2, and
G3 can be seen in Figures 4.54, 4.55, 4.56, 4.57, 4.58, and 4.59. Model 4 is structurally

similar to Model 1. There is one longer path that has no obstacles, while there are shorter

paths that contain obstacles. The optimal policy is successfully identified by both the VI

and DNN + MCTS algorithms. However, since the Modified Dijkstra’s algorithm does

not account for uncertainty, it greedily assumes that the shortest path will not have any

obstacles. Nature consistently chooses to block the two shorter paths, which forces the

agent to take a path that navigates through the top side of the graph.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1

Fig. 4.54
Model 4 with
G1 with VI and
DNN + MCTS
solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.55
Model 4 with
G2 with VI and
DNN + MCTS
solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

1

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.56
Model 4 with
G3 with VI and
DNN + MCTS
solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.57
Model 4 with
G1 with Modi-
fied Dijkstra’s
solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

1

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.58
Model 4 with
G2 with Modi-
fied Dijkstra’s
solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

110

110

110

110

110

110

110

110

110

110

110

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

33

11

1

Fig. 4.59
Model 4 with
G3 with Modi-
fied Dijkstra’s
solution.

As shown in Table 4.3, Modified Dijkstra’s is never able to find the optimal policy,

as the pruning method has no impact on this model. The cost path taken by Modified

4 Numerical Examples 54

Dijkstra’s is valued at 250, which is considerably worse than the optimal solution valued

at 30.

In this model, pruning does not change the scenario at all and therefore increases the

computation time, as seen in Table 4.4. The training curves for the DNN + MCTS can

be seen in Figure 4.39. In this case, the randomly generated DNN weights for episode 0

are insufficient for finding the optimal path. However, after 8 episodes, the DNN + MCTS

successfully values the states, allowing it to identify the optimal path.

Model 5

The policy solutions for Model 5 given G1 are represented in Figures 4.60, 4.61, 4.62, 4.63,

4.64, and 4.65. These results are only for the Modified Dijkstra’s solution and the DNN

+ MCTS solution. This is due to the fact that in Model 5, there exist 27 possible graphs.

This would create 227 ≈ 1.34×108 feasible sets, which is then compounded by the fact that

there are 37 nodes that the agent can reside at. Therefore, the total number of state values

that the VI solution would need to find is on the order of 227 × 37 ≈ 4.97× 109. Just like

in Model 3, it was not possible for this number of states to even be loaded into memory,

and if it were, the computation time would have been on the scale of days or weeks. Due

to this, VI was not used to find a solution in this case.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.60 Model 5
with G1 using Modified
Dijkstra’s solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.61 Model 5
with G2 using Modified
Dijkstra’s solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.62 Model 5
with G3 using Modified
Dijkstra’s solution.

4 Numerical Examples 55

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.63 Model 5
with G1 using DNN +
MCTS solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.64 Model 5
with G2 using DNN +
MCTS solution.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4.65 Model 5
with G3 using DNN +
MCTS solution.

Regardless of this limitation, Modified Dijkstra’s and DNN + MCTS are usable in this

case. The costs of their paths can be seen in Table 4.3. Between these two solutions, only

DNN + MCTS finds the optimal solution given the uncertainty in the space. Note that

Modified Dijkstra’s could have found the optimal solution in graph G1 as seen in Figure 4.60.

When the agent was at node 15, it had two greedy options. It could have moved down to

node 22 to try to take the path through nodes {22, 29, 36, 43, 44, 45}, which costs identically

to the path going through node 24, which would go through nodes {16, 17, 24, 31, 38, 45}.
Depending on the implementation of Modified Dijkstra’s, it will choose differently between

those two options. These two paths are identical to a shortest path algorithm such as

Modified Dijkstra’s, which does not take uncertainty into account. The other graphs G2
and G3 represent cases where the path is not the worst-case given the policies of Modified

Dijkstra’s and DNN +MCTS. Because of this, in graph G3, the two algorithms find identical

paths, and in G2, Modified Dijkstra’s finds a shorter path. But as can be seen in the results

from the worst-case policy evaluation in Table 4.3, Modified Dijkstra’s does not outperform

DNN + MCTS.

The training curves for the DNN + MCTS model can be seen in Figure 4.40, where

over time the DNN’s prediction improves, allowing for the optimal value to be found with

the MCTS algorithm. It takes both algorithms about 3000 training episodes before finally

settling down to their final average value. This final average value was not exactly the

optimal solution. The final result is 34.8 ± 1.8. Over the course of the last 1000 training

episodes, various runs tend to overfit, causing inaccurate actions to be taken along the

path. The final output of the 5 runs was {34, 34, 34, 34, 38}. By inspection of the model,

it can be seen that the optimal value for the worst-case path is {34}. Four of the five runs

4 Numerical Examples 56

had found this value. Given considerably more training episodes, the final five runs could

all converge to this value of 34.

Model 6

The policy solutions for model 6 given G1 are represented in Figures 4.66, 4.67, 4.68, and

4.69. These results are only for Modified Dijkstra’s solution and for the DNN + MCTS

solution. This is due to the fact that in model 6, there exist 168 possible graphs. This

would create 2168 ≈ 3.74 × 1050 feasible sets, which is then compounded by the fact that

there are 93 nodes that the agent can reside at. Therefore, the total number of state values

that the VI solution would need to find is on the order of 2168 × 93 ≈ 3.48 × 1052. Just

like in models 3 and 5, it was not possible for this number of states to even be loaded into

memory, and if it were, the computation time would have been on the scale of days or

weeks. Due to this, VI was not used to find a solution in this case.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 5 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

5

1

1

1

1

1

1

5

1

1

1

1

1

2

1

1

1

1

1

1

2

1

1

1

1

5

1

1

1

5

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.66 Model 6
with G1 with Modified
Dijkstra’s solution.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 5 1 1

1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

5

1

1

1

1

1

1

5

1

1

1

1

1

2

1

1

1

1

1

1

2

1

1

1

1

5

1

1

1

5

1

1

1

1

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.67 Model 6
with G1 with DNN +
MCTS solution.

4 Numerical Examples 57

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1 1 ? 1 1

1 1 1 1

1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

?

1

1

1

1

1

1

?

1

1

1

1

1

?

1

1

1

1

1

1

?

1

?

?

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.68 Model 6
with pruned G1 with
Modified Dijkstra’s so-
lution.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

1 1 1 1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1 1 ? 1 1

1 1 1 1

1 1 1 1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

?

1

1

1

1

1

1

?

1

1

1

1

1

?

1

1

1

1

1

1

?

1

?

?

1

4
2 2 2 2 2 2 2 2 2

Fig. 4.69 Model 6
with pruned G1 with
DNN + MCTS solu-
tion.

On the other hand, Modified Dijkstra’s and DNN + MCTS are usable in this case.

Between these two solutions, only DNN + MCTS finds the optimal solution given the

uncertainty in the space. The way that this environment is constructed is set up such that

it is never optimal in the worst-case graph Gℓ∗ to go through the middle of the graph, just

like Modified Dijkstra’s did in Figures 4.66 and 4.68. In the worst cases, the optimal path

can be seen in Figures 4.67 and 4.69, with a path valued at 36. Modified Dijkstra’s, or

another greedy type of algorithm, will go through the middle because in the best cases it

would only cost 34. However, in the worst case, it will cost 38. Only the DNN + MCTS

method was able to take the worst-case optimal path. These results can be seen in Table

4.3.

It takes about 3100 training episodes for the unpruned DNN + MCTS method to find

the optimal solution. Over time, the training curve can be seen in Figure 4.41. Pruning,

in this case, affects the training time for the DNN + MCTS method considerably, as it

is then able to find the optimal solution within a hundred training episodes. There is no

effect on the result of the Modified Dijkstra’s solution, as the pruning in this environment

does not remove any nodes or edges that the sub-optimal path taken by the Modified

Dijkstra’s method traverses. The effect seen in both algorithms from the pruning is that

the computation time required decreases for both, as seen in Table 4.4.

58

Chapter 5

Conclusion

This thesis has focused on the development of algorithms to solve a Robust Shortest Path

(RSP) problem using a hybrid planning model in a discrete set of possible uncertain worlds

by taking advantage of local information revelation. This problem differentiates from other

RSP problems, as other models entail entirely offline planning over a set of uncertain states

that have some distribution.

To solve this uncertain path-planning challenge, a Value Iteration (VI) algorithm was

developed to compute a path-planning solution in a hybrid offline/online manner. The

path policy depends on the agent’s current information state, which is based on the feasible

states of the world. While the policy is computed offline, the information state is updated

as local information is revealed. The policy then uses this updated state to determine the

next action until the terminal state is reached. This algorithm is guaranteed to compute

the optimal robust policy in a given world but has the limitation of requiring increasingly

longer compute time and resources as the uncertainty and size of the space increase.

Due to the computational intensity of VI, a more efficient approach combining Deep

Neural Networks (DNNs) with Monte Carlo Tree Search (MCTS) was implemented, inspired

by the algorithm used in AlphaGo. In this approach, a DNN is first trained to estimate

the value of states, allowing MCTS to approximate state values without having to fully

construct the entire search tree. By leveraging the DNN’s predictive capabilities, and a

backpropagation for the MCTS which takes the worst-case value into account, MCTS is

able to significantly reduce the computational overhead typically required for exhaustive

tree exploration, streamlining the process while maintaining accuracy. This allowed the

5 Conclusion 59

examples in the thesis, which were not solvable by VI due to computational and time

constraints, to be solved. While this MCTS algorithm has no guarantee to compute the

optimal robust path until a full MCTS tree is built, it is able to find the solution in the larger

examples shown in this thesis without building the full tree. Across the 6 main examples

shown in this thesis time-efficient algorithms like Dijkstra’s were shown to not consistently

find the robustly optimal solution. In some cases Dijkstra’s solution matched the solution

found by VI but in other cases, the solution found by Dijkstra’s catastrophically diverged

from the optimal. In cases where the robust solution is needed VI and DNN+MCTS can

find the solution.

5.1 Future Work

There are several directions in which the work done in this thesis could be expanded.

One area involves potential cost stochasticity. The work in this thesis deals with discrete

uncertainty sets, where the value of an edge can take on values from a specified set. If

each value instead comes from a distribution, solving the problem becomes more complex

because the feasible set becomes a belief set. This type of problem could still be approached

using the same hybrid path planning method (DNN + MCTS) if it is capable of capturing

this stochastic cost information.

Another area for future work involves testing the algorithms developed in this thesis

in real-life routing or navigation scenarios, such as with robots or communication packets.

The examples from the Minigrid world demonstrate a variety of cases where the algorithm is

effective, and it is likely that the same would hold true outside of these simulated instances.

The problem described in this thesis was focused on one agent traversing a space. This

can be extended to multiple agents traveling to either the same or different goals. As they

progress through the space, they can share data on the explored space. Each action taken

by a given agent would aim to decrease not only their traversal path but also the cost of

the other agents as well. The solution to such a problem would require a more extensive

state and observation model which takes the transition and observation of each agent into

account.

A final potential area for future work relates to the close similarities between the prob-

lems encountered in robust path planning for traversal and coverage scenarios. The work

done in this thesis can be extended to the case of path coverage. The DNN + MCTS

5 Conclusion 60

method could manage the complexity related to coverage history without the exponential

increase in computational requirements that the VI method would entail.

61

References

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree
search methods,” IEEE Transactions on Computational Intelligence and AI in games,
vol. 4, no. 1, pp. 1–43, 2012.

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[4] G. Yu and J. Yang, “On the robust shortest path problem,” Computers & operations
research, vol. 25, no. 6, pp. 457–468, 1998.

[5] D. P. Bertsekas and J. N. Tsitsiklis, “An analysis of stochastic shortest path problems,”
Mathematics of Operations Research, vol. 16, no. 3, pp. 580–595, 1991.

[6] D. P. Bertsekas et al., “Dynamic programming and optimal control 3rd edition, volume
ii,” Belmont, MA: Athena Scientific, vol. 1, 2011.

[7] D. P. Bertsekas and H. Yu, “Stochastic shortest path problems under weak conditions,”
Lab. for Information and Decision Systems Report LIDS-P-2909, MIT, 2013.

[8] D. Bertsekas, “6.231 dynamic programming and stochastic control, fall 2011,” 2011.

[9] P. Kamkarian and H. Hexmoor, “A novel offline path planning method,” in Proceedings
on the International Conference on Artificial Intelligence (ICAI), p. 10, The Steering
Committee of The World Congress in Computer Science, Computer . . . , 2015.

[10] T.-W. Zhang, G.-H. Xu, X.-S. Zhan, and T. Han, “A new hybrid algorithm for path
planning of mobile robot,” The Journal of Supercomputing, vol. 78, no. 3, pp. 4158–
4181, 2022.

References 62

[11] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto, “An efficient
sampling-based method for online informative path planning in unknown environ-
ments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1500–1507, 2020.

[12] D. P. Bertsekas, “Robust shortest path planning and semicontractive dynamic pro-
gramming,” Naval Research Logistics (NRL), vol. 66, no. 1, pp. 15–37, 2019.

[13] A. F. DePavia, E. Tani, and A. Vakilian, “Learning-based algorithms for graph search-
ing problems,” in International Conference on Artificial Intelligence and Statistics,
pp. 928–936, PMLR, 2024.

[14] M. M. Pascoal and M. Resende, “The minmax regret robust shortest path problem
in a finite multi-scenario model,” Applied Mathematics and Computation, vol. 241,
pp. 88–111, 2014.

[15] D. Tschirky, “An information-theoretic approach to the robust shortest path prob-
lem,” Master’s thesis, Eidgenössische Technische Hochschule Zürich, Department of
Computer Science, 2012.

[16] A. V. Goldberg and T. Radzik, A heuristic improvement of the Bellman-Ford algo-
rithm. Stanford University, Department of Computer Science, 1993.

[17] M. Guillot and G. Stauffer, “The stochastic shortest path problem: a polyhedral
combinatorics perspective,” European Journal of Operational Research, vol. 285, no. 1,
pp. 148–158, 2020.

[18] M. C. M. N. d. M. Resende, The robust shortest path problem with discrete data. PhD
thesis, 2015.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[20] D. Bertsekas and I. Rhodes, “Sufficiently informative functions and the minimax feed-
back control of uncertain dynamic systems,” IEEE Transactions on Automatic Control,
vol. 18, no. 2, pp. 117–124, 1973.

[21] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on com-
puting, vol. 1, no. 2, pp. 146–160, 1972.

[22] Y. Gabriely and E. Rimon, “Spiral-stc: An on-line coverage algorithm of grid envi-
ronments by a mobile robot,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292), vol. 1, pp. 954–960, IEEE, 2002.

References 63

[23] M. Iqbal, A. P. U. Siahaan, N. E. Purba, and D. Purwanto, “Prim’s algorithm for
optimizing fiber optic trajectory planning,” Int. J. Sci. Res. Sci. Technol, vol. 3, no. 6,
pp. 504–509, 2017.

[24] H. J. Greenberg, “Greedy algorithms for minimum spanning tree,” University of Col-
orado at Denver, 1998.

[25] C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A comprehensive review of coverage
path planning in robotics using classical and heuristic algorithms,” IEEE Access, vol. 9,
pp. 119310–119342, 2021.

[26] T. Oksanen and A. Visala, “Coverage path planning algorithms for agricultural field
machines,” Journal of field robotics, vol. 26, no. 8, pp. 651–668, 2009.

[27] B. Ai, M. Jia, H. Xu, J. Xu, Z. Wen, B. Li, and D. Zhang, “Coverage path planning for
maritime search and rescue using reinforcement learning,” Ocean Engineering, vol. 241,
p. 110098, 2021.

[28] G. J. Lim, S. Kim, J. Cho, Y. Gong, and A. Khodaei, “Multi-uav pre-positioning and
routing for power network damage assessment,” IEEE Transactions on Smart Grid,
vol. 9, no. 4, pp. 3643–3651, 2016.

[29] M. Zhou and J. Shi, “An uncertainty-driven sampling-based online coverage path
planner for seabed mapping using marine robots,” in 2022 IEEE/OES Autonomous
Underwater Vehicles Symposium (AUV), pp. 1–7, IEEE, 2022.

[30] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage assisted fuzzing,”
in Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security, pp. 598–609, 2020.

[31] R. Sun, C. Tang, J. Zheng, Y. Zhou, and S. Yu, “Multi-robot path planning for
complete coverage with genetic algorithms,” in Intelligent Robotics and Applications:
12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019,
Proceedings, Part V 12, pp. 349–361, Springer, 2019.

[32] D. Bertsekas, Reinforcement learning and optimal control, vol. 1. Athena Scientific,
2019.

[33] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, pp. 235–256, 2002.

[34] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of
go with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

References 64

[35] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[36] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” Advances in neural
information processing systems, vol. 23, 2010.

[37] P. R. Williams, J. Walton-Rivers, D. Perez-Liebana, and S. M. Lucas, “Monte carlo
tree search applied to co-operative problems,” in 2015 7th Computer Science and
Electronic Engineering Conference (CEEC), pp. 219–224, IEEE, 2015.

[38] S. J. Smith and D. S. Nau, “An analysis of forward pruning,” in AAAI, pp. 1386–1391,
1994.

[39] E. Powley, P. Cowling, and D. Whitehouse, “Memory bounded monte carlo tree
search,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, vol. 13, pp. 94–100, 2017.

[40] A. Hagberg, P. J. Swart, and D. A. Schult, “Exploring network structure, dynamics,
and function using networkx,” tech. rep., Los Alamos National Laboratory (LANL),
Los Alamos, NM (United States), 2008.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

	List of Acronyms
	Introduction
	Motivation
	Claims of Originality
	Motivating Examples
	Literature Review
	Notation Section
	Symbols
	Conventions

	Robust Shortest Path
	Preliminaries on Graphs
	Problem Formulation
	Dynamic Programming Decomposition
	Information State
	Dynamic Programming Solution
	Interpretation as a 2-Player ZSG
	Value Iteration
	Illustration of the DP Solution

	Node Pruning

	Monte Carlo Tree Search
	Upper Confidence Bounds
	Monte Carlo Tree Search browne2012survey
	Alpha Go

	MCTS+DNN Implementation

	Numerical Examples
	Baseline Algorithms Compared
	Benchmark Models
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5
	Model 6
	Pruning Models
	Size Comparison

	Results
	DNN + MCTS Training Curves

	Summary of Results
	Detailed Discussion of Results

	Conclusion
	Future Work

	References

