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Abstract

Causal learning primarily focuses on uncovering the concealed causal mech-

anisms that enhance our understanding of data beyond its usual distribution.

Existing research in this field has commonly made the assumption that causal

variables are predefined and observed. However, machine learning applications

frequently witness learning from low-level data, such as image pixels or high-

dimensional vectors. In these scenarios, the entire Structural Causal Model

(SCM), comprising its structure, parameters, and high-level causal variables,

remains latent and requires learning from the observed low-level data.

This thesis investigates the problem of Bayesian Inference Over Latent

SCMs (BIOLS) from low-level data. BIOLS is introduced as a practical method

for approximate inference, simultaneously inferring the latent SCM’s causal

variables, structure, and parameters from known interventions. To assess the

effectiveness of BIOLS, experiments are conducted on synthetic datasets and

a benchmark image dataset characterized by causal associations. Additionally,

BIOLS’s capability to generate images from previously unseen interventional

distributions is demonstrated. These findings highlight the potential benefits

of causal representation learning for generalization in downstream tasks.
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Résumé

L’apprentissage causal se concentre principalement sur la découverte des

mécanismes causaux cachés qui améliorent notre compréhension des données au-

delà de leur distribution habituelle. Les recherches existantes dans ce domaine

ont généralement fait l’hypothèse que les variables causales sont prédéfinies

et observées. Cependant, les applications d’apprentissage automatique sont

souvent confrontées à l’apprentissage à partir de données de bas niveau, telles

que les pixels d’images ou les vecteurs de haute dimension. Dans ces scénarios,

l’ensemble du Modèle Causal Structurel (SCM), comprenant sa structure, ses

paramètres et ses variables causales de haut niveau, reste latent et nécessite un

apprentissage à partir des données de bas niveau observées.

Cette thèse examine le problème de l’Inférence Bayésienne sur les SCMs

Latents (BIOLS) à partir de données de bas niveau. BIOLS est présenté

comme une méthode pratique pour l’inférence approximative, permettant si-

multanément d’inférer les variables causales latentes du SCM, sa structure et

ses paramètres à partir d’interventions connues. Pour évaluer l’efficacité de BI-

OLS, des expériences sont menées sur des ensembles de données synthétiques et

un ensemble de données d’images de référence caractérisé par des associations

causales. De plus, la capacité de BIOLS à générer des images à partir de distri-

butions d’interventions précédemment inconnues est démontrée. Ces résultats

mettent en lumière les avantages potentiels de l’apprentissage de représentations

causales pour la généralisation dans les tâches ultérieures.



Contents

Contents iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Learning with Gradient Descent . . . . . . . . . . . . . . . . . 3

1.1.3 Escaping Local Minima: Variants of Gradient Descent . . . . 4

1.1.4 The Backpropagation Algorithm . . . . . . . . . . . . . . . . . 6

1.1.5 The Reparametrization Trick . . . . . . . . . . . . . . . . . . 7

1.2 Parameter Sharing as Inductive Bias . . . . . . . . . . . . . . . . . . 9

1.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 9

1.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 10

1.2.3 The Attention Mechanism . . . . . . . . . . . . . . . . . . . . 13

1.3 Limitations of Deep Learning . . . . . . . . . . . . . . . . . . . . . . 14

1.4 A Potential Remedy . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



CONTENTS v

2 Tools for Representation Learning 18

2.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 18

2.2 Maximum A Posteriori Estimation . . . . . . . . . . . . . . . . . . . 19

2.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . 20

3 Causality 21

3.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Traditional Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Structure Learning and Causal Discovery . . . . . . . . . . . . . . . . 24

3.4 Latent Causal Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Related Work 28

4.1 Causal Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Latent Variables with Structure . . . . . . . . . . . . . . . . . . . . . 31

4.3 Causal Representation Learning . . . . . . . . . . . . . . . . . . . . . 32

5 Learning Latent Structural Causal Models 34

5.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 BIOLS: Bayesian Inference Over Latent SCMs . . . . . . . . . . . . . 37

5.3 Posterior parameterizations and priors . . . . . . . . . . . . . . . . . 39

6 Experimental Findings 41

6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Ablation on graph density . . . . . . . . . . . . . . . . . . . . 48

6.2.2 Ablation on the number of intervention sets . . . . . . . . . . 49

6.2.3 Ablation on single and multi node intervention targets . . . . 51

6.2.4 Ablation on range of intervention values . . . . . . . . . . . . 52

6.2.5 Scaling the number of nodes . . . . . . . . . . . . . . . . . . . 54



CONTENTS vi

6.2.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . 56

6.2.7 Additional Visualizations . . . . . . . . . . . . . . . . . . . . . 58

6.2.8 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion 60

Bibliography 62



List of Figures

1.1 3D visualization of a high-dimensional loss landscape from an example

problem. Source image from here. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Reparametrization trick for sampling from a univariate Gaussian (figure

inspired by these lecture slides) . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Image convolution with a stride of 1 . . . . . . . . . . . . . . . . . . . . 9

1.4 A recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Operations for Dot Product Attention (from (Vaswani et al. 2017)) . . . 13

1.6 A causal diagram encoding the physical mechanism affecting altitude and

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 An example SCM with a highlighted variable (red), its parents (blue), and

the causal mechanisms operating through cause-effect edges (green). . . . 22

3.2 Example of a causal graph to illustrate the causal faithfulness assumption 24

3.3 Bayesian Network for prior works in causal discovery and structure learning 25

3.4 Bayesian Network for the latent causal discovery task that generalizes stan-

dard causal discovery setups . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Bayesian Network for prior works in causal discovery and structure learning 34

5.2 BN for the latent causal discovery task that generalizes standard causal

discovery setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii

https://www.cs.umd.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}tomg/projects/landscapes/
https://www.youtube.com/watch?v=rZufA635dq4


LIST OF FIGURES viii

5.3 Model architecture of the proposed generative model for the Bayesian la-

tent causal discovery task to learn latent SCMs from low-level data. . . . 37

6.1 Image generated from the chemistry environment. . . . . . . . . . . . . . 44

6.2 Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from

a 100−dimensional vector, where the generative function from Z to X is

an SO(n) transformation. E-SHD (↓), AUROC (↑) . . . . . . . . . . . 44

6.3 Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from

a 100−dimensional vector, where the generative function from Z to X is

a linear projection to 100 dimensions. E-SHD (↓), AUROC (↑) . . . . 45

6.4 Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from

a 100−dimensional vector, where the generative function from Z to X is

a nonlinear projection to 100 dimensions. E-SHD (↓), AUROC (↑) . . 46

6.5 Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from

50 × 50 images in the chemistry benchmark dataset (Ke, Didolkar, et al.

2021). E-SHD (↓), AUROC (↑) . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Samples of images from the ground truth and learned interventional dis-

tributions. Intensity of each block refers to the causal variable. One block

is intervened in each column. . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7 Effect of number of intervention sets on latent SCM recovery for linear

(top row) and nonlinear (bottom row) generation function, d = 20 nodes.

SHD ↓ , AUROC ↑, MSE(L, L̂) ↓ . . . . . . . . . . . . . . . . . . . . . 48

6.8 Effect of number of intervention sets on latent SCM recovery for a linear

generation function, d = 30, 50 nodes. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓ 49

6.9 Effect of number of intervention sets on latent SCM recovery for a nonlinear

generation function, d = 30, 50 nodes. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓ 50



LIST OF FIGURES ix

6.10 Effect of single and multi target interventional data on the latent SCM

recovery, for a linear generation function, d = 30, 50 nodes. The X-axis

refers to the number of intervention sets. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓ 51

6.11 Effect of zero and gaussian intervention values on latent SCM recovery,

assuming a linear generation function, d = 30, 50 nodes. The X-axis refers

to the number of intervention sets. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓ 52

6.12 Effect of zero and gaussian intervention values on latent SCM recovery, for

an nonlinear generation function modeled by a 3 layer MLP, d = 30, 50

nodes. The X-axis refers to the number of intervention sets. SHD ↓ ,

AUROC ↑ , MSE(L, L̂) ↓ . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.13 Scaling BIOLS across number of nodes for a linear data generation func-

tion, trained on multi-target interventions with Gaussian intervention values. 54

6.14 Scaling BIOLS across number of nodes for a linear data generation func-

tion, trained on single-target interventions with Gaussian intervention values. 55

6.15 Scaling BIOLS across number of nodes for a linear data generation func-

tion, trained on multi-target interventions with intervention values fixed

to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.16 Scaling BIOLS across number of nodes for a linear data generation func-

tion, trained on multi-target interventions with Gaussian intervention values. 56

6.17 Ground truth causal structures for the experiment on the chemistry dataset. 58

6.18 Ground truth weighted adjacency matrices for the experiment on the chem-

istry dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Tables

4.1 Situating BIOLS in the context of related work in causal discovery. . . . 30

4.2 Situating BIOLS in the context of related work in causal generative models

and causal representation learning. . . . . . . . . . . . . . . . . . . . . . 33

6.1 Network architecture for the nonlinear projection . . . . . . . . . . . . . 57

6.2 Network architecture for the decoder pψ(X | Z) . . . . . . . . . . . . . . 57

6.3 Program runtimes: Scaling BIOLS across number of nodes and data points,

with D = 100. All runs are reported on 10000 epochs of BIOLS across 5

seeds. All reported runtimes are in minutes. . . . . . . . . . . . . . . . . 59

x



1
Introduction

The question of whether machines can think and learn has long fascinated researchers

across fields, with early efforts to explore this concept dating back to the 1940s (Hebb

1949; Turing 1950; Rosenblatt 1958). During these times, AI research focused on de-

veloping algorithms that could perform specific tasks such as playing chess or trans-

lating languages by manipulating symbols. This approach, known as symbolic AI,

dominated the field for many years. However, symbolic AI systems often struggled to

perform tasks that required complex pattern recognition or decision-making, leading

to the development of alternative approaches.

In 1943, McCulloch and Pitts proposed the McCulloch-Pitts neuron (now known as

the Perceptron) as a computational unit inspired by neurons in the brain (McCulloch

and Pitts 1943). The Perceptron (Rosenblatt 1958), a machine designed for image

classification, was the first implementation of this concept and initially consisted of

a single layer linear classifier. Despite demonstrating signs of learning and intelli-

gence, connectionist AI approaches such as the Perceptron were not seen as a viable

option for simulating intelligence due to the dominance of symbolic AI at the time.

The publication of “Perceptrons” by Minsky and Papert 1969 further hindered the

advancement of connectionist models by highlighting their inability to learn complex,

nonlinear functions, and even simpler functions such as the XOR.

In the decades that followed, advancement of computer hardware and the idea

1
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of using the error backpropagation algorithm resurfaced, which made the training of

deeper neural networks feasible. The error backpropagation algorithm was indepen-

dently discovered many times since the 1960s (Kelley 1960; Dreyfus 1962), but saw

widespread applications to train deep neural networks only after its popularisation in

1986 by David Rumelhart et al (Rumelhart, Hinton, and Williams 1986a; Rumelhart,

Hinton, and Williams 1986b). Training deeper networks meant that artificial neural

network could now learn more complex, nonlinear dependencies unlike the Perceptron.

Since then, deep learning has seen tremendous success in various applications. A

flurry of neural network architectures have been proposed to perform feature extrac-

tion from various kinds of sensory inputs (images, videos, audio): Convolutional Neu-

ral Networks (LeCun et al. 1989; Fukushima 1980) to handle feature extraction from

pixels, recurrent models (Hochreiter and Schmidhuber 1997) to handle temporal data

for speech recognition and machine translation, Variational Autoencoders (Kingma

and Welling 2013) and Generative Adversarial Networks (Goodfellow et al. 2014) to

handle generation, and recently, the introduction of the attention mechanism (Bah-

danau, Cho, and Y. Bengio 2014) and Transformers (Vaswani et al. 2017).

However, much of deep learning, and machine learning in general, is limited in

many tasks that humans and animals excel at, such as transfer and generalization.

The way in which AI fails is also very different from how natural intelligence fails.

Many of these limitations arise due to statistical nature of the learning algorithms

as we will discuss in the next section. Hence, the focus of this thesis is develop a

method to learn causal relationships among high level variables from low-level data,

and investigate how the learned causal relationships might be useful for overcoming

the limitations of statistical learning and prediction.
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1.1 Artificial Neural Networks

In this section, we will discuss fundamental concepts in deep learning, and in partic-

ular, ideas surrounding the use multiple layers of neurons with nonlinear activation

functions to build universal function approximators for complex pattern recognition

– a feat that the original work on Perceptrons fell short of.

1.1.1 Multilayer Perceptrons

As mentioned earlier, the Perceptron was a single layer classifier without any acti-

vation function. This severely restricted the function f , that transformed the inputs

(x) to the output class (y), to a linear function class. This prevented the network

from recognizing complex patterns, sometimes even simple ones such as the XOR.

Multilayer Perceptrons (MLP) emerged to address this limitation. By stacking mul-

tiple layers of neurons and applying a nonlinear activation function after the linear

transformation at each layer, the MLP was able to capture progressively more com-

plex patterns in data and extract features. Many nonlinear activation functions have

been proposed since, such as ReLU (Nair and Hinton 2010), Tanh, Sigmoid for binary

classifications tasks, and the Softmax function for multi-class classification tasks.

This ability to model arbitrarily complex functions is very promising since it allows

the objective L(y, fϕ(x)) to reach lower minima for any function L(.)1 given the right

learning rule on how to update the MLP parameters, ϕ.

1.1.2 Learning with Gradient Descent

Now that we can perform a forward pass (by running the MLP on inputs and calcu-

lating outputs of each layer till the last) to predict a ŷ arbitrarily close to y, all we

need is an algorithm that can propose how to change the parameters ϕ so that the
1though in practice, we choose this to be a convex function such as the mean squared error for

easier optimization
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Figure 1.1: 3D visualization of a high-dimensional loss landscape from an example
problem. Source image from here.

objective decreases. The gradient, ∇ϕL(y, fϕ(x)), is a local measure of how much the

objective increases as a result of making an incremental change to the parameters ϕ,

and thus the negative of this value gives a local measure of how much the objective

decreases. The update rule for gradient descent is given by

ϕnew ← ϕold − α∇ϕL(y, fϕ(x)) , (1.1)

where α is the learning rate or step size (of how much we want to move in parameter

space). By doing many such updates, one expects to converge to a local minima that

is sufficiently close to the global minima in the loss landscape (figure 1.1). However,

having a large step size can overshoot the minima and the learning might not converge.

Lowering α can help in this case, but as α → 0 the time taken to converge tends to

infinity. To help convergence and its speed, several variants of gradient descent have

been proposed.

1.1.3 Escaping Local Minima: Variants of Gradient Descent

Stochastic Gradient Descent (Robbins 1951): The gradient ∇ϕL(y, fϕ(x)) often

consists of a lot of terms since the loss is a summation over a large number of data

https://www.cs.umd.edu/~tomg/projects/landscapes/
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samples. The number of computations to be performed also grows with the number

of parameters in the model. Hence, calculating the complete gradient at one go can

be costly and even impossible when compute is limited.

Algorithm 1 Stochastic gradient descent (optionally with momentum)
Require: α, ϕ0,LB(ϕ) (objective), µ (momentum), τ (dampening)
Ensure: ϕT

for t=1 . . .T do do
gt ← ∇ϕLB(ϕt−1)
if µ ̸= 0 then

if t > 1 then
bt ← µbt−1 + (1− τ)gt

end if
end if
gt ← bt
ϕt ← ϕt−1 − αgt

end for

Mini-batch stochastic gradient descent seeks to obtain an estimate of the gradient

instead, by randomly calculating the gradient, ∇ϕLB(y, fϕ(x)), with respect to a mini-

batch of samples. The stochasticity thereby introduced also allows the model to

escape saddle points and sharp local minima and seek flatter local minima which tend

to generalize better. When a single sample is used to get this gradient estimate, it is

termed as stochastic gradient descent (i.e., batch size 1, and more noisy), and is called

mini-batch gradient descent when the batch-size is larger than 1 (less noisy estimates

for larger batch sizes). This can optionally be implemented with momentum, where

the current update depends on the weighted average over previous gradient estimates.

A sudden gradient change thus does not adversely affect the gradient trajectory.

Algorithm 1 summarizes stochastic gradient descent optionally with momentum.

Other common optimization schemes such as Adagrad (Duchi, Hazan, and Singer

2011) and Adam (Kingma and Ba 2014) are summarized in algorithms 2 and 3.
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Algorithm 2 Adagrad optimization
Require: α, ϕ0,L, η (learning rate decay)
Ensure: ϕT
state0 ← 0
for t=1 . . .T do do

gt ← ∇ϕL(y, fϕt−1(x))
α̃← α

1+(t−1)η
statet ← statet−1 + g2

t

ϕt ← ϕt−1 − α̃ gt√
statet+ϵ

end for

Algorithm 3 Adam optimization
Require: α, ϕ0,L, β1, β2
Ensure: ϕT
m0 ← 0 (first moment)
v0 ← 0 (second moment)
for t=1 . . .T do do

gt ← ∇ϕL(y, fϕt−1(x))
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2

t

m̂t ← mt

(1−βt
1)

v̂t ← vt

(1−βt
2)

ϕt ← ϕt−1 − α m̂t√
v̂t+ϵ

end for

1.1.4 The Backpropagation Algorithm

We have so far seen different variants for updating the parameters with the gradient,

but how can one calculate the gradient of the objective with respect to every parameter

in the network? For single layer networks, this calculation is quite straightforward.

But this is not the case for deeper networks. The only straightforward calculation in

this case is the gradient with respect to parameters of the last layer (say ϕ(n) ∈ ϕ).

To obtain the gradient of the objective L(.), with respect to any parameter ϕ(i) in

the ith layer, one has to use the chain rule in accordance with the backpropagation

algorithm (Kelley 1960; Rumelhart, Hinton, and Williams 1986b):

∂L(y, fϕ(x))
∂ϕ(i) = ∂L(y, fϕ(x))

∂a(n) · ∂a(n)
∂a(n− 1) . . .

∂a(i+ 1)
∂ϕ(i) , (1.2)
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where a(k) is the activation after the kth layer. The backprop algorithm thus provides

a way to propagate errors in a local fashion – there is information on how to update

each layer of parameters, given the gradient with respect to weights of the next layer in

the deep neural network. There are other ways, however, to do this credit assignment

such as Lee et al. 2014; Akrout et al. 2019 but currently, most alternatives do not

work as well as backprop. Interestingly, despite its success, there is some evidence

in neuroscience that backpropagation might not be biologically plausible due to the

weight transport problem.

1.1.5 The Reparametrization Trick

The objective functions and activations used thus far in the learning framework seem

to be deterministic functions. However, it is not clear to immediately see the applica-

tion to probabilistic learning: backpropagrating through stochastic functions and sam-

pling operations (Y. Bengio, Léonard, and A. C. Courville 2013). The reparametriza-

tion trick is a way of representing a sampling process in a way so that backpropa-

gration is possible, and is very commonly used in Variational Autoencoders (Kingma

and Welling 2013).

Consider the stochastic node in the computational graph of the forward pass, where

a sample is drawn from a univariate Gaussian, z ∼ N (µ, σ2). We wish to obtain the

gradient with respect to parameters of the distribution: µ and σ. Backpropagating

directly through the stochastic node is not possible, however, rewriting the sampling

process as z := µ + σϵ, where ϵ is drawn from a standard normal distribution allows

backpropagation (figure 1.2). One can see this is equivalent since E[z] = E[µ+ σϵ] =

E[µ] + E[σϵ] = µ+ σE[ϵ] = µ. The variance can likewise be calculated to be σ2 using

V ar[z] = E[z2] − E[z]2. This alternative representation can therefore allow one to

estimate gradients, ∂z
∂µ

and ∂z
∂σ

. For sampling from a multivariate Gaussian N (µ,Σ),

a similar representation holds: z := µ +Lϵ, where ϵ ∼ N (0, I) and L is the cholesky
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Determinstic node

Stochastic node

Backprop

Reparametrized form

Backprop

Original form

Figure 1.2: Reparametrization trick for sampling from a univariate Gaussian (figure
inspired by these lecture slides)

decomposition of Σ.

Reparametrization tricks are not limited to continuous-valued distributions. For

discrete distributions, a commonly used approach is to rewrite the discrete sampler as

a continuous one with a temparature hyperparameter τ . The function is constructed

in such a way that annealing the temperature τ → 0 induces a discrete behaviour,

but is continuous in general.

Common examples include the Relaxed Bernoulli distribution and the Gumbel-

Softmax distribution as a continuous approximator of the categorical distribution (Jang,

Gu, and Poole 2016). Yet another example is sampling doubly stochastic matrices

using the Sinkhorn operator (Sinkhorn 1964) and the Hungarian algorithm (Kuhn

1955) which has applications in permutation learning (Helmbold and Warmuth 2009;

Diallo, Zopf, and Fürnkranz 2020) and causal discovery (Cundy, Grover, and Ermon

2021), as we will see in chapter 5.3.

https://www.youtube.com/watch?v=rZufA635dq4
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1.2 Parameter Sharing as Inductive

Bias

1.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (Fukushima 1980; LeCun et al. 1989) are built

to handle image data and are particularly useful for tasks in vision such as image

recognition, image compression, and image generation. Since spatial orientation is a

distinguishing property of image data, the CNN learns features by applying the same

function in different local areas of the image. In other words, the inductive bias of a

CNN is to share parameters across space.

Figure 1.3: Image convolution with a stride of 1

The key computation in the CNN is a kernel filter (green) that performs local

computation on each pixel in the input image (red) to produce feature maps (gold)

to be used in the subsequent layers to capture more high-level features for the task at

hand. The kernel moves over the image with a stride, row by row like a sliding window,

and performs elementwise multiplication followed by a sum to obtain the pixel value

at that position. Since this is a linear operation, capturing complex patterns requires
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alternating layers of CNN and nonlinear activations. The relationship between input

resolution (hi, wi), output resolution (ho, wo), kernel size (k, k), padding (ph, pw) and

stride (sh, sw) is given by equations 1.3 and 1.4.

ho =
⌊
hi + 2 · ph − k

sh
+ 1

⌋
(1.3)

wo =
⌊
wi + 2 · pw − k

sw
+ 1

⌋
(1.4)

1.2.2 Recurrent Neural Networks

Recurrent networks are built to handle temporal data and are useful for a wide variety

of tasks: neural machine translation, speech recognition, music generation, video

extrapolation (handled by a recurrent models of CNN), weather forecasting, and stock

market predictions, to name a few. The inductive bias of these models is to share

parameters across time, and the model operates under the assumption that the same

function is responsible for temporal transitions of a variable: x(0) → x(1) . . . x(t −

1)→ x(t).

Hidden states

Input sequence

(any length)

Outputs

(optional)

Figure 1.4: A recurrent neural network
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Recurrent Neural Networks (RNN) use their internal state at timestep t − 1 and

an input to update their internal state and produce the output for the next timestep

t. For each element in the input sequence, the RNN layer performs the following

computation:

ht = σ(W T
ihxt +Whhht−1 + b) (1.5)

where σ(.) is the sigmoid function, ht ∈ Rh refers to the hidden state at timestep

t, xt ∈ Ri refers to the input vector at timestep t, Wih ∈ Ri×h is a weight matrix that

embeds the input vector in hidden space, Whh ∈ Rh is a weight matrix to perform a

linear operation on the hidden state, and b ∈ Rh is a bias vector. The initial hidden

state h0 is typically initialized to zeros or a random vector, or is learned in some

cases. Optionally, a weight matrix Whi ∈ Rh×i can be learnt to project the hidden

vector back into input space. Using the predictions from previous timestep, an RNN

can autoregressively unroll to arbitrarily many timesteps, independent of the length

of the input or output sequence.

1.2.2.1 Exploding and Vanishing Gradient Problem

Consider the gradient of the loss at timestep i with respect to the hidden state hj at

some previous timestep j:

∂Li(θ)
∂hj

= ∂Li(θ)
∂hi

∏
j<t≤i

∂ht

∂ht−1
(1.6)

= ∂Li(θ)
∂hi

W
(i−j)
hh

∏
j<t≤i

diag
(
σ′(W T

ihxt +Whhht−1 + b)
)

(1.7)

Taking the L2 matrix norm on both sides, and applying ||AB|| ≤ ||A|| · ||B|| (L2

matrix norm is submultiplicative), we get:∥∥∥∥∥∂Li(θ)∂hj

∥∥∥∥∥ ≤
∥∥∥∥∥∂Li(θ)∂hi

∥∥∥∥∥ · ∥∥∥W (i−j)
hh

∥∥∥ ∏
j<t≤i

∥∥∥diag
(
σ′(W T

ihxt +Whhht−1 + b)
)∥∥∥ (1.8)

In this way, Pascanu, Mikolov, and Y. Bengio 2013 showed that the gradient norm

vanishes or explodes when backpropagating through long sequences, depending on the
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largest eigenvalue of Whh (explodes for > 1, and vanishes for < 1). For the exploding

gradient problem, a common fix is gradient clipping. Vanishing gradients are harder

to deal with and researchers have sought to other variants of RNN (and recently,

to attention) such as Long Short-term Memory (LSTM) and Gated Recurrent Units

(GRU). Residual connections also address the vanishing gradient problem.

1.2.2.2 Long Short Term Memory

LSTM (Hochreiter and Schmidhuber 1997; Sak, Senior, and Beaufays 2014) is a type

of RNN that maintains a cell state ct apart from the usual hidden state ht, and was

proposed as a way to alleviate the vanishing gradients problem. The cell state ct,

stores long-term information and acts as a "memory". The LSTM also has several

gates that can erase, read, and write information from the cell state and operates

according to the equations given below, where ⊙ is the Hadamard product:

[input gate] it = σ(Wiixt +Whiht−1 + bhi) (1.9)

[forget gate] f t = σ(Wifxt +Whfht−1 + bhf ) (1.10)

[cell gate] gt = tanh(Wigxt +Whght−1 + bhg) (1.11)

[output gate] ot = σ(Wioxt +Whoht−1 + bho) (1.12)

ct = f t ⊙ ct−1 + it ⊙ gt (1.13)

ht = ot ⊙ tanh(ct) (1.14)

1.2.2.3 Gated Recurrent Units

The GRU (Cho et al. 2014) was proposed as a simpler alternative to the LSTM and

has fewer parameters to learn, but also addresses the vanishing gradient problem.

Notably, it no longer uses a cell state but rather uses: (i) an update gate that

decides which parts of the hidden state are updated or preserved and, (ii) a reset

gate that decides which parts of ht−1 are used to compute the new content. Like the

LSTM, these mechanisms can retain long-term information, thus not having to rely
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on gradients that are too far in the past. The mechanism of the GRU is driven by

these equations given below, where ⊙ is the Hadamard product:

[reset gate] rt = σ(Wirxt +Whrht−1 + bhr) (1.15)

[update gate] ut = σ(Wiuxt +Whuht−1 + bhu) (1.16)

[new gate] nt = tanh(Winxt + rt ⊙ (Whnht−1 + bhn) + bin) (1.17)

ht = (1− ut)⊙ nt + ut ⊙ ht−1 (1.18)

1.2.3 The Attention Mechanism

Figure 1.5: Operations for Dot Product Attention (from (Vaswani et al. 2017))

In cases where one has to refer to a set of hidden states in the past, a set of attention

scores can be learnt, one for each of the hidden state. A (usually linear) combination

of the attention scores and the hidden states can then be taken as a context vector for

the task at hand. Intuitively, the attention mechanism can be thought of as learning

residual connections to the past hidden states with different weights. This avoids

long sequences and largely solves the vanishing gradient problem. The attention

mechanism was first introduced in a task for neural machine translation (Bahdanau,
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Cho, and Y. Bengio 2014) but has been extended to other tasks since then – for

example, slot attention (Locatello et al. 2020) for images, and SAVi (Elsayed et al.

2022) for videos.

The most commonly used form of attention is the dot product attention (Vaswani

et al. 2017), which consists of M keys K ∈ RM×dk , queries Q ∈ Rdq and values

V ∈ RM×dv . The keys and queries are projected to a common subspace in Rd via

Kd = MLP(K) and Qd = MLP(Q). The calculation of attention scores α ∈ RM and

the mechanism of attention is given below.

α = Softmax
(KdQd√

dk

)
(1.19)

Attention(K,Q, V ) =
M∑
i=1

αiV i (1.20)

1.3 Limitations of Deep Learning

Sole Reliance on Statistical Learning: It is well known that the foundations of

current machine learning and deep learning are based on statistical learning tech-

niques. While these techniques have proven effective for making predictions, they

do not necessarily uncover the underlying mechanisms that give rise to the statisti-

cal dependencies. For example, the frequency of storks (X) is a good predictor of

the human birth rate in Europe (Matthews 2000), say Y , but this is clearly not the

mechanism that dictates human birth rate. A statistical learning approach would be

perfectly fine with exploiting such spurious correlations, but if we were to move to

Canada, this statistical dependency might not hold anymore and is therefore not a

generalizable predictor of human birth rate. Confounding variables can often lead to

these spurious correlations. To put it simply, a variable Z may have been the cause

of X and Y in Europe and hence one can use X to predict Y . However, in Canada,

Z might not be causing X anymore (say, due to an intervention), and thus X cannot
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be used to predict Y .

The i.i.d Assumption: Another limitation of present-day learning approaches

is the assumption of independent and identically distributed (i.i.d.) data. In a typ-

ical statistical learning problem, we are given multiple samples from the i.i.d joint

distribution P (X, Y )2, and we want to learn a predictor P (Y | X). However, if the

distribution changes during test time due to an intervention, the predictor may not

perform well. This can have significant consequences, such as in the case of self-

driving cars. In fact, some approaches rely so heavily on the i.i.d assumption that

even a small perturbation to a single pixel can significantly alter the predictions of an

image classification system (Su, Vargas, and Sakurai 2019). These adversarial exam-

ples are not restricted to just pixel data. To mitigate this issue, data augmentation

techniques are often used. However, a more fundamental solution would be to allow

the model to explicitly train and test on non-i.i.d data, allowing it to distinguish be-

tween cause variables and merely correlated variables. Relaxing the i.i.d assumption

is key to achieving generalization.

The Problem of Transferring and Modularizing Knowledge Transfer and

modularization of knowledge are important considerations in the use of neural net-

works and go hand-in-hand. However, neural networks are often treated as black boxes

for specific tasks, making it challenging to reuse specific modules in novel scenarios.

To illustrate the importance of modularization, consider a dataset with altitude (A)

and temperature (T ) data. The joint distribution can be represented in two ways:

P (A)P (T | A) or P (T )P (A | T ). The first factorization, corresponding to the causal

factorization, consists of two disentangled modules: P (A) and P (T | A). It is well-

known that altitude directly affects temperature, and the module P (T | A) represents

this general physical mechanism. This means that in a new location, the learned

would only need to relearn the parameters for the altitude module P (A), and could
2Here, X and Y are some arbitrary random variables such as image pixels and labels, not referring

to our earlier example of storks and human birth rates.
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A T

Figure 1.6: A causal diagram encoding the physical mechanism affecting altitude and
temperature

continue using the parameters for the mechanism, P (T | A).

In contrast, the second factorization (the anti-causal factorization), consists of two

modules: P (T ) and P (A | T ). Since there is no generic mechanism by which altitude

affects temperature, the module P (A | T ) cannot be reused, hindering transfer. As a

result, the model would require more samples to learn in the new location. Therefore,

proper modularization of knowledge is essential for effective transfer learning, but this

aspect is often overlooked in current deep learning approaches.

1.4 A Potential Remedy

Causal learning may offer a solution to these limitations of statistical deep learning.

The toolkit of causality (Pearl 2009b) and progress towards causal representation

learning (Schölkopf, Locatello, et al. 2021a) offer potential ways to tackle these chal-

lenges and are also crucial for reinforcement learning. The ability to invent high-level

concepts to explain low-level data and discover cause-effect relationships has the po-

tential to enable the estimation of the effects of interventions and counterfactual

reasoning, which is central for agent introspection and scientific discovery. This could

allow for AI to transition from the intuitive system 1 cognition to the algorithmic and

deliberate thinking that humans do (system 2 cognition) (Kahneman 2011).
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1.5 Outline

This thesis studies the challenging tasks of causal discovery and learning latent causal

models from low-level data (e.g. pixels). An exposition of representation learning,

and related tools for inference and generation is provided in chapter 2. Fundamental

concepts in causality are detailed in chapter 3 and serves as a prerequisite for much

of the thesis. These include Structural Causal Models (SCM), the problem of causal

discovery, and the task of latent causal discovery from low-level data. Chapter 4

presents a detailed discussion of research related to causal discovery and causal rep-

resentation learning. A new algorithm for learning a joint distribution over high-level

causal variables, causal structure, and mechanisms from low-level data (such as high-

dimensional vectors and images) is proposed in chapter 5.3 by learning to generate

data. The proposed approach is evaluated in the experiments presented in chapter 6.

A discussion of limitations and directions for future work is given in chapter 7 before

concluding the thesis.



2
Tools for Representation Learning

Density estimation is an important tool in statistical learning and is central to repre-

sentation learning. It refers to estimating an unobserved probability density function

(or probability mass function for discrete distributions) from observed data. If the

class of density function is known or assumed to be known (e.g, Gaussian, Bernoulli),

then only the distribution parameters have to be estimated. Though there are many

methods to solve density estimation, common approaches include Maximum Likeli-

hood Estimation (MLE), Maximum A Posteriori (MAP) estimation, and Bayesian

inference.

2.1 Maximum Likelihood Estimation

Suppose that we collected a dataset of N observations D = (x(1), . . . , x(N)) and want

to explain the data using a random variable. The random variable can be assumed

to come from an arbitrary density with distribution parameters θ (for a univariate

Gaussian, this corresponds to µ and σ). MLE aims to find an optimal θ∗
MLE that

maximizes the fit of observing exactly the dataset D that has been collected. Specifi-

cally, we want to calculate θ∗
MLE = arg maxθ p(D | θ) = arg maxθ

N∏
i=1

p(x(i) | θ)1. Since

this product over probabilities can cause underflow especially for large N , there is a

1Note that decomposing p(D | θ) as
N∏

i=1
p(x(i) | θ) only holds because of the i.i.d assumption

18
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preference to operate in the log domain instead:

θ∗
MLE = arg max

θ

N∑
i=1

log p(x(i) | θ) (2.1)

As the name suggests, the optimization centers around maximizing the likelihood,

p(D | θ). For a Gaussian distribution, this is equivalent to minimizing 1
2σ2

N∑
i=1

(x(i) −

µ)2 +log σ. If σ is taken to be constant, this corresponds to minimizing the commonly

used Mean Squared Error (MSE).

2.2 Maximum A Posteriori Estimation

In Maximum A Posteriori (MAP) estimation, a prior is set on θ encoding domain

knowledge (for example, setting a DAG-ness constraint or graph sparsity in structure

learning) and the posterior is maximized instead. That is, θ∗
MAP = arg maxθ p(θ |

D) = arg maxθ p(D | θ)p(θ), since p(θ | D) ∝ p(D | θ)p(θ). This is equivalent to:

θ∗
MAP = arg max

θ
log p(θ) +

N∑
i=1

log p(x(i) | θ) (2.2)

Thus, when the prior is uniform (i.e., log p(θ) is a constant), θ∗
MAP = θ∗

MLE. Even

when this is not the case, it is easy to see that the MAP solution approaches MLE

for large datasets since the likelihood term overpowers the prior.

2.3 Bayesian Inference

The MLE and MAP estimators previously discussed are point estimates since a single

value for θ is obtained. However, there are cases where point estimates do not work

well. For example, θ∗
MAP might not be representative of the whole posterior p(θ | D).

In these scenarios, it might be desirable to obtain the entire posterior:

p(θ | D) = p(D | θ)p(θ)∫
θ p(D | θ)p(θ)dθ

(2.3)
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This is straightforward in cases where the prior and likelihood are conjugate and

when the integral is tractable. However, there are many cases where the integral in

the evidence
∫
θ p(D | θ)p(θ)dθ in intractable. For discrete θ (in structure learning,

this refers to different possible directed acyclic graphs), the evidence is a sum over

an exponential number of terms, making this computation intractable. In such cases,

one can resort to learning an approximate posterior instead of obtaining the exact

posterior in closed form. In extreme cases, it might not even be possible to obtain an

analytic expression for the posterior.

2.3.1 Variational Inference

In variational inference, the goal is to learn an approximate distribution qϕ(Z) over

a set of unobserved variables Z = {z1, . . . , zN}, given an i.i.d observed dataset X =

{x1, . . . ,xN}, that is close to the true posterior, p(Z | X). In other words, we are

interested in, minimizing between the two distributions:

DKL(qϕ(Z)||p(Z | X)) = Eqϕ

[
log qϕ(Z)

p(Z | X)

]
= log p(X)−Eqϕ

[
log p(X | Z)−log qϕ(Z)

p(Z)

]
(2.4)

Since the KL divergence is always positive, we obtain a lower bound on the log

evidence:

log p(X) ≥ Eqϕ

[
log p(X | Z)− log qϕ(Z)

p(Z)

]
(2.5)

Minimizing the KL divergence between the approximate and true posterior thus

corresponds to maximizing this evidence lower bound (ELBO) Lϕ(q) = Eqϕ

[
log p(X |

Z)− log qϕ(Z)
p(Z)

]
. In deep learning, we use an encoder network that maps inputs X to a

distribution qϕ(Z). For the likelihood model, another network is used to map samples

from qϕ(Z) to the observation space. The network is trained end-to-end by taking

gradient ascent steps on the ELBO.



3
Causality

3.1 Structural Causal Models

The practice of using a Structural Causal Model to denote causal variables and their

structure was introduced by Judea Pearl but has its roots in structural equation

modeling and path analysis which has been studied extensively by geneticist Sewall

Wright since 1918 (Wright 1918; Wright 1934).

A Structural Causal Model (SCM) (Pearl 2009b) over random variables Z :=

{Z1....Zd} is defined by a set of equations which describe the mechanisms by which

each endogenous variable Zi depends on its direct causes ZπG(i) (parents of Zi in graph

G) and an exogenous noise variable ϵi with probability density Pϵi . If the causal parent

assignment is assumed to be acyclic, then an SCM is associated with a Bayesian

Network (BN) or a Directed Acyclic Graph (DAG) G = (V,E), where V corresponds

to the endogenous variables and E encodes direct cause-effect relationships.

The exact value zi taken on by the causal variable Zi is given by local causal

mechanisms fi with parameters Θi that operate on the values of its parents zπG(i) and

the node’s noise variable ϵi. This can be represented as:

zi := fi(zπG(i), ϵi; Θi) , (3.1)

where i = 1, . . . , d. Figure 3.1 illustrates an example SCM with a variable, its parents

21
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Figure 3.1: An example SCM with a highlighted variable (red), its parents (blue),
and the causal mechanisms operating through cause-effect edges (green).

in the DAG, and the local causal mechanisms that operate via the edges.

For linear Gaussian SCMs with additive noise (given in equation 3.2), a class

of SCMs that reoccurs in many parts of this thesis, all fi’s are linear functions, Θi

reduces to θi ∈ Rd denoting the edge weights from every node to Zi, and AGi
∈ (0, 1)d

refers to the ith column of the adjacency matrix.

zi := θTi (AGi
⊙ zπG(i)) + ϵi (3.2)

Here, zπG(i) ∈ Rd has the jth element zeroed out whenever Zj is not a parent of Zi. The

exogenous noise variables ϵi are taken to be a Gaussian random variable independent

from each other, with 0 mean and variance σ2
i . Alternatively, one can represent all

the variables together in one equation:

Z := θTZ + ϵ , (3.3)

Z := (I − θ)−T ϵ , (3.4)

where Z ∈ Rd, θ ∈ Rd×d ϵ ∈ Rd with mean of error variables µϵ = 0 and covariance

Σϵ. It is worthwhile to note that one usually has assumptions of independent noise
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variables since this is often a prerequisite for theoretical guarantees on identifying the

true DAG or its Markov Equivalence Class (MEC) (Hoyer et al. 2008; Pearl 2009b;

Peters, Mooij, et al. 2013).

It is a well known result that for linear Gaussian SCMs to be identifiable from

data1, one needs to operate under the assumption that all the error variables ϵi have

the same variance (i.e., all σ2
i = σ2) (Peters and Bühlmann 2012). The joint distri-

bution over error variables is then an isotropic Gaussian with covariance Σϵ = σ2Id,

where Id is the identity matrix of dimension d.

An SCM thus entails a joint distribution over the d random variables:

Z ∼ N (0,ΣZ) where ΣZ = (I − θ)−TΣϵ(I − θ)−1 (3.5)

that obeys the causal factorization according to G,

p(Z1, . . . Zd) =
d∏
i=1

p(Zi | ZπG(i)) . (3.6)

3.2 Traditional Assumptions

Causal Markov Assumption: This states that any variable Zi in the DAG G is

independent of every other variable (except descendants of Zi) conditional on all of

its direct causes (Hausman and Woodward 1999).

The Faithfulness Assumption: If all the independence relations are a conse-

quence of the Causal Markov condition, then we are said to be faithful to the DAG

G (Spirtes, C. Glymour, and Scheines 2000). This is easier to see in a counterexample

setting where one is unfaithful. Consider the three variable case: Smoking, Exercise,

Health. Exercise has a positive impact on Health, while Smoking has a detrimental

effect. However, people who smoke might be more health-conscious, making them

want to exercise more often. In this way, Smoking has a positive impact on Exercise
1Here, data refers to samples of the causal variables.
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Health

Exercise-

+

+

Figure 3.2: Example of a causal graph to illustrate the causal faithfulness assumption

and can indirectly improve Health. This structure could produce a wide array of dis-

tributions, depending on the local causal mechanisms (includes the functions as well

as parameters). In some of these distributions, it is possible that the direct nega-

tive impact of Smoking on Health can balance the indirect positive effect of Smoking

(through Exercise). Thus, it might appear that Smoking and Health do not have a

cause-effect relationship, and that they are independent. In such a case, we say that

one is unfaithful to the structure in figure 3.2. The Causal Faithfulness Assumption

rules out independence statements that do not arise from the Causal Markov condition

(d-separation).

Causal Sufficiency: This states that the set of measured variables (or variables

that appear in the DAG G), {Z1 . . . Zd} in our case, includes the common causes of

pairs of every (Zi, Zj). If this were not the case, one would have an implicit structure

and dependency between some pairs (Zi, Zj) induced by some unmeasured variable

Uij.

3.3 Structure Learning and Causal

Discovery

Structure learning in prior work refers to learning a DAG according to some opti-

mization criterion with or without the notion of causality (e.g., He et al. 2019). The
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Figure 3.3: Bayesian Network for prior works in causal discovery and structure learn-
ing

task of causal discovery on the other hand, is more specific to learning the structure G

(optionally also the mechanisms Θ) of SCMs, and subscribes to causality and interven-

tions like that of Pearl 2009a. These approaches often resort to modular likelihood

scores over causal variables – like the BGe (Geiger and Heckerman 1994; Kuipers,

Suter, and Moffa 2022) or BDe (Heckerman, Geiger, and Chickering 1995) score – to

learn the right structure. Furthermore, these approaches either obtain a maximum

likelihood estimate,

G∗ = arg max
G

p(Z | G) or

(G∗,Θ∗) = arg max
G,Θ

p(Z | G,Θ)
(3.7)

or in the case of Bayesian causal discovery (Heckerman, Meek, and Cooper 1997),

variational inference is used to learn a joint posterior distribution qϕ(G,Θ) that ap-

proximates the true posterior p(G,Θ | Z) by minimizing the KL divergence between

the two

arg min
ϕ

DKL(qϕ(G,Θ) || p(G,Θ | Z)) = arg max
ϕ

E(G,Θ)∼qϕ

[
log p(Z | G,Θ)−log qϕ(G,Θ)

p(G,Θ)

]
(3.8)

where p(G,Θ) is a prior over SCM structure and parameters possibly encoding

DAG-ness or sparsity. Figure 3.3 shows the Bayesian Network (BN) over which infer-

ence is performed for causal discovery tasks.
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Figure 3.4: Bayesian Network for the latent causal discovery task that generalizes
standard causal discovery setups

3.4 Latent Causal Discovery

In more realistic scenarios, one does not directly observe the raw causal variables –

they must be learned from low-level data. The causal variables, structure, and pa-

rameters are associated with a latent SCM. The goal of causal representation learning

models is to be able to: (i) infer the latent SCM from low-level data and, (ii) generate

low-level samples from the inferred or learned latent SCM. Yang et al. 2021 proposes

a Causal VAE but is in a supervised setup where one has labels on causal variables

and the focus is on disentanglement. Kocaoglu et al. 2018 present causal generative

models trained in an adversarial manner but assumes direct observations of the causal

variables. Given the right causal structure as a prior, the work focuses on generation

from conditional and interventional distributions.

In both the causal representation learning and causal generative model scenarios

mentioned above, the Ground Truth (GT) causal graph and parameters of the latent

SCM are arbitrarily defined on real datasets and the setting is supervised. Contrary

to this, the approach we will study in this thesis is unsupervised or mildly-supervised

(because of known intervention targets). This work is about recovering the ground

truth underlying SCM and causal variables that generate the low-level observed data

– we define this as the problem of latent causal discovery, and the Bayesian network

over which we want to perform inference on is given in figure 3.4. We will have a

detailed discussion of related work in the next chapter, before diving into the proposed
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approach in chapter 5.3 and experimental results in chapter 6.



4
Related Work

Prior work can be classified into Bayesian (Koivisto and Sood 2004; Heckerman, Meek,

and Cooper 2006; Friedman and Koller 2013) or maximum likelihood (Brouillard et

al. 2020; Wei, Gao, and Y. Yu 2020; Ng, Zhu, et al. 2022) methods, that learn

the structure and parameters of SCMs using either score-based (Kass and Raftery

1995; Barron, Rissanen, and B. Yu 1998; Heckerman, Geiger, and Chickering 1995)

or constraint-based (Cheng et al. 2002; Lehmann and Romano 2005) approaches.

4.1 Causal Discovery

Within the realm of causal discovery, a significant body of work has emerged, primar-

ily operating under the assumption that causal variables are directly observable and

not derived from low-level data. Key contributions in this category include methods

such as PC (Spirtes, C. N. Glymour, et al. 2000), Gadget (Viinikka et al. 2020), DAG-

nocurl (Y. Yu, Gao, et al. 2021), and Z. Zhang et al. 2022. Chickering 2002 proposes

a greedy search algorithm, but does not scale to a large number of nodes. Notably,

Peters and Bühlmann 2014 provides a foundational insight by proving the identifia-

bility of linear Gaussian Structural Causal Models (SCMs) with equal noise variances.

In the pursuit of causal discovery, various research directions have been explored. Y.
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Bengio, Deleu, et al. 2019 employ the speed of adaptation as a signal for learning

causal directions, while Ke, Bilaniuk, et al. 2019 focuses on learning causal models

from unknown interventions. Further extending this exploration, Scherrer, Bilaniuk,

et al. 2021; Tigas et al. 2022; Agrawal et al. 2019; Toth et al. 2022 resort to active

learning and for causal discovery, focusing on performing targeted interventions to

efficiently learn the structure.Ke, Chiappa, et al. 2022 proposed CSIvA, an approach

that uses transformers (Vaswani et al. 2017) to learn causal structure from synthetic

datasets and then generalize to more complex, naturalistic graphs. Ke, Dunn, et al.

2023 is a follow-up work to apply this to the problem of learning the structure of

gene-regulatory networks.

Zheng et al. 2018 introduce an acyclicity constraint that penalizes cyclic graphs,

thereby restricting search close to the DAG space. Lachapelle et al. 2019 leverages

this constraint to learn DAGs in nonlinear SCMs. Building upon this constraint,

Lachapelle et al. 2019 leverage it to learn DAGs within nonlinear SCMs. Temporal

aspects of causal relationships are also explored, with methods like Pamfil et al. 2020

and Lippe, Magliacane, et al. 2022 specializing in structure learning from temporal

data.

ENCO (Lippe, Cohen, and Gavves 2022) uses a score-based approach without

acyclicity constraints to alternate between a "graph-fitting" phase and a "distribution

fitting" phase to learn the structure of graphs. The method operates on observational

and interventional data, and under mild conditions has convergence guarantees to

obtain a DAG without the using common constraint based optimization techniques.

It scales to up to 1000 nodes while having less than one mistake on average out of 1

million possible edges.

Other efforts include (Shimizu et al. 2011; Lopez-Paz and Oquab 2016; Y. Yu,
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Chen, et al. 2019; Ghoshal and Honorio 2018; Ng, Ghassami, and K. Zhang 2020; Li

et al. 2022).

Bayesian causal discovery: Annadani et al. 2021 casts the Bayesian structure

learning problem as an autoregressive one by sequentially predicting edges, in hopes of

capturing the potentially multi-modal posterior. Deleu, G’ois, et al. 2022 uses Genera-

tive Flow Networks, or GFlowNets (E. Bengio et al. 2021), a new class of probabilistic

methods that lies at the intersection of reinforcement learning and variational infer-

ence. The work uses the transitive closure property ensuring that the action space

is constrained to actions that do not introduce cycles. Nishikawa-Toomey et al. 2023

extends this to joint inference over structure and parameters using Variational Bayes

(VB).Deleu, Nishikawa-Toomey, et al. 2023 is a closely related extension, however,

instead of using a VB-based alternate optimization, a single GFlowNet is trained to

satisfy the sub-trajectory balance condition, thus being able to sample a posterior

over structures and parameters.

B. Wang, Wicker, and Kwiatkowska 2022 leverages sum product networks to

perform exact Bayesian structure learning. Hägele et al. 2022 extends the framework

of Lorch et al. 2021 to perform Bayesian causal discovery in a setting where interven-

tions are unknown.

Table 4.1: Situating BIOLS in the context of related work in causal discovery.

Joint Unsupervised Nonlinear Learn from
G & θ Z SCM low-level data

VCN (Annadani et al. 2021) ✗ ✗ ✗ ✗

DiBS (Lorch et al. 2021) ✓ ✗ ✓ ✗

DAG-GFN (Deleu, G’ois, et al. 2022) ✗ ✗ ✗ ✗

VBG (Nishikawa-Toomey et al. 2023) ✓ ✗ ✗ ✗

JSP-GFN (Deleu, Nishikawa-Toomey, et al. 2023) ✓ ✗ ✓ ✗

BIOLS ✓ ✓ ✗ ✓

Table 4.1 compares BIOLS with prior work in Bayesian Causal Discovery.
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4.2 Latent Variables with Structure

Structure learning with latent variables: Markham and Grosse-Wentrup 2020

introduces the concept of Measurement Dependence Inducing Latent Causal Models

(MCM). The proposed algorithm finds a minimal-MCM that induces the statistical

dependencies between observed variables. However, similar to VAEs, the method

assumes no causal links between latent variables. Kivva et al. 2021 provides the con-

ditions under which the number of latent variables and structure can be uniquely

identified for discrete latent variables, given the adjacency matrix between the hid-

den and measurement variables has linearly independent columns. Elidan et al. 2000

detects the signature of hidden variables using semi-cliques and then performs struc-

ture learning using the structural-EM algorithm (Friedman 1998) for discrete random

variables.

Anandkumar et al. 2012 and Silva et al. 2006 consider the identifiability of linear

Bayesian Networks when some variables are unobserved. However, it is important to

note that the identifiability results in the former work are contingent upon specific

structural constraints within the DAGs involved. Xie, Cai, et al. 2020 proposes the

Generalized Independent Noise (GIN) condition to identify the structure between la-

tent confounders, under the assumption of non-Gaussian noise and that certain sets of

latents have a lower bound on the number of pure measurement child variables. Xie,

Huang, et al. 2022 is in a setting where the edges exist not just between the latent

variables but amongst low-level variables in the dataset as well. The frameworks dis-

cussed in the preceding works involve SCMs with a mix of observed and unobserved

variables, whereas this thesis considers the entirety of the SCM as latent. Lastly,

GraphVAE (He et al. 2019) learns a structure between latent variables but does not

incorporate notions of causality such as interventions.
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Latent variable models with predefined structure: Examples include the

VAE (Kingma and Welling 2013; Rezende, Mohamed, and Wierstra 2014) which has

an independence assumption between latent variables. To overcome this, Sønderby

et al. 2016 and Zhao, Song, and Ermon 2017 define latent variables with a chain

structure in VAEs. Kingma, Salimans, et al. 2016 uses inverse autoregressive flows to

improve upon the diagonal covariance of latent variables in VAEs.

The formulation in all the above works involves latent variable models with a

predefined structure or learning the structure of an SCM among partially observed

variables. In contrast, our setup involves learning a structure among variables that

are completely unobserved. That is, the entire SCM is latent in our setup.

4.3 Causal Representation Learning

Brehmer et al. 2022 present identifiability theory for learning causal representations

from data pairs (x, x̃) before and after intervention on a single node, assuming fixed

noise generated by the SCM. Ahuja, Hartford, and Y. Bengio 2022 studies identifiabil-

ity in a related setup under sparse perturbations. Ahuja, Y. Wang, et al. 2022 discusses

identifiability for causal representation learning when one has access to interventional

data.

Other works (Kocaoglu et al. 2018; Shen et al. 2022; Moraffah et al. 2020) introduce

generative models that use an SCM-based prior in latent space. In Shen et al. 2022, the

goal is to learn causally disentangled variables. Yang et al. 2021 learn a DAG but needs

labels of the (discrete) causal variables. Lopez-Paz, Nishihara, et al. 2017 establishes

observable causal footprints in images by trying to learn the causal direction between

every pair of variables.

Table 4.2 situates BIOLS amidst related work in causal representation learning

and generative causal models.
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Table 4.2: Situating BIOLS in the context of related work in causal generative models
and causal representation learning.

Joint Learns any Unsupervised Scaling Cont. No constraints on Multi-target
G & θ DAG Z nodes Z paired data interventions

(Kocaoglu et al. 2018) ✗ ✗ ✗ ✗ ✓

(Yang et al. 2021) ✓ ✓ ✗ 4 ✓

(Shen et al. 2022) ✗ ✓ ✗ ✓ ✓ ✗

(Brehmer et al. 2022) ✓ ✓ ✓ 8− 10 ✓ ✗ ✗

BIOLS ✓ ✓ ✓ 50+ ✓ ✓ ✓



5
Learning Latent Structural Causal Models

The ability to learn causal variables and the dependencies between them is a cru-

cial skill for intelligent systems, which can enable systems to make informed predic-

tions and reasoned decisions, even in scenarios that diverge substantially from those

encountered in the training distribution (Schölkopf, Locatello, et al. 2021b; Goyal

and Y. Bengio 2022). In the context of causal inference, a Structural Causal Model

(SCM) (Pearl 2009a) with a structure G and a set of mechanisms parameterized by

Θ, induces a joint distribution p(Z1, . . . Zd) over a set of causal variables. However,

the appeal of SCM-based modeling lies in its capacity to represent a family of joint

distributions, each indexed by specific interventions. Models can then be trained on

samples from a subset of these joint distributions and can generalize to completely

unseen joint distributions as a result of new interventions.

z

G Θ

N

Figure 5.1: Bayesian Network for prior works in causal discovery and structure learn-
ing

Existing work on causal discovery aims to infer the structure and mechanisms of

SCMs from observed causal variables (see Fig. 5.1). Learning such a causal model

can then be useful for a wide-variety of downstream tasks like generalizing to out-of-

34
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distribution data (Scherrer, Goyal, et al. 2022; Ke, Didolkar, et al. 2021), estimating

the effect of interventions (Pearl 2009a; Schölkopf, Locatello, et al. 2021b), disentan-

gling underlying factors of variation (Y. Bengio, A. Courville, and Vincent 2013; Y.

Wang and Jordan 2021), and transfer learning (Schölkopf, Janzing, et al. 2012; Y.

Bengio, Deleu, et al. 2019).

x

z

G Θ

N

Figure 5.2: BN for the la-

tent causal discovery task

that generalizes standard

causal discovery setups

In high-dimensional problems typically studied in

machine learning, neither the causal variables nor the

causal structure relating them are known. Instead, the

causal variables, structure and mechanisms have to be

learned from high-dimensional observations, such as im-

ages (see Fig. 5.2).

An application of interest is in the context of biol-

ogy, where researchers are interested in understanding

Gene Regulatory Networks (GRN). In such problems,

the genes themselves are latent but can be intervened on, the results of which man-

ifest as changes in the high-resolution images (Fay et al. 2023). Here, the number

of latent variables (genes) is known but the structure, mechanisms, and the image

generating function remain to be uncovered. This serves as the motivation for our

work.

Particularly, this thesis address the problem of inferring the latent SCM – including

the causal variables Z, structure G and parameters Θ – by learning a generative model

of the observed high-dimensional data. Since these problems potentially have to be

tackled in the low-data and/or non-identifiable regimes, this work adopts a Bayesian

formulation so as to model the epistemic uncertainty over latent SCMs. Concretely,

given a dataset of high-dimensional observations, the proposed approach BIOLS –
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Bayesian Inference Over Latent SCMs – uses variational inference to model the joint

posterior over the causal variables, structure and parameters of the latent SCM. Our

contributions are as follows:

• We propose a general algorithm, BIOLS, for Bayesian causal discovery in the

latent space of a generative model, learning a joint distribution over causal vari-

ables, structure and parameters in linear Gaussian latent SCMs with known

interventions. Figure 5.3 illustrates an overview of the proposed method.

• By learning the structure and parameters of a latent SCM, BIOLS implicitly

induces a joint distribution over the causal variables. Sampling from this distri-

bution is equivalent to ancestral sampling through the latent SCM. As such, we

address a challenging, simultaneous optimization problem that is often encoun-

tered during causal discovery in latent space: one cannot find the right graph

without the right causal variables, and vice versa (Brehmer et al. 2022).

• On synthetically generated datasets and a benchmark image dataset (Ke, Di-

dolkar, et al. 2021) called the chemistry environment, BIOLS consistently out-

performs baselines and uncovers causal variables, structure, and parameters.

We also demonstrate the ability of BIOLS to generate images from unseen in-

terventional distributions.

5.1 Problem Setup

We are presented with a dataset D = {x(1), ...,x(N)}, where each x(i) represents high-

dimensional observed data. For simplicity, we assume that x(i) is a vector in RD, but

this setup can be extended to accommodate other types of inputs as well. Within

this dataset, we posit the existence of latent causal variables Z = {z(i) ∈ Rd}Ni=1,

where d ≤ D, which underlie and explain the observed data D. These latent variables
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Figure 5.3: Model architecture of the proposed generative model for the Bayesian
latent causal discovery task to learn latent SCMs from low-level data.

belong to a Ground Truth (GT) SCM, denoted by its structure GGT and parameters

ΘGT . We wish to invert the data generation process g : (GGT ,ΘGT ) → Z → D. In

the setting, we also have access to the intervention targets I = {I(i)}Ni=1 where each

I(i) ∈ {0, 1}d. The jth dimension of I(i) takes a value of 1 if node j was intervened

on in row entry i, and 0 otherwise. To formalize the setup, we consider X , Z, G, and

Θ to represent the random variables over low-level data, latent causal variables, the

SCM structure, and SCM parameters, respectively.

5.2 BIOLS: Bayesian Inference Over

Latent SCMs

Here, we aim to estimate the joint posterior distribution p(Z,G,Θ | D) over the

entire latent SCM. Computing the true posterior analytically requires calculating the

marginal likelihood p(D) which gets quickly intractable due to summation over the

number of possible DAGs which grows super-exponentially with respect to the number

of nodes. Thus, we resort to variational inference (Blei, Kucukelbir, and McAuliffe

2017) that provides a tractable way to learn an approximate posterior qϕ(Z,G,Θ) with
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variational parameters ϕ, close to the true posterior p(Z,G,Θ | D) by maximizing the

Evidence Lower Bound (ELBO),

L(ψ, ϕ) = Eqϕ(Z,G,Θ)

[
log pψ(D | Z,G,Θ)− log qϕ(Z,G,Θ)

p(Z,G,Θ)

]
, (5.1)

where p(Z,G,Θ) is the prior distribution over the SCM, pψ(D | Z,G,Θ) is the like-

lihood model with parameters ψ, mapping the latent causal variables to the observed

high-dimensional data. An approach to learn this posterior could be to factorize it as

qϕ(Z,G,Θ) = qϕ(Z) · qϕ(G,Θ | Z) (5.2)

Given a procedure to estimate qϕ(Z), the conditional qϕ(G,Θ | Z) can be obtained

using existing Bayesian structure learning methods (Cundy, Grover, and Ermon 2021;

Deleu, Nishikawa-Toomey, et al. 2023). Otherwise, one has to perform a hard simulta-

neous optimization which would require alternating optimizations on Z and on (G,Θ)

given an estimate of Z. Difficulty of such an alternate optimization is highlighted in

Brehmer et al. 2022.

Alternate factorization of the posterior: Rather than decomposing the joint

distribution as in equation 5.2, we propose to introduce a variational distribution

qϕ(G,Θ) over only structures and parameters, so that the approximation of the joint

posterior is given by qϕ(Z,G,Θ) ≈ p(Z | G,Θ)·qϕ(G,Θ). The advantage of this factor-

ization is that the true distribution p(Z | G,Θ) over Z is completely determined from

the SCM given (G,Θ) and exogenous noise variables (assumed to be Gaussian). This

conveniently avoids the hard simultaneous optimization problem mentioned above

since optimizing for qϕ(Z) is avoided. Hence, equation 5.1 simplifies to:

L(ψ, ϕ) = Eqϕ(Z,G,Θ)

[
log pψ(D | Z)− log qϕ(G,Θ)

p(G,Θ) −���������:0
log p(Z | G,Θ)

p(Z | G,Θ)

]
(5.3)
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Such a posterior can be used to obtain an SCM by sampling Ĝ and Θ̂ from the

approximated posterior. As long as the samples Ĝ are always acyclic, one can perform

ancestral sampling through the SCM to obtain predictions of the causal variables ẑ(i).

For additive noise models like in equation 3.6, these samples are already reparame-

terized and differentiable with respect to their parameters. The predictions of causal

variables can then e bfed to the likelihood model to predict samples x̂(i) that best

reconstruct the observed data x(i).

5.3 Posterior parameterizations and

priors

For linear Gaussian latent SCMs, which is the focus of this work, learning a posterior

over (G,Θ) is equivalent to learning qϕ(W,Σ), where W refers to weighted adjacency

matrices W and Σ refers to covariance of p(ϵ), the distribution over noise variables of

the SCM with 0 means. Supposing L to be the family of all adjacency matrices over a

fixed node ordering, W and Σ parameterize the entire space of SCMs. Since qϕ(G,Θ) ≡

qϕ(L,Σ), equation 5.3 leads to the following ELBO which has to be maximized, and

the overall method is summarized in algorithm 4,

L(ψ, ϕ) = Eqϕ(L,Σ)

Eqϕ(Z|L,Σ)[ log pψ(D | Z) ]−log qϕ(L,Σ)
p(L)p(Σ)

 (9)

Distribution over (L,Σ): The posterior distribution qϕ(L,Σ) has
(
d(d+1)

2

)
ele-

ments to be learnt, and is parameterized by a diagonal covariance normal distribution.

For the prior p(L) over the edge weights, we promote sparse DAGs by using a horse-

shoe prior (Carvalho, Polson, and Scott 2009), similar to BCD Nets (Cundy, Grover,

and Ermon 2021). A Gaussian prior is defined over log Σ.
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Algorithm 4 Bayesian latent causal discovery to learn G, Θ, Z from high dimensional
data
Require: D, I
Ensure: Approximate posterior distribution over G, Θ, Z

1: Initialize qϕ(L,Σ), pψ(X | Z), τ and set learning rate α
2: for num_epochs do
3: (L̂, Σ̂) ∼ qϕ(L,Σ)
4: Ŵ ← L̂
5: for i← 1 to N do
6: C(i) ← argwhere(I(i) = 1)
7: W̃ = copy(Ŵ )
8: W̃ [:, C(i)]← 0 ▷ Mutated weighted adjacency matrix according to I(i)

9: ŴI(i) ← W̃
10: ẑ(i) ← AncestralSample(ŴI(i) , Σ̂)
11: end for
12: Ẑ← {ẑ(i)}Ni=1
13: D̂ ∼ pψ(X | Z = Ẑ)
14: ψ ← ψ + α · ∇ψ(L(ψ, ϕ)) ▷ Update network parameters
15: ϕ← ϕ+ α · ∇ϕ(L(ψ, ϕ))
16: end for
17: return binary(Ŵ ), (Ŵ , Σ̂), Ẑ



6
Experimental Findings

In this chapter, we present experiments that evaluate the learned posterior over the

linear Gaussian latent SCM. We aim to highlight the performance of our proposed

method on latent causal discovery. As proper evaluation in such a setting would re-

quire access to the ground truth causal graph that generated the high-dimensional

observations, we test our method against baselines on synthetically generated vector

data and also on a benchmark dataset called the chemistry environment (Ke, Di-

dolkar, et al. 2021) that causally generates images. Towards the end of the chapter,

we evaluate the ability of our model to generate images from unseen interventional

distributions.

6.1 Baselines

Since this is one of the early works to propose a working algorithm for leanring latent

SCMs from high-dimensional data, there are currently no baseline methods that solve

this task. However, we compare our approach against 4 baselines – VAE, Graph-

VAE, ILCM and ILCM-GT. While VAE has a marginal independence assumption

between latent variables, GraphVAE (He et al. 2019) learns a DAG structure over

latent variables. The final two baselines are ILCM (as introduced in Brehmer et al.

2022) and ILCM-GT, a variant of ILCM that directly uses the ground truth inter-

41
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ventions instead of having to infer them. We include ILCM-GT to promote a fair

comparison with BIOLS, since BIOLS does not infer interventions. It is to be noted

that both VAE and GraphVAE are not designed to handle learning from interventional

data. Additionally, while ILCM requires interventional data to train, the method also

requires paired data inputs before and after an intervention with fixed noise over the

unintervened nodes. For all baselines, we evaluate the quality of structure proposed

by the learned model.

Evaluation metrics: We use two metrics commonly used in the literature – the

expected Structural Hamming Distance (E-SHD, lower is better) obtains the SHD

(number of edge flips, removals, or additions) between the predicted and GT graph

and then takes an expectation over SHDs of posterior DAG samples, and the Area

Under the Receiver Operating Characteristic curve (AUROC, higher is better) where

a score of 0.5 corresponds to a random DAG baseline. All our implementations are

in JAX (Bradbury et al. 2018) and results are presented over 5 random DAGs.

In the following two paragraphs, we discuss the data generation procedure.

Generating the SCM: Following many works in the literature, we sample ran-

dom Erdős–Rényi (ER) DAGs (Erdos, Rényi, et al. 1960) with degrees in {1, 2} to

generate the DAG. For every edge in this DAG, we sample the magnitude of edge

weights uniformly as |L| ∼ U(0.5, 2.0). Each of the d SCM noise variables is sampled

as ϵi ∼ N (0, σ2
i ), where σi ∼ U(1, e2).

Generating the causal variables and intervention targets: We then sam-

ple 20 random intervention sets where each set is a boolean vector denoting the

intervention targets. An example of an intervention set for a 5-node DAG would

be [1, 0, 0, 1, 0]. For each of these intervention sets, we generate 100 pairs of causal

variables (zi, z̃i) via ancestral sampling, where the intervention value is sampled from

N (0, 22) with intervention noise added from N (0, 0.12). For nodes that were not in-

tervened on, the same exogenous noise used to generate zi is used as in Brehmer et al.

2022.
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We now present 4 experimental setups to evaluate BIOLS where each experiment

differs on how the generated causal variables are projected to X .

SO(n) projection: A random SO(n) transformation Rd → Rd is made on the

generated causal variables to obtain pairs (x, x̃), as done in Brehmer et al. 2022. Con-

cretely, we take samples from N (0, 0.05) and fill these in the upper triangle of a Rd×d

zero matrix. The lower triangle is filled with the negative values such that the matrix

is skew-symmetric. A linear projection is then performed with the matrix exponent of

the skew-symmetric matrix to generate the transformed vectors. Following the linear

projection, noise is sampled from N (0, 0.12 ∗ Id), where Id is the identity matrix of

size d.

Linear projection: A random projection matrix of shape Rd×D is initialized with

each entry of the matrix sampled from U(−5, 5). Following the linear projection, noise

is sampled from N (0, 0.12 ∗ ID), where ID is the identity matrix of size D. In our

experiments, we set D to be 100.

Nonlinear projection: In more realistic scenarios, the ground truth generating

function from Z → X is not just noisy but is also nonlinear. Thus we initialize a

random 3-layer neural network to take care of the projection from d to D dimensions.

In this setting, D is again set to 100. Noise is added in the same manner as the

previous setting.

Chemistry environment: For this setting, intervention values are sampled from

a standard Normal distribution instead. Once pairs of observational and interven-

tional causal variables are generated, we use the chemistry environment to gener-

ate (50, 50, 1) shaped images (Ke, Didolkar, et al. 2021), wherein there are d blocks

with their intensity proportional to the d causal variables. In order to maintain

stochasticity in the ground truth image generation process, we add noise sampled

from N (0, 0.052) to the normalized (from 0 to 1) pixels of the image and bring them

back to the 0 − 255 range. Figure 6.1 shows an example image generated from the

chemistry environment.
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Figure 6.1: Image generated from the chemistry environment.

6.2 Results

In Figure 6.2, we provide a comprehensive summary of the results derived from BIOLS

within the context of the initial experimental configuration, which pertains to a 5 node

latent SCM and incorporates an SO(n) transformation.

ER 1, d = 5, D = 5
0

5

10

SHD

ER 1, d = 5, D = 5
0.2

0.4

0.6

0.8

1.0
AUROC

ER 2, d = 5, D = 5
0

5

10

15

SHD

ER 2, d = 5, D = 5
0.2

0.4

0.6

0.8

1.0
AUROC

GraphVAE VAE ILCM-GT ILCM BIOLS

Figure 6.2: Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from
a 100−dimensional vector, where the generative function from Z to X is an SO(n)
transformation. E-SHD (↓), AUROC (↑)
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Figures 6.3 and 6.4 provide additional insights into the effectiveness of BIOLS,

as they present the Expected Structural Hamming Distance (SHD) and the Area

Under the Receiver Operating Characteristic (AUROC) for the acquired models in

scenarios where the underlying generative function adopts two distinct forms: (i) a

linear function and (ii) an arbitrary nonlinear function. It is worth noting that in

both cases, the latent causal variables are projected to a 100-dimensional space.
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Figure 6.3: Learning 5−node SCMs of different graph densities (ER-1 and ER-2)
from a 100−dimensional vector, where the generative function from Z to X is a
linear projection to 100 dimensions. E-SHD (↓), AUROC (↑)

Furthermore, we conducted experiments to assess the capacity of learning the la-

tent SCM from image pixels. The summarized results are presented in Figure 6.5. Our

findings demonstrate that BIOLS consistently outperforms baseline methods across

all projection scenarios, including the intricate case of image data, yielding notable

improvements in both evaluation metrics.

However, it is important to note that due to certain complexities in running ILCM
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Figure 6.4: Learning 5−node SCMs of different graph densities (ER-1 and ER-2) from
a 100−dimensional vector, where the generative function from Z to X is a nonlinear
projection to 100 dimensions. E-SHD (↓), AUROC (↑)

on image datasets, as outlined in the official implementation, we omit ILCM and

ILCM-GT from the final set of image experiments.

Figure 6.6 showcases an evaluation of the model’s capability to generate images

from previously unseen interventional distributions within the chemistry dataset. This

assessment is conducted by comparing the generated images with ground truth inter-

ventional samples. Notably, we observe a pattern in which the presence of a faint-

colored or missing block in the first row corresponds to a light-colored block in the

second row. This correspondence is reflective of matching causal variables, empha-

sizing the model’s ability to generalize effectively. In summary, we note that BIOLS

consistently outperforms baselines, while maintaining a low SHD between 0− 1.

https://github.com/Qualcomm-AI-research/weakly-supervised-causal-representation-learning
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Figure 6.5: Learning 5−node SCMs of different graph densities (ER-1 and ER-2)
from 50× 50 images in the chemistry benchmark dataset (Ke, Didolkar, et al. 2021).
E-SHD (↓), AUROC (↑)

(a) Ground truth images sampled from 5 unseen interventional distributions.

(b) Images generated from 5 unseen interventional distributions using BIOLS.

Figure 6.6: Samples of images from the ground truth and learned interventional distri-
butions. Intensity of each block refers to the causal variable. One block is intervened
in each column.
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6.2.1 Ablation on graph density
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Figure 6.7: Effect of number of intervention sets on latent SCM recovery for linear
(top row) and nonlinear (bottom row) generation function, d = 20 nodes. SHD ↓ ,
AUROC ↑, MSE(L, L̂) ↓

In this section, we perform ablations to study how graph density affects the quality

of the SCM learned by BIOLS. Similar to other works in Bayesian structure learning,

we notice that as the graph gets more dense, it gets harder to recover the SCM.

Figure 6.7 illustrates the performance of BIOLS across the 3 metrics on ER − 1,

ER − 2, ER − 4 graphs. These studies are on d = 20 node DAGs, projected to

D = 100 dimensions. The model is trained on 120 intervention sets, with 100 samples

per set to stay consistent with rest of the experiments. The top row in the figure

corresponds to a linear projection between latent and observed variables. Similarly,

the bottom row corresponds to the nonlinear projection.
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Notably, we observe a trend wherein recovering edges becomes more challenging

with denser graphs. This difficulty may arise from BIOLS needing to uncover a greater

number of cause-effect relationships. This observation aligns with insights often noted

in traditional causal discovery algorithms (e.g., Fig 5 and 12 in Scherrer, Bilaniuk,

et al. 2021). It is important to note that the performance for denser graphs can be

further improved by providing more interventional data (see section 6.2.2), increasing

the variance of the Gaussian intervention values (refer section 6.2.4), or both.

6.2.2 Ablation on the number of intervention sets

ER 1, d = 30, D = 100
0

50

100

150

SHD

ER 1, d = 30, D = 100

0.900

0.925

0.950

0.975

1.000
AUROC

ER 1, d = 30, D = 100
0.000

0.025

0.050

0.075

0.100
MSE(L, L)

40 60 80 100 120 140

ER 1, d = 50, D = 100
0

100

200

300

SHD

ER 1, d = 50, D = 100
0.900

0.925

0.950

0.975

1.000
AUROC

ER 1, d = 50, D = 100
0.00

0.05

0.10

MSE(L, L)

40 60 80 100 120 140 160 180

Figure 6.8: Effect of number of intervention sets on latent SCM recovery for a linear
generation function, d = 30, 50 nodes. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓
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In the data generation phase, we saw that the interventional data is specified via two

terms – number of intervention sets and number of interventional samples per set. In

this subsection, we present some plots on how learning the latent SCM is affected for

various number of nodes while varying the number of intervention sets. The number

of interventional samples per set is kept constant and is set to 100 as in previous

experiments.

Figure 6.8 demonstrates the effect of number of intervention sets on the quality of

the latent SCM recovered by BIOLS, for a linear projection to D = 100 for 30 and 50

node SCMs. Figure 6.9 illustrates a similar plot for a nonlinear projection function.
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Figure 6.9: Effect of number of intervention sets on latent SCM recovery for a non-
linear generation function, d = 30, 50 nodes. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓
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6.2.3 Ablation on single and multi node intervention targets

In previous experiments, we primarily consider multi-target interventions. This is

done by first randomly choosing an integer k in the interval [1, d]. k random indices

are chosen in [0, d−1] and these nodes are then intervened. Though k could potentially

assume the value of 1 (single-target interventions), it is usually greater, especially for

larger graphs.
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Figure 6.10: Effect of single and multi target interventional data on the latent SCM
recovery, for a linear generation function, d = 30, 50 nodes. The X-axis refers to the
number of intervention sets. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓

In this subsection, we aim to study the effect of learning latent SCMs in the setting

of single-target interventions (the setup of Brehmer et al. 2022), and how it compares

to the setting of multi-target interventions.

Figure 6.11 highlights the effect of (single and multi node) intervention targets on



CHAPTER 6. EXPERIMENTAL FINDINGS 52

the latent SCM recovered by BIOLS, assuming a linear projection between latents

and observed variables.

6.2.4 Ablation on range of intervention values
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Figure 6.11: Effect of zero and gaussian intervention values on latent SCM recovery,
assuming a linear generation function, d = 30, 50 nodes. The X-axis refers to the
number of intervention sets. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓

Interventional data is useful to learn more about the structure of the causal model.

However, the range of values an intervened node is set to can also affect the per-

formance of a causal discovery algorithm. Generally, one should expect the SCM

recovery to be equal or better in the case where the range of intervention value is

larger. To see this, consider a simple SCM: A → B. Intervening on A with a large

range of values gives more information about p(B | A).
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Motivated by this example, we perform an ablation study to see if and how much

the range of intervention values affect the performance of BIOLS. Figure 6.11 illus-

trates for a linear projection function, the performance of BIOLS for various number

of intervention set where the intervention value is (i) deterministically set to 0 or (ii)

sampled from a Normal distribution containing a larger range of values. Figure 6.12

illustrates a similar set of results but in the case of a nonlinear projection function.

Similar to previous experiments, 100 interventional samples are collected for each

intervention set.
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Figure 6.12: Effect of zero and gaussian intervention values on latent SCM recovery,
for an nonlinear generation function modeled by a 3 layer MLP, d = 30, 50 nodes. The
X-axis refers to the number of intervention sets. SHD ↓ , AUROC ↑ , MSE(L, L̂) ↓

We note that moving from a Gaussian intervention to a zero-intervention setting

strongly influences the performance of BIOLS. A range of intervention values helps

latent SCM recovery, even if the variance is small.
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6.2.5 Scaling the number of nodes

Thus far we have seen the performance of BIOLS in different settings such as learn-

ing from varying amounts of intervention data 6.2.2, learning from single-target and

multi-target intervention data 6.2.3, and learning from zero valued (deterministic)

interventions as well as from Gaussian (stochastic) interventions 6.2.4.
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Figure 6.13: Scaling BIOLS across number of nodes for a linear data generation
function, trained on multi-target interventions with Gaussian intervention values.

In this section, we focus on how BIOLS scales with the number of nodes in the

SCM. Figure 6.13 plots the performance of BIOLS in a multi-target, Gaussian in-

tervention setting. Figure 6.14 plots the performance of BIOLS in a single-target,

Gaussian intervention setting. Figure 6.15 plots the performance of BIOLS in a multi-

target, zero intervention setting. For all these experiments, we use 100 interventional

sets with 100 data points per intervention set.
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Figure 6.14: Scaling BIOLS across number of nodes for a linear data generation
function, trained on single-target interventions with Gaussian intervention values.
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Figure 6.15: Scaling BIOLS across number of nodes for a linear data generation
function, trained on multi-target interventions with intervention values fixed to 0.

In figure 6.16, we summarize results for a similar experiment, where the projection

function is nonlinear. The only difference in this experiment is that we use 400

interventional sets with 100 samples per set. We note that BIOLS successfully

scales to atleast upto 50 nodes.
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Figure 6.16: Scaling BIOLS across number of nodes for a linear data generation
function, trained on multi-target interventions with Gaussian intervention values.

6.2.6 Implementation details

SO(n) projection: The construction of the projection matrix follows the method-

ology outlined in (Brehmer et al. 2022). However, for the sake of completeness, we

provide a detailed description of the steps involved in obtaining this projection ma-

trix. First, coefficients cij are drawn from a Normal distribution, cij ∼ N (0, 0.052),

for every entry where j < i in the lower triangle of a Rd×d matrix. Subsequently, to

ensure skew-symmetry, the upper triangular entries are populated with values such

that cji = −cij. Finally, the matrix exponentiation process is applied to yield the

desired projection matrix. This method ensures the matrix conforms to the special

orthogonal group, SO(n).

Nonlinear projection: A random 3-layer neural network with ReLU activations

is initialized to execute the projection from d to D dimensions. While our reported

experimental results focus on ReLU activations, it’s important to note that BIOLS is

versatile and supports nonlinear projections involving alternative activation functions,

such as leaky ReLU, GeLU, among others. The network sizes for the 3-layer MLP are

specified in Table 6.1. In all our experiments, D is set to 100. For all our experiments,

we use the AdaBelief (Zhuang et al. 2020) optimizer with ϵ = 10−8 and a learning
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rate of 0.0008. Our experiments are fairly robust with respect to hyperparameters

and we did not perform hyperparameter tuning for any of our experiments. Table 6.2

summarizes the network details for the generative model pψ(X | Z).

Table 6.1: Network architecture for the nonlinear projection

Layer type Layer output Activation

Linear D GeLU
Linear D GeLU
Linear D

Table 6.2: Network architecture for the decoder pψ(X | Z)

Layer type Layer output Activation

Linear 16 GeLU
Linear 64 GeLU
Linear 64 GeLU
Linear 64 GeLU
Linear D

Ancestral sampling from qϕ(L,Σ): In section 5.3, we had mentioned that the

posterior qϕ(L,Σ) is a K-variate Normal distribution with a diagonal covariance,

where K = d(d+1)
2 . This corresponds to a distribution over the d(d−1)

2 edges over the

DAG (i.e, denoted by L, the lower triangular elements) and d additional elements cor-

responding to exogenous noise variables ϵ = [ϵ1, . . . , ϵd]T of the latent SCM (denoted

by Σ). Suppose that the parameters of the Gaussian qϕ(L,Σ) is given by mean µq

and precision P q:

µq = (µL,µΣ) µL ∈ R(K−d) µΣ ∈ Rd (6.1)

P −1
q =

P −1
L 0

0 P −1
Σ

 P −1
L ∈ R(K−d)×(K−d) P −1

Σ ∈ Rd×d (6.2)

Consider S ∼ qϕ(L,Σ). The first K−d elements represent the weighted adjacency

matrix Ŵ ; for this, populate these K − d elements in the lower triangle of a zero
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matrix. The last d elements, S(K−d):K , are samples of the predicted exogenous noise

variables ϵ̂. Now, the SCM is defined by Ŵ and ϵ̂, and ancestral sampling is expressed

as zi := Ŵ T
∗iz + ϵ̂i, where the ordering of assignment indexed by i is according to the

topological ordering induced by Ŵ . zi is the ith element of z, and z is initialized to

zeros. Ŵ∗i denotes the ith column vector of Ŵ .

6.2.7 Additional Visualizations
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Figure 6.17: Ground truth causal structures for the experiment on the chemistry
dataset.
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Figure 6.18: Ground truth weighted adjacency matrices for the experiment on the
chemistry dataset.

6.2.8 Runtimes

In this subsection, we note down the runtimes for a subset of the previously presented

experiments. We explore the program runtime along two axes: scaling with respect

to nodes, and with respect to number of data points.
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n = 4000 n = 6000 n = 8000 n = 10000 n = 12000
d = 15 12 15 17 20 23
d = 20 20 24 26 29 35
d = 25 28 32 36 40 45
d = 30 40 47 50 55 60
d = 40 72 76 90 100 105
d = 50 105 116 127 142 166

Table 6.3: Program runtimes: Scaling BIOLS across number of nodes and data points,
with D = 100. All runs are reported on 10000 epochs of BIOLS across 5 seeds. All
reported runtimes are in minutes.

Table 6.3 presents the program runtime for scaling BIOLS, where n refers to pairs

of (observational, interventional) data and d refers to the number of nodes in the

latent SCM. All runs are reported on 10000 epochs of BIOLS across 5 seeds, with

the observed dimensions D set to 100 and a linear projection function. The runtimes

remain similar for nonlinear projection since the neural network sizes remain the same,

and it is only the data generation procedure that is different.



7
Conclusion

In this thesis, we studied the problem of causal discovery in the latent space which has

close connections to causal representation learning. A number of assumptions have

made this possible, such as known intervention targets and values, assuming a fixed

node ordering, and that the class of latent SCMs belongs to linear Gaussian models.

Unlike other works, we assume the intervention values are sampled from some distri-

bution (such as Normal or Uniform) instead of always using 0-valued interventions.

We presented a tractable approximate inference technique to perform Bayesian

latent causal discovery that jointly infers the causal variables, structure and parame-

ters of linear Gaussian latent SCMs under random, known interventions from low-level

data (such as high-dimensional vectors or pixels).

Though Brehmer et al. 2022 addresses a closely related problem, it is limited to

the realm of single-target, zero valued interventions, that require paired counterfactual

data. In contrast, BIOLS also supports multi-target, non-zero valued interventions

that neither require the data to be paired or counterfactual.

The advantage of the learned causal model, BIOLS, is also shown. BIOLS exhibits

generalization by sampling images from unseen interventional distributions. Further-

more, the Bayesian formulation allows for uncertainty estimation. This can be used to

obtain estimates of mutual information gain, as a result of altering the current belief

of a causal model. This makes our formulation particularly well-suited for extensions

60
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to active causal discovery.

However, answering questions such as how to efficiently perform intervention in-

ference from low-level data remains challenging. Brehmer et al. 2022 provides some

direction towards answering this question, but can infer only single target interven-

tions (search space d). Whereas, the multi-target intervention inference problem has

a much larger search space (2d).

Finally, ILCM takes very long to train, requires more data points, and gets hard

to train beyond 8 − 10 nodes. In contrast, BIOLS scales better and faster (till upto

atleast 20−50 nodes), as long there is enough interventional data to recover the latent

SCM. A reinforcement learning setup where the agent can actively experiment with

the environment to understand the world could be yet another area to explore, in order

to better learn the latent SCM and intervention targets. Extensions of the proposed

method to learn nonlinear, non-Gaussian latent SCMs from unknown interventions

would open doors to more general algorithms that can learn causal representations.
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