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Abstract

Let K be a real quadratic number field. Let p be a prime which is inert in K.
We denote the completion of K at the place p by K,. Let f > 1 be a positive
integer coprime to p. In this thesis we give a p-adic construction of special elements
u(r,7) € K for special pairs (r,7) € (Z/fZ)* x H, where H, = P'(C,)\P(Q,)
is the so called p-adic upper half plane. These pairs (r,7) can be thought of as an
analogue of classical Heegner points on modular curves. The special elements u(r, )
are conjectured to be global p-units in the narrow ray class field of K of conductor f.
The construction of these elements that we propose is a generalization of a previous
construction obtained in [DD06]. The method consists in doing p-adic integration of
certain Z-valued measures on X = (Z, X Z,)\(pZ, x pZ,). The construction of those
measures relies on the existence of a family of Eisenstein series (twisted by additive
characters) of varying weight. Their moments are used to define those measures. We
also construct p-adic zeta functions for which we prove an analogue of the so called
Kronecker’s limit formula. More precisely we relate the first derivative at s = 0 of a
certain p-adic zeta function with —log, Nk, q,u(r, 7). Finally we also provide some
evidence both theoretical and numerical for the algebraicity of u(r,7). Namely we
relate a certain norm of our p-adic invariant with Gauss sums of the cyclotomic field
Q(¢f,¢p)- The norm here is taken via a conjectural Shimura reciprocity law. We also »

have included some numerical examples at the end of section 18.



Résumé

Soit K un corps de nombre quadratique réel. Soit p un nombre premier inerte dans K.
Nous noterons par K, la complétion de K en p. Soit f > 1 un entier positif copremier
a p. Dans cette thése nous donnons une construction p-adique de certains éléments
u(r,7) € K pour certaines paires (r,7) € (Z/fZ)* x H, ot H, = P(C,)\PY(Q,).
Ces paires (r, 7) sont en quelque sorte des analogues des points de Heegner classiques
sur les courbes modulaires. Nous avons conjecturé que les éléments u(r, 7) sont des p-
unités dans le corps de classe de K au sens restreint de conducteur f. La construction
de ces éléments que nous proposons est une généralisation d’une construction obtenue
dans [DD06]. La méthode consiste essentiellement a faire de l'integration p-adique de
certaines mesures sur X = (Z, X Z,)\(pZ, X pZ,) & valeurs dans Z. La construction de
ces mesures repose essentiellement sur l'existence d’une famille de séries d’Eisenstein
(tordues par des caractéres additifs) avec le poids k > 2 qui varie. Les moments de ces
séries d’Eisenstien sont utilisés pour définir ces mesures. Nous construisons aussi une
fonction zeta p-adique pour laquelle nous prouvons un analogue de la formule limite
de Kronecker. Plus précisément, nous relions la premiere dérivée en s = 0 d’une
certaine fonction zeta p-adique avec — log, N, /q,u(r, 7). Finalement nous donnons
une bonne raison théorique de croire en 1’algébricité de u(r, 7). A savoir, nous relions
une certaine norme de notre invariant p-adique avec des sommes de Gauss contenues
dans le corps cyclotomique Q((s,(,). La norme ici est définie a l’aide d’une loi
de réciprocité de Shimura conjecturale. Nous avons aussi inclu quelques résultats

numériques a la fin de la section 18.
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Introduction

Let L be a number field. Define
(L*)” ={z € L : |z|, = 1 for all infinite places v of L}.

One can think of (L*)™ as the intersection of the minus spaces of all complex con-
jugations on L*. A complex conjugation of L acts as —1 on (L*)~. One can show
that if L contains no CM field then (L*)~ = {&1}. Moreover when L contains a CM
field, if we denote by Lo the largest CM field contained in L, then (L*)™ C L§,,.

From now on we assume that L is a CM field.

Let p be an odd rational prime number. The group of p-units of L is defined as

(’)L[z—lj]x. Dirichlet’s units theorem tells us that
1, - -
(0.1) OL[Z—Q]X ~ (L*), XL

where ¢ is the number of prime ideals in L above p and 2n = [L : Q). We define the

group of strong p-units of L to be
1
Up(L) := (L*)™ N OL[E]X
= {x € L™ : for all places v of L (finite and infinite) such that v { p, |z|, = 1}.

Clearly U,(L) is a subgroup of the group of p-units of L. If we let L™ be the maximal

real subfield of L and ¢g* the number of prime ideals of Lt above p then an easy
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calculation shows that rankz(U,(L)) = g — g*(see proposition 1.1). For example

when the prime p splits completely in L we have rankz(U,(L)) = [L : Q]/2.

Let K = Q(v/D) be a real quadratic number field where disc(K) = D and p be
an odd prime number which is inert in K. We denote the completion of K at p by
K,. In [DD06] a p-adic construction of elements in K, is proposed. Those elements
are conjectured to be strong p-units in certain abelian extensions of K, namely the so
called narrow ring class fields of K. We recall the main ideas of their construction.
Let N > 1 be an integer coprime to D such that oo(NV) = 3_4n1 > 2. Let a(z)
be a non constant modular unit on the modular curve Xo(N) having no zero or pole
at the cusp ico (such modular units always exist). Let H, = P1{(C,)\P}(Q,) be the
p-adic upper half plane. For certain points 7 € H, N K they define a p-adic invariant
u(c, 7) € K. When this p-adic invariant is non trivial, i.e. when u(a,7) # %1, the
two authors have conjectured that u(c, 7) lies in a certain narrbw ring class field L,
of K which depends on 7 and a. More precisely they conjecture that u(a,7) is a
strong p-unit in L,. If we assume that u(«, 7) is a non trivial strong p-unit contained
in L, then L, contains a CM field and therefore has at least one complex embedding.
Note that any ring class field L™ of K is Galois over Q. Therefore by normality
L. is totally complex. Because of the dihedral nature of Gal(L™™9/Q) we see that
having at least one complex embedding is equi{falent for L™9 to be a CM field. We
thus conclude that if u(«, 7) is a non trivial p-unit inside L, then L. has to be a CM
field.

The key idea in their construction is to use the periods of the modular unit «(z)
in order to construct a family of Z-valued measures on P1(Q,). In their construction
they use modular units of the form

a(z) = H A(dz)™
d|N
where A(2) = ¢[],5,(1—¢")** (where ¢ = €*™) and the ng € Z’s are integers subject

to the conditions Y gy = 0 and 4N ngd = 0. The ”periods” considered come

o(2)
a(p2)

(0.2) o / dlog (o%%) <&

from the modular unit and they are given by the formula



where ¢1,co € I'o(N)(ico). These periods can be expressed in terms of Dedekind
sums. A key feature of their method is the possibility of testing their conjecture since
the p-adic integral defining the invariant u(ca, 7) can be computed in polynomial time.

For a description of this algorithm see [Das05].

In this thesis we propose a generalization of their construction. Let Ny and f be

coprime positive integers such that (pD, fNy) = 1. We call f the conductor and No
A(z)
A(doz)
function g(%o)( fdot), see (3.1) for the definition.

the level. We replace the function for do|No by a certain power of the Siegel

The first novelty is that instead of working with one modular unit a(z) we work
with a family of modular units {g:(z)}+er indexed by the finite set T = (Z/ fZ)* /(p)
where (p) corresponds to the group generated by the image of p inside (Z/fZ)*.
By construction those modular units are I'(f Np)-invariant in the sense that for all
v € To(fNo) one has |

Gyt (72) = 9:(2)

b
where | © J *xt = dt(mod f). So the matrix « acts not only on the variable z but
¢

also on the indexing set 7. Moreover every modular unit in this family has no zero

or pole on the set T'o(fNy)(200). The periods considered are of the form

R o 9:(2)
(0.3) omi . dlog (gt(pz)> €z

where ¢y, cg € I'o(fNp)(ico) and t € T which is the analogue (0.2).

Using equation (0.3) we define, for every triple
(€1, €, t) € To(f No)(i00) x To(f No)(ico) x T,
Z-valued measures on P}(Q,) denoted by

g dc1 — ca}.

Using those measures, we propose a construction of elements in K. For certain pairs

(r,7) € (Z/fZ)* x H, we associate an invariant u(r,7) € K¢ which depends also

9



on the family of modular units {g:(2) }rer. Those elements are constructed as certain
p-adic integrals of our measures. The element u(r,7) is conjectured to be a strong
p-unit in K(foo), the narrow ray class field of K of conductor f. In particular, if
we want to construct non trivial strong p-units inside K(foo), it will be essential to
assume beforehand that the latter field is totally complex. This shows the importance
of working in the narrow sense and not just in the wide sense. We propose a conjec-
tural Shimura reciprocity law (see conjecture 5.1) which says how the Galois group
Gal(K(foo)/K) should permute the elements u(r, 7). We also prove an analogue of
the Kronecker limit formula relating our invariant u(r,7) to the first derivative at

s = 0 of a certain p-adic zeta function. More precisely we prove that

(1) 3¢,(0) = —log, Nk, /g, u(r,7)

(2) 3¢(0) = vp(u(r, 7))

where (,(s) is a p-adic zeta function interpolating special values at negative integers

of a classical zeta function ((s), attached to K, deprived from its Euler factor at p,
namely (1 — p~2)((s).

Let us explain more precisely the main ideas involved in the construction of the
invariant u(r, 7). In a very similar way to [DD06], our family of Z-valued measures
pg{c1 — ca} on P}(Q,) can be used to construct a 2-cocycle k € Z*(I'y, K)) (see
definition 5.10 ) where

C

I = {( ¢ Z ) € SLQ(Z[%]) ca = 1(mod f),c= 0(mod fNo)}

and K has trivial I';-action. It turns out that the 2-cocycle « is a 2-coboundary i.e.
there exists a 1-cochain p € C*(T'y, K*) such that d(p) = x. Note that p is uniquely
determined modulo Z'(T'y, KX) = Hom(T'1, K*) which turns out to be a finite group.
In order to show the splitting of the 2-cocycle x one is lead to lift the system of
measures pg{c1 — c2} to a system of measures on X := (Z, x Z,)\(pZ, X pZ,).
There is a natural Z;-bundle map 7 : X — P}(Q,) given by 7(z,y) = 2. In order

to lift our measures from P(Q,) to X we use the periods of a family of Eisenstein

10



series twisted by additive characters with varying weight £ > 2. When the weight
k equals 2 then the corresponding Eisenstein series is the logarithmic derivative of
our modular unit. We denote the unique lift of g, {c1 — co} to X (under certain
conditions see theorem 6.1) by fg,{c1 — c2}. Note that by construction we have
T llg {c1 — c2} = pg,{c1 — co}. Using this lift one can give a ”simple expression” for

u(r, 7) namely

(0.4 w7} = plo) = f (@ = )i fioo = iva},1)

where ~, is an oriented generator of the stabilizer of 7 under the action of I';. There-
fore the invariant u(r, 7) is obtained from the evaluation of the 1-cochain p at ;. The
presence of the stabilizer 7, is accounted for the presence of endomorphisms of infinite
order of the lattice Z+77Z which is equivalent to the presence of units of infinite order
in Og. When the element 7 € H, N K and 7 is reduced, there is a natural bijection
¢: X— O]X(p given by (z,y) — z — 7y. If we let v, = @1, {00 — ~rico} then (0.4)

can be rewritten in a more functorial way as
u(r,T) = / zdv,(z) € K.
ze(’)IX{p
This new point of view, which applies to any totally real number field, is the subject

of a recent paper by Dasgupta, see [Das06].

We compute the various moments of fi,,{c1 — c2} i.e. integrals of the form

/Xxnymdﬁgr{ioo — - (i00) }(z, y),

where m and n are positive integers, see proposition 11.5 for explicit formulas. Fol-
lowing [Das05], we also give explicit formulas for the measures iy, {¢1 — c2} evaluated

on balls of X, i.e. compact open sets of the form
(u+p"Zy) x (v + p"Zy).

See proposition 14.1 for the formulas. Both of these formulas involve periods of
Eisenstein series which can be expressed in terms of Dedekind sums. Having such

formulas turns out to be essential for numerical verifications. We have included at the
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end of section 18 a few numerical examples which support the conjectural algebraicity

of u(r, 7).

Finally we give some theoretical evidence for the algebraicity of u(r,7) by com-
puting "their norm” and relating them to normalized Gauss sums, see theorem 17.1.
Let f be an integer such that for all ¢|f, ¢ is inert in K. Assume furthermore that
—1¢ (p) <(Z/fZ)*, then we prove that

(05) NK(foo)FTP/Q(Cf)FTP (U(T', 7')) = S (mod /J/F)

where p = pOg, S is a product of normalized Gauss sums in F = Q(gf)(prp) -Q(¢) €
@, The norm in (0.5) is taken via a Shimura reciprocity law which is still meaningful
even if we don’t assume the algebraicity of the element u(r,7). Note that the left
hand side of (0.5) lies necessarily in K, N F = Q((;){f™» C Q,. Because of the
assumption —1 & () < (Z/fZ)* we see that Q((;)F™ is a CM field.

Notation

Let K be a number field and O an order of K. For a finite subset of places S of K
we define Og to be the ring of S-integers of O

a

05::{5

EK:a,be(’),and‘%

_<_1for1/ﬁniteandu¢S}.

Let Mo, = {01, ...,0,} be the set of real embeddings of K. Given an integral Os-ideal
f and a subset M C M, we define the following sets

(1) Iog(f) :={b C K : b is an integral Og-ideal coprime to f},

(2) QOs,l(fOOM) = {% € K: Oé,ﬁ € 057 (aﬁvf) = 17a = B(mOd f)) and

ai(%) > 0Vo; € M},

where we think of ooy = Haie a O0; where oo; is the infinite place corresponding to
;. Two ideals a,b € Ioy(f) are said to be equivalent modulo Qo 1(foos) if there

exists an element A € Qo 1(foonr) such that Aa = b. This gives us a relation of

12



equivalence on Iog(f). The quotient Io,(f)/Qog,1(foon) is a generalized Og-ideal

class group corresponding by class field theory to a certain abelian extension of K.

Let K be a quadratic number field. For 7 € K\Q then we define |
AN =72+ 717,

and
O, := Endg(A;) ={r € K: M\, CA,}.

Let N be a positive integer then we define

a b

q > € SLy(Z) : ¢ = 0(mod N)},

(1) To(N) := {<

a b

(2) T\(N) := {( p ) € SLy(Z) : ¢ =0(mod N),d = 1{mod N)}.

c

1 The Z-rank of strong p-units

Let L be a number field. Remember that
(L*)” ={x € L™ : |z|, = 1 for all infinite places v of L}.

One can think of (L*)~ as the intersection of the minus spaces of all complex conju-
gations of (L*)™. A complex conjugation acts like —1 on L*. If L contains no CM
field then a simple computation reveals that (L*)~ = {£1}. In the case where L
contains a CM field let us denote by Lgps the largest CM field contained in L. In
this case one has that (L*)™ C L{,,. For this reason we now assume that L is a CM
field of degree 2n over Q. Let K be a totally real subfield of L and let p be a prime

ideal of K. We define a relative group of strong p-units

Up(L/K) :=
{z € L™ : for all places v of L (finite and infinite) such that v tp, |z|, = 1}.

13



We would like to compute the Z-rank of U,(L/K). Let S be the set of places of L
containing exactly all the infinite places and all the finite ones above p. Let Yg be the
free abelian group generated by the elements of S. Let also Xg be the subgroup of
Ys of elements having degree 0. Let m € K be such that 7Ok = p™ for some integer

m. We have a natural map
1
A R®z OL[;T—]X —R®zYs
1@ers 3 loglel, - [V

vesS

where ||, denotes the normalized local absolute value for which we have the formula

o] Npg,m(a) if v is complex
al, =
N(v)~*(® if v is finite

for any o € L*. Using Dirichlet’s unit theorem and the product formula we see
that A induces an R-linear isomorphism between R ®z OL[%]X and R ®z Xg. Let
Teo De the complex conjugation on L then 7., acts naturally on the left and right
hand side of A. Note that 7, acts always trivially on infinite places of S. One can
verify that A is 7e-equivariant. Let us denote by ST = {v € S : 7V = v} and
by ST ={v € §: 1oov # v}. It is easy to see that the —1 eigenspace of R @z X -
has dimension fi;t where a R-linear basis is provided for examples by the elements
[V] — [TooV] for v € S~. Therefore it follows that the +1 eigenspace of R ®z Xg has
dimension equal to #S5* + g — 1. Since the map A is 7w-equivariant the same is
true for R ®7 O[]X. Note also that #S5 + #S5~ = n + g where g is the number of

prime ideals of L above p. ’

Proposition 1.1 Let L be the mazimal real subfield of L and g* be the number

of prime ideals of O+ above p then one has

(1.1) rankz(Uy(L/K)) =s=g—g".

14



Proof A small computation shows that #ST = n+ 2g1t — g and #5~ = 2(g — ¢™).
From this we get

dimg <R ®z (OL[%]x> _> = dimg (R®z X3) = dimg (R ®z Xs)7) = #5”

=g9—g"

The second equality follows from the fact that the eigenvalues of 7., which are +1,
lie in Z. Finally note that (O[2]*)” = Uy(L/K) and in general for any finitely
generated abelian group A we have dimg(R ®z A) = rankz(A). O

Question Let K be a real quadratic field and L = K(foo) be the narrow ray class
field of conductor f of K. Let p be a prime number inert in K which is congruent to
1 modulo f and assume that K(foo) is totally complex. Let p = pOg. If conjecture
5.1 is true, can we prove that the Z-rank of the subgroup generated by our strong
p-units is equal to g — gt = [K(fo0)/K]/27

2 Distributions on P!(Q,) and holomorphic func-
tions on the upper half plane

Let p be a prime number and (A, +) be an abelian group. Let P!(Q,) be the projective

line over the field of p-adic numbers endowed with its natural topology induced from

the one on Q,. The field Q, has a natural normalized non Archimedean metric | |,

where |p|, = %. The group of matrices

GL‘{(Z[%]) —{re GLQ(Z[%]) - det() > 0}

c d
GL3(Z[}]) and z € PY(Q,). We define a ball in P}(Q,) to be a translate of Z,

under some element of GL3 (Z[%]). Therefore by definition all balls of P1(Q,) can be

P

a b
acts naturally on P}(Q,) by the rule z — vz = z;is where v = ( ) €
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written as
VZ, = {vx € PHQ,) : T € Zy,}.
for some v € GL3 (Z[3]). Given a ball B C P*(Q,) one can show that there exists an
element a € Z[%] and n € Z such that
1 1
Bz{me(@p:|x—a|pgﬁ} or B:{xe(@p:|x—a|pzﬁ}u{oo}.
This explains somehow the terminology for the word "ball”. We denote the set of all

balls of P}(Q,) by B.

An A-valued distribution on P!(Q,) is a map
p - {Compact open sets of P'(Q,)} — A

which is finitely additive i.e. for all finite disjoint union |J;_; U; of compact open sets
of P}(Q,) we have

p (U m) = > ),

where the summation on the right hand side takes place in the abelian group A. It
thus follows that a distribution on P*(Q,) is completely determined by its values on
a topological basis of P}(Q,). A topological basis of P!}(Q,) is given for example by
its set of balls.

We say that a distribution on P!(Q,) has total value 0 if u(P(Q,) = 0. We would
like to give a simple criterion to construct A-valued distributions on P*(Q,) of total

value 0. Before stating this criterion we need to introduce some notation.

Every ball B = ~Z, can be expressed uniquely as a disjoint union of p balls
p—1
B=]JB,
i=0

p

where B; := v (;Z,) and o, = < 01

) . We can now state the criterion:
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Lemma 2.1 If p is an A-valued function on B satisfying

p(BHQy) ~ B) = —u(B), p(B) = u(B)

for all B € B then p extends uniquely to an A-valued distribution on PY(Q,) with

total value 0.

The proof of this lemma can be made transparent by using the dictionary between
measures on P*(Q,) and harmonic cocycles on the Bruhat-Tits tree of PGLy(Q,).
For a small introduction to the subject see chapter 5 of [Dar04]. From now on we will

use the previous lemma freely.

For the sequel we would like to give a general procedure to construct A-valued
distributions on P'(Q,) from certain analytic functions on the complex upper half

plane. In practice we are mainly interested in the case where A = Z.

Let H={2z=z+1iy € C:y > 0} be the upper half-plane endowed with its
usual metric ds® = %ﬂlﬁ. For any analytic function f : H — C we define the

multiplicative U, ,, operator as

Upm f) (7

We say that f satisfies the multiplicative distribution relation at p or simply that f
is a U, ,-eigenvector (even if U, ., is not a linear operator) if there exists A € C* such
that

(2.1) (Upmf)(1) = Af(T),¥T € H.

We also call A the eigenvalue of f with respect to the operator U, ,,. Similarly for

any meromorphic function g : H — C we define an C-linear operator U, , (where the

17 L0

a” stands for additive) as

120 14
(Up,a9)(7) 5;9( 5 )



If we take the logarithmic derivative of (2.1) we get

p—1

U, o(dlogf)( =:% TE9) — dlogf (7).
=0

o,

Note that the constant A has dropped out. In general if g(7) is a meromorphic

function on H we say that g satisfies the distribution relation at p if

(2.2) %g;mT;j)ggﬁ)

for all 7 € H where (x) is defined, in other words g(7) is an U, ,-eigenvector with

eigenvalue 1. We call (2.2) the additive distribution relation at p. When in addition
the function f(7) is invariant under translation by Z, i.e. f(r + 1) = f(7),Vr € H,
we find that for (N,p) =1

Upm fn)(7) = Afn(7),

where fn(7) := f(N7). In this way get even more functions on the upper half plane
satisfying the multiplicative distribution relation at p. Note that the multiplicative
distribution relation is stable under standard multiplication of functions. Using the
previous observation we get
(2.3) I far)y
dN

is also a U, m,-eigenvector for arbitrary integers ng’s. Equation (2.3) is the basic tool
for constructing U, ,,-eigenvectors from a given one. We remind also the reader that
since f(7+ 1) = f(7) for all 7 € H then f admits a g-expansion at 700 of the form

Z angy, TEH

nez

where ¢, = €™ and a, € C.

Assume that f(7) satisfies additional symmetries and some boundary conditions

namely that there exists an integer N > 1 coprime to p such that

(1) f(r) is T'o(pN)-invariant and that it descends to a meromorphic function on

18



(2) f(7) has no zeros or poles on the set of cusps I'o(N)(ico), i.e. for all v € T'x(N)
we have ol # 0 and o = 0 if n < 0 where a$" is defined by (2.4).

Using (1), one can define the g-expansion of f(7) at any point ¢ € P}Y(Q) by the

following rule: First choose a matrix v € SLo(Z) such that yc = ico. It is an exercise

1 h
to verify that there always exists a matrix < 01 ) € SLy(Z) with h > 0 such that

1 h
0% 01 77t € To(pN). Without lost of generality we can assume that h > 0 is

minimal, we call it the width at the point ¢. It is easy to see that the width is constant
on the orbit I'o(pN)ec. It follows that f(7) is holomorphic on H and invariant under
‘the translation z — z + h. Therefore the function f(y7) admits a g-expansion at 300
of the form

(2.4) Fom) =D P, TEH.

neZ

Note that a$” = 0 if n is small enough since f is meromorphic. The latter g-expansion
is defined to be the g-expansion of f(7) at the point c. If one chooses a v/ such that
~'i00 = yico = ¢ then one can verify that for n > 0 aﬁ?l) = Cag) for some h-th root
of unity ¢ depending on n. So up to a root of unity, a,, depends only on ¢. However,
ao is uniquely determined by c. So formally speaking the g-expansion at ¢ depends
not just on ¢ but also on the choice of the matrix v € SLy(Z) such that yico = c.
However, this slight ambiguity will not create any problems for the applications we
have in mind. Often we are only interested by the qualitative behaviour of the g-
expansion at ¢ € P1(Q) which is the same for all points in ¢ € T'o(pN)c, as one can

verify.
We can summarize so far the assumptions made on the holomorphic function
f-H-C:
(1) f descends to a meromorphic function on Xo(pN),
(2) fis a U,,, eigenvector,
(3) f has no zeros and poles on the set of cusps ['o(NV)(i00).
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where (p, N) = 1.

Having such a f one can associate C/{-valued distributions on P*(Q,) of total

value 0 where Q is a finitely generated Z-module of C defined by

Q= —2—71—;2— / dlogf(7) : C is a small loop around a zero of f }),
c

where dlogf(7) = f}:—(%ldr By small loop we mean a circle C' such that C' doesn’t
cross any zero of f and inside that circle f has only one zero. It is finitely generated -
because f descends to a meromorphic function on Xo(pN). In particular if f has no
zeros in H then Q = {0}.

In order to construct such distributions we need to introduce some notation first.

Ty = {7 e (To(N), (7; (1) >> : det(y) = 1}.

0
Note that the matrix ( g ) ) ¢ I'y. A calculation shows that the natural image

Let us denote

of 'y in PGL;(Z[%]) has index two. It thus follows that the group I'y splits the set

of balls of P*(Q,) into two orbits, the one equivalent to Z, and the one equivalent
to PY(Qp)\Z,. Let (c1,¢2) € To(N)(ico) x [o(IN)(ico). One is lead naturally to the
following definition

-1

(25 prfen = bz = [ dlosf(r),
(2:6) urles = by (PQING)) == [ diogf ()

where v € I'g. The integral between the two cusps appearing in the bounds of the
integral is taken to be along a curve C (containing its end points) which is assumed
to be smooth, of finite length and doesn’t cross any zeros of f(7). Moreover, we
also require that C agrees with the unique geodesic of H joining vy~ lc; to v ley on
small enough neighbourhoods of v !¢; and v 'cy. In particular if we let U; and U,
be small enough open discs centred around v~ 'c; and v~ !¢, respectively we find that

UiNHNC and UsNHNC are small arcs containing no zeros of f. Such neighbourhoods
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always exist since f descends to a meromorphic function on Xo(p/N). Under these
assumptions those integrals make sense since the functions ffl(%l has no zero, pole on
the path C' and this latter path is well behaved in small neighbourhoods of its two
endpoints. Note that the image of the integrals (2.5) and (2.6) in C/Q doesn’t depend
on the choice of such special paths since we mod out by the only obstruction coming
from the poles of dlogf(7) which correspond to the zeros of f; Those poles are the

only obstruction since dlogf(7) is a meromorphic 1-form on H, therefore closed.

By definition the total value of ps{ci — ca} is zero. Moreover, since Stabr,(Z,) =
LCo(pN) (uses (NV,p) = 1) and f(7) is I'o(pN)-invariant, one sees that (2.5) and (2.6)
are well defined. Finally, the fact that us{c; — c2} is a distribution follows from
lemma 2.1. The condition of lemma 2.1 is verified since f is by assumption a Up ,-

eigenvector, see equation (2.2).

Remark 2.1 The reason why one needs to be careful about the endpoints of the
path of integration comes from the observation that f(7) could have infinitely many

zeros or poles in a small real interval around the point ¢ € T'o(N)(i00).

Remark 2.2 Note that the set {f(c) € C: ¢ € I'((N)(ic0)} is finite since f(7)
is a T'o(pN)-invariant.
Remark 2.3 An important observation is that the the group generated by the
0
matrix g ) ) gives rise to a nontrivial action on the set I'o(IN)(ic0) = T'g(i0c0) by

the rule

where n € Z. In other words, the multiplication by p map reshuffles the set I'g(V)(i0c0).
Here it is crucial for IV and p to be coprime. Philosophically the non triviality of this
action combined with the special properties of f(7) give rise to non trivial C/Q-valued
distributions on P}(Q,).
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An important property satisfied by the family of distributions pus{c; — co} is a I'o-

invariance. For all compact open set U and -y € T’y one has

priver — vee(YU) = pp{er — eaH(U).
This is a direct consequence of the definition of pus{c; — ¢}

In general one imposes even stronger conditions on f(7) in order to control the

range of pus{e; — co}. We introduce the following useful definition:

Definition 2.1 We say that f(7) satisfies the real algebraicity condition on the
set To(N)(i0o) if there exists a real number field L C C such that f(z) € L,Vx €
To(IV)(io0).

In general, modular functions tend to have algebraic coefficients therefore the previous
definition is not too hard to fulfil. For example suppose that all the ”g-expansions”
of f(7) at the cusps I'o(IV)(ic0) lie in M[[q]] where M is a CM-field. Let M be the
maximal real subfield of M. Then taking the norm of f(7) down to M™[[¢]] gives rise

to a modular unit satisfying the definition 2.1.

Assumptions: Form now on we assume that f(7) satisfy the conditions (1), (2),
(3), has no zeros in H and also that it satisfies the real algebraicity condition on the
set To(IV)(i00).

We thus get that Q = {0}. Doing a small change of variables reveals that

1 [ e 1 /f(flcz) d A 1
f

0.7 L dlogf = —_ A
(2.7) og/ 7 S T2

270 Joym1gy 270 S p(y-1c1)

where ¢ = f(7) and A is the finitely generated additive subgroup of R (by remark
2.2) generated by log |f(c)| for ¢ € T'o(N)(ico) (here we assume that there exists a
¢ € [o(N)(ico) such that f(c) = 1). The real part of the left hand side of (2.7) is
half integral since the bounds of the integral appearing on the right hand side are real
" valued. Therefore if we define

1

Y Cea

/J,f{Cl — CQ}(Z) = Re (L/

27

dlog f> € %Z

_101

we obtain a 1Z-valued distribution on P*(@Q,).
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Remark 2.4 Note that there are only finitely many possibilities for the bounds
appearing in the right hand side of (2.7). On the other hand the image by f of the

geodesic joining ¢; to cp and the one joining ¢] to ¢, will be in general different even

if f(c1) = f(c) and f(c2) = f(c3)-

Definition 2.2 We say that a C,-valued distribution p on PY(Q,) is a measure

if there exists a constant ¢ € Ryg such that

@)y < c

for all compact open sets U of PL(Q,).

Clearly a %Z—Valued distribution is a measure since we can take ¢ = 1 if p #* 2 and
c=2ifp=2.

Remark 2.5 A C,-valued measure on P'(Q,) allows oneself to integrate C,-
valued continuous functions. In general C,-valued distributions only allow the in-

tegration of locally constant functions.

Suppose that f satisfies the real algebraicity condition on the set I'o(/N)(ic0) for the
number field L, i.e. for all ¢ € I'g(N)(ico) we have f(c¢) € L C C. Note that L
comes naturally equipped with an embedding in R by definition. One can also use
the imaginary part of of (2.7) to construct L*-valued distributions on P(Q,). For
every pair of cusps (cy, c2) € T'o(IN)(ic0), define a L*-valued distribution v¢{c; — ¢}
on P}(Q,) by the rule

. o~ —-1c
i) Br{en — e} (12,) = el

) 7{er - e} @G = (fmad) ™

for all v € T'g.

Using lemma 2.1 one can verify that 7 gives rise to an L*-valued distribution on

P1(Q,) of total value 1 (the abelian group A considered is multiplicative ). Note that
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the set

{ps{c1 — c2}(B) : B € B}
is finite.

Let us fix an embedding ¢ : L — @, and let L be the topological closure of (L)
in @p. If we fix a p-adic branch of log, by declaring log, 7 = 0 for some uniformizer

in I then we can define a L-valued measure on P! (Qyp) by
ve{er — co} = log, ovg{c; — ca}.

We thus get that ve{c; — ¢} is a L-valued measure. Unfortunately the measure

vi{cr — c2} depends on ¢ and the choice of the p-adic branch of log,,.

In the present paper we only explore the case where f(c) = 1 forall ¢ € T'g(N)(ic0).
When f satisfies the latter hypothesis we see directly from (2.7) that ps{ci — ca}
is Z-valued and also that all possible L-valued measures vi{c1 — co} are trivial, i.e.

equal to 0 on all compact open sets of P1(Q,).

3 A review of the classical setting

Let H be the Poincaré upper half-plane and X(N) = H*/T'(N) be the modular
curve of level N where H* = H UPY(Q). A modular unit of level N is a function
u(t) € Q(¢y)(X(N)) with 7 € H, for which div(u(r)) is supported on P}(Q). In

particular modular units are non vanishing analytic functions on H. Because of this
latter property they can be written as an infinite product in the variable ¢, = €™,

The simplest example of a modular unit is provided by quotients of the form A‘?J(\%,

where A(7) = n(7)?* and n(r) is the famous Dedekind eta function defined by the

infinite product
n(r)=qz [J(1— ).
n>1

The modular unit Zé(—z(\z*) is invariant under the larger group T'o(N) D T'(V). Let K be

an imaginary quadratic number field. By evaluating those modular units on quadratic
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irrationalities 7 € H N K one gets points in certain ring class fields of K. In order to
get points generating ray class fields of K, one needs to consider a more general type
of modular units. These modular units can be obtained by taking suitable powers of

Siegel functions.

For a pair of rational numbers (a1, az) € (%Z)? such that (a1, a2) # (0, 0)(mod Z),

we define a Siegel function of level N as

(3.1) G(ar,a0) (7) = Earaa) (TIN(T)?,

where £, ,)(7) is the Klein fdrm, see chapter 1 of [DK81] for the definition. The

infinite product corresponding to the Siegel function is given by

wiag{a] — 1By(a n n
(3.2) g(al,az)(T) — _e2miaz(ar 1)/2qT2 2( 1)(1 _ qz) H(l _ qqu)(l _ qTq—z),

n>1

where z = a17+ag, Ba(z) = 22 —2+1/6 is the second Bernoulli polynomial, By(x) :=
By({z}) where {z} stands for the fractional part of z, ¢, = €*" 7 € H and ¢, =
e?™# » € C. Note that the infinite product in (3.2) converges since Im(7) > 0. Using
the identity K 2. in chapter 2 of [DK81] we deduce for (ai,as) = (b1, by)(mod Z?)
that

nin ng ,—2mi {492 =nr2e1)
(3.3) Gop) () = (—1)mmatmtneg=2n T Ylar,a2)(T)s

where (b1, by) — (a1,a2) = (n1,n2). We thus see that g(a;.0,)(7) and g, by (7) differ
only by a 2V root of unity. The function g(a, 4,)(7) is not too far from being a modular
unit. Let v € SLy(Z) then

(3'4) g(ahaz)(’yT) = 6('7)9(a1,a2)7 (T)a

where e(7y) is defined by
n(y7)? = e(y)(er + d)n(r)”
for some €(7y) € p12. The subscript of the Siegel function (a1, as)y on the right hand

side of (3.4) is the usual multiplication of a row vector by a matrix.

From the identity (3.4) we deduce that for any v € SLy(Z) and any r,s € Z

(3.5) 9( ,73-)(77)12 = 9(%,%)7(7)12,

2}
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In particular when v € T'(N), using the identity (3.5) combined with (3.3), we see
that the function

(3.6) T = g )(T)mN

2o

’

z|s

is invariant under the substitution 7 +— ~7. We thus see that a suitable power of
a Siegel function gives rise to a modular unit. A natural question that arises is:
How large is the set of modular units of X (N)? This is answered by the following

proposition:

Proposition 3.1 The Z-rank of the group of modular units of X(N) modulo
Q(¢w)* is equal to

(3.7) number of cusps of X(N) — 1.

Moreover, the subgroup generated by modular units as in (3.6) for all integers r, s has

mazimal rank.

Proof The proof consists essentially in showing that the divisors of Siegel functions
of level N give rise to the universal even distribution on Q?/Z2[N]. See theorem 3.1.
of chapter 2 in [DK81]. O

The —1 in (3.7) is explained by the trivial relation (deg(div(u(7)))=0) imposed
on the divisor of any function on X (N). In thus follows that the Z-rank of modular
units is as large as it could be. Beside their modular properties, the main interest of
modular units reside in the fact that can be used to construct units in ray class fields

of imaginary quadratic number fields.

Using equation (3.1) defining the Siegel functions, on can think of g'? as a function
on C x £ where L is the set of lattices of rank 2 in C. It thus makes sense to write
g'2(t,A) for any t € C and A € L. For w € A, g*%(t + w,A) = e(w)g*?(t, A) for

some €(w) € St. Therefore g'? modulo S is well defined on pairs (¢ + A, C/A). This

12
(a1,a02

that g*2(a17 + a2, Ar) = g(ay,e0)(7)*? for any pair of real numbers (a;, as) and 7 € H.

notation agrees with the previous definition of g ,(7) given by (3.1) in the sense

Finally one should also point out that the function g'? is homogeneous of degree 0
meaning that g*2(At, AA) = ¢g'2(¢, A) for any A € C*.
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Now we would like to formulate one version of the theorem of complex multiplica-
tion for imaginary quadratic number fields. Let K be an imaginary quadratic number
field and f an integral ideal of K. Let C(f) := Io,(f)/ Qo 1(f) (resp. K(f)) denote

the ray class group of conductor f (resp. the ray class field of conductor f)

Theorem 3.1 Let f = (f) for some f € Zso and assume that f is divisible by
at least two distinct primes of Z. Let a € C(f) and choose a,b € a. Then

(38) u(a) := (1, fa ™) = ¢ (1, fo7) € O

If we let rec™! : C(f) — Gal(K(§)/K) then
(g™ (1, fah)y =79 = g (1, fate)

for any ¢ € Io.(f).

Proof See theorem 3 of chapter 19 section 3 of [Lan94b] . O

Remark 3.1 Note that since a is an integral ideal then 1 € a~!. It is easy to see
that a~! can always be written as a~! = 1A, for some s € Zsg and 7 € (KN K). It
thus follows by homogeneity of ¢*? that

(39) 9L fo7) = 93,00 = g0 ()1

Here we emphasize the fact that for any integral ideal a coprime to f we can associate
a pair (s,7) € Z x (HN K) such that a=! = 1A;. One can then evaluate the Siegel
function on the pair (s,7) using (3.9). Note that this procedure depends implicitly
on the conductor f = (f). If we take a,b € a € C(f) and let ™! = %AT, b1 = %AT/,

then equation (3.8) implies that

90T = gy (7).

This is an easy consequence of the homogeneity of degree 0 of g'? plus the the fact

that the function 7 — g(o,%)(T)uf is T’y (f)-modular.

One can relate the logarithm of the absolute value of (3.9) with the first derivative

of a certain zeta function (depending only on the ideal class of a modulo Qo 1(f))

27



- ™.
4

evaluated at s = 0. This is the so called second Kronecker’s limit formula. For the
remaining of the section we introduce some notation in order to define a certain class
of zeta functions associated to a positive definite quadratic form Q(z) and a spherical
function P(z) with respect to Q(z). We only need the case where n = 2, i.e. when

x = (x1, ). For the general case, see chapter 1 section 5 of [Sie80].

Let z = a +14b € H. We attach to z a 2 by 2 positive definite matrix M, =

1
: ( Ial2 ) Note that M, is normalized in the sense that det(M,) = 1. We define
a |z

@z(xla To) 1= 2 M,z = b2y + 22|
T ~ ~
where z = ( ' ) Note that @Q.(x1,z2) is normalized in the sense that disc(Q,) =
)

-z ~ ~
—4. The vector w := ( . ) is an isotropic vector with respect to @, i.e. @,(—z,1) =

0. The following homogeneous polynomial of degree g, P(z1,z2) := (—izg' M,w)? =
(z1 + 75%)7 is a spherical function with respect to Q,(z1,z2). Following [Sie80] we
can associate to such data a zeta function

e2rilmivz=maud) (my 4 01 + (ma + v9)Z)?
|m1 + v + (mz -+ U2)2|25+9

(3.10) C(s,u", 0%, 2,9) =0 )

mA+u*£0

where y*,v* € Q% For any integer g > 0 and s € C with Re(s) > 1 this function
(with respect to the variable s) converges absolutely. It is a fact that this function
admits a meromorphic continuation on all of C with at most a pole of order 1 at
s = 1 (this occurs precisely when g = 0 and u* € Z?). Moreover it satisfies a nice

functional equation.

Define
Z(s,u*,v*, 2,9) == m"°T(s + g/2)((s, u", 0", 2, 9).

Siegel shows the following functional equation (special case of equation (61) in [Sie80])

(3.11) Z(s,u* 0%, 2, g) = (—1)9e¥rimve—uv) 7(1 _ 5 o* 4* 2, g).
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0 .
Let g = 0, u* = < ZJJ: ) and v* = ( 0 > then after some rearrangements the
~ equation (3.11) looks like

(3.12)
Zmiomg) - (-9r(1 - )

1
= = — f2(1"3) _ .
mg©0) |Q=(m1, ma)[* m=T(s) 2 Q= (ma, ma) 209

m=(r,t) (mod f

where m goes over Z*. For any (%, %) € (%Z)2 and z € H, equation (3.12) motivates

the following definitions

627ri(m1 %——mQ »}5)

(0 0)75’)'71 |Qz(m1,m2)lzs ’

e f2s —_
)’ Z) T f mE(T,t%mOd f) |Qz(mlsm2)|2s '

(2) (s, (3,

~nle

Using this notation equation (3.12) can be rewritten more compactly as

Tt o 9IP(1 = 8) ot
?’}‘)72) - W_SF(S) C(l—s’(?v?))z)'

¢(s. (

We can now formulate the second Kronecker limit formula:

Theorem 3.2 Let (a1,as) € Q? be such that (a1, as) ¢ Z* and 7 € H then we

have

(0, (a1, a2), 7) = — log Ne/R(9—a0 (7))

-1
= — 10g N(C/R(gal,ag) <7> )

Proof For the first equality see chapter 20 section 5 of [Lan94b]. For the second
equality we use the homogeneity property of g'2. [
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4 Modular units and Eisenstein series

4.1 The Siegel function

In this section we define certain modular units that will be used in section 5 to

construct Z-valued measures on P}(Q,). For a pair (7:%) € (—fl-Z)2 we associate the

Siegel function

ris(n-1)/2 3B2(%) n n
95,2)(1) = =TGR (1 — ) T - a1 - ¢g-s)

n>1

s
'

i3

where z = 37 + $. As explained in the first section the function g(%%)(T)lzf is a
modular unit on X(f). Let Ny > 0 be a positive integer coprime to pf. From now

on we will be mainly concerned by Siegel functions of the form

352(3) n n
9(-},0)(d0f7') = Q;dm ! (1 - quor) H(l - qdofTQTdoT)(l - qdofTQ——rdoT)

n>1

for some dg| Ny, dp > 0. An easy computation shows that g(?,o)(do f7)*f is a modular
unit with respect to the group I';(f) N To(do) 2 T1(f) N To(No). The following
lemma gives an explicit formula for the divisor of 9(3,0) (dof7)'* when regarded as a
function on X (fNp). It is more natural to work with X (fNy) since this curve is a

Galois coveririg of P1(C), therefore all its cusps have the same width namely fNo.

Proposition 4.1 Let f be a positive integer and r € Z/fZ. Choose an integer
Ny coprime to pf. Then for every do| Ny the function 9z,0) (dof)1 is T1(fYNTo(do)-
invariant. In particular we can think of it as a function on the modular curve X (f Np)
with its divisor supported on the set of cusps of X(fNo), denoted by cusp(X(fNo)).

2miT

A uniformizer at ico for the group I'(fNy) is given by T — efNo . One has

div(gig 0 (dofr)™) = > 6f5v—°(fdo,c>2§z< o )M

[2]€cusp(X (fNo)) do (fdo,c) ) Lc

where (fdy, ¢) stands for the greatest common divisor between fdy and c. We say that

the modular unit gz oy(dof7)'* has primitive indez if (r, f) = 1.

??
Proof This is a standard computation. [J
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Remark 4.1 Observe that the divisor of g(z o)(do f7)*? is always an integral
multiple of 6f. So it is natural to ask if such a unit is a 6f power of some modular
unit in C(X(fNy)). In general the answer is no. However later on we will show that
by taking suitable products of the g(_;.,o)(do f7)¥s, one can extract an f-th root, see

proposition 4.2.

4.2 Modular units associated to a good divisor

Definition 4.1 For positive integers f, Ny coprime we define D(Ny, f) to be the

free abelian group generated by the symbols
{[do,?‘] 0< do]No,T I~ Z/fZ}

If 0 € D(Ny, f) we call f the conductor of & and Ny the level of §.
A typical element § € D(Ny, f) will be denoted by § = > dor n(do, r)[do, 7| where the
sum goes over do|No (do > 0) and r € Z/fZ with n(dy,r) € Z. We have a natural

action of (Z/fZ)* on D(Ny, f) given by j*[do, r] := [dp, jr] and we extend this action
Z-linearly to all of D(Np, f).

Since (p, f) = 1, by reducing p modulo f, we get an action of p on D(Ny, f). We
denote by D(No, f)® the subgroup of D(Np, f) which is fixed by multiplication by

p(mod f). Sometimes we will use the short hand notation
j(mod f)*§ =: ;.
We want to define the notion of a good divisor with respect to the data NV, f, p.

Definition 4.2 We say that a divisor

§ = Z n(do,7)[do, ] € D(Ny, f)

doINo,TEZ/fZ

is a good divisor if it is non zero, px§ = § and that for allr € Z/ fZ,

(1) ZdolNo n(do,7) = 0(mod f),
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(2) oy 2(do, 7)do = 0.

More concisely one sees that a good divisor is an non zero element of D(Ny, f)®
which satisfies (1) and (2).

Remark 4.2 Note that when p = 1(mod f) the condition p* 4§ = J is automati-
cally satisfied.

- Proposition 4.2 To a good divisor § =3, v, ez 52 M do, 7)|do, 7] € D(No, fe

we associate the function

(4.1) Bsr) = [l  gcoldofr)>®n.

do|No,r€Z/ fZ

This function is a modular unit which is T'1(f) N To(No)-invariant. Moreover for all
c € T'o(fNo){ico} we have Bs(c) = 1.

Proof Using equation equation (3.3) with the fact that for all r € Z/fZ

Z n(do,r) = 0(mod f),

do|No
we see that the ambiguity created by the f-th root of unity is cancelled. The latter
observation combined with equation (3.5) shows that the right hand side of (4.1) is
[ (f)NTo(Np)-invariant. Using the explicit formula in proposition 4.1 combined with
the fact that for all r € Z/fZ, 3, n, don(do,7) = 0, we get that ord.(8s(r)) = 0
for any ¢ € T'o(fNo){icc}. Finally using the infinite product of the Siegel function
plus its transformation formula, a calculation shows that for all ¢ € I'g(fNo){ioco},

Bs(c) = 1. For this latter computation it is enough to work at ico after a suitable
shift. O

Remark 4.3 The first remark is that div(gcz o)(dof7)"?) = d’i?)(g(—Tr)O)(doT)m), S0

they only differ by a root of unity. So we could well assume

0 € D(No,f)+ = {(S € D(Ng,f) c—=1%xd = 5}
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However we have chosen not to do this since later on we will associate Eisenstein series
of odd weight to 0 and forcing § to be inside D(Ny, f)+ would impose unnecessary

restrictions.

Note also that a good divisor 6§ € D(Ny, f)® gives rise to a family of modular
units indexed by (Z/fZ)* /(p) since for any r € (Z/fZ)* we still have that §, is a
good. If we denote the family by {3, (7) }re(z/s2)x /(p), We see that the group o(fNo)

acts transitively on it via 7 — 7.

4.3 The dual modular unit

Definition 4.3 Let 6 = >, v, rez/5z (do, T)[do, 7] € D(No, )@ be a good divi-

sor then we define

(4.2) @ =TI g0 dyr) 2 ().

do|No,r€Z/ fZ

We call B%(7) the dual unit of 55(7).

Remark 4.4 Note that the modular unit now have an f in its exponent. Also
for very divisor do|Ng and r € Z/ fZ the exponent is a multiple of n (g—g, 'r‘). One can

verify the formula

No

12f
9.0 (FdoWnoT) ™ = g0 =) (EET> .

here W ( 0 -1
where Wen, = .
- fN, 0

We have the analogue of proposition 4.1 with the same assumptions.

Proposition 4.3 We have

(43)  div(gp=r)(dor)™™) = > 6f2]—;79-(d0,c)2§%( re )[2]

[2]ecusp(X(fNo)) 0 fle,do) ) Le
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Remark 4.5 Note that contrary to gz o)( fdo7)'? | the divisor in (4.3) is not

necessarily a multiple of f so the f in the exponent of g(o’—Tr)(doT)mf is essential.

We also have an analogue of proposition 4.2.

Proposition 4.4 The function 8;(7) is T1(f) N To(No)-invariant. Moreover for
all ¢ € To(fNo){0} we have B3(c) = 1.

Proof The proof is identical to proposition 4.2 except that we use proposition 4.3
instead of proposition 4.1 and replace I'q(fNo)(i00) by T'o(fNo)(0). Note however
that one doesn’t need the assumption >,y n(do, ) = 0(mod f) for all r € Z/ fZ.

12 A(7)
4.4 From g(%,o)(NT) to xvy
One can relate the modular unit G5(7) with the modular units used in [DD06]. We
have for any positive integer N the identity

N-1
(4.4) H g(%,o)(NT)m = (N AA(§\7/:7)‘)’

i=1

for some (y € pn. As in [DDO06] choose a divisor § = 3, 7do[do] such that

Z ng,do = 0 and Z ng, = 0.

do|No d0|N0

To such a divisor they associate the modular unit

which is I'g(Np)-invariant.

If we set 0" = >y inorez)s2 n(do,r)[do,r] € D(Ny, f) with n(do,r) = ng, for all
r € Z/fZ then we readily see that ¢’ is a good divisor with respect to any prime p.

34



2N

Using equation (4.4) with N = f we find
doT "o
(7 CH( A(dofT) )

(doT)
Hdo ( A(?r) )
A(fdor) "o
Hdo ( A(f?-) )

for some ¢ € piy.

Remark 4.6 Having in mind the construction of points in ring class fields of a
real quadratic number field K as in [DDO06], we see that once the modular unit is
fixed one can vary the prime number p freely (as long as p is inert in K) since it
doesn’t depend on the choice of the modular unit. However in the ray class field case,
for a general good divisor §, the prime number p is related to the conductor of 4,
i.e. f. Therefore one doesn’t have the same freedom as in the ring class field case.
The additional constraint is a congruence modulo f. For example we can always let

p vary among the set of primes p congruent to 1 modulo f.

4.5 The p-stabilization of modular units

In order to construct measures one needs modular units that satisfy the distribution

relation at p, i.e. modular units which are Up,m—eigenvectors where

(4.5) (Upmf)(T

Note that by taking the logarithmic derivative of (4.5) one obtains the usual additive

distribution relation for a measure on Z,.

For any do| Ny the function

g(lgf )(dofT)
=
912{1 (defT)

(2550
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is I'1(f) N To(pdp)-invariant (the notation p~'r should be interpreted as the class of
p~lr modulo f). Moreover it is an eigenvector with eigenvalue 1 with respect to the

multiplicative U, ,-operator.

Proposition 4.5

9(z10) (dof7) bl gl (dof(55) 920 (dof7)
(4-6) Up7m —_15?_—_————
To)

v | = Ger G = P dor

=0 Jeie g =)

Proof(sketch of the U, ,,-invariance) One has the identity

12f .
9z 0) (dOfT) p
(4.7) ! = |1 g0 (pfdor)"*
oL, i) L0
f 3

where r; = i(mod p) and r; = r(mod f). A direct calculation shows that every term

on the right hand side of (4.7) is U, m,-invariant i.e.

(4.8) U (905,00 (P o)™ ) = gz 0 (pFlo7)'™

for all 4. The identity (4.8) relies heavily on the infinite product of the Siegel function.
O

Remark 4.7 In section 4.8 we will give a more conceptual proof of the latter

proposition using Eisenstein series, see equations (4.16) and (4.19).

Definition 4.4 For a good divisor § € D(Ny, f)® we define

_ Bs(7)
/65’1)(7-) o ﬂp‘l*é(pT)
_ Bs(7)
Bs(pT)’

Proposition 4.6 Let § € D(Ny, f)® be a good divisor then B5,(7) is T1(f) N

Lo(pNo)-invariant, U, m-invariant and Ve € T'o(f No)(ioco) we have Bsp(c) = 1.

Proof We already know that §5,(7) is I'1(f) N To(pNo)-invariant. Since Gs5(z) = 1

for all z € T'o(fNp)(ico) and multiplication by p induces a permutation on the set

Lo(fNo)(ico) we get that Gs,(x) = ﬂ'i 5(;”;)) = 1. Finally the U, ,-invariance comes
from the identity (4.6). O
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Remark 4.8 A more careful study of the modular units on the curve X (Nopf)

reveals that any modular unit

(4.9) u(r) € ({g(;rf,o)(dofr)12 :do|No,v € Z/pfZ})

which is T'y(f) N To(Nop)-invariant, U, ,,-invariant and has no zeros and poles at the
set of cusps I'o(fNo)(ico) comes necessarily from a good divisor in the sense that

there exists an integer m and a good divisor J such that
div(u(r)™) = div(Bs,(7)).

So we don’t lose much by assuming that the modular unit comes from a good divisor.
The proof relies on the fact that Eg(x) is the the universal even distribution of degree
1on Q/Z.

Definition 4.5 Let § € D(Ng, f)® be a good divisor. We define

_ B
- Bylpr)

Bs(T)

- We have an analogue proposition 4.6 for the dual modular unit 85, (7).

Proposition 4.7 Let § € D(Ny, f)® be a good divisor then Bs, (1) is T1(f) N
Lo(pNo)-invariant, Uy m-invariant and Ve € o(fNo)(0) we have 35 ,(c) = 1.

Proof It is similar to proposition 4.6 except for the U, ,,-invariance which will be a

consequence of proposition 4.9. [J

Remark 4.9 Note that there is no direct analogue of equation (4.6) for the dual

modular unit g(07—Tr)(doT)12f since

90,52 (doT)™™ 90,55 (doT) ™!
an
9(0,:f2)(d0p7')12f g(o’ _E;1T)(d0p7')12f

are not Uy, n-invariant. Nevertheless it is still true that 85 (7) is Uy m-invariant.
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4.6 The involution ty on X;(N)(C)

As it is well known Y1(N)(C) := H/T'1(N) classifies pairs (P, E), up to equivalence,
where P is a point of exact order N on an elliptic curve E defined over C. We denote
the equivalence class of a pair (P,C/A) by [(P,A)]. Any class can be represented by
a pair of the form (%2 (mod Zw, + Zws), Zwy + Zwy) for wy,ws € C. We define a map

tn on such pairs by

w  [—w W w
LN <N2(m0d Zwi + Zws), Zuw + ng) = (——N—l (mod Zw; + Zﬁ), Zw + Zﬁ) )

It is easy to check that ¢y is well defined on such pairs and also on equivalence classes
of Y1(N)(C). A small calculation reveals that % restricts to the identity on equivalence
classes. Therefore when N > 1, ¢ gives a non trivial involution on Y;(N)(C). If we
think of gz )(N7)"?" as a function on such pairs then a direct calculation shows
that

g(z,0(NT)PY) = 9(0,:15:)(7)12]\’-

=

One can investigate what properties of modular functions are preserved under this
involution. For example let us look at the curve X;(pf) where N = pf. The property
of being a U, ,-eigenvector is in general not preserved by v,;. For example consider

the modular unit
91 o) (Fpr) !

which is a U, ,,-eigenvector (with eigenvalue 1). A calculation shows that

Lpf(g(f_lp,o)(pr)wpf) =90 )(T)lzvf

__1
‘of
is not a U, m-eigenvector. However, let us take a good divisor 6 € D(MNy, )% and

consider the U, m-eigenvector (5(7). Using proposition 4.9 we see that it is still true
~ that

|

LN (Bsp(T))T = B5,(7)

is a U,m-eigenvector. In general, the properties of modular functions which are
preserved under the involution ¢y can probably be made more transparent if one

uses the adelic point of view by viewing them as functions on double cosets.
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4.7 Bernoulli polynomials and Eisenstein series

We recall first some definitions for Bernoulli numbers and polynomials. The Bernoulli

numbers are defined by the generating function

t ot
et —1 :ZB"H

n>0

Note that Bgn_H =0ifn Z 1.

We also define Bernoulli polynomials as

(4.10) tecctl - ZBn(a:)g—;.

et — n>0
One can verify that
B,(z) = Z (7;) Bjz™ ",
i=0

From (4.10) one can deduce the useful formula B, (1 — z) = (—=1)"B,(z).

Definition 4.6 Forn > 2. We define the n-th periodic Bernoulli polynomial as
B, () == B.({z})

where {z} =z — [z]. Forn =1 we define

Bi(z) = {2} — % + 122(””>.

Note that By (x) corresponds to the famous sawtooth function.

Computing the Fourier series of By (z) we find for k > 1 that

- —k! / eQﬂﬁ‘nm

By(z) = (2mi)k = nk

where the prime of the summation means that we omit n = 0. One easily verifies
that
Bn(—z) = (=1)"B,(z).
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Either by using the generating function of Bernoulli polynomials or the Fourier series

one finds for any positive integer N

N T+ ~
(4.11) N¥1N " By ~ ) = By(z).

1=0

We are now ready to define a certain class of Eisenstein series for which the constant
term of the ¢g-expansion at 700 is a certain periodic Bernoulli polynomial evaluated

at some rational number.

Definition 4.7 Forr € Z/fZ and an integer k > 2 we define

(4.12)
27_” , 27rsz
E = Tt £\
k(r,7) ( ) ; (m+nfr)k
B r/f A 1
T Ic —2mibr/f _~
= —+ e
bZ:; sz:Z ; (m + b/f + n7)k
f=
—B}c r f 1 mibr m

_ _____/__ ..E Z —2mibr/f Z Zm (@nrny + (= 1)kqnf—b/f)

b=0 m>1n>1

2miz

where q, = €*™*. The prime on the summation means that we omit the pair (0,0).

Remark 4.10 When k£ > 3 the convergence of the right hand side of (4.12) is
absolute. When £ = 2 the convergence is not absolute, nevertheless the g-expansion

is still meaningful.

Generally when the level f is fixed we simply write E(r, 7).

For any v € ['y(f) we have the useful transformation formula

Ep(yxr,ym)(d(y7))* = Ei(r, 7)(d7)"

c d
of Ey (1) is defined over Q((y). In fact the g-expansion at any other cusps of Xo(f)

b
where < ¢ ) x7 = a"lr = dr(mod f). Observe also that the ¢-expansion at ico

is also defined over Q((y). One can think of the expression
Ey(r, 7)(dT)*
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as a system of twisted k-fold differential on Xo(f). We have used the word twisted
since «y also acts on the index r € Z/fZ. However Ex(r,7) is a true k-fold differential
on the curve Xi(f).

For future reference we define Ef(r,7) and we call it the dual of Ey(r,7).

Definition 4.8 Forr € Z/fZ and an integer k > 2 we define

2min ?

. -1
) (=) (2mi)F s
N — it m -+ nrt
Ek (7“, 7') : L T ; PR
The first thing to notice is that

(4.13) Ei(r,7) = Ek< ;j) (%)k

0 -1
If we denote Wy = ( ;o ) then we can rewrite the previous identity as

— (4.14) Ey(r,7) = det(W) By (r, Wer) (Wyr)*

Remark 4.11 Note that in the case where f = 1 we have that Ey(7) is invariant
under W, therefore Ey(7) is self dual. When f > 1 it is not the case since Wy =

0
(v ) eran

The g-expansion of E}(r,T) is given by

. DR\ T 2T
Bilry7) = <( (k)—(l)') ) ; (m +nT)*

-1
“‘Bk(r/f) omibr/ f
= 140 e2mibr Z Z
k oy Lo o (m+ b+fn AL
-1
—Bi(r
= kli /f) + e2mibr/ f Z Zm q(fn+b)7' ( 1)kq8n—b)f)-
b=0 m>1n>1

As in the previous case, for any v € I'o(f) we have the useful transformation formula

Ep(y xm,y7)(d(y7))* = Ei(r,7)(dr)"
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a b
where ( p > x 7 := ar = d~'r(mod f). This is exactly as in the previous case
c

except that the action on the index r € (Z/fZ)* is inverted. It is for this reason that

we have denoted it by * instead of *.

4.8 Hecke operators on modular forms twisted by an additive

character

In this section we discuss the theory of Hecke operators on such twisted modular .

forms.

Let ¥ : ZxZ — uy be any additive character. For every lattice A C C fix a group
homomorphism ¢(A) : A — ZxZ. Denote this family of group homomorphisms by ..
Assume furthermore that ¢, is homogeneous of degree —1, i.e. p(aA) = ¢(A)oa™

for any lattice A and « € C*.

In such a setting it makes sense to define a function Ej y ., on the set of all lattices
by the rule

B)= 3 M)
weA—{0}

It is also convenient to define for any lattice A’ C A

Ek,lb,tp(/;)(A,) = Z Qﬁ(@(Ag <U})) )

w
weA'—{0}

For any scalar o € C* we define

(@ B, )(A) = B p(any (adh).
Since ¢, is homogeneous of degree —1 we have

B po(any (@A) = @ F By oa)(A).

therefore

—k
a* Ekﬂﬂ'ﬁp* =0 Ek,’lf},(p* °
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It thus gives an action of C* on such Eisenstein series.

We still have a notion of Hecke operators Ty(n) (k stands for the weight of the

Eisenstein series) where we define

(Te(n) B, ) (N) Y Ergem(A
[A:A]=n

We want to compute the action of the Hecke operators Ti(p) on Ej 4.,. We have

(Te(P) Brwio)(A) = D70 D7 Erypny(d

[A:A]=p
(4.15) = ]0 Ek,zp,w(A)(A) +P pEk,w,w(A)(pA)
= P By, (A) + By, (A).

The equality (4.15) comes from that the fact the Uja.an—, A" = A and for two distinct
lattices A’, A” of index p in A we have A’ N A” = pA. Note that if p = 1(mod N)
then Ty(p) Erppn = (1 + P V) Ekyop., i-6. Egy,, is an eigenvector with eigenvalue
14 pF L.

In order to simplify the dependence of ¢, on the set of lattices , it is convenient to ‘
work with normalized oriented lattices A, := Z+7Z for 7 € H. For every 7 in a fixed
fundamental domain D of H modulo SLy(Z), we define p(A;) : Ar — Z X Z to be

-the group homomorphism (in fact isomorphism) given by m + n7 — (m,n). Having

fixed the fundamental domain D we can write any lattice A uniquely as A = AA,
for a certain 7 € D and A € C*. We define p(A) := ¢(A,;) o A1, In this way . is

. homogeneous of degree —1.

For any 7 in the fundamental domain we thus have ¥ (¢(A, ) (m+n7)) = e2imi+ng)
for some integers r, s depending only on % (and on the choice of the fundamental do-

main D). We define

) e2mi(Fmtn)
Gi((r mod N, s mod N),7) = Gi((r,8),7) i= > _ (m+n7)k

mmn

When the level is fixed we drop the (mod NN) notation.

Now we fix a level N = f and a prime p coprime to f.
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Definition 4.9 We define

Egp(r,7) == Gr((=1,0), f7) — " 'Gi((=p7'r, 0), pf7)
= Ei(r,7) — p" 1 Ep(p~tr, pr).

Note that Ex(r,7) is a I'i(f)-modular and Ej ,(r, 7) is I'1(f) NTo(p)-modular both of
weight k.

We define the additive Hecke operator U, , on the set of meromorphic functions
g:H — C to be:

T+j)

1272
U, og(T) = —
a9 (T) p;g( .

Proposition 4.8 Ey (7, 2) is a U, .-eigenvector with eigenvalue 1 i.e.

1 2t

T+J
(4.16) UpaBiop(r,7) = = > Erplr, —2) = By, 7).
e p

Proof We have

p—1

Te()Ex(r,A;) = P> Ep(r,pl+ (7 + §)Z) + p* 7 B o (Z + prZ)
=0
15
=5 z; Ey(pr, AT_?) + T B (r, Apr)
]:

= U,oEx(pr,7) + p" 7 Ei(r,p7).
Replacing r by p~'r in the last equaiity we find
(4.17) Tiu(0)Ex(p~tr, 7) = Up o Ex(r, 7) + p"  Ep(p~'r, pr)
We are now ready to compute the action of U,, on
Eip(r,7) = Ex(r,7) — p* T E(p~ i, pr).
We have:

(4.18) UpaErp(r,7) = Up o B (1, 7) — pk“lUp,aEk(p—lr, pT).
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Using (4.17) for the first term of the right hand side of (4.18) and the definition of

Up,o for the second term we find

I L1 |
= T(p) Ex(p™'r,7) — 9" Ex(p™'r, p7) — 152Ek(p '+ j)

§=0

= Tu(p)Ex(p~'r,7) — p* 1 Ex (07 r, pr) — P* T ER(pT i, T)
= pk"lEk(p_lr, T) + Ex(r,7) — pk"lEk(p"lr, pT) — pk_lEk(p"lr, )
= Ek’p(’f', ’7').

where in the third equality we have used (4.15). O
Definition 4.10 We define

B}, (r,7) == Bi(r,7) = p* T B} (r,7)

Note that there is no twist by p on the second index.
Proposition 4.9 We have

(4.19) UpaEr,(r,7) = Ei(pr,7) — p* ' Ef(r, pT)

Proof This is a similar computation to what we did previously. [l

Remark 4.12 Even if E; (r,7) is not an U, ,-eigenvector (unless p = 1(mod f))

it is still very close.

4.9 The g-expansion of Ej ,(r,T)

For any rational number ¢ € Q with (b, f) = 1 define (%) to be the unique represen-

tative modulo f between 0 and f — 1 congruent to 3.
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The g-expansion of Ej ,(7) is given by

Ek:p( F)
_B r m
= kk e sz "””’””ZZm (@rrs + (= 1>kqnf~’>/f)"
m>1n>1
_E —(p~1r 1 I-
pk—1< i (I;€ )f/f)_f_z mer/fZZm (@b s + (- 1)qu;,7_pb/f)>
‘ b=0 m>1n>1 .
(=r/8) , pa B0
L k
-
1 — 2707 m
f_z 2mibr/ f Z Zm qn—r+b/f + (= 1>kq7m-—b/f)‘
b— (m>)l n>1
m,p)=1

We thus readily see that for k& = &'(mod p™(p — 1)) all coefficients of Ej () vary p-
adically continuously when n goes to infinity. In particular for a fix congruence class
a modulo p — 1, if we look at all the integers k = a(mod p — 1) and k = 0(mod p")
with n going to infinity, we see that all the coefficients are analytic functions in the

weight k. We thus have a one dimensional p-adic family of Eisenstein series.

4.10 Relation between Eisenstein series and modular units

A calculation shows that

(1) dlog(g(z,0)(f7)'?) = 12- dlog(g(z.0)(f7)) = —24mif Ex(r, 7)dr,

(2) dlog(go,z)(7)"?) = 12 - dlog(g(o,5)(7)) = —24miE5(r, 7)dT

where dlog stands for the logarithmic derivative with respect to the variable 7.

This motivates the following definition

Definition 4.11 Let 6 = 3 4 o -z, 52 M(do, T)[do, 7] € D(No, £)*®) be a good di-

visor then we associate to this divisor two families of Fisenstein series. We set

TN
/ S
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(1) Fys(T) = Zdw don(dg, ) Ex(r, doT)

(2) Fys(r) =34, do "n(5e, 7)E;(r, dor)
and also

Frop(r) :=Y_ n(do, )doEx p(r, dor)

do,r
= Zdon do, ) Ey(r, o) — p*~ 1Zdo’n do, ) Ex(p~'r, dopT)
d()T' dO;

= Frs(7) = p* 71 Fy 5(p7).

where the last equality uses the fact that px 6 = 9. Similarly we define

Fis,(m) ==Y _n(No/do,r)d§ " E}, (r, dor)

do,r
=Y " df~'n(No/do, ) E;(r,dor) — p*™1 Y _ db~'n(No/do, ) E; (v, dopr)
do,m do,r

= Fps(7) — pk_lF/:,s(pT)

The motivation for the definition of Fy 5(7) and F} 5(7) is justified by the next propo-

sition

Proposition 4.10 Let § = ., 0 cz/p2,7(do, 7)[do, 7] € D(No, f)® be a good

dwisor then when the weight is equal to k = 2 we have

(1) dlog Bs(1) = —24mif Fo5(T)dr

(2) dlog ﬂg,p(T) = —24mif Fy5,(T)dT

and similarly

(1) dlog B3 () = —24miFy3s()dr

(2) dlog ﬁg,p(r) = —247m'F2*,5,p(7)d7'

47



Finally Fy, 5(7) and F 5(1) are related by the formula

(4.20) Fis(Winor) = (=1)* 1" NoFy 5(7)

0 -1
where Wen, = N 0 )
0

Proof Straight forward computations. U
Remark 4.13 For [ a prime number coprime to fNp we have
Tk(Z)Fk,g(;) = (14 "N Fis(2).
Similarly for [ a prime number coprime to pf Ny we have
Ti(1) Fipsp(2) = L+ 171 Frgp(2).
Moreover equation (4.16) shows that for any k > 2 we have
UpaFlesp(2) = Fiosp(2)-
The group To(fNy) (resp. To(pfNo)) acts transitively on the family

{Fk6.(T) Yre@/s2)% 1 o)

(resp. the family {Fy s, »(7)}re@/sz)% /). The same thing also holds when we take
the dual Eisenstein series. Everything is straight forward except the U, ,-invariance.

For the latter , we use the fact that px § = § combined with equation (4.19).

Remark 4.14 Because d = ), n(do,7)[do, 7] is good we have for every r €
Z/fZ that 34y, n(do,7)do = 0. This latter condition implies that Fjs(2) is holo-

morphic at 400. Similarly we have that F} ;(2) is holomorphic at 0.
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5 The Z-valued measures pr{ct — ¢} and the in-

variant u(d,, 7)

5.1 Z-valued measures on P}(Q,)
Let 0 # 0 € D(Ny, f)® be a good divisor. Consider the family of modular units

1B5.p(T) }rea/ sz 10}

To such a family we want to associate a family of measures. Before defining the

measures we need to define some suitable subgroups of matrices of G Ly (Z[%])

Definition 5.1 For quantities p, f, Ny fixed we define
~ b
(1) Ty = {( ‘ p > € GL3(Z[1/p]) : ¢ = O(mod fNo)},
c

(9) To={y € o det(n) = 1} = {( . ) & SLa(ZIL)) : ¢ = O(mod fNo)},

c

(3) Ty = {( ch Z ) € SLg(Z[%]) ca = 1{(mod f),c = 0(mod fNo)}.

(4) ' = {( Z Z > € SLQ(Z[%]) ta,d = 1{(mod f),b,c=0(mod fNp)}.

Obviously one has the inclusions fo DO Iy DTy 2 I. Note that the group fo =

(To(fNo), P) where P = ( 01 )

Remark 5.1 We have an almost transitive action of I'y on B where B is defined
as the set of balls of P*(Q,). One has B = I'o(Z,) [[To(P*(Q,)\Z,).

We can now define a family of measures. For the rest of the subsection we assume
that 6 € D(No, f)® is fixed good divisor.
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Definition 5.2 Let (c1, co, k) € T'o(fNo)(i00) X T'o(f No)(ioo) x (Z] fZ)* /(p). Let
B € B be any ball of P(Q,). If B is inside the coset SLQ(Z[%])(ZP) set e = 1 otherwise
set e = —1. Ife =1 choose v € I s.t. vZ, = B. If ¢ = —1 choose v € I" such that
vZ, = P1(Q,)\B. We define

vl

1 |
(5.1) pfer = a}(B) =5 [ dlogBs L, u(r)

7l

| b
where v x k = dk(mod f) for v = ( ¢ g ) eIy C SLQ(Z[}'];]). It makes sense to
c

reduce d modulo f because its denominator is at worst a power a p which is coprime

to f.

Note that Stabr,(Z,) = Lo(pNo) NTo(f) = To(pfNo). Therefore since the modular
units in {Gs, p(7) bee@/rz)< /o) are To(pfNo)-invariant in the sense that

ﬁéw*k,p('}”—) = ﬁtsk,p(T)v
we get that (5.1) is well defined.

We can now state the main theorem of the section
Theorem 5.1 There exists a unique system of measures indexed by
L'o(ic0) x T'o(ico) % (Z/fZ)* [(p)

satisfying the following properties: For all (c1, ca, k) € To(ico) xTg(i00) X (Z/ fZ.)* [ {p)

(1) p{er — e} (PH(Qy)) = 0,
(2) mif{er = ea}(Zy) = 55 [ dlogBs,

(3) (Co-invariance property) For all v € Ty and all compact open U C PHQ,) we

have

pysk{ver — yee}(YU) = m{er — ea}(U).
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Proof The U, ,,-invariance of the 35, ,(7)’s implies that px{c1 — co} are distributions
on PY(Q,). Also since Ve € T'g(fNp)(ico) we have fs, ,(c) = 1, the line integrals
can be interpreted as the winding number with respect to the origin of a closed path
(s, »(C) where C is an arbitrary path joining y~1c; to v ce. So we really get Z-valued
measures. The [p-invariance comes from the definition of the measures. Finally the
uniqueness follows from the properties (1)-(3) combined with the fact that I'g splits
B into two orbits. [

Remark 5.2 Theorem 5.1 gives us a partial modular symbol of Z-valued mea-

sures on P1(Q,) i.e.
po {-— } : To(ioo) x To(icc) x (Z/fZ)* /{p) — {Z-valued measures on P*(Q,)}
(c1, 02, k) = pr{er — ca}-
Note that the image of p- {- — _} lies in the set of I'g-invariant measures.

In the next subsection using explicit formulas for the moments of those periods

we will see that this modular symbol is odd in the sense that

1 [

2mi S,

1 °2
Aogfi.,p(r) =~ [ dlogls,»(r)
Cc1

in other words p_r{—c1 — —c2}(Z,) = —pe{c1 — c2}(Zy,).

Remark 5.3 Finally it should be pointed out that the U, n,,-invariance of G5, ,(2)

combined with the fact that pxé = ¢ implies that the measures constructed in theorem

~ 0
5.1 are in fact T'g := (T, ( :g ) >)-invariant, see Proposition 5.13 of [Dar01].

We have a notion of a dual family of measures.

Definition 5.3 Let ¢1,co € I'o(0). We define pj{ci — ca} as:

* 1 ’Y—ICZ 23
(5.2) pifer — e2}(B) = 5 / g, (7).

where € = 1 if B € T'0Z, with vZ, = B and ¢ = —1 if B € To(PY(Q,)\Z,) and
YLy = PH(Qy)\B.
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We have an analogue of theorem 5.1 except that v xr is replaced by <y *r and the set
of cusps of T'o(f No)(i00) by the set of cusps ['o(fNo)(0). Note that y*7 =~"1xr.

The reader also will have no problem to formulate the analogue of theorem 5.1.

5.2 Periods of modular units and Dedekind sums

This section might be skipped at the first reading. We included it only for the sake
of completeness. We use Dedekind sums to give explicit formulas for the periods of

the modular units considered in theorem 5.1.

Let us start with a very general principal which comes from calculus

Proposition 5.1 (general principle) Let G C SLy(Z) be a discrete subgroup. Let
X be the two dimensional compact surface (real dimensions) defined by X := H*/G
where H* = HUPYQ). Let f(r) be a C*®-closed 1-form on H U {oo} which is
G-inwvariant. Then for any fixed g € G the quantity

/zgw f(r)dr

doesn’t depend on the base point & when x varies inside H U G(400).

Remark 5.4 In the previous proposition we assume the path of integration to

"be nice”, i.e. contained in H U G(ico) and contractible inside H U G(icc).

Proof First of all the integral does not depend on the path of integration since f(7)
is a closed C® 1-form. Let z,2' € H U G(ico) be arbitrary points. Let C,C’ be
arbitrary curves joining z, gz and ', ga’ respectively. Let 7 : H U G(ic0) — X be
the natural projection. Note that 7(C) and 7 (C”") in X are closed homotopic curves.
Since the 1-form f(7)dr is G-invariant it descends to a C* l-form on X. Finally
the latter is a closed 1-form on the surface X. Apply Stoke’s theorem to obtain the
result. 0O

Let 6 = 3, . n(do, 7)[do, 7] € D(No, f)® be a good divisor that we fix until the
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end of the subsection. We want to give explicit formulas for
1 [=

57 ; dlog(u(z))dz

in the case where u(z) is the modular unit 85(z) or Bs,(2).

Let a = (a1, az) be rational numbers contained in the interval [0, 1[. Since go(7)

has no zeros in ‘H we can define the logarithm of such modular units on ‘H. We fix a

* branch of log 9.(7) by setting

log(ga(7)) = miBs(a1)7 +log(1 — ¢.) + > _(log(1 — ¢*g:) +log(1 — ¢}q-2)).

n>1
For |z| < 1 we define log(1—z) := —_ ., 2"/n. Because of the assumption on aj, a
we have that 0 < |¢"¢,| < 1 and 0 < |gPq_.| < 1 for 1 < n where z = o17 + ag €
C,7 € H. We define ~: Q* — [0, 1{ be the function for which (u1,us) € Q? goes to

(u1,us) = (a1, as) with uy = ay(mod Z) and uy = ag(mod Z).

Definition 5.4 Let (a1,a2) € (%Z)* and v € SLy(Z). We define the y-period of

the Siegel function g,(7) to be

53) ma(3) = (108 45(77) 108 935()) lioe € 5.

Remark 5.5 Up to a multiple of ¢7 those periods are rational since
9a(¥7)"2" = gar (7) PNy € SLy(2).

In fact, using the I'(N)-invariance we see that any element 7 € H U I'(IV)(ic0) can
be used to compute the period 7,(7). This is an application of proposition 5.1 to
the 1-form £ (log gz(y7) — log ga5(7)) on the curve X(N). In practice we will take

7 = 40c. Note also that (5.3) depends only on the image of a in (Q/Z)%[N].

A property satisfied by those periods 7,(7y) is the so called cocycle condition.

Proposition 5.2 Let v1,v9 € SLa(Z) then wa(v172) = Ta(71) + Tay (72)-

Proof We have m,(v172) = log ga(11727) — 10g gz5;5;(7) where 7 is any point in the
upper half plane. We also have log ga(71727) — log ga5; (727) = me(y1). It thus follows

that m.(1172) = 7a(11) + log gazg (127) — 108 o555 (7) = Ma(11) + Mary (2). O
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Proposition 5.3 (Schoneberg) Let v = ( ¢
c

b
d) € SLy(Z) and 1,8 € Z, not

both congruent to 0 modulo N then

i <%§2(§-) + %EQ(L]\;) — 2sgn(c)sh, 7 (a, c)) if ¢#0;
)

WZ%EQ(%]‘
. s a b o N , : . .
where ( ¥ & ) = ( 55 ) and s(%,%)(a, ¢) is a twisted Dedekind sum:
N _ ~ (r+iN\ 5 [r'+aiN
5(_1%’_1%)(0170)— )Bl( N )Bl (CT .

Proof See p. 199 of [B. 74].

For N > 1 we have the double coset

SLy(Z) ( ];[ (1) ) SLy(Z) = HSLQ(Z)HIZ'

a b
where the x;’s can be chosen as upper triangular matrices of the form ( 0 4 ) with

a,d>0,ad=Nand0<b<d-1.

Definition 5.5 For a matriz v € SLy(Z) we define Tn(y) and Ry(7y) to be ma-
N 0 ,
trices such that ( 01 > v = Tn(y)Bn(7y) where Tn(y) € SLa(Z) and Rn(7y) is

equal to a unique representative x;.

b
For any matrix v = ( ¢ g ) € SLy(7) it is also convenient to define
¢

N 0 * 0\ [ a N
V(N)::<o 1>7<0 1)_<C/N d )

Remark 5.6 Note that the map v + v(IN) induces a group isomorphism from
[o(N) to TO(N).
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. a b
Proposition 5.4 Let § € D(No, f)® and r € Z/fZ. For any J =€
c

Lo(fNo) we have

L (tog s, (vr) Lo B, (1) = 3 S nldos ek Ty (7).

(5.4)
12 keZ/fZ do|No

and

(6:5) (o8 s (ovr) — log s (o) = 32 3 nlde, Kok o (Tosao()

keZ/fZ do|No

Proof We only prove the equality (5.5) since (5.4) can be proved in a similar but

simpler way.

Let v € T'o(fNp). We compute:

log 05, (py7) — log Bs, (p7)
S nldo k) (logg(m 5 (fdopy)"? 1ogg@0/)(fdop7)12)

keZ/fZ do|No

dg 0
We can write ( p]; ’ ) > v = Tosao( V) Rpsao(7) for Tygan () € SLa(Z) and Rygay(v)

is some primitive upper triangular matrix of determinant pfd, that will be chosen
later. We thus get

= Z > n(do, k <loggm0(fdopw) 108;9 (fdop) )

keZ/fZ do| No

56) Y Y nldo k) (1059 Tyra () o)1) - logg(Tk0)<pfdoT>).

keZ/ fZ do|No
But
1)

log gy (Trran (V) Fpraa(1)7) = 108 9, ; ey T80 (T) 4 (2.0 (Tpsao (7).

95



Substituting (5.7) in (5.6) we get that the right side of (5.6)

Z > nldo, k)mzs o) (Typao (7)) +

Z/fZ)x do|No

> D nldo k) (10g9(rk i (Rpfdo(’v)T)—logg@;,c))(pfdoﬂ)-

keZ/ {7 do|No 20 Tpsdo (1)

It remains to evaluate the second term of (5.8).

pfdo

If plc we can take Rppq,(7v) = ( 0

) ) However when p t ¢ we take

d doj
Rpfdo('Y) = (foo fpo]

1= %(mod p). Note that j does not depend on dy. In order to evaluate the second

) where 1 < j7 < p — 1 is chosen in such a way that

term of (5.8) we let 7 — ico and we use the explicit formula for the matrices 7, fdo( )
and Rpfd, (7)

! /

A4 B B
Let Tprao(y) = ( Cdo Ddo > and Ryfq,(7) = ( (;10 C’(’io ) Note that by
do do do

assumption Bj) = 0 if p|c and B}, = jdof if p{c . One finds

dm 35 ) (1089 57, o (oo l)T) —Tog g o)) =

k€Z/ 7 do| No O prao )
! /
a7 T By ' _
Jim ) > nldo, k (10g9(rig’0)(—‘c‘é——°) - Iogg(?_,;:o/)(pfdm)> =
= ke(@/2)* dolNo A 0
For the last equality we have used the the fact that >, n(do, k)do = 0 for all k €
7/f7. O

We end this subsection by rewriting the formulas obtained in proposition 5.4 in a

more compact way.

Proposition 5.5 Let v = ( ¢

b
J ) € T'o(fNo) where ¢ # 0. Then we have the
c

56



following formulas:

(5.9)  pifico — y(ioco) }HZy)

= QLM (log ﬁgj,p(’)”') — log ﬂéj,P(T))

= —12 - sign(c) Z”(dO, r) (Diﬁ(m"d Nia,c/dy) - D;jl(m‘)d D(pa, c/do))

do,r

For the definition of DI,({md f)(a, ¢) see definition 11.1.

5.3 The modular symbols are odd

b —b

Let | “ p ) =y € I'o(fNo) then we define the involution v* = ( ¢ 4 ) Note
c —c

that for v1,v9 € To(fNo) we have (y172)" = 7475 Let also z2* = —Z be the natural

involution on H then we have v'z* = (yz)".

* One can also verify that Ty (v)" = Tw(7*). Remember also that the function B

is odd. Using the previous observations we deduce the important equality

Sév%,o)(% —c) = —3?]73,0) (a,0).
It thus follows that
(5.10) Tz o) = —Tz.0()

This last equality is important because it tells us that the family of measures con-
structed in theorem 5.1 give rise to odd modular symbols. So using the explicit

formulas in proposition 5.4 we get the following proposition:

Proposition 5.6 Let u(z) = B5(1) or 8s5,(7). Then we have
/_ dlogu(z) = —/ dlogu(z)

c1 1

for any c1, ¢y € To(f No)(ioco).
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Proof Let v1,72 € T'o(fNo) be such that v;(ico) = ¢ and ~,(ico) = co. Since
Yi(ioo) = —v;(io0) = —¢; (§ = 1,2) we find that

c2 c1 Cc2
/ dlogu(z) = —/ dlogu(z)-+/ dlogu(z)

Jo%) 100

—c1 —ca
=/ dlogu(z)—/ dlogu(z)

e
= — / dlogu(z).

c1

where the second equality follows from proposition 5.4 combined with (5.10).

5.4 From H to HS (No, f)

We would like to generalize theorem 3.1 to real quadratic number fields. Unfortu-
nately one cannot evaluate modular units on a real quadratic argument 7 € K since
K N'H = 0. What one does is to replace H by the p-adic upper half-plane H, :=
PY(C,)—P!(Q,), equipped with its structure of a rigid analytic space. We take the op-
portunity here to introduce some useful notation that will be used for the sequel. For
any Z-module M C C and a prime number p, we define M® := M[%] ~ M ®g Z[%].

Let p be a prime number inert in K. Choose a Z-order O C K and fix a positive
integer N coprime to p. In [DDO6] they associate to such data the set

(5.11) HO(N) = HO = {r € H, : OP = OF) = 0P}
where O, = Endg(A;) and A, =Z + 7.

Remark 5.7 Note that (5.11) differs slightly from [DDO06] since in there setting
O is assumed to be Z[%]—orders instead of Z-orders. Therefore there is no need to
tensor over Z[%]. This has the obvious advantage of simplifying the notation in (5.11).
However having in mind the definition of discriminants (covolume) of lattices, we have

decided to work with Z-modules.

Implicitly in the definition of Hf , there is a level N structure which is assumed to

be fixed. One can verify that the set H;? is nonempty iff there exists an O-ideal a
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T

such that O/a ~ Z/N, this is the so called Heegner hypothesis. In the spirit of the

remark 3.1 we propose the following generalization of HS (N) = Hf :

Definition 5.6 Let K be a real quadratic number field. Let p be a prime number
inert in K. Fiz a Z-order O of K. Let f(called the conductor) be a positive integer
coprime to p - disc(O). Let Ny(called the level) be a positive integer coprime to pf.

To such data we associate the set

HE (No, f) = {(r,7) € (Z/FZ)* x H,: OF = OF) = O, (AP, f) = 1,7 > r°}
where Ggjq = {1,0}.
The notation (ASP ), f) = 1 means that AP ), as an OP)-ideal, is coprime to fO®). We

~ b
have a natural action of I'y := {( . . ) € GL;F(Z[Z%]) : ¢ = 0(mod fNy)} on the
¢

set HS (No, f) given by

c d et +d

(“ b)*(k,T):(dk ar £b,

Note that the quotient Hy (No, f)/ T’ is finite (This will be proved, see (5.13)). We

now define a map that allows us to go from HS (Np, f) to OP)-ideals.
Definition 5.7 We define a map S (which depends on O, p, Ny, f)
Q:HY(No, f) = Tow
where Iow stands for the monoid of integral OW)-ideals of K by the following rule:
(r,7) — A AP

where 0 # A, € Z is the smallest positive integer such that the following two properties
hold.

(1) A, =r(mod f)

(2) AAP is OP) integral
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Definition 5.8 Let (r,7),(r',7') € HS (No, f). Let Q(r,7) = AN and
Q' 1) = A’Ag,’). We say that (r,7) ~ (r',7") iff there exists a A € Qo1 (foo) s.t.

Tl

(AAQ’),AAEQT)) = (AA’A(”) AA’A%({T,) .

We have a natural identification of HY (No, f)/ ~ with

{(L,M) : pairs of Z[%]—modules of rank 2 in K, Endg (L) = Endg(M) = O®
and L/M ~7Z/No}/Qow,(foo)}

which again can be identified to

{(L, M) : pairs of Z-modules of rank 2 in K, Endg(L) = Endg(M) = 0O
and L/M = Z/No}/(Qo(fo0), (p))-

This identification will allow us to view HS (No, f)/ ~ as a disjoint union of finitely

many copies of a certain generalized ideal class group attached to O® = C’)[i].

Let us assume the existence of an O®-ideal a such that O® /a ~ Z/N,. Then

there exists an inclusion

(5.12) Low (£)/Qow1(foo) = Hy (No, £)/ ~
given by the following rule:

Choose an ideal a < O® coprime to f such that O® /a ~ Z/Ny. Then for an
ideal I € Ipm (f) we associate the pair (I, al). A calculation shows that there always
exists a A € Qow 1(foo) s.t. (I,al) = )\(AAQ’), AAg\’;gT) for some integer A and 7 € K.
Obviously this map is an inclusion. However it is not canonical since it depends on
the choice of the ideal a. The number of distinct inclusions as in (5.12) is in bijection
with

(5.13) {a<0:0/a~Z/No}/Qow 1(fo0).

Class field theory gives us an isomorphism

Tow (f)/Qow 1 (£o0) = Io(£)/ Qo (f50),7) S Gy socyFre /i
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where Ho(foo) is the abelian extension of K corresponding to Io(f)/Qo1(foo) by
class field theory. We let L := Hp(foo)F7#) be the subfield of Ho(foo) fixed by the

Frobenius at pO = p. Therefore in this case we get an natural action of G x on

Hg) (No, f) given by the following rule
rec™(b) x (L, M) = (bL, bM).

Obviously this action is simple but in general not transitive since (5.13) could be of

size larger than 1.

The next two lemmas show that ~ is induced by the action of To.

Lemma 5.1 Let (r,7) € HY(No, f) and v € To. Let Q(r,7) = AAY) and Qy +
r,v7) = BAY). Then the pairs (AA(TP),AA%T) and (BAY), BAY

Nowr) GTE cOmgruent

modulo Qo,1(foo). In other words the relation of equivalence ~ on HE(Ny, f) is

[g-invariant.

Proof Let v = < ¢
c

b -

d) € Ty, Qr,7) = AA®) and Q(y *xr,y7) = BA,(f'T). Note
that B = Ad(mod f). Because (r,7) € HJ(No, f) we have that (AS’”, ) =1 and
OP = 0F), If we let Q- (z,y) = Uz? + Vay + Wy? then the first equality says
that (U, f) = 1. The second equality says that U2 — 4VW = p"D(n > 0) where
D = disc(O). By assumption (f, D) =1, f|c and det(y) = ad — bc > 0. We also have

the identity

(5.14) a b T 77 _ T T cT +d 0 .
c d 1 1 1 1 0 ct’ +d

where 7 — 7 > 0 and 7/ — 77 > 0. Combining all the previous observations we see
that
A
EE(CT +d) € Qo1(foo),

for e = =1 chosen appropriately. Finally note that

(et + d)A(f) =AY

~—~
N
s3] vV R S

c ' (p) — A
(FON()T + d)A'YZZNO)NOT —_ A]\Z;OT
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a Nob

where 7(Np) = ( Ne
0

) € GLy(Z[Y)). O

We prove the converse of the previous lemma

Lemma 5.2 Let (r,7), (r',7') € HS(No, f) be equivalent then there exists a ma-

b -
trixz < ¢ ) € I'y such that
c d

a b T\ _ )\k_’ 7! |
¢ d 1 k1
for some A € Qo 1(foo) and integers such that k = r(mod f) and k' = r'(mod f).

Note that we obtain automatically that d = £ (mod f).

Proof Let Q(r, 7) = kA® and Q(r',7') = K'A®). By definition of © we have that
k,k' are integers congruent to r and 7’ respectively modulo f. Since (r,7) ~ (v, 7')

there exists a A € Qo 1(foo) such that
(5.15) (EAD EAD) ) = OWAD AKAY) ).
By looking at the first component of (5.15) we get EAY) = 2K/ AS?). Therefore there

) ) a b
exists a matrix v =
c d

()00

Let o : A — Ai’,’) be the natural Z[%’]-module isomorphism defined by ¢(1) = 1 and

> € GLg(Z[%]) such that

T

AE\IZT, which sends 1 — 1 and No7 — No7'. Let 9 : Ag’,’) — AP be the Z[%]—module
isomorphism induced by multiplication by /\%’, so P(1) = )\% -1 and ¥(7') = )\%7” .

We thus have ¢o ¢ € Auty1)(A;). By equation (5.16) we readily see that the matrix
p

¢(1) = 7. Note that the restriction ¢|,» induces an isomorphism |, : Agf;()) —
No~ Ngr

a b
corresponding to ¢ o ¢ with respect to the basis {1,7} is y = < g )
c
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Using the second equality of (5.15) we get )\Z:I%A%ZT/ = Ag\};gT. From this we deduce
that ¢o (p(Agng) = A%T. In other words the automorphism ) o ¢ preserves the lattice
A§$§T. Therefore the matrix corresponding to % o ¢ with respect to the basis {1, No7}

1
b C/No d
thus conclude that Nplc.

b,
has coefficients in Z[:]. But this matrix is nothing else than ( ¢ 0 > We

Because (r,7) € HS (N, f) we have (AP f)=1and OF = OP. Let Q,(z,y) =
Az? + Bzy + Cy?. Since (A(Tp), f) = 1 we get that(A, f) = 1. Also because oP =
O® we have B? — 4AC = Dp" (n > 0) where D = disc(O). But by assumption
(f,disc(O)) = 1. Note that 7 = #. Looking at (5.16) combined with the
previous observations gives us the congruence,

/

cr+d= )\% = integer (mod f)

since A = 1(mod f). Because (A, f) =1 and (D, f) = 1 we deduce that ¢ = 0(mod f).
Finally using equation (5.14) combined with A > 0 we see that det(y) > 0. O

Corollary 5.1 The relation of equivalence ~ on HS(No, f) is induced by the

action of To.

0
Corollary 5.2 Let (r,7) € HS (No,p). Since ( f)) )*(r, T) = (pr, 7) we deduce
p
that the first component is well defined modulo the action of p in the sense that

(or,7) ~ (r,7).

5.5 Construction of the K -points u(é,,7)

The family of measures constructed in theorem 5.1 will enable us to construct Ky

points. Note that K, is the unique quadratic unramified extension of Q, so
le<p ~ ey X (14 pOk,).

In this section we assume that § € D(Np, f)® is a fixed good divisor. We remind
also the reader that
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a b

(1) Ty = {( . ) € GL;(Z[%]) : ¢ = 0(mod fNy)},

(2) To = {y €Ty det(y) = 1},

(3) It = {( CCL Z ) € SLQ(Z[%]) ra = 1(mod f),c= 0(mod fNy)} and

(4) T = {( Z Z ) € SLQ(Z[%]) ca,d = 1(mod f),b,c = 0(mod fNy)}.

Definition 5.9 Let k € (Z/fZ)*. Let also ¢y, ¢z € I'g(ico) and 71,72 € H, N K.
We define

. T ) t— T
/ / dlog Bs, »(T) == / log, (—2) dur{c1 — co}(t).
1 c1 P1(Q,) [ 71

where pr{cy — co} is the measure of theorem 5.1 for the for the modular unit Bs,(T).

Since the measures pp{ci — co} are Z-valued it makes sense also to define a

multiplicative integral

Tore 4 t— T pr{er—e2}(Us)
d t) = li
fr‘l /c1 (t — 7'1) pre{cy — co}(t) c:l{mUi} H (ti .

i

Where the limit goes over a set of covers that become finer and finer.

Definition 5.10 Let 7 € H,N K, fiz an x € ['y(ico) and k € (Z/fZ)*, then for
all v1,v9 € [y we define

Y1T Y172%
) (713 72) = / / dlog(Bs, »(2)) € K.
T 7

We let the group I'g acts trivially on K. We have the following proposition.

Proposition 5.7 The 2-cochain kg (kr) € CQ(FO,K;() is a "twisted” 2-cocycle

satisfying the following relation:
(dﬂm,(k,r))(’h, Y2, ’73) = ﬂm,(k,r)(’h, ’Y2) = R (v Yk, m) (’72, 73) '
for all 1, 72,73 € To. In particular (dkg kr)lr, = 0, i.€. kg nlr, € Z*(T1, KY).
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Proof We compute:

(@K, e,m) ) (V15 72, 73)
= Y1Kz,(k, r)(%, ¥3) — Ka (k,7) (7172, 73) + ke (k,7) (71, Y2Y3) — Kz, (k,r) (71, 72)
= K (k) (V25 ¥3) — B, o) (V1720 ¥3) + By o) (V15 ¥273) — By oy (Y1, V2)

Y2y3 MY2T  pr1vRYsE
= / / dlogfs, »( / / dlogfs, »(2)
Yo Y1Y2
Y17Y27Y3Z Y17Y2X
/ / dlogﬁgk P / / dlogﬁgk P )
ne SIE

where the second equality follows from the trivial action of 'y on K;. Let m11(1) =
a € Z[%]. Using the invariance property of the measures under I'yg we can multiply the
bounds of the integral of the second term by ;' at the cost of replacing k(mod f)
by ak(mod f). So we find

273X Y23
(5-17> / / legﬁékp / / dlog@sabp( )
o vt rea
TIT - pYLIY2V3E MT YT
/ / dlogfs, »(2) / / dlogBs, »(2).

Rearranging the first two terms together and and the last two in (5.17) we get

Y27Y3% Y27Y3%
_ / / (dlogBs, p(z) — dlog 5., (2) / / dlogB. (7)
Y2 Y1 T Yox
YiT Y17Y27Y3%
/ [ dtogsia(e)
Y1772%

Yo Y27Y3L
= / / legﬁﬁk ,p(z) - dlogﬁ;ak (Z))
Y2z

= K, (k7) (72, ')’3) — Ky, (ak,T) (72, 73)~

In particular if a is congruent to 1 modulo f the right hand side of the last equality
vanishes. We thus have that ka nlr, € Z*(T'1, K)) and ke nlr € 23T, K)Y). O

We can now state one the main theorem of the paper.

Theorem 5.2 The 2-cocycle ﬁx,(k,7)|p1' 18 a 2-coboundary i.e. there exists a 1-

cochain py (k) € CcHry, K;‘) 8.t APz, (k7)) = B, (b,r) 11 -
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Proof See theorem 6.2 where we give an explicit splitting of kg (x,)|r,. O
The theorem 5.2 will allow us to define points in K.

Let pa,r € C'(T1, K)) be such that dpg ks = Kok Let T1, = {y € Iy :
7 = 7}. By Dirichlet’s theorem we can identify I'; , with Z/2Z x Z. Let ~, be the

unique matrix in I'y ; s.t.
T T
Yr =€
1 1

where 1 < € is a positive generator of I'; . /{£1}. When red(7) = vy (see chapter 5 of
[Dar04] for the definition of red) we have (£,) = Stabr,ny)(Q-(z,y)), see lemma
9.1. In particular, when red(7) = vy, the matrix ~, has integral coefficients. We have

a similar thing if we replace I'; by I'.

Proposition 5.8 The I-cochain pg (kq)lr,, modulo Hom(I'y, K})|r,, does not

depend on z.

Proof Let z,y € I'1(i00). So we want to show that
P (k) |rs, — Py, € Hom(Ty, KX)|r, . = Z1(Ty, K))|r,., -
This is equivalent to show that

(dpz, k) |11 — (dPy (k) |ry, =0

The last equality means exactly that (kg k,r) — Ky @) |0, = 0.

Yiv2z

Let vy,7v2 € I'1. We have

nT Nt pYY2Y

K“T,(k,T) (’717’72) - /{/y,(k,T) (71772) = / / leg /85k,17(z) - / / leg ﬂék,p(z)
T "z T "y

nT Ny NTpNY2Y

— / / dlogﬁgk,p(z)~/ / dlog Bs, »(2)
r "z T Yivex
T "y 12T 2y

= / dlogﬁgk,p(z)—/ / dlog B, p(2)
T T 7

M - 17Y2Z
Y1y2T YiY2Y
+ / / dlog Bs, »(z)
7T Y172
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Now applying ;! to the bounds of the third term of the last equality (note that
77t * k= k) and setting

YT YY
o) = / / dlog s, () € CM(Ty, K2,
T N

we get

= Cey(V2) = Coy(nr2) + coy(m1)
= (depy)(11,72)

We thus have proved that d{p, (x,-)—Py,8,r) —Cayy) = 000 1. S0 py (6,1) = Py, (k1) —Cay €
Hom(I'y, K)). Finally evaluating at v, and using the observation that Coy(yr) =0

proves the claim. [

Remark 5.8 The group Hom(I'y, K*) is finite group. This comes from the fact
that (I'})? = I'y /[T, T'y] is finite, see [Men67] and [Ser70]. We thus have an injection
Hom(T'1, K)) = pp2-1.

It now makes sense to define the following K points:
Definition 5.11 We define the K invariant

U(kﬂ') = u(0k, 7) i= Pm,(k,r)(%-) = P(k,r)(%-) € K;/sz—l,

b
where (+,) = Stabr, (1) such that et +d > 1 for v, = ( a4 ; )
c

Remark 5.9 Implicitly in the notatidn for pg,-) and u(k, 1), a good divisor
5 € D(No, f)®
is fixed. So it is important to keep this in mind!
: Proposition 5.9 Let (r,7),(r',7") € HO(No, f) be equivalent then

P(r,7) (f)/'r) = P(r! 1) (’Y'r’ ) .
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b ~
Proof By lemma 5.2 there exists a matrix n = ( “ p > € I'g and integers k, k' such
C

(22) (7))

where k = r(mod f) and k' = v/(mod f).

that

Now we want to exploit the Lg-invariance of the measures in theorem 5.1(see
remark 5.3 for the Tg-invariance) to show that P (V) = Py (V) (mod prpa_y).
Remember that ~v,, v~ € I'y. We compute. Let ;1,72 € ['; then

nt  pyives
Fo, (k) (71, 72) = / / dlogfs,, »(2)
7! ¥

1T

YinT Y1Y2%
- / / dlogBs, »(2)
nr Y1z )

now multiplying the last equality by 77! and using the fact that n™ x k' = k(mod f)
we find

1

nlynr T iy lyenn e
[ dlogps, (2) =

“lymnTie

T n
N lyinr /n‘lwnn'lvwn“l
n

4

dlogfs, p(2) =

T “lyimTiax

Bp=1e,0) (7 am, 1 yam).

We thus deduce

(5.18) K, (k) (V1 V2) = Kot 6y (7 71m, 17 2m).

Let py-1e,r) € C’l(Fl,K;) be a 1-cochain splitting -1, (- i.e. .dpn—lw’(k’.,-) =

Kn-1z,(k,7)- 1hen by proposition 5.8 we have

pn—lxy(kfr)lrl,‘r = p.’l?,(k‘,T)IFlyT (mOd /le?__l).

If we define
Pt 7y (V) = Pr=1a by (M YM)
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then using (5.18) one finds that d(p,-15,,r)) = Ko@), SO this definition makes

sense.

Since v, = 1,7~ we find that

puey (Vo) = Pt ey (07 Yen)
(3.6) _ ~
=" a0 ) (mod pypei)

= Pz,(k7) (71')

O

Corollary 5.3 Let (r,7) € HY(No, f). Then invariant u(r,7) depends only on
the class of (r,7) modulo ~. Therefore by corollary 5.1 \

u(r,7) = ulyxr,y7)

for any v € To.

We are now ready to formulate the main conjecture.

Conjecture 5.1 Let (r,7) € HS(No, f). Then
1 X
u(r,7) € OL[Z_?] ;

where L = Ho(foo)¥re) where p = pOx and Ho(foo) is the abelian extension
corresponding to the generalized ideal class group Io(f)/Qo1(fo0). Moreover we

have a Shimura reciprocity law. Let

rec: Gr/x — Io.(f)/<Qo,1(fOO),p>,

then for o € Gk we have

1

u(k, ) =u(k',7")(mod py2_1)

where rec(o) x (k,7) = (K', 7). Purthermore, if we let coo denotes the complex conju-

gation in Gk then

u(r, 7)% = u(r,7)"".
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Remark 5.10 The last equality is in accordance with the fact that the modular

symbols defined in remark 5.2 are odd.

Remark 5.11 In [DDO06], since the conductor f = 1, one is lead to consider
various orders of K. However in our case, since f can vary, it is sufficient to consider

only the case where O = QOg.

6 = The measures p{c; — ¢}

6.1 From P}(Q,) to (Q, x Q,)\{(0,0)}

The main ingredient in showing the splitting of the 2-cocycle k) (see theorem
5.2)consists in the construction of a family of measures on Q2\(0, 0) taking values in
Z,. This family of measures encode the moments of some family of Eisenstein series

of varying weight that are U, ,-eigenvectors.

Following [DD06] we define X := {(z,y) € Zf, : (z,y) = 1}. The group T acts

b b
by left translation on QZ2\(0,0) by ( ¢ J > < s ) = ( ax+ oy > There is a
c

Y cr + dy
Z, -bundle map

m: X — PYQy,) given by (z,y) — /.

From now on we assume a fixed choice of a good divisor § € D(Ny, f). Remember
that for r € Z/ f7Z we have defined

(=1)k(2mi)*\ e2mimr/f
O 2 (m nfr)

for any integer £ > 2. In order to simplify the notation and have better looking

formulas we renormalize our Eisenstein series.
Definition 6.1 For every j € (Z/fZ)* /{p) we set
ﬁk(j, Z) = —12ka’5j (z) ﬁk,p(j, Z) = —12ka,5j,p(Z)

Fi(j,2) = =12F5,(2) Fyy(,2) = —12Fs, ,(2)
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Since ¢ is not appearing in this notation it is important to keep in mind that such a

divisor ¢ is fixed from the beginning. The group [o(fNg) acts transitively on the set

{Fx(: 2)Yie@iimy< ) and {F( 2) Y e/ 1oy /o
Similarly the group Io(pfNy) acts transitively on
{Fip(ds 2) e/ sy oy and {F, (5 2) Y@ sz )
where the action is induced by the change of variables 7 +— ~7.

We can now state the key theorem which is used to show the splitting of the

2-cocycle.

Theorem 6.1 There exists a unique collection of p-adic measures on Q, x Q, —
(0,0) taking values in Z, (in fact in Z see theorem 13.1) indexed by triples (r,s,j) €
To(ico) x To(ico) X (Z/fZ)* /(p), denoted by Ji{r — s} such that:

1. For every homogeneous polynomial h(x,y) € Zylx,y] of degree k — 2,
| et = sha) = 15 [ W DRG0

2. For all v € Ty and all open compact U C Q2\(0,0),
fi{r — s}(U) = fyg{yr — vs}(7U)
3. (invariance under multiplication by p),

pi{r — s}(pU) = pi{r — sH{U)
Furthermore the measure satisfies:

4. For every homogeneous polynomial h(z,y) € Zy[z,y] of degree k — 2,

[ it = s)ew) = [ b DB, 2z
Zp XLy T

0
Remark 6.1 Note that (3) follows from (2) by taking the matrix v = ( 1(!)) )
p
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Proof We prove it in section 12.

The family of measures constructed on P*(Q,) in theorem 5.1 can be thought of as

- the pushforward of the measures in theorem 6.1. This is the content of the following

lemma:

Lemma 6.1 For all compact open U C PHQ,) we have

Ag{r — s} (U)) = pi{r — sH(U).

where m : X — PY(Q,) is the ZX -bundle given by (z,y) — °.

Proof Define a collection of measures v;{r — s} on P}(Q,) by the rule

vi{r — s}(U) = p;{r — sHa~HU))

for any compact open U C P}(Q,). We claim that v; satisfy the three properties of

theorem 5.1. Therefore by uniqueness we deduce that v;{r — s} = p;{r — s}.

Let us show the first property. Let Z, C P*(Q,). Then 77Y(Z,) = Z, x Z¥. We

have

lr = B =Tl = e @) = | e = s}e)

:/ ﬁgjp(j, z)dz
= ZT—’L ] dlogﬂgj,p(z)
= pi{r — s}(Zyp)

where the second equality follows from the 4th property of theorem 6.1 and third
equality follows 27ri]5k,p(j, z) = dlog(Bs, »(2))-

Let us show the second property.
vi{r — s}(PY(Qy)) = Fy{r — s} (PH(Qy))) = /Xdﬁj{r — s}(z,y)
=0

= w{r — s}(PH(Qy))
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where the third equality follows from the 1st property of theorem 6.1.

It remains to show the third property. We need to show that for all v € fo one
has

(6.1) Vi {yr = 8} (7U) = vi{r — s}(U)

for any compact open set U C P}(Q,). In order to prove the equality (6.1) we will
brake the open set U on smaller open sets on which we have a better control on the
p-adic valuation. Before starting note the 7=*y(U) C X but in general y7~1(U) € X.
In order to show that both sets have the same measure we want to use the third

property of theorem 6.1.

~ ‘ 0
Since Iy is generated (without taking inverses) by the elements { P = ( ‘g . ) Pl =

I :
< 8 ) > ,To(fNo)} it is enough to prove (6.1) when v € T'o(fNo) or v = P or P71,
We define for n € Z
1 1
Un=Uﬂp"Z;:{u€U:W<|u|p<F}

Clearly the U,,’s are disjoint and open. So in order to show equation (6.1) it is enough
to show that

Vg 197 = 8} (7Un) = vi{r — s}(Uy)

for any U,.

b
Let v = ( ¢ d) € ['o(fNo) and n < 0 then
c

1 1 fou+bd 1 _
7 (U, =7 {cu+d€P(QP).u€Un}

= ZX{((p~"(au +b),p"(cu +d)) € X : u € Un)}
=p "Zy{(au+b,cu+d) € (Q, x Q)\(0,0) : u € Up}

where Z3 A := {(kay, kas) € X : (a1,a2) € A} (the Z)-saturation) for any subset
ACQ, x Q. ‘
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On the other hand

v Un) = VL3 {(p™"u,p ™) € X u € Uy}
=Zy{(ap™u+bp™" cpT"u+dp™") € X u €Uy}
=p "Ly {(au+b,cu+d) € (Qp x Qu)\(0,0) : uw € Up}

In that special case we really get the same sets. The case n > 0 can be treated in a

similar way.
Let us verify it for v = P~ and U;. We have
1 (yUp) =77 {% ePY(Q):u€ Uo}
= ZX{(u,p) € X: u € Up}
oo U
=17, {(2—97 1) € (@, x Q,)\(0,0) : u € Up)}
On the other hand
yrH(Up) = ’YZ;,({(U, ) eX:uely}
U
=Z{(:D € (@ x @\O,0): u € Ui}

By the third property we conclude that iz;{r — s}(y7=*(Up)) = ;{r — sHr"(vUp)).

The remaining cases can be treated in a similar way. U

6.2 Splitting of the 2-cocycle

We are now ready to prove the splitting of the 2-cocycle. We show the splitting
by giving an explicit formula for the 1-cochain p, - € C*(Ty, KX) where (k,7) €
HS (No, f) and 2 € To(fNp)(ico). We have KX = p* x Ok, . The map

)

Ky —Zx 0k, x (ordy(z),up(z) = R
is an isomorphism. Therefore in order to determine p( ) it is enough to give explicit

formulas for ordy,(pg,r)) and u,(pu,r))-
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To each v € V(T') we associate a well defined partial modular symbol m,{r — s}

on the set of cusps Io(f No)(ioc) taking values in the set of o-invariant measures on
PY(Q,). We define

1 S
mvo,k{r - 5} = %/ dIOgﬁék (Z)a mwv,y*k{’yr - 75} = mv,k{T - 8}'

for all v € V(T), v € Lo, k € (Z/FZ)*/(p) and 7, s € To(fNo)(ico). Note that the

assignment v — m, ,{r — s} satisfies the following harmonicity property:

Z My x{r — s} = (p+ L)myp{r — s}.

d(v’,v)=1

The latter equality comes from the fact that ﬁg(k‘, z) is an eigenvector with eigenvalue
(1 + p) for the Hecke operator Ts(p).

Lemma 6.2 Let (k,7) € HY(No, f) with red(r) = v. Let v € I'y then

(6.2) ordy (e, (k) (7)) = Mo p{T — Y}

Proof Same proof as lemma 3.5 of [DD06]. [

Remark 6.2 Using proposition 5.4 we get an explicit formula for m, x{z — vz}

it terms of Dedekind sums.

Theorem 6.2 Let~ €T’y then

(6.3) Doy (7) = f (z — ry)diin{ico — 1(ic0)} (@, y).

Note that the multiplicative integral makes sense since fix{ico — v(ic0)} by theorem

13.1 takes values in Z.

Proof We have decided to reproduce the proof of of proposition 4.6 of [DD06]

because we find the calculation interesting.

Let 1,72 € I';. Note that X and ;X (i = 1, 2) are both fundamental domains for
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multiplication by p on Q2\{(0,0)}. We have

Pk (1) PGk, (72)
P (V172)
_ K@ —yr)dp{ico — mico}(z,y) (z — y7)dix{ico — yaico}(z,y)
(& — y7)di{ico — yyaico}(x,y)
Fo(z — y7)djig{ioco — yico}(z,y)
& — y7) k{71100 — Myaico}(z,y)

~ Al
_ fle —yr)diu{yioo — nysico}(a,b)
K

(dp,)) (71, 72) =

— y7)dp{nico — y1v2i00} (2, )

where v, ( * ) = ( Z ) . For the latter equality we have used the fact that
y :

fre{cr = e} (z,y) = pe{ver — vea } (v(, v)).

A B
Let v = c D ), then we have Da — Bb = z and —Ca + Ab = y. Therefore

z—T1y=a(D+Cr)+b(Ar + B) = (C7 + D)(a — by17). From this we deduce

(6.4) = ?{g %:_yg%lﬂk{%wo — 7172100} (2, )

(6.5) = fﬂ» o (t — 7”) {1900 — 172100} ()

= Ky (1, 72)

where for (6.4) we use the fact that the total measure on X is zero and for (6.5) the
fact that m,u = pu. O

Remark 6.3 Note that using only the fact that g is Z,-valued one can still prove
the splitting of ;. r). One can do the same calculation as theorem 6.2 by replacing the
multiplicative integral by its additive integral (after having taken log,). Combining
the additive version of (6.3) with (6.2) provides a explicit splitting of k). Using
this approach doesn’t use the integrality of i but only the fact that it is a bounded

distribution, i.e. a measure.
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7 Archimedean zeta functions attached to totally

real number fields

7.1 Zeta functions twisted by additive characters

For this section we let K be an arbitrary totally real number field.

Let K be a totally real number field of degree r. Let {o3,...,0,} be a complete
set of real embeddings of K. Let ® be the different of K and A = Ng/o(0) the
discriminant of K. Let f be an integral ideal of K. Let Ok (foo)* be the group
of totally positive units of Ok that are congruent to 1 modulo f. Let w be a sign

character of K i.e. a product of a subset of the characters
signoo; : K* — R* — {+£1}.

Let ¢ be an integral ideal of K coprime to f. Following [Sie68] we define

2miTr(w)

U w,s) = N(2)® 3 w(p) Re(s) > 1

R ontomiomuesy VW
where T'r and N are the usual trace and norm functions on K down to Q. Note that
for any € € Ok (foo)* and p € § we have p—ep € 1 C 07! thus Tr(u —eu) € Z.
So the summation doesn’t depend on the choice of representatives of {0 # p € f%}

modulo O (foo)*.

Let p € K be such that pc C Ok and (pc, f) = 1, then a straight forward calcula-

tion shows that
827riT1‘(p,u)

Jw,8) = w(p)N(=)* > w)

T ey Nl
O (o) \{0ue £}

From this it follows that the first entry of ¥ depends only on the narrow ray class |
modulo f in the sense that if a,b € Io, (f), p € K, p = 1(mod f) and p > 0 is such
that pa = b then

f%,w, §) = w2

fa,w, s).

(7.2) (
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Note that if there exists a p € Ok congruent to 1 modulo f such that w(p) = —1 we

find using (7.1) that (5, w, s) = 0. The existence of such units should be avoided.

£
of?

tions L(, s) where x is a character of the narrow ideal class group of conductor f. In

Remark 7.1 One can relate the zeta functions (£, w, s) to classical zeta func-

order to do so we need to recall some properties of finite Hecke characters.

Definition 7.1 We define

(1) Io,(f) = {Integral ideals of Ok which are coprime to f}

(2) Ix(f) = {fractional ideals of Ok which are coprime to f}

(3) Pgi(foo) ={aOx C K:a € K,a=1(mod f),a > 0}
We identify the quotients I, (f)/ Pk 1(foo) and Ix(f)/ Pk, (foo) with the narrow ideal
class group of conductor f.

We have the following short exact sequence

1 —— (Ok/H* /(O}(00) (mod §)) —= Ik (F)/ Px1(foo) — Ix(1)/Px(00) — 1,

where (a(mod f)) = aOk where a is chosen to be totally positive. From this short
exact sequence we see that every character x : Ik (f)/ Pk 1(foo) — S* can be pulled

back to a character
x5 = xou: (Ox/f)* [(OF(o0) (mod f)) — S
where the subscript f stands for finite.

Let a € K* be coprime to f then we define () := x((a))/xs(c). When «
is totally positive we have x((a)) = xs(a) therefore xoo(a) = 1. However if « is
not totally positive and 3 is a totally positive element such that a = 8 (mod f) then
Xf(a) = x((8)) therefore xoo(e) = x((§))- In thus follows that xoo is a sign character

2
since (%) is a totally positive element congruent to 1 modulo f. Thus every character

X : I (§)/ Pk (foo) — S
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when restricted to principal ideals («) coprime to f can be written uniquely as x =
XooXs Where Xeo 1 (R ® K)* — S* and x; : (Ok/f)*/(Ox(c0)(mod §)) — S*. If we
think of x; as a character on (Ok/f)* then the pair of characters (xoo, Xs) satisfies
the ideﬁtity

*) | X7(€)Xoo(€) = 1 Ve € OF.

e —

Conversely for every pair of characters (w,n) € ((Rﬁ)x, (Ok/f)*) satistying (x)
there exists a lift 9 : Ix(f)/Px1(foo) — S* (the number of lifts is exactly h}, the
narrow class group of K) such that ¢y = n and e = w.

Let us assume that O (f) = O (foo). In this case we have that Pk 1(f)/ Pk 1(foo) ~
(Z/2)". So the index of the wide ray class field of conductor f in the narrow ray
class field of conductor f is 2". In order to simplify the notation we let Gy, =
Ix(f)/ Pr 1(foo) and G5 = Ik (f)/Pk,(f). We identify @f as a subgroup of @foo via m*
where ’

W:Gfoo—%Gf

is the natural projection. Let 71,...,7, be generators of the group of characters of

Py 1(f)/ Px1(foo)

defined in such a way that for a € Pk 1(f) we let n;(a) = wi(a) = signoo;(a) where «
is a generator of a congruent to 1 modulo f. The n,’s are well defined because of the
assumption on the units. For every ¢ take an arbitrary lift of 7; to Ix(f)/ Pk 1(foo)
and denote it again by n;. By construction (7;)ee = w; = sign o 0;. It is easy to
see that the group generated by the n;’s is a complete set of representatives of @foo

modulo @f. We thus have the disjoint union
Gfoo = U 'me‘

Note that @f corresponds precisely to the set of characters x € @foo such that e = 1.
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7.2 Gauss sums for Hecke characters and Dirichlet characters

Let x € @foo be a Hecke character and v € K be such that (y) = 3 where (a,f) = 1.
For a £ € Ok we define

9v(x, &) =X7(7) Z X7 (p)e2mIred),
p (mod f)

We define x(p) = 0 if (p, f) # 1. It is easy to see that g,(x, &) doesn’t depend on ~,

so from now on we omit the subscript v. When ¢ is coprime to f we have

(7.3) 906 €) = x5 (§)g(x; 1)
- Furthermore when x is primitive (7.3) remains valid for ¢ not coprime to f since
9(x;§) = 0.

We also define Gauss sums for Dirichlet characters x : (Og/m)* — S! where m

is some integral and y € % We define the Gauss sum

T6y) = Y X(@)emey,
z(mod m)
(z,m)=1
Let x € @foo be a Hecke character and x; be the Dirichlet character corresponding

to the finite part of x, then it is easy to see that

906 1) =X7(N)7(xs,7)

7.3 Relation between ‘I’(%,Xoo, s) and L(y,s)

In this subsection we would like to relate the functions \I/(a#“f, Xoo, §) to classical Artin
L-functions L(, s) where ¥ is a primitive character. We essentially reproduce a proof
that can be found in [Sie68).

Proposition 7.1 Let x : Ix(f)/ Pk 1(foo) — S* be a primitive character then

> x(a)v (gf,xoo,s> = 9(x, 1)L(x, )

celx (f)/Pr,1(f) of
where a. € ¢ s any integral ideal.
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Proof We first extend x to Ix(1) by setting x(a) = 0 when (a, f) # 1. We have

X()
Lis,x)= ) ;
5. N(a)
- X Y [
a_]'EIK(l)/PK’l(l) bEa_l N(b)s
b integral

For every class a we fix an integral ideal a, € a. We have a natural bijection between

the elements u € a, modulo OF and integral ideals b € a™! given by u +— pa;! € a7

Therefore

Z Z X((M)agl) _
N —~1\s
a~telk(1)/Pk,1(00) {0£uca.}/O% ((U)aa )
. Xoo (1) X5 (1)
(74) Z N(aa) X(aa) Z N(’u)]is =
a~1elx(1)/Pra(1) {0#p€a.}/O%

Note that if (i, f) # 1 then x¢(1) = 0. Remember that
906 1) = 9,06 1) = X5(a)m(xs,7)
where () = % with (g,f) = 1. For p € Ok coprime to f we have

(7.5) xr ()T (xs,7) = 7(Xr> 1Y)

substituting in (7.4) we get

(76) = 3 N (0)*%(0a) 3 (X HY)Xoo (1)

N s’
a=lelg(1)/ Pk 1(o0) {0£pucaq.,(1,)=1}/O% T(Xfa ’7)! (N)l

Now using the assumption that y is primitive we can remove the restriction (g, f) =1

under the last summation of (7.6) since (7.5) also holds for p not coprime to f.
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Rearranging a bit (7.6) we get

_ S= T(va M’Y)Xoo (:UJ)
= 2 Nex@) 3, DL RN

a~lelk(1)/Pr,1(1) a (mod f) {Oz;éy,e(aa,(g,gi—_l X
JM=a(mo

1 . , T(X £, ) Xoo 1)

—g 2 NSRe) D 2 NG
a~telk(1)/Pk 1(1) o (mod f) {0¢#€%,(M,f)=1/o ()
u=a(mod )} /7K
1

=4 N(aq)*X(0a

o), o NE)xE)

a~telk(1)/Px,1(1)

= 2miTr(ppy) Xoo (,U,)
> > > xslp)e NG

o (mod f) {0#n€aa, (1f)=1 o (r 1 p (mod T
w=a(mod )y /Ox(1>)

where in the second equality every p is counted As := |Of (mod f)| times and in the
last summation we have used the fact that Ok (f)* = Og(foo)*. Rearranging a bit

the latter expression we get

! S Y N e)NE) ()

AT Y) i er B Pra) p (ot
Z Z eQ?TiTr(up'y) XOO(Iup)
IN(up)|®
a(mOd f) {0?5 eaav(:“‘:f):l X
ri=atmod )} /0K (1)
1 . o
= 00 > > N(ao)*x(aa)N(p)*x((p))
XIS V)t e () Pres 1) p (o 9
Z Z e27riTr(,wy) XOO(H’)
IN ()]

a(mod f) {0#£p€paq,(1,f)=1 x
Jp=ap(mod §)} /O (o)

__xsle) S > x(p2a9)¥ (P80, Xeo, )

AfT(Xf’ 7) a,_IGIK(l)/PK 1(1) P (mOd f)

1
= g(X 1) E X(aag)\Il (aa’}’: Xoos 3)
"7 eIk (f)/Pr,1(f

The last equality comes from the observation that the set of ideals {paa} covers every
element of Ix(f)/Px(f) exactly As times. [
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7.4 Partial zeta functions ((a™!, f,w, s) as the dual of \If(aif, w, S)

Let K be any totally real number field. Let w : (K ®g Q)¢ — {£1} be a sign
character. Let § be an integral ideal of K and 0 be the different. For a fractional

ideal a coprime to f we define
Cofws)=N@ Y

) 3 N
Ok (foo) *\{p€a,u=1(mod f)}

Note that both functions depend only on the narrow class of a modulo f. Observe

also that if b = Aa are integral ideals coprime to f then

(7.7) ¢(b,1,w, s) = wA\)N(a)® 3 1;”(“) .

| O (fo0) * \{On€a,u=A(mod A}

Let {a;}7_, be the parity of w then we define

$+0,i
5

Fy(s) = |dg|[**n 2 [ ] T(

i=1

where n = [K : Q] and dg is the discriminant of K.
Theorem 7.1 We have the following functional equation

(7.8) Fo(s)¥(—=

) =R =N (@ w1 )

where Tr(w) =) . a;.

Proof The proof follows Hecke’s classical method and relies on the functional equa-~
tion of the generalized theta function which is a direct consequence of the Poisson
summation formula. In order to prove (7.8) one needs to introduce heavy notation
and also the notion of ideal numbers that repair the failure of not.haVing a principal
ring. For these reasons we have decided to only prove (7.8) in the case where K is real
quadratic using a nice trick of Hecke which simplifies the argument. Moreover this
second proof is better suited for the applications we have in mind since it involves an

integral of a classical Eisenstein series against a suitable power of a quadratic form.

0.
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Remark 7.2 One can use theorem 7.1 in conjunction with the well known func-
tional equation for L(s,x) to give another proof of proposition 7.1. However some
difficulties arise since in order to express the partial zeta functions ((a,w,f,s) as

linear combinations of L(s,x) one needs to deal with non primitive characters x of
Ik (f)/ Pr(foo).

Applying the last theorem in the case where K is real quadratic and letting a = aA,
and f = (f) one sees that

al\,

(7.9) le(s)q’(f—\/—ﬁ

,wy, 8) = —Fy, (1 - s)N(f)l_S§((aAT)‘1, fowi, 1—3s)

and

al
E, (s)¥(—=

(S

Note that if A-Ase = (1) then (aA,)™! = 47,0,

y Wo, 8) = FWO(l - S)N(f)l_sg((aAT)‘17 f’ Wo, 1- 8)‘

We conclude the end of this section by discussing some parity conditions on special

values of partial zeta functions at negative integers.

For integers m > 2 which are even the quantity

Fu(m)
7.10 EC ANV
(7.10) F.(1-m)
is equal to 0 unless a; = 0 for all 4. Similarly for integers m > 1 odd the quantity
F,(m)
7.11 _twAV
(7:11) Fu,(1—m)

is 0 unless a; = 1 for all i. We define wo = 1 and w; = sign(Nk/g). We thus see that
for integers m > 1 the quantity ((a,f,w,1 — m) can be different than 0 only when

w = wp and m is even or w = w; and m is odd.

Let

1
(7.12) ¢(a,foo, s) := N(a)* Z [N
O% (fo)\{A€a,A=1(mod ),A>0}
We simply call those partial zeta functions. Note here that the sum is restricted to

totally positive elements.
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Let 01,...,0, be the different embeddings of K and let {a;}}; be such that
a; € {0,1}. We define '

n B 1
¢(a, foo, {ai}iy, 8) = N(a) 2 N
{Aea:A=1(mod f)
A%i>0 if a;=0
A7i<0 if a;=1}/Ok(fo0)*

Let A € K* have parity {a;}?; then using orthogonality relations we get

(7'13) Z w(/\)C(a7 f, w, 8) = Q"C(a, foo, {ai}?:b 3)

w is a sign character

= 2"¢(aA"}, foo, s)

Choosing a; = 0 for all ¢ with A = 1 in (7.13) and combining it with (7.10) and (7.11))

- we see that for even integers m > 2

(7.14) ((a, f,wo, 1 —m) = 2"((a, foo, 1 —m)
and that for odd integers m > 1

(7.15) C(a,f,wy, 1 —m) =2"¢(a, foo,1 —m).
Using again (7.13) we get that for any sign character 7

> n(A)C(aA™, foo, 5) = ((a, f, 7, 5).

(NePk1(5)/Pr 1 (foo)

We have the following well known theorem:
Theorem 7.2 (Siegel, Klingen) For integers k > 1 the quantities
(:(Cl, fOO, - k)

are rational integers.

Proof See [Sie69)].

Corollary 7.1 For integers k > 1 we have

F,(k) c
o () ee

where Fw(S) = |dK|S/27T_nS/2 H?:l P(S“'ai)'

2
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Pfoof Use theorem 7.2 in combination with theorem 7.1. O

We finish the section by recording one more result:

Proposition 7.2 Let (\) € Px(f) where A have parity {a;}7, then for odd

integers k > 1 we have
¢(a), foo, 1 — k) = (=1)=%((a, foo, 1 — k),
and for even integers k > 2 we have

¢(ak, foo,1 — k) = ((a,foo,1 — k).

Proof We have

(716) C(C—l,f, 'wl,s) = -F;)Fl—(u—)i‘(i)—s)\p ()E%,wl, 1— S>

Now let (A) € Pk 1(f) where have parity {a;}?,. Without lost of generality assumes
that A € Ok. Then we have

G (;—;\,wl,s> = w (\)¥ (f%’ 'wl,s)

= (—1)Z %@ (f%,wl,s>
Substituting in (7.16) we find
Cle N w1 —s) = (—1)2‘“((},“1, f, wy, 1 — ).
Now using (7.15) with s = k for & > 1 odd we deduce

C(eA oo, 1= k) = (=1)Z%¢(c 7" foo, 1 — k).

The proof for an even integer k > 2 is similar. We do the same calculation with w;

replaced by wy. [
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8 Archimedean zeta functions attached to real quadratic
number fields

We now specialize to the case where K is a quadratic number field of discriminant

D. Note that the different d of K is (v/D). Let f be some positive integer that we

call the conductor and N, another positive integer that we call the level. In order to

motivate the definitions of the various zeta functions attached to K we need to revisit

the involution sy, on X;(fNg).

8.1 Involution *;y, on X;(fNy)(C) revisited

For this subsection we assume that X = Q(v/D) is an imaginary quadratic number

field. Let [(5,7Ar)] be a point of Y1(fNo)(C). Using the definition on the involution
L¢n, defined in section 4.6 and denoting it simply by * we find that
7
— )] = 7+ —=7)| = .
(G AN = (3 724 ) = [ )
In particular we can think of x as sending -5 — -z~ and 7 f]\l,OT. Define

HO%(Ny, f) as in definition 5.6 but where H replaces H,. Let (r,7) € HO%(Ny, f)

then Q. (z,y) = Az? + Bzy + Cy? where (4, f) = 1, No|A and B? — 4AC = D. We_
readily see that @ . (z,y) = Cf2Noz® + Bfzy + ﬁ“—yQ Therefore we deduce that

disc(Q - ) = f2disc(Q,). Note that the leading coefficient of Q (m y) is not

coprime to f but its last coefficient ——0 is. Remember that the group Fo( fNg) acts

naturally on HP%(f, Ny) by the rule

ar +b
et +d

v * (r,7) = (dr,

)

b
where v = < a4 J > There is a natural inclusion of HO%(Ny, f)/To(fNo) C
C

Y1(f No)(C) given by (r, 7) [(fN ,rA)]. IE (r, 1) ~ (7', 7') inside HO% (Ny, £)/To(f No)
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b
then there exists a matrix ( ¢ p ) € I'o(fNo) such that dr = r'(mod f) and
c
a b T T’
8.1 = (et +d .
Rewriting (8.1) in term of 7* = ?7\,1;; and 7" = lem, we find that

d ¢/fNo ™\ . 7'
(e 2) (7)o (7))

If we let % : fo — fo be the involution defined by

a b\ [ d c/fN
c d bf Ny a
then we derive the following rule

(v [(r )" = ()" %" [(r, )]

where

C ,C7'+d

a b . (Y ar +b
( d)* (r,7)=(d ).

and

[(Ta T)]* = [(_T> T*)]

Note however that stricly speaking [(—r,7*)] doesn’t belong to H%X(Ny, f) since
Endg(A) =Z + fWZ # 7 + wZ = Ok.

a b

Letting Stabr,(sny)@-(2,y) = (+7-) where v, = ( J ) we also see that
c
d C/fNO
8.2 Stabp,(ngy (T4) = Ype = = (%,)".
(8.2) ri(£No) (T7) := 7 (beO . ) (7+)

This involution * of level fNy will play an important role later on.
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8.2 Zeta functions ¥V and ¥~

Let K be a real quadratic field with discriminant D. Let us suppose that f = (f)
where f is a positive integer. Let [a] € Io, (f)/Qk1(f) (the wide ideal class group of

conductor f) where a is an integral ideal coprime to f. Let also
w: (K ®@gR)* — {£1}
be any sign character. We are mainly interested by the sign character
wy = sign o Ng/q.

Let \I/(:/—%?, wy, s) be the zeta function defined in section 7.1. In this section we would
like first to define a zeta function \If*(——\/%]—c, wy, s) where the * refers to the involution
discussed in section 8.1 Second of all we would like to write down a functional equation
for the zeta functions ¥ and ¥*. In order to achieve those two goals it is more

convenient to take a Z-basis for the integral ideal a.

We take a Z-basis in the following way. There always exists an integer a € Z-,
(a,f) =1and a 7 € K such that

a(Z+1Z) = a.

We let Q,(z,y) = Az® + Bxy + Cy? with A > 0 be the primitive quadratic form
associated to 7. Since Endk(A,) = Ok we have B> — 4AC = D. Without lost of
generality we assume that 7 = %. Note that the ideal AA, is an integral ideal

(in fact A is the smallest positive integer n for which nA; is integral).

A small computation shows that

\1;(_6_‘_/_\1_ wy, §) = < al\, )s Z sign(NK/Q(M))62MT1~K/Q(#)
D D NToT
f\/v f\/_ oK(foo)X\{O;éue%} | (M)]
&3 —wWB) Y Q) B gy,
(n-)\{(m,n)€Z2\(0,0)} Q- (m, n)

where wl(\/—ﬁ) = -1, Q,(z,y) = Az’ +Bay+Cy* = A(z—71y)(z—7Y), T = —Bz—\/ﬁ’

b
(£n,) = Stabr,(s)(7). The action of a matrix ( ¢ p ) acting on the vector (z,y)

C
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is given by (ax + by, cx + dy). We choose 7, in such a way that c¢r +d > 1 where

_ab
777_cd.

Remark 8.1 Note that the variable appearing in the exponent of the exponential

of (8.3) is the negative of the second variable of the quadratic form.

Lemma 8.1 Let {¢) = Og(foo)* where ¢ > 1. Then the matriz n. € T'1(f)
corresponds to the matrix representation of the multiplication map by €*, for some
n > 1, on the lattice A, with ordered basis {7, 1}. In particular one has that . € T'(f).

Proof Let O = Z + wZ and assume that w = v/D. The case where w = # can

rvD+s
t

be treated in a similar way. The element 7 can be written as 7 = where ¢ and r

are coprime to f (this uses the assumption that (A,, f) = 1). Let € = u+ fvv/D > 1

b b
be a generator of Ok (foo)* and let n, = ¢ . Since ¢ )=
c d c d 1

-
(et + d) ( . ) we have by definition that ¢r + d is a norm one algebraic integer

with flc and d = 1(mod f). Therefore cr +d € Ok(foo)* (this uses the fact that

(t,f) = 1) and so c¢r + d = €" for some positive n. The matrix corresponding to €

D
with respect to the basis {v' D, 1} is < ; Jv
v

) . It thus follows that the matrix
U

corresponding to multiplication by e for the basis {7, 1} is given by

ros u  fuD 1/r —s/rt
0 ¢ fo wu 0 1/t ‘

Computing the upper right entry we find —% + # which is divisible by f. It thus
follows that the upper right entry of the matrix corresponding to multiplication by
€" is divisible by f. [

If we consider the ideal 77aA; = a7°Z + 4CZ = °Z(Z + 47°Z) then using (7.1)
we find that

UAT ] - , 2mi%m
©4) W Lws)=wG VD) Y Slfc”;(?m(m) [’j”f?—
f M=)\ {(m,n)€Z2\(0,0)} AT '
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Remark 8.2 Note that this time the variable appearing in the exponent of the
exponential of (8.4) is the first variable of the quadratic form. Observe also that the
ideal a7 A, is coprime to f iff f 1 C. The reader should keep in mind that one can

pass from (8.3) to (8.4) by multiplying the ideal in the first entry of ¥ by 7°.

We want to define a ¥*-zeta function attached to the lattice aA, where the * corre-
sponds to a certain involution. The lattice aA, is equivalent to Q(a, A,) NOk modulo

Pr 1(foo). Remember that we have an involution

o © Y1(f No) — Y1(f No)
T T
Frg ™) = Gy s

Let (1,7) € HS*(f, No) where 7 is reduced and consider the integral primitive binary

quadratic form of discriminant D attached to 7
Q-(z,y) = Az? + Bzy + Cy?, A>0.

The lattice AA, is the integral Ok-ideal corresponding to @, (z,y). Consider also the

primitive binary quadratic form of discriminant f2D attached to 7* = f—J\}F

Q~(z,y) = sign(C) (f2C'N0x2 + Bfry + %) )

The lattice f2CNoA,- is the integral Ok s-ideal corresponding to Q.«(z,y) where
Ok, = Z + fwZ is the order of conductor f. Note that

’ 17 AA;
(1) Tr(p) e sZifp e B

. 2 * *
(2) Tr(un) € %Z if p e Cffz%f = C]Y/O%T )

Note the appearance of f? in the denominator of the left hand side of the equality in
(2). This is accounted for the fact that that the ring of endomorphisms of C' f2NyA -~
is Ok, This I hope motivates the following definition

Definition 8.1 Let al, be an integral Ok-ideal and let Q- (x,y) = Az* + Bzy +
Cy? be the integral primitive binary quadratic form attched to 7. Note that Ala. We
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define

I+ (ﬁj\_T’ w, S) — N (CNOAT*>S Z Sign(NK/Q('u/))eQﬂ'iTTK/Q(H)
VD VD NP

Oxc(foo) <\ {0 pe Eolr=y

(8.5) ‘ |
— w, (VD) Z sign(Q.+(m, n))ezﬁfﬁﬁ

{(n-+)\(Z2\(0,0)) |QT* (m) n) |

(8.6)
= w; (VD) Z sign(QNor (M, n))e?%—frm

(nr(f No))\(Z2\(0,0)) |Q#nor (M, n)

where T = f]\l,OT = _E]fg?\‘,ggﬁ, Q- (z,y) = sign(C) <f2C’Nom2 + Bfzy + Nioyz) and

B d C/fNo . a beO
777*“<be0 a )7 nT(fNO)_(C/fNO d )

The third equality follows from the change of variable (z,y) — (y,z) and uses the
identity |Qr(m,n)| = |Qnor(n,m)|. Again U* depends only on the narrow ideal

class modulo f of the integral ideal al.

Remark 8.3 It is interesting to point out that the third equality reflects the
functional equation of a certain Eisenstein series. This is clear if one looks at the

proof of lemma 9.2.

We want to define now dual zeta functions to ¥ and ¥* (dual in the sense of the
functional equation).
Definition 8.2 For s € C such that Re(s) > 1 we define

al\, s stgn(@,(m,n
o= e
(e )\ (0F(m,n)=(%,0)(mod f)) ’

(8.7) I

and

o~

“ al, w,s) = £ sign(Q-(m, n))
vDf (1N O£ (& Omod ) 1@ (T

where A is the leading coefficient of the quadratic form Q.(z,y) = Az® + Bxy + Cy>.

92



Remark 8.4 Note that the matrices n, and 7., preserve the congruence

(%,0)(mod 1.

We can now write down the functional equation for ¥ and ¥*.

Theorem 8.1 For s € C such that Re(s) < —1 we have

(5.9) —Fm(s)w(%,wl, ) = Fuy(1 - sﬁf(f%,wl, 1-5)
and
B9) ROV (R = F (- 9T (1)

where Fy, (s) = disc(Q,)**r~°T (2151)2 and F} (s) = disc(Q.+)*?r~°T (S—Jzﬁl)2 Note
that the left hand side of (8.8) and (8.9) make sense when Re(s) < —1 since ¥ and

U* admit a meromorphic continuation to C (see corollary 8.1).

Remark 8.5 Later on we will relate special values of ¥ and T* at negative even
integers (see proposition 9.4). At this stage it is not clear that T can be related to

U* in any obvious way.

We end this subsection with this useful lemma

Lemma 8.2 We have

o~

U Jwi,8) = N(f)°¢ ((adr)7" f,wn, 8) -

al\,
VDf
where the function on the right hand side is a partial zeta function of K weighted by

the infinite character wi = sign o Ng/q.

Proof We have

~ al., ) -(m,
‘If(———”\C/L— ,w,8) = f* Szlgg(? (m)|7:))
Df e\ O () =2 O)(mod f)) | 2T\ TH T
| fEAT , sign(Qr+(m,n))
- 2s A - s
C N0 mm (& 0)(mod 1)) | @re (M)
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_ s é ’ wi(p)
=NUIN (A) 2 NP

O (foo)*\{0#pe 4 Ao ,p=1(mod f)}
A
= N(f)SC (EAT”a f7 wi, S)
= N(f)SC ((a’A’r)_17 f) wq, S)

The last equality follows from the fact that A A = (%) The term on the right
hand side of the last equality is nothing else than a partial zeta function twisted by

the character w;. Note that this coincides with equation (7.9). O

8.3 Proof of the functional equation of ¥ for K quadratic real

The key idea in the proof of theorem 8.1 is a trick due to Hecke relating the zeta
function of definite quadratic forms to the zeta function of indefinite quadratic form.
After it is a matter of relating the functional equation appearing in (3.11) to the one
appearing in theorem 8.1. We have decided to include the proof for the reader but

essentially all the ingredients are already contained in [Sie68].

Proof of theorem 8.1 We only prove (8.8) since (8.9) can be proved in a similar

c

a
manner. Let <
and 77 such that 7 > 77. Assume furthermore that a = 1(mod f) and ¢ = 0 (mod f).

b
q ) = v € SLy(Z) be an hyperbolic matrix fixing two real points 7

Consider the normalized quadratic form Q.(z,1) = (z — 7)(z — 7°) = £Q-(z,1)
where Q,(z,y) = Az? + By + Cy?. We find the transformation formula

sign(cr + d)Q-(2,1) = (cz + d)°Q.(vz, 1).

We also define

eQﬂ'imgr/f

Yr(s,2) = ; (22 — my) 2D (maz — my)?

which makes sense for all s € C such that Re(s) > 1. We will use the functional

a

%> w1, 8). It also satisfies the following

equation in s of ¥, (s, z) to deduce it for ¥(
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transformation formula in 2

(8.10) Ue(s,az) = [Pz + QPP V(P2 + Q)% (s, 2)

R S ' ~
for any ( P 0 = a € 'y (f). It thus follows that the C* 1-form |Q, (2)|* "¢, (s, 2)dz

is invariant under the transformation z — ~vz. We take the opportunity here to men-

tion the useful formula

(8.11) (Pz + Q)(ma(az) — my) = (mhz —m])

Wherea=<R S)and( @ —S><m1>:<m’1>'
P Q -P R My me

Lemma 8.3 Let C be the half circle of the upper half plane joining T and 7°. Let

< m ) € 7% and v~ ( m ) = ( m} ) (for some integer 1) then
my mo My

510, (2)"1dz

1
/C |maz — my |26V (mgz — my)

5 |@T(z)|s_1dz.

1
- |
Note that C, as a subset of H, 1is fized (the orientation also is preserved) by the

Moebius transformation z — ~vz.

Proof of the lemma 8.3 We prove it for [ = 1. We compute:

1
¢ Imaez — mq 267D (mez — my)

1 ~
8.13 - ] -1y
( ) Xy—lc’ |mayz — my|26=D (mayz — my)? Q- (72)] vz
1

- /c Imayz = ma 6D (mayz — my)

(8.12)

510 ()| dz

51Q-(v2)* M dy2

where the second equality follows from the invariance of C by ~.

1 o
B /C |(@my — emi)z — (=bmg + dma)[2e=D((amy — emi)z — (=bmg + dmy))? Q) dz
-/ : 13- ()1

iz — miPeD (2 — mp)
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r"«\

/ _
where ( m ) =71 ( m1 ) The second equality follows from (8.10) and (8.11).
ma

Let = be an arbitrary point on C. From the previous computation we see that for
any (my,mg) € Z*\{(0,0)} we have

1
o Imaez — my|25=D (myz — my)

Z vz 1 _ 1
~(2)[7d
)/9: Inaz — 11 26D (ngz — ny)2 Q- (2)[*dz

(n1,m2)e{y= 1) (m1,ma

(8.14)

18- () dz =

where the last summation goes over all the v~!-translate of the fixed pair (my, ms).
Geometrically the small arc with end points  and v~z gives a tessellation of C under
the action of the (y™!). Note that we were allowed to change the order of summation
with integration because of absolute convergence since Re(s) > 1. Note that we can

also replace y~! by v without affecting (8.14).

Fix a complete set of representatives {(m1, ms)} for the action of () on (Z2\{(0,0)}).
Then for every representative (mj,mg) multiply the left hand side of (8.12) by
e?mim2r/f Taking the summation and using (8.14) gives us

. 1 ~
(8.15) > e*rimar/f /C 3@+ (2)" " dz

— 2(s—1) _
(1 m2)E N\ 0,0) [maz — my 26D (myz — my)

.y / 18, () (5, 2)d

The orientation of C' is taken to be the orientation of the arc segment joining 7° to
7. It is therefore in the clockwise orientation. The quantity j := sz’gn(#) takes
care of this choice of orientation. By lemma 8.3 the summation on the left hand side
doesn’t depend on the set of representatives which is clear from the right hand side.
Also since the left hand side doesn’t depend on z we get that the right hand side is

independent of the base point z.

We are thus lead to evaluate the following expression

].. -~ 1
~(2)°F 7 dz.
o Imaz — my|26=D (mgz — my)? Q-(2)I" dz

This is the content of the next lemma
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Lemma 8.4 For Re(s) > 1 we have

(8.16)
(+5)°
I'(s+1)

disc(éT)s—lﬁ Sign(@T(mlv mQ)) .

NT s—ld — —
7@ (2)dz 3. (me )

1
/C |maz — my 25D (mgz — my)

Proof We omit the proof since this calculation is done in [Sie68] and a bit later we

do a similar calculation. U

Corollary 8.1 Let Re(s) > 1 then

vz (s_tl)2 - r
s—1 — 4 2 : s=1/2 s ('
810 [T I 2z = i gdise( @ Al
where
2mimar/f

Z sign(Q-(my, ma))e

|Qr(m1, ma)|* -

bl

r
SO(_JZU 7,7, S) =
(MEZ2A\{(0,00}

j = sign(%£9), Q,(z,y) = AQ.(z,y) = A(z — Ty)(z — 7).

Proof Combine (8.15) with lemma 8.4. O

Remark 8.6 Note that disc(Q,) = disc(AQ,) = A2disc(Q,).

Lemma 8.5 We have

[Maers e - mE T @l
i A - 2(s—1 : = ~
femiTs +1) (M\(m1,m2)=(r,0) (mod f) Q- (M1, m2))|!

for any s € C such that Re(s) < 0.

Remark 8.7 Note that the matrix v € I';(f) preserves the congruence (r, 0)(mod f).

Proof of lemma 8.5 The proof uses the same ideas as lemma 8.1.
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Let ((s,u*,v* 2,g) (see (3.10) for the definition) with g = 2, u* = (

vt = we ge
0 g

r —27rzm r
o 7),(°) 52 = N il
0 0 ’ my + maez)| X~ (my + myz)?

27mm2 r/f

Yy Z ¢ [(maz —my) D (mpz — my)?

= S?,bT(s, 2).

O =3

) and

Using the functional equation in (3.11) applied to v, (s, z) we get

RIS
- [T 12 s 2z

0 r
~ C(1_57< >)(f>az72)
71.25—11‘\(2 _ S) /w ‘QT(Z)IS_I 0 0 J

= 72D (s + 1) im(z) 1 im(z) 1 f20-9) z
271002 — 8) 70, (2)]*? 1
- fQ(S—l)IS(s + 1)) / lzgz(i))gls—l Z |my — moz|=2%(my — mgz)QdZ
z (m1,m2)=(r,0) (mod f)
2s—1 9 _ N‘r s—1 1
_ e [ 13 > .
f2-0DT(s + 1) Jo im(z)?1 Imy — maz|=25(my — maz)?

(\(m1,m2)=(r,0) (mod f)

727102 — s) ‘ Z |Q-(2)1*~ 1 dz

=J =D (s + 1) c im(2)%=-1 |my — maz|~25(my — maz)?

(M\(m1,m2)=(r,0) (mod f)

We are thus lead to evaluate the integral

/T Q-(2)

(m —nz)?
The two end points of C correspond to 7 and 7. We integrate from 77 to 7, therefore

2s5—1 dz

(m —nz)?

5—11 (m —nz)?

im(z)

since 7 > 77 this is integrating along C' in the clockwise orientation.

In order to compute this integral we do a change of variables. The varlables are z
and w and t and we fix a pair (m,n) € Z?\{(0,0)}. We let
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o

z=1‘ﬁ}i,w=z—;{; v=nT—m, v’ =n7° —m

ng —m = % j = szgn(“+d)

Qr (™) = —(r — 77)2 e g = sign(vv’) = sign(Q-(m, n))
w=|Z|it (nz —m)~2dz = i(T — 79)|vv°| 7}

(1 +igt)2dt

Tw+T7

w1
Applying this change of variable we find

The of variables z sends the hyperbolic triangle C' on the positive y-axis.

00| —(7 — 7)Y =2 51 vwtv?2 g
= / ‘ vwte® (2 L I Cait) () (1 — 7°) (vw + v°) 2dw
0 ( w41 ) (T - TU)| +1]2

2s—1
(vw + v7) " 2dw

1o w s=1| (yw + v7)?
Z/O i(vw+v")2 ' im—zw)

3 /°° ‘ (vv7)~Lit S—l‘ (1+1igt)?
o (1 +igt)? (vvo)~Lit

o o—(1—s = t h
= i|vv?] (1 )/0 |1+t2

*© ot
. oj—(1—s) -5 ; -2
= i|vv?| /0 (1 n t2) (1 +igt)~*dt.

25—1
i|lov?|7H1 4 igt) 2dt

5(1 + igt)~2dt

So we need to evaluate the quantity I := [[*(52)7°(1 + igt)~2dt. Doing the
change of variables t —  we find that I = — [°() (1 — igt)~2dt = —I, so

I is purely imaginary Therefore I = % Oi°° (1 +14gt)2 — (1 — igt)™2) (1.:t2)s gt —
—2ig fO 1+t2 (1+t2) *dt = —2’Lg fooo t_5+1(1 + t2)_s_2dt.

Doing the change of variable 1 + t*> = u followed by u % we find that

o0 1
0 0

Using the well know formula fol w1 — )V ldu = % we get

—2ig /OO (1 + t2) 2t = ——zg~——-—F(2 )
0 r'2—s)

Combining everything together we find

e [(252)272s1 sign(Q-(m, n))
[ 18D s = G2 3 g Qr (.
: PTG +1) 2ty (moa 1y 1@ ()|
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This completes the proof of lemma 8.5. [

Lemma 8.5 suggests the following definition:

Definition 8.3

sign(Q,(m,n))
|Q-(m,n))|*

T .
90(?7 7,7, S) = f2
(MN\O#(m,n)=(r,0) (mod f)

Combining Lemma 8.1 with lemma 8.5 and rearranging a bit we obtain the functional

equation

(8.18)

]. -~ S g 1—-s 2 - )
D(ETPdisc(@n)F A% (5, 7,7,0) = dise(Qr) T T (<2 Prb A (5, 7y, 1 )

f f
But this is nothing else than the functional equation (8.8) of theorem 8.1. [

9 Relation between special values of zeta functions

and Eisenstein series

9.1 Archimedean zeta function associated to a class in

H](;)(NO) f)/fO

In this section we want to associate to any class in Hf (No, f) /fo a well defined

Archimedean zeta function. We first start by proving an elementary lemma.
Lemma 9.1 Let 7 € H,N K s.t. (disc(Qr),p) =1 and let

<It’}/,,.> = Stab5L2(Z[%]) (T),

then v, € SLa(Z). Note that v, is well defined up to +1.

c

b
Proof Let ( ¢ p ) = 7y,. Since det(v,) = 1 this implies that Ng/g(cr +d) = 1.

Since the denominators of ¢ and d are at most powers of p and N(cr +d) = 1 we
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have that ¢r + d is norm 1 unit of Og)x. But since p is inert in K we have (’)g)>< o~
+1 x p? x OF. Therefore this forces cr+d € O). We also have ct?+ (d—a)7+b = 0.
Therefore there exists a rational number of the form £ ((m,p) = 1) such that
(9.1) E(er? + (d = )z +b) = Qu(a) = A2’ + Br + C.

let £ = B? — 4AC then wlog we can assume 7 = l%ﬁ. We have (et +d) —
(¢t7 +d) = ¢(r — 77) € Ok. Therefore %E € Ok. But ¢/A = m/p® we thus have
%—‘{E € Ok. Since (E,p) = 1 and (m,p) = 1 this forces s = 0. Because A, B,C are
integers, (m,p) = 1 and a,b,¢,d € Z[%], we deduce from (9.1) that ¢, b, (d — a) € Z.
Finally note that Alc so we find that ¢r € Ok and therefore d € Z. O

We would like to attach now a zeta function to certain pairs (r,7) € HS (N, f).

Remark 9.1 It is easy to show that if 7 is reduced, i.e. if red(7) = v where vy
is the standard vertex on the Bruhat-Tits tree and red is the reduction map, then
(disc(Qr),p) = 1. However the converse is false. We can therefore think of the reduced

requirement as a finer notion compare to the more naive condition (disc(Q-),p) = 1.

Definition 9.1 Let (r,7) € HJ(No, f). Assume that 7 is reduced i.e. red(r) =

vo. We set
(£n,) = Stabrl(fz[%])(T).
Then by lemma 9.1 we know that n. € T'1(f), in other words Stabp, sz11))(7) =

1
a b ,
Stabr, () (7). We choose ), = < P ) in such a way that cr +d > 1. We define

c
several zeta functions associated to the pair (r,7) by

(1) ¢((r,7),8) = ¥ (2200w, 5)

(2) Cr,m),) 1= T (200, w5

and similarly

9) ¢ ((r,7),8) = 0 (2500 w5



4) Clr,7), ) = T (22200 w5

where wy = sign o Ngg and 0 = (v/D). Note that the map Q (see definition 5.7)
depends on the quantities O,p, f and Npy.

Proposition 9.1 If (r,7), (r",7") € HO(No, f) satisfy the assumption of the defi-

-nition 9.1, namely red(r) = red(r’") = vy, then if (r,7) ~ (r',7') we have

(1) ¢((r,7),8) = C((r', ), 9),
(’Q) C*((T, T)?‘S) = C*((TI7T/)7 5)

Proof Let Q(r,7) = AA® and Q(r', ') = A’A®) (where the exponent ) means that

!

we have tensored the Z-lattices AA; and A’A,/ over Z[%]) Since (r,7) ~ (r',7') there

c P

s () 0)-(0)

with f|c and d = %’(mod f). Because 7 and 7’ are reduced this forces v € GLy(Z,).
It thus follows that v € SLy(Z). Using relation (9.2) we deduce that AA, =
A'A(mod Qi 1(foo)). Finally since 7 and 7 are reduced we have AAY) N O = AA,
and A’ Ag’) NO = A’A,.. Tt thus follows that

This proves (1). The proof of (2) is similar. O

b
exists a matrix v = ( ¢ i ) € GL$(Z[1)]) such that

We have thus succeeded to attach well defined Archimedean zeta functions to any
class of HS (No, )/ ~.

So far we haven’t used the level No-structure build in inside HS (No, f). The next
object we define is a zeta function attached to a good divisor § € D(N, f)®) and a
pair (r,7) € HS(No, f). From now on, in order to simplify the calculation we make

the following assumption
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Assumption 9.1 We assume that the good divisor

5= n(do,r)do € D(No, f)
do,r
is primitive i.e. n(do,r) = 01if (r, f) # 1.

Definition 9.2 Let 6§ = >, . n(do,7)[do, 7] € D(No, £)® be a good divisor and
(4, 7) € HE (No, f) with red(r) = vo then we define

(1) ¢(6;,(1,7),8) = 52 nldo,r)d3C((%E, dor), s)
do|No,re(Z/ fZ)%
(2) ¢, (L7)s) = X (e n)diC (5, B2, 8).

do|No,r€(Z/ fZ)*

It is an easy exercise to show that ((4;,(1,7),s) and ¢*(d;,(1,7),s) depend only

on the class of (1,7) modulo ~. We also have the useful formula ((d,;, (1,7),s) =

C(éja (CL, 7—)7 3)‘

Remark 9.2 First of all note that there is a hat on zeta functions appearing on
the right hand side of (1) and (2). Note also that the lattices A4, has endomorphism
by Ok = Z + wZ and Agy~ has endomorphism by Z + fwZ which is the order of

conductor f of Og.

Remark 9.3 In the case where f = 1 as in [DD06] one has that ((;,7,s) =
¢*(8;,7,8). In general if f > 1 then ((4;,(1,7),s) # (*(d;,(1,7),s). In proposition
9.4 we relate both of them under the assumption that the primes dividing f are inert
in K.

9.2 Special values of ((4,, (A, 7),1—k) as integrals of Eisenstein

series of even weight Fy

We are now ready to relate periods of Eisenstein series with special values of the
Archimedean zeta functions ((d,, (1,7),s) and (*(6y, (1, 7), 5).
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Lemma 9.2 Let (j,7) € H;(No, f) where Q.(z,y) = Ax® + Bzy + Cy* and
red(T) = vo. Then for all odd integers k > 1 we have '

(1) 3¢*(6;, (A7), 1 — k) = fg;*& Qre (2, 1)1, (4, 2)d2
‘ = f2—2 f&T& Q- (z, 1)k‘1ﬁ2k(——j, z)dz,

(2) 3(6;, (A7), 1= k) = [ Q. (2, )* ' F3,(j, 2)dz

b
where & = 100, & = 0, (£7,) = Stabr, (1) with et +d > 1 for v, = ( ¢ J > .
c
Remark 9.4 If we use proposition 5.1 we see that we can replace &; and &; by
any point in H without changing the value of the integrals of (1) and (2). Note also
that if (disc(Q.),p) = 1 then

(9.3) Stabr, (7) = Staby,(5)(7).

In particular (9.3) is true when red(7) = vq.

Proof We only prove (1) since (2) can be proved in a similar way simply by replacing
7* by 7 in the argument. Using the remark 9.4 we can assume that & € H. We

compute

V¥ P

Yrx b2 -
/ Qr (2, 1) E; (5, 2)dz = —12/ Qe (2, 1)k 12 rYd2 B3 (1], doz)dz

&2 &2 do,r
—2minrj/f

o (DN Mo s [ N
= 12 (W) Zn(d—o,’f')do /52 Q.,-* (Z, 1) Z W—%Z)mcdz

(0,0)#(m,n)
(9.4)
, <—1>k<2w>%>‘1 No ok /f
=12 =1 dy QR (2,1)"70,,(k,dpz)dz
(S S (do [ Qa0 k)

where ©,(k, z) = Z;nn @% which is defined for integers k > 2.

104



For every term in (9.4) indexed by a doy| Ny, we replace the base point & by % =&

z

and followed by a change of variables z — Z. We thus get

9.5)
= —12 (%) -1 Zdlg"ln(g—g,r) /d"%*%@(doQT* (dloz’ 1>)k_1@rj(k,z)dz

dOa’r £2

Let Q:(z,y) = Az? + Bxy + Cy? then because (r,7) € HS(No, f) we have (?,7)* =
(——?—,T*) = (- % m) and therefore Q.+(z,y) = f2CNozx® + Bfzry + Nion and
QdoT* (.73, y) f2CNO IQ + foy + Ado 2 Therefore Qdm'* (d0$ y) dOQT* (m) y) Sub-

stituting in (9.5) the latter equahty we get

—1)*(27)2k\ 1 ) Yagr*E2 -
=12 (%) Y on (];[ r)dE™ / Quor (2, 1)1 0,5(k, 2)dz.

do,r 0 €2

Now applying Hilfsaz 1 in [Sie68] we find

Yagr*§
(9.6) /5 Quore (2,1)510,; (k, 2)d>

a+d)Fm)

rj .
7 0),d ok
F(Zk) ?0)7 07- 7’.)/d0 )

f

wl»-A

= (—l)k_lsz'gn ( dzsc(QdoT*) o((—

where for integers k > 2

2mi(mu+tnv)

(converges absolutely),

o((u,v), 7,7, k) = 2
A G

€ € His an arbitrary point and v € SLy(Z) is such that ( u v ) v = ( u v ) (mod Z2)
for all (u,v) € Z2. Set £ .= & € H.

When k > 3 is odd we readily see that

A N
(9.7) w((ff,oxdof*,wm*, k) = —c*((—]{m TR

The —1 on the right hand side comes from w;(v/D) = —1 in the definition of ¥*.

Using the functional equation

PO (G o)) = = O (G o 1= )
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o

where F*(s) = 7r‘sdz'sc(QT*)ﬁ“(sgl)2 in combination with equation (9.7) plus the

observation that (—1)*~! = sign(a + d) = 1 and sign(c) = —1 in (9.6) we obtain

Fr(1—k) ((=DFEm)*\ ™ et TR Mo sy, JA N
—12 0 < k=1 ) disc(@Qr~) 2F(2k)2n(%,r)d0 k¢ ((NO/dO,EO—T),l—-k).

do,r

Simplifying we get

= 3¢* (05, (1,7),1 — k)
= BC*((S], (A,T), ]. —_ k)

We want to treat now the case k = 1. Using the equation (8.17) we see that we
need to evaluate lim,_,1 .. (s, z) (see equation (8.10) for the definition of ¥,.(s, 2)) and

compare it with

eQ'mmg'r/f

—Am? B3 (—r, 2) = Z

m#(0,0)

Note that originally v.(s,2) was only defined when Re(s) > 1 in order to have

(moz —mq)?’

absolute convergence. Note that the limit when s — 1 makes sense since %,(s, z)

 admits analytic continuation.

Lemma 9.3 We have

(1) limg_,; ¢, (s, 2) = (Tﬁ‘(% — 4m B3 (-, z)) if r = 0(mod f)
(2) limg_1 9, (s, 2) = —4n2E3(—r, 2) if r # 0(mod f)
Proof See theorem 7 of chapter 3 in [B. 74]. O
With this lemma we thus get for any r € (Z/fZ)* that
PE% U (s,2) = 4T E3(~1, 2) = ©,(1, 2).
From this we deduce

Yrx &2
(9.8) 3¢5, (A,7), 0) = —12 / Fi(j, 2)dz



This concludes the proof for the case kK = 1. It remains to prove the second equality
of (1). For this we do the change of variables z — ﬁ in equation (1) of lemma 9.2

and we use the two identities

(9.9) B, -fﬁ.;;) = (N Fo(—d, 2)

with m = 2k and
qu-(fl',’y) = fQ(fL',y)
O

Remark 9.5 The relation (9.8) continues to hold even if the divisor ¢ is not

primitive because the non holomorphic terms cancel since § is good.

At this point in makes sense to draw the following corollary from (9.9)

" Proposition 9.2 Let {; =i00 and & = 0. Then for v € To(fNy) and k > n — 2

we have

*

Y61 v €2 ~
/ 2"Fy(j, 2)dz = —(fNo)_”/ P2 () 2)d 2.
& &

, a b d ¢/fNg
Note that if v = then v* = .
c d bfNo @

Proof Simply apply the change of variable z +— ﬁ to the left hand side and use
(9.9).

Proposition 9.3 Let 6 =}, n(do,7)[do,r] € D(No, f) be such that

Z n(do, )do = Z n(do,r)—]\@ =0 for ol reZ/fZ,

do
do|No do|No

then the Eisenstein series ﬁk,a(T, 7) is holomorphic at the set of cusps I'o(f No){0, ico}.

Using proposition 5.1 we deduce

7(ico) ~7(0)
/ 2" Fys(r,z)dz = / 2" Fy 5(r, 2)dz
i 0

fe's}

~v(0) o 100
=/ 2" Fy, (1, z)dz-i—/ 2" Fy 5(r, 2)dz.
% 0

100
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//Eb h

b
Ifweletvz(a )weget
c d

100

a b B

= q 200
/ 2" Fy 5(r, 2)dz =/ 2" Fy 5(r, 2)dz +/ 2" Fy, 5(r, z)dz.
100 0

Remark 9.6 This is a reciprocity formula.

9.3 Some explicit formulas for (*(¢,, (4, 7),0)

We record in this subsection a special value of particular importance namely ((d;, (Ab, 7),0).

From lemma 9.2 we have

Yrico
(9.10) C*((Sm (A, 7-)) ()) — % . / F2,5(——7‘, Z)dZ
1 1
= g . é—ﬁ(log ﬁgr (’)’7—2) - log /85r (z)>|z="°°
since

- - 1
Fos(—r,m)dz = Fy5(r,7)dz = %dlogﬂgr (7).

b
Let v, = ¢ p ) Using equation (5.4) of proposition 5.4 and using the fact that
c

0 is a good divisor we deduce

(65, (A,7),0) = —4-sign(c) > n(do,r)S{jTO)(a,E)

TEZ/fZ,doUVo

= —4 - sign(c) Z n(do, ) Z §1<j7“ + if)gl(jm + aif)

€7/ fZ,do| No i(mod ¢/ fdo) ¢/do ¢/do
. : ~ qr/f4+i = 7/ f+1
—design(e) S nlder) S Bl C% 1) By (af? 07} )
reZ/ fZ,do|No i(mod ¢/ fdo) o 0
(9.11) = —4 - sign(c) Z n(do, r)DI?med N(a, c/dy).

reZ/ fZ,do|No

9.4 Relation between ((9,(1,7),s) and (*(4, (1,7), s)

For later purposes it will be important to relate those two zeta functions. We have

the following
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N

Proposition 9.4 Assume that f is divisible only by primes that are inert in K

then we have
1

f_
-~ al\ ~ CLA
U (—=,wy,s) = \Il)\u,a—T,w,s
A/No

where \y,q is an algebraic integer chosen so that Ayq = (U= 4 77)(mod f), Ay is

U=

coprime to p and totally positive.

Corollary 9.1 Using lemma 8.2 we deduce

f-1
> ¢uax6,(a,7),8) = (6, (a,7), 9).

u=0

Proof of proposition 9.4 We have

al\,
{vr (FNo)\{0#(m,n)=(0, §)(mod f)}

f\/ﬁ’wbS) i
_ /-1 Z sign(Qny-(m, ”))

IQNOT(m’ n)|s

Sign(QfNOT (my n))
IQfNoT (m’ n) ls

f—2s"l}*(

u=0 (ynyr)\{0#(m,n)=(u, §)(mod f)}
Note that the discriminant of Qn,-(,y) is equal to D. Since yy,. € ['(f) the second
summation makes sense since the congruences (u, <)(mod f) are preserved under the
action of yn,-. Now because the primes dividing f are inert in K we get automatically
that the algebraic numbers {)\u,a}ﬂ;(l, are coprime to fp. We have that the right hand
side of the last equality equals to

— - N(A s wl()\)
= 2 Nlwer) 2 NP

u=0 Ok (foo) *\{0#AAEA Ny -, A=u+5 No7(mod f)}

f-1 s

A/NO wl()\)

-2n ( a AN‘”") - w3 NP

u=0 Ok (foo) \{0AA AL Ay ro A= AL g 72 (mod. )}

-1

AN,

= C <>‘1:¢11_L9AN0T”7 f7 Wi, S)

u=0 , a

f-1

- C (()\uvaaANM‘)_l’ fa Wy, 5) .
where for the last equality we have used the fact that Any,Angre = (m) O
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10 P-adic zeta functions and p-adic Kronecker limit

formula

Definition 10.1 We define the p-adic zeta function attached to a good divisor

5 € D(Ny, )@

and a pair (§,7) € HS (No, f) with Q,(z,y) = Az®+ Bzy+Cy? and (disc(Q,),p) = 1
to be

100) G (A8 =3 [ Qo)) distioo = 2100} @)

1

S / (Q-(2,9))~*dfi;{ioo — 7, (i00)}(z,9)

where (x) denotes the unique element in 1+ pZ, that differs from x by a p—1 root of

unity. This zeta function makes sense for any s € Z,. As usual (£v,) = Stabr, (7).

Corollary 10.1 Forn > 0 an even negative integer congruent to 0 modulo p — 1

we have

(1 - p—2n)c*(5j> (17 T): TL) = C;((Sw (1) 7—)) TL)
Proof Combine (1) of lemma 9.2 with (1) of theorem 6.1. [J

Remark 10.1 We thus see that our p-adic zeta function interpolates rational

values of the Archimedean zeta function (*(&;, (4,7), s) at negative integers.

Lemma 10.1 The derivative ()’ (65, (4,7),0) at s =0 is given by

(C;)/(dj’ (A7 T)a O) = - lng(QT(x, y))d,ﬁ]{g - ’Yff}(x’ y)

S
1
3 Jx

where & = 100.

Proof This is a direct calculation using equation (10.1). Note that the integral over

X of log,(Q¢-(fx,y)) = log, f* + log, Q,(x,y) is the same as log, Q- (z,y) since the
total measure is zero so that the constant term log, f? vanishes. [J

We can now deduce a p-adic Kronecker limit formula
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Theorem 10.1 Let (r,7) € HS(No, f) with T reduced, i.e. red(r) = vo. Then

we have

(102) 3(G2) (6, (4,7),0) = — log, Ny g, (u(d,7)).

Proof From theorem 6.2 we have

(103 1) = f (@ = ) {100 = lioo)} (@,1)
Replacing 7 by 77 in the previous identity gives us

(10.4) u(6,,77) = 7(3;(:6 — 77Y)dpi{ico — v (i00) }Hz, y)

But vy, = ;0. Therefore multiplying (10.3) with (10.4) together and taking the p-adic
logarithm of this product combined with lemma 10.1 gives us (10.2). [

We end this subsection with the following useful proposition

Proposition 10.1

3¢* (6, (4,7),0) =ord,(u(d,, 7)).

Proof Use lemma 6.2 with equation (9.10). O

11 Dedekind sums and periods of Eisenstein series

11.1 _Dedekind sums

In order to give explicit formulas we need to introduce certain Dedekind sums. Let
B, be the n-th periodic Bernoulli polynomial, see definition 4.6. It is easy to show
that they satisfy the following distribution relations

—!—Mz ~ ax
11. NE1NT B (a2 e
(11.1) Z k(M)

where M and N are nonzero integers and a is coprime to N.
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Definition 11.1 Let a and ¢ # 0 be two integers, not necessarily coprime with
fle. Let s,t > 1 be integers and choose a residue classr € Z/ fZ. We define

. Mo - Es h E h
(11.2) D:t( 1 (q, c) = o Z (h/c) Bi( a/C)‘
' 1<h<e s ¢
h=r(mod f)

where B, is the n-th periodic Bernoulli polynomial, see definition 4.6.

When the level f is fixed we omit the mod f notation.

Lemma 11.1 Those Dedekind sums satisfy the following useful identities:

(1) DI D (ad, dc) = DL D (a, )

s—1 c Es h Nt—g
(2) do = Ds(tmOdf (a,c/do) = <3—) 3 (/&) By(%)

for any a,c,d € Z s.t. doflc.

Proof Let us prove the first identity first.

D;(tmod f)(ad, dc) = (dc)s"l Z Es(h/dc) Et(ha/c)

s t
h(mod dc)
h=r(mod f)
d-1 5 ritejy\ p (ali+ci)
Bs e )B( )
> c
i(mod ¢) 3=0
i=r{mod f)

i(mod c) 7=0
i=r(mod f)
_ (do 3 Bi(%) Bi(i/c)
gl t 5
i(mod c)
1=r{mod f)
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This completes the first part of the lemma. Let us prove the second part.

Cp 3 Blhdle/in) Bubale) _

8 t

h=1
h=r(mod f)
c/do do~— lB h+JC/dO)Bt( h+yc/d0)

(dio)s—l Z Z C/do ; _

h= r(mod f)
c/d do—1 D h n h+jc/d
(—C_)S_l i i:l b ( [do )Bt( do(jc/do())) =
d() he1 = S t
h=r(mod f)

— =0
h=r(mod f)
¢/d, [ h ah
gy S, P A
° do o, S t
h=r{mod f)

dy VDI ) (a, ¢/ dy).

11.2 A technical lemma

Here is some technical lemma that will turn out to be essential later on.

Lemma 11.2 Lets,t > 1. For any rational number 2 (p could divide c), we have

inside Q, the following identity:

r(mod r(mod s— ~1r(meod
Jim D0, (a,0) = DI P a,¢) = p D5, 7 Dopa o)

The proof is similar to [DD06] but it avoids the use of Dedekind reciprocity formulas.

Proof Let z = ¢ € Q with (a,c¢) = 1 and assume first that p { c. Let b be an
integer such that abp = 1(mod ¢).
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/f\-‘

Note that

r(mo _ B,(lbp/c) By(l

(113) Ds,(t df)(a,c)___cs 1 Z ( p/C) t(t/c)
1<I<e s
I=ar(mod f)

therefore

’ ‘ By (p-1pi (Ibp/) B,(1/c)

r(mod §— — s+(p—1)p? t
(L4 DI e =emHer S : :
1<i<e
I=ar(mod f)

and similarly

By p-1ypi (1b/€) By(1/c)

d s—
(11.5) ng_r?:_f;;j,t(pa, c)=c1 E . ;
1<i<e
I=ar(mod f)

Write y = {lbp/c} and / = {Ib/c}. Since ¢®V¥ — 1, then subtracting p*~! times
(11.5) to (11.4) we see that it suffices to prove that

(11.6) lim By p-1)pi (¥) = Bs(y) — p* ' Bs(v/).

J—oo
For s > 0, this follows from the proof of Theorem 3.2 of [You01]. In the course of the

proof of Theorem 3.2 of [YouO1] he gets that for any positive integer b coprime to p
the following equality

(b =00 _ 1) But oy (2) = 9" OO By ()

(11.7) o
_(bs _ 1)35(37) — Z:_IBS(:E/) = O(modpj-i—lzp)

where 2’ is such that pz’ —z € {0,1,...,p—1} and s > 1. The denominator of % at
p is well behaved. If (p— 1) { n then Z= is p-integral. If (p — 1)|n then v,(E2) = —1—
vp(n). Using the previous observation it follows that lim;_., p®~¥ By (p—1)pi (z') = 0.

Letting j — oo in (11.7) we get that

Bs —1)pd R _ ms—1 s /
(11.8) , (b° = 1) J}L%J(ﬁ%ﬂw_) = (b — 1)B (z) Z B (m)

When s > 1 we can always choose b such that b* — 1 % 0. Therefore we can cancel

the two factors ° — 1 in (11.8) to get (11.6). It remains to treat the case where s = 0.
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We have v,(y) > 1. Let g = (p — 1)p’. Note that

(11.9) B,(y) = Eg: (Z) By

k=0
g—1

_ .9 g_l Bk g—k B

y +9<;(k_1) - .

If (p — 1) { k then 2t € Z,. If (p — 1)|k then we can write k = (p — 1)p“m with
(m,p) = 1. So vy(Beys™*) > ~1 —u+ (p — 1)p* > 0 since p* — 1 > m. We thus

deduce from (11.9) that lim; .o Bry-1ypi (¥) = Bp—1)pi-
Let w be the Teichmiiller character at p. If we look at L,(s) the p-adic L-function

twisted by the trivial character. We have the formula

Ly(l =n) = —(1~ w“"(p)p"“l)—Bn;:_n

Here w™" means the primitive character associated to w™ (so w™"(a) is not necessarily

equal to w(a)™™). So letting n = (p — 1)p? therefore w™(p) = 1 we get
Ly(1 = (p — )p?) = —(1 = plo-tw-1) Do
(p—1)p?

Now we know that lim,_,1(s — 1)L,(s) =1 — %. So letting j — oo we get

1
lim By _1y,s =1 — —.
oo =P D
this proves the claim for s = 0.

We need to treat now the case where p|c. This case turns out to be simple. Let

us prove the following elementary lemma

Lemma 11.3 Let h be any integer and 0 # ¢ € Z such that plc. Then we have
the following:

(1) lim;_eo 9By g(2) = ¢*By(2), if (h,p) = 1.

(2) lim_oo 9B, 4(2) = 0, if p|h.
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where g = (p — 1)p’.

Proof of lemma 11.3 Let us prove the first case. We have

" B s+g s+g
(11.10) cs+gBS+g(-c—) = Z( )Bkhsﬂ—’“c’“

k
k=0
s s+g
(11.11) = (5 Z 9> Buht iRk 4 3 (s Z g) Bho ok
k=0 k=s+1

Now since |cl, < 1, |hl, = 1,[(7)|, < 1 and |By|, < p, the limit in (11.11) exists when
Jj — oo. Since (h,p) = 1 the limit of the first term is csgs(%) and the limit of the

second term is 0. This proves the first part of the lemma.

Assume now that plh. If v,(h) > v,(c) then 2 € Z,. In this case we know that
Mmoo Bor (p—1)ps (&) exists by (11.6). Finally since p|c it follows that lim;_,o ¢*+9 B, +o(B) =
0. Assume now that v,(c) > v,(h) = m > 1. Then by the first part of the lemma 11.3

we know that liquoo(;f,—l)”ggsﬂ(%/ig—:) exists. It follows lim; .. c3+9§s+g(%) =0

sincem>1. [

With Lemma 11.3 it is now easy to prove Lemma 11.2 for the case where p|c. We

have
. r(mod . sha—17 h,.~ ah
jggoDsig,t -f)(a,c)*_—jhjgo Yoo et 1Bs+g—1(;)Bt(7)
1<h<c
h=r(mod f)
~ h .~ ah
11.12 _ 1F (B
(11.12) > e BB
1<h<c
h=r(mod f)
(p:h):]-
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On the other hand we have

T{1MO! §— ~Lr(mo
D D(a,¢) = p= DE, 7 D (pa, o)

= D" N(a,¢) - DL, Pa, efp)

h,~ ah h ah
—_ S~ 1Bs B s— 5— 1Bs B
3 BB T G BaGpRGE)
Snxe SRze/p
h=r(mod f) h=p~1r(mod f)
15 bz ah . h,~ ah
= Z C 1BS_1(Z>Bt(7> - Z 1Bs 1(E)B (7)
1<h<ec 1<h<ec
h=r(mod f) h=r(mod f)
h=0(mod p)
1S Pz ah
= 3 BB,
1<h<e
h=r(mod f)
(p,h)=1

Compare with (11.12). This concludes the proof of lemma 11.2. O

11.3 Moments of Eisenstein series

In this section we compute the moments of certain Eisenstein series. This will turn

out to be essential for the proof of theorem 6.1.

We remind the reader that for r € Z/fZ we have defined

(_1)k(27r,l)k -1 ’ e—27rimr/f
E = | —— -
where r € Z/ fZ.
Those Eisenstein series are modular with respect to the group I'o(f), in the sense

that for all v = ( ¢
C

b
) € T'o(f) we have the transformation formula
(11.13) Ey(y*r,y7)(cT +d)™* = Ep(r, 7).

where v+ r = dr(mod f). In order to simplify the notation we define only for this

section
Ek,,«(’r) = Ek(r, 7').
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Let
Eyp(r) = _ag,,(n)g"

n>0

be the g-expansion at ico. We want to compute the behaviour Ej.(7) in a neigh-

bourhood of a cusp £ € I'g(f)(é00). For that we will use the transformation formula

b
(11.13). Let v = ( ¢ j > € To(f). Then we have the identity
C

it’ + b 1
U Y

.t/ —_ —
iE) cit'+d ¢ c(cit' +d)

From (11.13) we deduce

Ey . (it") = Ey a0 (y(2t")) (cit’ + d)"C
a 1
— E - - =g/ —k
ko, <c b T d)) (cit’ + d)
_ Brar (% + it')

(Cict)F
where it = —c(cit—l’—l—d)‘ When ¢ — oo, t — 0. We thus deduce the formula
K
: a . ¢ aEk,ar(O) —

Observe that the convergence to 0 in (11.14) is exponential.

Let 6 = X 430,z 12 (o, 7)[do, 7] € D(No, f)® be a good divisor. Remember
that
Fk’g(j, Z) = Z ’I’L(do, T)dOEk,jr(dOz)~

do,r

Because of the choice of the n(dp,r)’s we have

Fes(j,z) = > n(do, 7)doEjr(do2)

do,r ‘
- Zn(do, r)do (Ek,jr(doz) — #)
do,’r (tc)k
= 5" n(do,r)do (Exjr(do2) - ag, . (0))
do,r
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For the last equality we have used the assumption }_; v, n(do,7)do = 0 for every
T € Z/fZ. Let 2 € To(f)(i0o). Since

i*ag, (0)> ‘

%E% (Ek’jT(CL/C + 'lt) — W
we find
(11.15) limy—oFr 5(7,a/c+it) = 0.

The limit (11.15) is valid for any j € Z/fZ, 2 € I'o(f)(ic0) and it converges expo-

nentially to 0 when ¢t — 0.

It thus makes sense to consider line integrals of the form
(11.16) | / Fr.5(j,2)2° 1dz

since F, 5(J, 2) tends to zero exponentially for both endpoints of the line integral. In
the sequel we will compute (11.16) for the integers 1 < s < k—1. In order to compute

(11.16) it is enough to compute integrals as in the next proposition.

Proposition 11.1 Let ¢ € ['y(f) with ¢ > 1 then we have

Z‘S

= Dz(m"d P (a,c).

—5,8

/ (Bur (2 +it) - ag,, (0)) "t =
¢ c ’

=0

Before the proof of proposition 6.1 we remind the reader the Fourier expansion of

periodic Bernoulli polynomials:

—~ T! eQﬂinm
Br = B'r = - ;
(@) = B({r}) = e T
n#0
" For integers s > 1 we also define
Z’I’l
A direct calculation shows that
. _ 2i)® ~
Lis(e%rw:) + (—l)SLiS(B_me) — _( Z'Z) S(x)
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Proof of proposition 11.1 We have

(11.17) /OO(E/C,,«(% + it) —ag,, (O))ts—ldt =

=0

-1
7 e~ /1 mh~ qn( +it)+b/f + (= 1)kq;,n(ﬂ+it)—b/f) t°~tdt
f c

m>1n>1
Let us evaluate first the interior of the integral on the right hand side.

/ [Z Z m 1 27mm(n 2 4it)+b/f) + ( 1)k627rim(n(%+it)——b/f))} ts—-ldt

m>1n>1

_ Z Z mk—l(e%'im(n%—kb/f) + (_1)k627rim(n%—b/f)) / e—27rmntts——1dt
0

m>1n>1
_ F(S) Z ka——l(GQWim(n%—i—b/f) + (_l)keQTrim(n%—b/f));
(271-)5 m>1n>1 (mn)s
1
271'zm(n +b/f 1 k 2wim(nS—b/f)y .~
m>1 n>1 ( ) )ml-—(k—s)ns
) ZZZ 2mi(ci+)(nd+b k _2mi(cij+l)(n2-b
o 5 -8 (e T“’L(c‘]_‘_ )(nC+ /f) + (_1) € Tm(CJ+ )(nc /f))'
( n>1l1]>0n‘]+l/c )

Since f|c we deduce

RO
—(k— s) 277'

= (627ril(n%+b/f) + (_1)k627ril(n%—b/f))

Zl ns( j-i—l/c)

"'J

27rzln 2+b/1) _|__( 1)k627ril(n%—b/f))

)
Gy 2
_I(s) - 1
= G (2m) Z: Z o Z G +1/c)—t=9
)
NN

I=1 =0
(S c 27rzl(n +b/f) + (_1)k627ril(n%—b/f)) l
A—(h—s) (275 2m)s (1—(k—s),-)

where for the second equality we have used ((z,1 — k) = —é’“—k(—“fl where ((z, s) is the
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Hurwitz zeta function.

_ —F(S) Zi(e%il( +b/f)+( 1)k zml(n——b/f)) Bk S(p)
ct=(k=s)(27)s n® k—s

n>1 =1
c ~ l . c¢la
~T'(s) 2milb/ f b —omilb/ f1 Dk~ 5(3) e2rin(s)
R S Lo 1 wilb/ f p
ct=(k=s)(27)s ;[e (1) ] k—s Z—; ns
| Bi_s(}) ,
_ 27rzlb/f lc —2mlb/f D (L 2mi
= T s) 27r Z[e ]—k—s Lig(e”™ ).

Substituting the latter expression in equation (11.17) we get that (11.17) is equal to

_ -1 ‘ c ‘ ‘ B (L .
F(S)Q ) Ze—mer/fZ[e2mlb/f+(___1)ke—27rzlb/f} ]:;c (;D)Lis(e%rzl )

= Tko1-(k—s _
fret=te=a(2m b=0 I=1 s
~I(s)f - - ¢ omil Ek—s(l/c) k - - ¢ omil Ek—s(l/c)
— L mila/c -1 Li, wila/c
oy | 2 DEMITEI G Y L) S
I=r(mod f) I=—r(mod f)

— kaI (k( ){2’”) Z —B-#[Lis(e%ﬂa/c) + (__1)3Lis(e—2ﬂ'ila/0)]

=1
I=r(mod f)
_ 2§~ Biall/o) Blla)o)

fr-1 - k—s s
I=r(mod f)

O

We take the opportunity here to prove a functional equation between the L-
function of ﬁk’g and E:"(;. Before we need to introduce some definitions and prove a

analytic continuation result.

Proposition 11.2 Let f € My(G,C) where G is a discrete subgroup of SLo(Z)
and ¢ € G(ioco). Define

Ap(sia ) i= et [7(fit+ afo) - as(0) s
0

then Af(s;a,c) admits a meromorphic continuation on C.
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Proof Since lim;_ ( flit+a/c) - (if—(—o)—> converges to 0 exponentially we find that

—cit)k
Ag(s;a,c)

is holomorphic for Re(s) > k. We want to extend it to C\{k, 0} where & is the weight
of f. We have

As(s;a,c)

= s/l /Oo(f(a/c +it) — ay(0))t°"Ldt

Jto

+ eme/2es ! /Oto (f(a/c + it) — (CLf(O) + a(0) _ af(O)) 5 1dt

—cit)k  (—cit)k

= ™21 /to oo(f(a/c+z't) —af(O))ltS‘lcuure“'s/%s—1 /O ’ (f(a/c+it) - (“_’; (Z_(gk>ts‘1dt
mis/2 s—1 0 1 _ ) s—1 .
+e™ ¢ af(O)/0 (M—(——cz't)’“ 1) t°7 dt
= ™8/ 2 / " (Flafe+it) - ap(O)dt + el / ) (f(a/c+it)— (0 )ts‘ldt
to 0

(—cit)*
+ e7ris/2cs——1a (O) t8~k . _té
PN\ (Cei)k(s—k) s )

O

From this computation we can deduce a very nice functional equation between
ﬁé,k and ﬁ g: [

Corollary 11.1 Define
L(Fys,8) = /0 b Fy5(it)t*~dt
and
L(Fs8) = /O - Fpstitye—tdt

then L(Fys,s) and L(ﬁ,j’é,s) are entire functions in s related by the following func-

tional equation

(11.18) *F(fNo)* " L(Fis,8) = L(Fy 5,k — 5).
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Paain

Proof Since Fj 5(z) and f’,j(;(z) decay exponentially to 0 when ¢ tends to 0 and ico
we get that s — L(Fy4,s) and s — L(ﬁ,;é, s) are analytic on all of C. Let us prove

the functional equation.

Using the calculations in proposition 11.2 and setting t; = ﬁ we deduce that
00 %
~ ~ FNg ~
L(Fys,5) = / Fi 5 (it)t"dt + / ° Fys(it)t*dt
1 0 .

v fNg

Now applying the change of variable t — ?7\,15 in the second term and using equation
(9.9) we find

(11.19) L(Fes,5) = / sty de 4 (FNo) (=1 / - Byttt
VINg e

Doing a similar computation we find that

(11.20) L(E:,aas):/ ) ﬁg,&(it)ts_ldt—F(fNo)k—s"lz'k/ 1 F 5(it)t*=>=1dt
Vit ViNg

Comparing (11.19) with (11.20) we obtain (11.18). O

Proposition 11.3 Let 2 € I'i(f)(ic0). For the integers1 < s < k—1 A, (s;a,c)

admits rational values. More precisely we have

—~1)s s—1
(=1)°c pr(med f)(a, c).

AEk,r(S; a, C) = fk;_]_ k—s,s

Proof It is a direct consequence of proposition 11.1. O

We can now write down an explicit formula for the moments

/ 2" Fy (7, 2)dz.

Proposition 11.4 Let 2 € I'o(f) and 1 < s <k — 1. Then we have

too " , 1 < /n\,a,,_ ] ir(mo
7m0 = 5 3 () 1) o gt D /o)
< ' =0

do,r
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Proof We have

a
AR, 56,2 (850,¢) = = ™/ 2o 1/ Frs(d, — +it)t*dt
; e

Therefore

/ 2" F5(7, 2)dz =

0

— 71'13/2 5— l/ F a—i—?,t)ts ldt
c

0

— o™is/2p5 l/ n do, dOEer(dO( +Z't))tswldt

0 do,r
ois/2g5-1 / S n(do, ) B + idot))t* " d(dot)
» T TJ 0 0
do,r /d
= 2 Y n(do, ) / Bes((7- + idot)) (dot )~ d(dot)
do,r 0 / 0
Z n(d07 T)AEk,jr (87 a, C/do)

/ (2 +it)" Frs(j, +z't)z'dt
0 C
(Zynt / (it) P s(j, = + it)idt

(_C_I’_)n - leg(z+1)c(z+1)-1/ Fk"s(j’%_'_it)t(l-kl)—ldt
0

1=0
~ (n

= Z <l ( IZ do,7)Ag, (1 + 1;a,c/do)
=0 do,r

a &
(S 3 nldo,r)dg () I AR, (1+ 10, ¢/do)

0

fin
=0 (7) <%>""(—1)l S nldo, r)d5' DIT 4D (a, o/ do).

do,r
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11.4 Moments of i.{c; — ¢}

We can now give explicit formulas for the moments of i;{ico — 2}.

Proposition 11.5 Let £ = 2 € To(fNo)(ico) with ¢ > 1 and let [i;{ico — 2} be

as in theorem 6.1. Then we have

/:r"ymduj{zoo — —Hay) = (1-p"" )/ 2" Frimya(J, 2)dz =
X €

(11.21)

—12 nem - ny a.,_ - jr{mod

A= Y () o, )i D0} (0, /o).
1=0 do|No,re(Z/ fZ)* ‘

Proof Using the first property of theorem 6.1 we have

~ (. a m-n oo n .
/ oy is{ico — 2}z, y) = (1 - ™) / 2 Frrnrall, 2)dz
X

a

n

12 ntm ny a.,_ — iT(mo
=~z =) 3 () 1) Xl 5 DI (0, /)

- =0 do,r
where the second equality follows from proposition 11.4. [J
Remark 11.1 In the case where § = 3, [do,r] € D(No, f)* and n +m =
1(mod 2) we have
do, 7)dy' DIt ) do) = 0
n(do, )dy n+m—l+1,l+1(a’7 c/do) .
do,r
Similarly when ¢ = 3, [do,7] € D(No, f)~ and n +m = 0(mod 2) we have
> " nldo, r)dg' DI 1 (a, ¢/do) = 0.
do,r
Proposition 11.6 Let ji;j{icc — 2} be as in theorem 6.1 with ¢ > 1 then we have
o a o .
| avrdilico— D) = [ 2 Famiagli )iz
Zpx LY ¢ 3
- Iyt
2 ()
‘ _ iT(mod n4-m— ir(mod
Z ”(dOar)dol (sz-igm—l-ﬁ,l—}—l(a’ ¢/do) — p™* lsz—ism—l-Q,l+1(pa7 C/dO)->
d0|N0,TE(Z/fZ)X
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Proof Uéing the fourth property of theorem 6.1 we have

700

mey [ a n :
/ 2y {ico — <} (z,y) = / 7 Fonrap(J, 2)dz
ZpxZy ¢

a

I/l Zn(ﬁm+n+2(j, Z)*pm+n+1ﬁm+n+2(j7pz))dz

100 " 100 -
= / ZnFm+n+2(ja Z)dZ - pm+n+l / ZnFm-}-n-}-Q(ja pz))dz

pa

100 - 100 -
= / ZnFm_|_n+2(j, Z)dZ — pm/ ZnFm+n+2(j, z)dz

[<}

and using proposition 11.4 and the assumption that pxd = § we deduce

-12 &[0 a,, !
7 yn=ti_1
2 (1)
: — ir(mod n-+m— ir(mod
z ’n(dOaT)dol (quhu(m—lﬁ,prl(aa c/do) — p - lwar(m—lﬂ,zH(Pa, C/dO)) .
d0|N0,r¢(Z/fZ)X

O

12 Proof of theorem 6.1

In this section we prove the theorem 6.1 following essentially the same steps as [DD06].

We brake the proof in four steps.

12.1 Measures on Lipy X L,

Let £ = 2 € ['o(fNp)(ico) with p { c. In this subsection we prove the following crucial

lemma

Lemma 12.1 There exists a unique family of Z,-valued measures on Zy, X Zy
indexed by (Z/fZ)* /{p) denoted by ve ; for some j € (Z/fZ)*/(p) such that

@y [ ke = 0= [ b DRG 2
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for every homogeneous polynomial h(z,y) € Z[x,y] of degree k— 2. Moreover we have

Vﬁa’)’*j(a’x + by‘) cT + dy) = Vﬁ,j(xv y)
a b
for any ( J ) € Lo(fNo).
c

If we use the equation (12.1) to the monomials z"y™ we get

/ g™y dve j(z,y) = —12f(1 pn+m)/ 2" Frimsa(d, 2)d2
ZpXTyp ¢
(12.2)

12 - ny, a.,,_ - jr(mo
— (1= Y () G0 S e )5 DR 1o

=0

do,r

for all integers n,m > 0. We set

- n+m —~ (n @ \n— —1 yJr(mo
)= (=) 5 () P 0 Xl ) D ).

=0 do,r

Our key tool in showing the existence and uniqueness of {v¢;}jez/sz)% /) 18 the

following result, which is a two variables version of a classical theorem of Mahler.

Lemma 12.2 Let b, ,, € Z, be constants indexed by integers n,m > 0. There

exists a unique measure v on Ly X Ly such that

L G () awte s =t

We define rational numbers ¢, ;’s to be

n
= Cn il .
n -
1=0

for any 0 <n and 0 <i <n.

For j € (Z/fZ)* /(p) we define

n m

Jam(F) = Z Z Cn,iCmitLiir ()

=0 =0
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So in order to prove lemma 12.1 it is enough to show that J, . (j) € Z,. Note that

we can ignore the denominator f in the expression in (12.2) since f is coprime to p.

Proof of the p-integrality of J,.,(j) In order to show the p-integrality of the
terms J, (7)) we need to analyze more closely the terms I, »(j). By definition we
have

TiTm - n r(mo
B = (1= 3 ()Er D S i dolDzmdlIilH(a,c/do).

1=0 (%] Z)% do|No

Let us concentrate on the terms -, v n(do, T)dg lDfoZOleQ 1+1(a, ¢/do). Using
(2) of lemma 11.1 we find

£yt ) By—i-1(h/(¢/dv)) Bis1(ha/c)

12.3) dgtDimed do) =
( ) k—l— 1l—|—1(a7c/ 0) (dO r— k—1-1 [+1
h=jr(mod f)

We would like to think of (12.3) as the coefficients of a generating function. For the

sequel we construct such a generating function.

We have by definition

zel® T

n>0
We set 8(h) = {%} for 1 < h < ¢. For the value of h in this range we let Fj, = 1/2

when h = ¢ and 0 otherwise. We thus have

(h)m ha :L.t—f-l
— +ah = > Bia(—

= (

er

Rearranging a bit we find that
ee(h)a: 1

elhdo/c}(y/do) 1
A(r, h,y) = B B
(r,h,y) Z n(do, 7) ( ey/do — 1 y/do * h)

— n(do, 7") Bs—Hih_{_(i/dO)) (dio)s
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We have

A(r,h,y)B Z Z (do, ) Bs1(h/(c/do)) §t+1(ha/c) (EyE)s ()

| |
2550 doi s+1 t+1 st
So
S Alr,h,y)B(h,2)
1<h<ec
h=jr(mod f)
B,.1(h/(c/do)) Bepi(h s gt
Y ey Y Do/ Busliaj
5,620 do| No 1<h<c 5+ t+ s b
h=jr(mod f)
124) =3 3 aldo, )e*dy DR 0, cfdo) o
: 0,7 0 s+1,t+1 ) 0 5! t'
St>0d0|N0

Now taking the summation over the r’s in (Z/fZ)* of equation (12.4) we find

(12.5) Z > Al hy)Bha)

e(z)fI)*  1<h<c
h=jr(mod f)

s .t

= 3 ol tD:in‘fl”w»c/dw%%-

8,620 re(Z/ fZ.)% do|No

In the summation (12.5) some cancellations occur and it is important to take them

into account. We have

Z > A(r,h,y)B(h, )

€@/fz)* 1<h<c

h=jr(mod iD)
= Z B(h,z)A(hj™', h,y)
1<h<ec
(h,f)=1
O ethdo/c}(y/do) 1
- Y L) Y o ) e~ L g
1<hee € 7 1= do|No evi — 1 y/do
(h,f)=1
ez _ 1 elhdo/c}Hy/do) 1
(1h§h)50 et =1 do|No evto —1 y/do
=1

where g(z) := =15 — L. Note that the term F}, have vanished since f|c and (h, f) = 1.
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, N

Now we want to use the fact that 3, v n(do,7)do = 0 for all r € (Z/fZ)*.

Expanding (12.6) we find

efhlz _ e{hdo/c}(y/do) 1

1) = ¥ () ¥ i e —

1<h<ec do|No
(h,f)=1

lhdo/e}(y/do)  q

B Y 3 b G g

1<h<c do|No
(h,f)=1

Because 341, 7(do, hj~)do = 0 the first term in (12.7) is equal to

oh)e _ 1 elhdo/c(y/do)

e .—_1
Z (7:1—) > nldo, b )(m)
1<h<C d0|N0
(h,f)=1

For the second term of (12.7) we find

D Zn(do,hj‘l)dgtét“(h/(c/do))y—t=

|
1<h<e dg|Ng t+1 &
(h,f)=1

SN Y e g Bl

re(Z/fZ)*  1<h<e do|No
h=jr(mod f)

o@) Y Ydt Y iy ngt Ry

T€(Z/ fL)* do|No 1<h<c t+1
h=jr(mod f)

(12.8) Z SOy don(dmhj_l)datém(h/(c/do)) 4t

“
€(Z/FL)* do|No 1<h<F t+1 t!
—]'r(mod £

But using equation (11.1) we have

Z By.1(h/(c/do)) _ Z By (h/(¢/do))

I<h< £ t+1 h(mod f 5 t+1
h=jr(mod f) h=jr(mod f)
e B
fdo t+1

It thus follows that (12.8) vanishes completely since 3 do|No ™(dos hi~1)do = 0.
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So with all those cancellations we find the important identity

o(h)z _ 1 eBldoh)(y/do)

Z > AmhyBhe) = Y () Y alde i) )

€(Z/fT)*  1<h<c 1<h<c do|No
h=jr(mod f) (h,f)=1
i

o rj(mo ys z
= Z Z Z dOa dO tDsfl-l t—:—ilf) (a’7 C/do)gy

$,t>0re(Z/ fZ)* do|No

=: H;(z,y).
where ((doh) := {57’2—0} We have
o> o _t yri(mod f)
5 5 () Z > nldo, 7)dy " DT (a, ¢/ do)
y €(Z/fZ)* do|No
and also
0° ot . Pt t yri(mod f)
50 8xtH (2?, yP) Z Z (do,)dy " Dyyi4r (a, ¢/do).
y Z/fZ X doINo

Combining all this we get that

. n+m . n r(mod
Lm(j) = (1~ p"* )Z (l) Z Z (do,7) dolwafm lL 1+1(a, ¢/do)
=0 TG(Z/fZ)X do|No

n-+m : n a n— n+m— an+m_l al+1
=(1-p"* )Z (l>(~) (=)t layn+m—lW(Hj(x’y) + H;(z", 4%))0,0)-

=0

In order to ease the notation we let H(z,y) := H;(z,y) + H;(2?,y*) and D, = &
and D, = E’)%' With this notation we get

=Y () Gty DL s =
=0
- n - m yn+m— *
(1-p""™) ( )a” (1) Dy DL H (2, y)|0,0) =
0
(=)D Y () )ai-1)en Dy DL ol =

(1—p"*™)(cDy)™(aD, — Dx)”H;(x, Y)|(0,0)-
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8 Bu 9 Bv

Now we do a change of variable, we set u = e” and v = €¥ s0 Dy, = 5-5F + 5,50 =
Ur au = D, and similarly and D, = a‘9u gZ + 8‘2} g; Ve 81} = D,. Note that
o(h) _ 1 B(doh) /do
u '_1 v
Hi(u,v)= Y (——) > n(do, hj ) Cm—T)
1<h<e do|No
(h,f)=1
So H;(u,v) is a rational function in u/¢ and v!/
We do another change of variable we set (u,v) = (£, w2?) so (z,w) = (L, u*/°v'/°).
ey O (0082 D Owy_ _ 0 (002 0wy _
Also Du == u% = u(Bz 3u+%%) —z(—ﬂ—}—%w—-— and D = Ua'u = ’U('é;—%ﬁ-%b%) =

w2 If we set D,, = w2 and D, = 22 we get that

In,m(j) = (1 —pn+m)DvTD:H;(u’U)l(l,l)-

Jnm(7) = (?:) (ZZ> HZ (u,v)|,1)-

Now the p-integrality of J,, () is a direct consequence of the following lemma

Consequently we have

Lemma 12.3 Consider the subset R of Z,(u'/¢,v'/¢) defined by

P
R = {6 where P, Q) € Zp[ul/cyvl/c] and Q(1,1) € Z;}

then R is a ring stable under the operators (13:) and (%). Furthermore H(u,v) € R.
Proof The same as in [DD06]. O

It thus follows that the expression in (12.2) lies in Z,. This concludes the proof
of lemma 12.1. O ‘

12.2 A partial modular symbol of measures on Z, x Z,

In this subsection, we use the family of measures {v¢;};e@/sz)% /@) Of lemma 12.1
to construct a family of partial modular symbols (supported on the set of cusps
Lo(f No)(ic0)) of measures on Z, x Z, encoding the periods of {F(j, 2)}ie@/ 12y~ ) o) -
Note that Z, x Z, is stable under the action of I'o(fNo).
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Lemma 12.4 There ezists a unique family of partz'al modular symbols {v; }jc@/s)% /)
supported on the set of cusps I'o(fNo)(ico) of Z,-valued measures on Z, X Z, such
that

| bt - sHaw) = (19 / bz, )R, 2)dz
ZpXLyp r

forr,s € To(fNo)(ico) and every homogeneous polynomial h(x,y) € Z[x,y| of degree
' b
k — 2. Furthermore if v = ( ¢ p ) € To(fNo) then vi{r — s}HU) = vyy{yr —
c

vsHAU). So in this sense the measures are T'o(f Ny)-invariant.

Proof Uniqueness is easy. We must show the existence. Let M denote the
Lo(fNo)-module of degree zero divisors on the set I'o(fNp)(ico) = I'(ico). Let
M' C M be the set of divisors m € Divg(Lo(fNo)(ic0)) for which there exists a fam-
ily of Z,-valued measures indexed by (Z/fZ)* [(p), {vi{m}};e@/ 2y jipy o0 Ly X Ly,
such that

m

| i {mie.s) = 0= [ W DRG )
p X Lap
Here [ is defined by f[cl]—[cz] = [7, and extend by linearity. We must show that
M =M.
It is clear that M’ is a subgroup of M. We will show that M’ is T'o(f Ny)-stable.
A B '
Let m € M’ and v = ( c D ) € T'o(fNo); for compact open U C Z, X Z, we

define

vi{ym}(U) = vy-15{m} (y"'U)
Define also a right action of I'g(f Ny) on the space of polynomials in two variables

by
hl,(z,y) = h(Az + By, Cx + Dy).
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P
' We calculate

/ h(u, v)dv;{ym}(u,v)
Z

pXLp

:/Z . h(u, v)dvy-1g{m}(v " (u,v))

:/Z y hly (2, y)dvy-1,{m}(z,y)

where 7~ (u,v) = (z,y).

= / h]’v(xvy)dyv_l*j{m}(xvy)
ZpXTp
= (1" / Bl (2, ) Fly % 5, 2)d

(1= Y / h(z 1) By, 2)dz
ym
where in the last line we use the change of variables u = vz and the fact that

Fe(vy Y x 4,77 t2)d(vi2) = Fi(y, 2)dz.

Therefore M’ is a [o(f Np)-submodule of M. Lemma 12.1 shows that
[a/c] — [ico] € M’
when p does not divide c. Finally we claim that
Z[To(f No)l{[a/ ] = [ico]}pte = M.
. Let us prove this last assertion. Let us take 1, fNy € Z which a are obviously
coprime. Note that p { fNp so [ioo] — [5=] € M'. Let & € To(fNo)(ico) with ple.

fNo

b
Let v = < ¢ p > € ['o(fNo) so y(ico) = 2. Then
c

. 1 _ a a+ beo
iedl = [mb =[Z]- [C+dio}
Note that p t (¢ + df Ny). We thus have

2] = fioe) = fie] = [ - ) + ([ E22E] — o) €

Finally the I'o(f No)-invariance of v;{m} follows from its definition. [

134



12.3 From Z, X Z, to X

In this section we show that the family of measures {v;{z — y}};e@/rz)x /() (lemma
12.4) are supported on the set X C Z,, x Z,, of primitive vectors. We start with some

lemma.

Lemma 12.5 Let ¢y, ¢y € I'(i00). We have

/ hiz,y)dvi{c: — c2}(z,y) = / h(z, 1)?;6,},(3', 2)dz
Zp XLy

1

for every homogeneous polynomial h(x,y) € Z[z,y| of degree k — 2.

Proof The characteristic function of the open set Z, X Z is (z,y) - lim; ooy @’
Let £ = 2 € T'g(fNo)(i00) then for n,m > 0, we have
/ "y dvi{ioo — E}(z,y) = limj_m/ 2y DR gy L6 oo}z, y)
ZpxZ ZpxZp '

oy ~12
T =

e n A, — iT(mod
S () 0 S e ) DL 0/

dg,r

( . n+m+(p—1)pf)

C j—o0
do,r

—-12 - ny, a.,._ —1 1: jr{mod
= g 2= () 0 ot st fm DGRy /)
=0
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Meanwhile we calculate

100

znﬁk,p(j, 2)dz

o

=/ fﬁu@W—w%*/ P Fj, 2)dz
a pa

c c

12 & ny a.,._ — jr{mod
= o 2 ( l) =D nldo,r)dg DY 1y (as e/ do)
=0

do,r

—12 n-41m —-—n— - n pa n— — jr(mod
TS (l)@ (=)' D n(do, n)ds" DY 14 (b ¢/ do)
=0

do,r

(12.10)
- 752 () &y

— ir{mod n-tm— ir(mod
> " n(do, )dg (DI D) L (a,e/do) — pr T DI | (pa, e/ do))

do,r

Combining lemma 11.2 with the assumption that p+ 6 = ¢ gives us that (12.9) is
equal to (12.10). O

Let r,s € I'(ico). We want to show that the measures v,;{r — s} are supported
on

the set X C Z, x Z,, of primitive vectors.

Lemma 12.6 Let r,s € I'(ico). Then the measures v;{r — s} are supported on
X.
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Proof Let v € I'o(fNy). Let h(z,y) € Z[z,y] be a homogeneous polynomial of degree
k—=2=m+n-2.

[ bt = s)ww) = [ b adstr— s6@)
Y ZpxZy) Zpx Ly

- / Bly (@, y)dvs -1 {7~ — 75}z, )
ZpXxZy
-1

vl -
= / hly (2, 1) Fip(y7! * 4, 2)dz
7

_'17‘

- / Wz, 1) Fop (v % g,y 2)d(r1)

In terms of matrices, if we let SLy(Z)\M(p) = {7:}%] be a complete set of represen-

a; bl
tatives with v, = then
¢ d

(12.11)

On the ot

(12.12)

i %

p+1

1
T()Ekjv klZEk 1.771 —I—d)

ther hand using equation (4.15) gives us

Ty () Ex(j, 2) = p* L Ex (4, 2) + Ex(pj, 2).
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a; b

¢ 4

p 0
Let P = and {~, =

F()(fN())/Fo(pro) Then

)} be a complete set of representatives of

1 Pt
-1
].2f ZFk,p *.] ,‘)/z )d(’Yz Z)
;n+1
”ZZ (do, 7)do By (v, % 75, doy; P2)d(y; 1 2)—
i=1 do,r
p+1
Py Y nldo, )doB(vit +p7 g, pdov; 2)) (v )
i=1 do,r
pt+l
=YY nldo,r)doBr(7; %74, doy;  2)d( 2)—
i=1 dop,r
p+1 '
Py 0 nldo, T)do Byt p g, pdon; 2))d(v; )
i=1 do,r
p+1
(12.13) = " n(do,r)do Y  Ex(airj, doy; ' 2)d(v 2)—
' do,r =1
P+l
Py “n(do,)do Y Bu(p™ airg, pdon; 2)d(v; ' 2).
do,r =1

Note that in the last equation we could get rid of p~* since px § = 4.
Since Ey(r,vz)d(vz) = Ep(y~! %1, 2)dz for any v € T'o(f) we find that

Ey(airj, doyit2)d(v;7 2) = Ex(yi * (asrj), doz)dz
= Ey(jr, doz)dz.

Note also that pdo% z = doPv;'2. The set {Py71)E i' is a complete set of represen-
tatives of SLy(Z)\M(p). Using that (12.11) is equal to (12.12) we obtain that

p+1 p+1
P> E(airg, doPy 2)d('2) = 1Y Br(airg, doPy; 2)d(Py;t2)
i=1 i=1

= Ty (p)Ex(rj, 2)dz
= (pk“lEk(rj, 2) + Ex(pry, 2))dz.
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Using the fact that pxd = d we find that

> " n(do, r)do(p* T Ex(r, doz) + Ex(prj, doz))dz = (p*" +1) D n(do, 7)doEx(74, do2).

do,r do,r

Substituting the latter expression in (12.13) we get

~12f((p+1) = (0" +1)) Y n(do, 7)doEx(r5, do) = (p — p*) Fi(j, 2)-
do,r

Finally note that Uffll Yi(Zy x L) is a degree p cover of X. Hence we get

p+1

[ Heantr Hen =3 [ it =)y
pH/ h(z, 1) Fp(7! % 3,9t 2)d(v ' 2)

(p—p"" /h 1) Fep(j, 2)dz
=p-r) [ renantr— o) wy

=péxzh@waV—WH%w

Since this holds for any & homogeneous of degree k we get that the support of v;{r —
s} is included in X. [ '

12.4 The measure fi.{c; — 3} is fg invariant

The compact open set X is a fundamental domain for the action of multiplication by
p on Q2\{(0,0)}, ( 187 (1) ) (z,y) = (pz,py). Hence if we define for compact open
UcCcX:

pi{r — s}(U) == vi{r — s}(U)

then fi; extends uniquely to a I'o( f No)-invariant partial modular symbol of Z,-valued

measures on Qﬁ\{O} which is invariant under the action of multiplication by p:

pi{r — sHpU) = b;{r — s}(U)
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for all coinpact open U C QIZ,\{(O, 0)}. This almost proves Theorem 8. It remains to
show that fi; is To-invariant i.e. for all compact open set U C Q2\{(0,0)}

bysg{yr — ys}(YU) = pi{r — s}(U).

- 0
Note that To = (To(fNo), P) where P = ( g 1 )

Lemma 12.7 The partial modular symbol [i; is invariant under To.

p 0

Proof Since Ty is generated by Lo(fNoy) and P = , and that ; is To(f No)-

invariant, it suffices to show that £, is invariant for the action of P. For a homogeneous

polynomial h(z,y) of degree k — 2, we have

/h(x,y)dﬁp—l*j{P_lr — P71} (P Yz, y)) = /
x

X
T S

= h(pz,y)dp;{- — -}z,

RN A e

h(w,y)dﬁj{:—, - j;}(x/p, y)

Writing P~!X as a disjoint union

_ 1
P7'X = (Z, x Z) U(Ezg X Z,)

(12.14) =z, x2})| | ( p 0 ) (Z x pZ,)

0 p

Using the invariance of z; under multiplication by p, (12.14) becomes
L e st = sfpde )+ [ byt = s/} e)
=@+ (1-p"") /przs h(pz,y)dii;{r/p — s/p}(z,y)
# [ hm )R {r/p = s/pHey)
L} xpTyp

_ / h(p, y)dFis{r/p — s/} (@,7)
X

1= [ Wpm)distr/e = slp}ey
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‘ s/p - s/p _
=p" (1 -p* ") / h(pz, 1) Fu(j, 2)dz  + (1 —p**) / h(pz, 1) Fy(, 2)*dz
: r/p r/p :
s/p "
- 1) / h(p2, 1) Fu(j, 2)d
r/p .
. s/p " s
L (1-ph / h(pz, (B, 2) — B, p2))d=
r/p
k—1 22—k S/;D = o
_ (1 - ) / bz DF(G )
r/p
—(1-p) / h(w, 1) Be(j, w)duw
- / Wz, v)di; {r — $}(z,v)

This concludes the proof of theorem 6.1. O

13 The measure ji,{c; — ¢} is Z-valued

In this section we want to prove the integrality of the measures fi;{ioco — 2} of

theorem 6.1 for 2 € I'g(fNy)(i00). We use the same approach as in [Das05].
Let e > 1 be a positive integer divisible by fNp but not by p and let

(13.1) Z =lmZ/ep"Z ~7[el X Ly

Definition 13.1 Let § = >, \n, rez)szyx ™(do, 7)[do, 7] € D(No, £)® be a good
divisor. For each integer k > 1 and r € (Z/fZ)* we define a distribution on Z by

the rule

n k—lg na
Fir(a+ep"Z) =Y n(do,r) (ep ) M

el “do k

where a is any integer.

We have a natural action of (Z/fZ)* on the measures Fy . given simply by j* Fi, =

Fr,rj- Note that for any compact open set U C Z we have

(13.2) Frer(pU) = p* ' Fier(U).
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For x € Z we let x, denote the projection of x on Z,.

Proposition 13.1 The distributions Fi, are Z,-valued measures, and for every

compact open set U C Z and every k > 1,r € (Z/fZ)* we have

Frr(U) = / x’;—ldﬂ,r(x).
U

Proof See [Das05]. O

Theorem 13.1 The measures ji;{oo — %} take values in Z.

Proof We know already that the measure v; := ji;{oo — ¢} takes values in Z, so
it is enough to show that it takes also values in Z[%]. First we want to find a closed
formula for the compact open sets of the form Z, x (v + p°*Z,) when (v,p) = 1.
Let V' be any compact open subset of Z,;. We claim that for any'ball of the form
v + p°Zy, we can always find a sequence of polynomials {h;(y)} in Q,[y] such that

lim; h;(y) = N(u4psz,)(y). We can write down explicitly such a sequence by setting
p'(p-1)
1 :
hy) = | II @w-2
j#v(mod p*)

where v = vp((p® — 1)!). Using the latter observation and the fact that any compact
open set V' C Z7 can be decomposed as a finite disjoint union of balls we find that
there exists a sequence of polynomials {f;(y)} in Q,[y] such that lim; f;(y) = Lv(y).
Let fi(y) = 2%, ¢a(4)y"™. We have

/ dz/j(x,y)=/1imfi(y)de($=y)
ZpxXV X °
=t [ fily)dvy(a)
d;
:h?l;cn(z)/xyndyj(%U)

d;

1~ .
(13.3) =li£n—122cn(i)-j;lz— " n(do, ) DI (a, ¢/do)
do| N
7"€(Z0/f%)><

n=0
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where the last equality uses proposition 11.5. Now using (2) of lemma 11.3 we find

(13.4)

d;
| - 1-
lim —12 E (1)
‘ n=0

e g S

do|No h=1
re(Z) fT)¥ h=jr(mod f)
d; . n B h
R cn(z) ~ ha c Bnﬂ(;ﬁg) _
n=0 €(zZ/fT)* _ h= do| No
h——jr(mod )
& cn(i) n c\" n+1(c/d0)
€(Z/fz)% he JT(mod n ”=0 dolNg N0
c ha . T pT
~12 ) Z Bi(—) Um(fi(=F) = fi(=7))dF1,-(2).
& h+cZ f f
re(@/f2)x et

h_jr(mod )

where ¢ = ep’ with (e,p) = 1. Note that fNgle. For the last equality we have used
the definition of F, combined with proposition 13.1 and (13.2).

We specialize V' = v + p°Z, for v € Z coprime to p and s > ¢. With this special

choice of V' the limit as ¢ — oo for fl(ZT”) approaches 1 or 0 according to whether

Zp

F € V or not, and fi(%) approaches 0. Therefore

vi(Z, x V) Z Z B ( )flr({meh—l-epsZ z, € fV}) =

S/ —Jr(mod f)

h
h=fv(mod p*)

(13.5) v(Z, x V) =—12 > Z B, (:Ti) 2 n(do,)B, (erg—;Ch)>

re(Z/ fZ)*
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where y,, = h(mod e) and y, = fv(mod p®).

— 12 Z Z B, (:pa) D_ nldo,r)B: (gﬁgg)

&(z/fz)> _jrh(;zod f) do|No
h= fv(mod p?)
ha ha | 1 Yh Yh 1
=-12 pe_qhey 2 d _ _ =
Z Z (ept Lpt] 2) 2 o) (eps/do [eps/do 2
S(Z/ 1) h__]r(mod kD) do| No

h=fv(mod pt)

So we get

ha {ha} ) un Yn
- > 2— —2|—|-1) n(do,r)(Z —2 -1
A t s S
(Z/fZ)‘x hgﬂh(;,lod 5 ( ep €p do|No ep /dO €p /dO

h=fv(mod p?)

2a
13.6) =— h (do, 1) — 1) (mod Z
(13.6) = §j > nldo (2| 2] < 1) (mod 2)
re(Z/ fZ) b do|No
: =( df)
h=fv(mod pt)

So if the right hand side of (13.6) is in Z for a = 1, it will be in Z for any integer a.
So in order to prove the integrality of the measure v; it is enough to show that the
right hand side of (13.6) is in Z for a = 1. If we go back to (13.5) and set a = 1 we

can rewrite it as

(13.7)

‘ .
D h\ Yn
Zyx V)= —12 E E n(d E Bi|—|B
! do|No re(Z/ fZ)% ' h=1 ' (ept) ' (eps/do>
h=jr(mod f)
h=fv(mod pt)

Z Z epzt/do h Yn
= "12 do, B]_ ——T—— Bl s .
— ept/dy ep® /dy
do|No re(Z/ fZ)* h=1
h=jr(mod f)
h=fv(mod p*)

where the second equality comes from the fact that if h = h'(mod ep*/dy) then y;, =
yw(mod ep®/do) and that 3_ . 4) Bi(z + )= By (dox).
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Now fix r € (Z/fZ)* and look at the term

ep’/do 3 _ "
n(do,7) B (—-—————> By (—-———-) =
d%;o ; ep'/do ep*/do
h=jr(mod f)
hz=fv(mod pt)

e/fdo
~ [ P fu+ 6A> ~ (psfu + eA)
13.8 n(do,”) S By (pr-tBLET L B (BIRET A
155) d%o (o1 ; 1 (p ep’/do )\ ep*/do
where A € Z[%] is chosen in such a way that eA = jr(mod f) and eA = fv(mod p*).
Note in particular that eA € Z and (eA, f) = 1. We obtain (13.8) by doing the change
of variable h = p®fu + eA and y, = h. This is justified for the following reasons:

{h(mod ep’/do) : b = jr(mod f),h = fv(modpt)} _ {psfu +eA (mod %)}
1<ug

€
fdg

This equality comes from the fact that p* fu = p* f ' (mod %) iff f%o|(u — ). Finally
since y, = h we readily see that y, = h(mode) and also that y, = fv(mod p*).

Therefore this change of variables makes sense and this proves (13.8).

Using the notation in [Hal85] we find that

< <ps_tpsfu+eA>§ (psfqueA

~ eA
13.9 B —
U89 2B o, o

=C(1,1,p° ¢ e/ fdy,
) & Lp /fofps

,0).

0 —1
Using the Dedekind reciprocity formulas for such sums for the matrix ( Lo )

(see [Hal85] for the exact formula) we find

., e €A ~ p o= eA ok
C 171;]98 t7_>'_70 = Bl —)B - =
( 7ao ") H(m;s_t) Gt P ~ o)
+1 1 E (BA _ fdolu)
sy 75 NPT P




Since (do, p°~") = 1 and eA = y(mod fp®) for an integer y (not depending on dp) such
that y = jr(mod f) and y = fv(mod p°*) we can rewrite the right hand side as

€

| ~ ~ o1 1 = Sp

(13810) > Blo)Bi=-I+s X eBz(ys—f;_t)
s—1 p fp p 2 s—t fd fp p

p(mod p*=?) w(mod ps—*) J4o

Con() ihn-a 2
4+ -—By| — | +=-=B5(0) - B :
2 = "\ fpr) " 2p :(0) =By fp
Taking the summation of (13.10) over do|Ny weighted by n(dp,r) we see that the
second summation and the third term of (13.10) vanish since ), n(do,r)do = 0. The

fourth term doesn’t contribute to any denominator dviding f. It remains to deal with
the first summation and the last term. Taking the summation over all r € (Z/fZ)*
then we get cancellations for the prime dividing f by pairing the elements r j(mod f)
with their additive inverse —jr(mod f). This uses the fact that By(—z) = —By(z).

Therefore (13.7) lies in Z[%]. This implies that v;(Z, x V) € (Z[%]) NZ, =
Z. Since the IN“O translates of the sets Z, x V form a basis of compact opens for
(Q\{(0,0)}/p*) ~ X, the To-invariance of the {v;};ez 2= therefore implies that

{vi}ie@ sz« are Z-valued. 0O

Remark 13.1 Note that we have never used the fact that >, n n(do,7) =
0(mod f) for all r € (Z/fZ)*. In fact this condition can be dropped.

14 Explicit formulas of [i.{c; — c;} on balls of X

We want to give an explicit formula of those measures on the compact open sets of
the form (u + p°Z,) x (v + p°Z,) for u,v € Z and (u,v,p) = 1.

Proposition 14.1 Let u,v € Z such that (u,v) € X. For a positive integer s, let

Uuwv,s denote the ball of radius 51; around (u,v) € X i.e.
Ui = (u+p°Zy) x (v+p°Z,) CX.

Let 2 € f‘o(ng)(ioo). Let A, be an integer such that A, = fv(mod p°) and A, =
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r(mod f) then

(14.1)

fij{ico — —}( Uuiv,s)
(14.2)

o/ fo A\ _dofu 5 (1 Ar;
Sng 3 w0 25 (o () -4 5 (7w (- 3)

do|No re(Z/ fZ)*

B : ~ ah dofu\ = h
mop b D, B (pSC/do— P >Bl(psC/do)'

dg,r 1<h<pc/dy
: h=fv(mod p*)
h=rj(mod f)

where as usual {x} denotes the fractional part of a real number. Note that if we

replace v — v 4+ p° or u — u + p° the quantity is unchanged as expected.

Proof The proof follows essentially from the explicit formula obtained in equation
(13.7) for balls of the form Z, x V. We just sketch the proof. Let ¢ = ep’ where
(e,p) = 1. Assume that p {v. Let [ be such that v = lv(mod p®). In the case where
s > t using (13.8) we have

(14.3)
Fi{ico — SHZy x (v+ L)) = =12 Y n(do, r 64503 ( p fﬁ“feA) 7 (psfu+eA>
127 c p P 4y P 0,7 1 ept/do eps/do
Similarly when s <t we have
~ . a .
(144)  Flico = 2HZ, x (v +0'Z)
t S/de
p’fu+eA PP fu+eA
14.5 =12 d B .
e 2 nidor Z 1( ep'/do )Bl( ept/dy

do|No

S

l
Consider the matrix v = < zz) ) > and observe that

'V(Zp X (v +pSZp)) = Unp,s-
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The fo-invariance of fi;{ico — -‘Z:} implies that

a—lc s
o’ HZp x (v + p*Zy))

MJ{ZOO - —}( uvs) ﬁ]{ZOO —

Let (a — lc, cp®) = p™ and assume that ¢ —m > 0 then using (14.4) we deduce

~. a—lc)/p™
fi{ico — (—‘gz‘;s:?)_“/r}(Uu,u,s)
ep'~™/fdo
~ ((a—lc) p’futeAd) s (P futeA
=12 ) nldo,r) ) Bl( o e ) Bl e
do|No,r p=1 p ep /do ep /do
e/ fdo
~ (la=lc) p’futeA\ 5 (Pfut+eA
frmend —12 Z dO) Z Bl ( . . Bl -
© do|No,r pu=1 C/do p cp /dO
C/de eA
eA eA\ 5 (BT 5pe
_—12d% dO, Z Bl (C/fd /»L+fps)—ld0'1—);‘> Bl < c/fdo )
0 0,7

which is nothing else than (14.1). The second equality follows from the distribution
relation of él(x) A similar computation holds when ¢ — m < 0. To handle the case

when plv one can use the exact same idea as in [Das05]. This concludes the proof.
O

Let us verify if (14.1) is in accordance with 4) of theorem 6.1 on a simple compact

open set. First note that
(2 x pZy) [ [(Zo x 2)) = X.
It thus follows that

- (. a - . a
(14.6) ~fistico — LHE x p,) = igfioo — S}y x 7).
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Since [[22] Uno1 = (Zy x pZ,) we deduce from (14.1) and (14.6) that

o . . ha dofu,= , h
Mj{zoo_ﬁ_c_}(prZp)——12Zn(do,T) Z ZB pc/do+ v )Bl(pc/do)

do,r 1<h<pe/dy u=1
h=jr(mod f)
h=0(mod p)
12) n(do,7) Y. ng pha  uyg  Ph o
— 0’,,, U )
do,r 1<h<c/dy u=l pc/ do p pec/do

ph=jr(mod f)

h

(14.7) =12 n(do,7) Y ZBl (C/d )
do,r 1<h<c/dy u=l1 0
h=jr(mod f)

where the second equality uses the fact that (dof,p) = 1 and the last equality uses
the assumption n(do, p~'r) = n(dy, r) for all r € (Z/ fZ)*.

On the other hand if we use 4) of theorem 6.1 combined with the e}{plicit formula

given by equation (12.10) we find
ifico = S}z, x ) = =123 nldo, (D™ D0, ¢/do) — D™D (pa, c/do)
i C ’

do,r
~ h .~ ah
=-12) n(do,r) Y,  Bi(—=)Bi(—)
do.r 1<h<c/do ¢/do ¢/do
h=jr(mod f)
'~ h _~ pah
14. —_ Latuihd
(14 +123nldor) S0 BB
do,r 1<h<c/do
h=jr(mod f)

Now using the identity Bj (pz) = Z?;é By(z + Il)) and substituting it in (14.8) we get
after simplification the right hand side of (14.7).

15 Stability property of [;{ci — c2} on balls of de-
creasing radius marked at an integral center
We want to show in this section that our measures i;{c; — c3} satisfy some stability

property when evaluated on a ball of decreasing radius for which the center if fixed

and has integral coordinates.
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Proposition 15.1 Let (u,v) € Z*NX then there exists a positive integer C(u,v)
such that for s > C(u,v) one has that

MJ{cl‘_)CZ}( qu) MeZ

where M is independent of (u,v). In the special case where ¢; = ico and c; = 2 one

has that

M]{zoo—a—}( Uws) ==12 Y n(do,r) DI P (a, c/do)

do| No,r€(Z/ fZ)*

for s large enough.

Proof In order to prove the proposition it is enough to show that for s large enough

one has

(15.1) | ul{zoo—> —} uvs — _122 do, Dr(modf)( )

do,r

Because n(do,r) = n(do,pr) for all r € (Z/fZ)* we deduce from proposition 14.1
that

(15.2)

pa{ico — —}( Uuy,s) =

c/fdo
A\ dofu) = (1 Arpe
S D ) nldo) (C/fdo<h+fps>_7>Bl(C/fdo<h+f_z;>)'

do|No r€(Z/ fZ)% h=1

We set Aips = fv + rp°. Substituting in the right hand side of (15.2) we obtain

o/fdo vr dofu
2y S S e (g () -5

do|No r€(Z/fZ)% h=1

~ 1 v T
B (_c/fdo (h Tt ?))

. ah av ~dgfu ~ h v
=-12), >, > nldo )Bl( o Tl 1 )Bl (c/do+p8c/fdo)'

do|No r&(Z) fZ)% 0<h<c/do—1
h=r(mod f)
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Nofu

7 | T

< 1. The equation (15.3) is then equal

to

—12 ) > > nlder) <{C(;Zo} i c/;;jops - d;{“) (C/hdo ' PSC;deO)

do|No re(Z/ fZ)* 0<h<c/dp—1
h=r(mod f)

which can be written as

(15.4)

‘ ah ) h
- 12. d —
> X nlde) {c/do} cJdo
do|No re(Z/ fZ)* 0<h?c/cltiof)1
h=r(mo

Z 2. 2, )K Tfde ! “) (c/hdﬁpsc;fdo) +{;Zo}c/;do}

do|No r€(Z/fZ)* 0<h<c/dg—1
h=r(mod f)

The triple summation

(15.5)

> 2 X <d0”>[</fd f)(il*zo/fd)*{j—z}/_;cf}

do|No TG(Z/fZ )* 0<h<c/dp—1
h=r(mod f)

can be bounded by a positive constant Cj independent of s. Now choose s large
1if° < 2. Since (15.4) is an integer and the first term of (15.4) has
denominator dividing ¢? we conclude that (15.5) has to be equal to 0. This concludes
the proofr U '

enough such that

We méke the following definition

Definition 15.1 Consider the measure ij{c1 — c2} on the space X where ¢y, ca €
Lo(fNo)(ioo) and j € (Z/fZ)*. Let (u,v) € X then we say that a ball U, , is stable
with respect to the marked center (u,v) for the measure pij{c1 — ca} if for all s > r

one has

ﬁj{cl - 02}(Uu,v,s) = ,Ej{cl - 02}(Uu,v,r)~

Remark 15.1 Note by proposition 15.1 that every point (u,v) € XN Z? is con-
tained in 'some stable ball of centre (u,v) for the measure fi;{c; — c2}. Indeed take

the ball U, ,, s where s is big enough.
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We have the following interesting theorem which a priori seems very surprising taking

into account the compactness of X.

Theorem 15.1 Consider the Z-valued measure fi,{c; — cz} on the space X and
assume that the integer M in proposition 15.1 is not equal to 0. Then there exists no
cover of X by stable balls with marked centres in X N Z2.

Proof Assume that

U Ui ipss = X

iel
where [ is some indexing set and the U, ,,s,’s are stable balls with respect to the
centres (u@,vz) € XNZ2 If Uy s, N U ;.5 7 0 then either U, ,, s, C Ur; ;.55 OF

Ui is; © Unipss;- We can thus discard the smaller ball and still get a cover of X.

By repeating this we can assume without lost of generality that the balls covering X

are disjoint.

By compactness there exists a finite set J C I such that

U Us; 5, = X

jeJ

By proposition 15.1 we have that
/jr{cl - C?}(UUj,vj,Sj) =M

for some integer M independent of j. By additivity of the measure on compact open

sets we déduce that
fir{cr — e} (X) = [J| M.
On the other hand we have

pr{er = e2}(X) = 0,

which gives us a contradiction. [J
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16 Explicit formulas of ((§,(A,7),1 — k) in terms of

the measures ji,{c; — ¢}

In this section we would like to relate the value at s = 0 of linear combinations of
partial zeta functions of K to the measure fi,{c; — ¢3} evaluated on a certain ball of

X. Roughly speaking we would like to relate the value

((a,p" foo,0)

to the value

(16.1) pr{er = ca} (w4 p"Zp) X (v +p"%p)),

for suitable r, u, v, ¢; and ¢, which depend on a. Remember by lemma 8.2 that if a is
an integral ideal coprime to pf then
C(a_17pnf) wy, S) = f_QS\I/ <————7 wy, S) 3
fpvD

and also by equation (7.15) we have

4¢(a! p" foo,0) = ¢(a™!, p" f, w1, 0).

So instead of relatingv the value ((a™!,p"foo,0) to (16.1) it is enough to relate the

value ¥ (W——“——\/ﬁ,wl,@ to (16.1).

Let us start with some explicit formulas obtained by Siegel where he relates special

values of a zeta function attached to an indefinite binary quadratic form to Bernoulli

| b
polynomials. Let v = ¢ p € SLy(Z) be a hyperbolic matrix with its two real

¢
fixed points 7 > 77 where G0 = {1,0}. Let Q-(z,y) = A(z — 7y)(x — °%Y) =
Az? + Bzy + Cy? ( A > 0 ) be the indefinite primitive quadratic form attached to

7. Let u,v be two rational numbers not both integers. Assume furthermore that

!

!
mu + nv = m'u + n'v(mod Z) for all m,n € Z? Where'y(m> = <m ) For
n n

s=2,3,...define
; e2mi(mu-+nv)

oy ((u,v),7,8) = Z Q)

{(M\(m,n)€Z2\(0,0)
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and for s = 1 set

Z eQﬂi(mu"r‘n“) szgn(QT (m) TL))

‘ QO’Y((U,'U),T, 1) = lim |Q7(m, n)ls

s—1+
(M\(m,n)€Z2\(0,0)

Note that the limit exists since u and v are not both integers. We also let
Ry(z) := / Qr(w, 1) dw.
—d
Siegel proved the following theorem:

Theorem 16.1 The quantity

W_QsdiSC(QT)%¢7((U, v),7,8)

is a rational number that can be expressed using periodic Bernoulli polynomials. More

precisely for s > 1 we have

(16.2)  sign(a+d)(s — 1)1*(2m) > disc(Q+)*"2,((u, v), T, s)
2s-1 (_1)k623——k—1

-3 Sy R0 3 (1 0) o ()

I(mod c)

where ng)(z) is the k-th deriwative of the rational polynomial Re(z).

Proof This is the main theorem of [Sie68]. [
We obtain the following corollary:
Corollary 16.1 We have

(16.3)
_— . 5 (LD 5 (D
¢ (05, (4,7),0) = 4-sign(o+d) Y nldor) Do By ( LT7 ) " (W) |

do,r I(mod ¢/ fdo)

‘ b
where Q. (z,y) = Az® + Bzy + Cy? and v, = ( ¢ p ) with et +d > 1.
‘ c
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Proof Using the functional equation between ¥* and " we get

(16.4)

¢*(5, (A7), 9) |
F(1-s) No 5ign(Qgyr+ (m, n))e2 i/ f

= ~————-——Zn(———,’r)d8 Z A S

F* - , 1-s
(8) & o (IO R sag,y | @or (M)

*1—s 0 s sian or m,ne%rim/f
=—E—Ll~———22n(do,r) ({V__) 3 9@ fdor)(m, 1) _

e ~(m, n)|—
(s) 0/ O ey} | @rdor (M)

do,r

Now evaluate (16.4) at s = 0. Using the assumption that § is a good divisor with the
explicit formulas in theorem 16.1 we deduce (16.3). O

Remark 16.1 If we compare (16.3) with (9.11) we see that the two formulas

coincide since sign(a + d) = 1 and sign(c) = 1.

Now let App = A = a + BvD be an algebraic integer coprime to f where «, 8 are

integers to be specialized later on. Consider the zeta function

U <)\AAT w s)

- =W )

VD
where Q,(z,y) = Az® + Bay + Cy® and 7 = #. Using equation (7.1) we find
that

(16.5)
MA, ~ (I EET) sign(Q, (m, n))
V(Fpes)muoevD % G-,

(rrN\{(m:m)€Z2\(0,0)}

Now we want to specialize « and . Let u be-an integer coprime to f and v be any

integer. Choose integers o and 3 such that
(16.6) B = (24) tu(mod f), o = —B(24)'u — v(mod f), a + VD > 0.

Note that (3, f) = 1. In general we cannot guarantee that (a+8+v/D, f) = 1. However
if we assume that all the primes dividing f are inert in K then we get automatically

that (o + 8vVD, f) = 1.
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Propbsition 16.1 Let AA. be the integral ideal associated to Q.(z,y) = Az® +

a

Bxy + Cy? and v, = ( ) be as in section 8.2. Let u be integer coprime to

c
f and v be any integer. Let Ay p := X\ be chosen to satisfy (16.6). Assume that the

primes dividing f are inert in K. Then if s > 1 is an odd integer we have

sign(a + d)2*nT(24)?
NEIEveE

(16.7)

2s—1 (___1)kc2s——k—l

) O ~ .a(H‘H) v\ = 2+1
2w Q2 Bk( K +}>328-k(fc )

I(mod ¢)

~ (NAA,

= U <—,w1,1—s) .
fvD

Proof When s > 1 is odd we deduce form (16.5) that
AA
%, 3}-),’wl, S) = -y ()\———T—,wl, 8) .

Now using the functional equation of U (see equation (8.8)) combined with the the-
orem 16.1 we deduce (16.7). O

o((

We would like to relate the special values
~ ( Aa 0)
=, W
fovD'
where a, A are coprime to fp with the evaluated measures ji;{ico — 22} (Uy, v,n) for
certain

J» Un, Un, Gn, Cp

depending on a, A and n. We will make a simplifying assumption. We will assume
that € # 1(mod p) where () = Og(foo)* and € > 1.

Propbsition 16.2 Let u and v be fixed integers mot both divisible by p. Let a =
AN, where Q. (z,y) = Az® + Bxy + Cy® and 7 is reduced. Assume that (a,pf) = 1.

Let A = &+ BvVD > 0 be an algebraic integer coprime to fp. Let () = Og(foo)*

‘ b
where € > 1. Assume furthermore that € # 1(mod p). Let vy, = “ J be the
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matriz corresponding to the action of € on the A, with respect to the ordered basis
{r,1} then '

] cn Af
o [ MAA, =~ (a, (248 > Bﬁ+a) ~ (R +1
16.8) U~ wi,0) =4 B | +1) - B (-
( ) (fpn D ' > h=1 1(Cn (fpn fpn ' Cn

p
an by b :
where < ¢ ) = ( ¢ p ) . If we choose a and B in such a way that

Cn dn

B = (2A) 'u(mod fp"), ay = (—B(2A) 'u—v(f+y)) (mod fp"), a+ BVD >0

then we have

- f
‘ (A ANg,, ~ o n
(16.9) =3) > n(de,r)¥ <_y__1;_d_ w 0> = fiufico = 2} (Us,g.0).

f’
y=1 do|No,re(Z/fZ)* n

where Ay = oy, + BV D.

Proof The proof of (16.8) follows directly from proposition 16.1. It remains to prove
(16.9). We have

; ‘
; ~ (A AAgyr
——32 ‘ Z n(d(),'l")\l/ (W,w1,0>

y=1 do|No,r&(Z/ fZ)*

: f Cn/dO TUY
~ an, U ro(f+y)\ (f—p?'i'l
-2 Y a3 B (—;+h>——n)Bl<
dOINO,Te(Z/fZ)X y:]_ h=1 Cn/dO fp fp cn/dO
en/do . ru

1 ~ fan TU TU\ ~ (}‘—n +h
=-12 ) n(doﬂ")ZBl(— ——+h)——|B | -£
‘ do| No,re(Z/2)* h=1 ¢n/do \ fP P cn/d

_ 1 J Cn/fdoé a (Tu AN (%-%—h
= 3 2B (g () - ) B B

do:|]\f(),'r€(Z/fZ)>< h=1

~ . an
= ,uu{zo? - E;}(U%,%,n)

where the third equality follows from the distribution relation of B (z) and the last

equality is a consequence of proposition 14.1. [
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Remajar'k 16.2 Note the similarity with the formula (14.1) which corresponds to
fir{ico — 2}(Unwn) for a = ao and ¢ = cp. The difference with the formula (14.1)
is the variation of the cusp e as n vary and the dependence of i with the first

coordinate of the centre of the ball U, , .

We have 1the following corollary

Corollary 16.2 With the same notation as proposition 16.2 we have
‘ - . O
=3 (e Ay %6, (A,7),0) = ufico — ~*}(Uy,3.0)
y=1 n

where thé index p™f emphasizes the fact that the conductor is fp™ and not f. In
partz'cularj‘, when n = 0, the zeta function (r(A, x 0, (A, 7),0) is ezactly the same as

the one appearing in definition 9.2.

17 Some evidence for the algebraicity of the u(r, 7)
invariant

In this settion we would like to prove a norm formula for our p-adic elements u(r, 7).

But beforie this we would like to remind the reader some functorial properties of the

reciprocity map and apply it to the number field K(foc), i.e. the narrow ray class
field of K of conductor f.
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17.1 The reciprocity map of Class field theory applied to

K(foo)
Consider the following Hasse diagram
L/
L — l
|~
K —

with L/ K and L' /K’ finite abelian extensions of number fields K and K’ where
KCK ajmd L C L. Let S and S be the set of real places of K and K’ respectively.
Let cond(L/K) = foor be the conductor of the extension of L/ K where f is an integral
ideal of Ok and ocor is a product over all real places of T where T C S. Similarly
we let cond(L'/K') = f'oor where T" C S’. Class field theory gives us the following
commutative diagram:

res
GL’/K’ > GL/K

TeCL /K TeCL/K

NK’/K

Lie (§) /T ~ I (§)/ Jux

where [ K(f) is the group of fractional ideals of K which are coprime to f and

Jr/k = Pga(foor) Nk (I (fOL))

where Pg 1(foor) is the group of principal fractional ideals of K that can be generated
by an element A € K congruent to 1 modulo f such that A2 > 0 for all o € T". The
vertical arrows of the diagram are isomorphisms given by:

recyly : Ix(f) = Gryx

p — Frob(p/p)
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where p is any prime ideal of L above p (p is assumed to be unramified in L/K) and
Frob(p/p) is the relative Frobenius of p over p. It thus follows from the commutativity
of diagram that the set of prime ideals of K that split completely in L are precisely
the prime ideals inside Jz k. In the special case where K = K’ we again deduce from

the commutativity of the diagram that Jr x/Jr/x ~ Gr/L.

Let K = Q(v/D) be a real quadratic number field with D = disc(K) > 0 and
Gal(K/Q) = {1,0}. Let f be a positive integer coprime to D. Let p be a prime
number inert in K which is coprime to fD. We denote the two infinite places of K
by oo aﬁd 009 and also 0o = 00009, Consider the Hasse diagram

| K(fco)
K(¢s)

e

Q(¢r)

K

7

Q

where K(foo) C Q stands for the narrow ray class field of conductor f. By class
field thedry K(foo) corresponds to the maximal abelian extension of K for which
a fractional ideal a of K splits completely in K(foo) iff @ = (m) for some totally
positive element 7 = 1(mod f). Let 7 € Gal(Q/Q) then the extension K(foo)™/K is
again abelian over K. The ideals of Ok which split completely in K(foo)™ are the
principal ideals (77) C Ok where 7 = 1(mod f) and 7 is totally positive. Since 77 is
totally positive and congruent to 1 modulo f we get, by the maximality of K(foo)
with respéct to the latter property on ideals of O which split completely in it, that
K(foo) CK (foo). Since 7 was arbitrary it follows that K(foo) is normal over Q.
We denote by Ok (f)* the group of units of Ok which are congruent to 1 modulo f
and by O (foo)* the group of totally positive units of Ok which are congruent to 1
modulo f. In order to have the existence of strong p-units in K(foo) we make the

following assumption
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Assumptions: We assume that

| (1) Ok(f)* = Og(foo)*,

(2) Ox[1(5)* = O[p)(fo0)™.

Obviously (2) implies (1) but in gekneral the converse is false. In the case where
p = 1(mod f) it is easy to see that (1) and (2) are equivalent. Assumption (1)
implies that K (foo) is a totally complex Galois extension over Q. Similarly, if we

(Frp)

let p = pOk, assumption (2) implies that K(foo) is a totally complex Galois

extension over Q.

We héuve the following short exact sequence
171 1 = Gr(foo)/x = GK(fo0)/@ = Grjo — 1

which spljjts. Let us denote by ¢ € Gk (fo0)/g 2 lift of 0 L.e. ¢|x = |k and 1* = 1. One

! = g1 Therefore the conjugation

can show that if ¢ € G (so0)/@ then g* 1= 1gt™
by ¢ on GK(foo)/K corresponds to —1.- Let g € Gg(s0)/0 and denote again by g :
K(foo) %—» C, the corresponding complex embedding. We can write g as g = he
for some h € Gi(fo)/k- Let ¢ € Gi(re0)/q be a complex conjugation induced on
K(foo) x%ia the embedding g : K(foo) — C, 50 ¢ = g~ !7,g Where 7o is the complex
conjugation on C. Note that ¢ € Gg(so)/k since K is real. Let ¢’ € Gg(so0)/q and

write it as ¢’ = /¢ for some I’ € Gk (foo) k- We have
g leg = (W) (W) =W e = la=ct =

It thus f@llows that the complex conjugation is independent of the choice of the
complex jembedding of K(foo) in C and therefore K(foo) is a Galois CM field over

Q. A similar computation shows that K(foo)f" is also a Galois CM field over Q.

From novjv on we denote the complex conjugation of K(foo) (or K(foo)f™¢) by Too.

The inverse of the reciprocity map gives us an isomorphism

rec™t : Ix(f)/ Px1(foo) — Gal(K(foo)/K).
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The actiQn of Gk on Ix{f)/Px(foo) is the obvious one. If [a] € Ix(f)/Pk1(foo)
is an ideajl class then [a]” = [a”]. We also have another involution in Gg(fec)/q Which
plays an important role namely the complex conjugation 7. One can show that 7.
corresponds to the ideal class (1 + f/D)Pg 1(foo) under rec.

17.2 A ”norm” formula for u(r,7)

In this section we want to compute a certain norm of u(r, 7) in order to relate it to a

product éf normalized Gauss sums. In order to simplify the notation we set
Afoo = Ix(f)/Pr1(foo) and Goo := Gal(K(foo)/K).

If (r,7) € 'HEK(NO, f) then the basis {7,1} is oriented i.e. 7 — 7% > 0. Let A, A, be
the integral ideal corresponding to (r,7) then (A,A;)” = A, A, and the basis {77, 1}
is no more oriented. Nevertheless we can still define u(r,7%) in the obvious way. If
we denote again by ¢ the non trivial automorphism of G K,/Q, then one readily sees

that u(r, 7)7 = u(r, 7).

To any divisor § = . Aye, Talt € Z[A ;o) and a set of positive integers {d, }oca foo

coprime to p we associate the zeta function

172) (6,8) =3 nads¥ (%,wl,s)

a€As

= Z nadeZSC(aa—_l?fvwlaS)

a€Af

where a, € a is an arbitrary chosen integral ideal and w; = sign o Ni/g. To any
divisor 6 = Do M(do,)[do, ] € D(Ny, f) and element (1,7) € HI¥ (N, f) we can

attach a divisor

§= > n{do,n)[Qr/do, doT) N O] € Z[Aso]
do|No,re(Z/ fZ)*

where the map 2 is the map appearing in definition 5.7. Having such a divisor §

allows us to associate a zeta function (similar to the zeta function appearing in 1) of
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definition 9.2)

N e )

s T A'r d Ad T
- Zn(do,T)do‘I’ <—/\/%f—o,w17 S)

do,r

=Y n(do, T)d3 £ C((Arjaohaor) ™, Frw1, ).

do,r
where Q(r/dy, doT) N Ok = A4y Adyr is an integral ideal of O and A, 4, is a positive
integer such that A, 4, = r/do(mod f). We have suppressed the 7 in the notation of
¢(6, s) since it already appears in the writing of §: In a similar way, one can define a
zeta function ¢*(4, s) (similar to the zeta function appearing in 2) of definition 9.2)

(Q(T/do,doT)ﬂOK w 8)
\/Ef s W1, .

(17.3) ¢*(6,8) =Y _ n(do, r)d3T*

do,r

For the definitions of ¥ and ¥* see definition 8.2.

Remark 17.1 In general the zeta functions (*(4, s) and {(6, s) are different. Later
on, it will be crucial to be able to compare one to each other. This is the content of

proposition 17.3. -

In section 9 we have constructed a p-adic zeta function C;((S, s) which interpolates
special values of (*(d, s) at negative integers congruent to 0 modulo p — 1. We have
proved also a p-adic Kronecker limit formula relating special values of C;(a *0,8) to

our p-adic invariant u(a) € K. More precisely we have proved that

(1) 3¢*(ax6,0) = vy(u(a))

(2) 3(¢) (a%6,0) = —log, N, /q,(u(a))

for any a € Aye. Having in mind the theory of CM for imaginary quadratic number

fields we have formulated the following conjecture

Conjecture 17.1 Let a € Ay be an ideal class of the narrow ray class group of
conductor f. Then the element u(a) is a strong p-unit in L = K(foo)Fre) C K,
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i.e. for all places v {p of K(foo) (including the infinite one) we have |u(a), = 1.
Furthermore if we let

rec ' Ig(f)/ Ik — Gr/x

be the inverse of the reciprocity map given by class field theory then
w(a) @) = u(ad’).

Remark 17.2 The field L = K(foo)¥re) is the largest subfield of K(foo) for
which p = pOgk splits completely.

By construction u(c) lives naturally in K so we can write it as
u(c) = p*(@30¢(¢)
* where €(c) € O . If conjecture 17.1 is true then the polynomial

(174 f@= JI @-u®)

bel (f)/ Ik

should have coefficients in OK[%].

Remark 17.3 From conjecture 5.1, since u(a) is a strong p-unit, we have that
u(a)™ = u(a)~ where 7o corresponds to the complex conjugation in Gr k. It thus
follow that if « is aroot of f(z) then o~ is also a root of f™(z) = f(z). From this we
deduce that f(z) = 2?9 f(1) ie. f(z) is a palindrome polynomial with coefficients
in Ok[3]- Similarly g(z) = f(z)f°(z) € Z[,]z] is a palindrome polynomial with
coefficients in Z[zl)]'

Let us fix a prime p in L = K(foo){fe) above p. Conjecture 17.1 tells us that it is
possible to take an embedding L — K, such that

U(C)OL _ H <prec—1(c—ib)>

belx(f)/ Ik

3¢* (bxd,0)

where we think of u(c) as a root of f(z). We should point out that up to a root of

unity in L the strong p-unit u(c) is completely determined by the set of integers

{3¢*(b* 4, 0)}beIK(f)/JL/K ’
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since two such units would differ by an element of norm 1 for all places of L, therefore

a root of unity in L.

Constructing a subgroup of p-units of maximal rank in K(foo) is a very difficult
problem since we don’t even know how to construct explicitly the field K(foo). How-
ever, much is known about the strong p-units of the subfield K({;) C K(foo) which
is nothing else than a subfield of the cyclotomic field Q({s,{p). For the cyclotomic
field Q(¢y), with N coprime to p, the construction of a subgroup of the group of
strong p-units of maximal rank is provided by normalized Gauss sums. Let r be the

smallest integer such that p” = 1(mod N) and set ¢ = p”. Let
we Ty — pga

be the Teichmiiller character. Let also ¢, be a primitive p-th root of unity. We define

as usual an additive character of I, as

Vg 1 Fg —

Try,/F (a)
q/Fp
CL P .

A Gauss sum with respect to the character wg is defined as

T(wl) = wila)ty(a) € QG Go1).

a€lFy

Because the Frobenius automorphism of F,, z — 2P, is bijective and that ¢,(zF) =
1y(z) we deduce that

(17.5) | r(WP) = 7(w).
A normalized Gauss sum is an expression of the form -fi‘;—:;i_)r; We set
Tlwg
9(5) = i“’zl € Qw, &)
T(wq

where c is any integer. From (17.5) we deduce that g(%7) = g(%). Normalized Gauss

sums are strong p-units and one can compute explicitly their factorization in the
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number field Q((,, {;—1). An example of a subgroup of strong p-units of maximal

rank in Q({y) is provided by

(176) U= <{g (%)N} ) € Q)™

Note the presence of the exponent 2N. Since g (%)QN =g (%)QN € Q(¢{n) we deduce

that

o (5)" e car

In particular in the case where —1 € (p) < (Z/NZ)* we have that Q(¢y)" is totally

*N' — £1. This can be proven in purely elemantary way. Let

real and therefore g (&)
us prove it without appealing to the notion of strong p-units since the computation

is instructive. Let s be such that p* = —1(mod N). Then since g (%) =g (’%) we

get that
(7)=9(5):

On the other hand a direct computation shows that

( c ) [ —c
Combining both we conclude that g (%) is a real number with absolute value 1 so it
is equal to {£1}.

From now on let us assume that —1 ¢ (p) < (Z/NZ)*. In this case one can show
that the Z-rank of U is %ﬁ]—) This is proved essentially by showing that the divisors
of Gauss sums give rise to the universal odd distribution of degree 0, see Lemma
2.3 of chapter 17 of [Lan94a]. Using proposition 1.1 and the fact that —1 & (p) <
(Z/NZ)* we deduce that the Z-rank of the group of strong p-units of Q({x) is equal
to % From this we conclude that U has maximal rank. It follows that one can find
f% elements inside the set (Z/NZ)/{£1} that give rise to Z-linearly independent
normalized Gauss sums (inside the multiplicative group Q({x)*). Note that in order
to get a subgroup of maximal rank one really needs to go over all j € Z/NZ/{+1} and

not just over j € (Z/NZ)*/{£1}. In fact one can give an example of an integer N
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(divisible by three distinct primes) such that the group generated by the normalized
Gauss sums arising from the indices j € (Z/NZ)*/{£1} has not a maximal rank.

For a basis of universal odd distribution of degree 0 see [Kuc92].

Even if we don’t know the algebraicity of u(c) the Shimura reciprocity law for-
mulated in conjecture 17.1 allows us to define a pseudo norm of u(c). Note that the
p-adic element u(c) € K depends only on the ideal class ¢ € Aj as the notation

indicates.
Definition 17.1 Let M and M’ be number fields such that
K C MQM’ C K(fo0).
The reciprocity isomorphism gives us canonical isomorphisms
rec]T/Il,/K A (f)/ Iy — Gal(M'/K)

and
rec;}/K Ik (f)/Imyx — Gal(M/K).

Therefore recyy x induces a canonical isomorphism between Jyy k[ Jyr/x and Gal(M'/M).
We define

Ny (u(e)) == H u(be).
be‘]M/K/JM//K
If we have K C M C M' C M" C K(foo) on can verify that this pseudo norm
satisfies the usual transitivity property namely
NM’/M o} NM///MIU(C) = NM///MU(C).

From this we deduce that if u(c) is expected to lie in M’ i.e. if it is constant on all
cE JM’/K/JM"/K then

NMH/MU(C) = (NM//M’LL(C))[M M]

Suppose that M C K(foo) is an abelian extension of Q contained in M such that
M-K=Mand MNK =Q. Let Gal(K/Q) = {1,0}. Then there exists a unique
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embedding o : M — C such that o|g = 0|k and o|g; = Idy. Since u(c) € K we
have a natural action of Gal(K/Q) ~ Gal(K,/Q,) = {1,0} on u(c). This allows us
to define

Ny 5(ulc)) == Nk, sq, © Narryn (u(c)).

For the rest of the paper we set

and

Note that LN K((;) = K - Q(¢;)F# D M since Fry(¢;) = Fri(¢s) = CJ’ZZ where
g = pOk. Note also that
Jik = (Pra(foo), (p)),

and
Iy = Ni(soo)m (K (f00)™) - Pk,1(fo0).

We want to prove the following theorem which is the main result of this section:

Theorem 17.1 Let p, f, Ny be chosen as usual and let § € D(N, f)® be a good
divisor. Assume that all the primes q|f are inert in K and that —1 ¢ (p) < (Z/fZ)*.

Then one has
(7.7 N, 7(u(r, 7)) = S(mod ),
where S is a product of normalized Gauss sums in F = M - Q&) € Q) (G)-

Corollary 17.1 The quantity N zr(u(r, 7)) lies m/f\(:; NF=M= Q(¢y)Fre C
Q,". Note that because of our assumption we have that M is a CM field.

There are 4 steps in proving the "norm formula” of theorem 17.1.
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(1) Calculate (¢;)'(cx9,0) (where (;(6,s) is the p-adic zeta function appearing in
definition 10.1) and relate it to the p-adic invariant u(c). This is the content of
the theorem 10.1.

(2) For the second step one considers a slightly different p-adic zeta function denoted
by (po(d,s) (see the proof of proposition 17.1 for the definition). This step
consists in expressing

Tri(roo)mSpolc* 9, 5)
as a linear combination of p-adic L-functions that behave well under the base

change from Gk to GM/Q- More precisely if we let ¥ € @1\7 10 then the base

change translates as a factorization of L-functions of the form
- _ (D
(17.8) L(s, X © Nxq) = L(s,X)L(s, X | — |)-

where X o Ng/q is a character of G /x. We can interpolate special values of

(17.8) p-adically and we obtain

_ - - D
Ly T © Niga) = Ly, Ko Lol Ty (2 )
The appearance of the Teichmuller character raised to the power 1 is an artifact
of p-adic interpolation. Note that only odd characters X’s of Gal(M /Q) will
contribute to the p-adic interpolation since we are only interested by the values

of L(X,1 — m) for odd integers m > 1.

(3) Compute Ly, (0, xwy) for odd characters of Gy, (note that Ly (0, Xw,) = 0 since
X(p) = 1) and relate it to normalized Gauss sums. This is accomplished by
combining a limit formula for L,(s, Xw,) that was proved by Ferrero-Greenberg
([FG78]) with the Gross-Koblitz formula ([GK79]) relating the p-adic gamma

function I',(s) to Gauss sums.

(4) Relate (;(4,s) to (0(d,s) and ¢*(4,0) to ((6,0).

The steps 2 and 3 are proved in the next proposition:
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Proposition 17.1 Let § =

integers coprime to p. Set

€(6,s) = Z nadfl{f/(%,wl,s).

aEAfoo

0CAjor nala] € Z[Ajeo] and {da}aca,., be a set of

where a, € a 1s chosen to be an integral ideal. Then for every fized congruence class
i modulo p — 1 there exists a p-adic zeta function denoted by (,,(8,s) (s € Zy) such
that for alln <0, n =i(modp — 1)

(1) (Tromép:)(6,n) = (1 — p™*)TrrmC(0,n) where Tryn is taken under the
natural action of Gal(L/M) on 6 under the reciprocity map. Note that the

action is well defined since px§ = 4.

(2) In the case where i =0 let

g: Zn(do,r)[do,r] € D(N()?f)(p)
do,r

be a good divisor for the data p, f, Ny and let

(179) ) = Z n(d07 T)[Ar/doAdoT] S Z[Afoo]
do|No,re(Z/ fZ)

where (1,7) € HYX(No, f) with T reduced. Suppose that =1 ¢ (p) < (Z/fZ)*
then

(17.10) 3(Trr/mépp) (6,0) = —24log, S,

where S is a product of normalized Gauss sums in M - Q) € @p. Moreover we have
(17.11) 6 TrrmC(6,0) = 12v,(S*).

Note that S* € M C Q" so it makes sense to take 1ts valuation at p.

Proof of proposition 17.1 Let § = > _n,[a] € Z[Ajs]. Recall that

¢(6,8) = Z nads U (%,wl,s> :

aEAfoo
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Since U is essentially a partial zeta function attached to K (see lemma 8.2) then
applying the main theorem of [DR80] to every term of ((d, s) we get that for a fixed
i(mod p — 1) and a fixed b € Asy that the values ‘

(17.12) (1—p~2™)¢(b* 6, n)

vary p-adically continuously when n ranges over integers n < 0 and n = i(mod p).

By density this gives us a p-adic zeta function
Cp,i(& S) : ZP - QP

which interpolate the values of (17.12) on this fixed congruence class modulo p — 1.
Let

(1) Trrmc(s,s) = ZbeJM/K/JL/K ((bxd,s)

(2) TTL/Mvai((S’ S) - ZbeJM/K/JL/K Cp,i(b * 57 S)
By the definition of Tr1/p(p,i(6, s) the values

(1= p™*")Trr/mC(8,m)

coincide with T'ry/a(pi(0,n) for integers n < 0 and n = i(mod p — 1). Since the
values in (17.12) vary p-adically continuously when n < 0 and n = i(mod p — 1) this
implies that Try/¢(d,s) varies p-adically continuously on this subset. This proves
the first part of the theorem.

It remains to prove the trace formula (equation (17.10)) and the valuation formula
(equation (17.11)) for the p-adic zeta function (,0(d, s). Since {,0(d,0) = 0 we have
L(d2¢0(0,9))]s=0 = (0(6,0). Also we have (d5¢(6,s))[s=0 = ¢(6,0). Therefore
without lost of generality we can assume that all the d,’s are equal to 1. We have
that

FETE wm) = (A A o)

= 4f"C((A:A;) 7 foo,m)
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for integers n < 0 and n = 0(mod 2). The second equality comes from equation (7.13)

proved in section 7. From this we deduce that

TTL/MC(& n) = 4f2n Z n(do, ) Z <((Ar/doAdo‘r)_l -a, foo,n)

do,r a€Jyr/JIrim

for integers n < 0 and n = 0(mod 2) and a € a. We let

o Ix(f)/Im/x — Guyk

la] = oq

be the isomorphism induced by class field theory where o, is the Frobenius associated

to the ideal class of a. We have

Trope(C(6m) = 477 Y n(do,r) S0 C((Avjaoha)™ - 0, K(foo) /K, m)

do,r a€tyyk/JL/K
(17.13) = 4f2n Z n(dOa T)C(O’,—(}ioyr), K- Q(Cf)<FTp>/K7 n)v
do,r

where
I(do, 7“) = A’r‘/d()AdoT = Q(’r‘/dg, doT) N OK.

We have a natural isomorphism between Gal(K((;)/K) and Gal(Q({;)/Q) induced
by the restriction. At the level of the ideals class groups the restriction map corre-

sponds to the norm N /q. Under this natural identification we have

(17.14) {x € @M/K} = {x € Ix(f)] Pra(£o0) : Xy = 1}
= {f( o NK/Q 1X € IQ(f)ﬁj&(foo),f((p) _ 1}

If we restrict to odd characters of Gal(M/K) then we have

(17.15)  {x € k() PicalFo0) : Xl = 1 Xoo = 1 }
= {X° Nijg : % € To(/)/ Po(fo0), %y (1) = =1, %(p) = 1} .

We can write any character x of Ix(f)/Pk1(foo) as xfXeo Where x; is the finite
part of x and X is its infinite part (see the end of subsection 7.1). We say that x
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is even if Xoo = wp and odd if xeo = w; = sign o Ng/g. A similar thing holds for
characters Y € Ig( f)//Pa( foo). One verifies easily that Xoo = 1 if X is is an even
character of (Z/fZ)* and X = sign if Xs is odd. It is easy to see that characters
X € Ix(f)/Pxi(foo) s.t. XIJM/K; = 1 and xo = w; are induced by the norm of an
odd character of (Z/fZ)* ~ Io(f)/Po1(fo0).

Let 0 € Gal(M/K) then the partial zeta function ((M/K,0,s) = ((o,s) can be

written as

(17.16) ((o,s) =

Z (do,7) Z Y(o-[_(ilo,r))L(na X)

IGM/KI e -~
> XEIx(£)]Pr1(fo0)
Xlopg =1
4f2n
do,r < @I
x(p)=1
4f2n _ | ) ~ D
= m Zn(doﬂ") 2\ XONK/Q(I(dO,'f') )L(’I’L, X)L(n7X (Tk_))
do,r v e (@TTD*
x(p)=1

where the second equality uses the identification given by (17.14). We want to inter-
polate p-adically those special values. For every integer m > 1 and m = 1(mod 2) we

can rewrite the right hand side of the last equality as

4f2(1—m) _ _ (D
(17.17) m Z XONK/Q(I(dOa’r))L(l —m, X)L(l —m, X (;))
%e(@] 1)
x(p)=1
x(—1)=-1

since for ¥ an even character L(1 — m, %) = 0. We have the following well known

proposition

Proposition 17.2 Let x be a Dirichlet character then there exists a p-adic L-
function L,(s, xwp) such that

0= - (1 - B0Y) P

pln n
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for all integersn > 1 and n = 1(mod p — 1).

Proof see theorem 5.11 in [Was87]. O

e—

From the previous proposition we deduce in the case where x € (Z/fZ)* and
x(p) = 1 that for n = 1(mod p — 1)

B
1\ B, D 1\ Pnx(2
Lp(1—n,xwp):_(1— )——’ﬁ Lp(1~n,x(;> wp)=—<1+p1_n) —

pl—-n n n

The second equality follows from the fact that (%) = —1. From this we deduce that
Ly(1=m, xw) = (L= 1/p") E(1—n, ) and Ly(1=m, X (2) wy) = (1+1/p1") L(1—
n,x (2)) for integers n > 1 and n = 1(mod p — 1). Substituting in (17.17) and
recalling the definition of (T'ry/a(p) (6, s) we get

(TromGp) (6,1 —m) =

A F2(1-m) . % ¢ (2
LY ) XNl - m g - m i (2) )
M/KL 40| No,re@/ 12) %€ (Z] FL)*

X(p)=1
X(=1)=-1

for m > 1 and m = 1(mod p — 1). By density of the set {n > 1:n = 1(modp — 1)}

in Z,, we obtain

(Truép)(9,s) =

i g X - (D
’G<f> l Z n(d07r) X © NK/Q(I(dO’T))LP(‘g?pr)Lp(S,X <:> wp)
M/K do|No,r(Z/ fZ)* ie(ZﬁZ\)x

x(p)=1
x(=1)=-1

for all s € Z,,. Let us define an auxiliary p-adic L-function that will play an important

role later on.

Definition 17.2 We define the Archimedean zeta function ©(s) and its p-adic

counterpart ©,(s) as

O(s) :=
4f2s 3 i i D
G 2 mlder) 30 XeNe(Ildh )L OLOX( T )
MIEY do|No rez) 2% e @TTE

%(p)=1

H-)=—1



Y

O,(s) :=
4 2s ) ) ~ 5
|C§f> I Z n(do,T) Z XONK/Q(I(dO’r))Lp(s;XWp)L(O,X (;))
M/K do|No,re(Z/ fZ)* )ZG(Z’//]”-EX
%(p)=1
H-1)=-1

Note that L(0,% (2)) = —Bl’j&(_Q) and therefore 2L(0,% (2)) = Ly(0,x (2) wp).
Moreover when k > 1 and k = 1(mod p — 1) then

(1———)O(1 — k) = ©,(1 — k).

pik
Now let us take the derivative of (TTL)MCP)(é, s) at s = 0. Applying the chain rule
and using the observation that L,(0, xw,) = 0 we get

(17.18)
(Trr/mép)'(6,0) =

4 Z n(do,’/‘) Z )20 NK/Q(I(dO,r))L;(O,)pr)Lp(O,)2 (_1*2) wp).

G
|Gyl do|No,re(Z/ fZ)* Re(Z] T)*

X(p)=1
X(-1)=-1

From this we deduce that

(17.19) (TrLmGp)'(8,0) = 20,(0).

A straight forward calculation aléo shows that

(17.20) (Trrm¢)(8,0) = ©(0).

Note the dicrepancy of a factor 2 of the two previous formulas.

Now we would like to write the zeta functions © and ©,(s) in terms of p-adic
partial zeta functions attached to Q. Using the definition of ©,(s) we see that in
order to do this it is enough to relate L,(s, Xw,) to p-adic partial zeta functions of Q.

The function L(s,X) can be rewritten in terms of partial zeta functions of Q as

(1721) L(SJZ) = Z i(a)g(a’ fOO,S)

a&(Z/ f1)*
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Note that every partial zeta function ((b,pfoo,s) (where (b,p) = 1) is p-adically
continuous when s is restricted to the set of integers n < 0 and n = 0(mod p — 1).

Therefore the values

(17.22) > Cbpfeo,s)=(1=1/p) ) ((p'e, foo,5)

b(mod pf),(bp)=1
b(mod f)€a(B)

are p-adically continuous when s is restricted to the set of integers n < 0 and n =
0(mod p—1). Remember that r was defined to be the order of p modulo f. We define

(17.23) Gpla, foo, s)

to be the p-adic zeta function which interpolates p-adically (17.22) on the set of
integers {n < 0 : n = 0(modp — 1)}. It was crucial here to take the sum of the
right hand side of (17.22) over all congruence classes of the powers of p modulo f

in order to be able to factor out the Euler factor at p. Note that by construction
Gla, foo,0) = 0.

Remark 17.4 The reader should be careful to not confuse the different zeta
functions introduced so far. When a € Z and (a, f) = 1, the notations ((a, foo, s)
and (p(a, foo, s) correspond to partial zeta functions attached to Q. The partial zeta
functions introduced earlier which were involving a divisor § € Z[A] were attached

to K. Namely:

(1) The Archimedean ones: ((d,s) defined by the equation (17.2) and ¢(*(4, s) de-
fined by equation (17.3).

(2) The p-adic ones: (;(d, s) which interpolates special values of (*(4, s) and {, (4, s)

which interpolates special values of ((4, s).

For a character x which is trivial on (p) < (Z/fZ)* we can rewrite (17.21) as

Lis,x)=>_ >  X('a)<(pa, foo,s)

i=1 ac(2/12)" /()

(17.24) = ), X@) ((a, foo,s).

0€@/fT)* [y =l
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From the latter equality and the density of the set of integers {n < 0: n = 0(mod p —
1)} in Z, we deduce that

(17.25) Ly(s,Xwp) = Y X(a)G(a, foo,s),
a€(Z/fZ)* /(p)

for all s € Z,. We will need the following lemma

Lemma 17.1 Assume that —1 ¢ (p) < (Z/f7Z)*. The zeta functions ©(s) and

©,(s) can be rewritten as

(17.26) O(s) = 4f2$ Z g, i:((pia, foo, s)
@/ fnyx /) i=1

and

(17.27) 0,(s) = 4(f)* Z naCp(a, foo, s)

a€(Z/ fZ)* /(p)

where the ng’s are elements in %Z given by the following formula

(D 1
(17.28) ng i= ——— IGM K[ > Z (@)Ng/o(I(do,r)) (L(O,X (—*—>)> € 5Z.
IEL dolNo e qarry
r€(Z/FL)* " 5(p)=1
H=1)=—
Moreover we have ng, = n, and n_, = —n,.

Proof The fact that the n,’s are equal to the expression (17.28) follows directly from
the definition of ©(s), ©,(s) and of equations (17.24) and (17.25). Also the fact that
Nap = Ng and n_, = —n, are straight forward. It is also easy to see that that the
ne’s are invariant under Gal(Q/Q) therefore they lie in Q. The character X (%) is a
character modulo D f. We have



therefore fD|Gu/k|na € Z. It remains to show that 2n, € Z. We can rewrite n, as

. D
Z Z Z n(do, )X © Ngsg(I(do,7))X(a) | — ) @
Df IGM/K’ a
d0|N0 (Z/fZ)X 1<a<Df
re@/ 1) " p)=1 (@DhH=
X(=1)=~1

Let Q.(z,y) = Az? + Bxy + Cy? then we have N(Ay,) = ﬁ. Also since A,/q, =

2
r/do(mod f) we have N(A, 4, Agyr) = Af/do‘i‘; = (dLO) doA™1(mod f). We can thus

rewrite the previous expression as

D
Df!GM/Kl Z Z Z n(do,7) ar2d1A)(a)a

d0|N0 « 1<a<Df
() F1)* ,é(p/)’;l) (@.Df)=1
2=1)=—1

which again can be rewritten as

(17.29) DfIGM/KI Z Z n(do, ) (B)a Z xlaridytA7Y).

do]No 1<a<Df Sy
rE(Z/f%) (a,Df)=1 xex(é/)izl)
xX(-1)=-1

Let G = (Z/fZ)* /(p(mod f)). By assumption we have —1 & (p (mod f)) < (Z/fZ)*.
Therefore there exists a character ¥ of G such that U(—1) = —1, i.e. ¥ is odd. Let
us denote by Ge**" and G°% the set of even and odd characters of G respectively.
Note that G°% = WG**" An easy computation shows that for every a € (Z/ fZ)

E%/ﬁ ifa € (p(mod f))
> xla)=1{ -2 o e —(p(mod £))

x€Godd 0 otherwise

We can thus rewrite (17.29) as

1 D
(17.30) e n(do, T (—) ae(aridy A
357 % (do,7) = ) ac(ar’dy* A7)
re(Z] FZ)*
1<a<Df
(a,Df)=1
ar2dy A=let(p(mod f))

where e(a) = 1 if a(mod f) € (p(mod f)) and e(a) = —1 if a(mod f) € —(p(mod f)).

Every element 0 < a < Df — 1 can be written as (a;, ay) where a; = a(mod D) and
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as = a(mod f). Every term a = (a1, ag) in the sum (17.30) can be paired with the
term o’ = (—ay, as). Since (2) = (2) (the quadratic character (£) is associated to
a real quadratic field and e(a) = €(a’)) we see that the sum in (17.30) is congruent
to 0 modulo D. Now using the fact that ¢ is a good divisor we have for a fixed

r € (Z/fZ)* that 3, 1y, 7(do,T)do = 0. Let us fix an element b € =(p(mod f)) and

d(;,gA}dO[ Ny WE obtain

an element r € (Z/fZ)*. Summing over all the elements {
D \ dobA
Z n(do,7) <m> O—Qe(b) = 0(mod f).
do| No w2 )T

For the latter congruence we have used the fact that all the primes dividing Ny are
split in Q(v/D) and also that ¢ is a good divisor. From this we deduce that (17.30)

lies in %Z. This completes the proof of the lemma. [

We can now state the key ingredient that allowed us to relate the first the deriva-

tive at s = 0 of Trp/m(p0(9, s) with normalized Gauss sums.

Theorem 17.2 Leta € (Z/fZ)* and let {,(a, foo, s) be the p-adic zeta function
introduced in (17.25). Then

¢/(a, £00,0) = —log g (;)

-1

a—q—f— .
where g(%) = I((w%fa_?) € QU Gp)s wg + FY — pgy © Q, is the Teichmiiller
T Wq

2f
character and q = p" = 1(mod f) where r = ord;(p). Note that g (%) € Q(¢p)fre.
We have

a 2f B r ) B T (/p;a/) 1
%(g(?) )—2f;C(pa,foo,0)—2f;<T—§ ,

where T 1s chosen to be the unique integer between 1 and f—1 such that T = z(mod f).

Proof Combine the results of [FG78] with [GK79] plus standard results about fac-

torization of Gauss sums. [
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Using (17.27) we deduce that

O,(s)=4 > nula, foo,0)

a€(Z/fZ)* / (p)
(17.31) =4 Y 2n.{(a, foo,0)
1<a<f/2] ,,—
{{@slthe
where for the second equality we have used the fact that n_, = —n,, ¢ (:f?-) =

-1 o
+g (%) and that —1 ¢ (p). Now using theorem 17.2 we can rewrite the right hand
side of (17.31) as

(17.32) 4> (2na)log,g (%) .
i
Now from lemma 17.1 we get that 2n, € Z. Set,
2na
o= I ()
(‘&5 tm
We thus have by definition that
©,(s) = —4log, S.
Now using (17.19) and the last equality we deduce that
(Trimp)'(0,0) = —8 log, S.

This proves (17.10). It remains to show the valuation formula (17.11). Using theorem
17.2 with the definition of .S we get

120,(87) =12 > (2m.)2f Y ((Fa, foo,0)
KOS L

=6f-4 > my ((p'a,fo,0)

0c(@/fB)*/(F) =1
= 6/0(0)

=6f(Trrm¢)(9,0),
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where the second last equality uses (17.26) and the last one uses (17.20). This shows
equation (17.11) and therefore concludes the proof of proposition 17.1. O

In order to finish the proof of theorem 17.1 we need to relate ((6,0) to ¢*(6,0)
and (5(4, s) to {,0(6, 5). The next proposition takes care of this.

Proposition 17.3 Let § = > o Mdo, 7)[do, ] € D(No, f)® be a good divisor.
Let (1,7) € HO*(No, f) with T reduced and let 6 = 3, n(do,7)[ArAdyr] € Afoo.

Assume furthermore that all pﬂmes dividing f are inert in K then

/-1

¢*(6,0) = > (A x6,0),

u=0

and

f-1
s) = Z Cpo(Aux 0, 8).
u=0

where A, is an algebraic integers of K chosen so the A\, = (Tvég“ +77)(mod f), Ay is

coprime to p and totally positive.

Proof Using proposition 9.4 gives us

AN,

¢* (8, s)zd%:n(do, )ds\y*(\/ﬁf L wy, S)
ZZ do, dO A\/A_. Wi, S )
u=0 do,r
f—1

(17.33) g (Au* 6, 5)

gM

Using corollary 10.1 we deduce

f—1

(1 - p_zn) Z C(Au * 5) ’ )
u=0

(17.3 33)

(1=p7*")C"(0,n)

=66, (1,7),m)
(17.34) = C¥(6,n).
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for every n < 0 and n = 0(mod p— 1) . By density of the set of integers {n < 0:n =
0(mod p — 1)} in Z, we get

f-1
G(6,8) = Golru*d,s).
u=0

O

We can now prove theorem 17.1. Using the latter proposition with equations
(17.10) and (17.11) of proposition 17.1 we get that

(17.35) 6£Trzm(C) (6,0) = —log,(S")*
and that
(17.36) 12fTrr " (5,0) = v,((S)*)

where $’ is a product of normalized Gauss sums inside Q(¢;)f™ - Q({,). Note that
(8")* C Q¥ so it makes sense to take the p-adic valuation. On the other hand in

section 17.2 we have proved the existence of an element u € K for which

6fTrrm(¢) (6,0) = —2f log, Np/ar o N, g, (1)
(17.37) = —2flog, N} 5r(u),

and
6/Trrm(¢7)(6,0) = 2fvy(Nr/ne(u))-

Now using the observation that v,(u”) = v,(u) where Gal(K,/Q,) = {1,0} we get
(17.38) 12fTripe(C)(6,0) = 2F0,(N  57(w).
Comparing (17.35) with (17.37) we obtain

log,(8')*" = 2f log, N 5 (u).
Comparing (17.36) with (17.38) we obtain

up((8)*) = 2fup (N 57(w)).
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From this we conclude that
8" =Ny z(u) (mod pr).
This concludes the proof of theorem 17.1. [
We should expect a refinement of theorem 17.1 of the following form

Conjecture 17.2 The element

Niym(u(c))

is a product of normalized Gauss sums in M - Q((p).

18 Numerical examples

In this section we record the results of some computations that we did using the

software Magma in order to test the validity of the conjecture 5.1.

Conjecture 5.1 says something about the existence of strong p-units in abelian
extensions of real quadratic number fields. In order to make sure that such units
exist one needs to impose a certain number of conditions on the real quadratic field.
To fix the idea let us assume that f = 3, Ny = 4 and that the good divisor § =
2[1,1] = 3[2,1} + 1[4,1] € D(No, f) = D(4,3). It thus follows that the modular unit
attached to the data (f, Ny, 0) is

By (T) = 92 0y(3 7)2'129(3,0) 3- 27)_3'129(;0) (3-47)"*

Wl

Le K = Q(v/D) be a real quadratic field where D = discriminant(K). In order to
have the existence of non trivial strong p-units in K (300) attached to the previous

modular unit one needs to have that

(1) (D,3) =1 (not essential but simplifies the construction)

(2) D = 1(mod 8) (we want 2 to split in K)
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(3) (2) = —1 (p has to be inert in Q(v/D))

P

(4) Ok (3)* = Ok (300)* (K (300) has to be totally complex otherwise there exists
no strong p-units other that {+1}).

The first thing to notice is that the fourth condition is always satisfied. If € € O,
¢ = u+3vvD = 1(mod 3) and N(¢) = —1 then the equation z* — 3°Dy? = —1 would
admit a non trivial integral solution namely (x,y) = (u,v). A congruence modulo 3
shows that it doesn’t have any. Therefore K(300) is always totally complex. Using
class field theory one deduces that

(18.1) K(300) 2 K((3) = K(V=3).

If we let p be a prime ideal of K (300) above pOk then our conjecture predicts that
the strong p-units lie in K (300)Frob®/p)  Since we would like our strong p-units
to be primitive elements of K(300) over K we will impose the additional condition
that F'rob(p/p) = 1 which is equivalent by class field theory to the congruence p =
1(mod 3).

By (18.1) it follows that in the case where the narrow ray class group of conductor
3 of K is of order 2 we expect K(300) = K(v/—3). For a general f and a general
real quadratic number field K = Q(v/D) such that Ok (f)* = Ox(foo)* we have the
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following Hasse diagram:

where K}Zg (respectively Hj;) stand for the narrow ring class field of conductor f
(respectively the narrow Hilbert class field). Here s is some integer that can be

computed explicitly.

!

The tables in the next pages record some of our results. For every admissible D the
narrow class group of conductor 3 is given by Ix(3)/Px1(300) where K = Q(v/D).
For every class C' € Ix(3)/Pk 1(300) we pick an ideal a¢ that can be written as rA,
for some 7 € Z coprime to 3 and 7 € K (reduced with respect to p) such that A4, is
again an Og-ideal. We always choose 7 in such a way that 7 — 77 > 0. Let € > 1 be
such that O (300)* = {£1} x € then we let 7, be the matrix corresponding to the

action of € on A, with respect to the ordered basis {7,1}. So we have

(18.2) ’)/T<1>=6<1>.

) ,
If we let v, = ¢ p then one can verify that ¢ = 0(mod 12) and d = 1(mod 3).
c

For this ideal class C' we thus have a p-adic invariant u(C) := u(rA;) = u(r,7) € K.
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If our conjecture is true then we expect
1
D

Po@i= [ (e=u(0)) e Okl e

Celk(3)/Pk,1(300)
where Pp(z) is a palindrome polynomial. Because of the presence of the 12-th power
in the definition of Fs(7), it turns out that very often our units u(C) are power of
smaller units. For every admissible D we define a certain integer np|12. This allows

us to define a polynomial

Bo(w) = [(z ~ u(C)") € Oxl: o
% p

which has smaller height. The column valuation in the tables correspond to the

valuation of the distinct roots of Pp(z).

We want to explain briefly how one can go about the computation of the p-adic

integral

u(r,7) = 71 (z — ry)dF, {ico — 7 (io0)} (2, 9),

where v, € [o(fNg). We follow the same method that was developed in [Das05].
When 7 is reduced, we have an explicit formula for v,(u(r, 7)) (see equation (9.11)).
In practice one doesn’t compute directly v,(u(r,7)) from the formula (9.11) since.
the rational number <, (ico) = % tends to have a too big height. In practice one
computes 7z o) (7) where 7 goes over a system of generators of I'g(fNy) and then
uses the cocycle property that was proved in proposition 5.2 to compute T(=.0) (vr)

quite efficiently. Having said this it remains to explain how to compute

(18.3) /Xlogp(x — 1y)dp,{ico — —g—}(m, v),

where log, is the p-adic Iwasawa logarithm and

(18.4) /Xlogg(a: — 1y)dp,{ico — é}(x, y)

where log, : pp_y — Z/(p* — 1)Z is the discrete logarithm with respect to the

c

b
generator ¢ of p2_;. Let v = (a d> € To(fNo) and for m = [eg] — [e1] €
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Divg(T'o(f No)(ioco)) denote fi{c; — ca} by pir[m]. We have

/logp(x — 1y)dp.[m](z, y) :‘/ log, (¢ — 79/ )dfi.[m](z',9/)
X X

whereﬂ/(x)=< ) Let v =
Y

/logp(m — 7y)dpi:[m /logp (az + by) — 7(cz + dy))dfi-[m](z",y)

X

/ log,(z(a — 7¢) — y(=b+ 7d))dp.[m] (', y)
/Xlogp (ﬂc -y b dT) diir[m] (2", y')

a — CT

= / log, (z — yy~'7) di.[m](2', )
X

) then we have

PR

I

where for the third equality we have used the fact that ,.[m] has total measure O.

Using the I'p-invariance of p,[m] we deduce from the last equality that

/ log, (¢ — 4)dGifml(z,5) = / log, (z — yv™'7) dfiy-1.e[y~m] (2, ).
X X

Replacing m by ym we get
(18.5) /Xlogp(x — Ty)du[ym](z,y) = /Xlogp (z — yv™'7) dity-1.- M) (z, y).

We have a similar computation when log,, is replaced by log,. In the appendix of this
thesis we show that Divy(I'o(fNo)(i00)) is a finitely generated Z[[o(fNo)]-module.
Let {m.,...,m,} be a set of generators of Divg(Lo(fNo)(i00)) over Z[[o(fNo)]. Then
given a m € Divg(T'o(fNo)(i00)) we can find integers a; , such that

(18.6) m:i‘ > ayyma

i=1 yelo(fNo)

Using (18.5) we find that

/ log,(z — 7y)dfi[m](z, ) Z Y a / log, (z = y77'7) dfin-1[mil(z, y).

=1 y€T'o(fNo)
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P

Using the last equality we see that it is sufficient to compute
(18.7) | o8, o = 4 difmi (2,9
X

for fixed 7 € H, N K, r € (Z/fZ)*/(p) and ¢ € {1,...,s}. The latter observation
is quite important. Essentially it says that the knowledge of the moments of 7. [m;]
fori =1,...,s and r € (Z/fZ)*/(p) ,up to a certain precision, are sufficient to
compute §(18.3), see equation (18.8). This is crucial since in general the height of
v (fo0) = —é% is very big. Moreover, observe that the computation of those moments
doesn’t depend on 7 and therefore doesn’t depend on the real quadratic number field
K= Q(\/E) Therefore those moments, which depend only 6, f, Ny and p, need only
to be computed once. Once they are computed one can let the discriminant D vary

and reusé them. This is one of the key feature of the method.

The integral (18.7) can be rewritten in the following way

/ log, (z — y7) dpi.[mi](z, y)
X

- / log, (& — yr) dilmil(z, ) + / log, (z — yr) dfi[mi)(z,v)
ZpXxZy

Zy xpZp

g, (£ =) diim(a,0)

_—_/ log, (y)dpi.[mi](z, y) +
‘ Zpx Ly Zp XLy

+/ log,, (z)d i, [ms)(z,y +/ 1ogp 1——7 )dur[ml](x Y)
‘ Zp xpZ Zy xply
(18.8) =/ log,(y)dpir[mi)(z, y) / log,(z z)dp, [m;](z,y)

ZpxLy Ly xplp

+ [ log, (¢ =) dfmd)+ [ log, (1= F) durimilt)

Ly ‘ PHQp)\Zp
where m.fi-[m] = w-[m]. One can compute the first term of the last equality by
finding a polynomial f(y) € Z,[y] such that |f(y) — log,yl|, is very small for all
y €Ly Having done this one can then use the explicit formulas of proposition 11.5

to compute
| twdma)
ZpXZy

A similar computation can be done for the second term of (18.8). For the third term
of (18.8) one can expand log,(t — 7) around the balls i + pZ, (for i = 0...p — 1).
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After a few manipulations and tricks one can use the explicit formulas of proposition
11.5 to compute this term. A similar computation can be done to handle the fourth
term of (18.8). Note that all those integrals are computed up to a certain accuracy

which depends on the accuracy of the various moments of i, [m;] for i = 1,...,s,

r€(Z/FZ) /(D).

189



For p="7and 0 = 2[1,1] —

3[2,1] + 1[4, 1]

IK(3)/PK'1(3OO)

valuations

Py(z)

17

7/22

+2

12——z+1

41

7/2L

+2

2? ——z+1

73

(Z/22)*

+2,42

(a* — Bz +1)?

89

7/2Z

+2

2? - Ha 41

97

(Z/2z)*

+2,42

(a? — Ta+1)?

145

Z/2Z x Z/8T.

40,40, +4,44,
44, £4, £8,48

2% + %(-232650v/D — 21142198)2'
s (—63553176225v/D + 345833578130241 )2
A5(2873907075070350v/D - 1633501333699078382) 13
+ 5w (—122040271091639213775v/D + 13994939454565494390367)x:1?
+745 (245879796465956207634750+/D — 24438525925640084934308094)'
+35 (—1111134115782593132787676350v/D + 79341283297565905615496513974) '
7};(12o7312832261114545316699200\/_ 91571248476833104701244416496)°
o (—3047800072612593555650676375+/D -+ 197591625237545799679273846770)®
L (1257312832261114545316699200/D — 91571248476833194701244416496)2”
1111134115782593132787676350v/D -+ 79341283297565005615496513974)z°
=45 (245879796465956207634750v/D — 24438525925640084934308094)2°
oo (—122040271091639213775+/D + 13994939454565404390367) 24
5 (2873907075070350+/D — 1633501333699078382)2°
s (~63553176225v/D + 345833678130241 )
% (—232650v/D — 21142198)x + 1

+7m
+r(=

185

12

+2,+2

(2 — Ha +1)?

209

12

+2, 42

(z? - Do+ 1)

241

12

12,42

(22 — Lz 4 1)2

257

+4+4,4£12

% + 5 (—3861384345v/D + 2642736525)a®
+ 540 (—131838694065+/D -+ 38755163079075)a
12 (—42697160860228875+/D + 52795271447651171)z*
+2 75 (—131838694065v/D + 38755163079075)a
+5 (—3861384345v/D + 2642736525)x + 1

265

7/2Z x T/AL

£1,41, +1, £1

(x® +13/7z + 1)

31

w

(z/22)"

4,44

(x? — 239/2401 + 1)?

353

7/2Z

+6

2? +153502/117649z + 1

377

72 x /8L

10, £0, £0, £4,
+4, 44,44, +8

@*® + L (~1760385v/D — 7054747)2'5
+ 72 (9559963245v/D + 464126557983)x'4
+ 45 (—53041186688295+/D ~ 537520756632797)x'3
+ 5 (192563525818981905+/D -+ 6876802449703149427) 212
47 (—485482000040992075875+/D — 4797177871518763359825)2:11
+737(243544398204099135360v/D + 9678515302483741595848) 2,1
,;4( —503348326156969555320+/D — 4848335400921890746456)a®
(510228736207262050635v/D + 19739177187465235837509)2®
503348326156969555320/D — 4848335400921890746456)x”
+351(243544398204099135360+/D + 9678515302483741595848)°
+ 547 (—485482000049992075875+/D — 4797177871518763359825)>
+ 5 (192563525818981905+/D -+ 6876802449703149427)a4
+315(—53041186688295+/D — 537520756632797)2°
+541 (9559963245+/D + 464126557983 )z
+ (—1760385v/D — 7054747)z + 1

74
%z(
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I (3)/Pra(300)

valuations

Pp(z)

40!

o)

(z/2z)’

+2, 42

(22 — Lo+ 1)

43

@w

(z/22)°

+2, 42

(22 — 239/2401x + 1)?

48

=

@/2zy’

14, +4, 14, +4

(? — 4034/2401 + 1)?
A(z* + 4034/2401z + 1)

Z/2Z

+6

z? 4 153502/117649z + 1

54

e

7,/20 % B/8Z.

4, 44,44, +4
+8,40,40,+0

' + 4 (-821748V/D — 883036)2%°
7 (—662987514v/D + 64572360210)z'4
7 (—4804666374063+/D + 168656428624495 )2
7hr(~29687922509132553/D + 148379250278264885)x'2
(—24730779023499008949+/D + 1669025701762044317685) !
(—101267373093542176521v/D + 2201647792063133649065) 1
(—67135410173257826013/D + 656526802434111941885)°
s (~37079433752321502423+/D + 3398662046679747603795)x°
4 (—67135410173257826013v/D + 656526802434111941885)2
74m(—101267373003542176521v/D + 2201647792063133649065)2°
r(~24730770023499008949+/D + 1669025701762044317685)25
v (—29687922599132553/D + 148379250278264885)x¢
e (—4804666374063+/D -+ 168656428624495)°
s (—~662087514v/D + 64572360210)2
1(~821748+/D — 883036)z +1

1
7
1

728
1
7
1
7T

- ZJ2T X T/ 14T

+0, 0, £0, £0

+0, +0, +4, +4

14, 24, +8, +8
+16, +16

2% + 1:(3072931836030v/D — 224019365010010)2%
%7(—807445277082293675830760385\/5 + 25250643264175060209505146459) 128
7}5(16314295497466134477098480406623145\/5 — 365561307455028402276987851148978069) 2%
224 2B 4722+ 202 4 70 4 710
+ 221842317 72164 7154 71
2184 2124 7 4 2104 70
8+ + 225+ 715+ 70t
7—§6(16314295497466134477098480406623145\fﬁ — 365561307455028402276987851148978069) 23
7%(v807445277082293675830760385\/5 + 25250643264175060209505146459)z2
711—5(3072931836030\/5 — 224019365010010)z + 1

593

Z/27

+10

2%+ 445987849/7%% + 1

60

=

727 x L/21

44, +4

(2® ~ 230/2401z + 1)?

649

222 x T,) 27,

+4,+4

(z? — 239/2401z + 1)?

689

Z/2Z % ST

+0, £0, £4, 4
+4, 44, 48,48

1% 4 4 (—618426+/D — 8713894)2'°
+:47(4604823397503v/D + 147886093075761)z*
+743(—19183045951916226+/D — 407733319394678270)z'3
+ 525 (109659951891903026817+/D + 3910704142483041468031 )22
+ 5k (—232255596895017081309810v/D — 4964477528251534939685550) !

+ 747 (525040474109379546835038690+/D + 15576771537970282875572123638) "
+ 25 (= T06099228761774606524643168v/D — 15544824675030134872021527376 )2
+ 5207 (126706 2950436096 308320774809+/D + 43008002051423525795071287675) "
+ 4 (—706099228761774606524643168+/D — 15544824675030134872021527376)<”
+4 (525040474109379546835038600/D + 15576771537970282875572123638)
+735 (—232255596895017081309810v/D — 4964477528251534939685550)z"

+ 7 (109659951891903026817+/D + 3910704142483041468031 )2*

4 (~19183045951916226+/D — 407733319394678270)2°
5(4604823397503+/D + 147886093075761)2
% (—618426v/D ~ 8713894) + 1
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D Ix(3)/ Px,1(300) np | valuations Fp(z)

713 Z/2Z x Z/8Z 12 can’t find good representatives

745 Z/2Z x L/AZ 12 can’t find good representatives

761 Z/6Z 6 | +4,£12,420 28+ ;7%—5(—326067672535605\/5— 159275255786742675)a°
,LTIM(8032023240607066367832165\/5 — 742791729857944519743344331)z*

5_-713—5(—12154109980551447665799417375\/5 + 4510987549804784189418087515459)xc°
2*_71—37(8032023240607066367832165\/5 — T42791729857944519743344331)2?
ﬁﬁ(~326067672535605\/5 — 159275255786742675)z + 1

769 Lj2Z X /2L 12 +4,+4 (z* — 2'39/24019: +1)?

817 | Z/2Z x Z/2Z x Z/10Z | 12 can’t find good representatives

857 7727 6 +28 2% + 591717446468983676495806/7%z + 1

881 7.)97 12

913 Z/2Z X L/2L 12 48,48 (z? — 474355478 + 1)?

929 7/27, 12
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For p = 13 and 0 = 2[1,1] — 3[2, 1] + 1[4, 1]

D | Ix(3)/Px1(30) | np valuations Pp(x)

41 Z/2Z 12 +2 z% - 337/169z + 1

73 (Z/27)* 12 12,42 (z* +337/169z + 1)?

89 Z/2Z 12 +2 z% +337/169z + 1

97 (Z)27)? 12 +2, 42 o + 674/1692% 4 170691/285612 + 674/169x 4 1 =
(x4 337/169z + 1)?

137 727 12 +6 22 + 9397582/4826809z + 1

145 | Z/2Z xZ/8Z | 3-|40,40,+1,+1 7' + 15(25064550v/D + 1456407962)z'

+1,£1,42,42 T (—9909170774179425+/D + 367233567480055041)z'4

12 (35640360711526013550+/D — 45167895449503053818222)1
2224221 42210 4 2094 2584227 4208 4 75 - 2
1250 (35640369711526913550+/D — 45167895449503053818222) 7%
o (—9909170774179425+/D + 367233567480055041)22

25(250645504/D + 1456407962)x + 1

161 (Z)27)* 12 +2,42 (x% 4+ 337/169z + 1)?

193 (Z/22.) 12 44, +4 (z® — 56447/28561z 4 1)?

241 (Z/27)*

265 | Z/2L x ZJAL

281 )27
305 | 7)27 x )AL
353 7)2Z
35| (Z/22)°
401 Z/10Z 6 +4,+4 +4 FALNE ﬁ(7954953835725\/1—) — 13563872824361)2°
+4,16 -1-511@(-—4235895970542018\/5 + 4333681004006130303)2®
o (16411128241572257983407v/D + 27954073324685459115657)a
22847254+ 7244723

13w (—4235895970542018+/D + 4333681004006130303)2
T (7954953835725+/D — 13563872824361)z + 1

409 (Z/2L)*
449 7.)27

457 (Z./2Z)
505 | Z/27 x 1/8Z.
553 (Z/22)°
577 | Z/2 x 1/14Z
593 727

19 Discussion and future directions

In this thesis we have proposed a conjectural construction of elements lying in totally
complex ray class fields of a real quadratic number fields K. Our construction is very

much in the spirit of the theory of complex multiplication available for imaginary
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quadratic number fields. We have been able to provide some theoretical evidence for
the algebraicity of the local elements u(r,7) € K (see theorem 17.1). Despite the
latter result, it seems that for the moment the proof of the algebraicity of u(r,7) is
out of reach. Since our units can be related with the first derivative at s = 0 of a
p-adic zeta function interpolating classical values of partial zeta functions attached
to K we see that the strong p-units that we have constructed are nothing else than
Gross-Stark p-units that were predicted by the p—adic Gross-Stark conjectures (see
[Gro81]). Therefore we are not constructing new units. But instead of proposing only
a formula for the logarithm of its norm, we propose a formula for the unit itself, which
can be seen as a refinement. The main feature of the approach used in [DD06] and
in this thesis resides probably in the fact that we can compute those units p-adically
in polynomial time using modular symbols coming from Eisenstein series. With a
certain amount of work, the method could be implemented using the mathematical

software Magma and allowed ourself to test the truth of conjecture 5.1.

The relative situation K/Q with K real quadratic admits an obvious generalization
namely the case L'/L, were L and L' are totally real number fields and L' is quadratic
over L. In this case if the degree of L' over QQ is 2n then the group of units of L has
rank n — 1 and the one of I’ has rank 2n — 1. Therefore the units in L’ which are
not coming from L form a lattice of rank n in Of,. In this special situation one can
replace the one variable Eisenstein series attached to QQ by the n-variable Eisenstein
series of parallel weight k attached to L namely

b . e27riTr(,B)
o 2 N(az + B)F

0L (100} \{(0,0)(a,B)e 32 x &

(194) B

ﬁ,a,z) = N(

where N(az + 8) = [[L;(@P2 + BD), a,b,f are integral ideals of L such that
(f,6) = 1, 0 is the different ideal of the number field L and Of(foo)* are the totally
positive units of L congruent to 1 modulo f. The constant term of the g-expansion
of (19.1) is a partial zeta function associated to L(foo)/L where L(foo) corresponds
to the narrow ray class field of conductor § of L. The special values of these partial
zeta functions were studied in section 7 of the present thesis. A unit € € Oj, acts
naturally on the Op-lattice Or + 7O C L' where 7 € L'\L and therefore gives rise
to a matrix in SLy(Oy) having 7 as a fixed point. Let p be a prime ideal of L which
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is inert in L. As in the one variable case one can probably construct a family of Z-
valued measures on P*(L,,) where L, denotes the completion of L at p. This family of
Z-valued measures can probably be indexed by pairs (cy, ¢z) € (T'(i00))™ x (I'(i00))"
where I would be a suitable congruence subgroup of SLy(O,). For a pair (c1, c2) one
could define first a measure u{c; — c;} on the distinguished compact open ball Or,,
by the rule

c21 €22 C2n b
pfer = 2} (Or,) = / / / E;W(f—a,a, 2)dzy - - dzy,
c11 c12 Cin

b L]
fo? o

Using the almost transitive action of ' on balls of P*(Oy,) and extending p{c1 — co}

where ¢; = (cu), ¢2 = (coi) and Eg (2, a,2) is the p-stabilization of Ex(3,a, 2).
to all balls of P(Op,), by forcing a I-invariance, one obtains a family of measures
indexed by pairs (¢1, ¢2) € (T'(i00))" X (I'(i00))™ which are I-invariant by construction.
As in the one variable case one can probably use this family of measures to construct
a (n+1)-cocycle  in Z"*(I', L,*). We should expect this n + 1-cocycle to split.
One strategy to show the splitting of x would be to try to lift the family of measures
introduced previously to the larger space X := (O, x Or,)\(9pOr, X Or,). Most
computations that we have done in this thesis can probably be carried over to this
setting. The only thing which is missing is an analogue of the Gross-Koblitz formula.

Therefore proving an analogue of theorem 17.1 might be out of reach.

For the next discussion we have in mind the recent construction obtained by
Dasgupta in [Das06]. Let K be a totally real number field and L a CM abelian
extension of K. Let S be a set of places of K containing all the Archimedean places
and all the finite primes which ramify in /K. Consider the group ring Q[Gr/k]. Let
o € Gal(L/K) then we define

(s(L/K,0,5) = (s(o,8) = Y

(a,9)=1 N(Cl)s

Ou=0

Re(s) > 1.

For every negative integer k < 0 define the Stickelberger element

Or/k,s(k) = Z ((L/K,o,k)o" € Q[GL/k].

UEGL/K

Let A(L/K) be the annihilator of the Z[G/k|-module uy, of roots of unity of L. In
[CoaT7], Coates shows how the main theorem of [DR80] implies the following result
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Theorem 19.1 Assume the main theorem proved in [DR80]. Let k < 0 be a
negative integer then if o € A(L/K) then a©r/k s(k) € Z|Gr/k].

We are now ready to state Brumer’s conjecture, which is an attempt to generalize the

classical theorem of Stickelberger.

Conjecture 19.1 Let Cp ¢ be the S-ideal class group of L. Then one has an

inclusion of Z|Grk]-ideals
.A(L/K)@L/K,s(()) C AnnZ[GL/K](CLS).

Moreover when a = wOp,k s(0), where w = #ur, we have for all ideal a of L

for some a € (L)~.

Note that the generator a is uniquely determined up to a root of unity in L. When S
is large enough the first part of the conjecture was proved by Wiles as a consequence

of the main conjecture for totally real number fields, see [Wil90].

Let us assume that the data (L/K, S) satisfies the following assumptions

(1) S = {p} UT where T consists exactly of the infinite places of K and finite
primes which ramify in L/K

(2) The prime p is inert in K and and pOg = p splits completely in L.
(3) L is a CM field corresponding to the narrow ray class field of conductor f of K

where f is some ideal of K coprime to p.

Let L, = Kyn be the ray class field of conductor fp” over K. For every n > 0 we have
a group ring element Oy, /k s(0) € Q[GL,/k]. For every integer 0 < m < n we let
TeSnm be the natural restriction maps respm : Q[Gr,/x] — Q[GL,./k]. The elements

©r,/k,s(0) satisfy the distribution relations

7€5rm (01, /k,5(0)) = Or,./k,5(0).
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Let w, = #uz,. Note that for n large enough one has w,41 = pw,. Let p, be a
prime ideal of L, above p chosen in such a way that p,y1|p,. Note that this tower
of primes depends only on the initial choice po in Ly = Kj since after the first step
all the extensions are totally ramified at pg. Using the Brumer-Stark conjecture for
every n there exists a unique strong p-unit u, € (L)~ (up to a root of unity) defined

by the relation

p;lfneLn/K,S(O) _ (Un)

For every 0 < m < n, those strong p-units are related by the norm in the following

way

When n > 1 and ¢ € Gal(L,/K) the p-adic zeta function {, s(L,/K,o,s) has no
zero at s = 0 since all the primes q of L, above a prime of S are ramified in L, /K.
Therefore we fall outside our initial setting where the order of vanishing of the p-adic
L-function at s = 0 was equal to 1. However when n = 0, the order of vanishing
of (.5(Lo/K,0,s) at s = 0 is equal to 1, and therefore one has a conjectural p-adic
formula for the element uy viewed as an element of (Lg)y,. From this point of view,
it seems to be a very natural question to look for a similar formula for the element
un, viewed as an element of (L,)y,. Even though we fall outside our original setting,
where the order of vanishing of the partial zeta function at s = 0 was assumed to be
1, a formula similar to what Dasgupta is proposing in [Das06] might exist. It would
be quite interesting to provide such a conjectural p-adic formula for the strong p-units

Up,.

A Partial modular symbols are finitely generated

over the group ring

A modular symbol taking value in an abelian group A is a function
m: PY(Q) x PHQ) — A
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denoted by the suggestive notation m(z,y) := m{x — y} such that

(1) m{z — y} = —m{y — z} for all z,y € P}(Q),

(2) m{z — y} + m{y — 2z} = m{z — 2}, for all z,y, 2 € PL(Q).

We have a natural action of GLy(Q) on modular symbols given by

(ym){z — y} :={r"'z — 7‘1y_}

for all v € GLy(Q). One can define a universal Z-module X s.t. for any modular

symbol m : P1(Q) x P1(Q) — A we have the following commutative diagram

X -2 PYQ) x P(Q)

I

A

where m is a group homomorphism. When A = C one can show that X =~ Dive(P}(Q))
as a Z-module. For any v € GLy(Q) and a modular symbol m we define

(yxm){ci — e} = m{y 7 te; — v Lo}

In practice one is interested to [-invariant modular symbols for some subgroup I' <

GLy(Q). Very often T is discrete but not always.

Definition A.1 A partial modular m with respect to a subgroup I' C GLy(Q)

which takes value in an abelian group A is a map
m:SxS—A
for a certain subset S C PY(Q) which is T-invariant and for all x,y,z € S we require

(1) m{z — y} = —m{y — =}

(2) m{z =y} +m{y — 2} = m{z — 2}

Let us prove now prove a very useful theorem.
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Theorem A.1 Letz € PY(Q) and T be a finitely generated subgroup of GLy(Q)
then the I'-module Divo(Tx) is finitely generated. The number of generators of Divy(I'x)

can be taken to be less than or equal to the number of generators of I

Proof Let G = (g1,...,gn). I claim that {[z] — [g;z]}], is a generating set as a
I'-module of Divg(I'z). Let F,, = (x1,...,%,) be the free group of n elements. We
have a natural onto group homomorphism f : F, — G where f(z;) = g;. For an
element w € F,, that is reduced we have a well defined notion of length. We define
Sk == {w € F, : length(w) = k}. Since UpSy = F,, we have U, f(Si) = G. We do a

proof by induction.

Let M = Z[T]({[z] — [g:z]}2,). We need to show that M = Divy(I'z). Assume
that for all g € f(Sk) and k < m — 1 we have [z] — [gz] € M then we claim that

If g € f(S,,) then [x] — [¢'z] € M.

Let us prove it. Since g € f(S,,) there exists a word w € F, of length m such
that f(w) = g. So there exists a x; s.t z;w’ = w where w’ is a word of length
m — 1. By induction we have [z] — [f(w)z] € M. Finally note that [z] — [gz] =
gi([z] — [f(w")z]) + ([z] — [9:z]) € M. Since the induction hypothesis is true for k = 1
it is true for any k£ by the inductive step. [

Corollary A.1 Assume that P1(Q)/T is finite and and T' finitely generated then
Divg(PH(Q)) is a finitely generated I'-module.

Proof Let G = {(g1,...,g,) and P}(Q) = U™, I'z;. Then we claim that

M = Z[V[({[z;] — [9:;]}i5 U {lz1] — [25]}i=2..)
is equal to Divg(PY(Q)). Let y; € I'z; and y; € I'z;. By the previous theorem
we have [z;] — [y;] € M and [z;] — [y;] € M. Also [z;] — [z;] € M. Therefore
[ws] = Tys] = ([z5) = [ys]) + ([wa] = [@]) + ([w] = [z5]) € M. O
So more generally for any finitely generated subgroup I' < GLy(Q) and a subset of
cusps S = U¥_ I'z; (having finitely many [-orbits) we find that Divg(S) is a finitely

generated I'-module.
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Corollary A.2 Since T'o(N) is finitely generated we have that Divy(Io(N)(i00))
is a finitely generated Z[T'o(N)]-module.

So this gives us a theoretical way of computing a partial modular symbol knowing
only the values on a set of generators for Divg(S) over I'. Let us work out an explicit
example. Consider the modular group I'o(N) =< g¢1,...,¢, >. For any element
g € G there exists a reduced word z12s...2, = ¢ where z; € {gl,gfl, e O gt}
and x; # a:;rl,l forall 1 <¢ < n-—1. For any integer £k > 1 we let X = Hf=1 ;. A
direct computation reveals that

[ioc] — [g(io0)] = Y Xu-i ([io0] = [#n—ir1(ic0)]).

i=1

Note that if z; = g; ' then ([ico] — [g; ' (i00)]) = —g; " ([ico] — [g;(ic0)]).
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