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Abstract 
Due to the additive way of manufacturing parts layer by layer, additive manufacturing (AM) is 

subjected to fewer design constraints than traditional manufacturing techniques. The intricate and 

complex structures that cannot be fabricated by traditional methods can be realized by AM. 

However, it should be noted that the manufacturing capability of AM is not limitless. The 

unprecedented design freedom of AM can only be fully utilized when the unique manufacturability 

of AM is well investigated and the design methodology specially for AM, also known as design 

for AM (DFAM), is developed. 

One popular topic of the DFAM research is to propose feature-based design guidelines based on 

experimental investigations. These simple-to-follow rules normally oversimplify the dependent 

relation between the manufacturability of features and their corresponding manufacturability 

parameters. To compensate for this shortcoming in the design guidelines, manufacturability 

analysis is needed to examine designs before manufacturing takes place. In this thesis, a computer-

aided design evaluation (CADE) system is proposed to perform manufacturability analysis on 

computer-aided design (CAD) models for the specific AM process.  

The CADE system consists of three consecutive modules: feature detection, feature evaluation and 

orientation optimization. Logical rule-based method, artificial neural network (ANN) and genetic 

algorithm (GA) are used to develop the three modules, respectively. A design of experiments (DoE) 

method is proposed to study the AM manufacturability with respect to selected aspects of 

geometric dimensioning and tolerancing (GD&T) in a comprehensive yet economical way.  

The proposed framework is implemented for the binder jetting additive manufacturing (BJAM) 

process. Based on the proposed DoE method, the manufacturability of overhang structures and 



7 
 

through holes are investigated experimentally with respect to angularity and cylindricity 

respectively. The knowledge and experimental data gained in the extensive experimental work are 

then used to develop the CADE system. With the support of the developed CADE system, 

designers can examine critical features in their designs from the manufacturability perspective for 

the specific BJAM process. In this way, the features that are prone to failing are identified in 

advance so that designers could modify them to decrease the risk of manufacturing failures. 
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Résumé 
De par sa capacité à fabriquer des pièces par couche, la fabrication additive (raccourci en “AM ”, 

pour Additive Manufacturing en anglais) est soumise à moins de contraintes de conception que les 

techniques de fabrication traditionnelles. Les structures complexes qui ne peuvent pas être 

fabriquées par des méthodes traditionnelles peuvent être réalisées par AM. Cependant, il faut noter 

que les possibilités qu’offre la fabrication additive ne sont pas sans limites. La liberté de conception 

sans précédent de l’AM ne peut être pleinement utilisée que lorsque ses capacités sont bien 

étudiées et que la méthodologie de conception spécialement conçue pour l’AM, connue sous le 

nom de Design for Additive Manufacturing (DFAM), est développé. 

Un sujet populaire de la recherche sur DFAM est de développer des lignes directrices de 

conception basées sur des recherches expérimentales. Ces règles simples simplifient grandement 

la relation de dépendance entre les possibilités de fabrication et leurs paramètres de fabrication 

associés. Pour compenser ce raccourci dû à ces méthodes de conception, une analyse de la 

fabrication est nécessaire pour examiner les designs avant la fabrication. Dans cette thèse, un 

système d'évaluation de la conception assistée par ordinateur (“CADE ” pour Computer-Aided 

Design Evaluation en anglais) est proposé afin effectuer une analyse de la fabrication sur des 

modèles 3D pour le processus AM.  

Le système CADE se compose de trois modules consécutifs: la détection des fonctionnalités, 

l'évaluation des fonctionnalités et l'optimisation de l'orientation. Respectivement, La méthode 

basée sur les règles logiques, le réseau neuronal artificiel (“ANN ”, Artificial Neural Network) et 

l'algorithme génétique (“GA”, Genetic Algorithm) sont utilisés pour développer les trois modules. 

Une méthode de plan d'expériences (“ DoE ”, Design of Experiment) est proposée pour étudier la 

fabricabilité de l’AM par rapport à certains aspects de la dimension géométrique et du 
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tolérancement (“GD & T”, Geometric Dimensioning and Tolerancing) de manière globale et 

économique. 

Le cadre proposé est mis en place pour le processus de fabrication additive de dépôt par jet de 

liants (“ BJAM ”, Binder Jetting Additive Manufacturing). La fabrication de la structure en porte-

à-faux et du trou est étudiée par rapport à l'angularité et la cylindricité respectivement. Les 

connaissances et les données expérimentales obtenues avec ce travail expérimental sont ensuite 

utilisées pour développer le système CADE. En utilisant le système CADE développé, les 

concepteurs peuvent examiner les caractéristiques critiques de leurs conceptions du point de vue 

spécifique de la fabrication par BJAM. De cette façon, les fonctionnalités susceptibles d'être 

défaillantes sont identifiées à l'avance afin que les concepteurs puissent les modifier pour diminuer 

le risque de problèmes lors de la fabrication. 
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Introduction 

1.1 Additive manufacturing 
Additive manufacturing (AM), in contrast to subtractive manufacturing that removes excessive 

material from a workblank to form the desired shape, additively builds parts from scratch by 

stacking material layer by layer. This manufacturing method has many unique characteristics such 

as high level of design flexibility[2], low cost of geometric complexity[3] and part consolidation[4] 

to mention a few. AM processes are categorized in seven types: fused deposition modeling (FDM), 

powder bed fusion (PBF, including selective laser sintering (SLS), selective laser melting (SLM) 

and electron beam melting (EBM), etc.), direct energy deposition (DED), sheet lamination (SL), 

material jetting (MJ), binder jetting (BJ) and stereolithography (SLA). Different AM processes are 

characterized by some individual process traits, but they all share the same basic principal in 

general as shown in Figure 1.  

Start Digial-model-preparation Part-printing

2D slicing

Tool path generation

Material deposition

Material binding

Post-processing End

Sawing

Grinding

Etching

Heat treatment  

Figure 1. Basic process flow of AM 

A typical AM process consists of three basic steps: the digital-model-preparation step, the part-

printing step and the post-processing step. The stereolithography file (STL file) is processed by a 

slicing software in the digital-model-preparation step, where each slice of the as-designed part 

represents the two-dimensional (2D) shape that will be formed in each layer of the part printing. 

Since a shaping tool, usually a printhead or a fine beam of energy sources such as laser, electron 
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beam or ultraviolet light, is normally used to build the sliced 2D shape point by point or line by 

line, the tool path of the shaping tool needs to be generated by the slicing software as well.  

In the part-printing step, each layer of the 2D slicings is constructed by the shaping tool along the 

designated tool path. Depending on the different kinds of AM processes, different material 

deposition or material bonding strategies are used. For FDM, EBM and MJ, the shaping material 

(powder, filament, etc.) is deposited through the shaping tool during the 2D shape construction. 

As for PBF, BJ and SLA, a layer of shaping material (powder, resin, etc.) is spread from the feed 

bed to the top of the build bed in advance and then the 2D shape is constructed by the shaping tool 

that selectively bonds the shaping material on the tool path. The layer-wise repetition of the 

aforementioned shape-construction process gradually build the desired three-dimensional (3D) 

shape along the build direction. To remove the excessive material during the part-printing (support 

structures, build substrate, etc.), or to improve the geometrical quality (surface finish, 

dimensioning and tolerancing, etc.) and the functional performance (mechanical properties, 

thermodynamic performance, etc.), further post-processing is usually needed in AM, such as 

sawing, grinding, etching, heat treatment (sintering, tempering, etc.). 

1.2 Manufacturability of AM 
The additive way of manufacturing enables AM with unmatched advantages. One of the most 

game-changing facts of AM is the unprecedented design freedom enabled by the so-called 

freeform fabrication technique[5]. It was advertised at the time of its advent that AM is free of 

design constraints because AM can fabricate highly complex shapes and very intricate features. 

However, with the development and application of AM technology, it became obvious that some 

unique manufacturing constraints still exist and need to be considered in the design stages[6-9]. 
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The following aspects are some of the typical manufacturing concerns that draw the attention of 

practitioners. 

• Manufacturability of overhang structure: overhang structures whose inclination angle 

exceeds a certain threshold cannot be formed with satisfying structural integrity[10-13]. 

 

Figure 2. Distortions in an overhang area of an EBAM built part[11] 

• Staircase effect: the resolution limitation in the build direction, also known as the staircase 

effect as shown in Figure 3, leads to a notable geometry deviation between the as-

manufactured part and the as-designed model. 

• Anisotropy effect: the mechanical properties of AM parts are different along different 

directions, which makes the build orientation a significant influential factor in terms of the 

manufacturing limits. 

As-designed model

As-manufactured part

 

Figure 3. Diagram of staircase effect 
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These manufacturing concerns are highly linked to whether the selected AM process can 

successfully manufacture the as-designed parts. Considerations of manufacturability issues in the 

design stage can help designers reduce the number of design iterations by identifying problematic 

features in advance. A valid and comprehensive understanding of the manufacturability of any 

manufacturing process is an important asset and a productive assistance to designers. Nevertheless, 

AM has only been intensively studied in the recent two decades. Design for AM (DFAM) is 

specialized for consideration of the unique manufacturing characteristics of AM in the design stage, 

but the nascent understanding of process characteristics of AM impedes the development of 

DFAM. More research on manufacturability of AM and DFAM needs to be done to assist 

practitioners in designing manufacturable parts. 

1.3 Literature review of DFAM 

Unlike the systematic and well-establish theories of design for manufacturing (DFM) dedicated 

for traditional manufacturing techniques, the reliable methodologies of DFAM are still under 

exploration, which leads to this term being used inconsistently in the literature. Kumke[14] wrote 

an elaborate review on recent DFAM research, in which DFAM is classified in the strict and broad 

senses. The structure of this DFAM classification is shown in Figure 4. The basic approaches of 

so-called ‘DFAM in the strict sense’ constitute design rules and methods to ensure AM-producible 

designs, whereas ‘DFAM in the broad sense’ includes the process selection, upstream activities 

such as selection of AM parts/applications and downstream activities such as manufacturability 

analysis. This classification method is used to provide an overview of previous DFAM research 

while pinpointing the research contribution of this thesis in this given context. 
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Figure 4. Classification of previous DFAM approaches[14] 

1.3.1 DFAM in the strict sense  
Concerning the manufacturability of AM, there are two main points of view about DFAM. Most 

researchers focused on proposing design rules that are related to manufacturing limitations to 

provide designers with pragmatic guidelines. This is also known as ‘the restrictive method’[15]. 

Thomas[13] evaluated the geometric limitations of SLM based on quantitative experiments and 

creates feature-based design rules. Seepersad et al.[16] proposed a designer’s guide for 

dimensioning and tolerancing of SLS parts based on the results of a series of experiments[17]. 

Meisel et al.[18] identified key variables, established relationships between them and quantified 

design thresholds to create a preliminary DFAM guidelines for the material jetting process. Studies 

were also done to integrate the design potentials and the unique capabilities of AM in the initial 

design stage. This is also known as ‘the opportunistic method’[15]. Ideal as it may be, limited 

understanding of AM processes impedes the effective and systematic use of this method. This 

method primarily focuses on demonstrating through case studies that how existing designs can 

benefit from AM potentials.  

With opportunistic or restrictive methods, practitioners can either focus on the great potential of 

AM in the preliminary design stage or follow the design rules in the detailed design stage. To 
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develop comprehensive DFAM methodologies, some researchers combined the restrictive and 

opportunistic methods in their approaches. Two kinds of approaches are commonly adopted: the 

bottom-up approach in which no former designs are taken as references in the development of new 

designs; the top-down approach in which existing designs designed for traditional manufacturing 

are redesigned and adapted for AM. Goguelin et al.[6] formulated a bottom-up design framework 

for a new type of CAD tool to support AM. A feature-based design evaluation method was 

proposed by Ranjan et al.[7] in a graph-based approach from the viewpoint of manufacturability. 

To benefit from both approaches, Salonitis[19] developed a comprehensive framework of DFAM 

based on the axiomatic design method that can be used both for developing new products and 

redesigning existing products.  

Apart from the design activities included in DFAM in the strict sense, those that help the DFAM 

process extend to a broader scope and connect better with the manufacturing process by 

considering more detailed and comprehensive AM potentials and limitations, also known as 

DFAM in the broad sense, are far from trivial. A short summary of DFAM in the broad sense is 

introduced in the next section by emphasising the advantages that it brings to the overall DFAM 

framework. The research scope of this thesis is also addressed. 

1.3.2 DFAM in the broad sense  
In the broad sense, DFAM contains additional approaches to providing designers with additional 

assistance[14]. This category of DFAM contains three main aspects: selection of AM-suitable 

parts/application, manufacturability analysis and process selection and production strategy, as 

shown in Figure 4. Among all three aspects, the process selection was investigated the most. 

Samperi [12] generated a series of design guidelines for metal AM and created a process and 

machine selection tool. Chen[20] developed an intelligent parameters recommendation system to 
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predict end-product quality properties and printing time. As for the part selection, Conner[2] et al. 

identified three key attributes that make a product AM-suitable from a manufacturability 

perspective. Klahn et al.[21] proposed four selection criteria for replacing conventional parts of a 

product with additive manufactured ones by re-designing. 

1.3.2.1 Manufacturability analysis 
Compared with the process and part selections, the manufacturability analysis has not been well 

studied. Studies on manufacturability are mostly dedicated to guide designers in the detailed design 

process to create AM-producible parts, as mentioned in Section 1.3.1. However, such 

manufacturability consideration is normally expressed in the form of feature-based design 

guidelines. They are sometimes too general to represent the dependent relation between the 

geometrical aspects of the feature and its potential to be successfully manufactured. To be more 

specific, design guidelines regarding the manufacturability of AM are normally proposed as 

recommendations indicating what should be adopted and avoided in the detailed design stage. 

These guidelines are meant to be simple for the designers to follow, thus they are usually dependant 

on only one parameter. For example, the guideline of designing overhang structures for SLM is 

often given as a limitation value of the inclination angle with respect to the build orientation. 

However, the structural integrity of overhangs highly depends on many other factors, such as 

dimensions, shapes, topology, etc. Over-simplification of the complex dependent relation will 

result in the invalidity of the proposed guidelines under certain circumstances. Therefore, it is 

obvious that the generalized design guidelines cannot guarantee the manufacturability of the 

design. To compensate for this shortcoming of general design guidelines, manufacturability 

analysis is needed to examine the generated designs and decrease the risk of manufacturing failures. 

Manufacturability analysis examines problematic areas of a design with respect to multiple design 

factors and assessing these areas in terms of manufacturability. In this sense, manufacturability 
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analysis can be treated as a complementary tool of general design guidelines, that is the 

manufacturability evaluation of design models in a comprehensive way. 

There is a lack of research on manufacturability analysis in the broad sense of DFAM. Among the 

few relevant research papers, Kerbrat et al.[22] develop a manufacturability evaluation method for 

the hybrid manufacturing techniques of additive and subtractive processes and implement it in a 

CAD software, which is not fully focused on AM processes. Zhang et al.[23] propose a two-level 

evaluation framework for design assessment from a process planning perspective. This research 

work is dedicated to assessing the parts that are especially designed for AM from a 

manufacturability perspective. A systematic framework is presented to implement the 

manufacturability analysis by developing a feature-based computer-aided design evaluation 

(CADE) system. To assist the implementation of the CADE system, a DoE method is proposed to 

study the manufacturability of designated AM process. The theoretical and experimental 

methodologies are elaborated in Chapter 2. The proposed CADE system that is implemented for 

binder jetting additive manufacturing (BJAM) process is demonstrated in Chapter 3 and a case 

study of an aerospace bracket is introduced in Chapter 4 to exam the effectiveness of the developed 

CADE system. 
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2 Methodology 
In this chapter, the framework of a computer-aided design evaluation (CADE) system is proposed 

to perform manufacturability analysis on digital design models for AM technologies. A generic 

design of experiments (DoE) method to investigate the manufacturability of the designated AM 

process is also proposed in this chapter. Involved concepts and terminologies are clarified for the 

convenience of the following illustrations. The relationship between the DoE method and the 

CADE system is then introduced, which is followed by the detailed discussions of the DOE method 

and the CADE system. 

2.1 Concepts and terminologies 
As a vital link that closely connects the design process with the manufacturing process, 

manufacturability analysis includes the concepts and terminologies of both design and 

manufacturing processes. The use of these terms can be inconsistent, interchangeable and 

confusing. To clarify the context of this thesis, important concepts and terms are defined and 

illustrated first. 

2.1.1 Manufacturability 
The concept of ‘manufacturability’ is not well defined and has been used inconsistently in the 

literature and in practice. In most cases, it refers to the fact that the part can or cannot be 

manufactured by the designated manufacturing process. It is a binary indicator of structural 

integrity, a.k.a. a binary manufacturability. Binary manufacturability is the most fundamental 

definition. It is a crucial part of the definition and the most basic requirement of the 

manufacturability of the specific AM process in terms of features, a.k.a. ‘the AM feature 

manufacturability’. However, the binary manufacturability is not very useful in practice. A 

severely deformed but unbroken feature is indicated as ‘acceptable’ in the binary definition, 

however, it is not qualified to fulfill its functionality. In this thesis, ‘manufacturability’ refers to 
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the capability of the given AM process to not only successfully manufacture the part, but also 

ensure that certain design requirements of the manufactured part are satisfied. The proper criteria 

that reflects the satisfaction of design requirements need to be selected to evaluate the 

manufacturability. 

The determined design is assigned with geometric dimensioning and tolerancing (GD&T) in the 

detailed design stage. GD&T describes the allowable variation between the nominal (theoretically 

perfect) geometry of parts and the actual manufactured parts in terms of form and size. The concept 

of GD&T directly reflects the lowest level of geometric variation that can be redeemed as 

acceptable. The proper choices of GD&T can directly reflect the main design intentions and design 

requirements that designers have on the corresponding features, which makes it a perfect match 

for the manufacturability analysis in the context of this thesis. It is recommended by the author 

that one or several aspects of GD&T should be chosen as the evaluation criteria of the AM feature 

manufacturability. It should be noted that the choice of GD&T to be the evaluation criterion can 

be different for the same feature under different design contexts. Therefore, the evaluation criteria 

need to be chosen with extra cautions and rational thoughts. For example, for overhang structures, 

angularity should be selected if both its inclination angle and flatness are the main concerns, 

whereas other GD&Ts such as roughness or specific dimensions should be selected if they are of 

more importance otherwise. In this way, the evaluation criterion of the manufacturability of the 

feature will be chosen as the most important GD&T requirements on that feature.  

To summarize, the manufacturability is defined in this thesis as the abilities of the specified AM 

process to manufacture the part with satisfying GD&T qualities. 
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2.1.2 Feature 
To explore manufacturing limitations of certain AM processes, features have been commonly used 

as the research objects of DFAM in literatures[13, 16, 24, 25]. Features are generally used to give 

meaning to component attributes, helping in dissecting component geometry into recognisable, 

meaningful regions, and improving communication between design and manufacture[26]. In these 

literature papers, the selected features were experimentally studied, benchmarked and finally 

summarized as general design guidelines. To stay consistent with the design guidelines being used 

in the DFAM in the strict sense, features are chosen in this research project as the research objects 

of manufacturability analysis.  

The concept of feature can include but not limited to: design features, manufacturing features, 

assembly features, measurement features, etc. In this thesis, ‘design features’ refer to geometric 

entities that carry the design intentions, such as slot, rib and hole, etc. The set of parameters that 

determines the geometrical shape of the design feature is called ‘design parameters’. For example, 

a straight through hole is a design feature whose design parameters include diameter and length. 

‘Manufacturing feature’, on the other hand, is determined by both its geometrical shape and the 

auxiliary non-geometric manufacturing information associated to the manufacturing stage, such as 

certain process parameters, the process type, material and machine type etc. For instance, build 

orientation of AM parts is determined by inclination angles, which are process parameters. The rib 

feature that is manufactured at certain inclination angles is called ‘overhang structure’, which is a 

manufacturing feature. To simplify the use of terms in the rest of this thesis, ‘features’ refer to the 

features involved in the manufacturability analysis, which can be design features or manufacturing 

features. Correspondingly, the design parameters and/or non-geometric manufacturing 

information that have influences on the AM feature manufacturability are called 

‘manufacturability parameters’. 
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2.2 Relation between the DoE method and the CADE system 

Start
Feature 
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Figure 5. Outline of the DoE method and the CADE system 

The CADE system is a computer-aided tool that analyzes the manufacturability of digital design 

models. Due to the trend of digitization in industry and the inherent advantages of AM in the design 

and manufacturing automation, computer-aided design (CAD) models are used as the input of the 

CADE system. 

The CADE system consists of three modules as shown in Figure 5: feature detection, feature 

evaluation and orientation optimization. The first two modules detect and then evaluate the input 

CAD model for potential features that may have manufacturability issues. However, it should also 

be noted that one of the most important characteristics of AM is the anisotropic properties of AM 

parts. The build orientation plays an important role in determining the manufacturability of AM 

parts. Additively manufactured parts that have a low level of manufacturability under one build 
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orientation may have a high level of manufacturability under the other, which makes the build 

orientation an important manufacturability parameter of AM parts. To find the best AM feature 

manufacturability, the orientation optimization module is needed after the feature evaluation 

module, as shown in Figure 5. The evaluated result is optimized with respect to the orientation 

angles. The optimized result predicts the best overall manufacturability of the evaluated CAD 

model that contains all evaluated features, which is exported into a reference document to 

designers as the evaluation report. In this study, both the design parameters and the build 

orientation of features are chosen as the manufacturability parameters. 

For the feature detection module, the detection of features should also include the extraction of 

their manufacturability parameters. For the feature evaluation module, the model of dependent 

relation between the key manufacturability parameters and the manufacturability of the 

corresponding feature, that is ‘the manufacturability model’, needs to be established. The 

embodiment of these two modules requires the experimental understanding of the AM feature 

manufacturability and there are two main concerns of the experimentation work. On one hand, the 

number of manufacturability parameters of each feature can be numerous, especially when the 

complexity of the feature increases. It is neither efficient nor effective to consider all the 

manufacturability parameters in the feature detection and evaluation processes. Only the 

manufacturability parameters that are most important to the manufacturability results, i.e. the key 

manufacturability parameters, should be used. Thus, it is necessary to identify the key 

manufacturability parameters of each feature in an experimental way, hence there is the Screening 

DoE shown in Figure 5. The CADE system only extracts the key manufacturability parameters of 

the detected features in the feature detection module. The manufacturability parameters that are 

deemed as relatively unimportant in the screening DoE are neglected and kept as constants in the 
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subsequent experimental exploration. On the other hand, data acquisition is very important for 

building the experiment-based manufacturability model. Experimental data pairs of the key 

manufacturability parameters and the AM feature manufacturability need to be gathered through 

the DoE method, hence there is the final DoE shown in Figure 5. The final DoE experimentally 

reveal the influences that key manufacturability parameters have on the resulting manufacturability 

outcomes. Experimental data is then fed in the CADE system for modeling, which is the feature 

evaluation module shown in Figure 5. 

To sum up, the screening DoE identifies the key manufacturability parameters to save the efforts 

of feature detection and the final DoE collects experiment data for building the manufacturability 

model. The three modules of the CADE system are the core of the manufacturability analysis of 

AM, whereas the DoE method serves as the entry for the CADE system to acquire the knowledge 

of AM feature manufacturability and experiment data.  In this way, the CADE system can be 

developed based on the experimental understanding of the specific AM process. With the 

connection between the CADE system and the DoE method being clarified, the following content 

of this chapter is dedicated to demonstrate them separately. Section 2.4 introduces the DoE method 

to investigate the AM feature manufacturability and Section 2.3 illustrates the framework of the 

CADE system. 

2.3 Framework of the CADE system 
The overview of the framework of the proposed CADE system is introduced first, followed by the 

introductions of three modules of the CADE system. Although the implementation in Chapter 3 

puts emphasis on the BJAM process, the framework proposed in this chapter is a general guideline 

of manufacturability analysis that can be applied to any features fabricated by any AM processes. 

Implementation details are different for different situations but the background knowledge of each 
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module is introduced here. Besides, based on the comparisons among the most plausible choices 

from the reviewed literature, the reasons of recommending specific methods and algorithms for 

the implementation are explained. 

2.3.1 Modules of the CADE system 
Methods and algorithms for the CADE system shown in Figure 6 include: the logical rule-based 

method for feature detection, artificial neural network (ANN) for feature evaluation and genetic 

algorithm (GA) for orientation optimization. In the feature detection module, features that will 

potentially fail to be fabricated in the manufacturing stage are detected via a logical rule-based 

method. Key manufacturability parameters of detected features are also extracted for feature 

evaluation. ANN, a type of popular metamodeling method, is used to establish the 

manufacturability model in the feature evaluation module. The detected features are then evaluated 

in terms of manufacturability by feeding the extracted key manufacturability parameters in the 

metamodel. Finally, the overall manufacturability of the design is optimized using the GA. The 

CADE system is introduced module by module as follows. 
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Figure 6. Framework of the CADE system 
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2.3.2 Feature detection 
The feature detection module identifies the potentially problematic features and extracts 

corresponding key manufacturability parameters for the feature evaluation module. Feature 

detection is highly linked to the part representation methods employed in the form of CAD data 

exchange. Boundary representation (B-rep) has most commonly been used in research practice 

because of easy manipulation of basic elements like vertices, edges, and faces, among which STEP 

exhibit advantages over other data formats (IGES, ACIS, STL, etc.)[27]. In this framework, CAD 

models in STEP file format are employed.  

The process of detecting features in CAD models and extracting geometric information of these 

features, more formally known as feature recognition (FR), has been studied for many years. FR 

is an essential process for fully automated computer-aided process planning (CAPP) system 

development[27] in traditional manufacturing techniques. Integration of a design system and a 

manufacturing system by using the concept of features has been a major research direction for 

many years[26-30]. It is dedicated to converting design feature information in CAD system to the 

machining feature information in CAM system, during which instructions of how the part should 

be traditionally manufactured are determined. The existing theories and methods of FR are 

especially developed for traditional manufacturing and therefore can not be directly used in the 

context of AM. However, the basic ideas and principles are similar and most of the popular 

techniques are interlinked. For example, in terms of approaches of FR for traditional 

manufacturing, logical rule-based method is commonly used in the feature recognition due to it 

robustness[27]. The features should be exclusively defined so that robust detection logics can be 

established. The exact detection logic may not be feasible for AM parts but detection algorithms 

for primitives such as faces, edges and vertices and simple features like holes, slots, chambers, and 

bosses are applicable in the context of AM with some minor modifications. Attributes of CAD 
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model such as faces, edges, vertices and their topology information are normally used to identify 

features and extract geometry information. With a good knowledge of the designated AM process 

and the existing detection methods of FR, the detection logics and algorithms can be adapted for 

AM by eliminating unnecessary considerations of traditional techniques (such as the multi-step 

process planning) and adding special concerns of AM features (such as closed internal cavities). It 

is suggested in this framework that a logic rule-based feature detection module for STEP files 

should be developed to identify the features and extract the value of their key manufacturability 

parameters. 

It is crucial to have well-defined features with no ambiguity, which means one type of feature must 

uniquely correspond to one definition in the entire knowledge base of features and vice versa. The 

uniqueness of feature definition ensures an accurate recognition if set up correctly. However, given 

the diversity of feature definitions, it’s almost impossible to embrace all possibilities of similar 

features in one single definition. To benefit from the advantages of a rule-based method while 

preventing the detection logic from being too lengthy and complicated, it’s important to keep the 

applied range in mind and develop the logic (if-then) rules as efficient as possible in the designated 

application background. It should be noted that it is surely beneficial to develop a comprehensive 

feature knowledge base of feature definitions and detection logics, but only the tradeoff between 

budget and detection performance matters the most. The CADE system should be developed for 

the features that are most crucial first, and more design features can be incorporated afterwards if 

more resources are available. In this thesis, the detection logic for overhang structures and through 

holes are developed and explained in Section 3.3.1. 
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2.3.3 Feature evaluation  
Once the features of interest are detected, the next step of CADE system is to evaluate the detected 

features and find the best build orientation for the best overall manufacturability of the entire part. 

The manufacturability model needs to be developed to map the values of key manufacturability 

parameters into the manufacturing results. The formulation of mathematical models based on 

physical understanding of AM processes is an important approach to establishing the mapping 

relation; however, it may be quite a challenging task as it requires in-depth understanding of the 

complex AM processes[31], which are not available for most metal AM processes at present. 

Therefore, researchers focus on building empirical models using data-driven metamodeling 

techniques such as ANN[32-35], response surface method (RSM)[33, 36], regression model[37], 

statistical modeling[38-40], genetic programming[35], etc. Among all the metamodeling methods, 

RSM and ANN are two most popular techniques used for the metamodeling of manufacturing 

processes. RSM is a statistical-based approach in which a response of interest is approximated by 

fitting the experimental responses to polynomial functions[41]. It is a stepwise heuristic method 

that often locally uses linear functions to approximate a global response surface with second-order 

polynomial equation[42]. The number of many successful applications of RSM has proved it to be 

an effective metamodeling method. On the other hand, ANN has emerged as an attractive tool for 

non-linear multivariable modeling[43]. ANN is the state-of-the-art approach to exploring complex 

yet vague relation by giving computers the ability to learn from previous data without being 

explicitly programmed. Comparatively speaking, ANN has many advantages over RSN in the 

context of this thesis: (i) ANN is capable of approximating almost all kinds of non-linear functions 

including quadratic functions, i.e. the universal approximation capability, whereas RSM is useful 

only for quadratic approximations[41]; (ii) the multilayered structure of ANN has the capability 

of establishing complicated relationships and it provides the flexibility of fine-tuning the ANN 



30 
 

structure by changing the number of hidden layers and the number of neurons in each hidden layer; 

(iii) there are plenty of useful diagnostic techniques for training ANN algorithms such as 

regularization, learning curves, gradient checking, error analysis, etc., which makes ANN an 

effective and efficient metamodeling method. It is reported in many reviewed literature papers[32, 

33, 36, 41, 44-49] that ANN showed a clear superiority over RSM in terms of prediction accuracy, 

efficiency, data fitting and estimation capabilities. Moreover, ANN has been proven to be effective 

in modeling many AM processes[33-35, 50-52]. Besides, ANN is suitable when the relationship 

between the inputs and responses is unknown or there is an incomplete understanding of the 

process[31], as in the case of most metal AM processes like the BJAM process. Given the 

advantages of ANN and successful application of ANN in AM processes, ANN is chosen as the 

metamodeling method of the feature evaluation module.  

2.3.4 Orientation optimization 
The orientation optimization module determines the best overall manufacturability of the part with 

respect to the build orientation. The GD&T requirements that are used as the evaluation criteria, 

such as angularity for overhang structures and cylindricity for through holes, are found to be 

orientation-dependent for most AM processes. It is a complicated dependent relation that cannot 

be fully embraced in the design guidelines. Therefore, it is very difficult to manually determine 

the build orientation that results in the best manufacturing quality when designers come up with 

the design using the design guidelines. On one hand, the build orientation preassigned by designers 

can fall outside of the feasible range of orientation angles because of the over-simplification of 

design guidelines explained in Chapter 0. On the other hand, the build orientation is a crucial part 

of the definition of some manufacturing features. For instance, a rib structure inclined 90 degrees 

over the build plate is considered as a vertical-wall feature, whose manufacturability in AM 

processes is normally not determined by the same set of key manufacturability parameters as those 
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of overhang structures, thus, should not be detected and evaluated as the same type. Considering 

the significance of build orientation, an orientation optimization module is integrated in the CADE 

system, which includes a scheme of orientation adjustment, as shown in Figure 6. The orientation 

optimization module changes the orientation of the CAD model, so that features are re-detected in 

the feature detection module and the re-detected features are re-evaluated in the feature evaluation 

module. The orientation optimization module checks the evaluation results again to continue 

changing inclination angles if necessary. The looping stops until the optimized result is found or 

the stopping criteria are reached. 

The optimization of build orientation of AM parts is a popular research topic in the research field 

of AM. It is usually a trade-off between multiple objectives based on many variables of various 

types (continuous, discrete, categorical, etc.). The characteristics of the resulting objective function 

are most likely not suitable for traditional optimization algorithms where continuity and/or 

differentiability are often required. Genetic algorithm (GA), on the other hand, utilizes techniques 

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover to tackle 

large-scale optimization problems[53]. GA is suitable to find the global extremum hidden among 

many poor and local extrema[54], which has been successfully applied to build orientation 

optimization of AM parts in literatures[34, 53, 55, 56]. Thus, GA is used for the orientation 

optimization module of the proposed CADE system. 

2.4 Framework of the DoE method 
A three-stage DoE method is proposed here to guide the practitioners to develop a series of 

experiment procedures for investigating the AM feature manufacturability. It consists of 

preliminary, screening and final DoE, whose framework is shown in Figure 7. Except for the 

screening and final DoE mentioned in Section 2.2, a preliminary DoE is also needed when the 
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basic manufacturing capacity of the AM process is unclear or the manufacturability of the specific 

features fabricated by this specific AM process is unknown. Moreover, the evaluation criteria that 

indicate the satisfaction of certain GD&T requirements need to be selected in the preliminary DoE 

as well. The evaluation criteria will be inherited from the preliminary DoE to the screening and 

final DoE shown in Figure 7. To gain the basic understanding of the designated AM process such 

as the binary manufacturability and select the proper evaluation criteria of manufacturability, the 

preliminary DoE is employed in the DoE method shown in Figure 7. 

In the proposed DoE method, understanding of binary manufacturability and evaluation criteria, 

key manufacturability parameters as well as experiment data are drawn from three stages of the 

DoE method to support the next experiment stage. The acquired knowledge and data are then used 

to establish the CADE system. It should be noted that details of the DoE method might vary for 

different AM processes, but a general yet systematic methodology is proposed here to guide the 

experimental exploration for the manufacturability of AM.  
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Experiment 

data

Screening  DoE Final DoEPreliminary DoE
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Figure 7. Framework of the DoE method 
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2.4.1 Preliminary DoE 
The preliminary DoE is implemented to understand the binary manufacturability of the designated 

AM process and select the proper evaluation criteria of its feature manufacturability. It is almost 

impossible to propose a specific method for the preliminary DoE because it can be dramatically 

different for various AM processes and for different features of interest. For example, the 

depowdering process is crucial for the manufacturability of BJAM process, whereas it is not very 

important for the laser-based metal AM processes since the dense parts are already solidified. The 

difficulty of depowdering overhang structures is that the structure is too fragile, whereas the 

difficulty of depowering through holes is that the inner surface is hard to reach. Therefore, details 

of the preliminary DoE need to be determined by considering the characteristics of the specific 

AM process and the evaluated features. As mentioned in Section 2.1.1, the most basic requirement 

of the AM feature manufacturability is the binary manufacturability. A set of experiment samples 

should be designed by changing manufacturability parameters so that some initial conclusion of 

the binary manufacturability can be drawn. Since the initial selection of manufacturability 

parameters, evaluation criteria and measurement method and equipment may not be suitable, some 

iterations might be needed. At the end of preliminary DoE, the GD&T requirements chosen as the 

evaluation criteria need to be determined. Given experiment conditions and the budget of time and 

money, the corresponding measurement method and equipment also should be specified. 

The preliminary DoE is the initial exploration of the AM feature manufacturability and a 

preparation step for the following stages of DoE. It should be noted that the preliminary DoE is 

not mandatory but highly recommended.  

2.4.2 Screening DoE 
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A screening scheme is needed to identify the key manufacturability parameters. Screening DoE is 

the most popular form of fractional factorial DoE used to reduce the number of process or design 

parameters (or factors). It identifies the key parameters that affect process performance or product 

quality[57]. Especially when a system or process is new, it efficiently seeks out the non-influential 

factors to remove from experimentation[58]. Screening designs are a practical compromise 

between cost and information by making the assumption that the process in the real world is 

dominated by only a few factors whereas the rest being relatively unimportant[59].  

Traditional screening DoE pinpoints the factors that have dominant effects by assuming a linear 

effect of factors on response in the applied process or system. Substantial ambiguity will be 

presented if a nonlinear or confounded effect is active. Confounding occurs in many standard 

screening designs with a similar number of runs. Traditional screening DoE such as resolution III 

or IV designs cannot capture curvature due to pure-quadratic effects[60]. Subsequent experiments 

are needed to analyse the active interactions. 

To tackle this issue, definitive screening design (DSD) was recently introduced by Jones and 

Nachtsheim[60]. DSD is suitable to identify the main effects and second-order terms in one stage 

of experimentation[61]. DSD only requires a small number of runs to not only detect the important 

factors and interactions but also identify the cause of nonlinear effects. It efficiently provides the 

feature detection module in the CADE system with unbiased information. Moreover, the 

identification of correlated factors is very important for the selection of experiment method for the 

final DoE. Taguchi method is recommended for the final DoE, which is introduced in the following 

section, but the presence of interactions among factors can cause the estimate of performance by 

Taguchi method to be significantly off[33]. DSD can test the suitability of Taguchi method for the 

final DoE. 
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To screen out unimportant factors and guide the method selection of final DoE, DSD is employed 

to identify key manufacturability parameters and exam potential interactions between them. There 

are many ways of developing a DSD, among which the most popular choice is to use the DoE 

platform in the modern statistical software like JMP and Minitab. It is convenient to make an 

experiment design and analyze the experiment results in the same place. A good DoE platform 

offers both robustness and flexibility and practitioners can have their own choice of DoE platform 

to develop the DSD runs. In this thesis, JMP created by the Statistical Analysis System (SAS) is 

used in Chapter 3 to implement the proposed screening DoE. 

2.4.3 Final DoE 
The final step of the proposed three-stage DoE method provides experiment data for ANN to learn 

from. As mentioned in Section 2.4.2, Taguchi method is the recommended DoE method. It is a 

robust, efficient and cost-effective DoE method that is widely used in developing a product or 

investigating a complex process in industry. It requires a small number of experiment runs while 

providing fruitful information of the investigated product or process. Taguchi method provides an 

effective means to enhance the performance of ANN in terms of the learning speed and the recall 

accuracy[32]. Regarding the data mining of ANN, Taguchi method was found to be an effective 

means to enhance the performance of ANN in terms of learning speed and accuracy[62]. ANN that 

is built on the experiment data designed by Taguchi method provide a good prediction in a variety 

of physical processes[62-64]. Another advantage of employing the Taguchi method is that the 

structure and parameter tuning of ANN by using Taguchi method and GA can reduce the cost of 

implementation of ANN[65]. It is shown in the literature[35, 62, 65] that ANN, GA and Taguchi 

method work well with each other and the combination of them is an effective and efficient 

approach to optimizing and modeling nonlinear and multitudinous systems[35]. Therefore, it is 

suggested to use Taguchi method for final DoE. 
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Taguchi method is a preferable choice of the final DoE but its suitability is highly dependent on 

the information acquired in the screening DoE and the characteristics of ANN structures. The 

possible presence of factor interactions detected in the screening design may disagree with this 

choice. In this case, other fractional factorial DoE, such as central composite design, Latin 

Hypercube design and other designs supplemented with domain knowledge should be used. 

Therefore, the specific DoE method for the final DoE cannot be determined before the analysis 

result of the screening DoE is gained. 

2.5 Summary  
Design guidelines used for designing parts especially for AM are typically oversimplified. The 

satisfaction of all guidelines does not guarantee the successful manufacture of the as-designed part. 

Manufacturing analysis, in which the design model is examined for potential manufacturing 

failures, is needed to save the money and time of product development for AM. 

To provide practitioners with a convenient yet effective approach to performing manufacturability 

analysis on AM parts, the framework of developing a computer-aided design evaluation (CADE) 

system in an experimental way is proposed in this chapter. For the designated AM process, its 

feature manufacturability is first studied experimentally by following a series of DoE procedures. 

A three-stage DoE method is introduced to provide essential information and data for the CADE 

system. The preliminary DoE acquires the most basic understanding of the AM feature 

manufacturability, that is the binary manufacturability. The screening DoE identifies the key 

manufacturability parameters to relieve the workload of subsequent experiments. The final DoE 

supplies experiment data on which the manufacturability model of feature evaluation is built.  The 

results and analysis of systematically designed experiments are then used to assist the development 

of the CADE system.  
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The proposed CADE system is characteristic of being a computer-aided and feature-based 

software tool. Given the traits of the CADE system and the anisotropy of AM parts, three 

constituent modules of CADE system are embodied with carefully selected methods and 

algorithms: the logical rule-based method for feature detection, artificial neural network (ANN) 

for feature evaluation and genetic algorithm (GA) for orientation optimization. The combination 

of Taguchi method, ANN and GA is recommended for the data acquisition and development of 

CADE system. The CADE system takes the CAD model as the input to generate the 

manufacturability evaluation result of potentially problematic features. In this way, potential 

manufacturing issues can be identified before the actual manufacturing process. 

However, it should be noted that this proposed approach is subjected to some limitations that need 

to be tackled. For one thing, the logic rule-based method used for feature detection is favored for 

its robustness. However, this kind of one-to-one mapping in the feature database is lack of 

knowledge acquisition and update mechanism[10], therefore continuous update work is needed 

whenever there is some change of the feature detection logic or a new feature to be added. Besides, 

serious issues can be caused when the detected features cannot find any match-up pattern in the 

knowledge base. For another, ANN is an advanced algorithm that does not need explicit 

programming and thus the mapping relation is not established in an explicit form. The ANN model 

cannot explain the results explicitly, which implies that the question of how the design should be 

modified for improvement is out of the scope of this thesis.         
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3 Implementation of the DoE methods and the CADE system for 

BJAM 
In this chapter, the DoE method and the framework of the CADE system proposed in Chapter 2 

are implemented for binder jetting AM (BJAM) process.  

3.1 BJAM process 
Binder jetting, also known as three dimensional printing (3DP), is a direct digital fabrication 

technology that selectively deposits a liquid binder into a bed of loose powder to form a green part 

whose shape is given by CAD specifications[66]. The printing system of BJAM is shown in Figure 

8. The spreading roller spreads a thin layer of powder over the powder bed in the build box, then 

the binder in the liquid binder supply is applied to the powder bed through the inkjet printhead to 

form a 2D shape and bonds it with the one in the previous layer. After the deposited binder is 

solidified by an electrical infrared heater, the powder supply in the feed box is moved up and the 

build box moves downwards by one layer, so that a new layer of powder can be spread. The 

aforementioned process repeats which gradually forms a 3D printed part, a.k.a. the green part. This 

green part, still embedded in the powder bed, is transferred into a curing oven to solidify the liquid 

binder. This process is called the curing or debinding process. The green part is imposed with 

enough strength for the following operations. The loose powder around the green part is removed 

in the depowdering process. The sintering/infiltration burns off the solidified binder and allows 

the formation of inter-particle necks that add strength to the part while minimizing dimensional 

changes[67]. The part formed after the sintering/infiltration process is called a brown part, and it 

is further post-processed by operations such as polishing to form a final part if necessary. It should 

be noted that “green” and “brown” parts used here are characteristic idioms borrowed from Laser 

Sintering (LS) process. In LS process, material powders are fused and bonded to form a porous 

green part, then a stronger brown part is formed after the sintering process removes internal pores 
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of the green part. It shares a certain similarity with BJAM in this sense, thus a ‘green part’ refers 

to the weak and porous part after the depowdering process and a ‘brown part’ refers to the sintered 

part after the sintering process. The aforementioned processes are summarized in Figure 9. 

 

Figure 8. Diagram of the printing system of BJAM 
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Figure 9. Flowchart of the BJAM process 

Compared to other metal AM processes, there is no intensive heat input in BJ printing process. 

Moreover, the loose powder which acts as support structures for overhangs during the printing 
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process can be easily removed after the curing process. These advantages of BJ make it suitable 

for fabricating overhang structures[67]. The manufacturability of laser-based metal AM are 

relatively intensively investigated as mentioned in Section 1.3. BJAM process, on the other hand, 

is filled with many unknown questions. To cope with this issue, the CADE system is developed 

especially for the BJAM process. Due to the need of experimental analysis and data for the 

implementation of the CADE system, the experimental work is introduced first. 

3.2 Design of experiments 
The three-stage DoE method proposed in Chapter 2 is implemented here for two features that are 

critical for AM processes: overhang structure and through hole, as shown in Figure 10. These two 

types of design features are commonly known for their low level of manufacturability in AM. 

Overhang structures normally require the support structure to avoid deformation caused by the 

thermal stress when intensive heat input presented. Attentions is also required for designing 

through holes since there is the minimum size of manufacturable through hole and the quality of 

through holes varies significantly under different orientations. The experimental work for these 

two features are illustrated separately. 

 

Figure 10. Diagrams of overhang structure and through hole 
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3.2.1 Overhang structure 
Due to the lack of research in the literature, preliminary experiments are conducted to investigate 

the manufacturability of overhang structures fabricated by the BJAM. 

3.2.1.1 Preliminary experiments on overhang structures 
Protruding features are commonly used in mechanical parts such as connectors, brackets, etc. As 

for the fabrication of these features via AM processes, sometimes they are unavoidably 

manufactured as overhang structures due to the limited printing space or due to a specific printing 

orientation resulting from other limitations. In the context of AM in this thesis, an overhang 

structure is defined as a type of manufacturing feature that needs additional support material during 

the fabrication process. Compared to other metal AM processes, BJAM have advantages of no 

severe temperature variation during manufacturing and easy removal of loose powder which act 

as support structures during the printing and curing process. However, like other AM processes, it 

should be noticed that the BJAM process also has certain manufacturing limitations on overhang 

structures. It is crucial to have a general idea of the manufacturability of the BJAM process before 

implementing the CADE system. To deal with this issue and provide a general guideline for 

designers, the binary manufacturability of overhang structures fabricated by BJAM is studied both 

experimentally and theoretically. A theoretical model is proposed to predict the fracture failure of 

overhang structures in the depowdering process and proper experiments are designed to validate 

the proposed model. The methodology and experiment research are explained as follows. The 

content of Section 3.2.1.1 is published in the proceedings of the ASME 2016 International 

Mechanical Engineering Congress and Exposition[1]. 

3.2.1.1.1 Theoretical model for the depowdering process 

The depowdering process is a unique manufacturing step of BJAM process. On one hand, the 

material powder particles are only loosely connected by solidified binder as shown in Figure 11. 
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Therefore, compared to the brown part after the sintering process, the strength of green part is 

relatively weak and vulnerable to fracture. On the other hand, the green parts lose the support of 

extra loose powder after the depowdering process, which could easily be damaged by some 

inevitable external loads, such as self-weight. Based on the past experience, fragile structures like 

overhang structures tend to fail during the depowdering process. A theoretical model is proposed 

to predict the fracture failure of overhang structures during the depowdering process of BJAM. 

This theoretical model mainly focuses on the fracture of green parts obtained after the depowdering 

process. 

 

Figure 11. SEM of the fracture cross section of green part 

Based on the observation of broken green parts during the depowdering process, it is seen that 

these parts usually fail without any extensive plastic deformation. Thus, the failure of green parts 

after the curing process can be classified into brittle failure category. To predict the failure of green 

parts, the maximum normal stress criterion is used. According to this theory, the failure occurs 

when the maximum principle stress reaches to the uniaxial tension strength. It can be expressed as: 

 σm < σt  (1) 

Where 𝜎𝑡 is the uniaxial tension strength of the printed green part. It can be assumed as a constant 

if certain material and binder as well as the processing parameters are selected. 𝜎𝑚 is the maximum 
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principle stress of the specimen after the depowdering process. The stress inside the green part 

during the depowdering process is mainly caused by its self-weight as well as any forces imposed 

by the operations such as brushing, air-blowing and/or vacuuming. The depowdering forces are 

highly related to depowdering strategies being used and the operation skills. Despite the nature of 

randomness of depowdering forces, experienced operators can successfully use proper strategies 

to avoid fracture failure caused by depowdering forces. For example, a sudden extraction of loose 

powder support to the overhang structures should be avoided, thus the loose powder above the 

upward surface of overhang structures should be removed first while the downward surface is 

supported. In order to explore the dimensional requirements that designers must obey to ensure 

the structural integrity of overhang structures, the depowdering forces are neglected and focus is 

given on the determination of the limit stress condition solely caused by self-weight. In other words, 

the designed overhang structure must be a self-supporting structure. Figure 12 shows one of the 

most common overhang structures that occur during AM processes. According to beam theory, 

the maximum normal stress for the structure shown in Figure 12 is located at the point A or B. 

This value for any arbitrary shape can be calculated by equation (2):  

 𝜎𝑚 =
𝑀∙𝑧

𝐼𝑧
  (2) 

A

B
G

L
b

T

 

Figure 12. Example of typical overhang structures 

Where M represents the bending moment at the point A or B; z is the maximum distance between 

point A/B and the neutral axis of the beam, and 𝐼𝑧 is the area moment of inertia of the cross-section.  
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 𝑀 ∙ z = 𝐺 ∙ (L/2) ∙ (T/2)  (3) 

 𝐺 = 𝜌 ∙ 𝑏𝑇𝐿 ∙ 𝑔  (4) 

 𝐼𝑧 =
b𝑇3

12
  (5) 

 𝜎𝑚 =
3𝜌𝑔𝐿2

𝑇
   (6) 

The geometrical relations of a rectangular beam are listed above, where 𝐺 represents the self-

weight of overhang region; 𝜌 is the density of green part; 𝑔 is gravitational acceleration; 𝑏, 𝐻, 𝐿 

are width, thickness and length of overhang beams, respectively. To avoid the collapse of green 

parts, 𝜎𝑚 in equation (2) should be minimized and kept lower than 𝜎𝑡. Designers can change the 

design parameters of the overhang region to decrease 𝜎𝑚. From the equations (3) to (5), it can be 

concluded that both the thickness T and the length L have effects on the maximum normal stress 

of printed green parts, as shown in equation (6). In the next section, experiments are conducted to 

explore the limit value of 𝜎𝑚 by altering the design parameters of overhang testing samples, with 

an emphasis on investigating the fracture failure caused by self-weight of overhangs. 

3.2.1.1.2 Experiments and results 

Apart from the design parameters of overhang structures as discussed in the previous section, there 

are many other manufacturability variables that could have an impact on the mechanical 

performance of green parts. For example, printing and curing process parameters determine the 

way that liquid binder is deposited and solidified to finally bond powder particles. To explore the 

maximum value of 𝜎𝑚 caused by self-weight, i.e. 𝜎𝑡, a set of default parameters of these variables 

needs to be properly chosen and maintained at the same level throughout the experiments.  

The major printing process parameters of the BJAM process, i.e. layer thickness, printing 

saturation, heater power ratio and drying time, have been studied by Chen et al.[20] and the 

optimized parameters are given. Given the fact that the overall printing process takes a long time, 
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the economical optimized parameters as proposed in Chen’s research are chosen to be used 

throughout this research. Moreover, the powder-binder-cleaner material system and the curing 

parameters used is the default combination as proposed by the equipment supplier—ExOne 

company. All the experiment specification is shown in Table 1. 

Table 1. Experiment specification 

Variables Specification 

Powder S3-30 Powder (30μm 316 Stainless Steel) 

 
Binder 

 

BS003 Solvent Binder 03 

 
Cleaner 

 

CL001 Cleaner 

 
Curing Parameter 5 hours at 175 °C 

 Layer Thickness 100μm 

Printing Saturation Ratio 

 

75% 

 
Heat Power Ratio 

 

70% 

 
Drying Time 30 seconds 

 

Experiments are conducted on ExOne X1-Lab Binder Jetting system[68]. The build volume is 

60mm*40mm*30mm (L*W*H), which limits the dimension of parts that can be fabricated. 

According to ASME E8 standard, the minimum overall length of subsize specimen is 100 mm, 

which is out of the scope of build volume of this printer. To overcome the difficulty of measuring 

the tension strength 𝜎𝑡 via mechanical testers, an alternative measurement method is proposed here. 

The schematic diagram of the testing sample is shown in Figure 13. A rectangular block is added 

at the tip of overhangs, acting as a weight that loads a concentrated force F on the overhang. The 

weight block contributes to the increase of the maximum normal stress, which can be controlled 

by changing the dimensions. The maximum normal stress in Figure 13 can be calculated by 

equation (7): 

 𝜎𝑚 =
3𝜌𝑔𝐿2

𝐻
+

6𝜌𝑔𝑙(𝐿−
𝑙

2
)ℎ

𝐻2   (7) 
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Figure 13. Schematic diagram of the testing sample for 𝜎𝑡 

Where 𝑙 and h is the length and height of the rectangular block, respectively, and the remaining 

symbols are the same as in the equations (3) to (6). The first term in equation (7) is the contribution 

of self-weight of the overhang itself, which is the same as shown in equation (6), while the second 

term is the contribution of the concentrated load F imposed by the self-weight of the rectangular 

block at the tip. By having 𝐿, T and 𝑙 fixed and increasing the height of the weight block h, the 

maximum normal stress 𝜎𝑚 will eventually reach to the value that leads to the fracture failure, i.e. 

the tensile strength 𝜎𝑡. The value of 𝜎𝑡 can be calculated by equation (6) and a set of overhang 

structures are designed to acquire it. 

The density 𝜌 of the green part is needed for the calculation of 𝜎𝑚, as shown in equation (6). 

Although the green part is very porous, the porosity is fixed for fixed manufacturing parameters 

and powder-binder-cleaner material system. A set of cubes are printed to estimate the density 𝜌, 

and the value is determined to be 4.26 𝑔/𝑐𝑚3. In order to narrow down the value range of tensile 

strength 𝜎𝑡, pre-experiments are designed with a set of overhang structures as shown in the left of                       

Figure 14. The normal stresses of these overhangs are designed to discretize the value range of 𝜎𝑡, 

and the fracture failure indicates that it falls in the range of 3.5MPa to 5.0MPa. Given the limited 

dimension of build volume and results of the pre-experiments into consideration, testing samples 

as shown in Figure 13 are designed. The changing height of weight blocks and the corresponding 
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normal stresses 𝜎𝑚 are listed in     Table 2, while the fixed dimensions are: 𝐿 = 50 mm, 𝑙 = 14 mm, 

H= 0.5 mm. The states of structural integrity are listed in Figure 14, which are also shown to the 

right of Figure 14. The resulting structural integrity of testing samples indicates that 𝜎𝑡 is in the 

range of 5.0–5.1MPa, which is limited to the material system, process parameters and the machine 

being used in this research. 

                   Table 2. Experiment results of structural integrity 

 

  

                      Figure 14. Pictures of testing samples                           

3.2.1.1.3  Manufacturability parameters and evaluation criterion of overhang structures 

The manufacturability parameters include the design parameters (width W, length 𝐿 and thickness 

T) and inclination angles α and β shown in Figure 15. The inclination angle α with respect to the 

X-Y plane is the common manufacturability parameter that is associated with the anisotropy of 

AM processes, whereas the angle β with respect to the X-Z plane is a special manufacturability 

parameter for the BJAM process.   

 

ℎ (mm) 
𝜎𝑚 

(Mpa) 
Structural Integrity 

(X---fractured,  
O---unfractured) 

5.0 
5.2 
5.3 
5.5 
5.7 
5.9 
6.9 
7.1 
7.3 
7.4 
7.6 
7.8 

3.64 
3.76 
3.82 
3.94 
4.06 
4.18 
4.79 
4.91 
5.03 
5.09 
5.21 
5.33 

O 
O 
O 
O 
O 
O 
O 
O 
O 
X 
X 
X 
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Figure 15.Diagram of the typical overhang structure 

It has been noticed by the author that it is common to have a strip texture on the parts along the 

direction in which the binder droplets are applied(the Y axis in Figure 8), as shown in Figure 16. 

The overhang structures tend to break along the same direction. This implies a special anisotropic 

property of parts fabricated by BJAM. To confirm the hypothesis of complex anisotropic 

properties of BJAM parts, compression and tensile tests are conducted following ASME E9-

89a(2000) and ASME E8/E8M-13a Standard Test Method. The sizes of test parts are 

D13*H25mm cylinders for compression tests and subsized dogbone samples for tensile tests. It 

should be noted that all test samples are only sintered without infiltration of bronze, which is the 

main cause of the poor mechanical performance. The default sintering profile suggested by ExOne 

is listed in Figure 17. Printing and curing process parameters listed in Table 1 and the default 

sintering profile are used throughout the experiment exploration of the manufacturability of BJAM 

process. The test results in Table 3 show that there is a big difference among parts printed in 

different orientations in X-Y plane. It can be concluded that BJAM process not only suffers from 
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the anisotropic effect in the printing direction as any other AM processes do, but are also subjected 

to the anisotropic effect in the direction in which the binder droplets are applied. Mechanical 

properties are highly influenced by this complex anisotropic effect of BJAM, which can be very 

detrimental to the manufacturability of fabricated parts. Therefore, in the context of BJAM, there 

are five manufacturability parameters important to overhang structures: width W, length L, 

thickness T, and inclination angles α and β.  

Based on the observation that a small deflection of typical overhang structures in Figure 14 will 

lead to the fracture at the root, angularity is a great choice of evaluation criterion. Angularity is a 

great combination of measuring both the flatness tolerance of the overall structure form and its 

angle dimension. In the following screening DoE, five manufacturability parameters are studied 

in terms of their relative importance of influence on the angularity of overhang structures. 

Confounding effects and the corresponding causes, if any, are identified to guide the method 

selection of final experiments. 

Considering the fragility of some samples with extreme dimensions and inclinations, a contactless 

measurement method is selected to evaluate the angularity of overhangs. A FaroArm Edge with a 

laser line probe is used to capture the contour in the form of a point cloud. The angularity of 

downward faces of the overhang structures are then acquired by analyzing the point cloud with the 

3D metrology software—PolyWorks. To be consistent about the measurement method, the 

configuration of measurement indicated here is used throughout this research, for both angularity 

of overhangs and cylindricity of holes.  

 



50 
 

90° 45° 0°
 

Figure 16 Image of strip texture on parts fabricated along different directions 

 

Figure 17. Default sintering profile of ExOne X1-Lab system 

Table 3. Mechanical test results of standard test samples at different inclination angles 

Mechanical test results 

Inclination angle 

Maximum stress (MPa) 

Compression test Tensile test 

0° 107.6 6.5 

45° 85.3 13.1 

90° 99.8 20.2 

3.2.1.2 Screening experiments of overhang structures 
In this section, definitive screening design (DSD) is used to screen out the less important 

manufacturability parameters among the length, width, thickness and two inclination angles of the 
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overhang structures. The DSD platform in JMP DoE platforms is used to construct experimental 

runs and analyze the results. Powerful and convenient tools such as the Color Map on Correlations 

and Effective Model Selection for DSDs enable simple and clear demonstration of correlations 

among effects and unbiased identification of main effects and second-order effects.  

For overhang structures, a DSD of 13 runs in 3 blocks is generated using JMP, as shown in Table 

4. The ranges of manufacturability parameters and the number of block are selected based on the 

limited build volume of ExOne X1-Lab, as well as the symmetry of the overhang samples in terms 

of five manufacturability parameters. The Color Map of DSD for overhang structures shown in 

Figure 18 indicates the absolute correlations between effects with the reference color bar showing 

on the right. Red cells are only on the main diagonal so none of the effects are completely 

confounded with other effects. Most of all, main effects are uncorrelated with all two-way 

interaction because cells on the left and up sides are all blue cells. 

Table 4. Definitive screening design for overhang structures 

 Length Thickness Width Inclination angle α  Inclination angle β Angularity 

1 17 5 20 90 30 0.196 

2 17 0.6 4 0 90 0.449 

3 26 2.8 4 90 30 0.316 

4 8 2.8 20 0 90 0.254 

5 26 0.6 12 0 30 1.235 

6 8 5 12 90 90 0.065 

7 26 5 4 45 90 0.307 

8 8 0.6 20 45 30 0.325 

9 26 5 20 0 60 0.926 

10 8 0.6 4 90 60 0.356 

11 26 0.6 20 90 90 0.211 

12 8 5 4 0 30 0.196 

13 17 2.8 12 45 60 0.436 
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Figure 18. Color Map of Correlations of DSD for overhang structures 

The measurement results of angularity are listed in Table 4. The contrast report and half normal 

report are generated with JMP to analyze the relative importance of five manufacturability 

parameters on the angularity and identify potential interactions between them. The contrast report 

shows relative importance of influence of independent variables on the response. The bar chart 

shows the t-ratio with blue line marking the threshold significance value. The critical value is 

determined by JMP. It is generous in its selection so that those that are possibly active are not 

missed. The factor whose t-ratio exceeds the critical significance value is the important factor that 

should be highlighted. The individual p-value and the simultaneous p-value are analogous to the 

standard p-values for a linear model, where small values of this value indicate a significant effect.  
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Figure 19. Contrast report of DSD for overhang structure 

The Half Normal Plot in Figure 20 shows the absolute value of the contrasts against the normal 

quantiles for the absolute value normal distribution. Significant effects appear separated from the 

line towards the upper right of the graph. Four out of five design parameters have t-ratio larger 

than the threshold significance value, therefore are of importance: length, thickness, inclination 

angle α and β. Besides, there is a strong interaction between length and inclination angle α, which 

implies that the Taguchi method is not suitable for the final DoE of overhang structures. 

 

Figure 20. Half normal plot of DSD for overhang structure 

3.2.1.3 Final experiments on overhang structures 
Experiment data of four key manufacturability parameters and the corresponding angularity results 

are collected in the final experiments. Due to the factor interaction detected in the screening 

experiments and the lack of patterns that indicate the suitability of any specific fractional factorial 
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DoE method, the Custom Design platform in JMP is used to construct designs that fit a wide variety 

of settings. It is more cost effective and flexible than classical designs by offering many options 

that can be tailored for specific needs. For the final DoE, a custom design of 24 runs in 3 blocks is 

generated as shown in Table 5. The angularity of overhang samples is measured using the same 

measurement setting as used in screening experiments. The results are listed in Table 5. The 

experimental results listed here are used to build the manufacturability model for feature evaluation 

in the CADE system.  

Table 5. Custom design for overhang structure 

 Thickness Length Inclination angle α  Inclination angle β Angularity 

1 5 15 90 0 0.111 

2 0.4 15 45 45 0.228 

3 2.7 15 90 90 0.130 

4 2.7 26 45 90 0.107 

5 5 26 0 0 0.736 

6 5 4 45 45 0.078 

7 2.7 4 0 90 0.145 

8 0.4 4 0 0 0.175 

9 0.4 4 45 90 0.096 

10 2.7 15 45 45 0.460 

11 5 15 45 90 0.138 

12 2.7 15 0 45 0.445 

13 0.4 26 0 0 1.800 

14 2.7 4 90 0 0.051 

15 5 26 90 45 0.248 

16 0.4 26 90 90 0.516 

17 5 4 0 0 0.191 

18 5 4 90 90 0.112 

19 2.7 15 45 0 0.303 

20 2.7 26 45 45 0.827 

21 5 26 0 90 0.613 

22 0.4 15 0 90 0.615 

23 0.4 26 90 0 0.744 

24 0.4 4 90 45 0.105 
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3.2.2 Through holes 
In the mechanical designs, through holes are commonly used, and most likely, are required to 

fulfill some functionalities. The absence of material is normally reserved for other components 

like shafts to go through. The cylindrical surface usually provides support for the shaft in this case. 

The internal surface of holes is a type of common functional surface whose manufacturability is 

crucial for overall part quality. Besides, quality of additively manufactured holes is normally worse 

than the traditional counterparts in terms of surface roughness and cylindricity. The 

manufacturability of through holes is very important for the AM feature manufacturability.  

The overhang structure is studied thoroughly in Section 3.2.1 to demonstrate each part of the DoE 

methodology and the CADE framework proposed in Chapter 2, whereas the experiment work of 

through hole is relatively brief to mitigate the workload of this research. A set of through holes 

with different diameters are manufactured in the preliminary experiments. The results show that 

through holes can be manufactured as small as 0.5 mm in diameter without any blockage. It is 

pointless to further decease the diameter smaller than 0.5 mm because the appropriate 

measurement methods would be limited and the scale of the dimension of features in this research 

is not intended to be that small. Therefore, through holes are redeemed as the manufacturable 

feature for the BJAM process. 

Similar to the angularity of overhang structures, cylindricity is the form tolerance that is the most 

appropriate measure of manufacturability of through holes. The cylindricity is studied with respect 

to the key manufacturability parameters: diameter, inclination angles α and β. Given the scanning 

resolution and scanning accuracy of the FaroArm Edge and the build volume of ExOne X1-Lab 

system, the range of each key manufacturability parameters is determined and a custom design of 

18 runs in 2 blocks is generated in JMP, as listed in Table 6. The contrast report in Figure 21 and 
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the half normal plot in Figure 22 indicate that the diameter is the key manufacturability parameter 

that affects the cylindricity of through holes, as well as the interactions between the diameter and 

the inclination angles α and β. Experimental data in Table 6 is used to develop the 

manufacturability model for feature evaluation. 

Table 6. Custom design of through holes 

 Diameter Inclination angle α  Inclination angle β Cylindricity 

1 4 80 0 0.071 

2 4 0 80 0.126 

3 20 80 80 0.316 

4 12 0 40 0.151 

5 4 40 40 0.158 

6 20 0 0 0.250 

7 20 40 40 0.200 

8 12 40 80 0.150 

9 12 80 40 0.173 

10 12 40 80 0.148 

11 12 40 0 0.150 

12 4 40 40 0.160 

13 4 80 80 0.105 

14 20 80 0 0.196 

15 12 80 40 0.172 

16 4 0 0 0.116 

17 20 0 40 0.181 

18 20 0 80 0.195 

 

 

Figure 21. Contrast report of through hole 
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Figure 22. Half normal plot for through hole 

3.3 Implementation of CADE system 

3.3.1 Feature detection 
Feature detection of CAD models is a complicated research work due to recognition difficulties 

imposed by feature intersection[69], ambiguous definition of various features in the feature 

knowledge base, complicated recognition algorithms, etc. In this research, a simplified pragmatic 

feature detection module is developed for the detection of overhang and hole structures. The 

feature detection logic is illustrated in the following sections and the feature detection module is 

then developed on the 3D modeling platform of Rhino3D and its graphical algorithm editor—

Grasshopper. Grasshopper is a graphical programming platform for algorithm design in the CAD 

software—Rhino3D. Many build-in components can be used to process a variety of types of model 

data to extract information. Programming customized components for specific needs is available 

with Python, C# and C++. 
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3.3.1.1 Overhang structures 
To build on the experiment work, the detection logic is developed for the typical overhang 

structures shown in Figure 15. In this thesis, the typical overhang structure is defined as a 

protruding structure whose shape is defined by five boundary planes with one of them facing 

downward. The downward-facing plane is called the overhang face, whose z-coordinate of the 

normal vector is negative. Based on this definition, the detection logic for overhang structure is 

proposed as shown in Figure 23 and developed with Grasshopper in Rhino. 
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Figure 23. Flowchart of detection logic for overhang structure 

The CAD model in the format of STEP file is deconstructed into attributes of faces, edges and 

topology relation of their adjacencies. Then in the first subprocess, the five boundary planes that 
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construct the overhang region (the overhang face and the opposite face and three side faces) are 

filtered from the extracted attributes through the following procedures: (1) find the downward 

faces that are planes with negative z-coordinate; (2) find the corresponding upward faces that are 

also planes whose normal vectors are opposite to the downward planes; (3) find the opposite plane 

that has the minimum distance to each downward plane among all upward planes and examine the 

number of shared faces between them: if they share three faces, the downward plane is deemed to 

be an overhang plane and these five planes comprise an overhang structure. The next subprocess 

is to extract the four key manufacturability parameters: length, thickness, inclination angles α and 

β. Two side planes that have opposite normal vectors among all three side planes are detected first. 

Two edges that are shared by one of the two opposite side planes with the overhang plane and the 

opposite plane respectively, are detected as well. The length of the shorter edge is the length of 

overhang structure. The distance between the opposite plane and the overhang plane is the 

thickness of overhang structure. The inclination angles α and β can be easily calculated by the 

normal vector of the overhang plane. The four manufacturability parameters are exported whose 

values are used as the input for feature evaluation. The graphical programming of the detection 

logic for overhang structure in Grasshopper is shown in Figure 24 and the Python code of the main 

components for detection is attached in the Appendix A. 
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. 

Figure 24. Graphical programming for the detection of overhang structure in Grasshopper 

3.3.1.2 Through holes 
The decision logic of detection for through hole is much simpler than that of overhang structure. 

The cylinder surface is extracted first. Two end circles are then identified as the shared edges 

between the cylinder surface and the adjacent planes. The diameter of through hole is extracted 

from the diameter of the end circles. The inclination angles of through hole are calculated from 

the inclination angles of the vector generated by two center points of the end circles, given that the 

domain of angles must be acute. The graphical programming of the detection logic for through 

hole in Grasshopper is shown in Figure 25 and the Python code of the main components for 

detection is attached in Appendix B. 

 

Figure 25. Graphical programming for the detection of through hole in Grasshopper 
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3.3.2 Feature evaluation and orientation optimization 
There are mainly two types problems that ANN deals with: the supervised learning that is used to 

provide specified answer of outputs, and the unsupervised learning that is used to find the 

structures and patterns in datasets. The prediction of evaluation results is supposed to be 

continuous or discrete values, where regression model and classification model of supervised 

learning algorithms should be applied, respectively. In this research, a multiclass-classification 

algorithm of supervised learning is used to train the ANN. The structure of the ANN used in this 

research is a typical three-layer ANN, as shown in Figure 26. 

Input layer Output layerHidden layers

Layer 1 Layer 2 Layer 3

Neuron

Input wire Output wire

 

Figure 26. Structure of a typical three-layer ANN 

ANN mimics the way that human brain transfers and processes information by artificially 

constructing several layers of logistic units called ‘neurons’ between the input units and output 

units. In Figure 26, the nodes or neurons between consecutive layers are connected by input/output 
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wires which represent the assigned weights of the neurons in one layer that are going to be counted 

in the next layer. The sigmoid activation function as shown in equation (8), also known as the 

hypothesis function, is widely used to calculate neurons in the next layer to carry the information 

forward up until the last output layer: 

 ℎ𝜃(𝑥) =  
1

1+𝑒−𝜃𝑇𝑥
  (8) 

Where 𝑥 is the input vector, 𝜃 is the weight vector and ℎ𝜃(𝑥) is the probability that the estimation 

is true given  𝑥  parameterized by 𝜃. The aforementioned process is called ‘forward propagation’ 

(FP). During the training of ANN, the squared difference between the calculated hypothesis output 

and the exact output is calculated, also known as the squared error term. This error term indicated 

how close the hypothesis output is to the exact output, which intuitively should be minimized by 

the backpropagation (BP) algorithm for a good fitting.  

To utilize the one-vs-all multiclass classification scheme, the measurement data of angularity in 

Table 5 and cylindricity in Table 6 is discretized into integer numbers of grades. The values are 

rounded up to 0.01 and multiplied by 100. For example, the measured value of angularity is 0.111 

for the first overhang sample, so the angularity grade of this overhang sample is 11. The processed 

datasets are used to train the ANNs for overhang structure and through hole using MATLAB codes 

programmed by the author. The MATLAB code includes FP and BP algorithms and fine tuning 

techniques of regularization and gradient checking. The program code of ANN for overhang 

structure is attached in the Appendix C, whereas that of the through hole is similar thus not repeated 

again here. The training accuracy of ANNs for overhang structure and through hole are 91.30% 

and 88.89% respectively. Given the experimental condition available for this research, the training 

accuracies are reasonable. Due to the small build volume of BJAM system used for experiments 

and the relatively complicated process procedure of BJAM, only a limited number of samples can 
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be printed in each experiment run and the number of experiment samples that is affordable for this 

research is limited. To ensure the necessary quantity of training data for ANN, the experiment runs 

are divided into several blocks, which introduces more variations and uncertainties in the data 

acquirement for ANN. The training accuracy can be improved if more experimental data can be 

gathered for training the ANN.  

The manufacturability model is established by the trained ANN, which is not an explicitly derived 

expression of the objective/fitness function for optimization. The trained ANN is used as a black 

box. Inputs (key manufacturability parameters of corresponding features) are fed in the ANN to 

get the evaluation results. The trained ANN is used to evaluate an aerospace bracket case study in 

Chapter 4. 

The feature detection module is implemented in Grasshopper whereas the ANN is programmed 

and trained using MATLAB. Speaking from the point view of software implementation, the feature 

detection module and the feature evaluation module cannot interact with each other directly 

because of compatibility issues. Comparing all the available choices, it is most convenient to 

program a specialized component using C# in Grasshopper that can call the trained ANN, rather 

than program GA codes in MATLAB and then configure the interaction between Grasshopper and 

MATLAB in the computer system level. The C# program code of the specialized component is 

attached in the Appendix D. The adjustment of build orientation is implemented in Grasshopper, 

as shown in Figure 27. Orientation optimization is conducted by the GA optimization solver add-

on components in Grasshopper—Galapogas. Weighted-sum method is used to evaluate both the 

angularity of overhang structures and the cylindricity of through holes of the CAD model.  
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Figure 27. Graphical programming of adjustment of build orientation 

3.4 Summary 
In this chapter, the CADE system proposed in Chapter 2 is implemented for the BJAM process. 

Extensive experimental work is conducted to study the manufacturability of the BJAM process. 

Based on the knowledge and experiment data gained, the CADE system is then developed. The 

CADE system is mainly implemented in the graphical programming platform—Grasshopper. A 

logic rule-based feature detection module for STEP file format is developed by using Grasshopper 

build-in components and specialized components programmed using Python. A specialized 

component programmed with C# is also developed to call the trained ANN for feature evaluation. 

The GA optimization solver add-on components in Grasshopper—Galapogas is used in the 

orientation optimization module. The training accuracies of overhang structure and through hole 

are 91.30% and 88.89% respectively. The decent training accuracies indicate a good performance 

of the trained ANN, given the small number of training data gained from time-consuming 

experiment runs and limited measurement accuracy of laser scanning device. To prove the 

effectiveness of the developed ANN, a case study of an aerospace engineering bracket is evaluated 

by the developed CADE system with respect to its overall manufacturability in the next chapter. 
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4 Case study 
An aerospace engineering bracket is used as the case study to validate the feasibility of the 

developed CADE system. This bracket part is assembled in a dynamic assembly system and the 

company that provides this reference part would like to know how the part is going to be designed 

for three metal AM processes (including the BJAM process) and the manufacturability of the 

redesigned part for the specific metal AM processes. Due to confidentiality of this project, the 

details of the original and redesigned parts cannot be revealed in this thesis. Therefore, only the 

design envelope of the bracket part is shown in Figure 28 and is used as the reference part to 

conduct the case study. 

 

Figure 28. Reference part for case study 

This reference part is a perfect example of the trade-off that is required in manufacturability 

analysis. It consists of four overhang structures with through holes in the overhang regions that 

stick out both horizontally and perpendicularly. The diameter of the four through holes is the same, 
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but thickness and length of the overhang structures are different. In the developed CADE system, 

the overall manufacturability of the whole part is the weighted sum of the angularity of overhang 

structures and the cylindricity of through holes. The weight coefficients reflect the relative 

importance of manufacturability of through holes and overhang structures in this part, which 

should be determined by the designer based on the design requirements. The change of build 

orientation of the part itself will result in the change of all the design features in it. The weighted 

sum value is then optimized with respect to the build orientation of the part. 

Three sets of weight coefficients are selected to evaluate the reference part with the developed 

CADE system. The overall manufacturability of the part is optimized and listed as the prediction 

results in Table 7. The angularity and cylindricity are discretized grade values as illustrated in 

Chapter 3, thus, the value of prediction result is the weighted sum of corresponding angularity 

grades and cylindricity grades. The same apparatus, methods, material and parameters that are 

used to study the manufacturability of BJAM process and acquire experiment data for developing 

the CADE system as listed in Table 1 and shown in Figure 17, are used to manufacture the 

optimized reference parts.  

Table 7. Comparison of predicted and measured results of the reference part 

Weight coefficient Evaluation result Measurement result in average Relative error 

Overhang Hole 

0.3 0.7 9.2 9.7 5% 

0.5 0.5 8.0 8.6 8% 

0.7 0.3 6.8 7.4 9% 

For each set of weight coefficients, three parts are manufactured and measured. The average 

measurement results are listed in Table 7. The relative errors between the measured results of as-

manufactured parts and the evaluated results of as-design models are below 10% for all three cases, 

which indicate that the developed CADE system is capable of providing reliable manufacturability 

analysis of the specific BJAM process. 
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5 Conclusions 
Additive manufacturing (AM) is a state-of-the-art manufacturing technique that is tremendously 

changing the ways products are designed, manufactured and delivered. AM is well-known for its 

capability of manufacturing complex shapes and intricate features, however, due to its inherent 

additive way of manufacturing parts layer by layer, AM is subjected to some unique manufacturing 

constraints that need to be considered in the design stage.  

To provide practitioners with knowledges of the designated AM process, most researchers and 

equipment suppliers propose feature-based design guidelines for practitioners. On one hand, the 

design guidelines usually connect the AM feature manufacturability to only one manufacturability 

parameter so that they are simple to follow. On the other hand, they can be too general to represent 

the dependent relation between the manufacturability of features and their corresponding 

manufacturability parameters. To compensate for the shortcoming of the design guidelines, 

manufacturability analysis is employed to examine the features in specified designs for potential 

manufacturing failures. In this presented work, a computer-aided design evaluation (CADE) 

system is proposed to perform manufacturability analysis of designs for specific AM processes. 

This feature-based software tool is developed in an experimental way. The proposed three-stage 

DoE method systematically investigates the manufacturability of the designated AM process. The 

evaluation criteria and key manufacturability parameters are identified and the experimental data 

are collected.  

The CADE system consists of three modules: feature detection, feature evaluation and orientation 

optimization. Features and key manufacturability parameters in the design model are identified 

and extracted in the feature detection module. With the support of well-designed experiments, the 

feature evaluation module establishes the model of dependent relation between the key 
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manufacturability parameters and the manufacturability of the corresponding feature, that is ‘the 

manufacturability model’, via artificial neural network (ANN). Due to the importance and the 

complexity of build orientation of AM parts, the orientation optimization module then optimizes 

overall manufacturability of the part with respect to the build orientation by using genetic 

algorithm (GA). The optimization result indicates the best overall manufacturability result of the 

designed part, which helps designers to identify the problematic design features in advance of the 

manufacturing stage. 

The proposed CADE system is implemented in the context of BJAM process. Overhang structures 

and through holes are selected as the research objects due to their well-known low 

manufacturability in AM processes. The three-stage experiments are conducted and the CADE 

system is developed on the 3D modeling platform of Rhino3D and its graphical algorithm editor—

Grasshopper. For the experimentation work, it is found that BJAM not only suffers from the 

anisotropic effect in the printing direction as any other AM processes do, but are also subjected to 

the anisotropic effect in the direction in which the binder droplets are applied. Angularity and 

cylindricity are used as the evaluation criteria of overhang structures and through holes, 

respectively. Key manufacturability parameters that play the most important roles are identified in 

the preliminary experiments. It is determined that length, thickness and two inclination angles are 

key parameters for overhang structures, whereas diameter and two inclination angles are key 

parameters for through holes. As for the software development work, the feature detection and 

orientation optimization modules are graphically programmed in Grasshopper and the feature 

evaluation module is developed in MATLAB. The case study of an engineering bracket is 

performed and the evaluation results are accurate for the manufacturability analysis of BJAM 
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process. The developed CADE system evaluates the manufacturability of AM parts before 

manufacturing takes place, which can reduce the risk of manufacturing failures. 

More features should be studied experimentally so that the CADE system can be developed for 

evaluating more complex parts in the future. Besides, the experimental results acquired in this 

study might be biased due to the limited build volume of the BJAM apparatus used. Future work 

should also include the implementation of the proposed CADE system in a bigger build volume 

where the dimension of experiment parts is not limited. 
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Appendix 

Appendix A．Python code for the detection of overhang structure 
# Import GH core library to use DataTree in Python 
import rhinoscriptsyntax as rs 
import clr 
clr.AddReference("Grasshopper") 
import Grasshopper.Kernel.Data.GH_Path as ghpath 
import Grasshopper.DataTree as datatree 
import System 
import math 
 
#-----------------------------inParallelDown--------------------------------- 
 
inParallelDown = datatree[System.Object]() 
Tol = 0.0001 
 
#find the index of faces that are planes and in parallel with the downwards planes 
for i in range(len(inDown)): 
    path = ghpath(inDown[i]) 
    for j in range(len(Normal)): 
        if rs.VectorLength(Normal[inDown[i]] + Normal[j]) < Tol and abs(isPlanar[j] - 1) 
< Tol: 
            inParallelDown.Add(j,path) 
 
#--------------------------------ParallelFF---------------------------------- 
 
tree = datatree[System.Object]() 
 
for i in range(inParallelDown.BranchCount): 
    for j in range(len(inParallelDown.Branch(i))): 
        path = ghpath(inParallelDown.Branch(i)[j]) 
        if path in tree.Paths: 
          continue 
        else: tree.Add(AllFF.Branch(inParallelDown.Branch(i)[j]),path) 
ParallelFF = tree 
 
#-----------------------inOverhang, Upwards, SharedF------------------------- 
 
# To create a tree of sharedF between downwards planes (as shown in the tree path) 
# and corresponding parallel faces, check if EXACTLY 3 faces are shared, i.e. found the 
upwards faces 
inOverhangF = [] 
inParallelDown2 = datatree[System.Object]() 
UpwardsFF = datatree[System.Object]() 
SharedF = datatree[System.Object]() 
for i in range(DownFF.BranchCount): #the i-th branch of the DownFF tree 
    path1 = ghpath(DownFF.Path(i)) #store index of downward plane in path1 
#    print path1 
    for m in range(len(inParallelDown.Branch(i))): #m-th parallel plane to the i-th 
downwards plane 
        count = 0 
        for j in range(len(DownFF.Branch(i))): 
            for n in range(len(AllFF.Branch(inParallelDown.Branch(i)[m]))): # the n-th 
item of the m-th parallel tree 
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                if AllFF.Branch(inParallelDown.Branch(i)[m])[n] == DownFF.Branch(i)[j] 
and isPlanar[DownFF.Branch(i)[j]] == 1: #i-th DownFF tree and  FF-tree of it's m-th 
parallel plane share a same face index, which must be a plane itself 
                    count = count + 1 
#        print count 
        if count == 3: 
            if inDown[i] not in inOverhangF: 
                inOverhangF.append(inDown[i]) 
            inParallelDown2.Add(inParallelDown.Branch(i)[m],path1) 
            continue 
 
#-------------------------------------Thickness------------------------------ 
 
inUpwardsF = datatree[System.Object]() 
# find the minDistance between overhang planes and all upwards planes (stored in the 
inUpwardsF tree), 
# as well as store the indices of planes with minDis(thickness) in the tree of inUpwardsF 
Thickness = datatree[System.Object]() 
for i in range(len(inOverhangF)): 
    lst = [] 
    for j in range(len(inParallelDown2.Branch(i))): 
        
lst.append(abs(AllFaces[inParallelDown2.Branch(i)[j]].DistanceTo(Origin[inOverhangF[i]]))
) 
    Min = min(lst) 
#    print Min 
    path = ghpath(inOverhangF[i]) 
    inUpwardsF.Add(inParallelDown2.Branch(i)[lst.index(Min)],path) 
    Thickness.Add(Min,path) 
 
#-----------SharedF between the overhang plane and its upwards plane--------- 
 
for i in range(len(inOverhangF)): 
    path = ghpath(inOverhangF[i]) 
    for m in range(len(inUpwardsF.Branch(i))): 
        for j in range(len(AllFF.Branch(inOverhangF[i]))): 
            for n in range(len(AllFF.Branch(inUpwardsF.Branch(i)[m]))): 
                if AllFF.Branch(inUpwardsF.Branch(i)[m])[n] == 
AllFF.Branch(inOverhangF[i])[j] and isPlanar[AllFF.Branch(inOverhangF[i])[j]] == 1: 
                    SharedF.Add(AllFF.Branch(inOverhangF[i])[j],path) 
 
# get the shared faces that have opposite normals to each other within each branch of the 
'SharedF' tree, which is determined as the shared faces that points to the 'overhang 
direction' 
tree = datatree[System.Object]() 
Tol = 0.0001 
for l in range(SharedF.BranchCount): 
    for m in range(len(SharedF.Branch(l))): 
        if m == len(SharedF.Branch(l))-1: 
            break 
        for n in range(len(SharedF.Branch(l))-m-1): 
            if rs.VectorLength(Normal[SharedF.Branch(l)[m]] + 
Normal[SharedF.Branch(l)[m+n+1]]) < Tol and abs(isPlanar[SharedF.Branch(l)[m]] - 1) < Tol 
and abs(isPlanar[SharedF.Branch(l)[m+n+1]] - 1) < Tol: 
                path = ghpath(SharedF.Path(l)) 
                tree.Add(SharedF.Branch(l)[m],path) 
                tree.Add(SharedF.Branch(l)[m+n+1],path) 
SharedFwithOppN = tree 



76 
 

 
#get shared edges between the shared face and downwards face as well as upwards face 
respectively, 
#the shared edge with smaller length among those two is the length of overhang structure 
#meaning the overhangs must be squared on the sides so that side edges points along the 
'overhang direction' 
 
#get shared edges between the shared face and downwards face 
DownE = datatree[System.Object]() 
for i in range(SharedFwithOppN.BranchCount): 
    for j in range(len(allFE.Branch(SharedFwithOppN.Path(i)))): 
        for k in range(len(allFE.Branch(SharedFwithOppN.Branch(i)[0]))): #within the edge 
list of one of (the first, hence the [0]) shared face 
#            print allFE.Branch(SharedFwithOppN.Branch(i)[0]) 
            if allFE.Branch(SharedFwithOppN.Path(i))[j] == 
allFE.Branch(SharedFwithOppN.Branch(i)[0])[k]: 
#                print allFE.Branch(SharedFwithOppN.Branch(i)[0]) 
                path = ghpath(SharedFwithOppN.Path(i)) 
                length = 
rs.CurveLength(allEdges[allFE.Branch(SharedFwithOppN.Path(i))[j]]) 
                DownE.Add(allFE.Branch(SharedFwithOppN.Path(i))[j], path) #first, append 
the edge index 
                DownE.Add(length, path)                                   #then, append 
the length of this edge 
 
#get shared edges between the shared face and upwards face 
UpE = datatree[System.Object]() 
for i in range(SharedFwithOppN.BranchCount): 
    for j in range(len(allFE.Branch(inUpwardsF.Branch(i)[0]))): 
        for k in range(len(allFE.Branch(SharedFwithOppN.Branch(i)[0]))): #within the edge 
list of one of (the first, hence the [0]) shared face 
 
            if allFE.Branch(inUpwardsF.Branch(i)[0])[j] == 
allFE.Branch(SharedFwithOppN.Branch(i)[0])[k]: 
 
                path = ghpath(SharedFwithOppN.Path(i)) 
                length = 
rs.CurveLength(allEdges[allFE.Branch(inUpwardsF.Branch(i)[0])[j]]) 
                UpE.Add(allFE.Branch(inUpwardsF.Branch(i)[0])[j], path) #first, append 
the edge index 
                UpE.Add(length, path)                                   #then, append the 
length of this edge 
 
Length = datatree[System.Object]() 
for i in range(DownE.BranchCount): 
    l = min(DownE.Branch(i)[1],UpE.Branch(i)[1]) 
    path = ghpath(DownE.Path(i)) 
Length.Add(l,path) 
 
#--------------------------Angle w.r.t X-axis and Z-axis--------------------- 
 
# given the symmetry of overhang features due to the combination of theta-X and theta-Z,  
# the angle range is cut down to [0,90] respectively in the experiments, and the angles 
is calculated basedc on the symmetry as well 
import math 
Tol = 1e-4 
 
XAngle = datatree[System.Object]() 
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ZAngle = datatree[System.Object]() 
for i in range(len(inOverhangF)): 
    path = ghpath(inOverhangF[i]) 
    a1 = XaxisAngle[SharedFwithOppN.Branch(i)[0]] 
    
ZAngle.Add(180/math.pi*min(XaxisAngle[SharedFwithOppN.Branch(i)[0]],XaxisAngle[SharedFwit
hOppN.Branch(i)[1]]),path)  
#since only Z-axis and local X-axis rotations allowed and the overhang structure is 
squared, Z-rotation angle w.r.t X-axis is always the smaller angle among the angles 
between Shared side planes and X-axis 
XAngle.Add(90-
abs(180/math.pi*math.atan(Z[inOverhangF[i]]/math.sqrt(X[inOverhangF[i]]**2+Y[inOverhangF[
i]]**2))), path) 

 

 

Appendix B. Python code for the detection of through hole 
# Import GH core library to use DataTree in Python 
import rhinoscriptsyntax as rs 
import clr 
clr.AddReference("Grasshopper") 
import Grasshopper.Kernel.Data.GH_Path as ghpath 
import Grasshopper.DataTree as datatree 
import System 
import math 
 
inCylinder = list() 
CylinderFF = datatree[System.Object]() 
CylinderFE1 = datatree[System.Object]() 
CylinderFE2 = datatree[System.Object]() 
for i in range(AllFF.BranchCount): 
    if isPlanar[i] == 0: 
        inCylinder.append(i) 
        path = ghpath(i) 
#        print AllFF.Branch(i) 
        for j in range(len(AllFF.Branch(i))): 
            CylinderFF.Add(AllFF.Branch(i)[j],path) 
             
for m in range(len(inCylinder)): 
    path = ghpath(inCylinder[m]) 
    for i in range(len(AllFE.Branch(CylinderFF.Branch(m)[0]))): 
        for k in range(len(AllFE.Branch(inCylinder[m]))): 
            if AllFE.Branch(CylinderFF.Branch(m)[0])[i] == 
AllFE.Branch(inCylinder[m])[k]: 
                CylinderFE1.Add(AllFE.Branch(inCylinder[m])[k],path)\ 
 
#--------------------extraction of two end circles--------------------------- 
circle1 = list() 
for i in range(len(inCylinder)): 
    circle1.append(CylinderFE1.Branch(i)[0]) 
     
for m in range(len(inCylinder)): 
    path = ghpath(inCylinder[m]) 
    for j in range(len(AllFE.Branch(CylinderFF.Branch(m)[1]))): 
        for k in range(len(AllFE.Branch(inCylinder[m]))): 
            if AllFE.Branch(CylinderFF.Branch(m)[1])[j] == 
AllFE.Branch(inCylinder[m])[k]: 
                CylinderFE2.Add(AllFE.Branch(inCylinder[m])[k],path) 
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circle2 = list() 
for i in range(len(inCylinder)): 
circle2.append(CylinderFE2.Branch(i)[0]) 

 

Appendix C. MATLAB code of ANN training for the overhang structure 
%% Initialization 
clear ; close all; clc 
  
%% Setup the parameters you will use for this exercise 
% Load Training Data 
fprintf('Loading Traning Data ...\n') 
  
load('dataOverhang.mat'); 
m = size(x, 1); 
  
input_layer_size  = size(x, 2);  % the number of features (design parameters) 
hidden_layer_size = 20;   % 10 hidden units 
% NEED TO BE CHANGED 
output_layer_size = 83;          % Labels of quality performance (the range of all 
measure value; 
                                 % penalize the failed parts with a very large label) 
  
%% ================ Part 1: Initializing Parameters ================ 
%  Implment a two layer neural network that classifies quality performances. 
%  Start by implementing a function to initialize the weights of the neural 
%  network(randInitializeWeights.m) 
  
fprintf('\nInitializing Neural Network Parameters ...\n') 
  
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size); 
initial_Theta2 = randInitializeWeights(hidden_layer_size, output_layer_size); 
  
% Unroll parameters 
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; 
  
%% ================ Part 2: Compute Cost (Feedforward) ================ 
%  For the neural network, you should first start by implementing the 
%  feedforward part of the neural network that returns the cost only.  
% 
%  Suggestion: implement the feedforward cost *without* regularization 
%  first so that it will be easier for you to debug. Later, in part 3, you 
%  will get to implement the regularized cost. 
% 
fprintf('\nFeedforward Using Neural Network ...\n') 
  
% Weight regularization parameter (set this to 0 here). 
lambda = 0; 
  
J = nnCostFunction(initial_nn_params, input_layer_size, hidden_layer_size, ... 
                   output_layer_size, x, Y, lambda); 
  
fprintf('Cost at initial parameters: %f ', J); 
  
fprintf('\nProgram paused. Press enter to continue.\n'); 
pause; 
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%% =============== Part 3: Implement Regularization =============== 
% 
  
fprintf('\nChecking Cost Function (w/ Regularization) ... \n') 
  
% Weight regularization parameter (we set this to 1 here). 
lambda = 1; 
  
J = nnCostFunction(initial_nn_params, input_layer_size, hidden_layer_size, ... 
                   output_layer_size, x, Y, lambda); 
  
fprintf('Cost at initial parameters (with regularization): %f ', J); 
  
fprintf('Program paused. Press enter to continue.\n'); 
pause; 
%% =============== Part 4: Implement Backpropagation =============== 
%  Add to the code in nnCostFunction.m to return the partial derivatives of the 
parameters. 
% 
fprintf('\nChecking Backpropagation... \n'); 
  
%  Check gradients by running checkNNGradients 
checkNNGradients; 
  
fprintf('\nProgram paused. Press enter to continue.\n'); 
pause; 
  
  
%% =============== Part 5: Implement Regularization =============== 
%   
%  continue to implement the regularization with the cost and gradient. 
% 
  
fprintf('\nChecking Backpropagation (with Regularization) ... \n') 
  
%  Check gradients by running checkNNGradients 
lambda = 1; 
checkNNGradients(lambda); 
  
fprintf('Program paused. Press enter to continue.\n'); 
pause; 
  
  
%% =================== Part 6: Training NN =================== 
% To train the neural network, we will now use "fmincg", which 
%  is a function which works similarly to "fminunc". Recall that these 
%  advanced optimizers are able to train our cost functions efficiently as 
%  long as we provide them with the gradient computations. 
% 
fprintf('\nTraining Neural Network... \n') 
  
%  Change the MaxIter to a larger value to see how more training helps. 
options = optimset('MaxIter', 5000); 
  
%  You should also try different values of lambda 
lambda = 0; 
  
% Create "short hand" for the cost function to be minimized 



80 
 

costFunction = @(p) nnCostFunction(p, ... 
                                   input_layer_size, ... 
                                   hidden_layer_size, ... 
                                   output_layer_size, x, Y, lambda); 
  
% Now, costFunction is a function that takes in only one argument (the 
% neural network parameters) 
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options); 
  
  
% Obtain Theta1 and Theta2 back from nn_params 
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... 
                 hidden_layer_size, (input_layer_size + 1)); 
  
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... 
                 output_layer_size, (hidden_layer_size + 1)); 
  
fprintf('Program paused. Press enter to continue.\n'); 
pause; 
  
save('ThetaOverhang.mat','Theta1','Theta2')  
  
  
%% ================= Part 7: Implement Predict ================= 
%  After training the neural network, we would like to use it to predict 
%  the labels. You will now implement the "predict" function to use the 
%  neural network to predict the labels of the training set. This lets 
%  you compute the training set accuracy. 
  
pred = predict(Theta1, Theta2, x); 
  
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == Y)) * 100); 

 

 

Appendix D. C# code of specialized Grasshopper component for overhang 

structure 
using System; 
using System.Collections.Generic; 
 
using Grasshopper.Kernel; 
using Rhino.Geometry; 
 
namespace ANN 
{ 
    public class ANNComponent : GH_Component 
    { 
        /// <summary> 
        /// Each implementation of GH_Component must provide a public  
        /// constructor without any arguments. 
        /// Category represents the Tab in which the component will appear,  
        /// Subcategory the panel. If you use non-existing tab or panel names,  
        /// new tabs/panels will automatically be created. 
        /// </summary> 
        public ANNComponent() 
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            : base("ANNoverhang", "ANNoverhang", 
                "PredictOverhangAngularity", 
                "ANNoverhang", "ANNoverhang") 
        { 
        } 
 
        /// <summary> 
        /// Registers all the input parameters for this component. 
        /// </summary> 
        protected override void RegisterInputParams(GH_Component.GH_InputParamManager 
pManager) 
        { 
            pManager.AddNumberParameter("Length", "Length", "length", 
GH_ParamAccess.item); 
            pManager.AddNumberParameter("Thickness", "Thickness", "Thickness", 
GH_ParamAccess.item); 
            pManager.AddNumberParameter("ZAngle", "ZAngle", "ZAngle", 
GH_ParamAccess.item); 
            pManager.AddNumberParameter("XAngle", "XAngle", "XAngle", 
GH_ParamAccess.item); 
 
           
        } 
 
        /// <summary> 
        /// Registers all the output parameters for this component. 
        /// </summary> 
        protected override void RegisterOutputParams(GH_Component.GH_OutputParamManager 
pManager) 
        { 
            pManager.AddNumberParameter("OutPut","O","output",GH_ParamAccess.item); 
        } 
 
        /// <summary> 
        /// This is the method that actually does the work. 
        /// </summary> 
        /// <param name="DA">The DA object can be used to retrieve data from input 
parameters and  
        /// to store data in output parameters.</param> 
        protected override void SolveInstance(I44GH_DataAccess DA) 
        { 
            double length=0; 
            double zangle=0; 
            double xangle=0; 
            if(!DA.GetData(0,ref length)||!DA.GetData(1,ref thickness)||!DA.GetData(2,ref 
zangle)||!DA.GetData(3,ref xangle)) 
            { 
                return; 
            } 
            MLApp.MLApp matlab = new MLApp.MLApp(); 
            double[] input = new double; 
 
            // Change to the directory where the function is located  
            matlab.Execute(@"cd C:\Users\Fan\OneDrive\McGill\Journal&Thesis\CADE"); 
 
            // Define the output  
            object result = null; 
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            // Call the MATLAB function myfunc 
            matlab.Feval("pre-overhang", 1, out result, input); 
 
            // Display result  
            object[] res = result as object[]; 
 
            double outputresult = (double) res[0]; 
 
            DA.SetData(0, outputresult); 
 
            Console.WriteLine(res[0]); 
            Console.ReadLine();  
        } 
 
        /// <summary> 
        /// Provides an Icon for every component that will be visible in the User 
Interface. 
        /// Icons need to be 24x24 pixels. 
        /// </summary> 
        protected override System.Drawing.Bitmap Icon 
        { 
            get 
            { 
                // You can add image files to your project resources and access them like 
this: 
                //return Resources.IconForThisComponent; 
                return null; 
            } 
        } 
 
        /// <summary> 
        /// Each component must have a unique Guid to identify it.  
        /// It is vital this Guid doesn't change otherwise old ghx files  
        /// that use the old ID will partially fail during loading. 
        /// </summary> 
        public override Guid ComponentGuid 
        { 
            get { return new Guid("{8cc80555-1000-4ec0-aa88-24e14bd679e7}"); } 
        } 
    } 
} 

 


