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Abstract

The von Neumann architecture features a clear separation between memory and processing

units, but despite enabling versatile computers, it faces inherent issues. A key challenge is

the compute-memory bottleneck due to limited CPU-memory bandwidth, slowing overall

processing, particularly for memory-intensive tasks. Memory-processor separation requires

complex interconnects, and power consumption is critical as complex tasks demand energy.

Data transfer between the memory and the processor contributes to power inefficiencies.

Researchers, therefore, have been striving to develop a system that uses a different

architecture. Neuromorphic systems are one of the suggestions that mimic the

sophisticated and highly efficient processing capabilities of the human brain. The idea is to

combine the computing and memory elements and perform the operations at the same

place instead of them being separate, similar to what happens in the human brain with

neurons, to overcome the limitations imposed by the von Neumann bottleneck.

Currently, many in-memory computing systems rely on emerging nonvolatile memory

devices, including resistive memory, phase-change memory, etc. However, incorporating
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these new materials and technologies into the standard fabrication process increases cost

and extends the development cycle. One of the memories used for this purpose is the charge

trap transistor (CTT), which is a complementary metal-oxide-semiconductor (CMOS)-only

device. Any logic transistor from advanced node technologies with high-k dielectric can be

employed as a CTT. By trapping and de-trapping electrons, respectively, in and from the

oxygen-vacancy modulated traps within the Hafnium oxide material, the threshold voltage

of the CTT can be altered.

Understanding physics-driven principles of CTTs significantly influences the attainable

accuracy, processing speed, and power efficiency of the network. However, the existing body

of research in this domain remains limited. Furthermore, the absence of simulation models

that can seamlessly integrate into conventional integrated circuit computer-aided design tools

hinders the capture of programming and erasure effects as they correlate with applied stress

voltages.

In this thesis, neuromorphic systems and related literature are discussed. Then, there is

a more focused discussion on analog memories and their use in neuromorphic systems.

Afterwards, CTTs and their properties as analog memory are examined. The next chapter

focuses on the trapping behaviour of CTTs and studies how they behave during

programming. Various practical tests are done to understand CTT behaviour in different

programming scenarios. From this empirical work, a new model is introduced that explains

the intricate charge-trapping behaviour in CTTs and a Verilog-A code using this model was
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also tested to capture these effects. Moving forward, a published architecture centered

around CTTs is highlighted. This framework serves both machine learning applications and

the ambitious goal of emulating brain functions. This architecture was tested for a digit

recognition application and had very promising results. In the end, the conclusions section

sum up the discussions from the thesis and discuss possible future works.
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Abrégé

L’architecture de von Neumann présente une séparation claire entre la mémoire et les unités

de traitement, mais bien qu’elle permette des ordinateurs polyvalents, elle est confrontée à

des problèmes inhérents. L’un des principaux défis réside dans le goulot d’étranglement de la

mémoire de calcul dû à la bande passante limitée de la mémoire du processeur, qui ralentit

le traitement global, en particulier pour les tâches gourmandes en mémoire. La séparation

mémoire-processeur nécessite des interconnexions complexes, et la consommation d’énergie

est critique car les tâches complexes nécessitent de l’énergie. Le transfert de données entre

la mémoire et le processeur contribue aux inefficacités énergétiques.

Les chercheurs se sont donc efforcés de développer un système utilisant une architecture

différente. Les systèmes neuromorphiques sont l’une des suggestions qui imitent les capacités

de traitement sophistiquées et hautement efficaces du cerveau humain. L’idée est de combiner

les éléments de calcul et de mémoire et d’effectuer les opérations au même endroit au lieu de

les séparer, comme ce qui se passe dans le cerveau humain avec les neurones, pour surmonter

les limitations imposées par le goulot d’étranglement de von Neumann.
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Actuellement, de nombreux systèmes informatiques en mémoire s’appuient sur des

dispositifs de mémoire non volatile émergents, notamment la mémoire résistive, la mémoire

à changement de phase, etc. Cependant, l’intégration de ces nouveaux matériaux et

technologies dans le processus de fabrication standard augmente les coûts et prolonge le

cycle de développement. L’une des mémoires utilisées à cette fin est le transistor piège de

charge (CTT), qui est un dispositif complémentaire à métal-oxyde-semi-conducteur

(CMOS) uniquement. N’importe quel transistor logique issu de technologies de nœuds

avancées avec un diélectrique à k élevé peut être utilisé comme CTT. En piégeant et en

dépiégeant les électrons, respectivement, dans et depuis les pièges modulés par manque

d’oxygène à l’intérieur du matériau d’oxyde de hafnium, la tension de seuil du CTT peut

être modifiée.

Comprendre les principes physiques des CTT influence de manière significative la

précision, la vitesse de traitement et l’efficacité énergétique du réseau. Cependant, le

corpus de recherche existant dans ce domaine reste limité. De plus, l’absence de modèles de

simulation pouvant s’intégrer de manière transparente aux outils de conception assistée par

ordinateur de circuits intégrés conventionnels entrave la capture des effets de

programmation et d’effacement car ils sont en corrélation avec les tensions de contrainte

appliquées.

Dans cette thèse, les systèmes neuromorphiques et la littérature connexe sont discutés.

Ensuite, il y a une discussion plus ciblée sur les mémoires analogiques et leur utilisation
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dans les systèmes neuromorphiques. Ensuite, les CTT et leurs propriétés en tant que

mémoire analogique sont examinés. Le chapitre suivant se concentre sur le comportement

de trapping des CTT et étudie leur comportement lors de la programmation. Divers tests

pratiques sont effectués pour comprendre le comportement de CTT dans différents

scénarios de programmation. À partir de ce travail empirique, un nouveau modèle est

introduit qui explique le comportement complexe de piégeage de charge dans les CTT et

un code Verilog-A utilisant ce modèle a également été testé pour capturer ces effets. À

l’avenir, une architecture publiée centrée sur les CTT est mise en évidence. Ce cadre sert à

la fois aux applications d’apprentissage automatique et à l’objectif ambitieux d’émuler les

fonctions cérébrales. Cette architecture a été testée pour une application de reconnaissance

de chiffres et a donné des résultats très prometteurs. À la fin, la section des conclusions

résume les discussions de la thèse et discute des travaux futurs possibles.
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Chapter 1

Introduction

Over the past four decades, transistor size has greatly reduced, resulting in notable

performance and functionality improvements. Nevertheless, pushing transistor size to its

manufacturing limit presents challenges such as increased parasitic elements, limited

interconnect scaling, and rising non-recurring engineering costs that need to be addressed.

Therefore, as Moore’s law approaches its limits [3], [4], the exploration of brain-inspired

computing architectures, such as neuromorphic engineering, becomes crucial to enhance

overall system performance. Neuromorphic systems aim to replicate the flexibility and

computational efficiency observed in biological neural processing systems by implementing

spiking neural network architectures with tightly co-located processing and memory [5], [6].

The human brain consists of 100 billion neurons, where the memory and control units are

not separated from each other. Thus, all of the operations are performed in one place,
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inside the neuron. Co-locating the memory and control units, removing the bandwidth and

power limitations, and making it possible to be highly scalable.

1.1 Background of Neuromorphic Circuits

Neuromorphic systems offer several key benefits over traditional von Neumann systems,

leading to their increasing prominence in the field of computing. Traditional von Neumann

systems [7], [8] often consume excessive energy due to the separation of memory and

processing units and the need for frequent data movement. In contrast, neuromorphic

systems closely mimic the parallelism and event-driven computation observed in the human

brain, allowing for efficient processing and reduced energy consumption. By leveraging

specialized hardware designs and distributed computing, neuromorphic systems excel in

tasks that require low power consumption, making them particularly well-suited for

resource-constrained environments and applications [9].

Furthermore, neuromorphic systems offer enhanced real-time processing capabilities. In

von Neumann architectures, the central processing unit acts as a bottleneck, limiting the

system’s ability to handle time-critical tasks efficiently [10]. Neuromorphic systems, on the

other hand, utilize distributed computing and parallel processing, allowing for simultaneous

computations across a network of artificial neurons. This parallelism supports real-time

processing, enabling the system to respond rapidly to time-sensitive inputs. As a result,

neuromorphic systems find applications in domains such as robotics, sensory processing, and
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real-time decision-making, where prompt and dynamic responses are crucial [11], [12].

In addition to the advancements in neuromorphic engineering, a particularly intriguing

concept that aligns with brain-inspired computing is compute-in-memory (CIM) [13]. CIM

is a cutting-edge computing paradigm that aims to emulate efficient information processing

of the brain by tightly integrating computation and memory within the same unit [14], [15].

This brain resemblance system offers several advantages, including low power consumption

and the ability to support numerous applications involving a massive number of neurons.

One of the primary benefits of CIM is its low power profile. This efficiency is crucial for

emerging technologies such as Internet of Things (IoT) devices, where power constraints are

a major consideration [16], [17].

Furthermore, CIM systems exhibit the potential to support a multitude of applications

that involve a vast number of neurons. The human brain consists of billions of interconnected

neurons, enabling complex cognitive tasks. CIM systems, with their ability to perform

computations within memory units, can handle large-scale neural simulations and modeling

more effectively [18]. This capability opens up opportunities in various domains, including

neuroscience research, artificial intelligence (AI), and cognitive computing. CIM systems can

accelerate simulations of neural networks, facilitating advancements in understanding brain

functions and enabling the development of advanced AI algorithms [15–17].

Various approaches to neuromorphic designs exist, with some being lightweight while

lacking biological intuition [19–21], and others, highly detailed but not scalable [22].
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Another possibility is a chipset-based system-level electrical model of the brain

connectivity network. Each chiplet, a small integrated circuit (IC), can house hundreds to

thousands of neurons, each with 100 to 1,000 synapses. Communication on each chiplet

occurs at short-range using standard on-chip routing techniques. Mid-range

communication involves interactions among chiplets within the same cluster and can be

achieved through protocols like BoW [23] or SuperCHIPS [24]. Currently, researchers have

only scratched the surface concerning connectivity-related brain diseases (e.g.,

epilepsy [25, 26]). As a result, an ultra-large-scale neural network that emulates the brain

holds tremendous potential in this domain. Connectivity networks derived from magnetic

resonance imaging can be integrated into a neuromorphic emulator, where the network’s

connection strength is represented by synaptic weights within the emulator’s architecture.

This neuromorphic emulator allows real-time monitoring of activity within the ”uploaded”

brain map. By adjusting the synaptic weights, valuable insights can be gained into the

activity patterns associated with connectivity-related brain diseases.

Before discussing the analog memories used in electrical engineering, the neuroscience

side of the brain is briefly discussed here. The core building blocks of neuromorphic systems

are neurons (soma), synapses, dendrites, and axons [6], as shown in Fig 1.1(a). Neurons

are comprised of three primary components: a central cell body known as the soma, along

with two distinct types of branched, treelike structures that extend from the soma called

dendrites and axons. Depending on the inputs, neurons decide when to fire and send a spike
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to their connected neurons. On the other hand, the primary body of an artificial (electrical)

neuron is termed a node or unit. These nodes are interconnected physically through wires

that simulate the connections found between biological neurons [27], [28], [6].

In the brain, neurons receive information from other neurons in the form of electrical

impulses, which enter the dendrites through connection points known as synapses.This

information is received by the dendrites and processed in the soma. The resulting output

signal is transmitted down the axon to reach the synapses of other neurons in the form of a

series of impulses [6, 27–29].

Biological Network Artificial Network

Soma Node(Unit)
Dendrites Input
Synapse Weight

Axon Output

Table 1.1: Comparison of Biological and Artificial Networks.

Before discussing existing neuron models and each part of the neuron, first, the operation

of a neuron is explained here. Neurons are connected to each other on a large scale, and

these connections are considered synapses [30]. When neuron A is connected to neuron

B’s dendrites with a synapse, the weight and strength of the synapse is increased with

the activity of neuron A, and if this activity decreases, the connection is weakened, and

neuron A’s activity now has less effect on the activity of neuron B. Considering the fact

that most neurons are active during the day, their connection’s strength changes every day
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(a)

(b)

Figure 1.1: (a) Biological neural network with neurons (soma), synapses, dendrites, and
axons. (b) Artificial natural network with inputs, weights, bias and activation function

(this continues even during REM sleep), and this is how a human learns during the day,

stores daily events in its memory and etc. Most of the illnesses regarding the human brain

are caused by damage in these connections, for example, seizures or epilepsy [25, 26, 31, 32].

The artificial neuron is considered to be one or a mass of neurons that operate exactly the
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same way, each input connection is weighted usually with an analog memory, and then the

weighted inputs are summed inside the neuron and, depending on the activation function

and the neuron model, the neuron decides to fire or not as shown in Fig. 1.1(b) [2].

Neuron models, such as the integrate-and-fire (I&F) [33], [34] and leaky integrate-and-

fire (LIF) models [35], [36] , are instrumental in understanding neural coding approaches.

The choice of neuron model directly impacts the network’s information representation and

processing capabilities. Several neuron models, including the Hodgkin-Huxley (H&H) [33],

[37], Izhikevich [38], and adaptive-exponential (AdExp) [39], [40] models, provide varying

trade-offs between biophysical accuracy, versatility, and implementation efficiency. Each

model grasps different behaviours of the neurons, and depending on the application, different

models can be used [41]. For example, using a complete and complex model like (H&H) would

be highly bio resemblance while adding a lot of complexity to the system, and a simple LIF

model could be enough for the architecture if only simple behaviours of the neuron are

expected.

Biological synapses are highly compact structures that facilitate memory and plasticity

functions [42], allowing neurons to connect with a large number of synapses per neuron,

ranging from 100 to 10,000 [43]. Achieving an optimal balance between versatility and

efficiency is crucial for synapses, as they often dominate the area of neuromorphic processors,

sometimes by more than one order of magnitude [22].

To enable large-scale integrations, designers face the challenge of either moving synaptic
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resources off-chip, which increases system power and latency [44], or sacrificing the key

feature of synaptic plasticity [45], [46]. However, preserving embedded online learning is

essential for several reasons. Firstly, it enables low-power autonomous agents to gather

knowledge and adapt to new features in real-time, particularly in uncontrolled

environments where new training data is presented on the fly [47], [48]. Secondly, from a

computational efficiency perspective, neuromorphic designs without synaptic plasticity rely

on off-chip optimizers, limiting their deployment in power-constrained and

resource-constrained applications, not only during inference but also in the training phase.

Lastly, exploring biophysically realistic silicon synapses that incorporate spike-based

plasticity mechanisms may offer insights into their operations in the brain and support

cognition [49].

1.2 Analog Memories Investigated for Neuromorphic

Systems

Neuromorphic systems aim to mimic the structure and functionality of the human brain,

including its ability to process and store information. While digital memories, such as

those based on transistors and non-volatile memory technologies, are commonly used in

conventional computing systems, neuromorphic systems often incorporate analog memories

due to their potential advantages in terms of energy efficiency and parallel processing [18].
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Here, a number of popular analog memories which are being used are described.

1.2.1 Memristors

The memristor, a portmanteau of ”memory resistor”, is considered the fourth basic circuit

element alongside the resistor, capacitor and inductor [50]. It is a nonlinear passive two-

terminal electronic component which is defined by the relation between the magnetic flux

ϕ and the electric charge q. It can neither store nor generate any power because it is a

passive element. The exact definition of a memristor is given by its frontiersperson as [51]:

”any 2-terminals device, exhibiting a pinched hysteresis loop, which always passes through

the origin in the voltage-current plane when driven by any periodic input current source,

or voltage source, with zero DC component. If the input is a current source, it is called

a current-controlled memristor. If it is a voltage source, it is called a voltage-controlled

memristor”. Indeed, the resistance of a memristor is contingent on the charge that passed

through the circuit. When the current flows in one direction, the resistance escalates, but it

decreases when the current flows in the opposite direction. However, the resistance cannot

go below zero. Remarkably, when the current ceases, the memristor retains the resistance

value it had prior, essentially ”remembering” the last current that flowed through it [52].

The memristor holds the potential to serve as a crucial component, acting as a stateful logic

element and an artificial neuron/synapse in both von Neumann and neuromorphic computing

paradigms [53].
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Figure 1.2: The four fundamental two-terminal circuit elements: resistor, capacitor,
inductor and memristor.

The most basic mathematical definition of a current-controlled memristor for circuit analysis

is the differential form

v = R(w)i , (1.1)

dw

dt
= i , (1.2)

where w is the state variable of the device and R is a generalized resistance that depends

upon the device’s internal state. Here, the state variable corresponds to the charge. In 1976,

Chua and Kang expanded this concept to encompass a wider range of nonlinear dynamical

systems, which they referred to as memristive systems, described by the equations [54].
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v = R(w, i)i , (1.3)

dw

dt
= f(w, i) , (1.4)

where w can be a set of state variables and R and f can, in general, be explicit functions of

time. Chua and Kang showed that the current-voltage (i-v) characteristics of some devices

and systems, including thermistors, Josephson junctions, neon bulbs, and even the H&H

model of the neuron, could be accurately modelled using memristive equations. However,

despite these findings, there was no direct link between the mathematical equations and the

physical properties of any practical system. As a result, nearly forty years later, the concept

of memristive systems had not gained widespread adoption [54].

1.2.2 Phase Change Memory

Phase change memory (PCM) is a non-volatile memory technology that uses phase change

materials, such as chalcogenide alloys or transition metal dichalcogenides, to store data

[55,56]. PCM makes effective use of the difference in resistivity between the crystalline phase

(characterized by low resistivity) and the amorphous phase (characterized by high resistivity)

of the phase change material. In PCM, the ”set” state refers to the low-resistance condition,

while the ”reset” state pertains to the high-resistance condition. This inherent property
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of PCM is crucial in enabling its application in various fields, particularly in electronic

memory devices and neuromorphic computing systems. PCM cells consist of a small volume

of material between two electrodes. By applying electrical currents or voltages, the phase

change material located between the top electrode and heater can be switched between

amorphous and crystalline states, representing binary data [55]. This current crowding at the

contact point between the ”heater” and the phase change material leads to the formation of

a programmed region, visually represented by the mushroom boundary as shown in Fig. 1.3.

In recent times, PCM devices have emerged as a promising contender for neuromorphic

computing, primarily because of their multi-level storage capabilities [57], [58]. PCM offers

fast read and write speeds, high endurance, and excellent data retention [59].

PCM is a candidate for future memory architectures due to its fast switching speeds in

the nanosecond range, surpassing many other non-volatile memory technologies. It also has

high endurance with millions of write cycles possible. PCM is scalable to an extent, allowing

for miniaturization and high-density memory arrays. This makes it suitable for advanced

computing applications such as in-memory computing and neuromorphic computing.

Although PCM has significant potential, it still faces some challenges. One of the main

limitations is the scalability of each cell size, as a certain volume of phase change material is

required for reliable operation. Additionally, the power consumption during write operations

is a big concern, as high currents are necessary. The cost of production and integration with

existing memory technologies are also obstacles to its widespread adoption. PCM requires
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additional masks and materials to be added, which adds complexity to the process and

increases its price. Nevertheless, PCM is still an active area of research and development,

with the potential to revolutionize computing by providing fast, high-density, and non-

volatile storage capabilities.

Figure 1.3: Phase change memory (PCM) structure

1.2.3 Floating-Gate Transistors

Floating-gate transistors are a type of transistor commonly used in non-volatile memory

devices like Flash memory. [60]. Electrical charge is stored in an insulated and electrically

isolated floating gate. This process traps charge in the floating gate, called hot electron

injection. The transistor’s state is determined by the presence or absence of charge,

representing binary data. [61]. Floating gate transistors are based on two metal gates - a

floating gate and a control gate. Charge trapping within this device occurs within the
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metal-oxide-metal capacitor that is formed by the two gates.

The structure and operation modes of a floating gate transistor are depicted in Fig. 1.4.

Three kinds of operations can be performed: erase, write(program), and read. The erase

operation is carried out by emptying the floating gate of its negative charge, which involves

the removal of electrons contained within. This process is facilitated by field electron emission

(Fowler-Nordheim tunnelling). To achieve this, a high voltage, typically around 20 volts [62],

is applied to the substrate, while the control gate receives a zero voltage. On the other hand,

writing(programming) entails negatively charging the floating gate, and also utilizing field

emission. During this process, the substrate receives a zero voltage, and a high voltage is

applied to the control gate. Lastly, the read operation is performed by applying a reference

voltage to the control gate of the transistor. If the floating gate is charged negatively, the

transistor is turned off, resulting in no current flow in the channel between the drain and

the source. This scenario typically corresponds to a logical ”0” (zero) stored in the cell.

Conversely, if the gate is not charged, the transistor is conducting, equivalent to a logical

”1” (one). [61]

Floating-gate transistors have several advantages in non-volatile memory applications.

They can store data without power and have high endurance, allowing for millions of read

and write cycles. Their compact design enables high-density memory arrays. Floating-

gate transistors have certain limitations that affect their performance. The programming

and erasing operations of these transistors tend to be slow due to the requirement of high
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Figure 1.4: Operations using a floating gate memory.

voltages and the interference between adjacent cells. As the technology reduces in size, the

reliability of these transistors can be impacted by issues such as electron leakage and charge

loss.

Despite these limitations, floating-gate transistors have certain limitations, they have

played a critical role in the advancement of non-volatile memory devices. These transistors

can store, charge, and retain data, making them an essential component in Flash memory.

As a result, they have enabled the creation of high-capacity and durable storage solutions.

1.2.4 Resistive Random-Access Memory

Resistive Random-Access Memory (RRAM) is a non-volatile memory technology that stores

data by changing the resistance of a material [63, 64]. RRAM memory cells consist of a

resistive switching memory cell, which features a metal-insulator-metal (MIM) structure.

This structure consists of an insulating layer(I) sandwiched between two metal(M) electrodes,

as shown in Fig. 1.5. When an external voltage pulse is applied to the RRAM cell, it triggers
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a transition of the device from a high resistance state (HRS), or OFF state representing logic

value ’0’, to a low resistance state (LRS), or ON state usually representing logic value ’1’.

This transition can also occur in the reverse direction, allowing the device to switch between

the two states [65], [66].

RRAM offers several advantages as a memory technology. It provides fast read and

writes speeds, comparable to or better than traditional memory technologies like Flash

memory. RRAM cells also have high endurance, with millions of read and write cycles

possible. Additionally, RRAM has good scalability potential, enabling high-density

memory arrays.

However, there are challenges associated with RRAM. Precise control of the resistive

switching process is required for reliable performance, as variations in cell characteristics

can affect data storage. Power consumption during write operations is also a consideration,

as high voltages are often needed for resistive switching.

Despite these challenges, RRAM holds promise as a potential future memory technology.

Its fast operation, high endurance, and scalability make it an attractive alternative to existing

non-volatile memory technologies. Ongoing research and development efforts are focused on

improving the performance and reliability of RRAM for a wide range of computing and

storage applications.
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Figure 1.5: Resistive Random-Access Memory (RRAM)

1.3 Charge Trap Transistors

Two decades ago, the ongoing decrease in transistor dimensions led to the use of extremely

thin gate oxides, resulting in a significant issue of high gate leakage through silicon. To

address this problem, alternative solutions such as high dielectric constant materials like

hafnium oxide (HfO2) were proposed. However, the presence of inherent oxygen vacancies

in HfO2 posed a challenge by acting as charge-trapping centers, causing a gradual increase

in the threshold voltage (Vt) of transistors. [67] This electron trapping effect leads to a

substantial shift in the drain current (ID) vs. gate-source voltage (Vgs) curves, as illustrated

in Fig. 1.6. The change in Vt is influenced by various factors, and even slight variations in

these parameters can result in significant alterations [68], which will be discussed in Chapter

2.

By applying appropriate, logic-compatible voltages higher than the nominal ( 0.8V),
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Figure 1.6: Effect of charge trapping on the drain current of the transistor. The currents
were measured at Vds = 100 mV .

enhanced charge trapping in the high-k gate dielectric of HKMG logic transistors occurs,

leading to significant and stable threshold voltage shifts (∆Vt) [69]. These shifts can then

be used as a non-volatile data storage mechanism. To understand how CTTs work, first, it

should be noted that working with CTTs consists of three operation modes, programming,

erasing and inference. During programming, high voltage pulses arrive at the gate while

drain voltage is present, causing the charges to get trapped in the vacancies and altering

the inference current of the CTT as demonstrated in Fig. 1.7 (a). During Erase, A negative

voltage is applied to the gate, while Vds = 0 V , causing the electrons to get de-trapped and

go back to the channel as shown in Fig.1.7 (c). During inference, the device is biased at a

low voltage ( in the sub-threshold region), and based on the amount of trapping and the

initial current of the device, the drain current is set to the desired value.
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Figure 1.7: Program and erase phenomena within the CTT device. (a) Schematic
illustration of programming (PRG), where the charge is driven by positive VGS pulses
and constant VDS from the channel into the vacant traps in the high-k oxide, and (b)
the corresponding voltage and current diagrams, illustrating applied gate voltage and the
resulting shift in threshold voltage. (c) Schematic illustration of erase (ERS), where the
charge is driven by negative VGS pulses (VDS = 0 V) from the traps in the high-k oxide
back into the channel, and (d) the corresponding voltage and current diagrams, illustrating
applied gate voltage and resulting backward shift in threshold voltage [1].

Although CTTs may look similar to floating gate transistors, however, charge trap

transistors include a single metal gate, similar to the standard CMOS process, and the

charge is trapped within the metal-oxide-silicon structure of the device. Furthermore, the

floating gate device is not logic voltage compatible (10 to 20 V) and requires level shifters

that occupy a significant area.

When compared to other analog synapse alternatives, the CTT offers a variety of

advantages:

CMOS-Only Technology: Unlike resistive/phase-change RAM or flash technology, the

CTT requires no additional materials or processes. Consequently, the development cost

is significantly reduced. This technology allows for the utilization of advanced-node logic



1. Introduction 20

transistors as CTTs directly from the fabrication and easy porting of existing IP designs

from an older node to a newer one.

Low Voltage Requirement: Operating exclusively on logic-compatible voltage below 3 V,

the CTT enjoys a notable advantage over flash-based analog synapses. [70]

It is clear that CTTs have the potential for analog synapses in neuromorphic computing

systems. [1,71–76], catering to swift and energy-efficient cognitive tasks. The objective of this

work is to utilize CTTs as an analog memory in a proposed neuromorphic system. Firstly,

the device’s characteristics are analyzed using different measurements on multiple devices in

Chapter 2. Subsequently, an architecture is proposed and simulated on the MNIST dataset

using CTTs and an LIF neuron in Chapter 3.
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Chapter 2

CTTs as an Analog Memory

In this chapter, we have explored the behavior of CTTs as analog memory. All of the

measurements and plots are done by the author using the devices and facilities provided by

Blumind [77] and are in preparation to be submitted at the time of thesis submission.

2.1 CTT Behavior

CTTs hold great potential as analog memory, however, understanding their behavior has

a crucial role in using the CTTs. It is important to understand what affects the current

of the device and what factors should be considered while designing a circuit using CTTs.

Device variation, charge trapping behavior, effects of the parasitics, the layout of the circuit,

de-trapping of the electrons and many other things should be considered for using CTTs. In

this section, a deeper look has been taken into the physics of the device and the use of it as
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an analog memory.

2.1.1 Physics Behind Trapping and de-trapping

HfO2 is commonly used as the gate dielectric in high-k/metal gate CMOS technologies, and it

is known to have charge traps related to oxygen vacancies [67]. Oxygen vacancies are defects

caused by oxygen diffusion from HfO2, leaving behind positively charged vacancy defects. It

has been observed that bias stress-induced charge trapping and defect generation in HfO2 are

significantly accelerated by temperature [68]. Charge trapping in HfO2 is typically considered

a source of device and circuit variability and an undesired feature, but in this concept, it is

actually useful.

The positioning of the traps in the device depends on the device’s relative bias points.

In this section, we explore charge trapping in two specific locations: bulk-oxide traps and

interfacial traps. One extensively studied case involving such logic devices is the negative or

positive-bias temperature instability (NBTI or PBTI) [78], [79]. NBTI or PBTI can cause

a shift in the device’s threshold voltage (Vth) due to a negative or positive gate bias. For

nMOSFETs, PBTI is more pronounced because positive VGS is typically employed during

most operations. PBTI leads to Vth shift by trapping charges in the bulk-oxide traps.

Although PBTI can induce Vth shift, it is not as significant as the proposed PRG method,

which primarily traps charge in the bulk oxide but benefits from enhanced resistive self-

heating caused by the large drain current [79]. The PRG method proves to be almost three
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times more efficient in charge trapping with good retention. Research has shown that the

self-heating enhanced CTT PRG method can retain 70% of the trapped charge at 105°C for

ten years [80].

Another approach to utilize charge trapping for device Vth shift is through hot-carrier

injection (HCI), which necessitates a very high VDS to generate interfacial traps between the

oxide and the drain-side channel [81]. HCI has demonstrated the ability to significantly shift

Vth with excellent retention (less than 10% charge loss in 10 years at 125°C) [82]. However,

HCI can only be de-trapped through high-temperature and long-time annealing [83]. In

contrast, bulk-oxide trapping can be reversed without heating (since resistive self-heating

during negative VGS is not feasible due to the device being in the off-state) by applying

high VGS, with the drain floated or shorted to the source. [84]

2.2 Experimental Results on Trapping Behavior

As discussed in the previous sections, many factors can affect charge-trapping behavior.

Previous research has shown that even a small change in these factors can result in a shift in

the threshold voltage. To address these effects, numerous measurements have been conducted

in this study. All measurements were done using SLVT transistors with dimensions of W =

430 nm and = 20 nm, in 22nm FDSOI technology. Firstly, the effect of different factors has

been reported in this study. Secondly, a simplified model has been introduced that considers

the programming conditions and predicts the amount of threshold voltage shift. The test
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Figure 2.1: Experimental test setup

board has been depicted in Fig 2.1

2.2.1 Effect of Gate Voltage on Programming CTTs

Gate pulses play a crucial role in CTT devices, serving two primary functions. Firstly,

these pulses activate the channel, facilitating the flow of electrons through it. Concurrently,

they induce a high vertical field that aids in the injection and subsequent entrapment of

electrons within the gate’s high-k dielectric. The effectiveness of the trapping process is

directly influenced by the magnitude of the applied pulses, as it governs the strength of the

electric field across the channel.

Research has demonstrated that increasing the magnitude of these pulses enhances the

trapping efficiency [85], and recent investigations have revealed that a power law relationship

has good accuracy in describing the voltage dependence across a broad voltage range [86]. As
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Figure 2.2: Effect of Vg on ∆Vt. ∆Vt was measured after each stress pulse at Vgs = 125 mV

and Vds = 100 mV . During programming Vd was set to 900 mV .

shown in Fig. 2.2, changing the applied drain voltage affects the threshold voltage drastically.

2.2.2 Effect of Drain Voltage on Programming CTTs

The temperature within the charge trap transistor’s channel is influenced by the drain

voltage. The channel’s temperature and current both rise in response to an increase in the

drain voltage. Because of the increased temperature, there are more available traps for

electrons to fall into. Therefore, raising the drain voltage makes more traps available

(generates traps), which facilitates the storage of charge in the transistor. This result is

illustrated in Fig. 2.3
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2.2.3 Effect of stress time on Programming CTTs

During programming, the device is under stress for a certain amount of time, increasing this

stress time increases the probability of electrons getting trapped in the traps. The effect of

stress time is shown in Fig. 2.4.

It is notable that the electrons start to get trapped when the device is under stress, and

after a while, the traps get saturated, and there are no more traps available for the electrons,

this is evidence that under those programming conditions, the traps are saturated and for the

device to have more threshold voltage shift, the conditions programming conditions should

change (i.e. increase in the Vd or Vg to make more traps available for the electrons).

To see if it is important to apply one continuous pulse or multiple small pulses, the

following experiment was done, in this test, similar devices were programmed with the same

voltages, however, one batch of devices was under stress with 1 ms pulses and the other
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batch with 10 ms pulses. As shown in Fig. 2.5, the final results follow closely among two

batches and merge into each other. The small differences in the result could be attributed to

de-trapping during measurements since it takes 10 ms to measure the current of the device,

and with increasing the number of pulses, the de-trapping increases.

2.2.4 Weight Levels Quantization

As it was illustrated in the previous section, programming CTTs has a stochastic nature,

meaning that although the behavior of the device can be modeled and predicted to an extent,

many other factors still affect the amount of programming done in the device. For instance,

the parasitic of the device can affect the load that the device sees during programming and

change the amount of electrons getting trapped in the device. The layout of the device
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Figure 2.5: Comparison of devices programmed with series of 1 ms and 10 ms pulses. The
normalized current of the device is being reported here to remove the effect of device’s the
initial current.

affects the Rth of the device and changes the effect of drain voltage in electron energy levels,

and the nature of trapping is also dependent on the probability of electrons getting trapped,

and it is not guaranteed to happen [84].

As illustrated in Fig.2.6, even when all of the devices are programmed in identical

conditions, the amount of shift is still different. Therefore having a closed-loop verification

is necessary for using CTTs as analog memories, which increases the programming time

significantly. This brings the question of how accurate the programming requires to be. If

high precision is required for the current of the device, this will result in very long

programming (i.e., write) time which becomes impossible in large systems with large

numbers of devices. Therefore, a robust network is required to accompany the CTTs and
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Figure 2.6: Stochastic nature of trapping. Ten different devices with the same dimensions
and similar layout have been programmed under the same conditions.

have a middle ground in programming accuracy and write time and make the designer able

to set the weights to the required level in a reasonable time.

Our work in [1], considered 12 distinct weight levels, which need to be verified, and

the greatest threshold voltage shift to be 110 mV, which is consistent with published and

experimental results. Further information will be covered in Chapter 3
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2.3 Simplified Model

Many factors affect the charge-trapping behavior of CTTs. General charge trapping in

transistors has been extensively investigated [87], and previous works have also explored

charge trapping in CTTs [68, 71, 85], however, modeling the trapping behavior for using it

as analog memory in the circuit design has not been done before. Multiple expressions have

been introduced to determine the amount of ∆Vt in transistors. All of these expressions take

trap density and the distribution of the traps into account in some sort. (2.1) is being used

in this work which has been used before in various researches [86]

∆Vt = ∆Vtmax

(︂
1 − e−(t/τ0)β

)︂
, (2.1)

where ∆Vtmax is the maximum threshold voltage shift, t is the stress time, τ0 represents a

characteristic time scale for the trapping dynamics. A smaller value of τ0 indicates faster

trapping dynamics, while a larger value implies slower dynamics, and β is a measure of the

width or spread of the trap distribution and quantifies the width of this distribution. When

β is close to 1, it suggests a narrow distribution, indicating that the capture cross-sections

associated with different traps have discrete or distinct values. On the other hand, smaller

values of β indicate a broader distribution of time constants. Due to the stochastic nature of

trapping, the values for τ0 and β are technology, process, and layout dependent. Based on the

experimental results done in this work and fitting the data into the mentioned equation, the
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value of β is in the range of 0.2 and 0.3, which agrees with the values reported in [85,86,88].

The value of τ0 in this work is calculated to be in the range of 0.2 to 1.1 s which is also in

the range of previously reported works [85].

To calculate the shift on ∆Vt as demonstrated in (2.1), it is required to know the ∆Vtmax

for each pair of Vds and Vgs. Changing the Vds and Vgs affects the electric field and the

temperature, causing a change in the number of traps and, consequently, the amount of the

shift, as discussed in Section 2.2. A series of stress pulses described in the following was

applied to the device to determine the maximum shift amount on different stress voltages.

Forty-nine different sets of stress voltages were used in this measurement, and each

session consisted of multiple stress pulses with the same voltage, applied with different

pulse widths for a total of 10.6 s to ensure the traps were saturated in each condition(in all

of the measurements 90% of the traps were saturated in less than a second but still the

pulses were given to ensure saturation). The device’s Vt was measured before and after

each session, and between each stress pulse, the device’s current was logged to keep track of

the trend in trapping. Each measurement was done on multiple devices to avoid the noises

caused by the device variation and parasitics on the results, and the average numbers are

being reported here. Based on these experiments and previous works [89], it was noted that

trappings begin to be significant and noticeable around Vgs = 1.8 V and Vds = 0.9 V.

During these measurements, the Vgs were set to [1.8 V−2.2 V], and Vds were set to

[0.9 V−1.3 V]. To avoid the effect of de-traping [74], the currents were measured for
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∼ 10 ms, and the next stress voltages were applied. The current of the transistor was

measured at Vgs = 125 mV and Vds = 100 mV and they ranged from 100 nA to 350 nA

before stress. The dimensions of all tested devices were W = 430 nm and L = 20 nm.
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Figure 2.7: Effect of Vd on ∆Vt. ∆Vtmax was measured after a total of 10.6 s of stress time
with different Vd and Vg = 2.0 V .

Using the mentioned measurements, this research introduced an equation to determine

the value of ∆Vtmax based on stressing voltages. ∆Vtmax is dependent on (i) the electric

field across the channel during programming (Vgs). The average result for Vgs = 2.0 V with

error bars are shown in Fig.2.7 and the overall plot for all of the Vgs is shown in Fig.2.8

(ii) the current of the transistor during programming (IDsh
), which affects the temperature

of the channel and (iii) the Vds during programming that also affects the temperature and

self-heating effect. The average result for Vds = 1.2 V with the error bars is shown in Fig.2.9

and the overall plot for all of the Vds is shown in Fig.2.10.
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In this work [90], (2.2) is suggested to take into account these effects and calculate the

∆Vtmax in the programming voltage range to be used in (2.1).
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Figure 2.8: Effect of Vd on ∆Vtmax . ∆Vtmax was measured after a total of 10.6 s of stress
time. The current of the device before and after programming was measured at Vgs = 125 mV

and Vds = 100 mV .

∆Vtmax = d · ∆T · V m
gs , (2.2)

where d is a fitting parameter to scale the voltage and is found to be around 13.12. ∆T is

the temperature rise in the channel during stress time, which is calculated using Rth and the

power dissipated in the channel during stress time (Vds × IDsh
× Rth). The current of the

devices was measured during stress, and it ranged from 700 µA to 910 µA. Therefore, the

final equation for ∆Vtmax would be:
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Figure 2.9: Effect of Vg on ∆Vt. ∆Vtmax was measured after a total of 10.6 s of stress time
with different Vd and Vd = 1.2 V .
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Figure 2.10: Effect of Vg on ∆Vtmax . ∆Vtmax was measured after a total of 10.6 s of stress
time. The current of the device before and after programming was measured at Vgs = 125 mV

and Vds = 100 mV .
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∆Vtmax = d · Vds · IDsh
· Rth · V m

gs , (2.3)

this expression takes the input voltages into account and based on the experimental results

provides an estimation of the amount of trapping. It should be noted that the error rate of

the linear model for the effect of Vds on ∆Vtmax ( shown in Fig.2.8) was less than one percent

compared to the averaged measured numbers. During measurements, different devices were

used to decrease the effects of parasitics by using the average amounts of trapping. Increasing

the stress voltages higher than the reported range was causing the effect of de-trapping

to be dominant during measuring, causing the value of ∆Vtmax to drop and making the

measurements inaccurate. It is possible to apply higher voltages to reduce the stress time

required to reach the same ∆Vt; however, due to the nature of trapping, the trapping behavior

becomes more dependent on the technology, process and layout of the device, making it hard

to predict. Furthermore, while applying the pulses, the voltages should not go higher than a

certain value since these devices’ nominal operating point is 0.8 V, and it is not recommended

for very high voltages, and the device will break down under them [68].

As an illustration, four measurements are compared to the model’s predictions and

depicted in Fig. 2.11. It is important to acknowledge that while the linear relationship

exhibited minimal error with the average results presented here, trapping behavior is

stochastic and technology-dependent. The accuracy of trapping may vary based on factors

such as layout, technology, etc., for each separate device, so verifying the programming is
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essential when aiming for high accuracy in systems.

(a) (b)

(c) (d)
Figure 2.11: Comparison of the simplified model versus some stress pulses (a) A device
under Vgs = 1.8 V and Vds = 0.8 V (b) A device under Vgs = 1.8 V and Vds = 0.9 V (c) A
device under Vgs = 2.1 V and Vds = 1 V (d) A device under Vgs = 2 V and Vds = 1.2 V
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2.4 Trapping Behaviour in CAD Tools

Charge trapping in CTTs is not being captured in the available CAD [91] tools, therefore

making it impossible for designers to use CTTs in their designs. As shown in Fig 2.12,

applying programming voltages does not change the current of the transistor for inference.

Figure 2.12: Applying programming pulses does not change the threshold voltage of the
transistor

A model is proposed here to use 2.3 in Verilog-A and add this feature to the simulation

tools. Using this model, the designer is enabled to have a CTT device as an analog memory.

In the proposed Verilog-A model, the gate and drain voltages are the inputs of the model,
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and based on the stress time, the model predicts a shift in Vt and applies it to the gate of the

transistor as a negative DC source [76] as shown in Fig 2.13. The model is replacing the DC

voltage in the circuit and is calculating the amount of shift based on the applied voltages to

the gate and drain of the device as shown in Fig. 2.14.

Figure 2.13: Adding a DC voltage source to demonstrate the effect of Vt change.

Considering that CTTs are mainly used in the subthreshold region, the channel current

equation in this region is defined by [92]

ID = ID0 · eq(Vgs−Vt)/ηkT , (2.4)

where ID0 is the reference current of the transistor in a specific temperature, Vgs in the gate
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Figure 2.14: Connecting the model to the transistor to add the trapping behaviour of the
device.

voltage and Vt is the threshold voltage of the device. η is the subthreshold slope factor.

The transistor’s programming can be indicated by decreasing the gate voltage instead of

increasing the Vt [76]. The output current can be adjusted accordingly by integrating this

model into the transistor’s gate. The output of the model in comparison to the measured

numbers ∆Vt with the same programming voltages has been shown in Fig. 2.15. This

approach allows us to simulate the predicted change in Vt based on the actual programming

pulses.
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Figure 2.15: Output of the Verilog-A model vs. measured data in the chip. Both model
and device have been stressed with Vds = 1.3 V and Vgs = 2.1 V.
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Chapter 3

CTTs in neuromorphic systems

This chapter discusses using CTTs as analog memory in neuromorphic systems. Depending

on the applications, a couple of architectures can be utilized using CTTs. CTTs have been

used in machine learning (ML) applications previously [71,76,93], and we have introduced a

novel architecture that supports both ML applications and brain resemblance systems with

a large number of neurons due to its scaleability [1] which has been explained here.

This publication was a team effort, and all team members were responsible for different

research components. Other than the design of the CTT array, the other circuit blocks

design and the software training model were done by other team members. The author was

responsible for determining the general specifications of design, the hardware realization of

the ML model, characterizing the weight levels in hardware considering the noises from all

of the blocks, indicating an approach for utilizing input data, performing the simulations
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and providing the hardware results, while the other member conducted training in software

using this information and matched the software and hardware results in a collaborative

effort. Some of the final results of the paper are being reported here for the purpose of

clarification and more details are in the paper [1].

3.1 CTT-Based Scalable Neuromorphic Architecture

This research introduces a CTT based neuromorphic architecture designed to be highly

scalable and energy efficient for large neural network applications. The CTT acts as a

compute-in-memory device, as explained in Chapter 2. The proposed architecture employs

simple, small-area circuit blocks, aiming to create a fundamental building block (neuron)

that can be replicated efficiently to form a vast network supporting both ML and biological

applications at a significant scale. While this architecture demonstrates its capabilities with

binary classification, it can be adapted for more complex ML tasks as well. The architecture

utilizes differential current mode techniques to minimize noise impact and enhance system

robustness.

The proposed CTT-based neuromorphic architecture, depicted in Fig. 3.1, comprises

three key components: the array of synapses, the neuron, and the control circuitry responsible

for CTT weight adjustment. Within the architecture, the array of synapses employs CTTs

to perform a multiplication operation between incoming spike signals originating from fan-

in neurons, and the synaptic weights stored in the CTT devices. After the CTT array,
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the neuron’s mixed-signal circuits undertake accumulation of the products received from the

CTT array and generate an outgoing spike, effectively performing a multiply-and-accumulate

operation. In this context, various neuron models exist in the literature, with a tradeoff

between biophysical resemblance to the human brain and complexity (in terms of area,

power, and scalability). For this architecture, the LIF model is employed.

The architecture relies on the number of pulses approach for communication (as opposed

to pulse amplitude or pulse width modulation). In the brain, pulses exhibit similar amplitude

and pulse width, making the number of pulses approach more suitable. Additionally, this

approach proves efficient and avoids the need for additional circuits such as time-to-analog

converters used in pulse width modulation [2].

The proposed architecture was designed and simulated using GF 22 nm FDSOI

technology. The CTT array is a significant component, where synapses are represented

using twin-cell CTT devices. Each synapse is modeled using two CTTs: a target device

(denoted by the superscript ’+’) and a reference device (denoted by the superscript ’-’).

The conductance of a twin-cell within the array is defined as Gtwin-cell = G+ − G-. The

CTT array architecture assumes 100 synapses per neuron, represented by 100 twin cells

(200 CTTs). The conductance of each CTT in a twin cell is changed based on the amount

of programming (weight) on that device. During inference (activation), when a fan-in

neuron fires, a spike arrives at the corresponding synapse, resulting in both CTTs within

the twin-cell passing drain current according to a programmed weight. The current
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Figure 3.1: A block diagram of the proposed neuromorphic architecture. “AL” inputs
represent connections (axons) from fan-in neurons that carry the incoming spikes. The
proposed architecture includes three main components, array of CTTs (synapses), LIF neuron
circuits, and control circuitry for weight adjustment. Incoming spikes are weighted according
to the adjusted threshold voltages of the CTTs and produced charge is accumulated within
the neuron circuit blocks. When a threshold is reached, the neuron produces an outgoing
spike [1].
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difference between the target and reference devices is captured in the differential current

sensor (DCS). DCS circuit is designed to accommodate a wide range of input currents due

to the unknown timing of incoming spikes and their respective weights. The subtractor

unit follows the current sensor, producing the differential twin-cell current Idiff = I+ − I-.

Then the output current is stored in a capacitor which represents the membrane potential

of a human brain, and the LIF neuron connected to the capacitor decides when to spike

based on the voltage on the capacitor.

The layout of the designed circuit is provided in 3.2, with the CTT array occupying a

silicon area of 6.5 µm × 15.5 µm, and the circuits of the neuron model occupying 5 µm ×

15.5 µm. The complete architecture of the neuron without weight adjustment circuitry

occupies a silicon area of 11.5 µm × 15.5 µm = 178.25 µm2.

To evaluate the proposed architecture, a machine learning classification task was

conducted in both hardware and software to recognize the digits ’0’ and ’1’. As mentioned

in Chapter 3, the programming of the Crossbar Tile Transistors (CTTs) was modeled as a

DC voltage source. For each CTT, twelve different weight levels were chosen, ranging from

0 mV to 110 mV of programming. Each reference was programmed to the highest weight

level (110 mV), and the software simulation determined the weight of each target cell. To

model the weight level of each twin cell in software, the voltage of the capacitor was

measured when a series of sample input spikes were applied to twin cells with each weight

level. For hardware simulations of the entire system, the MNIST dataset for digits ’0’ and
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Figure 3.2: Layout of designed circuits, including the CTT array and all of the neuron
circuit blocks.

’1’ were encoded in the number of input pulses, where a black pixel was represented with

16 pulses and a white pixel with 0 pulses. The simulation was performed using an

Oceanscript code in Cadence, and the final results were analyzed using Python.

The binary classifier neuron exhibited a 99.2% accuracy, a 98.9% recall, and a 99.4%

precision on the test set in software. The optimized weights from the software and the

inference data set were used in simulations of the hardware producing an accuracy, recall,
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Figure 3.3: An example of the neuron classification simulation for six different images from
the test data set (three for each digit). The image, Vc, and Vspike are shown. The neuron
spikes for images containing the digit ‘0’ and does not spike for images containing the digit
‘1’.

and precision of, respectively, 99.2%, 99.5%, and 98.8%, closely following the performance

of the software simulation. A sample of the output of the circuit has been shown in Fig. 3.3

The architecture’s parameters and characteristics were compared to prior work, showing

scalability, power efficiency, and energy-per-synaptic operation of 8 pJ.

The proposed architecture demonstrates scalability, robustness, and energy efficiency,

with the CTT array supporting a compute-in-memory approach, the differential circuit

design ensuring noise immunity, and the Gaussian spike-based architecture enabling

energy-efficient activation.
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Parameter
HICANN’10 SpiNNaker’13 ROLLS’15 TrueNorth’15 DYNAPs’17 Loihi’18 ODIN’19

This work
[94] [21] [22] [19] [46] [20] [95]

Approach
Mixed-signal Digital Mixed-signal Digital Mixed-signal Digital Digital Mixed-signal

(above-threshold) (subthreshold) (subthreshold) (Sub/above-threshold)

Technology 0.18 µm 0.13 µm 0.18 µm 28 nm 0.18 µm 14 nm 28 nm 22 nm
FinFET FDSOI FDSOI

Time constant Accelerated Biological to Biological Biological Biological N/A Biological to Biological to
accelerated accelerated accelerated

Number of 10.5 267 5 2.6k 34 2.5k 3k 5.6k
neurons/mm2

Synapses/mm2 2.3k N/A 2.5k 674k 2.1k 282k to 2.5M 741k 560k

Synaptic 4-bits Off-chip Capacitor 1-bit SRAM 12-bits 1- to 9-bit 3+1 bits CTT
weight storage SRAM CAM SRAM SRAM twin-cell

Supply voltage 1.8 V 1.2 V 1.8 V 0.7-1.05 V 1.3-1.8 V 0.5-1.2 V 0.55-1 V 0.8 V

Energy per
N/A >26.6 nJ >77 fJ

26 pJ
N/A

>23.6 pJ
12.7 pJ 8 pJsynaptic (0.775 V) (0.75 V)

operation

Table 3.1: Comparison of the proposed architecture to other approaches. Literature data
compiled from [2].
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Chapter 4

Conclusions

In this thesis, we have explored the concept of Charge Trapping Transistor (CTT) as an

analog memory and in neuromorphic systems. CTT has demonstrated tremendous potential

in addressing the challenges of memory storage and retrieval in advanced neuromorphic

computing architectures.

CTTs exhibit good characteristics, such as superior energy efficiency and scaleable, and

since it is the usual CMOS devices used in every circuit, it is cheaper than other memories.

However, We have established that programming CTTs can be a problem, especially when

the number of devices goes up the programming time of the device can be a huge problem.

Therefore, this thesis focuses on the programming challenges of CTTs and it presents a

comprehensive study of the behavioural modeling of CTTs within the programming voltage

range. A detailed exploration of CTT behavior under various programming voltages provides



4. Conclusions 50

valuable insights into its characteristics and operation.

Experiments were performed on multiple devices provided by Blumind [77], collecting

results using an FPGA board and using the average numbers to report results trying to

better understand the problems of CTTs when it comes to programming.

Based on the derived behavioural model, a Verilog-A model is developed for CTT using

the Cadence Virtuoso tool [91]. This Verilog-A model is a practical and versatile

representation of CTT behavior, enabling circuit designers to incorporate CTTs into their

designs seamlessly.

Moreover, this research covered a novel CTT-based neuromorphic architecture with

versatile applications, including brain emulation and various machine learning tasks. The

architecture embraces a compute-in-memory approach, enabling a low-power, low-area, and

scalable design. One of the notable advantages of CTTs is their standard CMOS transistor

nature, eliminating the need for additional fabrication steps, thus streamlining the

integration process. Communication within the architecture is efficiently achieved through

Gaussian spikes (similar to the human brain), which are exchanged among neurons to

perform computations. The system’s circuit design, simulations, and layout demonstrate

its anticipated functionality and robustness.

As a binary classifier, the proposed architecture is validated with a single neuron,

showcasing exceptional accuracy (99.2%), recall (99.5%), and precision (98.6%). While this

validation serves as a proof-of-concept, previous research has also shown impressive results
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on similar tasks. The neuron will undergo further testing on more complex applications

and under different process, voltage, and temperature (PVT) variations.

In conclusion, CTTs hold remarkable promise for advancing analog memory technology.

Their potential to store and manipulate analog signals opens up new horizons for

applications in neuromorphic computing, edge AI, and beyond. However, several critical

challenges remain to be addressed. The programming time, crucial for real-time processing,

requires optimization without compromising reliability. Moreover, ensuring a consistent

programming window after multiple erase and program cycles is essential for maintaining

accurate data storage. Additionally, managing erasing issues during high-voltage

programming is vital to prevent unintended data loss.
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