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Abstract 

Information on the variability of precipitation process is 

essential for the planning, design and management of various water 

resources systems. Furthermore, recent assessment reports on 

climate change have indicated a worldwide increase in the frequency 

of extreme storm events for the late 20th century because of global 

warming. Consequently, research on developing innovative 

approaches for limiting and adapting climate change impacts on 

water infrastructures is highly critical due to the substantial 

investments involved. Global Climate Models (GCMs) have been 

commonly used in various studies for assessing these potential 

impacts. However, outputs from these GCMs (generally greater than 

200 km) are considered too coarse and hence are not suitable for 

climate change impact studies at a given site or over a catchment 

area. As a result, several downscaling techniques have been 

proposed to downscale these GCM outputs to the precipitation series 

at a given location of interest. Nevertheless, there is still no 

general agreement about which downscaling method is the best 

approach for describing accurately the observed precipitation 

characteristics at a given site in the climate change context, 

depending mainly on the study objectives and the climatology of 

the study area. The present study is therefore carried out in order 

to develop appropriate methods for improving the accuracy of 

precipitation estimation at a local site in the context of a 

changing climate. This study therefore proposes a new statistical 

model, herein referred to as SDGAM, using the Generalized Additive 

Models (GAM) to address the shortcomings of existing downscaling 

methods.  The feasibility and accuracy of the proposed new approach 

were evaluated using the observed daily precipitation records 

available at two rain-gauge stations located in Quebec Province, 

and the National Center for Environmental Prediction (NCEP) re-
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analysis data that are interpolated for two GCMs (Canadian CanESM2 

and UK HadCM3). Results of this numerical application have 

indicated that the proposed SDGAM model was able to describe well 

many features of the daily precipitation process, including its 

amounts, occurrence frequency, intensity, and extremes. In 

addition, it has been demonstrated that the suggested SDGAM model 

could provide more accurate results than the popular Statistical 

Downscaling Model (SDSM) in the modeling of the daily precipitation 

process based on both numerical and graphical performance criteria.  

Finally, the proposed SDGAM can generate daily precipitation 

series for future periods under different climate change scenarios: 

RCP2.6, RCP4.5 and RCP8.5 for CanESM2, as well as A2 and B2 for 

HadCM3. These generated precipitation series are useful for 

various climate change impact studies in practice. 
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Résumé 

Information sur la variabilité de précipitation est 

essentielle pour la planification, la conception et la gestion de 

divers systèmes de ressources hydriques. De plus, les rapports 

récents sur i’évaluation des impacts du changement climatique ont 

indiqué l’augmentation de la fréquence des événements d’orage 

extrêmes due au réchauffement global pour le tard du 20ième siècle. 

Par conséquent, les recherches sur le développement des approches 

innovatrices pour limiter et s’adapter aux impacts du changement 

climatique pour les structures hydrauliques sont hautement 

importantes à cause des investissements considérables concernés. 

En particulier, les modèles du climat global (MCG) avaient été 

fréquemment utilisés dans plusieurs d’études pour évaluer ces 

impacts potentiels. Toutefois, ces modèles fournissent des 

résultats aux très grandes résolutions (généralement plus grandes 

que 200 km) et alors ne sont pas appropriés pour les études 

d’impacts en un point ou à l’échelle d’un bassin versant.  

Plusieurs techniques de mise en échelle ont été alors proposées 

pour relier les sorties de ces modèles globaux aux précipitations 

en un point choisi. Mais il n’y a pas jusqu’à date un consensus 

sur le choix de la meilleure méthode qui est capable de représenter 

correctement les caractéristiques de précipitation en un point 

dans un contexte du changement climatique, dépendant des buts 

spécifiques des études et de la climatologie particulière de la 

région étudiée. La présente étude a alors pour objet d’élaborer 

des méthodes appropriées pour améliorer la précision d’estimation 

de précipitation en un point donné dans un contexte de changement 

climatique. Cette étude propose donc un nouveau modèle statistique, 

ci-après appelé SDGAM, en utilisant la méthode de modélisation 

additive généralisée (Generalized Additive Modeling, GAM) pour 

améliorer les faiblesses des méthodes de mise en échelle existantes. 
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On avait évalué la faisabilité et la précision de ce nouveau modèle 

en utilisant les données observées des séries des précipitations 

journalières disponibles en deux stations météorologiques au 

Québec et les données de réanalyse du National Center for 

Environmental Prediction (NCEP) qui sont interpolées pour deux MCG 

(CanESM2 du Canada et HadCM3 de UK). Les résultats de cette 

application numérique ont indiqué que le modèle SDGAM proposé sont 

capable de représenter correctement plusieurs propriétés 

statistiques et physiques du processus de précipitation 

journalière, comprenant la fréquence d’apparition, d’intensité et 

d’extrêmes. De plus, on avait démontré que le modèle SDGAM proposé 

peut fournir des résultats plus précis que les résultats du modèle 

populaire Statistical Downscaling Model (SDSM) en se basant sur 

divers critères numériques et graphiques de performance. 

Finalement, on avait effectué les projections des précipitations 

journalières pour les périodes dans le futur en utilisant le modèle 

SDGAM pour divers scénarios de changement climatique : RCP2.6, 

RCP4.5 et RCP8.5 pour CanESM2, et également A2 and B2 pour HadCM3. 

Ces projections seront utiles pour les études d’impacts en pratique. 
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1 Introduction 

1.1 Statement of Problems  

Investments in water infrastructure become increasingly 

crucial across various sectors. Such investments ensure the 

security and sustainability of harmonious coexistence between 

humans and the natural world, providing a foundation for future 

development and environmental protection. In Canada, multiple 

water infrastructure projects showcase the benefits of such 

investments, including the Chaudière-Appalaches Water 

Infrastructure Projects in Quebec (Government of Canada, 2020), 

the Site C Dam in British Columbia (BC Hydro, 2023), and the Lake 

Manitoba and Lake St. Martin Outlet Channels Project in Manitoba 

(Government of Manitoba, 2024). These infrastructures reduce the 

vulnerability of humans and the natural environment, but at the 

same time could make them more vulnerable to climate extremes, due 

to the lack of consideration of what might occur when the design 

is exceeded (Nguyen, 2022). Additionally, scientists suggest that 

there has been a global increase in the frequency of extreme 

weather events since the late 20th century. This trend, attributed 

to global warming, is expected to continue through the 21st century 

(Legg, 2021). Thus, it becomes imperative to integrate climate 

change into the design, planning, and management of water 

infrastructure projects to ensure that these systems are reliable 

enough to handle future challenges. 

Recently, climate change has been recognized as having a 

profound impact on the hydrological cycle at different temporal 

and spatial scales (Nguyen and Giorgi, 2022). Precipitation is a 

vital component of the hydrologic cycle, serving as the primary 

mechanism through which water is transferred from the atmosphere 
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back to the Earth’s surface. Reliable precipitation projection 

enables effective and robust planning, operation, and risk 

management for water infrastructure projects. Nowadays, Global 

Climate Models (GCMs) and Regional Climate Models (RCMs) can 

capture the main climate patterns at either global scale or 

regional scale. Furthermore, by simulating climate responses under 

various greenhouse gas emissions and policy scenarios, these 

climate models can predict potential climate trends and 

corresponding impacts. However, GCMs and RCMs typically operate at 

coarse spatial resolutions (larger than 200 km for GCMs and 20 to 

50 km for RCMs) that limit their direct application in impact 

studies at a local scale. Hence, Empirical/Statistical downscaling 

(ESD) methods have been widely used for linking the large-scale 

predictors given by GCMs or RCMs to the observed precipitation 

series at a local site (Nguyen and Giorgi, 2022).  

Among various Empirical/Statistical Downscaling methods, the 

Statistical Downscaling Model (SDSM) stands out as a widely adopted 

tool. SDSM has proven to be relatively effective across diverse 

geographical regions and climate types. This popularity is 

evidenced by its extensive application in numerous scientific 

studies (Wilby & Dawson, 2013). SDSM applies multiple linear 

regression techniques. However, multiple linear regression assumes 

a linear relationship between predictands and predictors, which 

may not adequately reflect the nonlinear relationships between 

observed precipitation and climate model outputs. This limitation 

necessitates the development of improved downscaling approaches 

that can capture the potential nonlinear relationships between 

climate model outputs and local precipitation.  



- 3 - 
 

1.2 Objectives of the Research 

In view of the above-mentioned issues, this study develops a 

new statistical downscaling model, herein referred to as SDGAM, 

which relies on the Generalized Additive Models (GAM). This GAM 

approach allows for the modeling of the interactions between the 

predictors and the predictand through smooth functions, thus 

capturing the nonlinear relationships between these variables. In 

addition, GAM supports link functions, which can handle binary or 

other types of predictands, thereby facilitating a broader 

application range. Therefore, the proposed SDGAM in this study 

could provide a more accurate and more flexible approach to 

describing the relationships between large-scale climate model 

outputs and local-scale precipitation, thereby enhancing the 

reliability of precipitation projections in the future. More 

specifically, this study aims at the following objectives: 

i. To propose a suitable method for selecting the most 

significant predictors for statistical downscaling models. 

ii. To develop a new statistical downscaling model based on 

GAM that can capture the nonlinear relationship between 

large-scale predictors and local-scale precipitation. 

iii. To propose a systematic evaluation procedure to assess the 

performance of various statistical downscaling methods. 

iv. To generate reliable future precipitation series under 

different climate scenarios for high-quality climate 

change impact assessment studies in practice. 

1.3 Organization of the Thesis  

The current thesis is organized into five chapters. Chapter 

1 provides the statement of problems and the main objectives of 

this research. Chapter 2 provides a literature review of previous 

works related to the downscaling methods. Chapter 3 introduces the 



- 4 - 
 

proposed SDGAM, also providing a detailed explanation of the 

mathematical principles behind GAM and an overview of the research 

data. Chapter 4 presents a comparative analysis between SDGAM and 

SDSM, as well as the precipitation projections under various 

climate scenarios. Finally, Chapter 5 presents the main 

conclusions of this research and the recommendations for further 

studies.  
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2 Literature Review 

2.1 Overview of Downscaling Methods 

GCMs have been extensively used to understand our planet's 

climate system and support policy decisions (Flato et al., 2014). 

In recent years, the reliability of these models has been 

significantly improved compared with those from the early 1990s 

(Nguyen, 2022). Recent GCMs can reasonably well describe the 

climate system at continental and hemispheric spatial scales (Legg, 

2021). Despite significant progress, these models are still unable 

to provide reliable results for regional climate impact studies. 

The reasons for this limitation include: 

1. Coarse Resolution: GCMs typically have a coarse spatial 

resolution, often around 100 to 300 kilometers. This level of 

resolution is insufficient for regional studies as it fails 

to capture the finer details and variability of local weather 

and climate processes. (Maraun et al., 2010). 

2. Original Purpose: GCMs were not originally developed for 

climate change impact studies; they were initially developed 

to understand the climate system. Therefore, they are not 

well-suited for simulating regional hydrological variables at 

the catchment scale and specific locations (Maraun et al., 

2010). 

3. Inconsistency of Outputs: The outputs from different GCMs are 

inconsistent at the same regional scale, which complicates 

their utility for regional analyses (Arnbjerg-Nielsen et al., 

2013). 

To address these issues, the 'downscaling' method has emerged, 

which refines the GCMs’ output to provide detailed and locally 

relevant climate predictions at a finer spatial resolution. 
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Generally, downscaling methods can be grouped into three 

categories: 

1. Dynamical Downscaling Method (DD): This method involves the 

explicit solving of the physical dynamics of regional climate 

system (Mearns et al., 2003). 

2. Empirical/Statistical Downscaling Method (ESD): This method 

establishes empirical/statistical relationships between 

coarse-scale predictors (e.g., GCM outputs) and local-scale 

predictands (e.g., precipitation) (Wilby et al., 2004).  

3. Machine Learning Based Downscaling Method: This method keeps 

pace with the rapid advancements in Machine Learning (ML), 

and are increasingly becoming a new category of downscaling 

approaches (Vandal et al., 2019). 

2.2 Types of Downscaling Methods 

• Dynamical Downscaling (DD) 

Dynamical Downscaling (DD) is a technique used to derive fine-

scale climate information from coarser data. Generally, three 

different DD approaches have been used for climate change impact 

studies (Mearns et al., 2003):  

1. Operating a regional-scale limited-area model using coarse 

GCM data as the boundary conditions. 

2. Conducting global-scale experiments with high-resolution GCMs 

using coarse GCM data as initial conditions. 

3. Using a variable resolution global model with the highest 

resolution over the area of interest.  

The most common scheme of DD is to run a regional-scale limited-

area model with the coarse GCM outputs as boundary conditions 

(Artlert & Chaleeraktrakoon, 2013). This method is typically 

referred to as Regional Climate Models (RCMs). 
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RCMs can capture resolutions ranging from 20-50 km, making 

their outputs ideally suited for integration with hydrologic 

models to assess the effects of climate change on hydrologic 

regimes. Additionally, RCMs can be used to assess the impacts of 

regional external forcings, such as changes in terrestrial 

ecosystems or atmospheric chemistry (Nguyen & Giorgi, 2022). While 

RCMs offer numerous advantages, they also come with several 

acknowledged limitations (Mearns et al., 2003). These limitations 

can be categorized as follows: 

1. One primary limitation is the substantial demand for computing 

resources associated with RCMs, which restricts both the 

number of experiments that can be conducted and the duration 

of climate simulations. 

2. The climate ensembles generated by RCMs are sensitive to the 

choice of boundary conditions. 

3. For some hydrological application studies, it is necessary to 

further downscale the output from RCMs to even smaller scales. 

• Empirical/Statistical Downscaling (ESD) 

Empirical/Statistical Downscaling (ESD) methods are based on 

statistical relationships between large-scale climate predictors 

such as vorticity and humidity, along with local predictands such 

as temperature and precipitation (Pharasi, 2006). ESD methods can 

be classified into three categories: weather typing approaches 

(Bárdossy, 1997; Goodess & Palutikof, 1998); stochastic weather 

generators (Richardson & Wright, 1984); and regression methods 

(Kilsby et al., 1998;  Wilks & Wilby, 1999; Harpham & Wilby, 2005; 

Hessami et al., 2008; Tareghian & Rasmussen, 2013). In general, 

three common assumptions are required for ESD methods (Nguyen & 

Giorgi, 2022):  
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1. The surface local predictands are a function of synoptic 

forcing. 

2. The GCM used for deriving downscaled relationships is valid 

at the considered scale. 

3. The derived relationship remains valid under climate change.  

Weather typing methods involve linking the local surface 

variables with a subjectively defined weather pattern 

classification (Pharasi, 2006). Predictands are determined based 

on the corresponding conditional probability distributions of its 

daily weather pattern classification. However, this method is 

often criticized for its subjective nature to define the 

classification. Additionally, the changes in predictands derived 

from weather patterns often do not align with the changes predicted 

by the host GCM. Nevertheless, this method still retains its appeal 

because it provides a tangible understanding of the impact of 

complex climate systems on local weather patterns.  

Rather than depending on predetermined weather types, 

stochastic weather generators simulate all predictands based on 

stochastic models, incorporating random variability to reflect 

natural fluctuations in weather patterns. Stochastic weather 

generators were pioneered by the introduction of the first-order 

Markov Chain renewal process (Gabriel & Neumann, 1962). Jones et 

al. (1993) extended the techniques by employing multiple-order 

Markov Chain renewal processes allowing for the simulation with 

memory characteristics. The most popularly used stochastic weather 

generators are WGEN (Richardson & Wright, 1984) and LARS-WG 

(Semenov & Barrow, 1997).  WGEN models precipitation occurrence 

using a two-state, first-order Markov chain. On wet days, 

precipitation amounts are simulated with a gamma distribution. 

Meanwhile, temperature and radiation components are simulated 

using first-order autoregression, which is conditioned on 
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precipitation. LARS-WG is a stochastic weather generator widely 

used in agriculture. It employs a series of statistical 

distributions to simulate weather events. Stochastic weather 

generators can accurately reproduce many observed statistics, such 

as the mean, median and interquartile range. However, a significant 

challenge faced by stochastic weather generators is establishing 

the linkage between the parameters of these stochastic models and 

large-scale climate variables (e.g., GCM outputs). 

Regression methods aim to establish regression relationships 

between large-scale predictors (e.g., GCM outputs) and local-scale 

predictands (e.g., precipitation and temperature).  Examples of 

these methods includes basic linear regression (Kilsby et al., 

1998; Wilby et al., 2002), polynomial regression (Conway et al., 

1996), canonical correlation analysis (Karl et al., 1990), 

principal component regression (Benestad et al., 2015), and 

quantile regression (Tareghian & Rasmussen, 2013). More 

sophisticated regression downscaling methods, such as expanded 

downscaling (Bürger, 1996) and multifractal approaches (Xu et al., 

2015), have also been used for modeling precipitation. Regression 

methods are computationally undemanding and capable of generating 

climate sets for conducting risk and uncertainty analysis, which 

highlights their overall effectiveness in climate research. 

Moreover, ESD methods directly use observational data from local 

weather stations, thereby ensuring that predictions of future 

climate are consistent with local station data to some extent. 

However, a notable limitation is the stationary assumption of the 

regression parameters, suggesting that the statistical 

relationships developed for the current climate are presumed to 

hold for the future climate as well (Yeo, 2014). Section 2.2 will 

discuss in more detail specific issues related to regression 

methods.   
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• Machine Learning Approaches 

As machine learning (ML) becomes increasingly popular, 

downscaling techniques based on ML, such as Artificial Neural 

Networks (ANN) and Support Vector Machines (SVM), are also gaining 

traction. However, up to now, it has been found that the direct 

application of these state-of-the-art ML methods to downscaling 

has not provided a significant improvement over traditional 

regression methods (Vandal et al., 2019).  These machine learning 

models are much more like a black box. Even with good calibration 

results, it is difficult to provide physical explanations and 

ensure applicability to other situations. Despite these challenges, 

machine learning methods have significant potential in effectively 

handling the complex and non-linear relationships of climate data 

and in the integration of various types of predictors (Serifi et 

al., 2021). 

All downscaling approaches carry some underlying assumptions 

(Wilby et al., 2004). These assumptions highlight the need for 

careful selection of downscaling methods tailored to specific 

climatic conditions and research objectives. In conclusion, there 

is no general agreement on which method is most suitable approach 

for describing accurately the observed precipitation 

characteristic for a given study site, depending mainly on specific 

research objectives and specific climatology of the study area 

(Nguyen & Nguyen, 2008).  

2.3 Regression-Based Downscaling Methods 

After reviewing various downscaling methods, our focus will 

now shift to regression-based downscaling methods. These methods 

are widely recommended due to their practicality and effectiveness 

in climate assessment applications. For instance, the Statistical 

Downscaling Model (SDSM) (Wilby et al., 2002), as a regression 
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downscaling method, has been considered one of the most popular, 

as recommended by the Intergovernmental Panel on Climate Change 

(IPCC) (Nguyen, 2023). Next, we will explore the mechanisms, 

applications, and challenges of regression downscaling methods in 

the face of climate change.  

2.3.1 Climate Predictors for Precipitation Downscaling 

The relationship between precipitation and climate predictors 

is not always stationary. Nevertheless, the predictors selected as 

explanatory variables must significantly explain one or more 

features of the precipitation process, both from statistical and 

physical perspectives. The strongest predictor for the 

precipitation occurrence is the total shear vorticity (Z), which 

is highly correlated on a monthly or seasonal basis across 

different regions’ sites (Gachon, 2005). Mean sea-level pressure 

and the components of the geostrophic wind flow (zonal and 

meridional) also play a crucial role in precipitation occurrence 

(Wilby, 1998). Precipitation amounts are more dependent on 

specific humidity at various levels besides the large-scale 

predictors already discussed. Low-frequency predictors, such as 

the North Atlantic Oscillation Index (NAO) and sea surface 

temperatures (SST), also assist researchers in better 

understanding long trends and periodicities in precipitation due 

to their inherent inter-decadal variability (Wilby, 1998; Conway 

et al., 1996). In terms of the selection of predictors, the 

Statistical Downscaling Model (SDSM) (Wilby & Dawson, 2004) uses 

partial correlation coefficients to choose predictors. Hessami 

(Hessami et al., 2008) implemented two methods based on backward 

stepwise regression and partial correlation coefficients in their 

automated statistical downscaling model (ASD) to select the 

predictors. 
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Large-scale atmospheric predictors inherently exhibit 

redundancy due to their physical meanings, and this redundancy 

cannot be resolved even through stepwise regression. This leads to 

multicollinearity and may cause researchers to eliminate certain 

explanatory variables which can be more successful in capturing 

the long-term climate (Wilby et al., 2004). Rotated principal 

components analysis (Cavazos & Hewitson, 2002; Choux, 2005; 

Benestad et al., 2015), priori correlation analysis (Wilby & Wigley, 

2000) and ridge regression (Hessami et al., 2008) are explorations 

to solve these problems. 

2.3.2 Key Characteristics, Advantages and Challenges  

Autoregressive options are sometimes crucial for regression-

based downscaling, as the precipitation occurrence and amounts 

exhibit temporal and spatial dependences. Temporally, the 

likelihood of rain on the following day not only depends on the 

large-scale atmospheric predictors but also on the weather 

conditions of the previous day. This dependency, informed by 

observational data and the physical mechanisms of precipitation, 

suggests that the probabilities of consecutive wet days (PII) or 

a dry day following a wet day (POI) offer a robust method for 

generating series of dry and wet days. Regarding precipitation 

amount, during wet periods, it is sometimes necessary to adjust 

the relationship between precipitation amounts and large-scale 

predictors on adjacent dates by incorporating lags of -1 or +1 

(Wilby & Dawson, 2004). Spatially, the dependence among different 

weather stations is often overlooked, hence a multisite 

downscaling procedure is required to capture this spatial 

dependence (Khalili and Nguyen, 2017). 

One of the well-known weaknesses of regression method is their 

tendency to underestimate the variance of daily precipitation.  
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Some previous studies have suggested inflating the variance of 

precipitation based on the predictors’ variance itself (Karl et 

al., 1990; Huth, 1999; Gachon, 2005). Bürger (1996) introduced a 

canonical correspondence method termed “expanded downscaling” 

specifically designed to increase the variance. Von Storch (1999) 

introduced a ‘randomized downscaling’ approach to ensure the 

variance.  The use of a ‘Variance Inflation Factor’ (VIF) to adjust 

the variance empirically has also been suggested by other studies 

(Wilby & Dawson, 2004; Hessami et al., 2008; Yeo et al., 2021).  

Furthermore, the regression downscaling method for 

precipitation requires the prior determination of precipitation 

occurrence before the downscaling of precipitation amounts  (Wilby 

et al., 2002). This approach has been included in the Statistical 

Downscaling Model (SDSM).  The SDSM has successfully described the 

linkages between observational data with outputs from different 

GCMs. It is user-friendly, computation-economical, relatively 

reliable, and for these reasons, SDSM has become one of the most 

popular downscaling models. SDSM also exhibits global 

applicability: it is used extensively across North America, Europe, 

Asia and Africa. The model has been particularly prevalent in 

research in Canada, China, and the UK, with significant studies 

also stemming from areas that are relatively under-represented in 

downscaling activities, such as the South America and Australasia 

(Wilby & Dawson, 2013). Despite its widespread use and numerous 

advantages, SDSM is not without its limitations. Numerous studies 

have made further improvements based on the SDSM. Hessami (2008) 

applied ridge regression in the ASD model to address the issue of 

multicollinearity. Yeo et al. (2021) demonstrate through 

mathematical derivation that empirically increasing the variance 

of precipitation also raises the monthly mean precipitation. 

Therefore, a correction coefficient is added to correct the monthly 
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mean precipitation in the SDRain model. Furthermore, Yeo et al. 

(2021) and Khalili (Khalili et al., 2013) employed logistic 

regression to model the precipitation occurrence process, thus 

overcoming the issues by linear regression with binary variables. 

Nevertheless, these models still fail to capture the non-linear 

relationships between precipitation and large-scale climate 

predictors.  Wilby et al. (1998) and George et al. (2016) attempted 

to use polynomial regression to describe nonlinear relationships, 

but higher-order polynomial regression models are susceptible to 

overfitting. This means that their polynomial regression models 

may perform well during the calibration period, but it might not 

perform as well beyond the calibration period. Additionally, a 

global polynomial may not effectively capture local variations or 

patterns present in the data due to its overfitting characteristic. 

Given these limitations, this thesis aims to propose a more 

effective and more robust downscaling method (SDGAM) based on the 

Generalized Additive Models (GAM).  

GAM has been successfully employed in various water resources 

management studies. Villarini and Serinaldi (2012) used GAM to 

forecast seasonal precipitation in Romania. Jones et al. (2013) 

assessed the change of extreme daily precipitation in Northern 

Island using GAM. Laanaya et al. (2017) demonstrated that GAM 

outperforms logistic regression, residuals regression, and linear 

regression in modeling water temperature in the Sainte-Marguerite 

River catchment. These examples illustrate that GAM possesses 

exceptional capabilities in handling complex and nonlinear 

hydrological data, providing a strong justification for selecting 

GAM as the core of the statistical downscaling model proposed in 

this study. 
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3 Methodology 

3.1 Constructing and Interpreting Generalized 

Additive Models (GAM) 

3.1.1 From Linear Regression to GAM: an Evolution of 

Statistical Modeling Techniques 

Traditionally, linear regression is used to model the linear 

relationship between a predictand (dependent variable) and one or 

more predictors (independent variable) as follows: 

 
𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑚

𝑗=1
+ 𝜀 

(3-1)               

   

where Y represents the predictand, 𝑋𝑗 represents the predictors,  

𝛽0 is the intercept of the regression line, 𝛽𝑗 is the coefficient 

of the linear regression model, and 𝜀 represents the error term. 

The error term accounts for the difference between the observed 

value and that predicted by the linear model. Multiple linear 

regression models rely on several key assumptions. Violating these 

assumptions can significantly compromise the accuracy of the model.  

Below are the key assumptions upon which multiple linear regression 

models are based on: 

1. Linearity: The model assumes a linear relationship between 

the predictand and the combination of predictors. It cannot 

account for any nonlinear relationships. 

2. Independence of Errors: It is assumed each observation's error 

should not be influenced by the errors of other observations. 

3. Normality of Errors and Homoscedasticity: The residuals are 

assumed to follow a normal distribution with a mean of zero. 

This assumption validates that the least squares estimation 
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for linear regression is the Best Linear Unbiased Estimator 

(BLUE) and facilitates the various statistical test. 

Additionally, linear regression assumes the variance of the 

residuals is constant at all levels of the predictors. 

4. No Multicollinearity: The model assumes that there is no high 

linear correlation between any of the predictors. 

These assumptions ensure that linear regression is a simple 

yet accurate model. However, they also restrict its applicability 

in handling complex, real-world data where these assumptions do 

not hold. To address these limitations, Generalized Linear Model 

(GLM) were developed (Nelder & Wedderburn, 1972).  The term 

‘generalized’ refers to the ability of GLM to accommodate different 

types of predictands using various link functions and residual 

distributions. The equation of GLM can be expressed as follows: 

 
𝑔(𝐸(𝑌|𝑋)) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑚

𝑗=1
 

(3-2) 

 

where 𝐸(𝑌|𝑋) is the expected value of the predictand Y given the 

predictors X,  𝑔(∙)  is the link function, 𝛽𝑗  are the model 

parameters, and 𝑋𝑗  represents the predictors. GLM offers 

significant extensions to the assumptions of linear regression, 

providing flexibility to model a broader range of data types. 

1.  While linear regression assumes a linear relationship 

between predictors and the predictand, GLM incorporates link 

functions which connect the linear combination of predictors 

with the mean of predictand given the corresponding predictors. 

For instance, the logit link function is commonly used to 

model the binary predictand. Log link function is typically 

used to model non-negative integer predictand such as counts 

or rates. 
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2. GLM maintains the assumption of independent errors. However, 

for data with potential error correlation, GLM can be extended 

by incorporating autoregressive structures or similar 

correlation models to account for the dependence among 

observations. 

3. Unlike linear regression, which requires normally distributed 

residuals and homoscedasticity, GLM is more flexible. This 

flexibility is primarily achieved by introducing link 

functions and conducting transformations.  Furthermore, GLM 

can also be used in conjunction with Weighted Least Squares 

to handle heteroscedasticity.  

4. Although GLM does not inherently solve multicollinearity, it 

can be combined with techniques such as ridge regression or 

principal component analysis to mitigate the effects of 

multicollinearity. 

While GLM offers improvements over linear regression, it 

still only allows for the linear combination of predictors, which 

restricts its flexibility in describing nonlinear relationships. 

To overcome this limitation, Generalized Additive Models (GAM)  

(Wood, 2017) extends the GLM framework by using smooth functions 

on predictors. This structure not only retains all the advantages 

of GLM but also enhances the ability to handle nonlinear 

relationships. Additionally, unlike GLM, GAM allows for the 

modeling of interactions among predictors. A GAM that uses 

univariate splines function as smooth functions can be expressed 

as follows: 

 
𝑔(𝐸(𝑌|𝑋)) = 𝛽0 + ∑ 𝑓𝑗(𝑋𝑗)

𝑚

𝑗=1
 

(3-3) 

   

where 𝐸(𝑌|𝑋)  is the expected value of the predictand Y given 

predictors X,  𝑔(∙)  is the link function, and 𝑓𝑗(𝑋𝑗)  denotes the 

univariate spline function.  
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3.1.2 Understanding Smooth Function in GAM 

Smooth functions are the core feature of GAM that enable 

flexible descriptions of nonlinear relationships between the 

predictand and predictors. B-spline functions are the most 

representative type of smooth functions. B-splines consist of a 

series of locally defined basis functions and can be expressed as 

the sum of weighted basis functions: 

 
𝑓(𝑥) = ∑ 𝛽𝑘𝑏𝑘(𝑥)

𝐾

𝑘=1
 

(3-4) 

 
 

where 𝑓(𝑥) is a B-spline function, 𝑏𝑘(𝑥) is a basis function, 𝛽𝑘 is 

a coefficient associated with basis functions, K is the number of 

knots.  Basis functions are usually expanded by polynomial 

functions, as well as by sine and cosine functions. For polynomial 

expansions, 𝑥0 = 1 is the constant term, 𝑥1 is the linear term, 𝑥2 

is the quadratic term, 𝑥3 is the cubic term and so forth.  Each 

basis function affects the shape of the curve only within a 

localized range, ensuring the adjustments to local data do not 

impact other parts of the curve. In contrast, traditional 

polynomial fitting is a global fitting tool, meaning that minor 

changes anywhere within the entire data range can affect the entire 

output. Moreover, because B-splines are locally defined, they do 

not require high orders to fit complicated data and are less 

sensitive to noise in the data. B-splines adjust the curve by 

setting the number and placement of knots.  

To prevent overfitting of the model, penalized maximum 

likelihood estimation is used to estimate the coefficient vectors 

𝛽 in the spline functions. Penalized maximum likelihood function 

can be expressed as follows: 

 
𝐿𝑃(𝛽, 𝑓) = 𝐿(𝛽, 𝑓) −

1

2
∑ 𝜆𝑗 ∫[𝑓𝑗

′′(𝑥)]2𝑑𝑥
𝐽

𝑗=1
 (3-5) 
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where 𝐿𝑃(𝛽, 𝑓) is the penalized maximum likelihood function, 𝐿(𝛽, 𝑓) 

is unpenalized likelihood function. 𝜆𝑗 is the smoothing parameter 

to define the trade-off between wiggliness (the degree of bending 

in the smooth functions) and closeness to the data. 𝐽 represents 

the numbers of spline functions in a GAM. ∫[𝑓′′(𝑥)]2𝑑𝑥 is the integral 

of the square of the second derivative of the spline function, 

used to evaluate the wiggliness. The penalty term is often 

represented in matrix form in practical applications: 

 
∫[𝑓′′(𝑥)]2𝑑𝑥 = 𝛽𝑇𝑆𝛽 

(3-6) 

 

where 𝛽 is the coefficient vector, and 𝑆 is the penalty matrix of 

the spline function 𝑓(𝑥). The dimensions of the penalty matrix 𝑆 

depend on the number of basis functions in the spline function. If 

𝑓(𝑥) is represented through 𝐾 basis functions, then 𝑆 is a 𝐾 × 𝐾 

matrix. 

In conclusion, GAMs encompass a flexible class of models that 

allow for the estimation of nonlinear relationships. The R 

programming language provides strong support for implementing GAM 

through various packages. Among these, the ‘mgcv’ (Wood & Wood, 

2015) package is particularly popular. SDGAM has been developed 

based on the 'mgcv' package. 

3.2 Statistical Downscaling of Daily 

Precipitation Process (SDGAM): Data, Modeling, 

and Projection 

3.2.1 Description of the Research Data 

Quebec is located in eastern Canada, situated between 

latitudes 45°N and 62°N, and longitudes 57°W to 79°W. The province 

features diverse terrain: the northern part is predominantly 
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forest and tundra of the Canadian Shield; the central and western 

regions are traversed by the Appalachian Mountains; and the 

southern part consists of Saint Lawrence River Valley. This valley 

serves as a vital corridor connecting the two major cities—Montreal 

and Quebec City—and is not only the agricultural heart of Quebec 

but also a focal point of its economic and cultural activities. 

Extending from southwest to northeast, the Saint Lawrence River 

Valley is characterized by its relatively flat terrain, bordered 

by low mountains and hills. Due to the terrain's guiding effect, 

the valley frequently receives moist air masses from the southwest 

Great Lakes and the eastern Atlantic Ocean, resulting in higher 

precipitation, particularly increased snowfall in winter, compared 

to other regions in the province. 

To evaluate the accuracy and feasibility of the proposed SDGAM 

model, a case study is conducted using observed daily precipitation 

data and the NCEP Reanalysis data. The observed data come from the 

MONTREAL/PIERRE ELLIOTT TRUDEAU INTL A and QUEBEC/JEAN LESAGE INTL 

weather stations, which have been providing complete and reliable 

precipitation daily observations since 1953 (Table 3-1). The NCEP 

Reanalysis data provide a comprehensive and corrected set of 

atmospheric and oceanic observations from around the world (Kalnay 

et al., 1996). In this study, two GCMs from Canada (CanESM2) and 

United Kingdom (HadCM3) are employed. CanESM2, developed by the 

Canadian Centre for Climate Modelling and Analysis, has 

contributed significantly to the IPCC Fifth Assessment Report 

(AR5). HadCM3, on the other hand, has been widely used since 1999 

for climate research, especially in regions like the UK and Canada. 

The integration of NCEP data into the CanESM2 and HadCM3 grids 

results in the creation of tailored datasets, referred to as NCEP-

CanESM2 data and NCEP-HadCM3 data. NCEP-CanESM2 data covers the 

period from 1961 to 2005, with the calibration period spanning 
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from 1961 to 1981, and the validation period from 1982 to 2005. 

NCEP-HadCM3 covers the period from 1961 to 2001, with the 

calibration period also from 1961 to 1981, and the validation 

period from 1982 to 2001. Figure 3-1 displays the location of rain-

gauge stations S1 (Montreal/Pierre Elliot Trudeau International 

Airport) and S2 (Quebec/Jean Lesage International Airport), as 

well as their corresponding GCMs grids in North America.  

 

 

Figure 3-1. Locations of rain-gauge stations and GCMs grids in 

this study 
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Table 3-1. Information on rain-gauge stations in Quebec, Canada 

Code Site Name Latitude Longitude Elevation Staring 

S1 
MONTREAL/PIERRE ELLIOTT 

TRUDEAU INTL A 
45.47° -73.75° 36.00m 1951 

S2 
QUEBEC CITY/JEAN LESAGE 

INTL 
46.81° -71.38° 60.00m 1951 

 

3.2.2 Selection of Large-scale Atmospheric Predictors 

The selection of appropriate predictors in statistical 

downscaling is crucial, as a reasonable selection of predictors 

significantly enhances the model’s sensitivity and adaptability to 

climate characteristics. Table 3-2 presents the 31 large-scale 

predictors from NCEP re-analysis data recommended by SDSM. The 

table categorizes each predictor by its level of measurement 

(surface, 500hPa, 800hPa) and indicates the availability of NCEP-

CanESM2 and NCEP-HadCM3 data on the Government of Canada's website. 

Table 3-2. List of large-scale predictors of NCEP re-analysis 

data in the GCMs grid box 

Large-scale predictors Level of measurement NCEP-CanESM2 
NCEP- 

HadCM3 

Downward Shortwave Radiation surface   unavailable unavailable 

Surface lifted index surface   unavailable unavailable 

Mean sea level pressure surface   available available 

Geostrophic airflow velocity surface 500hPa 800hPa available available 

Zonal velocity component surface 500hPa 800hPa available available 

Meridional velocity component surface 500hPa 800hPa available available 

Vorticity surface 500hPa 800hPa available available 

Wind direction surface 500hPa 800hPa available available 

Divergence surface 500hPa 800hPa available available 

Potential temperature N/A unavailable unavailable 

Precipitable water N/A unavailable unavailable 

Precipitation total surface   available unavailable 

Relative humidity surface 500hPa 800hPa unavailable available 

Specific humidity surface 500hPa 800hPa available surface available 

Air temperature surface   available available 

Geopotential height  500hPa 800hPa available available 
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Backward stepwise regression (McCuen, 2016) and partial 

correlation coefficients (Afifi et al., 2003) are widely used to 

select large-scale predictors. Backward stepwise regression begins 

by including all predictors in the model, then progressively 

eliminates the least significant ones until all the remaining 

predictors are statistically significant. The partial F-test, 

which is used to remove a predictor from a set including q 

predictors is: 

 
𝐹 =

(𝑅𝑞
2 − 𝑅𝑞−1

2 )(𝑛 − 𝑞 − 1)

1 − 𝑅𝑞
2

 (3-7) 

   

where n is the sample size, 𝑅𝑞  and 𝑅𝑞−1  are the correlation 

coefficients of predictands with q and q-1 predictors respectively. 

If F is greater than critical F-value, the predictor is retained 

in the set; otherwise, the predictor is removed.  

Partial correlation measures the correlation between two 

variables while controlling other variables. The partial 

correlation between the predictand (indicated by i) and j-th 

predictor while controlling for the third predictor k, is given 

by: 

 
𝑅𝑖𝑗,𝑘 =

𝑅𝑖𝑗 − 𝑅𝑖𝑘𝑅𝑗𝑘

√(1 − 𝑅𝑖𝑘
2 )(1 − 𝑅𝑗𝑘

2 )

 
 

(3-8) 

 

where 𝑅𝑖𝑗 is the correlation coefficient between the predictand 

(indicated by i) and j-th predictor,  𝑅𝑖𝑘  is the correlation 

coefficient between the predictand (indicated by i) and k-th 

predictor,  𝑅𝑗𝑘 is the correlation coefficient between the j-th 

predictor and k-th predictor. In partial correlation method, if 

the t-value is greater than critical t-value, the predictor is 
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retained in the set; otherwise, it is removed.  The t-value 

associated with partial correlation can be expressed as follows: 

 

𝑡 =
𝑅(√𝑛 − 𝑘 − 1)

√1 − 𝑅2
 (3-9) 

   

where 𝑅 is the partial correlation coefficient, n is the sample 

size, k is the number of predictors. When controlling for more 

than one variable, a recursive algorithm is implemented to 

calculate high-order partial correlation coefficients. 

In this study, scatter plots and spline function plots are 

used to detect nonlinear relationships. Backward stepwise 

regression and partial correlation coefficients are adopted to 

select predictors that exhibit significant relationships with 

predictand. To compare the performance of two statistical 

downscaling models, SDSM and SDGAM used the same predictors. More 

specifically, the large-scale predictors for CanESM2 are Zonal 

velocity component near the surface, Meridional velocity component 

near the surface, Vorticity at 500 hPa, 500 hPa geopotential height, 

Near surface specific humidity, and Precipitation total. The 

predictors for HadCM3 are Meridional velocity component near the 

surface, Vorticity near the surface, Meridional velocity component 

at 500 hPa, Zonal velocity component at 850 hPa, 500 hPa 

geopotential height, and Near surface relative humidity. The 

spline functions giving CanESM2 in S2 are displayed in Figure 3-

2. 
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Figure 3-2. Plots of spline functions of each predictor in SDGAM 

precipitation occurrence process for S2 giving CanESM2 
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Figure 3-3. Plots of spline functions of each predictor in SDGAM 

precipitation amount process for S2 giving CanESM2 
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3.2.3 Modeling of the Daily Precipitation Process - SDGAM 

3.2.3.1 Daily Precipitation Occurrence Process 

Let 𝑂𝑖  denote the random variable that represents the 

occurrence of daily precipitation, where 𝑂𝑖 = 0 indicates a dry day 

and 𝑂𝑖 = 1 indicates a wet day. The probability of a wet day (on 

day 𝑖) is 𝜋𝑖 and the probability of a dry day is 1 − 𝜋𝑖. Given that 

the precipitation occurrence on a certain day follows a Bernoulli 

Distribution, the variance can be expressed as: 𝑉𝑎𝑟(𝑂𝑖) = 𝜋𝑖(1 − 𝜋𝑖). 

Clearly, the variance changes with different 𝜋, which violates the 

homoscedasticity assumption required by multiple linear regression. 

Moreover, the residual in multiple linear regression can be 

expressed as 𝜀𝑖 = 𝑂𝑖 − (𝛼0 + ∑ 𝛼𝑖𝑋𝑖), which has a high risk to violate 

normal residual assumption. Last, 𝜋𝑖 estimated by multiple linear 

models may fall outside the 0 to 1 range.  Given that the 

precipitation occurrence is a binary variable, and the spline 

function plots demonstrate non-linear relationships, the 

precipitation occurrence process in SDGAM can be expressed as 

follows: 

 

𝜋̂𝑖 =
𝑒[𝛼𝑂+∑ 𝑓𝑂𝑗(𝑋𝑖𝑗)𝑛

𝑗=1 ]

1 + 𝑒[𝛼𝑂+∑ 𝑓𝑂𝑗(𝑋𝑖𝑗)𝑛
𝑗=1 ]

 (3-10) 

 

where 𝑓𝑂𝑗  represents the spline function of precipitation 

occurrence process, 𝑋𝑗 is the j-th large-scale predictor, 𝛼𝑂 is the 

intercept, 𝜋̂ is the deterministic part of wet day probability, and 

𝑖 represents the day 𝑖. Alternatively, by logit transformation, (3-

11) can be expressed as:  

 
ln (

𝜋̂𝑖

1 − 𝜋̂𝑖
) = 𝛼𝑂 + ∑ 𝑓𝑂𝑗(𝑋𝑖𝑗)

𝑛

𝑗=1
 (3-11) 
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A uniformly distributed number 𝑟𝑖 (0 ≤ 𝑟𝑖 ≤ 1)  is generated to 

determine whether day 𝑖 is a wet or dry day. For instance, if 𝑟𝑖  ≤

𝜋̂𝑖 , precipitation occurs on the day 𝑖.  

In the RStudio environment (Team, 2021), the ‘mgcv’ package 

is used to calibrate the precipitation occurrence process. 

Calibration is conducted monthly using precipitation records, 

along with NCEP reanalysis data, to estimate 𝜋̂𝑖. The threshold for 

determining a wet day is 0.2 mm. 

3.2.3.2 Daily Precipitation Amounts Process  

Daily precipitation amount is a non-zero and right-skewed 

distributed random variable. Common methods for transforming such 

data to more closely approximate a normal distribution include the 

fourth root transformation, natural log transformation, and Box-

Cox transformation (Box & Cox, 1964). Additionally, the link 

functions in GAM such as ‘Gamma’ and ‘inverse.gaussian’ can be 

employed to handle non-zero and right-skewed data. In this study, 

the fourth root transformation was adopted for precipitation 

amount, as recommended in SDSM manual (Wilby & Dawson, 2004), which 

often yields better results compared to other transformations. The 

precipitation amounts process in SDGAM can be expressed as follows: 

 

𝑅𝑖 = (𝛼 + ∑ 𝑓𝑗(𝑋𝑖𝑗) + 𝜂𝑖

𝑛

𝑗=1
)

4

 (3-12) 

   

where 𝑓𝑗 represents the spline function of precipitation amount 

process, 𝑋𝑗 is the j-th large-scale predictor, 𝛼 is the intercept, 

𝑅𝑖 represents the daily precipitation amounts, 𝜂 represents the 

random term, and 𝑖 denotes the day 𝑖. The fourth power represents 

the fourth root re-transformation. The random term 𝜂 can be defined 

as follows: 
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 𝜂 = 𝑍 ∙ 𝑀𝑆𝐸 (3-13) 

 

where 𝑍 is a normally distributed number with a mean of 0 and a 

standard deviation of 𝑉𝐼𝐹𝑅: 

 𝑍~𝑁(0, 𝑉𝐼𝐹𝑅
2) (3-14) 

 

𝑉𝐼𝐹𝑅 provides a method to manually adjust the standard deviation 

of modeled precipitation amounts to align with that of observed 

precipitation amounts. 𝑉𝐼𝐹𝑅 is set to 1 during model calibration 

and validation. Changing  𝑉𝐼𝐹𝑅 will adjust the standard deviation 

of precipitation amount; however, due to the fourth-root 

retransformation, it will also affect the mean of the series. In 

this case, it is necessary to introduce a coefficient 𝐶𝐴𝐾  to 

compensate for this effect. 

𝑀𝑆𝐸 is the monthly Mean Squared Error, defined as follows: 

 
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘
=

∑(𝑦𝑖 − 𝑦̌𝑖)
2

𝑛 − 𝑘
 (3-15) 

where 𝑦𝑖 is the observed precipitation amount after fourth root 

transformation, 𝑦̌𝑖 is the fitted precipitation amount data in the 

fourth root form, n is the number of observations, and k is the 

number of large-scale predictors.  

In the RStudio environment, the ‘mgcv’ package is used to 

calibrate precipitation amounts. Calibration is conducted monthly, 

using observed precipitation amounts on wet days along with NCEP 

reanalysis data.  

3.2.4 Precipitation Performance Indices 

The performance of SDGAM was evaluated using graphical and 

numerical indices as detailed in Table 3-3. These indices were 

selected to represent the significant characteristics of the 
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precipitation process, including the average and variance of 

precipitation, the frequency of precipitation occurrence, the 

intensity of precipitation amounts, and extreme events. 

Table 3-3. List of Precipitation Indices 

Categories Indices Definition Unit Time scale 

Basic variable Precp_m Average of precipitation mm/day Month 

 Precp_sd Standard deviation of precipitation mm/day Month 

Frequency PRCP1 Proportion of wet days (>0.2mm) / Month 

Extreme AMP Annual daily max precipitation mm Year 

 CDD Max consecutive dry days days Season 

 Prec90p 90th percentile of wet day amount mm/day Season 

Intensity SDII Simple daily intensity index 

(Mean precipitation at wet day) 

mm/day Season 

Annual TAP Total annual precipitation mm Year 

 

The Root Mean Square Error (RMSE) is employed to evaluate the 

performance of the proposed model, and is calculated as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑆𝐼𝑚𝑜𝑑𝑒𝑙 − 𝑆𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2 (3-16) 

   

where n is the sample size, 𝑆𝐼 represents the precipitation indices. 

A lower RMSE indicates a better fit between the model's prediction 

and the observed data, with an RMSE of 0 representing an ideal 

case where the model predictions perfectly match the observations.  

The study uses box plots to show downscaling models’ 

performance. The horizontal line in a box plot represents the 

median, the size of the box represents the interquartile range, 

the length of the whiskers extends to 1.5 times the interquartile 

range, and points beyond the whiskers represent outliers. 
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3.2.5 Future Precipitation Projection  

3.2.5.1 Bias Correction between Two Types of Downscaled 

Precipitation 

For atmospheric large-scale predictors, differences exist 

between GCMs historical data and NCEP reanalysis data. These 

discrepancies can primarily be attributed to the different 

methodologies used to generate the two datasets. GCMs simulate the 

climate system based on physical principles, whereas NCEP 

reanalysis data are produced by assimilating observed data from 

multiple sources into one climate model to provide a coherent and 

consistent climatic record. In the calibration and validation 

phases, SDGAM uses NCEP reanalysis data, which are closer to the 

real atmospheric circulation data. However, for generating future 

precipitation under different scenarios, SDGAM employs data from 

GCMs because GCMs possess forward-looking capabilities, whereas 

reanalysis data are retrospective. Therefore, a bias correction 

between the two types of downscaled precipitation—one from NCEP 

data and the other from GCM data—is necessary.  

The bias correction is first applied to precipitation 

occurrence process. The GCM historical data from the calibration 

period are processed through SDGAM to derive the corresponding 

PRCP1, denoted as 𝑃𝐺𝐶𝑀_ℎ𝑖𝑠. Similarly, the NCEP reanalysis data from 

the same period are processed through SDGAM to derive the 

corresponding PRCP1, denoted as 𝑃𝑁𝐶𝐸𝑃. 𝜋̂𝑖 is the daily probability 

of a wet day (deterministic part) downscaled from GCM historical 

data. The corrected daily precipitation probability (deterministic 

part) can be expressed as: 

 𝜋̂𝑖_𝑐𝑜𝑟𝑟 = 𝜋̂𝑖 − (𝑃𝐺𝐶𝑀ℎ𝑖𝑠
− 𝑃𝑁𝐶𝐸𝑃) (3-17) 
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It is essential to limit the range of 𝜋̂𝑖_𝑐𝑜𝑟𝑟 between 0 and 1. Then, 

𝑟𝑖 is a uniformly distributed random number and if 𝑟𝑖  ≤ 𝜋̂𝑖_𝑐𝑜𝑟𝑟 on a 

given day 𝑖, then precipitation occurs on that day. 

The bias correction is then applied to precipitation amount 

process. Both the GCM historical data and NCEP reanalysis data 

from the calibration period are processed through SDGAM to derive 

their SDII, denoted as 𝑆𝐺𝐶𝑀_ℎ𝑖𝑠  and 𝑆𝑁𝐶𝐸𝑃 , respectively. 𝑅𝑖  is the 

daily precipitation amount downscaled from GCM historical data. 

The corrected daily precipitation amount can be expressed as: 

 
𝑅𝑖_𝑐𝑜𝑟𝑟 = 𝑅𝑖 ∙

𝑆𝑁𝐶𝐸𝑃

𝑆𝐺𝐶𝑀_ℎ𝑖𝑠 
 

(3-18) 

If, during the validation period, the PRCP1 and SDII of the bias-

corrected GCM downscaled precipitation still align with those of 

the NCEP downscaled precipitation, it indicates that the bias 

correction performs well when encountering unseen data. 

3.2.5.2 Future Precipitation Projections under Different Scenarios  

GCMs require specific scenarios as inputs to simulate 

different future climate conditions. These scenarios are based on 

various assumptions, including socio-economic development, 

population growth, energy usage and policy decisions. The primary 

types of scenarios include Emission Scenarios, Representative 

Concentration Pathways (RCPs), and Shared Socioeconomic Pathways 

(SSPs). 

Emission scenarios are employed in HadCM3 to simulate the 

climate system's response to varying concentrations of greenhouse 

gases. The IPCC’s Special Report on Emission Scenarios (SRES) 

includes scenarios such as A1, A2, B1, and B2. The A2 scenario 

portrays a world where countries develop independently with 

ongoing population growth and a focus on regional economies, 

whereas the B2 scenario depicts a world where both population and 
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economic growth are moderate, focusing on sustainable solutions 

(Nakicenovic et al., 2000). The RCPs are a new methodology 

introduced in the IPCC’s Fifth Assessment Report (AR5) and are key 

inputs in CanESM2. RCPs describe four main pathways based on 

radiative forcing levels, including RCP2.6, RCP4.5, RCP6.0, and 

RCP8.5 (Pachauri et al., 2014). These RCP numbers indicate the 

potential radiative forcing values by the year 2100, measured in 

watts per square meter (W/m²).   

The study continues to use equations (3-17) and (3-18) for 

bias correction in future precipitation generation. Differently, 

in this case, 𝜋̂𝑖 represents the daily probability of a wet day 

(deterministic part) downscaled from GCM future data, while 𝑅𝑖 is 

the daily precipitation amount downscaled from GCM future data. 

For CanESM2, precipitation projections under the RCP2.6, RCP4.5 

and RCP8.5 scenarios are generated. For HadCM3, precipitation 

projections under the A2 and B2 scenarios are generated. Each 

precipitation projections under a certain scenario consists of 100 

sets.  

This study also calculated precipitation indices derived from 

the regional climate model CanRCM4 and compare those with indices 

obtained from SDGAM. The parent model of CanRCM4 is CanAM4 (von 

Salzen et al., 2019), which forms the atmospheric component of 

CanESM2 (Arora et al., 2011). CanRCM4 uses a rotated latitude-

longitude grid system as its coordinate system, with two common 

resolutions: 0.22° horizontal grid resolution (approximately 25 

km) and 0.44° horizontal grid resolution (approximately 50 km). 

Precipitation series corresponding to the station grids can be 

directly extracted from CanRCM4. Lastly, the scheme of SDGAM is 

illustrated in Figure 3-3. 
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Figure 3-4. Scheme of SDGAM 
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4 Results 

4.1 Verification and Validation of SDGAM and SDSM 

Results 

4.1.1 Numerical Analysis 

The feasibility and accuracy of the proposed SDGAM are 

assessed by numerical analysis using the different numerical 

performance criteria as described in the previous chapter. This 

numerical analysis was conducted using the 100 sets of daily 

precipitation series generated by the SDGAM. In addition, the 

performance of the SDGAM was also compared to the performance of 

the popular SDSM using the 100 sets of daily precipitation series 

generated by the SDSM. The RMSE values listed in the following 

tables represent the median value of the RMSEs calculated from the 

100 sets of precipitation series for each index. Bold values in 

these tables denote the cases where the RMSE value of SDGAM is 

higher than that of SDSM.  

More specifically, Tables 4-1 to 4-4 present the results for 

monthly mean of precipitation (Precp_m) for both stations S1 and 

S2 and giving CanESM2 and HadCM3. The RMSE values tend to be higher 

during the summer months for both SDGAM and SDSM, indicating more 

challenges in accurately modeling precipitation during these 

months. In addition, for nearly all cases, the SDGAM exhibits 

slightly lower RMSE values than the SDSM during both calibration 

and validation periods. This suggests that the SDGAM can provide 

more accurate estimation of the Precp_m than the SDSM.  

Tables 4-5 to 4-8 show the results for monthly standard 

deviation of precipitation (Precp_sd).  It can be observed that 

there is a trend of higher RMSE values during the summer and early 
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autumn months (June to September).  For Montreal (S1) station when 

giving NCEP-CanESM2 and NCEP-HadCM3, and for Quebec City (S2) 

station when using NCEP-HadCM3, the SDGAM and SDSM perform 

comparably in capturing the variability of precipitation. However, 

for Quebec City (S2) station giving NCEP-CanESM2, the monthly 

standard deviations of precipitation given by SDGAM are noticeably 

closer to the observed values as compared to those from SDSM.  

Tables 4-9 to 4-12 provide the RMSE values for monthly 

proportions of wet days (PRCP1). It was found that with the 

application of logistic transformation and spline functions, SDGAM 

consistently outperforms SDSM in nearly all months for both 

stations. In particular, the results for the validation period 

have clearly indicated the superior performance of SDGAM as 

compared to SDSM. 

Tables 4-13 and 4-14 report the RMSE values for the maximum 

number of consecutive dry days (CDD) for each season.  This index 

is regarded as one of the most difficult physical characteristics 

to be captured in the modeling of the daily precipitation process 

(Yeo, 2014). For Montreal (S1) station giving NCEP-CanESM2 and 

NCEP-HadCM3, SDGAM generally outperforms SDSM across all seasons. 

For Quebec City (S2) station giving NCEP-HadCM3, SDGAM 

consistently shows better performance than SDSM in all seasons 

except for winter. During the calibration period for Quebec City 

(S2) station giving NCEP-CanESM2, the RMSE values obtained with 

SDGAM are consistently lower than those obtained with SDSM across 

all seasons. However, in the validation period, the RMSE values 

derived from SDGAM exceed those from SDSM for all seasons. 

 Tables 4-15 and 4-16 indicates that during the calibration 

period, SDGAM more accurately reflects the actual 90th percentile 

of rain day amount (Prec90p) compared to SDSM. In the validation 



- 37 - 
 

period, however, SDGAM and SDSM show comparable performance across 

both locations. Tables 4-17 and 4-18 show that SDGAM consistently 

yields lower RMSE values during the calibration period for both 

locations, suggesting it is generally more accurate in modeling 

the mean precipitation amounts on wet days. The performance is 

less consistent in the validation period, where specifically for 

Montreal (S1) station, SDGAM yields results that are closer to the 

observed SDII, whereas for Quebec City (S2) station, SDSM produces 

results that more closely match the observed SDII. 

Table 4-19 provides the results of evaluation of annual daily 

maximum precipitation (AMP) for both calibration and validation 

periods. Both SDGAM and SDSM could provide a comparable performance 

in the estimation of the AMP values. Specifically, when giving 

NCEP-CanESM2 data, the AMP derived from SDGAM is closer to the 

observed values, while AMP derived from SDSM using NCEP-HadCM3 

data more closely matches the observed values. Finally, Table 4-

20 shows the results for the estimation of total annual 

precipitation (TAP). In general, SDGAM demonstrates better 

performance for both stations.  

In summary, the proposed SDGAM can accurately describe 

various precipitation features for both calibration and validation 

periods for both Montreal (S1) station and Quebec City (S2) station. 

Across the indices of Precp_m, PRCP1, CDD, Prec90p, SDII, and TAP, 

the precipitation downscaled using SDGAM is closer to the observed 

precipitation than that downscaled using SDSM. For the indices 

Precp_sd and AMP, the performance of both SDGAM and SDSM is 

comparable.  
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Table 4-1 RMSEs of monthly mean of precipitation of Montreal 

(S1) station giving NCEP-CanESM2 

 

Table 4-2 RMSEs of monthly mean of precipitation of Montreal 

(S1) station giving NCEP-HadCM3 
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Table 4-3 RMSEs of monthly mean of precipitation of Quebec City 

(S2) station giving NCEP-CanESM2 

 

Table 4-4 RMSEs of monthly mean of precipitation of Quebec City 

(S2) station giving NCEP-HadCM3 
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Table 4-5 RMSEs of monthly standard deviation of precipitation 

of Montreal (S1) station giving NCEP-CanESM2 

 

Table 4-6 RMSEs of monthly standard deviation of precipitation 

of Montreal (S1) station giving NCEP-HadCM3 
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Table 4-7 RMSEs of monthly standard deviation of precipitation 

of Quebec City (S2) station giving NCEP-CanESM2 

 

Table 4-8 RMSEs of monthly standard deviation of precipitation 

of Quebec City (S2) station giving NCEP-HadCM3 
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Table 4-9 RMSEs of monthly proportion of wet days of Montreal 

(S1) station giving NCEP-CanESM2 

 

Table 4-10 RMSEs of monthly proportion of wet days of Montreal 

(S1) station giving NCEP-HadCM3 

 



- 43 - 
 

Table 4-11 RMSEs of monthly proportion of wet days of Quebec 

City (S2) station giving NCEP-CanESM2 

 

Table 4-12 RMSEs of monthly proportion of wet days of Quebec 

City (S2) station giving NCEP-HadCM3 
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Table 4-13 RMSEs of seasonal maximum consecutive dry days of 

Montreal (S1) station giving NCEP-CanESM2 and NCEP-HadCM3 

 

Table 4-14 RMSEs of seasonal maximum consecutive dry days of 

Quebec City (S2) station giving NCEP-CanESM2 and NCEP-HadCM3 
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Table 4-15 RMSEs of seasonal 90th percentile of rain day amount 

of Montreal (S1) station giving NCEP-CanESM2 and NCEP-HadCM3 

 

Table 4-16 RMSEs of seasonal 90th percentile of rain day amount 

of Quebec City (S2) station giving NCEP-CanESM2 and NCEP-HadCM3 
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Table 4-17 RMSEs of seasonal simple daily intensity of Montreal 

(S1) station giving NCEP-CanESM2 and NCEP-HadCM3 

 

Table 4-18 RMSEs of seasonal simple daily intensity of Quebec 

City (S2) station giving NCEP-CanESM2 and NCEP-HadCM3 
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Table 4-19 RMSEs of annual daily maximum precipitation of 

Montreal (S1) station and Quebec City (S2) station giving NCEP-

CanESM2 and NCEP-HadCM3 

 

Table 4-20 RMSEs of total annual precipitation of Montreal (S1) 

station and Quebec City (S2) station giving NCEP-CanESM2 and 

NCEP-HadCM3 
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4.1.2 Graphical Analysis 

For the purposes of graphical comparison, box plots are used 

to evaluate both the accuracy (how closely the model's estimated 

median value aligns with the observed data) and the dispersion of 

the model's results (indicated by the size of the Inter-Quartile 

Range box). The following box plots are constructed using 100 sets 

of daily precipitation series from SDGAM and 100 sets from SDSM. 

Blue points indicate the index of observed data, and box plots 

indicate model results. Figures 4-1 to 4-4 show the box plots for 

monthly mean of precipitation (Precp_m) for both S1 and S2 stations. 

During the calibration period, the median values obtained through 

SDGAM during calibration period are very close to the observed 

Precp_m, showing a higher level of accuracy as compared to the 

SDSM. During the validation period, the closeness of the median 

values derived from the SDGAM model to the observed Precp_m is 

comparable to that of the SDSM. Regarding the dispersion of models’ 

results, the width of the box plots for SDGAM is also similar to 

that of SDSM. Additionally, it is noteworthy that the precipitation 

series downscaled by both SDGAM and SDSM tend to overestimate the 

monthly mean precipitation for the months July, August, and 

September.  

In Figures 4-5 to 4-8, both SDGAM and SDSM can adequately 

describe the standard deviation of precipitation. However, it is 

evident that compared to SDSM, the median values in the box plots 

from SDGAM are closer to the observed Precp_sd. Figures 4-9 to 4-

12 indicate that during the calibration period, the median of PRCP1 

obtained from SDGAM closely aligns with the observed PRCP1, nearly 

overlapping with it. The median of PRCP1 derived from SDSM is also 

very close to the observed PRCP1. In the validation period, despite 

the closeness of both downscaling PRCP1 to the observed PRCP1, the 



- 49 - 
 

observed values often fall outside the box plots due to the small 

interquartile ranges. 

Figures 4-13 to Figure 4-24 show the box plots for the 

seasonal indices: CDD, and Prec90p, and SDII, respectively. 

Figures 4-13 to 4-16 indicates that both SDGAM and SDSM adequately 

describe the observed precipitation's Consecutive Dry Days (CDD). 

In particular, the CDD values in the spring and summer of southern 

Quebec are slightly higher than in the autumn and winter seasons. 

However, both downscaling models tend to underestimate CDD by 

approximately two days during both the calibration and validation 

periods. Figures 4-17 to 4-20 show that SDGAM slightly outperforms 

SDSM in representing the 90th percentile of rain day amounts. The 

captured 90th percentile precipitation values by both models are 

higher in the summer than in the spring, autumn, and winter. 

Throughout calibration and validation periods, both models tend to 

underestimate Prec90p by approximately 2-3 mm. Figures 4-21 to 4-

24 indicates that SDGAM, compared to SDSM, more accurately 

represents the observed Simple Daily Intensity Index (SDII). 

During the calibration period, the observed SDII all falls within 

the corresponding boxes of SDGAM, whereas the observed SDII often 

appears on the whiskers of the box plots of SDSM. Both downscaling 

models capture the observed pattern where the SDII is higher in 

summer than in spring, followed by autumn, and lowest in winter. 

During the validation period, both SDGAM and SDSM tend to 

overestimate the summer SDII and significantly underestimate the 

winter SDII at Station S1 giving NCEP-HadCM3. 

Figures 4-25 and 4-32 show the box plots for the annual 

indices: AMP and TAP. Figures 4-25 to 4-28 show that both SDGAM 

and SDSM describe well the trends of the annual maximum daily 

precipitation for both Montreal and Quebec City stations, which 

typically ranges from 30mm to 100mm. Moreover, with SDSM, the AMP 
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in certain years significantly exceeds the observed values, 

whereas SDGAM more effectively addresses this issue. Figures 4-29 

to 4-32 indicate that both SDGAM and SDSM accurately capture the 

annual precipitation ranges, with Montreal's typically between 

800mm to 1200mm and Quebec's between 1000mm to 1400mm. Both 

downscaling models also describe adequately the annual variability 

of the precipitation.  

Overall, the precipitation indices obtained from SDGAM can 

describe more accurately the observed precipitation indices as 

compared to those from SDSM. During the calibration period, the 

indices Precp_m, PRCP1, and SDII from SDGAM are very close to the 

observed values. Meanwhile, in the validation period, they are 

only slightly better than those from SDSM.
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Figure 4-1. Box plots for monthly means of precipitation of 

SDGAM and SDSM of Montreal (S1) station giving NCEP-CanESM2 over 

calibration and validation periods 
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Figure 4-2. Box plots for monthly means of precipitation of 

SDGAM and SDSM of Montreal (S1) station giving NCEP-HadCM3 over 

calibration and validation periods 
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Figure 4-3. Box plots for monthly means of precipitation of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-CanESM2 

over calibration and validation periods 
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Figure 4-4. Box plots for monthly means of precipitation of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-HadCM3 

over calibration and validation periods 
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Figure 4-5. Box plots for monthly standard deviation of 

precipitation of SDGAM and SDSM of Montreal (S1) station giving 

NCEP-CanESM2 over calibration and validation periods 
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Figure 4-6. Box plots for monthly standard deviation of 

precipitation of SDGAM and SDSM of Montreal (S1) station giving 

NCEP-HadCM3 over calibration and validation periods 
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Figure 4-7. Box plots for monthly standard deviation of 

precipitation of SDGAM and SDSM of Quebec City (S2) station 

giving NCEP-CanESM2 over calibration and validation periods 
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Figure 4-8. Box plots for monthly standard deviation of 

precipitation of SDGAM and SDSM of Quebec City (S2) station 

giving NCEP-HadCM3 over calibration and validation periods 
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Figure 4-9.  Box plots for monthly proportion of wet days of 

SDGAM and SDSM of Montreal (S1) station giving NCEP-CanESM2 over 

calibration and validation periods 
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Figure 4-10. Box plots for monthly proportion of wet days of 

SDGAM and SDSM of Montreal (S1) station giving NCEP-HadCM3 over 

calibration and validation periods 
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Figure 4-11. Box plots for monthly proportion of wet days of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-CanESM2 

over calibration and validation periods 
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Figure 4-12. Box plots for monthly proportion of wet days of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-HadCM3 

over calibration and validation periods 
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Figure 4-13. Box plots for seasonal maximum consecutive dry days 

of SDGAM and SDSM of Montreal (S1) station giving NCEP-CanESM2 

over calibration and validation periods 

 

 

 

Figure 4-14. Box plots for seasonal maximum consecutive dry days 

of SDGAM and SDSM of Montreal (S1) station giving NCEP-HadCM3 

over calibration and validation periods 
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Figure 4-15. Box plots for seasonal maximum consecutive dry days 

of SDGAM and SDSM of Quebec City (S2) station giving NCEP-

CanESM2 over calibration and validation periods 

 

 

 

Figure 4-16. Box plots for seasonal maximum consecutive dry days 

of SDGAM and SDSM of Quebec City (S2) station giving NCEP-HadCM3 

over calibration and validation periods 
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Figure 4-17. Box plots for seasonal 90th percentile of rain day 

amount of SDGAM and SDSM of Montreal (S1) station giving NCEP-

CanESM2 over calibration and validation periods 

 

 

 

Figure 4-18. Box plots for seasonal 90th percentile of rain day 

amount of SDGAM and SDSM of Montreal (S1) station giving NCEP-

HadCM3 over calibration and validation periods 
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Figure 4-19. Box plots for seasonal 90th percentile of rain day 

amount of SDGAM and SDSM of Quebec City (S2) station giving 

NCEP-CanESM2 over calibration and validation periods 

 

 

 

Figure 4-20. Box plots for seasonal 90th percentile of rain day 

amount of SDGAM and SDSM of Quebec City (S2) station giving 

NCEP-HadCM3 over calibration and validation periods 
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Figure 4-21. Box plots for seasonal mean precipitation at wet 

days of SDGAM and SDSM of Montreal (S1) station giving NCEP-

CanESM2 over calibration and validation periods 

 

 

 

Figure 4-22. Box plots for seasonal mean precipitation at wet 

days of SDGAM and SDSM of Montreal (S1) station giving NCEP-

HadCM3 over calibration and validation periods 
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Figure 4-23. Box plots for seasonal mean precipitation at wet 

days of SDGAM and SDSM of Quebec City (S2) station giving NCEP-

CanESM2 over calibration and validation periods 

 

 

 

Figure 4-24. Box plots for seasonal mean precipitation at wet 

days of SDGAM and SDSM of Quebec City (S2) station giving NCEP-

HadCM3 over calibration and validation periods 
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Figure 4-25. Box plots for annual maximum precipitation of SDGAM 

and SDSM of Montreal (S1) station giving NCEP-CanESM2 over 

calibration and validation periods 
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Figure 4-26. Box plots for annual daily maximum precipitation of 

SDGAM and SDSM of Montreal (S1) station giving NCEP-HadCM3 over 

calibration and validation periods 

 

 

 

 

 

 

 

 

 



- 71 - 
 

 

  

Figure 4-27. Box plots for annual daily maximum precipitation of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-CanESM2 

over calibration and validation periods 
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Figure 4-28. Box plots for annual daily maximum precipitation of 

SDGAM and SDSM of Quebec City (S2) station giving NCEP-HadCM3 

over calibration and validation periods 
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Figure 4-29. Box plots for total annual precipitation of SDGAM 

and SDSM of Montreal (S1) station giving NCEP-CanESM2 over 

calibration and validation periods 
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Figure 4-30. Box plots for total annual precipitation of SDGAM 

and SDSM of Montreal (S1) station giving NCEP-HadCM3 over 

calibration and validation periods 
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Figure 4-31. Box plots for total annual precipitation of SDGAM 

and SDSM of Quebec City (S2) station giving NCEP-CanESM2 over 

calibration and validation periods 
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Figure 4-32. Box plots for total annual precipitation of SDGAM 

and SDSM of Quebec City (S2) station giving NCEP-HadCM3 over 

calibration and validation periods 
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4.2 Precipitation Projections by SDAGM and RCMs 

4.2.1 Historical Precipitation Projections 

The numerical and graphical analyses in the previous sections 

have indicated the feasibility and accuracy of the proposed SDGAM 

in capturing various characteristics of the observed daily 

precipitation data.  The SDGAM also outperformed the SDSM in both 

calibration and validation periods giving CanESM2 and HadCM3. The 

next step is to conduct daily precipitation projections under 

different climate change scenarios. In this section the graphical 

displays are used to show the comparisons among the daily observed 

precipitation data, the downscaled precipitation series from 

historical GCMs by SDGAM (after bias correction), and the 

precipitation from the regional climate model CanRCM4. These 

graphical displays are presented for four representative indices: 

CDD, Prec90p, AMP and TAP. The median, maximum, and minimum, as 

well as the IQR of 100 SDGAM downscaling precipitation series sets, 

are calculated for the displays. The median of 100 different 

downscaled precipitation series smooths out individual series, 

which seems to lead to less variability compared to the observed 

data. 

Figure 4-33 indicates that the observed Consecutive Dry Days 

(CDD) almost fall within the range bounded by the minimum and 

maximum values of CDD obtained from SDGAM. For Quebec City (S2) 

station, the CDD derived from downscaling is slightly less than 

the CDD from the observed daily precipitation data. Both the 

precipitation from CanRCM4 and downscaled from GCM historical data 

through SDGAM struggle to capture the observed CDD events 

approaching 30 days. This indicates that such long CDD events in 

the future would also be difficult for the models to predict. 

Figure 4-34 shows that the observed Prec90p fits well within the 
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range bounded by the minimum and maximum values of Prec90p obtained 

from SDGAM and aligns well with the median Prec90p from SDGAM. 

Figure 4-35 indicates that the observed AMP falls within the range 

bounded by the minimum and maximum values of AMP obtained from 

SDGAM and aligns well with the median AMP from SDGAM. Figure 4-36 

shows that the TAP obtained from SDGAM for Montreal (S1) station 

mostly ranges between 700mm and 1300mm, and for Quebec City (S2) 

station, it mostly ranges between 800mm and 1600mm. This aligns 

well with the observed TAP.  

The historical precipitation projections show that the 

precipitation series obtained from SDGAM are very close to the 

observed data and the precipitation from CanRCM4 in terms of CDD, 

Prec90p, AMP, and TAP. This lays a solid foundation for the future 

precipitation projections under different climate change scenarios.  
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Figure 4-33. Time series plots of CDD from historical projection 

for Montreal (S1) station and Quebec City (S2) station 
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Figure 4-34. Time series plots of Prec90p from historical 

projection for Montreal (S1) station and Quebec City (S2) 

station 
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Figure 4-35. Time series plots of AMP from historical projection 

for Montreal (S1) station and Quebec City (S2) station 
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Figure 4-36. Time series plots of AMP from historical projection 

for Montreal (S1) station and Quebec City (S2) station 
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4.2.2 Precipitation Projections for Future Periods 

In this section, the future precipitation projections are 

carried out under different climate change scenarios given by the 

CanESM2 (RCP2.6, RCP4.5, and RCP8.5) and the HadCM3 (A2 and B2) 

using the SDGAM (after bias correction). These projections are 

also compared with the precipitation from CanRCM4 and the results 

are presented for four representative indices: CDD, Prec90p, AMP 

and TAP.  

Figure 4-37 shows that the CDD for Montreal (S1) station and 

Quebec City (S2) station under different future scenarios is most 

likely to be around 10 days, with no significant overall trend 

until 2070s. However, it is noticed that from 2075 to 2100, 

Montreal's CDD under the RCP 8.5 scenario shows a significant 

increasing trend, potentially exceeding 30 days. Figure 4-38 shows 

that the future Prec90p of Montreal (S1) station is most likely 

around 15mm, and the Prec90p of Quebec City (S2) station is most 

likely around 18mm. The Prec90p obtained under different scenarios 

shows little difference. Additionally, there may be a slight 

increasing trend in Prec90p for both locations towards the end of 

21st century. Figure 4-39 shows that the future AMP obtained from 

CanRCM4 frequently exceeds 100mm. However, the future AMPs 

obtained using SDGAM for Montreal (S1) station and Quebec City (S2) 

station are mostly between 40mm and 80mm. From the perspective of 

the maximum value (purple dash), the AMP can reach 150mm or even 

exceed 200mm. It should be noted that under RCP4.5 and RCP8.5 

scenarios, some AMP values downscaled from CanESM2 exceed 300mm 

and even higher for Quebec City (S2) station after 2030s. This 

could be attributed to more frequent and extreme precipitation 

events due to climate change, or it could be ascribed to 

inaccuracies in the model, warranting further investigation. 

Figure 4-40 shows a slight potential increasing trend in TAP for 
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Montreal (S1) station and Quebec City (S2) station in the 21st 

century. The TAP obtained under different scenarios does not 

exhibit significant differences.  

In conclusion, future precipitation projections through SDGAM 

can reflect the high level of uncertainty in climate simulations. 

In contrast, while projections from RCMs do not address these 

uncertainties, they have the advantage of being based on more 

realistic physical processes. Therefore, the use of both 

statistical and dynamic downscaling approaches is highly 

recommended in engineering practice.  The future precipitation 

projections under different climate change scenarios are valuable 

information for various types of climate change impact and 

adaptation studies such as for studying future droughts, floods, 

water resource allocation in Quebec. 

  



- 85 - 
 

 

Figure 4-37. Time series plots of CDD from future projection for 

Montreal (S1) station and Quebec City (S2) station 
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Figure 4-38. Time series plots of Pre90p from future projection 

for Montreal (S1) station and Quebec City (S2) station 
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Figure 4-39. Time series plots of AMP from future projection for 

Montreal (S1) station and Quebec City (S2) station 
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Figure 4-40. Time series plots of TAP from future projection for 

Montreal (S1) station and Quebec City (S2) station 
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5 Conclusions and Recommendations 

5.1 Conclusions 

The following main conclusions can be drawn from the present 

research: 

1. This study proposed an improved method that integrates the 

partial correlation, backward stepwise regression, scatter 

plots, and spline function plots to select the significant 

large-scale predictors for downscaling of daily precipitation 

process at a given local site. Results of the numerical 

application using the precipitation records for two stations 

S1 and S2 in Quebec have indicated the feasibility of the 

proposed procedure. It has been demonstrated that the selected 

predictors can adequately and sufficiently explain observed 

local precipitation characteristics both statistically and 

physically. 

2. This study developed a new statistical downscaling model 

(SDGAM) to simulate the daily precipitation process at a 

single site in the context of climate change. The proposed 

SDGAM was a combination of two components to describe the 

daily precipitation occurrence process and the daily 

precipitation amount process. The proposed SDGAM was based on 

the Generalized Additive Modeling (GAM) method to capture the 

nonlinear relationships between the large-scale climate 

predictors and the local precipitation. Results of an 

illustrative application using the observed daily 

precipitation records available at two rain-gauge stations 

located in Quebec and the National Center for Environmental 

Prediction (NCEP) re-analysis data that are interpolated for 

two GCMs (Canadian CanESM2 and UK HadCM3) have indicated the 

feasibility and accuracy of the proposed SDGAM.  
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3. A systematic evaluation procedure has been introduced in this 

study to assess the performance of the proposed SDGAM and the 

popular SDSM using various numerical and graphical 

performance criteria. It has been demonstrated that the SDGAM 

model was able to more accurately describe many features of 

the daily precipitation process, including its occurrence 

frequency, intensity, and extremes as compared to the SDSM.  

4. The proposed SDGAM was used to make future precipitation 

projections for two locations in Quebec under different 

climate change scenarios given by two GCMs: Canadian CanESM2 

and UK HadCM3. It was found that the precipitation 

characteristics, especially for the extremes, show some 

changes over the century for both locations. These 

precipitation projections under different climate change 

scenarios are valuable information for various types of 

climate change impact and adaptation studies in practice. 

5.2 Recommendations for Future Studies 

The future studies can be focus on the following aspects: 

1. In this study, stepwise regression and partial correlation 

were used to select predictors. These methods are widely 

applied to identify predictors with significant linear 

relationships with the predictand. However, considering 

that SDGAM can capture nonlinear relationships between the 

predictand and predictors, the optimal selection of 

predictor sets for simulating local precipitation still 

warrants further investigation. 

2. For Montreal (S1) station and Quebec City (S2) station, 

the assessment results have indicated the superior 

performance of SDGAM as compared to SDSM. Future research 

could be conducted to further examine the performance of 
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SDGAM for different regions with diverse climatic 

conditions in Canada and globally. 

3. In this study, the most fundamental form of Generalized 

Additive Models (GAM) was employed. However, GAM is not 

limited to this basic application; it is a comprehensive 

collection of various mathematical tools. Future research 

can further explore the other forms of GAM to describe the 

relationship between local precipitation and large-scale 

atmospheric predictors. 

4. Future research can consider the spatio-temporal 

correlation structure when using SDGAM for downscaling 

precipitations at different sites. 

5. For further research on future precipitation projections, 

the Mann-Kendall test (Mann, 1945) can be used to examine 

trends in various precipitation indices. Additionally, 

future studies should focus on anticipated extreme weather 

events, such as over 30 CDD and more than 200mm AMP, to 

better understand their occurrence and impacts. 
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