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Abstract

Feedstock composition determines the control, output and efficiency of bioreactors; their

characterization is therefore a crucial step in bioreactor operation. However, measurements

of such characteristics may be costly. It may thus be economically challenging for a

bioreactor-based company that is using various feedstock types to regularly conduct

feedstock laboratory analysis. This project explores whether and how machine learning may

aid with feedstock characterization, decrease its cost and make model predictive control more

accessible. Three deep learning architectures were tested: a fully connected

Multi-Layer-Perceptron model, a Convolutional Neural Network and a Recurrent Neural

Network using Gated-Recurrent Units (GRUs). All models were able to achieve a high

coefficient of determination for the feedstock parameters predicted, the mean R-square over

all models and all variables predicted was 0.8961. The GRU model achieved the highest

coefficient of determination on 4 out of 5 predicted feedstock parameters. It was concluded

that deep learning is a promising tool that could assist in easing bioreaction optimisation.

The models were deployed to a web-based graphical user interface to showcase the models

and make the results of this research more accessible to the general and professional public.

All code used to create the deep learning models and the interface were published through an

open-source GitHub repository to serve as a template that may be used for applying this

approach to commercial projects.
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1. Introduction
1.1 Feedstock Parameters

Feedstock composition significantly affects the bioreaction process, its outputs and

the operational energy it requires. In sewage treatment plants, factors such as the readily

biodegradable COD, chemical oxygen demand in the water (rbCOD, “small molecules that

are directly available for biodegradation by heterotrophic microorganisms” (Bolek, n.d.) can

impede bioreactor efficiency. It has been determined that too high rbCOD and high food to

microorganism ratio leads to system bulking and foaming. High rbCOD uptake uptake can

also be responsible for creation of anoxic zone and incomplete nitrification, thus affecting the

reaction performance (Bolek, n.d.). Ammonium nitrogen concentration also influences the

ammonia-oxidizing bacteria community and hence biological nitrogen removal (Sui et al.,

2014). Similarly, in bioreactor for energy generation applications, characteristics such as dry

and nitrogenous content in the feedstock control the process efficiency as well as biogas

quality (Lv et al., 2019). Those parameters often are determined through chemical-physical

analysis. To ensure compliance with international standards as well as strict health and safety

measures, specialized laboratories carry out those tests which can be very expensive (Bolek,

n.d.; Government of Canada, 2017; Proximate and Ultimate Analysis, n.d.). Nonetheless,

feedstock characterization is essential for process modeling and quality control. It serves as

an input in reaction simulation software such as the activated sludge models (ASM), used in

wastewater treatment plants (Henze et al., 2000).
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1.2 Bioponics Case Study

Bioreactors have a wide range of applications and are a common alternative for waste

revalorization. In bioreactors for bioponics applications, organic matter is used as an input to

produce nitrate-rich liquid fertilizer that is suitable for hydroponics production (Khiari et al.,

2019; Xie et al., 2022). Circulus AgTech is an example of a bioreactor based start up. Their

product is an alternative to conventional synthetic fertilizer use which has huge

environmental impacts. Indeed, with intensive agricultural practice, excess amounts of

nutrients are often applied to crops leading to important air and water pollution. It also

significantly contributes to global warming (US EPA, 2021). However, one of the issues that

can arise is the production of potent greenhouse gasses such as nitrous oxide (N2O) from the

bioreaction. To ensure the economic viability of their solution, there also is a need to

optimize nitrate production. To this end, feedstock composition plays a crucial role in

influencing the system state and output. Moreover, in bioponics applications, feedstocks

come from different sources and thus its characteristics vary from one batch to another

(Khiari et al., 2019; Xie et al., 2022). Hence, conducting regular laboratory analysis for

feedstock characterization can be economically straining and other methods for feedstock

characterization should be considered.

1.3 Bioreactor process optimization

There have been several attempts to model the bioreactor process for optimization and

control purposes. Research and development have notably been conducted to assess

nitrification and denitrification processes through kinetics models. Shanahan & Semmens

(2015) developed a model to assess the impact of pH and alkalinity on reaction kinetics in a

membrane aerated bioreactor. It is based on Shanahan & Semmens’ model, (2004). The

simulation focused on nitrification and assumed denitrification was negligible. The controlled

parameters include ammonium, nitrate, dissolved oxygen, hydronium ions, bicarbonate,

dissolved carbon dioxide, dibasic hydrogen phosphate, monobasic hydrogen phosphate, and

biofilm thickness; a single bacterial species was taken into consideration for ammonium to

nitrate conversion. Validation and calibration were done using experimental data; the final

simulation accurately predicted nitrification for a pH ranging from 5.5 to 8.5. Similarly,

Al-Samawi & Shamkhi (n.d.) simulated nitrification in a stirred tank reactor at moderate

temperature using SIMULINK®. Mathematical equations described both the microbial

growth and the substrate removal to monitor dissolved oxygen and pH. Other process

parameters involved are the temperature and the hydraulic retention time. A strong
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correlation, R-squared = 0.946, was found between simulated and experimental data; slight

variations could be attributed to the several assumptions made in the modeling process such

as uniform ammonium distribution in the bioreactor, constant pH and temperature.

Simultaneous nitrification and denitrification have also been explored to assess the impacts of

dissolved oxygen, food/microorganism, C/N ratio and pH on the bioreaction. The

Lawrence–McCarty model and a general mathematical model for a single-sludge wastewater

treatment system were used for the simulation (He et al., 2009). Mathematical control theory

models have also been developed to derive feedstock characteristics such as heterotrophic

biomass, readily biodegradable soluble substrate or slowly biodegradable substrate from

oxygen, water flows, total suspended solid and supplied air data (Hedegärd & Wik, 2011)

Although kinetics and control theory models can successfully model bioreactor

processes and are currently the most commonly used extensively in process control. Though

the development of those physical models requires deep knowledge of biochemical systems

interactions (Mowbray et al., 2021) for a particular process they only need to be developed

once. Moreover physical models are not practical to solve high-dimensional problems

(Bensoussan et al., 2020) as their development is cost-intensive and time-consuming

(Mowbray et al., 2021).

Consequently, data-driven approaches have seen an increased use in the past decades.

Machine learning (ML) models are suitable for complex high-dimensional and non-linear

biochemical models (Bensoussan et al., 2020; Mowbray et al., 2021). In bioreactor

applications, machine learning has been used to establish relationships between operational

conditions (pH, Dissolved oxygen, temperature, etc.), bacteria metabolism and product

output. Certain algorithms can estimate system state in real-time state. Using an artificial

neural network (ANN), (del Rio-Chanona et al., 2017) successfully evaluated process rate of

change and future time steps in a feedback fermentation reactor for sugar and lysine

production. The measured coefficient of determination R-squared was 0.997 (del

Rio-Chanona et al., 2017; Mowbray et al., 2021). ML, however, cannot be used alone for

model predictive control, unlike physical models. ML models can merely be used to predict

data similar to what it has been trained on (Howard & Gugger, 2020), unlike physical models

its predictions are not based on understanding of the system that is being predicted. This

stems from the fact that ML is a data-based method. Furthermore, an ML model cannot be

used to recommend an action but merely predict a result, in control, for example a model can

predict/copy which of the controls procedures it has seen would likely be applied next it

cannot itself find an optimal control if it has never been shown the optimal control applied to
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the current case (Howard & Gugger, 2020). In response to this issue, hybrid models which

combine physics-based model and machine learning have been explored for prediction and

optimization (Bensoussan et al., 2020; Mowbray et al., 2021). In a fed-batch stirred tank

reactor, system state at time t was an input to an artificial neural network, which then

evaluated the reaction evolution at time t. Output from ANN was then transferred to a

kinetics model to obtain the system state at time t+1. Such an approach reduced errors and

optimized prediction in comparison with strict ANN models (Mowbray et al., 2021; Schubert

et al., 1994). Similarly, here we propose the use of ML techniques in coordination with

physical models to simplify input parameter characterization by developing ML techniques to

recognize the relationships between the feedstock parameters and sensor readings while using

existing physical models for model predictive control.

2. Design Approach

2.1 Design Criteria

Accuracy: Accuracy is a useful indicator to evaluate model performance; this metric

is used to assess model effectiveness in recognizing correlations and patterns between

variables in a dataset. Better predictions and insights would provide increased commercial

value. The final design therefore needs to have an accurate model so that predictions may be

trusted.

Speed: Speed is another crucial indicator for model performance. Fast predictions are

essential to deliver added value to the customers, ML predictions are generally fast, however,

training and development can take time, which needs to be considered in this project.

Scalability: Scalability is required for the solution to rapidly adapt to changes in a

company's applications and system processing. The final model therefore needs to be easily

adaptable to new requirements, or easily remade.

Ease of Use: The proposed model should be easily accessible by organizations. This

is especially important for small companies like Circulus Agtech with less than a dozen

employees and whose time for training employees may be limited. Therefore, any solution

that is proposed needs to fit as frictionless as possible into the companies’ existing structure.

Data presentation should also be clear to be readily understood, evaluated and extracted. The

final design therefore needs to be able to be easily integrated into companies current

operations and ideally increase the usability of their current systems.
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Cost: A main consideration is then to provide a low-cost solution. Again,

bioreactor-based start-up companies such as Circulus Agtech may have limited economic

resources. The final design therefore needs to be associated with the minimum capital and

maintenance costs so that its benefits may outweigh its costs.

Reproducibility: Reproducibility refers to the potential for replication or duplication.

As the current project is conducted as a feasibility study, the proposed design should be

readily accessible by students, professionals and researchers to serve as a template for further

research and development. The solution implemented should also serve as an

inspiration/learning opportunity for users unfamiliar with machine learning, since these

methods are useful but unfortunately often considered too complex to try.

2.2 Deep Learning

In this project, Deep Learning models are chosen to address the design

considerations. Such models are more flexible than other, simpler, ML models which allows

them to fit to arbitrarily complex functions (Howard & Gugger, 2020). Therefore, we

consider them to be the best choice in terms of accuracy and potential model performance.

The speed of running a deep learning model for prediction, similarly to any ML model is very

fast. However, due to the large number of parameters included in deep learning models, data

training is computationally expensive, hence we will limit the size of the deep models used in

this project. This would enable not only a supercomputer but also a standard workstation to

be capable of training and working with such a model. Ease of use is addressed in section 3.3

which describes how a deep model interface can be easily created to allow end-users to

interact with the models. Such deep learning models are generally free, this is due to the

availability of a multitude of free OpenSource programming libraries that may be used for

their creation. Other associated costs that do not arise directly from deep learning are

discussed in later sections of the report. Lastly, the use of deep learning methods is often

regarded and considered as exceptionally difficult among ML methods. Therefore, the

demonstration of a straightforward deep learning approach to solve relatively complex issues,

serves as an inspiration to showcase the ease-of-use and underlying simplicity of using these

methods; this would also allow this project to be used as a template for future application or

reproduction.

The three principal deep learning approaches used here are the fully connected

multi-layer-perceptron (MLP), the convolutional neural network (ConvNN) and the recurrent

neural network (RNN). MLPs are the oldest versions of deep learning models and are based
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on the perceptrons developed in the middle of the last century (Howard & Gugger, 2020), an

MLP is considered deep if it has more than 1 hidden layer. MLPs are equivalent to ANNs,

and have been applied to all kinds of ML problems, some examples are given in section 1.3.

covering different modeling approaches. A ConvNN has an architecture that relies on the

convolution operation, often likened to sliding a filter over a series or array of data, these

models are typically used for machine vision applications as their filter or kernel allows them

to extract relationships between different locations of the input data (Howard & Gugger,

2020). Here ConvNNs are used to extract temporal relationships from the input data through

their kernels which we believe may improve their performance compared to MLPs. Lastly,

RNNs were developed to utilize sequential data to make predictions, data such as text, and

time-series as we are using here (Howard & Gugger, 2020), therefore they are the optimal

choice for our project. We specifically use Gated Recurrent Units (GRUs) which are an

improved version of RNNs that may be less computationally expensive than other RNN type

models (Cho et al., 2014).

2.3. Selected Design

The design selected based on the above stated design criteria is to utilize deep

learning models to predict the feedstock parameters from a time-series of measurements of

process-monitoring sensors. This would reduce the number of parameters that need to be

quantified analytically, reducing labor and equipment costs as well as time required to apply

model predictive control for bioreactors with variable input feed.
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Figure 1: The proposed solution summarized, using Machine Learning for Feedstock Prediction to reduce
the requirements of conventional Feedstock Characterization and streamline the use of Model Predictive
Control for Bioreactors.

The inspiration for this design comes from Henze et al., (2000, p. 17) who note that

some feedstock parameters may be derived from the behavior of the process immediately

after the loading phase of the bioreactor. In current practice this requires knowledge of related

feedstock parameters, the loading flow rate as well as the bioreactor volume. Therefore, since

there does exist some relationship between the process behavior and the feedstock

parameters, as complex as it may be, it can be approximated using deep neural networks

(Howard & Gugger, 2020). Additionally, this example shows that in practice there may be a

time-frame when no control is applied, i.e. during and immediately after loading, during

which the sensor data would not be changed by control actions. This creates the possibility to

use the sensor data during the initial “non-controlled” phase of the bioprocess to estimate the

feedstock parameters.

The current project, therefore, was conducted to assess the feasibility of the proposed

solution using a case-study. It will be assessed whether the mission statement “more

accessible process control to facilitate commercial implementation of bioreactor-based

technology” may be achieved by answering the following questions:

1. Can we predict the feedstock parameters using the recorded sensor data?

2. Which factors need to be considered when designing such a machine learning based

system?
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3. Which deep learning model architecture performs the best for the type of data used?

4. How difficult is the creation of a user interface to make this solution more accessible?

5. How may scarcity of labeled training data be overcome?

In general if an individual or organization wishes to the approach presented here then they

generally can follow these steps:

1. Obtain an implementation of a physical model that represents your process (same as

for standard model-based control)

2. Determine approximate range of feedstock parameters that could be expected in your

application

3. Run the physical model multiple times with varying feedstock parameters as inputs

and record the output variables that you have sensors for

4. Train a deep-learning-model using a time-series of this data that corresponds to a

time-frame where no control needs to be applied.

5. Apply the deep-model with your sensor data from the same time-frame as it was

trained for

The following section 3. Design Implementation will cover these implementation steps in

detail, for a hypothetical case-study of a waste-water-fed, aerobic-batch-bioreactor

application.

3. Design Implementation
3.1 Generating sample data

The Activated Sludge Model 1 (ASM1) (Henze et al., 2000) was selected to serve as

the reference physical model due to its relative simplicity, and wide applicability, describing

Nitrogen and Carbon dynamics, which are important to Waste-Water-Treatment and possibly

also for Bioponics. The MATLAB® and Simulink® (MathWorks, n.d.) implementation of

ASM1 that was developed to include pH and other ion calculations by Flores-Alsina et al.,

(2015) is used as the base implementation for our current project. The implementation was

developed to monitor an entire Waste-Water-Treatment Plant with 2 anaerobic and 2 aerobic

bioreactors. For this project we modified the ASM1 model to represent one aerobic batch

bioreactor, as may be used during testing of a process (Xie et al., 2022). We focus on aerobic

bioreactors specifically since they are particularly useful for producing liquid fertilizer (Xie et

al., 2022). The simulation time for each run is set to 14 days, it approximates the time-range

for which batch reactors are run by Xie et al., (2022), while also being the length of the

short-run version of the original implementation (Flores-Alsina et al., 2015). The overall data
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generation process is summarized in Figure 2. First the model was modified to be limited to

one aerobic batch bioreactor. Then, from these runs, a selection of output variables would

eventually be used as virtual sensor readings; this will be explained in more detail below.

Figure 2: The data generation process is summarized. First the rather large ASM 1
Waste-Water-Treatment plant model is reduced to one aerobic batch bioreactor, then virtual sensor
values are extracted from the model.

In order to robustly train any Machine Learning algorithm it is crucial to provide a

descriptive amount of data. As deep learning architectures have thousands of parameters to be

tuned they are not only capable of fitting to complex non-linear problems but also require

more data so that all parameters are sufficiently tuned (Howard & Gugger, 2020). Here we

first generated roughly 10,000 samples which were found through experimentation to give

good performance as described later. In case that 10,000 samples would not have been

enough 100,000 random possible input parameters were generated. Eight input parameters

were selected from a list of feedstock parameters that cannot be assumed and are required to

estimate other input parameters in the ASM1 model; this list was obtained from Henze et al.,

(2000, p. 22). The only parameters that were selected could be located both within the list and

within the ASM1 model implementation by Flores-Alsina et al., (2015), as there exists no

complete documentation of this implementation. Ranges for the input parameters were

established using the minimum and maximum values of these parameters in the inflow

data-sets of the ASM1 implementation. It was found that one of the originally chosen

variables was always 0 for all times in all possible inflow files, this parameter was therefore
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removed, the 7 remaining feedstock parameters as well as the ranges within which they were

randomized are shown in Table 1 below. Input values, other than the 7 randomized

parameters, were set to the values found for them in the constant inflow file which represents

the mean values observed for the inflow during operation of the benchmark

waste-water-treatment plant (Flores-Alsina et al., 2015).

Table 1: This table shows the feedstock parameters used to generate the sample data including their
ranges. The “Input Range” describes the feedstock parameters for the input flow while the “Real Input
Range” are the values that the SIMULINK® model received (i.e. Input Range + Previous Value in
Bioreactor), we are predicting only the inflowing feedstock parameters so the values in the “Input
Range” column. Only bold feedstock parameters were later used for prediction as explained in section
3.2. Model Development.

The model runs were conducted by simultaneously running 4 MATLAB® executables

at the same time for 4-5 days each executable having a separate subset of the 100,000

possible input parameters to use as to only use each feedstock parameter combination once.

Overall, 10922 files of 14 day simulations were created and used for model training and

testing in the following sections. Each of the files consists of the virtual sensor values of

dissolved oxygen (DO), nitrate ion concentration (NO3
−), ammonium ion concentration

(NH4
+), and hydrogen ion concentration (H+), each with a time-step of 15 minutes. Files are

named according to the 7 feedstock parameter values used to generate that file in the same

order as shown in Table 1. Virtual sensor data were not directly written into the files, rather

5% of Gaussian noise was added to each ‘sensor’ at each time-step (roughly 1000 samples

received 10% of Gaussian noise to represent un-calibrated sensors and outliers), noise

addition is done to ensure that the later developed deep-learning models will be useful in a

real situation and not only in an idealized one.
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The code from the data-generation is the only code that is not included in the project

GitHub repository at the moment of writing (Harms & Crèche, 2022). It will be added

eventually, however, the files will first need to undergo a cleaning of the code as well as the

addition of some documentation on how to use them, which is not completed as of now.

3.2 Model Development

Firstly the generated files were loaded using Python (van Rossum, 1995) (in a Jupyter

Notebook (Kluyver et al., 2016)) hosted on Google Colaboratory (Google Colaboratory,

n.d.). One empty file was removed. A test and training set were created using random

shuffling, to be able to evaluate the model performance on unseen data. The data was split

into a training set of roughly 9000 training samples and 1900 testing samples (roughly a

82-18 split). The training and testing sets are important since we need to ensure that the

model works not only on data it has seen but also “user-generated” or “real-world” data, in

other words, using the training and testing sets we avoid overfitting (Howard & Gugger,

2020). Later we use 10% of the training data as a validation set (i.e. 900 samples for

validation and 8100 as pure training data) during the actual model training process, this is

used to ensure again that no overfitting occurs during training as well as it is used to tune the

so-called hyperparameters or other parts of model structure that the model cannot learn by

itself (Howard & Gugger, 2020). In essence, the validation set is what ultimately decides

which model architecture will be evaluated against the test set by assisting the modeler in

making the best design decisions (Howard & Gugger, 2020).

Each sample in the training, validation and testing sets consists of 4 columns

containing sensor-variables (DO, NO3
−, NH4

+, H+) each at 96 time-steps of 15 minutes (in

total 24 hours). All samples were scaled using min-max scaling (Bhanja & Das, 2019):

(1)𝑥
𝑖, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

=
𝑥

𝑖
 − 𝑚𝑎𝑥(𝑥{𝑇𝑟𝑎𝑖𝑛})

𝑚𝑎𝑥(𝑥{𝑇𝑟𝑎𝑖𝑛}) − 𝑚𝑖𝑛(𝑥{𝑇𝑟𝑎𝑖𝑛})

For any value of every variable x (i.e. DO, NO3
−, NH4

+ and H+) for samples and𝑥
𝑖
 

each feedstock parameter for labels), here it is important to note that the maxima and minima

of only the training data are used to scale the data in order to not carry over information from

the testing set to the training set. For the purposes of scaling the combined training and
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validation set is used, as we are generally aware of the maximum and minimum possible

values especially for the feedstock parameters we could have also used the known maximum

and minimum values for scaling. Scaling from 0-1 is done to make sure that all input

variables as well as all output predictions are treated equally by the loss functions and not

imply inherent importance of a variable by making its value larger.

After normalization a simple fully connected test model was created to establish

whether the labels (the feedstock parameters) are possible to be predicted from the sensor

values at all. The initial results (not shown) suggested that there were multiple parameters

that could be predicted while there are others where the model was not able to find any

correlation between the input and output data. Therefore, a simple statistical analysis was

conducted to determine whether this problem is inherent to the data or whether it is the

testing model that is at fault. Three Pearson correlation matrices were created using the

means, range and standard deviation of the sensor inputs and the label values. Figure 3 shows

the sensor means and label correlation matrix, in this as well as the other two matrices (not

shown but may be accessed through the GitHub repository) showed that 5 out of the 7 label

variables were somewhat correlated to the sensor values while 2 consistently showed

correlations from 0.00-0.02. From this it was gathered that the sensors used would not likely

be good predictors of the 2 uncorrelated feedstock parameters (Soluble Inert Organic Matter

and Inert Suspended Organic Matter). It was later confirmed in experiments not shown that

even more advanced model types were not able to find any correlation between these 2

feedstock parameters and the provided sensor inputs. Since both variables represent inert

fractions of the feedstock it is reasonable that they do not have a significant effect on the

process.
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Figure 3: The correlation matrix between the feedstock parameters (1-7 as ordered in Table 1) and the
sensor means (DO, NO3

−, NH4
+, H+).

The deep learning models were developed using Tensorflow (Developers, 2022;

Martín Abadi et al., 2015) and the Keras library (Chollet & others, 2015). In practice,

however, the exact API and libraries used to develop the models do not make too much of a

difference to the developer as most features are interchangeable between libraries as Howard

& Gugger, (2020) point out. We chose Tensorflow and Keras for this project as it

simultaneously allowed us to experiment easily with different model architectures, while

being flexible enough to incorporate many specific design choices.
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A fully connected multi-layer-perceptron (MLP), a convolutional neural network

(ConvNN) and a recurrent neural network based on gated recurrent units (GRU) were

designed. In table 2 the model architectures are summarized. Each model has roughly 50000

learnable parameters. All models were stochastically trained using an adaptive moment

estimation optimizer (ADAM) (Kingma & Ba, 2017), with a maximum learning rate of 0.01,

and mini-batches of 100 samples. The MLP and ConvNN models were trained for 200

epochs whereas the GRU only for 100 epochs as it was observed that the loss on the

validation and training sets began to diverge if we increased this value. The loss function for

the MLP and ConvNN was Mean Square Error (MSE) while for GRU the Mean Absolute

Error (MAE) was used. The setting of these parameters as well as the specifics of the model

architectures was based on trial-and-error experimentation. After training when validation

loss fell into an acceptable range the performance was evaluated on the test set. It is

important to note that since the training process is stochastic that not every run with the same

parameters leads to the exact same training trajectory, so the models were, on occasion,

re-compiled and re-trained to ensure that the optimization using the current parameters was

indeed the best possible.

Table 2: This table summarizes the model architectures as well as the final validation loss for each model
(Notice: the loss units are not all the same).

3.3 Graphical User Interface

Having a Graphical User Interface (GUI) for applications meant to serve

non-programmers is crucial for our project to showcase our software. Furthermore, a GUI

also makes code much more accessible, especially when hosted as a web-application.

Websites, however, consist of JavaScript and HTML, which may make their creation difficult

for programmers that only have a background in Python or other programming languages

commonly used for Data-Science. However, libraries and API’s exist that allow Python
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programmers to create web-based applications using only Python. Similarly, hosting also

does not have to be expensive, plenty of Open-Source website hosting can be done using

platforms like GitHub Pages (GitHub Pages, n.d.), or Hugging Face Spaces (Spaces -

Hugging Face, n.d.). For our work we use the Streamlit (Streamlit, n.d.) for development,

which is a simple-to-use API to create beautiful interfaces. Furthermore, Streamlit also has its

own hosting service which is free for Open-Source projects that are stored on GitHub, which

is ideal for our project.

In another case, one may also create a UI using Gradio (Abid et al., 2019) and host it

on Hugging Face Spaces which can then be used as an API in addition to a UI. Therefore this

way the interface may not only be used by people manually but also integrated into

professional websites and provide model predictions automatically to any application,

making it easy to integrate these models into the workflow of businesses, professionals and

institutions. It should be noted that either option may incur costs and no longer remain a free

service if used for commercial purposes. We choose the Streamlit option as it provides the

most user-friendly interface, and keeps our work accessible to everyone. Ideally we would

have liked to do both, since development of a simple Gradio interface would not be too

difficult, and be more useful in a commercial setting. However, due to time constraints the

Gradio interface is not yet completed and deployed at the time of writing and in this text only

the Streamlit application will be discussed. After the writing of this report the Gradio

interface will still be implemented, updates will be posted on the GitHub repository of this

project.

4. Results and Discussion
4.1. Model Performance

The developed model performances for predicting the selected feedstock parameters

are shown below in Table 3 and Table 4. Table 3 summarizes the performance over all

variables, Table 4 gives a more detailed view of which models performed best on every

feedstock parameter individually. Generally, the prediction of the 4th parameter, Soluble

Biodegradable Organic Nitrogen (SBON), was the only parameter not predicted well by the

models. Overall model performance at a mean R-squared value of about 0.89-0.9 for all

models suggests that the prediction of feedstock parameters is largely successful. Moreso,

considering the fact that all models are able to achieve an R-square above 0.97 for 4 out of 5

variables to be predicted it becomes apparent that these models are working exceptionally
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well. The unfortunately low fit for the SBON parameter may be connected with the

comparatively small input range for which samples were generated (see: Table 1). All SBON

data is limited to a range of 13 mg/L whereas the ranges for the other variables are 2.6 to 30.8

times as large (34 mg/L to 400 mg/L). Taking this into consideration it suggests that the

selection of important process variables and appropriate ranges that cover not only the

required input range but also allow the model to extract the underlying relationship is a

crucial step in applying the proposed design. If the input parameters and ranges are chosen

properly then we see from these results that Deep Learning models such as the ones presented

here may indeed be very useful and provide a simple method of estimating feedstock

parameters that is highly accurate.

Table 3: The combined performance indicators for each model on the testing data. The best values are
bold.

Table 4: The R-squared of each model for each of the predicted variables. 1. Readily Biodegradable
Substrate; 2. Slowly Biodegradable Organic Matter; 3. Soluble Ammonium Nitrogen; 4. Soluble
Biodegradable Organic Nitrogen; 5. Slowly Biodegradable Organic Nitrogen. The best values are in
bold.
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4.2 Graphical User Interface
Our Streamlit GUI serves as a platform for users to experiment with the trained

deep-learning models described in this text as well as an example of how a GUI may be

easily developed in general.

Several features were implemented to ensure user's satisfaction and ease of use. After

uploading its file with the four sensor readings data (Concentration of hydrogen ion,

dissolved oxygen, nitrate and ammonium). To ensure the UI is compatible with various file

arrangements, the user can identify the position of each sensor data in his file with a number

input widget (Figure 4). They can also specify if its document contains a header through the

checkbox feature. After proper settings have been established, he will have the possibility to

display its dataset in a table, to visualize concentration of all four parameters as function of

the time (Figure 5). Finally by scrolling down he can instantly access feedstock

characteristics predictions for the MLP, ConvNN and GRU models.

For learning purposes, the UI also is accessible without having a file containing

sensor readings data. In such a case, the user could test one of the sixth examples provided

using a scroll down menu. They can visualize the tabulated and graphed data. Finally, for the

example documents, the user could compare experimental results with the three models'

predictions as they would both be displayed (Figure 6).

Figure 4. Features of the Deep Learning for Bioreactor Modelling and Control-Optimization UI
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Figure 5. pH time-series plot from the Deep Learning for Bioreactor Modelling and Control-Optimization
UI

Figure 6. Prediction of feedstock parameters and known input characteristics from the Deep Learning for
Bioreactor Modelling and Control-Optimization UI

4.3 Design Considerations
4.3.1 Environmental Considerations

The feasibility project demonstrated the potential of machine learning for feedstock

characterization. Coupled with a process control system, it is expected that such a solution

could significantly improve bioreactor process while reducing undesired outputs. For a

company like Circulus AgTech, understanding the relationship between feedstock

composition and data sensor readings could optimize nitrate production while reducing

nitrous oxide emissions. Indeed, experimental studies evidenced effects of operating
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conditions such as dissolved oxygen on nitrous oxide emissions during nitrification and

denitrification (Aboobakar et al., 2013; Tallec et al., 2006; Wen et al., 2020) Based on such

information Circulus AgTech could first determine which feedstock is the most appropriate

for an optimized output. This would allow process stability and constant output quality which

are essential for scalability and commercialization. Then, combining machine machine

learning and physics based optimization and control set up could improve bioreactor

performance and limit nitrous oxide emissions.

Although machine learning is promising for environmental protection in bioreactor

applications, large data centers, which may be used to train machine learning models, require

an important amount of energy and water resources for cooling systems and thus they emit

greenhouse gasses (The Impact of Data Centers on The Environment, n.d.). In the current

project the training, though time intensive, model training does not strictly require

data-centers for training but is achievable on a personal computer, though the availability of a

Graphics Processing Unit (GPU) would be useful.

4.3.2 Economic consideration

    The designed machine learning models did not require any capital cost investment.

However, it should be noted that if used for commercial purposes, development of similar

tools would incur costs and no longer remain a free service. Labor costs would be associated

with the architecture elaboration. Then, to ensure accuracy in the model prediction, sufficient

data should be collected. To this end, a kinetics based model, such as ASM1 used in this

feasibility study, would be required to simulate bioreaction and generate the data. If the

physics-based simulation is conceived on the Matlab programming platform, additional costs

would be induced to purchase a Mathwork license for corporate organizations. For a single

user, prices start at USD$1200 and would increase for multiple-user access (Pricing and

Licensing, n.d.).

As mentioned previously, a combination of machine learning model and control

features to evaluate feedstock composition and optimize bioreaction would support

companies’ economic growth.

4.3.3 Social Considerations

The proposed design offers several social benefits. It can serve as a learning tool for

students, professionals and researchers. Indeed, Model and GUI files and codes are available

on GitHub in order to enable readers of this report to use this project as a template for their
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own work. The specific version of the code referred to in this report is archived and citable

(Harms & Crèche, 2022). The MIT license was attached to all code so that it may be used

even for commercial purposes, the specific conditions of the license are specified here (MIT

License, 2022). Moreover, to favor access to such intellectual resources, the application has

been deployed on two platforms: Streamlit cloud, and the data-science hosting service

Huggin Face.

Careful thoughts were given to the UI design to help users in their task completion.

Each interface component is simple to use, access, and comprehend; information architecture,

interaction design, and graphic design are consistent and predictable to meet user’s

expectations and ensure their satisfaction. As mentioned previously, the interface can be

easily incorporated into the workflow of enterprises, professionals, and institutions. It is then

an asset for bioreactor-based companies such as Circulus AgTech.

When designing a machine learning based model, strong attention should also be

given to data ethics which “encompasses the moral obligations of gathering, protecting, and

using personally identifiable information and how it affects individuals.” (5 Principles of

Data Ethics for Business, 2021). While gathering personal data, ethical principles must be

followed: ensuring individuals agree to share their personal information, being transparent

about the end use of the data, maintaining data privacy, collecting only required data and

understanding limits and bias (5 Principles of Data Ethics for Business, 2021). In this

feasibility project, we self-generated the data, hence we did not encounter privacy issues.

However, it should be noted that as all models have limits, thus the final design should not be

used beyond the data range it was trained for.

5. Future Improvements
In future work it would be important to test not only the theoretical feasibility of such

a feedstock prediction system but also quantify how well such models perform in a practical

setting. Unfortunately this was not possible due to the timing of this project. Other

improvements include the addition of a Gradio API/UI as mentioned above that will

showcase how interfaces not only for manual use but also for automatic prediction may be

used, this will be added to this fork of the GitHub repository hosting the Streamlit GUI of this

project. Additionally, in future work, a more thorough hyperparameter tuning would be

necessary to be certain that the developed models are performing at the best possible level,

rather than the more informal experimental approach used here, again due to time constraints.

20

https://www.zotero.org/google-docs/?8gmUOG
https://www.zotero.org/google-docs/?qzawCg
https://www.zotero.org/google-docs/?qzawCg
https://www.zotero.org/google-docs/?lXwIUw
https://www.zotero.org/google-docs/?lXwIUw
https://www.zotero.org/google-docs/?Ccqvmc
https://github.com/joelz575/DeepBioreactorModelling
https://github.com/AmandaC31/DeepBioreactorModelling


6. Conclusion
Feedstock characterization is essential in bioreactor optimization and control; however their

characterization is costly and thus not practical for small-scale companies. The feasibility

study assesses the potential of machine learning for feedstock characterization and

bioreaction optimization. Tests were conducted through three deep learning architectures: a

fully connected Multi-Layer-Perceptron model, a Convolutional Neural Network and a

Recurrent Neural Network using Gated-Recurrent Units (GRUs). Each model successfully

predicted feedstock characteristics, the mean R-square over all models and all variables

predicted was 0.8961. The GRU model achieved the highest coefficient of determination on 4

out of 5 predicted feedstock parameters. Hence machine learning proved its potential for

improved bioreactor process reaction. A graphical user interface was also developed to host

the models and allows professionals, students or researchers to use it as a learning

opportunity.
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