
Deep Reinforcement Learning

for Medical Image Registration

Ian Watt

Department of Electrical & Computer Engineering

McGill University

December 14, 2019

A thesis submitted to McGill University in partial fulfillment of the requirements for a

Master’s in Engineering

c© 2019 Ian Watt

2019/12/14

Résumé

Le recalage d’image consiste à aligner différentes images en fonction de leur contenu. Le

recalage multi-modal, un défi courant dans le domaine de l’imagerie médicale, concerne

spécifiquement les images acquises à travers des mécanismes d’imageries différents. Ceci

peut permettre une compréhension plus fine de l’état d’un patient en combinant des in-

formations uniques à chaque modalité. Cependant, le recalage multi-modal présente un

bon nombre de défis dépendamment des modalités utilisées. Les structures anatomiques

peuvent avoir des apparences très diverses dans différentes modalités, à un point que des

tissus qui sont facilement différenciables dans une modalité peuvent apparâıtre comme ho-

mogènes dans une autre. Le mouvement du patient, la croissance et la progression de la

maladie induisent des déformations non-uniformes pour lesquelles le recalage non-rigide

donne de meilleurs résultats. La complexité additionnelle des techniques non-rigides peut

cependant présenter un défi supplémentaire, et le coût de calcul additionnel rend difficile

les applications en temps réel telles que le recalage intra-opératoire.

Le présent manuscrit examine l’applicabilité de réseaux profonds d’apprentissage par

renforcement pour la tâche de recalage d’images multi-modale. Un réseau profond d’appren-

tissage-Q est entrâıné pour recaler itérativement des images de diverses modalités. Ceci est

fait en utilisant une approche de séparation des sujets pour lier une instance distincte de

l’agent d’apprentissage par renforcement à chaque node d’une transformation B-spline. Ces

instances multiples travaillant en tandem peuvent recaler une image entière relativement

rapidement.

Cette approche a été évaluée sur des images par résonance magnétique de cerveaux

(séquences T1 et T2), dans un contexte mono-modal et multi-modal basse résolution. Les

résultats pour le contexte multi-modal à résolution complète ont été jugés peu concluants,

apparemment limités par la taille du réseau.

i

Abstract

Image registration is the process of aligning different images based on their content. Mul-

timodal registration, a common challenge in medical imaging, specifically concerns images

acquired via different imaging mechanisms. This can enable a more complete understand-

ing of a patient’s state by combining information unique to each modality. However, mul-

timodal registration presents a number of challenges depending on the modalities used.

Anatomical structures may have very dissimilar appearances in different imaging modal-

ities, to the point that tissue types which are easily differentiated in one modality may

appear homogeneous in another. Patient movement, growth, and disease progression all

introduce non-uniform deformations that are best addressed by non-rigid registration. The

additional complexity of such registration can present a challenge, though, and increased

computation cost presents a challenge for real-time applications such as intra-operative

registration.

This thesis examines the applicability of deep reinforcement learning to the task of

multimodal medical image registration. A modified deep-Q network is trained to iteratively

register images of a chosen target and pair of modalities, using a separation of concerns

approach to attach a separate instance of the RL agent to each node of a B-spline transform.

These multiple instances working in tandem may then register the entire image relatively

quickly.

The approach was tested with T1 and T2 MRI brain images and was found to function

with monomodal and low resolution multimodal registration. The results for full resolution

multimodal registration were deemed inconclusive, seemingly limited by the achievable

network size.

ii

Acknowledgements

I would like to thank Professor Tal Arbel for her wide range of advice, guidance, and in-

struction; Professor Doina Precup for sharing her expertise on all things Machine Learning;

the students of the Probabilistic Vision Group for thought provoking discussion and a sense

of camaraderie; and my family for their constant support.

iii

Contents

1 Introduction 1

2 Background 5

2.1 Image Registration . 5

2.1.1 Introduction . 5

2.1.2 Similarity Metrics . 6

2.1.3 Transforms . 13

2.1.4 Regularization . 18

2.1.5 Optimization . 19

2.2 Machine Learning . 20

2.2.1 Introduction . 20

2.2.2 Common Terms and Methods . 20

2.2.3 Classic Machine Learning . 24

2.2.4 Deep Learning . 27

2.2.5 Deep Learning in Medical Image Registration 35

3 Reinforcement Learning and Deep Reinforcement Learning 37

3.1 Problem Structure . 37

3.1.1 State . 37

3.1.2 Action . 38

3.1.3 Reward . 38

3.2 Predicting Future Value . 38

3.3 Bellman Optimality Equations . 39

3.4 Exploration and Exploitation . 40

3.5 On-Policy and Off-Policy Learning . 41

iv

3.6 Model Based and Model Free . 41

3.7 Prior Work . 42

3.7.1 General Reinforcement Learning . 42

3.7.2 Deep Reinforcement Learning in Medical Image Registration 43

4 Methodology 44

4.1 Architecture . 46

4.1.1 B-Spline Transform . 47

4.1.2 Deep-Q Network . 47

4.1.3 Coarse-to-Fine Registration . 51

4.2 Training . 51

4.2.1 Data Augmentation . 51

4.2.2 Agent Training . 52

4.3 Registration and Evaluation . 58

4.4 Summary . 60

5 Experiments and Analysis 61

5.1 Overview . 61

5.1.1 Test Structure . 62

5.1.2 Target Data . 62

5.2 Extracts from the Development Process . 63

5.3 Hyperparameter Testing . 66

5.4 Monomodal Performance . 67

5.5 Monomodal vs Multimodal Performance 68

5.6 Training vs Validation Performance . 74

5.7 Limitations and Possible Redress . 76

5.7.1 Training Time . 76

5.7.2 Network Capacity . 76

6 Conclusions and Future Work 78

Bibliography 80

v

A Implementation Details 85

A.1 Code Structure . 85

A.2 Code Description . 85

A.3 Libraries and Environment . 89

A.4 Modifications . 90

A.5 New Code . 91

B Hyperparameter Analysis 93

B.1 Reward Discount . 93

B.1.1 Effect on Registration Error . 94

B.1.2 Effect on Training and Execution Speed 94

B.2 Learning Rate . 97

B.2.1 Effect on Registration Error . 97

B.2.2 Effect on Training and Execution Speed 98

B.3 Buffer Size . 100

B.3.1 Effect on Registration Error . 100

B.3.2 Effect on Training and Execution Speed 101

B.4 Patch Size . 102

B.4.1 Effect on Registration Error . 102

B.4.2 Effect on Training and Execution Speed 103

B.5 History Length . 104

B.5.1 Effect on Registration Error . 104

B.5.2 Effect on Training and Execution Speed 105

B.6 Neighbouring History Length . 106

B.6.1 Effect on Registration Error . 106

B.6.2 Effect on Training and Execution Speed 107

B.7 Final Epsilon . 107

B.7.1 Effect on Registration Error . 107

B.7.2 Effect on Training and Execution Speed 108

B.8 Epsilon Ramp Length . 109

B.8.1 Effect on Registration Error . 109

B.8.2 Effect on Training and Execution Speed 110

B.9 Maximum “Stop” Reward . 111

vi

B.9.1 Effect on Registration Error . 112

B.9.2 Effect on Training and Execution Speed 112

B.10 “Stop” Reward Ramp Length . 114

B.10.1 Effect on Registration Error . 114

B.10.2 Effect on Training and Execution Speed 114

B.11 “Stop” Reward Radius . 116

B.11.1 Effect on Registration Error . 116

B.11.2 Effect on Training and Execution Speed 117

vii

List of Figures

1.1 Example HCP brain image pair . 4

2.1 Monomodal pixel difference similarity metric example 7

2.2 Multimodal pixel difference similarity metric example 8

2.3 Mutual information similarity metric example 9

2.4 Gradient alignment similarity metric example 10

2.5 Landmark similarity metric example . 11

2.6 B-spline transformation example . 16

2.7 Example of Decision Tree structure. 25

2.8 Perceptron structure. 28

2.9 Fully Connected Layer structure. 31

2.10 Convolutional Layer structure. 32

2.11 Application of a single kernel. 34

4.1 DQN structure and layer details . 49

4.2 Visualization of the agent training process 56

4.3 Visualization of the coarse-to-fine registration process 59

5.1 Example of scaled T1 images . 64

5.2 Extended training results for monomodal T1 69

5.3 Example monomodal registration results for 1:2 scale agent 70

5.4 Example monomodal registration sequence for 1:2 scale agent 71

5.5 Extended training results for 1:8 scale multimodal T1/T2 72

5.6 Extended training for different scales of multimodal T1/T2 73

5.7 Accuracy for training and validation sets during extended training 75

viii

A.1 Code structure . 86

B.1 Validation error logs for γ tests . 96

B.2 Validation error logs for α tests . 99

B.3 Validation error logs for |ERB| tests . 101

B.4 Validation error logs for |P | tests . 103

B.5 Validation error logs for |Hact| tests . 105

B.6 Validation error logs for εfinal tests . 108

B.7 Validation error logs for Nε tests . 110

B.8 Validation error logs for rsm,final tests . 113

B.9 Validation error logs for Nr,stop tests . 115

B.10 Validation error logs for Radany tests . 117

ix

List of Acronyms

ANTs Advanced Normalization Tools

CT Computed Tomography

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DQN Deep Q-Network

ERB Experience Replay Buffer

FC Fully Connected

GPU Graphics Processing Unit

HCP Human Connectome Project

IEEE Institute of Electrical and Electronics Engineers

ITK Insight Segmentation and Registration Toolkit

MICCAI Medical Image Computing & Computer Assisted Intervention

ML Machine Learning

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSER Maximally Stable Extremal Region

NR Non-Rigid

RAM Random Access Memory

ReLU Rectified Linear Unit

RL Reinforcement Learning

SGD Stochastic Gradient Descent

SIFT Scale-invariant Feature Transform

SoC Separation of Concerns

x

Chapter 1

Introduction

In this thesis we consider a novel approach to non-rigid medical image registration based

on deep reinforcement learning. Image registration in the most general sense refers to the

process of automatically aligning images with related content. In medical imaging this

can take many forms, including aligning scans of the same organ taken at different times;

aligning different modality images of the same organ; or aligning a patient image with a

standardised reference. Each of these applications can potentially help multiple endeavours,

from diagnosis to treatment monitoring to research.

We are specifically interested in deformable registration [1]. In many medical applica-

tions local accuracy in regions of interest is key, and while rigid registration may provide a

good global alignment an organ’s soft tissue movement can lead to significant non-uniform

local deformation. Non-rigid registration can correct for this, but comes with the drawback

that it is often slower to complete registrations, and more difficult to implement and verify

compared to rigid methods [2].

Multimodal registration is particularly useful, as it allows integration of modality spe-

cific information to form a more complete description of a subject. This presents additional

difficulties beyond monomodal registration, as one must first discover and quantify the re-

lationships between different representations of the subject - relationships that can be quite

complex, given the vast functional differences between imaging technologies. The relation-

ships are also modality dependant and must be custom designed for every pair of modalities

considered.

1

The intersection of these two, non-rigid registration of multimodal images, is therefore

a highly desired application [3]. Unfortunately, it is by many accounts the most challenging

problem within medical image registration. The challenge of interpreting multimodal image

pairs limits the useful information that most algorithms can extract, whereas deformable

registrations often require more information to accurately solve given the greater number

of parameters associated with those image transforms.

Machine learning has contributed to attempts at solving this problem, and in recent

years new systems have been introduced that notably outperform previous approaches.

Deep learning in particular, enabled by modern hardware, counts registration among the

fields it has dramatically influenced. This is because machine learning excels at finding

patterns and learning relationships, such as feature correspondence between modalities,

directly from the data of interest. While domain specific expertise is still very important,

the automatically learned features and patterns of ML systems often improve performance

beyond that found with traditional handcrafted features [4].

However, even with these improved techniques, it is still difficult to find a solution for the

large number of parameters in a deformable transformation [5]. While impressive, modern

deep learning based multimodal registration systems still must simplify the problem to

succeed, often by imposing limits on the transform to reduce it’s dimensionality.

Here we consider a different method of simplification. By using a b-spline transform

the parameters are isolated into pairs (or triads, for 3D images) and are associated with

specific sub-regions of the image. Finding the solution for a single parameter group is then

a much easier problem, and due to the common properties between them it is possible to

treat all the parameter groups within an image as examples of the same problem type, and

to train a single deep learning based system to individually solve each such group.

There is a catch to this approach, however. As each parameter group primarily controls

the deformation of its associated sub-region, useful information for the solution of the group

is located within that subregion, and finding the solution to each group almost becomes its

own local sub-registration problem. One must then consider that local complexity within

medical images is highly variable, containing both detailed and homogeneous regions. This

is especially true when considering multimodal pairs, as their local complexity may vary

independently of each other, and useful features must exist in both modalities to find a

solution. It would therefore seem highly unlikely that a system could learn to consistently

find accurate solutions for every parameter group in an image if it must consider them fully

2

independently. And, beyond local inaccuracy, such errors could introduce implausible local

deformations into the aggregate solution.

If local group solutions are to influence each other, as it seems they must, this makes

one-step approaches undesireable. Predefined restrictions on allowable transforms is exactly

what we are trying to avoid, but a learned relationship becomes incredibly complex if the

mutual influence of pairs must be recursively considered. An iterative solution would

therefore seem preferable, essentially allowing message passing between identical nodes

with each step. And, as each parameter pair is tied to a location within an image, there is

a helpful predefined spacial relationship between these nodes.

Reinforcement learning presents itself as a natural fit for this problem [6]. RL systems

are used for problems requiring iterative action selection based on observations of some

changing state influenced by those actions - in this case, iterative parameter updates based

on the resulting image deformations. More specifically, we will focus on deep-RL, as it

incorporates the same deep neural network technology that has been so successful in other

image registration systems.

The use of deep-RL for this type of problem was further encouraged by the work of

Ghesu et al. [7] on feature localization. Their system randomly places a small moving

window within an image, and a trained deep-RL agent updates the window’s position

based on its contents, seeking out the feature of interest. If a similar system could be

adapted such that the target feature was determined by the contents of a second window,

overlaid upon a second image, that would be a perfect match for the b-spline system under

consideration. With the added benefit of message passing between nodes, this seems to be

an increasingly plausible approach.

Iterative solutions will necessarily be slower than one-shot systems, but we may still

expect this sort of system to solve problems quickly. Preliminary training of deep networks

often takes significant time, but once that has been completed most such systems can

process new data very quickly. Based on deep-RL image processing applications of similar

complexity, it is likely that applying the simple image deformations this technique uses will

take longer than selecting those actions.

3

For testing purposes, this thesis will focus on registration of T1 and T2 MRI brain

images taken from the Human Connectome Project [8], an example pair of which is shown

in Figure 1.1. We will begin with an overview of image registration and of machine learning

in general, and then proceed to a deeper discussion of reinforcement learning and deep-

RL. These topics will primarily be discussed in the overarching context of medical image

processing. After outlining the appropriate background material, we examine the registra-

tion system developed for this thesis, explore the effect that various sub-components of the

system have on the registration process, and evaluate the system’s potential.

Figure 1.1 Example HCP [8] brain image pair, T1 on left, T2 on right.

4

Chapter 2

Background

Before discussing image registration via deep reinforcement learning, it is useful to discuss

the component pieces that make up such a system, as well as some established previous

methods that inform the motivation behind those modern components. This chapter will

therefore briefly discuss image registration, machine learning, and deep learning, before

reviewing a number of non-RL deep learning approaches to medical image registration.

Reinforcement learning, being more central to the method proposed in this thesis, will be

discussed in greater depth in Chapter 3.

2.1 Image Registration

2.1.1 Introduction

In the context of images, ‘registration’ is the process of finding a transform that when

applied to one image of a pair will align it with its counterpart. It is generally assumed

that the two images are of the same object, or at least of the same type, and that after

registration the objects’ corresponding features in each image will occupy the same location

in the image space. Performing registration requires four related components to be defined:

a similarity metric, a transform, and a method of optimization. Additionally a method of

regularization is often useful and sometimes required [1].

Medical images present their own domain-specific registration challenges, some common

to all image types and some unique to specific modalities or subjects. Non-rigid deformation

is frequent, as most of the the human body consists of flexible soft tissue. Some modalities,

5

such as ultrasound, are orientation dependant and 3D images will change depending on

what angle they are acquired from. Noise and artifacts are common.

Multimodal registration is a particularly potentially useful application, but introduces

yet more hurdles. Tissue distinguishability in particular depends on modality, and so a

homogeneous region in one modality may contain significant detail in another.

2.1.2 Similarity Metrics

A similarity metric is a function that receives two images and produces a scalar value

(Equation 2.1), defined in such a way that “more similar” images consistently produce

higher values than “less similar” images (Equation 2.2). It follows that the highest value

should be returned when comparing an image to itself (Equation 2.3).

What exactly qualifies as more or less similar in the colloquial sense has no singular

mathematical definition; there exist an arbitrarily high number of metrics, measuring any

specific image properties one may wish to consider. It is therefore necessary for the regis-

tration algorithm designer to choose a specific function definition that will lead to desirable

results given the nature of the images to be registered. We will explore a number of the

more common methods here.

S(I1, I2) = k; k ∈ R (2.1)

S(I1, I2) > S(I3, I4)⇒ I1 and I2 are more mutually similar than I3 and I4 (2.2)

S(I1, I1) ≥ S(I1, I2) ∀ I2 6= I1 (2.3)

Pixel Difference Summation

These metrics are often the simplest, directly comparing and aggregating the difference in

intensity for each element l of the image (pixel or voxel). The most basic form would be the

negative sum of differences, shown in Equation 2.4 and Figure 2.1. It is common to apply

a non-linear function to these differences, such that small regions with large differences

outweigh larger regions with only minor discrepancies. A popular form is the negative sum

of squared differences metric shown in Equation 2.5. Such aggregates are often normalized

by the number of elements considered, Nl, to remove the effect of image size.

6

SSD(I1, I2) = −
∑
l

|I1(l)− I2(l)| (2.4)

SSSD(I1, I2) = − 1

Nl

∑
l

|I1(l)− I2(l)|2 (2.5)

While this category of metric can be very effective when used correctly, it is only

applicable in very limited circumstances. It does not adapt well to any changes that render

the images less than identical, such as deformations that may occur in soft tissue. Modalities

sensitive to direction, such as ultrasound, likewise reduce effectiveness. If the images are

of different modalities then this class of metric is not useful, as shown in Figure 2.2.

Figure 2.1 Monomodal pixel difference example, with I (left) and |I − I ′|
(right), where I ′ is identical to I but offset horizontally by 2 pixels. Non-black
elements in the right image are caused by misalignment, and the sum of their
values is assumed to be proportional to the degree of misalignment. Images
from the Human Connectome Project [8].

7

Figure 2.2 Multimodal pixel difference example, with I1 (T1 MRI, left),
I2 (T2 MRI, centre), and |I1−I2| (right). I1 and I2 are aligned, and so we can
see that the highlighted “error” in |I1 − I2| is unrelated to alignment. Images
from the Human Connectome Project [8].

Mutual Information

Rather than directly comparing element intensities, mutual information as a similarity

metric measuring the individual and negative joint entropy of images’ element values. In a

slightly more intuitive phrasing, it is a measure of the information content of both images

combined with how well the elements in one image predict the values of their counterparts in

the other. It is assumed that in aligned pictures element values will have greater predictive

power than in misaligned images.

SMI(I1, I2) = H(I1) +H(I2)−H(I1, I2) (2.6)

H(I) = −
∑
v

p(I = v) log(p(I = v)) (2.7)

H(I1, I2) = −
∑
v1

∑
v2

p(I1 = v1, I2 = v2) log(p(I1 = v1, I2 = v2)) (2.8)

Equation 2.6 is one of the standard forms of this metric [9]. The first two terms H(I)

measure the individual entropies of the images I1 and I2, as per Equation 2.7, based on

the probability p(I = v) that any given element of I will have value v, as calculated for

each possible v. During registration the fixed image entropy term will not change, and

the moving image term is generally expected to not change very much. It will decrease,

8

however, if a transform would homogenize the moving image. There are multiple ways

this could occur, such as by scaling down the image excessively, or by moving portions of

the image far outside the “working area” of the algorithm such that they are cropped out.

Penalizing reduced entropy discourages these destructive transformations.

Alignment between images affects the joint entropy term H(I1, I2), defined in Equa-

tion 2.8, which causes the lowest penalty when the predictive power of image element

values is highest. High predictive power in this case refers to when for all possible values,

if one selects all elements in one image with that given value, the values of the elements at

corresponding locations in the other image have low entropy. Figure 2.3 illustrates this by

plotting the corresponding element intensities for two different offsets of a posterized brain

image.

Figure 2.3 Mutual information example. A sample from the Human Con-
nectome Project was posterized (left), dividing the full range of pixel values
into to 11 non-overlapping subintervals of equal length, and then mapping all
pixels to an integer value in [0, 10] according to the subinterval membership of
their original value. This image was then compared to a copy of itself that was
offset one pixel (centre) and five pixels (right). The charts show, for a given
|I1| (vertical axis), the distribution |I2| at corresponding element locations
(horizontal axis), with the intensity of the grey value in a square indicating
the likelihood of each possible |I2|. The example results show that |I1| is a
better predictor of |I2| (and similarly |I2| of |I1|), and thus that mutual infor-
mation is maximized, when the images are more closely aligned. Here |I| is
used as shorthand for “element value(s) within I”.

Mutual information is a useful similarity metric for certain types of multimodal regis-

tration, and is far better than pixel difference metrics. However, it still relies on element

intensities being individually informative without considering local context. As such it is

potentially vulnerable to degraded performance or failure when used with modalities that

9

are directionally dependent, introduce significant noise and artifacts, or otherwise have

non-homogeneous intensity for tissue types within a given image. This is a significant limi-

tation given the ubiquity and utility of ultrasound imaging, for which all of these obstacles

are a concern.

Gradient Alignment

Rather than focusing directly on pixel values, gradient alignment metrics calculate the

gradient of both images and compare these derived images. For each location with high

gradient magnitude (i.e., above some selected threshold m), the gradient angle is compared.

This metric is highest when the edges of objects within the images are overlapping and

aligned, and the metric is applicable for any pair of images in which object boundaries are

consistently detected [10]. Figure 2.4 shows which features of the brain are highlighted by

this approach.

Sgrad(I1, I2) =
∑

l|∇I1(l)>m

cos(∠∇I1(l)− ∠∇I2(l))2 (2.9)

Figure 2.4 Gradient alignment example, showing magnitude (left) and ori-
entation (right) of a single image. From [10].

10

Feature Matching

Feature or landmark matching differs from most other methods in that it does not globally

consider all pixels. Rather, a feature detection algorithm is used to select points of interest

(“features”) within the images, and a matching algorithm is used to pair corresponding

features to each other. The similarity metric is then determined by the distances between

all corresponding points - most often the sum, or the sum of squares. Figure 2.5 highlights

how corresponding features can have very different appearances between modalities.

Figure 2.5 Landmark example. A definition of a feature’s appearance in
each modality allows the same feature to be localized in each image despite
apparent visual differences, and once a set of linked locations have been se-
lected (as in the above images) registration is dramatically simplified. MRI
from HCP [8].

11

Maximally Stable Extremal Region Detection An extremal region [11] [12] is a set

of connected pixels such that every pixel in the group has the same relation, either brighter

or darker, when compared to all pixels along the group’s border. A region of this type may

be defined by a point belonging to the region, a threshold used to determine inclusion, and

an indication of whether it is to be brighter or darker.

Stability, in this case, refers to the area change as a function of the threshold used to

determine group membership. Therefore the maximally stable regions are those little to

no area change over the widest range of thresholds.

Once a region has been detected an ellipse may be fit to its border, thereby defining an

affine transform. MSER detection is affine covariant, and as with the Harris affine detector

this reduces the effects of perspective when comparing detected regions. SIFT descriptors

again may be generated from the transformed regions.

SIFT Feature Description The scale-invariant feature transform [13] allows a region

of an image to be described in a form that is not affected by changes in scale, and is

resistant to a degree to changes in illumination or viewpoint. The encoding algorithm has

an associated method of region detection, but in this case alternative methods are used.

To encode a region of interest, it is first divided into sections. Each section is then

further subdivided, and the direction of the gradient in each subsection is calculated. A

histogram of gradient directions is then formed for each section, each with a fixed and equal

number of bins. The final descriptor consists of the concatenation of these histograms.

12

2.1.3 Transforms

An image transform is a function that receives an image and produces a modified version

of that image, mapping the elements of the output image to those of the input image. This

is a specific application of the more general mathematical concept of a transform, which

consists of any mapping that maps elements of set back onto itself [14].

Parametric vs Non-Parametric Transformations

If each element of a transform’s output image has an associated location on the input image

specifically and explicitly defined then the transform is called non-parametric, though in

certain contexts it may have a more specific name (e.g., “optic flow map”). While versatile,

the lack of constraints and the sheer number of variables that define such a transformation

result in an extremely large and complex transform space. The difficulty of searching such

a space means that these transform definitions are often ill suited to registration tasks.

The transform space may be simplified by parameterizing the transform function -

specifying a method of mapping all elements using only a relatively small number of input

parameters.

Rigid and Affine Transformations

Affine transformations are those in which a transformed element’s location along each

dimension is defined by a linear combination of its displacements along the original dimen-

sions, applied homogeneously to all elements, ensuring any parallel lines in the original

image remain parallel in the transformed image. The transformation may be composed of

any combination of translation, rotation, shearing, or scaling along an axis.

An N-dimensional affine transformation may be fully defined by a N × (N + 1) matrix.

For a given transformation matrix M the relation between a location lin in the initial image

and location lout in the transformed image is as shown in Equation 2.10. Additionally,

two affine transformations may be combined as shown in Equation 2.11, constructing a

temporary (N + 1) × (N + 1) matrix by appending a row to M1 and then multiplying it

by M2. Applying the combined Mcmb has the same effect as applying both M1 and M2.

These transformations are useful when no significant local deformations are expected

to have occurred between images, such as when aligning images acquired at the same time,

or images of solid structures (e.g., implants, or bones in many circumstances). A specific

13

and even more restrictive type of affine transform, often called a rigid transform, is one in

which no shearing or scaling occurs.

lout = Mlin (2.10)

Mcmb = M2

[
M1

0 ... 0 1

]
(2.11)

Spline Based Transformations

Spline interpolation is used to fit a polynomial to a series of fixed points. Each segment is

controlled only by nearby points, where the number of points to consider is a predefined

parameter.

As a transformation, this allows one to fully define image motion by specifying a series

of control points with fixed positions and variable associated offsets. A spline is then fit

to the offset values, allowing smooth (no discontinuities in optic flow or its gradient) offset

interpolation between control points.

These transforms are appropriate when aligning images with local deformations that

are smooth and continuous. This is applicable to most images containing soft-tissue in

which no disjunction has occurred.

B-Splines B-spline based transforms are popular for image transformation due to the

method’s relative computational simplicity. The offset of each pixel is controlled by a

small number of local parameters, and it is easy to identify all pixels associated with each

parameter or vice-versa. This allows each region to be updated semi-independently, while

ensuring global smoothness.

To perform the transformation, a regular grid of control points is defined that covers and

extends beyond the boundaries of the image, and each control point is assigned a number of

parameters equal to the dimensionality of the image. The offset at each pixel is then defined

by Equation 2.12 [15], where Tbsp(x, y) returns the coordinates in the transformed image

corresponding to the coordinates (x, y) in the original image, nd is the size of the control

point grid in dimension d, and θf,g is the parameter vector associated with the control

14

point at grid coordinates (f, g). Functions B0−3 are the basis functions of the B-spline, and

determine the degree of influence that nearby control points have on local deformation.

Tbsp(x, y) =
3∑
l=0

3∑
m=0

Bl(u)Bm(v)θi+l,j+m (2.12)

B0(t) = (1− t)3/6

B1(t) = (3t3 − 6t2 + 4)/6

B2(t) = (−3t3 + 3t2 + 3t+ 1)/6

B3(t) = t3/6

i = bx/nxc − 1 u = x/nx − bx/nxc

j = by/nyc − 1 v = y/ny − by/nyc

For images of a higher dimensionality the transform is adapted by adding another basis

function term and nesting another summation for each new dimension, such as with the 3D

form shown in Equation 2.13. The number of operations required grows as an exponential

function of dimensionality, as does the amount of data per image.

Tbsp(x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)θi+l,j+m,k+n (2.13)

k = bz/nzc − 1 w = z/nz − bz/nzc

Spline based transformations are useful for medical imaging applications, as a large

portion of human anatomy is soft tissue that deforms in a non-rigid and smooth manner

(barring major disjunction caused by injury). B-splines are additionally useful in that local

deformation is controlled by localized parameters, reducing overall complexity and allowing

distinct segments of anatomy to deform in a semi-independent manner. Figure 2.6 shows

an example of this sort of regionally semi-independent yet smooth deformation.

15

Figure 2.6 Example of B-spline transformation (from [16]). Original image
(left) is shown after deformation (right). Control points fall on the intersection
of grid lines, while the grid lines illustrate deformation between points. This
example is purely illustrative, rather than computed from HCP data.

Resampling

Often a transform will map elements of the output image not to exact elements of the input

image, but to locations on the borders between elements (i.e., non-integer pixel addresses).

In these cases the output element intensity must be derived from the intensities of the

elements near its mapped location.

Nearest Neighbour The fastest method of interpolation is to simply select the element

nearest to the indicated location. However, this may noticeably change the shape of fine-

scale image details. This can be inappropriate for medical applications, in which an image’s

low resolution may mean that a single element represents a large region of space.

Bilinear and Trilinear Interpolation These methods consider the 2D elements (given

dimensionality D) nearest to the target location and perform iterative linear interpolation

along each dimension. The order in which dimensions are processed does not affect the

result, and the algorithm may be simplified to a single step equation.

16

Higher-dimensional interpolation is an extension of the simplest form, one-dimensional

linear interpolation. For a single-dimensional “Image” I(x), with known values I(x1) and

I(x2), x1 < x2, linear interpolation may be expressed in the following parametric form:

I(x) = (1− t)I(x1) + tI(x2), (2.14)

t = (x− x1)/(x2 − x1) ∈ [0, 1], x1 ≤ x ≤ x2.

The formulae for D = 2 are shown in Equation 2.15 [17], assuming (x, y) is within a

rectangle with corners at (x1, y1), (x2, y1), (x1, y2), (x2, y2) for which the values are known.

I(x, y) = (1− t)(1− u)I(x1, y1) + t(1− u)I(x2, y1)

+tuI(x2, y2) + (1− t)uI(x1, y2)
(2.15)

t = (x− x1)/(x2 − x1) ∈ [0, 1], x1 ≤ x ≤ x2

u = (y − y1)/(y2 − y1) ∈ [0, 1], y1 ≤ y ≤ y2.

The D = 3 case is defined similarly, with three parameters x1 ≤ x ≤ x2, y1 ≤ y ≤ y2 and

z1 ≤ z ≤ z2.

This interpolation reduces spatial distortion and edge-jaggedness that may be caused

by nearest-neighbour methods, while remaining quite fast. The main drawback is that it

can blur sharp region boundaries from the original image.

More advanced interpolation There are many other forms of interpolation, but most of

them are significantly slower. This makes them less suitable for speed-sensitive applications

involving iterative updates and therefore they will not be discussed in detail here.

The general form of these methods is similar to an upgraded linear interpolation, fit-

ting more complex functions (often higher-order polynomials) to larger patches of pixels.

Additionally, as with most applications involving fitting functions to measured data, there

are some recent machine learning approaches to the problem [18].

17

2.1.4 Regularization

Image registration often requires additional constraints to become a well-posed problem [19].

If the parameters of the transform are not limited then it is often possible to find an arbi-

trarily high number of equally valid solutions.

Regularization helps by augmenting the similarity metric with a penalty term to form

a single measure of registration quality. The penalty term depends on the type of trans-

form being considered, as it is a function of the transform parameters, and if properly

implemented it guarantees that the resulting function will have a single maximum.

Global regularization Global regularization considers all parameters of the transform

at once, and is generally used to influence large-scale movements that affect most or all

of the image. This often takes the form of penalizing movement away from some starting

position, as for many applications it is possible to perform a simple pre-registration to find

a transform that, while incorrect, is very likely to be “near” the correct solution.

Local regularization For many non-rigid transforms, one may consider local regular-

ization penalties based on the relative motion of nearby sections the moving image. For

many non-rigid transforms parameters can be localized, and a local regularization penalty

measuring such divergence can be defined as a function of the parameters of neighbouring

regions. The overall regularization term then includes a summation of local penalties for

all valid region pairs.

Physical Basis For both global and local regularization, it often possible to base penal-

ties on known properties of the subject of the images. For example, in medical imaging

the elasticity, strength, and other properties of the tissue can be used to define expected,

reasonable, and impossible levels of deformation, allowing for accurate restrictions to be

placed on image movement.

18

2.1.5 Optimization

Once an objective function has been defined, through some combination of similarity metric

and regularization term, it is necessary to find the transform parameters which produce

the maximum possible value. This process is called optimization.

Simple objective functions may have a closed form solution that can be found in some

small number of steps. However, many objective functions complex enough to be useful in

real world applications must be solved via an iterative algorithm.

Global

Global optimization seeks to find the absolute best parameters for the objective function.

These solutions are often more difficult and computationally expensive than the alternative.

The theoretically ideal form is often too expensive to be practical, and many implementa-

tions use approximations of some component of the process to reduce cost.

Examples include exhaustive search, simulated annealing [20], and Gibbs sampling [21].

Local

These methods find some local optimum. It may not correspond to the best possible value,

but will find a set of parameters such that any other “nearby” parameter set will reduce

the objective function. These approaches are often less computationally expensive and are

therefore capable of handling larger datasets.

Examples include gradient descent [22] and expectation maximization [23].

19

2.2 Machine Learning

2.2.1 Introduction

“Machine learning” is the name for a broad category of data-driven modelling techniques.

Data-driven refers to the fact that these approaches do not seek to directly analyse and

recreate the mechanism producing the data of interest, but rather to fit a model directly

to the data itself.

2.2.2 Common Terms and Methods

Learning and Supervision

The most common application is supervised learning, in which each data-point in the

training set has both input variables (also called “features”) and corresponding output

variables (also called “target variables” or “labels”). The system’s purpose is to accurately

predict the output variables when supplied with the input variables, and eventually to

generate accurate output for new inputs which would otherwise not have such. The act

of adjusting the chosen model’s parameters to be able to do this is called “training” or

“learning”.

Unsupervised learning techniques cover situations where the data has no available labels,

and one seeks instead to uncover non-obvious relationships. In these cases learning most

often takes the form of clustering - organizing the data-points into some number of discrete

groups with similar properties, and setting model parameters such that new datapoints

may be automatically clustered into one of these groups.

The intersection of these two scenarios is called semi-supervised learning, in which labels

are available but only for some of the training data.

Overfitting

A common risk when training complex models with finite datasets is the potential to

“overfit” the model. Overfitting refers to setting the parameters of a model such that

it will very accurately predict labels for any given entry from the training data, yet will

perform poorly for any new data. This can be conceptualized as the system memorizing

specific examples that it is exposed to rather than learning the general trend relating inputs

to outputs. The risk of overfitting is increased for smaller datasets and for higher-capacity

20

models (where model capacity refers to how much information can be stored in the model

parameters, and is closely related to the number of parameter variables).

There are many different approaches to preventing overfitting, and many of those are

specific to the type of model being trained. However, one mitigation technique applicable

to all models is that of data segregation.

Regularization

One common method of avoiding overfitting is “regularization”, a restriction on a model

which seeks to limit its capacity/complexity. While it is possible to impose a strict limit,

regularization more often takes the form of a penalty term representing model complexity.

This penalty is balanced against the model’s accuracy, ensuring that the model may only

become more complex when it will commensurately increase performance.

The balance between accuracy and complexity is not easy to optimize, however, and

tends to introduce one or more hyperparameters that must be manually determined.

Data Split

Standard practice for most machine learning applications is to divide the available data

into three partitions: the “Training” set, the “Validation” set, and the “Testing” set. The

training and validation sets are used while the model is learning, while the testing set is

reserved for afterwards.

The training set is used to directly train the model in the usual manner, updating model

parameters based on its contents. Throughout or after learning, the validation set is used to

evaluate the model’s accuracy. This can be used to detect overfitting if the accuracy on the

training and validation sets begins to diverge, as well as to adjust model hyperparameters

and observe the resulting performance change.

After the hyperparameters have been finalized, and the model has been trained, the

testing set is used to judge the final accuracy. It is necessary to keep some portion of the

data unused in this way if one wishes to have a true measure of accuracy. While overfitting

is not a risk for the validation set, it is possible that the model selection and hyperparameter

tuning will have some bias from any data used in developing or refining the model. It is

therefore a good practice to segregate some data, such that the model cannot in any way

21

be affected by it other than through the true underlying pattern that would produce all

gathered data.

Cross-validation

Cross-validation is a modification of the above method of estimating the accuracy of a

machine learning system. Rather than subdividing the non-testing-set portion of the data

into training and validation sets once, the subdivision is repeated multiple times to produce

multiple temporary sets. Each such training/validation set pair is then used to train and

evaluate the performance of the system, producing multiple different accuracy estimates.

These are then averaged together to produce a final estimate that is closer to the true

system accuracy than the result of any single subdivision could be expected to be.

While this method may produce superior estimates compared to a single training and

validation split, it is vastly more costly. The system must be fully trained from the be-

ginning for each new subdivision, and to usefully improve estimation accuracy many such

iterations are often necessary. Consequentially, cross-validation is mainly suitable for sim-

pler and faster to train systems.

Regression vs Classification

Most supervised machine learning tasks fall under either “regression” or “classification”.

Regression refers to cases where the output variables are continuous, and one attempts to

use an ML model to predict their exact values. Classification is the class of problems where

all datapoints are labelled as members of some finite number of discrete groups.

It is easy to adapt most regression models to work for classification tasks by using

one-hot encoding - assigning a separate output variable to each class, and then for each

datapoint setting the variable corresponding to the true class to be one and all others to

be zero. The algorithm will then give a decimal score for each category, and selecting the

highest score will give the final category.

It is also possible to do the reverse, and adapt a classification algorithm to a regression

task, but accuracy is necessarily limited. This may be accomplished via “binning” - sub-

dividing the range of possible values into several “bins”, and treating each as a category.

Predicting the correct category will then give an approximation of the correct output value.

22

Unsupervised methods are generally limited to classification tasks, as there are no tar-

gets values for regression algorithms to predict.

Gradient Descent

Gradient descent is a method of training many different weight-based models via a series

of iterative improvements. This is necessary for models for which there is no closed-form

solution, or for which such a solution cannot be feasibly calculated. It is first necessary

to define an error function as a function of the model weights and the datapoints. The

process then consists of repeatedly calculating the gradient of that error function and then

updating the model weights to move them closer to the error function’s minimum.

To allow this process to work with large datasets, it is often necessary to only use a

small subset of the training data for any given update. This subset is called a “batch”, and

each new batch is constructed by randomly sampling the training set for the appropriate

number of datapoints.

Stochastic Gradient Descent For some models it is not possible to mathematically

derive the error as a function dependant (at least partially) on the model weights, but it is

possible to estimate it using the training data. This is done by applying the model to the

training dataset and comparing its predictions to the known true labels, which is used as

the estimated error. It is then necessary to calculate the change in model weights required

to eliminate this error, to be used as the estimated gradient. Fortunately this is relatively

simple for most models.

After the gradient has been estimated it is most often scaled according to some constant

“step size”. This prevents the algorithm from passing over a local error minimum repeatedly

without coming usefully close to it. It additionally helps to smooth noise introduced if batch

training is used by limiting the change that may be caused by a single batch.

23

2.2.3 Classic Machine Learning

Linear Regression

One of the simplest ML methods, this performs regression by fitting a linear N-dimensional

surface to the data, where N is the sum of input and output vector dimensionality. If

one wishes to predict a specific answer, rather than a relation between vector elements,

the target is therefore limited to a single scalar value. To predict multiple targets one

may isolate and perform a separate regression for each target variable, but information on

correlations between these variables will be lost.

The linear regression model may be expressed as in Equation 2.16 for output y, input

vector ~x, and weight vector ~w, where ~x and ~w are the same size. In most cases ~x is

augmented by appending a ‘1’, allowing ~w to have a constant term.

y = ~wT~x (2.16)

The weights may be found by minimizing the error function, which measures difference

between the known output values and the values predicted by the model. Constructing ~y

and matrix X by appending together all y and ~x datapoints, the error may be expressed

as follows. Equation 2.17 includes L2 regularization, and Equation 2.18 includes L1 regu-

larization.

Err(~w) = ‖(~y −X ~w)‖2 + λ‖~w‖2 (2.17)

Err(~w) = ‖(~y −X ~w)‖2 + λ
∑
i

~wi (2.18)

In many cases, the solution may be found quite quickly.

~w = (XTX + λI)−1XTY (2.19)

If the dataset is too large to perform the necessary operations on the entire set at once,

it is also possible to perform gradient descent. The per-step weight update is given by

Equation 2.20.

∆~w = α(XTY −XTX ~w) (2.20)

24

Decision Trees

Decision trees are a method of classification (and occasionally regression) that differs from

the other approaches discussed so far in that they do not consist of specific models with

weights to be tuned. Rather, they describe a general structure and an algorithm to creating

a model with that structure, unique to the problem at hand.

A decision tree comprises a collection of nodes, as shown in Figure 2.7. Each node

consists of a test for specific input variable and two branches conditioned on the test result.

Each branch can point to a specific class or to a new node. To classify a data point, the

algorithm begins with the first (“root”) node, performs the test at that node, and continues

along the appropriate branch. This is repeated at each node until a branch to a class is

reached, at which point that class is assigned to the data point.

Figure 2.7 Example of Decision Tree structure.

25

Growing a Tree A decision tree is constructed recursively one node at a time, with the

test at each node chosen to maximize information gain (minimize entropy) in the dataset

when split according to that test. To avoid overfitting the training data is split into a

“growing” set and “pruning” set. The first set is used to create an initial tree as shown

in Algorithm 1. The second set is then used to remove superfluous nodes as shown in

Algorithm 2, improving performance. Equation 2.21 gives the conditional entropy for a

given test T and dataset D. In this context distinct tests are those that result in a different

divisions of D.

Input: Set D of data points and their classes
if All data points belong to class C then

Return class C;
else

Evaluate H(D|T) for all distinct tests;
Select test Tbest = argmaxT H(D|T) ;
Split D into Dpass and Dfail, containing the points that pass or fail Tbest;
Grow decision tree Rpass using Dpass;
Grow decision tree Rfail using Dfail;
Construct root node containing Tbest, branching to root nodes of Rpass and Rfail;
Return root node, Rpass, and Rfail;

end

Algorithm 1: Growing a decision tree

Input: Full tree R, set D of data points and their classes
foreach node N do

Create RN by removing N and replacing it with class C, where C is the most
prevalent class among samples from D that would reach n;

Test accuracy of RN using D;

end
Test accuracy of R using D;
if All RN less accurate than R then

Return R;
else

Replace R with most accurate RN , repeat;
end

Algorithm 2: Pruning a decision tree

26

H(D|T) =
|Dpass|
|D|

H(Dpass) +
|Dfail|
|D|

H(Dfail) (2.21)

H(D) = −
∑
∀C

|Dclass=C |
|D|

log
|Dclass=C |
|D|

(2.22)

Ensemble Methods

Different models may be combined to form an ensemble model, often with improved ac-

curacy. This generally consists of separately training multiple models and then combining

their predictions, either by voting in the case of classification or by averaging in the case

of regression.

2.2.4 Deep Learning

Perceptrons

To explain deep learning and neural networks, it is first necessary to explain it’s fundamental

building block: the perceptron. On it’s own a perceptron is a simple linear classifier,

very similar to the model discussed in section 2.2.3. The difference is that the output is

passed through a non-linear threshold function. This limits a single perceptron to binary

classification, but by introducing non-linearity it allows multiple perceptrons in concert to

model more complex non-linear functions.

Equation 2.23 shows how the label y is predicted for input x, input weights w, and

activation function a. Figure 2.8 shows this same information visually.

y = a(~w · ~x) (2.23)

Training A perceptron is trained by stochastic gradient descent, updating the model

weights based on any incorrect predictions made on the training set. The change in weights

δw for each incorrectly labelled datapoint is given by Equation 2.24, for input vector ~x,

label y, and step size α.

∆w = αy~x (2.24)

27

Figure 2.8 Perceptron structure.

Using this simple update step, a perceptron will eventually find the correct weights for

any linearly separable dataset.

Activation Functions The activation function is used to introduce non-linearity to the

output. While of limited utility for a single perceptron, it allows perceptrons to be combined

into larger and more complex systems. If the activation function were linear then any

combination of perceptrons could be reduced to a single larger perceptron with altered

weights.

With non-linear activation functions, chained perceptrons become a more complicated

system. There are a variety of commonly used functions, though they often resemble either

a rectified linear unit (ReLU) [24] or a sigmoid [25]. Actual ReLU functions are often

replaced with leaky ReLU [26] to avoid the perceptrons getting “stuck” during training [27].

Neural Networks

A neural net at its core consists of a large number of perceptrons working together. Specif-

ically, neural nets are structured as a series of layers connected sequentially or in parallel.

Each layer consists of some number of perceptrons, all operating simultaneously on the

data output by the previous layer(s). The first layer uses the input vector directly, and the

28

final layer gives the predicted labels as output. The layers between these two, those with

connections only to other layers’ perceptrons, are called “hidden layers”.

There are many kinds of layers, with each kind dictating a specific method of reading

its input from the output of the previous layer(s). These are discussed in more detail in

Section 2.2.4. Nets with multiple hidden layers are called “deep neural nets”, with their

training and use being “deep learning”.

Calculating the output of a neural network is also referred to as performing a “forward

pass”. As the input of each layer is dependant on all previous layers, data is propagated

“forward” from the input layer to the output layer.

Input: Input vector xin
Set output of input layer Lin equal to xin;
foreach Layer L 6= Lin, in ascending order do

foreach Node Ni ∈ L do
Calculate output oi = a(~wi · ~xi) (Eq. 2.23);

end

end
Return output of final layer as predicted label: ~y = ~oout ;
If training, also return full ~o;

Algorithm 3: Performing prediction with a neural net

Gradient Descent and Back Propagation Neural networks are trained using stochas-

tic gradient descent, using the usual method briefly discussed in section 2.2.2. However,

as the net is composed of a individual perceptrons, the implementation is in some ways

similar to performing SGD on each individual perceptron. Error is calculated as usual for

those in the final layer, and then “blame” is partitioned according to the contribution of

each perceptron used as input by that layer. Error and updates are “back-propagated”

from the final layer to the input layer in this manner.

Layers

The arrangement of each layer’s perceptrons and the inter-layer connections are free to take

any form, but there are a number of commonly recurring layer structures.

29

Notation for weight values is wto,from

Input: Input vector ~xin, output vector ~ygt
foreach Node Ni ∈ Lout do

Find error δi = oi(1− oi)(ygt,i);
end
foreach Layer L 6= Lout, in descending order do

foreach Node Ni ∈ L do
Find “blame” for Ni, considering all nodes Nk, k ∈ K that use oi as input:
δi = oi(1− oi)

∑
k∈K wk,iδk ;

end

end

Return the weight correction vector ~δ
Algorithm 4: Performing back propagation for a neural net

Input: Large number of xin and ygt pairs, step size α
Randomly initialize weights;
while Stop condition not met do

Randomly sample pair from xin, ygt;
Use Alg. 3 to find full ~o;

Use Alg. 4 to find full ~δ;
foreach Node Nk to Ni connection do

Find weight update ∆wi,k = αδiok ;
end

Update weights ~w ← ~w + ~∆w;

end

Algorithm 5: Training a neural net

30

Fully Connected A fully connected layer is organizationally simple. The input of each

node of the FC layer is connected to every output the previous layer, resulting in Nout,i−1×
Nout,i weights associated with the layer. The arrangement of these elements, including

inputs, outputs, weights, and activation functions, is shown in Figure 2.9.

While highly expressive, the large number of weights can make training difficult and

time consuming. Additionally, the format does little to take advantage of structured data.

Figure 2.9 Fully Connected Layer structure.

31

Convolutional The elements of a convolutional layer are connected so as to take advan-

tage of structured data, where the same patterns may occur in different clusters of “nearby”

inputs. This is most often applied to images, in which objects with consistent local struc-

ture may be present at any location. For image data the implementation is nearly identical

to the image processing convolution operation.

The layer’s weights are grouped into multiple “kernels”, as shown in Figure 2.10, where

each kernel defines the way a node would apply those weights to a subregion of the struc-

tured data with a specific shape. Thus each node is connected to specific subregion, and

the connection weights are shared for every node associated with a specific kernel. For an

image these subregions are selections of pixels with a given spatial relation.

Figure 2.10 Convolutional Layer structure.

Each kernel is applied at regular intervals, called the “stride”, along each dimension

of the structured data. As a result the output nodes associated with a given kernel will

also represent structured data, with the relation being defined in a space of the same

dimensionality as the input data (i.e., a 2D image will result in another 2D image, though

32

the resolution may differ). An example of the application of a single kernel is shown in

Figure 2.11 - note how the high stride results in a reduced number of outputs relative to

the number of inputs.

If the kernel would not fully overlap the input data at a specific point there are two

options. The first is to ignore that point, an option often referred to as “cropping”. This

reduces the output size, and can reduce the influence of datapoints near the edge of the

input. The other option is to “pad” the image, filling in some value for the missing data.

This avoids the aforementioned limitations of cropping, but can waste resources processing

fabricated datapoints that add no new information.

For computational efficiency and simplicity, most deep learning libraries require that

all kernels for a single layer be the same size and map to contiguous rectangular regions.

However some allow “dilated” kernels, in which a rectangular kernel is defined but only the

entries on some regular grid within the kernel are used, with the other weights assigned

zero and ignored in calculations.

Pooling Pooling layers are not perceptron based, rather act as fixed filter layers used

to reduce the dimensionality of structured data. This is accomplished by organizing the

inputs into equally sized groups, with one outupt assigned to each group, and for each group

setting that output equal to one of the inputs selected according to the specific pooling

type. Common criteria are maximum or minimum values.

During back propagation all nodes connected to a pooling layer output are treated as if

they were directly connected to the “active” output it had selected from the previous layer,

ignoring all “inactive” elements. As a result, pooling layers add very little to a network’s

training time.

Pooling layers are most often used in conjunction with convolutional layers. They allow

information to be relayed regarding the presence and general location of data activating

the conv filters, while significantly lowering the total number of connections needed.

33

Figure 2.11 Application of a single kernel.

34

2.2.5 Deep Learning in Medical Image Registration

While the focus of this thesis is on the use of deep-RL for medical image registration, for the

sake of completeness we will include a review of certain non-RL deep learning approaches

to registration. The proliferation of deep learning in the field makes a full review beyond

the scope of this thesis, but for more information one may address the 2019 survey paper

by Haskins et al. [5]. For an overview of deep learning in the broader field of medical

image analysis, including registration and other applications, see the 2017 survey paper by

Litjens et al. [28]. More detail on older registration methods pre-dating the popularity of

deep learning may be found in the 1992 survey paper by Brown [2].

Early applications of deep learning in registration often used it to learn application-

specific feature representations, exploiting deep learning systems’ pattern detection abil-

ities, which are then used as a component of the similarity metric in a more traditional

registration system. One of the first such approaches was by Wu et al. [29] in 2013, in which

an architecture known as “stacked convolutional Independent Subspace Analysis” [30] was

used to learn feature detection filters for brain MR images. These filters were then inserted

into existing feature-based registration methods (e.g., HAMMER [31]), and the superior

application-specific encoding learned by the network led to very good performance relative

to other popular methods of the time.

Moving forward, researchers began to use deep learning systems to directly learn sim-

ilarity metrics. Trained using datasets of images of known misalignment (which is easily

generated from a dataset of pre-aligned images) deep learning systems were found to be

able to accurately predict degrees of image alignment. This was especially effective for mul-

timodal similarity metrics, relative to prior methods. Simonovsky et al. [4] presented an

early version of this method, in which they trained a convolutional neural net to estimate

alignment of T1 and T2 MRI volumes. The learned similarity metric would then be opti-

mized with a standard gradient descent algorithm, resulting in a system that outperformed

other systems using popular multimodal similarity metrics of the day.

Embracing deep learning even more fully, many researchers began creating architectures

to estimate transform parameters directly from the raw image input, absent any recogniz-

able traditional registration framework. There have been many different approaches to this,

using a wide variety of architectures, modalities or modality pairs, and transform types.

As a result, a usefully detailed review of such options would be quite voluminous. Some

35

common features, however, are that successful implementations tend to be much faster than

almost any other alternatives, as they predict the transform in a small and finite number

of steps rather than through some optimization algorithm. A downside, though is that it

can be very difficult to accurately find transforms with many parameters.

Miao et al. [32] are notable for being the first to publish a successful implementation

of a fully deep learning registration system. They use pre-registered radiograph and X-ray

data to generate image pairs with known rigid transform, and then use that data to train

convolutional neural net regressors to predict transform parameters from image data.

36

Chapter 3

Reinforcement Learning and

Deep Reinforcement Learning

3.1 Problem Structure

Reinforcement learning (RL) is the field of machine learning that focuses on iterative de-

cision making, and seeks to address the category of problems in which an agent must take

iterative actions based on the observation of some environment that is in turn affected

by those same actions. One defines the desired task by creating a reward function. RL

algorithms then seek to maximise the cumulative reward the agent receives, and so while

it is necessary to define some measure of success for a given task, the control policy itself

is learned.

3.1.1 State

The state vector of a reinforcement learning problem is comparable to the input vectors of

a standard machine learning problem. However, in an RL problem successive state vectors

are observations of some persistent environment that is influenced by selected actions. Most

algorithms consider the initial and resulting state of each step while learning.

37

3.1.2 Action

As the state corresponds to input, the action of a RL problem corresponds to the output

vector of a standard machine learning problem. The action is often a single discrete value

selected from a pre-defined list, akin to classification, but regression-like continuous control

is also possible.

3.1.3 Reward

The reward function describes the agent’s success or failure, thus defining the reward func-

tion serves to define the agent’s task. It may be derived from the state, or from some part

of the environment not directly observed. However it is defined, one must ensure that the

function itself and any associated parameters cannot be directly changed by the agent’s

actions, or else agents are prone to “short-circuiting” and tuning the function to always

give the maximum reward regardless of selected action or environmental observations.

3.2 Predicting Future Value

As the reward function measures success, the optimal policy is one that selects the series

of actions that maximise the cumulative reward received. The agent must therefore have

some method of predicting the action at each step that will maximise future rewards,

which in turn necessitates estimating (directly or indirectly) the total future value that will

result from each potential action. This is generally accomplished with a value estimation

function that the learning process tunes to reflect the initially unknown reward function

and environment dynamics.

It is possible to find an optimal policy without directly modelling a value function.

However, approaches that attempt find policies without explicitly predicting value tend to

fall outside of what is traditionally considered reinforcement learning [6].

Multiple optimal policies exist for many problems, but finding a general descriptor for

all such policies is significantly more complex than finding a single policy, and there are

few if any practical applications where it could improve an agent’s performance.

38

3.3 Bellman Optimality Equations

When deriving the value function for an RL system, the Bellman optimality equations [6] are

a useful recursive relation. They establish necessary and sufficient conditions for ensuring

an optimal control policy when selecting the maximally valued action.

Equation 3.1 concerns the state-action value function q∗(s, a), which gives the expected

value of taking action a while observing state s. Equation 3.2 has a similar form but

concerns the state value function v∗(s), which gives the value based on the observed state

alone, assuming that the best action will be selected. Both are defined as the expected

value of the reward r resulting from a, plus the maximum value of the resulting state s′

modified by some discount rate γ ∈ [0, 1]. The subscript ∗ indicates that q∗(s, a) or v∗(s)

are the true values under the optimal policy. Without this subscript, q(s, a) or v(s) indicate

an estimate of those values under some current policy. As mentioned previously, the goal

of many RL systems is to find an accurate method of estimation such that q(s, a) = q∗(s, a)

and v(s) = v∗(s).

q∗(s, a) = E[r + γmax
a′

q∗(s
′, a′)] (3.1)

v∗(s) = max
a

E[r + γv∗(s
′)] (3.2)

The discount rate is a hyperparameter used to control the tradeoff between current and

future rewards. High-γ systems prefer to maximize future cumulative value even at the

expense of immediate rewards, while low-γ systems will do the opposite. γ may be thought

of as accounting for the uncertainty (and therefore unreliability) of future rewards or,

depending on the application, as representing the opportunity cost of delayed gratification.

Which form of the equation is preferable depends on the exact learning method and

target application.

39

3.4 Exploration and Exploitation

Unlike more traditional machine learning approaches, reinforcement learning does not di-

rectly make use of large sets of static data. The large potential state-space and interactive

nature of the problems make it impractical to pre-generate or otherwise collect state-action-

reward data. Rather, a reinforcement learning system will improve itself using the data it

observes while interacting with its associated environment, real or simulated.

As the system learns during normal operation, it is necessary to balance the competing

goals of exploration and exploitation. Exploration refers to taking actions with unknown

consequences to examine new areas of the state space, thus gathering new information and

hopefully improving the accuracy of the internal model, while exploitation refers to using

the existing model to choose the predicted best actions and maximize rewards.

Too much focus on exploitation prevents the system from observing an adequate variety

of data, and tends to result in a policy that appears locally optimal but overall is poor.

Excessive exploration, on the other hand, can waste resources exploring low quality states.

The state-action space of reinforcement learning problems is often quite large with only a

small subset of it leading to desirable outcomes, and even with unlimited time to explore the

entirety of that space an agent’s information capacity is limited. It is counter-productive

to waste space remembering how to deal with those regions in detail, as a properly trained

agent should avoid them altogether. A common approach is to begin training with a strong

focus on exploration, and slowly lower it as the agent becomes more able to identify value.

Ideally this early training is performed in a simulated environment to increase training

speed and eliminate any cost of poor action decisions.

In applications where the optimal policy may not be constant, this possibility of ongoing

learning may allow an agent to adapt to changing environmental conditions. This does

come at some expense, though, as it will necessarily require occasionally taking sub-optimal

actions to ensure they are still sub-optimal.

40

3.5 On-Policy and Off-Policy Learning

All reinforcement learning methods can be divided into on-policy or off-policy approaches.

On-policy approaches use the main policy they are training to generate all data, which

means it must handle the exploration/exploitation problem itself. Off-policy approaches

are a bit simpler, using a second policy to generate data for the main policy such that it

only has to focuses on choosing the ideal actions.

A common off-policy approach is to create the data-generation policy by augmenting the

main policy. One of the simplest and most popular augmentations is the single-parameter

ε-greedy modification, where at each step the agent takes a random action with probability

ε or the best action as determined by the main policy with probability (1− ε). This allows

the single variable ε to control the portion of actions spent on exploration, and it is easy

to change as learning progresses.

More complex off-policy systems may examine the possible actions and estimate how

likely a lower-reward action would be to lead to new useful data. These can introduce

significantly more processing overhead than simpler approaches, though, and so one must

consider whether the increased value of the datapoints is enough to outweigh the lower

number of datapoints that may be used due to reduction in processing time.

3.6 Model Based and Model Free

If the dynamics of an application’s environment may be predefined or accurately learned

independently of the main RL controller then it is possible to create a model based RL

system, in which the environment modelling layer makes available to the RL agent state

transition probabilities dependent on actions. This is often more complicated than attempt-

ing to learn a policy directly, and is very application-specific. However, when possible it

makes transfer learning much easier, which may be desirable if multiple environments with

different dynamics require similar tasks to be performed in them.

Any system that does not divide the problem in this manner is called “model free”.

41

3.7 Prior Work

3.7.1 General Reinforcement Learning

Deep Q-Network A significant contribution to reinforcement learning techniques was

made by Mnih et al. [33], in which Q-value prediction was performed using a deep neural

network. The new method of value function modelling greatly enhanced RL agents per-

formance, allowing them to match or surpass that of humans at a majority of the Atari

games used for testing and comparison. The system was also easily adaptable, as the con-

volutional input layers mean the system can be directly trained on visual data with no task

specific feature extraction.

This deep Q-network system serves as the basis for the agents used in this thesis, and

further explanation of its function (and modifications made) is given in Section 4.1.2.

Double DQN In some application DQN networks overestimate action Q-values, which

can reduce the effectiveness of the learning algorithm and result in worse performance once

trained. Hasselt et al. [34] attempt to reduce this with a modification to the previous

approach called double DQN. This combats overestimation by dividing action selection

into two parts, using the same network structure with two different sets of weights, θ1 and

θ2. Optimal action selection is performed using θ1, but Q-value prediction for that action

is performed using θ2, and the results are used to update θ1. θ2 is periodically updated by

copying θ1.

Separation of Concerns An interesting approach to handling complex RL tasks is

presented by Seijen et al. [35] in their paper on Separation of Concerns. It details how a

problem may be divided and agents coordinated such that individual agents solve specific

sub-tasks within a problem, communicating with each other in the process, with an action

mapping function to convert the resulting set of per-agent actions into a single environment-

level action.

42

3.7.2 Deep Reinforcement Learning in Medical Image Registration

A number of groups have recently examined RL as a solution for medical image registration,

though the majority have focused on rigid transforms. In broad terms these approaches

are similar to the one examined in this thesis, in that they train an RL agent to perform

iterative updates to some transform thereby moving it towards registration.

Liao et al. [36] examined rigid registration of CT and cone-beam CT images, providing

complete 3D images as agent input and using a greedy supervised approach during training

to address memory requirements due to dimensionality. Registration is performed in an

attention-driven hierarchical (coarse-to-fine) manner.

Ma et al. [37] used a network structure based on Dueling Network architecture [38]

to rigidly register MR to CT images. Dueling Network architectures split their network

into two paths, one which estimates state value and one which estimates additional value

attributable to actions, which are then combined to select an action.

Krebs et al. [39] examined non-rigid registration of prostate MR images. The trans-

form used is a statistical deformation model defined from Free Form Deformations, using

principal component analysis to reduce the transform’s parameter dimensionality. Fuzzy

action control is used to stochastically reject actions that would result in large parameter

changes.

Miao et al. [40] consider a multi-agent approach to rigid registration of X-ray and

CT images. Agents observe different regions of the image and calculate individual action

proposals. A correlation is noted between agents’ estimated rewards, agent confidence, and

utility of the information in the agents’ field of view. Therefore actions from high-confidence

agents are aggregated to determine the overall action, serving as an auto-attention system

to at each step consider only regions of interest.

For further background information, including non-RL methods, a recent and in depth

survey of deep learning methods in the field of medical image registration is provided by

Haskins et al. [5] covering a wide variety of methods and circumstances. The RL related

papers have been covered here.

43

Chapter 4

Methodology

This thesis proposes a deep reinforcement-learning based non-rigid multimodal medical im-

age registration framework. Deep-RL systems have been found to perform well in learned-

feature localization tasks while only processing a fraction of the entire image[7], reducing

computational cost relative to systems that must process the entire image. In addition, deep

learning in general is very good at learning feature representations, even across modalities.

We therefore suspect that a deep-RL system should be capable of performing both tasks

together: identifying the per-modality representations of features, and then manipulating

a transform to seek out corresponding feature locations in one image based on features

present in another. Aligning all matching features would then result in registration of the

images.

We also propose that a useful simplification of the non-rigid registration process natu-

rally follows from the feature-location-seeking conceptualization of the registration process.

Using a transform where local deformation is defined by the location and movement of

parametrized control points allows an agent to perform local registration through simple

movement of the corresponding point, in which it considers the region surrounding the

initial position of the control point and then seeking out the corresponding region in the

paired image. Performing such local registration for each control point would then result

in registration of the whole image. Additionally, since each point exists in a similar envi-

ronment and requires the same sort of task to be performed, a single trained agent should

be capable of performing the registration of each point. Reducing a complex system into

multiple parallel instances of a single simpler system should allow this method to make

44

great use of modern advances in GPU hardware, which favour parallel execution.

To test these hypotheses, we have created a test system that performs non-rigid regis-

tration in a coarse-to-fine manner using multiple agents. Each agent is assigned to a specific

region of the image and is exposed to the sub-section of the moving and fixed images local

to that region. This window combined with the action history of other nearby agents serves

as the agent input, and from that the agent selects in which direction (if any) to move the

local region of the moving image. The aggregate of all agent actions is used to update the

transform, and the process is repeated until all agents choose not to move. As each agent

instance is performing the same task regardless of position, only one DQN must be trained

for each resolution of interest.

When designing an implementation, rather considering broad theory, it became neces-

sary to carefully consider the computational burden imposed by each decision. This is a

concern with many medical image tasks due to the large amount of data each such image

may contain. In light of this, and considering the desirability of fast or even real-time

registration, most design choices were made with the goal of simplifying resource heavy

components. For these decisions post-training execution requirements are considered more

important than training requirements, as execution speed and the required resources are a

limiting factor for more applications.

The novelty of this approach is primarily in the previously unexamined combination of

existant components. While there has been vary degrees of investigation into the behaviour

of these individual components, it is insufficient to confidently predict the behaviour of a

system combining them in this manner, and as such the proposed system requires specific

examination. An overview of the structure and interaction of these components is provided

in Section 4.1. Section 4.2 then describes the details of the agent training, including data

augmentation. Section 4.3 covers how the system is used post-training to register previously

unseen images. Specific implementation details are covered in Appendix A, as well as brief

descriptions of some noteworthy aspects of development that did not make it into the final

system.

45

4.1 Architecture

After being trained for a given pair of modalities, the purpose of the system is to process

image pairs of those modalities and return a transformation that registers one image to

the other. Input images are expected to have been modified by both rigid and non-rigid

motions relative to each other, but to begin with at least some coarse pre-registration

(i.e., organ of interest overlapping, with similar orientation). Registration is then handled

in a coarse-to-fine manner, beginning with 1/8 scale and doubling resolution as each scale

completes registration. Later scales use the preceding registration results as a starting point

and further refine them, and the system’s final output transformation is the aggregate of

these intermediate transforms.

At each scale a single b-spline transform is used, iteratively updated by RL agents

using a learned similarity metric, regularization policy, and optimization strategy (together

subsumed into the more general “agent policy”). Each control point of the b-spline has an

attached agent instance that takes as input the surrounding pixels and nearby agents’ action

histories, and returns an update to the control point’s parameters. All agents’ updates are

applied simultaneously to form discrete steps, and registration continues until a step in

which no agent chooses to update any transform parameter. During training an upper

limit is applied to the number of steps spent processing any given image pair, to encourage

sample diversity and increase the number of image pairs seen, as agents with limited or no

training are prone to continuing such registration indefinitely. If the number of steps spent

processing an image pair surpasses this limit before registration ends naturally, then the

current pair is discarded and registration of the next new pair begins as normal.

46

4.1.1 B-Spline Transform

Image deformation is handled with a second-order b-spline transform (see Section 2.1.3).

B-splines were chosen because pixel offsets are determined by a small number of local

parameters, and it is easy to identify all pixels associated with each parameter or vice-

versa. This allows the parameters to be subdivided by region such that each region is

managed independently by a different agent. Using a second-order b-spline results in each

pixel being affected by multiple control points, though the nearest control points have far

greater influence. If each agent were exposed to all pixels it influenced, this would lead

to identical data being analysed many times by different agents due to the inevitable high

degree of overlap. Therefore, a window around each point is defined such that there is

little or no overlap between windows, limiting the input vector to only those pixels that

are closest to and therefore most strongly influenced by that agent’s associated point.

Using first-order b-spline would avoid this concern but would cause sharp angles at borders

between regions of influence, thus less accurately modelling tissue deformation.

For the remainder of this chapter, T (θ, φ) will indicate a b-spline transformation with

control point parameters θ and predefined parameters φ (i.e., mesh resolution, spline order,

default grid spacing). I ◦ T (θ, φ) will denote the transformation being applied to image I.

4.1.2 Deep-Q Network

Deep-Q Networks [33] are a popular type of reinforcement learning algorithm, in which a

neural-net is trained to directly estimate the expected reward (Q-value) of each possible

action for a given state. With image data pixel values of the full image, or some contiguous

patch of it, are used as the state vector s. This is fed through some number of convolutional

layers, and then through some number of fully connected layers, producing predicted action

rewards Q(s, a) at the final layer. The agent then selects and executes the action a with the

highest Q-value, notes the reward signal r and repeats the process until some stop condition

is met. Here, actions consist of “moving” an agent’s associated control point by increasing

or decreasing one associated parameter by some step size S. The only exception to this is

the “stop” action, which indicates that point is currently considered to be registered and

should not be moved.

In this thesis, the Q network is modified slightly as shown in Figure 4.1. The region

around the target control point is extracted fed through the convolutional pathway. As

47

mentioned in Section 4.1.1, it is assumed that the local deformation of a given region of

the moving image is most usefully informed by the regions from both images physically

near the motion, as they will contain the structures able to be aligned or misaligned due

to that motion. More distant information is indirectly available via message passing in the

form of mutually visible action history between neighbouring agents. In cases where local

structures alone do not provide enough useful information to certain agents, this allows the

decisions of more confident agents to propagate. A combined action history of the control

point and its neighbours, along with the output of the convolutional image processing path,

is fed through a fully connected path which then produces as its outputs the predicted Q-

value for each possible action. Action histories are converted to a one-hot encoding to allow

easier processing by the fully connected layer. One-hot encoding consists of creating for

each history entry a number of ordered boolean variables equal to the number of possible

actions, and then setting only the variable corresponding to the action number to one and

all others to zero. This prevents errors that would likely be introduced by other formats

such as passing an integer indicating action number, as due to neuron operation that input

channel would necessarily be assumed to be a continuous scalar quantity rather than an

indicator of distinct categories.

When training the agent, it is necessary to define some reward signal to be used as

a target while training the neural net. As the agent attempts registration while in the

training environment it will at each step observe a state, select an action, and receive a

reward. This state/action/reward data may then be used to train the agents by improving

the accuracy of their reward prediction network. However, concurrent or consecutive ac-

tions are highly temporally correlated, resulting in a non-stationary target value function

. Therefore, to render the target function stationary, network training data is randomly

sampled from an “experience replay” buffer (ERB) [41] which stores a large number of

data points from previous runs. The network is updated via gradient descent using these

randomly sampled data points. More detail on the exact implementation of this process is

provided in Section 4.2.

48

Figure 4.1 DQN structure and layer details. Input consists of agent state:
image subregions surrounding the agent’s associated b-spline control point,
extracted from the moving and fixed images, combined with the action history
of that agent and the four orthogonally neighbouring agents. The image data
is passed through three convolutional layers, as shown in the upper path. The
output of this convolution and the action histories are joined together and
passed through two fully connected layers. The final output is an estimation
of the state-action value function Q(s, a) for each possible action. Brain images
from the Human Connectome Project [8].

49

Parallelization

As mentioned previously, the same task required at each control point. Training time is

reduced by only training one agent for each of the coarse-to-fine scales, and memory use

is reduced as only a single shared set of network weights must be tracked regardless of the

number of agent instances. However, action history must be tracked for each control point,

and so the “agent” associated with each point is in reality just a unique history buffer and

a reference to a shared Q-value estimation function. This enables easy parallelization of

agent prediction, as many modern ML libraries have good support for batch processing,

allowing a single network to process multiple inputs simultaneously. Calculating all agent

actions for a step is therefore negligibly slower than calculating a single agent action.

During training, the multiple agents acting in parallel each generate their own unique

state/action/reward sequences. As each agent is dealing with a different area of the image

this reduces the problem of non-stationarity, but due to the shared base image and correla-

tion between agent actions it does not resolve the problem completely. We therefore must

retain the ERB concept, but replace the single buffer with a collection of smaller per-agent

buffers, maintaining state/action/reward sequence chronology within each sub-buffer. Ad-

ditionally, it is then possible to ensure that all sub-buffers receive sufficient attention during

sampling, reducing the likelihood that anatomical features local to a specific region might

be overlooked. Buffers for points that move outside of some defined region of interest (e.g.,

for brain registration those points outside the skull in free space) may also be ignored, re-

ducing the influence of irrelevant data and most likely increasing learning rate or accuracy.

For each training step the specific information each agent stores in its buffer is the initial

image patch state sp, the most recently selected action a, the resulting reward r, and a

binary value t noting whether that step was the end of the registration sequence.

For Q-value prediction, the action histories of a node and its neighbours are converted

to a 1-hot encoding sah. Histories are zero padded for any missing neighbours or in cases

where history length reaches before the first step. The full state s then consists of the

combined action history and image patch, s = sp ∪ sah. The state s is then used as input

for the Q-value function.

50

4.1.3 Coarse-to-Fine Registration

Limiting the agent’s state information to a window surrounding the associated point in-

creases speed and prioritizes relevant information, but it limits the agent’s capture radius.

If the agent cannot see any corresponding features between the images at the same time,

it is unlikely to be able to find a reasonable solution. To address this problem images are

registered in an iterative coarse-to-fine manner. Registration at lower resolutions is much

faster, but produces a less accurate result. However, by first registering a low-resolution

with few control points, it is possible to find a transformation that, when applied to the

higher-resolution version of the moving image, brings it within the capture radius of an

agent trained to register at that finer scale.

4.2 Training

4.2.1 Data Augmentation

Due to the limited training data available for most medical applications, data augmentation

is included in the training process to reduce the risk of model overfitting. Whenever a new

training pair is to be loaded, a randomized b-spline transform is generated. Each parameter

of the augmentation b-spline is independently sampled from a normal distribution with

zero mean and a user-determined standard deviation, where that standard deviation is

selected according to the images of interest and the plausible range of deformations they

may contain. The resulting transform is applied to both members of the original image

pair as read from disk to produce a modified unique aligned image pair, which is then used

as input for agent training. As a result every image pair encountered by the agent should

be at least slightly different, even when considering multiple pairs generated from the same

base data.

Rigid transformations were not used in data augmentation as they would not change

the appearance of local features, and the uniform and repeating nature of the agents means

that small rigid translations should not have any noticeable effect. Large rigid translations

are assumed to be addressed by simple pre-processing removing useless large empty regions

of the images.

51

4.2.2 Agent Training

A separate agent is trained for each resolution scale to be used: full resolution, 1/2 full, 1/4

full, and 1/8 full. Doubling resolution between scales simplifies calculations and reduces

noise from interpolation. Before training, for each resolution one must select spline-order,

spline mesh size, step size, and state history length, action history length, and window

size. Algorithms 6 and 7 are then used to train each agent. During training actions are

selected according to an ε-greedy policy, and the value of ε changes throughout execution. It

begins at ε = 1, selecting all values randomly as the net is initially untrained. As training

progresses ε decreases linearly with each step, until reaching and remaining constant at

some value εfinal after a specified number of steps. This encourages high exploration of

the state-space early on in training while agent performance is poor, but as performance

improves and ε falls random actions are reduced, meaning late training focuses more on

the areas of state-space very near regions encountered during successful operation. This

allows greater accuracy, as network capacity is not wasted learning how to handle states

that would only be encountered during already poor agent operation.

52

Input: Image pair database Dpairs, training hyperparameters
Output: Trained DQN model parameters
while step < stepmax do

// Load images

{If,file, Im,file} ∼ Dpairs;
// Apply data augmentation to raw images

θaug ∼ N (0, σ2
aug);

If,aug = If,file ◦ T (θaug, φaug);
Im,aug = Im,file ◦ T (θaug, φaug);
// Sample ground truth warp

θGT,r ∼ U(−xtrain, xtrain);
θGT,nr ∼ N (0, σ2

train);
θGT = θGT,nr + θGT,r;
// Apply ground truth warp to fixed image

If = If,aug ◦ T (θGT , φ);
Im = Im,aug;
// Use current pair for training

Run per-pair inner training loop shown in Algorithm 7
end

Algorithm 6: Agent training process. Variables described in Table 4.1. Visualization
shown in Figure 4.2

53

t = 0;
while t < tmax and not (apt = “stop′′ ∀ p) do

t = t+ 1 ;
foreach control point p do

Sample spt = {If (Wp), Im(Wp) ◦ T (θbsp, φ)};
if U(0, 1) < εstep then

Choose random action apt ∈ A
else

Select best at = argmax
a

Q(spt , a)

end
Update θbsp according to apt ;
if apt = “stop′′ then

if ||θPGT,t − θPbsp,t|| ≤ stepSize then
rpt = 1;

else if ||θPGT,t − θPbsp,t|| ≥ rewardRad then
rpt = 0;

else

rpt =
(||θPGT,t−θ

P
bsp,t||−rewardRad)

(stepSize−rewardRad) ;

end

else
rpt = (||θpGT,(t−1) − θ

p
bsp,(t−1)|| − ||θ

p
GT,t − θ

p
bsp,t||)/stepSize;

end

end
Compare ∆θbsp and θGT to find rewards rt;
Save all st, at, rt to ERB;
if steps % updateFreq = 0 then

Sample ERB and use for gradient descent update on DQN;
end

end
Save final spt+1 = {If (Wp), Im(Wp) ◦ T (θbsp, φ)} to ERB;

Algorithm 7: Inner loop of Algorithm 6, generating training data from prepared im-
age pairs and training DQN. Variables described in Table 4.1. Visualization shown in
Figure 4.2

54

Symbol Description
Dpairs Dataset containing all training images
step Current training step

stepmax Total number of steps to take during training process
If,file and Im,file Fixed and moving images, as loaded from files
If,aug and Im,aug Fixed and moving images after data augmentation

If “Target” fixed image, with a known ground-truth transform applied
θaug Parameters for data-augmentation b-spline

θGT,r θGT,nr θGT Rigid component, non-rigid component, and combined parameter vector
for ground truth b-spline used to create If

θbsp Parameters for “active” b-spline repeatedly applied to Im
φaug Hyperparameters for data-augmentation b-spline
φ Hyperparameters for ground-truth and “active” b-splines

σaug σtrain xtrain Control of data augmentation and target image deformation
t Step count for current image pair

tmax Maximum number of steps to spend on a given image pair
st Input state vectors for step t
rt Rewards received at step t
at Actions taken at step t
xp Subset of vector x associated withcontrol point p, where x ∈ {s, r, a, θ}
Wp Region definition for “window” surrounding control point p
p Control point currently under consideration
εstep Likelihood of selecting a random action, changes throughout training

as step increases
Q(s, a) State-value estimation function as applied to state s and action a
U(a, b) Uniform distribution ranging from a to b
N (µ, σ2) Normal distribution with mean µ and standard deviation σ
ERB Experience Replay Buffer

updateFreq Number of steps to wait between performing learning updates on DQN
and a new training pair is loaded

stepSize Distance a control point moves with each step
rewardRad Distance from ground truth beyond which “stop” actions return

a reward of zero

Table 4.1 Agent training variables used in Algorithms 6 and 7 and Figure 4.2

55

Figure 4.2 Visualization of the agent training process described by Algo-
rithms 6 and 7. Variables described in Table 4.1.

56

For all movement actions, the reward signal is defined as the change in distance between

the current b-spline parameter vector θPbsp and the known ground-truth b-spline parameter

vector θPGT , where θP is the subset of parameters in θ associated with control point P :

rt =
||θpGT − θ

p
bsp,(t−1)|| − ||θ

p
GT − θ

p
bsp,t||

||θpbsp,t − θ
p
bsp,(t−1)||

(4.1)

This change in total error ∆||(θpGT − θ
p
bsp)|| is divided by step size ∆||θpbsp|| to normalize

the reward to [−1,+1].

If at = stop then the corresponding reward is determined by the remaining error

||θPGT,t − θPbsp,t||. Within one step of ground truth, the maximum reward is given. Larger

errors result in a lower reward, with the reward decreasing proportional to error until it

reaches zero at some user specified maximum error. Additionally, the maximum reward

starts at zero and linearly increases until reaching a plateau after some number of training

steps. This serves a similar purpose to using an ε-greedy policy, encouraging exploration

early in training. Note that to prevent early stopping the maximum a = stop reward after

reaching the plateau should be no higher than the lowest possible reward that could be

given following perfect action selection.

There are two end conditions for an image pair, after which the next pair is loaded. The

first is that “stop” action is selected for all control points simultaneously. The second is that

the number of actions taken with the current image pair has exceeded the per-pair limit.

This second condition is most useful early in training, as untrained agents are unlikely to

work in tandem to trigger an intentional stop, and are more likely to oscillate or wander

far from any informative region. Limiting the number of actions per pair ensures training

can continue without imposing any pre-defined constraints on agent behaviour.

When reading the state, W is the pixel/voxel window surrounding P . When I(W) is

sampled, if the window would reach outside the image it is zero padded. During DQN

training, after every 5000 actions the agent is given a number of pairs from the validation

set with which to test its performance. This has the same framework as the agent training,

although without touching the ERB or updating the DQN. The final error for each test

run (i.e., the distance from ground truth when the agent chooses to stop) is recorded. The

distribution of this validation error during training, and its change as training progresses,

is used to evaluate performance during training.

57

4.3 Registration and Evaluation

Registration using the trained agents is very similar to the training example, with the

exception that there is no reward signal, no ERB, no network updates, and epsilon is

zero. Additionally, the coarse-to-fine registration path is used. This process is outlined in

Algorithm 8 with a visualization shown in Figure 4.3.

Input: Image pair If , Im, trained DQN model parameters for all scales
Output: Transform parameters θbsp
foreach scale k ∈ 1..K do

Resample If,k, Im,k from If and Im;
Load agent Q-network for current scale;
repeat

foreach control point p ∈ P do
Resample spt = {If,k(W), Im,k(W) ◦ T (θbsp,k, φk)};
Select best apt = argmax

a
Qk(s

p
t , a);

end
Update θbsp according to all apt ;
Save new θbsp in buffer;
Examine θbsp buffer for revisited values;

until apt = “stop”∀ p ∈ P , or oscillation detected;
Update Im = Im ◦ T (θbsp,k, φk), scaling θbsp,k, φk to match full scale;

end

Algorithm 8: Registration process using trained agents.

A buffer of user-determined length records recently seen values of θbsp, to be used as

a safeguard against infinite oscillation. If the same θbsp appears in the buffer more than

once, the algorithm has begun repeating and is assumed to be oscillating around some local

optimum that it cannot quite reach. This secondary stop condition is not expected to be

triggered with any regularity, as by this point the agent has been trained when to stop

correctly, and so it is simply included to prevent a potential mode of failure that would

lock the algorithm in an infinite loop should it occur.

58

Figure 4.3 Visualization of the coarse-to-fine registration process described
by Algorithm 8. Three scales are shown here for explanatory purposes, but
the actual number is determined by the user prior to agent training.

59

4.4 Summary

This chapter has described the nature and structure of the system under investigation

in this thesis. Details are provided regarding the application of b-spline transforms, the

architecture of the DQN, and how agents using that DQN are used to update the transform.

Training is described in detail, including what data is used, the meaning of the predictions

made during action selection, and how the reward signal determines action quality. Post-

training system execution is discussed briefly, as it is nearly identical to the training process

after removing the subsystems related to sample generation and network updating.

The next chapter will examine the performance of this system, showing results for brain

MRI registration.

60

Chapter 5

Experiments and Analysis

5.1 Overview

Before evaluating agent performance, it was first necessary to perform a number of exper-

iments examining the effect of individual hyperparameters on agent performance, with a

focus on selecting optimal values for a specific application. These tests focused on agents

operating at a coarse scale, as the reduced hardware requirements allowed more tests to

be performed within the available timeframe. The results are still informative, however,

as the purpose of these initial tests was not to evaluate the performance of the full and

final system but rather to examine relative agent performance and to choose a training

environment expected to produce the best results. The test format and final parameter

selection are described in Section 5.3, and the full results are discussed in Appendix B.

Having completed this first set of tests and selecting suitable hyperparameters, the

tests discussed here were used for more in-depth investigation of agent performance. The

primary concern was to investigate whether, at each scale before 1:1 in the coarse-to-fine

process, the associated agent is capable of consistently registering images at that scale with

error low enough that it is within the capture radius of the next agent. This is necessary

to demonstrate reliable function of the coarse-to-fine process, as the agent of each layer

after the first must rely on previous layers to supply transformed images with starting

error within that agent’s capture radius. With each scale change resolution doubles and

capture radius is approximately halved. As such, each agent for a scale coarser than 1:1

will be deemed functional if it is able to produce a registration with error below half of that

scale’s starting error. The accuracy of the 1:1 scale agent is also examined, as that is what

61

will most strongly influence the final error of the full system. Monomodal performance

is explored in Section 5.4, and then compared to multimodal performance in Section 5.5.

Agent performance on the training and validation sets is examined in Section 5.6, addressing

the risk of overfitting. Finally, Section 5.7 discusses some of the problems encountered and

their potential solutions.

Aside from these main tests, some additional results stemming from specific events

during development are discussed in Section 5.2.

5.1.1 Test Structure

For all tests discussed here, agent training is performed as described in Section 4.2.2, with

periodic accuracy evaluations performed throughout the training process. Each evaluation

consists of multiple test registrations at that specific scale using the validation dataset.

Initial deformations follow the same distribution as in the training algorithm, for an average

initial per-control-point deformation of 6 steps. The exact number of tests performed during

each evaluation is not constant; rather, 2500 steps are taken with a new test beginning each

time the previous test concludes, generally resulting in several hundred test registrations

for each evaluation phase. This prevents poor agent performance from dramatically slowing

the training process with overly long tests.

5.1.2 Target Data

Training and testing were performed using MRI data from the Human Connectome Project [8].

While such images are naturally 3-dimensional, processing full 3D MRI volumes was im-

practical in the available testing environment. GPU memory limitations combined with

the larger network size of 3D convolutional layers resulted in insufficient space for an ap-

propriately sized experience replay buffer, and applying transforms was slow enough that it

was infeasible to perform the appropriate hyperparameter exploration in the time available.

Therefore a 2D version of the system was implemented to allow testing of the core concept.

If performance for the 2D case is promising, that may inspire future testing of the 3D case

on more powerful hardware.

With this change, it became necessary to create 2D images from the available 3D vol-

umes. This was accomplished by extracting the central transverse planes from each of the

1113 T1/T2 pairs, producing two aligned 256x320 8-bit/pixel greyscale images per volume

62

pair. The central transverse plane was selected as it had a consistently high ratio of brain

to empty space content, and the brain regions featured a variety of visually distinct regions

and features. For coarse-to-fine training copies of these images were generated at 1:2, 1:4,

and 1:8 scale, as shown in Figure 5.1. For each scale 890 images were used for training and

223 were used for validation.

5.2 Extracts from the Development Process

During development there were some challenges and events of note that will be described

here briefly. While not conclusive results of particular import on their own, they influenced

design and implementation decisions and are included here for the sake of completeness.

Image Processing ITK libraries were used for spline-based image deformation early

on, but both the transformation calculation and image resampling were found to be too

slow. Specifically, they were limited to running on the CPU, which both resulted in slower

calculation and introduced significant overhead as image data was copied from system RAM

to GPURAM with every ERB update. Therefore it was necessary to reimplement nearly

all image handling code.

Even when fully performed on the GPU, calculating the dense optic flow transformation

from the B-spline parameters introduced a severe speed limitation. The solution developed

here was to store several partially computed large matrices related to the calculations,

set up according to all predetermined hyperparameters, and then to use the transform

parameters to index and combine those results. Specifically, u and v in Equation 2.12 are

unique only for 0 ≤ x < nx and 0 ≤ y < ny, and are periodic with regards to x and y in

general. Therefore the Bl(u)Bm(v) products are pre-calculated for all integer values of x, y

within that range, for each l,m pair. Every time the dense transformation field is required

these precomputed values are then multiplied by the corresponding local parameters for

each area, which is highly parallelizable and relatively quick to perform on the GPU.

Double DQN As mentioned in Section 3.7.1, a double DQN [34] modification may be

used to address the overestimate of action Q-values observed with DQN networks applied

to certain tasks. There does not yet appear to be a clear way to predict for which tasks

this overestimation will occur, and when it occurs that can reduce the performance of

63

Figure 5.1 Example of scaled T1 images. Upper left is 1:1, upper right is 1:2,
lower left is 1:4, and lower right is 1:8. The yellow line in each image represents
the distance spanned by 20 steps at that scale. As with all experiments in this
chapter, one step corresponds to a change in control point position of one pixel
at that agent’s associated scale. Base image from the Human Connectome
Project [8].

64

trained agents. A double DQN modification was therefore implemented here to examine

the effect on performance, and to ensure this potential overestimation would not affect this

application.

Early tests (following the process in Section 5.3) showed no change in accuracy, however,

and so it was concluded that this was unlikely to be a rewarding avenue of inquiry. The

modification was therefore removed to eliminate the associated minor speed and memory

costs. While the double DQN approach did not affect accuracy in this case, it is unclear

whether that is because this approach to registration does not trigger Q-value overestima-

tion or whether double DQN modification does not noticeably reduce such overestimation.

Parallelization Early work considered a non-parallel training regime. For each run, one

control point would be randomly selected to be the “active” point, and no other points

would move. This reduced overhead and allowed for larger state vectors and longer runs

to be stored in the same amount of ERB memory. However, when actual registration was

attempted and all points were free to move then the accuracy would degrade to the point

of uselessness.

Error from the singular point prediction was expected, especially in low-information im-

age regions, partially due to lack of communication between agents. The initially intended

solution to this was to augmenting the network, adding additional layers to regularize the

control point actions. For each step the original network would predict all action Q-values,

which would then be collected and treated as a n × i × j image, for i × j nodes with n

possible actions each. A second network would then be trained to predict the correct i× j
action set from this, allowing less certain control points to be influenced by their more

certain neighbours and reducing single-point-errors.

Preliminary testing was performed, but the mean reduction in registration error was

most often indistinguishable from zero. It seemed that either accuracy could not be im-

proved by the second network, or that the training time required to observe improvement

was far beyond what was feasible or acceptable. The system was therefore redesigned as

explained in Chapter 4.

The subsequent approach to parallelization more closely resembled the SoC methods

used by Seijen et al. [35], but it was found that significant simplification was necessary to

accommodate the volume of data in use. With that simplification many other aspects of

65

the original became superfluous or detrimental and were removed, eventually resulting in

the system described in Section 4.1.2.

5.3 Hyperparameter Testing

The hyperparameter values shown in Table 5.1 are used for all tests, unless otherwise noted.

These values were determined by varying one hyperparameter at a time and performing

a simple hillclimbing optimization. For each step training was repeated multiple times

using different values for the hyperparameter of interest, in each case selecting the value

that resulted in the best performance. The process was repeated until performance was

no longer improved. Appendix B contains the results of a number of tests recreating

the final cycle of this refinement process, and analyses the influence of each individual

hyperparameter.

Parameter Notation Default Value
Reward discount γ 0.3

Learning Rate α 10−5

Experience replay buffer size |ERB| 4 · 104 ({st, at, rt} records)
Patch size |P | 25x25 (pixels)

Action History Length |Hact| 18 (actions)
Neighbour Action History Length |Hnghbr| 14 (actions)
Lowest random action probability εfinal 0.15

Number of steps before reaching εfinal Nε 8 · 104 (steps)
Maximum reward for “stop” action rsm,final 0.3

Number of steps before max “stop” reward Nr,stop 8 · 104 (steps)
Radius for max “stop” reward Radmax 1 (pixel)
Radius for any “stop” reward Radany 6 (pixels)

Training NR deformation std. deviation* σtrain 32; 16; 8; 4 (pixels)
Training global rigid deformation range* xtrain 16; 8; 4; 2 (pixels)

Control point grid size* - 4x4; 8x8; 8x8; 16x16 (# points)

Table 5.1 Default experiment hyperparameters. Entries marked with * are
scale specific, and show in order the values for 1:8, 1:4, 1:2, and 1:1 scale
agents.

66

5.4 Monomodal Performance

Using the hyperparameters found as described in Section 5.3, an agent was trained for 5·105

steps in accordance with Section 5.1.1. Figure 5.2 shows the results of the validation tests

performed throughout training for each agent, demonstrating that accuracy improvement

continues throughout the entirety of training for every scale. The rate of improvement

continually decreases as training progresses, but performance at each scale is still clearly

improving throughout the whole process, even at the end of the training sequence. This

suggests that the errors observed in this chapter should be taken as upper bounds, and

that with sufficient time for further training one should expect better performance.

Increased resolution seems to consistently result in worse performance during early

training, lower error once trained (if given sufficient time), and lower variation of error.

Comparing the most disparate resolutions: the 1:8 scale agent achieved an average error of

3.8 steps with 95% of results falling between 2.3 and 5.4 steps, while the 1:1 scale agent’s

average error rate was 2.5 steps with 95% of results falling between 2.9 and 2.0 steps.

While coarser agents must simply reduce error below the subsequent agent’s capture ra-

dius, the 1:1 scale agent determines final error of coarse-to-fine registration. It is fortuitous

that it is observed to have the greatest accuracy and consistency.

It is worth reiterating here that the error for agents is measured in steps, which are

not equal between scales. Step size may be altered during initial configuration, but in all

training examples examined here one step changes the control point position by one pixel at

the relevant scale. Therefore, converting the previously mentioned examples and comparing

them in the context of the full-size image, the 1:8 scale agent has a mean error of 30.4 pixels

while the 1:1 scale agent has a mean error of 2.5 pixels. The initial regional misalignments

of the images shown to agents at the coarsest scale have an average displacement of 15%

of the image’s longest axis.

Considering the context of the full registration framework, we unfortunately find that

the 1:8 and 1:4 scale agents do not improve enough to consistently reach the capture radius

of the subsequent agent, preventing full coarse-to-fine registration from working with this

degree of training. Given that agent accuracy was observed to have not reached a maximum

in the allotted training time, as evidenced by performance for these agents continuing to

improve at a steady albeit slow rate, it is plausible that with further training it may reach

the necessary accuracy.

67

The 1:2 scale agent was observed to reliably produce registrations that reach the cap-

ture radius of the 1:1 scale agent. This means that, while full coarse-to-fine registration

is not achievable with this level of training, partial coarse-to-fine registration may be per-

formed by starting at 1:2 scale. This two agent system would be capable of reducing initial

misalignments with an average error of 12 pixels down to an average error of 2.5 pixels.

An example registration sequence of the 1:2 scale agent is shown in Figure 5.4. The

fixed, initial moving, and final moving images are shown in greater detail in Figure 5.3. This

registration was the final evaluation registration performed during the 1:2 scale training

sequence seen in Figure 5.2.

5.5 Monomodal vs Multimodal Performance

Multimodal performance was observed to be significantly worse than that of corresponding

monomodal tests. At 1:8 scale, as shown in Figure 5.5, behaviour was similar to the

monomodal case though with worse accuracy. Error continually decreased with no period

of prolonged consistent error being observed and so, as with the monomodal case, one may

predict that with further training this accuracy would continue to improve. However, the

much slower rate of improvement relative to the monomodal case suggests it would take a

very long time.

In a departure from the results of all other tests, higher resolution multimodal agents

offer no useful contribution to registration. At higher resolutions the agents’ error was

nearly identical to the error distribution used during initial image deformation generation,

as over 95% of control points were observed to stop within 1 step of their starting position.

This is despite each point taking an average of at least 12 steps. Figure 5.6 highlights this

lack of useful improvement, showing that during validation the agents do not move towards

or away from their goal. This behaviour emerged after approximately 8 · 104 training steps

and changed very little throughout the remainder of training. While there was very minor

improvement, the rate of change is low enough that it is infeasible to pursue testing with

currently available hardware.

68

Figure 5.2 Extended training for monomodal T1. Graphs are for 1:8 scale
(upper left), 1:4 scale (upper right), 1:2 scale (lower left), and 1:1 scale (lower
right). For each sub-graph vertical axis measures per-attempt error, where
the error of each attempt is calculated by taking the mean of the per-agent
differences between final transform parameters and ground-truth transform
parameters. Step size = 1 pixel/step, so given error is in both steps and pixels.
Horizontal axis measures the number of actions taken before the corresponding
validation test was performed, where each such action is the aggregate of all
agent actions at a given timepoint. More training actions also result in more
SGD updates to the network weights, due to the structure of training detailed
in Chapter 4. The red dots indicate the mean value of all measured errors for
validation tests performed after the indicated amount of training. The green
region indicates the range of errors observed in the 50% of tests with error
levels closest to the mean test error. The blue region is as the green region,
but for 95% of the results.

69

Figure 5.3 Example monomodal registration results for 1:2 scale agent. The
upper image is the full fixed image, If , with a highlighted segment. The
lower images are expanded views of that segment in red, overlaid with the
corresponding portion of the moving image Im in blue. The lower left uses Im
prior to registration, showing many clear misalignments. The lower right uses
Im after registration, and shows only minor misalignment in part of the skull.
The full registration sequence is shown in Figure 5.4. Base images are from
the Human Connectome Project [8]

70

Figure 5.4 Example monomodal registration sequence for 1:2 scale agent.
Shows detail view taken from Im, corresponding to the highlighted section
in Figure 5.3. The first image, in the upper left, is from the initial moving
image. Images proceed in a sequence, left to right and then top to bottom,
showing all intermediate states occurring throughout the registration process.
The extract from the final moving image, the result deemed registered by the
agents, is shown in the lower right. One step per agent is executed for each
image in sequence. The full fixed image If and detail alignments are shown
in Figure 5.3. Base images are from the Human Connectome Project [8].

71

Figure 5.5 Extended training for 1:8 scale multimodal T1/T2. Axes and
legend definitions are the same as in Figure 5.2.

72

Figure 5.6 Extended training for multimodal T1/T2. Shows the distribu-
tion of the change in agent positions throughout validation for 1:8 scale (left)
and 1:2 scale (right). It may be observed that, aside from ceasing early nega-
tive performance, throughout most of the training process the 1:2 scale agent
causes little to no net change in error and performance improves at an incred-
ibly slow rate relative to other tests. In contrast, the 1:8 scale agent causes
consistent reduction of error and, while improvement is still slower than the
monomodal case, as training progresses said improvement is faster than with
the finer scale. Vertical axis measures the total change in error between the
beginning and end of each registration attempt, where the error is calculated
by taking the mean of the per-agent differences between final transform pa-
rameters and ground-truth transform parameters. Step size = 1 pixel/step,
so given error is in both steps and pixels. Horizontal axis measures the num-
ber of actions taken before the corresponding validation test was performed,
where each such action is the aggregate of all agent actions at a given time-
point. More training actions also result in more SGD updates to the network
weights, due to the structure of training detailed in Chapter 4. The red dots
indicate the mean change in error for all attempts in the validation tests per-
formed after the indicated amount of training. The green region indicates the
range of changes observed in the 50% of tests with change-in-error levels clos-
est to the mean change. The blue region is as the green region, but for 95%
of the results.

73

5.6 Training vs Validation Performance

The sequence of changes in agent performance that occur throughout the learning process

varies depending on scale and modality tested, but in each case it was observed to follow

the same pattern for both the training and validation sets. The transition from rapid

improvement during early training to slower improvement would occur at the same time

for both datasets, and if a plateau of consistent error was observed it would in every case

occur for both datasets. Some example graphs are shown in Figure 5.7.

This is noteworthy, as it shows overfitting is unlikely to be occurring. When the agent

learns a policy from the training set it is reflective of the underlying problem and generalizes

to the validation set. Further, with the higher resolution multimodal agents for which a

functional policy is not learned, it is difficult to argue that the algorithm is overfitting the

training data when it is hardly fitting that data at all. The failure of the algorithm to learn

anything useful in that exact context, despite functioning when given the same task with

reduced image detail (lower resolution multimodal) or given a simpler variation of the task

with the same level of image detail (high resolution monomodal), may suggest that the

failure is related to insufficient network capacity. In any case, such errors are not caused

by overfitting.

In discussing these results, it is important to explain the seemingly counter-intuitive

error relation in Figure 5.7, in which training set error is most often higher than validation

set error. As explained in Section 4.2.2, epsilon-greedy action selection is used during

training set registrations as part of the learning process, while greedy action selection is

used for validation set registrations to monitor performance. This increases the measured

error for training set registration, as seen in the results, but would not change the behaviour

noted above regarding improvement or lack thereof.

74

Figure 5.7 Accuracy for training and validation sets during extended train-
ing. Top row shows results for monomodal T1, from two training sequences
also shown in Figure 5.2. Bottom row shows results for multimodal T1/T2,
from the training sequences shown in Figure 5.6. The red dots indicate the
mean value of all measured errors from validation tests performed after the
indicated amount of training. The blue crosses indicate the mean value of all
measured errors during the training registrations undertaken between the indi-
cated step number and and the previous validation test loop. Axes definitions
are the same as in Figure 5.2.

75

5.7 Limitations and Possible Redress

5.7.1 Training Time

As training was performed on a shared GPU with inconsistent background load, the time

required for any given attempt would vary significantly. Tests of the duration shown in

Figures 5.2 and 5.5–5.7 were observed to take between 20 and 110 hours to finish training,

with a median length of approximately 40 hours. Inconsistent training times were observed

both between different tests, and between subsequent executions of the same test. This

large variation in training times reduces the utility of estimates of the real-time duration

of future training.

As mentioned in Section 5.4, the monomodal agents for 1:8 and 1:4 scale did not reach

the desired level of accuracy, but neither did their performance reach a plateau. Consistent

improvement was observed during the latter portion of their training, and at the rate

they were improving it seems likely that extending that training to five times the original

duration would result in the desired accuracy. One must recall that the agents of these

scales do not need to be exceptionally accurate, just “close enough” to consistently be

within the next agent’s capture radius. Therefore with 160–880 hours of further training

time it should be possible to perform coarse-to-fine monomodal registration.

It is less clear how much additional time training the 1:8 scale multimodal agent may

take. While improvement was observable, the small magnitude and slow rate of change

are such that it would be unreasonable to extrapolate the trend far enough to make any

meaningful time estimate. Observing that the agent was able to improve is promising,

given the performance of the other multimodal agents, but more significant changes may

be necessary to achieve desirable results.

5.7.2 Network Capacity

For the multimodal agents it would be worthwhile to investigate the effects of increased

network capacity. As discussed briefly in Section 5.6, the system is capable of training

monomodal agents and low resolution multimodal agents with at least some degree of suc-

cess. This suggests there is no specific and singular component of the task that is incom-

patible with the training method, and that the failure to train higher resolution multimodal

agents comes from combining the complexity of increased resolution and multimodality.

76

This combination results in the most complex visual relationships of all test cases ex-

amined here, and therefore requires that the network store the most information. At a

minimum it becomes necessary for the agent to learn twice as many low level feature rep-

resentations as it would in the monomodal case. That failure occurs when the amount of

information to store increases, while the basic nature of that information does not change,

suggests that the network is incapable of storing the additional information.

The most direct method of increasing the network’s capacity would be to increase

its size and number of connections. That most of the increased complexity is related

to low-level visual representation suggests that increasing the number of kernels in the

first few convolutional layers would be most relevant. One may estimate that learning

feature representations of two modalities will require approximately twice as many kernels

as learning the same information for one modality, assuming both modalities are of a

similar level of visual complexity. However, due to the structure of the network (outlined

in Section 4.1.2), doubling the number of kernels in the first three convolutional layers

increases the memory used by the network to 195% of its prior requirements. This change

was unfortunately impractical to implement given the other requirements of the algorithm.

Between the agent’s network, the Experience Replay Buffer, and the images involved, in

addition to inconsistent background GPU use, there was precious little spare GPU memory

to work with. Any enhancement made to the network would be at the expense of another

component, and each such reduction would require testing to ensure it did not degrade

performance more than the bolstered network might aid it. This testing is simple, but

would have required more time than was available.

77

Chapter 6

Conclusions and Future Work

The results in Chapter 5 suggest that the overall framework discussed in Chapter 4 could

become a useful method of medical image registration, but further work is necessary before

reaching that point.

The success of higher scale monomodal tests shows that subdividing global registration

into a collection of local registration problems is a reasonable approach to simplifying

the challenge of non-rigid registration. A single deep-RL agent was found to be capable

of registering any arbitrarily selected region, and multiple instantiations of that agent

operating in parallel and communicating were able to achieve complete registration. The

inherently parallel nature of the method should also scale well with additional hardware

resources.

Coarser scale tests for both monomodal and multimodal are less positive, but still

suggest a path forward. Coarse scale agent training functions, and continues improving

throughout all observed training without reaching a performance plateau. This suggests

failure to reach the capture radius of subsequent scales is not necessarily due to an inherent

limitation of the method, and may simply be due to insufficient available training cycles.

With more time, or more powerful hardware, it is plausible that adequate performance

could be achieved for these scales. The coarse scale monomodal cases in particular are

close to functioning, and should reach adequate performance with a feasible increase in

training time. As final accuracy is determined by the accuracy of the highest scale agent,

merely “adequate” performance of these coarse layers should not be a problem for overall

system performance.

78

Higher scale multimodal registration is the most concerning result, due to the near lack

of observable improvement. However, the more comparable performance of monomodal

and multimodal agents at coarser scales suggests that the failure of less coarse multimodal

registration is not due to an essential difference between multimodal and monomodal reg-

istration that these methods cannot overcome, but rather that at high detail levels the

additional complexity of the multimodal case may surpass what this exact parameteriza-

tion of the model is capable of handling. Given that training agents to handle full scale

monomodal registration is already quite taxing on available resources, if multimodal regis-

tration is possible it is likely unachievable without more powerful hardware. It is not certain

that the method can work for this application, but it merits further investigation. And,

while potentially expensive, said investigation should be relatively simple from a research

perspective.

For similar reasons, 3D image registration remains unaddressed. At higher resolutions

GPU memory limitations prevent an experience replay buffer of sufficient size if it must

accommodate 3D image patches and 3D convolutional networks. However, there is no part

of the proposed methods that are inherently tied to a specific dimensionality, and neural-

net image analysis has been shown to adapt well to 3D data. With sufficient hardware

resources it should be viable to attempt this method for 3D registration.

If one were to make a final conclusion summarizing these results, it would be that this

application of reinforcement learning to medical image registration seems to have potential,

and merits further investigation. It was demonstrated to work in a very limited circum-

stance (partial coarse-to-fine monomodal registration), and the tests performed suggest

that simply allocating more time may be enough to resolve the majority of those limi-

tations. Multimodal registration is less certain, but should more powerful hardware be

available it is similarly worth investigating. The results shown here serve less to prove this

exact implementation of the method is superior to other approaches, but rather to argue

in favour of further attention.

79

Bibliography

[1] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration:

A survey,” IEEE transactions on medical imaging, vol. 32, no. 7, p. 1153, 2013.

[2] L. G. Brown, “A survey of image registration techniques,” ACM computing surveys

(CSUR), vol. 24, no. 4, pp. 325–376, 1992.

[3] T. Arbel, X. Morandi, R. M. Comeau, and D. L. Collins, “Automatic non-linear mri-

ultrasound registration for the correction of intra-operative brain deformations,” Com-

puter Aided Surgery, vol. 9, no. 4, pp. 123–136, 2004.

[4] M. Simonovsky, B. Gutiérrez-Becker, D. Mateus, N. Navab, and N. Komodakis, “A

deep metric for multimodal registration,” in International conference on medical image

computing and computer-assisted intervention, pp. 10–18, Springer, 2016.

[5] G. Haskins, U. Kruger, and P. Yan, “Deep learning in medical image registration: A

survey,” arXiv preprint arXiv:1903.02026, 2019.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT

Press, 2018.

[7] F. C. Ghesu, B. Georgescu, T. Mansi, D. Neumann, J. Hornegger, and D. Comaniciu,

“An artificial agent for anatomical landmark detection in medical images,” in Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention,

pp. 229–237, Springer, 2016.

[8] D. C. van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens, R. Bucholz,

A. Chang, L. Chen, M. Corbetta, S. W. Curtiss, et al., “The human connectome

80

project: a data acquisition perspective,” Neuroimage, vol. 62, no. 4, pp. 2222–2231,

2012.

[9] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality

image registration by maximization of mutual information,” IEEE transactions on

Medical Imaging, vol. 16, no. 2, pp. 187–198, 1997.

[10] D. De Nigris, D. L. Collins, and T. Arbel, “Multi-modal image registration based on

gradient orientations of minimal uncertainty,” IEEE transactions on medical imaging,

vol. 31, no. 12, pp. 2343–2354, 2012.

[11] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,

T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” International

journal of computer vision, vol. 65, no. 1-2, pp. 43–72, 2005.

[12] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from

maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10,

pp. 761–767, 2004.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer

vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2,

pp. 1150–1157, IEEE, 1999.

[14] L. Wilkinson, The Grammar of Graphics. Springer Science+Business Media, 2005.

[15] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes,

“Nonrigid registration using free-form deformations: application to breast MR im-

ages,” IEEE transactions on medical imaging, vol. 18, no. 8, pp. 712–721, 1999.

[16] B. Lorensen, “Example B-spline deformation of a liver CT, from

https://www.slicer.org/wiki/file:bsplexample grid animgif.gif,” 2010.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C. Cambridge University Press, 1992.

[18] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convo-

lutional networks,” IEEE transactions on pattern analysis and machine intelligence,

vol. 38, no. 2, pp. 295–307, 2016.

81

[19] B. Fischer and J. Modersitzki, “Ill-posed medicine—an introduction to image regis-

tration,” Inverse Problems, vol. 24, no. 3, p. 034008, 2008.

[20] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing:

Theory and applications, pp. 7–15, Springer, 1987.

[21] E. I. George and R. E. McCulloch, “Variable selection via gibbs sampling,” Journal

of the American Statistical Association, vol. 88, no. 423, pp. 881–889, 1993.

[22] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” Journal of the Royal Statistical Society: Series B

(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[24] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung,

“Digital selection and analogue amplification coexist in a cortex-inspired silicon cir-

cuit,” Nature, vol. 405, no. 6789, p. 947, 2000.

[25] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in

generalized mlp architectures of neural networks,” International Journal of Artificial

Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122, 2011.

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proceedings of the 30th International Conference on Ma-

chine Learning, vol. 28, 2013.

[27] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in

convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[28] G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian,

J. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in

medical image analysis,” Medical Image Analysis, vol. 42, 02 2017.

[29] G. Wu, M. Kim, Q. Wang, Y. Gao, S. Liao, and D. Shen, “Unsupervised deep feature

learning for deformable registration of mr brain images,” in International Confer-

82

ence on Medical Image Computing and Computer-Assisted Intervention, pp. 649–656,

Springer, 2013.

[30] Q. V. Le, W. Zou, S. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-

temporal features for action recognition with independent subspace analysis,” 2011.

[31] D. Shen, “Image registration by local histogram matching,” Pattern Recognition,

vol. 40, no. 4, pp. 1161–1172, 2007.

[32] S. Miao, Z. J. Wang, and R. Liao, “A cnn regression approach for real-time 2d/3d

registration,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1352–1363,

2016.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[34] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning.,” in AAAI, vol. 2, p. 5, Phoenix, AZ, 2016.

[35] H. van Seijen, M. Fatemi, J. Romoff, and R. Laroche, “Improving scalability of rein-

forcement learning by separation of concerns,” arXiv preprint arXiv:1612.05159, 2016.

[36] R. Liao, S. Miao, P. de Tournemire, S. Grbic, A. Kamen, T. Mansi, and D. Comaniciu,

“An artificial agent for robust image registration,” in Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[37] K. Ma, J. Wang, V. Singh, B. Tamersoy, Y.-J. Chang, A. Wimmer, and T. Chen,

“Multimodal image registration with deep context reinforcement learning,” in Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention,

pp. 240–248, Springer, 2017.

[38] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Fre-

itas, “Dueling network architectures for deep reinforcement learning,” arXiv preprint

arXiv:1511.06581, 2015.

83

[39] J. Krebs, T. Mansi, H. Delingette, L. Zhang, F. C. Ghesu, S. Miao, A. K. Maier,

N. Ayache, R. Liao, and A. Kamen, “Robust non-rigid registration through agent-

based action learning,” in International Conference on Medical Image Computing and

Computer-Assisted Intervention, pp. 344–352, Springer, 2017.

[40] S. Miao, S. Piat, P. Fischer, A. Tuysuzoglu, P. Mewes, T. Mansi, and R. Liao, “Di-

lated fcn for multi-agent 2d/3d medical image registration,” in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[41] L.-J. Lin, “Reinforcement learning for robots using neural networks,” tech. rep.,

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[42] D. Ziou, S. Tabbone, et al., “Edge detection techniques-an overview,” Pattern Recogni-

tion and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, vol. 8,

pp. 537–559, 1998.

[43] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATLAB-like environment

for machine learning,” in BigLearn, NIPS workshop, 2011.

84

Appendix A

Implementation Details

A.1 Code Structure

The implementation of the above algorithms is carried out using a modified and extended

version of the Google DeepMind deep Q-network [33]. Code is written primarily in Lua,

using Torch 7 [43] as a backend. Certain speed-critical image resampling code is written in

C to create a Torch module.

An overview of the code structure is shown in Figure A.1. It illustrates the entry points,

as well as library dependencies.

A.2 Code Description

Entry Points

ex train one agent.lua This executable script is invoked when training an agent to pro-

cess images at a single scale. It uses train agent.lua to perform this training.

ex train scale agents.lua This executable script is invoked when training multiple agents

to process images at each scale configured within opts agent.lua. It iteratively uses

train agent.lua to perform this training, calling it with different options each time.

ex test reg.lua After the necessary networks have been trained, this script is used to test

registration. It registers the specified images in a coarse-to-fine manner and evaluates

the system’s performance.

85

Figure A.1 Code structure, with entry points at top and denoted by trian-
gular component

86

ex scan gamma.lua This is an executable testing script which trains a separate network

for each of many possible γ values. It is used to observe the effect of γ on performance.

ex scan LR.lua Similar to ex scan gamma.lua, this script examines learning rate.

High-Level Control

initenv.lua This is an initialization function which is run once at startup to perform initial

setup. It loads the appropriate libraries, configures the GPU, and initializes the DQN.

opts agent.lua Configuration options are stored in this file. It controls all training, agent,

and network options not defined in convnet 2d a.lua or convnet 2d.lua.

train agent.lua The main agent training loop is found in this library. It is used to

train an agent, evaluate its performance, and log relevant training metrics. Via

initenv.lua, an agent is instantiated from NeuralQLearner.lua and an environ-

ment from splinewrap.lua, after which this library manages the interactions be-

tween them.

c2f reg.lua After the required agents have been trained, this library is used to perform

coarse-to-fine registration. It loads the pre-trained networks and the provided images,

and then performs registration at each scale in order of increasing resolution, using

the end results of each as the starting point for the next.

Neural Net Control

NeuralQLearner.lua This is the main interface for the Q-value predicting neural net-

work. Its main role is to predict action values from state information and to update

network weights during training.

parallel TT.lua This acts as a multiplexer, dividing state/action/reward data from par-

allel actors into sequences of individual agent actions, and sampling those action histo-

ries to provide training data. Memory management is perfomed by TransitionTable.lua.

TransitionTable.lua The Experience Replay Buffer is managed by this library, which is

used to store state, action, and reward history during training. It provides sampling

functions for NeuralQLearner.lua to use when updating network weights.

87

convnet 2d a.lua A network shape is defined by this configuration file. It controls the

number and size of convolutional and fully connected layers used when agents are

configured to use local and neighbour action history as a component of the state

vector.

convnet 2d.lua This configuration file is similar to convnet 2d a.lua, but defines the

network shape when not considering action history.

convnet acthist.lua When setting up the network defined by convnet 2d a.lua, this

initializes and connects the neural network layers using Torch.

convnet orig.lua This is as convnet acthist.lua, though for when using convnet 2d.lua

Rectifier.lua This is an implementation of a Rectified Linear Unit activation function for

use with Torch.

nnutils.lua This library provides functions for examining a neural net. It is mainly used

for logging network weight and gradient statistics during training.

preproc affineScale.lua NeuralQLearner.lua uses preprocessing filters to perform basic

operations on the image component of the DQN’s input state vector. This filter may

be applied to image patches that would be the wrong size, and scales them such that

they have the correct dimensions.

preproc blur.lua This preprocessing filter blurs the input patches.

preproc passthrough.lua This preprocessing filter does not modify the input data at

all. This is the default filter.

scale 2channel.lua Performs the calculations for preproc affineScale.lua

gblur 2channel.lua Performs the calculations for preproc blur.lua

Image Management

splinewrap.lua A reinforcement learning friendly interface to the registration process is

provided by this library. It does this by converting actions selected by the agent

into motion commands for gpu img pair.lua, calculating appropriate rewards, and

88

tracking action histories. It also handles re-initializing the registration environment

as appropriate during training.

datasplit.lua File management is abstracted by this library. It reads images from fold-

ers specified in the configuration, pairs them together, and divides them into test-

ing/training/validation sets. It is then invoked by splinewrap.lua to randomly

select images from the appropriate sets.

gpu img pair.lua This library performs image-pair management. It is used to load image

pairs into memory, extract patches for the DQN to process, and apply transforms to

the moving image via gpu bspline T.lua or gpu affine T.lua.

gpu bspline T.lua This is a b-spline transform management library. It tracks parameters

as they are updated and calculates dense transform matrices as necessary, applying

them to images using the gimg module.

gpu affine T.lua This library is the equivalent of gpu bspline T.lua for affine trans-

forms.

gimg module (external) This Lua module uses the GPU to quickly apply a dense trans-

form to an moving image.

A.3 Libraries and Environment

The code was developed and tested on an Ubuntu platform. LuaJIT 2.0.4 was used to

execute the main body of code, and Torch 7 was used to for neural net implementation.

CUDA 8.0.61 was used for GPU acceleration, and execution was performed on an Nvidia

TITAN Xp.

The following Lua modules were included as part of Torch or were otherwise required

for its operation: cunn scm-1, cutorch scm-1, nn scm-1, nngraph scm-1, cwrap scm-1, dok

scm-1, env scm-1, gnuplot scm-1, graph scm-1, image 1.1, luaffi scm-1, luafilesystem 1.7.0,

moses 1.6.1, paths scm-1, penlight 1.5.4, sundown scm-1, sys 1.1, xitari, xlua 1.1.

The following additional software packages were required by LuaJIT, Torch, or a Lua

module: build-essential 12.1, gcc 5.3.1, g++ 5.3.1, cmake 3.5.1, curl 7.47, libreadline-

dev 6.3, git-core 2.7.4, libjpeg-dev 8c, liblua5.1-dev 5.1.5, libpng-dev 1.2.54, ncurses 6.0,

imagemagick 6.8.9.9, unzip 6.0 .

89

Note that while this list covers the notable requirements, it is not a comprehensive list

of all software and libraries used on the development machine.

A.4 Modifications

The core library for managing the Q-value predicting neural net, NeuralQLearner.lua, was

updated in a number of ways. Interaction with the experience replay buffer was altered

to support multiple parallel agent instances, both during training and execution. Recent

action history of each instance was added as part of the state considered by the network,

as well as the action history of agent instances responsible for neighbouring control points.

A function was also added to monitor action scores (rather than simply recording the best

action’s index) to aid in development and hyperparameter tuning. A double DQN was

tested, but later removed as it did not have a noticeable impact on performance.

To facilitate these changes, the neural net structure defined in convnet acthist.lua was

also altered. Net input is split into the state’s image history component, consisting of

patches surrounding the control point’s position extracted from the fixed and moving im-

ages, and the state’s action history component, a one-hot encoding representation of the

most recent actions taken by that control point and its neighbours. The image history is fed

through a configurable number of convolutional layers. The output of these convolutional

layers is then concatonated with the encoded action history and fed through a configurable

number of fully connected layers. The number of previous steps considered is set indepen-

dently for each history type (image patches, actions, and neighbour actions), and as they

determine the net’s size they cannot change once training begins.

As additional state information was being used, it was necessary to augment Transi-

tionTable.lua to also track action history. Due to the very small size in memory of the

action history data relative to image data, the full action history was stored for each state

entry. This increased buffer sampling speed relative to reconstructing the action history

from stored single actions, while negligibly increasing the size per state entry. However,

the original method of assembling history from sequential entries is still used for the state’s

image history component. This is somewhat slow, as all potential entries are tested for run

termination to ensure a run shorter than the desired history length isn’t causing the buffer

to accidentally incorporate state data from a distinct run that is stored nearby in RAM.

90

It is necessary, though, due to the relative size of the image data and the impracticality of

guaranteeing minimum run length.

The agent training loop provided by train agent.lua has been altered to no longer be

the main and only entry-point for execution, as post-training registration is a desired goal.

Additionally, a maximum run length has been introduced to prevent a single training run

from getting “lost” in improbable regions, stuck in a loop and never self-terminating, and

giving undue importance to useless data by filling the whole buffer. Improved logging

was added to track training/validation accuracy, and optionally step-by-step saving of the

moving image, per-agent state, and action Q-scores. Control-point masking was also added,

to allow ignoring data from agents far away from the region of interest (e.g., in the empty

background of an MRI).

A.5 New Code

As the original DQN system was designed to interact with Atari games, it was necessary to

fully replace the “environment” simulation with an image deformation and comparison sys-

tem, as well as to parallelize interaction to allow multiple agents to update it simultaneously.

This primary agent/environment is performed by splinewrap.lua, which instantiates, loads,

and interfaces with image management module (gpu img pair.lua); tracks action history;

collates state/reward information returned by said module; and tracks action history.

Image management is overseen by gpu img pair.lua, which handles loading image files,

extracting pixel patches to represent a specific agent’s “state”, and calculating action re-

wards. Reward values are only used during agent training, in which case the pre-aligned

training images have an initial deformation applied when loaded, and the reward is calcu-

lated based on whether the action reduces or increases that initial error. Image deformation

is performed by gpu affine T.lua or gpu bspline T.lua, depending on the type of transform

being used. B-spline is the default, with affine used primarily as a point of comparison.

With the parallel execution of agents during training it was necessary to create paral-

lel TT.lua. This largely serves as a wrapper for TransitionTable.lua, creating and managing

a separate TransitionTable buffer for each agent instance. When a Q-network update is

required, parallel TT.lua is responsible for sampling agent experiences from the separate

buffers and merging them appropriately.

91

File management is handled by datasplit.lua. The class pairs images of the same subject

under different modalities, and splits the resulting pair list into training and testing sets.

While the original codebase set all training options in a short startup script, the in-

creased number of parameters made this unwieldy, and therefore configuration is now han-

dled by opts agent.lua. The startup script was replaced with ex train one agent.lua and

ex train scale agents.lua, to train an agent for a single scale or for all targeted scales, re-

spectively. After training is complete, c2f reg.lua may be used to perform registration.

While developing the system, the ex scan *.lua scripts were used to tune hyperparame-

ter values. Each script examines one hyperparameter, and performs agent training multiple

times while varying that parameter. Performance of the trained agents is then compared

to select the best hyperparameter value.

92

Appendix B

Hyperparameter Analysis

The tests discussed in this chapter show results recreating the final cycle of the hyperparam-

eter refinement process mentioned in 5.3. One test is performed for each hyperparameter,

training agents using different values for that hyperparameter covering its valid range and

examining the changes in agent performance. The structure of each test is as described in

Section 5.1.1. Due to training time constraints, this full sweep is only performed for the

1:8 scale agents. Results may be compared to tests in Section 5.4 which show the effect

of extended training and the diminishing returns in performance improvement as training

time increases.

Training and execution time is discussed for tests in approximate and relative terms, and

the number of training steps taken is often used in place of exact time measurements. This

is because the nature of the testing environment makes it impossible to reliably measure

precise times, as parallel testing and multiple users result in varying background load

between tests. Large and obvious changes in required time were noted, but more precise

analysis would require different experimental context.

B.1 Reward Discount

Within the valid range of γ, from 0 to 1, for most applications one may reasonably expect

the resulting agent’s performance to be poor at either extreme and to have some ideal value

between the two. Excessively low values of gamma tend to result in a short-sighted hill-

climbing algorithm which take actions prone to getting stuck in a shallow local optimum,

93

Test Values tested
γ From 0.1 to 0.9, increments of 0.1
α 10x for x = {−7, ..., 0}

|ERB| {256, 103, 4 · 103, 104, 2 · 104, 4 · 104, 8 · 104, 2 · 105}
|P | 11x11, 15x15, 25x25, 41x41, 61x61
|Hact| From 2 to 20, increments of 2
|Hnghbr| From 2 to LenAH , increments of 2
εfinal From 0 to 0.5, increments of 0.1
Nε 20% to 100% of full training time, increments of 20%

rsm,final From 0 to 0.5, increments of 0.1
Nr,stop Same as Nstepε
Radany From 2 to 12, increments of 2

Table B.1 Experiment summary.

while excessively high values may have the opposite effect and result in overlooking a

desirable solution.

These tests serve to scan the range of possible values and find an appropriate γ for this

application.

B.1.1 Effect on Registration Error

Lowest error rates were observed at γ = 0.3, though performance was similar for γ ≤ 0.8.

Somewhat surprisingly low values of γ do not significantly degrade performance, as might

be expected from a “short-sighted” agent strongly focused on immediate rewards.

As well as having the lowest mean error, γ = 0.3 has the lowest 95% upper confidence

bound. Certain higher γ values have similar mean errors, but all have higher upper con-

fidence bounds, suggesting that while performance is often similar between the options it

is less consistently achieved with higher γ. Due to the risks associated with unexpected

errors in a medical context, this lower upper bound is most likely to be preferable.

B.1.2 Effect on Training and Execution Speed

For lower γ values, validation accuracy during training is observed to more rapidly approach

its final performance level, and fewer late-training accuracy fluctuations occur. This is

readily apparent when comparing the results in Figure B.1.

Similarly, low values of γ result in a lower mean number of steps for registrations, with

94

γ Mean Error 95% Confidence 95% Confidence Mean # Steps
Upper Bound Lower Bound per Registration

0.1 4.49 5.95 3.07 9.78
0.2 4.45 5.95 2.93 9.33
0.3 4.27 5.71 2.86 8.73
0.4 4.39 5.93 2.83 9.51
0.5 4.41 5.97 2.91 9.58
0.6 4.37 5.92 2.89 9.60
0.7 4.43 5.95 2.88 10.46
0.8 4.35 5.77 2.94 10.11
0.9 4.62 6.27 3.00 12.18

Table B.2 Effect of γ on validation error. All table values taken from the
registration attempts made during the final validation phase, performed after
training was complete. “Mean Error” is the mean of the individual registration
attempt errors, where the error of each attempt is calculated by taking the
mean of the per-agent differences between final transform parameters and
ground-truth transform parameters. The 95% of registration errors falling
closest to the median error were extracted, an the range of errors within this
subset is shown by “95% Confidence Upper/Lower Bound” columns. The
measures in these first three columns are all given in number of pixels. “Mean
Steps per Registration” is the mean number of global actions taken while
performing each of these final validation registrations, where each global action
consists of the aggregate of all agents’ local actions. For registrations of equal
accuracy, a higher number of steps implies a more circuitous and less efficient
route was taken.

95

γ = 0.3 resulting in the lowest number of steps and therefore the fastest registration. The

difference is not particularly large in most cases, though, with most values differing by less

than one step. The difference becomes greater at higher values, and γ ≥ 0.7 is notably

slower.

Figure B.1 Validation error logs for γ tests, showing the faster learning
rate associated with lower values (γ = 0.2, left) as compared to higher values
(γ = 0.8, right). Vertical axis measures per-attempt error, where the error
of each attempt is calculated by taking the mean of the per-agent differences
between final transform parameters and ground-truth transform parameters.
Step size = 1 pixel/step, so given error is in both steps and pixels. Horizontal
axis measures the number of actions taken before the corresponding validation
test was performed, where each such action is the aggregate of all agent actions
at a given timepoint. More training actions also result in more SGD updates
to the network weights, due to the structure of training detailed in Chapter 4.
The red dots indicate the mean value of all measured errors for validation tests
performed after the indicated amount of training. The green region indicates
the range of errors observed in the 50% of tests with error levels closest to the
mean test error. The blue region is as the green region, but for 95% of the
results.

96

B.2 Learning Rate

The effects of varying learning rate are fairly predictable. Low α values lead to insuffi-

cient change with each learning step, as shown in Figure B.2. While these examples may

eventually converge, they waste time by unnecessarily prolonging training.

As α increases training occurs more quickly, but eventually the system becomes un-

stable. For values slightly too large the network parameters will fluctuate around their

ideal solution, reducing accuracy, and at even higher levels the fluctuations will increase in

amplitude at each step until they are arbitrarily far from a solution.

α Mean Error 95% Confidence 95% Confidence Mean # Steps
Upper Bound Lower Bound per Registration

10−7 5.60 7.52 3.67 1.00
10−6 5.41 7.23 3.65 5.98
10−5 4.27 5.71 2.86 8.73
10−4 4.51 6.21 2.84 48.06
10−3 4.42 6.17 2.87 72.46
10−2 - - - -
10−1 - - - -

1 - - - -

Table B.3 Effect of α on validation error. “-” indicates a result that was not
stable enough to reliably complete validation without calculation errors. All
table values taken from the registration attempts made during the final valida-
tion phase, performed after training was complete. “Mean Error”, “95% Con-
fidence Upper/Lower Bound”, and “Mean # Steps per Registration” columns
have the same definitions as in Table B.2.

B.2.1 Effect on Registration Error

For a fixed number of training steps, a value near α = 10−5 was found to be produce the

most accurate results (Figure B.2). Lower values were slower to train, while higher values

resulted in greater error and fluctuating performance throughout training. For α ≥ 10−2

training is non-functional.

97

B.2.2 Effect on Training and Execution Speed

Increasing α reduces training time so long as α ≤ 10−3. Greater values of α do not slow

training, but rather prevent training from functioning at all. As α is a parameter that is

only used during training, it does not directly affect execution time. However, higher values

of α increase the number of steps taken during registration, indirectly slowing the process.

This increase in step count is particularly high for α ≥ 10−4, with agent performance

degrading as α approaches the non-functional range of α ≥ 10−2.

98

Figure B.2 Validation error logs for α tests. The best performance among
tested values was observed with α = 10−5 (bottom). For lower values
(α = 10−7, upper left) error did not improve much or was static throughout
training, while for higher values (α = 10−3, upper right) there were recurring
fluctuations and higher final errors. Axes and legend definitions are the same
as in Figure B.1.

99

B.3 Buffer Size

The Experience Replay Buffer serves an important role in forcing the target value function

to seem static, rather than varying with each new image pair. Too small of a buffer may

lead to instability, as the learning algorithm may overfit to recent data, “forgetting” earlier

experiences. Increased buffer size is expected to improve performance for all feasible values.

It is possible for an excessively large buffer to slow training time, as old data would take

a long time to be cycled out, but this requires more memory than is available in all but

perhaps the most extravagant of modern hardware.

One purpose of these tests is to determine if there is a point of diminishing returns

within the available memory limit, beyond which increasing the buffer is less useful than

increasing other memory-intensive parameters. The second purpose is to determine if low

values still allow training to progress.

|ERB| Mean Error 95% Confidence 95% Confidence Mean # Steps
(# records) Upper Bound Lower Bound per Registration

256 5.03 6.71 3.29 12.23
103 5.02 6.76 3.32 10.78

4 · 103 4.66 6.30 3.07 9.76
104 4.53 6.03 3.10 9.70

2 · 104 4.61 6.30 2.98 10.40
4 · 104 4.34 5.77 2.85 9.69
8 · 104 4.44 5.95 2.95 9.50
2 · 105 4.45 6.01 2.86 9.90

Table B.4 Effect of |ERB| on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.3.1 Effect on Registration Error

Early training with a small buffer is erratic and inaccurate, as shown in Figure B.3, but

does eventually settle. Increasing |ERB| improves performance for the majority of the

range tested, though the highest values do show a very small increase in mean registration

error, as seen in Table B.4. This may be due to larger buffers reducing the influence of new

100

data points by making them a smaller portion of the whole, as well as retaining “old” and

possibly outdated data for longer. Both of these may potentially increase required training

time, though it is not clear they will limit final accuracy if allowed to train to equilibrium.

B.3.2 Effect on Training and Execution Speed

A significant portion of the effect of buffer size on training time depends on the memory

management capabilities of the hardware and low-level libraries used, and in this case it

was not found to have an observable effect. Large buffers may potentially slow training as

mentioned above, but within the memory limits of the test system the effect was small at

most.

Execution does not use an Experience Replay Buffer and therefore is unaffected by this

parameter.

Figure B.3 Validation error logs for |ERB| tests. Lower values (|ERB| =
103 records, left) show inconsistency in early training, while higher values
(|ERB| = 2 · 105 records, right) show smoother training results over time and
improved final performance. Axes and legend definitions are the same as in
Figure B.1.

101

B.4 Patch Size

“Patch size” refers to the size of the control-point centred sections of If and Im extracted

as agent inputs. It is an important parameter to balance, as larger patches use significantly

more memory and result in many more network parameters that must be learned, while

smaller sizes decrease the deformation range for which there is still overlap between the

patches and thus likely reduces the capture radius.

The minimum patch size for these tests was 11x11, as smaller values would require

reducing the kernel sizes within the convolutional layers and make the comparison less

valid.

|P | Mean Error 95% Confidence 95% Confidence Mean # Steps
(pixels) Upper Bound Lower Bound per Registration
11x11 4.92 6.70 3.07 8.18
15x15 4.34 5.98 2.70 9.78
25x25 4.27 5.71 2.86 8.73
41x41 4.49 5.91 3.10 9.53
61x61 4.64 6.32 2.93 11.41

Table B.5 Effect of |P | on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.4.1 Effect on Registration Error

Accuracy was found to be best with patch sizes of 25x25, with error increasing as patch

sizes deviated further from this optimal value. The worst performance occurred with 11x11

patches. A comparison is shown in Figure B.4. Lower patch sizes were also observed to have

lower error early in training, but to take more training steps before beginning to improve

on this early accuracy. This seems to be caused by small-patch agents choosing “stop”

far more often during early training, thereby reducing state-space exploration, combined

with an increased need for exploration as each state contained less information about the

environment.

102

B.4.2 Effect on Training and Execution Speed

As with other options that affect memory use performance will depend on the system’s

memory management capabilities. However, unlike ERB size, larger patches require larger

sections of memory to be copied every time a buffer entry is added or a prediction is

performed, slowing down execution. For example, when comparing 61x61 patches to 11x11

patches the time-per-step was found to increase by approximately 250% for training and

50% for execution. Additionally, the greater number of network parameters often requires

more training steps to converge, further increasing training times.

Figure B.4 Validation error logs for |P | tests. Inferior performance and
slower training is observed for |P | = 11x11 pixels (left) compared to |P | =
25x25 pixels (right). Note that for |P | = 11x11 pixels accuracy does not begin
to noticeably improve until approximately 8 · 104 training steps have passed.
Axes and legend definitions are the same as in Figure B.1.

103

B.5 History Length

Including a history of an agent’s actions in its input state data should allow it to, with

sufficient training, avoid becoming trapped in action loops should some incorrect estimation

of action value cause it to return to a previously visited position. Additionally, being aware

of the general direction of control point movement should discourage erratic motions, which

may reduce the number of suboptimal actions.

|Hact| Mean Error 95% Confidence 95% Confidence Mean # Steps
(# actions) Upper Bound Lower Bound per Registration

2 4.60 6.23 2.97 9.62
4 4.59 6.09 3.09 8.96
6 4.37 5.84 2.89 8.47
8 4.51 6.05 2.98 8.91
10 4.34 5.82 2.90 10.07
12 4.50 6.01 3.05 9.41
14 4.39 5.84 2.94 9.78
16 4.45 6.00 2.90 9.35
18 4.35 5.87 2.78 9.48
20 4.44 5.96 2.96 9.52

Table B.6 Effect of |Hact| on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.5.1 Effect on Registration Error

Shorter histories where |Hact| < 6 were observed to have error rates that, while having a

general downwards trend, would rise and fall during early training (Figure B.5). Through-

out testing it was observed that the length of this early fluctuation-heavy training segment

would vary with other hyperparameters. Many non-optimal combinations could greatly

extend the unstable portion of training, to the point where low |Hact| training was unstable

for the entirety of the session. Low |Hact| values were also found to learn more slowly,

taking a longer time to reach similar performance.

These metrics improved as history length was increased, but after a point there was little

to no change. All tested values where |Hact| ≥ 10 showed nearly identical performance,

104

an example of which is shown in Figure B.5. As saved history has negligible effect on

performance, |Hact| = 18 was selected rather than a value closer to that threshold. This

excess should ensure that the parameter is of a sufficiently high value to maximize agent

performance.

B.5.2 Effect on Training and Execution Speed

Higher values of |Hact| were found to reduce required training time required to reach a

given level of performance.

While managing long action histories may impose some burden, the tested values of

|Hact| showed little to no difference in execution time.

Figure B.5 Validation error logs for |Hact| tests. Slower overall improve-
ment and greater accuracy fluctuation early in training is observed for lower
values (|Hact| = 2 actions, left) relative to agents with longer action histo-
ries (|Hact| = 16 actions, right), though overall performance does not differ
dramatically. Axes and legend definitions are the same as in Figure B.1.

105

B.6 Neighbouring History Length

The action-history of neighbouring points is intended to improve performance when cor-

recting for the global affine component of a misalignment. If a large region of the image

containing several control points should move in a single direction, then even control points

without a good action to take based on their local data should see the actions of the con-

trol points around them and be encouraged to follow the trend. This regularization should

allow even low-information regions to improve to some degree.

The purpose of these tests was to determine what neighbouring history length, if any,

is most productive.

|Hnghbr| Mean Error 95% Confidence 95% Confidence Mean # Steps
(# actions) Upper Bound Lower Bound per Registration

0 4.49 6.07 2.99 9.50
2 4.46 6.04 2.91 9.04
4 4.41 5.88 2.90 8.70
6 4.29 5.83 2.73 9.68
8 4.45 5.94 2.94 9.24
10 4.43 5.85 3.01 9.36
12 4.46 6.04 2.87 9.95
14 4.27 5.71 2.86 8.73
16 4.46 5.93 3.06 10.23
18 4.40 5.95 2.84 10.11

Table B.7 Effect of |Hnghbr| on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.6.1 Effect on Registration Error

It was observed that changing |Hnghbr| had very little effect on accuracy. There is a very

minor drop in error when |Hnghbr| is above zero, but the error varies to a greater degree

between subsequent training runs of the same settings.

106

B.6.2 Effect on Training and Execution Speed

Varying |Hnghbr| has a negligible effect on memory use and does not cause any noticeable

change in training time. The number of steps taken during execution increases slightly

with higher |Hnghbr|, but the change is minor and the correlation is poor.

B.7 Final Epsilon

The value of ε changes during training, starting at ε = 1 and decreasing until it plateaus at

εfinal. High εfinal encourages greater exploration of potential state spaces, but if too high

then the explored states are far from the areas leading to a good solution and resources are

wasted on useless data. These tests serve to examine the effect of these high εfinal values.

εfinal Mean Error 95% Confidence 95% Confidence Mean # Steps
Upper Bound Lower Bound per Registration

0 4.45 5.91 3.01 8.17
0.1 4.46 5.96 2.93 9.01
0.2 4.42 6.02 2.83 9.25
0.3 4.44 6.10 2.76 9.70
0.4 4.38 5.90 2.88 9.35
0.5 4.36 5.86 2.85 9.80

Table B.8 Effect of εfinal on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.7.1 Effect on Registration Error

Higher values of εfinal were found to slightly increase accuracy, though the change was small

and inconsistent between training sessions. This suggests either that by the time εfinal is

reached the state space is adequately explored, or that any remaining inaccuracy in action

prediction result in sufficient exploration via semi-random error without the need for an off-

policy modification. Additionally, one may note greater fluctuation during early training for

higher εfinal values, suggesting that more frequent random actions may cause the network

107

to deviate further from useful solution-adjacent states, “forgetting” then re-learning that

information (Figure B.6). These fluctuations are noticeable for all εfinal > 0.3.

B.7.2 Effect on Training and Execution Speed

Changing εfinal does not affect the per-step training time. However, for certain accuracies

achievable by high εfinal, similar results may be found by training a lower εfinal agent for

a smaller number of steps and therefore shorter time.

The off-policy component of the algorithm, and therefore everything directly relating

to εfinal, is only used in training and therefore cannot directly affect execution.

Figure B.6 Validation error logs for εfinal tests. Lower values (εfinal =
0, left) show reduced fluctuation and better accuracy during early training
relative to higher values (εfinal = 0.5, right). Axes and legend definitions are
the same as in Figure B.1.

108

B.8 Epsilon Ramp Length

Training begins with ε = 1 and, over the course of Nε steps,decreases linearly to ε = εfinal.

This high initial ε value is intended to encourage increased exploration early on while agent

performance is poor, and should prevent the agent from becoming stuck in a undesirable

local performance maxima early on. Extending Nε excessively is unnecessary and, at worst,

may slow training. Theses tests serve to find a useful value.

Nε Mean Error 95% Confidence 95% Confidence Mean # Steps
(# steps) Upper Bound Lower Bound per Registration
2.8 · 104 4.41 5.91 2.94 9.60
5.6 · 104 4.53 6.03 3.14 9.58
8.4 · 104 4.52 6.09 2.95 9.18
1.12 · 105 4.34 5.81 2.85 9.38
1.4 · 105 4.37 5.87 2.98 9.11

Table B.9 Effect of Nε on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.8.1 Effect on Registration Error

Nε was observed to have little effect on final registration accuracy, as the final error was

similar in all tests. However, error was found to decrease much faster for lower values of

Nε (Figure B.7). This suggests that sufficient exploration is accomplished very early on,

and keeping ε high for a greater portion of training simply distracts the learning algorithm

with less relevant data.

It is important to note once more that ε = 0 for all validation steps, and so ε-greedy

action selection is not directly influencing the results. Consider the previously discussed

results for εfinal, the increased error during early training is likely due to higher action

randomness leading to training sample sequences with less useful information content.

109

B.8.2 Effect on Training and Execution Speed

Higher Nε leads to longer training times due to prolonging the period of increased error

associated with higher ε, with no observed benefit.

The off-policy component of the algorithm, and therefore everything directly relating

to Nε, is only used in training and therefore cannot directly affect execution.

Figure B.7 Validation error logs for Nε tests. Final performance is very
similar for most values of Nε, but early training is observed to progress more
quickly for lower values (Nε = 2.8 · 104 steps, left) compared to higher val-
ues (Nε = 1.12 · 105, right). Axes and legend definitions are the same as in
Figure B.1.

110

B.9 Maximum “Stop” Reward

The reward an agent receives for selecting the “stop” action during training is determined

by the distance between the agent’s control point and its ground-truth registered position,

and when this error is smaller than the agent’s step size the reward reaches its maximum

value specified by rsm,final. The value of rsm,final is expected to influence how aggressively

the agent selects the “stop” action, with lower values encouraging more motion.

So long as the agent is more than one step away from ground truth, it is counterpro-

ductive for the “stop” reward to not be lower than the reward for making the best possible

motion. This is especially true for low-γ systems. On a 2D grid with orthogonal motions

the lowest optimal-motion reward occurs when the direction to ground-truth is at 45◦to

the motion axes, in which case r =
√

1
2
≈ 0.71. High values are most likely to cause errors

early in training, as an untrained network will choose actions in a nearly random manner,

meaning that the expected value of motion is close to zero. Gradually increasing the stop

rewards from zero to rsm,final, similar to the ε ramp, may counter this to some degree.

rsm,final Mean Error 95% Confidence 95% Confidence Mean # Steps
Upper Bound Lower Bound per Registration

0 4.46 6.02 3.00 38.06
0.1 4.44 5.96 3.04 19.81
0.2 4.30 5.78 2.82 11.19
0.3 4.27 5.71 2.86 8.73
0.4 4.48 5.91 2.98 8.67
0.5 4.53 6.00 3.07 8.04
0.6 4.59 6.21 3.05 7.94
0.7 4.67 6.23 3.14 7.11
0.8 4.74 6.37 3.03 6.75
0.9 4.77 6.31 3.21 6.29
1 4.80 6.42 3.22 6.80

Table B.10 Effect of rsm,final on validation error. All table values taken
from the registration attempts made during the final validation phase, per-
formed after training was complete. “Mean Error”, “95% Confidence Up-
per/Lower Bound”, and “Mean # Steps per Registration” columns have the
same definitions as in Table B.2.

111

B.9.1 Effect on Registration Error

As shown in Figure B.8, the optimal value of the hyperparameter was found to be approxi-

mately rsm,final = 0.3, and final accuracy decreased if the value strayed higher or lower than

this. Low values were observed to be more erratic throughout training process, especially

the early stages, while high values quickly reached their final performance and improved

little if at all with further training.

B.9.2 Effect on Training and Execution Speed

Below rsm,final = 0.3 the training time required to reach a given level of accuracy is in-

creased. Higher values seem to reach equilibrium faster, but their final accuracy is lower.

Reward values are only used during training, and therefore this parameter cannot affect

per-step execution time. However, agents trained with high rsm,final values were more

prone to early stopping and therefore ended after fewer steps, while low values resulted in

an agent that chose the “stop” action much less frequently. When rsm,final was at or near

zero, the agents would take over four times as many steps before finally stopping in the

same area as agents for which rsm,final ≥ 0.3.

112

Figure B.8 Validation error logs for rsm,final tests. The best performance
was observed with rsm,final = 0.3 (upper left). Lower values (rsm,final = 0.1,
upper right) demonstrated greater fluctuation during training and slightly
worse final performance, while higher values (rsm,final = 0.9, bottom) demon-
strated faster early learning but worse final performance. Axes and legend
definitions are the same as in Figure B.1.

113

B.10 “Stop” Reward Ramp Length

During training rsm mirrors ε, starting at rsm = 0 and rising to rsm,final over the course

of Nr,stop training steps. This is to encourage early exploration by avoiding high “stop”

rewards at a time when the under-trained agents do not have a very high expected value

for non-“stop” actions.

Nr,stop Mean Error 95% Confidence 95% Confidence Mean # Steps
(# steps) Upper Bound Lower Bound per Registration
2.8 · 104 4.40 6.01 2.96 9.47
5.6 · 104 4.43 5.99 2.87 9.56
8.4 · 104 4.44 5.99 2.86 9.81
1.12 · 105 4.34 5.81 2.90 9.19
1.4 · 105 4.43 5.89 2.97 9.51

Table B.11 Effect of Nr,stop on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.10.1 Effect on Registration Error

Varying Nr,stop was not observed to affect final registration accuracy. However, lower values

were found to approach this final performance after fewer training steps and to fluctuate

less after reaching it, as seen in Figure B.9. Given the behaviour observed with rsm,final,

it seems likely that a significant contributing factor to this behaviour is the lower effective

rsm during the turbulent portion of the training history. There does not seem to be a

noteworthy difference between slowly increasing rsm over many steps or simply having a

lower constant rsm.

B.10.2 Effect on Training and Execution Speed

Agent performance was observed to plateau after fewer steps when trained with low Nr,stop

values, allowing equivalent accuracy with shorter training times when compared to higher

Nr,stop.

114

As with other reward hyperparameters, Nr,stop is not used during execution. No signif-

icant variation was observed in the number of steps taken by agents trained with different

Nr,stop values, and as such it does not affect execution times.

Figure B.9 Validation error logs for Nr,stop tests. Lower values (Nr,stop =
2.8 · 104 steps, left) show much faster early learning than higher values
(Nr,stop = 1.4 · 105 steps, right). Axes and legend definitions are the same
as in Figure B.1.

115

B.11 “Stop” Reward Radius

Giving a reward for “stop” actions helps avoid infinite runtime by giving the agent incentive

to stop after correct local registration, and giving a diminished but non-zero reward for

imperfect registration extends this to lower-accuracy systems. The hyperparameter Radany

determines the error above which “stop” gives zero reward, with a linear drop between

r = rsm at zero error and r = 0 at Radany error.

Low Radany values may cause erratic performance and longer runtime, as the agent is

slow to learn (or does not learn) when to stop. However, if Radany is too high it may nega-

tively affect accuracy by decreasing the stop reward difference between adjacent locations,

thereby lowering the relative penalty for stopping in an inferior location.

Radany Mean Error 95% Confidence 95% Confidence Mean # Steps
(pixels) Upper Bound Lower Bound per Registration

2 4.29 5.74 2.88 21.82
4 4.40 5.87 2.89 13.16
6 4.27 5.71 2.86 8.73
8 4.46 5.96 3.00 7.94
10 4.53 6.13 3.03 7.96
12 4.42 5.95 2.87 7.58

Table B.12 Effect of Radany on validation error. All table values taken from
the registration attempts made during the final validation phase, performed
after training was complete. “Mean Error”, “95% Confidence Upper/Lower
Bound”, and “Mean # Steps per Registration” columns have the same defini-
tions as in Table B.2.

B.11.1 Effect on Registration Error

The lowest error was observed with Radany = 6, but when trained for sufficient time the

final accuracy was found to be relatively insensitive to this hyperparameter. Accuracy

throughout the training process showed similar behaviour to the examination of rsm,final,

with low values of the hyperparameter leading to slower improvement. This may be because

increasing Radany causes greater “stop” rewards for low but non-zero error end positions,

mimicking an increase of rsm,final, rather than for its effect on stopping at greater distances.

116

B.11.2 Effect on Training and Execution Speed

Low values of Radany increase both training and execution time. The per-step training

time does not change, but the time required to reach a given accuracy increases due to the

slower rate of improvement as shown in Figure B.10.

Execution time is slower due to the increased number of steps taken before ending the

registration, as selecting “stop” has a lower incentive.

Figure B.10 Validation error logs for Radany tests. Lower values (Radany =
2 pixels, left) showed slower improvement in accuracy, while higher values
(Radany = 10 pixels, right) were observed to cause faster decrease in error
during early training followed by nearly static accuracy throughout the rest of
training. Axes and legend definitions are the same as in Figure B.1.

117

	1 Introduction
	2 Background
	2.1 Image Registration
	2.1.1 Introduction
	2.1.2 Similarity Metrics
	2.1.3 Transforms
	2.1.4 Regularization
	2.1.5 Optimization

	2.2 Machine Learning
	2.2.1 Introduction
	2.2.2 Common Terms and Methods
	2.2.3 Classic Machine Learning
	2.2.4 Deep Learning
	2.2.5 Deep Learning in Medical Image Registration

	3 Reinforcement Learning and Deep Reinforcement Learning
	3.1 Problem Structure
	3.1.1 State
	3.1.2 Action
	3.1.3 Reward

	3.2 Predicting Future Value
	3.3 Bellman Optimality Equations
	3.4 Exploration and Exploitation
	3.5 On-Policy and Off-Policy Learning
	3.6 Model Based and Model Free
	3.7 Prior Work
	3.7.1 General Reinforcement Learning
	3.7.2 Deep Reinforcement Learning in Medical Image Registration

	4 Methodology
	4.1 Architecture
	4.1.1 B-Spline Transform
	4.1.2 Deep-Q Network
	4.1.3 Coarse-to-Fine Registration

	4.2 Training
	4.2.1 Data Augmentation
	4.2.2 Agent Training

	4.3 Registration and Evaluation
	4.4 Summary

	5 Experiments and Analysis
	5.1 Overview
	5.1.1 Test Structure
	5.1.2 Target Data

	5.2 Extracts from the Development Process
	5.3 Hyperparameter Testing
	5.4 Monomodal Performance
	5.5 Monomodal vs Multimodal Performance
	5.6 Training vs Validation Performance
	5.7 Limitations and Possible Redress
	5.7.1 Training Time
	5.7.2 Network Capacity

	6 Conclusions and Future Work
	Bibliography
	A Implementation Details
	A.1 Code Structure
	A.2 Code Description
	A.3 Libraries and Environment
	A.4 Modifications
	A.5 New Code

	B Hyperparameter Analysis
	B.1 Reward Discount
	B.1.1 Effect on Registration Error
	B.1.2 Effect on Training and Execution Speed

	B.2 Learning Rate
	B.2.1 Effect on Registration Error
	B.2.2 Effect on Training and Execution Speed

	B.3 Buffer Size
	B.3.1 Effect on Registration Error
	B.3.2 Effect on Training and Execution Speed

	B.4 Patch Size
	B.4.1 Effect on Registration Error
	B.4.2 Effect on Training and Execution Speed

	B.5 History Length
	B.5.1 Effect on Registration Error
	B.5.2 Effect on Training and Execution Speed

	B.6 Neighbouring History Length
	B.6.1 Effect on Registration Error
	B.6.2 Effect on Training and Execution Speed

	B.7 Final Epsilon
	B.7.1 Effect on Registration Error
	B.7.2 Effect on Training and Execution Speed

	B.8 Epsilon Ramp Length
	B.8.1 Effect on Registration Error
	B.8.2 Effect on Training and Execution Speed

	B.9 Maximum ``Stop'' Reward
	B.9.1 Effect on Registration Error
	B.9.2 Effect on Training and Execution Speed

	B.10 ``Stop'' Reward Ramp Length
	B.10.1 Effect on Registration Error
	B.10.2 Effect on Training and Execution Speed

	B.11 ``Stop'' Reward Radius
	B.11.1 Effect on Registration Error
	B.11.2 Effect on Training and Execution Speed

