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Abstract 

Computer aided diagnosis within neuroimaging must rely on advanced image 

processing techniques to detect and quantify subtle signal changes that may be 

surrogate indicators of disease state. This the sis proposes two such novel 

methodologies that are both based on large volumes of interest, are data drive n, and 

use cross-sectional scans: appearance-based classification (ABC) and voxel-based 

classification (VBC). 

The concept of appearance in ABC represents the union of intensity and shape 

information extracted from magne tic resonance images (MRI). The classification 

method relies on a linear modeling of appearance features via principal components 

analysis, and comparison of the distribution of projection coordinates for the 

populations under study within a reference multidimensional appearance 

eigenspace. Classification is achieved using forward, stepwise linear discriminant 

analyses, in multiple cross-validated trials. In this work, the ABC methodology is 

shown to accurately lateralize the seizure focus in temporal lobe epilepsy (TLE), 

differentiate normal aging individuals from patients with either Alzheimer's 

dementia (AD) or Mild Cognitive Impairment (MCI), and finally predict the 

progression of MCI patients to AD. These applications demonstrated that the ABC 

technique is robust to different signal changes due to two distinct pathologies, to low 
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resolution data and motion artifacts, and to possible differences inherent to multi­

site acquisition. 

The VBC technique relies on voxel-based morphometry to identify regions of grey 

and white matter concentration differences between co-registered cohorts of 

individuals, and then on linear modeling of variables extracted from these regions. 

Classification is achieved using linear discriminant analyses within a multivariate 

space composed of voxel-based morphometry measures related to grey and white 

matter concentration, along with clinical variables of interest. VBC is shown to 

increase the accuracy of prediction of one-year clinical status from three to four out 

of five TLE patients having undergone selective amygdalo-hippocampectomy. 

These two techniques are shown to have the necessary potential to solve current 

problems in neurological research, assist clinical physicians with their decision­

making process and influence positively patient management. 
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Abrégé 

Les systèmes experts d'aide au diagnostic en neuroimagerie doivent composer avec 

des techniques avancées de traitement de l'image pour détecter et quantifier des 

differences subtiles dans le signal, qui peuvent être des indicateurs indirects de l'état 

de la maladie. Cette thèse propose deux nouvelles méthodes à cet effet, toutes deux 

basées sur de larges volumes d'intérêt contenant les données intrinsèques, et qui 

font usage d'un seul volume d'acquisition: la classification basée sur l'apparence 

(CBA), et la classification basée sur les voxels (CBV). 

Le concept d'apparence en CBA représente l'union de l'information d'intensité et 

de forme, informations continues dans les images obtenues par résonance 

magnétique (IRM). La méthode de classification se base sur un modèle linéaire de 

vecteurs d'apparence via une analyse par composantes principales, et la comparaison 

des distributions de coordonnées de projection - pour les groupes sous étude - dans 

un espace référentiel multidimensionnel d'apparence. La classification elle-même 

est obtenue grâce à des analyses discriminantes linéaires graduées, dans de multiples 

essais de validation. Dans ce travail, il est démontré que la méthode CBA parvient à 

classifier de façon précise le foyer épileptogène en épilepsie du lobe temporal, de 

différencier le vieillissement normal de la maladie d'Alzheimer et du déficit 

cognitive léger, ainsi que de prédire la progression vers la démence d'Alzheimer 
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pour les patients atteints d'un déficit cognitif léger. Ces applications démontrent 

que la technique CBA est robuste face à des changements de signaux dus aux deux 

pathologies distinctes, à des données à basse résolution et porteuses de défauts reliés 

au mouvement, et potentiellement aux différences inhérentes dans des acquisitions 

multi-sites. 

La technique CBV se fonde sur la morphométrie par voxel pour identifier les 

régions de différence en concentration de matière grise et matière blanche entre les 

images recalées de deux groupes d'individus. Suit la modélisation linéaire de 

variables mesurées dans ces régions, incluant des variables cliniques d'intérêt. La 

classification est effectuée à l'aide d'analyses discriminantes linéaires à l'intérieur 

d'un espace multivarié, formé des mesures reliées à la concentration de matière 

grise ou blanche et des variables cliniques. Il est démontré que CBV permet 

d'augmenter la précision de la prédiction du résultat post-opératoire pour des 

patients souffrant d'épilepsie du lobe temporal et ayant subit une résection du 

complexe amygdalo-hippocampique, et ce dans une proportion de trois à quatre 

patients sur cinq. 

Ces deux techniques ont donc le potentiel nécessaire pour résoudre des problèmes 

actuels en recherche neurologique, d'assister les spécialistes dans leur processus 

décisionnel et d'influencer de façon positive la gestion des patients. 

xv 



Original contributions 

The central purpose of this work was to develop automated aid to diagnosis 

methodologies for neurological diseases, and to test and validate the se techniques 

with real-life data sets. More specifically, the following original contributions are 

claimed. 

Main contributions: 

1) Created an appearance-based classification (ABC) methodology using MR 

images for the purpose of aid to diagnosis in neurological diseases; 

2) Determined that ABC can accurately lateralize the seizure focus in intractable 

temporal lobe epilepsy (TLE); 

3) Determined that ABC can accurately discriminate normal aging from 

Alzheimer's dementia (AD) and mild cognitive impairment (MCI); 

4) Determined that ABC can accurately predict progression to AD on average 2.6 

years before clinical diagnostic, in a given cohort of amnestic MCI patients; 

5) Created a voxel-based morphometry classification (VBC) methodology using 

MR images for the purpose of aid to diagnosis in neurological diseases; 
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6) Determined that VBC can improve the accuracy of predicting one-year post­

operative clinical status in patients having undergone selective amygdalo­

hippocampectomy (SAR) for intractable TLE; 

7) Proposed and verified experimentally that the cumulative microscopic effect of 

AD and TLE influence the T1w MR signal and can be estimated by appearance­

based models; 

8) Proposed and verified experimentally that large, nonspecific volumes of interest 

centered on the medial temporal lobes (MTL) contain addition al discrimina tory 

information when compared to hippocampal and/or amydgala volumetry, in the 

tested TLE and AD applications. 

Secondary contributions: 

9) Defined a class of appearance parameters composed of a combination of T1-

weighted MR intensity and shape measures; 

10) Extended 2D appearance-based segmentation approaches into a 3D 

classification methodology; 

11) Evaluated that assessing shape changes in the right medial temporal lobe is 

essential for accurate lateralization of the seizure focus in TLE; 

12) Determined that there are extra-hippocampal areas of grey and white matter 

concentration changes that are related to one-year SAR outcome; 
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13) Determined that shape characteristics within the MIL are critical in the 

differentiation of AD and MCI from normal aging; 

14) Determined that ABC is sufficiently robust ta reject site acquisition differences 

in a classification task; 

15) Determining that I1-weighted intensity characteristics within the right MIL are 

cri tic al in predicting MCI progression ta AD; 

16) Vsed a novel visualization ta 01 ta demonstrate the regions of intensity changes 

in the right MIL that are linked ta progression of MCI ta AD; 

17) Created a pipeline for the rapid, reproducible and automated processing of MR 

images across multiple datasets. 

Disclaimer 

A V.S. patent application has been submitted on parts of this work for protection of 

intellectual property ("Systems and Methods of Classification Vtilizing Intensity and 

Spatial Data", Co-inventors D.L. Collins, Ph.D., S. Duchesne, ing., M.Sc., V.S. 

Patent Pending, No 10/990396). 
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Chapter 1 

Introduction 

Neuroimaging techniques, in partieular structural or anatomical magnetie resonance 

imaging (MRI), allow the visualization and quantification of pathologically induced 

brain changes in the living subject; it then becomes possible to employ metrics 

capturing these changes as surrogate measures of the state of the disease. These 

techniques can help to achieve earlier diagnosis, characterize the time-course of the 

illness and generally increase therapy efficacy. 

Many neurological diseases exhibit pathologically specifie discrimina tory 

information in the form of local intensity variations and shape changes when 

observed on MRI. Such diseases include for example schizophrenia, Alzheimer's 

dementia (AD) or epilepsy with a seizure focus that can be lateralized to one of the 

medial temporal lobes (MTL). 
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The purpose of this thesis is to develop and validate, using real data, novel 

automated image processing techniques that would exploit these intensity and shape 

changes, in order to ultimately answer important clinical problems in neurology. For 

this the sis, the image input data will be limited to structural MRI, whose availability 

is constantly increasing in major Canadian centers. As such, the techniques 

presented will allow for automated, reproducible, and robust analysis of images as an 

aid to diagnosis and eventually assist clinieians in their decision process regarding 

patient management and care. 

Thesis overview 

This the sis is organized into eight major sections. Chapter 2, containing the 

background about basie and advanced MRI techniques necessary to the 

understanding of the novel methodologies, follows this introduction. Chapter 3 

includes a detailed overview of the two methodologies that have been developed and 

validated in this thesis: (a) appearance-based classification (ABC), based on multi­

dimensional analysis of intensity and shape measures from large, non-specifie 

Volumes of Interest; and (b) voxel-based classification (VBC), based on individual­

to-group comparison of regional variations in grey and white matter concentrations, 

targeted using between-group voxel-based morphometry. 

Following Chapter 3, four separate manuscripts, each preceded by a preface, form 

additional chapters. Bach manuscript consists in the validation of one of the 
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aforementioned methodologies with real data, the idea being that, for each of two 

diseases, one article attempts to aid the immediate diagnostic, while the second 

endeavors the prediction of future clinical status. 

ln the first article, published in Neurolmage, a study is performed to lateralize the 

seizure focus in temporal lobe epilepsy (TLE) patients. The second article, to be 

submitted to NeuroSurgery, recounts our attempt at predicting surgical outcome 

(clinical status at one-year foIlow-up) for a sub-group of the same TLE cohort. 

The third article, to be submitted to Alzheimer's and Dementia, is concemed with 

improving the diagnosis of normal aging individuals vs. patients with either 

Alzheimer's dementia (AD) or mild cognitive impairment (MCI). FinaIly, the la st 

article, to be submitted to Lancet NeuroJogy, details our work in predicting the 

future clinical status and progression of MCI patients to AD. 

The thesis concludes with a last chapter containing a general discussion and 

suggestions for future research. References for aIl chapters, as weIl as recurring 

abbreviations, have been collected in a single list at the end of the the sis for brevity. 
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Chapter 2 

Background 

In Canada, for the year 2001, approximately 647000 individuals over 15 years of age 

received a magne tic resonance scan, 12% of those for neurological or brain-related 

issues (CIHI 2003). As of 2003, there were 147 magnetic resonance (MR) scanners 

in the country, most of them acquired and installed within the past 5 years (CIHI 

2003). With no si de effects, high-resolution and high contrast between soft tissues, 

MRI is a modality that has dramatically improved the ability to perform in vivo 

analysis and diagnosis, particularly in neurology and neurosurgery. 

The burden of interpretation of MRI rests on the many radiologists working in 

various hospitals and clinical centers. Most medical problems find their solution 

through the experienced judgment and careful observation that these professionals 

bring to the task; in sorne instances however, advanced image processing techniques 

are necessary to help them reach a confident decision. Qualitative analysis often 
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leads to many more quantitative questions (Which of these two hippocampi is 

smallest? What is the size of this multiple sclerosis plaque 7), while the biggest 

problem remains to answer accurately the most fundamental clinical question: does 

the patient have, or not, the disease? In these instances, computerized systems offer 

an automate d, unbiased and objective assessment of the images that hopefully can 

provide factual evidence supporting the diagnosis. 

In order to understand the advanced image processing techniques presented in this 

work, one needs to summarize the context for their evolution, the raw data that will 

be used as input, and sorne of the previous techniques and procedures on which they 

are based. The purpose of this chapter is to fulfill this need. It is composed of four 

sections, beginning with an overview of nuclear magnetic resonance (NMR), 

continuing with a more in-depth description of basic MR signaIs, and moves on to 

basic and more advanced processing techniques that are used to maximize the 

information content of the MR images. This summary of the path from initial data 

to processed output is done with the goal of highlighting the usefulness of each step 

in the context of clinical aid to diagnosis. The chapter closes with two case studies on 

TLE and AD, which are the two main applicative are as of this thesis. 

Nuclear Magnetic Resonance 

The process of Nuclear Magnetic Resonances (NMR) centers on the interaction of 

an atomic nucleus with a magne tic field. Spin, a fundamental property of the nuclei 

27 



that de scribes its angular momentum, must be half-integer in order for the nucleus 

to experience resonance. This implies therefore that nuclei such as carbon-13, 

nitrogen-15, fluorine-19, sodium-23, phosphorus-31 and, of course, the hydrogen 

nucleus, can be used for NMR. The latter is the most relevant nuclei for in-vivo 

medical imaging, because it is present in large concentrations in water and fat, which 

are major constituents of human tissue. 

In the presence of an external magnetic field Ba in the z-direction, the magnetic 

moment of the spinning nucleus combines with B(b and the nucleus experiences a 

torque. This will flip the nucleus in one of two states: a low energy state, aligned with 

B(b and a high energy state, away from B(Jo Bulk magnetization refers to the total 

alignment of multiple nuclei in a sample; the low energy state will slightly dominate 

the high energy one, and the sample becomes magnetized; it is expressed as a vector 

M, aligned with Ba .. 

If one were to apply a transverse magnetic field Bl to the magnetized sample, with 

energy corresponding to the difference between low and high states, then sorne 

nuclei in the sample would flip and bulk magnetization would be reduced. The 

vector Mwould be seen to tilt away from the direction of B(b and spiral towards the 

"transverse" or perpendicular plane. As soon as Mhas a compone nt in the 

transverse plane (Mxy), it will generate a detectable signal (Tofts 2003). 

When BI is removed, the absorbed energy in the system will dissipate in order for the 

system to return, or "relax", to the previous state of equilibrium. This dissipation 
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occurs by a number of processes, known collectively as relaxation mechanisms (Tofts 

2003), whose exponential decay are governed by various time constants T. 

Longitudinal, or Tl-relaxation, refers to energy transfer from the spins to the 

surrounding lattice, and therefore describes the return to equilibrium of the 

longitudinal compone nt M z of the bulk magnetization vector M Transverse, or T2-

relaxation, refers to spin-spin interactions, and explains the changes in the 

perpendicular component to the background field. 

First level: MR data analysis 

MR signaIs, acquired as a function of the relaxation mechanisms described above, 

are indicative of the biological composition of the tissue and of its physiological 

status; changes can be correlated with the pathology of interest. The first level of 

MR data analysis usually consists in the radiological interpretation of the images or 

the analysis of the measured signal with minimal processing (usually only performed 

to correct for acquisition-specific distortions). 

Tl imaging 

In normal tissues Tl values are related to macromolecular concentration, water 

binding and water content (Tofts 2003). This is the reason for the basic Tl contrast 

in the brain: the fat in myelin causes white matter (WM) to have a shorter Tl value 

29 



than grey matter (GM), and in tum GM has a shorter value than cerebro-spinal fluid 

(CSF) (see Figure l) 
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Figure 1 - Approach to magnetic equilibrium of an initially unmagnetized sample. 

In this graph, a value of 1.0 for Mo represents equilibrium magnetization, and the 
time is shown in seconds (Source: 

http://airto.bmap.ucla.eduIBMCweb/Course Work/M285/MRIlMRBasics.html) 

In practice Tl-weighted images have become the standard for anatomical MRI, 

offering the best possible means of assessing GM and WM boundaries and therefore 

allowing the parcellation or segmentation of the brain into different morphological 

reglOns. 

Pathologies that affect the water distribution will change the Tl signal. For instance, 

edema around tumors or in inflammatory acute multiple sclerosis (MS) lesions lead 

to an increase in Tl (Tofts 2003). Tl changes in TLE and AD will be addressed 

specifically later in this chapter. 
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T2 imaging 

Transverse relaxation relates to the spin-spin interactions of the decaying transverse 

magnetization and is found to be a function of the tissue and/or the local magnetic 

environment of the nuc1ei (Tofts 2003). As such this opens a window to the 

microscopie environment of the hydrogen nuc1ei under investigation, and allows for 

a differentiation in tissue types, in health or in disease. T2 relaxation, like Tl, is 

strongly correlated to the bulk water content in the cells however, contrary to Tl, 

fatty tissue will have a longer T2 signal. The contrast in T2-weighted images of the 

brain is therefore reversed from that of a Tl-weighted image: CSF appears bright, 

and WMdark. 
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Figure 2 - Decay of transverse component of MR signal 

This graph shows the magnitude of the MR signal as it decays over time from its 
initial maximum (Source: 

airto.bmap.ucla.eduIBMCweb/CourseWorkIM285IMRIlMRBasics.html) 

In the normal brain, heterogeneity in T2 values is attributed to variations in water 

content, cytoarchitecture, iron concentration, degree of myelination and increased 

vascularity (Tofts 2003). Abnormalities identified on T2-weighted images reflect 
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altered tissue water content, which can be associated with axonalloss, gliosis, 

demyelination and edema, which are seen in or around MS lesions (Larsson, Barker 

et al. 1998)(Larsson et al 1989). In TLE, increases in T2-weighted signal intensity 

have been reported in hippocampal sclerosis, related to the gliosis in the dentate 

gyrus (Briellmann, Kalnins et al. 2002). T2 is not a good indicator of AD (Laakso, 

Partanen et al. 1996). 

Figure 3 - T2 imaging in TLE 

Coronal T2 maps calculated from 23 images of a control subject. Pixel intensity 
represents T2 relaxation time calculated by fitting a single exponential to 

corresponding pixels from each constituent image. The white squares within the 
hippocampal head (panels 1 and 2), body (panels 3-5), and tail (panel 6) represent 

the region of interest for the T2 relaxation time measurements. Significantly higher 
T2 relaxation time was found in TLE patients when compared to NC. 

Source: (Bernasconi, Bernasconi et al. 2000) 
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Figure 4 - T2-weighted imaging in AD 

This coronal T2-weighted image shows extensive white matter hyperintensity and 
severe medial temporal lobe atrophy, which is suggestive of combination between 

degenerative and vascular brain pathology. 
Source: (Bastos Leite, Scheltens et al. 2004) 

Proton densi ty imaging 

Proton density (PD) refers to the overall concentration of MRI-visible protons 

(hydrogen nuclei) in tissue. As discussed previously, most of the hydrogen nuclei are 

located in water, and virtually all tissue water is visible. There is also a large pool of 

non-aqueous protons (30% of protons in white matter) that is MRI-invisible (Tofts 

2003). 
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Increases in PD correspond largely to edema and are seen in longitudinal 

examination of MS plaques (Narayanan, Fu et al. 1997). Changes in PD often 

correlate closely with Tl changes. 

Figure 5 - PD imaging 

Axial proton density MRI showing white matter lesions: (A) normal control; (B) 
patient with vascular dementia (extensive frontal, occipital and parietal 

hyperintensities); (C) patient with pathologically confirmed dementia with Lewy 
bodies (primarily frontal and parietal abnormalities); (D) patient with 
pathologically confirmed AD (frontal, parietal and occipital changes) 

Source: (Barber, Scheltens et al. 1999) 
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Diffusion Imaging 

Free water will diffuse isotropically, that is equally in all directions, due to Brownian 

motion. Barriers, such as cell membranes in biological tissue, will hinder this 

diffusion and make the process anisotropic. The higher the anisotropy, the more 

restricted the water pool; anisotropy can serve therefore indirectly to measure 

cellular membrane integrity. Diffusion imaging measures the microscopic 

translational motion of hydrogen nuclei in water molecules and from this we can 

infer the degree of anisotropy via the apparent diffusion coefficient (ADC). In 

heaIthy tissue, myelin will have high anisotropy, particularly in large fiber bundles or 

tracts (such as the corpus callosum), whereas in CSF, diffusion will be nearly 

isotropic. 

Decreases in anisotropy in disease are indicative of the destruction of tissue, such as 

in demyelination in MS (Cassol, Ranjeva et al. 2004). Further, by measuring the 

diffusion behavior in a range of directions (the diffusion tensor) we obtain a 

measure that is independent of the orientation of the subject in the scanner (Tofts 

2003). By following the direction of maximum diffusion, we can identify the 

connectivity of major nerve fiber bundles, a process known as tractography. 

Decreased anisotropy in the hippocampi in both AD and MCI when compared to 

normal aging have been reported (Kantarci, Jack et al. 2001), with other differences 

elsewhere in the brain between AD and normal aging (see Figure 6). The reliability 

35 



for individu al prognosis is pOOf however, as there is considerable overlap between 

the anisotropy values of the three groups. 

Figure 6 - Diffusion imaging in AD 

Apparent diffusion coefficient (average) map, with regions of interest drawn on the 
anterior cingulated WM, thalamic, temporal stem and hippocampi. AD patients 

exhibit decreased anisotropy in these areas wh en compared to normal aging. 
Source (Kantarci, Jack et al. 2001) 

Magnetization Transfer Imaging 

Magnetization transfer imaging (MTI) enables the properties of protons bound to 

macromolecules to be probed (Tofts 2003). These bound protons (the 30% MRI-

invisible protons referred to in the Proton Density Imaging section above) compose 

a different pool than the free water protons observed so far via Tl, T2, PD or DTI; 

they are largely located in fat and proteins, and therefore in myelinated white matter. 

The magnetization transfer ratio (MTR) between free and bound protons gives an 
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indication of the quantity of bound protons present in tissue. CSF being essentially 

free water, its MTR will be close to zero, whereas MTR in WM will be high. 

MTR is reduced in many pathologies, in part due to demyelination, such as the 

corpus callosum of AD patients (Hanyu, Asano et al. 1999). There are also 

notice able changes in MTR in MCI patients (Kabani, SIed et al. 2002). MTR 

measurements were initially thought to be useful for lateralization of seizure focus in 

TLE (Tofts, Sisodiya et al. 1995), but more extensive research refuted that claim (Li, 

Narayanan et al. 2000). 

MR Spectroscopy 

Hydrogen is, by far, the most commonly observed nuclei in MRI however, as 

mentioned previously, any half-integer spin nuclei can theoretically be observed. 

Bulk magnetization actually results in a spectrum with peaks corresponding to 

various other chemical compounds or metabolites that resonate at different 

frequencies. Magnetic Resonance Spectroscopy (MRS) is concerned with the 

understanding and tracking of resonant peaks from other molecules; the major 

difficulty of course consisting in the identification of spectral peaks corresponding to 

a given molecule. Once identified, the resulting specificity is high however, and 

absolute concentration measurements become possible. 

Various chemicals involved in brain morphological and physiological processes have 

been identified. These include N-acetyl-aspartate (NAA), thought to give an 
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indication of neuronal density, choline-containing compounds, creatine, myo-inositol, 

glutamate and glutamine, lactate and lipids (Tofts 2003). 

Of aIl the compounds studied by Kantarci et a1., (Kantarci, Smith et al. 2002), the 

NANMyo-inositol ratio may be the most efficient predictor of memory and 

cognitive function in patients with MCI and AD. MRS has also been shown to be 

sensitive in detecting hippocampal sclerosis in TLE (Li, Caramanos et al. 2000)( see 

Figure 7). 
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Figure 7 - MRS imaging in TLE 

Follow-up temporal lobe 'H-MRS imaging of a 26-year-old patient with newly 
diagnosed TLE, 7 months after complete seizure control by carbamazepine, still 

shows low NAAlCr values in both temporal regions 
Source: (Bernasconi, Antel et al. 2001) 
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Functional MR imaging 

Functional MRI (fMRI) shows the location and sometimes magnitude of increased 

neuronal activation arising from specifie tasks (e.g. visual, motor or cognitive). 

Whereas aIl previous MR signaIs are directly related to the concentration of nuclei 

in the tissue, albeit in a macroscopic fashion, fMRI is an indirect measure of 

physiological response to an activation paradigm. As its name implies, it is a 

functional modality and should therefore be compared to other such imaging 

techniques, such as nuclear radiation (e.g. gamma cameras, positron emission 

tomography (PET) and single photon emission computed tomography (SPECT» or 

electro-magnetic imaging (e.g. electro-encephalography (EEG) and magneto­

encephalography (MEG». AlI functional modalities, when compared to structural 

imaging such as x-ray based computed tomography (CT) or high resolution MRI, 

offer limited spatial resolution. Yet, their informational content is of paramount 

importance, as it enables a window into the time-dependent physiological processes 

in health and in disease. 

There are several ways of detecting the increased metabolic demand associated with 

activity using MRI, the most common being the blood oxygen de pende nt (BOLD) 

signal (Logothetis and Pfeuffer 2004). When nerve cells are active they consume 

oxygen, supplied by local capillaries and carried by hemoglobin. A hemodynamic 

response occurs a few seconds after a burst of neuronal activity. The difference in 

the level of blood oxygenation, related to the fluctuations in diamagnetic oxygenated 

39 



hemoglobin and paramagnetic deoxygenated hemoglobin, results in a contrast (the 

BOLD signal) that can be used for imaging purposes. 

Aside from acquisition parameters, the relevance of the neuropsychological 

activation paradigm must also be considered when evaluating results from fMRI. If 

the test has poor specificity/sensitivity, then the acquisition will not compensate for 

this poor design. It must also be closely coordinated with the acquisition sequence. 

FM RI has been used extensively in many areas of the neurosciences; for example, 

localization of language regions for surgical planning (Poliakov, Hinshaw et al. 1999), 

and assessment of differences in cognitive abilities between normal aging and AD 

(Johnson, Saykin et al. 2000) and MCI (see Figure 8). 

Figure 8 - tMRI in AD 

Areas of significance where age-matched controls are significantly more active than 
patients with MCI on the two comparisons: (A) novel items: the hippocampus is 

significantly more active in controls th an MCI and (D) previously learned items: the 
posterior cingulate and precuneus are more active in controls during recognition. 

Source: (Johnson, Schmitz et al. 2005) 
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Second level: MR data-derived features analysis 

While the radiological analysis of MR data does give a number of answers to clinical 

questions, it is generally not sufficient when dealing with complex problems, such as 

assessing the rate of atrophy for structures in AD, or measuring the reduction in 

plaque size in MS through time during treatment. Further processing must be done 

to the original data, to put images in correspondence, and pinpoint subtle elements 

of interest on the images. 

Texture 

The concept of texture in medical imaging refers to the relationship between 

neighboring pixels (in 2D) or voxels (3D), under the hypothesis that sorne of the 

tissue characteristic giving rise to the signal within that image element will be related 

to its surrounding. Extracting local neighborhood intensity co-occurrences via n-th 

order statistics therefore serves to highlight changes in this interdependence, ideally 

related to the cumulative effect of microscopic pathological disturbances. Texture in 

MR images may de pend, to varying degrees, on local water content, on the nature, 

concentration and distribution of prote in and lipid molecules, on the chemical 

constituents and structure of molecules other than water, and substances which 

affect the local magne tic field, on perfusion, diffusion and flow and on the presence 
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of contrast agents (Tofts 2003). Different image resolutions will also restrain the 

comparative ability of texture metrics across subjects or groups. The most widely 

used texture metrics are derived from the spatial gray-Ievel dependence matrix, 

often referred to as the co-occurrence matrix, which can be computed in 3D 

(Kovalev, Kruggel et al. 2001). 

Neurodegenerative diseases of the brain, such as AD, are characterized by complex 

microscopic processes which result in cell death and physiological changes to brain 

tissue. It has been suggested that this may result in detectable changes in the 2D/3D 

macroscopic texture visible in MR (Freeborough and Fox 1998). First-order texture 

measures also show promise for assisting in locating focal cortical dysplasia in extra­

temporal epilepsy (Bernasconi, Antel et al. 2001; Srivastava, Maes et al. 2005). 

GM/WM/CSF classification 

At current imaging resolutions ( -1mm3
), within-brain voxels in MRI may broadly be 

thought as composed of either one of three classes: white matter (WM), grey matter 

(GM), or cerebro-spinal fluid (CSF). The GM is primarily composed of neuronal 

bodies, while the WM consists essentially of closely packed axonal tracts, heavily 

myelinated, forming cortico-cortical or cortico- sub-cortical connections. It is readily 

acknowledged that the actual in vivo cellular arrangement is not as clearly defined, 

as within any given voxel, a large number of axons and cell bodies co-exist; however, 

the overall signal being an average of each tissue contributions within that volume 
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element, the majority of voxels will have a signal heavily weighted towards either 

GM, WM, or CSF. For sorne boundary voxels (especially the GM/WM interfaces), 

the difficulty remains to separate or assign them a particular label, due to partial 

volume effects (i.e. proportions of different tissue classes within a single volume 

element). 

At present however, this trichotomous view of brain tissue serves many purposes, 

and therefore much work has been dedicated to the separation of images into those 

major classes, a process referred to as tissue classification or segmentation. 

Tissue classification techniques have typically used either multi-modality images, in 

an effort to parcellate the multi-spectral intensity space into three distinctive classes, 

and/or used a priori information about the known spatial distribution of 

GM/WM/CSF in control subjects. This task is made even more complicated by the 

fact that the spatial distribution of GM/WM/CSF is highly variable, no two brains 

being topologically alike; and further, GM and WM intensities do vary across a 

single brain, in part due to the acquisition or improper correction of its bias, and 

otherwise because of the heterogeneousness of tissue within volume elements 

throughout the brain. The reader is referred to (Pham, Xu et al. 2000) for a 

comprehensive review of segmentation algorithms. 

In and of itself, the assignment of classes to tissue does not necessarily lead to a 

useful measurement that can aid the diagnosis; further analysis of the tissue maps 
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however does so, such as brain matter volumetry, ratio maps, and voxel-based 

morphometry (VBM), discussed in the next section. 

Figure 9 - GM average map for TLE subjects with left hippocampal atrophy. 

This transverse image shows the average, smoothed distribution of GM in a group of 
47 TLE patients with left hippocampal atrophy. In such an image voxels take a value 

between 0 (no GM present on average) and 1 (GM present in aIl cases). 

Registration 

Registration is the process by which two or more images are put in correspondence, 

i.e. aligned with respect to each other; when successful, it allows the comparison of 

spatial elements - and the signal within - on a point-by-point basis between the two 

or more Images. 

Scans from a single subject can be registered, either cross-sectionally across different 

modalities (intra-subject, inter-modality)( e.g. Tl and T2 images acquired in a single 

session) or longitudinally (intra-subject, intra-modality)(multiple images acquired at 
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different time points in the course of health or disease). Inter-subject registration 

allows image data from a group of subjects to be pooled. This is done for the 

purpose of group comparisons, or in order to compare scans from an individual to 

those of a group. Again, this can be performed cross-sectionally or longitudinaIly, 

within or across modalities. For a thorough review of image registration algorithms, 

the reader is referred to articles by Maintz et al. and Hill et al. (Maintz and 

Viergever 1998; Hill, Batchelor et al. 2001). 

Whether or not registration is successful is not in itself indicative of a particular 

pathological state. Rather, the strength of co-registered images resides in the ability 

to perform intra-subject or inter-subject comparisons, in a mono- or multi-modality 

fashion. Further, there is much information embedded in the registration process 

itself, which can be exploited using deformation-based morphometry (see next 

section). 

Registration is necessary step and a key enabling methodology in the study of health 

and disease. The co-registration possibilities are too numerous to discuss here: given 

Nindependently acquired modalities (T1w, T2w, PD, DTI, MTR, MRS, fMRI, 

SPECT, PET (one tracer each!), EEG, MEG, CT), one quickly reaches an 

astounding number of bi-modality combinations (in this case, 66). Of course, not aIl 

possibilities are necessarily relevant, as the informational value of certain modalities 

overlap. 
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Third level: MR model-based analysis 

Even data-driven techniques don't necessary get to the essence of the most often 

asked clinical question: does the subject have, or not, the disease? This often 

requires sorne form of meta or higher-order analysis before it can be distilled into a 

binary output suitable for clinical consumption. The following model-based 

techniques stand at the top of the image processing food chain, and typically result 

in a dichotomous output that can aid the diagnosis. 

Volumetry 

Volumetry, essentially the measurement of the volume of a particular bounded 

structure of interest (Figure 10), is the primary indicator of structure integrity. Due 

to its prevalence in the medicalliterature and its acceptance as a gold standard in 

many reports, it will be studied here in greater detail. 

Volumetry relies on accurate segmentation of the structures of interest, which is 

either performed manually or automatically; the two approaches will be discussed. 

While undeniably useful for understanding disease-driven changes in the chosen 

structure ( s), volumetry suffer from significant drawbacks related to its reliance on 

segmentation; the most important ones being lack of knowledge about interrelations 

between neighboring tissues, and the incapacity at spatially locating the detected 

volume change. 
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Figure 10 - Hippocampal and amygdala volumetry 

This image shows manually determined labels for the amygdala (yellow), 
hippocampal head (red), body (green) and tail (blue). This separation allows the 

analysis of sub-components of the He however, precise inter-individual boundaries 
are hard to define and assess with reliability. 

Source: N. Bernasconi 

Manual segmentation 

Manual segmentation techniques involve contour delineation of structures by one or 

more trained neuroanatomists. Stereology, Le. the technique of proper sampling 

based on the Cavalieri princip le (Cavalieri 1635), had been the preferred approach 

to calculating volumes before the advent of high-resolution images, where volumes 

can be reliably estimated directly from the (often isotropic) voxel count and slice 

thickness. 

While expert human intervention remains the most accurate segmentation technique 

and is considered the gold standard in many studies, serious drawbacks undermine 

its usefulness in a number of situations. The main difficulty resides in the subjective 

interpretation of anatomical variations. In the case of HC and AG for example, 
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differences in border definitions amongst research groups - and for that matter, 

amongst investigators of a same group - have hindered the comparison of results. 

The reported intra-class inter-rater overlap coefficients in a segmentation study of 

the HC are in the range K= 0.83-0.94 (Pruessner, Li et al.). Commonality in the 

definition of segmentation protocols is needed if results are to be compared. 

Secondly, research groups use different software packages to trace the targeted 

structure. Most employ 2D visualization tools for brain images, without the 

possibility of adjusting resolution or image contrast. A common 2D error is inter­

slice misregistration, which leads to non-smooth 3D surfaces. On the other hand, 

scalable 3D imaging is available, allowing for precise display and enlargement of 

regions of interest in coronal, sagittal and transverse orientation (Pruessner, Li et 

al.). Finally, manual processing is time-consuming, as the specialist must delineate 

the structures on a slice-by-slice basis. Taking the HC as an example, its longe st axis 

of 4-5 cm generates in the order of 40-50 slices with isotropie Imnf voxels. Hogan 

(Hogan, Mark et al. 2000) reports a total segmentation time of 2 hours per He. This 

result has been corroborated by Pruessner et al. (Pruessner, Li et al.) in their manual 

segmentation study. 

Automated segmentation 

Computer-based segmentation can be roughly divided in two broad approaches, 

based on the reliance or not on a priori information. 
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Forward segmentation approaches use a pre-defined template to match the 

new volume to achieve segmentation. In most cases experts are required to 

initialize the segmentation process by choosing landmarks. The matching 

process can be done in the way of an initial contour which will be propagated 

through sorne form of elastic matching onto the image until a proximity 

criteria is maximized. An example of this technique is the High-Dimensional 

Brain Mapping technique using fluid transformations, proposed by 

Christensen (Christensen, Joshi et aL). Other techniques, such as the Active 

Shape Model of Cootes and Taylor (Cootes, Taylor et aL), will rely on the 

placement of landmarks on the image to derive a model that is then globally 

deformed to match sorne intensity features of the new image. 

Backwards segmentation, on the other hand, can be thought as a reversion of 

the original paradigm. In those cases the new image is registered through 

various means unto a reference volume; atlases that have been previously 

defined on the reference volume can be propagated back unto the new 

subject, using the inverse transformation matrix. This paradigm can be 

observed in Thirion's demons (Thirion) and Collins' ANIMAL (Collins, 

Holmes et al.) algorithms. 

While objective and repeatable, automated segmentation of structures is not yet 

perfectly accurate, as evidenced by the reduced overlap with expert-based manual 

segmentation (Duchesne, Pruessner et al. 2002). 
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Morphometry 

Voxel-based morphometry 

Voxel-based morphometry (VBM) consists in the statistical analysis of generalized 

linear model (GLM) results performed on a voxel-by-voxel basis on combined 

cohorts of co-registered subject imaging data. The procedure has been used 

extensively for the study of GM or WM concentration volumes across subjects, and 

originates from the study of longitudinal activation maps in fMRI. In fact, one of the 

most popular standard software package for VBM is that of Ashburner et aL, 

(Ashburner and Friston 2000), which consists in an adaptation of their statistical 

parame tric mapping (SPM) technique, initially designed for functional activation 

(fMRI, PET) analysis. The method used in this thesis, called fMRIStat, was 

developed by Worsley et al. (Worsley, Marrett et al. 1996) for the same purpose. 

The standard approach involves co-registering images in a linear and/or non-linear 

fashion to improve the spatial co-location of brain structures; then tissue (GM, WM) 

are segmented into maps, spatially smoothed to form so-called "concentration" 

maps, with the understanding that they do not represent an absolute measurement 

of cell body counts or axonal densities, but rather an approximation of the likelihood 

of finding GM or WM in that area. Parameters of a generallinear model are 

estimated at each voxel, across subjects, possibly with addition al co-variates if 

applicable (e.g. age, sex). Voxels with statistically significant differences are 

identified based on a threshold corrected for multiple comparisons. Rather th an 
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using Bonferroni correction, fMRIStat relies on Gaussian Random Field theory for 

this correction (Worsley, Marrett et al. 1996). The final result is a volume containing 

only those voxels (or peaks) in which there are statistically significant differences 

between the tissue concentrations for the groups under study (see Figure 11). 

VBM's detection accuracy is limited by sources of spatially dependent and 

independent noise that compromise the statistical results. Misregistration is a key 

factor which has been discussed (Ashburner and Friston; Bookstein; Davatzikos 

2004) and addressed using linear and nonlinear registration in recent VBM 

implementations (Ashburner and Friston 2000); fMRIStat allows users to decide 

which degree of normalization should take place. 

Smoothing is generally used as a panacea to account for local misregistrations in the 

analysis, reduce noise in the input data and make the GM!WM concentrations 

normally distributed. This in turn improves the detection of regions of differences 

but cornes at the cost of decreasing localization accuracy. The size of the smoothing 

kernel should be matched to the expected difference between groups (Ashburner 

and Friston 2000). 

In order to report ensembles, or clusters, of differing voxels, as opposed to peaks, 

the issue of data nonisotropy must be successfully resolved (Worsley, Andermann et 

aL). Concentration volumes of GM / WM are highly nonisotropic since the noise 

compone nt has nonconstant smoothness. One needs to correct the image and make 

the data isotropic in a statistical sense (Worsley, Andermann et al.) before assessing 
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results. Whereas many studies do not explicitly mention such correction, one must 

take care to incorporate a methodology of the kind proposed by Salmond (Salmond, 

Ashburner et al. 2002) or Worsley (Worsley, Andermann et al.) before reporting 

c1uster statistics. These authors overcome nonisotropy by measuring c1uster size in 

resels - resolution elements - rather than voxels. This is shown below, where the total 

c1uster size S equals the summation of resels at these voxels i , part of c1uster cl, 

above the c1uster t-statistics threshold. Unitless resels are calculated by taking the 

ratio of the voxel volume dx dy dz in mnt over the cubed effective smoothing kernel 

full-width at half-maximum (FWHM) at that point, also in mnt (Worsley, 

Andermann et aL): 

s= 2 dxdydz 
iEcl FWHM; 

Deformation-based morphometry 

The term "deformation-based morphometry" will be used to refer to various 

techniques that have emerged in the literature whose common trait is the 

exploitation of the information contained within the high-dimensional, dense 

deformation field obtained by nonlinear registration of brain images. 

Assessment of shape differences across individuals used to be do ne via the analysis 

and tracking of landmarks (Bookstein 1984) , but those are difficult to identify 

reliably and consistently across the human brain. In essence, by calculating the 
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registration vectors required to align every point in an image with those of a 

common reference (Figure 12), the deformation field contains continuo us 

landmarks, and thus captures individu al brain shape characteristics that can be 

compared within a group in the reference space. 

Three morphometry techniques will be discussed: deformation, tensor, and surface-

based morphometry. 

Figure 11 - VBM in TLE 

Statistically significant peaks of gray matter decrease in patients with left and right 
temporal lobe epilepsy (L-TLE and R-TLE) in temporolimbic and frontal areas 

superimposed on the ICBM 152 average template of healthy controls for anatomical 
reference. 

Source (Bernasconi, Duchesne et al. 2004) 
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Figure 12 - Deformation field 

Computation of the nonlinear transformation required to align two images results in 
a dense deformation field, assessed at every voxel, capturing individual brain shape 

differences. 
Source: D.L. Collins 

- Deformation-based morphometry - When comparing groups, deformation-based 

morphometry uses registration-derived deformation fields to identify differences in 

the relative positions of structures within the subjects' brains. The 3D vector 

transformations can be analyzed as a multivariate statistical inference problem and 

solved using Hotelling's P statistic (Thompson and Toga 1997); the result can be 

turned into a probabilistic atlas of deformations for a group of individuals. 

Ashburner and Friston (Ashburner and Friston 2000) point out that such statistics 

based on the displacement field do not directly localize regions within different 
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structures, but rather identify brain structures that have translated to different 

positions. 

- Tensor-based morphometry - In those methods differences in the local shape of 

brain structures are derived from a tensor field (Chung, Worsley et al. 2001; Shen 

and Davatzikos 2003). By definition, the Jacobian of the deformation is the volume 

of the unit-cube after the deformation (Chung, Worsley et al. 2001). Assuming that 

one can find the deformation field at any voxel, volume change can thus be detected 

at a voxellevel. In tensor-based morphometry (Ashburner and Friston 2000), the 

nine components of the Jacobian form scalar fields used to measure the second­

order morphological variabilities. The advantage of this technique over the classical 

MRI-based volumetry is that it does not require a prioriknowledge of the region of 

interest to perform the morphological analysis. Moreover, the deformation-based 

volumetry improves the power of detecting the regions of volume change within the 

limits of the accuracy of the registration algorithm (Chung, Worsley et al. 2001). To 

detect statistically significant local volume change, the Trandom field with its P 

value of the maximum field can be used (Chung, Worsley et al. 2001). 

- Surface-based morphometry - Finally, the anatomical variations associated with 

the deformation of a surface can be statistically quantified; studies have looked at 

individu al structure surfaces (Csernansky, Wang et al. 2000; Wang, Joshi et al.; 

Csernansky, Schindler et al. 2004), and others have applied this idea to the whole 
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cortex, modeled as a continuous sheet (MacDonald, Kabani et al. 2000; Chung, 

Worsley et al. 2003; Lerch, Pruessner et al. 2005). 

High-dimensional classification 

Only recently have classification methods emerged that use high-dimensional 

information (e.g. multiple 3D image features), typically reduced to a lower 

dimensional domain. 

Techniques proposed by Golland et al. (Golland, Grimson et al. 2005) and Joshi et 

al. (Joshi, Pizer et al. 2002) rely on shape characteristics of single objects. So far 

the se methods have shown value with discrete structures, easily identifiable, and with 

simple topologies: the hippocampus (Joshi, Pizer et al. 2002), hippocampus and the 

corpus callosum (Golland, Grimson et al. 2005), and the thalamus (Csernansky, 

Schindler et al. 2004). Those method become limited by much the same 

considerations as volumetry: 1) they do not represent interactions between 

neighboring, and biomechanically dependent, tissue; and 2) they are prone to being 

misled by segmentation errors and inter/intra-rater variability, due to inconsistent 

formulation of the anatomical boundary, reduced contrast (which happens 

frequently in multiple pathologies), and possibly poor segmentation technique. 

The approach taken by Lao et al. (Lao, Shen et al. 2004 )as well as Liu et al. (Liu, 

Teverovskiy et al. 2004) most closely resembles the methodologies proposed in this 

thesis. They both rely on information from a wide image are a, as opposed to a 
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specific structure; they extract information directly from image parameters, and 

attempt the classification on the reduction parameters. 

Lao et al. use wavelet decomposition of mass-preserved GM, WM and CSF 3D 

concentration maps as input to a Support Vector Machine classifier. Liu et al. uses 

2D texture features on selected slices fed to a linear discriminant classifier. 

Other techniques 

New methods continuously emerge as more interdisciplinary collaborations exploit 

various elements of mathematical and computer vision theories, and older ones are 

continuously improved and brought in to aid the diagnosis of various neurological 

diseases. Those include medial sheets models (Joshi, Pizer et al.; Styner and Gerig; 

Bouix, Pruessner et al. 2005), 2D-cortical flattening (Drury, Van Essen et aL 1996; 

Fischl, Sereno et aL 1999; Van Essen, Drury et al. 2001), and sulci/gyri mapping. The 

latter attempts to capture the normal topological variability in sulcal and gyral 

patterns in the human cortex, considered by many to be one of the biggest challenges 

facing neurological imaging in the current era. Manual extraction of common 

topologies (Ono, Kubik et al. 1990) , along with automated techniques (Thompson, 

Schwartz et al. 1996; Le Goualher, Barillot et al. 1997; Lohmann and von Cramon 

2000; Cachia, Mangin et al. 2003; Mangin, Riviere et al. 2004) are trying to capture 

the full extent of normal variability (Dameron, Gibaud et al. 2004). 
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Case studies 

We will now turn our attention to outstanding problems within two neurological 

diseases who se characteristics make them ideal test cases to illustrate the capabilities 

of the methodologies developed in this thesis: temporal lobe epilepsy (TLE) and 

Alzheimer's dementia (AD). 

Case study: temporal lobe epilepsy 

Etiology and treatment 

Microscopically, the most commonly described findings in MTLE are neuronalloss 

and gliosis of the hippocampus (He) and the parahippocampal (PHe) region 

(Falconer, Serafetinides et al. 1964). The central goal of surgery in MTLE has been 

the removal of this affected tissue, in an attempt to remove the site of seizure 

generation and thus achieve seizure control. As the understanding of the disease and 

image-guidance improved (Olivier, Alonso-Vanegas et al. 1996), MTLE surgery has 

moved from complete to partiallobectomy (anterior temporallobectomy or ATL), 

to selective amygdalo-hippocampectomy (SAH) (Olivier 2000). The latter approach 

consists in the resection of the amygdala (AG) and He complex, and often parts of 

the neighboring structures, such as the entorhinal cortex (Ee). Vickrey et al. 

(Vickrey, Hays et al. 1995) have assessed MTLE surgery success and demonstrated 

that surgery patients had greater de cline in average monthly seizure frequency and 

58 



took fewer antiepileptie medications, when compared to patients that had not 

received surgery. 

Imaging characteristics 

HC neuronalloss found in surgie al speeimens obtained from patients with 

pharmacologically intractable TLE has been shown to correlate with HC atrophy on 

volumetrie Magnetie Resonance Images (MRI) (Caseino, Jack et al. 1991). MRI 

studies in MTLE have also shown volume reduction ipsilateral to the side of the 

seizure focus in the PHC region (Bernasconi, Bernasconi et al. 2003); there is also 

evidence for extra-limbic and extra-temporal gray and white matter reductions in 

epilepsy patients when compared to controls (Woermann, Free et al. 1999; Keller, 

Mackay et al. 2002; Bernasconi, Duchesne et al. 2004). Nearly 80% of MTLE cases 

exhibit lateralized HC atrophy, strongly correlated with an ipsilateral seizure focus 

(see Figure 13), while approximately 5% of intractable TLE patients demonstrate 

bilateral atrophy without significant differences between hemispheres, and the 

remaining 15% of cases have non-atrophic HC (Bernasconi, Bernasconi et al. 2003). 

Outstanding challenges 

Lateralization of seizure focus in TLE 

Presurgical evaluation of patients with refractory epilepsy is a necessary step, whose 

main outcome is the localization of the resection target. This thesis addresses the 

problem of patients with seizure focus, or foei, within the medial temporal lobes; one 
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of these will be selected as the resection target, a process referred to as lateralization 

01 seizure locus. 

Figure 13 • Tl images of TLE 

(Top) Sagittal and coronal Tl MRI of normal control subject (Middle) 
Left hippocampal atrophy is readily noticed on these images (same orientation as 

above) of a TLE patient as a enlargement of the lateral ventricles, along with 
increased atrophy of the hippocampal head (red lin es intersection). (Bottom) On the 
other hand, around 15% of intractable TLE patients exhibit normal hippocampal 
volumes, therefore making lateralization impossible in those cases on the basis of 

He volumetry alone. This is exemplified in these Tlw MR images (same orientation 
as ab ove) of a TLE patient with hippocampal normal volume. 
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As mentioned, HC atrophy is strongly correlated with an ipsilateral seizure focus. 

Volumetry of the hippocampus has therefore been used in many centers for pre­

surgi cal evaluation however, it is a time-consuming, manual procedure requiring 

expert intervention, and subject to the drawbacks outlined in a preceding section. 

Further, approximately 20% of intractable TLE patients demonstrate either bilateral 

atrophy or normal volumes, making volumetry-based lateralization impossible in 

these cases. The alternative to HC volumetry is to proceed with surgically implante d, 

intra-cranial electro-encephalography (sEEG). While very sensitive, sEEG is a very 

invasive approach that is time and resource consuming, notwithstanding its impact 

on the patient's quality of life. 

Our goal is to lateralize the seizure focus in TLE patients with and without 

hippocampal atrophy on cross-sectional Tl-weighted MRI. The ability to perform 

accurate lateralization in a non-invasive manner could significantly alter CUITent 

clinical practice. This forms the subject of Chapter 4 of this thesis; the methodology 

that has been developed and used to achieve lateralization is appearance-based 

classification, and is described in Chapter 3 in greater details than found in the 

published manuscript. 

Prediction of outcome for TLB surgery 

While the goal of surgery is to eradicate seizures, approximately 20 to 30% of 

patients are not seizure-free following standard surgery (Antel, Li et al. 2002). 

Predicting surgical outcome in the treatment of medial temporal lobe epilepsy 
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(MTLE) remains an outstanding challenge. Since the advent of high-resolution 

neuroimaging, there have been numerous attempts at finding structural or functional 

markers that can be used as a predictive surrogate of surgical outcome, but no 

completely reliable indicator has been found to date. 

While the majority of patients undergoing surgery have positive outcome, it is 

difficult at present to de termine a priori if the procedure will be successful. MRI has 

been used to predict surgical outcome in ATL (Jack, Sharbrough et al. 1992); 

(Radhakrishnan, So et al. 1998) (Kobayashi, Lopes-Cendes et al. 2001) with an 

accuracy ranging from 62% to 96%(Gilliam, Faught et al. 2000). Fewer authors have 

attempted to predict surgical outcome for SAH based on MRI: Abosch et al. 

(Abosch, Bernasconi et al. 2002) have used MRI, and Antel et al. (Antel, Li et al. 

2002) have used MRI in combination with MR spectroscopy. The seizure-free 

classifier developed by Antel correctly predicted the surgical outcomes of 39 of 52 

(75%) of patients who became seizure free and 21 of 29 (72%) of patients who did 

not. 

There remains a need to increase the accuracy of non-invasive, pre-operative 

surgi cal outcome prediction in SAH. This represents the goal of the work presented 

in Chapter 5; more information on the necessary background is included in that 

chapter, and the voxel-based classification methodology used to achieve this goal is 

described in detail in Chapter 3. 
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Case study: Alzheimer's dementia and Mild 

Cognitive Impairment 

Etiology and treatment 

Alzheimer's dementia (AD) is a progressive neurodegenerative disorder associated 

with disruption of neuronal function and graduaI deterioration in cognition, function, 

and behavior (Khachaturian 1985) . The progression of AD is graduaI, and the 

average patient lives 8 to 10 years after onset of symptoms (Petrella, Coleman et al. 

2003). It is the most common cause of dementia in the elderly (65 years and older), 

responsible for 75% of aIl dementia cases (Group 2000; J. R. PetreIla 2003). As the 

globallife expectancy rises and populations age, the prevalence of AD is expected to 

triple over the next 50 years (Carr, Goate et al. 1997); improving care while reducing 

the socio-economic impact of AD is therefore an important and necessary topic of 

research. 

The etiology of AD can be summarized as neuronal dysfunction and eventualloss 

due to abnormal accumulation of Aj3 and Tau proteins (Thal, Rub et al. 2000; Thal, 

Rub et al. 2002; Giannakopoulos, Herrmann et al. 2003). Neuropathological studies 

in AD have shown in fact that brain degeneration occurs very early in the course of 

the disease, even before the first clinical signs, in certain regions such as the medial 

temporal lobe (MTL)(Cummings, Pike et al. 1996; Nagy, Hindley et al. 1999; Thal, 
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Rub et al. 2000; Thal, Rub et al. 2002; J. R. Petrella 2003). Microscopically the 

strongest predictor of premortem cognitive dysfunction appears to be the relative 

area of entorhinal cortex occupied by beta-amyloid deposition(Cummings, Pike et al. 

1996). To date however the diagnosis of clinically probable AD can be made with 

high accuracy in living subjects only once the stage of dementia has been reached, 

and requires clinical, neuropsychological and imaging assessments (Petrella, 

Coleman et al. 2003). It can only be confirmed by postmortem histopathology (Risse, 

Raskind et al. 1990). 

Imaging characteristics 

AD is associated with progressive cerebral atrophy, which can be seen on MRI with 

high resolution (Fox and Schott 2004)(see Figure 14). This atrophy is preferentially 

located in early AD in the temporal and limbic areas (hippocampus, temporal pole, 

insula, with co-occurring enlargment of the lateral ventricles), while in later disease 

stages, the rest of the cortex (frontal, occipital lobes) is affected, with relative sparing 

of the sensori-motor cortex (Karas, Burton et al. 2003; Thompson, Hayashi et al. 

2003; Thompson, Hayashi et al. 2004). 

Longitudinal analysis of MRI has been proposed to differentiate between aging, 

MCI, and AD (Fox and Freeborough 1997; Fox and Schott 2004) with high accuracy 

however, by its very nature such a method implies a delay between scans before any 

assessment can be made. Cross-sectional measurements of the hippocampus have 

achieved classification between controis and AD patients (90.7%), and between 
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individuals with MCI and AD patients (82.3%) (Pennanen, Kivipelto et al. 2004). 

Longitudinally-assessed MR-based atrophy rates of the hippocampus is also a 

reliable indicator of the state of the disease (Jack, Slomkowski et al. 2003). 

Figure 14 - Tl weighted images of AD patients 

Those images perpendicular to the long axis of the temporal lobe show the different 
degrees of medial tem porallobe atrophy (MT A), according to the visual rating scale 

proposed by ScheItens (A) absence of atrophy (MTA=O); (B) minimal atrophy 
(MTA=l); (C) mild atrophy in the right side (MTA = 2), severe atrophy on the left 

(MT A=4); (D) moderate atrophy (MTA=3); and (E) severe atrophy (MT A=4) 
(Source: (Bastos Leite, ScheItens et al. 2004) 
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Outstanding challenges 

Dillerentiation 01 AD and MCllrom normal aging 

The difficulties in early clinical detection lie for the most part in the similarities 

between cognitive impairment due to normal aging (NA) processes and the initial 

manifestations of AD (Chetelat and Baron 2003). The ability to differentiate AD 

from NA, in an objective, repeatable and accurate fashion, would act as a potent 

factor in the therapy management of these individuals. Additional background on 

this topic is included in Chapter 6, where the differentiation of AD and MCI from 

NA is attempted using the same appearance-based technique (described in Chapter 

3) that was used for lateralization of seizure focus in TLE in Chapter 4. 

Barly prediction 01 MCI progression to AD 

Mild cognitive impairment (MCI) is a condition referring to patients with significant 

but isolated memory impairment relative to subjects of identical age (Flicker, Ferris 

et al. 1991; Petersen, Doody et al. 2001). MCI individuals are considered an at-risk 

group for progression to Alzheimer's dementia (AD)(DeCarli 2003; Dubois and 

Albert 2004). Early prediction of progression to AD in MCI patients is therefore an 

important research goal that is met in Chapter 7, and which may have significant 

impact on the therapy course for these individuals. Again, further relevant material 

is included in the introduction of this manuscript, and the appearance-based 

classification methodology is described in the next chapter. 
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Chapter 3 

Methods 

ln this chapter, two novel image analysis techniques are introduced as the 

methodological contributions of this thesis. Their application to existing diagnostic 

problems in classification and prediction of neurological diseases will be discussed in 

subsequent chapters. 

There are three major design considerations underlining both techniques. The first 

decision is to move from structure-centric approaches to one based on a large 

volume of interest (VOl), hoping to inerease the informational value (see Figure 15). 

For example, in volumetrie studies of the He, between 3000 to 4000 voxels are 

compressed in a single scalar measurement, expressed in mnt. Even though essential 

information about disease processes can be gained through volumetrie studies (e.g. 

atrophy rates in AD), much information is lost in this process; the location of 

atrophy being a prime example in this case. In the methodologies being proposed 
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here, more voxels are processed and linearly modeled to yield additional important 

information towards our classification/prediction goal. 

Figure 15 - Structure-centric vs. volume of interest approaches 

Volumetry of individu al structures (e.g. hippocampus, in green) has been used 

extensively in the analysis of Medical images but otTers limited informational value. 

A large, non-specifie 3D volume of interest (shown here in blue) would contain 

additional information potentially useful for classification and prediction. 

The second design choiee is a move from a priori knowledge-based approaches to a 

completely data-driven technique. Our goal is not to preselect a structure for 

analysis but rather to investigate the relationship between voxels within the volume 

of interest, as they relate to the pathology. This is the common biologieal hypothesis 

underlying the two methods to be presented in this section: that differences in MRI 

signaIs are likely due to pathology-related microscopie and macroscopic changes or 
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alterations in the various tissues within these voxels. It is therefore a conscious 

decision to not presuppose the pathological effect on the signal intensity, or its affect 

on any structure. Again, we can contrast this choice with volumetry, which works on 

the basic assumption that sorne pathologies result in cumulative tissue loss, 

measurable as a dichotomous change in boundary voxels and therefore structure 

volume. It is likely however that these pathologies alter the signal intensity in an 

incremental fashion, and thus, by compressing continuous change into a single 

binary step, one reduces the dynamic range and gets low sensitivity. A data-driven 

approach, where image features are extracted without a priorihypothesis, allows the 

modeling of subtle signal changes that, arguably, may be harder to interpret 

biologically, but serve our ultimate purpose of classification and prediction of 

pathological effects by virtue of being potentially more sensitive. 

The third major consideration is to restrict the analysis to cross-sectional data, as 

opposed to seriaI or longitudinal studies. This stems from a clinical need in rapid 

assessment of pathological effects in patients, but implies that both methodologies 

will rely on individual-to-group comparisons for classification and prediction. This of 

course assumes that the disease effect within each group will be sufficiently 

homogeneous. One way to improve upon this homogeneity in the four applications 

presented in Chapters 4 to 7 was to carefully assign patients in cohorts with similar 

age and/or clinical condition. 
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It should be stated at this point that the first methodology (appearance-based 

classification) was sufficiently developed and its application satisfactorily proven in 

TLE and AD as to warrant protection for intellectual property, resulting in a patent 

application to the United States Patents and Trademarks Office on 19 Nov. 2004 (no 

10/990396). 

MRI acquisition and initial image processing 

Pre-operative 3D T1-weighted (T1w) MR images in aIl of the foIlowing studies were 

acquired on multiple 1.5T scanners with different sequences however, initial image 

processing steps were common to aIl datasets and will now be described. 

Global MRI scans were first corrected for intensity non-uniformity due to scanner 

variations (SIed, Zijdenbos et al. 1998), and then globally aligned using a 9-degrees 

of freedom (DF) linear registration (Collins, Neelin et al. 1994) into a standard 

reference space. Following registration the data was resampled onto a 1mm isotropic 

grid (Collins, Neelin et al. 1994). The reference image used for the linear 

registration and resampling was the ICBM 152 T1-weighted target, a voxel-by-voxel 

average of the 152 normal subjects previously registered in the Talairach-like 

stereotaxic space in the context of the ICBM project (Mazziotta, Toga et al. 1995). 

This standard pipeline has been in use at our Institute and is described elsewhere 

(Zijdenbos, Forghani et al. 2002)(see Figure 16). 
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Figure 16 - Initial image processing pipeline 

Appearance-based classification (ABC) 

Unear 
reg istrati on 

The first technique presented is based on the concept of appearance, which 

encompasses not only the shape of the structure or volume of interest, but also its 

grey-Ievel intensities. 

The field of appearance-based analysis in medical imaging owes much to the 

contemporary work of Cootes and colleagues, whose first seminal publication on the 

topic of point distribution models (PDM) dates back to 1991 (Cootes, Cooper et al. 

1991). This segmentation concept was extended to Active Shape Models (Cootes, 

Taylor et al. 1995), which creates a model of the shape of the structure of interest 

that describes both typical shape and typical variability, using statistical analyses of 

previous examples from a training set. Finally, Active Appearance Models (AAM) 

were introduced in 1998 (Cootes, Edwards et al. 1998) in part to further their 
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original method and make more use of the intensity information in the images. 

Knowledge about the shape is incorporated into the AAM via a PDM. The intensity 

under the landmarks in the PDM is sampled and used to generate a gray-level model. 

The two models-gray-Ievel and PDM-are concatenated, and a supermodel is 

created from principal components analysis (PCA). The resulting principal 

components that explain the most variation in the supermodel are then selected. 

Those principal components can be considered as eigenmodes of appearance 

variation, embedding shape and intensity variability. 

Their goal in developing the PDM, ASM and AAM was to match a full, 

photorealistic model directly on a new image instance by minimizing the difference 

between the image under interpretation and one synthesized by the model. We have 

retained the concept of appearance (intensity and shape) but have widen its 

applicability from segmentation (Duchesne, Pruessner et al. 2002) to classification. 

The method can be summarized as follows (see Figure 17) and is described later in 

subsequent paragraphs. First, from processed data (A) we generate a non­

pathological appearance eigenspace (B) from a large training group of young, 

neurologically healthy training subjects (N = 152). This multidimensional 

eigenspace is created by uniting results from four distinct PCA of (i) linearly 

registered intensity images of the left and right VOIs from Tlw MRI of these 

training subjects (C); and (ii) an approximation of the Jacobian of the deformation 

fields for the same VOIs (D), fields obtained via non-linear registration to a 
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common reference image. Secondly, VOIs from patients are projected in the 

multidimensional appearance eigenspace created (E). The normality of the 

distribution of the projected eigencoordinates is assessed using quantile plots and 

Shapiro-Wilke statistics. The last step (F) consists in linear discriminant analyses 

(LDA) in a leave-one-out, forward stepwise approach, using eigencoordinates in the 

reference appearance eigenspace to classify the patients. While the eigenspace may 

not be optimal to represent the patient population, it forms the basis for a 

comparative evaluation of the different groups that leads to their classification. 

The methodological details are elaborated in the following sections. The reader will 

note that sorne of this work was first presented by the author as preliminary works in 

progress in conference proceedings (Duchesne, Bernasconi et al. 2002; Duchesne, 

Bernasconi et al. 2003), and finally as a peer-reviewed article (Duchesne, Bernasconi 

et aL), which forms the next chapter of this thesis. 
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Figure 17 - ABC methodological pipeline 

Volume of interest 

As mentioned, the approach is not structure-centric, but rather based on a regional 

analysis within a 3D VOL Two VOIs were selected in fact, centered on the left 

(Figure 18) and right medial temporal lobe respectively, using Talairach-like MN! 

space coordinates (start coordinates x = [-53, + 2] for the left and right side, y = 

-53 and z = -52). Each VOl measured n = 55 X 82 X 80 = 360800 voxels. The 

VOl was selected so that its extent captured the hippocampus and neighboring MTL 
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structures, such as the parahippocampal gyrus, irrespective of normal inter- and 

intra-individual variability. 

Figure 18 - Intensity and shape features within the left VOl in ABC methodology 

(Left column) Transverse, coronal and sagittal whole-brain views for TLE subject 
#28 with LHA. (Middle column) Identical views through the VOl, as defined in MNI 

space on the left MTL (red boxes on whole-brain views). (Right column) Identical 
views trough the trace VOl for the same subject. Green voxels do not move. From 

green to white (maximum) via yellows and reds indicate increase or expansion. 
From green to black (minimum), via blues and purples indicate decrease or 

contraction. The direction of movement is defined as the deformation which the 
subject's VOl seen in (A), (C) and (E) must accomplish in order to align with the 
corresponding VOl extracted from the reference volume. Contraction represents 

atrophy in the case of tissue. Notice in the transverse view in (A) and (B) the 
contraction of the lateral ventricular space, necessary to correct its enlargement, 
also noticeable in (E) and (F), while in (C) and (D), the coronal view displays the 

superiocentral shift due to hippocampal atrophy. 
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Intensity data 

Two image features at each voxellocation were retained for modeling. The first 

feature used in our classifier is grey JeveJ intensity, denoted by script g. Scanner 

output volumes are preprocessed in the manner described in the preceding section 

on initial image processing, and VOIs were extracted based on stereotaxic 

coordinates. To further reduce positional variations, which would propagate as 

unwanted noise in the morphometric modelling, a second local affine transformation 

(DF = 12) is applied to co-register the individual subject's VOl with the 

corresponding VOlon the ICBM 152 target. Finally, VOl intensity mean is also 

linearly scaled to the reference target. The input to the intensity model therefore 

consists in the rasterized intensity data from the VOIs processed in this fashion 

(Figure 18). Using intensity features from MRI raises the question of calibration 

and normalization. Absolute intensities are rarely used in MRI, since they vary with 

machine calibration, shimming, and patient-induced variations. We have tried to 

limit those variations by (1) using the same scanner for every individual in the study; 

(2) ensuring that the same quality assurance procedures were followed for each 

acquisition; and (3) scanning the patients in random group order. 

Shape data 

The second feature is the trace, denoted by script t. The trace is the first-order 

approximation of the Jacobian of a non-linear registration-derived deformation field, 
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which maps a subject to our reference ICBM target, and thus forms an estimate of 

local volume change. 

Nonlinear registration attempts to match image features from a source volume to 

those of the reference image at a locallevel, typically in a hierarchical fashion, with 

the aim of reducing a specifie cost function. Whereas many nonlinear registration 

processes exist, the one chosen for this study was ANIMAL (Collins and Evans 

1997). This algorithm attempts to match image grey-Ievel intensity features at a local 

level (voxel) in successive blurring steps, by maximizing the cross-correlation 

function of voxel intensities between the source and reference images. The result is a 

dense deformation field capturing the displacements required to align aIl voxels 

within the subject VOl with those of the reference image. In our application, we 

estimate the nonlinear transformation between the VOl of an individual subject to 

the ICBM 152 target VOL Even though the method does not require that the same 

VOl be used for both trace and intensity input, we have used the same in the four 

studies proposed in this thesis. 

Our implementation of trace calculation was discussed in (Janke, de Zubicarayet al. 

2001) and follows the notation developed by (Chung, Worsley et al. 2001). If U is the 

displacement field which matches homologous points between two images, then the 

local volume change of the deformation in the neighborhood of any given voxel is 

determined by the Jacobian J(Chung, Worsley et al. 2001), which is defined as 

au 
J(x,t) = det(l +-) 

ax 
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where 1 denotes the identity matrix and au is the 3 X 3 displacement gradient ax 

matrix of U. For relatively small displacements (Le. for small rotations) 

J "",1+ tr(VU) 

as suggested by (Chung, Worsley et al. 2001). Rence the trace tr(VU) represents a 

crude yet indicative measure of local volume change. When the change is near zero 

in the neighborhood of x, the deformation is incompressible so there is no volume 

change. Rowever, if the trace is positive, the volume increases while when negative, 

the volume decreases after the deformation. 

It could be argued that the determinant should be used, rather than the trace; first, 

the determinant measures a biologically meaningful quantity, that is brain tissue 

volume change; second, the latter is the sum of the eigenvalues whereas the former 

is their product. In the case of brain deformations, the numerical difference between 

the two measurements would be small. Our computing the determinants for each 

reference MRI and comparing them with the trace volumes proved this fact. The 

average difference between trace and determinant shows a mean of 0.006 (indicative 

of no bias) and a standard error of 0.011, pointing to a limited variability between 

the two measures. The trace of the Jacobian was retained for our modeling since the 

calculation time was one to two orders of magnitude faster than the determinant at 

the time; it is proposed to move to determinant calculations as a marginally better 

approximation of local volume change in the future, and as a way of ensuring that 

one extracts biologically meaningful information from the data. 
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The input to the PCA therefore consists in rasterized vectors of calculated trace 

volumes, for which examples are shown in Figure 18. 

Multidimensional spaces 

Principal Components Analysis (PCA) is used to reduce the dimensionality of the 

input data (intensity g, trace t) and generate linear variation models based on the 

N=152 datasets from our ICBM normal control subjects. 

Each intensity or shape VOl can be represented by a single point in an n 

dimensional space (n-D), where n is the number ofvoxels in the VOL Thus the 

ensemble of reference intensity or shape VOIs gives a cloud of points in this 

multidimensional space. It is assumed that these points lie within sorne region of the 

space, which are called "Allowable Domains" (similar to "Allowable Shape 

Domains" in Cootes' work (Cootes, Edwards et al. 2001» and that the points give an 

indication of the form and size of this region. Every point within this n-D domain 

relates back to an intensity or shape VOl whose characteristics are broadly similar to 

that of those in the original reference set upon which the Domain has been defined. 

The following mathematical reasoning is aimed at constructing independent linear 

models for each intensity or shape Allowable Domains. As such, it is given in its 

general form, with a notation identical to that developed by Cootes et al. (Cootes, 

Edwards et al. 2001). 

Given a set of N reference examples Xi> the mean is calculated using: 

1 N x=-}:x. 
N· l ' ,-
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where Xi is the column vector of intensity or trace values for a given VOl instance, of 

dimension n. The principal axes of an ellipsoid fitted to the ensemble data can be 

calculated by applying PCA, where each Principal Compone nt (PC) axis yields a 

direction of a mode of co-variation, a way in which the intensity or shape instances 

tend to move together. 

For each example i in the reference set, the deviation dxi from the mean Xi is 

calculated, where 

-
dxi = Xi-X 

ln order to find the basis for this space, the n x n covariance matrix, S, is calculated 

using: 

1 N T s=- ~dx.dx. N~ , , 
i-I 

The principal axes of the hyper-ellipsoid, giving the modes of variation of the 

intensity or trace examples, are described by Pk (k= 1,2, . .. n), the unit eigenvectors of 

Ssuch that: 

where Àk is the k-th eigenvalue of S, Àk ~ Âk+l. 

The ensemble of PCS from the left and right VOl grey-Ievel intensity models defines 

an Allowable Grey Domain G as the space of aIl possible elements expressed by the 

intensity eigenvectors Ào. Likewise, an Allowable Trace Domain T is created as the 

space of aIl possible elements expressed by trace eigenvectors Àr for the left or right 

VOIs. 
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Within the se Domains, linear models allow any new vector instance x, be it trace or 

intensityvectors from the left or right VOl, to be approximated by x, the mean 

normalised input vector; PXl the set of orthogonal modes of variation; and BXl the set 

of parameters: 

Each mode of variation is orthogonal to others within the same feature model. 

Covariances between features are not excluded, but most of them should be 

accounted for in the forward stepwise discriminant process. 

The assumption is made that the form of these Domains in a high dimensional space 

is approximately ellipsoïdal (Cootes, Edwards et al. 2001). It can be shown that the 

eigenvectors of the covariance matrix corresponding to the large st eigenvalues 

de scribe the longest axes of the ellipsoid, and thus the most significant modes of 

variation in the variables used to de rive the covariance matrix (Cootes, Edwards et al. 

2001). Most of these variations can usually be explained by a smaller number of 

modes, J, where J < < n and J < p. This means that if the n dimensional ellipsoid is 

approximated by an J dimensional ellipsoid, then the original ellipsoid has a 

relatively small width along axes with indexes J + 1 and greater (Cootes, Edwards et 

al. 2001). 

One method for calculating J is to chose the smallest number of modes such that the 

SUffi of their variances explains a sufficiently large proportion of À, the total variance 

of aIl the variables, where 
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ln order to know the variance of each eigenvector, or how each PC contributes to 

the description of the total variance of the system, the ratio of relative importance of 

the eigenvalue Àt: associated with the eigenvector kis used: 

where Tk is the fraction relative importance for eigenvalue Àt:, over the sum of aIl 1.., 

and p is the total number of eigenvectors. IncidentaIly, p= N-I in this 

implementation, adapted from that described in Appendix A of Cootes et al.'s 

technical report (Cootes and Taylor 2000). This algorithm reduces the 

dimensionality of the matrices to be estimated and hence ensures that substantial 

changes in VOl size can be easily accommodated. 

Aiming for a given percentage F of explained variation, one wants the smallest f 

eigenvectors such that the following condition is satiseizure focusied: 

F 
li + T2 + ... + Tf >-

100 

The choice of threshold F will be dependent on the total amount of variation that 

the model is asked to represent. We de fi ne a restricted version of the domains G 

and T as G* and T*, such that 

G*CG 

T*CT 

where the upper bound on the dimensionality of G or T is p, as defined above, while 
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the upper bound for G* or T* is f, set by choosing the threshold F. 

ln aIl applications of this methodology herein, we proceeded in selecting a total of 

538 eigenvectors out of a possible (152 -1) x 4 = 604 for the four models (left/right 

intensity/trace VOIs) built from our reference group, corresponding to F=99.7% of 

the per-model variance. 

Rasterized vectors of the processed VOl intensity and trace data for each study 

subject are projected into Domains G* and T*, and thus form the eigencoordinate 

vectors. While a number of possible features can be calculated based on the 

distribution of the projected data, our classifier is based on the position along the PC 

axes. The distribution of eigencoordinates along any principal compone nt for a given 

population should be normally distributed and this normality is assessed via quantile 

plots and Shapiro-Wilke statistics. Classification, based on linear discriminant 

analyses of the eigencoordinate distributions, will be discussed in a subsequent 

section in this chapter. 

Methodological considerations 

Representation - Our approach has been to create a model eigenspace based on 

subjects from the ICBM database, in which we projected our cohorts of patients. 

While such a space built from young, neurologically healthy individuals may not be 

optimal to represent the test populations, it should be noted that our primary goal 

was to find an independent basis for a comparative evaluation of our study cohorts 
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and its subsequent classification, but not the best mathematical representation. This 

is exemplified in Figure 19, where a cartoon-like representation of our training set is 

drawn, aligned and centered with the first two principal components since they were 

extracted from that data. Our goal is to use this space for the separation of 

pathology #1 subjects into two groups, la and lb. While the space may not be 

optimal for pathology 1, it forms a reference basis built from young, neurologically 

healthy individuals, that can also be used for other pathologies, such as pathology #2 

that may or may not overlap with pathology #1. 

Pc:l 

G.-..1A 

-----.. PCI 

..... 

Figure 19 - Cartoon-like representation of classification of patient groups. 

The reference set is represented by the green ellipse, aligned and centered with the 
first two principal components since the eigenspace originates from these data. Our 
goal however is to use the same space for the separation of many pathologies. For 
example, pathology #1, while not optimally represented by the eigenvectors of the 
reference space, can still be separated in two groups, lA and lB. The same can be 
said of a second pathology, which may or may not overlap with the previous one. 

Using a normative space built from young, neurologically healthy individuals should 
give the ability to perform classification studies in multiple pathologies. 
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Independence - As the reference set is composed of ICBM subjects that are separate 

from the trial subjects, there is no issue of over determination in the creation of the 

reference space. Further, by using cross-validation trials, separating trial subjects 

into training and test sets, we ensured that there was no over leaming in the 

classification stage while maximizing the amount of information available in the 

trials subjects. 

Automation - The methodology is formulated to be simple, flexible, and easily 

scalable, allowing a number of possible features to be used without extensive 

reengineering. We achieved substantial data reduction, starting from a model of 152 

reference images (152 X 2 VOIs X 360800 voxels = 1.1 X 107 points in MRI space) 

down to 538 eigencoordinate points in a predefined PC space. 

RA VENS-based classification - There are similarities and differences between the 

ABC methodology and the classification method proposed by Lao et al. (Lao, Shen 

et al. 2004). Both reduce a high-dimensional input vector and attempt the 

classification on the reduction parameters, albeit using a different technique (PCA 

for ABC; wavelet de composition for Lao et aL). As measured in Liu et al. (Liu, 

Teverovskiy et al. 2004), the strength of the classification does not reside in the 

optimality of the classification function but rather in the appropriate choice of 

features. It is there that the main difference between the two techniques resides. Lao 

et al. uses mass-preserved GM, WM and CSF maps, which are essentially trinarized 
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versions of the original intensity image, whereas the ABC technique makes use of 

the full dynamic range of the data, and therefore has access to addition al 

information. Further, the ABC technique explicitly models local volume changes, as 

opposed to its implicit effect in the mass-preserving framework of the RA YENS 

maps (Davatzikos, Genc et al. 2001). 

VBM-based classification (VBM) 

The second methodology that forms part of this the sis is based on the well-known 

statistical analysis approach called voxel-based morphometry (VBM). Previously 

used solely for the purpose of finding and locating group differences in anatomy, it is 

extended here to the classification of individual MRIs based on group patterns and 

therefore constitutes to our knowledge one of the only application of VBM for 

assessment of images from a single individual. 

Detection of concentration differences related to grouping 

variable 

The primary objective is to determine regions of gray and white matter 

concentration differences that are related to the grouping variable. To this end 

multiple between-group VBM studies are performed (Ashburner and Friston 2000), 
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on combined cohorts of co-registered subject image data. The software package used 

in this thesis is fMRIStat from Worsley et al. (Worsley, Marrett et al. 1996). 

The approach involves co-registering images in a linear fashion (affine registration, 9 

DF) to improve the spatial co-location of brain structures, with a common reference 

target of 152 young healthy volunteers, the so-called MN! brain or ICBM 152 

average (Mazziotta, Toga et al. 1995). Brain tissue is then segmented (GM, WM) in 

volumes (Zijdenbos and Dawant 1994) where each voxel is assigned to one class. 

GM!WM maps are then blurred using an isotropic Gaussian kernel of lOmm full­

width at half-maximum, under the assumption that this spatial kernel size matches 

the expected changes (Ashburner and Friston 2000). In those smoothed 

"concentration maps", each voxel takes on a value between (0,1) indicative ofthe 

presence or not of GM or WM in that voxel. An example average concentration map 

for a group of TLE patients with left hippocampal atrophy is shown in Figure 9. 

Parameters of a generallinear model are estimated at each voxel, across subjects, 

possibly with additional co-variates if applicable (e.g. age, sex). Voxels with 

statistically significant differences are identified based on a threshold corrected for 

multiple comparisons. Rather th an using Bonferroni correction, fMRIStat relies on 

Gaussian Random Field theory for this correction (Worsley, Marrett et al. 1996). 

The final result is a volume containing only those voxels (or peaks) in which there 

are statistically significant differences between the tissue concentrations for the 

groups under study (see Figure 11). 
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Significant clusters, formed by a sufficiently large number ("extent") of contiguous 

voxels above a given threshold t-value (not necessarily peak voxels under the 

previous threshold for statistical significance), are obtained following the procedure 

developed by Worsley et al. (Worsley, Andermann et al. 1999) to correct for data 

anisotropy. 

Similarity measures 

Our hypothesis for VBM-based classification is that areas of differences in GM or 

WM concentration related to the grouping variable, which have been extracted in 

the previous step, can be exploited for classification purposes. We thus proceed in 

defining a global region of interest as the ensemble of aIl voxels j above the cluster 

statistical significance threshold tin each of the four concentration difference maps 

(one each for the combination of increase/decrease in GM/WM concentrations). 

The first measure selected was the straightforward ca1culation of the total number of 

voxels jwithin the region, V, and the second feature was the mean GM or WM 

concentration of aIl region-of-interest voxels j. Thus, for subject i, with concentration 

map [GMti (for increases in grey matter concentration), the measure ~ was 

calculated as follows: 

_ 1 V 

GMi = - 2 [GMtu 
v"' J-

with similar measures derived for WM and the same for decreases in 
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concentration ([GM]+, [GMr , [GM]+, [WMr ). 

Other metrics are possible; we have proposed a "weighted" concentration measure 

(Duchesne, Bernasconi et al. 2004), consisting in multiplying the GM or WM value 

in the region of interest voxels by its t-statistic and taking the mean weighted 

concentration value. This measure was rejected experimentally, as it did not increase 

the accuracy of classification. 

Ideally there would be two groups of subjects, one to extract the global area of 

interest, and the second to test the classification. However, in cases where there is a 

limited number N of patients, one can proceed in a leave-one-out fashion where 

multiple VBM group comparison analyses are carried out, with each subject 

removed in turn from the group; the concentration difference maps are therefore 

independently assessed from that subject. The global region of interest can be 

calculated as defined above for each trial, and the number of voxels in the region, 

along with the mean G M/WM concentration within that region, measured on the 

subject's own MR image. This approach is repeated Ntimes, in order to estimate the 

classifier's accuracy. 

Classification 

The classification approach used for the applications presented in this the sis was 

similar for the two methodologies described above. Every experiment was 

dichotomous, and while many possible choices of classifier existed, linear 
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discriminant analyses (LDA) were chosen due to their simplicity and ease of 

implementation. 

Closely following the notation of Duda et al. (Duda, Hart et al. 2001), we defined 

two states of nature 001, 002 in our experiments (e.g. left MTL vs. right MTL seizure 

focus subjects, or AD and MCI patients vs. normal aging). In each case, the subjects 

being classified are part of the trial group, and not the same as the reference group 

used to compute the MR-based features defining the reference space. 

The prior probabilities p( 001), p( 002) are usually fixed at 0.5, and do not necessarily 

always represent the normal population incidence. Exceptions to this rule will be 

noted in the text, and consisted in adjusting the prior probabilities to reflect the 

composition of the trial groups. 

The design of our classifier is simple. For each variable, the LDA function can be 

expressed as follows: 

g(v) = w1v + wo 

where vis the feature vector (e.g. eigencoordinates, VBM-based measures), wis the 

weight vector and Wo the bias or threshold weight. For a two-category classifier we 

implement the following decision rule: decide 001 if g(v) > 0 and 002 if g(v) < O. 

There were two possible implementations for LDA: complete estimation and 

forward, stepwise analysis. 

Complete estimation - all variables were included in the model; 
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Forward, stepwise analysis -variables were entered stepwise into the analysis by 

Wilk's f.. method; that is, at each step the variable that resulted in the smallest 

Wilk's f.. for the discriminant function was selected for entry. Wilk's f.. shows the 

proportion of the total variance in the discriminant scores not explained by 

differences among groups. A small f.. value (near 0) indicates that the group's 

mean discriminant scores differ. A f.. of 1 occurs when the mean of the 

discriminant scores is the same in aIl groups and there is no between-groups 

variability; therefore, the larger f.. is, the less discriminating power is present. 

Classification experiments were computed using SYST AT 10.2 (SSI, Richmond, 

CA). 

Cross-validation trials 

The final reported result in each manuscript consisted in the mean accuracy of 

multiple cross-validated trials (Figure 20). In each of those trials, the study data is 

randomly split in two groups: the first group is the training set and is used to 

estimate the classification functions; the second group is the test set, classified using 

the functions derived from the training set. This procedure is repeated multiple 

times and the average proportion of correct classifications of the test set is an 

empirical measure for the success of the discrimination. The cross-validation 

experiments were completed using SYSTAT 10.2 (SSI, Richmond, CA). 
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Repeat N times 

Figure 20 - Cross-validation trials 

Cross validation trials proceed as follows. The study population is randomly split 
into a training and a test set, with the linear discriminant functions estimated on the 

training set. The test set is used to evaluate how good the classification is, and this 
process is repeated multiple times to get a good estimate of the overall accuracy for 

classification. 

Results will be given in terms of their sensitivity (the proportion of individuals with a 

true positive result), their specificity (the proportion of individuals with a true 

negative result) and their accuracy (the proportion of aIl subjects correctly classified), 

as described in Table 1 below. 
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Sensitivity 

Test result 
SN= TP 

TP+FN 

Specificity 

Group 1 Group 2 
SP= TN 

TN+FP 

{I.I Group 1 ..... TP FN Accuracy 
{I.I 

0 = co 
Group 2 FP TN cu ..... 

~ 

TP+TN 
A=-------

TP+FP+TN+FN 

Table 1- Sensitivity, specificity, and accuracy measurements 

(TP = true positive, TN = true negative, FP = false positive, FN = false negative) 

ln the following chapters, these methods will be used for classification and 

prediction purposes in two different pathologies. In Chapter 4, the ABC technique 

will be used to lateralize the seizure focus on Tlw images from TLE patients with 

and without hippocampal atrophy; in Chapter 6, the same methodology will be used 

to differentiate AD and MCI patients from normal aging individuals, and in Chapter 

7, to predict cognitive decline to AD in a cohort of MCI patients. Finally, the VBC 

methodology will be used in Chapter 5 for the prediction of surgical outcome in a 

cohort of TLE patients having undergone selective amygdalo-hippocampectomy. 
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Chapter 4 

Lateralization of seizure focus in TLE 

Foreword 

We will recall that the primary goal of pre-operative evaluation in intractable TLE is 

to confirm which of the two amygdalo-hippocampal complexes is most affected, and 

therefore becomes the resection targe t, a process commonly referred to as 

lateralization of seizure focus. Further, we will recollect that nearly 80% of TLE 

cases exhibit He atrophy (HA) predominantly in the left (L) or right (R) MTL, 

strongly correlated with an ipsilateral seizure focus. However, around 5% of 

intractable TLE patients demonstrate bilateral atrophy without significant 

differences between hemispheres, and the remaining 15% of cases have non­

atrophie He (hippocampal normal volume, or HNV). In the se latter two cases 

volume-based lateralization of seizure focus is at best equal to chance. 
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Our primary goal in the manuscript presented in this chapter was to verify that there 

existed appearance differences (intensity and shape) related to seizure focus 

localization. We purposefully moved away from a structure-centric approach to 

selecting a large, non-specifie VOl, centered on the MTL, and inclusive of the HC as 

weIl as the AG, the parahippocamapl (PHC) gyrus, other nearby gyri and ventricular 

areas. This choice was motivated by volumetry resuIts obtained in the same cohort of 

patients by one of our co-author (Bernasconi, Bernasconi et al. 2003), as weIl as 

results from our voxel-based morphometry (VBM) study, also within the same 

cohort (Bernasconi, Duchesne et al. 2004) (see Figure 11), aIl pointing to the 

existence of extra-hippocampal differences in patients with left or right seizure focus 

when compared to normal controls. 

At the same time, we wished to verify that these appearance differences could be 

used for the purpose of lateralization. We hypothesized that they could be modeled 

linearly with principal components, or at least sufficiently weIl estimated to allow for 

the correct classification of patients with or without HA into the proper lateralized 

group. The standard of comparison for this task was clinical evaluation, including 

extensive video-EEG recordings, and in sorne cases backed-up by surgically 

implanted EEG (sEEG). 

Our resuIts indicate that our assumptions were correct. We found differences in 

appearance parameters that were sufficient to achieve 100% accurate lateralization 

of seizure focus in patients with or without HA (HA vs HNV, LHA vs RHA, LNV vs 
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RNV); further, we found that the system was 96% accurate at lateralizing seizure 

focus even when given no a priori information about structure atrophy (L vs R). This 

is to be compared with He volumetry, which achieves 81 % accuracy at the same task 

in our cohort. 

Early forms of this work were printed as conference proceedings (Duchesne, 

Bernasconi et al. 2002; Duchesne, Bernasconi et al. 2003), before being published in 

the journal Neurolmage. 

The reader will notice that the Methods section of this manuscript, as well as the 

Discussion - Methodological Considerations, have already been addressed in the 

previous Methods chapter of this thesis; figures and figure captions have also been 

seen earlier. The reader may therefore choose to skip the Methods section of this 

chapter without loss of information. 

For the sake of brevity, keywords have not been included, and a list of common 

abbreviations can be found at the end of this thesis. 
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Abstract 

Classification of neurological diseases tends to concentrate on specifie structures 

such as the hippocampus (He). The hypothesis for the novel classification 

methodology presented in this work is that pathologies will impact large tissue areas 

with detectable variations of Tl-weighted MR signal intensity and registration 

metrics. The technique is applied to the lateralization of seizure focus in 127 patients 

with intractable temporal lobe epilepsy (TLE), in whieh the site of seizure onset was 

determined by comprehensive evaluation (69 with left MTL seizure focus (seizure 

focus) (group "L") and 58 with right seizure focus (group "R")). The method 

analyses large, non-specific Volumes of Interest (VOl) centered on the left and right 

medial temporal lobes (MTL) (55 x 82 x 80 voxels) of pre-processed scans in 

stereotaxic space. The VOIs are then linearly and nonlinearly registered to a 

reference target image. Principal Components Analyses of (i) the normalized 

intensity and (ii) the trace, a measure of local volume change, are used to generate a 

multidimensional reference space from a set of 152 neurologieally healthy subjects. 

Data from TLE patients are projected in this space, and leave-one-out, forward 

stepwise linear discriminant analysis of the eigencoordinate distributions is used to 

classify TLE patients. Following MRI volumetric analysis, 80 patients had He 

atrophy (group "HA") ipsilateral to the seizure focus (42 with le ft seizure focus 

or "LHA", and 38 with right or "RHA"), and the remaining 47 had normal He 
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volumes (group "HNV") (27 with left seizure focus or "LNV", and 20 with right 

seizure focus or "RNV"). The method was 100% accurate at separating "HA" 

vs "HNV", "LHA" vs "RHA", and "LNV" vs "RNV". It was also 96% accurate at 

separating "L" vs "R". 

Our results indicate that MR data projected in multidimensional feature domains 

can lateralize seizure focus in epilepsy patients with a high accuracy, irrespective of 

He volumes. This single scan, practical and objective method holds promise for the 

pre-surgical evaluation of TLE patients. 

Introduction 

Many neurological diseases exhibit pathologically-specific discriminatory 

information in the form of local intensity variations and shape changes when 

observed on magnetic resonance images (MRI). This is the case for schizophrenia, 

Alzheimer's dementia (AD) or epilepsy with a seizure focus that can be lateralized 

to one of the medial temporal lobes (MTL). MRI-based computer-aided diagnosis 

approaches have usually focused on those attributes. An example is the T1-weighted 

(T1w) signal intensity, that may serve as an indicator of disease progression since 

subtle changes may indicate an underlying pathological process before structure 

integrity is lost. This would be the case for tissue atrophy in AD or temporal lobe 

epilepsy (TLE) for example, where authors have used the signal intensity directly 

(Webb, Guimond et al. 1999; Duchesne, Bernasconi et al. 2002; Thomaz, Boardman 
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et al. 2004), while others performed texture analysis to show evidence of alterations 

that corroborate the hypothesis of tissue damage in conjunction with intensity 

information (Liu, Teverovskiyet al. 2004). Other techniques employ registration, a 

process where individual subject images are aligned into a reference space, to make 

spatial comparisons between cohorts at the voxellevel, such as in voxel-based 

morphometry (Ashburner and Friston 2000), deformation-based morphometry 

(Chung, Worsley et al. 2001; Chung, Worsley et al. 2003; Shen and Davatzikos 2003; 

Lao, Shen et al. 2004), or surface analysis of individual structures (Csernansky, 

Wang et al. 2000; Wang, Joshi et al. 2001; Csernansky, Schindler et al. 2004). 

Appearance-based approaches combine intensity and local shape information, but 

their application has been limited to segmentation (Cootes, Edwards et al. 2001; 

Duchesne, Pruessner et al. 2002). 

The most common neuroimaging technique for computer-aided diagnosis in 

pathologies such as AD or TLE has consisted in the study of individual structures, 

such as the hippocampus (HC), mostly via volumetry (Jack, Theodore et al. 1995) 

and now with newer methods based on shape characteristics, such as medial surfaces 

(Joshi, Pizer et al. 2002; Styner, Gerig et al. 2003; Bouix, Pruessner et al. 2005). 

While undeniably useful for understanding disease-driven change in the chosen 

structure ( s), these analyses suffer from significant drawbacks: they rely heavily on 

segmentation, a process with its own limitations, do not capture interrelations 

between neighboring tissues, critical in many pathologies, and usually require expert 
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knowledge, making them unsuitable for large scale studies. Finally, apart from 

appearance-based approaches, most of the techniques reviewed use either intensity 

or registration information, but rarely both. 

Lateralization of seizure focus in TLE 

We present intractable TLE as a pathology of interest whose characteristics make it 

an ideal test case for our proposed methodology. Microscopically, the most 

commonly described pathological findings in TLE are neuronalloss and gliosis of 

the HC and the parahippocampal region (Falconer, Serafetinides et al. 1964). As 

discussed, MR-based volumetry is a primary indicator of structure integrity 

(Bernasconi, Bernasconi et al. 2003), and hippocampal neuronalloss found in 

surgical specimens obtained from patients with pharmacologically intractable TLE 

has been shown to correlate with hippocampal atrophy on volumetric MRI (Caseino, 

Jack et al. 1991). Studies in TLE have also shown volume reduction ipsilateral to the 

side of the seizure focus in the parahippocampal region (Bernasconi, Bernasconi et 

al. 2003). The advent of high resolution MRI has, therefore, had a major impact on 

the presurgical evaluation of patients with refractory epilepsy. Nearly 80% of TLE 

cases exhibit lateralized HC atrophy (see Figure 21), strongly correlated with an 

ipsilateral seizure focus (Bernasconi, Bernasconi et al. 2003). HC volumetry is 

therefore used in many centers for the pre-surgical evaluation however, it is a time­

consuming, manual procedure requiring expert intervention, and subject to the 

drawbacks outlined above. Further, around 5% of intractable TLE patients 

102 



demonstrate bilateral atrophy without significant differences between hemispheres, 

and the remaining 15% of cases have nonatrophic He, making volume-based 

lateralization impossible. Finally, neuropathologieal studies have shown that more 

than one brain structure are affected in TLE, while voxel-based morphometry 

studies of MR images (Woermann, Free et al. 1999; Keller, Mackay et al. 2002; 

Bernasconi, Duchesne et al. 2004) have reported significant areas of grey matter and 

white matter concentration decrease throughout the medial temporal lobe as weIl as 

in extra-temporal lobe brain areas. 

Hypothesis and objective of research 

Our general hypothesis is that in the case of many neurologieal diseases, mieroscopie 

changes will impact the T1w MRI signal intensity suffieiently to be detected, while 

macroscopie alterations in structure shape will be notieed via registration-based 

metrics. Consequently, we are proposing in this article a classification methodology 

that moves away from the single structure-based paradigm by using (i) a large, non­

specifie Volume of Interest (VOl) containing sufficient discriminatory information, 

and (ii) by combining intensity and registration-based shape features. A preliminary 

implementation has been described in Duchesne et al. (Duchesne, Bernasconi et al. 

2003). From the preceding literature on TLE, we concluded that a single-structure 

approach for the lateralization of seizure focus was not adequate and that, in order 

to be succesful, classification should be based on the information contained in a VOl 

centered on the MTL, incorporating the HC along with other limbic structures. In 
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this paper, lateralization of seizure foeus in TLE is used as a test case for our 

proposed classification methodology. 

Figure 21 - Tl images in TLE 

(Top) Sagittal (x = 62) and coronal ( y = 117) T1-weighted (Tl w) magnetic resonance 
images (MRI) of normal control subject #18. (Middle) Hippocampal neuronalloss 
found in surgical specimens obtained from patients with pharmacologically 
intractable temporal lobe epilepsy (TLE) has been shown to correlate with 
hippocampal atrophy (HA) on volumetrie MRI (Cascino et al., 1991). For example, 
left HA is readily observed on these T1w MR images (same orientation as above) of 
patient #18 as an enlargement of the lateral ventricles, along with increased atrophy 
of the hippocampal head (red lines intersection). (Bottom) On the other hand, 
around 15% of intractable TLE patients exhibit normal hippocampal volumes, 
therefore making lateralization impossible in those cases on the basis of HC 
volumetry alone. This is exemplified in these T1w MR images (same orientation as 
above) ofHNV patient #1. 
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The objectives of this work are therefore to de scribe the methodology and 

demonstrate its usefulness by proceeding with the lateralization of seizure focus in 

TLE patients with and without hippocampal atrophy, based on their pre-operative 

Tlw MRIs. 

Methods 

Our method can be summarized as follows (see Figure 22). First, from processed 

data (A) we generate a non-pathological eigenspace (B) from a large training 

group of young, neurologically healthy training subjects (N = 152). This 

multidimensional eigenspace is created by uniting results from four distinct Principal 

Component analyses of (i) linearly registered intensity images of the left and right 

VOIs from TlwMRI of the se training subjects (C); and (ii) an approximation of the 

determinant of the Jacobian matrix of the deformation field for the same VOIs (D), 

where the deformation fields are obtained by non-linear registration to a common 

reference image. Secondly, VOIs from our patients are projected in the 

multidimensional eigenspace created (E). The normality of the distribution of the 

projected eigencoordinates is first assessed using quantile plots and Shapiro-Wilke 

statistics. The last step consists in linear discriminant analyses (LDA) in a leave-one­

out, forward stepwise approach, using eigencoordinates in the non-pathological 

eigenspaces to classify the patients. While the non-pathological eigenspace may not 

be optimal to represent the patient population, it forms the basis for a comparative 
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evaluation of the different groups that leads to their classification. The 

methodological details are elaborated in the following sections. 

Figure 22 - Classification methodology 

Our hypothesis for the proposed classification system is that pathologically-induced 
microscopie changes will impact the Tlw MR signal intensity, while macroscopic 
alterations in structure shape can be detected via image registration. In this 
methodology, two volumes of interest (VOl), centered on the left and right medial 
temporal lobes, are extracted from pre-processed data (A). At first, a large group of 
young, healthy control subjects' images (N = 152) is used to generate a normal, non­
pathological eigenspace (B) that will serve as a basis for comparison of the TLE 
study subjects. This multidimensionaI reference eigenspace is created by uniting 
results from four distinct Principal Component analyses of (i) linearly registered 
intensity images of the VOIs from Tlw MRI (C); and (ii) an approximation of the 
determinant of the Jacobian matrix of the deformation field within those VOIs (D). 
The data from the study subjects (Groups A and B) are projected in the reference 
space (E). Classification is based on leave-one-out, forward stepwise linear 
discriminant analyses of the eigencoordinate distributions (F). 
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Subjects 

The Ethics Committee of the Montreal Neurological Institute and Hospital 

approved the study and informed consent was obtained from aIl participants. A total 

of 279 subjects were inc1uded in this study. The training group consisted in 152 

young, neurologically healthy volunteers from the International Consortium for 

Brain Mapping project (Mazziotta, Toga et al. 1995), whose scans were used to 

create the non-pathological mode!. The test population consisted in 127 patients 

with pharmacologically intractable TLE. Seizure type and the site of seizure onset 

were determined by a comprehensive evaluation inc1uding detailed c1inical history, 

neurological examination, review of medical records and neuropsychological 

evaluation. The seizure focus was determined by predominantly ipsilateral interictal 

epileptic abnormalities (70% cutoff) and unequivocal unilateral seizure onset 

recorded during prolonged video-EEG monitoring in aIl patients. Based on these 

criteria, TLE patients were divided into those with a left-sided (group "L", n= 69 

[54%]) or a right-sided (group "R", n=58 [46%]) seizure focus. 

MRI acquisition and initial processing 

MRI data for our 279 subjects was collected with a T1-weighted MRI protocol on a 

1.5 T scanner (Philips Gyroscan, Best, Netherlands) using a fast gradient echo 

sequence (TR = 18ms, TE = lOms, 1 NEX pulse sequence, flip angle = 30°, matrix 

size=256 X 256, FOV = 256mm, slice thickness=lmm). Following acquisition, 

intensity inhomogeneities due to scanner variations were corrected (SIed, Zijdenbos 
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et al. 1998). A 9-degrees of freedom (DF) linear registration was then used for 

global alignment (Collins, Neelin et al. 1994) into a standard reference space. The 

data was finally resampled onto a 1mm isotropie grid (Collins, Neelin et al. 1994). 

The reference image used for the linear registration and resampling was the ICBM 

152 Tl w targe t, a voxel-by-voxel average of the 152 normal subjects previously 

registered in the Talairach-like stereotaxie space in the context of the ICBM project 

(Mazziotta, Toga et al. 1995). 

Input data for multi-dimensional space creation 

Two VOIs were selected for this study, centered on the left and right medial 

temporal lobe, using Talairach coordinates (start coordinates x = [-53, + 2] for the 

left and right side respectively, y = -53 and z = -52). Each VOl measured n = 55 

X 82 X 80 = 360800 voxels. The VOl was selected so that its extent captured the 

hippocampus and neighboring MTL structures, such as the parahippocampal gyrus, 

irrespective of normal inter- and intra-individual variability (see Figure 23). 

Two image features at each voxellocation were retained for modeling. The first 

feature used in our classifier is grey JeveJ intensity, denoted by script g. Scanner 

output volumes are preprocessed in the manner described in the preceding section, 

which includes intensity inhomogeneity correction and globallinear registration into 

Talairach space (DF = 9). The VOIs are then extracted based on their Talairach 

coordinates. To further reduce positional variations, which would propagate as 

unwanted noise in the morphometrie PCA modelling, a second local affine 
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transformation (DF = 12) is applied to co-register the individual subject's VOl with 

the corresponding VOlon the ICBM 152 target. Finally, VOl intensity mean is also 

linearly scaled to the reference target. 

Figure 23 - Intensity and shape features within the volume of interest 

(Left column) Transverse, coronal and sagittal whole-brain views for TLE subject 
#28 with LHA. (Middle column) Identical views through the Volume oflnterest 
(VOl), as defined in stereotaxie space on the left medial temporal lobe (red boxes on 
whole-brain views). (Right column) Identical views trough the trace VOl for the 
same subject. Green voxels do not move. From green to white (maximum) via 
yellows and reds indicate increase or expansion. From green to black (minimum), 
via blues and purples indicate decrease or contraction. The direction of movement is 
defined as the deformation which the subject's VOl seen in (A), (C) and (E) must 
accomplish in order to align with the corresponding VOl extracted from the 
reference volume. Contraction represents atrophy in the case of tissue. Notice in the 
transverse view in (A) and (B) the contraction of the lateral ventricular space, 
necessary to correct its enlargement, also noticeable in (E) and (F), while in (C) and 
(D), the coronal view displays the superiocentral shift due to hippocampal atrophy. 
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The input to the intensity model therefore consists in the rasterized intensity data 

from the VOIs processed in this fashion. The second feature is the trace, denoted by 

script t. The trace is the first-order approximation of the determinant of the 

Jacobian matrix of a non-linear registration-derived deformation field, whieh maps a 

subject to our reference ICBM target, and thus forms an estimate of local volume 

change. 

Nonlinear registration attempts to match image features from a source volume to 

those of the reference image at a locallevel, typically in a hierarchieal fashion, with 

the aim of reducing a specifie cost function. Whereas many nonlinear registration 

processes exist, the one chosen for this study was ANIMAL, developed by (Collins 

and Evans 1997). This algorithm attempts to match image grey-Ievel intensity 

features at a locallevel (voxel) in successive blurring steps, by maximizing the cross­

correlation function of voxel intensities between the source and reference images. 

The result is a dense deformation field capturing the displacements required to align 

the subject VOl with that of the reference image. In our application, we estimate the 

nonlinear transformation between the VOl of an individual subject to the ICBM 152 

target VOL Note that the trace input VOl for our subjects is the same as the one 

used for the intensity modeling. 

Our implementation of trace calculation was discussed in (Janke, de Zubicaray et al. 

2001) and follows the notation developed by (Chung, Worsley et al. 2001). If U is the 
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displacement field which matches homologous points between two images, then the 

local volume change of the deformation in the neighborhood of any given voxel is 

determined by the Jacobian J(Chung, Worsley et al. 2001), which is defined as 

au 
J(x,t) = det(I + -) ax 

where 1 denotes the identity matrix and au is the 3 X 3 displacement gradient 
ax 

matrix of U. For relatively small displacements, 

J ... 1+ tr(VU) 

as suggested by (Chung, Worsley et al. 2001). Rence the trace tr(VU) represents a 

crude yet indicative measure of local volume change. This is weIl suited to brain 

applications as the level of atrophy present between controls and patients is small yet 

significant and should therefore be apparent in the results of a local non-linear 

registration process. Examples are shown in Figure 23. The input to the trace PCA 

therefore consists in rasterized vectors of calculated trace volumes. 

Multidimensional spaces and classification 

Principal Components Analysis (PCA) is used to reduce the dimensionality of the 

input data (intensity g, trace t) and generate linear variation models based on the 

N=152 datasets from our ICBM normal control subjects. We use here the notation 

identical to (Cootes, Edwards et al. 2001): 

which allows any vector instance x, be it trace or intensity vectors from the left or 
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right VOl, to be approximated by x, the mean normalised input vector; PX' the set of 

orthogonal modes of variation; and BX' the set of parameters. The resulting four PC 

models were eachp=N-l (or 151-dimensional). 

The ensemble of Principal Components from the left and right VOl grey-level 

intensity models defines an Allowable Grey Domain G as the space of aIl possible 

elements expressed by the intensity eigenvectors "-o. Likewise, an Allowable Trace 

Domain T is created as the space of aIl possible elements expressed by trace 

eigenvectors Ivr for the le ft or right VOIs. It can be shown that the eigenvectors of 

the covariance matrix corresponding to the largest eigenvalues de scribe the longest 

axes of the ellipsoid, and thus the most significant modes of variation in the variables 

used to derive the covariance matrix (Cootes, Edwards et al. 2001). Most of the 

variation can usuaIly be explained by a smaller number of modes, 1, where 1 < < n 

and 1 < p. This me ans that if the 2n dimension al ellipsoid is approximated by a 1 

dimensional ellipsoid, then the original ellipsoid has a relatively small width along 

axes with indexes 1 + 1 and greater (Cootes, Edwards et al. 2001). 

The total variance of aIl the variables is equal to: 

whereas for 1 eigenvectors, explaining a sufficiently large proportion of f..., the sum of 

their variances, or how much the se principal directions contribute in the description 

of the total variance of the system, is ca1culated with the ratio of relative importance 

of the eigenvalue At associated with the eigenvector k 
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We proceeded in selecting eigenvectors for each of our four models (left/right 

intensity/trace VOIs), corresponding to a per-model variance ratio of l = 0.997 for 

our normative training group. Again, our goal was not to find the optimal space to 

represent the study subjects, but rather to have a common basis in which to compare 

study populations. This is exemplified in Figure 24, where a cartoon-like 

representation of our training set is drawn, aligned and centered with the first two 

principal components since they were extracted from that data. Our goal is to use 

this space for the separation of pathology #1 subjects into two groups, la and lb. 

While the space may not optimal for pathology 1, it forms a normative basis built 

from young, neurologically healthy individuals that can also be used for other 

pathologies, such as pathology #2 that may or may not overlap with pathology #1. 

The reader should also note that in this study we will not discuss the case of 

classifying normal control subjects from TLE patients on the basis of their MRI 

characteristics, as it offers no clinical value. 
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Figure 24 - Cartoon-like representation of classification of patient groups 

The reference set is represented by the green ellipse, aligned and centered with the 
first two principal components sin ce the eigenspace originates from these data. Our 
goal however is to use the same space for the separation of many pathologies. For 
example, pathology #1, while not optimally represented by the eigenvectors of the 
reference space, can still be separated in two groups, lA and lB. The same can be 
said of a second pathology, which may or may not overlap with the previous one. 
Using a normative space built from young, neurologically healthy individuals should 
give the ability to perform classification studies in multiple pathologies. 

Rasterized vectors of the processed VOl intensity and trace data for each study 

subject are projected into Domains Gand T, and thus form the eigencoordinate 

vectors. While a number of possible features can be calculated on the distribution of 

the projected data, our classifier is based on the position along the PC axes. The 

distribution of eigencoordinates along any principal component for a given 

population should be normally distributed and this normality is assessed via quantile 

plots and Shapiro-Wilke statistics. 

The classification is based on leave-one-out, forward stepwise linear discriminant 

analyses of eigencoordinates along the significant eigenvectors (SYSTAT 10.2, 
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Georgia, PA; P-to-enter < 0.0001). Results for classification are then compared to 

the pre-operative clinical evaluations in terms of accuracy. 

Results 

As mentioned earlier, the patient population consisted in 127 individuals with 

pharmacologically intractable epilepsy, 69 (54%) with a left MTL seizure focus 

(group "L") and 58 (46%) in the right (group "R"). MRI volumetrie analyses were 

performed on T1w MRI for aIl patients using a previously published protocol (rater: 

N.B.) (Bernasconi, Bernasconi et al. 2003). The He was determined atrophic if its 

volume fell below two standard deviations from the mean He volume of a matched 

group of control subjects. Eighty (80) patients (63%) had hippocampal atrophy 

(group "HA") ipsilateral to the seizure focus (42 with left seizure focus and HA or 

group "LHA", and 38 with right seizure focus and HA or group "RHA"). The 

remaining 47 patients (37%) had normal hippocampal volumes (group "HNV") as 

seen on MRI (27 with left seizure focus and HNV or group "LNV", and 20 with 

right seizure focus and HNV or group "RNV"). Table 2 contains demographic 

information on the different groups of TLE patients as weIl as the training set. 

By definition, He volumetry based on MR images was therefore 100% accurate in 

this cohort to lateralize seizure focus in those patients with HA, as the seizure focus 

was always ipsilateral, and 50% accurate (as good as chance) for those cases with 

HNV. The overall accuracy of He volumetry for the group of patients in this study 
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was (103/127) = 81%. 

N Mean Age Males Females 

LHA 42 35 22 20 

RHA 38 32 17 21 

LNV 27 39 11 16 

RNV 20 32 7 13 

Training set 152 25 87 65 

Table 2 - Description of patient and training population 

Our overaU mode l, formed by the union of the intensity and trace models for the left 

and right VOIs, was built using our training set of 152 healthy control subjects from 

the ICBM database. For each of the se models aU eigenvectors accounting for 99.7% 

of the variance of the neurologically healthy data set were chosen, for a total of 538 

eigenvectors. Normality of the eigencoordinates from the projected study data was 

confirmed for each PC using quantile plots and Shapiro-Wilke test (P > 0.05). 

In order to assess the classification accuracy of our automated methodology, we 

performed four experiments as foUows: 

• Experiment 1 - Classification (HA vs HNV): determine the classifier's ability at 

separating the HA vs HNV groups based solely on MR imaging data; 

• Experiment 2 - HA Lateralization (LHA vs RHA): de termine the classifier's 

ability at lateralizing the seizure focus within the hippocampal atrophy group; 

• Experiment 3 - HNV Lateralization (LNV vs RNV): determine the classifier's 

ability at lateralizing the seizure focus within the normal hippocampal volume group; 

and 
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• Experiment 4 - Lateralization (L vs R): de termine the c1assifier's ability at 

lateralizing the seizure focus irrespective of hippocampal volume. 

For each experiment a response curve was built of model accuracy vs total number 

of eigenvectors inc1uded in the classification process (see Figure 25). The best 

classification results following leave-one-out, forward stepwise linear discriminant 

analysis (P-to-enter < 0.0001) on the total number of eigenvectors included in the 

classification are reported in Table 3, with the resulting number of eigenvectors 

retained by the classifier to reach the best classification results and the 

corresponding Wilk's À statistics. Highlights of Figure 25 and Table 3 are 100% 

classification accuracy for Experiments 1,2 and 3, and 96% accuracy for 

Experiment 4. 

Expt GroupA Group B Total # Wilk's DF Accuracy 

# Classif. 

elgen. Eigen. 

1 HA (80) HNV (47) 10 4 0.029 4 100% 

2 LHA(42) RHA (38) 538 13 0.083 13 100% 

3 LNV (27) RNV (20) 8 5 0.078 5 100% 

4 L (69) R (58) 240 12 0.242 12 96% 

Table 3 - Classification results by experiments 
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Figure 25 - Experimental results 

(Left) Model response curves for the 4 classification experiments. The classifier was 
presented between 4 and 538 eigenvectors, for each classification experiment, with 
the accuracy generally increasing as variables were added. The optimal number of 
eigenvectors presented to the classifier, along with the number of eigenvectors 
retained by the classifier (P < 0.0001), are reported in Table 3.1t is important to note 
that the order with which the eigenvectors were presented to the classifier is not 
optimal for the task of separating TLE patients, but rather is optimal for the 
representation of the reference set data (decreasing eigenvalue). This explains why 
some of the curves are not monotonically increasing (e.g. L vs. R). (Right) Receiver 
Operating Characteristic (ROC) curve for the Left vs. Right seizure focus 
experiment (Experiment 4). Forward, stepwise analysis identified 12 significantly 
discriminant eigenvectors as shown in Table 3. We plotted sensitivity vs. 1-
specificity for Left seizure focus discrimination (blue curve) and Right seizure focus 
discrimination (green curve) for the 12 variable model. 

Discussion 

For many neurological diseases with specifie intensity and shape changes, as seen on 

MRI, the classical approach for computer-aided diagnosis remains volumetry of 

single structures, such as the HC, or parahippocampal gyrus (Bernasconi, 

Bernasconi et aL 2003), MR-based HC volumetry, while greatly beneficial, is not 
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sufficiently specific nor sensitive, especially in cases where the HC volume faUs 

within normal ranges. 

We are proposing a classification methodology that uses intensity and registration­

based shape features from a large, non-specifie VOL Our results indicate that these 

features are sufficient to adequately discriminate between different groups of 

subjects. In our study population, the accuracy of classification of patients into HA 

or HNV, the lateralization of the HA group into LHA and RHA, and of HNV into 

LNV and RNV, was 100%. We were also able to lateralize the seizure focus 

irrespective of HC volume with 96% accuracy. 

Methodological considerations 

The methodology is formulated to be simple and flexible, allowing a number of 

possible features to be used without extensive reengineering. We achieved 

substantial data reduction, starting from a model of 152 VOIs (152 X 2VOIs X 

360800 voxels = 1.1 X 107 points in MRI space) down to 538 eigencoordinate points 

in a predefined PC space. As the training set is composed of ICBM subjects that are 

separate from the test set subjects, there is no issue of overdetermination. Further, 

by using leave-one-out or jacknife linear discriminant analyses, we ensured that 

there was no overlearning in the classification stage. 

From the response curves of Figure 25 for each classification experiment an initial 

conclusion can be made, in that the optimal number of eigenvectors varies 

depending on the classification problem. This result is not surprising and means that 
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distinct covarying intensity and/or shape features characterize the different two 

groups under study. Assessment of the variations in intensity and shape embedded in 

the significant eigenvectors is beyond the scope of this paper, and will be performed, 

along with their clinical corre la te, in a separate communication. 

Using intensity features from MRI raises the question of calibration and 

normalization. Absolute intensities are rarely used in MRI, since they vary with 

machine calibration, shimming, and patient-induced variations. We have tried to 

limit those variations by (1) using the same scanner for every individual in the study; 

(2) ensuring that the same quality assurance procedures were followed for each 

acquisition; and (3) scanning the patients in random group order. Our approach has 

been to create a model eigenspace based on subjects from the ICBM database, in 

which we projected our cohorts of TLE patients. While such a space built from 

young, neurologically healthy individuals may not be optimal to represent the test 

population, it should be noted that our primary goal was to find an independent 

basis for a comparative evaluation of our study cohort and its subsequent 

classification, but not the best mathematical representation. This is demonstrated in 

Figure 25, especially for Experiment 4 (L vs R). If the space was optimal for 

representing the TLE patients one would expect a monotonous increase in accuracy 

as the number of eigenvectors presented to the classifier increased. However, such is 

not the case since we were presenting to the classifier eigenvectors ordered along 

their weight for a young, healthy population. This explains why, for example, in the 

120 



case Experiment 4, the accuracy of the classification does not monotonically 

increase, since quite obviously sorne of the eigenvectors that improve the 

classification are found in later reference space eigenvectors, that do not carry much 

eigenweight for normal, healthy subjects, but they do carry discriminatory 

information for TLE patients. 

Clinical considerations 

The prevalence of HA as reported in the lite rature for cohorts of TLE patients 

ranges from 50%(Ng, Tang et al. 2000) through 90%(Cascino 1995), with 

a "consensus range" emerging between 75%(Spencer, McCarthy et al. 1993) or 

76%(Jack, Theodore et al. 1995) to 85%(Cheon, Chang et al. 1998; Bemasconi, 

Bemasconi et al. 2003). HA prevalence in our cohort felliower than this accepted 

range at 63%, but this complicates, rather than simplifies, the task for the 

classification system, as there are less HA examples to leam from in the leave-one­

out analyses. Our first experiment was aimed at determining if HC atrophy was 

detectable with our methodology. By definition, HC volumetry determines atrophy 

with 100% accuracy. Our results show that we are able to differentiate between HA 

and HNV with the same accuracy. From a clinical point of view however, the 

advantage of the automated technique relies in its independence from manual 

intervention, outside of the one-time definition of the VOl in Talairach-like 

coordinates. HA is typically associated with ipsilateral seizure and therefore 

volumetry seems like a good indicator of lateralization. The accuracy of 
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lateralization in TLE patients with HC atrophy is at a minimum 80% (Bemasconi, 

Bemasconi et al. 2003) or 90% when including structures other th an the HC, such as 

the amygdala (Cendes, Andermann et al. 1993), entorhinal and parahippocampal 

formation (Bemasconi, Bemasconi et al. 2003), or combining with T2-weighted MRI 

hyperintensities in the medial temporal lobes (Kuzniecky, Suggs et al. 1991) or 

spectroscopie data (Li, Caramanos et al. 2000). Other authors report a maximum of 

98% (Spencer, McCarthy et al. 1993) or 100% in (Jack, Theodore et al. 1995) for 

lateralization via volumetry. In this cohort, since we selected individuals with atrophy 

ipsilateral to seizure focus, the accuracy of MRI-based volumetry was 100%. Our 

classification results achieved the same accuracy for lateralization of seÏzure focus in 

patients with HA, using 13 eigenvectors. 

Also by definition, the lateralization of seizure focus in patients with normal 

hippocampal volume cannot be done on the basis of HC volumetry and therefore is 

at best equal to chance (50%). In contrast, our methodology surpasses this result by 

achieving 100% lateralization accuracy with 5 eigenvectors. 

Finally, we attempted to lateralize seizure focus from the onset, that is without a 

priori separation of the groups based on hippocampal volume. The accuracy of HC 

volumetry in this instance can be derived by combining the consensus ranges of 

prevalence for HA, along with the lateralÏzation accuracy of HC volumetry in the 

presence of HA or HNV, that is [(75 - 85%) X (85% - 98%)] + [(50%) X (25% -

15% )]. Therefore, lateralization of seizure focus with volumetry alone should range 
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between 76% and 91 %, and as mentioned in this cohort is 81 %. Our results show an 

ability to lateralize seizure focus with 96% accuracy with 12 eigenvectors, but, 

contrary to volumetry, without the need for additional measurements or manual 

segmentation. The non-invasiveness of MR-based techniques makes them 

preferrable alternatives for the presurgical evaluation of patients with TLE if proven 

to be as accurate. We believe that the proposed methodology for automated analysis 

of Tlw MRIs has reached the level at which it needs to be evaluated further in 

prospective studies to determine its possible inclusion in routine clinical use. 

We chose intractable temporal lobe epilepsy (TLE) as a pathology of interest since 

its characteristics made it an ideal test case for our proposed methodology. Clearly, 

other neurological diseases that exhibit related morphological changes detectable via 

Tlw MRI intensity and shape may benefit from this approach. As an example, 

preliminary results for this methodology in the study of Alzheimer's dementia and 

Mild Cognitive Impairment are discussed in a separate communication (Duchesne, 

Pruessner et al. 2005). 

Conclusion 

The underlying assumption for this work is that there exists sufficient information in 

VOIs extracted from Tlw MRI global volumes to be used for the correct 

classification of our study subjects. Our results demonstrate that multidimensional 

spaces can be created from a PCA of extracted features of interest from training set 
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images, and that such a space forms an adequate basis for the discrimination 

between subject projections. Our results further indicate that LDA can classify 

groups using the selected features with a high degree of success. The proposed 

methodology does not rely on segmentation, requires no user input and is data­

driven. 

The ability to lateralize seizure focus in intractable TLE based solely on pre­

operative TlwMR imaging has great potential to improve CUITent diagnostic 

procedures. It is anticipated that such systems will gain widespread use in the next 

few years in a wide range of neurological diseases. 
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Chapter 5 

Prediction of outcome for TLE surgery 

Foreword 

Having demonstrated in the previous chapter that there were appearance 

differences in intensity and shape related to seizure focus localization, and that these 

differences could be used for pre-surgicallateralization, we turned our attention to 

the problem of predicting the long-term, post-surgical clinical status. 

The main objective of selective amygdala-hippocampectomy (SAH) performed in 

intractable TLE patients is one of seizure control; in the majority of cases, but not in 

aIl, this goal is achieved. Being able to predict for which patients the CUITent 

procedure would be most beneficial would significantly alter patient management. 

Our first attempt at predicting post-surgical clinical status at one year foIlow-up was 

to use the same technique as used in the previous chapter, that is a linear model of 

appearance principal components extracted from the MTL. The results we obtained 
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were inconclusive, and we could do no better th an chance. This was not entirely 

surprising, given the literature on the subject (see Chapter 2), which indicates that 

the extent of disease damage in extra-temporal are as is probably the most 

determinant predictor of outcome. We therefore decided to tum to the second, 

VBM-based methodology described in Chapter 3. 

Our primary goal in this article was to determine if there existed regions of grey and 

white matter concentration differences related to surgical outcome outside of the 

temporal lobe. At the same time, we wished to verify if these differences could be 

used for the purpose of predicting surgical outcome. Again, we hypothesized that 

they could be modeled linearly, or at least sufficiently weIl estimated to allow for the 

correct classification of patients into positive or negative outcome groups. The 

standard of comparison for this task was clinical evaluation of seizure control at one­

year follow-up. 

Our results indicate that our assumptions were correct. We found differences in GM 

and WM concentrations mostly outside of the hippocampal area, and outside of the 

MTL, that were indicative of post-surgical outcome. A model based on the age of 

seizure onset, duration of seizures, ipsi and contra-Iateral hippocampal volumes 

reached a 72.6% accuracy; this was increased to 78.9% when incorporating GM and 

WM concentration measures within these are as. 
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An early form of this work was printed as a conference proceeding(Duchesne, 

Bernasconi et al. 2004), before being submitted for publication in the journal 

NeuroSurgery. 

As the methodology has been extensively described in Chapter 3, the reader may 

choose to skip the Methods section of this chapter without loss of information. For 

the sake of brevity, keywords have not bee induded, and a li st of abbreviation can be 

found at the end of this thesis. 
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Abstract 

Background - For patients with intractable temporal lobe epilepsy (TLE), 

resection of the epileptogenic seizure tissue has been shown to be a beneficial 

approach, with the majority of patients experiencing seizure control (positive 

outcome) after surgery. Predicting intervention success however remains a difficult 

task. 

Objective - We wished to study pre-operative Tlw MRI of TLE patients who had 

undergone selective amygdala-hippocampectomy (SAR) as part of their surgical 

treatment, in order to predict clinical status at one year foIlow-up. 

Methods - We performed voxel-based morphometry (VBM) studies of gray and 

white matter (GM!WM) concentration changes by comparing patients with negative 

outcome to those with positive outcome to de termine regions of concentration 

differences related to the surgical result. A region of interest was defined as the 

union of aIl voxels above a threshold for significance. Its size, the average GM and 

WM concentration within it, were measured for each patient. A model was built by 

adding VBM-based measures to non-VBM data (age of onset, duration of epilepsy, 

ipsi- and contra-Iateral hippocampal volumes as measured on MRI). Multiple cross­

validation trials were used to assess the predictive ability of the model. 

Results - GM concentration changes were primarily located in the left fronto- and 

inferio-temporal region, while WM concentration changes were found in the left 

mid-temporal region. Predicting surgical outcome using non-VBM based measures 
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resulted in an accuracy of 72.6%, while adding VBM-based features improved the 

this predictive accuracy of future clinical status to 78.9%. 

Conclusion - This article demonstrates the idea that pre-operative MRI analysis 

can increase the accuracy of surgi cal outcome prediction for an individual patient, 

and therefore could be useful for patient selection in order to maximize surgical 

benefit. Of course, conventional or depth EEG remain critical tools for the 

understanding of the temporo-spatial pattern of the epileptic discharges; it is only 

proposed here that MRI can play a pote nt role in pre-surgical planning and 

evaluation. 

Introduction 

Predicting surgical outcome in the treatment of medial temporal lobe epilepsy 

(MTLE) remains an outstanding challenge. Since the advent of high-resolution 

neuroimaging, there have been numerous attempts at finding structural or functional 

markers that can be used for that purpose, but no completely reliable indicator has 

been found to date. 

Microscopically, the most commonly described findings in MTLE are neuronalloss 

and gliosis of the hippocampus (RC) and the parahippocampal (PRC) region 

(Falconer, Serafetinides et al. 1964). The central goal of surgery in MTLE has 

consisted in the removal of this affected tissue, in an attempt to remove the site of 
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seizure generation and thus achieve seizure control. As the understanding of the 

disease and image-guidance improved (Olivier, Alonso-Vanegas et al. 1996), MTLE 

surgery has moved from complete to partiallobectomy (anterior temporal 

lobectomy or ATL), to selective amygdalo-hippocampectomy (SAR) (Olivier 2000). 

The latter approach consists in the resection of the amygdala (AG) and HC complex, 

and often parts of the neighboring structures, such as the entorhinal cortex (EC). 

For most intractable MTLE patients, surgery is the best possible treatment choice 

(McLachlan 2001). Vickrey et al. (Vickrey, Hays et al. 1995) have assessed MTLE 

surgery success and demonstrated that surgery patients had greater de cline in 

average monthly seizure frequency and took fewer antiepileptic medications, when 

compared to patients that had not received surgery. 

For the purposes of this study, we will define surgical outcome, or postoperative 

seizure control (Jack, Sharbrough et al. 1992), as either positive (complete remission 

and disappearance of all seizures, corresponding to Engel Group 1) or negative (all 

levels of seizure recurrences, or Engel Groups II/III/IV)(Engel, Van Ness et al. 

1993). 

Surgical Outcome Prediction in MTLE 

While the majority of patients undergoing surgery have positive outcome, there 

remains a significant proportion (20-30%) where the procedure will not completely 

eliminate seizures (Antel, Li et al. 2002). It is difficult at present to determine a 

priori if the procedure will be successful. MTLE surgical outcome prediction has 
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been examined mainly in subjects undergoing ATL, and remains marginal when 

using neuropsychological testing (Sawrie, Martin et al. 1998), shows correlation to 

interictal EEG (Bautista, Cobbs et al. 1999), and appears successful (>90% 

accuracy) when using PET (Dupont, Semah et al. 2000) (Choi, Kim et al. 2003) or 

pathological assessment of the resected tissue (Berg, Walczak et al. 1998). 

Magnetic Resonance Imaging (MRI) has seen its use increase in the pre-surgieal 

evaluation of MTLE patients. HC neuronalloss found in surgieal specimens 

obtained from patients with pharmacologically intractable TLE has been shown to 

correlate with HC atrophy on volumetrie MRI (Cascino, Jack et al. 1991). MRI 

studies in MTLE have also shown volume reduction ipsilateral to the side of the 

seizure focus in the PHC region (Bernasconi, Bernasconi et al. 2003); there is also 

evidence for extra-temporal gray and white matter (GM, WM) reductions in 

epilepsy patients when compared to controls (Woermann, Free et al. 1999) (Keller, 

Wilke et al. 2004) (Bernasconi, Duchesne et al. 2004). Nearly 80% of MTLE cases 

exhibit lateralized HC atrophy (Bernasconi, Bernasconi et al. 2003), strongly 

correlated with an ipsilateral seizure focus. 

Surgie al outcome predietion via MRI has been attempted in ATL (Jack, Sharbrough 

et al. 1992) (Radhakrishnan, So et al. 1998) (Kobayashi, Lopes-Cendes et al. 2001) 

with an accuracy ranging from 62% to 96%(Gilliam, Faught et al. 2000). Fewer 

authors have attempted to predict surgieal outcome for SAH based on MRI. Abosch 

et al. (Abosch, Bernasconi et al. 2002) reviewed EEG, histopathological studies and 
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pre-operative MRI for 54 patients, half ofwhom had good post-operative seizure 

control (Engel Groups 1/11). Their main conclusion is that SAH outcome can be best 

predicted when patients exhibit clear unilateral TLE; there remains a subpopulation 

(nearly 50% of cases), however, that meets the criteria for TLE, but does not 

become free from seizure following SAH (Abosch, Bemasconi et al. 2002). Antel et 

al. (Antel, Li et al. 2002) have used a classifier based on MRI and MR spectroscopy, 

correctly predicting the surgi cal outcomes of 39 of 52 (75%) of patients who became 

seizure free and 21 of 29 (72%) of patients who did not. 

There remains a need therefore to increase the accuracy of non-invasive, pre­

operative surgical outcome prediction in SAH. 

Hypothesis and objectives of research 

Our research hypothesis is that there exist anatomical regions of the brain that are 

linked to post-surgical outcome, either inside or outside of the MTL, and who se 

image informative content has the potential to predict surgical outcome. 

Our goal is to demonstrate the usefulness of a new methodology, based on pre­

operative MRI, in the prediction of surgical outcome in a retrospective study of 

MTLE patients having undergone SAH. In the first part we will describe our 

attempt at identifying those regions by comparing pre-operative MRIs of positive 

outcome patients to those of negative outcome patients. In the second part we 

de scribe our methodology for predicting surgical outcome based on simple MR 

image features computed within the identified regions. 
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Methods 

Subjects 

The study population consisted of 39 patients with intractable, non-foreign tissue 

MTLE seen at the Montreal Neurological Institute for SAH. AlI patients gave 

written consent for our study, which was approved by our Institute Review Board. 

Lateralization of seizure focus in MTLE patients was determined by a 

comprehensive evaluation including prolonged video-electroencephalogram (EEG) 

telemetry. The EEG focus was defined as right or left if more than 70% of seizures 

were recorded from one side. 

Pre-operative T1-weighted (T1w) MRI 3D images were acquired on a 1.5T scanner 

(Philips Gyroscan, Best, Netherlands) using a fast gradient echo sequence (TR= 18 

ms, TE=lO ms, 1 NEX pulse sequence, flip angle= 30°, matrix sÏze=256 X 256, 

FOV=256mm, slice thickness=lmm). AlI global MRI data were processed to 

correct for intensity non-uniformity due to scanner variations (SIed, Zijdenbos et al. 

1998), linearly registered into stereotaxie space and resampled onto a 1mm isotropie 

grid (Collins and Evans 1997). Manual MRI volumetry of the HC (rater: N.B.), 

based on a previously published protocol (Bernasconi, Bernasconi et al. 2003), 

showed atrophy ipsilateral to the seizure focus in aIl patients. 

AlI SAH procedures were performed by the same surgeon (A.O.) with a 

standardized approach (Olivier 2000). Post-operative follow-up for a minimum of 12 
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months was used to consolidate patients in two outcome groups: seizure free 

(positive outcome, n=25) or not seizure free (negative outcome, n= 14). 

The clinical data collected consisted in lateralization of seizure focus, age of onset, 

duration of epilepsy, and outcome grouping, along with MR-based manually 

extracted ipsi- and contralateral HC volumes. 

Detection of GM/WM concentration differences related to surgical 

outcome 

Our primary objective was to determine regions of gray and white matter (GM / 

WM) atrophy related to MTLE surgical outcome. To this end we performed 

between-group voxel-based morphometry (VBM) (Ashburner and Friston 2000) 

studies. These are statistieal analyses of generalized linear model results performed 

on a voxel-by-voxel basis on combined cohorts of co-registered subject imaging data. 

In this case, we compared the GM and WM concentration maps of negative 

outcome to positive outcome patients. 

The GM!WM concentration maps were obtained after classification of T1w MRI 

volumes (Zijdenbos and Dawant 1994), linearly registered (Collins and Evans 1997) 

to a common reference target of 152 young healthy volunteers, the so-called MN! 

Brain or ICBM 152 average (Mazziotta, Toga et al. 1995). GM or WM 

concentration maps were blurred using an isotropie Gaussian kernel of lOmm full­

width at half-maximum, under the assumption that this spatial kernel size matched 

the expected changes (Ashburner and Friston 2000). In those smoothed 
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concentration maps, each voxel takes on a concentration value between (0,1) 

indicative of the presence or not of GM or WM in that voxel. T -statistics maps were 

obtained by estimating a generalized linear model at each voxel, with age of onset 

and duration as covariates. Significant clusters, above a threshold t-value and 

composed of a sufficiently large number of contiguous voxels ("cluster extent"), 

were obtained following the procedure developed by Worsley et al. (Worsley, 

Andermann et al. 1999) to correct for data nonuniformity. 

Prediction of surgical outcome 

Our hypothesis for predicting surgical outcome is that regions of differences in GM 

or WM concentration related to surgical outcome, which have been extracted in the 

previous step, can be exploited for classification purposes. We thus proceeded to 

define a global region of interest as the ensemble of aIl voxels ab ove the cluster 

statistical significance threshold in each of the four concentration difference maps 

(one each for the combination of increase/decrease in GM/WM concentrations). We 

measured the number of voxels within these regions of interest, along with the 

region's mean GM and WM concentration, on the patients' classified preoperative 

image, for a total of 8 VBM-based measurements. 

Ideally there would be twO groups of subjects, one to extract the global region of 

interest, and the second to test the classification. However, due to the limited 

number of patients (N = 39), we decided to proceed in a leave-one-out fashion 

where multiple VBM group comparison analyses were carried out, with each subject 
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removed in turn from the group; the concentration difference maps were therefore 

independently assessed from that subject. The global region of interest was 

calculated as defined above, and the number of voxels in the region, along with the 

mean GMJWM concentration within that region, was measured on the subject's own 

MR image. This approach was therefore repeated 39 times, in order to benefit from 

making comparisons statistically independent. 

To summarize, the 8 VBM measurements (average value and volumes for GMIWM 

increases/decreases in concentration) for each subject "left out" were measured on 

the regions defined by the VBM analyses of the remaining 38 subjects. When 

completed, we had age of onset, duration of seizures, ipsi and contra-Iateral 

hippocampal volumes and those 8 VBM-based values for each subject that can be 

used as input to the classifier. 

Classification was performed using linear discriminant analysis of the 

aforementioned VBM and non-VBM based measures to assess group membership, 

with prior probabilities set to 0.7 (positive) and 0.3 (negative) in accordance with 

data set frequencies. The final reported result consisted in the mean accuracy of 

multiple cross-validated trials (Figure 26). In each of those trials, the study data is 

randomly split in two groups: the first group is the training set and is used to 

estimate the classification functions; the second group is the test set, classified using 

the functions derived from the training set. This procedure is repeated multiple 

times and the average proportion of correct classifications of the test set is an 
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empirical measure for the success of the discrimination. The cross-validation 

experiments were completed using SYSTAT 10.2 (SSI, Richmond, CA) . 
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Figure 26 - Cross-validation trials 
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Cross validation trials proceed as follows. The study population is randomly split 
into a training and a test set, with the linear discriminant functions estimated on the 
training set. The test set is used to evaluate how good the classification is, and this 
process is repeated multiple times to get a good estimate of the overall accuracy for 
classification. 

Experiments 

Four experiments were run: 

1) Prediction of surgical outcome using non-VBM based measures (age of onset, 

duration, ipsi and contralateral HC volumes); 
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2) Prediction of surgical outcome using VBM-based measures only; 

3) Prediction of surgical outcome using age of onset, duration and VBM-based 

measures; and 

4) Prediction of surgical outcome using aIl non-VBM and VBM-based measures. 

Results 

There were no statistical differences in age of onset, duration of epilepsy, ipsilateral 

or contralateral hippocampal volumes between the positive and negative outcome 

groups (P > 0.05, DF = 37) (see 

Table 4). Box plots of age of onset, duration, ipsi and contra-Iateral volumes are 

shown in Figure 27. 

Outcome N Age of Duration Ipsilateral HC Contralateral 
onset volume HC volume 

(yrs)[SD] (yrs)[SD] (mnf) [SD] (mnf) [SD] 

Positive 25 10.3 [6.0] 21.0 [12.1] 2588.8 [417.9] 3665.2 [669.1] 

Negative 14 15.1[13.2] 24.1 [11.3] 2327.8 [449.3] 3333.4 [679.3] 

P (Neg. to Pos.) > 0.05 > 0.05 > 0.05 > 0.05 

Table 4 - Clinical data for positive and negative outcome groups 

There was an equal (N = 7) number of patients with left-sided seizure focus and 

ipsilateral He atrophy than right-sided patients in the negative outcome groups, 

139 



while there were 14left-sided and 11 right-sided patients in the positive outcome 

groups. Due to the limited number of patients in this study, the relationship between 

outcome and lateralization of seizure foeus was not investigated further. 
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Figure 27 - Patient data 
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(A) and (B) Box-plots of age of onset and duration of epilepsy for the negative 
(group -1) and positive (group 1) outcome patients. (C) and (D) Box-plots ofipsi­
and contra-lateral hippocampal volumes for the same patients. Experiment 1 
assessed the accuracy of individual prediction using these data in multiple cross­
validation trials. Specificity to positive outcome was 87%, sensitivity to negative 
outcome was 13.8%, resulting in a combined accuracy of 72.6%. 
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Figure 28 presents the results of between-group VBM analyses for GM and WM 

concentration differences, respectively, with aIl 14 negative outcome patients 

compared to aIl 25 positive outcome patients. AlI voxels displayed are above the 

cluster threshold for statistical significance (t= [-3.326,3.326] for decrease or 

increase in concentration respectively, P < 0.05, corrected for data nonisotropy and 

multiple comparisons). Even though many voxels reached peak significance, and 

many more were ab ove the cluster threshold, there were no clusters that reached 

significance, as none reached the constraint on their extent (number of contiguous 

voxels)(Worsley, Andermann et al. 1999); we will therefore report statistical trends. 

GM concentration decreases (negative relative to positive outcome patients) are 

detected primarily in the left fronto-temporal and left inferio-temporal regions, 

while concentration increases are found primarily in the basal forebrain region (see 

Discussion). Trends in WM concentration decreases (negative relative to positive 

outcome patients) are noted in the le ft mid-temporal are a, caudal to the 

hippocampus; an area of increased WM concentration in negative outcome patients 

relative to positive can be found in the right cingulate at the parietallevel. 

It should be restated at this point that our definition of regions of interest is the 

ensemble of voxels above the t-statistic cluster threshold for significance; we did not 

impose as a condition that a voxel belong to a significant cluster. This relaxed 

condition entails that voxels included are not significant using standard VBM criteria 

however, as seen below, they can be used for classification. 
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The mean number ofvoxels per region was 3640 [SD 1120] for GM decrease and 

973 [446] for GM increase, while the mean WM decrease region was 419 [215] voxels 

and the mean WM increase region was 2963 [959] voxels. Box plots of mean GM and 

WM concentration measures within the regions of interest are shown in Figure 29. 
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Figure 28 - VBM results related to surgical outcome 

GM concentration decreases (A) and increases (B) in the negative outcome group 
when compared to positive outcome group as determined by VBM, shown in glass 
brain view; WM concentration decreases and increases are shown in (C) and (D), 
respectively. Ali voxels are above the cluster threshold for statistical significance (t > 
1 3.361), but clusters are not significant as they do not meet the statistical extent 
criterium. GM concentration decreases are seen in the left fronto-temporal and left 
inferio-temporal regions, while increases are noticed in the basal forebrain region, 
likely due to misclassification due to poor contrast. Trends in WM concentration 
decreases are noted in the left mid-temporal area, caudal to the hippocampus; an 
area of increased WM concentration in negative outcome patients relative to positive 
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can be found in the right cingulate at the parietallevel. Note that this VBM was 
completed using aIl 39 subjects. Wh en extracting the VBM-based measures for each 
subject "left out", the VBM would only use the remaining 38 subjects. 

Given those data, Experiments 1 through 4 assessed the accuracy of individu al 

prediction using a model built either with non-VBM (Experiment 1: 4 variables, age 

of onset, duration, ipsi and contralateral HC volumes), or VBM measures 

(Experiment 2: 8 variables, number of voxels, GM/WM mean concentration in the 

increase/decrease regions of interest), or a combination of the two (Experiment 3: 10 

variables, age of onset, duration, 8 VBM-based measures; Experiment 4: 12 variables, 

age of onset, duration, ipsi and contralateral HC volumes, and 8 VBM-based 

measures), with fifteen cross-validation trials run in each experiment. The median 

number of subjects in the training sample and the test sample, the specificity for 

positive outcome and sensitivity to negative outcome, as weIl as the combined 

prediction accuracy, were recorded and are shown in 

Table 5. 

Expt Variables Median number 
of subjects 

SP SN Accuracy 

Training Test 
set set 

1 4 37 2 87% 13.8% 72.6% 

2 8 37 2 91.7% 25.0% 66.7% 

3 10 37 2 90.5% 50.0% 76.5% 

4 12 37 2 90.9% 58.3% 78.9% 
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Table 5 - Summary of results [Specificity (SP) to positive outcome, sensitivity (SN) 
to negative outcome, and mean accuracy] 
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Figure 29 - VBM-based measurements 

(A) and (B) Box-plots of GM area average decreases and in creas es in concentration 
values, respectively, for ail voxels belonging to the global region of interest, in 
individual subjects volumes; WM area average increases and decreases are shown in 
(C) and (D) respectively. In this figure group (-1) represents negative outcome while 
group (1) represents positive outcome. While the spread in the measures is large, 
there are sufficient differences between the distributions to increase the specificity to 
positive outcome to 90.9%, the sensitivity to negative outcome to 58.3%, and the 
combined accuracy to 78.9%, wh en adding these features to those of Fig. 2. 
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Discussion 

Hippocampal and extra-hippocampal involvment in MTLE 

A consensus exists on the importance of HC resection in MTLE surgery, especially 

in cases where there is concordance between HC atrophy assessed on MRI and focal 

epileptic discharges measured via EEG. In such unequivocal cases, outcome can be 

reliably predieted (Jack, Sharbrough et al. 1992; Bautista, Cobbs et al. 1999); 

discordant assessments are not as reliable. 

The situation outside of the HC is not as weIl defined. Bonilha et al. (Bonilha, 

Kobayashi et al. 2004) report that the extent of the AG and HC resection is clearly 

associated with surgical outcome, whereas pre-operative variables and interictal 

EEG abnormalities are not. They hypothesize that an incomplete resection of 

atrophie HC may explain most surgieal failures in patients with MTLE due to 

unilateral He sclerosis (Bonilha, Kobayashi et al. 2004). However, in the 

retrospective study by Abosch et al. (Abosch, Bemasconi et al. 2002) mentioned 

earlier, of 27 SAH patients, 13 of these subsequently having undergone either 

extension of the SAH (six cases) or a cortico-SAH (seven patients), showed that 

ne ar-total resection of me sial structures did not necessarily improve outcome. The 

authors conclude by stating that the majority of patients receiving suboptimal seizure 

control following SAH did not meet the criteria for unilateral MTLE, and are 

therefore unlikely to benefit from addition al resection of me sial structures. There 

remains a subpopulation, however, that meets the criteria for MTLE, but does not 
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become free from seizure following SAH. This is also supported by an analysis of the 

discharge patterns by Bautista et al. (Bautista, Cobbs et al. 1999), concluding that 

patients with focal interictal epileptiform discharges included in surgical resection 

have good surgical outcomes, while those with discharges extending beyond the area 

of resection experience poor surgical outcome. 

The importance of extra-hippocampal anatomy for the prediction of postoperative 

outcome has been shown in a (18)fluorodeoxyglucose (FDG) positron emission 

tomography (PET) study by Dupont et al. (Dupont, Semah et al. 2000), where they 

correctly predicted 2 -year prognosis in 100% of the patients using 4 regions: the 

temporal pole, the medial temporal region, the anterior part of the lateral temporal 

neocortex, and the basofrontal region. 

We have identified areas of GM and WM concentration differences that were 

related to surgical outcome in TLE patients having undergone SAH using a standard 

VBM approach. The fact that there exist regions of differences nearly reaching 

significance, regardless of the mixed nature of the groups (left and right seizure 

focus), is further indication of extra-hippocampal involvement in TLE. The basal 

forebrain differences are more than likely due to errors in the automated tissue 

classifier (Zijdenbos and Dawant 1994) due to decreased tissue contrast in this area. 

WM and GM concentration decreases however in the fronto-, inferio and mid­

temporal areas are indicative of possible increased pathological affect in these areas. 
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By including this extra-hippocampal information to the other non-VBM information 

(age of onset, duration of seizure, ipsi/contralateral He volume) we increase the 

accuracy of MR-based classifiers to 4 out of 5 patients (Experiment 4), primarily 

by increasing the sensitivity to negative surgical outcome. This accuracy is 

maintained even if we automate completely the image processing, that is without 

resorting to manu al segmentation of the hippocampus (Experiment 3). We 

hypothesize that our results reflect the case that patients with poor surgical outcome 

have more disease-driven damage in extra-hippocampal areas, including extra­

temporal are as. 

Methodological Considerations 

Automated techniques for surgical outcome prediction are by nature objective; the 

proposed methodology is also data-driven, requires no user intervention 

(Experiment 3 paradigm), and is based on a standard Tlw MR acquisition. 

We have been successful in identifying significant peaks and trend areas of GM and 

WM concentration differences using a standard VBM approach. Figure 28 displays 

the VBM results for the between-group differences for aIl subjects. Our 

classification technique relies on a leave-one-out approach for purposes of 

independence however, we do not feel that the exclusion of one individual from the 

group comparison significantly changes the regions of GM and WM concentration 

differences when compared to the whole-group results. These areas could be refined 

if we were to use other approaches which improve the accuracy of VBM, such as 
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modulation by the Jacobian determinant (Good, Johnsrude et al. 2001), flipping 

left/right depending on side of seizure focus, or restricting the search area for VBM 

by eliminating regions known not to be affected in epilepsy (e.g. cerebellum, 

brainstem ). 

A limitation of this study is the relatively small patient sample size. Great care was 

taken to avoid dependence and overlearning of the training set, by performing 

multiple leave-one-out VBM analyses and subsequent cross-validation trials for 

classification. A larger database th an currently available would allow the separation 

into subgroups based on seizure focus laterality and/or to consider the four main 

Engel (Engel, Van Ness et al. 1993) outcome classes separately. 

Conclusion 

In this work we have set the basis for surgi cal outcome prediction for temporal lobe 

epilepsy patients undergoing selective amygdala-hippocampectomy, based on voxel­

based morphometry analysis of pre-operative grey and white matter concentration 

maps. Regions of difference exist between positive and negative outcome patients, 

and can be used to predict surgi cal outcome with high accuracy using a completely 

automated methodology; the accuracy is increased marginally when including 

manual, expert-based volumetric information. 

MR-based preoperative planning, including seizure focus lateralization, is an 

established procedure. This article presents the idea that pre-operative MRI can be 
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used to increase the accuracy of surgical outcome prediction for an individual 

patient. Using MRI to predict outcome, without depending on additional minimally­

invasive (SPECT, PET) or invasive (surgically implanted EEG or sEEG) modalities, 

could reduce the significant resources and patient burden devoted to pre-surgical 

evaluation, while improving success. Of course, conventional and/or sEEG remain 

critical tools for the understanding of the temporo-spatial pattern of the epileptic 

discharges; it is only proposed here that MRI can play a potent role in pre-surgical 

planning and evaluation. 
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Chapter 6 

Differentiation of AD and MCI from 

normal aging 

Foreword 

We have already mentioned that the difficulties in early clinical detection of AD lie 

for the most part in the similarities between its initial manifestations and cognitive 

impairment due to normal aging (NA) processes (Chetelat and Baron 2003). In 

order to resolve this situation an objective classification technique is required. 

Having previously demonstrated that existing appearance differences in TLE could 

be used for classification, we wished to test whether or not the same process could 

be used in the identification of AD or MCI patients when compared to normal aging 

individuals. The aspect of the method being investigated here is robustness, not to 

noise but rather to a change in the signal: given a completely dissimilar disease, with 

a radically different pathological process, would the classification be successful? We 

thought that our methodology was just as relevant as in TLE, as there were many 
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reports in the literature of intensity (Freeborough and Fox 1998) and shape changes 

(Fox and Schott 2004), to cite but a few, occurring with time between AD, MCI and 

NA. Further, there was ample evidence that the earliest pathologieal deposition of 

Aj3 in the brain occurred in various structures within the MTL (Thal, Rub et al. 

2002), and therefore our large volume approach, rather than a structure-centrie one, 

seemed equally applicable. 

Our goal remained to perform this task in a cross-sectional fashion, departing from 

the usual research paradigm of longitudinal examination. While we expected a loss 

of sensitivity and/or specificity due to this strategy, we believed that the clinieal 

reality could still be enhanced by a technique that would be readily applicable for the 

treating physician. The standard of comparison for this task was a clinieal diagnosis 

of probable AD or MCI according to criteria from NINCDS-ADRDA for the 

former and Petersen et al. (Petersen, Doody et al. 2001) for the latter. 

Our results indicate that our methodology was indeed robust to a different 

pathological process. We found that the appearance-based approach was 92.6% 

accurate in separating a group of 20 normal aging individuals vs 17 AD and MCI 

patients. This was superior to the 82.1 % accuracy of a model composed of age, 

MMSE scores, hippocampal and amygdala volumetrie measurements. 

An early form of this work was published as a conference proceeding (Duchesne, 

Pruessner et al. 2005), before being submitted for publication in the journal 

Alzheimer's and Dementia. 
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After submission of this manuscript, we became aware of a fundamental flaw in the 

image acquisition. Whereas we believed a priori that the scans had been acquired at 

a single site due to blinding during initial analysis, it appeared that such was not the 

case as patients and controls were actually scanned in 3 different centers within the 

Munich area. This could have had a significant impact on the results. 

We have since rerun our analyses, including this element as a new variable. We are 

pleased to report in an addendum to this manuscript that the system was sufficiently 

robust to maintain an accuracy of 90.9%, while rejecting the institution as a 

discriminating variable. This would therefore indicate that the methodology could 

handie muiti-site data, an important consideration in clinicai research. 

As the methodology has been extensively described in Chapter 3, the reader may 

choose to skip the Methods section of this chapter without loss of information. For 

the sake of brevity, keywords have not bee included, and a list of abbreviation can be 

found at the end of this thesis. 
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Abstract 

Background - Neuropathological studies in AIzheimer's dementia (AD) have 

shown brain degeneration early in the disease course in the medial temporal lobes 

(MTL). 

Objective - We aimed at differentiating AD and mild cognitive impairment (MCI) 

from normal aging (NA) with > 90% accuracy using a recently developed 

automated classification technique based on analysis of MTL information from 

cross-sectional MR data. 

Metbods 

Subjects- 13 clinical AD and 4 MCI patients [age 68.0 (8.2), MMSE 20.2(5.0)] were 

compared together against 20 NA subjects [age 60.8 (8.6), MMSE 29.8(0.6)]. Tlw 

MRI data were acquired after informed consent on a 1.5T scanner. 

Analysis- AIl sc ans were corrected for intensity signal inhomogeneity, linearly 

registered in stereotaxie space and intensity normalized. Hippocampal (HC) and 

amygdala (AG) volumes were obtained by manual segmentation. Rectangular 

volumes of interest (VOl) were defined on the left and right MTL (80 X 52 X 60 

voxels), linearly and nonlinearly registered to a reference target image. The 

classification features were the normalized intensity and the trace of the J acobian of 

the nonlinear registration deformation fields. Normative spaces for group 

comparison were created from 152 normal young subjects using principal 

components analysis of their intensity and trace VOIs, and the scans from the NA 
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and MCI + AD cohort subjects were projected in these spaces. Forward stepwise 

linear discriminant analyses of the eigendata was used to classify the subjects in 

multiple cross-validation trials. 

Results - There were significant group differences between NA and AD+ MCI for 

age (P = 0.0138) as weIl as MMSE, HC and AG volumes (P < 0.0001). For 

classification using non-MR features (age, MMSE, left and right He and AG 

volumes) the mean accuracy was 82.1 %, sensitivity to AD+ MCI 81.2%, and 

specificity to NA of 85.9%. For classification using only MR features, the mean 

accuracy was 92.6%, mean sensitivity 78.2% and mean specificity 97.3%. 

Conclusion - Our results indicate that cross-sectional MR data can adequately 

discriminate NA from AD+ MCI, at an improved accuracy when compared to HC 

and AG volumetry. This single-scan, practical and objective method holds promise 

for AD or MCI patient management. 

Introduction 

Neuroimaging techniques, in particular structural or anatomical magne tic resonance 

imaging (MRI), allow the visualization and quantification of pathologically induced 

brain changes in the living subject; it then becomes possible to employ those metrics 

as surrogate measures of the state of the disease. These techniques can help to 

achieve earlier diagnosis, characterize the time-course of the illness and generally 

increase therapy efficacy. 
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Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated 

with disruption of neuronal function and graduaI deterioration in cognition, function, 

and behavior (Khachaturian 1985) . The progression of AD is graduaI, and the 

average patient lives 8 to 10 years after onset of symptoms (Petre lIa, Coleman et al. 

2003). It is the most common cause of dementia in the elderly (65 years and older), 

responsible for 75% of all dementia cases (Group 2000; J. R. Petrella 2003). As the 

globallife expectancy rises and populations age, the prevalence of AD is expected to 

triple over the next 50 years (Carr, Goate et al. 1997); improving care while reducing 

the socio-economic impact of AD is therefore an important and necessary topic of 

research. 

The diagnosis of clinically probable AD can be made with high accuracy in living 

subjects only once the stage of dementia has been reached, and requires clinical, 

neuropsychological and imaging assessments (PetrelIa, Coleman et al. 2003). It can 

only be confirmed by postmortem histopathology. Neuropathological studies have 

shown however that brain degeneration occurs very early in the course of the disease, 

even before the first clinical signs, in certain regions such as the medial temporal 

lobe (MTL) (PetrelIa, Coleman et al. 2003) (Figure 30). The etiology can be 

summarized as neuronal dysfunction and eventualloss due to abnormal 

accumulation of beta-amyloid proteins. 
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Figure 30 - Tl w imaging in normal aging, MCI and AD 

Anatomical magnetic resonance imaging (MRI) enables us to visualize 
pathologically induced brain changes in the living subject and use those as surrogate 
measures of the state of the disease. In general, radiological assessment of cross­
section al MR images demonstrates typical enlargement of ventricular and sulcal 
spaces in Alzheimer's dementia patients (AD, bottom row) wh en compared to 
normal aging individuals (NA, top row), but it is easy to find individuals with similar 
characteristics across both groups. The radiological situation is even more complex 
in the assessment of Mild Cognitive Impairment (MCI, middle row), an at-risk 
group of progression to AD. This significant overlap between the cross-sectional 
MRI appearance of NA, MCI and AD makes differentiation challenging for even the 
best trained observers. 
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The difficulties in early clinical detection lie for the most part in the similarities 

between cognitive impairment due to normal aging (NA) processes and the initial 

manifestations of AD (Chetelat and Baron 2003). Beyond changes due to normal 

aging, but before AD, mild cognitive impairment (MCI) is a condition referring to 

patients with significant but isolated memory impairment relative to subjects of 

identical age (Petersen, Doody et al. 2001). MCI individuals are considered an at­

risk group for progression to AD, and therefore early prediction of progression to 

AD in those patients is an important research goal. 

Our general hypothesis is that cross-sectional, single-scan classification may be 

possible based on detectable Tl w MR signal intensity differences that would 

possibly be due to pathology-related microscopie changes, combined with 

macroscopic alterations in structure shape, measurable via registration-based 

metrics. These features would be extracted a large, non-specific Volume of Interest 

(VOl) centered on the MTL (see Figure 31). 

Our goal is to demonstrate that it is possible to differentiate NA subjects from AD 

and MCI patients with high accuracy based solely on cross-sectional MRI data using 

an automated classification technique. 
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Figure 31- Hypothesis for classification 

Histological data for AD shows that tangles and plaques start to accumulate 
primarily in the medial temporal lobe, and are ultimately responsible for neuronal 
dysfunction and eventualloss. The hypothesis for our methodology is that pathology 
related microscopie cellular changes such as those would eventually affect the Tl­
weighted MR signal on a macroscopic level. The resulting intensity and shape 
changes can be exploited for classification purposes, even though the tangles or 
plaques cannot be seen on Tl w MRI at that resolution. 
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Method 

Study group 

A total of 194 subjects from three different groups were included in this study. The 

reference group consisted in 152 young normal subjects from the International 

Consortium for Brain Mapping database (ICBM)(Mazziotta, Toga et al. 1995), 

whose scans were used to create the reference model. The study population 

consisted in 20 normal aging subjects (NA), 13 AD and 4 MCI patients. Our goal 

was to demonstrate the ability of our classification methodology to differentiate NA 

from MCI or AD using MRI and therefore, we merged the latter two groups into a 

single patient group with 17 subjects. 

The patients had clinical diagnosis of probable AD according to the NINCDS­

ADRDA (McKhann, Drachman et al. 1984), recruited from the Alzheimer 

Memorial Center, Ludwig Maximilian University (Munich, Germany). Further 

sociodemographic information on study subjects is shown in 

Table 6. Cognitive impairment in the AD patients was assessed using the Mini­

Mental State Examination (MMSE)(Folstein, Foistein et al. 1975). MCI was 

diagnosed according to the criteria by Petersen et al. (Petersen, Doody et al. 2001). 

MCI patients performed below the age-adjusted average in tests on memory 

impairment in the absence of global cognitive impairment and impaired activities of 

daily living. Normal aging subjects were free of memory complaints and scored 

within 1 standard deviation on aIl axes of the CERAD (Consortium to Establish a 
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Registry for Alzheimer's Disease) cognitive battery. Significant medical co-

morbidity in the AD/MCI patients and controls was excluded by medical history, 

physical and neurological examination, psychiatric evaluation, chest X-ray, ECG, 

EEG, brain MRI and laboratory tests (complete blood count, sedimentation rate, 

electrolytes, glucose, blood urea nitrogen, creatine, liver-associated enzymes, 

cholesterol, HDL, triglycerides, antinuclear antibodies, rheumatoid factor, VDRL, 

HI V, serum B12, folate, thyroid function tests and urine analysis). None of the 

AD/MCI patients had hypertension or diabetes. AlI subjects or the holders of their 

Durable Power of Attorney provided written informed consent for the study. The 

protocol was approved by the Ethical Review Board of the Faculty of Medicine, 

Ludwig Maximilian University (Munich, Germany). 

N Age MMSE HC volume AG volume 

(rIS) (mnf) (mnf) 

Left Right Left Right 

NA 20 60.8 (8.6) 29.8 (0.6) 3332 (570) 3144 (594) 970 (255) 986 (299) 

AD+MCI 17 68.0 (8.2) 20.2 (5.0) 2060 (638) 1996 (628) 602 (274) 549 (236) 

P 0.0138 • <0.0001· <0.0001· <0.0001· <0.0001· <0.0001· 

(NA vs AD+ MCI) 

Table 6 - Infonnation on NA, AD, MCI cohort 

Data acquisition and initial processing 

The reference ICBM subjects were scanned on a Philips Gyroscan 1.5T scanner 

(Best, Netherlands) using a Tlw fast gradient echo sequence (TR=18 ms, TE=lO 
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ms, flip angle=30°, matrix size=256 x 256, FOV=256 mm, slice thickness=1 mm, 

sagittal acquisition). MRI examinations for the study subjects were performed on a 

1.5T Siemens Magnetom Vision MRI Scanner (Siemens, Erlangen, Germany), with 

a volumetry volumetrie T1w sagittally oriented MRI sequence (TR=11.6ms, 

TE=4.9ms, resolution 0.94 x 0.94 x 1.2 mm" rectangular FOV for sagittal slices 256 

mm (SI) x 204 (AP) mm]. Initial MRI processing was identical for aIl subjects in the 

study. Following acquisition, intensity inhomogeneities due to scanner variations 

were corrected (SIed, Zijdenbos et al. 1998) and the mean grey-Ievel intensity was 

scaled to that of the standard reference for aIl subjects. Linear registration was used 

for global alignment into the same standard reference space (Collins, Neelin et al. 

1994), that corresponds to a voxel-by-voxel average of the 152 reference subjects 

previously registered in the Talairach-like stereotaxie space in the context of the 

ICBM project (Mazziotta, Toga et al. 1995). The data was finally resampled onto a 

1mni isotropic grid (Mazziotta, Toga et al. 1995). 

MRI-based hippocampi and amygdalae volumes 

MRI volumetry of le ft and right hippocampi and amygdalae was performed by one 

rater (J.c.P.) for the NA and AD+ MCI patients using a previously published 

proto col (Pruessner, Li et al. 2000). 

MRI-based multi-dimensional classification 

The classification method can be summarized as follows (see Figure 32). First, from 

pre-processed data (A) volumes of interest centered on the left and right MTL were 
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extracted using stereotaxic-like (Talairach and Tournoux 1988) coordinates (start 

coordinates x= [ + 2,57] for the left and right sides respectively, y= [-53] and z= [-52]). 

Each VOl thus measured 55 x 82 x 80 = 360800 voxels. The extent of the VOl 

captured the hippocampus and neighboring MTL structures, such as the entorhinal, 

perirhinal and parahippocampal gyri, irrespective of normal inter- and intra­

individual variability. To further reduce position al variations, which would propagate 

as unwanted noise in the morphometric modeling, a local affine transformation was 

applied to co-register the individual subject's VOl with the corresponding VOl of 

the reference target. 

The second step was to generate a normal, non-pathological eigenspace (B) from 

the ICBM reference group of young, normal control subjects (N = 152). This 

multidimensional eigenspace was created by uniting results from four distinct 

Principal Component analyses of (i) intensity images of the left and right VOIs (C); 

and (ii) a measure of local volume change for the left and (Worsley, Marrett et al. 

1996) right VOIs (D). The latter estimate was derived from the determinant of the 

Jacobian of the deformation field, obtained following non-linear registration of the 

subject volume to the reference image. 

Nonlinear registration attempts to match image features from a source volume to 

those of the reference image at a locallevel, typically in a hierarchical fashion, with 

the aim of reducing a specifie cost function. Whereas many nonlinear registration 

processes exist, the one chosen for this study was ANIMAL, developed by Collins et 
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al. (Collins and Evans). This algorithm attempts to match image grey-Ievel intensity 

features at a locallevel (voxel) in successive blurring steps, by maximizing the cross-

correlation function of voxel intensities between the source and reference images. 

The result is a dense deformation field, capturing the displacements required to 

align the subject VOl with that of the reference image. 

Figure 32 - Methodology 

The classification methodology used in this article can be broken down in the 
following steps. First, aIl images are pre-processed in an identical fashion, which 
includes signal inhomogeneity correction, global alignment to a standard stereotaxie 
space, and extraction of two volumes of interest, centered on the left and right 
medial temporal lobes, shown in (A). A local affine transformation is applied to the 
local VOl to improve the alignment with the reference volume, and the mean 
intensity of the VOl is scaled with respect to the mean intensity of the reference 
volume in (C). We also extract, for each of those volumes of interest, a measure of 
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shape variation in (D). Intensity and shape models for each VOl are buiIt using 
Principal Components Analysis in (B), in order to generate a reference space from a 
group of images of 152 young healthy volunteers. Our ultimate goal being to 
discriminate between groups A and B (NA vs AD+MCI), we process their images in 
a similar fashion and project the intensity and shape volumes in the 
multidimensional space of the reference group in (E). For classification, we exploit 
the differences in the projection eigencoordinates using crossvalidated, linear 
discriminant analyses in (F). 

The classification of NA and AD+ MCI subjects was accomplished by projecting 

their VOIs in the multidimensional reference eigenspace (E), and then by 

estimating the classification functions with forward stepwise linear discriminant 

analyses. The goal is not to find a feature space that optimally represents the two 

groups but rather to find a suitable basis for comparison, allowing for effective 

classification (Figure 33). 

The final reported result consisted in the mean accuracy of multiple cross-validated 

trials (Figure 34). In such designs, the study data is randomly split in two samples, 

the first (training set) to estimate the classification functions, used to classify the 

second sample (test set). The proportion of correct classification for the test set is an 

empirical measure for the success of the discrimination. 

Experiments 

There were two classification experiments performed: 

~ Experiment 1 was aimed at separating the NA and AD+ MCI groups on the basis 

of non-MR features (baseline age, MMSE, left and right AG and HC volumes); 

and 
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~ Experiment 2 was aimed at separating the NA and AD+MCI groups on the basis 

of MR features, extracted in the fashion described above. 

2 

Figure 33 - Cartoon-like representation of classification of patient groups 

The reference set is represented by the blue ellipse, aligned and centered with the 
first two principal components since the eigenspace originates from this data. Our 
goal however is to use the same space for the separation of NA individuals (green) 
from AD+MCI patients (orange and red). The goal is not to find the optimal space in 
which to represent the NA, AD or MCI subjects, but rather to have a common basis 
to compare populations. 

Results 

Subjects age, MMSE and volumetry 

There was a significant group difference for baseline age (DF=36, P=O.0138) when 

comparing the NA and AD+ MCI groups (Table 6). The average MMSE score in 
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the AD group was 18.7, which would qualify them as being "moderate" AD (Petrella, 

Coleman et al. 2003); the MCI group MMSE average was 25.5. When combined the 

AD+ MCI MM SE group average was 20.2, significantly different (DF=36, 

P<O.OOOl) from the NA group MMSE average of 29.4. 
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Figure 34 - Cross-validation trials 

The study population is randomly split into a training and a test set, with the linear 
discriminant functions estimated on the training set. The test set is used to evaluate 
how good the classification is, and this process is repeated multiple times to get a 
good estimate of the overall accuracy for classification. 
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There were significant volume differences between the two groups under study for 

aIl structures (Table 6): left He (DF=36, P<O.OOOl), right He (DF=36, P<O.OOOl), 

left AG (DF=36, P=0.0002), and right AG (DF=36, P<O.OOOl). 

Given those group differences, Experiment 1 was designed to assess the accuracy 

of individual classification using these 6 features (age, MMSE, left and right He, left 

and right AG volumes). Forward, stepwise linear discriminant analysis (P-to-enter = 

0.15) was used to select the discriminatory variables from the training set and 

compute the classification function for each trial of the test set. Fifteen cross­

validation trials were run, with a median of 30 subjects in the training sample and 7 

in the test sample. The mean accuracy for individual classification was 82.1 %, the 

mean sensitivity to AD+ Mel was 81.2%, and the mean specificity to NA 85.9%. 

The median number of variables retained by the forward, stepwise linear 

discriminant analysis was 1, with never more th an 2 variables retained by the mode!. 

More specificaIly, the left He volume was always chosen; in 9 trials out of 15, it was 

the only variable retained. In 5 trials, age was also significant, and in one trial, left 

AG volume. 

Experiment 2 was designed to assess the accuracy of individual classification using 

MR-based features. Our ove raIl MRI-based model, formed by the union of the 

intensity and trace principal components for the left and right VOIs, was built using 

our training set of 152 young control subjects. A total of 538 principal components 

were retained, accounting for 99.7% of the variance of the reference data set. 

168 



Fifteen cross-validation trials were ron, with a median of 32 subjects in the training 

sample and 5 in the test sample. Forward, stepwise linear discriminant analysis (P-

to-enter = 0.15) was used to select the discriminatory variables from the training set 

and compute the classification function for each trial of the test set. Normality of the 

eigencoordinates along those eigenvectors was confirmed using quantile plots and 

Shapiro-Wilke test (P > 0.05). The mean accuracy for individual classification was 

92.6%, the mean sensitivity to AD+ MCI was 78.2%, and the mean specificity for 

NA 97.3%. 

The median number of variables retained by the forward, stepwise process was 17. 

A plot of the NA vs AD+ MCI eigencoordinate data along the three most occurring 

discriminative eigenvectors is shown in Figure 6. AlI but two of the 7 most occurring 

eigenvectors throughout the trials (occurrence > 2) were shape eigenvectors. 
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Figure 35 - Patients data projected along most discriminant eigenvectors 

The NA (green) and AD+MCI (red) data is shown here plotted along the three most 
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discriminating eigenvectors in the multidimensional reference space of cross­
sectional MR intensity and shape information. One can estimate a plane that would 
optimally separate the two groups in one of the cross-validation trials. The resulting 
average discriminatory accuracy for 15 trials was 92.6%, with a mean sensitivity of 
78.2% and mean specificity of 97.3%. 

Discussion 

Our results indicate that the position information (eigencoordinates) of new data 

projected in a multidimensional normative domain is sufficient to adequately 

discriminate between normal aging individuals and AD or MCI patients. The mean 

accuracy of the technique, given the study population, was 92.6%, its mean 

sensitivity 78.2% and mean specificity 97.3%. 

Methodological implications 

ln order for automate d, quantitative neuroimaging methods to gain widespread 

acceptance in the scientific and clinical community, they must meet and exceed the 

lower bound on overall diagnosis accuracy set by current clinical performance, 

estimated at 78% in the case of AD (Weiner, Albert et al. 2005). Techniques must 

also be reproducible, practical, objective and sufficiently accurate to detect changes 

due to the pathology of interest. 

Accuracy - The identification of group membership based on MR features is on 

average 10% more accurate than if it were done with baseline age, MMSE and 
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manually segmented HC and AG volumes. It is also 15% more specifie. However, it 

has to be noted that the technique is less (7.7%) sensitive. 

The increased accuracy can readily be explained when one considers the 

informational value of the two approaches. In HC volumetry, between 3000 to 4000 

voxels are compressed in a single scalar measurement, expressed in maT, while in 

the methodology being propose d, more th an 4 X 300000 voxels are processed and 

expressed in terms of 538 principal components coordinates. Clearly, additional 

important information is embedded in MTL voxels, and is included in our analysis in 

the form of intensity and shape covariates. 

Reproducibility - Being a completely automated methodology, the technique 

presented in this article is therefore completely reproducible. Volumetry, on the 

other hand, shows intra (0.91-0.95) and inter-rater (0.83-0.91) variability, as 

demonstrated in a study on hippocampal segmentation by Pruessner et al (Pruessner, 

Li et al. 2000). This added variability in segmentation measurements - volumetrie 

noise - reduces the classification accuracy of any methodology. 

Practicality - It is important to note that the PCA technique as employed here 

requires no manual intervention other than the definition of the VOl, which is done 

once and based on Talairach coordinates on the reference image. This is a 

significant reduction of required resources when comparing such a technique to 

volumetry or other expert-based techniques that may require 2 hours per 

hippocampus for manual segmentation (Hogan, Mark et al. 2000). 
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Objectivity - The underlying assumption for this work is that there exists sufficient 

information in a chosen VOl from MRI to be used for the accurate determination of 

group membership in aIl subjects. As there is no further user interaction other than 

the delineation of the VOl, the process is completely data-driven and therefore 

objective. 

Clinical implications 

Use of cross-sectional MRI vs other imaging modalities for AD 

diagnosis 

For patients with AD or at an increased risk of developing AD (e.g. MCI) a number 

of approaches can be considered in order to aid the diagnosis, aIl with varying 

degrees of success. Neuropsychological screening tests are necessary to recognize 

and monitor these subjects, with an accuracy of 78 % (Weiner, Albert et al. 2005). 

Neuroimaging approaches must be considered, however disadvantages of techniques 

other than routine MRI preclude them from being widespread AD diagnosis­

enabling technologies. PET (Klunk, Engler et al. 2004) and SPECT (Kogure, 

Matsuda et al. 1999; Herholz 2003) offer sufficient specificity and sensitivity in the 

differential diagnosis of AD from other cortical and subcortical dementias and also 

offer prognostic value however, both modalities are minimaIly invasive procedures 

with radiation dose limitations and therefore cannot be repeatedly performed on a 

single patient for longitudinal studies nor used as a screening mechanism for large 
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populations. Other techniques such as fMRI (Johnson, Saykin et al. 2000), MR 

spectroscopy (Kantarci, Smith et al. 2002), MR diffusion tensor (Stahl, Dietrich et al. 

2003) and MR magnetization transfer (Kabani, SIed et al. 2002) show promise for 

the future, but they are difficult to implement in a clinical setting without a 

dedicated research group for technical support. Finally, as compared to MRI, CT 

images lack the detailed soft-tissue information necessary for detecting subtle 

structure changes associated with the disease, especially at an early stage, even 

though late-stage measures show promise(Frisoni, Rossi et al. 2002). 

Longitudinal analysis of MRI has been proposed to differentiate between aging, 

MCI, and AD (Fox and Freeborough 1997; Fox and Schott 2004) with high accuracy. 

However, by its very nature such a method implies a delay between sc ans before any 

assessment can be made. That delay, required to detect a change induced by the 

pathology in seriaI scans, reduces the window of opportunity for early treatment or 

optimal patient management. Cross-sectional analysis, on the other hand, by 

generating an immediate assessment, would allow for better patient management if 

shown to be sufficiently accurate. 

Automated classification vs expert-based volumetry 

Volumetry, that is volume measurement of a particular bounded structure of interest, 

is the primary indicator of structure integrity. Stereology, i.e. the technique of 

proper sampling based on the Cavalieri principle (Cavalieri 1635), has been the 

preferred approach to calculating volumes before the advent of high-resolution 
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images, where volumes can be reliably estimated directly from the (often isotropic) 

voxel count, slice thickness and pixel size. Cross-sectional measurements of the 

hippocampus have achieved classification accuracies between controls and AD 

patients of nearly 90%, and between individuals with MCI and AD patients near 

80%, with hippocampal volumes and/or deformation analysis (Csernansky, Wang et 

al. 2000; Pennanen, Kivipelto et al. 2004) Longitudinally-assessed MR-based atrophy 

rates of the hippocampus is also a reliable indicator of the state of the disease (Jack, 

Slomkowski et al. 2003) . 

While undeniably useful for understanding disease-driven changes in the chosen 

structure(s), volumetry relies on accurate segmentation, a process subject to 

inter/intra-rater variability (Pruessner, Li et al. 2000) as mentioned earlier. This 

variability is likely to increase in MCI and AD as boundaries shift due to atrophyand 

become less clearly delineated as intensity changes. This added variability in 

segmentation measurements, or volumetrie noise, will reduce the classification 

accuracy of any methodology based on such information. Finally, it requires expert 

knowledge, making it unsuitable for large-scale studies and may limit its availability 

in a clinical setting. 

Morphological findings 

From the results of Experiment 1, we can reasonably conclude that left HC volume 

is the main variable differentiating NA and MCI + AD groups, in line with other 

observations from different groups (Visser, Scheltens et al. 1999; Mungas, Reed et al. 
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2002; Thompson, Hayashi et al. 2004). Likewise, from Experiment 2, local volume 

changes are the strongest discriminators between our two groups since shape 

eigenvectors are mostly used in the classifier. This is also supported by the literature 

that shows different atrophy patterns between AD and NA (Fox and Schott 2004; 

Thompson, Hayashi et al. 2004). 

A more detailed assessment of the variations in intensity and shape embedded in the 

significant eigenvectors should yield important information regarding the 

pathophysiology of the disease, but is beyond the scope of this paper. This 

assessment should provide important clues to the on-going disease processes 

common across individuals and their implications on brain morphology. This task 

will be performed, and interpreted with their clinical correlates, in a separate 

communication. 

Conclusion 

We report results from a quantitative MRI technique that achieved the required 

sensitivity and specificity in the cohort studied by classifying AD+ MCI vs NA with 

92.1 % accuracy, 97.3% specificity and 78.2% sensitivity. The methodology does not 

rely on segmentation, requires no user input and is data-driven. Such a system stands 

to benefit patients and health care systems immediately. 
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Addendum 

Mter submission of this manuscript, we became aware of a fundamental flaw in data 

analysis due to blinding to subject data. Whereas we believed a priori that the scans 

had been acquired at a single site, it appeared that such was not the case as patients 

and controls were actually scanned in 3 different centers within the Munich area (see 

Table 7 for breakdown). We therefore needed to assess the impact on the results. 

Group 

NA 
MCI 

AD 

Site 1 

15 

o 
o 

Site 2 

5 

o 
4 

Table 7 - Acquisition sites 

Site 3 

o 
4 

9 

Leave-one-out classification based solely on acquisition sites separates individuals in 

our two groups (NA vs AD+ MCI) with 76% accuracy. 

Experiment 1 was rerun including acquisition site as a variable. Forward, stepwise 

linear discriminant analyses (P-to-enter = 0.15) were used in fifteen cross-validation 

trials, with a median of 33 subjects in the training sample and 4 in the test sample. 

The mean accuracy for individual classification was 83% (compared to 82.1 % 

previously), the mean sensitivity to AD+ MCI was 83.4% (compared to 81.2% 

previously), and the mean specificity to NA 79.6% (compared to 85.9% previously). 
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The median number of variables retained by the fOlward, stepwise linear 

discriminant analysis was 2, and in aIl trials, acquisition site was retained as a 

discriminant variable. 

Experiment 2 was repeated as weIl, including acquisition site along with MR 

features. Fifteen cross-validation trials were run in a similar fashion as Experiment 

1, with a median of 33 subjects in the training sample and 4 in the test sample. The 

mean accuracy for individual classification was 90.9% (compared to 92.6% 

previously), the mean sensitivity to AD+ MCI was 76.2% (compared to 78.2%), and 

the mean specificity for NA 97.3%, identical to the previous result. The median 

number of variables retained by the forward, stepwise process was 17, and in 14 out 

of 15 trials, acquisition site was not retained by the stepwise process; in the one trial 

where it was, it was of low rank. 

This would therefore indicate that our methodology is sufficiently robust to multi­

site differences in scanner hardware and acquisition variations. While more balanced 

and planned testing is required, this fortuitous discovery bodes weIl for the ability to 

handle multi-site data, an important consideration in clinical research. 
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Chapter 7 

Prediction of MCI progression to AD 

Foreword 

Outside of therapeutic research, one of the most important questions in the field of 

AD is to de termine who, within at-risk groups, and eventually the general population, 

will develop the disease. The study of the morphological differences between MCI 

patients that will progress to AD (decline in cognitive status towards dementia) vs. 

those that do not progress is still in its infancy, and no consensus has emerged yet 

regarding possible different appearance patterns between these patients. 

Longitudinal structural analysis does indicate a higher rate of atrophy in structures 

such as the hippocampus for progressors, however cross-sectional analysis is not 

equally sensitive (Chong and Sahadevan 2005). 

We confirmed in the last chapter that differences related to AD pathology could be 

estimated with a linear modeling approach of appearance principal components. 
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Given these, the dimensions that we sought to investigate in this last article were 

two-fold: on the one hand, extend this work to address the important issue of 

prediction of progression to AD in a cohort of MCI patients, and on the other, 

assess the system's robustness to noise and low resolution data. 

The cohort we investigated was part of a larger study on memory loss in the elderly, 

arguablyone of the few studies of this kind in the world with such long-term clinical 

follow-up. We selected 24 MCI patients from this study, 2/3 ofwhom progressed to 

AD within a mean time of 2.6 years, and the remaining patients remaining stable 

after a mean follow-up of 5.7 years. IncidentaIly, baseline neuropsychological testing 

proved insufficient for predicting progression to AD (Chertkow, Bocti et al. 2005). 

The MR data we used had Imm in-plane resolution but 5mm slice thickness. Even 

though we resampled that data to a Imm isotropie grid, the classification was 

essentially presented with 20% less information when compared to the three studies 

in previous chapters. We also realized that there were many movement artifacts, 

noise contributors to the images. Those artifacts were responsible for rejecting most 

(about 2/3) of the patients from the parent memory study. 

Using noisy, low resolution data served two objectives: by itself, it was a test of how 

much data was actually needed for the classifier, as weIl as giving an idea of its 

robustness. Secondly, it was also a real-world test, where the clinical reality dictates 

that acquisitions must be performed quickly, especially in aging subjects and even 
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more so in patients with dementia; if proven successful in this data set, it would bode 

weIl for its use outside of the research and into the clinic. 

The standards of inclusion and progression for patients in this study were based on 

extensive clinical diagnosis of MCI and probable AD according to criteria including 

Petersen et al. (Petersen, Doody et al. 2001), the Montreal Cognitive Assessment 

scale (Nasreddine, Phillips et al. 2005) and the NINCDS-ADRDA. 

We are pleased to report that the methodology was robust and highly successful to 

predict future clinical state in our cohort of MCI patients, with an accuracy of 82.6%. 

This essentially means that, given only baseline scans for these individuals, an 

automated analysis technique could predict progression to dementia on average 2.6 

years before the clinical diagnosis in four patients out of five. We also established 

that the main are as of signal difference were related to Tl w intensity in the right 

MTL, calling for future work in biological interpretation. 

An early form of this work was published as a conference abstract (Duchesne, De 

Sousa et al. 2005), before being submitted for publication in the journal Lancet 

NeuroJogy. 

As the methodology has been extensively described in Chapter 3, the reader may 

choose to skip the Methods section of this chapter without loss of information. For 

the sake of brevity, keywords have not been included, and a list of abbreviation can 

be found at the end of this thesis. 
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Abstract 

Background - Amnestic Mild Cognitive Impairment (MCI) individuals are known 

to be at risk for progression to Alzheimer's Dementia (AD). There is evidence that 

in those who will progress, measurable hippocampal and entorhinal cortex atrophy 

from MRI serves as a moderate, though labor-intensive, predictor. 

Objective - We aimed at predicting progression to AD in MCI patients using a 

recently developed MRI-based automated classification technique, which uses aIl 

MRI data within a 3D rectangular volume of interest, automatically positioned on 

the medial temporal lobes (MTL). 

Metbods 

Subjects-24 amnestic MCI patients gave informed consent to participate in this 

study, which was approved by our IRB. Mean follow-up after baseline 

neuropsychological testing and MRI was 5.7 (4.0) yrs. 16 patients progressed to AD 

after 2.6 (1.6) yrs [me an age 77.7, sd (5.1) yrs, MMSE 26.9 (2.4) at baseline], and 8 

remained non-demented at date oflatest follow-up [age 80.3 (6.3) yrs, MMSE 28.5 

(1.2) at baseline]. 

Analysis- Baseline Tl-weighted MRIs were acquired on a 1.5T scanner (5 mm 

slices), corrected for intensity inhomogeneity, linearly registered in stereotaxie space, 

resampled to a 1mm3 grid and intensity normalized. Rectangular volumes of interest 

(VOl) were defined on the left and right MTL (80 x 52 x 60 voxels). Each VOl was 

further linearly and non-linearly registered to a reference target image. 

183 



Multidimensional reference spaces were built using principal component analysis of 

(i) the normalized intensity and (ii) a shape metric, corresponding to local volume 

change, calculated via the trace of the Jacobian of the dense deformation field from 

nonlinear registration. This was do ne first for a reference set of 152 normal young 

subjects. Afterwards, scans from the study subjects were projected in these spaces to 

extract features for each data set. Forward stepwise linear discriminant analyses 

were used on the projection coordinates in multiple cross-validation trials to assess 

the classifier performance. 

Conclusion - Results of 15 cross-validation trials show an average sensitivity to 

progression to AD of 94% (15/16), average specificity to non-progression of 75% 

(6/8) and overall average accuracy of 88% (21/24). These results indicate that single­

scan MR data projected in multidimensional feature domains has the potential to 

adequately predict future clinical status of amnestic MCI patients. This practical, 

automatic, and objective method therefore holds promise for early AD detection as 

an aid to diagnosis and patient management. 
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Introduction 

Mild cognitive impairment is a term that describes elderly individuals with memory 

complaints and significant objective cognitive impairment relative to subjects of 

identical age (Flicker, Ferris et al. 1991; Petersen, Doody et al. 2001). Individuals 

with mild cognitive impairment are considered an at-risk group for progression to 

dementia (DeCarli 2003; Dubois and Albert 2004). For those individuals where 

memory loss is the predominant complaint, the term amnestic MCI (hereafter 

referred to simply as MCI) is now used. MCI strongly predicts progression to 

dementia due to Alzheimer's disease (AD)(Petersen 2004). AD is a progressive 

neurodegenerative disorder associated with disruption of neuronal function and 

graduai deterioration in cognition, function, and behavior (Khachaturian 1985). 

Early prediction of progression to AD in MCI patients is therefore an important 

research goal. 

The etiology of AD is not clearly known, but most researchers stress the abnormal 

accumulation of Ap and Tau proteins (Thal, Rub et al. 2000; Thal, Rub et al. 2002; 

Giannakopoulos, Herrmann et al. 2003) leading to neuronal dysfunction and 

eventual cellioss and abnormal cell death. Neuropathological studies in AD have 

shown in fact that abnormal accumulation of proteins and brain degeneration occurs 

very early in the course of the disease, even before the first clinical signs. 

Neurofibrillary tangles accumulate early on in certain regions such as the medial 

temporal lobe (MTL)(Cummings, Pike et al. 1996; Nagy, Hindley et al. 1999; Thal, 
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Rub et al. 2000; Thal, Rub et al. 2002; J. R. Petrella 2003; Petrella, Coleman et al. 

2003). Microscopicallya strong predictor of premortem cognitive dysfunction 

appears to be the relative area of entorhinal cortex occupied by beta-amyloid 

deposition (Cummings, Pike et al. 1996). Macroscopically, there is a growing body of 

evidence indicating that entorhinal cortex atrophy is a strong predictor of 

progression to AD in MCI individuals (Du, Schuff et al. 2003; deToledo-Morrell, 

Stoub et al. 2004; Pennanen, Kivipelto et al. 2004) 

To date the diagnosis of clinically probable AD can be made with high accuracy in 

living subjects only once the stage of dementia has been reached, and requires 

clinical, neuropsychological and imaging assessments (J. R. Petrella 2003); it can 

only be confirmed by postmortem histopathology (Risse, Raskind et al. 1990). 

For the detection of initial manifestations of AD in MCI patients a number of 

approaches are being proposed with varying degrees of success (Chertkow 2002; 

Chong and Sahadevan 2005). Clinical prediction and use of neuropsychological tests 

have been used to assess risk of progression in group studies, but have not yet 

proven their utility in individu al cases (Daly, Zaitchik et al. 2000). The accuracy of 

neuropsychological cognitive markers for AD is approximately 78 % (Weiner, Albert 

et al. 2005). CSF biomarkers reach high sensitivity and specificity, but have 

associated complications in clinical practice and might not be acceptable on a 

repeated basis (Blennow and HampeI2003). 
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Neuroimaging must be considered (Chetelat and Baron 2003) yet, disadvantages of 

techniques other th an routine anatomical MRI preclude them from being 

widespread AD prognosis-enabling technologies. Positron Emission Tomography 

(PET) (Klunk, Engler et al. 2004; Nordberg 2004) and Single Photon Emission 

Computer Tomography (SPECT) (Kogure, Matsuda et al. 1999; Herholz 2003) have 

been used with varying degrees of success in diagnosing and predicting AD but are 

expensive and not standardized. Furthermore, both modalities are minimally 

invasive procedures with radiation dose administration and associated cumulative 

limitations, and therefore cannot be repeatedly performed on a single patient for 

longitudinal studies nor used as a screening mechanism for large populations. 

Other techniques such as fMRI (Johnson, Saykin et al. 2000), MR spectroscopy 

(Kantarci, Jack et al. 2000), MR diffusion tensor (Stahl, Dietrich et al. 2003) and 

MR magnetization transfer (Kabani, SIed et al. 2002) imaging show promise for the 

future, but are aIl difficult to implement in a clinical setting without a dedicated and 

sophisticated research group for technical support. FinaIly, as compared to 

anatomical MRI, CT images lack the detailed soft-tissue information necessary for 

detecting subtle structure changes associated with the disease at a very early stage, 

even though late-stage AD measurements show promise (Frisoni, Rossi et al. 2002). 

Cross-sectional and longitudinal analysis of MRI for measurement of volumes and 

atrophy rates of the hippocampi (HC) and other structures have been proposed to 

differentiate between aging, MCI, and AD (Fox and Freeborough 1997; Jack, 
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Slomkowski et al. 2003; Fox and Schott 2004) . There is evidence that in those who 

will progress, measurable hippocampal and entorhinal cortex atrophy as 

demonstrable on T1-weighted (T1w) MRI, serve as a moderate, though labor­

intensive, predictor (Du, Schuff et al. 2001; Grundman, Sencakova et al. 2002; 

deToledo-Morrell, Stoub et al. 2004; Korf, Wahl und et al. 2004; Pennanen, Kivipelto 

et al. 2004). While undeniably useful for understanding disease-driven changes in 

the chosen structure ( s), volumetry relies on accurate segmentation, a time­

consuming process subject to inter/intra-rater variability (Pruessner, Li et al. 2000). 

More importantly perhaps, it requires expert knowledge, making it unsuitable for 

large-scale studies and this williimit its widespread availability in a clinical setting. 

Further, by its very nature longitudinal analysis implies a delay between sc ans before 

any assessment can be made. That delay, required to detect a change induced by the 

pathology in seriaI scans, reduces the window of opportunity for early treatment or 

optimal patient management. Cross-sectional analysis, on the other hand, by 

generating an immediate assessment using a single scan, may allow for better patient 

management if shown to be sufficiently accurate. 
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Our general hypothesis is that prediction of future clinical state may be possible 

based on Tl w MRI signal differences, detectable on cross-sectional or single-scan 

images. These would possibly be due to pathology-related microscopie and 

macroscopie changes or alterations in structure shape, measured via intensity and 

shape-based features and forming a measure of the appearance of an image. 

Moving away from structure-centric approaches, appearance features extracted from 

a large, non-specific Volumes of Interest (VOl) centered on the MTL of the subject 

(see Figure 36) can be compared to multiple MR images of reference, and training 

and test groups are used to build a model for prediction. 

The overall technique, called appearance-based classification (ABC), was applied 

successfully in the lateralization of the seizure focus in temporal lobe epilepsy 

(Duchesne, Bernasconi et al. 2006). 

Figure 36 - Intensity and shape features within the volume of interest 

(Left) Sagittal whole-brain view for subjeet with hippoeampal atrophy. (Middle) 
Closer view of the Volume of Interest (VOl), as defined in stereotaxie spaee on the 
left medial temporal lobe. (Right) Identieal view trough the traee VOl for the same 
subject. Green voxels do not move. From green to white (maximum) via yellows and 
reds indieate increase or expansion. From green to black (minimum), via blues and 
purples indicate decrease or contraction. The direction of movement is defmed as 
the deformation that the subject's VOl seen in (A) must accomplish in order to align 
with the corresponding VOl extracted from the reference volume. 
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Our goal is to demonstrate the ability of this novel MRI-based automated 

classification technique in predicting progression to AD in a cohort of MCI patients. 

Metbods 

Subjects and neuropsychological evaluation 

The McGill University Study of Mild Memory Loss in the Elderly has followed a set 

of 89 amnestic MCI (with or without other cognitive domain problems) over 12 years. 

AlI subjects had presented to their family physician with complaints (from the 

individuals themselves or their families) of memory loss, and were referred for 

further evaluation. AlI were assessed by a neurologist or geriatrician skilled in 

assessment of memory-impaired elderly individuals, and were judged as also able to 

meet the criteria for Mild Cognitive Impairment (MCI) defined in the working 

group of Winblad and colleagues (Winblad, Palmer et al. 2004) as weIl as Petersen 

in his original operational definition of MCI (Petersen, Smith et al. 1995; Petersen, 

Smith et al. 1999). AlI had a history of memory decline in the last 1-4 years reported 

by the patient, caregiver (usually the spouse), or both, of a sufficient degree to bring 

them to medical attention. AlI subjects were documented to have objective memory 

impairment on a standardized mental status exam. Deficits in other cognitive areas 

(outside of short term memory) were judged as minimal and not sufficient to imply a 
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clinical diagnosis of dementia. In aIl cases, there was supporting objective evidence 

on clinical mental status evaluation as weIl as formaI neuropsychological testing. 

The subjects did not meet the NINCDS-ADRDA criteria for the diagnosis of 

probable AD or the DSM-3 criteria for dementia, due to the lack of significant 

associated other cognitive deficits or to the lack of impairment of daily functioning 

(McKhann, Drachman et al. 1984) ((APA) 1994) . AlI were classified according to 

the Washington University clinical dementia rating (CDR) scale and met the 

criteria for "0.5" on that scale as described above (Hughes, Berg et al. 1982). There 

was no evidence on clinical evaluation of systemic or other neurological disease 

sufficient to interfere with cognitive function. CT and/or MRI excluded structural 

brain disease, and blood work was done including CBC, routine chemistry, thyroid 

function, serum B12, folate, and VDRL. AlI subjects scored less than 4 on the 

Hachinski ischemic sc ale (Hachinski, Iliff et al. 1975). The Mini-mental status exam 

(MMSE) (Foistein, Foistein et al. 1975) was carried out by the clinician as a global 

assessment too1. 

Subjects received standardized clinical, mental status, neuropsychological, 

and cognitive evaluation. AlI subjects underwent neuropsychological evaluation 

which included the Logical Memory 1 and II components of the Weschler Memory 

Scale (Wechsler 1987), the RA VLT (Rey Auditory Verbal Learning Test), the 

FOME (Fuld Object Memory Examination), the Knopman and Ryberg test of 

verbal memory (Knopman and Ryberg 1989). A shortened version of the Boston 
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Naming test (Kaplan, Goodglass et al. 1978), letter and category fluency , tests of 

block design (Wechsler 1981) and clock drawing (Freedman and Leach 1994) as 

weIl as the digit symbol and digit span sub-tests of the W AIS- R verbal intelligence 

scale (Wechsler 1981) were also administered. Depression was excluded via the 

Yesavage Geriatrie Depression Scale (Geriatrie Depression scale > 15) (Yesavage, 

Brink et al. 1983). 

The diagnosis of amnestic MCI in our cohort was supported by a 

neuropsychological evaluation establishing that a) there was memory performance at 

least 1 s.d. below the mean on one of the RA VLT (Rey Auditory Verbal Learning 

Test), the FOME (Fuld Object Memory Examination), or the Logical Memory 

(paragraph recaIl) subtest of the Wechsler Memory Scale - Revised. 

The subjects were followed at 12-month intervals with both clinical assessment and 

repeat neuropsychological examination. At each visit, the clinical diagnosis was re­

evaluated by the multi-disciplinary team headed by a neurologist or a geriatrician. 

The presence or not of clinical dementia was assessed. AlI subjects were followed 

for a minimum of 24 months unless death intervened. 

Differences between subjects who declined and those who did not were assessed by 

t-test. Outcome data were analyzed by analysis of variance, using both outcomes of 

de cline documented on MMSE, and clinical diagnosis of dementia, as outcome 

variables. Correlations of the presence of clinical features with outcome were 

assessed using Chi-square analyses. 
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AlI subjects provided written informed consent for the study and the MeGill 

University Review Board approved the protocol. Readers should note that detailed 

results from this neuropsychological data have been presented in a separate 

communication (Chertkow, Bocti et al. 2005). 

MRI acquisition and initial processing 

MRI data for aIl subjects were acquired between 1993 and 1998 on a 1.5T GE Signa 

5 scanner (GE Healthcare, Milwaukee, WI) using a 3D sequence (TR=300ms, 

TE=4.2ms, FA=90, sagittal acquisition with 256 (SI) x 256 (AP) 0.86 mm pixels, 5 

mm slice thickness) at the Montreal General Hospital. 

Following acquisition, intensity inhomogeneities due to scanner variations were 

corrected (SIed, Zijdenbos et al. 1998). Grey-Ievel intensities were then commonly 

scaled across subjects. Affine (9 degrees of freedom or DF) linear registration was 

used for global alignment into a standard reference space (Collins, Neelin et al. 

1994). The data was finally resampled onto a 1m~ isotropic grid (Mazziotta, Toga 

et al. 1995). The reference image used for the linear registration and resampling was 

the International Consortium for Brain Mapping (ICBM) T1w target, known as 

icbm152, a voxel-by-voxel average of the 152 normal subjects previously registered in 

the Talairach-like stereotaxie space in the context of the ICBM project (Mazziotta, 

Toga et al. 1995). 
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MRI-based classification of subjects 

The classification method used to predict future clinical state of the subject can be 

summarized as follows (Duchesne, Bemasconi et al. 2005). First, from pre-processed 

data, volumes of interest (VOl) centered on the left and right MTL were extracted 

using stereotaxie coordinates (st art coordinates in Talairach space: x=[ +2,57] for 

the left and right sides respectively, y=[-53] and z=[-52]). Each VOl measured 55 x 

82 x 80 = 360800 voxels. The extent of the VOl captured the hippocampus and 

neighboring MTL structures, such as the entorhinal, perirhinal and 

parahippocampal gyri, irrespective of normal inter- and intra-individual variability. 

To further reduce positional variations, which would propagate as unwanted noise in 

the morphometric modeling, a local affine transformation (12 DF) was applied to 

co-register the individu al subject's VOl with the corresponding VOl of the reference 

target. 

The second step was to generate a normal, non-pathological eigenspace from the 

ICBM reference group of young, normal control subjects (N = 152). This 

multidimensional eigenspace was created by uniting results from four distinct 

Principal Component (PC) analyses of (i) intensity images of the left and right VOIs; 

and (ii) a shape me tric, corresponding to a measure of local volume change for the 

left and right VOIs. The latter estimate was derived from the trace of the Jacobian 

of the deformation field, obtained following non-linear registration of the subject 

volume to the reference image. The classification of P vs NP groups of MCI patients 

194 



was accomplished by projecting the MRI VOIs from these subjects, processed in a 

similar fashion, in the multidimensional reference eigenspace; and then by 

estimating classification functions on the projection coordinates with forward 

stepwise linear discriminant analyses. The goal was not to find a feature space that 

optimally represented the two groups but rather to find a suitable basis for 

comparison, allowing for effective classification by deriving prognostic information 

correlated to a particular distribution of coordinates along a PC (see Figure 37). 

1'C2 

MCI • Non-progre •• ors 
(NP) 

Linear discriminant functiOn 

NP 

MCI·Progressors 
(P) 

J'Cl 

1'C2 

Figure 37 - Cartoon-like representation of classification of patient groups 

(Top) The reference set is represented by the green ellipse, aligned and centered 
with the first two principal components sin ce the eigenspace originates from this 
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data. Our goal however is to use the same space for the separation of MCI 
progressors (red) from non-progressors (pink). (Bottom) The eigendistance between 
centers of the two populations can be expressed back in terms of image intensity and 
shape variations; these in turn can help with the biological interpretation of the 
results (see Figure 39). 

The final reported results consist in the mean accuracy of multiple cross-validated 

trials. In each of these trials, the study data was randomly split in two groups: the 

first group was the training set and was used to estimate the classification functions; 

the second group was the test set, classified using the functions derived from the 

training set. This procedure was repeated multiple times and the average proportion 

of correct classifications of the test set was used as an empirical measure for the 

success of the discrimination. The cross-validation experiments were completed 

using SYSTAT 10.2 (SSI, Richmond, CA). 

Experiments 

There were two classification experiments performed: 

~ Experiment 1 was aimed at separating P and NP groups on the basis of two non-

MR features, baseline age and MMSE; and 

~ Experiment 2 was aimed at separating P and NP groups on the basis of MR 

features, extracted in the fashion described above. 
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Results 

Demographies 

With the design of this longitudinal study, subjects were followed until they 

progressed to dementia, and then dropped from the cohort. 

AlI subjects showed neuropsychological deficits in the memory domain greater th an 

1.5 standard deviation on age-matched tests. While clinically mild, these were at 

times equivalent or greater than the degree of memory loss. 

In both P and NP subgroups, between 1/2 and 2/3 of subjects had additional domain 

deficits. There were aIl combinations of isolated memory as weIl as non-memory 

deficits accompanying the memory loss. The multiple patterns were encountered 

both in progressors as weIl as non-progressors. Chi square analysis of aIl 

combinations failed to find significant differences in the distribution of 

neuropsychological profiles, in any set of groupings. As mentioned previously, 

detailed results of the full subject cohort have been presented in a separate 

communication (Chertkow, Bocti et al. 2005). 

Only 24 subjects out of the larger group of 89 had baseline MRI that could be 

recovered, and therefore form the sub-group investigated in this study. Other images 

were either lost in digital format due to backward hardware and software 

incompatibilities, or discarded due to the presence of extensive motion artifacts. 

Sixteen of the se 24 subjects progressed to AD on average in 2.6 (std dey 1.6) yrs 

after an initial baseline visit (Group P), while the remaining eight subjects have 
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clearly not progressed during the foIlow-up period (Group NP, mean follow-up 5.7 

(std dev 4.0) yrs). 

Age and MMSE of the progressors and non-progressors is shown in Table 8. There 

was a significant group difference for baseline age (DF=22, P=0.0358) when 

comparing the P [mean age 78.5, sd (5.3) yrs] vs NP groups [72.0 (6.8) yrs]. The 

average MMSE score in the progressor group was 26.5 (2.3) at baseline scan, 

significantly different (DF=22, P=O.Olll) from the non-progressor group MMSE 

average of 28.5 (1.2) at baseline scan. 

Progressors (P) 

Non-progressors (NP) 

P (PvsNP) 

N 

16 

8 

Age 

(yrs) 

78.5 (5.3) 

MMSE 

26.5 (2.3) 

72.0 (6.8) 28.5 (1.2) 

0.0138 * <0.0001* 

Conversion 

(yrs) 

2.6 (1.6) 

Table 8 - Demographie and MMSE information on study subjeets 

Given the age and MMSE group differences, Experiment 1 was designed ta assess 

the accuracy of individual classification using these 2 features. For aIl cross-

validation trials a model using bath features was used to compute the classification 

function tram the training set and apply it to the test set. Fifteen trials were ron, 

with a median of 23 subjects in the training sample and 1 in the test sample. The 
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mean accuracy for individual classification was 63%, the mean sensitivity for 

progression 59%, and the mean specificity for non-progression 57%. 

Experiment 2 was designed to assess the accuracy of individual classification using 

MR-based features. Our overall MRI-based model, formed by the union of the 

intensity and shape principal components for the left and right VOIs, was built using 

our reference set of 152 young control subjects. A total of 538 principal components 

were retained, accounting for 99.7% of the variance of the reference data set. 

Fifteen cross-validation trials were run, with a median of 23 subjects in the training 

sample and 1 in the test sample. Forward, stepwise linear discriminant analysis (P­

to-enter = 0.15) was used to select the discriminatory variables from the training set 

and compute the classification function for each trial of the test set. Normality of the 

eigencoordinates along those eigenvectors was confirmed using quantile plots and 

Shapiro-Wilke test (P > 0.05). 

The mean accuracy for individual classification was 88% (21/24), the mean 

sensitivity for progression 94% (15/16), and the mean specificity for non-progression 

75% (6/8). The median number of variables retained by the forward, stepwise 

process was 10, with the three most occurring discriminating eigenvectors describing 

covariances in right MTL intensity (see Figure 38). 
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Figure 38 - Patients data plotted along most discriminat eigenvectors 

The NP (green) and P (red) patients data are shown here plotted along the three 
most discriminating eigenvectors in the multidimensional reference space of cross­
section al MR intensity and shape information. One can estimate a plane that would 
optimally separate the two groups in one of the cross-validation trials. The resulting 
average discriminatory accuracy for 15 trials was 86%, on average 2.6 years before 
clinical diagnosis. Mean sensitivity for progression was 84.6% and mean specificity 
83%. 

Discussion 

Our resuIts indicate that the position information (eigencoordinates) of new data 

projected in a multidimensional reference domain has the potential to adequately 

predict progression of MCI to AD, on average 2.6 yrs before a clinical diagnosis is 

made. The mean accuracy of the technique, given the study population, was 86%, its 

mean sensitivity to progression 84.6% and mean specificity 83%. 
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The ability to predict progression in MCI has been explored in terms of clinical, 

neuropsychological and biological parameters (Bozoki, Giordani et al. 2001; 

Chertkow 2002). Although promising, none of the se to date have produced a simple, 

reliable, and inexpensive predictive measure. 

This reinforces the notion that additional information must be collected at baseline 

and follow-up, using other independent or orthogonal biomarker(s) such as 

neuroimaging. We have already discussed the limitations of functional and 

longitudinal structural imaging; we will focus our attention in this section to 

available structural techniques that are applicable to cross-sectional MR data. 

Volumetry of the HC and surrounding structures is the most-often used approach in 

research and clinical practice. It has been shown to suffer from significant intra 

(0.91-0.95) and inter-rater (0.83-0.91) variability in a hippocampal segmentation 

study in normal controls by Pruessner et al. (Pruessner, Li et al. 2000). This 

variability is likely to increase in MCI and AD as boundaries shift due to atrophy and 

become less clearly delineated as intensity changes. This added variability in 

segmentation measurements, or volume tric noise, will reduce the classification 

accuracy of any methodology based on such information. 

By contrast, the technique presented in this article is completely automated and 

therefore completely reproducible. Further, it is important to note that the 

technique requires no manu al intervention other th an the definition of the VOl, 

which is do ne once and based on stereotaxie coordinates on the reference image. 
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This is a significant reduction of required resources when comparing to volumetry or 

other expert-based techniques that may require 90-120 minutes per hippocampus for 

manual segmentation. This independence from user interaction also ensures that the 

process remains objective. 

One might wonder if this classification procedure is overdetermined when using 

many eigencoordinates for classification, and may risk over-Iearning of the data, the 

independence of the reference group from the training set and the independence of 

the training set from the test set in the multiple trials both ensure that such will not 

be the case. In such a setting, the cross-validation procedure makes the most of the 

limited data (24 subjects). 

The increased accuracy of this method when compared to single-scan volumetry can 

readily be explained when one considers the difference in information al value of the 

approaches. Wherease the CUITent technique uses 4 X 300000 voxels, processed and 

expressed in terms of 538 principal components coordinates, HC volumetry 

compresses 3000 to 4000 voxels in a single scalar measurement, expressed in mnf. 

Clearly, additional important information is embedded in voxels outside of HC but 

within the MTL, included in our analysis in the form of intensity and shape 

covanances. 

Other cross-sectional structural imaging techniques have been suggested for the 

differentiation of AD from normal aging and/or MCI. Cortical thickness, known to 

be affected in AD (Shefer 1973; Duyckaerts, Hauw et al. 1985), can be estimated via 
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automated analysis of in vivo MRI. Its successful application to AD research has so 

far been limited to the differentiation of normal aging from AD (Lerch, Pruessner et 

al. 2005); it has not yet been applied to the successful prediction of MCI progression 

to AD. In order to detect cortical thickness changes, high-resolution scans are 

required (at least with Imm isotropie acquisition); conversely, the technique 

proposed in this article is shown to be accurate even when using low resolution MRI 

(slice thickness 5mm). 

Assessment of the covariations in intensity and shape embedded in the most 

discriminating principal components should yield important information regarding 

the pathophysiology of the disease. To this effect we have imaged the three most 

discriminating eigenvectors by expressing the difference between centers of the 

progressing and non-progressing groups in the image domain, along each of these 

principal components. While there were on average 10 discriminating functions for 

our validation trials, we chose to image the first three most discriminating principal 

components for the sake of clarity. The resulting image (see Figure 39) shows 

covarying areas of maximal difference between the groups that drive the 

classification. 
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(A) (B) 

Figure 39 - Areas of discriminating intensity covariances in right medial temporal 
lobe 

Eigendistance (see Figure 37) between centers of the two populations along the three 
most discriminating PCs of Figure 38 have been expressed back in the image domain 
(PC55 in blue, PC96 in red and PC64 in green). Ail three eigenvectors were 
modeling intensity variations in the right MTL. Our results therefore suggest that 
the degree of pathological impact in the right MTL is indicative of future 
progression to AD. 

Of primary interest is the fact that aIl three PCS were modeling intensity variations 

in the right MTL. This does not imply that intensity changes are not apparent in the 

left MTL but rather, that they do not have strong discriminating power in separating 

progressors vs non-progressors. Accepting our hypothesis that pathology-related 

microscopic changes affect the Tlw signal, this finding would imply that the main 

difference between the two groups is therefore related to the degree of disease 

spread in the right MTL. A second possible conclusion is that discriminative 

intensity variations will occur before discriminative shape changes. The latter is 

supported by the fact that the degree of atrophy of MTL structures is smaIler in MCI 
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than in AD patients, when compared to normal controls (Pennanen, Kivipelto et al. 

2004; Thompson, Hayashi et al. 2004). 

Differences in gray and white matter in the right MTL have also been reported in 

the literature since such intensity changes are reflected in decreases in gray matter 

concentrations. VBM studies have shown patterns of differences primarily in the 

right MTL when looking at MCI vs AD (Karas, Scheltens et al. 2004; Pennanen, 

Testa et al. 2005) as weIl as, and more importantly, in progressor vs non-progressor 

MCI patients (Chetelat, Landeau et al. 2005). 

As mentioned, discriminative changes in shape should follow those in intensity, and 

indeed there have been reports of the discriminatory ability of shape measures in 

AD, MCI and normal aging differentiation studies (Csernansky, Wang et al. 2000; 

Duchesne, Pruessner et al. 2005) but not within an MCI population as it relates to 

cognitive dec1ine. 

Chetelat and colleagues report regions of significant greater GM loss in converters 

relative to non-converters in the hippocampal area, inferior and middle temporal 

gyrus, posterior cingulate, and precuneus (Chetelat, Landeau et al. 2005). This 

pattern is echoed by areas of intensity covariances shown in Figure 39. Areas of 

difference between the two groups are primarily located in the HC, PHC and medial 

occipito-temporal gyrus. It is not c1ear if the se intensity differences are indicative of 

GM or WM atrophy, as this cannot be determined by this methodology; more 

analysis is therefore required. 
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Overall, we speculate that the se intensity differences result from advanced extra­

cellular plaque formation, neurofibrillary tangles accumulation and other 

pathological processes in the progressors. 

Conclusion 

We report results from a MRI analysis technique that achieved high sensitivity and 

specificity in predicting MCI progression or non-progression to AD with 86% 

accuracy in the cohort studied on average 2.6 years before clinical diagnosis. We 

found that right MTL intensity changes were most discriminative between the two 

groups. The importance of the right MTL in the prognosis of MCI and early 

detection of AD is therefore supported. Clinically, this methodology, which does not 

rely on segmentation and requires no user input, holds promise for the development 

of an inexpensive, reliable and safe biomarker to be used in predicting progression in 

MCI individuals. 

206 



Chapter 8 

General Discussion and Conclusion 

General discussion 

The purpose of this the sis was to develop and validate novel, automated image 

processing techniques that would answer important clinical problems in neurological 

diseases. Two methods have been proposed: one based on the appearance (intensity 

and shape features), and a second, on grey and white matter voxel-wise 

characteristics. Both methods were designed to be volume-centric, data-drive n, and 

cross-sectional. 

Chapter 4 was instrumental in presenting the ABC methodology and its application 

to the difficult task of lateralization of seizure focus in temporal lobe epilepsy. While 

MRI is not a sensitive tool for measuring the temporo-spatial pattern of seizure 

onset, it is fit for the task of assessing its impact on the morphology within the 
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medial temporal lobe. This, in tum, seems sufficient for resolving the clinical 

problem of lateralization. 

The ABC technique was as accurate as expert-based volumetry of the hippocampus 

in separating patients with or without hippocampal atrophy (127/127), as weIl as 

lateralizing seizure focus in subjects with hippocampal atrophy (80/80). It also 

achieved perle ct accuracy (47/47) at determining the seizure focus in patients 

without hippocampal atrophy, weIl above volumetry (equal to chance) in this respect. 

Finally, it achieved 96% accuracy in lateralizing seizure focus when given no a priori 

information about hippocampal volume; this is a major improvement over the 81 % 

accuracy for expert-based volumetry in the same cohort. These results suggest that 

MRI analysis could replicate the gold standard measurement (clinical evaluation, 

extensive video-EEG monitoring, and in sorne cases surgically implanted EEG), 

while offering considerable reductions in time, resources, and patient discomfort. 

In Chapter 5 the second, VBM-based methodology was used to increase our ability 

at predicting the future clinical status of patients undergoing SAH, from three to 

four out of five patients when added to the clinical information available (age of 

onset, duration of epilepsy, contra and ipsi lateral hippocampal volumes). It also 

fared better in specificity (90.5% vs. 75%), slightly better in accuracy (78.9% vs. 

74.1 %), but poorer for sensitivity (50% vs. 72%) than a similar study conducted by 

Antel et al. (Antel, Li et al. 2002) using MRI and MRS imaging. Contrary to the 
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latter, the VBC method relies on standard T1w imaging, whereas MRS demands 

significant expertise and long acquisition times. 

This study also underlined the fact that there appears to be extra-hippocampal GM 

and WM differences between patients with negative vs positive outcome; this finding 

should be further explored. It would imply that sorne of the candidates undergoing 

SAH have more extensive pathology-related damage; in these cases, more extensive 

pre-surgical evaluation would be required and possibly the resection target modified 

to suit their particular condition. 

Chapter 6 was key in assessing the robustness of the method to a change in the signal 

brought about by the application to a completely different pathology. The ABC 

methodology was proven to be accurate in differentiating AD and MCI from normal 

aging individuals, on the basis of a single MR scan, with a mean accuracy for 

individual classification of 90.9%, mean sensitivity to AD+ MCI of 76.2% and mean 

specificity for NA of 97.3%. This is to be compared to the ability of hippocampai and 

amygdala volumetry at the same task, with a mean accuracy of 82.1 %, mean 

sensitivity to AD+ MCI 81.2%, and mean specificity to NA of 85.9% within that 

cohort. 

This has immediate clinicai implications for memory clinics; for exampIe, the high 

specificity of this MRI -based technique could offer a reliable and objective mean of 

reducing the number of faise positives, given inconclusive neuropsychologicai 

assessments. It aiso enlarges the scope of the technique potentially for other 
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neurological diseases, as these results add further credence to support our 

hypothesis that intensity and shape changes can be used for discriminative tasks. 

The surprising find that ABC seems also robust to signal differences due to 

acquisition hardware bodes well for the future application of this technology to 

multi-site data, which is routinely done in large scale clinical studies and 

pharmaceutical trials. 

Chapter 7 demonstrated that the ABC technique with MR data could be a potent 

imaging biomarker, by accurately predicting future clinical state in a cohort of MCI 

patients. The search for such a biomarker is at the center of MCI research in a wide 

variety of areas: neuropsychology, proteomics and genomics, and neuroimaging; 

results such as those confirm the ability of MRI measurements to act as a surrogate 

indicators for the disease. 

Further, the resulting evidence from the experiments in that manuscript 

demonstrates that the right MTL holds the key information to differentiate or 

predict future clinical status, and will also be use fuI for the design of new techniques 

or analysis of other structural and functional data. 

Finally, this study highlighted the fact that the ABC methodology is robust to noise 

(from movement artifacts) and reduced information found in clinical thick-slice data. 

Sorne would imply that this essentially indicates that a structure-centric approach 

could be used rather than the generic volume of interest. This claim is not 

necessarily true. First, the accuracy of HC and AG volumetry was lower than the 
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VOI-centered ABC approach, and by aIl accounts those are privileged structures in 

AD research. Second, a priori knowledge of the pathophysiological processes of the 

disease are required in order to select the structurees) of interest within the 

convoluted brain morphology. The ABC methodology requires no such preliminary 

exploratory work. On the other hand, a sensitivity analysis to a change in VOl 

parameters should be completed; while its extent may remain the same, different 

sampling schemes could be investigated. 

Future work 

ln fact, there are probably more open questions to be answered now that the 

techniques have proven successful than at the start of this thesis. 

The location of the VOl should be reexamined. One practical consideration when 

selecting the left or the right MTL was the available memory to perform the 

necessary computations. The constant upgrading of hardware capabilities make even 

larger, less specifie VOIs possible, which could potentially encompass most sub­

cortical structures. 

The extension or relocation of the VOl is directly linked to the application. There 

are a number of other neurological disorders in which intensity and/or shape 

differences exists, and therefore that could benefit from the ABC technique: 

schizophrenia and depression are but two examples. One attempt is currently under 

way for the study of movement disorders, with a VOl centered on the thamalus and 
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basal ganglia. One could argue that a single model should be done for the whole 

brain; while possible, the extensive, normal cortical variability may mask out the 

potential pathological signal. 

ln any case, the technique should also be tested using a VOl located in a brain 

region where the a priori hypothesis shows that the pathological effect is nuIl or 

extremely limited (e.g. occipital lobe in AD); this would be an interesting 

confirmatory experience to validate the sensitivity of the method. 

Further sensitivity analysis of the ABC methodology would include the different 

parameters of registration (see Robbins et al. (Robbins, Evans et al. 2004» and 

intensity normalization. Likewise, the effect of Gaussian blurring kemel size, as weIl 

as parameters involved in the tissue classification, should be exhaustively verified in 

further studies using the VBC methodology. 

The same technique is not only sc al able in terms of the size of the feature vector, but 

also to its content. So far the applications have been mono-modality. Clearly, other 

imaging (T2, PD, PET, SPECT) and/or other descriptors of the images (texture 

vectors) can be incorporated in the modeling and used for discrimination. 

Modeling itself could be revisited. The underlying assumption in both methodologies 

was that linear models (of intensity and shape covariances, or large scale GM or 

WM differences) would be sufficient for the discrimination task. It is to be expected 

that many nonlinear processes result from the pathology; accounting for those 

nonlinearities using other modeling techniques (nonlinear PCA, for example) could 
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potentially reduce even further the discriminatory space. 

Most of the experiments in these manuscripts confronted MR analysis against other 

clinically oriented variables. Reality dictates that aIl available information should be 

combined in order to maximize the bene fit to the patient. Of course, this was done 

purposefully within these articles to single out the increase in classification or 

prediction accuracy that could be attributed solely to the MR-based methodologies. 

In the future, all available information should be combined in a proper statistical 

framework to maximize the accuracy of the classifier. It is likely that other 

approaches, e.g. volumetry, redundantly explain sorne aspects of the underlying 

pathological process, such as local volume change. In such cases, a stepwise process 

would reject the redundant features and select only the most discriminating one. 

Careful retrospective analysis of the discriminant variables would yield the 

appropriate cocktail of measurements commensurate to the task at hand. 

The road ahead for research is therefore centered on converting these 

methodologies to nonlinear modeling; to combine clinical variables with MRI 

information; and to extend the analysis to multi-modality data. As a first step, this 

could entail using co-registered T2 and PD images, and if possible PET imaging (e.g. 

PIB compound in AD) or inter-ictal SPECT (e.g. Technetium-99m HMPAO in 

TLE). It remains that many centers will not have access to such resources, lacking 

the facilities or the expertise and may have only access to simple MR sequences. 

One development goal should be therefore to tie together the methodologies set 

213 



forth in this thesis into an easy-to-use package, in order for users to incorporate 

them easily into current clinical practice. 

Finally, much work remains in the biological interpretation of the discriminative 

intensity and shape information embedded in the eigenvectors. This step is necessary, 

it is realized, for acceptance of the methodologies in the wider clinical community. 

As an example, the corroboration of findings on Tlw MRI - or other MR sequences 

- with functional data, such as PET images with PIB, would serve to bridge the gap 

between intensity differences seen on MRI in MCI progressors vs non-progressors 

and the microscropic pathological advances in A~ load. 

Conclusion 

The goal of this thesis was to present the development and validation of two novel 

methodologies for automated analysis of MRI, to be used as aid to diagnosis in 

clinically relevant neurological problems. The four studies presented have shown 

that these techniques can lateralize the seizure focus and predict surgical outcome in 

temporal lobe epilepsy, differentiate AD and MCI from normal aging, and predict 

future clinical status for MCI patients. The potential for future studies and 

development seems clear, and should aid clinicians in making important diagnostic 

decisions regarding patient management and care. 
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