
Design and Implementation of an
Educational Platform for Hosting Virtual

Wireless Networks

Ahmed Youssef

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

August 2015

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c© 2015 Ahmed Youssef

2015/08/16

i

Abstract

With the ubiquity of wireless devices and their diverse and evolving applications, wireless

systems are becoming an integral part of Computer Networking courses. Due to the impor-

tance of experimentation in the learning process of computer networking concepts, various

computer networking toolkits and platforms have been developed that are targeted for ed-

ucational purposes. However, most of these current toolkits and platforms are focused on

wired networks. The toolkits that have wireless networking support do so through network

simulation. While simulation is acceptable and often times preferred when dealing with

performance evaluation of new algorithms in large-scale scenarios, they do not possess the

necessary realism required in educational settings when dealing with wireless networks.

Physical platforms are developed to address this issue. However, the current physical plat-

forms fall short of one or more of the design criteria that are critical to their adoption in

most educational institutions. The physical platforms are often prohibitively expensive,

hard to setup, inflexible, and/or complicated to use. In this thesis, we aim to address these

issues.

We describe Wireless GINI, a wireless platform for hosting virtual networks. Wireless

GINI allows each virtual network to define its own topology and network configuration,

while amortizing costs by sharing the physical infrastructure. The platform also creates

mechanisms to integrate commodity wireless devices into a deployed virtual network. Wire-

less GINI provides a user-friendly interface that makes the physical setup process completely

transparent to the user. A centralized server is used to provide this transparency, handle

user requests, and automatically provision the shared physical infrastructure. We describe

the design and implementation of Wireless GINI and suggest several educational exper-

iments that can be conducted on this new platform. A detailed survey of the existing

toolkits and platforms is also provided.

ii

Sommaire

Avec l’omniprésence des appareils sans files et la diversité de leurs applications, les systèmes

sans files sont devenus une partie intégrante des réseaux informatiques. Vu l’importance

des expériences dans la procédure d’apprentissage des réseaux informatique, plusieurs out-

ils et plateformes ont été développés pour des fins d’apprentissage. Cependant, la plu-

part de ces outils considère les réseaux filaires. Bien que les simulations soient préférées

pour l’évaluation rapide des performances de nouveaux algorithmes, elles ne sont pas assez

réalistes pour modéliser les systèmes sans files. Des plateformes physiques sont développées

pour remédier à ce problème. Mais ces plateformes sont difficile à manier, et trop cher.

Tout au long de cette thèse, nous proposons de résoudre ce problème.

Nous décrivons la plateforme sans file GINI pour les réseaux virtuels. La GINI permet à

chaque réseau virtuel de définir sa propre topologie et de configurer son propre réseau, tout

en réduisant le coup de développement en partageant l’interface physique. La plateforme

crée des mécanismes pour intégrer les appareils sans fil au réseau virtuel. La GINI pro-

pose une simple interface qui rend la procédure d’installation complétement transparente

à l’utilisateur. Un serveur centralisé est utilisé pour apporter cette transparence, rependre

aux demandes des utilisateurs et gérer l’interface physique commune. Nous décrivons le

désigne et l’implémentation du GINI et nous suggérons plusieurs expériences qui peuvent

être effectuées sur cette plateforme. Nous donnons aussi une description détaillée des outils

déjà existant.

iii

Acknowledgments

In the name of God, The most Merciful, The most Compassionate.

I would like to start by thanking God Almighty, the One whom through His infinite blessings

achievements are attained.

Although words are not enough to describe the amount of gratitude I hold for my

supervisor Prof. Maheswaran, it is only right to attempt to convey my gratitude. I am

truly thankful to have Prof. Maheswaran as my supervisor and mentor, as I embarked on

this intricately satisfying, humbling, and overall splendid journey at McGill. I would like

to sincerely thank Prof. Maheswaran for being a source of inspiration with his insightful

knowledge, his amiable character, and his unwavering passion. I will always cherish the

great moments we had from the delightful Boston trip to the inspiring discussions.

I am truly indebted to my lovely sister Lamis Youssef for championing the implemen-

tation of the local database and XML parser. I greatly appreciate her sincere commitment

and hard work even when it meant losing out on enjoying the city of Montreal.

I am grateful to my lab mate and friend Syed Ahmed for his valuable input on sev-

eral aspects of the Wireless GINI design. I would also like to thank Amir Helmy for his

meticulous review of my thesis drafts, and for his invaluable friendship, encouragement,

and motivation. Outside the academic context, I am thankful to Moataz El-Naghi for his

sound advice, his selfless help, and his enjoyable company.

Last and certainly not least, I am genuinely blessed to have a loving and supporting

family. I am deeply indebted to my amazing parents for their unassuming support and

unconditional sacrifice. I only hope that they are as proud of me as I am of them.

iv

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Thesis Contribution . 6

1.3 Thesis Organization . 7

2 Background 9

2.1 The GINI System . 9

2.2 Wireless Mesh Networks and the 802.11 Standard 11

2.3 OpenWrt and Arduino Yun . 14

2.4 Network Virtualization . 14

2.4.1 Node Virtualization . 15

2.4.2 Link Virtualization . 17

3 Wireless GINI: Design and Architecture 20

3.1 Design Considerations . 20

3.2 An Overview of Wireless GINI . 21

3.3 Supporting Concurrent Topologies . 24

3.3.1 Node Virtualization . 25

3.3.2 Link Virtualization . 25

3.4 Integrating Physical Devices . 28

4 Wireless GINI: Implementation and Deployment 32

4.1 The Wireless GINI Interface . 32

4.1.1 RPC Client-Server Implementation 32

4.1.2 The Topology Configuration File 33

Contents v

4.2 The WGINI Server . 36

4.2.1 The Local Database . 36

4.2.2 The WGINI API . 38

5 Wireless GINI: Evaluation and Use Cases 43

5.1 Performance Evaluation . 43

5.1.1 Impact due to Topology Size . 44

5.1.2 Impact due to Other Virtual Networks 44

5.1.3 Virtualization Overhead . 48

5.2 Use Case Scenarios . 50

5.2.1 Mobile IP . 50

5.2.2 IoT Applications . 53

6 Related Work 55

6.1 Network Emulation Toolkits . 56

6.1.1 CLI-based Network Emulators . 56

6.1.2 GUI-based Network Emulators . 58

6.2 Network Experimentation Testbeds . 59

7 Conclusion and Future Work 61

7.1 Concluding Remarks . 61

7.2 Future Work . 62

A Wireless GINI Documentation 65

A.1 Topology Specification File Document Type Definition 65

A.2 WGINI API . 66

A.3 yRouter API . 67

A.4 Bash script API . 67

References 68

vi

List of Figures

1.1 A physical setup example of a testbed-oriented emulator [1] 2

1.2 An example of a custom network created using GINI. 3

1.3 An overview of two overlay networks running on top of the same physical

testbed. 7

2.1 The GINI GUI. 10

2.2 An overview of the GINI architecture. 10

2.3 A basic mesh topology. 13

2.4 A picture of the Arduino Yun. 15

2.5 Router virtualization using hypervisors. 16

3.1 The physical setup of the Wireless GINI platform. 22

3.2 An example of a hybrid topology specified by the user. 23

3.3 Overview of the Wireless GINI design. 24

3.4 Node Virtualization in Wireless GINI. 25

3.5 An overview of the yRouter. 26

3.6 An example of a simple VN. 28

3.7 An illustration of the tunnelling process. 29

3.8 WLAN support on the yRouter. 31

4.1 On overview of the XML Tree of the TSF. 34

4.2 The Create API procedure. 40

4.3 The Delete API procedure. 42

5.1 Experimental setup for evaluating topology size effects on bandwidth and

latency. 45

List of Figures vii

5.2 The bandwidth and latency plots with respect to the hop count. 46

5.3 Experimental setup for evaluating inter-topology effects on bandwidth and

latency. 47

5.4 The bandwidth and latency plots between the two end hosts on Topology

2 with respect to the packet injection rates caused by the end hosts on

Topology 1. 48

5.5 Experimental setup for evaluating overhead on bandwidth and latency due

to the network virtualization techniques. 49

5.6 The Mobile IP routing procedure. 52

5.7 An example of a smart lighting system that can be implemented on Wireless

GINI. 54

viii

List of Tables

4.1 The Station Table. 37

4.2 The Topology Table. 37

4.3 The Interface Table. 37

5.1 Latency and bandwidth measurements due to hop count increase. 45

5.2 Latency and bandwidth measurements with respect to the various packet

injection periods. 47

5.3 Latency and bandwidth measurements for the virtualization overhead ex-

periment. 49

ix

List of Acronyms

WLAN Wireless Local Area Network

API Application Programming Interface

DHCP Dynamic Host Configuration Protocol

UDP User Datagram Protocol

AP Access Point

MAC Media Access Control

SSID Service Set Identifier

IoT Internet of Things

IPC Inter-Process Communication

GUI Graphical User Interface

CLI Command-Line Interface

GINI GINI Is Not Internet

UML User-Mode Linux

RPC Remote Procedural Call

MBSS Mesh Basic Service Set

HWMP Hybrid Wireless Mesh Protocol

OS Operating System

UCI Unified Configuration Interface

VAP Virtual Access Point

VN Virtual Network

NIC Network Interface Card

GRE Generic Routing Encapsulation

QoS Quality of Service

TSF Topology Specification File

List of Terms x

VPL Virtual Private Link

SQL Structured Query Language

COA Care-Of Address

VM Virtual Machine

PC Personal Computer

SDN Software Defined Networking

TCP Transmission Control Protocol

IP Internet Protocol

ICMP Internet Control Message Protocol

1

Chapter 1

Introduction

Recent years have witnessed a proliferation of wireless devices and this trend is predicted

to further increase in the future. This is fueled by the continuous introduction of diverse

technologies such as Wireless Sensor Networks (WSNs), Internet of Things (IoT), Machine

Type Communication (MTC) and Heterogeneous Networks (HetNets). The applications of

these technologies span numerous industries including home automation, utilities, health,

transportation, environmental monitoring, and consumer electronics. Considering the di-

versity of wireless devices which ranges from consumer electronics such as smart phones,

tablets, and wearable, to smart embedded devices such as smart thermostats, home appli-

ances, and lightings, it comes as no surprise that there will be 24 billion interconnected

devices by 2020 compared to the 9 billion connected devices today [2]. The market opportu-

nities from IoT alone are predicted to be around $8.9 trillion according to recent estimates

by the International Data Corporation (IDC).

With the ever growing field of wireless networks along with its applications, it seems

prudent that the educational tools that are used to teach Computer Networking should also

evolve to allow the students to experiment with and grasp the diverse wireless technologies.

Unfortunately, this has not been the case. Current network emulators that are targeted for

educational purposes are still centered around wired networks. The fundamental differences

between these two physical mediums, such as device mobility, and channel characteristics,

are not exposed to the students.

Moreover, these didactic network emulators generate networks that are either purely

Testbed-oriented, or purely Process-oriented. Testbed-oriented emulators require an existing

2015/08/16

1 Introduction 2

Fig. 1.1 A physical setup example of a testbed-oriented emulator [1]

physical network setup. This physical network setup commonly consists of multiple general

purpose workstations, routers, and switches. These small-scale physical networks are then

used to perform network experiments. The physical testbeds can be shared by multiple

students (although not at the same time) by using an appropriate time sharing policy

where each student is allowed to use the testbed for a reserved time slot [1]. One of the

key issues with testbed-oriented emulators lies in their expenses due to the substantial cost

of equipment purchase and maintenance. Another key issue is that they are harder to

setup since to bring up an experimental network, one must log in to every device in the

network and manually configure each one which can become tedious and error-prone. Yet

another key issue is the difficulty to use those testbed-oriented emulators by the students.

Finally, the testbeds are hard to scale. A single testbed can only be used by a single

student at a time. Hence, to support multiple students at a given time (such as the case

in a course lab), one must purchase duplicate equipment which scales poorly. These issues

make testbed-oriented emulators less favorable for educational purposes. Testbed-oriented

emulators include The Internet Lab [1] and [3]. An example of the physical setup for a

1 Introduction 3

Fig. 1.2 An example of a custom network created using GINI.

testbed-oriented emulator in [1] is shown in Figure 1.1.

The majority of the most popular emulators are process-oriented. Process-oriented

emulators run the network components, such as routers, switches, and workstations, as

processes inside a host machine. These processes are then “connected” using an appropriate

Inter-Process Communication (IPC) mechanism such as Unix Sockets. The custom network

components are often times all hosted on a single workstation although some emulators,

such as CORE [4], have the capability to distribute parts of the custom network over

multiple hosts. Others such as Junosphere Classroom [5] and Cisco Learning Labs [6]

provide a cloud-based service for hosting the user’s custom network on the third-party’s

cloud (for a not very modest price). Network emulators can provide a Graphical User

Interface (GUI) or a Command Line Interface (CLI) to allow the user to specify his/her

custom network. CLI-based emulators include Netkit [7], VNX [8] and Mininet [9]. GUI-

based emulators include CORE [4], Cloonix [10], and GINI [11]. An example of a network

topology created in GINI (GINI is Not Internet) is shown in Figure 1.2.

There is a lack of emulators, however, that have the capability to support a hybrid

1 Introduction 4

custom network, one which can accommodate process-oriented network components along

with physical network components on the same topology. This may have been unnecessary

for conventional emulated wired networks due to the limited variety in wired computing

devices in the past and the ability to sufficiently abstract the wired connection. However,

for wireless networks, capturing the mobility of the components and integrating with the

new plethora of wireless devices into the emulated network is rather essential.

Finally, there is a lack of emulators that have an open-source router component that

allows the user to view the internal workings of the router and modify its source code

to implement new functionality. The routers in the emulators act as black boxes that

can only be interfaced using the console that the router exposes. This is either due to

the propriety nature of the router used in the emulator (such as Cisco’s Learning Lab or

Juniper’s Junosphere) or due to the use of a router’s image which is the case with the

emulators that use User-Mode Linux (UML) [12] as routers in the custom network. UMLs

are lightweight virtual Linux machines that run as a user-level process on an actual physical

computer [13]. Even if the source code of the UML is provided, the reprogramming of the

kernel networking module of the UML is not a straightforward feat especially for the average

networking student.

1.1 Motivation

This thesis tries to address the need for a user-friendly, low cost, scalable wireless platform

for educational purposes by presenting Wireless GINI. Wireless GINI is an extension to

an open-source process-oriented network emulator toolkit developed by the Advanced Net-

working Research Lab (ANRL) at McGill University. Wireless GINI extends the existing

GINI toolkit to support the creation of hybrid process-oriented networks and testbed-

oriented wireless networks. This allows users to benefit from the simplicity of process-

oriented networks while also benefitting from the realism needed for wireless networks.

This enables students to perform innovative and practical experiments that touch upon the

ever-growing application space of wireless networks.

As mentioned earlier, testbed-oriented emulators suffer from 1) higher cost 2) harder

setup 3) complexity 4) poor scalability. Wireless GINI addresses those key issues to provide

a low cost, user-friendly, and scalable wireless testbed for educational experiments. To

address the cost issue, we used low cost ($65) embedded wireless devices called the Arduino

1 Introduction 5

Yun [14], as opposed to expensive heavy workstations and commercial routers. In addition,

there is no extra costs due to cables or peripherals (switches, hubs, monitors, etc.) since

the testbed is connected via a wireless mesh network. Moreover, the devices are robust and

require little maintenance since they run a lightweight Linux-based embedded Operating

System (OS) that can be re-flashed to original factory settings by merely holding a button.

The second key issue that is faced with physical testbeds is that they are hard to setup

and deploy. Indeed, current testbeds are setup in a fixed location and cannot be easily

moved around to try out new experiment settings. In contrast, the Arduino Yuns are

compact (2.8” x 2.1”) and hence can be stored and placed anywhere with ease. The devices

are connected via a wireless mesh network using the 802.11s standard [15]. This negates

the need for intermediate cables for connectivity. The 802.11s standard for wireless mesh

networking provides the perfect means for creating scalable wireless networks. The auto-

discovery and distributed layer-2 routing used in 802.11s allows these wireless devices to

automatically connect to and reach all the other wireless devices without user intervention.

The wireless mesh network along with the lightweight and compact sizes of the devices

makes the testbed easy to setup and deploy in a variety of locations.

The third issue faced by physical testbeds is that students find them hard to use. In

process-oriented emulation software, the network topology can easily be created, expanded

and modified by merely dragging and dropping network elements in case of a GUI-interface,

or by writing scripts in case of a CLI interface. Furthermore, they provide a unified interface

where one can easily configure a network element at runtime by double-clicking on the

element in case of GUI-interface, or by clicking on its terminal window in the case of a

CLI-interface. With physical testbeds, however, one has a fixed set of network elements at

his/her disposal and there is no intuitive graphical representation of the topology that can

be generated on demand. Moreover, interfacing with a network device requires either using

special equipment such as a Keyboard, Video, and Mouse (KVM) switch, or by remote

login. To address this issue, Wireless GINI uses an application server that automatically

deploys custom virtual networks on the wireless testbed. Remote Procedure Calls (RPCs)

are used to interact with the application server. To deploy a virtual network, the user can

invoke the appropriate call to the server passing a simple XML document that describes

the custom network. Future work on Wireless GINI will work on the auto-generation of the

XML document via the GUI-interface. The server then uses this XML file to automatically

configure and deploy the user’s virtual network.

1 Introduction 6

The fourth issue that testbed-oriented platforms face is the issue of scalability. The

issue of scalability pertains to two concerns. The first concern is in relation to the number

of students that can experiment at a given time. This is mostly done by purchasing and

deploying identical physical networks. For example, in the case of University of Victoria’s

lab setup [3], 18 identical physical setups were deployed to support up to 18 students at a

time in a given lab session. The lab sessions were divided across different time slots and

days to accommodate all the students in a given class. The second concern is in relation

to the size of the network for a given student. Increasing the network in terms of the

number of elements is difficult due to the cost and space requirements. To overcome the

first concern, we leveraged wireless network virtualization techniques [16] to enable us to

efficiently share the same physical platform among multiple custom networks concurrently.

The architecture and implementation of Wireless GINI allow for complete isolation of the

concurrent networks. It also does not allow one network to constrain the configuration of

another network. The application server manages the deployment of the custom network

and maintains the necessary parameters for each running network via a SQLite database

implemented using Python. Figure 1.3 depicts an example of two overlay networks deployed

on the same physical testbed.

To overcome the second concern which is in regards to the size of the testbed, we

developed Wireless GINI to allow for easy integration of existing wireless devices into the

user’s custom network. The user can request one or more Wireless Local Area Networks

(WLANs) to be deployed on-demand on any given wireless device that is associated one’s

network. Other wireless devices can then connect to this WLAN via its broadcasted Service

Set Identifiers (SSIDs) and become part of the custom internet. This effectively allows for

out-of-the-box integration of wireless devices into the virtual network thereby enabling

innovative and flexible experimentation with new technologies. We describe some of these

experiments in Chapter 5.

1.2 Thesis Contribution

We designed and implemented Wireless GINI, an educational platform for hosting virtual

wireless networks. Wireless GINI provides a cohesive and unified framework for deploying

custom internets on a shared wireless platform. We developed the network virtualiza-

tion mechanisms that enable the sharing of the wireless infrastructure. These mechanisms

1 Introduction 7

Physical Testbed

User 1's Virtual
Network

User 2's Virtual
Network

Fig. 1.3 An overview of two overlay networks running on top of the same
physical testbed.

provide proper isolation between the hosted wireless networks and allow for custom configu-

ration of the user’s internet. We developed an application server, called the WGINI server,

that provides a simple interface for the user to deploy his/her custom internet. It handles

all of the complexity of deploying the user’s topology, and the complexity of provisioning

the wireless infrastructure. We developed the platform to support a diverse combination

of network elements that are all integrated into one custom internet. The platform seam-

lessly integrates process-emulated components running on the user machine, wireless mesh

overlays deployed on the wireless platform, and physical wireless devices connected to the

user’s custom network.

1.3 Thesis Organization

Chapter 2 provides the relevant background information for the thesis. We discuss the

various techniques for network virtualization which are used to share multiple virtual net-

1 Introduction 8

works on the same physical network. We also give an overview of the GINI toolkit. In

addition, we provide an overview of wireless mesh networks and the 802.11s standard. We

also describe OpenWrt, which is the operating system used on the wireless devices, and dis-

cuss its capabilities that aid in wireless virtualization and the implementation of Wireless

GINI. Chapter 3 delves into the design considerations that were employed when designing

Wireless GINI. It also describes the architecture of Wireless GINI, and the various tech-

niques used to enable its features. Chapter 4 presents the details of the Wireless GINI

implementation. We evaluate the performance of Wireless GINI in chapter 5 and present

two applications in the realm of mobility management and IoT that can be enabled on

the platform. Chapter 6 provides an overview of the various network emulators that are

available in the literature.

9

Chapter 2

Background

2.1 The GINI System

In this section, we provide an overview of the GINI toolkit [11]. GINI is an open-source

process-oriented network emulation toolkit that is targeted towards educational purposes.

It provides a GUI by which users can design, run, inspect and stop their custom topologies.

The topologies can consist of workstations, routers, and switches. The network elements

are spawned as user-level processes running inside the host machine. Figure 2.1 shows the

graphical interface for creating topologies. Users create their topologies by dragging-and-

dropping network elements from the menu on the left-hand-side of the canvas.

An overview of the GINI architecture is shown in Figure 2.2. GINI uses a custom

lightweight version of UML [12], called gLinux, to emulate the workstations. Compared to

the default UML version, gLinux has a much smaller disk memory footprint (80 MB vs 600

MB) and a much faster boot up and shutdown times. Each gLinux instantiation contains

its own network stack and process tables which are completely isolated from the host’s

tables and stacks as well as any other gLinux instances running on the host. GINI uses the

UML switch daemon to emulate a Layer-2 switch. To emulate a router, GINI uses an open-

source software-based router called gRouter developed for GINI. The gRouter is written

in the C programming language. gRouter fully supports the processing of the Internet

Protocol (IP). Having a completely open-source router provides users with practical hands-

on experience in software development in the Computer Networking field. Students can

modify and extend the gRouter to implement and test new algorithms and networking

protocols.

2015/08/16

2 Background 10

Fig. 2.1 The GINI GUI.

gBuilder

Parse & Validate

Generate Config. Files

Spawn Processes

gLinux

gRouter

uSwitch

Topology Specification File

Host Machine

gLoader Config. Modules

gLinux uSwitch gRouter

gBuilder

Parse & Validate

Generate Config. Files

Spawn Processes

gLinux

gRouter

uSwitch

Topology Specification File

Host Machine

gLoader Config. Modules

gLinux uSwitch gRouter

Unix Socket

User Space

Kernel Space

User

Fig. 2.2 An overview of the GINI architecture.

2 Background 11

GINI uses Unix sockets to connect the network components of a given topology. A Unix

Socket is an IPC mechanism for exchanging data between processes that are running on

a given host machine. The Unix socket APIs provided by the OS are similar to the APIs

provided for creating Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP) sockets, with the notable difference being that all communications occur entirely

within the host’s OS kernel.

The user interacts with GINI through gBuilder, which is the front-end component of

GINI that provides the graphical interface. gBuilder allows for a user-friendly way of

creating network topologies. gBuilder uses the graphical topology supplied by the student

to construct an XML topology specification file. The topology specification file is passed

to the gLoader module to instantiate, configure, and run the network components along

with their appropriate socket connections.

2.2 Wireless Mesh Networks and the 802.11 Standard

In this section, we give an overview of the 802.11s standard [15] which is the protocol

used to connect the wireless devices that make up our wireless platform. The 802.11s is

a wireless mesh networking protocol that provides the mechanisms for discovery, dynamic

routing, authentication, and forwarding/relaying packets in the wireless mesh. The protocol

accounts for power consumption, packet collision avoidance, and security in the wireless

mesh. It was developed to account for the need of providing wireless access in places

where connecting wireless devices to the backbone via wires was unfeasible or inconvenient.

Having a wireless mesh network entails numerous benefits over having a wired connection

from a switch to each access point including:

• Flexibility. In a typical 802.11 WLAN, each access point must be connected to

the back-haul network via a wired connection (typically using ethernet). With a

wireless mesh setup, only one station needs to have a wired connection to the back-

haul network. This station is called the mesh portal. A wireless mesh network can

have one or more mesh portals. The other mesh stations’ packets can then reach

the back-haul network by having the intermediate stations relay the packet to the

appropriate mesh portal using the wireless medium. This allows the setup to cover

larger areas without being constrained to being in range of a switch (typically <

2 Background 12

100 m). Moreover, it provides a greater path redundancy to the back-haul network

brought about by the re-routing of wireless packets through another path if one of

the nodes in the existing path fails. In case of a wired connection, any failure in

the single wired connection to the back-haul causes the wireless network to become

unreachable. An example of a typical wireless mesh network is shown in Figure 2.3.

• Self-Formation. This is in regards to the automatic discovery of new mesh stations

that get in range of an existing mesh station, and the ability to dynamically update

the routing table in response to changes in the topology. This feature allows for a

simple expansion and setup of the wireless mesh. A wireless mesh is officially called

the Mesh Basic Service Set (MBSS).

• Self-Healing. The is in regards to the ability of the mesh station to detect several

possible paths to a destination and automatically choose the best path in case of a

failure or congestion in an intermediary mesh station. This feature allows for a seam-

less maintenance of the network without a dedicated specialist having to continuously

monitor and reconfigure the network in response to a failure.

The MBSS is an 802.11 WLAN that consists of autonomous mesh stations that establish

peer-to-peer wireless links. Messages can then be transferred between Mesh stations that

are not in direct communication with each other by having the intermediate nodes relay

the message. Hence, a Mesh station may act as a source, a sink, or a relay of the message.

It is important to note that mesh stations do not communicate with non-mesh stations [17].

To provide communication with non-mesh 802.11 devices or to an 802.3 device, a separate

interface must be set up on the given mesh station. The two interfaces can then be bridged

together by the mesh station’s kernel if a layer-2 networking is required, or forwarded by

the station’s IP routing modules if a layer-3 network is applicable.

Mesh stations that are on the same MBSS must be on the same channel in order

to be able to detect and exchange packets one another. Channel access coordination is

managed by the Mesh Coordination Function (MCF) which combines aspects of contention-

based and scheduled-access methods [17]. MCF uses Enhanced Distributed Channel Access

(EDCA) which is similar to Distributed Coordination Function (DCF) but has the ability

to prioritize packets by reducing their back off interval or Arbitration Inter-Frame Space

(AIFS). It also supports scheduled access features by allowing stations to reserve channel

time by propagating this intent to their neighbours.

2 Background 13

Wired Network

Possible Path

Mesh Station

Mesh Portal

Fig. 2.3 A basic mesh topology.

802.11s uses active and passive scanning for neighbour discovery. Mesh stations actively

broadcast beacon frames as well as send probe requests in response to received beacon

frames. After discovery, the stations can form a peering session with each other provided

they have the same mesh profile. A key feature of the mesh peering mechanism is that

it is completely decentralized, and non-hierarchical. Having the same mesh profile entails

having a matching mesh ID, and security credentials if security is enabled on the MBSS.

Once peering is established, the stations become part of the same MBSS and, hence, the

routing tables of the other mesh stations on the MBSS can be updated to account for the

new station.

802.11s uses the Hybrid Wireless Mesh Protocol (HWMP) to perform routing func-

tionality [18]. HWMP is an Ad-hoc On-demand Distance Vector (AODV) layer-2 routing

protocol which is the default routing protocol in 802.11s mesh networks. To minimize con-

gestion on the wireless channel, HWMP uses a default reactive approach to path discovery

by initiating path discovery only when transmitting to an unknown mesh station. In this

approach, a tree-based routing mechanism is employed to find the best path to the un-

known station. Once the path is established, it is maintained by having each station in

the path remember its next hop address. This continues until a disruption occurs in the

path in which case a new path discovery is initiated. HWMP also supports a proactive

approach where a mesh station discovers the best path to a given node in the mesh before

2 Background 14

the need to transmit to that node arises. HWMP takes into account the channel quality in

calculating the link metric (cost). A formula that takes into account the link costs as well

as the hop count is used to calculate the best path to the destination.

2.3 OpenWrt and Arduino Yun

In this section, we provide an overview of the Arduino Yun which is the embedded wireless

device used to create the Wireless GINI testbed. We also provide an overview of OpenWrt

[19] which is the Linux distribution running on the Arduino Yun. Figure 2.4 shows a picture

of the Arduino Yun. The Yun contains the AR9331 wireless system-on-chip (SoC). AR9331

includes a MIPS processor along with a 802.11b/g/n wireless device. The Arduino Yun

also contains a micro USB port, an Ethernet port, and a micro SD card slot. The micro SD

card slot can be used to extend the storage capacity of the device. The board is compact

in size, having a length of 2.7 inches and a width of 2.1 inches, and weighs 32 grams.

The MIPS processor on the AR9331 SoC runs the OpenWrt OS. OpenWrt provides

a convenient framework for deploying customized wireless networks on embedded devices.

The lightweight nature of the embedded OS (the OS image is well under 100 MB) and its

robustness accelerated its adoption in numerous industrial applications and mesh network

communities. Among its most notable features are a writable root file system, a package

manager, a Unified Configuration Interface (UCI), and comprehensive and flexible support

for network-related features such as mesh networking, stateful firewalls, wireless function-

ality and security, Domain Name System (DNS) servers, and Dynamic Host Configuration

Protocol (DHCP) servers. The UCI is well suited for providing a unified and simple config-

uration of the entire system programmatically. The wireless functionality includes Virtual

Access Point (VAP) support where the same wireless device can be shared among multiple

basic service sets (BSS). A BSS is the basic building block of an 802.11 WLAN. Each BSS

can operate in a number of modes (infrastructure, ad hoc, mesh, etc.) and has its own

networking stack.

2.4 Network Virtualization

Network virtualization has become a hot topic in recent years among researchers and indus-

try professionals. The novelty as well as the diversity of perspectives among practitioners

2 Background 15

Fig. 2.4 A picture of the Arduino Yun.

and researchers in this area has caused ambiguity into what “network virtualization” ac-

tually is. Indeed, the term has been overloaded and a precise yet encompassing definition

has not been established yet [20]. The most elegant definition we came across is found in

[21] which states that “Network virtualization is the technology that enables the creation

of logically isolated network partitions over shared physical network infrastructures so that

multiple heterogeneous Virtual Networks (VNs) can simultaneously coexist over the shared

infrastructures”. Network virtualization aims at increasing the utilization of the physical

infrastructure, and provides flexible and extensible networks for tenants (the term tenant is

used to refer to the owner of a VN). This is achieved by providing proper isolation between

the different VNs that are sharing the same physical infrastructure and providing the nec-

essary abstractions for seamless integration by making the complexity of the underlying

network transparent to the tenant.

Before delving into the techniques used for network virtualization, let us enumerate the

components that constitute a network. In the most abstract sense, a network is composed

of nodes, links, and a topology. Although it can be argued that a topology is a derived

component from the nodes and links, a topology is distinct due to the management and

provisioning needed when discussing the network as a whole. Nodes can be the end hosts,

routers, switches or any other device in the network. The links include the interfaces, and

the medium (wireless, optical, twisted copper, etc.) that connects the interfaces together.

2.4.1 Node Virtualization

Node virtualization aims at sharing a network node among the different VNs while pro-

viding the necessary abstractions for isolation and configuration. Several techniques can

2 Background 16

be used to accomplish this task. These techniques fall under two general approaches. The

first approach, the hypervisor-based approach, provides a virtualization layer, called the

hypervisor, that can support multiple Virtual Machine (VM) instances at the same time.

Each VM can have its own virtual OS. The second approach, the container-based approach,

provides each virtual host with a user-level sandboxed environment.

Figure 2.5 provides an illustration of node virtualization using the first approach. A

hypervisor, also known as a Virtual Machine Monitor (VMM), is a virtualization layer

that enables VMs to share the same hardware. Each VM runs its separate router OS

with its network stack isolated from the other VMs running alongside it. The hypervisor

provides the necessary abstraction for virtualizing the Network Interface Card (NIC) to

isolate the ingress/egress traffic of each VM. This can be accomplished using a software-

based solution where the hypervisor exposes a virtual NIC (vNIC) abstraction to the guest

VM. The hypervisor then uses the link abstractions discussed in Section 2.4.2 to isolate the

traffic and route incoming traffic to the correct VM. Hypervisor vendors, such as VMware

and Xen, provide support for the vNIC abstraction. Another solution for supporting vNICs

is through hardware support where the NIC’s firmware can support multiple network stacks

on the same physical interface such as the case with VAPs.

OS (Hardware drivers,
etc.)

Hardware (NIC, CPU,
Memory, etc.)

Router Software (CLI,
routing Protocols, etc.)

Hypervisor

Hardware

Router
SW
OS

Router
SW
OS

Router
SW
OS

(a) (b)

Fig. 2.5 Router virtualization using hypervisors.

The second technique for node virtualization is the container-based approach. This

technique provides isolation by supporting multiple user spaces on the same kernel. Each

user space instance has its own OS abstractions such as process tables, file systems, and

network stack. Since the kernel is shared between containers, this approach provides higher

2 Background 17

performance over the hypervisor-based approach. However, sharing the kernel also leads

to less flexibility since only a subset of the operating system resources and functions is

virtualized. For example, processing non-IP packets requires modification to the kernel data

structures. This can be achieved in the hypervisor-based approach by modifying the guest

OS, while a container-based approach does not provide this flexibility since all the containers

share the same kernel data structures. Several implementations are available for container-

based virtualization including VServer [22], and NetNS [23]. Trellis [24] is an example

of a virtualization platform that uses the container-based approach for providing node

virtualization. Trellis uses VServer and NetNS containers to provide node virtualization

and uses Generic Routing Encapsulation (GRE) tunnels (discussed in the next section) to

provide link virtualization. Based on experimental results, Trellis reports a significantly

higher performance throughput in comparison to the hypervisor-based approach.

2.4.2 Link Virtualization

In this section, we describe the techniques used to virtualize the links that connects the

nodes on a network. Similar to node virtualization, link virtualization aims at sharing

the transport medium among multiple VNs while providing isolation between them [25].

Several link virtualization techniques have been developed that target various layers in the

protocol stack. Generally, the link virtualization techniques fall under two broad categories:

1) Physical layer virtualization 2) Data path virtualization.

Physical layer virtualization techniques partition the physical medium among the VNs

such that every VN can own a dedicated share of the link’s bandwidth. Examples include

the User Controlled LightPaths Project (UCLP) [26] which is a virtualization framework for

Synchronous Optical Networks (SONETs). UCLP provides software tools for partitioning

the bandwidth of the optical links among the VNs. Another example is the Multi-Purpose

Access Point (MPAP) which partitions the wireless spectrum and allows the tenants to

obtain a dedicated channel bandwidth on the wireless spectrum [27]. The advantage of

physical layer virtualization is that tenants can have custom network stacks that may be

different from the TCP/IP protocol stack. Another advantage is that the tenants own a

dedicated portion of the physical link bandwidth leading to more fine-tuned Quality of Ser-

vice (QoS) guarantees. The disadvantage of physical layer virtualization is that dedicated

and expensive network equipment must be purchased to support it, and as in the case of

2 Background 18

MPAP, the flexibility comes at the expense of having a bottleneck in the virtualization

layer.

Instead of dealing with physical layer manipulation, data-path virtualization aims at

providing virtual links through the manipulation of the data at the higher layers of the

protocol stack. Data-path virtualization is generally what is meant when discussing net-

work virtualization. It allows for virtual link support on commodity hardware. Data-path

virtualization is implemented in software which makes it easier to develop, test, deploy,

manage, and modify as compared to physical layer virtualization. The goal is to append

the data from the virtual host with unique information such that the underlying network

can process that information and route the packet to the destination virtual host. Three

general approaches are used for data-path virtualization:

• Labeling. This technique assigns a unique ID to each VN. Packets belonging to a given

VN are labelled or tagged before being sent out to the network. The nodes are aware

of the labels and can use them in their forwarding table to determine the correct

interface to route the packet through. Examples of this technique is 802.1q Virtual

Local Area Network (VLAN) tags and Multi-Protocol Label Switching (MPLS).

• Tunneling. With labelling, the physical nodes must have support for processing the

labels since these labels are not part of the default networking stack. Hence, this

technique cannot be used on an existing IP network without modifying all the nodes

of that network to add support for label processing. To overcome this, tunneling is

another technique that is widely used for implementing virtual links. Tunneling is

the method of encapsulating the data packet in an IP packet before sending it over

the network. The encapsulated data packet can be a layer-2 packet, a layer-3 packet

or any other packet format. This data packet is encapsulated in an IP packet so that

it can be forwarded by the existing underlay IP network to the next overlay node.

Once the packet reaches the overlay node, the packet is decapsulated and passed to

the virtual host for processing. Various tunneling protocols are widely used including

GRE tunnels, Internet Protocol Security (IPsec) tunnels, and Virtual eXtensible LAN

(VXLAN) tunnels [28].

• Flow Space Partitioning. Another technique brought about by Software Defined Net-

working (SDN) is partitioning the entire “flowspace” into disjoint non-overlapping

2 Background 19

subsets. A flowspace is a subset of the entire set of possible packet headers [29]. This

technique is used by FlowVisor [29] which is a network virtualization layer for Open-

Flow. OpenFlow decouples the control plane from the forwarding plane and allows

packets to be forwarded based on forwarding rules, or flow entries, in the switches’

tables. These flow entries are configured by an OpenFlow controller. Forwarding

occurs based on matching the packet header fields with the bit strings of the flow

entries. If a match exists, the packet is routed based on the destination port of the

flow entry. Otherwise, a control packet is sent to the controller to determine the

action. OpenFlow uses 10 fields to perform the matching operation with a total of

256 bits. These fields span the Media Access Control (MAC) address all the way to

the TCP port numbers. FlowVisor is responsible for isolating the flowspace of each

VN and for forwarding the ingress packets to the correct virtual switch. OpenRoads

[30] is an example of an OpenFlow platforms that uses FlowVisor to virtualize the

network and is targeted towards mobile and wireless applications.

In addition to resource sharing, data-path virtualization techniques are also used for

connectivity, such as in Virtual Private Networks (VPNs), and providing new services such

as in Peer-to-Peer (P2P) applications.

It is important to note that network virtualization is sometimes used to describe network

simulation and network emulation. The reasoning behind this is that the network nodes

are not physical but are emulated in software, as discussed previously, and hence can be

considered “virtual”. However, this usage is not encouraged since it does not pertain to

sharing a physical network or providing resource abstractions as noted in [20]. This is the

reason we opted to use the terms “process-oriented” and “testbed-oriented” to refer to the

different network emulation techniques rather than referring to them as virtual emulation

and physical emulation, respectively.

20

Chapter 3

Wireless GINI: Design and

Architecture

3.1 Design Considerations

In this section, we identify the high-level design requirements for creating a hybrid emulator

that is geared towards computer networking education. There are several aspects to take

into account when creating such a platform. More specifically, the adoption of the platform

is dependent upon the experience of 3 main groups: 1) the student, 2) the instructor, 3)

the university.

Each group has its own distinct requirements and considerations. From the student’s

perspective, the platform should be user-friendly, robust, and contains minimal emulator-

specific technicalities. The student should have an intuitive way of specifying the topology

without being distracted by the underlying procedures of setting up and running the virtual

network. Ideally, the student should only need to create a network specification file of a

VN. The specification file should have an easy format and only contains the parameters

that are relevant to the VN. The learning curve of the emulator should be low and the

emulator-specific commands that the student is required to learn should be minimal.

From the instructor’s perspective, the platform should support innovative experimental

scenarios that compliment and enhance the learning experience. It should also be flexible

enough to give the instructor the freedom to tailor the labs as needed. The platform should

be realistic to help students tie the theoretical background presented in class with practical

2015/08/16

3 Wireless GINI: Design and Architecture 21

real-life working experiments that the students can relate to.

From the university’s perspective, the lab should be affordable, easily deployable, and

maintainable. Ideally, the testbed should have the flexibility to be deployed anywhere

without needing a dedicated space. It should also be easy to setup and extend.

3.2 An Overview of Wireless GINI

As mentioned in Chapter 1, our aim is to address the need for an educational platform to

computer network experimentation. To facilitate the adoption of the platform, our design

philosophy was shaped by the considerations presented in the previous chapter. In this

section, we provide an overview of the Wireless GINI architecture and the components

that comprise the Wireless GINI platform. We start by discussing the physical setup of

the Wireless GINI platform. Figure 3.1 illustrates an overview of this physical setup. As

can be seen from the figure, the physical setup contains three main physical components:

1) The user machine (Lab PC or Laptop) 2) The Wireless GINI server 3) The Wireless

Mesh Network. The user machine could be a Lab PC provided by the university or a user’s

laptop that has GINI installed. The Lab Personal Computer (PC) is connected to the same

LAN that the Wireless GINI (WGINI) server is connected to. The laptop can be connected

to this LAN via an Access Point (AP).

The user machine serves two purposes: 1) it allows the user to interface with the WGINI

system, 2) it hosts the process-emulated part of the user’s topology. Wireless GINI must

seamlessly integrate with the existing GINI toolkit to allow the software to be extended in

a user-friendly manner. With the Wireless GINI system, users can integrate their process-

emulated networks running on the user machine with a custom VN deployed on the wireless

mesh network. The “client software”, the GINI software running on the user machine, is

extended to include client code for interfacing with the WGINI server.

Figure 3.2 shows an example of a topology specified by the user. The topology contains

the usual gLinuxes, gSwitches, and gRouters, as well as a new component called the yRouter.

A yRouter refers to a virtual node that runs on a mesh station. As can be seen from Figure

3.2, the user’s topology can be broken down into two subsets; the process-emulated network

subset, and the wireless VN subset. The process-emulated network subset contains the

gLinux, gSwitch, and gRouter nodes of the topology. This subset runs on the user’s machine

as described in Section 2.1. To run the wireless VN subset, the user sends a request to the

3 Wireless GINI: Design and Architecture 22

Mesh Portal

WGINI Server

Mesh Station

Mesh Station Mesh Station

Mesh Station

Mesh Station

Wireless Mesh Network

LAN

Lab PC

Laptop

WLAN

Fig. 3.1 The physical setup of the Wireless GINI platform.

WGINI server to deploy the VN on the wireless mesh. The request is sent using a RPC.

The request includes the Topology Specification File (TSF) of the user’s VN. The TSF is

an XML file that captures the VN graph as well as the network configuration parameters

of the VN. These network configuration parameters include the IP address, subnet mask,

and MAC address of each interface in the VN, and the routing table information of each

yRouter. Currently, the user must manually create the TSF. The extension of the gBuilder

and gLoader modules to support the auto-creation of the TSF is being developed as part

of a student project and is outside the scope of this thesis.

The second component, the WGINI server, is responsible for the management of the

WGINI testbed and for deploying and deleting VNs on the wireless mesh platform. Figure

3.3 provides an overview of the WGINI system architecture. As can be seen from the

figure, the WGINI server contains an RPC server that accepts commands from the RPC

client running on the user machine. Three APIs are exposed to the user; Check, Create,

and Delete. The Check API is used to provide information about the wireless platform to

the GINI software running on the user machine. It returns the number of mesh stations

available, and indicates which mesh station is the mesh portal. It queries the local database

3 Wireless GINI: Design and Architecture 23

gRouter

gLinux

gSwitch

gLinux_1

gSwitch_1

gLinux_2

gRouter_1

gLinux_3

gRouter_2

yRouter_1

yRouter_2

yRouter_3 yRouter_4

yRouter_5

yRouter_6

yRouter

Process-Emulated Network

Process-Emulated
Network

Wireless VN

Fig. 3.2 An example of a hybrid topology specified by the user.

to retrieve this information. The local database is used to keep track of the number of mesh

stations available, and the VNs that are currently deployed. The information returned by

Check is used by the user to insure that the number of yRouters to be used in his/her

topology does not exceed the number of the mesh stations available. It is also used by the

user to identify the mesh portal. The Create API is used to deploy the user’s VN on the

wireless mesh. It takes as input the TSF provided by the user. It then parses and validates

the file to make sure that the VN is deployable. If the TSF passes the validation check, the

WGINI server updates the local database to include the user’s VN information and deploys

the VN on the wireless mesh. Once the user terminates the experiment, the user invokes

the Delete API to free up the resources used by the user’s VN. The database is queried

to retrieve information about the resources used by the user and uses this information

to delete all the components of the user’s VN. Once complete, the database is updated

accordingly.

The third component of the Wireless GINI system is the wireless mesh network. The

wireless mesh network is the physical testbed upon which the VNs will be deployed. The

physical testbed is comprised of several mesh stations that are connected using the 802.11s

protocol. The Arduino Yuns are used as the mesh stations. The mesh portal is connected

to the LAN that connects to the WGINI server. Every mesh station is pre-configured

to boot up with a mesh interface that has the same mesh profile as all the other mesh

stations. The IP address of each mesh station on the MBSS is assigned statically and is

3 Wireless GINI: Design and Architecture 24

RPC Server
WGINI Server

Create DeleteCheck

WGINI Modules

RPC Client

Reply
Status

Command
+ Config.

yRouter

Kernel

yRouter

Mesh Station

yRouter

Kernel

yRouter

Mesh Station

yRouter

Kernel

yRouter

Mesh Station

User

Local
Database

RPC Client

GINI Toolkit

Fig. 3.3 Overview of the Wireless GINI design.

stored beforehand in the local database.

3.3 Supporting Concurrent Topologies

Now that we have a general overview of the WGINI system, it is time to dig deeper into

the platform. We start with the wireless mesh network and examine the techniques used

to create VNs on the physical wireless mesh network setup. As mentioned in Section

2.4, to support network virtualization, we must implement node virtualization and link

virtualization. In this section, we describe how node virtualization and link virtualization

are achieved to create overlays on the wireless mesh network for each requesting user.

3 Wireless GINI: Design and Architecture 25

3.3.1 Node Virtualization

Figure 3.4 illustrates node virtualization in Wireless GINI. As shown in the figure, each

yRouter runs as a user-level process in OpenWrt. A yRouter is essentially a gRouter that

has been extended to support virtual links and to run on the OpenWrt distribution. Each

yRouter can have multiple tunnel interfaces. Each tunnel interface connects to another

yRouter that is running on a different mesh station but is part of the same VN.

Tunnel
Interface

Tunnel
Interface

Tunnel
Interface
Tunnel

Interface

User space

Kernel Space

Other
Processes

running on
OpenWrt

Tunnel
Interface

Tunnel
Interface

Mesh
Interface

Mesh Station

Tunnel
Interface
Tunnel

Interface
Tunnel

Interface

OpenWrt

Net.
Stack

Net.
Stack

Net.
Stack

yRouter yRouter yRouter

Fig. 3.4 Node Virtualization in Wireless GINI.

Each user can run at most one yRouter on a given mesh station. The yRouters are

isolated from each other using the process abstraction provided by the OpenWrt OS. Each

yRouter has its own networking stack that is residing in user space. This negates the need

for an OS level isolation support such as the one provided by container-based or hypervisor-

based virtualization. Moreover, the other isolation features, such as filesystem isolation,

and process table isolation, are not needed since the user can only run one process on a

given mesh station and the yRouter does not need filesystem support to function. Avoiding

the resource-expensive OS virtualization layer allows for a more lightweight implementation

which, in turn, allows the resource-constrained mesh station to support a larger number of

VNs concurrently. Moreover, it leverages the existing OpenWrt firmware, available on the

Arduino Yun out-of-the-box, which allows for an easier setup.

3.3.2 Link Virtualization

In this section, we demonstrate how link virtualization is achieved in Wireless GINI. As

mentioned previously, a VN consists of yRouters running on various mesh stations. These

3 Wireless GINI: Design and Architecture 26

mesh stations are connected together by virtue of being on the same MBSS. To connect

yRouters together, we opted to use the tunnelling technique to create the virtual links.

Unlike the other link virtualization techniques, such as physical layer virtualization or

flowspace partitioning, tunnelling allows us to utilize the underlying physical setup with-

out resorting to additional hardware. This makes the platform easier to setup and more

affordable. Moreover, it provides us with the flexibility of decoupling the physical setup

from the VN setup. This allows the VNs to be deployed on other physical setups, such as

newer mesh networking protocols, without affecting the VN setup.

To support link virtualization, a new device driver was developed on the yRouter called

the tun driver. This tun device driver resides in the Virtual Private Link (VPL) module of

the yRouter. The VPL module is also where the Unix socket device driver resides. Figure

3.5 provides an overview of the yRouter. As can be seen from the figure, the VPL module is

responsible for emulating the physical layer by pushing packets from one yRouter instance

to the other.

Ethernet Module

ICMP Module
QoS Module

IP Module

ARP Module

CLI Module

Routing
Table

ARP Table
Unix tun

VPL Module

yRouter

Ethernet Module

ICMP Module
QoS Module

IP Module

ARP Module

CLI Module

Routing
Table

ARP Table
Unix tun

VPL Module

yRouter

Virtual Link

Fig. 3.5 An overview of the yRouter.

Packets are tunnelled from one yRouter to the other using UDP Sockets. Each interface

on a yRouter has its own UDP socket. This UDP socket binds to a unique UDP port on

the mesh interface. The WGINI server is responsible for allocating this unique UDP port

during the deployment of the VN.

3 Wireless GINI: Design and Architecture 27

Moreover, the WGINI server configures each tun interface with the destination IP ad-

dress and UDP destination port. This destination IP address is the MBSS IP address of

the mesh station where the destination yRouter resides. The destination UDP port is the

unique UDP port that the tun interface on the other end of the virtual link is listening

on. Configuration of the tun interface’s UDP source port, destination IP address, and

destination UDP port is handled automatically by the WGINI server and requires no user

intervention. The user merely has to specify that his/her topology requires a connection

between two different mesh stations on the wireless mesh.

When a packet is sent over the tun interface, the packet gets encapsulated inside a UDP

packet and is sent over the wireless channel to the destination mesh station via the mesh

interface. The packet is then decapsulated at the destination mesh station and sent to

the destination yRouter’s tun interface on the other end. Consider the example shown in

Figure 3.6 where the user specifies a connection between mesh station 1 and mesh station

2. A yRouter is instantiated on each mesh station and a virtual link is established between

them. The user specifies the network parameters of the virtual interfaces as shown in the

figure. Let us go through the example where an Internet Control Message Protocol (ICMP)

ping packet is sent from yRouter1 to yRouter2. Figure 3.7 illustrates the encapsulation and

decapsulation procedure. The ICMP module creates the ICMP ping request packet and

pushes it to the IP module. The IP module, in turn, encapsulates the ping request in an

IP datagram. Notice that the IP header information pertains to the virtual link interfaces.

The IP module then passes the packet over to the ethernet module. Similarly, the ethernet

module encapsulates the packet in an ethernet frame with the ethernet header populated

with the MAC addresses of the virtual interfaces. The ethernet module then passes the

frame over to the interface’s device driver. The interface’s device driver is essentially a pre-

configured UDP socket. From there, the packet is encapsulated in a UDP datagram and

sent over the mesh interface. As mentioned previously, the WGINI server insures that this

UDP socket is correctly configured to send the packet to the correct yRouter (in this case

yRouter2). This entails that the packet should reach the correct mesh station (mesh station

2) and from there reach the correct virtual interface. To achieve this, the destination IP

address and the UDP destination port number of the UDP socket are pre-configured to be

the IP address of mesh station 2 on the MBSS and the port number that yRouter2’s tun0

interface is listening on, respectively.

This same link virtualization technique is used to connect the gRouter running on the

3 Wireless GINI: Design and Architecture 28

Wireless Mesh

yRouter_1 yRouter_2

Interface: tun0
IP address: 192.168.0.1
NetMask: 255.255.255.0
MAC: 01:AB:24:34:68:2F

Interface: tun0
IP address: 192.168.0.2
NetMask: 255.255.255.0
MAC: 54:CD:41:33:9B:01

Mesh Station 1
IP address: 10.0.0.1

Mesh Station 2
IP address: 10.0.0.2

Fig. 3.6 An example of a simple VN.

user’s machine to the yRouter running on the mesh portal. The only difference is the

underlying physical network. The virtual link between the user’s machine and the mesh

portal runs over the wired LAN while the virtual link between yRouters runs over the

wireless mesh.

3.4 Integrating Physical Devices

We have seen in the previous section how the tun device driver facilitates the communi-

cation between yRouters on the mesh network. We have also seen the underlying network

virtualization techniques of this tun interface. We have seen that the network virtualization

techniques solves two issues: 1) It provides us with resource abstractions that facilitate the

sharing of the wireless mesh 2) It allows us to connect the process-emulated part of the

topology to the Wireless VN part. We now shift our focus to the following question: how

can we integrate wireless devices that are not part of the wireless mesh network into the

user’s topology?

3 Wireless GINI: Design and Architecture 29

ICMP Ping Request

Src: 192.168.0.1
Dst: 192.168.0.2

IP Hdr
Dst: 54:CD:41:33:9B:01
Src: 01:AB:24:34:68:2F

Eth Hdr

ICMP Ping
RequestSrc: 192.168.0.1

Dst: 192.168.0.2

IP Hdr
Dst: 54:CD:41:33:9B:01
Src: 01:AB:24:34:68:2F

Eth Hdr
Src: 32000
Dst: 32001

UDP Hdr
Src: 10.0.0.1
Dst: 10.0.0.2

IP Hdr802.11s
Header

Wireless Mesh

yRouter_1

ICMP Ping Request

Src: 192.168.0.1
Dst: 192.168.0.2

IP Hdr
ICMP Ping Request

ICMP Module

IP Module

Ethernet Module

VPL module

VPL Module

Src: 192.168.0.1
Dst: 192.168.0.2

IP Hdr
Dst: 54:CD:41:33:9B:01
Src: 01:AB:24:34:68:2F

Eth Hdr
ICMP Ping Request

OpenWrt Kernel

ICMP Ping
RequestSrc: 192.168.0.1

Dst: 192.168.0.2

IP Hdr
Dst: 54:CD:41:33:9B:01
Src: 01:AB:24:34:68:2F

Eth Hdr
Src: 32000
Dst: 32001

UDP Hdr

UDP Load

Mesh Station 1

OpenWrt Kernel

Mesh Station 2

yRouter_2

Src: 192.168.0.1
Dst: 192.168.0.2

IP Hdr ICMP Ping
RequestDst: 54:CD:41:33:9B:01

Src: 01:AB:24:34:68:2F

Eth Hdr
Src: 32000
Dst: 32001

UDP Hdr

Fig. 3.7 An illustration of the tunnelling process.

3 Wireless GINI: Design and Architecture 30

Adhering to the design considerations set forth in Section 3.1, we require that this

integration be easy to setup, and require no additional hardware. We expect that external

wireless devices can integrate into the user’s topology out-of-the-box. No modification

to the wireless device’s software or installation of additional software/hardware should be

required. The aim should be to extend the platform to have the feature of connecting

generic wireless devices into the topology in a familiar way.

To achieve this, we utilize OpenWrt’s VAP feature. As mentioned in Section 2.3, the

VAP feature allows the kernel to share multiple interface profiles on the same wireless de-

vice. These profiles could have different modes of operation (mesh, ad-hoc, infrastructure)

and networking stacks residing in kernel space. The Arduino Yun’s wireless device can

support up to 8 different interface profiles at a given time. We leverage this VAP feature

to deploy infrastructure mode 802.11 WLANs that generic Wi-Fi devices can connect to.

Infrastructure mode WLANs is the familiar WLAN mode that is used by 802.11 APs to

provide wireless clients with network connectivity by broadcasting their SSIDs.

We extended the WGINI platform to take into account this feature. Specifically, the

Check API was updated so that it returns the number of available wireless profiles left on

each mesh station. We also updated the Create API to accept an updated TSF format.

The updated TSF format allows the user to specify the mesh stations that he/she would

like to deploy a WLAN on. A user can deploy a WLAN on each mesh station that is part

of his/her VN. However, a user can only deploy one WLAN on a given mesh station. The

TSF allows the user to specify the network parameters of the WLAN interface such as the

IP address, and the SSID. The Delete function was updated to account for the deletion of

the WLAN interfaces that the user deployed to free up the resource so that it can be used

by other users. The database was also updated to keep track of the WLANs deployed on

each mesh station. This allows the WGINI server to check whether a mesh station has a

WLAN available before deploying the WLAN.

The yRouter has also been extended to integrate the WLAN into the user’s topology. A

new device driver was created in the VPL layer called the wlan device driver. Upon creation

of a wlan interface on a yRouter, the yRouter executes a bash script that creates a new

VAP interface in OpenWrt. The bash script takes as input the IP address, MAC address,

and SSID provided by the user. The bash script then uses UCI, discussed in Section 2.3, to

create the VAP interface. The script uses the UCI API to configure the network parameters,

wireless parameters, and firewall rules of the new interface. The script also sets up a DHCP

3 Wireless GINI: Design and Architecture 31

Wireless Device

yRouter

tun tun tunwlan

VPL

Mesh Interface

yRouter

tun tun wlantun

VPL

udp udp udp udp udp udp

VAP Interface VAP Interface

Mesh Station

yRouter
Modules

yRouter
Modules

rawraw

raw

udp

Raw socket

UDP socket

Fig. 3.8 WLAN support on the yRouter.

server on the VAP interface. The DHCP server allows wireless devices connected to the

VAP to be assigned IP addresses automatically. Once the new VAP interface is brought

up, the yRouter creates a raw socket that binds to the VAP interface. A raw socket is

a socket type provided by the Linux kernel that is used to capture incoming packets and

inject packets to an interface while bypassing the normal TCP/IP processing done at the

kernel. Since a copy of all the incoming packets are captured by the raw socket and sent

to the yRouter, the firewall rules on the VAP interface are configured such that incoming

packets are dropped by the kernel. This is done so that the packets destined to the VAP do

not interfere with the kernel networking stack. Once the packet is captured by the yRouter,

the packet is processed by the networking stack of the yRouter and routed to the correct

destination thereby becoming part of the user’s VN. Figure 3.8 provides an overview of a

yRouter that contains the wlan interface support. Once the user terminates his/her VN, a

bash script is executed that uses the UCI API to delete the VAP interface residing in the

kernel.

32

Chapter 4

Wireless GINI: Implementation and

Deployment

4.1 The Wireless GINI Interface

Now that we have a comprehensive picture of the WGINI system, it is time to go over some

of the implementation details. In this section, we go over the implementation details of the

sub components of the WGINI system. We also go over the WGINI interface. Specifically,

we discuss the RPC client-server implementation as well as the TSF format.

4.1.1 RPC Client-Server Implementation

The xmlrpclib [31] Python library is used for the RPC client-server implementation. xml-

rpclib uses the XML-RPC protocol to implement RPCs. XML-RPC runs over HTTP and

uses XML to specify the API to be invoked and to pass the input parameters of the API.

When a user machine loads up GINI, an RPC client is initialized. The RPC client is passed

the IP address of the WGINI server and the TCP port that the RPC server on the WGINI

server is listening on. It uses this information to connect to the RPC server so that sub-

sequent RPC calls can be performed directly using the RPC client connection. The RPC

server handles one request at a time using a single-threaded implementation. The server

queues any request that arrives while another request is being serviced. This avoids over-

complicating the design, caused by implementing techniques to avoid race conditions and

stale information, based on a multi-threaded implementation. The downside is the poten-

2015/08/16

4 Wireless GINI: Implementation and Deployment 33

tial increase in latency in servicing a request when more than one request is queued. This

is due to the decrease in server utilization especially during long I/O tasks, since request

executions are not overlapped. However, given the typical class size and the anticipated

frequency of requests, we predict that the increased complexity of a multi-threaded imple-

mentation is currently not warranted. This decision may be revised in the future based on

feedback from adopters.

Currently, the user must manually specify the IP address and the TCP port of the

RPC server. Future work aims at making this procedure transparent to the user by using

the multicast Domain Name System-Service Discovery (mDNS-SD) standard to advertise

the WGINI services. mDNS-SD is a protocol defined in RFC6762 [32] for advertising and

discovering services on a LAN using DNS-like operations without the requirement of a

conventional DNS server running on the local network. mDNS-SD are easy to setup and

require no adminstration or dedicated infrastructure. Using mDNS-SD, the WGINI server

can advertise its IP address and port number of its service on the LAN. Avahi and Bonjour

are free implementations of the mDNS-SD standard that run natively on Linux and MAC

OSs, respectively.

4.1.2 The Topology Configuration File

As mentioned previously, the TSF is an XML file that captures the graph and network

parameters of the deployed VN. It allows the user to specify his/her topology transparently

without being concerned with the underlying virtual node and link implementation. The

Document Type Definition (DTD) of the TSF is provided in Appendix A.1. DTD is a set

of markup declarations that is conventionally used to define the structure, elements, and

attributes of XML documents. Figure 4.1 illustrates the tree structure of the TSF. The

The + sign indicates that the child element must have one or more occurrences. The ∗ sign

indicates that the child element must have zero or more occurrences. The ? sign signifies

that the child element must have zero or one occurrences.

The following is a description of the elements found in the TSF:

• Station. This element specifies that a yRouter should be deployed on the mesh station

that has the unique ID specified by the child element ID. Each mesh station has a

pre-configured unique ID. Multiple Station elements can be declared in a TSF.

4 Wireless GINI: Implementation and Deployment 34

Root element:
<VN>

Element:
<Station>

Element:
<ID>

Integer

Element:
<TunInterface>

Element:
<BBInterface>

Element:
<WlanInterface>

Element:
<InterfaceNo>

Element:
<IPAddress>

Element:
<HWAddress>

Element:
<REntry>

Element:
<DestIface>

Element:
<DestStaID>

Element:
<SSID>

+

* ? ?

+

Element:
<NetMask>

Element:
<Net>

Element:
<NextHop>

Text Text Text

Integer

TextIntegerInteger

Fig. 4.1 On overview of the XML Tree of the TSF.

4 Wireless GINI: Implementation and Deployment 35

• TunInterface. This element specifies that a tun interface should be instantiated on

the yRouter. The IP address and MAC address of this virtual tun interface is supplied

by the IPAddress and HWAddress elements, respectively. The DestStaID parameter

signifies the mesh station ID that this interface should connect to.

• BHInterface. This element specifies that this interface connects to a gRouter on the

user machine. Only a mesh portal can have a BHInterface.

• WlanInterface. This is an optional element. If this element is present, a wlan interface

is set up on the yRouter. The IP address and SSID of the wlan interface are specified

by the IPAddress and SSID elements, respectively.

• REntry. This element specifies the routing entries for the interface.

A snippet of a TSF file is shown below. Note how the user only specifies the network

parameters relevant to his/her VN in the TSF. The user does not need to consider any of

the physical setups such as the UDP ports, physical IP addresses, firewall rules, etc. All

these underlying configurations are handled automatically by the WGINI server. We will

see how this is handled in the next section.

<VN>

<Station>

<ID>1</ID>

<TunInterface>

<InterfaceNo>0</InterfaceNo>

<DestStaID>2</DestStaID>

<IPAddress>192.168.0.1</IPAddress>

<HWAddress>1a:1a:1a:1a:1a:10</HWAddress>

<REntry>

<Net>192.168.0.0</Net>

<NetMask>255.255.255.0</NetMask>

<NextHop>192.168.0.2</NextHop>

</REntry>

<REntry>

...

</REntry>

4 Wireless GINI: Implementation and Deployment 36

</TunInterface>

<TunInterface>

...

</TunInterface>

<WlanInterface>

<InterfaceNo>2</InterfaceNo>

<IPAddress>192.168.3.1</IPAddress>

<SSID>MyWirelessVN</SSID>

<REntry>

<Net>192.168.3.0</Net>

<NetMask>255.255.255.0</NetMask>

<NextHop>None</NextHop>

</REntry>

</WlanInterface>

</Station>

<Station>...

</Station>

</VN>

4.2 The WGINI Server

The WGINI server is comprised of three components: 1) The RPC server 2) The local

database 3) The WGINI APIs. We’ve already gone over the RPC server in Section 4.1.1.

In this section, we provide an overview of the implementation of the other two components.

4.2.1 The Local Database

We start with the implementation of the local database. The local database was im-

plemented using SQLite [33]. SQLite is an open-source implementation of a relational

database management system. SQLite implements most of the Structured Query Language

(SQL) standard. Unlike many other database management systems that use a client-server

database engine, SQLite is disk-based allowing the database to be easily embedded into

the applications by having its library linked in with the program. SQLite is easy to setup,

lightweight, and reliable making it the de-facto choice for local data storage for individual

4 Wireless GINI: Implementation and Deployment 37

applications.

The local database contains three tables; the Station table, the Topology table, and the

Interface Table shown in Tables 4.1, 4.2, and 4.3, respectively.

Table 4.1 The Station Table.

Column Name Type Key Remarks
ID Integer (Autoincrement) Primary Key Surrogate Key

IPAddress Text No
MaxWlanInterfaces Integer No

isPortal Integer No Boolean

Table 4.2 The Topology Table.

Column Name Type Key Remarks
ID Integer (Autoincrement) Primary Key Surrogate Key

HostIP Text No

Table 4.3 The Interface Table.

Column Name Type Key Remarks
StationID Integer Foreign Key Alternate Key (1 of 3) Station.ID
DestStaID Integer Foreign Key Alternate Key (2 of 3) Station.ID
TopologyID Integer Foreign Key Alternate Key (3 of 3) Topology.ID

Type Text No Tun|Wlan|BH
InterfaceNo Integer No

The Station table stores the relevant information of the mesh stations. For each mesh

station in the MBSS, the table stores its unique ID, its physical IP address on the MBSS,

the maximum number of wlan interfaces it can support, and whether or not this mesh

station is the mesh portal. The maximum number of wlan interfaces can be increased by

adding another USB wireless dongle to the Arduino Yun or by using another embedded

device altogether. The Station table is pre-configured by the instructor or lab administrator

during setup. Future work aims at automating this process by having the mesh stations

communicate directly with the WGINI server when they enter and leave the MBSS.

Each VN that is currently deployed is assigned a unique ID. When a user sends a request

to deploy a VN, the IP address of the user is captured by the WGINI server. The Topology

4 Wireless GINI: Implementation and Deployment 38

table maps the unique ID of the requesting user’s VN to the IP address of the requesting

user.

The Interface table stores information about all the interfaces that are currently de-

ployed on the wireless mesh. Each interface entry contains the ID of the mesh station that

this interface is deployed on, the topology ID that this interface belongs to, the interface

number of this interface on the yRouter, and the interface type. The interface type could

be of type Tun, Wlan, or BH, signifying whether this interface is a tun interface, wlan in-

terface, or a “back-haul” (BH) interface, respectively. A BH interface is the interface that

connects the wireless VN to the process-emulated portion of the topology that is running

on the user machine. In case of a tun interface, the Interface table additionally stores the

ID of the mesh station that contains the yRouter that this tun interface connects to.

4.2.2 The WGINI API

In this section, we discuss the implementation details of the WGINI server API modules.

Specifically, we discuss what occurs when the user invokes any of the three APIs exposed,

namely, Check, Create, and Delete. These APIs provide a user-friendly and comprehensive

way of creating and deleting VNs.

The Check API

The Check API is called by the user to retrieve information about the wireless mesh net-

work. The user does not need to pass any input parameters to the function. When the

Check API is invoked, it queries the local database to retrieve all the entries in the Station

Table. It then creates an array of objects that are returned to the user. Each object con-

tains the mesh station ID, the maximum number of wlan interfaces available, and a boolean

specifying whether this mesh station is a mesh portal. The object also contains the cur-

rent number of wlan interfaces deployed on each station. The WGINI server retrieves the

number of wlan interfaces deployed on a given station by querying the Interface table. The

user can then use this returned object array to determine the number of stations available,

and whether or not a wlan interface can be deployed on a given station.

4 Wireless GINI: Implementation and Deployment 39

The Create API

Figure 4.2 illustrates the Create API procedure. The Create API takes as input the TSF file

as well as the IP address of the requesting user. The IP address is automatically retrieved

when the user sends the request. The API starts by parsing the TSF file to extract its

contents into Python objects. It then validates the TSF file to insure that it adheres to

the design requirements. Specifically, if a backbone interface is specified, it insures that it

is present on the mesh portal, it insures that at most one wlan interface is specified on a

given station, and it insures that a wlan interface is available on each station where a wlan

interface was specified. If the TSF passes the validation stage, an entry is added to the

Topology table for the requesting user’s IP address. The Interface table is also updated

to include all the interfaces of the user’s requested topology. Once this step is complete,

the topology is ready for deployment. The next stage is to create the configuration scripts

for each yRouter in the topology. The configuration scripts are executed by the yRouter

upon start up. The configuration scripts contain yRouter specific commands to set up the

required interfaces on the yRouter. The scripts also contain the routing information of each

yRouter. Currently, the GINI toolkit uses static routing to populate the routing tables of

the gRouters and yRouters. Future work aims at developing support for dynamic routing

protocols, such as Open Shortest Path First (OSPF), on the routers.

The tun interface is automatically assigned a UDP source port based on the following

equation:

UDPSourcePort = 50000 + 100 × TopologyID + InterfaceNo (4.1)

50000 is an arbitrary number that falls within the range of 49152 − 65535. This range

is dedicated to private ports that cannot be registered by the Internet Assigned Numbers

Authority (IANA) [34]. The maximum number of topologies that can be supported at a

given time is set to 100. The maximum number of interfaces on a given yRouter is also

set to 100. Hence, for a given tun interface on a given topology, the UDP source port

will be 5XXYY where XX is the topology number and YY is the interface number. This

partitioning is somewhat similar in concept to flowspace partitioning, described in Section

2.4.2, albeit at a rather smaller scale.

The tun interface creation command on the yRouter takes as input the virtual IP

4 Wireless GINI: Implementation and Deployment 40

XML Parser

TSF

Validate

Update Database

Local
Database

Create Configuration
Files

Copy Config. Files
and run yRouters

WGINI Server
Create

Wireless Mesh

Fig. 4.2 The Create API procedure.

4 Wireless GINI: Implementation and Deployment 41

address and virtual MAC address of the interface. It also takes as input the physical IP

address and the interface number of the tun interface on the other end of the virtual link.

The Station table is queried with the destination station ID to retrieve the physical IP

address of the destination mesh station. The Interface table is queried with the topology

ID, and destination Station ID to retrieve the interface number of the destination interface.

Equation 4.1 is then used to calculate the destination port number.

The wlan interface creation command on the yRouter takes as input the IP address,

MAC address, and SSID of the wlan interface. It then forks a process that runs a bash

script that creates a new VAP interface in OpenWrt and assigns it the input IP address,

MAC address, and SSID. As mentioned in Section 3.4, the bash script also sets up the

firewall rules, and a DHCP server on the VAP interface. The yRouter then binds a Raw

Socket to the newly created VAP interface.

Once the configuration file for a yRouter is created, the next step is to copy this config-

uration file to the appropriate mesh station and run the yRouter. The WGINI server uses

the Secure Copy (scp) command to copy the configuration file to a designated directory on

the mesh station. It then uses screen [35] to run the yRouter passing it the path of the

configuration file. Screen is a virtual console multiplexer that is used to separate programs

from the Unix shell that started the program. This allows the program to run as a daemon

by “detaching” the virtual console. The console can be re-attached by invoking screen and

passing it the name of the virtual console. We assign the name of the virtual console based

on the topology number to insure that the name is unique and can be easily retrieved. Re-

attaching the virtual console allows us to access the standard input/output of the yRouter

console during run-time.

The Delete API

Once a user is done with an experiment, the user invokes the Delete API to free up the

resources that are held by the VN. Figure 4.3 illustrates the Delete API procedure. The

Delete API starts by retrieving the user’s topology ID from the user’s IP address. It then

queries the Interface table to retrieve all the mesh stations that have a wlan interface

deployed by the user. A list of station IDs of all the matching entries is returned. The

WGINI server then queries the Station Table to retrieve the IP address of each mesh

station on the MBSS. It uses the IP addresses to ssh into each station, and runs a bash

4 Wireless GINI: Implementation and Deployment 42

script that deletes the wlan interface from the kernel. Once this step is complete, it is time

to kill all the yRouters that are part of the user’s topology. The interface table is queried

again for all entries that have a matching topology ID but this time without specifying the

interface type. Note that the SQL query used does not return duplicate entries. A list of

all the station IDs used by the topology is returned. Similarly, this list is used to ssh into

each station on the list and kill the yRouter process pertaining to the user’s topology. The

yRouter is programmed to save a file that contains the yRouter’s process ID in a designated

directory. The file is named with the user’s topology ID. This file is read by the bash script

to retrieve the process ID to invoke the kill command on the OS. Once complete, the local

database is updated by removing the user’s interface entries in the Interface table and the

user’s topology entry in the Topology table.

Delete Wlan
Interfaces Kill yRouters Update

Database

Local Database

Delete

WGINI Server

Wireless Mesh

Fig. 4.3 The Delete API procedure.

43

Chapter 5

Wireless GINI: Evaluation and Use

Cases

5.1 Performance Evaluation

We’ve seen in the previous chapters the technologies behind Wireless GINI that enable

isolation and connectivity. In this section, we focus on the performance aspect of the

system, or, more specifically, latency and bandwidth. Primarily, we evaluate the latency

and bandwidth effects from three dimensions. The first dimension is how latency and

bandwidth are impacted in relation to the size of an individual VN. The second dimension

is how latency and bandwidth are impacted by the activity of other VNs deployed on the

platform. The third dimension is the packet processing overhead incurred by using the

yRouter. It is important to note that our goal is not demonstrate how our environment

outperforms other environments. Indeed, this is not possible since no other platform with

the same features exists in the literature. As elaborated in Chapter 6, each existing system

has its unique design choices and features that provide the ability to perform certain kinds

of experiments, but which limit the ability to perform other kinds of experiments. The

Wireless GINI system is no different. Hence, our goal in this chapter is to investigate the

performance characteristics of the system with respect to certain important aspects of the

design.

2015/08/16

5 Wireless GINI: Evaluation and Use Cases 44

5.1.1 Impact due to Topology Size

In this section, we evaluate the end-to-end latency and bandwidth as we increase the

number of yRouters between the end hosts. The experimental setup is shown in Figure 5.1.

The physical setup consists of one PC, one switch, eight mesh stations, and one laptop.

The PC is a Dell Studio machine, with a 2.4 GHz Intel Core 2 Quad processor and 4 GB

800 MHz DDR2 RAM, running Ubuntu 12.04. The laptop is a Toshiba Satellite, with a

2.0 GHz AMD Turion X2 Dual-Core processor and 3 GB 400 MHz DDR2 RAM, running

Ubuntu 14.04. The stations are the Arduino Yuns discussed in Section 2.3. We evaluate

the latency and bandwidth between the gLinux and the laptop as the hop count between

the two end hosts gradually increases from 1 yRouter to 8 yRouters. The iperf command is

used to measure the bandwidth between the end hosts while the ping command is used to

measure the latency. The average of 30 samples is calculated to determine the latency. The

maximum standard deviation was measured at 13.29, which occurs when the hop count is

8.

The laptop is initially connected to the WLAN deployed on yRouter1. We measure

the bandwidth and latency at this setup. As can be seen from the figure, the traffic

goes through 1 gRouter and yRouter. We then disconnect the laptop from yRouter1’s

WLAN and connect it to yRouter2’s WLAN. The traffic now goes through 1 gRouter and

2 yRouters. Similarly, we measure the latency and bandwidth at this new setup. We repeat

the same procedure for yRouter3 up to yRouter8. The results are shown in Table 5.1. The

plots of the Round Trip Time (RTT) and bandwidth are shown in Figures 5.2a and 5.2b,

respectively. As can be seen from the figures, the latency linearly increases with respect to

the hop count (at an average rate of about 20%), while the bandwidth linearly decreases

(at an average rate of about 5%).

5.1.2 Impact due to Other Virtual Networks

Since the VNs share the same processor, wireless device, and wireless channel, it is inevitable

that the activity of one VN effects the performance of the other VNs that are simultaneously

deployed on the platform. We investigate the inter-VN impact on latency and bandwidth

by deploying two VNs simultaneously as shown in Figure 5.3. The smartphone used is an

iPhone6 running iOS 8.3. The first topology is used to inject packets into the network to

emulate activity. We use the hping2 command to inject ICMP echo request packets with

5 Wireless GINI: Evaluation and Use Cases 45

gLinux_1

gRouter_1

yRouter_1

yRouter_2 yRouter_7
yRouter_8

Laptop

PC

Station 1 Station 2 Station 7 Station 8Switch

wlan interface

Wireless Mesh Network

Fig. 5.1 Experimental setup for evaluating topology size effects on band-
width and latency.

Table 5.1 Latency and bandwidth measurements due to hop count increase.

Number of yRouters RTT (ms) Bandwidth (Kbits/s)
1 17.780 743
2 27.104 739
3 34.583 695
4 36.305 649
5 40.965 629
6 46.297 592
7 55.066 575
8 57.206 528

5 Wireless GINI: Evaluation and Use Cases 46

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

RT
T

(m
s)

Number of yRouters

(a) RTT vs Hop Count.

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th
 (K

bi
ts

/s
)

Number of yRouters

(b) Throughput vs Hop Count.

Fig. 5.2 The bandwidth and latency plots with respect to the hop count.

a payload of 500 bytes. The packets are generated by gLinux1 and destined to yRouter3.

We gradually increase the traffic intensity by decreasing the wait time between packet

injections. Topology 2 is used for performance measurements. We measure the latency

and throughput on Topology 2 between the smartphone and the laptop at several packet

injection rates of the gLinux running on Topology 1. Table 5.2 shows the results. The RTT

and bandwidth plots are shown in Figures 5.4a and 5.4b, respectively.

As shown in Figure 5.4a, the RTT time on Topology 2 slightly increases as we increase

traffic on Topology 1. On the other hand, the bandwidth gradually decays before plateauing

at a certain bandwidth. The reason for this plateau is that beyond this point, the two

yRouter processes are equally competing for CPU utilization. At low injection rates, the

yRouters on Topology 1 are mostly idle. Hence, during the bandwidth measurements,

most of the processing power at the stations and the bandwidth at the wireless channel are

dedicated to the yRouters of Topology 2. As the injection rates increase, the two yRouters

on a given station start competing for CPU time and channel bandwidth. Eventually, the

packet injection rate becomes greater than the yRouter ’s packet processing rate. As a

result, the incoming packets get queued at the input buffer of Topology 1’s yRouters. The

input buffer eventually becomes full and all the extra incoming packets are dropped by

the yRouters. In other words, the bottleneck becomes the processing rate of the yRouters.

Since the OS’s process scheduler is responsible for distributing CPU time among the running

processes, each yRouter process gets a share of the processing time based on the scheduler’s

policy. Generally, each yRouter will get an equal portion of the processing time.

5 Wireless GINI: Evaluation and Use Cases 47

gLinux_1

gRouter_1

yRouter_1

yRouter_2

yRouter_3

SmartphoneLaptop
yRouter_1 yRouter_2

Topology 1

Topology 2

Fig. 5.3 Experimental setup for evaluating inter-topology effects on band-
width and latency.

Table 5.2 Latency and bandwidth measurements with respect to the various
packet injection periods.

Packet Injection Period (ms) RTT (ms) Bandwidth (Kbits/s)
250 77.611 696
50 81.691 579
10 89.433 445
5 95.924 419

5 Wireless GINI: Evaluation and Use Cases 48

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25

RT
T

(m
s)

Packet Injection Rate (kHz)

(a) RTT vs packet injection rates.

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25

Ba
nd

w
id

th
 (K

bi
ts

/s
)

Packet Injection Rate (kHz)

(b) Throughput vs packet injection rates.

Fig. 5.4 The bandwidth and latency plots between the two end hosts on
Topology 2 with respect to the packet injection rates caused by the end hosts
on Topology 1.

5.1.3 Virtualization Overhead

We now investigate the overhead incurred due to the virtualization techniques employed.

There are two main sources of overhead: 1)The overhead due to processing the packets in

user space as opposed to the kernel 2) The overhead due to encapsulation and decapsu-

lation. The experimental setup is shown in Figure 5.5. Two experiments are conducted.

For each experiment, we measure the bandwidth and latency between the laptop and the

smartphone. In the first experiment, we use yRouters to connect the two WLANs of the

laptop and smartphone. In the second experiment, we configure a wlan interface on each

mesh station similar to the setup of the yRouter scenario. However, the kernel routing ta-

bles of the mesh stations are configured to directly route packets destined to the WLANs.

No firewall rules are employed. Hence, when a packet reaches the wlan interface of a mesh

station, it is processed by the kernel and routed directly to the mesh interface. Thus, there

is no overhead due to copying the packet to user space, processing it in user space by the

yRouter, and encapsulating the packet when sending it over the mesh interface. Similarly,

when the packet reaches the mesh interface of the mesh station, it is forwarded directly to

the wlan interface. Table 5.3 shows the results of the experiment. As can be seen from

the table, there is a 46% decrease in latency when kernel routing is employed. In addition,

there is a 10 fold increase in bandwidth. This is due to the bottleneck incurred on the

yRouter due to the processing speed which simply cannot match that of the kernel due to

the extra overhead related to sending the packet from kernel space to user space and back

again to the kernel.

5 Wireless GINI: Evaluation and Use Cases 49

SmartphoneLaptop
yRouter_1 yRouter_2

Using yRouters

SmartphoneLaptop

Direct

Station 1 Station 2

Fig. 5.5 Experimental setup for evaluating overhead on bandwidth and la-
tency due to the network virtualization techniques.

Table 5.3 Latency and bandwidth measurements for the virtualization over-
head experiment.

Setup RTT (ms) Bandwidth (Kbits/s
Using yRouters 76.805 667

Direct 53.231 7510

5 Wireless GINI: Evaluation and Use Cases 50

5.2 Use Case Scenarios

In this section, we discuss some of the applications that could be conducted on the Wireless

GINI platform. We provide two experiments that can used to provide a hands-on learning

experience for students. The first suggested experiment relates to mobility in wireless

networks. Specifically, we provide an experimental scenario for the implementation of

Mobile IP [36]. The experiment helps students understand the design and implementation

aspects of the Mobile IP protocol. An overview of Mobile IP and the suggested experimental

scenario is provided in Section 5.2.1. The second experimental scenario is related to IoT

applications. We provide an overview of the IoT experimental scenario in Section 5.2.2.

5.2.1 Mobile IP

Many Applications, such as Voice Over IP, experience a significant degradation in service

due to abrupt changes in network connectivity as users transition from one network to the

other. This usually occurs in situations where wireless clients roam between overlapping

wireless networks. Mobile IP aims at reducing this degradation by maintaining the TCP

connection between the mobile client and the static server without modification to the

underlying TCP/IP protocol. Mobile IP is an Internet architecture and protocol standard

that aims at providing a solution to the issue of mobility management on the Internet

[37]. Mobile IP aims at making mobility transparent to the higher layer protocols. It

allows application code to serve mobile and non-mobile connections alike without being

concerned with the potentially changing IP address of the mobile user. Indeed, an entire

book has been written on this subject (see [38]), so our modest goal here is to provide a

general overview and to illustrate a common-case scenario of its use on the Wireless GINI

platform.

Mobile IP introduces a new architecture to provide location transparency that allows

mobile nodes to have two addresses; a permanent address, and a Care-Of Address (COA).

A permanent address is the address of the mobile user at its home network. We can think

of the home network as the permanent network of the mobile node. This is the network

where the mobile node seems reachable by the rest of the Internet even when the mobile

node is on a different network. The COA is the address of the mobile node on a foreign

network. The foreign network is the network that the mobile node is attached to when it

is not on the home network.

5 Wireless GINI: Evaluation and Use Cases 51

The central idea behind Mobile IP is that the mobile node is assigned a permanent

address that does not change as the mobile node goes from one network to the other.

This permanent address is assigned by the home agent. A home agent is a node on the

home network that is responsible for insuring that the mobile node can be reachable by

its home address even when the mobile node is on a foreign network. When a mobile

node goes from the home network to another network (the foreign network), the mobile

node is assigned another IP address at the foreign network (the COA). A foreign agent is

responsible for assigning the COA to the mobile node. The foreign agent is also responsible

for communicating with the mobile node’s home agent to register the mobile node’s COA

at the home agent. This allows the mobile node to be reachable by the home agent at any

given time.

An entity that wishes to communicate with a mobile node is called the correspondent

node in the Mobile IP nomenclature. Now let us look at what happens when a correspon-

dent node wishes to send a packet to the mobile node. Figure 5.6 provides an example

that illustrates this procedure. The correspondent addresses the IP packet to the mobile

node’s permanent address regardless of whether the mobile node is attached to its home

network or to a foreign network. In other words, mobility is completely transparent to the

correspondent. Once the packet reaches the home network, it is intercepted by the home

agent (step 1 in Figure 5.6). The home agent looks up the COA of the mobile node that

has a permanent address that matches the destination address of the intercepted packet.

It then tunnels the packet to the foreign agent using the mobile node’s COA (step 2 in

Figure 5.6). Once the tunnelled packet reaches the foreign agent, it is decapsulated and

the original packet is sent to the mobile node (step 3 in Figure 5.6). The mobile node can

send a packet directly to the correspondent node (step 4 in Figure 5.6). The mobile node

uses its permanent address as the source address and the correspondent’s address as the

destination address.

We can summarize our discussion by listing the three main components of the Mobile

IP standard:

• Agent Discovery. This refers to the protocols used by a home or foreign agent to

advertise its services and for mobile nodes to solicit the services of a foreign agent or

a home agent.

• Registration with the home agent. This refers to the protocols used by the foreign

5 Wireless GINI: Evaluation and Use Cases 52

Home
Agent WAN

Visited Network:
10.0.0/24

Permanent address:
192.168.54.14
COA:
10.0.0.96

1

2 3

Home Network:
192.168.54/24

Correspondent Node

Foreign
agent

4

Mobile Node

Fig. 5.6 The Mobile IP routing procedure.

agent to register the mobile node’s COA with the mobile node’s home agent.

• Indirect packet routing. This refers to the protocols used by the home node to forward

packets to the mobile node.

A programming assignment can consist of implementing these components on the yRouters

and gRouters. Since the yRouter implementation is open-source, the students can modify

the source code to implement these functionalities. They can then test their implementa-

tion on the Wireless GINI platform. The user can setup a topology that contains multiple

overlapping WLANs on the platform. The user can then use one’s wireless device to tran-

sition from one WLAN to the other while maintaining a TCP connection to an emulated

server. The emulated server can be implemented by running a service on a gLinux that is

running on the host machine.

5 Wireless GINI: Evaluation and Use Cases 53

5.2.2 IoT Applications

Having Wireless GINI enables a whole new dimension of experiments in the IoT application

space. The IoT phenomenon has attracted great interest from the research and industrial

communities. The decreasing costs of embedded devices, coupled with increases in their

computing performance and energy efficiency, have paved the way for a vast number of

applications in numerous areas. These areas include home automation, security, e-Health,

environmental monitoring, and industrial control to name a few. It comes as no surprise

that technology research and advisory corporations predict that the number of IoT devices

will reach 26 billion by 2020 [39]. Students can leverage the Wireless GINI system to

explore this new realm of exciting opportunities.

We believe that the best IoT assignment for students on Wireless GINI should allow

students to utilize their creativity to create, implement, and test their novel ideas. We

believe that this will provide a more interesting and engaging learning experience. It

also allows students to exercise their creativity to come up with potentially viable and

experimentally tested solutions and applications in the growing realm of IoT. With that

said, we suggest a viable IoT experiment in this section that can be conducted on Wireless

GINI to help get started in that venue.

One of the experiments that could be implemented on the Wireless GINI platform

pertains to smart lighting applications. In this experiment, a smart Wi-Fi enabled LED

light bulb could be connected to the student’s VN via the wlan interface. The smart light

bulb’s luminosity and color can be controlled over Wi-Fi. The setup is shown in Figure 5.7.

In this setup, the student implements a home automation system where the light bulb is

controlled using his/her smart phone. The student can develop a small mobile application

on one’s smart phone to interface with the smart lighting system or could develop a web

application hosted on a gLinux node in his/her topology. The gLinux could host an HTTP

application server that takes input from the student’s laptop or smart phone and uses

it to configure the lighting parameters. The system can be implemented such that the

light bulb automatically turns on when the client’s smart phone or laptop connects to the

same WLAN that the smart light bulb is connected to and automatically turn off once the

client’s device disconnects from this WLAN. The application server could be implemented

such that it remembers the client’s lighting preference and automatically sets the light bulb

to this saved preference when the client joins the WLAN. As an extension, a multi-client

5 Wireless GINI: Evaluation and Use Cases 54

lighting system could be set up that saves the preferences of multiple clients and configures

the smart light bulb based on the preference of the client that is currently connected to

the WLAN on the student’s VN. When multiple clients are connected to the WLAN at

the same time, the student can implement a brokage system with a pre-configured policy.

This policy can be priority-based, where each client is assigned a priority level and the

client with the highest priority gets to have his lighting preference supplant that of the

other clients currently connected. The policy could also be voting-based or a combination

of policy modes that are specified by the owner of the VN. The application server should

be implemented to uphold the configured policies.

Client 1's Smart
phone

Client 2's laptop

yRouter_1

yRouter_2

yRouter_3

Smart Light
bulb

yRouter_3's
WLAN

Application Server

gSwitch_1

gRouter_1

Fig. 5.7 An example of a smart lighting system that can be implemented
on Wireless GINI.

55

Chapter 6

Related Work

Before delving into the current state-of-the-art network emulation toolkits available today,

it is important to make the distinction between network emulation and network simulation.

In simulation, the goal is to develop an analytical model that computes the internal state

of the target while abstracting away the functional features that are not relevant in the

computation. These functional features include the filesystem, the command line interfaces,

and the message formats. Simulation is well-suited in testing the performance of new

algorithms in large-scale scenarios. It is important to note that, unlike emulation, the

experiments need not be conducted in real-time and indeed it is not uncommon for large-

scale network simulation experiments to last several hours/days depending on the size of

the simulation and the performance of the hardware running those simulations. Popular

network simulators include ns-2 [40], OPNET [41], and OMNet++ [42].

On the other hand, emulation aims at replicating the observable behaviour of a target

to match its intended functionality. Functional details are therefore exposed to the user to

accurately replicate the real-life operation of the target. Unlike simulations, the user has

the ability to observe in real-time the actions of the emulated device. This comes at the cost

of an increase in the computational and storage requirements as compared to simulation.

Due to its realism and observability, network emulation has been the method of choice for

a pedagogical approach to computer network education.

There is a plethora of network emulation toolkits and testbeds that are available for

computer networking experimentation. They can be divided into two groups: testbed-

oriented emulation, and process-oriented emulation. As mentioned in Chapter 1, testbed-

2015/08/16

6 Related Work 56

oriented emulators emulate a real-life network by providing a miniature physical setup that

would replicate an actual internet. On the other hand, process-oriented emulators run

the components that compromise the network as a set of processes that communicate via

IPC mechanisms such as sockets and pipes. Each network component, such as worksta-

tions, routers, and switches, is emulated by running a process that functions similar to a

lightweight version of the component and often runs the same network services that an

actual component would run. For example, a UML is often used to emulate a workstation

in the network. UML is a user-space virtual machine that runs a lightweight version of

Linux and supports basic networking functions such as route, ifconfig, and ping.

Due to the importance of experimentation in systems-oriented courses in computer

science curricula such as Computer Networks, numerous network emulation toolkits have

been developed over the years. Each network emulator is developed based on a certain

design philosophy. Section 6.1 reviews some of the more popular process-oriented network

emulation toolkits that are available. Section 6.2 reviews the testbed-oriented toolkits.

6.1 Network Emulation Toolkits

Process-oriented emulation toolkits can further be divided into two categories: CLI-based,

and GUI-based. CLI-based emulators require the user to provide configuration files that

are written in a format that is specific to the emulator in order to describe the user’s

topology. The file type of a configuration file can range from regular text files, to XML

files, to code written in a popular scripting language. Afterwards, the user can use the CLI

commands provided by the emulator to run the topology (also called laboratory or lab for

short), execute commands on a given node in the topology, and stop a running topology.

GUI-based emulators provide a graphical interface for creating and running a topology

by allowing the user to drag-and-drop the available network components onto the GUI’s

canvas. Users can double-click on a component during run-time to display the component’s

console.

6.1.1 CLI-based Network Emulators

An example of CLI-based emulator is Netkit [7]. In Netkit, the user must obey Netkit’s

file directory structure and place the configuration files in the appropriate directories. For

example, the start-up scripts for each node, and the topology descriptor file must be placed

6 Related Work 57

in the top-level directory of the lab. The topology descriptor file is a regular text file that

is written in a format that is understood by Netkit to describe the connections between

various nodes in the lab. The start-up scripts are normal shell scripts that are executed as

soon as the topology starts. Each node in the lab then has its own directory where other

configuration files that are specific to that node can be placed to run a particular service

on that node. For example, an Apache configuration file can be placed in a given node’s

directory to be able to run on a Web server on that node.

Another CLI-based emulator is Mininet [43] which is targeted towards creating OpenFlow-

based [44] networks. Users can create custom labs in Mininet by creating Python scripts

that utilize Mininet’s Python package. The Mininet Python package contains APIs for

assigning nodes to a topology, specifying the node type (i.e. host, switch, controller),

and assigning the links between the nodes. Mininet emulates hosts by leveraging network

namespaces that are supported in the Linux Kernel 2.2.26+. Each network namespace

contains its own unique copy of the network stack. Mininet uses network namespaces to

emulate network nodes by grouping the user-level processes of each node into separate

network namespaces instead of using VMs to emulate each node. This approach allows

Mininet to be more lightweight albeit at the expense of requiring root privileges and an in-

creased difficulty to setup and install. The standard distribution image of Mininet requires

installing a full-blown virtual machine image on Virtualbox or VMware.

Virtual Networks over LinuX (VNX) [8] is another process-oriented emulator that uses

XML files to specify a topology. It uses UML to emulate workstations and routers and

uses the UML switch to emulate an ethernet switch. It is an evolution of Virtual Networks

User Mode Linux (VNUML) [45].

Manage Large Networks (MLN) [46] is another CLI-based network emulator that runs

process-oriented networks using UML, Xen [47], or VMware Server [48] as the VMs. MLN

uses the proprietary mln configuration language to specify the topology. The language is

based loosely off of Perl and is used to configure, run, and test the labs.

Overall, CLI-based network emulators have multiple drawbacks in common. Firstly,

these emulators require the user to master tools, languages, APIs, and/or commands that

are specific to the given emulator. This provides a steep learning curve for the user and

distracts from the primary goal of providing a tool to enhance the learning process of

networking concepts. Secondly, these emulators are hard to use, time-consuming and often

error-prone since the user must manually configure all the parameters for each interface at

6 Related Work 58

each node on the network using the proprietary format. Thirdly, they do not provide an

intuitive visual illustration of the topology which makes it harder to reason about the flow

of packets through the network especially for larger networks.

6.1.2 GUI-based Network Emulators

In this section, we provide an overview of the more popular GUI-based process-oriented

network emulators available. GUI-based network emulators provide a unified and simple

means of configuring a network topology as well as a visual feedback of the topology as it is

being created. GUI-based emulators provide a more intuitive and user-friendly experience

towards topology creation. An example of one is GNS3 [49] which uses Dynamips [50]

to incorporate proprietary Cisco routers into the topology. Dynamips is an emulator for

Cisco routers that is capable of accurately emulating the Cisco routers on an instruction-

by-instruction basis. It does so by directly booting an actual firmware image of the Cisco

router, Cisco IOS. However, the Cisco image typically uses up 256 MB of RAM along with

considerable CPU time. This makes the emulator fairly resource intensive which makes it

unsuitable for running more than a small sized network on an average workstation.

Other platforms that use proprietary routers for their labs are Junosphere Classroom

[5] and Cisco Learning Labs [6] provided by Juniper and Cisco, respectively. They provide

a commercial Software as a Service (SaaS) platform where the user’s labs are hosted on the

vendor’s cloud. Users are charged based on the amount of time the SaaS platform is used

and on the number of nodes used in a lab. This can prove costly especially for an average

class size through a 4-month duration. Another commercial platform is Estinet [51] which

puts more emphasis on SDN.

Common Open Research Emulator (CORE) [52] is another GUI-based process-oriented

emulator that uses the same network namespace technique used by Mininet in order to

emulate the nodes in the topology. CORE has the capability of also emulating a wireless

node by simulating a wireless channel based on a user-configurable statistical channel model

between two virtual wireless nodes. The user can specify the channel parameters of each

wireless link in the topology independently. Another feature of CORE is the ability to

distribute the topology across multiple hosts using a C daemon called Span that tunnels

packets between the two physical hosts. However, when using distributed emulation, the

tunnel configuration must be manually setup by the user on each host that is part of the

6 Related Work 59

distributed system before it can be used. Moreover, there is no multiple topology support

on a given host machine. IMUNES [53] uses the same approach as CORE but uses the

FreeBSD kernel and does not support distributed emulation.

Marionnet [54, 55] uses UML to emulate its network components. It also supports a

“virtual external socket” which can be used to access the physical network of the host.

However, no isolation mechanism is employed making it unsuitable for integrating it in

typical physical lab settings. Cloonix [10] is another GUI-based emulator that also has the

physical network access feature along with supporting Dynamips in addition to UML.

6.2 Network Experimentation Testbeds

In this section, we provide an overview of the testbed-oriented emulation platforms available

in the literature. Testbed-oriented emulation platforms have the advantage of realism

over process-oriented counterparts. However, they suffer from the drawbacks discussed in

Section 1.1, namely cost, setup and maintenance time, scalability, and ease-of-use.

Emulab [56] is a testbed-oriented emulator that can allocate components of the physical

platform to a user remotely. The platform consists of workstations, routers, switches,

wireless access points, and wireless clients. However, each component can only be used by

one user at a time. Emulab also supports a hybrid topology where the physical components

can be connected to virtual nodes running on a physical machine that is part of the testbed.

The user must manually configure the host machine and setup certain proxies to allow the

traffic to reach the virtual nodes. Emulab uses OpenVZ [57], a container-based VM for

Linux, to run the virtual nodes. However, the virtual nodes are rather limited. They do

not provide an interface, such as a console, by which the user can run commands during

run-time. Moreover, there is no isolation between the host’s network stack and that of the

virtual nodes being hosted.

PlanetLab [58, 59] is another testbed-oriented emulator that is aimed towards scien-

tific research in distributed systems. It consists of a global network that consists of 1353

nodes scattered around 712 sites around the world [60]. It allows users to create custom

overlay networks on top of the global physical network. Similar to PlanetLab are Global

Environment for Networking Innovation (GENI) [61] and Smart Applications on Virtual

Infrastructure(SAVI) [62]. GENI, which is sponsored by the U.S. National Science Founda-

tion, is used by researchers and educators to perform research experiments and laboratory

6 Related Work 60

assignments. It consists of nodes distributed around fifty sites in the U.S. It utilizes network

virtualization techniques to allocate “slices” of the physical network to users. The sites can

contain virtualized computation and storage resources, SDN enabled network resources

and/or virtualized cellular wireless communication resources. Its Canadian counterpart,

SAVI, which is sponsored by 9 Canadian universities and several industry partners, follows

a similar architecture but also includes virtualized reconfigurable hardware resources such

as the NetFPGA and the BEE4.

Another emulator that allows the user to remotely configure a physical network is the

Open Network Laboratory (ONL) [63]. The testbed consists of 4 routers and 40 PCs and

is hosted in one site. The network components are divided into clusters with each cluster

consisting of 1 router and 10 PCs connected via a switch. No network virtualization is

supported and the user is constrained into using a topology that is a subset of the physical

topology. Moreover, only one user can use the platform at a given time.

ORBIT [64] is a testbed-oriented emulator that aims at facilitating research experiments

of wireless network protocols. The testbed consists of 64 wireless nodes equipped with

802.11a/b/g wireless cards. The user can use the library APIs provided by the emulator

to hook up the user’s applications and/or MAC layer modifications. The testbed also

provides channel measurement equipment to measure the channel parameters and artificial

interference sources to modify the channel characteristics. ORBIT uses the time sharing

approach where each experimenter can reserve the testbed for up to two hours and has

complete control of the testbed during that time.

An example of testbed-oriented emulators that are targeted for educational purposes is

the internet lab [1]. The testbed consists of four Cisco routers, four PCs, and a few Ethernet

hubs. A Keyboard-Video-Mouse (KVM) switch is used for multiplexing the keyboard,

mouse, and display among the four PCs. The lab setup is used as a complement to the

book [1] to aid students in grasping the concepts presented in the book by suggesting

experiments to perform on the lab that are related to the concepts discussed in the book.

Pan [3] proposes another testbed-oriented emulator that is used by the University of

Victoria in their Computer Networking courses. The platform aims at being low cost and

simple to setup and hence contains only a PC connected via ethernet to a Linksys router

running the OpenWrt firmware. Users can Secure Shell (SSH) into the router and run

various commands for experimentation. Each platform can be used by one user at a time.

61

Chapter 7

Conclusion and Future Work

7.1 Concluding Remarks

The computer networking field along with its diverse technologies and applications are

growing and changing at an unprecedented rate. It is up to educational institutions to

keep pace with this evolving field by evolving their platforms to help bridge the gap. We

hope that Wireless GINI is a step in this direction. Wireless GINI provides an adoptable,

flexible and extensible platform that will be used by the students, who some may be the

future practitioners and researchers of the computer networking field, to gain a practical

hands-on experience in the current trends and technologies of the computer networking

field.

We conclude by summarizing the main architecture and implementation aspects of

the Wireless GINI platform that address the design considerations set forth to provide a

cohesive and unified framework for hosting virtual wireless networks. Specifically, the main

features are:

• User-Friendly. This addresses the needs of the user of the platform. The WGINI

server provides a unified and simple interface for deploying wireless networks. It han-

dles all the complexity of deploying the user’s topology and provisioning the wireless

network.

• Cost-effective. This addresses the needs of the institution that will be hosting the

platform. The network virtualization techniques employed allow for proper isolation

and custom configuration of the VNs. This allows the wireless platform to be shared

2015/08/16

7 Conclusion and Future Work 62

by multiple users and thus provides a cost-effective means for servicing multiple users

simultaneously.

• Flexible. This addresses the needs of the person responsible for assigning the experi-

ments who could also be the user, or could be a course instructor. The Wireless GINI

platform supports a diverse combination of network elements that are all integrated

seamlessly into one custom internet. We saw how physical wireless devices, wireless

mesh overlays, and process-emulated networks can all by seamlessly integrated into

one custom internet that the user can easily deploy. This provides the flexibility and

simplicity needed to perform a wide variety of interesting and innovative experiments.

In addition, the source code of the yRouter is freely available. This adds another layer

of flexibility whereby the students can directly modify the source code to implement

existing protocols and systems, or create a whole new protocol/system.

7.2 Future Work

Although we have built a working prototype of the Wireless GINI system, several im-

provements can be made to further enhance the established design goals of providing a

user-friendly, flexible, and cost-effective platform. We will look at each aspect in more de-

tail and suggest possible improvements. Several improvements could be made to enhance

the user experience of the system. This relates to providing a more automated and seam-

less setup of the Wireless GINI platform. The more effortless the setup and deployment

is, the more time students can have in developing more complex experiments and the more

adoptable the system will become. To that end, integrating the WGINI server interface

into the gBuilder and gLoader provides a seamless setup and deployment of the system.

The students can leverage the intuitive GUI of the existing GINI platform to automate the

TSF creation and RPC invocation. Moreover, as mentioned previously, the implementation

of the mDNS-SD functionality into the RPC client-server architecture will automate the

discovery and connectivity of the user’s client application to the WGINI server applica-

tion. Another automation feature mentioned is in regards to the wireless mesh setup. A

discovery and management protocol can be implemented that allows the WGINI server to

automatically keep track of mesh stations that enter and leave the MBSS. Implementing

these suggested features will provide a transparent and intuitive way of creating topologies

7 Conclusion and Future Work 63

on the Wireless GINI system.

Another improvement relates to making the Wireless GINI system more secure. Secu-

rity can be implemented in various aspects of the Wireless GINI system. Starting with

the interface, an authentication system could be employed such that users cannot acciden-

tally (or maliciously) delete or modify the topologies of other users by impersonating their

identity. Another aspect for security lies in implementing security features on the wireless

mesh network so that unintended devices will not be able to become part of the MBSS. A

third avenue for security pertains to securing the deployed WLANs of the users. The fourth

aspect is securing the mesh stations from unauthorized remote access to their shells by the

users. The fifth aspect pertains to providing a more sandboxed environment where defected

or malicious code on a yRouter will not harm the other yRouters running on the station.

A way for allowing users to deploy their custom yRouter binaries while providing proper

isolation between yRouter instances will provide for a more robust and flexible platform.

On the flexibility dimension, the Wireless GINI can be made even more flexible by hav-

ing the 802.11 networking stack integrated into the yRouter code. This requires extending

the yRouter to process the 802.11 protocol in user space. An 802.11 module can be imple-

mented below the Ethernet module in the yRouter architecture. The 802.11 module will

be responsible for the implementation of the 802.11 authentication, management and data

processing features. In order to capture the 802.11 frame received by the wireless device

before it is converted to an ethernet frame by the kernel, the wireless interface mode should

be set to monitor mode. Monitor mode is one of the modes supported by hardware devices

that captures all 802.11 packets on the wireless channel. A raw socket could then be setup

to capture all incoming packets on the wireless channel and pass them to the 802.11 module

for further processing. With this setup, no kernel support for the wlan interface is needed.

Thus, the limit on the number of VAP is no longer imposed since only one monitor mode

interface is needed. Any yRouter that wishes to deploy a WLAN can simply attach a raw

socket on the monitor mode interface and process the incoming packets in the yRouter.

This also allows for further experimentation with the 802.11 protocols and the implemen-

tation of new wireless features for experimentation directly on the yRouter. However, this

setup could be computationally expensive and slow. Setting up a wlan interface through

the kernel allows the kernel to leverage the hardware-assisted processing features provided

by the wireless device through the device’s OS driver. An example of a hardware-assisted

feature includes automatically discarding packets that have a BSSID that does not match

7 Conclusion and Future Work 64

any of the configured BSSIDs of the wireless device. By using monitor mode, each packet

will reach all the way to the user space yRouters before they are discarded. If this proves

too slow, only the hostapd [65] daemon’s functionality could be integrated into the yRouter.

Hostapd is a user space daemon that is used by OpenWrt for 802.11 management and au-

thentication. With this setup, the limit on the VAP will still be imposed but the 802.11

user space processing will occur on the yRouter. This allows us to experiment with new

802.11 features such as mobility management and handover features, and QoS features.

65

Appendix A

Wireless GINI Documentation

In this chapter, we provide the documentation of the top-level Wireless GINI functions.

The source code of the Wireless GINI system is open source. The source code of the

yRouter can be found at: https://github.com/ahmed-youssef/yRouter. The source code of

the WGINI server can be found at: https://github.com/ahmed-youssef/WirelessGINI.

A.1 Topology Specification File Document Type Definition

<!DOCTYPE VN [

<!ELEMENT VN (Station+)>

<!ELEMENT Station (ID, Interface*, BHInterface?, Raw_Interface?)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT Interface (InterfaceNo, DestStaID, IPAddress, HWAddress,

REntry+)>

<!ELEMENT BHInterface (InterfaceNo, DestIface, IPAddress, HWAddress,

REntry+)>

<!ELEMENT WlanInterface (InterfaceNo, IPAddress, SSID, REntry+)>

<!ELEMENT InterfaceNo (#PCDATA)>

<!ELEMENT DestStaID (#PCDATA)>

<!ELEMENT IPAddress (#PCDATA)>

<!ELEMENT HWAddress (#PCDATA)>

<!ELEMENT DestIface (#PCDATA)>

<!ELEMENT SSID (#PCDATA)>

2015/08/16

A Wireless GINI Documentation 66

<!ELEMENT REntry (Net, NetMask, NextHop?)>

<!ELEMENT Net (#PCDATA)>

<!ELEMENT NetMask (#PCDATA)>

<!ELEMENT NextHop (#PCDATA)>

]>

A.2 WGINI API

Below are the documentation of the WGINI server API discussed in Section 4.2.

• Stations = Server.Check(): Creates a New VN.

- Returns the Stations object array.

- Station.ID : The ID of the mesh station.

- Station.CurrWlan: The current number of wlan interfaces deployed on the station.

- Station.MaxWlan: The maximum number of wlan interfaces that this station can

support

- Station.IsPortal : A boolean that specifies whether or not this station is the mesh

portal.

• Status = Server.Delete(UserIP): Deletes the user’s VN from the wireless mesh

platform.

- UserIP : The IP address of the user who wishes to delete his/her VN.

- Status : A status code that determines whether or not the operation succeeded.

• Status = Server.Create(UserIP, TSFstring): Deploys the user’s VN as specified

by the input TSF.

- UserIP : The IP address of the user who wishes to deploy the VN.

- TSFstring : The TSF file input as a regular string.

- Status : A status code that determines whether or not the operation succeeded.

A Wireless GINI Documentation 67

A.3 yRouter API

• ifconfig add -dev tun0 -dstip dst ip -dstport portnum -addr IP addr hwaddr

MAC: Creates a tun interface on the yRouter.

- dst ip: The IP address of the destination mesh station on the MBSS.

- portnum: The interface number of the tun interface on the other end of the virtual

link.

- IP addr : The virtual IP address of the tun interface.

- MAC : The virtual MAC address of the tun interface.

• ifconfig add -dev wlan0 -addr IP addr -ssid SSID: Creates a wlan interface on

the yRouter.

- IP addr : The IP address of the wlan interface.

- SSID : The SSID of the wlan interface.

A.4 Bash script API

• del iface top num: deletes the wlan interface on OpenWrt.

- top num: The topology number that the wlan interface belongs to.

• kill yrouter top num: kills the yRouter process.

- top num: The topology number that the yRouter process belongs to.

• new iface top num IP addr SSID: Creates a new wlan interface on OpenWrt.

- top num: The topology number that the wlan interface belongs to.

- IP addr : The IP address of the wlan interface.

- SSID : The SSID of the wlan interface.

68

References

[1] J. Liebeherr and M. E. Zarki, Mastering Networks: An Internet Lab Manual. Addison-
Wesley Longman Publishing Co., Inc., 2003.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013.

[3] J. Pan, “Teaching computer networks in a real network: the technical perspectives,”
in Proceedings of the 41st ACM technical symposium on Computer science education,
pp. 133–137, ACM, 2010.

[4] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-time network emu-
lator,” in Military Communications Conference, 2008. MILCOM 2008. IEEE, pp. 1–7,
Nov 2008.

[5] “Junosphere Classroom.” http://www.juniper.net/us/en/products-services/

software/junos-platform/junosphere/. [Online; accessed 05-June-2015].

[6] “Cisco Learning Labs.” https://learningnetworkstore.cisco.com/

cisco-learning-labs. [Online; accessed 05-June-2015].

[7] M. Pizzonia and M. Rimondini, “Netkit: network emulation for education,” Software:
Practice and Experience, 2014.

[8] T. U. of Madrid (UPM), “Virtual Networks over linuX (VNX).” http://web.dit.

upm.es/vnxwiki/. [Online; accessed 13-June-2015].

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Reproducible net-
work experiments using container-based emulation,” in Proceedings of the 8th interna-
tional conference on Emerging networking experiments and technologies, pp. 253–264,
ACM, 2012.

[10] “The MLN Project.” http://clownix.net/. [Online; accessed 13-June-2015].

References 69

[11] M. Maheswaran, A. Malozemoff, D. Ng, S. Liao, S. Gu, B. Maniymaran, J. Raymond,
R. Shaikh, and Y. Gao, “Gini: a user-level toolkit for creating micro internets for
teaching & learning computer networking,” in ACM SIGCSE Bulletin, vol. 41, pp. 39–
43, ACM, 2009.

[12] “The User-mode Linux Kernel Home Page.” http://user-mode-linux.

sourceforge.net/. [Online; accessed 05-June-2015].

[13] J. Dike, User mode linux, vol. 2. Prentice Hall Englewood Cliffs, 2006.

[14] “Arduino Yun.” https://www.arduino.cc/en/Main/ArduinoBoardYun?from=

Products.ArduinoYUN. [Online; accessed 05-June-2015].

[15] “IEEE standard for information technology–telecommunications and information ex-
change between systems local and metropolitan area networks–specific requirements
part 11: Wireless lan medium access control (mac) and physical layer (phy) specifica-
tions,” IEEE P802.11-REVmb/D12, November 2011 (Revision of IEEE Std 802.11-
2007, as amended by IEEEs 802.11k-2008, 802.11r-2008, 802.11y-2008, 802.11w-2009,
802.11n-2009, 802.11p-2010, 802.11z-2010, 802.11v-2011, 802.11u-2011, and 802.11s-
2011), pp. 1–2910, March 2012.

[16] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some research
issues and challenges,” Communications Surveys & Tutorials, IEEE, vol. 17, no. 1,
pp. 358–380, 2015.

[17] D. D. Coleman and D. A. Westcott, Cwna: certified wireless network administrator
official study guide: exam Pw0-105. John Wiley & Sons, 2012.

[18] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Computer
networks, vol. 47, no. 4, pp. 445–487, 2005.

[19] “Open Wireless Router - OpenWrt.” https://openwrt.org/. [Online; accessed 04-
July-2015].

[20] A. Wang, M. Iyer, R. Dutta, G. N. Rouskas, and I. Baldine, “Network virtualization:
technologies, perspectives, and frontiers,” Lightwave Technology, Journal of, vol. 31,
no. 4, pp. 523–537, 2013.

[21] S. Jeong and H. Otsuki, “Framework of network virtualization,” FG-FN OD-17, 2009.

[22] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based
operating system virtualization: a scalable, high-performance alternative to hypervi-
sors,” in ACM SIGOPS Operating Systems Review, vol. 41, pp. 275–287, ACM, 2007.

References 70

[23] “Linux containers network namespace.” http://lxc.sourceforge.net/network.

php. [Online; accessed 08-July-2015].

[24] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford, “Trellis: A platform for building flexi-
ble, fast virtual networks on commodity hardware,” in Proceedings of the 2008 ACM
CoNEXT Conference, p. 72, ACM, 2008.

[25] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Computer
Networks, vol. 54, no. 5, pp. 862–876, 2010.

[26] E. Grasa, G. Junyent, S. Figuerola, A. Lopez, and M. Savoie, “Uclpv2: a network
virtualization framework built on web services [web services in telecommunications,
part ii],” Communications Magazine, IEEE, vol. 46, no. 3, pp. 126–134, 2008.

[27] Y. He, J. Fang, J. Zhang, H. Shen, K. Tan, and Y. Zhang, “Mpap: virtualization archi-
tecture for heterogenous wireless aps,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 475–476, 2011.

[28] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and
C. Wright, “Virtual extensible local area network (vxlan): A framework for overlaying
virtualized layer 2 networks over layer 3 networks,” tech. rep., 2014.

[29] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar, “Flowvisor: A network virtualization layer,” OpenFlow Switch Consor-
tium, Tech. Rep, 2009.

[30] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol, and
N. McKeown, “Openroads: Empowering research in mobile networks,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 1, pp. 125–126, 2010.

[31] “XML-RPC Python Library.” https://docs.python.org/2/library/xmlrpclib.

html. [Online; accessed 15-July-2015].

[32] Cheshire and Krochmal, “Multicast DNS,” RFC 6762, RFC Editor, February 2013.

[33] “SQLite Home Page.” http://sqlite.org/. [Online; accessed 16-July-2015].

[34] T. W. Cotton, Eggert and Cheshire, “Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport Protocol Port
Number Registry,” RFC 6335, RFC Editor, August 2011.

[35] “GNU Screen.” http://www.gnu.org/software/screen/. [Online; accessed 17-July-
2015].

References 71

[36] Perkins, “IP Mobility Support for IPv4, Revised,” RFC 5944, RFC Editor, November
2010.

[37] C. E. Perkins, “Mobile networking through mobile IP,” Internet Computing, IEEE,
vol. 2, no. 1, pp. 58–69, 1998.

[38] C. E. Perkins, S. R. Alpert, and B. Woolf, Mobile IP; Design Principles and Practices.
Addison-Wesley Longman Publishing Co., Inc., 1997.

[39] “Gartner, Inc. - Newsroom.” http://www.gartner.com/newsroom/id/2636073. [On-
line; accessed 19-July-2015].

[40] “The Network Simulator - ns-2.” http://www.isi.edu/nsnam/ns/. [Online; accessed
28-June-2015].

[41] “OPNET.” http://www.openet.com/. [Online; accessed 28-June-2015].

[42] “OMNeT++ - Discrete Event Simulator.” https://omnetpp.org/. [Online; accessed
28-June-2015].

[43] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, p. 19, ACM, 2010.

[44] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[45] F. Galán, D. Fernández, W. Fuertes, M. Gómez, and J. E. L. de Vergara, “Scenario-
based virtual network infrastructure management in research and educational testbeds
with vnuml,” Annals of telecommunications-annales des télécommunications, vol. 64,
no. 5-6, pp. 305–323, 2009.

[46] “Cloonix: dynamical topology virtual networks.” http://mln.sourceforge.net/.
[Online; accessed 26-June-2015].

[47] “The Xen Project Hypervisor.” http://www.xenproject.org/developers/teams/

hypervisor.html. [Online; accessed 26-June-2015].

[48] “The VMware Server.” https://my.vmware.com/web/vmware/info/slug/

infrastructure_operations_management/vmware_server/2_0. [Online; accessed
26-June-2015].

[49] “GNS3 - Graphical Network Simulator.” http://www.gns3.com/. [Online; accessed
26-June-2015].

References 72

[50] “Cisco router simulator (Dynamips).” https://github.com/GNS3/dynamips/tree/

4697d8488204787c79a8a8c550e96ca65fe79708. [Online; accessed 26-June-2015].

[51] “EstiNet network simulator and emulator.” http://www.estinet.com/. [Online; ac-
cessed 26-June-2015].

[52] “Common Open Research Emulator (CORE).” http://www.nrl.navy.mil/itd/ncs/
products/core. [Online; accessed 27-June-2015].

[53] M. Zec, “Implementing a clonable network stack in the freebsd kernel.,” in USENIX
Annual Technical Conference, FREENIX Track, pp. 137–150, 2003.

[54] J.-V. Loddo and L. Saiu, “Marionnet: a virtual network laboratory and simulation
tool,” in First International Conference on Simulation Tools and Techniques for Com-
munications, Networks and Systems, 2008.

[55] “Marionnet: a virtual network laboratory.” http://www.marionnet.org/EN/. [On-
line; accessed 28-June-2015].

[56] “Emulab - Total Network Testbed.” http://www.emulab.net/. [Online; accessed 13-
June-2015].

[57] “OpenVZ.” http://wiki.openvz.org/Main_Page. [Online; accessed 28-June-2015].

[58] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences building plan-
etlab,” in Proceedings of the 7th symposium on Operating systems design and imple-
mentation, pp. 351–366, USENIX Association, 2006.

[59] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bow-
man, “Planetlab: an overlay testbed for broad-coverage services,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[60] “Emulab - Total Network Testbed.” http://www.emulab.net/. [Online; accessed 13-
June-2015].

[61] M. Berman, C. Elliott, and L. Landweber, “Geni: Large-scale distributed infrastruc-
ture for networking and distributed systems research,” in Communications and Elec-
tronics (ICCE), 2014 IEEE Fifth International Conference on, pp. 156–161, July 2014.

[62] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed: Control and man-
agement of converged virtual ict resources,” in Integrated Network Management (IM
2013), 2013 IFIP/IEEE International Symposium on, pp. 664–667, May 2013.

[63] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner, C. Wiseman, and K. Wong, “The open
network laboratory,” in ACM SIGCSE Bulletin, vol. 38, pp. 107–111, ACM, 2006.

References 73

[64] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Sira-
cusa, H. Liu, and M. Singh, “Overview of the orbit radio grid testbed for evaluation
of next-generation wireless network protocols,” in Wireless Communications and Net-
working Conference, 2005 IEEE, vol. 3, pp. 1664–1669 Vol. 3, March 2005.

[65] “Hostapd - Home Page.” https://w1.fi/hostapd/. [Online; accessed 19-July-2015].

