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ABSTRACT

Duration between discovery of a mineral deposit and delivery of the ma-

terial (e.g. metal or concentrate) yielded from this deposit to the market can

take several years. After the discovery, a feasibility study is conduced to see

if the mining operation on this deposit is economically viable. This feasibility

study is exposed to two types of uncertainties, which add to risks to the mining

project. These are (1) technical risks arising from sparse data (e.g. grade, re-

covery and geotechnical characterization) and (2) financial risks arising from

unknown future events (e.g. commodity price, discount rate and exchange

rate). Among the others, commodity price is a significant concern for the

executives of mining enterprise. Given that mining products and their deriva-

tives are traded in commodity, stock and future markets, market dynamics

are very complex. Furthermore, it is very sensitive to politics of global world

and very open to speculation and manipulation as well as demand and supply.

In the past, the mining industry witnessed that many mining operations were

suspended or ceased due to unresponsiveness to price fluctuations. Project val-

uation based on log-term price is a quite naive approach at present day. This

can jeopardize the financial resources of the investor company. Therefore, the

risks associated with commodity price are assessed, quantified, mitigated, di-

versified or managed. The analysis of commodity prices starts with the study

of historical transactions in financial markets. To facilitate the analysis, it

is often necessary to convert commodity prices into returns. Then, the next

task is to model the distribution of returns using a statistical distribution.

One of the main characteristics of the distribution of commodity price returns

is that it tends to have excess kurtosis. This can be explained either by a

stochastic volatility or jump component in the diffusion equation describing
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the evolution of prices. For this reason, it is necessary to consider other models

than the Geometric Brownian Motion and Mean-Reverting price models when

modeling the dynamics of commodity prices. The objective of this thesis is

to construct a robust workflow capable of reproducing the observed price dy-

namics in the commodity markets. With such calibrated models, it is possible

to value mining projects or estimate their exposure to market risk. In the

first case, the valuation process is made in a risk-neutral framework using a

Real Options approach. In the second case, real world probabilities are used

to simulate commodity price paths and assess how a mining project may be

exposed to market price fluctuations. Following an introduction and a Liter-

ature review, the thesis is divided in four additional parts, corresponding to

four different publications. In the first publication, the use of robust estimators

for the detection and mitigation of outliers is investigated. The paper starts

with an overview of multiple linear regression and assess how the model as-

sumptions can be violated. The second part of the paper deals with detecting

outliers using studentized residuals or the Mahalanobis distance. Then robust

regression is used to diminish the effects of outliers in mining engineering data

including price. The second paper investigates how the dynamics of iron ore

future can be modeled with a dynamic linear model. Traditionally, iron ore

futures have been traded using long-term commitment contracts. This paper

investigates how relatively recent financial instruments such as futures on iron

ore can affect the NPV profile of an iron ore project. The third paper deals

with the optimization of the parameters in a commodity model using a genetic

algorithm. With correctly calibrated parameters, Monte Carlo simulations of

commodity spot and futures are performed and an active trading strategy is

implemented in an NPV valuation framework. The last publication deals with
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the choice of the stochastic process when measuring market risk of a min-

ing project. Several stochastic processes are calibrated on historical data and

used to calculate the cash flow at risk of a mining project. The models are

calibrated using an hybrid metaheuristic calibration strategy. Particle swarm

optimization is first used to find a solution close to the global minimum. Then,

a gradient based routine is used to find the optimal solution.
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ABRÉGÉ

Plusieurs années se produisent habituellement entre la découverte d’un

nouveau gisement minéral et la livraison des matériaux produits sur les marchés

financiers. Une étude de faisabilité est généralement effectuée pour évaluer la

viabilité du projet minier. L’une des tâches les plus importantes est d’évaluer

la valeur actuelle nette du projet minier. Cette variable est la somme des flux

de trésorerie actualisés que le projet minier générera au cours de sa durée de

vie. Les flux de trésorerie sont actualisés à un niveau approprié pour refléter le

risque du projet. Quantifier le risque des projets miniers peut être une tâche

encombrante. En effet, les projets miniers sont soumis à de multiples sources

d’incertitudes qui doivent être estimées à l’aide de modèles stochastiques.

L’une de ces inconnues est le prix des produits de base, qui doit être pro-

jeté sur toute la durée du projet minier. Pour faciliter l’analyse, il est souvent

nécessaire de convertir les prix des matières premières en rendements. Ensuite,

la tâche suivante consiste à modéliser la distribution des rendements à l’aide

d’une distribution statistique. L’une des principales caractéristiques de la dis-

tribution des rendements des prix des produits de base est qu’il tend à avoir un

excès de kurtosis. Cela peut être expliqué soit par une volatilité stochastique

ou une composante de saut dans l’équation de diffusion décrivant l’évolution

des prix. Pour cette raison, il est nécessaire d’envisager d’autres modèles que

les modèles de mouvement géométrique brownien et de réversion moyenne lors

de la modélisation de la dynamique des prix des produits de base. L’objectif

de cette thèse est de construire un workflow robuste capable de reproduire la

dynamique des prix observée sur les marchés des matières premières. Avec ces

modèles calibrés, il est possible d’évaluer les projets miniers ou d’estimer leur

exposition au risque de marché. Dans le premier cas, le processus d’évaluation
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est effectué dans un cadre risque-neutre en utilisant une approche axée sur

les options réelles. Dans le second cas, les probabilités réelles sont utilisées

pour simuler les scénarios de prix des produits de base et pour évaluer com-

ment un projet minier peut être exposé aux fluctuations des prix du marché.

La thèse est divisée en quatre parties, correspondant à quatre publications

différentes. Dans la première publication, l’utilisation d’estimateurs robustes

pour la détection et l’atténuation des valeurs aberrantes est étudiée. L’article

commence par un aperçu de la régression linéaire multiple et évalue comment

les hypothèses du modèle peuvent être violées. La deuxième partie de l’article

traite de la détection des valeurs aberrantes en utilisant des résidus studenisés

ou la distance de Mahalanobis. Puis, une régression robuste est utilisée pour

diminuer les effets des valeurs aberrantes dans les données d’ingénierie minière.

Le second article étudie comment la dynamique du minerai de fer peut être

modélisée avec un modèle linéaire dynamique. Traditionnellement, les contrats

à terme de minerai de fer ont été négociés à l’aide de contrats d’engagement

à long-terme. Cet article étudie comment des instruments financiers relative-

ment récents comme les contrats à terme sur le minerai de fer peuvent affecter

le profil de la VAN d’un projet de minerai de fer. Le troisième article traite

de l ’optimisation des paramètres dans un modèle de marchandise utilisant l’

algorithme génétique. Avec des paramètres correctement étalonnés, des sim-

ulations Monte Carlo de spot et de contrats à terme sur matières premières

sont effectuées et une stratégie de négociation active est mise en œuvre dans

un cadre d’évaluation VAN. La dernière publication traite du choix du pro-

cessus stochastique lors de la mesure du risque de marché d’un projet minier.

Plusieurs processus stochastiques sont étalonnés sur des données historiques

et utilisés pour calculer le flux de trésorerie à risque d’un projet minier. Les

modèles sont calibrés en utilisant une stratégie de calibration métaheuristique
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hybride. L’optimisation des essaims de particules est d’abord utilisée pour

trouver une solution proche du minimum global. Ensuite, une routine basée

sur le gradient est utilisée pour trouver la solution optimale.
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CHAPTER 1
Introduction

1.1 Overview

The valuation of a mining project requires assessing risk such as market,

operational, geological, political and environmental risk. To assess the geo-

logical risk, workflows involving stochastic modeling of an ore body followed

by its production schedule optimization to determine future production rates

have proven to be very promising. However, when converting forecasted pro-

duction rates into cash flows, forecasted spot prices of a commodity also have

to be taken into account.

The Net Present Value (NPV) approach is widely used to assess the

present economic value of a mining project over its entire life. The approach

consists in projecting future cash flows and then discounting them with a

rate reflecting the risk of the investment. Discounted cash flows are then

summed and compared to the initial expenditures required to undergo the

mining project, and if the difference is positive, the project should be ac-

cepted. However, mining projects can often last more than ten years, a period

where cycles, jumps and spikes will influence commodity prices. These changes

in prices will greatly influence forecasted cash flows, affecting the value of a

mining project. Moreover, choosing the right discount rate to calculate NPV

may be very subjective. A too small discount rate may make an unviable

project look profitable while a too big discount rate may underestimate cash

outflows needed for the completion phase of a mining project. Finally, man-

agerial flexibility is not addressed when performing NPV valuation. For these
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reasons, the NPV valuation technique may be too rigid to reflect the true

complexity of a mining project.

A promising and increasingly popular approach for valuing mining projects

is the Real Options valuation (ROV). This method of valuation is similar to

NPV valuation in the sense that present and future cash flows are discounted

and summed to value an investment. The difference is that the management

team of a mining project are given options, for example, to mothball, close,

open, accelerate or pause a project. Also, instead of affecting a project di-

rectly, managers are given options to hedge their production using options

or future markets. This increase in flexibility adds some value to a mining

project but can be hard to put in practice because of the costs associated with

changes in the project. However, when commodity markets are subjected to

extreme events such as spikes or strong cycles, ROV may be necessary as a

complementary approach to NPV.

Workflows based on ROV are usually implemented in a Monte Carlo (MC)

simulation framework. The general MC framework requires modeling differ-

ent scenarios of spot prices using a stochastic process. The parameters of the

stochastic process may be calibrated on historical data or inferred from the

knowledge of the modeler. If the historical approach is chosen for the calibra-

tion, the stochastic process parameters are adjusted to reflect price dynamics

in the recent past. The Kalman filter has proven to be a very useful tool

for the calibration of stochastic processes on historical data. When using the

Kalman filter, the stochastic process is written in a state-space representation

which decomposes the process into two parts: the transition equation and the

measurement equations. The transition equation is the true process while the

measurement equation is the measured process. The measurements are usually

noisy. A maximum likelihood routine can be used to adjust the parameters
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governing the transition equation to better fit historical data. The procedure

consists of applying the Kalman filter on historical observations with a vector

of parameters and computing the logarithm of likelihood estimate. Then, an

optimization routine is used to adjust the vector of parameters to maximize the

likelihood. In practice, this procedure is converted to a minimization problem

by taking the negative of the likelihood.

The optimization of the parameters of the Kalman filter is a major task in

this thesis. Usually, the optimization routines used to perform the calibration

are gradient based and can be stuck in a local minimum. To overcome this

problem, several different starting values can be tested to ensure the conver-

gence to a global minimum. However, a better approach is to use a different

class of optimization routines that can handle non-linear and multidimensional

cost functions. Namely, in this thesis, the use of a genetic algorithm and a

particle swarm optimization are tested for the calibration of historical param-

eters. This class of algorithm mimics the behavior of nature to solve problems.

In the case of the genetic algorithm, the theory of evolution is implemented

in the algorithm. The particle swarm optimization mimics how swarm of in-

dividuals in a herd collaborate to survive. In any case, several solutions are

tested at each iteration and the likelihood to get stuck in a local extremum

thus is diminished.

Once the parameters of the stochastic process have been calibrated, they

can be used to perform simulations. An active trading strategy using the

Kalman filter and the Schwartz-Smith two-factor (SSTF) model is tested. The

SSTF makes the assumption that the price of a commodity can be decomposed

into two different terms. The long-term price is expected to evolve following

a (geometric Brownian motion) GBM while the short-term price is mean-

reverting. The application of the active trading strategy is implemented using
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both price components in the SSTF. When the short-term price drives the spot

price lower than implied by its long-term trend, a percentage of the production

of a mining project is stockpiled for later use. When the short-term price drives

the spot price higher, a part of the production that was previously stockpiled

is sent to the market. This mean-reversion strategy can increase the NPV of

a mining project by 5% to 10%.

Another use of the Kalman filter calibration workflow is to assess the

market risk of a mining project. The commodity returns are generally better

fitted with a fat-tail distribution. This is due to the fact that prices can jump

or be affected by volatility clusters. These features are not well captured by

the GBM. On another hand, the Merton jump (MJ) and Heston stochastic

volatility (SV) model are able to reproduce behavior observed in the mar-

kets. The use of the MJ and SV models for the calculation of cash-flow at

risk (CFaR) are investigated. These stochastic processes are better suited to

reproduce fat-tails and provide a value of CFaR which is more conservative

than the GBM.

The next section lists the different publications associated with this thesis.

1.2 Original Contributions

The first part of the project is to apply robust regression algorithms on a

dataset containing outliers. One must be very careful before deleting outliers

from a dataset since they can be good data points that may have resulted

from an extreme case of the sample generating process, or perhaps a secondary

process. Several tools exist to detect and calculate the influence and leverage

of outlier points. Then, using robust regression estimators, parameters from

the regression can be estimated without any bias. The work done in robust

regression has led to the publication of an article called Analysis of mining

engineering data using robust estimators in presence of outliers, in the Natural
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Resources Research Journal. The original contribution of this paper is the

development of a workflow capable of detecting outliers and downsizing them

to reduce the effect on regression models. The tools developed in this research

are later used to detect abnormal jumps in the distribution of commodity

returns.

The second publication uses a new approach using long-term commit-

ment contracts (LTC) and futures contracts to value iron ore projects. This

approach supposes that the management team of the iron mine has the ability

to use two types of financial instruments to sell their production. The first in-

strument is the long-term commitment contracts and the second instrument is

the futures contract which can be traded in financial markets. The long-term

instrument is considered as a risk-free instrument, while the futures contract

is actively traded and fluctuates. The Kalman filter is used to estimate the

dynamics of futures contracts, iteratively predicting unknown observations,

then updating the parameters to improve the next prediction. The Kalman

filter is the ideal estimator when the transition equation is linear and when the

residuals are following a normal distribution. However, iron ore markets are

subject to extreme events, such as jumps, which cannot be considered linear.

These jumps are generally followed by an increase of volatility in markets. The

first objective of this paper is to improve the Kalman filter estimates by scal-

ing the observation uncertainties with the volume of traded contracts. Then,

simulations of iron ore prices are performed with correctly calibrated param-

eters. Results show that this workflow can be used to adjust the proportion

of the productions sold using LTC or futures contracts according to the risk

appetite of the company. Results show that the calibration and NPV simu-

lation workflow can be effectively used to assess the profitability of a mining

project, accounting for the exposure in futures markets.

5



The third publication uses a genetic algorithm (GA) to calibrate the pa-

rameters of the Schwartz-Smith two-factor (SWTF) model on oil and copper

futures contracts. Usually, the optimization is done using a deterministic opti-

mization called the Expectation-Maximization (EM) algorithm which can get

stuck in a local maximum. Although they are slower than EM algorithms be-

cause they use random number generators to search for the optimal solution,

genetic algorithms optimize a population of solutions instead of working on

only one solution at the time. Moreover, a constraint on the range parameter

can be applied to ensure the parameter has a sound economic meaning. To

demonstrate the performance of the proposed approach, a case study was con-

ducted on a copper deposit. The simulations were based on the SWTF model

whose parameters are determined by GA . An active management strategy

of the stockpile, dependent on discrepancies in commodity futures prices is

tested. Results show that the active management strategy produces positive

returns over the passive investment approach.

The last publication compares several models used for the estimation of

the CFaR of a mining project. The model parameters are calibrated using the

Kalman filter. Then, Monte-Carlo simulations using the calibrated parameters

are performed to compare the stochastic volatility model, the Merton jump

diffusion process, and the geometric Brownian motion when assessing market

risk exposure of a mining project. The contribution of this research is to

provide a robust workflow to calibrate commodity price dynamics models to

historical data using the Kalman filter. The parameters of the model are fitted

using a particle swarm optimization routine combined with a gradient-based

search method.
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CHAPTER 2
Literature Review

2.1 Overview

In this section, an extensive literature survey on the concepts tackled in

the thesis is presented. The literature survey revolves around the concept of

options pricing in financial markets and its extension to a Real Option frame-

work. Other concepts, such as genetic algorithms and the Kalman filter are

introduced because they can be used to simulate or derive unknown parame-

ters in stochastic process models.

The first section discusses risk related to commodity markets and strate-

gies to protect a mining company from that risk. First of all, some basic

concepts about the mining industry are covered. After, some basic manage-

ment concepts on mining projects are covered. These management strategies

involves option and futures contracts and are designed to reduce volatility in

quarterly earnings of mining companies. Then, a review of how volatility fore-

casting models have been used to forecast volatility of commodity prices is

made. These commodities include petroleum and minerals, but also agricul-

tural commodities such as soybeans, and wheat.

The second section introduces robust regression as a tool for outlier detec-

tion and mitigation. It is well documented that financial markets are subjected

to crashes. These extreme movements cannot be modeled with the normal dis-

tribution and will generally make the conventional statistical estimates biased.

For this reason, another class of robust statistics models was introduced. One

of the main tasks when treating for outliers in a dataset is to detect them. A
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review of outlier detection methods is made as well as a review of robust esti-

mation techniques. These tools are used later in this thesis to accommodate

for outliers in commodity market returns.

The next section introduces some stochastic processes used to generate

simulations in stock, bonds, commodities and futures markets. Stochastic

processes are very useful to simulates possible price paths and assess how a

mining project can be affected by the market fluctuations. Another popular

use of these stochastic processes is to assess market risk of mining projects.

Then, it is possible to estimate how a hedging program can help to mitigate

this market risk. A variety of stochastic processes exists in the literature.

Some, like the geometric Brownian motion, are more parsimonious in terms of

the number of parameters to estimate. Other models have more parameters

constraining the stochastic process. Each stochastic processes have their own

advantages and inconvenient and they should be chosen in function of the

problem to be solved.

The fourth section introduces the state space representation of stochastic

processes and the Kalman filter. The Kalman filter is a very powerful tool used

for the simulation of stochastic processes as well as for parameter estimation.

Once a stochastic process has been represented in its state space form, it is

possible to estimate its transition equation using the Kalman filter. In this

thesis, the Kalman filter in a central topic because of its flexibility. However,

it can be difficult to calibrate the Kalman filter with historical observations

because the optimization routine can yield to infeasible parameters estimates.

For this reason, genetic algorithms were used for the calibration of the Kalman

filter.

The next section introduces genetic algorithms. The genetic algorithm

is a metaheuristics approach which is particularly suitable to solve non-linear

8



problems. When the objective (or cost) function of an optimization problem

contains multiple dependent parameters and the landscape of this function is

irregular with multiple local minimums, the genetic algorithm probes to be

superior to the steepest descent approach for optimization. This is due to

the fact that genetic algorithms work with a population of points to estimate

instead of working on a single optimization point at a time. A tradeoff of using

the genetic algorithm is computation efficiency.

The sixth section introduces pioneering work as well as recent work on

option-pricing theory. With a calibrated stochastic process (using the Kalman

filter and genetic algorithm workflow), it is possible to perform simulation

and to estimate the value of derivatives contracts dependent on price path

simulations of commodities, stocks or bonds. Then, an extension from the

valuation option-pricing theory to Real Options valuation is presented. Real

options are useful to determine the value of managerial flexibility in a capital

budgeting projects. For example, the real option to close a mining project

when the commodity price is unfavorable may add value over the alternative

status quo (or doing nothing). A parallel can be made between real options

and financial options. For example, closing a mine project can be seen as

a financial put option: the assets are sold at a given price and the project

is terminated. The last section presents how Real Options valuation can be

applied to the valuation of mining projects.

2.2 Market risk regarding commodity markets

The mining industry can be separated into three principal spheres: ex-

ploration, mining and metallurgy (Svetlana, 2010). Each sphere is affected

by mineral market fluctuations. For example, in a mineral boom, exploration

companies are getting a lot of liquidity to rapidly find the next ore deposit

in order to bring minerals on the market while mining companies may try
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to acquire smaller mines or boost their already existing production. For this

reason, valuing mining companies is difficult due to the impact of mineral and

economical cycles (Svetlana, 2010). The first cyclical effect refers to the fact

that the value of the commodity company is not only affected by the price

of the commodity but also by the expected volatility in that price, leading

to higher volatility in earnings than other sectors in the market. The second

cyclical effect refers to the high fixed operating costs of mineral extraction

projects; because of these high fixed costs, mining companies need to keep

their operations active even in economic downturns. Another important as-

pect of mining companies is that ore deposits have a finite geometry meaning

that if mining companies do not invest in exploration campaigns or acquire

other mining properties, they are condemned to disappear (Svetlana, 2010).

Once the fact that mining companies are subject to some cycles has been

established, several questions need to be answered. First of all, how are such

types of companies going to be managed? The basic management problem

can be stated very simply. The prices of commodity metals fluctuate by large

amounts from one period to another, whereas costs are relatively more stable,

resulting in large profit instability (Adams, 1991). Financial markets tend

to give more valuation to companies with stable earnings since they are pre-

dictable. What tools can mining company’s managers use to stabilize earnings

throughout the life of a (or a portfolio of) mining project(s)? In his research,

Adams (1991) denotes three principal management strategies to get through

downward mining cycles: Capital repayment reduction, restructuring net op-

erating costs and risk sharing. The first strategy is to reduce the fixed re-

payment schedule by offering metal loans (i.e. a gold loan) or bonds. The

second strategy involves varying volumes of production and margins during

mining cycles in order to stabilize the earnings; hence increasing stability at
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the cost of profitability. The last strategy involves hedging potential losses by

offering futures contracts to buyers of the produced commodity. In all cases,

such strategies need to be implemented before downward cycles start.

Commodity prices have always been very volatile and hard to predict.

Kroner et al. (1995) were among the first researchers to use econometric models

to perform long horizon (up to 225 days) forecasts of volatility on commodity

markets. To do so, they forecasted volatility using expectations derived from

options prices (market expectation or presumed volatility forecasts), forecasts

using time series modeling, and forecasts with a combination of market expec-

tation and time-series methods. Kroner et al. (1995) showed that the workflow

using a combination of implied and realized volatility gives the best results over

the two other workflows. The reason why the combination method is better

than the others is that options markets are inefficient. Econometric models

were later used to forecast volatility in agricultural commodities such as corn,

wheat and soybeans (Manfredo and Leuthold, 1998). According to the au-

thors, value at risk (VaR) and GARCH forecasting appears to be a promising

management tool for the agricultural industry, since it can quantify exposure

to market risk of cultures and provide incentives to develop hedging strategies.

Giot and Laurent (2003) used econometric models such as RiskMetric, skewed

Student APARCH and skewed Student ARCH to predict value at risk of long

and short positions in commodities markets. APARCH models can account

for the tails asymmetrical distribution, allowing more weight on past negative

returns than past positive returns. Also, since the authors use a Student dis-

tribution, they can account for fat tails, thus, he is able to better reproduce

strongly negative returns. The authors showed that the three methods could

be used to do very short-term predictions (1 day predictions). In most cases,

RiskMetric failed to predict VaR 1 while skewed Student APARCH gave the
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best predictions. However skewed Student ARCH is a good compromise since

there is no need to perform non-linear optimizations in the procedure. It is

not sure if econometric models bring an added value over forecasts of supply

and demand for long-run predictions, but the methodology could definitely be

implemented to perform midterm predictions (Giot and Laurent, 2003). Later,

Sadorsky (2006) used econometric principles to forecast volatility in petroleum

markets. The data used for his study were observations on the daily closing

futures price returns on West Texas Intermediate crude oil, heating oil #2,

unleaded gasoline and natural gas from the 1988-2003 period. The time pe-

riod of the study makes the evaluation of econometric models very robust

since oil prices were affected by large fluctuations during that period of time.

The conclusion of this study was that a TGARCH model fits well for heat-

ing oil and natural gas volatility and a GARCH model fits well for crude oil

and unleaded gasoline volatility. Then, non-parametric value at risk measures

based on volatility forecasts of oil and gas markets can provide a useful way to

measure risk exposure of an investment in oil and gas commodities (Sadorsky,

2006).

Since datasets can be contaminated with outliers, it is important to detect

them and when possible, treat them with robust statistical methods. The next

section introduces robust regression.

2.3 Robust regression

Before introducing stochastic processes, it is important to understand

that any dataset can be contaminated with outliers. Outliers are different

from bad data in the sense that they may be extreme values of a generation

process or they can perhaps be generated from a secondary process (Ortiz

et al., 2006). Several methods can be used to detect outliers. These methods

are often based on distance measures or analysis of clustering. There is also
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a distinction between the univariate and multivariate case. In the first case,

there is no covariance term to calculate between the different variables. As a

result, a simple method like the studentized residual method can be used to

detect outliers (Thompson, 1935). In the multivariate case, it is often more

useful to use a distance measure to detect outliers. For example, Filzmoser

et al. (2005) used the Mahalanobis distance to assess which data points can

be considered as outliers in a regression plot. This method is suitable for a

multivariate case because it does not assume the distribution of the data.

Once the outliers are detected, they can be corrected using robust regres-

sion. Huber (1973) introduced the M-regression based on maximum likelihood.

This estimator has the advantage to be very efficient. Rousseeuw (1984) intro-

duced the least-median square (LMS) which is less affected by the presence of

outliers. The LMS regression method is a particular case of quantile regression

(Powell, 1986). A least-trimmed square estimator is useful when the dataset

is contaminated with a substantial amount of outliers (Leroy and Rousseeuw,

1987). Yohai (1987) proposed a high breakdown point and highly efficient ro-

bust estimator called the MM-estimator. The MM-estimator has the highest

breakout point possible of 0.5 meaning that up to 50% of the dataset can be

contaminated by outliers before the robust estimator breaks.

Outliers will often appear in financial time series so it is important to

understand how they can affect different estimates. Martin and Simin (2003)

showed how outliers could affect estimates of betas used in the Capital Asset

Pricing Model (CAPM). Authors propose an alternative approach than OLS

to calculate betas. This complementary approach can also be coupled with

the traditional calculation of beta to detect outliers. Robust methods can

also be used to model operational risk in financial institutions and help to

characterize how they can be affected by outlier events Chernobai and Rachev
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(2006). The aim of using robust regression is not to discard extreme events

but rather to partition a dataset in an outlier-free and outlier contaminated

sets. This results in a much more meaningful analysis of time series since

the estimates are not biased by a few but extremely influent outlier points.

Robust statistics in finance can also be used to construct portfolios resistant

to outliers (Welsch and Zhou, 2007). Results show that robust portfolios have

a lower asset turnover and an increased risk adjusted return.

Some stochastic processes are better suited to deal with outliers. The

following paragraphs, a review the different stochastic processes.

2.4 Stochastic processes

Samuelson (1965) introduced the first stochastic process models used to

estimate returns in financial markets. The author used geometric Brownian

motion (GBM) to describe how financial returns could evolve between two

points in time using a drift and a volatility parameter. It was shown that in

GBM diffusion models, financial returns are independent from previous returns

(Samuelson, 1965). Stochastic interest rates tend to grow indefinitely when

applying simple GBM to model them (Vasicek, 1977). Instead, an Ornstein-

Uhlenbeck process is introduced in the diffusion process to describe the short-

term rate dynamics.

Stochastic volatility (SV) methods were later developed to overcome the

strong constant volatility assumption in previously developed diffusion model.

Andersen and Shephard (2009) published an exhaustive literature review on

stochastic volatility. They made a clear distinction between SV methods and

ARCH based methods (often confused for SV methods). In stochastic volatility

methods, the conditional likelihood function is not known as opposed to one-

step-ahead predictions such as ARCH. In SV, the asset returns are instead

approximated by a mixture distribution where the level of activity of new
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arrivals is taken into account. The Heston SV (Heston, 1993) model links

these biases within the Black-Scholes (BS) model to the dynamics of the spot

price and the distribution of spot returns. The author shows that even if the

BS model produces option prices similar to the stochastic volatility models

for at-the-money options, SV models are better suited to explain skewness

of option spreads by modeling the correlation between volatility and the spot

price. Merton (1976) used a different approach and introduced an independent

jump component to the GBM. As a result, the stochastic process is able to

reproduce outliers that can’t be modeled with the GBM. Later the work of

Bates (1996) extended the Heston model and the Merton jump by combining

both stochastic volatility and jump components. Bates (1996) shows how

these jumps are important for modeling options prices simultaneously across

the strike and time-to-maturity spectrum.

The convenience yield has to be taken into account when modeling dif-

fusion processes governing different commodities. Unlike stock markets, com-

modity markets are accompanied with forward and future markets which can

provide insights of future prices (Geman, 2005). Because of the high level of

similarities between forward curves in commodities and yield curve in bond

markets, theories developed in the fixed-income field in finance have been ap-

plied to model commodities (Geman, 2005). Schwartz (1997a) compares three

models that take into account mean reversion. In the first model, a one-factor

model following a mean-reverting process governs the diffusion process. The

second model is a two-factor diffusion model taking the stochastic convenience

yield of a commodity as a factor. The third model is a three-factor model that

also includes randomly varying interest rates. Casassus and Collin Dufresne

(2005) showed how the convenience yield could be modeled using the Schwartz

three-factor model.
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There is a fundamental difficulty in historical volatility forecasting: volatil-

ity is not directly observable (Daǹıelsson, 2011). In other words, to detect

volatility increases, one must first observe changes in price ranges to volatility

changes to occur. For this reason, volatility is called a latent variable, which

means there is a delay between the present time and volatility. However, there

is an exception to this observation. For example, futures on volatility indices

such as the VIX from the Chicago Board Option Exchange are based on the

spread on future options, which means volatility forecasting is based on fu-

ture values of implied volatility (Alexander, 2008). For this reason, such an

approach is called implied volatility forecasting (Christensen and Prabhala,

1998). Day and Lewis (1988) observed that when approaching the expiration

date for stock index options, volatility tends to increase significantly. Stud-

ies on implied volatility forecasting are based on the idea that option spread

should reflect realized volatility given the fact that option markets are efficient.

The very first method used for historical volatility forecasting was the

simple moving average (SMA). Volatility forecasts are based on returns on

past days of trading (Daǹıelsson, 2011). Since volatility tends to cluster, it

is important to have a volatility forecast method which puts more weight

on recent observations. The SMA volatility forecast tend to underestimate

volatility because it applies equal weight to each trading day. For this reason,

Morgan (1996) released a publicly available volatility forecasting model called

the Exponential Weight Moving Average (EWMA), also called RiskMetric.

The difference between SMA and EWMA is that the latter method applies an

exponentially decreasing weight from the most recent days of trading to the

preceding days. One can choose the decay factor of the EWMA calculation

which is a number between 0 and 1. Morgan (1996) suggests to use 0.94 as
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a decay factor for all types of investment securities, which is a subjective but

suitable value of decay.

The volatility forecasting models discussed in the previous paragraphs

were univariate. Extending the theory to take into account several assets at

the same time is not always an easy task, since the covariance between different

assets needs to be calculated (Daǹıelsson, 2011). One of the firsts multivariate

model developed was the BEKK (Engle and Kroner, 1995) where the matrix

of conditional covariances is a function of the product of lagged returns and

lagged conditional covariances, constrained by a parameter matrix. Another

approach to model multivariate data is to assume that the observed data

can be linearly transformed into a set of uncorrelated components using an

inversion matrix. Parameters of the inversion matrix depend on conditional

information which can be calculated directly from time series.

Another family of volatility forecasting methods is the Stochastic Volatil-

ity (SV) (Daǹıelsson, 2011). This family of methods uses random number

generation to generate equiprobable scenarios of volatility constrained by an

input model. Also, SV models differ from ARCH based models where the con-

ditional variance of returns is given by past returns observed, while in the SV

approach the predictive distribution of returns is specified indirectly, via the

structure of the model (Andersen and Shephard, 2009). In SV models, price

changes are due to exogenous shocks to the stochastic distribution of returns.

The stochastic features of time series have been observed for a long time in

the literature. Mandelbrot (1963) describes a succession of returns with the

random walk theory, where returns have a Brownian motion.

This family of forecasting methods was developed to overcome the strong

normal distribution assumption in the BS option pricing model (Heston, 1993).

The Heston SV model links these biases within the BS model to the dynamics
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of the spot price and the distribution of spot returns. The author shows that

even if the BS model produces option prices similar to the stochastic volatil-

ity models for at-the-money options, SV models are better suited to explain

skewness of option spreads by modeling the correlation between volatility and

the spot price. Later Bates (1996) extended the Heston model to allow for

jumps in volatility. Bates (1996) shows how these jumps are important for

modeling option prices simultaneously across the strike and time-to-maturity

spectrum.

Brennan and Schwartz (1985) were the first to introduce a model that

infers a relationship between commodity spot prices and futures. To link these

two aspects, they introduced the convenience yield which is a continuously

compounded benefit taht the owner of a forward or futures contract renounce

to when buying the contract. The greater the convenience yield is, the lower

the fair value of the contract is. In Brennan and Schwartz (1985), the spot price

moves according to a geometric Brownian motion (GBM) with deterministic

convenience yield and risk-free interest rates. Later, Gibson and Schwartz

(1990) used the the previous models and tested a two-factor model for pricing

weekly oil futures contracts using spot price and the instantaneous convenience

yield as variables.

A very useful algorithm for calibrating stochastic processes is the Kalman

filter (KF). The next section introduces the KF and its diverse applications

for solving engineering problems.

2.5 State space representation of stochastic processes

The KF was introduced in 1960 and have found numerous applications in

solving engineering problems (Kalman et al., 1960). One of the first important

uses of the KF was to implement the recursive algorithm responsible of tracking

the Apollo spacecraft and its lunar module (Willems, 1978). The KF separates
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a signal into two different partitions. The measurement partition contains

measurement errors and can be used to estimate the transition equations,

which describe the phenomenon to be modeled. For example, in the case of

a radar measurement, the position of a vessel can be measured with a certain

amount of noise, but the instantaneous velocity needs to be inferred from

different subsequent measurements of position (Brookner, 1998). In this case,

the transition equations will describe how velocity is related to position and

the measurements will be used in the KF to estimate the correct velocity.

A wide range of engineering problems can be solved using the KF. More-

over, the KF can be used to solve engineering problems containing multiple

independent variables or in multiple dimensions. For example, the KF can

be used to track objects in 3 dimensions using the Global Positioning System

(GPS) (Sasiadek et al., 2000). More recently, the KF have been widely used to

track Unmanned Aerial Vehicles (UAV), also known as drones (Benini et al.,

2013). The previous examples showed how the KF could be used for tracking

objects in multiple dimensions. Another important use of the KF is for the

interpretation of sensor measurements used in automated processes. An ex-

tension of the KF, the Ensemble Kalman filter (EnKF), can be used to solve

engineering problems related to geology and geography (Evensen, 2003). Ben-

ndorf et al. (2014) used the EnKF for the real-time online characterization of

properties of coal moved on conveyor belts. The workflow enables the recon-

ciliation of the geostatistical model and actual measurements of the material

properties. The extended Kalman filter (eKF) fas introduced to solve problems

where the transition equations are non-linear (McElhoe, 1966). The method

uses Tailor series expansions to linearize the problem. Other approaches can

be used to describe non-linear problems. The particle filter (PF) was intro-

duced to overcome the linearity assumptions of the KF (Del Moral, 1996). The
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PF is more accurate than the KF when the problem is non-linear but since it

relies on the estimation of discrete particles instead of a normal distribution

assumption of the error term, it is more computationally intensive.

The KF and its derivatives methods can be used to infer hidden state

variables from commodity futures contracts observations. Schwartz (1997a)

introduced the state space representation of stochastic processes in the con-

text of commodity futures estimation. The author compared three models that

took into account mean reversion in the convenience yield. In the first model,

a one-factor model following a mean-reverting process governs the diffusion

process. The second model is the Gibson and Schwartz (1990) model. The

third model is a three-factor model that also includes randomly varying in-

terest rates. In order to correctly estimate parameters, Schwartz (1997a) uses

KF techniques to continuously and iteratively correct the covariance matrix.

Ribeiro and Hodges (2004) further extended the long-term Schwartz two-factor

model by replacing the Ornstein-Uhlenbeck by a Cox-Ingersoll-Ross to model

the convenience yield. This ensures that the model is arbitrage free. Further-

more, they examined the spot price volatility as proportional to the square

root of the convenience yield level.

Both Ribeiro and Hodges (2004) and Schwartz (1997a) models are adept

at pricing short-term contracts, but fail when pricing longer term structures.

Schwartz and Smith (2000a) eliminated the concept of convenience yield and

modeled the log of the spot price as the sum of a short and a long-term

component. The model allows mean reversion in the short-term and uncer-

tainty in the long-term price. Movements in prices for long maturity futures

contracts describe the long-term equilibrium level and the difference between

short-term contracts and long-term describes how spot prices mean revert in
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the short-term. This specification is better at pricing longer term futures con-

tracts than previous models. Aiube and Samanez (2014) reconducted analysis

in oil futures markets using longer maturity contracts that were not available

in previous studies. Authors showed that the use of these multifactor models

tend to underestimate the risk premium observed in futures prices.

The KF is very useful to estimate commodity markets dynamics. How-

ever, calibrating the parameters can be challenging. In this thesis, the use

of the genetic algorithm for the calibration of the Schwartz-Smith model

(Schwartz and Smith, 2000a) is investigated. The next section presents a

brief literature survey on genetic algorithms.

2.6 Genetic algorithms

Genetic algorithms (GAs) appeared in the mid 70’s with the pioneering

work of Holland (1975). In the first formulation of the GA, a set of param-

eters to be optimized were encoded using a binary representation. GAs can

ignore the gradient of the optimized function since they rely on an objective

function to evaluate the transition from a solution to another. This enables

the algorithm to consider a population of points instead of focusing on the

gradient optimization of a single point which can be stuck in a local maximum

(or minimum) (Goldberg and Holland, 1988). This makes the GA particu-

larly suitable to optimize highly non-linear functions. As a result, GAs are

employed in a wide range of engineering optimization problems.

Some researchers have used the GAs to literally simulate the evolution

of virtual creatures (Sims, 1994). The authors have created a 3D virtual en-

vironment subject to physical constraints and used the GAs to simulate the

evolution of randomly generated creatures. The objective function represented

tasks the virtual creatures were required to perform such as jumping, swim-

ming or walking. The GAs helped to design complex morphologies that were
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optimal for performing the tasks. Later, GAs were used for the optimization

of the shape of the wing of an aircraft (Obayashi et al., 2000). In this case, the

shape of the wing could be modified iteratively to have better aerodynamic

characteristics.

In the previous examples, GAs were used to optimize the shape of com-

puter generated objects. GAs are also suitable for solving abstract engineering

problems. Mahfoud and Mani (1996) used the GA to forecast individual finan-

cial stock performance. The authors used the GAs to model how the combina-

tion of 15 attributes can be used to forecast favorable market circumstances.

Later, Shin and Lee (2002) used the GA to predict bankruptcies of Korean

financial institutions. The GA can have multiple objectives to optimize at the

same time. Tapia and Coello (2007) denoted five types of problems that are

solved using multi-objective GA optimization. The five types of application

are: investment portfolio optimization, financial time series modeling, stock

ranking and screening, risk-Return analysis and economic modeling.

Other algorithms use behavior observed in nature to solve problems.

Eberhart and Kennedy (1995) introduced particle swarm optimization (PSO).

This algorithm mimics how a herd of individuals cooperate to better sur-

vive. Each individual is allowed to move independently at a given speed. The

swarm collectively knows which solution is the best, but individual member of

the swarm move randomly to try to find a better solution. Maniezzo (1992)

introduced ant colony optimization (ACO), which mimics the behavior of an

ant colony which tries to optimize the route between their colony and a source

of food.
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Any of the presented metaheuristics approaches can be used to optimize

the KF parameters. Ting et al. (2014) used the GAs to optimize the parame-

ter of the KF in a battery management system. Authors show the methodol-

ogy is suitable because it produces low root mean-square (RMS) error values.

Ortmanns et al. (2015) used a combination of GA and unscented Kalman fil-

ter (UKF) for the estimation of parameters used in a sigma-delta modulator

analog-to-digital converter. Luis Enrique Coronado (2015) used a combination

of extended KF and GAs for the optimization of neuro-mechanical parameters

responsible to prevent human from falling. The workflow is better suited than

actual trial and error methods for finding a solution to the problem.

The next section introduces options pricing theory. This will be useful to

better understand real options, a central concept in this thesis.

2.7 Options pricing theory in financial markets

An extensive literature survey exists in the valuation of options traded in

financial markets. Black and Scholes (1973) developed a widely used formula

to price European-style options. The BS formula takes a stock price, the

option exercise price and its time to expiration, the risk-free interest rate

and the volatility as an input and computes the price an investor should pay

for that option. In the BS formula, stock price returns obey a geometric

Brownian motion, and they follow a log normal distribution. Moreover, in BS

formulation, the volatility is constant. It is well known that these assumptions

are not true because volatility tends to be clustered in periods of high and low

volatility (Fama, 1965). If a stock price can be modeled as a GBM affected

by shocks such as important news or political decisions, volatility should also

be affected by these shocks (Fama, 1965).

Later, Merton (1976) improved the BS model by allowing for stochastic

jumps in the stock price returns while considering the volatility constant over
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time. As a result, a premium has to be added to options where the stock

prices are exhibiting strong changes in magnitude. Schwartz (1977) solved

partial differential equations in the BS and Merton models to take account

for dividend-paying stocks. A numerical example based on the pricing of

American Telephone and Telegraph (ATT ticker) options comparing Schwartz

model with BS without dividends and BS with dividends, show a discrepancy

between real market prices of options and Schwartz model. According to

Schwartz (1977), the discrepancy could be due to a bias in the model, a bias

in the market value or a discrepancy in the historical variance derived to

price the option using the model and the variance predominant in the market

valued options. Cox et al. (1979) developed a numerical pricing option based

on a binomial lattice. Their discrete-time approach uses simple mathematics

and the no-arbitrage assumption in derivative markets. The binomial lattice

method converges to the BS formulation when discrete time steps converge to

zero. For this reason, the binomial lattice algorithm can be seen as a numerical

implementation of the BS model.

Boyle (1977) later introduced a Monte-Carlo simulation approach in op-

tions pricing theory. The approach uses computational power to generate a

number of realizations of stock price return paths and has an advantage over

analytic methods in cases where jump processes are present in the underlying

stock price returns. Longstaff and Schwartz (2001) developed options val-

uation with a Monte Carlo-based approach using least square regression to

estimate the expected payoff of an option contract holder. The model is called

the least square Monte-Carlo (LSMC) regression. Their method can calculate

American type options, which is a significant advantage over methods that

can only calculate European type options. Longstaff and Schwartz (2001) rec-

ognized that using methods such as generalized methods of moments (GMM)
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when estimating the conditional expectation function could lead to better re-

sults when residuals from the regression are heteroscedastic. Jonen (2011)

improved the LSMC algorithm for when the conditional expectation function

contains outliers by replacing the least-squares estimator with a robust estima-

tor. Jonen (2011) showed that the robust Monte-Carlo regression algorithm

significantly reduces the bias without increasing the variance when using ro-

bust loss functions such as Huber (Huber, 1973) in presence of outliers. Even if

Monte-Carlo regression based techniques can tackle more complex problems by

allowing for multiple simultaneous assets, stochastic volatility cannot be easily

implemented because it would require solving a non-linear regression at each

time step. In any case, analytical methods presented in this section are based

on the assumption that volatility is constant over time, or non-stochastic.

The next section introduces real options, which is an extension of options

pricing theory to the pricing of options on real assets.

2.8 Introduction to Real Options valuation

Because of the high level of similarities between management of a mine

and the management of options traded in financial markets, Real Options val-

uation was first introduced by Myers (1977) who made an analogy between

an irreversible investment and a call option (or option to buy) in financial

markets. An American call option can be exercised at any time before the ex-

piration date. As an analogy, the possibility to undergo an irreversible invest-

ment such as opening a mine can happen whenever after the completion of the

feasibility study whenever the financial resources are available. At the project

expiration date, financial actors may decide to invest their money elsewhere

and the option to undergo the mining project expires. The added optionality

using options pricing theory is referred in the literature as managerial flexibil-

ity (Trigeorgis, 1993). In natural resource investment projects, management

25



teams have the possibility to defer or accelerate development, alter operating

scale and abandon or temporarily close a mine (Trigeorgis, 1993).

Because Real Options valuation theory is based on an analogy with op-

tions traded in financial markets, practitioners decided to adapt option-pricing

theory in a Real Options framework. Copeland et al. (2001) made a compre-

hensive book on applying Real Options valuation to real world problems. The

authors are principally using decision tree analysis (DCA) with an approach

similar to Cox et al. (1979) to value real financial assets as opposed to secu-

rities. Luehrman (1998) considered characteristics of a real world investment

problem as input variables into the BS model. For instance, present value of a

project operating assets can be seen as the stock price, expenditures required

to acquire the project assets are the call option exercise price, the period the

decision can be postponed is the time to expiration, the time value of money

corresponds to the risk-free interest rate,mean-reverting and the risk of the

project corresponds to the variance of returns on stocks.

In the recent literature, several attempts have been made to apply Real

Options to the valuation of mining projects. Even if the approach seems

promising compared to the DCF approach, practitioners still have a lot of

difficulties applying ROV to mining projects. One of the reasons is that ROV

models are oversimplified and do not reflect the true complexity of a mining

project investment (Dimitrakopoulos and Abdel Sabour, 2007). According

to the authors, one of the major simplifications that render ROV impracti-

cable is that production rates in a mine are considered to be constant. To

overcome this difficulty, Dimitrakopoulos and Abdel Sabour (2007) focus on

implementing a workflow integrating mine production sequence in the ROV

framework. Another problem that is not currently well addressed in ROV
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for mining projects is the variability of foreign exchange rates (Dimitrakopou-

los and Abdel Sabour, 2007). The authors address the problem by modeling

foreign-exchange rates as a mean reverting process taking into account the cor-

relation with other stochastic variables. However, the authors did not explain

exactly how foreign exchange rates were simulated.

Brennan and Schwartz (1985) explained how classical DCF valuation tech-

niques were not appropriate to the valuation of resource projects. The stochas-

tic aspect of commodity prices and the cyclical aspect of mining industry

require developing models specific to the resource extraction industry since

commodity prices can encounter price swings of 25%-40% per year. Samis

et al. (2005) compared conventional DCF analysis to ROV. They observed

that ROV valuation tends to add value to a project because of the added

managerial flexibility. The authors emphasize that ROV is not a hidden value

detection tool, but rather a planning tool. In other words, one cannot predict

the future of commodity prices, but can plan strategies if different scenarios

occur. Authors used a binomial lattice method such as in the work of Cox

et al. (1979) to model the discrete time value of Real Options. Bertisen and

Davis (2008) produced an econometric study that showed production costs are

systematically undervalued in mining projects. According to the authors, this

is due to the fact that feasibility studies are realized by third-party firms hired

by mining companies. Another reason is the scarcity of financing resources

compared to the quantity of mining projects. Finally, authors showed that

the effect of inflation is not negligible when projects take a longer time to

start.

Because of the known limitations of DCF analysis, ROV is increasingly

used in the industry. In fact, it is accepted in NI43-101 reports (Samis et al.,

2011). The difficulty to implement ROV in feasibility studies is the need of
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having a qualified person (QP) to perform the analysis. Such QP is very rare.

Nevertheless, Samis et al. (2011) presented a NI43-101 report comparing the

valuation of the Oyu Tolgoi project operated by Ivanhoe and Entree Gold

using ROV and DCF. Authors showed that ROV can better integrate risk

related to commodity prices even in the early stages of the feasibility studies.

Finally, Samis and Davis (2014) showed how ROV valuation could be used to

plan a hedging program for a mining project. Authors use a MC discounted

cash flow method to analyze financing proposed for an African gold project.

Authors showed the risk mitigation plan proposed by the financial institution

was transferring to much wealth from the mining company to the financial

institution. The authors argued that even if mining management teams are

not financial engineers, using ROV to evaluate the risk mitigation program

offered from a financial institution can help to grasp what are the trade-offs

of using such hedging plans.

In the next chapters are presented the papers accompanying this thesis.
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CHAPTER 3
Analysis of mining engineering data using robust estimators in the

presence of outliers

3.1 Abstract

Ordinary least squares (OLS) regression is an estimation technique widely

used in mining research to model relationship among a dependent variable and

a set of explanatory variables. However, OLS is based on strong assumption

such as normality of the error term, exogeneity of explanatory variables, linear-

ity between regression coefficients, and homoscedasticity. When one or more of

the assumption are not held, OLS can lead to biased and inefficient estimates

of the true population parameters. Using biased estimates of the population

parameters may result in serious problems in mining decision making, espe-

cially if key decisions are based on the biased parameter estimates. One of the

main reasons that can lead OLS to provide biased estimates is the presence

of outlier data points in the sampled population. In this paper, we focus on

alternatives to the OLS estimator, which are more robust (or resistant) to

the presence of outliers. Two case studies were conducted to compare OLS

and robust regression approaches namely L1-estimation, M-estimation, least

trimmed squares, least median squares, and MM-estimation. The case studies

showed that inference based on OLS in the presence of outliers could lead to

bad decisions if regression coefficients are not interpreted correctly. Robust

regression approach can provide estimates useful even if a dataset is contami-

nated with outliers.
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3.2 Introduction

In mining engineering research, regression analysis based on the ordinary

least squares (OLS) approach is widely used to model relationships between

variables. For example, O’Hara (1980) established regression models relating

equipment sizing, daily ore-waste production, and cost for open pit mines.

Taylor (1986) introduced a relationship between production rate and reserves.

In sampling broken ores, K, which is a constant factor being the product of the

mineralogical factor, the shape factor, the granulometric factor, and the libera-

tion factor, and α, which is the cube of the nominal top-size of the fragments in

the sample, are predicted by linear regression modeling (Francois-Bongarcon

and Gy, 2002; Minnitt et al., 2007). Karacan (2008) researched the relative

effects of different coal bed parameters on the migration of methane by mul-

tiple regression analysis. Jorjani et al. (2009) predicted the combustible value

and combustible recovery of coal flotation concentrate by regression and artifi-

cial neural network based on proximate and group macerals analysis. Demirel

(2011) fitted an equation relating geological strength index and average hourly

stripping amount. Gray (1996) established a regression equation relating con-

ductivity to sulfate concentration in both acid mine drainage and contami-

nated surface waters. Rajesh Kumar et al. (2013) used regression analysis to

estimate rock characteristics from sound levels generated throughout drilling.

A linear model estimates the relationship between a dependent variable

and a set of independent observations. The multiple regression analysis can

be represented as

yi = β0 + β1x1i + . . .+ βnxni + εi (3.1)

In equation 3.1, yi is the predicted variable, x1i, . . . , xni are the n ex-

planatory variables, β0, . . . , βn are the n coefficients that can be adjusted to
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minimize the difference between the predicted variable and explanatory vari-

ables and εi is the error term. Since observations are taken from a sample

of a population, the coefficients will always be an approximation of the true

population coefficients. To isolate the error term from the predicted and ex-

planatory variables, Equation 1 can be re-written

εi = yi − (β0 + β1x1i + . . .+ βnxni) (3.2)

The optimal OLS coefficients to minimize the difference between observed

and explanatory variables are found by minimizing the sum of squared differ-

ence between measured value of the predicted variable yi and its OLS estimate:

minimize
k∑
i=1

(yi − (β0 + β1x1i + . . .+ βnxni))
2 (3.3)

One should be very cautious when deciding which explanatory variable

to include inside the regression model. A good model is based on a natural

process. There are five critical assumptions behind OLS regression (Greene,

2003). First of all, as expressed in Equation 3.2, there must be a linear rela-

tionship (w.r.t. β) between predicted variable and all explanatory variables.

If this assumption does not hold, it may be still possible to find an optimal

solution using non-linear regression, but this approach would not be OLS.

The second assumption is that all explanatory variables must be independent,

ensuring that there is a unique solution to the minimization problem. The

vectorial space spanned by the different explanatory variables can be seen as

a projection space where the estimates of the model can be generated. If two

or more columns are linearly dependent, there is no unique solution to the

minimization problem. The third assumption is that all explanatory variables

must not be correlated with the error term (exogeneity of the error term). The

31



fourth assumption is that variance has to be the same for all disturbances (ho-

moscedasticity) and there must be no correlation between error terms. When

variance is non-stationary (or heteroskedastic), there are workarounds like us-

ing the General Regression Model, but again, it’s a different approach than

OLS. Finally, OLS requires the error term to be normally distributed. Failing

to meet the five assumptions will often lead to biased or inefficient estimates

when performing OLS regression.

From our observations, in many engineering applications, all the assump-

tions of the OLS are rarely met. Outliers can either be extreme values of a

distribution or values generated from a secondary process that does not taken

into account in the regression model (Filzmoser et al., 2005). For example,

residuals often exhibit an increasing spread in time, which means that there

is a violation of the homoscedasticity assumption. Since OLS weights each

observation equally, the presence of heteroskedasticity can affect coefficients

estimates by giving too much weight to observations that shows a higher level

of variance. On a cross plot of predicted variable in function of explanatory

variables in presence of heteroskedasticity, high variance points will appear as

outliers (Greene, 2003). Another example of outlier generation is the short

regression (Greene, 2003). When an explanatory variable in the multivariate

regression equation (or the model) is neglected to be included, the variation

of the relevant explanatory variable must still be taken into account and it

will be implicitly included in the error term. As a result, residuals will exhibit

a higher level of variance. In mining research, collecting samples can be very

expensive. This often causes engineers to work with sparse datasets. If there

is an outlier among sparse sample, using OLS can lead to very large residuals.

Using OLS in presence of outlier data in mining may result in serious financial,

safety or environmental consequences and losses in mine design and valuation
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processes. As such, robust (resistant) techniques are required as an alternative

to the OLS method (Leroy and Rousseeuw, 1987).

In OLS, each element of vector parameter estimates is seen as a weighted

average of the vector of independent variables (Davidson and MacKinnon,

2004). Therefore, outlier points can have high influence on OLS regression.

OLS error term can be affected by the presence of a point (x, y) which is

significantly apart from the rest on other y values (“outlier point”), other x

values (“leverage point”) or on both y and x values simultaneously (“outlier–

leverage point”) (Ortiz et al., 2006). Outlier-leverage points will have the most

dramatic effect on OLS regression since it will have a tendency to “pull” on the

regression line and inflate the error term at the same time. Robust regression

techniques have been designed to be resistant against outliers, leverage or

outlier-leverage points at the same time.

In this paper, the focus will be on alternatives to the OLS estimator,

which are more robust (or resistant) to the presence of outliers when modeling

cross-sectional data. Main contribution of this paper is to introduce robust

regression techniques to mining practitioners, engineer, and decision makers.

Given that the regression based on least squares fitting in the presence of

outlier can lead to destructive consequences, robust regression techniques can

generate more reasonable fittings. In addition to this, the paper provides

R codes of various robust regression techniques. Thus, a practitioner can di-

rectly use it. We will first discuss the definition and detection of outlier points.

Then, alternatives to the OLS estimation will be proposed, namely least ab-

solute deviation or L1-estimator, M-estimator, LTS-estimator, LMS-estimator

and LTS-estimator. Then, two case studies consisting of cross-sectional data

estimated with different robust techniques will be presented.
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3.3 Outliers detection

In this section, the available methods to detect outliers in datasets will be

presented. First of all, it is important to distinguish between cross-sectional

data and time series. In a mining context, cross-sections correspond to datasets

that do not vary in time. For example, a relationship between copper and ar-

senic concentration of ore can be viewed as cross-sectional data since for each

pair of observed points values cannot change over time. On the other hand,

time series are highly correlated in time and violate the fourth assumption (cor-

relation in time) of the OLS. In both cross-sectional and time series, outliers

often arise for similar reasons, and the failure to account outliers in estimation

process may lead to biased estimates.

Detecting outliers in cross-sectional data is a qualitative task. Outliers

are different from bad data in the sense that they may be extreme values of a

generation process or they can be generated from a secondary process (Ortiz

et al., 2006). A high quantity of outlier points in a dataset is often a warning

that the model is not well defined. Bad data are generated by an erroneous

input, which can be due to an error with the manipulation of a measure

instrument, or errors during the transcription of the result. Detecting outliers

implies that a critical analysis of the model must be done while eliminating bad

data points is generally done directly during the process of quality assessment

of samples.

A common method to detect outliers is to evaluate extreme percentiles

for a given distribution. In the univariate case, this can be achieved by fitting

a distribution to a set of observations represented in a histogram. The second

step is to calculate the cumulative distribution function (CDF), and determine

a percentile threshold to reject a sample. When one or more suspect data

points have been generated by a different population than the observed data,
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studentized residuals approach can be used to detect outliers (Greene, 2003).

The approach consists of calculating the regression coefficients and variance

omitting each observation subsequently, and then standardizing the modified

residuals:

e(i) =

ei
(1−hii)√

e′e−e2i /(1−hii)
n−1−K

(3.4)

Where ei is the residual for the regression with i outlier point dropped,

e is residual for the whole sample, and hij is the influence measure according

to (Belsey et al., 1980). Studentized residuals should have a t distribution

with n − 1 − K degrees of freedom, and observations that have studentized

residuals greater than 2 in absolute value should be considered as outliers

(Greene, 2003).

For the multivariate case, one of multiple approaches is to use a measure

of distance like the Mahalanobis distance (MD) (Filzmoser et al., 2005):

MDi =

√
(xi − t)TC−1(xi − t) (3.5)

where xi is one observation, t is the estimated multivariate location, and

C is the estimated covariance matrix. It is common to use as t the centroid

of a multivariate distribution. The MD follows a Chi-squared distribution of

p degrees of liberty, where p is the number of variables. Given it is possible

to estimate the covariance matrix, we can find the resulting Chi-squared dis-

tribution and determine a threshold for outliers in order to be considered as

outliers for the given Chi-squared distribution.

3.4 Robust regression

There are two main approaches to reduce the effect of outliers. The first

approach diagnoses outliers and then corrects, removes, or downsizes them.
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OLS estimation is then used on the cleaned set of data. When outliers are

not caused by errors in the sampling method but rather generated by rare

occurring events, it may be preferable to take them into account in the model.

To do so, it becomes necessary to use robust estimators, which are not affected

by the presence of outliers, rather than using OLS estimators. This approach

refers to the inclusion approach where outliers are kept but robust estimators

replace OLS estimator.

There are two measures for robustness (Ortiz et al., 2006):

• Breakdown point measures how good an estimate can resist outlier data

before it fails. The finite sample breakdown point of an estimator at a

sample set is the smallest fraction of contamination. Only one outlier is

adequate to carry the OLS over all bound. For a sample of size n, the

breakdown point is 1/n. That is, it is apt to 0% for large number of

sample. The maximum value of breakout point that can be obtained is

50%.

• Influence function is a local measure of how much a single outlier affects

the estimate. It has local characteristics and defines the effect of an

infinitesimal contamination in the sample on the estimator. The methods

are classified in the basis of whether the influence function is bounded on

the x and/or y axes, depending on leverage and/or influence of outliers.

Not one robust estimator is universally better than any other in terms

of breakdown point, efficiency, or influence function. It is often preferable to

use more than one robust estimator in the presence of outliers in a sample,

simply because there is always a tradeoff between breakdown point measure,

efficiency, and influence. Efficiency refers to the tendency of an estimator to

give the best unbiased estimate for a particular set of observations (Greene,

2003). For each robust estimator presented in this paper, the breakdown point
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and influence will be discussed qualitatively so the reader can decide which

estimator to use depending on how outliers are bound to a different axis.

The next paragraphs present the robust estimators, which are a good

alternative to OLS. First, L1-estimation is introduced. Second, M-estimation

is presented, followed by quantile regression estimators such as least trimmed

squares (LTS) and LMS. Finally, S-estimator is introduced as a first step of

MM-estimation.

3.4.1 The least absolute regression model (L1 estimator)

We introduce the least absolute errors regression (L1), which minimizes

the absolute value of the error term instead of its square:

minimize
k∑

i=1

|yi−(β0+β1x1i+ . . .+βnxni)| (3.6)

Since the error term is not squared in Equation 3.6, the effect of outliers

will be diminished. However, large residuals will be still problem. Using L1

regression may seem simple at first, but it requires using iterative algorithms to

solve (Barrodale and Roberts, 1973). Moreover, to use L1 regression over OLS,

the statistician needs to make an assumption on the distribution of the error

term (Dasgupta and Mishra, 2004). In order to be efficient, the regression

estimator needs to converge to the maximum likelihood estimator (MLE),

which is the value that is most likely to result from the population that is

modeled. However, depending on the distribution of the errors, either the OLS

or the L1 can be closer to the MLE. When the distribution of errors is normal,

the OLS is the best choice. But when the distribution of errors is Laplacian,

or double exponential, the best choice is the L1 regression Hunt et al. (1974).

If the assumption that the error term are Laplacian, it is possible to solve L1

regression with maximum likelihood method. However, it is important to be

careful when using MLE with a small data set since it can be affected by local
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maximums during the optimization (Greene 2003). MLE is discussed in the

next section. The breakdown point of the L1 regression is 0% (Ortiz et al.,

2006).

3.4.2 M-estimator

Another class of estimator is the M-estimation. Maximum likelihood-type

regression stands for the class of regression methods, which aims to minimize

or maximize a sum of functions representing each observation (Huber, 1973).

Huber M-estimator is solved by the minimization of a function

f (y1, . . . , yn| θ) =
n∏
i=1

f (yi|θ) = L(θ|y) (3.7)

If we want to find the maximum value of the pdf, which corresponds to

the most likely value of the sample mean, we need to derive Equation 3.7 w.r.t

θ and find the zero. However, it may be difficult to derive Equation 3.7 since

it will be necessary to use derivation chain rule for the whole set of functions

representing each observation. It is more convenient to use the logarithm of

L (θ|y):

minimize
∑k

i=1
ρ(ri) (3.8)

where q is the Huber q function, a symmetric positive-definite function

with a unique minimum at zero. Huber q function is less increasing than

square residuals in OLS regression and is defined as (Huber, 1973)

ρ(x) =


1
2
x2 for|x| < c

c |x| − 1
2
c2for|x| > c

 (3.9)

The c tuning constant may be adjusted to control asymptotic efficiency of

the M-estimator, q is symmetric and continuously differentiable, and q(0) = 0.
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There exists c > 0 such that q is strictly increasing on [0, c] and constant on

[c,∞].

To solve Equation 3.8, an iterative re-weighted algorithm may be used to

subsequently optimize weight of each observation. Huber M-estimation has

the advantage of being more efficient than L1-estimation but has a breakdown

point of 1/n (Anderson and Schumacker, 2003).

3.4.3 LTS estimator

Least trimmed squares (LTS-estimator) are obtained by minimizing the h

quantile of squared residuals (Ortiz et al., 2006; Leroy and Rousseeuw, 1987):

min
a,b

{
k∑
i=1

(yi − (a+ bxi))
2

i:n

}
= min

a,b

{
k∑
i=1

r2

i:n

}
(3.10)

where (r2)1:n ≤ (r2)2:n ≤ . . . ≤ (r2)n:m are the ordered squared residuals.

LTS is similar to OLS but largest squared residuals do not appear in the dis-

tribution. For instance, LMS regression, which is presented in next section is a

particular case of LTS estimator, but where the quantile to trim is 50%. When

index k of the sum in the objective functions attains a value of approximately

n/2, breakout point of LTS estimation is 50% (Ortiz et al., 2006).

3.4.4 LMS estimator

Instead of minimizing the absolute value of errors, a method was intro-

duced to minimize the median of errors (Rousseeuw, 1984): A simple way to

compare LMS and OLS is that OLS will fit a line that minimize the sum of

distances between residuals and fitted line, while LMS tries to find the narrow-

est strip covering half of the points. This method has a very high breakdown

point ( ε∗ = 50% ) but has a very low efficiency ( n1/3 convergence). The

value of the breakdown point is not a valid condition to evaluate if a regres-

sion method is good or not. It can instead be viewed as an necessary condition

(Rousseeuw, 1984). In the LMS, even if 50% of the data is outlier at maximum,
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the accuracy of curve fitting will not be affected because median residual is

only considered. Therefore, the breakdown point of the LMS is 50%. It is

to be noted that LMS-estimation is practically never used because of its low

efficiency (Anderson and Schumacker, 2003). However, it is presented in the

case studies in the next section as a comparison to OLS and other robust

estimators.

3.4.5 MM-estimator

A class of high breakdown point and high efficiency estimators has been

introduced by Yohai (1987). These estimators are computed in three stages.

The first stage is to compute a high breakdown point but not necessarily

efficient estimate of the regression. In doing so, S-estimation can be used to

give the scale estimate (or estimate of the spread of the dependent variable)

(Anderson and Schumacker, 2003). The scale estimate is the value of s, which

is the solution of

1

n

n∑
i=1

ρ
(ui
s

)
= b (3.11)

where n is the size of the sample, ui = yi − x′β or the error term in

vectorial annotation, rho is a minimization function, and b may be defined

by Eϕ[p(u)] = b, where E[.] stands for expectation function and ϕ stands for

standard normal distribution. The second stage uses the scaled estimates of

the first S-estimation as an input in an M-estimation to find a close-by but

more efficient solution (Anderson and Schumacker, 2003). The third step is

to find the final MM-estimates (Yohai, 1987). Let ρ1(u) another minimizing

function such that

ρ1(u) ≤ ρ(u) (3.12)

Let ψ1 = ρ′1 then, the MM-estimate is defined as any solution of
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n∑
i=1

ψ1

(
ri(θ)

sn

)
xi (3.13)

which verifies

n∑
i=1

ρ1

(
ri(θ)

sn

)
≤

n∑
i=1

ρ

(
ri(θ)

sn

)
(3.14)

Assuming that the error term is normal, MM regression will both be

efficient and consistent. With the addition of a high breakdown point, MM-

estimator is truly a good choice when dataset is in the presence of outliers.

3.5 Case Studies

To demonstrate the difference between linear regression based on OLS and

robust regression estimators, two case studies are provided. The first dataset

consists in pairs of processing costs and recovery values for ore samples sent at

the smelter. The second dataset consists in iron and alumina concentrations

in ore samples.

3.5.1 Mineral processing costs recovery relation

The original mineral processing costs and recovery dataset contains four-

teen observations obtained by a series laboratory tests. OLS regression was

performed on processing costs and recovery dataset, using built-in lm function

in R programming language. The R code used to perform regression as well as

figures presented in this article is in the appendix section. Since the two case

studies presented use the same code, only mineral processing costs and recov-

ery relation R code is presented in appendix. Regression was performed on the

original as well as on a cleaned version of the dataset, where the outlier point

was manually removed. Parameters of the OLS regression are summarized in

Table 1. Recovery coefficient is positive; meaning that aiming to obtain higher

percentages of recovery will lead to an increase in processing costs. Moreover,

p-value is 1.76x10-6 meaning the coefficient is significantly different from 0,
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even if the sample contains very few data points. As shown in Figure 3–1,

observation number 14 looks far from other observation in the cross-plot of

processing costs in function of recovery. Using the studentized residual ap-

proach, observation 14 is flagged because its calculated (with Equation 3.4)

value is greater than 2. When a dataset is very scarce and contains few out-

lier points, the studentized residuals approach can be used to detect outlier

data points that may have been generated by a different process. If there are

reasons that the outlier point is caused by an error in the sampling process,

it can be removed and the OLS can be performed on the cleaned dataset. In

this case, the recovery coefficient decreases from 44.726 to 39.599 when obser-

vation 14 is removed. An increase from 0.861 to 0.925 can also be observed

when OLS is performed with outlier point removed. However, removing points

is not always a good practice since they can contain relevant information. In

the processing costs and recovery case study, it may be that given a certain

recovery threshold, processing costs are increasing dramatically. In this situa-

tion, removing the outlier point may lead to an underestimation of processing

costs for high percentage of recovery. In the next section robust regression

techniques, which can resist to the presence of outliers will be presented.
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Table 3–1: Summary of the OLS Performed on the Original Processing Costs
and Recovery Dataset as Well as on the Cleaned Dataset Where Observation
14 was Dropped.

OLS Cleaned OLS

(Intercept) -6.417 -3.994
(3.63) (2.35)

Recovery 44.276 39.599
-5.143 -3.397

p-values 1.76 x 10-6 1.57 x 10-7

R2 0.861 0.925
Adjusted R2 0.849 0.918
N 14 13
Standard errors in parentheses
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Figure 3–1: On the left, processing costs as function of recovery. A line fitted
with OLS estimation is superimposed. On the right, corresponding studentized
residuals of the OLS regression.
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In Figure 3–2 are presented different robust regression fit. As expected,

OLS is the most affected regression method in presence of outliers while LMS

is the least affected because it has a breakout point of 50%. Other meth-

ods coefficients fall between OLS and LMS. L1 regression was performed in R

using quantreg package, using a tau value of 0.5 (Koenker, 2013). LMS and M-

regression was performed using MASS package in R using iterated re-weighted

least squares (Venables and Ripley, 2002). Huber’s weight function was used

in M-estimation because it corresponds to a convex optimization problem and

gives a unique solution. LTS-estimation and MM-estimation were performed

using robustbase R package (Todorov and Filzmoser, 2009). Coefficients cal-

culated by each regression methods are presented in Table 3–3. The use of one

or another estimate coefficient in mine planning depends on the degree of risk

managers are willing to accept. For example, OLS overestimates processing

costs for recovery values ranging from 0.4 to 0.8 while it underestimates values

for recovery greater than 0.8. If a mine manager wants to use a conservative

cost coefficient and aim mid-level recovery values, OLS will give the most con-

servative estimates. However, these estimates may be too conservative and

robust estimates may be a more suitable choice. For this particular example,

it seems there is a structural break for values over 80% recovery, meaning

processing costs and recovery pairs are generated by a different population.

This can be due to a change in processing methods to obtain higher percent-

age of recovery. If a mining project manager plans to obtain higher recovery

percentages, a better practice would be to split the dataset in two classes and

fit a regression line for each class to take into account the observed structural

break.
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Table 3–3: Summary of OLS-, L1-, M-, LTS-, LMS-, and MM-Estimation
Intercept and Coefficient

OLS L1 M LTS LMS MM

Intercept -6.417 -5.310 -4.831 -2.864 1.130 -3.687
Coefficient 44.276 41.379 41.193 36.364 30.435 38.927
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Figure 3–2: Comparison of robust estimators with OLS for the processing
costs and recovery case study.

3.5.2 Iron and alumina grade relation

As shown in Figure 3–3, the iron and alumina dataset contains 172 ob-

servations with a large amount of outlier points. It seems there are two pop-

ulations sampled in the same dataset. Moreover, performing OLS regression

will lead to erroneous estimates since the fitted line will be adjusted for the

two samples at the same time, resulting in a bad fit for both of the samples.
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OLS fitted line will be be pulled slightly towards lower values for low level of

alumina concentrations. Moreover, studentized residuals approach flag a large

proportion of outliers having a value less than -2, using Equation 3.4. In this

case study, the best practice would be to split the dataset in two categories

and perform OLS separately for both sampled population.
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Figure 3–3: On the left, iron concentration in function of alumina concen-
tration. A line fitted with OLS estimation is superimposed. On the right,
corresponding studentized residuals.

Supposing the objective of a process engineer is to fit a line to the family

that has the most samples, ignoring outliers, Figure 3–4 shows how robust

estimators performs compared to OLS. Again, LMS is the least affected by

outliers although all robust estimators have similar coefficients as shown in

Table 3–5. Again, it is clear that using OLS without taking into account data

contamination may lead to biased estimates. The difference between OLS

coefficient and robust estimates varies between 4-5% in the alumina and iron

case study.
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Figure 3–4: Comparison of robust estimators with OLS for the iron and alu-
mina concentration case study.

Table 3–5: Summary of OLS-, L1-, M-, LTS-, LMS-, and MM-Estimation
Intercept and Coefficient

OLS L1 M LTS LMS MM

Intercept 59.950 64.172 63.407 65.478 65.322 64.574
Coefficient -0.610 -0.652 -0.650 -0.662 -0.664 -0.664
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3.6 Conclusion

In this paper, several robust estimators were compared to OLS in two

simple case studies having each one predicted variable and one explanatory

variable. OLS and robust estimation can be extended to the multiple regres-

sion case where multiple explanatory variables are used to predict a variable.

Nevertheless, case studies showed that a mineral industry practitioner should

be very careful when fitting a line to data. Even though OLS is well known

and used widely, it may not always be an appropriate choice. If there are

outliers, a robust estimator should be selected depending upon data charac-

teristics. Robustness of regression estimators is always a compromise between

efficiency and consistency. Some robust estimators (such as LMS and LTS)

may not be entirely satisfactory even if they have high breakdown points be-

cause they can be inefficient. The efficient M-estimators are not robust in

the explanatory variables and have breakdown points of zero. S-estimators

can be highly inefficient, and MM-estimators require an iterative approach to

be solved. When deciding which estimator to choose, one should put great

attention in the definition of the regression model or non-linear trends in a

sample. A decision maker should know difference between outliers and bad

data. Outliers are good data that may have resulted from an extreme case

of the sample generating process or can be generated by a secondary process.

Another way to deal with outliers is to use data transformation to downsize

their importance. For example, a logarithmic transformation can decrease the

importance of very low values in a sample. It is to be noted that when per-

forming data transformation, it is also necessary to change the interpretation

of the transformed data.
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3.7 Chapter Conclusion

This paper serves as a foundation for the rest of the thesis. Regression

models are used in every subsequent chapters, and it is very important to

understand the limitation of these models when a dataset is subjected to outlier

data. In the next chapters, regression models will be used to analyze time

series on metal futures contracts. The regression model will be implemented

in a Kalman filtering framework, where an iterative algorithm is applied on

a time series to calibrate its parameters on historical observations. As shown

in this paper, there are several alternatives to the OLS regression approach.

The next chapters will also show different approaches to the Kalman filter

algorithm which can also be influenced by outliers.

The next chapter introduces the Kalman filter in the context of capital

budgeting of an iron mine. In this paper, we use a Kalman filtering framework

to calibrate the parameters of a stochastic model on historical observations of

iron ore futures contracts. The Kalman filter is used, in conjunction with a

Maximum Likelihood calibration approach to calibrate a geometric Brownian

motion process on iron ore prices. Results shows that even if iron futures

are more volatile, they have a higher expected return than long-term commit-

ments, the privileged instrument in the industry to sell the iron ore production.

As a result, a mining company can adjust its risk profile by gaining exposure

to iron ore futures market. To better assess all the possible scenarios when

investing in iron ore futures, a simulation approach with calibrated parameters

can be used.
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CHAPTER 4
A Kalman filtering approach to model net present value of an iron

mine

4.1 Abstract

Iron ore was traditionally traded using long-term commitment (LTC) con-

tracts. In the last decade, with the surging demand from China, a futures

market was created for iron ore. In this paper, using historical information

from this futures market, we focus on modeling market dynamics of Iron Fine

62% Fe - CFR Tianjin Port (China) futures contracts to determine optimal

parameter values of the Schwartz (1997) two-factor model. A new approach

using LTC and futures contracts is proposed to assess the Net Present Value

(NPV) of an iron ore mining project. We apply Kalman filtering techniques to

calibrate the two-factor commodity model to iron ore futures for the January

2014 to November 2016 period. The Kalman filter is useful to infer unobserv-

able variables from noisy measurements. In the Schwartz (1997) two-factor

model, the unobservable spot price and convenience yield are inferred from

futures contracts transactions. Model parameters are fitted using maximum

likelihood optimization. Using parameters derived from the Kalman filtering

and the maximum likelihood approach, spot price simulations for the next

seven years are made for three scenarios. The NPV of a mining project is

calculated for each scenario. Then, both LTC and futures markets are treated

separately and the mining company can choose which proportion of its pro-

duction to sell in each market. Results show that the calibration and NPV

simulation workflow can be effectively used to assess the profitability of a

mining project, accounting for the exposure to futures markets.
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4.2 Introduction

Evaluating the feasibility of a mining project requires a forecast of the

expected future value of the commodity to be produced. Mining project de-

velopers usually rely on consensus forecasts of iron ore prices to predict the

tendency of iron ore price movements over a horizon of less than two years.

However, such forecasts are deterministic in nature and do not take into ac-

count the volatility of iron ore prices. Another valuation approach consists of

simulating price paths and valuing the economic viability of a mining project

for a broad range of scenarios. Traditionally, it was straightforward to per-

form such an analysis for iron ore projects, because the industry relied on

long-term supply contracts ranging from 5 to 25 years (Rogers and Robert-

son, 1987). These contracts were renegotiated annually based on benchmark

prices. Moreover, the long-term commitment (LTC) contract was traditionally

used as a collateral to obtain capital for mining project funding. For an iron

ore producer, relying on LTC contracts is a method to hedge price risk. The

producer is on the short side of the hedge, whereas the buyer of iron ore is on

the long side.

In recent years, China has become a dominant importer of iron ore to

meet the growing demand for steel (Wilson, 2012). The demand for iron ore

of China grew from 70 to nearly 630 megatonnes per year between 2000 and

2009. Demand is expected to increase even more through the 21st century

(Patino Douce, 2016). In 2014, China imported more than 930 megatonnes of

iron ore, confirming the upward trend (marketrealist.com, 2015). As a result of

this increased demand, major mining companies (e.g., Vale, BHP Billiton and

Rio Tinto) provided some of their iron ore production at spot price (Astier,

2015), incurring an upward pressure on prices because of the limited seaborne

supply of the resource compared to the demand. An issue with short-term
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surges in prices is the usually concomitant increases in price volatility. Higher

prices are not always sustainable and are subject to drastic changes. The

upward pressure on iron ore prices also encourages higher cost producers to

enter the industry, leading to an increase in supply and a subsequent decrease

in prices (Hurst, 2015), assuming demand does not exceed supply.

Since iron ore mining companies have the choice to sell their production

with LTC contacts or through futures markets, they may decide which risk

profile they prefer. Selling 100% of the production using LTC contacts can be

considered risk-free, while selling 100% of the production in futures markets is

very risky. The proportion of the commodity sold in LTC contacts or futures

markets will directly affect the Net Present Value (NPV) of the project. Min-

ing company managers tend to underestimate the price risk when assessing the

feasibility of mining projects (Bertisen and Davis, 2008). As a result, errors

are made in timing and capacity of mining projects, and the realized NPV is

much lower than the NPV projected in the feasibility study of the project.

To provide reliable and independent spot prices for iron ore, The Steel

Index (TSI), created in 2008, consists of daily iron ore spot market transactions

supplied from more than 600 sources in the iron supply chain such as mining

companies, steel makers and speculators. The dataset is cleaned and treated

to account for outliers. Then, one spot price is calculated through a volume-

weighted average, and the resulting iron ore spot price is redistributed to

the index subscribers. The existence of a reliable and impartial index led to

the creation of several financial instruments to offer mining companies and

steel makers the possibility to hedge risk in price volatility. One of these

instruments is the Iron Ore 62% Fe, China (TSI) Futures Settlements created

by the Chicago Mercantile Exchange (CME) group (CME, 2015).
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A wide range of studies have focused on the relationship between spot

prices and futures. In general, the methodology consists of describing price dy-

namics using a stochastic differential equation (SDE) and applying Ito’s lemma

to solve the SDE. Brennan and Schwartz (1985) were the first to introduce a

model that infers a relationship between commodity spot prices and futures.

To link these two aspects, they introduced the convenience yield, which is a

continuously compounded benefit that the owner of a forward or futures con-

tract renounces when buying the contract. The greater the convenience yield,

the lower the fair value of the contract. In Brennan and Schwartz (1985), the

spot price moves according to the geometric Brownian motion (GBM) with

deterministic convenience yield and risk-free interest rates.

In reality, the convenience yield should vary according to fluctuations in

the inventory levels of the commodity and changes in expectation in supply

and demand for different term structures. Moreover, macro-economic factors

should influence the risk-free interest rates and hence the NPV through the

discount rate. Gibson and Schwartz (1990) improved the previous models and

tested a two-factor model for pricing weekly oil futures contract prices us-

ing the spot price and instantaneous convenience yield as variables. In their

model, both random variables followed a joint correlated stochastic process,

and the use of a stochastic convenience yield helped to better price short-term

contracts. Zhang et al. (2014) used the mean reverting model to value Real

Options (RO) on a mining gold project, and they showed that the flexibil-

ity value of the RO is maximized when the average mining cost equals the

spot price. Schwartz (1997a) compared three models that took into account

mean reversion. In the first model, a one-factor model following a mean re-

verting process governs the diffusion. The second model is the Gibson and

Schwartz (1990) model. The third model is a three-factor model that also
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includes randomly varying interest rates. In order to correctly estimate pa-

rameters, Schwartz (1997a) used Kalman filtering techniques to continuously

and iteratively correct the covariance matrix.

The Kalman filter is widely used in finance for calibrating stochastic pro-

cesses, but it is also used in geosciences to characterize orebodies (Nejadi et al.,

2015). Ribeiro and Hodges (2004) further extended Schwartz’s long-term two-

factor model by replacing the Ornstein-Uhlenbeck with a Cox-Ingersoll-Ross

to model the convenience yield. This ensures that the model is arbitrage free.

Furthermore, they examined the spot price volatility as proportional to the

square root of the convenience yield level. The multifactor models can be used

to value mining projects in a RO valuation framework. Hedging strategies us-

ing RO can even be implemented and tested (Haque et al., 2016). Other types

of RO models use production parameters such as cutoff grades and consider

stockpiling to optimize the NPV of mining projects (Zhang and Kleit, 2016).

Result show that such models significantly alter the cutoff grade used in the

project since they consider the processing of the stockpiled material.

Both the Ribeiro and Hodges (2004) and Schwartz (1997a) models are

adept at pricing short-term contracts, but fail when pricing longer term struc-

tures. Schwartz and Smith (2000a) eliminated the concept of convenience yield

and modeled the log of the spot price as the sum of a short- and a long-term

component. The model allows mean reversion in the short-term price and un-

certainty in the long-term price. Movements in prices for long maturity futures

contracts describe the long-term equilibrium level and the difference between

short-and long-term contracts describes how spot prices mean revert in the

short-term. This specification is better at pricing longer term futures con-

tracts than previous models. Aiube and Samanez (2014) analyzed oil futures

markets using longer maturity contracts that were not available in previous
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studies, and they showed that the use of these multifactor models tends to

underestimate the risk premium observed in futures prices.

Mining companies situated outside of the United States can also be af-

fected by exchange rates because commodities are mainly traded in US Dollars

(USD) (Rudenno, 1998). If the local currency of a mining company is posi-

tively correlated with a commodity, a downward pressure on commodity prices

will be attenuated by an appreciation of the USD. However, if the local cur-

rency and the commodity are negatively correlated, they will move in the

opposite direction. Thus, when the commodity is subjected to a downward

pressure, the local currency will be stronger, resulting in lower cash flows. It is

possible to hedge or completely eliminate currency markets risk using forward

contracts.

In this paper, LTC and futures contracts are considered as two financial

instruments upon which a mining company can rely to sell their production.

LTC contracts expected futures prices are known with certainty, since they

are fixed at the beginning of an iron ore mining project. However, futures

markets can have higher expected returns than LTC contracts, but are typ-

ically volatile. To model the futures markets, we apply the Schwartz (1997)

model to iron ore futures. The parameters are estimated with maximum like-

lihood optimization in a Kalman filtering framework. With an estimate of the

parameters generating the spot and future prices, Monte-Carlo simulations

are then applied to generate price paths calibrated to observed futures prices.

A NPV valuation is performed with different iron ore futures price profiles

corresponding to an optimistic, a neutral and a pessimistic scenario. Simu-

lation outcomes are then combined with LTC to adjust expected return and

volatility to the desired risk profile of a mining company. Results show that

considering iron ore mining projects in a portfolio framework helps to mitigate
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the risk of undertaking a project with overestimated NPV, because the pro-

duction may be hedged with LTC. Although exchange rate variations can also

significantly affect the NPV of mining projects, they are excluded from this

paper. Instead, the focus here is on the application of an integrated framework

to combine price behavior in two iron ore markets: LTC and futures markets.

To the best of our knowledge, this is the first study applying Kalman filtering

techniques to iron ore futures. The Kalman filter is used to calibrate the model

to futures contracts using maximum likelihood optimization, and parameters

are then used as an input in futures prices simulations to model the volatility

inherent in futures markets.

4.3 Methodology

The analysis is focused on creating the iron ore time series. Then, state

space models are introduced and used to predict future paths of iron ore prices.

Finally, simulated iron ore prices are used in a NPV valuation framework to

estimate the viability of an iron ore mining project.

4.3.1 Model Input Data

An iron ore 62% Fe, CFR China (TSI) futures contract fixes the prices

today for one metric tonne of iron ore containing 62% iron, as well as other

components such as moisture, alumina and silica to be delivered at a specific

time in the future. The difference between an iron ore forward contract and

a futures contract is that the latter is backed by a clearinghouse such as the

CME group, thus eliminating couterparty credit default risk. The mechanism

to reduce risk of default of hedgers and speculators is to mark-to-market gains

and losses on a daily basis, depending on the movement of the spot price. For

this reason, the position on any futures contract will pick up the volatility

of the underlying commodity, regardless of the time to maturity. Futures

contract investments are risky and volatile regardless of their time horizon.
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There are two mechanisms to terminate a long or short position in a

futures contract. The first is obviously to wait for expiry and obtain a cash

settlement or delivery of the underlying commodity. The second is to offset

the first transaction by an opposite transaction of the same quantity. In this

situation, the clearinghouse recognizes that the net position of the investor

is zero. These measures favor market liquidity since it is always possible

to rollover or cancel futures contracts to avoid delivery. Because of their

liquidity, metals are generally traded exclusively on futures markets and closest

maturing contracts are considered as a proxy for spot prices. Iron ore futures

are an exception to this tendency, because the industry still relies heavily upon

LTC. This implies that the spot price and convenience yield relationship will

not be fully factored into the analysis, because not all of the information is

observable.

The iron futures prices are based on TSI (Platts, 2015). A script was

developed in the R programming language (R Core Team, 2015) to download

from Barchart daily Iron Ore 62% Fe, CFR China swap futures prices for each

trading day in the last two years. For each trading day, future prices are

available for contracts expiring on a monthly basis for the next 23 months.

Contracts having the same maturities are then gathered and trading days are

sorted in chronological order. Finally, forward curves are extracted (Fig. 1)

and are produced using the Schwartz (1997) package of the R programming

language (Erb et al., 2014).
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Figure 4–1: The solid black line represents closest to maturity daily Iron Ore
62% Fe, CFR China contracts, which can be interpreted as a proxy for TSI
index level (or spot price). For each trading day, forward curve is extracted
for contract maturing in the next year. The graphic is generated using the
Schwartz 97 R package (Erb et al., 2014)

In Figure 4–1, the colored dashed lines are forward curves extracted for

each trading day. They are constructed with contracts expiring up to 14

months into the future. Forward curves indicate where market participants

locked in iron ore prices in the future for a given trading day. Figure 4–1 show

only three years of history. Iron ore derivatives are a relatively new market

compared to other futures markets, thus the calibration period is shorter than

in other studies (e.g., Schwartz (1997)), where study periods ranged from five

to ten years for oil and gold futures, respectively.

The solid black line in Figure 4–1 is constructed with the closest to ma-

turity contracts and can be thought of as a proxy for the spot price of iron
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ore. Because the closest to maturity contracts are stitched together to form

a continuous contract, the continuous future curve can appear discontinuous,

especially near expiration dates because of contango and backwardation effects

(Masteika and Alexander, 2012). One way of obtaining a smoother, contin-

uous future curve than the one presented in Figure 4–1 is to smooth prices

on a time window surrounding maturity dates. However, in our case, we can

measure the spot price directly because Iron Ore 62% Fe, CFR China is a

derivative whose underlying asset is TSI (Platts, 2015).

The spot prices are obtained from the TSI (Fig. 4–2) from the Wall Street

Journal using the Quandl API (Raymond McTaggart et al., 2015). The Wall

Street Journal stopped publishing daily iron ore data at the end of 2015. Thus,

the time series includes 18 February 2014 and 2 November 2015. Prices in the

TSI time series have been converted to the logarithm of returns. To ensure

the time series exhibit similar features no matter where it is analyzed in time,

it has been partitioned in two samples. The training set comprises 350 daily

observation of log returns between 18 February 2014 and 8 July 2015. The

prediction set comprises 85 observations between 9 July 2015 and 2 November

2015.
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Figure 4–2: Iron Ore 62% Fe, CFR China contracts, TSI index level

Time series and future curve changes over time and it is convenient to

model them with the Kalman filter. Any SDEs describing dynamics of spot or

future markets can be represented in a state space form (Harvey, 1990). The

measurement equation is given by:

yt = Ztαt + dt + εt, t = 1, ..., T (4.1)

where yt is a multivariate time series containing N elements, Zt is a N ×m

matrix, αt is am×1 vector and is called the state vector, dt is aN×1 vector and

εt is a N × 1 vector of identically independently distributed disturbances with

E(εt) = 0 and V ar(εt) = Ht. The elements of αt are not observed directly and

are generated by a first-order Markov process having the following transition

equation:

αt = Ttαt−1 + ct +Rtηt, t = 1, ..., T (4.2)

where Tt is a m×m matrix, ct is a m× 1 vector, Rt is a m× g matrix and ηt

is a g × 1 vector where E(ηt) = 0 and var(ηt) = Qt.
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The Kalman filter is a recursive estimator composed of a prediction and

a measurement step. The prediction step occurs when predicting the variables

at the next time step and consists of a motion of the probability density

distribution. Since the prediction process obeys the total probability rule

and the motion process has an error term with its own Gaussian distribution,

information is lost. The linear algebra equations describing the prediction

process are:

αt|t−1 = Ttαt−1 + ct (4.3)

Pt|t−1 = TtPtTt
T +RtQtRt

T (4.4)

where αt|t−1 is the prediction, Tt is the state transition matrix, ct is the motion

vector, Pt in the transition covariance, Rt is the measurement noise and Qt is

the measurement covariance.

The measurement step is based on Bayes’ theorem and consists of multi-

plying the prior density with a likelihood density distribution in order to get

the best estimate of the mean and variance of a variable. In matrix notation,

the measurement step can be described with the following equations:

at = at|t−1
+ Pt|t−1Z

T
t F
−1
t (yt − Ztat|t−1

− dt) (4.5)

Pt = Pt|t−1 − Pt|t−1Z
T
t F
−1
t ZtPt|t−1

(4.6)

where Ft = ZtPt|t−1Z
T
t +Ht. Each prediction-measurement cycle is an iteration

of the Kalman filter where the new covariance matrix is estimated from all the

available information at t− 1.

4.3.2 Maximum Likelihood Optimization

The Kalman filter offers a very robust method to adjust the covariance

matrix of the transition equation to fit the actual observations. However,
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parameters governing the transition equations are static and must be estimated

prior to using the Kalman filter. The likelihood function of the Kalman filter

is presented in Appendix 1 and can be used to minimize the residuals spread

between predicted and actual state variables.

The Erb et al. (2014) R package has a maximum likelihood estimation

(MLE) function that enables choosing which parameters are to be guessed

and which are held fixed in the MLE optimization algorithm. The MLE op-

timization may lead to unrealistic parameters selection since the optimization

problem is non-linear. For this reason, MLE is conducted multiple times by

varying the initial parameters. This method reduces the chances of being stuck

in a local maximum.

4.3.3 Schwartz Two-Factor Model

Since iron ore is a commodity that can be stockpiled, several factors

such as the short-term interest rate, cost of storage and convenience yield will

affect its forward curve. These factors can be used to model the theoretical

relationship between spot and future prices. Some factors (e.g., interest rates

on capital expended to acquire equipment used to produce the commodity or

storage costs) will increase the cost of owning a commodity. This implies that

the theoretical price of a futures contract, locking the price of a commodity

today, should include these costs. For commodities whose convenience yield

is lower than storage costs added to the risk-free rate, the futures price will

be greater than the spot price so the market will be in contango. In reality, a

downward sloping curve is often encountered, meaning that the market is in

backwardation. This can be explained by the benefit of owning the commodity

being greater than the costs of storing it plus the risk-free rate (Brennan and

Schwartz, 1985). This non-monetary benefit is accrued to the owner of the

commodity instead of the owner of the futures contract. For example, a mining
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company can benefit from short-term surges in metal prices due to unexpected

changes in market equilibrium. The profit is made rushing the schedule to put

metals on the market when such price surges occur. Other factors such as

hedging pressure can affect the term structure of the future curve. Iron ore

markets are generally in normal backwardation. This implies that an excess of

producers want to hedge price risk by taking a short position in the contract.

They lock the selling price to a known level, because they own the asset, and

they fear prices of the commodity may go down. When they lock the selling

price to a known level, there is an excess of short positions in the market. As

a result, speculators and long hedgers demand a higher risk premium to take

the opposite position, exerting a downward pressure on future prices.

Spot and future prices of a commodity are related with the following

equation (Geman, 2005):

fT (t) = S(t)e(r+A−y)(T−t) (4.7)

where fT (t) is the future price of the commodity expiring at time T measured

at time t, S(t) is the spot price at time t, r is the risk-free interest rate, A is

the storage cost, y is the convenience yield and (T − t) denotes the remaining

term of the contract.

The Schwartz (1997) two-factor model is used to describe the relationship

between iron ore spot prices and instantaneous convenience yield:

dSt = (µ− δt)Stdt+ σSStdWS (4.8)

dδt = κ(α− δt)dt+ σEdWε (4.9)

where the GBM term in spot price of the commodity St and the instantaneous

convenience yield δt are correlated following dWSdWε = ρdt. In equation 4.8,
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spot price is a GBM term, whereas the instantaneous convenience yield is an

Ornstein-Uhlenbeck process (Schwartz, 1997a). κ is the mean reversion param-

eter of the Ornstein-Uhlenbeck process and controls how fast the convenience

yield time series reverts to its long-term mean α. Volatility of the spot price

and convenience yield are modeled with σS and σE parameters, respectively. µ

is the long-term drift parameter of the spot price and will be positive if prices

are increasing in the long run.

The state space representation of the dynamics of yt = [lnF (Ti)] is given

by the measurement equation, where N is the number of futures contracts

vectors:

yt = dt + Zt[Xt, δt]
′ + εt i = 1, ..., NT (4.10)

with:

dt = A(Ti), i = 1, ..., N, N × 1 (4.11)

Zt = [1,
1− e−κTi

κ
], i = 1, ..., N, N × 1 (4.12)

with E[εt] = 0 and V ar[εt] = H

Components of the transition equation described in Equation 4.2 for this

model can be written as:

[Xt, δt]
′ = ct +Qt[Xt− 1, δt − 1]′ + ηt i = 1, ..., NT (4.13)
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where

ct = [(µ− 1/2σ
2
1)∆t, κα∆t] (4.14)

Qt =

 1 −∆t

0 1− κ∆t

 (4.15)

and E[ηt] = 0 and V ar[ηt] =

 σ2
1∆t ρσ1σ2∆t

ρσ1σ2∆t σ2
1∆t


4.4 Results

4.4.1 Time Series Analysis

Descriptive statistics for the training and the prediction sets are pre-

sented in Table 4–1. For both samples, the means are negative. However, the

in-sample partition is negatively skewed whereas the prediction partition is

positively skewed. Moreover, kurtosis is higher in the training partition.

n Mean SD Min Max Skew Kurtosis

Training set log(ret) 350 -0.002 0.018 -0.113 0.095 -0.461 8.365
Prediction set log(ret) 85 -0.001 0.014 -0.041 0.059 1.211 4.763

Table 4–1: Summary statistics for the training and prediction sets of the iron
ore time series.

The density plots of the training and prediction sets show that the loga-

rithm of returns in both sets are better modeled using fat-tailed distributions

(Fig. 3). The training set contains more outliers and has more observations

concentrated around the mean.
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Figure 4–3: Training (above) and prediction (below) partitions for the iron ore
time series. The histogram represents the distribution of log returns. The blue
line is a kernel density estimation (kde) plot using a Gaussian kernel and the
dashed green line represents a normal distribution with the theoretical mean
and variance presented in Table 4–1.

The next plots analyze the iron ore futures contracts based on TSI. Be-

cause futures contracts are not traded uniformly, an analysis of the volume

activity was performed. Figure 4–4 shows how the aggregated volume from

each contract varies in time. From the inception date to March 2015, traded

volumes in all contracts were quite low. There is an increase in volume from

May 2015 until November 2015, then the volume then decreases. Since the

dataset is very small, no observation was discarded based on volume.
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Figure 4–4: Aggregated volume from all contracts for the prediction partition
of the iron ore futures time series.

In addition, volumes in nearest maturity are greater than in those con-

tracts that are far from expiration (Fig. 5). Geman (2005) also found a similar

relationship in the Brent WTI, a much more traded security. Nearest matu-

rity contracts can have ten times the volume of longer maturities ones. In

the Kalman filtering algorithm, measurement error standard deviations are

set proportional to the average traded volumes, giving more weight to con-

tracts that have more transactions. In this fashion, there is no need to discard

long-maturity contracts since the weight will be scaled down automatically.
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Figure 4–5: The top plot represents a heat map of traded volumes in function
of maturity and date. Red color indicates highest traded volumes. The bottom
plot represents the sum of volume of all contracts for a given maturity. Nearest
maturities have the greatest cumulative volumes.
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4.4.2 Kalman Filtering

As a first step, every parameter was unrestricted to let the MLE algorithm

find the best fit. This led to unrealistic parameters such as a negative α.

Therefore, α was set to 0.01 and the MLE optimization was performed on the

remaining unrestricted parameters. The optimized parameters are shown on

Table 4–2 and results are shown on Figure 4–6. The standard deviation of the

parameters describes how the parameters changed between iterations during

the MLE optimization process. It can vary widely for different parameters and

can be used to asses how easily parameters converged during optimization. It

is important to note that α and r were fixed, so their standard deviation are

zero.

Parameter Initial Optimized Standard
Estimate Estimate Deviation

Drift (µ) 0.1 −0.12 0.13
Volatility of the spot price (σS) 0.8 0.39 0.15
Speed of mean reversion (κ) 2.0 3.47 0.75
Mean reverting level (α) 0.01 0.01 0
Volatility of the convenience yield (σE) 0.7 0.81 0.44
Correlation coefficient (ρ) 0.7 0.63 0.03
Risk-free rate (r) 0.03 0.03 0

Table 4–2: Initial and optimized parameters with the MLE algorithm after
300 iterations

In Table 4–2, µ represents the drift or the periodic return of spot price.

The returns are calculated on an annual basis. σS is the volatility of the spot

price. κ represents the speed of mean reversion of the convenience yield. The

higher κ is, the higher the convenience yield will mean revert to its mean level

α. σE represents the volatility of the convenience yield and ρ is the correlation

between spot price returns and periodic changes in the convenience yield. r is

the risk-free rate.
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Figure 4–6: Left plot shows nearest actual contracts (black line) as well as
future curves for each trading day in the studied period of time. The right
plot shows the fitted corresponding variables estimated with Kalman filter.

Although the simulated forward curves are smoother than the actual val-

ues, they are able to correctly reproduce the slope of the different term struc-

tures. The nearest contract, represented by the black line in both plots, is also

well fitted.

Figure 5.12 shows price and convenience yield simulation using the cal-

ibrated parameters shown in Table 4–2. The actual price falls between the

bounds of the 95% confidence interval for the studied period of time most of

the time, except at the end.
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Figure 4–7: Simulated paths (in gray color) with parameters derived from
the MLE algorithm. The continuous red line represents the mean of all the
simulations and the red dashed lines represent the 95% confidence interval.
The continuous green line is the actual price.

Figure 4–8 shows the residuals between the Kalman filter and actual ob-

servation of spot price. The distribution of the residuals is approximately

normal with a mean dispersed around 0 for the first five maturing contracts.

One of the assumptions of the Kalman filtering technique is that random dis-

turbances affecting state space variables are normally distributed. Figure 4–8

confirms this assumption holds for the analysis.
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Figure 4–8: Kernel density plot of residuals for the first five maturing con-
tracts.

Mining companies can decide upon the degree at which they will rely on

LTC contracts and futures markets to sell their production. Let wl be the

weight of production sold in form of LTC contracts and wf be the weight sold

in future markets. E(Rl) and E(Rf ) are expected returns using LTC contracts

and futures markets respectively. Since LTC have zero volatility, the expected

return and volatility on a portfolio of two assets is described with the following

equations:

E(Rportfolio) = wlE(Rl) + wfE(Rf ) (4.16)

σportfolio = wfσf (4.17)

According to Equation 4.19, the volatility of iron ore prices returns in

the portfolio is determined entirely by the weight of the production sold in
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futures markets. If the wf is 100%, the volatility of returns will be the one

observed in futures markets. On another hand, if wf is 0%, the volatility of

returns will be zero. This relationship can be observed in Figure 4–10 where

the NPV analysis is performed with different proportion of production sold

on futures markets. When the proportion is zero, NPV has the same value,

since it depends entirely on LTC prices. When the proportion sold in futures

markets increases, the NPV of the optimistic scenario increases linearly, but

it also decreases in both neutral and pessimistic scenarios.
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Figure 4–9: Histograms of NPV for the three different scenarios. The neutral
scenario is in blue, while the bullish and bearish scenarios are respectively in
green and in red.

Mining companies can decide the degree at which they will rely on LTC

and futures markets to sell their production. Let wl the weight of production

sold in form of LTC and wf the weight sold in future markets. E(Rl) and

E(Rf ) are expected returns using LTC and futures markets respectively. Since

LTC have zero volatility, the expected return and volatility on a portfolio of

two assets is described with the following equations:
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E(Rportfolio) = wlE(Rl) + wfE(Rf ) (4.18)

σportfolio = wfσf (4.19)

According to Equation 4.19, the volatility of iron ore prices returns in

the portfolio is determined entirely by the weight of the production sold in

futures markets. If the wf is 100%, the volatility of returns will be the one

observed in futures markets. On another hand, if wf is 0%, the volatility of

returns will be zero. This relationship can be observed in Figure 4–10 where

the NPV analysis is performed with different proportion of production sold

on futures markets. When the proportion is zero, NPV has the same value

since it depends entirely on LTC prices. When the proportion sold in futures

markets increases, the NPV of the optimistic scenario increases linearly, but

it also decreases in both neutral and pessimistic scenarios. The volatility is

reflected in the proportion of production sold into futures markets.
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Figure 4–10: NPV with a varying proportion of production sold in futures
markets. The analysis is performed for the optimistic, neutral and pessimistic
price profiles in futures markets.

We modeled LTC and futures markets price movements to valuate the

NPV of a mining project. When an iron ore company solely relies on futures

markets to assess the NPV of a project, it may underestimate the market

risk that it may face, since futures prices can be very volatile. As a result,

markets can change drastically and using short-term futures prices, projects

may appear profitable based on the NPV criterion. A better approach to assess

the profitability of a project is to consider prices from LTC and futures markets

separately. LTC contracts reflect required prices for both steel mills and iron

ore mining companies to be sustainable. Then, depending on the willingness

of a company to assume risk to increase expected returns, the proportion

of production sold in futures markets should be adjusted accordingly. For

example, a company may require that, on average, the simulated NPV is

never negative. In the case of this study, this would imply finding where the
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NPV profile of the pessimistic scenario intersects the wf axis in Figure 4–10.

In this example, the risk profile of the mining company has increased, but the

potential upside return (in form of a higher NPV) has also increased. Since

the pessimistic, or worst case scenario has a zero NPV, the sustainability of

the mining project is not jeopardized. However, it is not generating any value

for shareholders.

Discount rates are usually calculated with the Capital Asset Pricing Model

(CAPM) (Rudenno, 1998). In the CAPM the risk is separated into two cat-

egories. The unsystematic risk can be diversified away and investors do not

demand a premium for bearing this risk. On another hand, the systematic

risk is inherent to the project and cannot be diversified away. In the CAPM,

the systematic risk is measured using the relationship between the company’s

share price and an index composed of companies of similar sizes, in the same

industry. If the project is similar to other projects the company invests in,

then, this measure of systematic risk is appropriate for the calculation of the

CAPM discount rate. Mining companies have the tendency to use relatively

high discount factors due to the systematic volatility in metal markets or eco-

nomic factors (Rudenno, 1998). Using a high discount rate does not guarantee

that the NPV of a mining project has been correctly accounted for, especially

when prices have increased drastically, as they have for iron ore in recent

years. Moreover, using high discount rates may lead to an underestimation

of the closing costs of a mine. Bertisen and Davis (2008) showed that capital

costs required to open a mine are systematically biased downwards. With

the methodology presented in this paper, it is possible to model the portfolio

diversification effect of selling a percentage of production using LTC and the

rest of the production in futures markets. This results in an overall better
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NPV estimation framework, because it takes into account the risk associated

with higher expected values of futures markets.

The calibration set is used to determine the best parameters to describe

the time series. The Kalman filter is run until the optimal parameters are

found for the given set, using MLE techniques. It is important to note that

the optimization can converge to meaningless parameters, and it is thus ad-

visable to revise and adjust accordingly. Then, these parameters are used as

inputs to price and convenience yield simulations using Equations 4.8 and 4.9.

Each of these equations has a stochastic and a deterministic component. The

stochastic component is characterized by a GBM, meaning the volatility will

increase by a factor of
√
t. This is why the confidence interval shown in Fig-

ure 5.12 keeps increasing with time. The deterministic part of the equation

determines how the trend will move in time. The long-term drift coefficient µ

is slightly negative. Only the spot and convenience yields are random in the

Schwartz two-factor model. Thus, the hedging pressure risk premium is held

constant. However, it is very likely that such risk premium will also vary in

time. For example, if there is a risk of an oversupply in the iron ore market

and there is an imbalance between hedgers and speculators willing to take the

hedging risk, the market risk premium should change. For actively traded

commodities, the US Commodity Future Trading Commission (CFTC, 2015)

publishes the commitment of traders each Friday, which indicates the spread-

ing between long and short participants in the commodity futures market. This

information can be used to assess market risk premium. The risk premium

should also be correlated with volatility, since higher volatility should induce

higher uncertainty for speculators (Basu and Miffre, 2013). However, volatility

is held constant in the Schwartz (1997) model. Therefore, it is impossible to

capture this relationship.
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Kalman filters require that the SDE describing the evolution of the state

variables variables are well-defined. For example, a Kalman filter designed to

track an object moving at a constant speed will not work properly if there is an

acceleration component in the real process generating the object movement.

The same can occur when describing evolution of future markets. In the

Schwartz (1997) model, it is assumed that the SDE describing the relationship

between the spot price and the instantaneous convenience yield fully reflects

the dynamics of the futures market. Since the stochastic part of the process

is governed by GBM, the error term is identically independently distributed,

meaning that there is no serial correlation in the error term. However it is clear

that other factors are not accounted for in the model. For instance, the price

movement is constantly decreasing from its peak because of macro-economic

factors, meaning the returns should be slightly skewed to the left. Moreover,

only a tiny fraction of iron ore transactions are performed at the spot prices,

meaning the effect of LTC contracts will not be accounted for in the Schwartz

two-factor model. These factors will implicitly affect the error term in the

Kalman filter, inducing serial correlation, heteroscedasticity in the residual or

outlier points.

4.5 Conclusion

In this paper, we combined LTC and futures markets in a NPV valuation

framework using concepts of portfolio optimization. To model futures markets,

we applied Kalman filtering techniques combined with MLE optimization to

fit the Schwartz two-factor model on iron ore futures (Erb et al., 2014). The

data consisted of daily observations of a vector of futures contracts maturing

at different months. Then, calibrated parameters were used to simulate joint

random paths of iron ore spot prices and convenience yield. Even if the iron ore

time series exhibited extreme movements for the studied period, the Kalman
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filter and MLE procedure was able to adequately fit a model describing the

spot price and forward curve relationship.

This approach can be used in the iron ore mining industry to assess risks

in financial markets and correctly determine the sustainable NPV of a mining

project. The implication for the mining industry is to consider the diversi-

fication effect in their NPV valuation approach. Another important aspect

that should be accounted for in the analysis is the effect of the depreciation

of the currency where the mining project is operating. Haque et al. (2015)

showed that the Australian and US dollar are co-integrated. This implies iron

ore prices and the Australian dollar move in the same direction in the long

term. There should be a similar relationship between the Canadian dollar and

metal prices. Since Canadian companies are selling their production in USD,

the depreciation of the Canadian currency has the effect of smoothing the loss

of iron companies in periods of crisis. In future work, the depletion of the

resource is also a factor that should be considered in the analysis (Othman

and Jafari, 2012).

MLE optimization can yield unrealistic parameter estimation because the

optimization algorithm maximizes the fit between predictions and actual data,

regardless of the real physical meaning of the parameters being optimized. As

future work, it would be interesting to apply genetic algorithms to optimize

the Kalman filter parameters, since it is possible to constrain each parameters

within a range. Ranges such as a drift parameter between -0.1 and 0.1, or

volatility in spot prices between 20% and 80%, could be chosen to be realistic.

As a result, the genetic algorithm would lead to the best solution within a

constrained range of possible scenarios. Another possible improvement of this

work could be to extend the analysis to the case of a mine producing multiple
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metals. The diversification effect of producing multiple commodity types could

be addressed.

4.6 Appendix

Let y1, ..., yT be a set of independent and identically distributed observa-

tions. The joint density function is given by (Harvey, 1990):

L(y;ψ) =
T∏
t=1

p(yt|Yt−1) (4.20)

where p(yt|Yt−1) is the conditional distribtion of yt knowing all available infor-

mation at time t− 1. The measurement equation of the Kalman filter can be

written as:

yt = Ztat|t−1 + Zt(αt − at|t−1) + dt + εt (4.21)

The conditional distribution of yt is normal with a mean:

E(yt) = Ztat|t−1 + dt (4.22)

and a covariance matrix given by:

Ft = ZtPt|t−1Z
′
t +Ht (4.23)

For a gaussian model, the likelihood function can be written as:

LogL = −NT
2

log(2π)− 1

2

∑T

t=1
log |Ft| −

1

2

T∑
t=1

ν ′F−1
t vt (4.24)
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4.7 Chapter Conclusion

This chapter introduced the Kalman filter and the Schwartz 1997 two-

factor model. This iterative calibration approach can prove to be very useful

to adjust the risk profile of a mining project. In this paper, it was shown that

the calibration process using Maximum Likelihood estimation can be used to

calibrate a stochastic process to iron ore futures. To perform the calibration,

it was necessary to try using multiple initial conditions to ensure the algorithm

does not get stuck in a local minimum. In the next paper, another calibration

approach is used. Instead of transitioning from one solution to another using

only one point estimate, the genetic algorithm uses a population of randomly

selected values for the transition. As a result, it limits the chance the algorithm

gets stuck in a local minimum.

The genetic algorithm works by mimicking the principle of the survival

of the fittest in the nature. At each iteration, the best solutions are combined

together to generate new solutions that should be closer to the optimal so-

lution. In the next chapter, the algorithm is applied on the Schwartz-Smith

two-factor model to assess the profitability of a copper mining project. Results

shows that the solution from the genetic algorithm is more robust than the

solution from the Maximum Likelihood estimator. The results are then used

to simulate an active stockpile management strategy where the mean reversion

of copper prices is taken into account. The strategy is able to produce signif-

icant alpha over the passive production strategy. The next chapter presents

the methodology and results in details.
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CHAPTER 5
Genetic algorithms for the optimization of the Schwartz-Smith

two-factor model: A case study on a copper deposit

5.1 Abstract

Mining companies typically seek ways to hedge risks affecting their pro-

duction. One useful instrument to mitigate the financial risk is the futures

contracts on commodity prices. Information from the transactions in futures

markets is publicly available and can be analyzed with the Schwartz-Smith

two-factor model. However, finding the parameters governing this model can

be very challenging. This step is done using a deterministic optimization ap-

proach called the Expectation-Maximization algorithm (EM). The starting

values of the model will have a significant effect on the convergence of the

EM. To ensure the solution does not get stuck in a local maximum, the EM

algorithm is performed multiple times with different starting values. This pa-

per assesses the value of genetic algorithms to optimize the parameters of the

SWTF model. Although they are slower than EM algorithms because they

use random number generators to search for the optimal solution, genetic al-

gorithms (GA) optimize a population of solutions instead of working on only

one solution at the time. Moreover, a constraint on the range parameter can

be applied to ensure the parameter has a sound economic meaning. Once the

SWTF parameters have been calibrated on the observation of futures con-

tracts, the model can be used for the simulation of spot and futures prices.

To demonstrate the performance of the proposed approach, a case study was

conducted on a copper deposit. The simulations based on the SWTF model

whose parameters are determined by GA are used. An active management
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strategy of the stockpile, dependent on discrepancies in commodity futures

prices is tested. Results show that the active management strategy produces

positive returns over the passive investment approach.

5.2 Introduction

Commodities play a major role in finance. They have been a very good

choice to diversify risk in portfolios due to low levels of correlation with

stock markets during the 80s and the 90s (Gorton and Rouwenhorst, 2006).

Commodities can also be traded using futures contracts. These contracts

are standardized and represent an agreement between two parties to trade

a pre-determined standardized quantity of the commodity at a given price

in the future. They are traded at high volume in exchange markets such as

the Commodity Exchange, Inc. (COMEX), the New York Mercantile Ex-

change (NYMEX) and the Chicago Board Options Exchange (CBOE). As a

result, information related to spot and future prices, volumes and open in-

terest are readily available at little cost. Several models have been developed

to describe dynamics in the commodity futures markets.Gibson and Schwartz

(1990)introduced a two-factor stochastic model where the first factor is the

commodity spot price and the second factor is the convenience yield. The

first factor is a Geometric Brownian Motion (GBM) and the second factor is

an Ornstein–Uhlenbeck (OU) process. Both factors follow a joint stochastic

process and they are correlated. Gibson and Schwartz (1990) showed that the

two-factor model is appropriate at pricing futures contracts with short-term

maturities. Schwartz (1997a) later introduced a three-factor model where

the third stochastic variable is interest rates. When compared to the two-

factor model, the use of a stochastic interest rate adds one layer of complexity,

without improving much the fitness of the model. Similar to the two-factor

model, the three-factor model of the Schwartz (1997a) model does not predict
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longer term maturing contracts very well. Ribeiro and Hodges (2004) ex-

tended the Schwartz (1997) two-factor model so that the OU process becomes

a Cox-Ingersoll-Ross (CIR) process. Also, to account for the link between the

volatility and the convenience yield (and indirectly, the stock level of the com-

modity), the volatility is proportional with the square root of the convenience

yield. As a result, volatility is high when stocks for a given commodity are

low. Later, Schwartz and Smith (2000a) introduced the Schwartz-Smith two-

factor model (SSTF) model. The SSTF model has been widely used to model

commodity prices levels because of the simplicity to interpret its results. It

divides the observed spot price into two components. The first component is

a short-term price deviation which is not expected to persist. This unobserv-

able variable is linked with the convenience yield as described in theGibson

and Schwartz (1990)paper. The second component is the long-term price path

which is affected by shifts in the supply of and demand for the commodity.

The notion of convenience yield is completely ignored. The SSTF model is a

mean-reverting level but the long-term price level to which the model reverts

is stochastic.

In this paper, the SSTF model is used to model the price dynamics of

crude oil and copper futures contracts. The SSTF is implemented in a Kalman

filtering framework to fit spot price and futures contracts. However, this re-

quires the use of optimization techniques to correctly determine the parameters

of the Kalman filter (KF). Expectation Maximization (EM) algorithms can be

used to iteratively maximize the fitness using the Maximum Likelihood (ML)

criteria but it cannot be guaranteed to converge to the global maximum. In

the EM workflow, only one vector is optimized at a time. For this reason,

it is important to recompute the workflow several times with different initial

estimates to ensure the optimization does not get stuck in a local maximum.
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Moreover, since the parameters are not constrained, the use of EM algorithms

may lead to unrealistic parameters determination (Lüthi et al., 2014). There-

fore, the use of Genetic Algorithms (GA) is investigated to address issues with

conventional optimization methods. GAs search for a population of points

instead of a single point so the initial estimate is not a major issue. Moreover,

GAs transition rule from a solution to another is not based on gradient meth-

ods, but is rather probabilistic (Goldberg and Holland, 1988). This enables

more flexibility in the choice of the objective function to maximize.

One of the most heavily traded commodities, with futures contracts ex-

piring up to ten years in the future, is crude oil (Geman, 2005). Hedgers,

arbitrageurs and speculators are very active in the crude oil market, making

it very efficient and thus, ideal to test the GA workflow. Although it is not

always possible, it is convenient to test the GA on a time series which is covari-

ance stationary and mean-reverting. The time period studied by Schwartz and

Smith (2000a) ranges between 2 January 1990 and 17 February 1995 and tends

to mean-revert to a stationary level. The workflow is then applied to copper

futures to calibrate parameters and infer the profitability of a copper-mining

project. Once the optimal parameters of the KF have been found, the hidden

state variables can be used to evaluate the profitability of a mining project us-

ing an active trading strategy. Several countries have adopted a standardized

procedure to report the estimated profitability of mining projects. In Canada,

the NI43-101 Disclosure Standards (Canadian Securities, 2012) is used and

every public company is required to disclose an estimate of the profitability of

a mining project using the Net Present Value (NPV) framework. NPV is the

sum of all periodic discounted cash flows a project will generate. For mining

projects, these cash flows depend on several parameters such as the discount

rate, commodity prices, the production schedule, tax and royalties, the grade
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of the ore, extraction costs, recovery and many other parameters. To assess

the impact of these parameters on NPV, scenario analyses are performed by

changing a vector of parameters to reflect a base case, a higher and a lower

uncertainty scenario. To project commodity prices in the future, a moving

average is applied to spot prices to forecast prices in the long-term. However,

the projection of a moving average completely ignores the term structure of

future prices. The use of the SSTF model provides a better framework for

estimating spot prices as well as future prices.

NPV analyses fail to recognize value when a project exhibits a high level

of uncertainty (Copeland et al., 2001). In fact, NPV analyses consider the

management team of a project has no control on the parameters generating

the cash flows. For example, if the price of the commodity a mine produces falls

drastically, NPV analysis assumes that the management cannot scale down the

production to cut losses. A promising and increasingly popular approach for

valuing mining projects is the Real Options valuation (ROV) method. This

method of valuation is similar to NPV in the sense that present and future cash

flows are discounted and summed to value an operation. The difference is that

the management team of a mining project is given options, for example, to

mothball, close, open, accelerate or pause a project. Luehrman (1998) took the

concept of financial options on stocks and applied it to value options contingent

on real assets. He used the Black-Scholes model parameters to describe the

project’s parameters. Samis et al. (2005) showed that the traditional NPV

of discounted cash flows analysis fails to recognize value in the operation of a

copper mine project. This is because the flexibility to abandon (temporarily or

permanently) to cut losses, expand or switch between projects is not captured

by the NPV approach. Authors used ROV to find out the NPV decision rule

would have led the mining company to forego a profitable investment. Lemelin
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et al. (2006) used the Schwartz (1997) single factor model to simulate gold and

nickel price paths to value the Ragland mining project. ROV using the least-

square Monte Carlo method was compared to the conventional NPV analysis.

With this approach, the investment decision can be compared to an American

call option where the option is exercisable at any time before expiration.

Abdel Sabour and Poulin (2010) used ROV to value the option to ex-

pand or abandon the production of a copper mine. Authors have modeled

the relationship between the uncertainty level (volatility) and these two Real

Options. With low uncertainty levels, the threshold price for abandonment

is high while the threshold price for expansion is low. When the volatility

increases, the threshold of both options respectively increases and decreases.

Haque et al. (2014) showed that as financial options, the volatility parame-

ter σ is the major driver of the value of ROV over the NPV approach. For

example, a mining company cannot easily suspend a mine production when

the commodity prices are low. Later, Haque et al. (2016) tested a hedging

strategy based on the fact that commodity prices are mean-reverting. In this

paper, the management has the option, but not the obligation, to use an active

trading strategy to manage the proportion of production sent to a stockpile

or to the smelter. This option is inexpensive to put in place when compared

to conventional ROV options.

The first part of this paper focuses on generating an artificial commodity

spot and future price dataset with known parameters to test the robustness

of GA for the optimization of the KF parameters. Then, the workflow is ap-

plied to the same crude oil futures dataset presented in Schwartz and Smith

(2000a). In the third part, the workflow is applied on copper prices, com-

paring KF parameters estimated with the GA to gradient search methods

(Goodwin, 2013). Finally, a mining feasibility study is undertaken using the
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NPV approach and an active trading strategy based on the difference between

short-term and long-term prices derived with the KF. The active trading strat-

egy is compared to the conventional NPV analysis to assess the added-value

of managing the stockpile. The originality of this paper rests on the use of a

new optimization approach to find the optimal parameters of the SSTF model.

The use of GA requires less user intervention than the conventional EM ap-

proach because they study a population of initial parameters vectors instead

of optimizing one point at a time.

5.3 Methodology

In this section the background material to perform the analysis is pre-

sented. The first part explains how to derive the SSTF in the state space

form and use matrix algebra to generate an artificial dataset. The second part

details the GA workflow. The last part discusses how to use the SSTF cali-

brated on the observed market term structure of futures contracts to perform

simulations of the state-space variables. These simulations are then used to

valuate a mining project using an active trading strategy.

5.3.1 Schwartz-Smith two-factor model

In the SSTF model, the logarithm of the price of a commodity (lnSt) is

separated in a short-term (χt) and a long-term (ξt) component (Schwartz and

Smith, 2000a):

lnSt = χt + ξt (5.1)

The short-term price deviations emerge from unexpected shocks on the

demand for the commodity and are not expected to persist. The long-term

prices are related to macroeconomic factors that induce persistent changes in

the equilibrium prices. The long-term trend is a Brownian Motion while the

short-term deviation is mean-reverting to the long-term price level. The rates

of change for both short-term and long-term prices are respectively:
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dχt = −(κχt − λχ)dt+ σχdzχ (5.2)

dξt = (µξ − λξ)dt+ σξdzξ (5.3)

Where κ is the mean reversion rate, λχ is the risk of borrowing money over

the short-term, σχ is the volatility of the short-term price deviations, µξ is the

drift rate of long-term prices, λξ is the risk of borrowing money over the long-

term and σξ is the volatility of long-term prices. dzχ and dzξ are increments of

the standard Brownian motion and are correlated with the following relation:

dzχdzξ = ρχξdt (5.4)

Equation 5.3 describes price movements in a context where investors are

risk-averse, meaning they have to be compensated for the risk they take by in-

vesting in futures markets. λχ and λξ represents the short-term and long-term

risk premiums respectively and can be considered as constant rates subtracted

from the drift parameters. The risk-free notation is mostly useful for pricing

options on futures contracts or for valuing capital budgeting projects in a ROV

framework.

Using these equations, it is possible to generate an artificial dataset with

known parameters. This dataset is used to test the robustness of the GA. The

first step is to convert the continuous form stochastic differential equations in

a discrete model. Using the notation of Fu and Tai (2009):

xt = c+Gxt−1 + wt (5.5)

yt = d+ F ′xt + vt (5.6)
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Where

xt =

 χt

ξt

 , c =

 0

µe

 , G =

 e−κ∆t 0

0 1

 (5.7)

yt =



lnE{ST1}

lnE{ST2}
...

lnE{STn}


, d =



a(T1)

a(T2)

...

a(Tn)


, F ′ =



e−κT1 1

e−κT2 1

... 1

e−κTn 1


(5.8)

Where

a(T ) = (µξ − λξ)T − (1− e−κT )
λχ
κ

+

(1− e−2κT )
σ2
χ

4κ
+ (1− e−κT )

ρχξσχσξ
κ

+
σ2
ξ

2
T

(5.9)

wt and vt are zero mean Gaussian noises due respectively, to unexplained

variability in spot prices and errors in the reporting of future prices. Tn stands

for the maturity (in years) of futures contracts. The covariance matrix of wt

and vt are

Cov[wt] = Cov[(χ∆t, ξ∆t] =

 (1− e−2κ∆t)
σ2
χ

2κ
(1− e−κ∆t)

ρχξσχσξ
κ

(1− e−κ∆t)
ρχξσχσξ

κ
σ2
ξ∆t


(5.10)

And
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Cov{vt} =


s2

1 0 0

0
. . . 0

0 0 s2
n

 (5.11)

Equations 5.5 and 5.6 can be used in a KF framework (Schwartz and

Smith, 2000a; Fu and Tai, 2009). The KF works in two steps:

Prediction step:

x̂t|t−1 = c+Gx̂t−1 (5.12)

ŷt = d+ F T x̂t|t−1 (5.13)

Updating step:

Rt = GCt−1G
T + Cov{wt} (5.14)

Qt = F TRtF + Cov{vt} (5.15)

At = RtFQ
−1
t (5.16)

x̂ = x̂t|t−1At(yt − ŷt) (5.17)

Ct = Rt − AtQtA
T
t (5.18)

In the prediction step, observation ranging from the beginning of the time

series to time T = t− 1 is used to predict the value of the states variables (x̂)

at time t. The update step uses the difference between the predicted value

and the observation to readjust covariance matrices and further improve the

next prediction.

The prediction and transition equations can be used to generate an artifi-

cial dataset constrained by known parameters. First of all, a vector containing

a set of parameters to plug in the discrete model can be defined as:
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θ = {κ, σχ, λχ, µξ, σξ, ρχξ, χ0, ξ0, s
2
1, ..., s

2
n} (5.19)

χ0 and ξ0 are the starting values of the short-term and long-term simulated

prices and sn represents the diagonal elements of the covariance matrix vt.

To generate an artificial dataset, the following workflow can be used, using

the multivariate normal distribution:

1. Initialize the parameter vector θ and the total number N of increments

of ∆t to simulate.

2. Draw a random sample from a multivariate normal distribution with

covariance wt as described in Equation 10.

3. Generate an observation of xt using the parameter vector θ and Equation

5.5.

4. Draw a random sample from a multivariate normal distribution with

covariance vt as described in Equation 11.

5. Generate an observation of yt using the parameter vector θ and Equation

5.6

6. Repeat steps 2 to 5 until increment N is reached.

Simulating the SSTF model in the state space form gives simulations of

the whole term structure of futures contracts as well as generated known values

for the χt and ξt variables.

5.3.2 Genetic algorithms

In this research, the Distributed Evolutionary Algorithms in Python (DEAP)

library was used to optimize parameters of the SSTF model. GA is a meta-

heuristic algorithm that mimics the natural selection process to solve opti-

mization problems. In GA, any member of the population is defined by a set

of parameters (chromosomes). When an individual mates with another, infor-

mation is exchanged through the crossover operator and chromosomes of both
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individuals are randomly selected to create a new individual. The mutation

mechanism also ensures the newly created individual has the probability to

have a random change in its chromosomes. Finally, appropriateness of every

individual created is valued by solving an objective function. The individ-

uals that are more apt at maximizing the objective function are selected to

mate and produce a new generation. GAs are very different from determinis-

tic optimization approaches. They can completely ignore the gradient of the

optimized function since they rely on an objective function to evaluate the

transition from a solution to another. This enables the algorithm to consider

a population of points instead of focusing on the gradient optimization of a

single point which can be stuck in a local maximum (or minimum) (Goldberg

and Holland, 1988). Another advantage of this approach is that it does not

depend on linear hypothesis. The workflow of the GA used in this paper is

based on (Fortin et al., 2012; Bäck et al., 2000):

initialize P(t) from parameters vector θ;

while number of generations < N do

t = t+ 1;

Mate new population from P (t− 1);

Crossover;

Mutation;

Select best individuals from tournament;

P (t) = best individuals

end

Algorithm 1: Workflow of the genetic algorithm used in this paper.

The initialization process consists of generating a population from the param-

eter vector θ. Each parameter is randomly drawn from a uniform distribution

with lower and upper bounds determined to have a sound economic meaning.
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For example, correlation between long-term and short-term deviations can be

set to lie between -1 and 1. This ensures the search space for the optimiza-

tion procedure will yield realistic results. At each iteration of the GA, a new

population in generated.

Two mechanisms are used to ensure the newly generated population is

different from the parent. The crossover consists of exchanging information

between two parents, generally by swapping one or more sets of parameters.

The other mechanism, mutation, ensures a random mutation unrelated with

the parents has a chance of occurring (Bäck et al., 2000). This is performed by

generating a new parameter from a normal distribution with a predetermined

standard deviation. The higher the standard deviation is, the more extreme

the mutation has the chance to be.

The last step of the algorithm is to rank each newly generated individ-

ual in the population based on a fitness function. The randomly generated

parameters are used as inputs in the SSTF model, and the corresponding

implied future curves are compared to the actual observed futures contracts.

The optimization of the objective function is performed using maximum like-

lihood. The individuals fitting the best futures contracts are selected based

on a tournament, which allows for negative fitness values (Fortin et al., 2012).

5.3.3 NPV Incorporating an active trading strategy

The true power of the workflow is to be able to calibrate parameters of the

SSTF model to the actual term structure of futures contracts to perform simu-

lations of hidden state variables and futures contracts. With such a simulated

dataset, it is possible to test how an active strategy can be implemented to

generate active returns. Reeve and Vigfusson (2011) have found that although

futures prices have not historically outperformed random walk forecasts by a

high margin, they are performing well when there is a big difference between
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spot and future prices. In the case of SSTF models, a big discrepancy be-

tween spot and futures prices can be observed when the long-term mean and

short-term deviation diverge. When the short-term variation is well above

the long-term mean, the market is said to be in strong backwardation. This

market imbalance is unsustainable and is expected to mean revert to the long-

term price. On the other hand, when the short-term deviation is well below

the long-term mean, the market is in strong contango and spot price is un-

dervalued. The active trading strategy consists of tracking the discrepancy

between the short-term variation and the long-term trend.

NPV analysis is a cash flow valuation tool widely used to assess the value

of a mining project. NPV analysis generates the after-tax cash flows that a

project will create and discounts them using an appropriate discount rate. The

discount rate can be seen as the hurdle rate required to satisfy debt holders

and shareholders (investors) of the company owning the mining project. With

unlimited available funds to invest, the decision rule is to accept projects with

positive NPV. This analysis is usually performed using a passive investing

strategy, where the management has no control over the project. In this

paper, a basic NPV valuation is compared to the valuation using an active

strategy. For the basic NPV valuation, copper prices are simulated with fixed

production and milling rates. Free cash flows are then calculated on an after-

tax basis and discounted at the appropriate rate. The periodic production is

sold at a stochastic spot price and no material is stockpiled.

For the incorporation of the active strategy in the NPV valuation, three

situations can prevail. In the first scenario, the estimated spot price is close

to the long-term mean. In this case, the copper ore is mined and sent directly

to the mill just as in the passive investment case. In the second scenario,

the spot price is below the long-term trend by a given threshold. In this
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case, the same quantity of ore is mined, but a fraction is sent to the mill and

the other part is sent to a stockpile. As a result, mining costs are incurred

immediately, but milling costs and sale proceeds are deferred to the future.

Since the short-term discrepancy between the estimated spot price and the

long-term mean is expected to mean-revert to zero, the goal is to whidraw

material from the stockpile in the future when the spot price rises above the

long-term mean. Whidrawal of the material from the stockpile is considered

in the third scenario, where the estimated spot price is above the long-term

trend by a given threshold.

5.4 Case study

5.4.1 Data

The first part of this paper focuses on the implementation of a workflow

using GA to optimize the parameter used in the SSTF model. To assess the

validity of the workflow, three datasets were generated. The first one, with

259 weekly observations, is the same length as in the original Schwartz and

Smith (2000a) paper. The two other datasets have respectively 500 and 1,000

weekly observations. In the early iterations of the KF, the state may be in a

transient phase, reducing the fitness between KF estimates and actual data.

The use of samples of 500 and 1,000 observations will help to assess if the GA

performs better with a greater sample size. Another important aspect of using

a bigger sample size is to verify how the GA is efficient in terms of calculation

time.

To increase the comparability of the study, the input parameters used to

generate the dataset were taken from Schwartz and Smith (2000a) and are

summarized in Table 5–1:
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Parameter Value
κ 1.49
σχ 0.286
λχ 0.157
µξ -0.0125
σξ 0.145
µξ∗ 0.0115
ρχξ 0.3
χ0 0.117
ξ0 3.01

Table 5–1: Parameters used in simulations of the SSTF model. These param-
eters are taken from the original publication of Schwartz and Smith (2000a).

A simulated time series containing 259 weekly observations is presented

in Figure 5–1. The first part of the simulated dataset represents the state vari-

ables, also defined as the long-term price dynamics and short-term deviation.
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Figure 5–1: Simulated time series containing 259 observations. Plot a) shows
the long-term price index as well as the sum of the long-term price and short-
term deviations. Plot b) shows simulated commodity contracts with maturities
of 1, 5, 9, 12 and 17 months.

In Figure 5–1 a), the red line represents the sum of the short-term devia-

tions and the long-term mean which can be interpreted as the estimated spot

price (which is not generally easily observable) through the KF. The green line

represents the long-term price trend of the commodity, which can be modeled

as a random walk. Short-term deviations are not expected to persist and the

time-series should on average mean-revert to the long-term mean. This char-

acteristic is replicated on Figure 5–1, where the spot price has a tendency to

follow the long-term trend in the long run.

Figure 5–1 b) represents simulations of futures contracts expiring at dif-

ferent maturities. At each point in time, the expiration dates are on average

1, 5, 9, 12 and 17 months in the future. These futures contracts are used as an

input in the GA and replicate the real problem where hidden state variables
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are unobservable and need to be estimated using actual transactions occurring

in commodity futures markets.

To assess the robustness of the GA on a real dataset, crude oil futures

contracts expiring between 1983 and 2021 were obtained from Quandl API

(https://www.quandl.com/collections/futures/cme-wti-crude-oil-futures). The

contracts were then aggregated by their average time to expiration using Pan-

das (McKinney, 2015) library of the Python programming language. Then,

they were averaged on a weekly basis and trimmed to match the sampling

period of January 1990 to February 1995 of the Schwartz and Smith (2000a)

dataset. Figure 5–2 shows time to expiration for each contract during the time

period. There are a total of 17 contracts with a mean maturity ranging from

10 to 345 trading days. With 240 trading days per year, the contract expiring

in 345 days corresponds to month 17. Contracts are simply stitched together

and no roll methodology, such as applying a weighted average, was performed.

The workflow to aggregate futures contracts from the Quandl API has been

modified to be used on all commodities available on Quandl servers. This way,

the SSTF model can be computed in real-time, or as soon as new data are

available.
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Figure 5–2: Time to expiration of crude oil contracts aggregated from Quandl
API. The time series ranges between 1990-01-02 and 1995-02-17. Contracts
are expiring up to 17 months in the future.

The sample of the dataset is presented in Figure 5–3 and consists of a

continuously priced index with five different maturities. Although the source of

futures contracts in this paper is different from the original paper of Schwartz

and Smith (2000a), the aggregated futures for corresponding maturities are

very similar. The authors have attributed the spike in the price to the Gulf

War in 1990. It is also important to note that the artificial dataset has the

same underlying parameters as the real dataset presented in this section. This

means both datasets should exhibit similar features, and should revert to their

long-term trends in the same amount of time. Moreover, the volatility is

identical in both cases as is the drift parameter. It is also worth noticing that

in periods of high volatility, the spread between the different futures contracts

increases. This feature is observable for both artificial and real datasets.
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Figure 5–3: Crude oil futures contracts aggregated from the Quandl API. For
each trading week (time t), contracts are expiring at 1, 5, 9, 12 and 17 months
into the future.

5.4.2 Two-factor model calibrated on artificial data

A GA formulation was used to optimize the parameters of the KF on

the artificial dataset created. The input vector consisting of a range for each

parameter is presented in the following table:

Parameter Minimum
Value

Simulated
Value

Maximum
Value

κ 0.10 1.49 4.00
σχ 0.050 0.286 0.500
λχ 0.020 0.157 0.300
µξ -0.2000 -0.0125 0.3000
σξ 0.020 0.145 0.200
µξ∗ 0.0020 0.0115 0.2000
ρχξ 0.15 0.30 0.75

Table 5–2: Minimum, maximum and the simulated values of the parameters
in the SSTF model simulations. Simulated values are the parameters the GA
will try to retrieve and the range between minimum and maximum value is
the search space for the optimal solution.
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The GA uses a random uniform distribution bounded by the ranges of

the parameters presented in Table 5–2 to generate each individual of the pop-

ulation. A penalty function is added to the fitness function to ensure that

the solution lies in the defined bounded region. This procedure provides an

advantage when compared to the classical EM algorithm because parameters

will stay consistent with the a priori knowledge of the model. On the other

hand, this requires an adjustment to the range of parameters according to the

uncertainty. If the search space is too restrictive, the optimal solution could

lie outside of the defined range and the solution could be infeasible.

The GA was performed with an initial population of size n = 200. Rather

than using a convergence criteria, the algorithm was simply run on 25 gen-

erations. The crossover and mutation probabilities are respectively 25% and

20% and when a mutation occurs, the standard deviation of the mutated pa-

rameter is 0.25. Figure 5–4 shows the maximum fitness as well as the average

fitness for each iteration. The interest lies in finding the solution with the

maximum fitness. For this reason, the convergence of the maximum fitness

solution is the predominant criteria to assess if the GA performs satisfactorily.

The average fitness line seems to have several peaks and troughs, but it is only

due to the strong effect that some parameters can have on the fitness function

when a mutation occurs. After 25 generations, the optimal parameters are

summarized in Table 5–3. The GA ran for 393 seconds.
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Figure 5–4: Convergence of the GA. The blue line represents the average fitness
of the population at each generation. The red line represents the solution
within the population having the highest fitness.

Parameter True Value Estimated
T = 200

Estimated
T = 1, 000

Estimated
T = 2, 000

κ 1.490 1.462 1.505 1.509
σχ 0.286 0.269 0.272 0.273
λχ 0.157 0.125 0.142 0.147
µξ -0.0125 -0.0912 -0.0124 -0.0182
σξ 0.145 0.124 0.152 0.173
µξ∗ 0.0115 0.0094 0.0150 0.0152
ρχξ 0.300 0.443 0.382 0.321

Table 5–3: Optimal parameters after 25 generations of the GA for different
period lengths T.

5.4.3 Two-factor model calibrated on crude oil futures prices

The GA was applied on the same dataset used in Schwartz and Smith

(2000a). The calibration procedure took 25 generations. The optimal solution

is presented in Table 5–4. The results are sightly different from the original

paper with respond to parameters µξ, µξ∗ and ρχξ. The fitness function using
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Schwartz and Smith (2000a) gives a value of 3,401 while the optimized pa-

rameter selection yields a fitness of 3,431. The difference is not attributed to

a lack of convergence but rather to having found a solution with higher levels

of fitness. Another reason for explaining the discrepancy may be differences

in the dataset used. Schwartz and Smith (2000a) used crude oil futures from

Knight-Ridder Financials and this research was performed from the Quandl

API.

Parameter Estimated
(Schwartz and
Smith, 2000a)

Estimated
With GA

κ 1.490 1.590
σχ 0.286 0.275
λχ 0.157 0.156
µξ -0.0125 0.0441
σξ 0.145 0.145
µξ∗ 0.0115 0.0031
ρχξ 0.300 0.492

Table 5–4: Optimal solution of the GA after 25 generations

Figure 5–5 a) represents original observations of the t+1 months crude

oil contracts (in blue) as well as the estimated t+1 price using the KF (in

green). The long-term equilibrium level is in red. Plot 5–5 b) represents resid-

uals between observed contracts prices and prices estimated for each maturity.

The residual term exhibits a level of heteroscedasticity for the near maturing

contract (1 month). This characteristic is consistent with Schwartz and Smith

(2000a) results, where the near maturing contract was the most uncertain.

Also, there is a discrepancy in the first 25 iterations of the KF. This may be

caused by the fact that the KF is still in a transient state. The objective func-

tion was modified to take into account this transient state when valuing the

fitness. However, discarding the first 10% of observations to be valued with

the fitness function did not seem to improve noticeably the GA methodology.

104



Table 5–5 presents mean error, standard deviation of the error term and the

mean absolute deviation (MAD). All three measures of error are higher with

the near-maturing contract. As Schwartz and Smith (2000a) remarked, these

error terms are mainly imposed by the diagonal terms of the covariance matrix

used in the SSTF model. In this case, the nearest maturing contract had the

highest variance value (0.042). When imposing the covariance matrix of the

KF, it is important to choose the diagonal terms not to overfit observations of

the model.

a)

b)

Figure 5–5: Plot a) represents the t+1 month crude oil contract (in blue) as
well as the KF estimate of the t+1 future contract (in green). The long-term
price estimate of the KF is represented in red. Plot b) represents residuals (in
%) of the KF estimates for each maturing contract.
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Maturity mean error st. dev. MAD

t+1 0.0527 0.00700 0.0415
t+5 0.0285 0.00014 0.0198
t+7 0.0235 0.00060 0.0160
t+9 0.0205 0.00023 0.0138
t+17 0.0195 0.00021 0.0135

Table 5–5: Mean error, standard deviation of errors and mean absolute devi-
ation of the fitted maturities for the crude oil futures dataset.

5.4.4 Two-factor model calibrated on copper prices

The first part of this research aimed at developing and testing a workflow

to calibrate parameters of the KF in the SSTF model. Now, the workflow

is applied on copper futures obtained from the Quandl Python API. Copper

is an industrial metal heavily used in the electric equipment and electronic

component industries. Since its production is dependent on industry cycles,

an increase in copper prices attracts new players in the copper-mining industry,

resulting in a higher supply of the commodity. For this reason, the price of

copper has a tendency to mean-revert to a long-term level. This feature of

the copper market was confirmed by performing Dickey-Fuller unit root test

solved on a long period (Laughton and Jacoby, 1993).

Copper is also very sensitive to recessions and is particularly affected by

drops in the US GDP (Chevallier and Ielpo, 2013). Drops in copper futures

prices can thus be of high magnitude, as observed in the 2008 financial crisis.

Goodwin (2013) has identified a structural break in the price dynamics of the

copper market. For this reason, he separated the dataset in two subsamples,

each one affected with different market dynamics. The first period is between

21 July 1993 and 27 September 2002 and the second sub-period is between 30

September 2002 and 5 March 2013 and includes the spectacular drop associ-

ated with the 2008 financial crisis. Both datasets consist of daily observations

of the spot price and the 3, 15 and 27-month contracts. The GA workflow was
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applied on this dataset and yielded similar parameter estimates, as reported

in Table 5–6.

Param. sub-period 1
(Goodwin,
2013)

sub-period 1
with GA

sub-period 2
(Goodwin,
2013)

sub-period 2
with GA

κ 0.690 0.477 0.338 0.367
σχ 0.152 0.212 0.204 0.201
λχ -0.015 0.073 -0.101 -0.105
µξ -0.016 -0.020 0.183 0.1066
σξ 0.152 0.091 0.228 0.237
µξ∗ 0.060 0.023 -0.085 -0.084
ρχξ -0.133 -0.051 -0.209 -0.192

Table 5–6: Parameters of the original Goodwin (2013) paper and parame-
ters optimized with the GA for two different sub-periods affected by different
market dynamics.

In sub-period 2, parameters are very close to the ones calculated as dis-

cussed in Goodwin (2013). The parameter µξ is slightly different, but as noted

by the authors, this parameter is estimated with very low precision since it

has no effect on the maximum likelihood estimate.

The workflow was applied on an updated version of Sub-period 2, ranging

from 30 September 2002 to 7 July 2016. In this subset, copper futures mean-

reverted to a lower long-term level. The fitted dataset is presented in Figure

5–6.
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a)

b)

Figure 5–6: Plot a) of the Figure represents the t+1 month copper contract
(in blue) as well as the KF estimate of the t+1 future contract (in green). The
long-term price estimate of the KF is represented in red. Plot b) represents
residuals (in %) of the KF estimates for each maturing contract.

Maturity mean error st. devia-
tion of er-
rors

MAD

1 month 0.0195 0.00021 0.0135
4 months 0.0285 0.00014 0.0198
5 months 0.0285 0.00014 0.0198
7 months 0.0235 0.00060 0.0160
9 months 0.0205 0.00023 0.0138
11 months 0.0527 0.00700 0.0415

Table 5–7: Mean error, standard deviation of errors and mean absolute devi-
ation of the fitted maturities for the copper futures dataset.

As Goodwin (2013) noted, the equilibrium price in recent economic times

varies significantly and tends to move with the spot price. Copper future prices
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are more or less following a random walk, with a mean-reversion parameter κ

less than 1. The half-life for the mean reversion is thus −ln(0.5)/0.367 = 1.88

years. The GA performed very well to find optimal parameters in copper

markets. The mean error, standard deviation of errors and mean absolute

error are presented in Table 5–7.

5.4.5 NPV valuation of a copper mine

In this section the NPV of a copper mine is calculated using an active

trading strategy and then being compared to the passive NPV valuation. The

NPV analysis is performed on a simple mining project where the only com-

modity produced is copper. The project is financed using 60% equity (we) and

40% debt (wd). The required rate of return is 10% for debt holders (rd) and

16% for shareholders (re). The tax rate (T ) is 35%. On an after-tax basis,

the weighted average cost of capital (WACC) for the project is thus 12.2% (

WACC = wd∗rd(1−T )+wc∗rc or WACC = 40%∗10%(1−35%)+60%∗16%).

The project requires an initial fixed capital investment of $175 millions that

will be depreciated on a straight line basis and that will be salvaged for $100

millions at the end of the project. The project requires an additional $25

millions of working capital investment that will be withdrawn entirely at the

end of the project as shown in Table 5–8. Cash flows are calculated on an

after-tax basis. The tax shield provided by the depreciation method is added

back to the after-tax net sales. To calculate the NPV, all after-tax inflows and

outflows are summed and discounted at 12.2%.
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Year 0 1-4 5-11 12

Fixed capital investment (FCInv) (175)
Salvage value of FCInv 100
Working capital investment (25) 25
Total ore production (Mt/year ) 5.5 9
Grade (%) 0.5 0.5
Mining costs ($/tonne) 17 17
Processing costs ($/tonne) 15 15

Table 5–8: cash flows of the mining project. The project lasts 12 years with
an initial outlay of $175 millions. Mining costs are the costs to extract the
materials from the mine and processing costs are the costs to extract the metal
from the ore.

The first step to perform the valuation is to simulate a population of fu-

tures time-series with parameters calibrated from the GA optimization. Figure

5–7 represents one simulation of the SSTF model. The upper section of the

figure represents the simulation of the state variables. The green line repre-

sents the long-term mean and the red line represents the sum of the long-term

mean and the short-term deviation. This last time series oscillates around the

long-term mean because it is mean-reverting. On the middle graph, copper

spot and future prices are simulated on a weekly basis. Simulated futures

contracts include the t+1, t+4, t+5, t+7, t+9 and t+12 months. The last

graph represents the stockpile when using an active trading strategy. For any

given week, when the estimated spot price (the sum of the long-term mean

and short-term deviation) is below the long-term mean by a threshold of 10%,

the mining company can stockpile 10% of its weekly production. When the

estimated spot price is over the long-term mean by 10%, 10% of the weekly

production is withdrawn from the stockpile and sent to the smelter. If the esti-

mated spot price is between the threshold limits for stockpiling or withdrawing

from the stockpile, the stockpile remains untouched.
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a)

Text

b)

c)

Figure 5–7: Plot a) of the Figure represents the KF estimate of the long-
term trend and the estimated spot price. Plot b) represents simulation of
copper contracts for the calibrated SSTF model. Plot c) represents the size of
the stockpile, conditional on difference between estimated spot price and the
long-term trend.

The value added from the active trading strategy is obtained by comparing

it to the passive NPV valuation. The comparison is performed on a population

of simulated time series. For each simulation, the NPV is obtained using both

an active and passive trading strategy. For each simulation, the alpha (value

added from the active strategy) is calculated as the difference between the

NPV using an active trading strategy and the NPV without stockpiling. An

histogram of alpha for 1,000 simulations is presented in Figure 5–8. The mean

alpha for 1,000 simulations is $2.039 millions with a standard deviation of

$5.451 millions.
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Figure 5–8: Value added (alpha) of the active trading strategy compared to
the basic NPV investment. Alpha is calculated by differencing NPV using an
active strategy to passive NPV for each simulation outcome.

5.5 Discussion

In this paper, a framework to calibrate the SSTF model parameters us-

ing GA is presented. Although it needs long computing time, it proves to be

very useful when the objective function is noticeably non-linear with multi-

ple dimensions. Moreover, the GA is more flexible since it can incorporate a

penalty function when a parameter falls outside a feasible range. Using EM

algorithms, it is not possible to apply such a constraint. EM algorithms are

heavily dependent on the initial values of the model parameters to converge.

Schwartz and Smith (2000a) reported that they optimized the parameters with

several different starting values in order not to get caught in a local maximum.

Goodwin (2013) reported that different initial parameters could yield very dif-

ferent optimized parameters. In the GA workflow, the process of starting with

different initial parameter estimates is embedded in the algorithm, eliminating
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the need to perform the workflow several times before obtaining convergence

of the parameters.

With the GA, the optimality of the solution cannot be guaranteed. The

algorithm is designed such that on average, at each iteration, there is a chance

a newly generated individual in the population will prove to be a better candi-

date in terms of fitness. It is important to run the algorithm several times by

varying parameters such as mutation probability and amplitude, population

size and crossover probability. When the initial population is very large, there

is a high probability an individual or a combination of individuals will have

parameters close to the solution. In such a case, the algorithm will perform

well using crossover operations since best candidates will be mated together

and their siblings will have a combination of better parameters than their

parents. A major drawback of having a large initial population is that the

algorithm has more solutions to evaluate, rendering the process cumbersome.

On the other hand, if the initial population is small, it is important to set

a high level of mutation probability (around 20% in the case of this project)

so the new generation has higher levels of population diversity. However, if

mutation probability is too high, the GA can diverge and give completely

unreliable results even with the inclusion of a penalty function.

The fitness function used in this paper attributed equal weight to each

maturity being fitted. If the modeler is more interested in the fitness of near

maturity contracts, the fitness function could be modified to attribute more

weight to these contracts. Also, the covariance matrix of the observed contract

can be adjusted to yield KF estimates that better match any given maturity.

It is important not to overfit the observed contracts.

The real strength of the workflow is to calibrate parameters of the SSTF

model to historical data to retrieve parameters of the generating process. With
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these parameters, it is possible to perform simulations of state-space variables

and futures contracts calibrated with the observed term structure in the mar-

ket. These simulations were exploited to perform an NPV valuation using an

active trading strategy. The active trading strategy was compared to a passive

trading strategy where the weekly production was sold at spot price without

any variation to the stockpile. As shown on the histogram of differences be-

tween both strategies (Figure 5–8) this difference can be positive or negative.

For example, if the long-term price is constantly increasing and the short-term

deviation is below it, a large percentage of the production will be stockpiled

and sold only at the end of the project. As the value of money decreases with

time, proceeds from sending the stockpile to the smelter will be lower if they

are received later. For 1,000 simulations, the expected value added using an

active over a passive strategy is about $2 millions in this case. The thresholds

for sending ore to or get ore from the stockpile and the size of the stockpile

have not been optimized. Moreover, the cost of stockpiling the ore has not

been taken into account.

One of the governing parameters adding value from the active trading

strategy is the speed of mean-reversion κ. When κ is low, it takes more time

for the estimated spot price to mean-revert to the long-term trend. In this

paper, the κ parameter calibrated on crude oil contracts was much higher

than κ from copper futures (1.59 for crude oil vs 0.367 for copper in period

2). The assumption for a proper active trading strategy is that on average,

the difference between the short-term deviation and the long-term mean will

mean-revert rapidly to 0 when κ is high. This implies proceeds from stockpiled

ore sent to the smelter will not be deferred long into the future. Parameters

can be highly variable when the calibrated period of the time-series change.

Moreover, even if it is calibrated on the term-structure of futures contracts,
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the analysis is performed on historical data. It is assumed that the parameters

derived from the GA will not change (the past will repeat itself). It is very

unlikely that the model parameters will remain static.

Real Options workflows involving Kalman Filters generally rely on finan-

cial theory to solve the value of real assets contingent on commodity prices

in a risk-neutral form. These workflows use binomial tree models or recursive

algorithms to solve for the value of an American option on simulated risk-

neutral price paths Abdel Sabour and Poulin (2006). The RO involved in

these studies generally involves making significant changes to projects such as

terminating or expanding them. As a result, the difference between ROV and

NPV is generally significant. In this research, the active trading strategy can

be performed without impacting the project significantly. In this project, the

difference of $2 millions between the ROV and NPV may seem to be very small

when compared to previous ROV studies, but it does not involve additional

capital investments for the expansion or closure of the project.

5.6 Conclusion

The aim of this paper was to show the robustness of GA to fit parameters

of the SSTF model and use simulations of futures contracts to test an active

trading strategy. An artificial dataset with known parameters and hidden

state variables was created to test the algorithm. The DEAP library was used

to assess the use of this optimization method. Since DEAP is implemented

in Python, it might not be as fast as other genetic algorithms written in say,

C (Fortin et al., 2012). Another possible improvement in this research could

be to parallelize the GA to improve the execution speed of the algorithm.

GAs are well suited to be parallelized and already implemented in the DEAP

library. Also, several extensions of the Kalman Filter used in this research

exist. These extensions can take into account nonlinearity in the transition
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equations or relax the assumptions of non-Gaussianity in the residual term.

For example, the Extended Kalman Filter or the Particle Filter could yield to

better parameter estimation without having to rely on GAs. For future works,

Particle Swarm Optimization (PSO), another family of algorithms similar to

GA in the sense that they work on a population of points at the same iteration,

could be tested. These algorithms have the tendency to be faster than GA

while yielding similar results (James et al., 2013). On the assumption that the

GA captures the true parameters generating the futures contracts term struc-

ture, the simulations of spot and future prices were made to assess the NPV

of mining projects. Since the discrepancy between the estimated spot price

and the long-term trend is expected to mean revert to 0, the active strategy

consisting of stockpiling the mined ore when prices are low and processing it

when prices are higher proves to be effective. The proposed approach can be

used to perform NPV with a simple active trading strategy based on the SSTF

model.
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5.7 Chapter Conclusion

In this chapter, the genetic algorithm for the calibration of the Schwartz-

Smith two-factor model was presented. Since the transition from a solution

to another is done using a statistical method, the optimality of the solution

is not guaranteed. However, the main advantage of the algorithm is that it

reduces the chance the optimization process gets stuck in a local minimum.

The algorithm was used to calibrate a stochastic process on historical

observations of gold prices. Using the calibrated parameters, an active trading

strategy using mean-reversion in the short term and the Geometric Brownian

Motion in the long run was used to implement an active stockpile management

strategy. However, such model does not account for jump components or

stochastic volatility sometimes observed in commodity markets. The next

chapter presents another set of stochastic processes that are able to cope with

outliers or stochastic volatility. Namely these stochastic processes are the

Heston stochastic volatility process and the Merton jump process.

To be able to calibrate these processes in a Kalman filtering framework,

it is necessary to use another version of the Kalman filter called the Un-

scented Kalman filter. The Kalman filter relies on the normality assumption

for the distribution of the error term while the unscented Kalman filter uses

an approximation. This improves the accuracy of the filter, especially when

the dataset contains outliers. The next chapter will introduce the Unscented

Kalman filter as well as the particle swarm optimizer to calculate the Cash-

Flow at risk of a gold mining project.
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CHAPTER 6
Cash-flow at risk valuation of mining project using Monte-Carlo

simulations calibrated on historical data

6.1 Abstract

Mining projects are subject to multiple sources of market uncertainties

such as metal price, exchange rates and their volatilities. Assessing a min-

ing project exposure to market risk usually requires Monte-Carlo simulations

to capture a range of probable outcomes. The probability of a major loss is

extracted from the probability density function of simulated prices at a given

time into the future. This paper proposes an approach to calibrate the stochas-

tic process to be used in Monte-Carlo simulations. The simulations are then

used for measuring the cash-flow at risk of a mining project. To assess the

performance of the proposed approach, a case study is conducted on a mining

project. The results show that the calibration approach is robust and apt at

fitting various stochastic processes to historical observations.

6.2 Introduction

Mining projects are exposed to significant financial risks. Since the pro-

duced commodity is traded in markets that are affected by supply and demand

dynamics, mining companies are subject to market risk. Commodity price and

its volatility are among the most important sources of risk. For example, gold

price, which was approximately 1,800 $/ounce in 2011, is approximately 1,150

$/ounce at the end of 2016. The price mechanisms of commodities are com-

plex because many commodities and their derivatives are traded in spot and

futures markets. They are also indirectly related to capital markets because

mining companies usually use equity markets for financing purposes.
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Because commodities are generally traded in US dollars, exchange rates

fluctuations also affects mining projects operating outside of the US. The joint

effect of price and exchange rates dynamics can affect the net present value

(NPV) of a mining project (?). With the assumption that financial markets

are efficient, exogenous information constantly changes the expectations of

parties involved in the transactions. These market participants can be short

hedgers such as mining companies who seek to sell their products in advance

to prevent losses from sudden drop in the price of the metal they produce.

The other party of the transaction can be a long hedger who seeks to fix a

ceiling on its production inputs. Other stakeholders such as arbitrageurs and

speculators try to profit from market inefficiencies. When the market is un-

favourable for short hedgers, they need to pay a premium (sell their production

at a higher discount). Because this can be very expensive, mining companies

cannot hedge the entirety of their production. They need to correctly measure

their risk exposure to market fluctuations and hedge the right amount of their

production depending on the risk they are willing to take.

In the recent literature, the KF has been used to value real options in

engineering projects. Real options generally add value to engineering projects

but since they are complex to evaluate and interpret, they are not widely used

(Block, 2007). Real options are generally used before the project actually

starts, to verify that the added flexibility increases the NPV of a project. This

paper proposes a different use of the Kalman filter (KF) calibration work-

flow for market risk management. Three different stochastic processes are

used to model dynamics of gold, silver, platinum and crude oil prices. These

processes are the geometric Brownian motion (GBM), the Merton jump dif-

fusion (MJD) and the Heston Stochastic volatility (SV) models. The GBM
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and MJD processes are calibrated using a maximum likelihood estimation rou-

tine. The Heston SV is calibrated using the Unscented Kalman filter. To find

the optimal parameters of the Heston SV model, a sub-optimal solution is

first found using particle swarm optimization metaheuristics approach (Eber-

hart and Kennedy, 1995), from which the optimal solution is found using a

gradient-based method. Using calibrated parameters from historical obser-

vations, simulations of gold prices are realized over a three-month period to

calculate the Cash-Flow at Risk (CFaR) of a gold-mining project. Results

show that the MJD and Heston SV models are better suited to reproduce tail

behaviour of commodity returns.

The originality of this paper lies on the derivation of a robust calibration

framework using a hybrid metaheuristics optimization approach and the KF to

perform CFaR analysis of a mining project. In this research, price volatility in

Heston SV model and jump component in MJD model are calibrated through a

combined approach using particle swarm optimization and Kalman filter. The

most significant advantage of the paper is that unlike real options valuation,

the proposed methodology can be used at any stage of a mining project to

assess how cash flows are exposed to market risk in the near future. This gives

the opportunity to better assess the exposure to excessive cash-flows drawdown

and thus, the ability to implement hedging strategies when markets are stable

and prices of derivatives relatively low.

6.3 Literature review

The Value at Risk has been used by risk managers over the last decade

(Jorion, 2001). The approach consists of determining the distribution of profit

and losses for an investment over a given time horizon. Then, the lower tail

of the distribution is analyzed. The threshold for the lower-tail can be set, for

example, to 5%. The value corresponding to the 5th percentile of the profit
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and losses distribution and can be interpreted as the minimum loss that an

investment will suffer 5% of the time. The Value at Risk approach is useful to

infer risk measures on a portfolio of assets. In the case of mining investments,

another approach is to use the cash-flow at risk measure of risk (Alesii, 2003).

Because the fixed capital costs of mining projects are sunk and therefore very

illiquid, the CFaR provides a more useful metric for valuing the exposure

to market risk. This is because mining companies suffer when cash flows

become negative after a sudden drop in commodity prices. This approach

can also be implemented in a Real Options valuation framework. The MC

simulations approach can be used to calculate the CFaR. This approach is

based on the simulation of multiple price paths using a stochastic process such

as the geometric Brownian motion. GBM is the most widely used stochastic

process to model price dynamics of stocks, commodities or options contracts.

Because of its simplicity, it is generally used as a reference to benchmark other

stochastic processes.

The logarithm of returns on commodity futures are often positively skewed

with a significant amount of excess kurtosis (Gorton and Rouwenhorst, 2006).

This implies that the distribution of commodity logarithm of returns can be

better described with a fat-tailed distribution. Schöne (2014) described two

mechanisms contributing to the fat-tailed behaviour of commodity returns.

The first mechanism is SV and the second is the inclusion of jumps in prices.

The Heston SV (Heston, 1993) model can be used to describe behaviour of

volatility clusters in periods of high and low volatility. The MJD model (Mer-

ton, 1976) adds a jump component to the stochastic process. Schöne (2014)

studied how the choice of the stochastic process in a real options valuation

framework can influence the NPV of a mining project. The author calibrated

the GBM, SV and MJD models to commodity spot prices by minimizing the
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square difference between the probability density function (PDF) of models

and the kernel density estimated PDF of the observations. Hammond and

Bickel (2013) studied how the choice of the stochastic process can affect the

NPV rankings of mining projects with embedded real options.

One of the main tasks of stochastic volatility modeling is to calibrate the

model with actual market observations. Since they were primarily developed

for the pricing of options on financial assets, such models are calibrated on ob-

served option prices (Gatheral, 2011). In this framework, the goal is to adjust

parameters of the model to fit the actual implied volatility surface of all traded

options for a given security. However, when modeling stochastic volatility in

commodity markets, historical options on commodity spot or futures may be

hard to find. Another class of models instead uses historical future contracts

observations with the Kalman filter to calibrate the model parameters. For

example, Schwartz (1997b) used the KF to describe the evolution of com-

modities spot price subject to a stochastic convenience yield. A two-factor

commodity model consisting of a short-term price deviation and a long-term

trend was later developed (Schwartz and Smith, 2000b). The authors used the

KF to adjust model parameters on historical observations of commodity future

prices. Hammond and Bickel (2013) showed how the choice of the stochastic

process can affect the NPV ranking of oil investments. The authors consider

a simple case with no options and the case where real options are embedded

in the NPV analysis.

To use the KF, the stochastic process is first derived in a state-space

form. One of the main assumptions of the KF is that the equations describing

the transition between different observations are linear. Javaheri et al. (2003)

showed that the Unscented Kalman filter and the particle filter are better

suited when the transition equation of a stochastic process such as the Heston
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SV model is non-linear. Schwartz and Smith (2000b) used a quasi maximum-

likelihood routine to find the optimal parameters of the model. The routine

uses a gradient-based optimization method to derive the optimal parameters

of the model. When the objective (or cost) function have several parameters to

adjust, gradient-based optimization may quickly get stuck in a local maxima

(Sauvageau and Kumral, 2016). Alternate initial value vectors can converge

onto different optimized parameters. Schwartz and Smith (2000b) observed a

similar issue in the two-factor model. The authors used several different initial

values to prevent the optimization routine from not getting stuck in a local

minimum. A better approach is to use metaheuristic algorithms to ensure a

robust convergence when problems are non-linear (Subulan et al., 0).

6.4 Methodology

6.4.1 Merton jump-diffusion models

Merton (1976) extended the GBM to account for random price discontinu-

ities or jumps. The frequency of such jumps is modeled with a Poisson process

which is independent from the GBM diffusion process. Using the notation of

Remillard (2013), the MJD can be represented with the following equation

where S0 is the spot price at initiation, and S(t) is the expected price at any

given point in time:

S(t) = S0e
X(t) (6.1)

with

X(t) = (µ− λκ− σ2

2
)t+ σW (t) +

N(t)∑
j=1

ξj (6.2)

where µ is the drift parameter, λ is the intensity of the Poisson process, κ is

the expected value of the jump, σ is the annualized standard deviation, W (t)
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is a standard Brownian motion and
N(t)∑
j=1

ξj is the compound Poisson process

with ξj ∼ N(γ, δ2). When the jump process is Gaussian, the κ parameter is:

κ = eγ+
δ2

2 − 1 (6.3)

These equations can be used to simulate the MJD model. However, in the

valuation or risk management workflows, the model needs to be calibrated with

historical observations. The maximum likelihood (ML) method can be used to

perform such calibration (Remillard, 2013). The probability density function

(PDF) of price returns can be represented with the following equation:

fRi(r) =
∞∑
k=0

e−λh
(λh)k

k!

e−
1
2

(r−a−kγ)2

σ2h+kδ2√
2π(σ2h+ kδ2)

(6.4)

To perform the ML optimization of the parameters, the experimental

PDF is approximated with a kernel density estimator. Then, the parameter

set θ = (µ, σ, λ, γ, δ) is optimized through a gradient based minimization rou-

tine in MATLAB. For example, the fminunc (find minimum of unconstrained

multivariable function) in MATLAB can be used.

6.4.2 Stochastic volatility models

Another class of stochastic models capable of reproducing fat tails is the

Heston SV model. The evolution of spot price in this model can be represented

with the following set of equations (Gatheral, 2011):

dS(t) = µS(t)dt+
√
V (t)S(t)dW1

dV (t) = κ(θ − V (t))dt+ η
√
V (t)dW2

E[dW1dW2] = ρdt

(6.5)
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Where µ is the drift, κ is the speed of mean reversion, θ is the long-term

mean of volatility, η is the volatility of the volatility parameter and ρ is the

correlation between the two standard Brownian motions dW1 and dW2.

The calibration of the SV model to historical observations is a non-trivial

task. Javaheri et al. (2003) proposed the use of the UKF to perform the

calibration. This algorithm is suitable when the transition equation is non-

linear as in the SV model. A Gaussian approximation is made using sigma

points. The weight assigned to each sigma point is defined as:

W
(m)
0 =

λ

na + λ
(6.6)

and

W
(c)
0 =

λ

na + λ
+ (1− α2 + β) (6.7)

and for i = 1...2na

W
(m)
i = W

(c)
i =

λ

2(na + λ)
(6.8)

where λ, α, β are tuning parameters for the sigma points and na is the

dimension of the augmented state. In the algorithm, λ = α2na − na. In this

paper, the parameters are α = 0.001, β = 2 which are optimal for a Gaussian

approximation. Then, the sigma points are passed through the non-linear

transition equation of the KF and a Gaussian distribution is approximated

through the transformed points. The rest of the UKF algorithm is presented

in the Appendix.

The parameters of the UKF α = (µ, κ, θ, η, ρ) are estimated through the

quasi maximum likelihood (QML) method. The QML estimate is given by:

L1:N =
N∑
k=1

ln(Pzkzk) +
zk −mzk

Pzkzk
(6.9)
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where zk and Pzkzk are defined in the Appendix.

To calibrate the Heston SV model, a first sub-optimal solution is found

using the PSO routine (Eberhart and Kennedy, 1995). Instead of working with

a single vector of initial parameters, the PSO tests a population of vectors.

Each vector corresponds to a single particle which is allowed to move on the

search space at a given speed. Then, at each iteration, the algorithm searches

for a better solution without using the partial derivatives of the cost function.

The particles are allowed to move at a given velocity given by:

vik+1 = ωkv
i
k + c1r1(P i

k − xik) + c2r2(PGlobal
k − xik) (6.10)

where ω is the inertia weight of the particles, r1 and r2 are random draws

from the uniform distribution, and (c1, c2) are the acceleration coefficients of

the particles. The algorithm is stopped after a number of iterations selected

for convergence criteria and the sub-optimal solution is used as the starting

values in the gradient-based optimization routine. The routine is presented in

Algorithm 2. Then, as with the MJD model, the set of parameters is opti-

mized through the gradient-based algorithm in MATLAB.
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Initialize a particle swarm with random values positions and velocities

from D dimensions in the search space;

while number of iterations k < N do

for Each particle i do

Evaluate objective function f(xik, y
i
k);

Update the particle best solution P i
k;

Update the swarm best solution PGlobal
k ;

Update the velocity with Equation 6.10;

Update the position of all particles using xik+1 = xik + vik+1;

end

end

Algorithm 2: PSO algorithm

6.4.3 Estimation of CFaR

Unlike financial institutions, where VaR measure is the norm to infer

market risk, mining companies own physical assets and are dependent on com-

modity prices. In general, their investment cannot be liquidated without any

major loss. For this reason, the risk metric studied in this paper is the CFaR.

It can be interpreted as the minimum cash-flow from operations (CFO) that

the mining project can earn for a given period. When the risk of negative cash

flows is high, mining companies seek ways to hedge the market risk by using

commodity derivatives such as futures contracts.

Different approaches can be used to calculate CFaR. The historical ap-

proach consists of fitting a statistical distribution to historical observations

and determining the 5th percentile of the cumulative density function (CDF).

The drawback of this approach is that it is unlikely the past will repeat itself

and the true risk could be underestimated. Another approach supposes that
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the distribution of price returns can be approximated with a normal assump-

tion. The CFaR is extracted from a PDF fitted to the distribution. However,

if the production is hedged with derivatives contracts, the CFaR distribution

becomes non-linear and becomes very difficult to fit with an analytical method.

In this paper, MC simulations are used to calculate the CFaR. The parameters

inferred from calibrated stochastic processes are used to perform MC simula-

tions of price paths. The simulation parameters are calibrated on historical

data but they can be modified to account for econometric predictions or can be

stress-tested to estimate the error on the CFaR predicted value. CFaR calcu-

lations are performed in a real-world P probability framework. The stochastic

processes of interest are the GBM, the MJD and the Heston SV.

To calculate the CFO, the following function is used, with stochastic gold

prices from the GBM, MJD and Heston SV models:

CFO =[throughput ∗ price ∗ grade ∗ recovery]−

[mining costs ∗ (throughput+ waste production)]−

[processing costs ∗ throughput]− Fixed costs

(6.11)

Then, the different CFO are aggregated on daily, weekly, monthly and

quarterly periods, and ranked. The CFO corresponding to the 5th percentile

is taken as the calculated CFaR.

6.5 Case study

6.5.1 Data

The dataset used to perform the analysis consists of gold, silver and plat-

inum spot prices as well as a continuous series of the CME group crude oil near-

est maturing contracts. Historical observations of gold and silver spot prices

are from the London Bullion Market Association (LBMA). The LBMA fixes
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gold prices twice a day by matching bid and ask prices of buyers and sellers of

the commodity. The spot platinum dataset is from The Johnson Matthey Base

Prices dataset consisting of the company’s quoted selling prices. The crude

oil contracts are taken from the Chicago Mercantile Exchange (CME) group

database and consists of raw assembled contracts without adjustment. Figure

6–1 presents the time series for the four datasets ranging between 8 February

1993 and 8 November 2016. The time period includes the 2009 financial crisis.

The dataset was split in two different periods. The first period corresponds

to the pre-crisis era while the second corresponds to the price dynamics after

the crisis.
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Figure 6–1: Price levels for gold, silver, platinum (in $USD/ounce) and crude
oil futures (in $USD/barrel) during 8 February 1993 and 8 November 2016.

To calibrate the models, price needs to be converted to logarithm of re-

turns. Figure 6–2 represents respectively log returns and spot price of gold in

two different periods. The first period ranges between 8 February 1993 and 27

December 2004. The second period ranges between 29 December 2004 and 8
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November 2016. It is worth noticing how volatility tends to cluster on the first

plot of Figure 6–2. This characteristic can be observed in both periods, but

the volatility tends to be higher in the second period. The same phenomenon

can be observed for the rest of the dataset.
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Figure 6–2: Logarithm of returns of gold spot prices during 8 February 1993
and 8 November 2016. The first period ranges between 8 February 1993 and
27 December 2004. The second period ranges between 29 December 2004 and
8 November 2016.

In Table 6–1 descriptive statistics of the distribution of commodity re-

turns in the three different periods are presented. The returns are calculated

using daily observations but the mean and variance are annualized so they are

easier to interpret. In all cases, the distribution of commodities price returns

are characterized by an excess kurtosis which is a characteristic of fat-tailed

distributions. The positive skewness of gold and platinum spot returns in Pe-

riod 1 implies that there is more weight in the right tail that the left tail.

However, in Period 2, this characteristic is inverted and both distributions
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become negatively skewed. Finally, the minimum and maximum values are

generally higher in the second period.

Another way to detect extreme values or analyze the dispersion of the

distribution is to use a box plot. Figure 6–3 shows box plots for the four

commodities in the two different periods. The central part of the box plot is

limited by the median and the 25th and 75th percentiles. The whiskers extend

to the 10th and 90th percentiles. The data points that are outside the whisker

range are considered as outliers. Both plots share the same y-axis. It is easy

to see that both periods contain a considerable amount of outlier points and

that Period 2 has more outliers than Period 1. Again, Figure 6–3 shows that

the silver spot price returns dataset contains the most extensive outliers.

Table 6–1: Descriptive statistics for the gold, silver and platinum spot price
returns as well as the crude oil futures contracts returns. The period 1 covers
the weeks between 8 February 1993 and 27 December 2004. The second period
covers the weeks between 10 January 2005 and 5 December 2016. The total
period covers the whole time range.

counts ann. mean ann. std skewness kurtosis min max

P
er

io
d

1 gold 2913 0.0191 0.1271 0.6277 8.1926 -0.054 0.0701
silver 2945 0.0376 0.2536 -0.0829 4.6821 -0.112 0.0991

platinum 3026 0.0511 0.1952 0.4949 9.011 -0.0741 0.1393
crude oil 2895 0.0687 0.3579 -0.3326 3.7277 -0.1654 0.1423

P
er

io
d

2 gold 2907 0.0389 0.1929 -0.4234 4.8751 -0.096 0.0684
silver 2940 0.0417 0.3609 -0.5557 8.8629 -0.1869 0.1828

platinum 2878 -0.0161 0.2435 -0.7157 9.9826 -0.1554 0.1264
crude oil 2928 0.0256 0.3944 0.0669 5.2571 -0.1576 0.1641

T
ot

al
p

er
io

d gold 5820 0.029 0.1633 -0.1959 6.7039 -0.096 0.0701
silver 5885 0.0396 0.3118 -0.4522 9.3112 -0.1869 0.1828

platinum 5904 0.0184 0.22 -0.3018 10.3185 -0.1554 0.1393
crude oil 5823 0.0471 0.3767 -0.1042 4.7122 -0.1654 0.1641
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Figure 6–3: Boxplots for gold, silver, platinum and crude oil futures price
returns. The points are considered as outliers when the distribution is assumed
to be normal.

Figure 6–4 shows the normalized histograms of silver price returns in both

periods. The dashed line corresponds to the normal distribution with the same

mean and standard deviation presented in Table 6–1. The continuous blue line

shows a probability density function estimated with a kernel density estimator

(KDE). The KDE is very useful to fit any kind of distribution nothing that

the Gaussian kernel has only a bandwidth parameter to adjust; the normal

distribution was the appropriate function to describe silver spot returns, both

lines would overlay. In Period 2, silver spot returns are also negatively skewed

when compared to Period 1. The normal distribution is symmetric and should

have a skewness of 0. Finally, the Jarque-Bera (Jarque and Bera, 1980) statis-

tic test was performed on the commodity spot price returns (Table 6–2). This

test statistic follows a Chi-square distribution with two degrees of freedom
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and is reliable when the sample contains at least 2,000 observations. The null

hypothesis is that the observations are normally distributed. This hypothesis

cannot be rejected when the test statistics are below the critical value. The

results presented in Table 6–2 showsub-optimal that the normality hypothesis

is rejected at the 99% level of confidence.
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Figure 6–4: Histogram of spot gold price returns. The dashed PDF corre-
sponds to a normal distribution with the same mean and variance as observed
in the empirical dataset. The continuous PDF is calculated with a kernel
density estimator.
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Table 6–2: Jarque-Bera statistics for normality on the 99% level of confidence
for the four different commodities spot price returns.

Commodity spot price
returns

Test statistic Critical value (99%
conf. level)

Gold 8,440.23 9.21
Silver 2,697.13 9.21
Platinum 10,353.91 9.21
Crude oil futures 1,573.46 9.21

6.5.2 Model calibration

The calibrated parameters and the estimation of their error for the GBM,

the SV and the MJD models are presented in Table 6–3. To reduce the

likelihood of getting stuck in a local minimum, several starting parameters

have been tested using PSO. After 15 iterations, PSO is stopped and the

sub-optimal best solution in the population becomes the starting values for

a gradient-based optimization approach. Also, to ensure the calibrated pa-

rameters are realistic, a change of variable was performed in the minimization

routine. For example, volatility parameters need to be positive and correla-

tion needs to be between -1 and 1. For volatility parameters, the logarithm

of volatility is parsed in the minimization routine and converted back taking

its exponential before evaluating the objective function. This ensures that

the search space will always contain positive values for volatility. A similar

approach is used with the correlation parameter using a tangent and its in-

verse function. Then, the numerical Jacobian method is used to calculate the

error on calibrated parameters (Remillard, 2013). This ensures the Fisher in-

formation matrix is always estimated with a positive-definite Hessian matrix.

Finally, the Feller condition (2κθ > η) is applied on the SV model to ensure

the process never reaches 0 (Albrecher et al., 2006). The results presented in

Table 6–3.
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Table 6–3: Calibrated parameters of the GBM, Heston SV and MJD on gold,
silver platinum and crude oil between 15 February 1993 and 5 December 2016.

Gold Silver Platinum Crude oil
Param est. std est. std est. std est. std

G
B

M µ 0.0540 0.0079 0.0729 0.0065 0.0475 0.0046 0.0790 0.0079
σ 0.1656 0.0020 0.3138 0.0012 0.2223 0.0008 0.3831 0.0020

H
es

to
n

S
V

µ 0.1412 0.0332 0.0563 0.0574 0.0783 0.0361 0.0509 0.0632
κ 1.5008 0.1609 1.7396 0.0245 1.467 0.0787 1.435 0.1584
θ 0.031 0.0120 0.0947 0.0100 0.0506 0.0141 0.1452 0.0224
η 0.3184 0.0529 0.3248 0.0707 0.4665 0.0424 0.3729 0.0361
ρ 0.2075 0.0350 0.2791 0.0520 0.0431 0.0200 -0.4232 0.0346

M
er

to
n

J
u
m

p µ 0.0603 0.0659 0.0957 0.0629 0.059 0.0445 0.1151 0.0789
σ 0.0764 0.0025 0.2052 0.0040 0.0028 0.0076 0.2793 0.0055
λ 155.87 11.51 56.45 5.6626 59.04 5.6782 45.33 5.97
γ -0.0002 0.0002 -0.0018 0.0011 -0.0006 0.0007 -0.0026 0.0016
δ 0.0114 0.0003 0.0305 0.0012 0.0215 0.0008 0.0386 0.0019

The GBM is the simplest model having only two parameters to adjust.

The drift µ can be interpreted as the annual continuously compound return

when investing in the commodity. All commodities exhibit positive drift pa-

rameters. Crude oil futures exhibit the highest level of volatility while gold

prices are less volatile. The volatility of the MJD model is lower than in the

GBM but the real volatility of the process is the sum of the GBM and the

Poisson process. The jump mean η is negative for the four commodities, but

very close to zero. This means that the jump processes are centered around

zero and do not significantly affect the skewness of the returns distribution.

The λ affects the kurtosis of the distribution by increasing the occurrence of

returns in the tails of the distribution.

In the Heston SV model, the η parameter determines the volatility of the

stochastic volatility process while the long-term trend θ represents its mean

reverting level. When the volatility level is above the long-term mean, it is

expected to drift to lower values with a speed of mean reversion κ. The initial
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volatility plays a crucial role on the outcome of simulated results. When

this value is far from the mean reversion level, simulated paths will exhibit a

transition from the initial volatility to the mean-reverting level. This value was

estimated using a rolling standard deviation window on the whole sample and

taking the standard deviation corresponding to the average of the first 10% of

observations. The correlation determines the relationship between price and

volatility levels. When the correlation coefficient is positive, a higher level of

volatility will cause price returns to move in the same direction. Correlation

is positive for gold and silver, neutral for platinum and strongly negative for

crude oil futures.

To ensure the calibrated parameters fit the past observations and are also

useful for out-of-sample predictions, the root mean square errors have been

calculated for the GBM and Heston SV models. The values are presented

in Table 6–4. The dataset was split into two different partitions. The first

partition is used for the calibration of the KF parameters and consists of 80%

of the observations. The second partition is out-of-sample and consists of the

remaining 20% observations. Out-of-sample values are systematically lower

than in-sample values. This is due to the nature of the data, which contains

many more outliers and volatility clusters in the in-sample period. The root-

mean-square error (RMSE) is almost identical for the GBM and Heston SV

models. The UKF performs a linear correction on a non-linear problem. In

this case study, it does not improve the RMSE when compared to the GBM.
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Table 6–4: In-sample and out-of-sample RMSE for the different commodity
datasets. The KF is calibrated using 80% of the first observations. The out-
of-sample RMSE uses the calibrated parameters on the remaining 20% of the
dataset.

GBM Heston SV
in-sample out-of-sample in-sample out-of-sample

Gold 0.0104 0.0105 0.0104 0.0105
Silver 0.0203 0.0169 0.0204 0.0169
Platinum 0.0144 0.0124 0.0144 0.0124
Crude oil 0.0246 0.0223 0.0245 0.0224

6.5.3 CFaR analysis

This paper assesses the CFaR of an open-pit gold mine. The weekly

production of the mine is presented in Table 6–5. To obtain the CFaR value,

it is necessary to first calculate the cash flows from operations (CFO) for each

trading period. Since the objective of this paper is to assess the effect of the

stochastic process on CFaR calculations, the only random variable is the gold

price.

Table 6–5: Characteristics of the open-pit gold mine. These parameters are
used for the CFaR calculations.

Parameter Value

Mine type: Open pit
Processing method: Grinding and flotation
Processing capacity: 180,000 tonne/week
Throughput: 140,000 tonne/week
Waste production: 180,000 tonne/week
Average grade: 2.6 g/tonne
Mining cost: 3.2 $/tonne
Processing cost: 12.5 $/tonne
Gold price: Simulated $/gr
Gold recovery: 84%
Fixed costs: 1,500,00 $/week

Using the parameters of Table 6–5 and Equation 6.11, the CFO with a

gold price of 42$/g is:
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CFO =140, 000 ∗ 42 ∗ 2.6 ∗ 0.84−

[3.2 ∗ (140, 000 + 180, 000)]−

[12.5 ∗ 140, 000]− 1, 500, 000 = $8, 567, 920

(6.12)

The daily simulations of gold prices are performed using the GBM, the

MJD and the Heston SV models calibrated with historical data. The CFaRs

are calculated for a daily, a weekly, a monthly and a quarterly interval. First,

5,000 simulations of gold prices are performed using each model, and then the

prices are used as an input in Equation 6.11. The calculated CFaR for each

period are presented in Table 6–6. The results show the simulated cash-flows

corresponding to the 5th percentile of the simulated cash-flow distribution.

The first thing to notice is that the GBM model systematically undervalues

CFaR for each time period. Also, the longer the studied timeframe is, the

bigger the difference between CFaR calculated with each different methodology

will be. For the quarterly CFaR calculation, the difference between the MJD

and the GBM can vary between 6% and 50.5% when calculated on a quarterly

basis while the differences range between 1.9% and 6.1% on a daily basis.

Although CFaR values are all positive, they may not meet the hurdle rate

required to satisfy shareholders of the company operating the project. If these

cash flows were negative, the company might even need to dilute its equity

with a secondary offering at an unfavorable market price of shares to prevent

a default payment.

Table 6–6: CFaR of the gold-mining project for quarterly, monthly, weekly
and daily time intervals

Quarterly CFaR Monthly CFaR Weekly CFaR Daily CFaR

GBM $26,465,238 $10,247,064 $2,189,013 $544,234
MJD $17,577,417 $ 8,671,698 $2,070,152 $512,755
Heston SV $24,739,856 $9,819,090 $2,152,277 $535,176
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6.6 Discussion

Most mining companies use derivative instruments on commodities or ex-

change rates to reduce their exposure to market risk (Armstrong et al., 2009).

To correctly assess the exposure to market risk, stochastic models are used

to describe the price dynamics of commodities. Model risk emerges when the

model used to describe commodity price dynamics is misused. This can be due

to a violation of the assumptions of the model or a bad calibration. The GBM

assumes that commodity price returns are normally distributed. It is clear that

commodity price returns are leptokurtic and the model used to simulate price

paths calibrated on historical observations should take into account stochas-

tic volatility or jump components. To reduce model risk, different stochastic

processes have been calibrated on historical data. Using the KF workflow,

the models are calibrated in-sample and out-of-sample. It is important to test

the model on an out-of-sample set to be sure the model is not overfitting past

observations. In the KF framework, or using ML, the model parameters are

calibrated on a proportion of the sample and tested out-of-sample on the rest

of the observations.

The MJD and Heston SV models are more complex and are harder to

calibrate than the GBM. In a robust valuation workflow, different kinds of

models should be tested and benchmarked against the GBM. Different strate-

gies may be used to calibrate models, depending on their complexity. The

MJD model is a GBM with an independent jump process. The PDF of such

model is straightforward and can be calibrated using ML. Another good cali-

bration strategy could have been to model a GBM with outlier correction and

then model the outliers in the jump component of the model. In the SV model,

the diffusion process of both price and volatility are correlated. The model

has five parameters to calibrate. The topology of the cost function is highly
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non-linear and the use of a metaheuristic approach for the optimization helps

to find a first good approximation of the solution (Donkor and Duffey, 2013).

Then, the sub-optimal solution of the PSO is used as an input in the gradient-

based optimization, the initial value is very close to the global minimum. The

Jacobian and Hessian matrices may not exist in the entire domain of the cost

function, but it can be approximated in the neighborhood of the sub-optimal

solution. As a result, the gradient-based optimization requires fewer iterations

to find the optimal solution. The main advantage of the gradient-based opti-

mization is that it yields an estimate of the parameters error, which can be

used to construct confidence intervals or assess if the parameters are reliable.

Because of the diversity of stochastic processes that can be used to model

commodity price dynamics, there is an inherent lack of generality in the pa-

rameter calibration process. To solve this problem, Schöne (2014) developed

a general calibration method based on the minimization of a theoretical and a

kernel based PDF. In this paper, a different approach is used, and the criteria

to assess how well each model compared to each other are in-sample and out-

of-sample RMSE measures. This procedure ensures that no matter how the

stochastic process is calibrated, it is effective at fitting past observations and

is also useful for making predictions. Historical calibration converges onto the

estimation of parameters that may not be forward-looking. If the calibration

is performed in the recent past, the calibrated parameters will reflect mar-

ket dynamics of the past period. However, it is very unlikely that the past

will repeat itself indefinitely and the estimates should be readjusted to reflect

the expectation of future events. This is particularly important when valuing

market risk exposure.

The CFaR was calculated considering only one stochastic parameter. In

general, mining projects will be affected by more than one risk factor. For
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example, CFaR could be calculated with a stochastic exchange rate level, or

with varying production parameters such as the grade of the ore. The CFaR

of a project incorporating all of these uncertainties would be lower than the

individual CFaR. For example, lower commodity prices could be countered

by a more advantageous exchange rate level. Another important task would

be to verify that the calculated CFaR actually reflects past observations. If

the CFaR is calculated using the historical method, the CFaR will be exactly

the one corresponding to historical observations. On another hand, the CFaR

calculated using the workflow presented in this paper relies on MC simulations

and should be back tested. One drawback of the CFaR methodology is that it

yields an upper limit of the minimum cash-flow that a project will produce at

a given time. In reality, the actual minimum cash-flow could be much lower.

Another approach to better quantify the actual loss is the Conditional Value

at Risk (CVaR) (Acerbi and Tasche, 2002). The risk metric produced with

this approach can be interpreted as the expected loss assuming that the VaR

threshold has been triggered. This can be extended to CFaR calculations.

6.7 Conclusion

Stochastic processes are widely used to analyze risks associated with com-

modity prices through MC simulations. The important question is how to find

or calibrate appropriate values for the parameters of stochastic processes. This

paper proposed a new hybrid approach to calibrate the parameters to be used

in Heston SV and MJD models. For calibration, KF were used. Since KF

requires an initial sub-optimal solution, PSO was used to generate an initial

solution. This paper investigates how the choice of the stochastic process can

affect the CFaR of a mining project. The risk analysis is implemented using

real world probabilities. Depending on the complexity of the model, different
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calibration strategies may be used to fit historical observations. The KF cali-

bration workflow proves to be a very robust. This paper uses the UKF to model

the SV in a filtering framework. The model parameters are calibrated using a

hybrid metaheuristics approach using PSO and a gradient based optimization

method. This approach linearizes a non-linear problem using a Gaussian ap-

proximation. As future work, another algorithm called the particle filter (PF)

could be tested. However, since the PF relies on individual particles that are

each transformed using the state-space transition equation, it is much more

computationally intensive. The choice of the stochastic process affects the

calculated CFaR risk measure. This is because more complex models such as

the MJD and the Heston SV models are better suited for reproducing fat tails

observed in empirical observations.
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Appendix

The UKF algorithm is taken from Javaheri et al. (2003). First, the mean

and covariance are initiated:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]
(6.13)

The state vector is concatenated with the system noise and the observa-

tion noise:

xak−1 =


xk−1

wk−1

uk−1

 (6.14)

Therefore:
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x̂ak−1 = E[xak−1|zk] =


x̂k−1

0

0

 (6.15)

and

P a
k−1 =


Pk−1 Pxw(k − 1|k − 1) 0

Pxw(k − 1|k − 1) Pww(k − 1|k − 1) 0

0 0 Puu(k − 1|k − 1)

 (6.16)

For i = 1...na, the sigma points are calculated:

χak−1(i) = x̂ak−1 +
(√

(na + λ)P a
k−1

)
i

(6.17)

And for i = na + 1...2na:

χak−1(i) = x̂ak−1 −
(√

(na+ λ)P a
k−1

)
i−na

(6.18)

χk|k−1(i) = f(χχk−1(i), χWk−1(i)) (6.19)

for i = 0...2na + 1 so:

x̂−k =
2na∑
i=0

W
(m)
i χk|k−1(i) (6.20)

and

P−k =
2na∑
i=0

W
(c)
i (χk|k−1(i)− x̂−k )(χk|k−1(i)− x̂−k )T (6.21)

The innovation is:

zk|k−1(i) = h(χk−1(i), χuk−1(i)) (6.22)
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then:

ẑ−k =
2na∑
i=0

W
(m)
i zk|k−1(i) (6.23)

and:

vk = zk − ẑ−k (6.24)

For the measurement update:

Pzkzk =
2na∑
i=0

W
(c)
i (zk|k−1(i)− ẑ−k )(zk|k−1(i)− ẑ−k )T (6.25)

and

Pxkzk =
2na∑
i=0

W
(c)
i (χk|k−1(i)− x̂−k )(χk|k−1(i)− x̂−k )T (6.26)

The Kalman gain is:

Kk = PxkzkP
−1
zkzk

(6.27)

The next estimate is:

x̂k = x̂−k +Kkvk (6.28)

and the covariance is:

Pk = P−k −KkPzkzkK
T
k (6.29)
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CHAPTER 7
Conclusion

In the last decade, several researchers predicted that Real Options valua-

tion would become as widely used as the NPV valuation approach for mining

projects. In reality, it is not always clear if the classical Real Options valuation

workflow is useful for mining projects. Once the investment decision is made,

the capital expenditures necessary to bring a mineral field to production are

very high. Even if the price of the commodity drops substantially, the mine

cannot simply close and reopen later when the prices are higher. As a result,

the NPV approach is almost always used for the valuation of a mining project.

Moreover, the real option will always bring additional value compared to the

base case NPV scenario. If a project is already profitable using the NPV

criteria, the real option does not change the investment decision.

In this thesis, a different set of tools aimed at helping mining companies

to increase their value or reduce their market risk exposure in their daily ac-

tivities are developed. The tools are borrowed from the financial engineering

field of research and are applied in the context of a mining project. Unlike

the classical Real Options paradigm, these new methods do not require sig-

nificant alterations in the nature of the mining operation. The contributions

of this research are to provide a robust workflow to calibrate stochastic pro-

cesses to historical observations. The contributions are discussed in the next

paragraphs.

The first contribution was to consider the mining operation in a portfolio

valuation framework. In this project, stochastic processes are calibrated on

historical iron ore futures, and the production can be sold into two different
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segregated markets. The first market is considered risk-free and consists of

long-term commitment contracts; the second market is the spot market and is

subject to price fluctuations. The riskier market has a higher expected rate of

return. A mining company can decide the proportion of their production to be

sold in any market depending on the risk they are willing to take. For future

work, it would be interesting to study a multi-metal project. The two-factor

model could be expanded to include a correlated stochastic process. Then,

depending on the correlation between the different stochastic processes and a

risk-free asset, a portfolio could be constructed and optimized.

The second contribution consisted of managing the stockpile of a mining

project based on the differences between the short-term and long-term prices.

When the weekly selling price is lower than the expected long-term level, a

percentage of the production is set apart in a stockpile to be sold when prices

are more advantageous. This approach is based on the mean reversion of

the short-term disturbance of the price level. On average, the active trading

strategy adds value to the mining project. In this project, only one active

trading strategy was tested. The parameters of the strategy could be optimized

to take the best decision. In financial engineering and portfolio management,

multiple trading strategies exist and it would be interesting to assess if they can

be implemented to value mining projects. For example, an arbitrage strategy

exploiting market inefficiencies could be tested using this methodology.

The third contribution can also be used in a mining project daily activi-

ties and is particularly useful to measure the market risk of a mining project

subject to extreme variations in commodity prices. The approach uses the

GBM, the Merton and the Heston stochastic models to calculate the CFaR of

a mining operation. Results show that the CFaR value obtained using either

the Merton or the Heston models are more conservative than the GBM. The
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model parameters were optimized with a hybrid metaheuristics approach. Re-

sults show that this approach is apt at finding the global minimum of the cost

function. The CFaR methodology is very useful to assess the market risk of a

mining project. The method can be used even when the dataset is contami-

nated with outliers since the Merton or Heston models can accommodate for

fat-tailed distributions.

The stochastic processes relied on a Kalman filtering workflow to be cal-

ibrated on historical data. The parameters of the stochastic processes were

calibrated using metaheuristics algorithms such as the genetic algorithm of

particle swarm optimization. These algorithms are well suited to optimize

highly nonlinear and multidimensional problems. Also, they are apt at deal-

ing with cost functions having an irregular or discontinuous topology.

The workflow presented in this thesis requires calibration of stochastic

processes using historical observations. This methodology implies the past is

likely to repeat itself. However, it is always possible markets will be affected

by an unprecedented event that cannot be captured by the historical simula-

tion approach. Mining companies managers should always stay informed with

major events that will likely affect commodity markets. The historical cali-

bration workflow presented in this paper should not be seen as a substitute for

sound economic analysis, but rather as a tool to assess how a mining project

can be affected by different market dynamics.

When pricing options contracts, sell-side financial institutions are more

interested in actual prices observed in the market. They use the term struc-

ture of futures contracts or actual option prices at different maturities to infer

the properties of the stochastic model they use. The approach is often called

implied volatility. And is very useful to grasp the instantaneous market sen-

timent regarding a financial product. However, obtaining such information

147



can be quite expensive and formatting the data to be interpreted in a Kalman

filter workflow may prove to be a difficult task. Another method used to make

the analysis more forward-looking is to incorporate information from different

sources in a Bayesian framework. Using this methodology, estimates from his-

torical observations could be used as the a priori that can be updated with

a likelihood function. The Bayesian framework proves to be very useful to

incorporate different types of information in a unified model.
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Tapia, M., Coello, C., 2007. Applications of multi-objective evolutionary al-

gorithms in economics and finance: A survey. . . . 2007 CEC 2007 IEEE

Congress on, 532–539.

Taylor, H. K., 1986. Rates of working of mines-a simple rule of thumb. Insti-

tution of Mining and Metallurgy Transactions. Section A. Mining Industry

95.

Thompson, W. R., 1935. On a criterion for the rejection of observations and

the distribution of the ratio of deviation to sample standard deviation. The

annals of mathematical statistics.

161



Ting, T. O., Man, K. L., Lim, E. G., Leach, M., 2014. Tuning of Kalman

Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in

Battery Management System. The Scientific World Journal 2014 (2), 1–11.

Todorov, V., Filzmoser, P., 2009. An Object-Oriented Framework for Robust

Multivariate Analysis. Journal of Statistical Software 32 (3), 1–47.

Trigeorgis, L., 1993. Real options and interactions with financial flexibility.

Financial Management, 202–224.

Vasicek, O., Nov. 1977. An equilibrium characterization of the term structure.

Journal of Financial Economics 5 (2), 177–188.

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics with S.

Welsch, R. E., Zhou, X., 2007. Application of robust statistics to asset alloca-

tion models. REVSTAT–Statistical Journal 5 (1), 97–114.

Willems, J. C., 1978. Recursive filtering. Statistica Neerlandica 32 (1), 1–39.

Wilson, J. D., 2012. Chinese resource security policies and the restructuring

of the asia-pacific iron ore market. Resources Policy 37 (3), 331–339.

Yohai, V. J., 1987. High breakdown-point and high efficiency robust estimates

for regression. The Annals of Statistics 15 (2), 642–656.

Zhang, K., Kleit, A. N., Mar. 2016. Mining rate optimization considering

the stockpiling - A theoretical economics and real option model. Resources

Policy 47 (C), 87–94.

Zhang, K., Nieto, A., Kleit, A. N., Jul. 2014. The real option value of mining

operations using mean-reverting commodity prices. Mineral Economics 28,

11–22.

162


