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Abstract

RNA binding proteins (RBPs) play an essential role in many biological processes.
Understanding the specific binding preferences of RBPs helps us in understand-
ing the various steps of gene expression and may help in solving several genetic
disorders. There are thousands of RBPs in humans, and only a small fraction
of them are well understood. Current experimental methods for identifying RBP
targets, such as CLIP-seq and RNAcompete, usually suffer from high false neg-
ative rate. In this work, we develop deep neural network models that allow us
to learn binding preferences for a large number of RBPs from CLIP-seq data.
We developed three deep architectures and used them to predict RNA-protein
binding. We further analyze the importance of RNA secondary structure in RBP
binding by incorporating computationally predicted secondary structure features
as input to our models. We evaluate our model on the publicly available dataset
of RBP binding sites derived from CLIP-seq. The results demonstrate that our
approach achieves better or comparable performance with other state-of-the-art
methods. Further, our model is able to automatically capture the interpretable
binding motifs for several RBPs.
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Abrégé

Les protéines de liaison à l’ARN (RBP) jouent un rôle essentiel dans de nombreux
processus biologiques. Comprendre les préférences de liaison spécifiques de RBP
nous aide à comprendre les différentes étapes de l’expression des gènes et peut
aider à résoudre plusieurs troubles génétiques. Il y a des milliers de RBP chez
les humains, et seulement une petite partie d’entre elles est bien comprise. Les
méthodes expérimentales actuelles pour identifier des cibles de ces RBP, telles
que CLIP-seq et RNAcompete, souffrent généralement d’un taux élevé de faux
négatifs. Dans ce travail, nous développons des modèles de réseaux neuronaux
profonds qui nous permettent d’apprendre les préférences de liaison pour un grand
nombre de RBP à partir de données CLIP-seq. Nous avons développé trois ar-
chitectures profondes et les utilisons pour prédire la liaison ARN-protéine. Nous
analysons en outre l’importance de la structure secondaire de l’ARN dans la li-
aison RBP en incorporant des caractéristiques de structure secondaire prédites
par des outils bioinformatiques en entrée de nos modèles. Nous évaluons notre
modèle sur l’ensemble de données disponibles au public des sites de liaison RBP
dérivés de CLIP-seq. Les résultats démontrent que notre approche atteint des
performances meilleures ou comparables celles d’autres méthodes de pointe. En
outre, notre modèle est capable de capturer automatiquement des motifs de liaison
interprétables pour plusieurs RBP.
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Chapter 1

Background

1.1. Molecular Biology

The flow of genetic information from DNA to RNA to protein is called the
Central Dogma of Molecular Biology (see Figure 1.1). Watson and Crick discov-
ered this dogma [1], which deals with the detailed residue by residue transfer of
sequential information.

DNA and RNA are nucleic acids, made up of nucleotides, whereas proteins
are made up of amino acids. Information is stored in DNA which in the process
of replication, can be duplicated. In the transcription process, a stretch of DNA
containing at least one gene can be copied into RNA, which is called messenger
RNA (mRNA) if the gene encodes a protein. This means that mRNAs serve
as genetic messengers as unlike DNA, which resides in the nucleus, they can
move around the cell and carry instructions which can be used to synthesize a
protein during the translation process. During protein synthesis, the sequence
of an mRNA molecule is translated to a sequence of amino acids. The relation
between the sequence of base pairs in a gene and the corresponding amino acid
sequences is defined by the genetic code.

The process by which the information contained in a gene is read to synthe-
size a functional gene product, which can either be a protein or RNA is called
gene expression. The process of gene expression involves transcription, i.e., the
production of mRNA by the enzyme RNA polymerase, and the processing of the
resulting mRNA molecule.
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Figure 1.1: The central dogma of biology [3].
.

1.2. RNA Binding Proteins and their Roles

In order to decide what product needs to be created and in what amount, reg-
ulation of gene expression is necessary. To regulate transcription of nearby genes,
transcription factors bind to regions of DNA. Once the DNA has been transcribed
into RNA and before the translation happens, post-transcriptional regulation oc-
curs at the RNA level. RNA-binding proteins (RBPs) take over about 10% of eu-
karyotic proteome with unique binding preferences and protein-protein interaction
characteristics [4]. The remarkable diversity of RBPs allows for their utilization
in numerous combinations, which gives rise to ribonucleoprotein complexes (com-
plex of ribonucleic acid and RNA-binding protein), whose composition is unique
to each mRNA. These RBPs influence the structure and interactions of RNA
and regulate numerous post-transcriptional processes by regulating maturation,
degradation, stability and transport of cellular RNAs [2].

The RBPs not only influence these processes but also provide a link between
them [7]. Their proper functioning is necessary for complex post-transcriptional
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events coordination (Figure 1.2). For instance, neuron-specific Nova proteins rec-
ognize intronic YCAY elements (Y = U/C) and thus, control the alternative splic-
ing of pre-messenger RNAs [8]. SR proteins (proteins involved in RNA splicing
which accompany the transcript through splicing process) such as SF2/ASF regu-
late translation initiation by enhancing phosphorylation of 4E-BP1 [9]. Similarly,
miR369 recruits Argonaute2-FXR1 complex in dormant cells which were halted at
G0/G1 phase and stimulates translation of TNF-alpha mRNA [10]. In 3’-UTRs,
AU-rich elements (AREs) serve as docking sites for several proteins modulate
mRNA stability [11]. ARE-binding proteins (ARE-BPs) from Hu family (HuB,
HuC, HuD and HuR) generally stabilize the transcripts, while some ARE-BPs
(TIA-1, AUF1) destabilize their target mRNAs [12].

Figure 1.2: RNA-binding proteins (RBPs) regulate numerous post-transcriptional
processes. Genetic information stored in chromosomal DNA is translated into
proteins through mRNAs. In addition to the RBPs associated with mRNA, many
different classes of RBPs interact with various small non-coding RNAs to form
ribonucleoprotein (RNP) complexes that are actively involved in many different
aspects of cell metabolism, such as DNA replication, expression of histone genes,
regulation of transcription and translational control [5].

.

The effect on mRNA stability and translation rate can sometimes be co-related.
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Though this is not always the case. For example, HuR enhances and CUGBP2 in-
hibits the translation of Cox-2 mRNA but both proteins enhance its stability [13].
Many RBPs are involved in more than one distinct process. For example, TIA-1
primarily destabilizes the target mRNAs but its presence also results in accu-
mulation of stress granules in the cytoplasm which are formed when translation
initiation is impaired [14].

Figure 1.3: A network of RNA-binding proteins in human diseases [6].
.

1.2.1 RBP Mutations can cause Human Diseases

Due to their critical role in post-transcriptional regulation, many human dis-
eases such as breast and lung cancer, muscular atrophies and neurological diseases
are said to be caused in part due to mutations in RBPs or their binding sites [20].
As shown in Figure 1.3, aberrations in RBPs are directly or indirectly associated
with specific diseases. For example, in 3’ untranslated regions of the DMPK gene,
the sequestration of RBPs CUG-BP1 and MBNL1 on trinucleotide repeats can
result in myotonic dystrophy [15]. RBPs ATXN2, NOVA and QKI are associated
with human inherited ataxias [16]. Mutation in RBPs is a common feature in var-
ious cancers. SF2/ASF and eIF4E are among a growing list of RBPs which have
been characterized as oncogenes. NOVA and Hu proteins are associated with

4



brain tumors as they are targets of anti-neural antibodies. Understanding the
binding preferences of RBPs helps us in understanding the molecular mechanisms
of RBP mutations in disease which could lead to better-targeted therapies.

1.3. RNA Secondary Structure

RNA plays many roles in the storage and transmission of genetic information
and exists in several forms, each with its own unique function. RNA is also an
integral part of ribosomes, the site of protein synthesis, and some RNAs have been
shown to have catalytic properties. Understanding the structure and function of
RNA is important to a fundamental knowledge of genetics.

Figure 1.4: Different secondary structural motifs in RNAs are usually classified as
stem, internal loop (or interior loop), multibranch loop. Figure taken from [23].

.

Single stranded RNA can fold back onto itself to form RNA secondary struc-
ture (Figure 1.4). Tertiary structure is then formed by higher order interactions
after the formation of secondary structure. The secondary structure of an RNA
sequence can be represented by assigning an index to each of the bases. In an
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RNA molecule, the bases are indexed starting from the 5’ end towards the 3’ end.
Assuming N is the length of sequence, we can define the RNA secondary structure
S as a set of pairs (i, j), 1 ≤ i < j ≤ N where each of the bases is paired with
zero or one other base. Watson-Crick pairings A-U, G-C and wobble pairing G-U
are the most common base pairs. A stack of such base-pairs is called a stem and
loops are unpaired regions that are enclosed by base pairs. These loops, depend-
ing on the number of closing base pairs, can be called hairpin, internal, bulge or
multi-loops (see Figure 1.4).

1.4. Binding Mechanisms of RBPs

The binding of RBPs to binding sites is determined by one or more RNA-
binding domains (RBDs), of which there are more than 40 different types [22].
Some of the well-known RBDs are the RNA-recognition motif (RRM) [28], the
heterogeneous nuclear (hn), RNP K homology (KH) [29], the double-stranded
RBD (dsRBD) [30] and Pumilio (PUF repeats) homology (PUM-H) [31]. The
architecture of RBPs is simple in the sense that they are constructed from indi-
vidual RBDs that identify low affinity RNA stretches. Individual RBD sequences
are short and thus, have limited ability to interact with RNAs on their own. By
combining multiple domains with different arrangements and different number of
copies, the versatility in specificity and affinity is achieved. The Pumilio family of
proteins (Puf) is an example of such kind of RBPs with a C-terminal RBD that
comprises of ∼40-aa long, consecutively arranged PUF-repeats, [31].

DNA-binding proteins recognize the sequence content of their binding sites but
RBPs may recognize both sequence and structure of their binding sites. This is
due to the different helical configurations in DNA and RNA. The B-form helix in
DNA has a wide major groove which is easily accessible by proteins, whereas the
A-form helix in RNA has a major groove that is too narrow and deep. The shape
of RNA is a result of base-pairing between its nucleotides. As such, RBPs identify
the regions where the major groove has been broadened by hairpins or bulges to
recognize single stranded regions or the openings in double-stranded regions [24].
For instance, TAT, an HIV-1 protein, has high affinity to bind to three-nucleotide
bulge loops [25], whereas Staufen, a Drosophila RBP binds without any sequence
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preference to double stranded regions [26]. This shows that some RBPs bind to
single stranded RNAs by directly reading out the primary sequence while others
recognize the structure of the RNA or sometimes take into consideration both the
sequence and the structure.

Thus, RBPs bind to a variety of structural and sequential contexts. However,
it’s not easy to know the binding preferences just by looking at their amino acid
sequence. As such, a number of experimental methods have been developed in
order to understand and investigate the binding preferences of RBPs, and they
are discussed in the next section.

1.5. Experimental Methods for RBP Target Site
Detection

Detection of RBP binding sites can be done using high-throughput or low-
throughput techniques. Further, these experimental methods can be categorized
into in vivo (if they are performed in living cells) or in vitro (performed in a
controlled environment outside the cell).

1.5.1 In vitro Experiments

In-vitro methods allow to test a wide variety of binding sites by identifying
the targets in non-biological conditions. Some of the examples are:

SELEX

Selection of ligands by exponential enrichment (SELEX) is an in vitro tech-
nique for identifying RBP binding targets. The process takes advantage of the
fact that RNA binding proteins are capable of selecting their RNA ligands from
large randomized pools of different RNAs [32]. Several ”rounds” of experiments
are performed, with each round consisting of the same sequence of steps (Figure
1.5). To synthesize the randomized RNA pool, DNA templates are constructed.
The synthesized pool is then labeled and allowed to bind to the target RBP. The
bound RNA is separated from unbound RNA and converted back into DNA tem-
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plates. The process is repeated until at least 90% of the pool is bound to the
protein of interest. At this point, these resulting RNAs are converted to DNA,
cloned and sequenced [36]. One of the disadvantages of SELEX is that it doesn’t
always reflect the physiological binding sites as it only identifies high affinity RNA
targets.

RNAcompete

RNAcompete is a high-throughput in vitro method for measuring the RNA
sequence preferences of over 200 RBPs to more than 240,000 probe sequences
which have been designed to cover each 9-mer at least 16 times [33]. It starts
with generating an RNA pool which consists of k-mers in a variety of structural
contexts, followed by pulldown of the RNAs bound to target RBPs. The name
RNAcompete comes from the fact that individual RNA sequences compete to bind
to proteins due to excess of concentrated RNA results. The recovered pulldown
RNA is labelled and hybridized with complementary probes on a microarray. The
final step is to measure binding affinity by computing the log-ratio between the
recovered RNA in pulldown RNA population and the total pool signal.

Figure 1.5: Schematic representation of a round of SELEX [36].
.
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1.5.2 In vivo Experiments

Using in vivo methods such as HITS-CLIP, CLIP-seq and RIP-seq, one can
query RBP-RNA interactions in biological conditions. The disadvantage is that
they may identify both direct and indirect contacts and would require engineered
cells to generate RBP levels that are much higher than normal, owing to noise
and low resolution. The experiments are further complicated by the presence of
other RBPs which could result in a competition or complex formation between
them affecting the binding measurements.

RNA Immunoprecipitation

RNA immunoprecipitation (RIP) involves immunoprecipitation of a target
RNA-binding protein (RBP) using an antibody. RNAs that are bound to the
target RBP will be isolated during immunoprecipitation in non-stringent condi-
tions and then sequenced. One drawback is its low specificity [34], which lead to
the development of CLIP, explained below.

Cross-linking and Immunoprecipation

Figure 1.6: Covalent bonds are formed between RNA and proteins of interest
on being exposed to UV light, followed by immunoprecipitation of RBP-RNA
complexes [37].

.
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One of the widely used experimental methods for identifying RBP binding tar-
gets are Cross-linking immunoprecipitation sequencing (CLIP-seq) protocols [35]
(Figure 1.6). Covalent cross-links are formed between RBPs and bound RNA
using UV radiation exposure on the cell or tissue culture, which is followed by
immunoprecipitation of RBP-RNA complexes. The binding sites are then nar-
rowed to a specific sequence length by partial RNrase digestion. After mapping
to a reference genome, the binding sites are identified based on read profiles and
the recovered RNA fragments are reverse transcribed into cDNA after proteinase
K treatment [39]. This is followed by extraction and sequencing of cross-linked
RNA fragments. Subsequently, the identified binding sites can be used to derive
predictive models for binding motifs, and further to identify potential binding
sites in new unlabeled RNA sequences.

More specialized techniques such as PAR-CLIP (photoactivatable-ribonucleoside-
enhanced CLIP) improves cross-linking with photoreactive RNA nucleotides and
can be used to locate binding sites at higher resolution [38]. This helps in de-
creasing signal-to-noise ratio over CLIP-seq. An alternative to high resolution
CLIP method is iCLIP (individual-nucleotide CLIP) [43], which allows single nu-
cleotide resolution of binding sites. eCLIP (enhanced CLIP) maps the binding
sites of RBPs on their target RNAs using the iCLIP protocol and recently, has
been widely promoted by the ENCODE consortium [40].

1.6. Limitations of Experimental Methods

Although there have been recent advances in experimental methods for the
identification of RBP binding sites, there are several inherent limitations. Ex-
perimental methods require significant investment in time, work and effort, and
as such are expensive and time-consuming. The data may contain many false
positives due to inherent noise or contamination with non-cross-linked sites and
a large number of binding sites may remain unidentified resulting in a high false
negative rate. These limitations make the task of determining RBP target sites
difficult. However, using these high-throughput technologies, a lot of RBP-related
genome-wide data is being generated rapidly and deposited in databases such as
the Protein-RNA interaction database (PRD). Section 1.7 details some of the
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common databases of RNA-protein interactions and interfaces.
This data can serve as an important base for computational approaches which

can be used to predict RBP-binding sites. Thus, the available high-throughput
data acts as a gold standard for training and testing of less-expensive and faster
computational prediction models, which are discussed in Section 1.8.

Table 1.1: Data sets commonly used for RNA-binding sites identification

Database URL Description

PDB [82] http://www.rcsb.org/pdb PDB contains data from
experimentally determined 3D
structures

NDB [75] http://ndbserver.rutgers.edu/The NDB contains information about
experimentally-determined nucleic
acids and complex assemblies.

CLIPdb [79] http://postar.ncrnalab.org/ CLIPdb contains RBP binding sites
from around 23 million experiments
and 117 million predictions in the
mouse and human transcriptomes. It
provides various annotations
(gene/RBP, molecular, etc.) for every
transcript and its RBP target sites.

doRINA [85] http://dorina.mdc-
berlin.de/

doRINA database contains data for
RNA-binding proteins and miRNAs.
In the latest version available online,
136 RBP CLIP datasets have been
used to identify RBP binding sites.

PRIDB [78] http://pridb.gdcb.iastate
.edu/

PRIDB contain data containing
structural information for 926
RNA-Protein complexes. The data
contains information about 1,475,774
amino acids from which 38% directly
interact with RNA.
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1.7. RNA-Protein Interaction Databases

This section lists some of the databases that focus on RNA-protein interac-
tions, containing experimentally verified RBP target sites. These databases pro-
vide the users with the ability to search and browse known binding information
and further, to find potential RNA-protein interactions. Table 1.1 provides URLs
and descriptions for some common databases.

The Encyclopedia of DNA elements (ENCODE) [83] is a public research
project with the aim to build a comprehensive list of functional elements in the
human genome and also includes elements that act at the protein and RNA levels.
The protein-RNA interaction database (PRD) contains data for 22 organisms such
as human, Mus musculus and Drosophila melanogaster. It has 10817 interaction
entries, referring to 1539 unique gene pairs [41]. Another widely used database is
the RNA-associated interaction database (RAID) which has 1,208,008 entries for
a total of 60 organisms [42].

The RNA-Binding Protein Database (RBPDB) [76] is a collection of RNA
binding proteins and experimentally determined RNA binding specificities for
RBPs of species such as Human, Mouse, and Drosophila melanogaster. It contains
binding sites sequence logos for more than 70 Human RBPs and archives data
from 14 types of RNA binding experiments. The databases consist of target
site preferences for more than 200 RBPs in total, extracted from almost 1500
binding experiments [77]. For this thesis, Position Weight Matrices (PWM) and
Position Frequency Matrices (PFM) for 71 Human RBPs were downloaded from
this database for our experiments.

1.8. Computational Identification of RBP Bind-
ing Sites

As we saw in Section 1.6, the experimental methods used to detect RNA bind-
ing site proteins have certain limitations such as providing noisy measurements.
The computational models take this data along with the observations as input.
In the next sections, we present a review of computational models, starting from
the analysis of the CLIP-Seq data to motif detection. Traditionally, computa-
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tional approaches to predict binding sites represent motifs using a position weight
matrix, which is explained in Section 1.8.2. Unlike DNA motif finding models,
secondary structure of the binding sites has to be considered for predicting RNA
binding sites.

1.8.1 Computational Analysis of CLIP-Seq Data

In section 1.5, experimental methods that generate RBP-bound RNA se-
quences have been detailed. The sequencing data produced from these experi-
ments contain information about RBP binding sites on a transcriptome-wide scale.
However, the data needs to be processed, filtered and analysed comprehensively
in order to get useful biological insights.

Figure 1.7: Computational pipeline for PAR-CLIP [86].
.

Figure 1.7 shows the computational pipeline for the analysis of PAR-CLIP [38]
data. The first step is read mapping, where the reads are mapped to the genome
and transcriptome. During processing, any experimental aids added to RNA frag-
ments such as 3’ adapter sequences are first removed. The reads are aligned and
several of the short reads align to neighboring locations of the reference genome.
The aligned reads are then grouped to create clusters. Clusters containing a single
read are eliminated and the remaining clusters are annotated against a database
of known transcripts. Quality scores are computed for each of the clusters based
on the several parameters such as number of unique reads alignment, length of
cluster, number of characteristic mismatches, etc. To mitigate the risks of having
false-positive binding sites, other quality measures such as sense(coding strand
direction) and anti-sense(non coding or template strand direction) alignment of
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clusters are used. Anti-sense aligning of clusters are conservatively treated as
false-positives though this may not always be the case if derived from unanno-
tated anti-sense transcripts [86]. The false discovery rate is computed and the
clusters are filtered by setting thresholds on their quality scores. The target genes
associated with the clusters are then identified, as these clusters are annotated
against known databases of transcripts. All the information related to the clusters
(coordinates indicating start and end position, mapping the cluster to its location,
the strand and other details) are stored in a BED [64] file. Figure 1.8 summarizes
the different steps involved in the computational analysis of CLIP-seq data and
the associated standalone programs designed for each step.
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Figure 1.8: Recently, some computational pipelines have been developed which
provide useful resources to deal with preprocessing steps, reads mapping, peak-
calling procedure and other main steps of analysis [87].

.

1.8.2 Position Frequency Matrix (PFM) and Position Weight
Matrix (PWM)

PWM and PFM are commonly used for representing motifs in biological se-
quences. These matrices indicate the probability of finding nucleotides at each
position and as such, are used to capture the variable nature of binding sites.
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Figure 1.9: Example PWM for HuR [74].

The RNA sequences are first aligned against each other and the number of
times each nucleotide is found at a particular position is counted. This matrix of
counts gives us a Position Frequency Matrix (PFM). The frequencies in PFM are
converted to normalized frequency values on a log-scale to get the corresponding
Position Weight Matrix (PWM), given by

Wb,i = log2
p(b, i)
p(b) (1.1)

where Wb,i is the PWM value of base b in position i and p(b) denotes the back-
ground probability of base b. p(b, i) is the corrected probability of base b in
position i and is given by

p(b, i) = fb,i + s(b)
N + Σs(b′) (1.2)

where N is the number of sites, b′ ∈ {A,C,G, U}, fb,i gives the counts of base b in
position i and s(b) represents the pseudocount function that is used for probability
correction for small samples sizes in order to have non-zero p(b, i) values [89].

Figure 1.9 shows an example of HuR PWM. PWM computes probabilities at
each position independent of other nucleotides in the motif and is used to identify
candidate binding sites in new sequences. On scanning an RNA sequence S, each
of the position j is scored as follows:

Scorej =
m−1∑
i=0

PWMSj+i,i
, j ∈ 1, ...|S| −m (1.3)

where Sj+i is the nucleotide at position j + i in S, m is the length of the PWM
matrix and PWMb,y is the value of nucleotide b at position y in the PWM, where
b ∈ {A,C,G, U}. A threshold is used to filter the scores obtained using Eq. 1.3
to identify whether a binding site exists in a given sequence or not. There are
several methods that are used to compute the PWM score as discussed in [93,95].
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1.8.3 Methods that use the Primary Sequence to identify
RBP Target Sites

In the past, many motif-finding algorithms designed to analyze DNA sequences
have been adapted to identify RBP binding specificities by scanning transcripts
for potential binding sites. One such method is MatrixREDUCE [44] that in-
fers RNA binding preferences from in vitro binding affinity data and associated
labels. The model predicts the affinity associated with each binding site by rep-
resenting it with a position-specific affinity matrix. Rather than taking a subset
of sequences annotated as bound and unbound, the input for MatrixREDUCE is
a set of quantitative values associated with each of the sequences.

Another popular motif discovery method, MEME (multiple expectation max-
imization for motif elicitation) [45] is a method used to find motifs in an un-
supervised fashion but also able to use prior knowledge such as presence in all
input sequences, length of a motif and whether it is a palindrome, when available.
The algorithm has been designed to find ungapped, repeated sequence patterns
in DNA or in proteins. The training set is a group of RNA or protein sequences
and using statistical modeling preferences, MEME finds non-overlapping sets of
approximately matching strings. MEME has been used to find mRNA targets in
flies and yeast for Puf proteins [46].

Several other popular methods such as DRIMust [47] and Amadeus [48] have
also been applied for analyzing RBP-bound RNAs. However, primary sequence
motif-based models can incorrectly predict the binding preferences of RBPs as
they miss important secondary structure context. For example, REFINE (rela-
tive filtering by nucleotide enrichment) is a method to find a group of consensus
sequences from RIP-Chip datasets of yeast [49] but for Vts1p, it fails to identify
known binding preferences from RIP-Chip data, whereas a method using motif
finders that considers RNA accessibility can easily identify this primary sequence
motif [50].

1.8.4 Prediction of RNA Secondary Structure

As seen in the above section, incorporating the RNA structure in order to
predict binding sites can lead to improved results. However, we have to deter-
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mine the structure first using experimental or computational methods. Among
experimental methods, X-ray crystallography, cryo-electron microscopy and nu-
clear magnetic resonance (NMR) spectroscopy have been used [97, 101]. These
methods, besides being time-consuming and difficult are sometimes impossible to
use because of the large size and conformational flexibility of RNA structures.

Algorithms for RNA secondary structure prediction are usually based on the
calculation of free energy using thermodynamic parameters from chemical exper-
iments [51]. It is assumed that the RNA sequence folds into lowest free energy
at equilibrium [52]. Consequently, the focus for secondary structure prediction is
often on minimum free energy (MFE). A widely used program for secondary struc-
ture prediction is mfold [96]. It is based on a dynamic programming algorithm
that uses energy parameters that take into account Watson-Crick and GU base
pairs, various types of loops and terminal unpaired nucleotides and mismatches.
Two of the most popular secondary structure prediction programs RNAfold [56]
and RNAstructure [57] are also based on this principle and guarantee returning
the lowest possible free energy structure.

However, the predicted MFE structure is not always biologically accurate as
RNA secondary structure can fold into multiple structures in its lifetime and
thermodynamic parameters may have substantial uncertainties [53]. Programs
like Sfold [58] and RNAshapes [59] are some of the examples that find the optimal
structure with the minimum free energy by narrowing the search to relatively few
representative structures in large solution spaces. Such methods consider distri-
butions of possible structures to find the secondary structure in the ensemble that
best represents all the structures, such as the use of centroid structure [54]. In
Sfold, sampling is based on the Boltzmann probability distribution and this can
be used to produce centroid for each set of structures. The centroid structure has
the minimum total base-pair distance to all other structures in the set. Using
Sfold, multiple clusters and their centroids are produced from the ensemble and
the centroid for the entire sampled ensemble is the ensemble centroid. This may
be a more accurate representation of the correct structure than the lowest free en-
ergy structure and it may or may not represent the MFE structure. The centroids
identified by Sfold are considered candidate structures and the base probabilities
are computed from this representative sample. The RNAshapes algorithm cal-
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culates shapes and their cumulative probabilities by independently enumerating
the abstract shape space available to each sequence and then finds the thermo-
dynamically optimal structure that has the common shape. There are five levels
of abstraction in the current RNAShapes implementation and the folding space is
partitioned into structural families that are represented by different shapes. The
probabilities of all the structures assigned to same shape are summed to calculate
the aggregate probabilities for shapes [59,60].

The base-pairing probability pij that the ith and jth nucleotides in an RNA
sequence form a base pair can be calculated by the McCaskill algorithm [80].
RNAfold uses a partition function to compute the probability for every possible
pair [61]. A local-folding variant of RNAfold, RNAplfold considers only base
pairs within a certain span [65]. In RNAplfold, average probabilities for base pair
are calculated by considering windows of specific length containing the pair and
averaging the probabilities. This approach has been shown to perform better in
predicting mRNA secondary structure than the classical global folding algorithms
[66] and is the method used for secondary structure prediction in this thesis.

1.8.5 Methods that incorporate Secondary Structure Infor-
mation to identify RBP Target Sites

MEMERIS, an extension of MEME, was the first method to integrates struc-
tural information for searching motifs in a set of RNA sequences. For each k-mer,
MEMERIS uses RNAfold to predict and precompute the probability that the word
is in single stranded context. These values are then used as priors for possible
motif start positions to guide the motif search. Thus, MEMERIS uses RNA acces-
sibility information to guide and focus the search towards single-stranded regions.
It has been used to find single stranded RBP motifs in biological sequence data
such as SELEX [67].

Another method, RNAcontext [68], extends the accessibility information to in-
clude different types of unpaired regions such as external regions, bulges, hairpins,
etc. RNAcontext was the first motif-finding algorithm used to find RBP binding
preferences in multiple structural contexts. A set of RNA sequences is fed as
input and their base preferences (given by PWM) and structural preferences as
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computed by Sfold or RNAplfold are integrated in the input data. RNAcontext
learns a model predicting input affinities and infers sequence and RNA structure
preferences. This method was applied on an RNAcompete set of nine RBPS and
outperformed both MatrixREDUCE and MEMERIS [68].

GraphProt [69] uses a graph-kernel strategy to integrate RNA sequence and
secondary structural features to identify RBP binding sites. Secondary structures
using RNAshapes are calculated and encoded as hypergraphs containing both se-
quential and secondary structure information. A dot-product function is used
for similarity measure between graphs and features are extracted from the hyper-
graphs using graph-kernels. The input sequences are represented by over 30,000
features and a support vector machine (SVM) model is trained to identify the
RBP sites using the extracted features.

One of the disadvantages of these methods is that observed data was used to
construct the features for these models. The presence of frequent noise in the ob-
served data may make the classifier learn the wrong underlying distribution which
affects the final prediction. Choosing these features also requires considerable do-
main expertise and fine-tuning. These methods rely heavily on the choice of input
features and may miss subtle features which are hidden in the input data and not
explicitly encoded. Several deep-learning approaches have been developed in the
past to address these challenges as they are data-driven and automatically learn
high-level features. This approach is effective in integrating heterogeneous data
and automatically learns complex patterns from multiple raw inputs. DeepBind
was the first method that used deep neural networks to identify RNA binding sites
from RNAcompete data [71]. This approach computes a binding score for each se-
quence by inputting a set of sequences in a Convolutional Neural Network (CNN)
of 4 stages (convolution layer, rectified linear unit layer, pooling layer, non-linear
neural net). However, Deepbind does not incorporate secondary structure infor-
mation. Deepnet-rbp [70] was tested on CLIP-seq datasets and integrated k-mer
frequency features of RNA sequences, secondary features using RNAShapes [59]
and tertiary structure profiles using a deep belief network to identify RBP binding
sites. They were the first to show that RBPs may have specific tertiary structure
binding preferences.
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Figure 1.10: iDeep flowchart for predicting RNA-protein binding sites [72].

iDeep [72] uses sequential features using convolutional neural networks (CNNs)
and deep belief networks (DBNs) to integrate different sources of data to identify
RBP binding sites and sequence motifs. Each RNA sequence of window length 101
is encoded using 5 different feature sets including sequence, structure, region type,
clip-cobinding and motif features. The probability of RNA secondary structure
of each nucleotide is calculated using RNAplfold and Cluster-Buster [62] is used
to score RNA sequences per 102 motifs obtained from CISBP-RNA [63]. Besides
these, they also assign feature values based on regions (exon, intron, etc.). An
additional layer is added to combine the output of multiple CNNs and DBNs,
which are pre-trained independently during feature learning. Figure 1.10 shows
the iDeep architecture.

A convolution layer tuned with trainable filters followed by a rectified linear
ReLU and finally a pooling layer is used for the CNN architecture. The per-
formance of iDeep was compared with other methods such as GraphProt and
DeepBind and was found to yield best performance on 18 out of 31 experiments
tested.

The reported accuracies of these tools range from 0.62 to 0.97 AUC [72]. For
many RBPs, the performance is very far from perfect and there’s still room for
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improvement. We develop our methods with the aim to effectively boost the
prediction performance using advanced deep learning techniques described in the
next chapter.
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Chapter 2

Overview of Machine Learning
Approaches

In this chapter, we summarize the main machine learning approaches, explain
what metrics are commonly used to measure performance of a machine learning
algorithm and introduce deep learning concepts and methods.

2.1. Supervised Learning Algorithms

In supervised machine learning problems, the data consists of a pair of an
input object (typically a feature vector) and a label (for classification problems)
or a target real value (for regression problems) for each associated input. In
classification problems, we typically have a positive and a negative class; e.g., in
this case the positive class consists of sequences containing RBP binding sites
identified by experimental methods as explained in section 1.5 and the negative
class consists of sequences that are known to not bind to the RBP.

Typically the data is separated into a training set, which is used for training,
and a smaller portion of the data, called the testing set. The test set is used to
measure the accuracy of the model (classifier) built from the training set examples.
The aim is to minimize the classification error on the test data set (i.e. predicted
vs. true label difference). Many machine learning approaches can be used to
generate the model. In the next sections, we will talk about performance metrics
for machine learning models. We start by explaining the Random Forest Classifier
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which has been successfully used in solving problems in the field of bio-informatics
[90].

2.2. Performance Evaluation Metrics

The performance of a machine learning classifier can be measured using the
four following metrics:

True positives (TP) is the number of positive examples that are correctly
predicted as positives whereas true negatives (TN) is the number of negative
examples that are correctly predicted as negatives. False positives (FP) is the
number of negative examples incorrectly predicted as positives and false negatives
(FN) is the number of positive examples incorrectly predicted as negatives.

Sensitivity = TP

TP + FN

Specificity = TN

TN + FP

Precision = TP

TP + FP

Accuracy = TP + TN

TP + TN + FP + FN

F −Measure = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

Performance metrics commonly calculated based on these metrics include sen-
sitivity, specificity, precision, accuracy and F-measure. Sensitivity or recall is the
fraction of true positives that are predicted to be positives. It is used to measure
the ability to identify positive examples by a classifier. Specificity is the frac-
tion of true negatives that are correctly predicted negative. It is used to measure
the classifier’s ability to identify negative examples. Precision is the fraction of
predicted positives that are true positives. Accuracy is the percentage of the cor-
rectly predicted positive and negative examples. F-Measure is the harmonic mean
of precision and recall.

Receiving Operating Characteristic (ROC) curve is a sensitivity vs.
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specificity plot (rate of true positives to rate of true negatives), used for perfor-
mance measurement of binary classifiers. The area under ROC curve (AUC) is
widely used in machine learning classifiers for comparing performance. Higher
AUC (value > 0.5) means better performing classifier.

2.3. Bias vs. Variance

Figure 2.1: Four different cases plotted, representing combinations of both high
and low bias and variance [103].

.

In supervised learning algorithms, classification errors are due to three sources:
bias, variance and noise. If we repeat the entire model building process and gather
new data each time, the resulting models will have a range of predictions due to
randomness (noise) in the underlying data sets. Bias measures the difference
between the average prediction of these models and the true value that we are
trying to predict. Variance measures how much the predictions for a given point
may vary between different realizations of the model. It occurs when our classifier
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is too sensitive to the training set and any small changes in data may lead to big
changes in model.

Considering Figure 2.1, we can explain bias and variance graphically using a
bulls-eye diagram. Suppose different circles represent different models and target
center is a model which correctly predicts the values for our input and as we
move away from the center, the predictions get worse. We try this model building
process with different realizations of our data. The predictions are sometimes
closer to the target center indicating a good distribution of training data, while if
our training data has outliers, the predictions will be away from the bulls-eye.

From the diagram, we can see that the best combination is low bias and low
variance, which in practical cases, isn’t always possible. However, by varying the
complexity of the model, bias and variance can be traded off.

In terms of hypothesis space, not having good enough hypotheses in the con-
sidered class or in other words, restricting the hypothesis space results in bias.
This moves the fit towards a simpler model and away from the best possible fit of
the training data, which can result in under-fitting. Under-fitting can be avoided
by including more learning parameters in the model, to make sure not to ignore
relevant patterns existing in the data. On the other hand, variance occurs when
the hypothesis class contains too many hypotheses. This can result in over-fitting.
It occurs when there are too many learning parameters and the model instead of
learning the underlying patterns, ends up learning random noise in the data.

Figure 2.2: Early Stopping after a certain number of iterations can help prevent
overfitting [104].

.
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Regularization and early stopping are some of the techniques that have been
used to avoid over-fitting. Regularization describes a broad of range of techniques
used to limit the complexity of the model. Depending on the type of learner,
regularization can refer to pruning a decision tree, adding some penalty to the
cost function in regression or using dropout in neural networks. In decision trees,
regularization is done by setting a stopping criteria for further splitting the node
(e.g. minimum gain, maximum depth, etc.). In regression, if you have a large
number of features, a squared magnitude (Ridge Regression) or an absolute value
of magnitude (Lasso Regression) of coefficient is added as a penalty to decrease
the model complexity.

Another technique is Early-Stopping, which means stopping the training pro-
cess after a certain number of iterations, before the model begins overfitting. With
each iteration, the training model improves. However, after a point the models
stops generalizing and starts learning the noise in data, which can be avoided
using early stopping.

2.4. Hyperparameters and Cross-validation

Figure 2.3: 5-fold Cross Validation [92].
.

A hyperparameter is a parameter that is selected and optimized before the
training of the machine learning model. They represent ’high-level’ properties of
a model such as model complexity or how fast it should learn. For example, the
learning rate of a feed-forward neural network, batch sizes, momentum parameters
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are all hyperparameters that are set before the training begins. In contrast, the
weights of the convolutional and fully connected layers are trainable and optimized
during the training. Although there are methods for optimizing and automating
the hyperparameter search, hyperparameter adjustment usually relies on manual
engineering and it is crucial for converging to a good optimum.

Cross-validation is used for measuring the performance of the model and to
assess how they perform on a dataset outside the training data, called the test
set. This helps us to get a more reliable estimate of the training error when the
available data is not large enough to allow a partition for the test set. In k-fold
cross-validation (Figure 2.3), the data is divided into k-subsets and the algorithm
is then iteratively trained on k-1 folds while the left-out fold is used as the test
set. This allows us to use the original training set to tune the hyperparameters
and the unseen test set can be used to select the final model. Another variation
is leave-one-out cross-validation (LOOCV), in which one observation is left out at
each step.

2.5. Random Forest Classifiers

A random forest (RF) classifier (Figure 2.4) is an ensemble algorithm, which
creates a set of decision trees from randomly selected subsets of the training set.
From a set of m variables selected at random from the input features set, the best
split is chosen at each node of the tree. The weighted votes from different decision
trees are then combined and the majority vote gives us the final class of the test
object. An RF algorithm easily adapts to correlation and interaction among
features. Due to this reason, RF is widely used in high-dimensional genomic data
analysis [91]. For some number of trees T , the Random Forest classifier is trained
as below [105].

For t=1 to T:

1. Sample N cases at random with replacement to create a subset of the data.

2. Repeat at each node d or until the stopping criteria is reached:

(a) From m features in total, randomly select a subset of k features , where
k << m
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(b) Choose the best split point from among these k features

(c) Split d into daughter nodes using the best split

Random Forest creates random subsets of the features and builds trees from
these subsets. This may help in preventing over-fitting, but can make computation
slower depending on the number of trees.

Figure 2.4: Illustration of a random forest algorithm [94].
.

2.6. Deep Learning

In traditional machine learning approaches, feature vectors are used as inputs
and as such, these methods rely heavily on the choice of features, or data repre-
sentation. Choosing these input features requires considerable domain knowledge
and expertise and a good set of features can increase the accuracy of the classifier
substantially. However, it may be possible to design better features in terms of
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the objective function and as such these features may not be optimal. In Repre-
sentation Learning, instead of designing these features by hand, we let the model
learn them on its own. An example of such a model is a neural network explained
in Section 2.6.1. If an image is given as an input to a neural network, it outputs
a vector which may be the feature representation of the image. Here, the neural
network will be called a representation learner. This can be followed by another
neural network which can act as a regressor or a classifier for prediction models.
Deep learning is representation learning that combines several non-linear transfor-
mations to learn multiple levels of representation. Stacking these different layers
of transformation one on another helps in extracting underlying features hidden
in the data. In lower layers, the features encode several low-level features such as
the edges of an input image while higher layers extend on top of lower layers to
represent abstract features such as faces, contours, etc. This enables the model to
generalize to new combinations of learned features besides those seen during the
training [106].

2.6.1 Feed Forward Neural Networks

Feed-forward neural networks or deep feed-forward networks form the basis of
many neural networks used in the recent times. In a feed-forward neural network,
the goal is to approximate some function f . Let a classifier map an input x to
category y, shown as y = f(x). A mapping f(x; θ) is defined and a feed-forward
neural network learns the value of the parameter θ which results in the best
function approximation [107].

As shown in Figure 2.5, a weighted linear combination of inputs or outputs
from previous layers is fed into a neuron. A non-linearity function is applied
and the output produced is forwarded to the next layer sequentially (forward
propagation). These neurons are called hidden as they can model hidden variables
within the data. The connections between the neurons do not form cycles as there
are no feedback loops from the output neuron to itself. If extended to include
feedback connections, the network is called recurrent neural network, which will
be explained in Section 2.7.
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Figure 2.5: Feed-forward neural network illustrated where each circular node rep-
resents an artificial neuron and an arrow represents a connection from the output
of one artificial neuron to the input of another [110].

.

Backpropagation is an algorithm for supervised learning of artificial neural
networks using gradient descent and is used in order to learn the weights of the
connections. The gradient of the cost function with respect to the weights is com-
puted using the back propagation algorithm [108]. Batches of data are iteratively
passed through the network and the weights are updated so that the error is de-
creased. The learning rate is one of the hyperparameters which determines the
amount by which the weights are changed.

2.6.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are comprised of one or more convo-
lutional layers followed by fully connected layers, whereas in a multi-layer feed-
forward neural network, all layers are fully connected. Feed-forward neural net-
works do not consider the spatial structure of the input. The spatially far apart
pixels are treated the same as the pixels that are close together. A CNN takes
advantage of the 2D structure of input image or other 2D input. CNNs are
very useful for extracting information from data that contain local groups which
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are correlated and form distinct patterns (motifs). The main function of a con-
volutional layer is to extract features from the input image. The filters act as
feature detectors. A feature map is produced by sliding the filter over the im-
age and computing the dot product at each location. The convolution output is
transformed by a nonlinearity such as a rectified linear unit (ReLU) before being
fed into the next layer. ReLU allows the smooth propagation of gradients be-
tween layers in deep architectures without compressing the input. It is defined as
ReLU(x) = max(0, x).

Figure 2.6: A simple convolutional neural network [111].
.

CNNs are invariant to shifting of local patterns/motifs along the input. The
same set of filters are used for all positions in the input. Usually the convolutions
are coupled with pooling layers that take the maximum, sum or the average of
output feature maps. This reduces the dimensionality while still retaining the
most important information. The output from these layers represent high-level
features of the input image. The last convolutional layer is usually followed by
one or more fully connected layers. These layers are used for classification from
the extracted features. The classification process is guided by supervised training.
Figure 2.6 shows an example of a generic Convolutional Neural Network.

In the past, Xavier initialization [119] has been used for initialization of the
filters in a CNN with the assumption that there is no non-linearity between the
layers. The variance of each neuron among the layers is kept the same using
this initialization. However, Xavier initialization doesn’t give excellent results
when using ReLU nonlinearity as it halves the output variance by killing half
the distribution. This was extended to ReLU nonlinearity by introducing layer
sequential uniform variance - LSUV initialization [120]. The weights are pre-
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initialized and the output variance of each layer is normalized. LSUV initialization
is very fast and allows for learning of very deep nets.

CNNs are mostly used for image classification tasks [112, 113]. Recently,
they have have also been used in the classification and identification of motifs
in genomic sequences [61, 71]. DNA/RNA sequences can be encoded as one-hot-
encoding as they are discrete sequences. One-hot-encoding takes a sequence of
length k and encodes it into a matrix of dimension k x 4. Each column represents
one of the four nucleotide bases (A,C,G,T/U). If the position contains the base
corresponding to the column, the entry is set to 1, otherwise 0.

2.7. Recurrent Neural Networks

Recurrent Neural networks (RNNs) are networks used for processing sequential
data such as text or genomic sequences. In feed-forward neural networks, the only
input considered is the current example, whereas in recurrent neural networks, the
input is not only the current input example but also a summary of what has been
perceived previously in time.

Figure 2.7: A part of recurrent neural network, A, looks at input Xt and outputs
a value ht. The loops pass information from one step of the network to another.
The diagram shows the loops unrolled in time [114].

.

This makes RNNs great for processing sequential data. This is achieved by
parameter sharing across different time steps, which enables them to share useful
representations between them. Each input is processed one element at a time and
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a state vector is maintained that contains a summary of all observations seen so
far. At each time step, the hidden state is updated using the input and the output
produced is the non-linear combination of the input and state from previous time
steps. Figure 2.7 shows an RNN unfolded in time. Unfolded RNNs are quite
similar to deep feed-forward networks, with weights restricted to be the same
across time points.

A common issue that arises in training RNNs on long sequences is that RNNs
have difficulties in learning the interactions between inputs that are several steps
apart. The recurrent layer multiplies each input xt with the weights wj at each
time step. When weights wj > 1, the gradients explode, i.e. the gradient tends to
go to ∞ as time increases. When wj < 1, the gradient decays exponentially to 0.
This causes the network to not learn long range dependencies that are temporally
far apart [116].

2.7.1 Long Short Term Memory

Figure 2.8: LSTM (left) replaces the normal RNN cell (right) and uses the input,
forget, output and save gate. Figure taken from [117].

To solve the problem of vanishing gradient in RNNs, recurrent architectures
with gating mechanisms were introduced, such as Long Short term Memory (LSTM)
[115]. As shown in the Figure 2.8, LSTM replaces the normal RNN cell with re-
current units that have an explicit memory cell whose natural behavior is to
remember inputs for a long time. The LSTM cell copies its own internal memory

34



and keeps on accumulating the external signal. This is regulated by structures
called gates, which gives LSTM the ability to add or forget information. Gates
let the information pass through and are composed of a point-wise multiplication
operation and a sigmoid neural network. The sigmoid layer controls how much of
the information should be let through by outputting numbers between zero and
one.

There are three of these gates in LSTM that control and protect the cell state.
The forget gate looks at the previous hidden state and the weighted observation/in-
put. The forget gate modifies the cell state by specifying which information to
forget by multiplying a position in the matrix by 0 or 1 if the information is to be
kept in the cell state. The input gate or the save vector determines the informa-
tion that should be stored in long-term memory/cell state. This input gate is also
a sigmoid function but since the cell state is a summation of previous cell states,
the input gate only adds a number between [0,1] such that the number is not for-
gotten. The input modulation gate is another part of the input gate with a tanh
activation function of range [-1,1]. This allows the cell to forget memory. The cell
state is updated by combining these two gates. The output gate is applied on the
cell state to filter the output and decide which parts of the cell state will be sent
out.

Using the gating architecture, LSTM solves the vanishing gradient problem as
it allows turning ’off’ the gate. This can prevent changes to a cell over multiple
cycles. Similarly, an ’open’ gate does not replace the cell contents at any time,
but a weighted average of the previous and the new value is stored.

Bidirectional Long Short Term Memory

A Bidirectional Long Short Term Memory (BLSTM) has two networks, one to
access the information in the forward direction and another to access data in the
reverse direction. This gives the model the ability to access to the past as well as
the future context. BLSTM has been successfully used in image captioning and
language translation [88].
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2.8. Model Interpretability

Machine learning often involves a trade-off between accuracy and interpretabil-
ity. A model that outputs correct predictions about the world but offers no insight
into the mechanisms involved is not of much use. Especially in bioinformatics,
while it is important to have a model with higher accuracy rate, it is equally
important to understand what drives those predictions. A model using random
forest algorithm is interpretable, considering that the output of random forests is
the majority vote by a large number of independent decision trees and each tree
is naturally interpretable. On the other hand, deep learning models are black-box
and not designed to be interpretable. There has been research on making the deep
learning models interpretable, such as LIME (Local interpretable model-agnostic
explanation) that approaches the problem by learning an interpretable model in
the vicinity (in feature space) of the prediction generated by the ML model [81].
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Chapter 3

Methodology

We represent the problem of predicting the RNA binding sites as a binary
classification machine learning task. The input is two sets of RNA sequences
- positive and negative. The RNA binding protein that is being tested binds
to the positive sequences and not to the negative sequences. Given an input
RNA sequence of fixed length and an RNA binding protein, we are interested in
predicting whether the RBP binds to the RNA sequence or not.

We first use a baseline method based on a Random Forest Classifier and ex-
tract sequential and structural features from known PWM profiles. We then use
different CNN architectures and evaluate the prediction results on a variety of ex-
perimental RBP binding datasets. For the evaluation metric, we report the result
as the Area Under Curve (AUC) score for the learned models. In the following
sections, we explain the baseline method, feature extraction and classifier pipeline,
deep learning architecture, model selection and evaluation stages.

3.1. Data Set

The dataset used for our experiments has been taken from the CLIP-seq data
on human genome used in a research study for RBP target sites prediction [84].
This data consists of 19 proteins with one or more experiments for each protein
using three protocols (iCLIP, PAR-CLIP, CLIP-seq/HITS-CLIP), totaling to 31
datasets. The dataset was obtained from the servers iCount (http://icount.biolab.si)
and DoRiNA [85].
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3.2. Baseline Model

We develop a baseline model, generating features using the position weight
matrices obtained from RBPDB [76]. The pipeline takes as input an RNA se-
quence of fixed length of 101 nucleotides and 71 known RBP position weight
matrices. The RBP motifs typically have a length of 4 - 12 nucleotides. Taking
the motif length as window size, the RNA sequence was scanned and a score was
calculated for each position and for each RBP. Each window is a string of length
l (S1, S2, ..., Sl). For each RBP, we have a position weight matrix P of size lx4,
P [nuc][pos]. The score is calculated as follows

Scorewindow =
l∑

i=1
P [Si][i] (3.1)

where Si gives the nucleotide at the position i of the string. The window that
closely matches the given RBP motif will have a higher score. If the score exceeded
the threshold specified (see next section), the site was considered as a potential
binding site. The number of the potential binding sites in a given RNA sequence
for a particular RBP was set as the feature value for that RBP. This process was
repeated for each of the given RBPs, resulting in a feature vector of 71 values for
each RNA sequence.

3.2.1 Selecting the Threshold Value for PWM scores

Figure 3.1: Plotting Scores of probable positive (orange) vs. negative (red) se-
quences for FUS RBP. The green and the blue curve fits a Gaussian over the
negative and positive samples respectively.
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To select the threshold value for each RBP, we first generated probable se-
quences of the same length as the RBP motif using Position Frequency Matrices
(PFM) obtained from RBPDB. At each position, the nucleotides [A, C, G, U] were
selected probabilistically based on their frequencies in the Position Frequency Ma-
trix. This gave a set of probable positive sequences where the given RBP would
bind. Similarly, a negative set was constructed for each RBP by randomly select-
ing the nucleotides for each position (probability of 1/4 for each). The scores for
each positive and negative set was calculated using the position weight matrices,
and the results were plotted on the graph as given in Figure 3.1. The graph shows
the distributions of scores for the positive and negative examples for FUS. The
threshold was chosen at a point T where the number of negative sequences with a
score lower than T was less than or equal to the number of the positive sequences
with a score higher than T.

3.2.2 Random Forest Classifier

Table 3.1: Hyperparameters used in the Random Forest Classifier

Parameter Description Value

n estimators number of trees in the forest 500
max features number of features to con-

sider when looking for the
best split

33% of number of vari-
ables

min samples split minimum number of sam-
ples required to split an in-
ternal node

10% of sample size

The random Forest (RF) classifier from Scikit 3.2.4.3.2. [118] was used to clas-
sify the input sequences. The hyperparameters were chosen by multiple iterations
of the 5-Fold cross-validation process, each time using different model settings.
We then compared all of the models and selected the best one. The best model
was used to train the full training set, and then evaluated on the testing set.
The hyperparameters used are given in Table 3.1. Each input instance was repre-
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sented using 71-feature vectors and the RF algorithm predicts whether the input
sequence contains a binding site or not.

3.3. Implementing Deep Learning Architectures

We experimented with several deep learning architectures. In all the architec-
tures, multiple layers are stacked together, and the output of one layer is passed
on as the input of the next layer. Three different architectures were constructed,
the details of which are given in Table 3.2. We trained the models for 50 epochs.
The CNN + BLSTM model converged in 41.08 minutes on average for different
experiments with early stopping at epoch 33. The CNN + BLSTM Inception
model converged in 25.93 minutes on average with early stopping at epoch 20.

All the architectures shared the basic building structures as shown in the
Figure 3.3. Two types of modalities are passed through the input layer. The
sequence modality consists of one-hot encoding of the RNA sequences of length
101 as binary vectors using A = 1 0 0 0, G = 0 1 0 0, C = 0 0 1 0 and T = 0 0 0
1, as shown in Figure 3.2.

The structure modality combines the one-hot encoding with the structural
probabilities for each position of the RNA sequences as predicted from RNAplfold
[65]. RNAplfold predicts the probabilities of bases being in paired/unpaired re-
gions. In order to get the secondary structure predictions, we run RNAplfold on
the given sequences. For any given pairs of positions, RNAplfold calculates local
pair probabilities for base pairs.

Figure 3.2: One Hot Encoding of an RNA Sequence
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In our first model, the CNN has a fully convolutional architecture with a
convolution layer, Batch Normalization, an activation layer, max pooling, followed
by two dense layers. The CNN + BLSTM model also follows the same architecture
but has an extra BLSTM layer. The BLSTM layer processes the output from the
convolutional layer, i.e. the feature map, to produce the score from its final time-
step.

Table 3.2: The details of deep learning architectures

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

CNN conv1d +
Batch Nor-
malization
(16 filters,
kernel size
10)

ReLU
Activa-
tion

Max
Pooling
(size=3)

Dense+
ReLU

Dense+
Sigmoid

-

CNN+
BLSTM

conv1d +
Batch Nor-
malization
(16 filters,
kernel size
10)

ReLU
+ Max
Pooling
(size=3)

BLSTM Dropout
(0.10)

Dense+
ReLU

Dense+
Sigmoid

CNN+
BLSTM
+ Incep-
tion

Three par-
allel layers
(conv1d
+ Batch
Normaliza-
tion + Max
Pooling)
(kernel size
= 4,7,11)

Concat
parallel
layers

BLSTM Dropout
(0.10)

Dense+
ReLU

Dense+
Sigmoid

The convolution layer takes advantage of local correlations in the input such
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as sequence motifs and structural contexts and produces a feature map that high-
lights relevant parts of the input. The LSTM layer can then model complex
interactions between different parts of the input. A summary vector is produced
that can be used to predict the binding score for the entire sequence. The third
model, CNN + BLSTM + Inception architecture was modelled to take advantage
of the architecture’s ability to specify filters of different sizes in parallel convolu-
tion layers.

The function and specific details of the individual layers are explained below.

Convolution Layer

The convolution layer (Conv1D) receives the input signal. It comprises a set
of n independent filters of a specific size. Each filter convolves independently with
the input signal, and the result is n feature maps of the shape of the input signal.
The filters are initialized randomly, and during training, the values of the filters
are learned by the network. It is important to randomize the filter values instead
of initializing all to 0 or any other fixed value. Random initialization ensures that
the filters converge to different local minima in the cost function. We use LSUV
initialization [120] as it is very fast and allows for learning of very deep nets. The
number of filters and kernel size in a convolution layer is a hyperparameter and
after manual tuning, was set at 16 filters of size 10.

Batch Normalization

Along with LSUV initialization, we also introduced Batch normalization (BN)
[121] for the layers as it reduces the strong dependence on initialization and solves
the problem of covariance shift described below. In a deep neural network ar-
chitecture, normalization, i.e. shifting inputs to zero mean with a unit variance,
is used to make the data comparable across features. As the data flows through
the layers, the weights and parameters adjust these values. This can cause the
problem of internal covariate shift; making the data too big or too small with a
small change in initial layers. This is avoided by normalizing the data in each
mini-batch, which makes the layers somewhat independent of each other. This
helps in speeding up the learning.
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Figure 3.3: Basic building blocks of convolution neural network

Activation Layer

After convolution, the activation layer controls the signal flow from one layer
to next. ReLU is the most common activation function used, favoured for its
faster training speed. The output of the convolution layer is sparsified, and only
the positive values after the convolution operation are given a non-zero gradient
value, which helps with the vanishing gradient problem [126].
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Max Pooling

The max Pooling (MP) layer reduces the spatial dimension of the output
of the convolution layer, which helps in avoiding overfitting. If there are small
sequence shifts, pooling captures the dominant component within the region that
best summarizes the feature map.

Dense Layer

In a Dense layer, every node is connected to every other node in the previous
layer. Dense layer combined with the sigmoid activation function performs clas-
sification of the features and gives the probability of the target site being bound
to the RNA sequence.

Loss Function and Optimizer

We are using categorical cross entropy as our loss function to guide the train-
ing process. Using a validation layer, this function gives feedback to the neural
network on the predictions made and how far the predictions were from the true
value. Using soft-max activation, the cross entropy function can be formulated as

Cost = −
∑

j

bjlog(pj) (3.2)

where bj is the true output label and pj is the predicted probability.
For accurate predictions, we need to minimize the calculated error using back-

propagation. Using an optimization objective, the weights are modified when
propagated back to a previous layer such that the error is minimized. We com-
pared SGD [98], Adam [100] and RMSProp [99] as our optimization algorithm and
experimented with a learning rate of 1e-3 and 1e-4 on a variety of experimental
RBP datasets. Table 3.3 gives the AUC values obtained and shows that Adam and
RMSProp, with learning rate as 1e-3, gave the best results for all architectures.
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Table 3.3: Comparing performance by varying learning rates of different optimiz-
ers

Optimizer Lr = 0.001 Lr = 0.0001

SGD 0.75 0.54
Adam 0.86 0.85
RMSProp 0.86 0.85

Regularization

We also applied dropout, which randomly sets some unit activations as 0 to
avoid overfitting the model for training. A dropout rate of 20% was applied, and
a performance gain of 2-3% was observed during training. Besides dropout, we
also used early stopping combined with batch-normalization to avoid overfitting
during the training process.

3.3.1 CNN+ BLSTM model Pipeline

Figure 3.4: CNN + BLSTM Model pipeline.

Figure 3.4 shows the pipeline for CNN + BLSTM architecture. We first en-
code the RNA sequence into a one-hot matrix and combine it with base pairing
probabilities for each nucleotide computed by RNAplfold. The encoded input is
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fed into a CNN to output feature maps, followed by a bidirectional LSTM. The
bidirectional layer sweeps from opposite directions, and the output of both di-
rections is concatenated for subsequent classification. The BLSTM layer explores
long-range dependencies between the sequence and motifs and can model complex
interactions between them. The output from BLSTM layer is fed into a Dense
layer with ReLU activation followed by another Dense layer with sigmoid activa-
tion. The output layer gives us the probability of the RBP binding site prediction.
A summary vector is produced that can be used to predict the binding score.

BLSTM Hyperparameters

The number of hidden units in the BLSTM cells were selected randomly from
{10, 20, 30}. A higher number of hidden nodes makes the network more powerful.
However, it also increases the number of parameters to learn, increasing the time
it takes to train the model [88]. We used LSUV initialization [120] for the weights
and initialized the biases to a small positive value. The model is trained with
mini-batches of 200 inputs using the RMSProp as the optimizer.
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3.3.2 CNN+ BLSTM Inception Model

Figure 3.5: CNN + BLSTM - Inception Architecture

The Inception architecture was initially introduced to scale up networks by
factorized convolutions and aggressive regularization [130]. It has since been
successfully applied to a variety of machine learning problems, particularly in
computer vision [127]. The parallel convolutional layers (Figure 3.5) allow us to
specify filter lengths of different sizes, corresponding to the fact that the size of
RBPs usually ranges from 4-18 nucleotides (from RBPDB PWM dataset). We
experimented with a range of parallel convolutional layers to account for different
filter sizes. The notion behind using multiple filters is to enable the model to
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recognize RBPs of different sizes that the given RBP might interact with. For
a given RBP, the model learns appropriate filter weights for different sizes. The
layers are concatenated and then fed into the Bidirectional LSTM layer.

Figure 3.6: Average AUC plotted by varying the number of filters in CNN +
BLSTM Inception Model.

The filter sizes for three layers are set as 4, 7 and 11 as the binding motifs are
usually of short lengths. We experimented with the number of hidden units for
parallel layers of CNN + BLSTM Inception Model and plotted the average AUC
across all proteins. Figure 3.6 shows that the model with 5 filters in each parallel
layer performed the best and the performance tends to drop after a certain number
of filters. However, the difference was not substantial with the range between 0.835
to 0.848.

Implementation Details

The models were implemented in python using Tensorflow 1.5 [124]. The
Python code is available at https://github.com/Mishti92/thesis18 .
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Chapter 4

Results and Discussion

In this chapter, we discuss about how the data was split and the results ob-
tained from our experiments. We compare the learned models in terms of the
AUC score and finally compare our best performing model with state-of-the-art
methods. We observed that our model gives better or comparable results com-
pared to other approaches and can learn relevant sequence preferences for the
proteins under study.

4.1. Train and Test Data

The data was taken from datasets explained in Section 3.1. For each protein,
the data consists of 30000 training examples and 10000 test examples, each se-
quence of length 101. 80% of the dataset was used for training the model and
20% was held out for validation. The data was split into training and validation
randomly.

Table 4.1: Number of positive vs. negative instances

DataSet #Positive Examples #Negative Examples

Train Data 6000 24000
Test Data 2000 8000

The number of negative examples in the dataset is almost twice as much
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as the number of positive examples as shown in Table 4.1. Since the data is
imbalanced, we will be reporting AUC values for model evaluation after 5 fold-
cross validation. We compared our three model architectures and then measured
our best performing model against other methods such as Deepbind [71], iDeep
[72] and GraphProt [69]. The AUCs reported for Deepbind and Graphprot were
obtained from a research study on the same dataset [72] and we evaluated the
iDeep tool on the same dataset to get AUC for comparison. We observed that
our model outperforms Deepbind and GraphProt and gives comparable results for
iDeep for the proteins under study.

4.2. Comparison between Different Model Archi-
tectures

Figure 4.1: Comparing the AUC values of the baseline, CNN, CNN + BLSTM
and CNN+BLSTM Inception models.

Figure 4.1 shows the result of comparing the different implemented architec-
tures - Baseline (Random Forest), CNN, CNN + BLSTM and CNN + BLSTM
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Inception (explained in Section 3.3). The results show that CNN + BLSTM
architecture outperforms our baseline and the CNN architecture for all protein
datasets. The baseline method uses random forest classifier with the extracted
feature vectors as inputs whereas in CNN based architectures, the model is able
to learn high-level features hidden in the original input that improves accuracy.
The CNN model tunes the learned parameters automatically after each epoch and
learns shared representation of the RNA sequences.

Figure 4.2: Comparing the performance of CNN vs. CNN + BLSTM model. Each
dot corresponds to a different RBP dataset.

Figure 4.2 shows the comparison between the CNN and the CNN + BLSTM
Model. CNN + BLSTM improves over CNN on almost all proteins. The results
indicate that the BLSTM layer is able to capture better motifs for predicting
RBP binding sites, which supports that the BLSTM can learn long-term depen-
dencies. On the other hand, it is not clear why CNN + BLSTM model is not
learning any new information for hnRNPC-2 and Ago2 protein as their perfor-
mance doesn’t change. The AUC values for CNN+BLSTM and CNN+BLSTM
+ Inception are similar (Figure 4.3. However, CNN+BLSTM+Inception im-
proves on CNN+BLSTM method for Ago2-MNase and Ago2-1 datasets. Both
CNN+BLSTM and CNN+BLSTM+Inception use bidirectional LSTM layer that
improves the performance as it learns long-range dependencies between the motifs
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and the sequence.

Figure 4.3: Comparing the performance of CNN + BLSTM + Inception vs. CNN
+ BLSTM.

As can be seen from Figure 4.1, there is a huge variance in the AUC values
across the RBPs. For example, the highest AUC value for hnRNPC-2 is 0.98
whereas the AUC for Ago-MNASE for the best performing model is only 0.58.
This variability in performance can be seen for all the models. This may be due
to the source of dataset for the given RBP, the methodology that was used to
identify the binding sequences, e.g. HITS-CLIP, PAR-CLIP, iCLIP, etc. There
are cases when a methodology for one RBP performs well but gives poor results
for other RBPs. As an example, Ago-2 binding sites extracted using the HITS-
CLIP experiment has the average AUC of 0.86 for all models. However, when
using the CLIP-seq experiment the average AUC is 0.60. On the other hand, the
RBPs extracted using HITS-CLIP performed worse compared to some CLIP-seq
experiments. Hence, there doesn’t seem to be a correlation between experiments
and methodology with their predicted measured performance. The variance in
AUC could also be due to the quality of the antibody used. However, not sufficient
information is available on how the initial experiments were conducted for the
given dataset.
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4.3. Binding Motif Preferences

Figure 4.4: The learned filter weights for RBPs FUS, QKI and PUM2 were con-
verted into a PWM and the corresponding matched motif logos were generated
using Weblogo tool [132].

To interpret the principles behind the predictions of our model, we explored
the learned motifs by investigating the convolved filters of the convolution layer.
The filter weights were converted into position weight matrices, and these PWMs
were converted into motif logos using a logo generator tool (WebLogo [132]).
The generated motifs were matched against the PWMs of known RBPs from
RBPDB [76] as shown in the Figure 4.4. We compared three proteins (FUS, QKI
and PUM2) with the convolved filters. The PWM of these three RBPs is known
which was the basis for comparison. Since a high AUC (> 0.92) was reported for
all the three RBP datasets, the filter weights would give us some useful information
about the RBPs being predicted. FUS is deterministically known to bind to the
”GGUG” motif, and on comparing, we observed that the generated motifs show
similar behaviour. The same is true for QKI and PUM2 motifs. These results
show that our model can learn binding preferences of the RNA binding proteins
and hence, can be used to discover novel binding preferences of the RBPs whose
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PWMs are not known.

4.4. Analysis of the Impact of Secondary Struc-
ture Data

Figure 4.5: Comparing AUC of CNN+BLSTM model trained with (Y axis) and
without (X axis) structure input.

Figure 4.6: Comparing AUC of the CNN model trained with (Y axis) and without
(X axis) structure input.
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To evaluate the impact of secondary structure in the improvement of predic-
tions we trained our CNN and CNN+BLSTM model with and without secondary
structure as input. Both sets of models were trained with the same hyperparame-
ter search space for the sizes of the hidden units. We compared the AUC values on
our models using two input types: sequence information and sequence combined
with structural information. We observed that for most of the experiments, the
sequence input outperforms or gives same results as compared to the combined
input modality. These results suggest that the structural input encodes the same
information as in the sequential input and the model doesn’t learn any new fea-
tures. However, for some proteins such as Ago2 and ELAVL1A, the structural
modality performs better, indicating the structural information for these proteins
have more discriminative features.

Figure 4.7: AUC values of 31 proteins using only structural probabilities as input.

To better understand the impact of secondary structure on the predictions, we
trained the CNN+BLSTM model with only the RNAplfold structural probabilities
as input, i.e., without any other information about the sequence itself. The average
AUC over 31 proteins was 0.58 with the maximum of 0.64 AUC for hnRNPC-1
and hnRNPC-2 proteins (Figure 4.7). Even though the structural probabilities
didn’t add much value when trained with sequential input, the AUC values > 0.5
for the structural input alone shows that there is scope to improve our results
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with secondary structural features. We performed the Mann-Whitney-Wilcoxon
Test (MWWT) [125] to test whether the AUC scores are statistically significant
or just random results. For hnRNPC-1 and hnRNPC-2, the average p-value was
measured at 5.7 ∗ 10−6. Based on the p-value, we observe that the results are
statistically significant and unlikely to be due to chance.

It can be observed that the model gives higher AUC values for the RBPs
hnRNPC-1, hnRNPC-2 and ELAV1-2. These three RBPs are preferentially known
to bind to uridine rich sequences [122, 123]. Our assumption is that these poli-U
tracts will mostly be unpaired. The structural data involving the said RBPs will
have discriminative features encoded within, which could be the reason for their
higher AUC values compared to the rest.

4.5. Comparing with state-of-the-art methods

Figure 4.8: Comparing the AUC value of GraphProt and CNN + BLSTM

We compared our best performing model (CNN + BLSTM) with three state-
of-art methods in the literature. First, we compared it with GraphProt that
incorporates both secondary structural and sequential features using hyper-graphs
[69]. Our method outperforms GraphProt on all of the 31 experiments (Figure
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4.8). The average AUC over 31 experiments increases from 0.81 for GraphProt
to 0.87 for our method. For some experiments such as TAF15 and Ago/EIF, the
AUC improves by as much as 15%.

Figure 4.9: Comparing the AUC value of Deepbind and CNN + BLSTM

Our method also performed considerably better than the Deepbind model as
shown in Figure 4.9, which achieved the average AUC of 0.83. The AUC values
for both models for comparison were taken from the iDeep [72] which used the
same data as in this study.

Figure 4.10 shows the comparison between our best performing model and
iDeep [72]. The average AUC of iDeep is 0.90 compared to 0.87 for our method.
Our model performed better on 5 out of 31 experiments, yielded comparable
AUC on 18 experiments and a lower AUC on 8 out of 31 experiments. The
high performance of iDeep for some experiments can be attributed to the feature
encoding of motif modality using a separate deep belief network integrated with
CNN [72].

57



Figure 4.10: Comparing the AUC value of iDeep and CNN + BLSTM

From the results, we observe that the variance in the AUC values for different
RBPs is consistent across all models. We assume that the experiments with higher
AUC across all models consist of better quality data. The data may contain
binding sites with high resolution in the positive examples (possibly due to a
better quality antibody that cross-links to target mRNA). Due to this, the models
can learn discriminative and distinct features for high-quality datasets, leading to
higher AUC values for some experiments compared to others.
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Chapter 5

Conclusion and Future Work

RNA binding proteins play an essential role in the post-transcriptional regu-
lation by regulating maturation, degradation, stability and transport of cellular
RNAs [2]. Understanding the binding preferences of RBPs also helps us in un-
derstanding molecular consequences of RBP mutations in disease, which could
lead to better-targeted therapies. Predicting RBP binding intensities can help in
the prediction of RNA subcellular localization [128], which is a significant feature
for an in-depth understanding of RNA’s biological functions. For this reason,
prediction of target sites for RBPs has become an important research area in
bioinformatics. Experimental methods such as CLIP-seq aim at the genome-wide
mapping of RNA binding sites. However, these methods are expensive and time-
consuming. The data may contain many false positives due to inherent noise or
contamination with non-cross-linked sites, and a large number of binding sites
may remain unidentified resulting in a high false-negative rate. These limitations
make the task of determining RBP target sites difficult. However, using these
high-throughput technologies, a lot of RBP-related genome-wide data is being
generated rapidly and stored in public databases such as Protein-RNA interaction
database (PRD), which serves as an essential base for computational approaches
which can be used to predict RBP-binding sites. In this thesis, we presented a
deep learning approach to model RBP binding sites, incorporating both sequen-
tial and secondary structure information. Our model captures motifs that align
well with the previously reported binding motifs (PWMs) obtained from RBPDB.
Our deep learning model contains a bidirectional LSTM layer that captures the
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long-term dependencies between the sequence and motifs, which improves the
performance of our model. We were able to predict RNA binding preferences
with the mean AUC score of 0.87. We compared our results with state-of-the-art
methods in the literature and reported improvement in performance over Graph-
Prot [69] and DeepBind [71]. Our method achieved similar but slightly inferior
results to iDeep [72]. Compared to traditional black-box machine learning mod-
els, we were able to interpret the results producing the human-readable sequence
motifs, which can be used to provide valuable information for understanding the
biological functions of RNA.

We presented our results on a CLIP-seq data used in a research study for RBP
target sites prediction [84]. The training binding sites were derived from a CLIP-
seq dataset while the negative sites were taken from genes that are not interacting
in any of the 31 experiments. The large variability of reported AUC scores among
different RBPs is comparable to the results reported in the aforementioned meth-
ods, which indicates a low-quality training dataset rather than a weakness in our
method. Thus, in the future, we need to improve the data quality for different
RBPs. Knowing the exact experimental steps taken to extract the dataset will
help us in evaluating and improving our results better.

We incorporated both sequential and structural features in our model. The
AUC scores reported with and without structural features were similar. This
shows that the structural modality contains information that has already been
captured in the encoded sequences. In future work, one could incorporate struc-
tural accessibility information from other tools such as Sfold [58], and encode the
RNA structure to 6 elements (stem, multiloop, hairpin loop, an internal loop,
bulge and external regions) in order make structural features more discriminative.
This would enable the model to learn structural motifs automatically, which will
improve the performance. A pipeline could be built separately for the sequential
and structural features, and the probabilities at the output layer can be combined.

Our model can further be enhanced to predict the effect of binding sites on
mutations. We can mutate the nucleotides of binding sites and test the shift of
score on the new site as compared to the experimentally verified sites. It would
also be useful to experiment with additional architectures, such as integrating
Attention mechanism [131] to focus selectively on the motif subsequences in the
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RNA sequence.
An enhanced model that can predict the RNA binding sites more accurately

can help in understanding many processes of post-transcriptional regulation such
as degradation, stability and transport of cellular RNAs. Human mRNAs on
average are 2 kb in length [133] and within mRNAs, different RBPs have different
binding preferences. Our model will also help the biologists save time and effort in
designing and performing their experiments to detect protein-RNA binding sites
by narrowing down candidate binding regions on target RNAs.
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