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ABSTRACT 

In many countries around the world, municipal sewage and industrial wastewaters 

are typically treated, or sometimes only partially treated, prior to their discharge into 

surface waters. A major anionic surfactant, Linear Alkyl benzene Sulfonate (LAS), and a 

degraded product of a non-ionic surfactant, Nonylphenol (NP), are frequently found in 

municipal wastewaters. When wastewater containing such surfactants and their degraded 

products is used for irrigation, it can have an effect on the sorptionldesorption and 

movement of pesticides in soils. Therefore, a lysimeter study was conducted, in summer 

2004, to assess the effect of LAS and NP on the movement of agricultural herbicides 

through a sandy loam soil. The degradation of the herbicides was studied in lysimeters 

over a ninety-day period. Irrigation water with a concentration of 12 mg LoI of LAS and 

NP was used to assess their effect on the leaching of atrazine, metolachlor, and 

metribuzin. Moreover, a laboratory sorption experiment was undertaken to estimate the 

partition coefficients (kd) of the three herbicides with water containing the same 

concentrations of LAS and NP. Irrigation water containing low concentrations of 

surfactants (LAS and NP) did not increase leaching of the three herbicides. Therefore, 

these results would reduce the concems regarding pesticide leaching through sandy soil 

brought on by LAS and NP in wastewaters for irrigation, which is becoming more 

important due to increasing water scarcity in the dry climate regions of the world. 

Beside the lysimeter study, mathematical models can be used effectively and 

economically in a very short period of time for simulating herbicide concentrations into 

soil. PESTFADE, a one dimensional transient flow model, was used, in this study, to 

simulate the fate of the three herbicides in sandy soils. Another model, Artificial Neural 

Network (ANN) , was also used over mathematical modeling due to its faster execution 

period and less input parameter requirements, for predicting the concentrations of the 

three herbicides in a sandy loam soil. The predicted concentrations, from both models 

were compared with the experimental results from the lysimeter study. Although slight 

overestimations and underestimations were observed, both models simulated herbicide 

concentrations in the soil profile satisfactorily. 



RÉsUMÉ 

Dans plusieurs pays de par le monde, les eaux usées municipals et industrielles 

sont généralement traitées, ou bien partiellement traitées, avant leur evacuation aux eaux 

de surface. Un important agent de surface anionique, le benzènesulfonate d'alkyle à 

chaîne droite (BSA), ainsi que le nonylphénol (NP), un produit de dégradation d'un agent 

de surface non-ionique, se retrouvent fréquemment dans les eaux usées municipales. 

Lorsque des eaux usées contenant de tels agents de surface, ou les produits de leur 

dégradation servent à l'irrigation, elles pourraient avoir un effet sur la sorptionldésorption 

et le mouvement de pesticides dans les sols. Une étude en lysimètres fut donc entreprise 

à l'été 2004, afin de déterminer l'effet du BSA et du NP du sur le mouvement 

d'herbicides agricoles dans un loam sableux. La dégradation des herbicides fut étudié 

dans ces lysimètres sur une période de 90 jours. Une eau d'irrigation ayant une teneur en 

BSA et NP de 12 mg L-1 servit à évaluer leur effet sur le lessivage de l'atrazine, le 

métolachlore, et la métribuzine. De plus, une expérience de sorption en laboratoire fut 

visa à estimer les coefficients de partage (kd) des trois herbicides dans de l'eau contenant 

ces mêmes concentrations en BSA et NP. Les eaux d'irrigation contenant de basses 

concentrations des surfactants BSA et NP n'augmentèrent pas le lessivage des trois 

herbicides. Ces résultats réduisent donc l'inquiétude qu'il aurait pu y avoir quant à un 

lessivage de pesticides causé par la présence de BSA et NP dans les eaux usées servant à 

l'irrigation; un souci croissant étant donné les pénuries en eau dans les régions sèches du 

monde. 

En plus des études en lysimètre, les modèles mathématiques peuvent rapidement 

s'avérer éfficaces et économiques pour la simulation des concentrations des herbicides 

dans le sol. PESTFADE, un modèle d'écoulement transitoire à une dimension, servit dans 

cette etude, à simuler le sort des trois herbicides dans des sableux. Une modélisation 

semblable, celle-ci par réseau de neurones formels, fut choisie devant la modélisation 

mathématique, étant donné son temps d'exécution plus court et le moindre nombre de 

paramètres d'entrée nécessaires. Les concentrations prédites par chacun des modèles 

furent compares aux données provenant des expériences en lysimètre. Quoique de petites 

sur- et sous-estimations furent notes, les deux modèles simulèrent de façon satisfaisante 

les concentrations d'herbicides dans le profil du sol. 
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CHAPTERI 

INTRODUCTION 

Pesticides are being applied to agricultural lands aIl over the world for increased 

crop production, as weIl as for greater yield. The use of pesticides, therefore, continues to 

exist as world population and the demand for food production continues to grow. In 

1994, Canada used 29.18 million kg of pesticides, which is equivalent to 0.94 kg per 

capita. In France, Italy, and Australia the use of pesticides was reported to exceed 1.8, 

2.7 and 6.2 kg per capita, respectively (OECD, 1999). At present, the proportion of 

pesticides used in developing countries is one third of the total value (e.g.US $26 billion) 

of the world pesticide market (Karlsson, 2004). AIso, in the United States, the overall 

usage of pesticides is 0.99 billion kg per year, which is roughly 4 kg per capita (Colborn 

et al., 1997). 

Along with the extensive use of pesticides, concems regarding potential adverse 

environmental effects have grown globaIly. Pesticides have been detected in surface and 

ground water bodies in many parts of the world. Several studies have shown that 

Canadian soils and ground waters are polluted with pesticide residue, and in many cases, 

the concentrations of pesticides exceed the maximum acceptable limit (Masse et al., 

1994; Aubin et al., 1993; Patni et al., 1987). In 2003 and 2004, twenty-one pesticides 

were detected in water samples collected, out of the fifty-eight, from the mouth of the 

Nicollet, Saint-François, Yamaska and St. Lawrence rivers, of which atrazine and 

metolachlor were most frequently found (Hébert and Rondeau, 2004). In Europe, 

pesticide residues were found in 42% of samples collected in 2002, of which 5.1 % were 

above the EU' s maximum acceptable residue level for a specific pesticide in a particular 

food (PAN Europe, 2004). Furthermore, the USEPA (1998) reported that as a result of 

the agricultural use of pesticides, 46 different pesticides had been detected in ground 

water and 76 pesticides in surface water bodies. 

It has been estimated that less than 0.1 % of pesticides applied to crops reach their 

target pests; however, most of the pesticides enter to the environment, and contaminate 

soils, water and air, which eventually affects non-target organisms (Pimentel and Levitan, 

1 



soils, water and air, which eventually affects non-target organisms (Pimentel and Levitan, 

1986). Throughout the world, the accumulation of pesticides in food and drinking water 

has been generally recognized as dangerous, and the long-term persistence and toxicity of 

pesticides in groundwater is potentially responsible for causing various kinds of human 

illnesses (Mannion, 1995; Peralta et al., 1994). Studies have shown that 0.22 million 

deaths occur worldwide each year with 3 million cases of severe pesticide poisonings 

(Stangil, 2001). In the US, 35% of consumed food has detectable pesticide residues, 

however, laboratory analytical methods can detect only one-third of the total pesticides 

that could possibly be present in food due to lower concentrations (Colbom et al., 1997). 

Consequently, pestieide related illnesses in the US were estimated to DCcur 0.3 million 

times a year (Stangil, 2001). Therefore, the use of pesticides and their potentially 

undesirable effects on the environment and human health has been one of the major 

concems of recent research. 

1.1 Wastewater reuse and surfactants 

Besides pesticide usage and their environmental impact, water shortages are a 

severe problem in several parts of the world. The majority of southem European 

countries, parts of North America, as well as other African and Asian nations situated on 

the Mediterranean coasts, are facing water deficits for agriculture (Nurizzo, 2003). As 

water scarcity is growing, decision makers and planners are considering non-traditional 

water resources in an attempt to reduce the gap between water suppl y and demand. As a 

substitute for fresh water irrigation, wastewater is taking its place in water resource 

management (Hansen and Kjellerup, 1994). 

Wastewater, used for agricultural purposes, contains a variety of compounds; 

among them surfactants are the most common. These surfactants usually enter the 

wastewater from the daily use of domestic and industrial c1eaning products (dish 

washing, personal c1eaning, c10thes and car washing, etc). Surfactants are the primary 

components in chemical formulations of these c1eaning products. Different types of 

surfactants (anionic, non-ionie, ionic, synthetic, etc.) are being used in these products 

depending on their applications. Research has shown that the concentration of surfactants 

and their products in industrial wastewater varies from a few hundred to a few thousand 
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mg L- I (Narkis and Ben-David, 1985), whereas, the concentration in municipal waste 

water varies from a few J,lg L- I to a few mg L- I (Narkis and Ben-David, 1985; Matthijs et 

al., 1999; Feijtel et al., 1999; Davi and Gnudi, 1999). Therefore, if these wastewaters are 

used for irrigation can reach agricultural fields. 

1.2 Effect of surfactants on pesticides movement 

Although the presence of surfactants in surface waters and wastewater was 

detected as early as the 1950's (Frcezc and Cherry, 1979), the interaction of pesticides 

and wastewater used in agricultural fields has not been previously evaluated in much 

detail. The evidence from several studies indicates that surfactant could either reduce 

pesticide leaching by increasing the sorption (Valoras et al., 1969; Sanchez-Camazano et 

al., 1996; Cox et al., 1997; Abll-Zreig et al., 1999), or it could increase leaching potential 

by increasing mobility of pesticide (Mustafa and Letey 1969; Chiou et al., 1987; Lee and 

farmer, 1989; Abll-Zreig et al., 2000; Sanchez-Camanzano et al., 2000). Most of these 

experiments were done in the laboratory using high ranges (500-20,000 mg L- I
) of 

anionic and non-ionic surfactant concentrations. However, the hydro-physical properties 

of soil as weIl as on the leaching and adsorption of pesticides are depended upon the type 

of surfactants and the amount used. 

Therefore, it is also important to evaluate the fate and transport of pesticides 

through the agricultural soil profile, after irrigation with municipal wastewater bearing 

anionic and non-ionic surfactants and their degraded products at concentrations in the 

order of a few mg L- I
. Therefore, although the mobility of the three most common 

agricultural herbicides, atrazine, metolachlor and metribuzin, has been studied under 

different conditions in several studies (Singh and Kanwar, 1991; Mc Donald et al., 1999; 

Heatwole et al., 1997; Jebellie, 1997) the fate of these three herbicides in soils irrigated 

with municipal wastewater is unknown and needs to be investigated. However, a 

lysimeter study can be conducted to investigate the interaction between low concentration 

of surfactants and pesticides in soils that receive untreated or partially treated wastewater. 

3 



1.3 Mathematical modeling 

Field, lysimeter and laboratory experiments are the most effective and practical 

way to investigate pesticide transport phenomenon in soils, their use perrnits thorough 

investigation of selected parameters for a given soil type in a controlled or uncontrolled 

manner. However, sometimes it is hard to conduct field, lysimeter or laboratory 

experiment due to lack of research facilities, greater time requirements, and high 

expenses. As well, these experiments produce site-specific results only (Li et al., 1999). 

So, mathematical models can also be used effectively as a tool for predicting the extent of 

pesticides in the environment and their adverse effects on natural resource systems 

(Liestra, 1973; Mackay et aL, 1986; Smith et al., 1991; Lewis et al., 1995; Clemente et 

al., 1998; Kalita et al., 1998; Kumar et al., 1998; Li et aL, 1999; Azevedo et al., 2000; 

Bakhsh et a1., 2004). A wide variety of computer models are available that can 

quantitatively simulate pesticide leaching in the soil profile and runoff in the aqueous 

phase. The USEPA's PRZM3 (Carsel et aL, 1984), GLEAMS (Leonard et al., 1987), 

LEACHM (Wagnet and Hutson, 1987), and RZWQM (USDA-ARS, 1992) models are 

widely used. These models simulate leaching, runoff potential of pesticides, and field­

scale drainage patterns. Sorne of them are also able to make watershed-scale assessments. 

PESTFADE is one such model developed by Clemente et al. (1993) and further 

modified by Li et al. (1999), was used in this study to simulate pesticide transport in the 

soil profile. PESTF ADE is one dimensional model that simulates simultaneous 

movement of water and solute in unsaturated and homogeneous soils. This model differs 

from other models because it predicts adsorption/desorption and chemical-microbial 

degradation under norrnal/controlled drainage conditions for agricultural fields in arid, 

semi-arid and hurnid regions. AIso, PESTFADE considers macropore flow and kinetic 

sorption phenomenon, which makes it an appropriate choice for simulating herbicide 

concentrations in soiL The model is also user friendly and well tested under various field 

conditions (Clemente et al. 1998; Li et al., 1999). 
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1.4 Artificial Neural Networks 

Along with conventional mathematical models, the search to find an alternative 

method for fast, simple, and accurate pesticide simulation modeling remains of interest. 

Mathematical models involve too many input parameters and require long simulation 

period. A thorough understanding of governing processes is very important for 

mathematical model, which is sometimes very difficult to simulate. Moreover, various 

uncertainties arise due to spatial variability of hydraulic conductivities in soil, incorrect 

input parameters, consideration of macropore flow, which often produce inaccurate 

predictions. Artificial Neural Networks (ANNs)-which do not require explicit 

specifications of relationship between inputs and outputs-can be used as an alternative 

to conventional mathematical models. They can perform complex tasks like pattern 

recognition, and processes information in a way similar to the human brain. Due to their 

remarkable ability to derive meaning from complicated or imprecise data by learning 

from examples, ANN scan be used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other conventional computer models. 

In recent research in the fields of hydrology, agriculture, surface, and subsurface 

water quality, ANNs have gained remarkable ground for prediction purposes (Hsu et aL, 

1995; Maier and Dandy, 1999; Schleiter et al., 1999; Ni et aL, 2004). ANNs have been 

effectively used for simulating water table depths in subsurface-drained and subirrigated 

fields (Yang et aL, 1996), and for simulating soil temperature and concentrations of 

pesticides in agricultural soils and wells (Yang et aL, 1997; Sahoo et aL, 2004). As weIl, 

ANNs have been used effectively to predict nitrate contamination levels in wells (Sahoo 

et al., 2004). saturated hydraulic conductivity in soils (Lebron et al., 1999), and annual 

nitrate loss in drain outflow (Salehi et al., 2000). 

1.5 Objectives 

The objectives of this research were to examine the influence of low surfactant 

levels, commonly present in semi-treated and untreated municipal wastewater, on the 

movement of three agricultural herbicides, atrazine, metolachlor, and metribuzin in soil. 

The study's findings could address the environmental acceptability of using municipal 

wastewater for agricultural irrigation. More specifically, the objectives of this study were: 
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1. To study the fate and transport of the three herbicides in the presence of anionic 

and non-ionic surfactants in irrigation water, 

2. To perfonn laboratory studies on the sorption of the three herbicides to support 

the results of lysimeter findings, 

3. To use a mathematical model to simulate the concentrations of the three 

herbicides in the soil profile, and 

4. To use Artificial Neural Networks to simulate the fate and transport of the three 

herbicides in the soil profile. 

1.6 Thesis organization 

This study is divided into six chapters. The first chapter inc1udes background on 

the extent of pesticide use, their environmental impact, wastewater reuse and its 

interaction with pesticides, as well as an overview on the use of mathematical 

modeling and ANNs, along with a presentation of the study's objectives. 

In Chapter Il, a detailed literature review is presented on the agricultural and 

environmental impacts of the three herbicides, atrazine, metolachlor, and metribuzin, 

as well as their chemical and physical properties. AIso, a comprehensive overview of 

wastewater reuse is presented in this chapter. Out of the many components in 

wastewater, surfactants are highlighted in this study. Therefore, a comprehensive 

review of surfactant-soil-pesticide relationships is presented. As well, a review of 

mathematical modeling and Artificial Neural Networks is presented. 

The methodology and results of the lysimeter study are presented in Chapter III. 

This chapter focuses on the influence of anionic and degradation product of non-ionic 

surfactants on the movement of the three herbicides in the soil profile. AIso, the 

methodology and results of laboratory sorption studies, as well as numerical results of 

degradation studies are presented in this chapter for the three herbicides in presence 

of surfactants. 

In Chapter IV, the mathematical model, PESTFADE, is described and employed. 

The calibration and validation results from the simulation studies are presented for the 

three herbicides. In Chapter V, an Artificial Neural Network model, using a Cascade 
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Correlation Algorithm, is described and employed for simulating the herbicide 

concentrations in the soil profile. 

Finally, the thesis is conc1uded with Chapter VI which summarizes the entire 

work inc1uding lysimeter, laboratory and models studies to investigate the fate and 

transport of the three herbicides. AIso, the major findings of this study are 

summarized and recommendations for future work are given. 
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CHAPTERII 

LITERA TURE REVIEW 

This chapter reviews previous studies that have investigated the use of pesticides 

and their fate in the environment. As well, the reuse of wastewater and surfactants in 

wastewater are reviewed. The effects of wastewater surfactants on the hydro-physical 

properties of soils, upon which such waters are applied, are reviewed, particularly in the 

context of their effects on pesticides translocation. Also, mathematical modeling and 

artificial neural networks are discussed as means to simulate the transport behavior of 

pesticides into soils. 

2.1 Pesticide use and their fate 

Pesticides are applied to the agricultural fields, all over the world, to promote 

better crop production. Basically, pesticides were developed as means to produce more 

food to nourish the growing population; therefore, modem convention al agriculture is 

heavily depended upon the chemical inputs. There are different groups of pesticides that 

have been developed depending on the target organism, such as insecticides: control of 

insects; fungicides: control of fungi; and herbicides: control of weeds. Most of these 

pesticides are mobile in the environment and this movement is beneficial if the pesticides 

are used effectively and carried only to a specific target area. However, during the last 

few decades, concems have been raised over the impact of agricultural use of pesticides 

on the environment due their extensive use throughout the world (Yang et al., 2003). 

In 1982, pesticide use in United States was about 0.3 billion kg (Kalita et al., 

1992). However, it has been reported in 1997 that United States uses 0.99 billion kg of 

pesticides per year, which is roughly around 4 kg per capita (Colborn et al., 1997), and 

the average farm spent nearly $4200 per year on chemical pesticides (USEPA, 1997).The 

quantity used by the US represents 20% of the total pesticide used globally, of which 

herbicides accounted for the largest segment of the pesticide market. In 1994, Canada 

used 29.2 million kg of pesticides, which was equivalent to 0.94 kg per capita. In France, 

Italy, and Australia the use of pesticides was reported to exceed 1.8, 2.7 and 6.2 kg per 
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capita, respectively (OECD, 1999). At present, pesticide use in developing countries 

amounts to one-third of the total money (US $26 billion) spent on pest control products in 

the world (Karlsson, 2004). These figures of pesticide usage reveal a stable trend in 

pesticide use throughout the world. 

Pesticide contamination of groundwater represents a problem, not only because 

their chemical toxicity for specifie organisms, but also because they are widely and 

heavily applied in the environment (Canada used approximately 35 thousand tons of 

pesticides in 1991). In Canada, there is more water underground than on the surface. 

About eight million people (26% of the population) depend on groundwater. 

Approximately two-thirds (five million) of these users live in rural areas (The atlas of 

Canada, 2004). Moreover, most pesticide usage occurs in agricultural areas where over 

90% of rural residents obtain their drinking water from wells (Crowe and Milbum, 1995). 

According to the briefing of Canadian Water and Wastewater Association in 

2000, pesticide contamination of drinking water is becoming a major issue (EDS, 2000). 

Although concentrations did not exceed recommended Canadian standards, pesticide 

residues were detected in wells by govemment monitoring teams across the country. 

Between 1989 and 1994, 30% of Quebec drinking water systems were found to contain 

residues of atrazine or its metabolites (EDS, 2000). Atrazine is one of the pesticides most 

frequently found in surface and groundwater in Quebec, Ontario, British Columbia, Nova 

Scotia and Saskatchewan. Between 1985 and 1986, Health Canada detected the pesticide 

aldicarb in 80% of samples, and aldicarb and its metabolites are highly persistent in 

groundwater. In Prince Edward Island, concentrations sometimes exceeded the 

recommended standards for drinking water (EOS, 2000). In 1998, an Ontario weIl survey 

detected atrazine in one sample to be at 210 ppb, sorne 40 times the Canadian guideline 

of 5 ppb. Also, between 2003 and 2004, twenty-one pesticides of fifty-eight analyzed 

pesticides have been detected in water samples taken from the St. Lawrence River and its 

tributaries (Hébert and Rondeau, 2004). In the U.S., public attention was first captured 

when pesticide residues were found in Love Canal in New York (Logan, 1993). Atrazine 

has also been found in 30% of water samples in Europe. In the United States, over 273 

thousand tones of pesticides enter the environment every year (Stevenson et al. 2003). In 

68,000 wells in 45 states of the US, 16,000 wells in 42 states were found to contain 

9 



pesticides. Approximately 10,000 of these wells contained pesticide concentrations which 

exceeded EPA drinking water standards (EDS, 2000). Agricultural pesticide use has set 

off a continuously ringing alarm in developing countries for the past 30-40 years, and 

these countries are also experiencing negative human-health and environmental side 

effects (Karlsson, 2004). Therefore, the extensive use and detection of pesticides has led 

scientists to study the fate of pesticides so as to define the processes by which surface and 

ground water is getting contaminated. 

2.1.1 Atrazine in the environment 

The chemical name of atrazine is 2-chloro-4-ethylamine-6-isopropylamino-S­

triazine (Kidd et al., 1991) and the chernical structure is shown below: 

H 
1 

Ck ~?/~'. >.·N-(H,-CH~ 'fîl . . 
Nè", /1\1 

r 
/i+ 

H'CH-lH" 
1 . 

CH, 

Figure 2.1 Chemical structure of atrazine (Worthing and Hance, 1991) 

Atrazine is a selective triazine herbicide used to control broadleaf and grassy weeds in 

corn (Zea mays L.), sorghum, sugarcane, pineapple, Christmas trees and others crops. 

This is available as dry, liquid, water dispersible granular and wettable powder 

formulation. In 1990, over 24 million hectares of crop land were treated with atrazine in 

the U.S (EXTOXNET, 1996). 

Atrazine is highly persistent in soil. Most of the breakdown usually occurs by 

chemical hydrolysis and degradation by soil microorganisms. The rate of hydrolysis 

increases in proportion to the organic material in the soil. Hydrolysis is rapid in acidic or 

basic environments, but slower at neutral pH. Atrazine is moderate to highly mobile in 

soil and does not adsorb strongly to soil partic1es. The half life of atrazine is 60 to 100 

days and it has a high potential for groundwater contamination (Wauchopc ct al., 1992). 

In privatc wells and in comrnunity wells, atrazine is found to be the second mûst cornmon 

pesticide (U.S. National Library of Medicine, 1995). In 1990 the National Survcy of 
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Pesticides in dtinking water found atrazine in about 1 % of ail wells. Purthermore, 

concentrations of atrazine exceeding the EPA's maximum contamination level (MCL) 

have been detected from the Mississippi, Ohio and Missouri Rivers and their tlibutaries 

(US Department of the Interior, 1991). Atrazine is one of the most frequently detected 

herbicides in the St. Lawrence River and its tributaries in Canada. In the Yamaska River, 

atrazine loading rate was estimated to be 27.7 kg dait; which is approximately 54% of 

the total atrazine loading in Quebec City (Hébert and Rondeau, 2004). 

Standards and guideline values (GV) for atrazine residues in drinking water for 

different countries (IUPAC technical report, 2003) are listed below 

Table 2.1 Concentration level of atrazine residues (p,g L-t ) 

Atrazine 

WHO 

GV 

2 

USA 

MCL 

3 

NewZealand 

MAV 

2 

Australia 

GV 

0.5 

Canada 

MAC 

5 
MAC-Maximum Accepted concentration MAV- Maximum Accepted value MCL- Maximum concentration level 

2.1.2 Metolachlor in the environment 

The chemical name of metolachlor is 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-

methoxy-l-methylethyl) acetamide and the chemical structure is as follows: 

Figure 2.2 Metolachlor chemical structure (Worthing and Hance, 1991) 

Metolachlor is used in the control the broadleaf weeds in field corn, soybeans, peanuts, 

grain sorghum, potatoes, pod, highway right-of-ways and woody ornamentals. It is 

usually applied on the field before crop emergence. 

Metolachlor is mobile in the soil, easily leached, and resists breakdown for long 

periods of time. The factors affecting the breakdown of the compound are temperature, 

moisture, microbial activity, soil type, nitrification, oxygen concentrations and sunlight. 
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The half-life has been found 30-50 days in northem areas and 15-25 days in southern 

areas (American Conference of Govcrnmcntal Industrial Hygienists, 1991). Mctolachlor 

is stable to breakdown in acidic water and at 20nC, the half life is more than 100 days, 

and in highly basic waters, the half life is 97 days (Cummings et aL, 1992). Because of 

its slow microbial and anaerobic degradation rates, metolachlor has the potential to 

contaminate the groundwater by leaching through the soil. Metolachlor was detected in 

about one percent of the wells (about 60,000 wells) at concentrations ranging from 0.1 to 

1 ppb (Lu, 1995; U.S. EPA, 1985). Metolachlor has also been found in surface water at 

maximum concentration of 138 ppb in 14 states in the U.S. (Lu, 1995). In the St. 

Lawrence River and its tributaries in Canada, metolachlor is also one of the most 

frequently detected herbicides (Hébert and Rondeau, 2004). In 2003, IUPAC reported the 

guideline values (GV) for metolachlor for different countries (Table 2.2). 

Table 2.2 Concentration level for Metolachlor residues (/Lg 1.;1) 

Pesticide 

Metolachlor 

WHO 

GV 

10 

USA 

HA 

100 

NewZealand 

MAV 

10 
MAC-Maximum Acceptee! Concentration MA V-Maximum Acceptee! Value 

2.1.3 Metribuzin in the environment 

Australia 

GV 

2 
HA-llealth Ae!visory 

Canada 

MAC 

50 

Metribuzin is a triazine herbicide which inhibits the photosynthesis in susceptible 

plant species. Usually, it is used to control annual grasses and broadleaf weeds in field 

and vegetable crops, in turfgrass and on fallow lands. The chemical name of metribizin is 

4-amino-6-tert-butyl-4, 5-dihydro-3-methyltio-l, 2, 4-triazin-5-one (Kidd et aL, 1991) 

and chemical structure is as follows: 

Figure 2.3 Metribuzin chemical structure (W orthi ng and Hance, 1991) 
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Metribuzin is of moderate persistence 11l the soil The half Iife of metribuzin is 

approximately 60 days and varies according to the soil type and climatic conditions 

(Wauchope et al., 1992). Metribuzin is soluble in water, and poorly bound to most soils, 

which confers upon it a strong potential to leaching down towards the ground water. 

Metribuzin has been detected in Ohio Rivers and Iowa wells and in groundwater 

(USEPA, 1985, 1988). Soil microbial degradation is the major mechanism for the loss of 

metribuzin over volatilization and photo-degradation. Ouide]ine values COV) for 

metribuzin in drinking water as reported by IUPAC (2003) are given in Table 2.3. 

Table 2.3 Concentration level for Metolachlor residues (p.g L-I
) 

Pesticide 

Metribuzin 

USA 

HA 

200 

NewZealand 

MAV 

70 

Australia 

GV 

1 
MAC-Maximum Accepted Concentration MA V- Maximum Acccptcd Value 

2.2 Reuse of wastewater 

Canada 

MAC 

80 
HA-Health Advisory 

Fresh water, once used for an economical or beneficial purpose, is generally 

discarded as waste. In many countries, these waste waters are discharged, as untreated 

waste or as treated effluent, into natural watercourses from which they are abstracted for 

further use after undergoing dilution and sorne degree of degradation within the stream. 

Thus, indirect reuse of wastewater may have occurred up to a dozen times or more 

through this system before being discharged to the sea. Such indirect reuse is common in 

the larger river systems of Latin America and many other countries (Cavallini and 

Young, 2002). 

Eighty-eight developing countries, housing close to one-half of the world's 

population, already experience water deficits, with resulting constraints on human and 

environmental health, as weIl as economic development. In near eastem region (NER) , 

out of 29 member states, 16 are classified as under water deficit, with less than 

500 m3 person-l y{l renewable fresh water resources (FAO, 1997a). In rural and pre­

urban areas of most developing countries, the use of sewage and wastewater for irrigation 

is a common practice (e.g. across Asia, Africa, Latin America, etc). Wastewater is often 

the only source of water for irrigation in these areas, even in areas where clean water 
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sources exists; smaIl farmers prefer wastewater because of its high nutrient content which 

reduces the need for expensive chemical fertilizers (IWMI, 2003). The USEPA (1992) 

reported that the world' s population has grown 1.5 times over the second half of the 20th 

century and urban populations have grown 3 times. As the population growth increases, it 

eventuaIly leads to greater domestic water use; therefore, good-quality water resources 

available for agricultural use tend to decrease. Global water use has increased ten times 

between 1900 and 2000, and on a global scale, about 70% of water from available 

sources is used for agricultural purposes, primarily for irrigation (FAO, 1997a). Haruvy 

(1997) reported that within the next four decades, treated sewage effluent will bec orne the 

main source of water for irrigation in Israel. The effluent will meet 70% of the 

agricultural water demand, and play a dominant role in sustaining agricultural 

development. In Palestine, to meet future irrigation demand recyc1ed wastewater will be 

used as the primary water source in the forthcoming decades (Sbeih, 1996). As weIl, 

Fedler et al. reported an interesting case study with increasing commercial demand for 

wastewater that had originaIly been land applied as a disposaI mechanism (Fedler et al., 

1987). Moreover, 42 countries across the world were listed by Scott et al. (2000), as 

having done sorne research on wastewater reuse for agricultural purposes. 

Standards for wastewater reuse for irrigation in many countries have been 

influenced by the USEPA (1992), NRC (1996), OAS (1997) and Environment ACT 

(1999) guidelines. The use of wastewaters for irrigation, containing several chemicals 

may have an effect on the movement of pesticides into and through the soil. One of the 

most common chemicals in wastewater is surfactants, which come from the use of 

detergents, hand washes, and from several personal c1eaning agents. 

2.2.1 Surfactants in the Environment 

Municipal wastewater is the aggregate of aIl water used and disposed off in a 

community. The mean per capita domestic waste water flow rate for the United States is 

200-500 L person-1 dai1 (Barber et al., 1995). The synthetic-organic chemical 

composition of municipal wastewater is a function of the various products consumed by 

individual households and the contribution of industrial effluents. In most developing 
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countries, municipal wastewater is partially treated or may remain untreated prior to their 

discharge into surface waters. 

The land application of wastewater and sludges has been an important 

management option, particularly in arid regions, where water is scarce and where waste 

water can serve as a source for irrigation. The transport of water and chemicals through 

the soil is usually govemed by factors such as the type of solute, moisture content of soil, 

and the chemical, physical and hydraulic properties of the soil. Irrigation with wastewater 

and land application of sludge can add large amount of organic chemicals to the soil­

water system, eventually resulting in an increased amount of dissolved organic chemical 

in the infiltrating water (Hutchins et al. 1985). The highest concentration of organic 

chemicals discovered in wastewater and sludges, originate from detergents containing 

anionic and non-ionic surfactants (Field, 1990; Field et al., 1992; Wild et al., 1990). 

These surfactants have been recognized as the most abundant group of organic chemical 

in municipal wastewater (Brunner et al., 1988). In the United States, about 7 million tons 

of biosolids are produced annually in wastewater treatment plants and several million 

kilograms of surfactants could be potentially released to soil through land application of 

wastewater (Xia, 2001). Therefore, the long-term application of waste water will result in 

an increase of the less biodegradable surfactants in the soil-water system (Abu-Zreig, 

2003). 

There are several kinds of surfactants used in personal c1eansing, household and 

industrial c1eaning products, such as anionic, non-ionic, cationic and amphoteric (SDA, 

2004). Among them, anionic and non-ionic surfactants are the most commonly found 

surfactants in the environment, and are described briefly below. 

2.2.1.1 Anionic surfactant: Linear alkylbenzene sulfonate 

Anionic surfactants (negatively charged) are used in laundry and hand 

dishwashing detergents, household cleaners, and personal cleaning products. They ionize 

in solution and have excellent c1eaning properties. There are various kinds of anionic 

surfactants available such as linear alkyl benzene sulfonate (LAS), a1cohol 

ethoxysulfates, alkylsulfates and soap. Among them, LAS is the most important c1ass of 

anionic surfactants with an estimated world consumption rate of 1.8 million metric tons 
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(Terzié and Ahel, 1994). In Denmark and Western Europe, consumption was 485 metric 

tons and 7000 tons, respectively (Berth et al., 1989; Borglum et al. 1994). The 

consumption of LAS in the United States is about 300,000 metric tons year- I (Schirber, 

1989). More than 60% of these LAS are used in domestic and industrial cleaning agents. 

Once they are used in a detergent or personal cleaning agent, eventually they enter the 

sewage system and will le ad them to the treatment plant before their discharge to the 

environment. They are shown to be common contaminants in municipal and industrial 

wastewaters and in the rivers as weIl (Tcrzié and Ahel, 1994). The LAS and their 

byproducts are nontoxic to humans, but aquatic organisms can be sensitive to 

concentrations ranging from 10-1000 Ilg L- I (Kimerle and Swishcr, 1977; Kimerlc, 

1989). 

In 1994, the research from the Council for LAB/LAS Environmental Research 

(CLER) measured LAS concentrations in different rivers around the world (Table 2.4). 

At present up to 3.1 X 105 km of rivers in United States have less than 4 Ilg L-I of LAS. It 

has been found that the presence of surfactants in surface waters causes extensive 

foaming in sorne cases. In particular, the highly branched anionic surfactants cause foams 

at concentrations 0.5 mg L- I in wastewater (Green et al., 2003; Richard, 2003). In Nepal, 

if the worst case scenario is assumed, su ch that aIl of the wastewater generated by 

laundry washing was discharged into the Bagmati River, the resulting total concentration 

would be about 0.2 mg LAS L- I (Richard, 2003). 

Table 2.4 Concentration of LAS in different rivers 

CountrieslRi vers 

Illinois River, USA 

Rhine River, Germany 

Tama River, Japan 

Chao River, Thailand 

Mississippi River, USA[al 

[a] Barber et al., 1995 

LAS concentration 

0.54 mgL,l 

0.01 mgL'l 

2.5 mgL'l 

0.34 mgL'l 

0.1-10 I!gL,l 

Year 

1959-1964 

1968 

1983 

1995 

One of the LAS biodegradation studies found LAS concentration in wastewater of 

about 5.2 mg L- I (Matthijs et. al., 1999). Feijtel et al. (1995) reported concentration in the 

inlet to wastewater treatment plants (WWTP's) was around 15 mg LAS L- I
. In 1999, 
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12.5 mg L-1 LAS were predicted in terms of the conventionally low sewage flow of 200 L 

person- 1 dai in the Netherlands (Feijtel et a1., 1999). The raw sewage concentrations of 

LAS recorded from eight Swiss sewage treatment plants ranged from 0.95-3.9 mg L- I and 

the effluent concentrations from secondary clarification ranged from 7-330 JLg L- I 

(Brunner et aL, 1988). The input and distribution of linear alkylbenzenesulphonates 

(LAS) in the Kirka river estuary were studicd in 1990-1991. It was found that municipal 

wastewaters contained LAS at total concentrations of 285-1041 JLg Cl and at the most 

polluted part of the estuary, Sibenik Harbour, the total LAS input via wastewaters was 

12.6 kg dail (Terzié and Ahcl, 1994). 

2.2.1.2 Non-ionic surfactant: NonylPhenol ethoxylate 

Non-ionic surfactants (not charged) are typically used in laundry and automatic 

dishwasher detergents and rinse aids. They do not ionize in solution and they are resistant 

to water hardness and clean well. The non-ionic surfactants hold the second place in the 

worldwide surfactants consumption, amounting to over 8 million tons a year in the 1990s. 

Out of the non-ionie surfactants, the polyoxyethelene a1cohols which are often 

synonymous with non-ionic surfactants hold the third place after soaps and alkylbenzene 

sulphonates (LAS). Alkylphenol ethoxylate (APEO) surfactants have been used for more 

than 40 years in a variety of indus trial processes and cleaning products. It has been 

estimated that the net worldwide production of APEOs exceeds 500,000 tons annually, 

consisting of approximately 80% nonylphenol ethoxylates (Bennett and Metcalfe, 1998; 

Ahel et aL, 1996; Hawrclak et al., 1999). A majority of APEO surfactants currently in use 

in North America are the nonylphenol polyethoxylates (NPEOs). 

Nonylphelol Ethoxylates (NPEs) are an important c1ass of non-ionic surfactants 

that have been widely used in detergent formulations, both industrial and domestic. Due 

to their suitability for liquid detergents, the domestic use of non yI phenol ethoxylate-based 

detergents has increased in the USA and many other countries. The global demand for 

alkylphnol ethoxylate (APE) in household detergents is estimated at 0.45 million tons. In 

the US, APEs used in laundry and industrial applications include ethoxylated oct yI, non yI 

and dodecylphenols. Among them, nonylphenol ethoxylate (NPE) is the largest volume 

product used almost exc1usively in household detergent applications (Canada Gazette, 
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2001). It is important to specify in this review that NPEs are also used as wetting agents 

and as dispersants or emulsifiers in sorne pesticide formulations and also agrochemicals 

(Evangelou, 1998). 

Because surfactants are most widely used in aqueous solutions, these compounds 

are discharged directly into the environment via industrial and municipal wastewater 

treatment systems (Ahel et al., 1994a, 1994b). NPEs most common degradation product 

is nonylphenol (NP), which enters the environment via industrial and municipal 

wastewater. Several transformations occur to NPEs when it enters the sewage systems. 

Initially, the ethoxylate (EO) groups are removed and NPEs end up as less biodegradable 

compounds, such as NP, NP1EO, and NP2EO. Many surfactants commonly used in 

household and commercial cleaners are not tested for in effluent discharge by municipal 

wastewater plants, even though they represent significant percentage of surfactants 

entering the wastewater plants. Around populated centers, environmental concentrations 

of surfactants and their degraded products in the inland waters range between 0.005 mg 

L-1 and 2 mg L-1 (www.enviro-solution.com). The concentration of NP in the sediments 

of Lake Ontario is 37 Jlg L-1 and >300 Jlg L-1 in the sewage sludge. The NP 

concentrations in sewage treatment plants of Canada are generally in the range of 

approximately 100-500 Jlg L-1 (Bennie et al., 1997; Bennett ct al., 1998), where as, the 

sewage treatment plant of Switzerland has shown that the NP concentration ranged from 

<0.5-419 Jlg L-1 in municipal wastewater (Vestak and Ahcl, 1994). A concentration of 7-

12 mg L-1 of non-ionic surfactants has been found in the effluents from a municipal 

sewage treatment plant in Israel (Narkis and Henefeld-Furie, 1977). Vestak and Ahel 

(1994) reported the concentrations of NP varied from 0.5-419 Ilg L-1 in municipal 

wastewaters of Croatia. In 2001, 200 Ilg NP L-1 was found in the influent wastewaters 

and up to 23 Ilg L-1 of NPE parent compounds and their metabolites were detected in the 

WWTPs effluents discharged into the Kansas River (Xia, 2001). The concentration of NP 

in the secondary effluent and digested sludge at the Zurich-Glatt WWTP in Switzerland 

were found to be 2.7 mg L-1 and 78 mg kg- l (dry weight basis) (Brunncr et al., 1988; Ahel 

et al., 1994). Rudel et al. (1998) found a total concentration of 30 mg L-1 for nonyl / 

octylphenol and polyethoxylates in ground water immediately down gradient from septic 

systems and leach fields in the Cape Cod area of Massachusetts. Total alkylphenollevels 
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were reported to be as high as 80 mg L-1 in an Italian river and were attributed to 

domestie and industrial waste discharges (Davi and Gnudi, 1999). Other researchers have 

also investigated the occurrence and distribution of alkylphenol compounds in Great 

lakes sediments (Hawrelak et al., 1999), as weIl as the aquatic environment of the rivers 

and estuaries in England and Wales (Blackburn and Waldock, 1995). The concentrations 

of APE degradation products, especially NP, in treated waste water effluents in the US 

ranged from 0.1-369 ~g L-\ in Spain from 6-343 ~g L-1 and in UK up to 330 ~g L-1 (Ying 

et al. 2002). The Environment Agency for England and Wales (1998) showed that 46% of 

the bulk of NPEs is reaching the soil, through sludge from the polluted sewer system 

being spread on agriculturalland, in the form of less biodegradable product NP. 

Right from the above review, it is clear that surfactants, especially anionic and 

non-ionic, are being used widely in detergents throughout the world. Therefore, the 

extensive use of detergents, and eventually their presence in wastewater, led the scientists 

to carry out experiments to investigate their effects on soil properties, as weIl as on 

organic chemical movements, when wastewater is used for irrigation purposes. 

2.3 Effeet of surfactants on soil properties 

Surfactants possess a large hydrophobie hydrocarbon chain with a hydrophilic 

polar end that may contain either an anion or cation or have neutral properties. The 

hydrophobic portion reacts slightly with water molecules, whereas the hydrophilic polar 

end interacts strongly with water molecules and may cause a decrease in surface tension 

and increase water penetration into the soil. To artificially improve soil structure and 

infiltration capacity, surfactants have been used as soil conditioners since the 1960's 

(Mustafa and Letey, 1969). The purposes of these wetting agents are to decrease the solid 

liquid contact angles and improve water flow and hydro-physical properties of soil 

(Pelishek et. aI. , 1962; Miyamoto, 1985). These surfactants are similar to those detected in 

municipal wastewater in their chemical group but differ in chemical structure, chemical 

characteristics and physical properties. Usually the qualities of detergent surfactants are 

evaluated in terms of detergency in water and the effect on soils. The effects of detergent 

surfactants, which eventually come to be present in wastewater as organic chemicals, on 

the physical properties of soils are of interest. Very little information is available 
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regarding the effect of surfactants present in municipal wastewater on soil properties and 

as weIl as on organic chemical transport into soil (Abu-Zreig, 2003; Foy, 1992). 

Miyamoto (1985) studied six wetting agents, three non-ionics and three anionics, 

on infiltration through loamy sand, clay loam, and silty clay soils. He found that anionic 

surfactants were more efficient in improving infiltration than non-ionic surfactants. The 

addition of polyvinyl alcohol (PVA) and polyacrylamide (PAM) resulted in an increase 

of hydrophobicity in sandy soil and decrease in hydrophobicity in silty loam soils 

(Hartmann et al., 1976). Similar results were observed by EI-Asswad and Groenevelt 

(1985) and Kijne (1967). An increase in hydraulic conductivity may cause an increased 

infiltration rate. The main factors that affect the soil hydraulic properties in presence of 

surfactants could be the solution surface tension and solid-liquid contact angle (Pelishek 

et al., 1962). Poiseuille's law describes the quantity of water that can be infiltrated into 

the soil in terms of surface tension and solid-liquid contact angle: 

Where 

Q = nr(prgh - 2a cos 8) 

8LJi 

Q depth of water entering into the soil per unit time (L Tl) 
n soil porosity(L3 L,3) 
r effective pore radius (L) 
p liquid density (M3 L,3) 
g gravitational acceleration (L T 2

) 

h distance from water surface to wetting front (L) 
/! liquid viscosity (M T 2

) 

cr surface tension 
L distance from soil surface to wetting front (L) 
e solid liquid contact angle 

Surface tension, cr, and solid liquid contact angle, e, have reccived attention in 

surfactant studies. A decrease in liquid solid contact angle would increase infiltration, 

whereas the opposite would happen when there is a decrease in the liquid surface tension. 

The net effect of a surfactant on infiltration depends on the value of (J case (Pelishek et 

al., 1962; Mustafa and Letey, 1971). Furthermore, when the depth of the wetting front is 

smaIl, surface tension and contact angle has their greatest influence on infiltration rate. 
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However, the influence of surface tension and contact angle becomes smaller when the 

wetting front gets deeper (Pelishck ct al., 1962). 

2.4 Surfactants and pesticides 

Surfactants have been added to various agrochemicals to improve their efficacy as 

sorne downward movement of these agrochemicals is desirable (Chow ct al., 1992; Hill ct 

a1., 1972). However, few studies have been conducted on the movement of pesticides in 

presence of surfactants (Bayer, 1966; Pitblado, 1972), and very little work has been done 

on the effect of surfactants commonly present in partially treated or untreated municipal 

wastewater. 

Surfactants, present in wastewater, can increase, decrease or cause no effect on 

the movement of pesticides. It depends on the type and concentration of surfactants, type 

of pesticides, soil type, and soil-water conditions. Bayer (1967) studied the effect of 23 

surfactants, 4 anionic, 6 cationic and 13 non-ionic, on the depth of leaching of urea 

herbicides in a sandy clay loam soil. According to his results a 1 % concentration of each 

surfactants (1 anionic, 11 non-ionic, and 2 cationic) increased the depth of leaching of 

diuron. Increasing the amount of anionic surfactants up to 10%, resulted in further 

increases in the depth of leaching. In the case of cationic and non-ionic surfactants the 

movement of pesticides was decreased. 

The application of anionic surfactant (sulphonic) decreases the capillary rise and 

penetrability and increases the solid-liquid contact angle and sorptivity (Abu-Zreig ct al., 

2003). An anionic surfactant with a concentration of about 3000 mg L- I resulted in 

sorption of atrazine and an significant increase of Kd (partition coefficient) in a sandy 

loam soil (Abu-Zreig ct al., 1999), while the application of non-ionic (Rexol and 

Rexonic) surfactants increase leaehing (Abu-Zreig ct al., 2000). In contrast, the effect of 

surfactants on the adsorption and movement of atrazine has been reported as being 

negligible (Huggenberger et al., 1973). Other studies have shown that non-ionic 

surfactants at a concentration of 0.2% could increase the adsorption of liadane and 

diuron. At higher concentrations of 0.5% to 1.0%, the surfactants led to a decrease in 

adsorption of those two pesticides (Pitblado, 1972; Huggenberger et al., 1973; Foy, 

1992). Furthermore, the alkyl sulfate anionic surfactants (sodium dodecyl sulfate, SDS) 
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were shown to decrease adsorption and actively desorb pollutants from soil and 

eventually allow the cleaning up of the contaminated soil (Dentel et al., 1993; Sanchez­

Camazano et al, 2000). Among the findings research has also shown that surfactants can 

cause contaminants to move more rapidly through the vadose zone and reach the water 

table more quickly than if no surfactants was used (Henry and Smith, 2003). Pitblado 

(1972) concluded that the anionic surfactants had a greater effect on herbicide movement 

than do non-ionic surfactants. 

A study with 3 non-ionic surfactants at a concentration of 2% resulted in 

increased movement of trifluralin and oryzalin in sandy soil. The addition of surfactants 

in dry soil had more effect on herbicide movement than in wet soil (Koren, 1972). Foy 

(1992) found that atrazine movement went deeper when the soil was pre-Ieached with 

water. 

These above experiments mostly focused on the effects of high concentrations of 

surfactants, as are usually found in industrial wastewater. A few laboratory experiments 

have shown that at low concentrations surfactants did not have any significant effect on 

organic chemical movement through soil (Huggenberger et al., 1973). The relation 

among surfactant, pesticide and soil-water system is nonconforming and it is difficult to 

predict the total effect of surfactants on pesticide movement. 

Referring to the review of literature, it seems that experiments on pesticide 

leaching have been done using a wide range of surfactants. Most experiments were done 

using high concentration of surfactants in the laboratory. However, very few studies have 

been carried out to evaluate the fate and transport of pesticides through soil after 

irrigation with municipal wastewater or water from surface water bodies (rivers, lakes, 

ponds, etc), which contains surfactants in lower concentrations (few mg L-1
). 

2.5 Mathematical modeling 

Computer simulation modeling offers an alternative approach to laboratory, 

lysimeter and field experiments, to study the impact of various farming practices on the 
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,--., fate and transport mechanism of herbicides from agricultural areas. Several mathematical 

models have been developed in last two decades coinciding with the rapid increase in the 

use of agrochemicals. Generally, mathematical models do not give a complete picture of 

the various aspects of the complex processes occurring in the soil. A necessary aspect of 

a mathematical model is over-simplification, which may lead unrealistic responses of the 

model in certain cases. In contrast, computer modeling can be more economical, faster, 

and environmentally safe in comparison with large field-scale experiments, when 

characterizing the contamination potential from pesticide usage (Jaynes and Miller, 

] 999). 

To assess the effects of agricultural chemicals on water quality, various models 

such as GLEAMS (Leonard et al., 1987), PRZM3 (Cm'sel et al., 1984), OPUS (Smith and 

FelTeira, 1986), LEACH-P (Wagnet and Hutson, 1986, 1987) have been developed. 

GLEAMS: The Groundwater Loading Effects of Agricultural Management System 

(GLEAMS) model (Leonard et al., 1987; Knisel et al., 1993) is a functional model used 

to simulate processes affecting water quality events on an agricultural field. It is a 

modified version of the well-validated CREAMS (Knisel, 1980) model. The GLEAMS 

model is used to simulate water quality events on an agricultural field. GLEAMS has 

been used to evaluate the hydrologie and water quality response under several scenarios, 

considering different cropping systems, wetland conditions, subsurface drained fields, 

agricultural and municipal waste application, nutrient and pesticide applications, and 

different tillage systems. Three submodels inc1uded are, hydrology, erosion/sediment 

yield, and chemical transport. The hydrology component simulates runoff due to daily 

rainfall using a modification of the SCS curve number method. Hydrologie computations 

are determined using a daily time step. A modified Uni vers al Soil Loss Equation (USLE) 

is used to estimate inter-riU and rill detachments. Different topographie configurations 

and surface flow processes were taken into account to properly assess the sediment 

detachment and deposition on the land surface. The chemical transport submodel is 

further subdivided into nutrient and pesticide components. The pesticide component of 

the GLEAMS incorporates the surface pesticide response of CREAMS with a vertical 

flux component to route pesticides into, within, and through the root zone. Characteristics 

of pesticide adsorption to soil organic carbon are used to partition compounds between 
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solution and soil fractions for simulating extraction into runoff, sediment, and percolation 

losses. Pesticide dissipation in soil and on foliage is treated as a first-order process with a 

different apparent half-life for each. The nutrient component of the GLEAMS is a 

multifaceted submodel and considers both nitrogen and phosphorus cycles. Tillage 

algorithms are also included in the model to account for the incorporation of crop residue, 

fertilizer and animal waste. 

Prediction of atrazine concentrations, conducted by Ma et aL (2000), using 

GLEAMS model was found to be within two orders of magnitude of the observed values. 

Connolly et al. (2001) conducted a study to investigate the effect of different 

management scenarios on the transport of endosulfan by using GLEAMS model. It was 

concluded that due to an increase in infiltration and reduction in erosion, the transport of 

endosulfan was minimized. But high rainfall event could possibly result in severe 

endosulfan leaching. A 50-year simulation was carried out by Gorneau et aL, (2001) to 

test the effect of different herbicide and tillage practices. The GLEAMS model was found 

to perform weIl in simulating subsurface drain water quality (Baksh et al., 2001). The 

model considers simple linear adsorption, and does not consider preferential flow, two­

site sorption kinetics and volatilization (Vanclooster et al., 2000). 

PRZM: EPA's PRZM3 (Cm'sel et al., 1984) links two models, PRZM and VADOFf. 

PRZM is a one dimensional dynamic, compartmental model used to simulate chemical 

movement in unsaturated soil system and can simulate as many as three chemicals 

simultaneously. It has two major components, hydrology and chemical transport. 

Hydrologic component calculate and simulate runoff and erosion by SCS and USLE 

equation, evapotranspiration by empirical equation or pan evaporation data, water 

movement using soil parameters, field capacity, wilting point, saturation water content. 

Chemical transport component simulates pesticide concentrations in soil as dissolved, 

adsorbed and vapor phase; also the transport and transformation of nitrogen induced by 

atmospheric decomposition can be simulated. Transport equations are solved by a 

backward-difference implicit scheme or with a characteristics algorithm that eliminates 

numerical dispersion. V ADOFf is a one dimensional fini te element model, which solves 

for flow in the vadoze zone. These two models are linked together to a flexible execution 

supervisor that allows building a model that is tailored to site specific situations. PRZM3 
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incorporates soil temperature simulation, volatilization and vapor phase transport in soil, 

irrigation simulation, and microbial transformation (Malone et al., 1999). The model is 

capable of estimating probabilities of concentrations in or from various media. Monte 

Carlo pre- and post-processors are provided to perform probability based exposure 

analysis. One of the limitations of this model is over simplification, where first-order rate 

constant is assumed to be fixed value. AIso, the flow of solute in fractured porous media, 

preferential flow, two-site sorption kinetics and volatilization are not considered by the 

model (Vanc1ooster et al., 2000). 

PRZM has been weIl tested using field data (Kaluli et al., 1997; Ma et al., 1999; 

Ma et al., 2000; Chu et al., 2000). Vischetti et al. (1995) used PRZM2 model to predict 

the fate of napropamide and pendimethalin in soils. High discrepancies in model 

simulation were observed in this case. GLEAMS, Opus, PRZM2P, and PRZM3 were 

used by Ma et al. (2000) to predict atrazine losses in a loamy sand soil under convention 

tillage practice. PRZM2p overestimated the atrazine concentrations, which was might be 

due to an unrealistic mixing model. However, the predictions by GLEAMS and PRZM3 

were within two orders of magnitude of the observed concentrations. AIso, Ma et al. 

(1999) used GLEAMS and PRZM2 to simulate 2, 4-D in a smaIl turf plot. 

Underestimations were observed for both the models, which was thought to be due to the 

inaccurate calculations involved in the partitioning of the compounds. The transport of 

metribuzin was conducted by Malone et al. (1999) using GLEAMS and PRZM3 under 

three field conditions. Underestimations in metribuzin concentrations were observed at 

75 cm and at 15-75 cm soil depth by both the models. In the subsurface soil regions, 

PRZM3 provided better prediction and GLEAMS gave good prediction in the sediment 

runoff. However, Malone et al. (1999) conc1uded that the model performance could have 

been improved by adding macropore component in both the models. 

LEACHP: Leaching estimation and Chemistry (Wagnet and Hutson, 1986, 1987) is a 

simulation model to simulate non-volatile pesticides in the unsaturated soil profile. With 

a high level of sophistication and flexibility, LEACHP model can simulate water and 

solute movement with a great accuracy. Three different versions of the model are 

available, which are capable of calculating instantaneous and reversible pesticide 

sorption. The convection-dispersion equation is used to simulate pesticide movements. 
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However, the runoff, management practices, crop yield, macropore flow and 

degradation products of applied pesticides are not included in LEACHP model (Clemente 

et al., 1993). Smith et al. (1991) used PRZM and LEACHP models to predict the fate of 

atrazine in a soil column study and concluded that underestimations, in both models, 

were due to simplistic approach for adsorption of pesticides calculation and non­

consideration of preferential flow. 

Based on the above review, it can be stated that most of these models possess 

sorne limitations, such as preferential flow and non-equilibrium sorption have not been 

considered in GLEAMS, LEACHP, or PRZM. PRZM is limited to non-volatile pesticides 

since the vapor phase partition coefficient has not been considered. The runoff, erosion, 

drainage systems, and agricultural management practices have not been considered in 

LEACHP, which represents a limitation of this model. 

To improve all the above mentioned limitations Clemente et al. (1991, 1993) 

developed the Pesticide Fate and Dynamics in the Environment model (PESTFADE), 

which can simulate water and solute movement simultaneously in the unsaturated soil 

profile. The special features of the model are: it includes macropore flow based on two­

site non-equilibrium sorption kinetics, state-of-the-art mathematical expressions for 

pesticide transport model, heat flow, moi sture flow and runoff as well as water table 

management practices in arid and semi-arid regions. AIso, instead of treating Kd as 

constant, PESTF ADE adjusts Kd according to changes in soil temperature, sorption 

capacity of soil, and soil tortuosity (Li et al., 1999). PESTFADE has been validated 

against field data (Clemente et al., 1993; Clemente et al., 1998; Li et al., 1999). 

GLEAMS and PESTF ADE model were used to determine atrazine movement in a clay 

loam soil by Kaluli et al. (1997). It was concluded that PESTFADE results were 

improved with lower standard error when macro pore component and two-stage sorption 

kinetics were incorporated. Therefore, macro pore flow component and two-site kinetic 

sorption approach make PESTF ADE unique and appropriate for pesticide simulations in 

soil. Moreover, Tafazoli (2003) made a graphical user interface for PESTF ADE which 

make the model user-friendly and interactive. 
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2.6 Artificial Neural Networks 

Mathematical modeling usually needs a numerous input parameters and in many 

cases, these inputs parameters are not readily available. To be able to make an accurate 

simulation the thorough understanding of physical and chemical transport phenomenon is 

a prerequisite. AIso, the over-simplified assumptions for the mathematical models 

sometimes made the model to predict the real situation inaccurately; as well these models 

require longer time for execution. Nevertheless, an artificial neural network (ANN) can 

be a substitute for mathematical modeling in simulating herbicide concentrations in soil. 

ANNs are an information processing system, which processes information in a manner 

similar to that of the human brain, leaming from examples, and which are composed of 

highly interconnected processing elements (neurons) involved in solving a specific 

problem. This field was established before the advent of modem computers, but this field 

initially met with great frustrations and was poody regarded. Currently, ANNs are an 

important and successful new field of interest. 

Neural networks work in a manner similar to the human brain, but due to the 

complexity of human neurons and limited computing power, neural networks may differ 

considerably from the human brain in detail. However, the following minimum 

characteristics of neural networks are common to the human brain. An artificial network 

is a basic processing unit inc1uding many inputs and one output (Figure 2.4). Inputs are 

fed to the neural network from another processing unit or from outside. AlI the inputs are 

weighted and the execution is dependent on the weight of a particular input. The 

summation function provides the weighted sum of input values and is compared with the 

pre-set threshold values. The threshold value indicates if the sum reaches the threshold; 

if so, the signal will be transmitted, otherwise the signal will not transmit. Two operations 

are involved with processing unit, training and using mode. In the training mode, the 

neural network is trained, repeating the process of transmission for specific inputs, to 

learn certain patterns. When the trained input pattern is found, the related output becomes 

the current output in the using mode. Neural network can adapt to a particular situation 

by changing the weights or thresholds. Among various existing algorithms that cause the 

neural network to adapt, Delta rule and back error propagation are the most common. 

Generally, delta rule is used infeed-forward networks and back error propagation is used 
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for Jeedback networks (Stergiou and Siganos, 1996). Aiso Jeed Jo rwa rd back propagation 

can be used in ANN models (Sahoo et al. 2004). In a feed-forward network, the signaIs 

travel one way from input to output (Figure 2.5). On the other hand, in feed-back 

networks the signaIs can travel in both directions, which introduce a loop into the 

network. 

TypicaIly, artificial neural networks consist of three layers: input layer, hidden 

layer, output layer (Figure 2.5). Neural networks with error propagation incorporated, 

have certain characteristics: (i) one or more hidden layer(s), (ii) an units within a layer 

are connected to aIl units of the next layer, and (iii) there are no connections between 

non-successive layers (Braspenning et al., 1995). Input layers contain the data or 

examples that are fed to the network. The starting values of input nodes are multiplied by 

the weight associated to those nodes and they move to the hidden layer. The weighted 

sum is then transmitted towards output layer by an appropriate transfer function (Shaoo et 

al, 2004; Zhang et al., 1999). The general princip le for aIl training prototype in ANN is to 

minimize the differences between output values obtained from the output layer and 

known values that were fed as input through certain number of epochs (runs). 
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Figure 2.5 Feed-forward neural networks 
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Neural networks have the capability to derive meaning from complex dataset, and 

also can be able to obtain patters from the datas et to detect trends, which are too complex 

to notice either by humans or by conventional computers. Pattern recognition is one of 

the popular applications of neural networks, which is implemented by using a feed­

forward neural network. While training or leaming, neural networks are trained to relate 

outputs with the given input patterns and neural network gives the output corresponding 

to the trained input pattern that is almost similar to the given pattern. The other 

advantages of neural networks reported by Stergiou and Siganos (1996) are: adaptive 

learning, self-organization, real-time operation, and fault tolerance via redundant 

information coding. Due to the ability to identify patterns or trends in any datasets neural 

networks are successfully and widely used in sales forecasting, industrial process control, 

customer research, data validation and also in medical fields (Stergiou and Siganos, 

1996). In recent decades the uses of neural networks has extended to the fields of 

agriculture, hydrology, and water quality prediction (Yang et al., 1997; Yang et al., 1998; 

Salehi et al., 2000; Yang et al., 2000; Ni et al., 2004; and Sahoo et al., 2004). 

2.7 Concluding Remarks 

Pesticides are the most extensively used agrochemicals in the agricultural fields 

throughout the world. Along with the use, concerns regarding potential adverse 

environmental effects of these pesticides have grown globally. AIso, water shortage is 

another severe problem in most of the arid and semi arid regions. Consequently, decision 

makers and planners are considering non-traditional water resources in an attempt to 

reduce the gap between water suppl Y and demand. As a substitute for fresh water 

irrigation, wastewater is smetimes being used to irrigate agricultural fields. Wastewater 

usually contains a variety of compounds and among them; surfactants are the most 

commonly found compounds. When agricultural fields are receiving wastewater and 

pesticides simultaneously, surfactants may affect the pesticide mobility in soil due to 

their effect on soil adsorptionldesorption properties. Numerous studies have been 

conducted concerning pesticide mobility in the presence of surfactants. However, most of 

these studies were done in the laboratory. Very little work has been done to investigate 

the effect of surfactants present in municipal wastewater, on pesticides movement. An 
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outdoor lysimeter study can be useful to investigate the effect of surfactants on pesticide 

movement into soil, considering spatial variability, soil heterogeneity and c1imatic 

variability. 

Beside the lysimeter experiment, mathematical modeling is the most economical 

method to study the fate and transport of pesticides into soil. These models provide a 

rapid means to simulate the extent of pesticide, risk assessment, and may also save time. 

PESTP ADE can be a good choice for pesticide simulation since it incorporates pesticide 

sorption mechanisms and preferential flow. 

One problem with mathematical modeling is that they often require a number of 

input parameters, which are usually not easily measurable. AIso, sorne models take a long 

time to execute, which may become a critical factor while defining or evaluating new 

management practices or strategies. ANN models can be used for modeling pesticide 

movement in such cases. They are generally very fast and require considerably less input 

parameters. 
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PREFACE OF CHAPTERIII 

Pesticides' fate in the environment and the effect of surfactants on pesticide 

leaching and adsorption were reviewed in the preceding chapter (Chapter II). Due to the 

increasing water scarcity throughout the world, the use of wastewater for irrigation is 

becoming popular. In many countries, municipal wastewater is being discharged into the 

surface water bodies as treated, parti aIl y treated or untreated and is eventually being used 

for irrigation. The most abundant organic chemicals present in wastewater are 

surfactants; therefore, when wastewater or water from effluent-rich rivers is used for 

irrigation they might increase or decrease the mobility of pesticides, depending on the 

surfactants' properties. Thus it is important to understand the behavior of pesticides in the 

soil profile when wastewaters containing surfactants are being used. Therefore, a 

lysimeter study was undertaken to determine the fate and transport of three agricultural 

herbicides (atrazine, metolachlor and metribuzin) in the presence of irrigation water 

bearing surfactants. The experimental procedure and results of an experiment conducted 

in the summer of 2004 are presented in this chapter (Chapter III). 

The role of the candidate, as the main author of the manuscript, was to investigate 

the effect of surfactants on movement of the three herbicides in agricultural soil. The 

author was also responsible for performing aIl analytical and statistical analyses. 

Research paper based on the chapter: 

Nilufar, F. and S.O. Prasher. Fate and transport of herbicides in agricultural soils in the 

presence of surfactants in irrigation water. (Manuscript to be submitted to the 

Transactions of the ASAE). 
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ABSTRACT 

CHAPTERIII 

FATE AND TRANSPORT OF THREE HERBICIDES IN 
AGRICULTURAL SOIL IRRIGATED WITH MUNICIPAL 

WASTEWATER 

In many countries around the world, municipal sewage and industrial wastewater 

are treated to sorne degree prior to their discharge into surface water bodies. Frequently 

found in municipal wastewater are Linear Alkyl benzene Sulfonale (LAS), a major 

anionic surfactant, and the degraded product of non-ionic surfactant Nonylphenol (NP). 

When wastewater containing surfactants and their degraded products is used for 

irrigation, it can affect the sorption/desorption and movement of pesticides in soils. 

Therefore, a lysimeter study was conducted to assess the effect of LAS and NP on the 

movement of three agricultural herbicides through a sandy soil. Nine lysimeters, irrigated 

with water containing LAS and NP, at a concentration similar to those commonly found 

in municipal wastewater or highly effluent reach river, were used to evaluate the fate and 

transport of three common herbicides, atrazine, metolachlor and metribuzin. The fate and 

transport of the three herbicides was studied over a ninety-day period. The results show 

that the herbicides leached down to 0.2 m of the soil profile, for the three treatments, with 

considerable concentrations and degraded faster over time. Irrigation water with a 

concentration of 12 mg L-1 of LAS and NP had almost no effect on the leaching of 

atrazine, metolachlor, and metribuzin. The herbicide concentrations found in leachates, 

taken 0.9 m below the soil surface, were less than 0.02 flg L-1
. To measure the sorption 

behavior, a laboratory experiment was undertaken to estimate the partition coefficients 

(k!) for the three herbicides with water containing the same concentration of LAS and 

NP. In the presence of LAS, increase in kd values were observed for atrazine and 

metribuzin, however, the sorption was not significantly altered for the three herbicides in 

the presence of NP. Hence, these results should help to reduce the concems regarding 

pesticide leaching brought on by wastewaters containing LAS and NP for irrigation. 

Keywords. Linear alkylbenzene sulfonate, nonylphenol, wastewater, atrazine, 

metolachlor, metribuzin. 
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3.1 Introduction 

Land application of wastewater and sewage sludge is an important management 

option in many countries, where wastewater is being discharged, untreated or semi­

treated, into natural watercourses and on the land surfaces (Bauer, 1974). The use of 

wastewater for irrigation has became more important due to increasing water scarcity; it 

has been found to already be a common practice in rural and pre-urban areas across the 

Asia, Europe, Africa, and Latin America (IWMI, 2003). 

Municipal wastewater usually contains a variety of compounds, both organic and 

inorganic; the most abundant organic chemicals are surfactants and their degraded 

products (Brunner et al., 1988). Anionic and non-ionic surfactants are the most common 

type of surfactants used in domestic and indus trial detergents, which end up in municipal 

and industrial wastewater as well as in rivers (Painter, 1992, Field, 1990; Wild et al., 

1990). The presence of surfactants in surface water was detected in the 1950's (Freeze 

and Cherry, 1979; Twelfth Progress Report, 1977). At present, environmental attributes 

for surfactants often receive much attention for their technical properties and economic 

aspects, and the surfactants are designed to remain stable for short period of time before 

breakdown into its components, despite the fact that foaming has been observed at 

sewage treatment plants (Stratton, 2005) and on effluent rich rivers and streams, and has 

not been faded completely (Britton, 1998). 

In 1991, the estimated use of detergents in the United States was more than 2.2 

million tons (Greek, 1991). The u.K. consumption in 1990 was in the range of 16 to 19 

thousand tons (DOE, 1993). In 2003, the global surfactant market was estimated about 12 

billion tons. In developed countries, the use of surfactants is forecasted to increase by 

20% within 2001-2012, whereas in Asia, the demand could increase by 70% (CESIO, 

2004). Research has shown that concentration of surfactants and their products in the 

industrial wastewater varies from a few hundred mg L-1 to few thousand mg L-1 (Narkis 

and Ben-David, 1985), whereas in municipal wastewater, the concentration varies from a 

few JLg L-1 to few mg L-1 (Narkis and Ben-David, 1985; Matthijs et al., 1999; Feijtel et 

al., 1999; Davi and Gnudi, 1999). 

Surfactants have indigenous adsorption/desorption properties and are good 

sol vents for organic compounds (Liu ct al., 1991). Surfactants arc amphibilic molecules 
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having two components, a hydrophilic or water soluble head group and a hydrophobie or 

water insoluble tail group. At low concentrations, surfactants stay as monomers, 

however, at high concentrations, surfactants form self-aggregates (micelles) and surface 

tension tends to reduce. After a certain concentration, surface tension bec ornes constant, 

which is known as the critical micellar concentration (CMC). Surfactants above the CMC 

level may greatly increase the solubility of less hydrophilic organic pollutants, as shown 

in the figure 3.1 (Sanchez-Camanzano, et al., 2000). 
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Figure 3.1 Schematic diagram of organic chemical solubility with surfactant concentration. 
[Source: Mulligan et al., 20011 

When surfactants come in contact with solids, they may also decreaselincrease 

liquid-solid contact angles, which can affect liquid infiltration into a soil according to 

Poiseuille's law: 

Q = Cr 2 pgh + 2C r cos e 
8L1] 8L1] 

(1) 

where, 

Q 
C 
r 
p 
g 
L 
11 
Y 
Cos e 

is the quantity of liquid entering the soil per unit surface area per unit time (L Tl) 
is the volume fraction of the wet soil (e L-3

) 

is the effective pore radius (L) 
is the liquid density (M3 L-3

) 

is the gravitational constant (L T 2
) 

is the distance from soil surface to wetting front (L) 
is the liquid viscosity (M T 2

) 

is the liquid surface tension, and 
is meant for the liquid-solid contact angle. 
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From the equation, it can be seen that the increase in surface tension (y) may 

result in the increase of infiltration; conversely, an increase in the liquid-solid contact 

angle (8) would decrease infiltration. The increase/decrease in liquid-solid contact angle 

would increase/decrease the soil aggregate dispersion. When the depth of the wetting 

front (L) is small, surface tension and contact angle would have an influence on 

infiltration; this is not the case when the depth is large (Pelishek et al., 1962). 

In 1960s, surfactants were used to improve the physical conditions of water­

repellent soils to control erosion and for water management by increasing the water 

infiltration (PeIishek et al., 1962). Mustafa et al. (1969) reported that surfactants not only 

increased the dispersion of soil aggregates, but also decreased the aggregate stability of 

soil. Moreover, herbicide formulations contain surfactants in order to accentuate 

downward movement in the soil (Jansan et al., 1960). Several studies have been carried 

out by using surfactants with herbicides in the spray system, and it has been observed that 

high concentrations of surfactants enhanced herbicide mobility and decreased adsorption 

of herbicides, with the reverse holding true for low concentrations of surfactants 

(Huggenberger et al., 1973; Bayer, 1966; Hill et al., 1965). 

When wastewater is used for irrigation, its prolonged use may result in the 

leaching of the less biodegradable surfactants to ground water (Freeze and Cherry, 1979; 

Field et al., 1992). Therefore, surfactants might also influence the downward movement 

of pesticides by increasing their solubility (Dentel et al., 1993). Agricultural lands 

receiving municipal wastewater and pesticides simultaneously might lead to increased 

leaching and/or increased adsorption of pesticides. Studies have been done to evaluate the 

effect of high concentrations of surfactants on the hydro-physical properties of soil as 

well as on the leaching and adsorption of pesticides (Abu-Zreig et al., 1999; Sanchez­

Camanzano, et al., 2000). However, little work has been conducted to evaluate the fate 

and transport of pesticides through the agricultural soil profile, after irrigation with 

municipal wastewater, which contains amounts of surfactants and their degraded products 

in the order of a few mg L-1
. 

Although the mobility of three agricultural herbicides, atrazine, metolachlor and 

metribuzin, has been studied under different conditions (Singh and Kanwar, 1991; Weber 

et al., 1993; Heatwole et al., 1997; Jebellie, 1997; McDonald et al., 1999) the fate of 
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these three herbicides in soils irrigated with municipal wastewater is unknown. Thus, the 

objective of this research is to examine the influence of low surfactant levels, commonly 

present in semi-treated and untreated municipal wastewater, on the movement of three 

agricultural herbicides, atrazine, metolachlor, and metribuzin. The findings from this 

study could be used to as certain the environmental acceptability of the use of municipal 

wastewater for agricultural irrigation, especially when fresh water is scarce. 

3.2 Materials and Methods 

3.2.1 Experimental design 

The experiment was conducted in ni ne outdoor lysimeters, which were set up at 

the Macdonald Campus of McGill University, Ste-Anne-De-Bellevue, Quebec. The PVC 

lysimeters (0.45 m diameter x 1 m high), sealed at the bottom using 0.6 m x 0.6 m PVC 

sheets, were packed with sandy soil in layers to a bulk density of 1350 kg m-3
• A 0.05 m 

diameter drainage pipe was installed at the bottom portion of each lysimeter. Four 0.01 m 

soil sampling holes (laterally) were made in each lysimeter at 0.1, 0.2, 0.4, and 0.7 m 

depths from the surface. To simulate the worst case scenario for pesticide movement and 

to avoid plant uptake, no crop was planted. Alllysimeters were placed under a rain coyer 

so as not to allow rainfall. 

The experiment was conducted in triplicate with three different types of water 

applications: tap water, anionic surfactant with water, and a degraded product of non­

ionic surfactants with water. Wastewater was prepared in the laboratory by using only the 

surfactant and degraded product in water at a concentration of 12 mg L- l
. Anionic 

surfactant (Alkylbenzene Sulphonic acid) and the degraded product (Nonylphenol) of 

non-ionic surfactant were supplied by Huntsman Corporation (Houston), and their 

physical and chemical properties are presented in table 3.1. 
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Table 3.1 Physical and Chemical characteristics of surfactants used in the study 

Property 

Chemical name 

Product code and name 

Appearance 

Water solubility 

Specific gravit y 

Viscosity 

pH 

Molecular weight, gmorl 

Vapor pressure, mmHg 

Boiling point, oC 

Odor 
Reference: HUNTSMAN 2002 

3.2.2 Soil characteristics 

Anionic surfactant 

Alkylbenzene sufonic acid 

SALS Sulfonic Acid LS 

Liquid 

> 10% 

1.05 

not determined 

2 

317 

0.002 

330 

not determined 

Non-ionic surfactant 

Nonyl Phenol 

MNP Nonylphenol 

Viscous liquid 

<0.1 

0.95 

400 cSt at 37.8°C 

7.1 

220 

<1 at 20°C 

293.3 

Phenolic 

The soil belongs to the St. Amble complex, obtained from a field at Macdonald 

College of McGill University. Table 3.2 shows the physical properties of the soil. The 

metrological data was collected from Environment Canada (Ste-Anne-De-Bellevue 

station). Throughout the study period, the average air temperature, humidity and 

evaporation were 19.5oC, 71.S5% and 3.93 mm dai\ respectively. Irrigation was 

simulated by pouring the arnount required for corn fields under no rainfall and high 

evapotranspiration. On days 2, 10, 20, 30 and 90, 44 mm irrigation was applied and then 

70 mm irrigation was applied on days 40, 50, 60, 70 and SO, according to the corn (Zea 

mays L.) water requirement in the dry c1imate region (Benham, 2004). 

Table 3.2 Physical properties of soU 

Sand 

Silt 

92.20% 

4.30% 

Soil type Sand 

Bulk Density 1350 kg m,3 
[a]SD=standard deviation 

3.2.3 Pesticide application 

Organic Matter Content 

Hydraulic conductivity 

pH 

CEC 

2.97% 

3.68 m day'l (SD1a1=0.87) 

5.5 

4.9 cmol kg'l 

Three herbicides, atrazine (2-chloro-4-ethylamine-6-isopropylamino-S-triazine), 

metolachlor (2-chloro-N -(2 -ethyl-6-methylphenyl )-N-(2 -methoxy-I-methylethyl) 

acetamide), and metribuzin(4-amino-6-tert-butyl-4, 5-dihydro-3-methyltio-l, 2, 4-triazin-
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5-one) were sprayed on all lysimeters once on July 22, 2004. The three herbicides were 

applied at the locally recommended rate of 2.5 kg active ingredient ha-l, 1 kg active 

ingredient ha-l and 2.75 kg active ingredient ha-l, respectively. 

3.2.4 Sampling method 

After the application of herbicides, soil and leachate samples were taken from 

each lysimeter on days 0,2,5, 10,21,30,50 and 90. Before each sampling, the stagnant 

water in the sampling tube at the bottom port of the lysimeters was emptied to take 

representative samples. The leachate samples were taken after each irrigation, and to 

inhibit the microbial reactions in the leachate samples, 10 ml of methelene chloride was 

added to each sample bottle prior to refrigeration. About 7 g of soil samples were taken 

after each irrigation from the soil surface and each of the four sampling ports. The soil 

samples were frozen until the extraction and analysis were done. 

3.2.5 Extraction of pesticide residues 

The water samples were mixed with 100 ml of dichloromethane (methylene 

chloride) in a separatory funnel. The mixture was hand shaken for few minutes, and the 

accumulated organic phase was collected from the bottom of the funnel; this process was 

repeated twice. The extracted organic phase was evaporated to separate dichloromethane 

from the herbicides. The residues were then dissolved in about 2 ml of hexane and stored 

in the refrigerator prior to liquid chromatography (LC) analysis. For the analysis of soil 

samples, each soil sample was mixed with 100 ml of methanol for 1 hour using a 

mechanical shaker. The mixture was transferred to a vacuum flask (Buchnel flask), and 

filtered under partial vacuum. The collected organic phase was evaporated in a water bath 

for 15 minutes and rinsed with 2 ml of hexane. The organic phase was then stored in a 5 

ml glass vial in the refrigerator prior to LC analysis. 

3.2.6 Analysis of soil extracts and water samples 

Pesticide residues in soil and water samples were analyzed with an Agilent 1100 

series Liquid Chromatograph with Mass Spectrometa (LC/MS), equipped with a column, 

an injector, an auto sampler, a Diode Array Detector (DAD), and an Atmospheric 

Pressure Chemical lonization (APCI) detector. A C-8 column (4.6 x 150 mm) was used 
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for the retenti on of organic compounds, and the column temperature was maintained at 

40°C. Methanol, buffer, water, and acetonitryle were used as mobile phases. The buffer 

was prepared with 1 g of ammonium acetate in 1 Lof distilled water. The method used to 

seperate the three herbicides in one run is summarized in the Tables 3.3 and 3.4. One mL 

of each sample was transferred to mini-vials, and the injection volume was set to 5 ilL. 

Calibrations were performed with analytical standards for each herbicide within the 

concentration ranges of 10-2 to 102 Ilg L-\ and the correlation coefficient was determined 

by linear regression, typically with / ~ 0.95. The machine (HPLC) detection limits were 

0.5 Ilg L-1 for atrazine, and lilg L-1 for both metribuzin and metolachlor. 

Table 3.3 The Le flow rate and the mobile phase percentages 

LC Flow rate Mobile Phase 
Water 

Time, min Flowrate, ml min-1 Buffer % % Methanol % Acetonytrile % 

0-20 0.4 40 20 15 25 
20-40 1 0 0 22_5 375 

Table 3.4 The spray chamber parameters 

Dry gas flow 6 L min-1 Dry gas temperature 355°C - 0-20 min 
Nebulizer pressure 60 psig 325°C - 20-30 min 
Mode of analysis SIM Vaporizer temperature 275°C - 0-20 min 

400°C - 20-30 min 

Positive Negative 
Capilary voltage 4500 4500 
Corona CUITent, /lA 10 10 

Statistical analysis of herbicide concentrations at four depths observed over time 

was done for atrizine, metalochlor, and metribuzin, separately, using spatio-temporal 

analysis (SAS Institute, 1990). There were three replicates for each treatment, of which 

two replicates were taken into account for SAS analysis. The third replicate was taken off 

from the analysis because of the discrepancy in concentrations of the three herbicides due 

to the low hydraulic conductivity in those lysimeters. In this regard, the detailed 

information of the three herbicides in soil, at different depths, as well in leachate is 

presented in the Appendix (Table 1-3). 

3.2.7 Sorption studies 

The laboratory sorption test was carried out to assess the sorption behavior of 

atrazine, metolachlor and metribuzin in soil with LAS and NP. The dry sandy soil was 

sieved through a 2 mm sieve. The percent moi sture was determined by oven dry method 
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at 1050 C for 24 hours. In a 60 mL centrifuge tube, 5 g of soil was added to 10 mL (3, 15, 

30,60 mg L-1
) of each herbicide solution and 20 ml ofDW, LAS (18 mg L-1

) and NP (18 

mg L-\ separately. Therefore, the initial concentration of each herbicide was l, 5, 10, 

and 20 mg rI, while initial concentration of LAS and NP solution was 12 mg L-1
• The 

experiment was done in triplicate. Soil solutions with mixture were allowed to equilibrate 

for 24 hours, and were centrifuged at 4000 rpm for 20 minutes. After the completion of 

the centrifugation, the samples of the supematant were collected and analyzed with 

LCIMS, which was taken as final concentration or equilibrium concentration. The 

adsorption coefficient, kd (cm3 mg-\ for each herbicide was fitted using Freundlich 

relationship: 

(2) 

where, Cad is adsorbed concentration, mg kg-!, Csoi is concentration in equilibrium 

solution, mg L- I
, and n is Freundlich coefficient (n=l). 

3.3 Result and Discussion 

3.3.1 Effect of LAS and NP on herbicide residues in water 

The leachate samples were analyzed to quantify the amount of atrazine, 

metolachlor and metribuzin leaching to the shallow ground water. The results for the 

three herbicide concentrations in leached water from the lysimeters are shown in Figure 

3.2. The concentrations of aIl three herbicides, atrazine, metolachlor and metribuzin, 

were found to be very low in the water samples. This is most likely due to the adsorption 

of herbicides in the upper soil profile. Moreover, the lysimeters were exposed above the 

ground surface; therefore, high soil temperature would have also caused increased 

biodegradation and left less herbicide available for leaching. Although, throughout the 

ninety-day experimental period, the concentration of atrazine and metolachlor were found 

in trace amounts, metribuzin was not detected in the leachate at aIl after 20 days. This 

could be due to the high water solubility of metribuzin, which would have biodegraded 

faster at high temperatures, as compared to atrazine and metolachlor. 
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Figure3.2 Atrazine, metolachlor and metribuzin residues in water samples (TW- tapwater, 
LAS- Linear alkylbenzene, and NP- Nonylphenol) 
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The highest concentrations of atrazine, metolachlor, and metribuzin in the 

leachates were 0.005, 0.02, and 0.01 /lg L-\ respectively. These concentrations are much 

lower than the maximum aUowable concentrations of 5, 50, and 80 /lg C\ set by IUPAC 

(2003) for drinking water in Canada. Although slight variations in concentrations among 

the three treatments were observed, the concentrations of the herbicides were very low, 

and the relative variations between treatments were of little importance for practical 

purposes. Therefore, it can be conc1uded that there was no remarkable effect, either by 

LAS or NP, in irrigation water on the concentrations of the three herbicides in the 

leachates. 

3.3.2 Effect of LAS and NP on herbicide residues in soil 

The movement of the three herbicides in the sandy soil was also assessed in the 

presence of LAS and NP in irrigation water and compared with tap water (TW) irrigation. 

Figures 3.3, 3.4 and 3.5 present the average values of the three herbicides concentrations 

in soil over a ninety-day period for the top soil, as weU as for 0.1,0.2,0.4, and 0.7 m soil 

depths. As expected, at the soil surface, the concentrations (mg kg-1
) of the herbicides 

were high, as compared to the concentrations (/lg kg-1
) at different depths of the soil 

profile. It was observed that the herbicides leached only up to 0.1 m soil depth with 

considerable concentrations, which reveals that herbicides would degrade by chemical 

and biological processes over time rather than leach down to lower depths. At the 10 cm 

depth, aU three herbicide concentrations had an upward trend at the beginning of the 

ninety-day period, foUowed by a graduaUy decreasing trend (Figure 3.3, 3.4 and 3.5). At 

0.2,0.4,0.7 m soil depths, the trend was similar to 0.1 m depth; however, concentrations 

were much lower, as compared to 0.1 m depth. Moreover, the concentrations of 

herbicides at 0.4 and 0.7 m were very low, and tended to be non-detectable. For 

metolachlor, the concentrations at 0.7 m depth were non-detectable, therefore, not shown 

in the figure (Figure 3.4). The decrease in concentrations of the herbicides over time and 

depth reveals that herbicides moved downwards as weU as degraded over a period of 

time. Such decreases demonstrated a significant depth and time effect (P~ 0.05) for aU 

the three herbicides (Table 3.5). 
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The results also showed that there were no significant (P~ 0.05) differences 

among the treatments for the three herbicides (Table 3.5). This indicates that there was no 

considerable effect of irrigation water, containing LAS or NP, on herbicide movement in 

the soil. However, although the overall treatment effects were not significant, it can be 

seen from Figures 3.3 and 3.5 that atrazine and metribuzin concentrations were slightly 

higher in the presence of LAS in irrigation water than the concentrations in the presence 

of NP in irrigation water and the control. Therefore, the results were analyzed for 

particular depths and times. On day 5 at 0.2 m and on day 10 at 0.1 m soil depths, 

atrazine concentrations were higher (P~ 0.1) in the presence of LAS in irrigation water, 

compared to the tap water treatment. Also, at 0.1 m soil depth on day 5, metribuzin 

concentration was higher in presence of LAS than in presence of NP in irrigation water 

and control. Metolachlor concentrations were higher (P~ 0.1) at 0.1 m depth on day 10 

when irrigated with LAS-containing water, as compared to NP-containing water. These 

slightly higher concentrations of the three herbicides at 0.1 m and 0.2 m depths in the 

presence of LAS reveal that LAS in irrigation water increased the ionic adsorption of 

atrazine and metribuzin due to the sorption of LAS molecules by the soil constituents, 

and further enhanced site for adsorption of those herbicides. Anionic (LAS) surfactant 

seems to be adsorbed by the hydrophilic part with the soil particles, leaving hydrophobie 

part towards pore water, as reported by Abu-Zreig (2003,1999), which is called ionic 

adsorption, and ionic adsorption is stronger wh en the surfactants are present in lower 

concentrations. However, the differences in concentrations were not significant for aIl 

other lower depths over the ninety-day period. 

Table 3.5 Repeated Measures Analysis of Variance for the three herbicides 

Herbicide Source Pr>F Source Pr>F 
Trt NS 

Atrazine Time * TimexTrt * 
Depth * DepthxTrt NS 
Trt NS 

Metolachlor Time * Timex Trt NS 

DeEth * DeEthx Trt NS 

Tft NS 

Metribuzin Time * TimexTrt NS 

DeEth * DeEthx Trt NS 
NS- non-significant *- significant (at 5% significance level) Trt- Treatment 
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AIso, a laboratory experiment was conducted to examine the adsorption behavior 

of the three herbicides. The adsorption isotherm for atrazine, metolachlor and metribuzin 

was developed by plotting the amount of herbicides adsorbed against the post­

equilibration concentrations of herbicides in solution. From Figure 3.6, it is observed that 

a linear relationship exists between adsorbed and equilibrium concentrations of 

herbicides in aqueous solution. To measure the partition coefficient (kd), linear regression 

was used. The result shows little variation in adsorptions of atrazine, metolachlor and 

metribuzin, as compared to the distilled water. The presence of LAS resulted in a 35% 

increase in kd for atrazine and 75% for metribuzin (Table 3.6). In the case of metolachlor, 

the influence of LAS was found to be minor, at around a 10% increase in kd. The relative 

increase in kd might have been from increased dispersion of soil aggregates compared to 

the distilled water, which contributed to an adsorption of LAS with soil particles, further 

enhancing the sites for adsorption of the three herbicides. Low concentration of NP 

slightly increased the adsorption of metolachlor (an increase of 67% in kd), and atrazine 

(increase of 6% in kd)' On the other hand, the presence of NP showed a decrease of 41 % 

in kd for metribuzin. The adsorption of metolachlor was increased slightly in presence of 

NP, but metribuzin was desorbed in presence of NP. This rnight result in chemical 

interactions between NP and those two herbicides. For atrazine, the influence was very 

small, which might be due to minimal interaction between atrazine and NP. The sorption 

of atrazine and metribuzin were significantly higher CP$. 0.1) in presence of LAS, 

compared to the control. Although slightly increased or decreased sorption of the three 

herbicides was observed with NP, as compared to the control, statistically the sorption 

was not significant (P$. 0.1). 

Table 3.6 Partitioning coefficient Kd for atrazine, metolachlor and metribuzin in presence of 
LAS and NP 

Partition coefficient, ~ (cm3 g"l) 

Atrazine Metolachlor Metribuzin 

WithDW t 1.09 1.06 0.36 

With LAS t 1.47 1.17 0.63 

With NP t 1.15 1.77 0.21 
fDW-Distilled water; LAS- Linear alkylbenzene sulfonates; NP=Nonylphenol 
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The mechanism by which LAS might be influencing the herbicide movement in 

the soil profile is complicated to interpret. Although LAS can form foam at 

concentrations of 0.5 mg L-1 in distilled water (Richards, 2003) and slightly increase the 

solubility of pesticide, the effect on the movement of the three herbicides at concentration 

of 12 mg L-1 were not found. This was probably due to the fact that the concentration of 

LAS (12 mg L- l
) used in irrigation water was much lower than the CMC value of LAS, 

433.5 mg Dl (Ou et al., 1996). Usually at concentrations above the CMC value, 

surfactants increase the solubility of organic pollutants (Sanchez-Camazano et al., 2000) 

and consequently enhance leaching. However, LAS in irrigation water in this study was 

lower than its CMC level, and did not increase solubility and leaching of the three 

herbicides in this study, which is in agreement with previous works by Abu-Zreig (2003), 

Huggenberger et al. (1973), Mustafa and Letey (1969), and Bayer (1966). 

Although the lysimeter experiment did not show a remarkable increase in sorption 

of the herbicides in the presence of LAS, laboratory experiments showed significant 

sorption of atrazine and metribuzin in the presence of LAS, as compared to the control. 

The observed slightly higher concentrations of atrazine during LAS treatment can be 

explained by slightly enhanced hydrodynamic dispersion. During the movement of LAS­

contained irrigation water and herbicides through the soil profile, this is thought that LAS 

increased soil aggregate dispersion, which further increased the soil surface area and 

provided available sites for herbicides to be adsorbed with soil constituents (Abu-Zeirg ct 

al., 1994, Huggenberger ct al., 1973). Therefore, the herbicides were less prone to 

leaching. 

In the lysimeter study, only a slight influence of LAS was observed at the upper 

soil profile. At low concentration, LAS strongly adsorbed to the topsoil and can be 

mobile up to 0.3-0.4 m into the soil (Kuchler ct al. 1997, Figge et al. 1989). However, in 

this study the effect was observed down to 0.1 m, which could be because of the surface 

tension, liquid-solid contact angle, or because dispersion of soil provided by LAS in 

irrigation water did not influence the deeper soil profile (Pclishck et al., 1962). As a 

result, LAS did not have an effect on the herbicide concentrations at lower soil depths. 

Slight variations in concentrations of the three herbicides at the lower soil profile might 

have resulted from the variations in hydraulic c onducti vit y and macropore flow in the 
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lysimeters. The dissipation time of LAS in the lysimeter was reported to be 3 days due to 

rapid degradation of LAS at low concentration (Kuchler et al. 1997, Knaebel et al. 1990, 

Elsgaard et al. 2001b). Therefore, the accumulation of LAS was not expected, which 

could effect the movement of the herbicides at later stages of this study. 

The concentration of 12 mg L-1 of NP in irrigation water hardly influenced the 

movement of atrazine, metolachlor and metribuzin, as compared to the control and LAS­

containing irrigation water. NP (nonylphenol) was a waxy substance and does not 

dissolve very weIl in water. Moreover, NP is a biodegraded product of non yI phenol 

ethoxylate (NPE) and cannot forrn micelle in water because it does not have an 

ethoxylate group in its chemical structure, where the ethoxylate group is responsible for 

forrning micelle. When irrigation water containing NP was applied on the surface of the 

soil, the NP mostly remained on the surface rather than moving downward along with 

infiltrating water. Rence, interactions between herbicides and NP were not present, and 

the influence of NP on leaching or sorption of the herbicides seemed to be absent. Slight 

increase and decrease in sorption of the three herbicides were found in the laboratory 

experiment, however, in the lysimeters, the influence of NP-containing irrigation water 

on the herbicides were negligible. 

3.3.3 Mass balance study 

Herbicide residues in the soil profile (lysimeter), as weIl as in the leachate, were 

considered for a mass balance study. The numerical results were ca1culated with 

MATLAB 7.0 (1992) and are illustrated in Figure 3.7. The arnounts of atrazine, 

metolachlor and metribuzin in the soil were reduced by 42%,37% and 57%, respectively, 

following the irrigation shortly after the application of the herbicides. As weIl, a rapid 

depletion in total residues of the herbicides in soil was observed in this study. This might 

have resulted due to the high temperature of the soil in above-ground lysimeters causing 

rapid degradation of the three herbicides within 30 days (Figure 3.7). AIso, the rain 

shelter used over the lysimeters might have contributed an additional increase in 

temperature of the soil profile, which rnight cause the herbicides to degrade faster than 

usuaI. The herbicide losses were found to be similar for the three treatments in this study, 
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which suggests that LAS and NP added to the irrigation water did not increase 

degradation of these herbicides (Figure 3.7) . 
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Figure 3.7 Degradation and remaining residues of (a) atrazine, (b) metolachlor and (c) 
metribuzin in soil over time under three different treatment conditions 
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3.4 Conclusions 

The application of anionic (LAS) and degraded product (NP) of a non-ionic 

surfactant in irrigation water at low concentrations insignificantly increase the solubility 

of atrazine, metolachlor and metribuzin, and these herbicides did not leach in 

considerable concentrations beyond 0.2 m. However, a slight increase in adsorption of 

the three herbicides was observed in the upper soil profile under irrigation water 

containing LAS, which might be due to slightly enhanced hydrodynamic dispersion of 

soil; this delayed the mobility of the herbicides due to increased adsorption. The 

laboratory adsorption test demonstrated that the adsorption of atrazine and metribuzin 

were increased in the presence of low concentrations of LAS due to dispersion of soil, 

rather than its interaction with herbicides. In the presence of NP, the effects on the 

adsorption of the three herbicides were negligible. The presence of NP in irrigation water 

showed a slight increase in adsorption for metolachlor, but showed decrease in adsorption 

for metribuzin, whereas the effect was almost negligible for atrazine. Although the results 

showed little variations in the presence of NP for metolachlor and metribuzin, compared 

to control, statistically the adsorption/desorption were not significant. Therefore, the 

results from this study showed that the presence of anionic (LAS) and degraded product 

(NP) of a non-ionic surfactant, at low concentrations in irrigation water, should not cause 

any increased hazard by promoting greater mobility of herbicides to ground water. 

52 



PREFACE OF CHAPTER IV 

Pesticide transport models are used to minimize environmental pollution, risk 

assessments, and in the selection of appropriate management practices. A number of 

pesticide transport models can simulate pesticide movement in the soil profile. 

PESTF ADE is a recent one-dimensional model, which is capable of providing a better 

estimation of pesticide sorption in the soil profile. In the following chapter (Chapter IV), 

the description of the PESTFADE model and its application to simulate the transport of 

three agricultural herbicides (atrazine, metolachlor, and metribuzin) is presented. This 

chapter also compares the simulated fate of the three herbicides in the lysimeter against 

the field data collected from a lysimeter study in the summer of 2004. The study 

described in previous chapter (Chapter III) showed that no significant differences in 

leaching of atrazine, metolachlor and metribuzin occurred in the presence of anionic and 

non-ionic surfactants at low concentrations in irrigation water, compared to surfactant­

free water. Therefore, in this study, the treatment conditions in the lysimeter studies were 

assumed to be single (tap water) treatment condition. 

The role of the candidate, as the main author of the manuscript, was to run and 

validate the mathematical model, PESTFADE. AIso, the author was responsible for 

performing statistical analysis to validate the model. Dr. Shiv. O. Prasher, Professor of 

Bioresource Engineering, McGill University and supervisor of the candidate, offered his 

proficient supervision to the author. 

Research paper based on the chapter: 

Nilufar, F. and s.a. Prasher. Simulation of three herbicides in agricultural soil using the 
PESTFADE model. (Manuscript to be submitted to the Journal of Environmental 
Quality) 
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Abstract 

CHAPTERIV 

SIMULATION OF THREE HERBICIDES IN AGRICULTURAL 
SOIL USING THE PESTFADE MODEL 

PESTFADE (PESTicide Fate And Dynamics in Environment) is a one­

dimensional transient mathematical model that predicts the simultaneous movement of 

water and solutes in an unsaturated, homogeneous soil profile. In this study, the model 

was used to determine the fate of three herbicides in a sandy agricultural soil. Herbicide 

concentrations at different depths of the soil profile over predetermined time intervals 

after application were simulated. Field data on atrazine, metolachlor, and metribuzin 

concentrations from a lysimeter experiment, carried out in the summer of 2004, were 

used to calibrate and evaluate the model. In the field experiment, the lysimeters were 

sheltered from rain and so irrigation was applied. The model was calibrated with the soil 

surface data, and validated with the data from the 0.1, 0.2, 0.4, and 0.7 m soil depths. 

Calibration of the model showed the rate constant (dai l
) of the herbicides was the most 

sensitive parameter for obtaining simulated concentrations close to those measured. The 

model performance was analyzed using the following statistical approaches: root mean 

square error (RMSE), relative root mean square error (R-RMSE), linear correlation 

coefficient (r) and coefficient of performance (CP). The predicted concentrations of the 

three herbicides at the 0.4 and 0.7 m depths were in close agreement with the observed 

concentrations; RRMSE values were satisfactory and the correlation coefficient was 

good. Although the model performed poorly at the 0.2 m depth, the simulated herbicide 

concentrations at shallower depths followed the trend of measured data quite well for the 

three herbicides, as indicated by the low RMSE. Thus, the model performed well near the 

soil surface and also below 0.4 m, where the herbicide concentrations were respectively 

high or very low. 

Keywords. PESTFADE, atrazine, metolachlor, and metribuzin . 
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4.1 Introduction 

The contamination of ground and surface water bodies constantly increases with 

the increased use of pesticides in crop production. Reliable predictions of the 

environmental behavior of pesticides are one of the biggest challenges for pesticide 

scientists and regulatory agencies. Therefore, the ability to accurately predict the fate and 

transport of pesticides in the environment has become imperative. After application, 

redistribution of pesticides applied on soil is very complex to predict, given that the 

chemical processes varies from one soil to another under different environmental 

conditions as weIl as with spatial variability in soil characteristics. However, 

understanding the extent and specificity of flow transport phenomena of pesticides under 

field conditions would facilitate the reduction in ground water pollution. Although a 

number of studies have been carried out at different levels, such as field (Crisanto et al., 

1995; Cox et al., 1997; McDonald et al., 1999; Azevedo et al., 2000; Andreu & Pico, 

2004), lysimeters (Jebellie, 1997; Renaud et al., 2004), and laboratory(Sanchez­

Camanzano et al., 1996; Abu-Zreig et al., 1999; Guo et al., 2000; Sanchez-Camanzano et 

al., 2000; Sanchez, 2004), to determine pesticide behavior in the soil environment, the 

long term effects of these pesticides in soil are still not clear. It is difficult to investigate 

the many possible behaviors of these pesticides in the environment given limitations of 

time, research facilities, the wide range of their chemical properties, and climatic 

variability. However, experimental limitations can be circumvented by using fast and 

accurate mathematical models. 

Mathematical models are the most effective tools for predicting the extent of 

pesticides in the environ ment and their adverse effects on natural resource systems. In 

recent decades, considerable advances in such models have been made in terms of their 

ability to predict agricultural chemicals in the environment. Models are typically 

physical, conceptual, or mathematical representations of reality. They provide estimations 

of required time for chemical degradation, leaching and sorption of chemicals in soil, 

thus helping farmers to design effective crop, soil, and chemical management plans 

(Wagenet and Huston, 1986). A wide variety of computer models are available that can 

quantitatively simulate pesticide leaching in the soil profile and runoff in the aqueous 

phase. The USEPA's PRZM3 (Carsel et al., 1984, 1985), GLEAMS (Leonard et al., 
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1987), LEACHM (Wagnet and Butson, 1987), and RZWQM (USDA-ARS, 1994) are 

widely used models. These models simulate leaching, runoff potential of pesticides, field­

scale drainage patterns, and are thus able to make watershed-scale assessments. 

PESTFADE a model developed by Clemente et al. (1993) and further modified by Li et 

al. (1999), was used in this study to simulate pesticide transport in the soil profile. 

PESTFADE, is a one dimensional model, which simulates the simultaneous movement of 

water and solutes in unsaturated, homogeneous soils. This model differs from other 

models since it predicts adsorption/desorption and chemical-microbial degradation under 

controlledluncontrolled drainage conditions for agricultural fields in arid, semi-arid and 

humid regions. A Graphic User Interface (GUI) was implemented by Tafazoli (2003), 

which makes the model more user-friendly and interactive. 

One of the important features of computer simulation models is their ability to 

evaluate the contamination potential of a specific pesticide for several sites and to 

evaluate several pesticides at one site. Alternatively, these models can be calibrated to fit 

the results of any field study at one site in order to predict scenarios for different field 

conditions in terms of time and soil depth. It is desirable to understand the variability in 

natural field conditions; therefore, under different climatic conditions, model validation 

and calibration is necessary. 

Consequently, this study was undertaken to: 

(i) employ the PESTFADE model to simulate the movement of herbicides 

through the soil profile, and 

(ii) calibrate and evaluate the PESTFADE model by comparing the predicted 

herbicide concentrations with measured concentrations obtained from a lysimeter study. 

4.2 Model description 

PESTFADE is a one dimensional, transient mathematical model to simulate the 

fate of pesticides in soil (Clemente et al., 1993). PESTFADE combines five different 

modules: SWACROP (Soil Water Actual transpiration and Crop Production), RUNOFF, 

MOISTE, HEAT and CADD (Conduction Adsorption Diffusion Degradation). 

SWACROP (Wesseling et al., 1989) is used to estimate evapotranspiration and simulate 

water flow in the heterogeneous soil root systems under humid arid and semi-arid 
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regions. The RUNOFF (Haith, 1980) model analyzes and detennines the pesticide status 

at the surface of the soil on each day by considering climate and tillage practices based on 

runoff depth and soilloss estimated by using the US Soil and Conservation Service Curve 

Number Method and Universal Soil Loss Equation to evaluate runoff depth and soilloss. 

The outputs, from the RUNOFF model, are then used to model degradation, 

volatilization, or leaching of pesticides, depending on soil properties, climatie and 

hydrologie conditions, and management practices. The MOISTE model in PESTFADE 

con verts the moisture distribution to a nodal-point basis, which were obtained from 

SWACROP on a compartmental basis. The HEAT model analyzes the conduction of 

heat, temperature distribution and thennal conductivity in the soil profile according to 

Walker (1981a, 1981b). FinaIly, CADD model uses the moisture content from MOISTE, 

and the temperature profile from HEA T to simulate the solute transport, as a function of 

interacting process of convection, adsorption, volatilization, and microbial degradation 

(Clemente et al., 1991). 

The PESTF ADE model is applicable to different boundary conditions, tillage 

practices, and it takes into account the accidentaI spill, salt movement, oxygen diffusion, 

and the presence or absence of drainage and subirrigation systems. In PESTFADE, 

macro-pore flow, heat flow and the effect of different water table management systems 

on pesticides leaching are also taken into account. Although most existing models 

consider the soil water partitioning coefficient kd as a constant (Cm'sel et al., 1984, 1985; 

Wagenet and Butson, 1987), PESTFADE adjusts the kd according to changes in soil pH, 

temperature, sorption capacity of soil, and soil tortuosity. PESTFADE has been modified 

by Li ct al. (1999), by incorporating a new model for sorption kinetics, which takes into 

account the intra-particle diffusion of pesticides within the soil matrix, the sorption 

capacity of soil, and variable pesticide distribution coefficients. The PESTFADE model 

was validated against analytical solution, as weIl with laboratory and field experiments 

(Clemente et al., 1993; Clemente et al., 1998; Li et al., 1999). A study was conducted by 

Kaluli et al. (1997) to investigate atrazine movement in a clay loam soil in Quebec by 

using three models, PRZM, GLEAMS and PESTF ADE. The study showed that 

PESTFADE model perfonned better with minimum standard error than the other two 

models since it considers two-stage sorption kineties and macropore components. A 
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graphical user interface (GUI) has been added to PESTFADE to make the model user 

friendly and more interactive (Tafazoli, 2003). 

4. 3 Materials and Methods 

4. 3.1 Field experiment 

Field data for this study was taken from a lysimeter experiment carried out during 

the summer of 2004 at Macdonald Campus of McGill University, Sainte Anne-de­

Bellevue, QC, Canada. The experiment consisted of ni ne PVC lysimeters (1 m long x 

0045 m diameter) packed to a bulk density p = 1.35 kg m-3
. The physical properties of the 

soil are presented in Table 4.1. Lysimeters were filled up to within 0.1 m of the top, and 

four different holes were made laterally at depths 0.1, 0.2, 004, and 0.7 m from the soil 

surface to allow the collection of soil samples. The lysimeters were equipped with a 

drainage pipe at the bottom to allow free drainage. The study area was covered so as not 

to allow rainwater into the lysimeters during the experiment. No plants were grown in the 

lysimeters so as to avoid any plant uptake, as weIl to simulate worst case scenario. Three 

herbicides, atrazine (2-chloro-4-ethylamine-6-isopropylamino-S-triazine), metolachlor 

(2-chloro-N-(2 -ethyl-6-methylphenyl )-N-(2-rnethoxy-l-methylethyl) acetamide), and 

metribuzin (4-amino-6-tert-butyl-4, 5-dihydro-3-methyltio-l, 2, 4-triazin-5-one), were 

sprayed on the soil surface of each lysimeter, at the field recommended rates (2.5, 2.75, 

and 1 kg ha-1
). Irrigation was applied in consideration of the fact that no rainfall reached 

the lysimeters and that evapotranspiration was high. After the application of pesticides, 

44 mm irrigation was applied on days 2, 10, 20, 30, and 90, and 70 mm was applied on 

days 40, 50,60, 70, and 80 according to corn (Zea mays L.) water requirement. The soil 

samples were collected from the four different depths on days 0, 1, 2, 5, 10, 21, 30, 50, 

and 90 after the application of pesticides. Extractions of the soil samples were done in the 

laboratory and pesticide concentrations were analyzed with a LC/MS (Liquid 

Chromatography with Mass Spectrometry).These concentrations were used for the 

evaluation of the PESTF ADE model. 
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Table 4.1 Physical properties of soil 

Sand 92.2 % 
Silt 4.3 % 
pH 5.5 
Soil type: Sandy 

t mean ± standard deviation 

Organic Matter 
Hydraulic conductivityt 
Bulk Density 
CEC 

4.3.2 Model Simulation and validation 

4.3.2.1 Model execution 

3.0% 
3.68±0.87 m day"l 
1.35 kg m-3 

4.9 cmol kg- l 

To begin a simulation, the SW ACROP model was used to calculate potential 

evapotransporation and water balance in the soil profile for the particular experimental 

conditions. Meteorological data, air temperature, wind speed and direction, humidity and 

evaporation, were collected from the Ste. Anne-de-Bellevue station of Environment 

Canada. Instead of rainfall data, irrigation data was used as the water source in the model. 

These data were required to execute the SW ACROP model to simulate available moi sture 

content in the soil profile. The outputs from the SW ACROP model were imported into 

the PESTFADE model for predicting solute transport. Four modules in PESTFADE were 

executed sequentially as the output from one module was used as input for the next 

module. 

The initial concentrations of the herbicides, soil parameters, and the other general 

input parameters used in the PESTFADE model are presented in Table 4.2. The model 

specifications were set for transient water and solute flow, variable dispersivity, 

Neumann upper boundary, solute flux dependent lower boundary, convention al 

adsorption mechanism and constant initial concentrations with depth. The depth of the 

soil profile was 1.0 m. The number of nodal points set into PESTFADE was 201 giving 

an internaI nodal distance of 5 mm. To compare simulated herbicide concentrations with 

measured lysimeter data, the concentrations from the 0, 20, 40, 80 and 140 nodal points 

were taken, which were equivalent to the 0, 0.1, 0.2, 0.40 and 0.7 m soil depths. 

59 



Table 4.2 Input parameters for PESTF ADE model 

Parameter 

Soil profile depth 
Soil bulk density 
Organic matter content 
Porosity 
A vailable moi sture content 

Value 

1.0m 
1.35 kg m-3 

3.0% 
0.49 
0.25 cm3 cm-3 

Parameter 

Application rate t 
Solubility t 
Henry's constant 
Mass transfer coefficient 
Sorption capacity 

Curve number 80 Activation energy 
Drainage area 1.58xlO-5 ha Soil erodibility 
Contouring factor 1.0 Time step 
f The three values are for atrazine, metolachlor and metribuzin, respectively 

4.3.2.2 Model calibration 

Value 

2.2,2.5,0.81 kg ha-! 
33,530,1220 mg L-! 
2.5xlO-7 

0.15 day"l 
108 moIL-! 
12200 cal mor! 
0.2 
90 days 

The model was calibrated with the concentrations of herbicide at the soi! surface. 

The data from the soi! surface were taken for calibration, because the herbicides in the 

soi! profile would depend on the quantity of herbicides present On the soi! surface after 

the application. The quantity of herbicides on the soi! surface depends On the irrigation 

rate, runoff (zero in this experimental condition), evaporation, photo degradation and also 

biodegradation, aIl of which contribute to herbicide los ses at the soil surface. 

The driving force behind calibrating the model was to minimize the difference 

between predicted and observed pesticide concentrations in the soi! profile during the 

ninety-day period (i.e. June to September, 2004). An iterative process was used to 

determine the best values of the input parameters. Among the input parameters, rate 

constant, half life, and sorption coefficient (kt) are known to be sensitive to pesticide 

movement in the soi! (Bakhsh et al., 2004). The calibration was carried out for the three 

herbicides, atrazine, metolachlor and metribuzin, separately. 

4.3.2.3 Model validation 

The model was validated with the concentrations at different depths in the soi! 

profile. To validate the model, the predicted concentrations of atrazine, metolachlor and 

metribuzin at soi! depths of 0.1,0.2,0.4, and 0.7 m were compared with observed values 

obtained from the lysimeter experiment. Herbicide concentrations measured immediately 

after their application to soi! surface were used as the initial concentrations for the 

simulation model. Simulations of the three pesticides were done separately for each 
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simulation model. Simulations of the three pesticides were done separately for each 

herbicide for the ninety-day experimental period. The root mean square error (RMSE), 

relative root mean square error (RRMSE), coefficient of performance (CP), model 

efficiency (EF), and correlation coefficient (r) were used to assess the model performance 

(James and Burges, 1982). The following equations were used to calculate the statistical 

parameters: 

RMSE= 
i;l 

N 

RRMSE = RRMSE 
y 

EF= J-CP 

where, 

~ Predicted pesticide concentration, for sample size N, 
Yi Measured pesticide concentration, for sample size N, 
Y Mean measured pesticide concentration. 

4.4 Result and Discussion 

4.4.1 Model calibration parameters 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Herbicide properties are very important parameters while simulating pesticide 

concentrations in the soil profile. A list of calibrated input parameters needed for the 

PESTFADE model is presented in Table 4.3. Kd values, set in the PESTFADE model 

during calibration, were taken from a laboratory experiment (Chapter III). The 

degradation and persistence of the herbicides in soil are strongly affected by their decay 

rate. Deca y rate constants of 0.17, 0.15, and 1. 0 da il, were determined for atrazine, 

metolachlor and metribuzin, respectively, by calibrating the model. These rate constants 

are higher than those found in the literature (Bakhsh et. al., 2004). The higher rate 

constants indicate shorter half-lives for the three herbicides, which could be due to the 
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high temperature in the soil profile, since the lysimeters were kept above the ground 

surface, speeding up the herbicide degradation. The rain cover over the lysimeters could 

have also contributed to an additional increase in the soil temperature. 

The calibration of atrazine, metolachlor and metribuzin concentrations were done 

with the measured soil surface data from the lysimeter study. Fitted linear regressions for 

the simulated concentrations against the measured concentrations for the three herbicides 

are shown in Figure 4.1. The correlation coefficient (r) was found to be 0.99 for the three 

herbicides. Moreover, the regression analysis, done using t-test, showed that the slope 

and intercept values were not significantly (P ::; 0.05) different from the ideal values of 1 

and 0 for the three herbicides (Table 4.4). The high correlation coefficient and regression 

analysis results reveal that calibration was performed very weIl. The RRMSE for 

atrazine, metolachlor and metribuzin were 0.23, 0.27, and 0.26, respectively, and the EF 

for the three herbicides was high. Consequently, low values of RRMSE and EF suggests 

that there was little variation between the simulated and measured concentrations, as far 

as calibration is concerned. After calibrating the model, simultaneous simulations were 

done for the herbicide concentrations at the soil surface, and 0.1, 0.2, 0.4, and 0.7 m 

depths. 

Table 4.3 Calibrated values for the three pesticides simulation by the model 

Pesticide K d-1:I: sat, m ay Rate constant K/ Koct 

(dat
l) (cm3 g"l) 

Atrazine 3.68 0.17 1.23 71 

Metolachlor 3.68 0.15 1.33 76 

Metribuzin 3.68 1.00 004 23 
l' Ksat- saturated hydraulic conductivity, t Kct partition coefficient, 

Koc sorption coefficient 

Table 4.4 Calibration results for the three herbicides 

Calibration r Slope Intercept RMSE, mg kg- l RRMSE EF 

Atrazine 0.99 1.08 0.03 1.14 0.23 0.97 

Metolachlor 0.99 1.08 0.35 1047 0.27 0.96 

Metribuzin 0.99 1.09 0.24 0.36 0.26 0.97 
r- correlation coefficient; RMSE- Root Mean Square Error; RRMSE- Relative Root Mean Square Error; 
EF- Model Efficiency. 
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4.4.2 Atrazine simulation 

At evaluation depths (0.1, 0.2, 0.4, and 0.7 m), simulated and measured atrazine 

concentrations over time are presented in Figure 4.3. At the 0.1 m soil depth, at the 

beginning of the ninety-day period, the model was in close agreement with measured 

concentrations; however, at the middle to end of the period, the model slightly 

overestimated the concentrations of atrazine. Although a slight overestimation (AMD = 
-18.48 ~g kg-1

) was observed, the correlation coefficient, RMSE, RRMSE and EF were 

0.89, 45.02 ~g kg-1
, 0.58 and 0.75 (Table 4.5). This revealed that simulated atrazine 

concentrations were in good agreement with measured data, and showed reasonably low 

discrepancies. The regression analysis showed that the slope was close to 1, but intercept 

was not significantly (P :::; 0.05) different from the ideal value, however, this method of 

evaluation is known to be quite stringent, and in field conditions the values are liable to 

be different from their ideal values (Bera et. al., 2005). 

At the 0.2 m soil depth, the model initially underestimated and then over­

estimated the concentrations of atrazine compared to the measured concentrations (Figure 

4.2). Overall, the model overestimated (AMD = -0.4 )..tg kg-1
) atrazine concentration at 

this depth. The correlation coefficient, RMSE and RRMSE were 0.3, 3.9 )..tg kg-1 and 1.6, 

respectively (Table 4.4), which revealed wide discrepancies between simulated and 

measured concentrations. A negative EF value revealed that the differences between the 

observed and the predicted pesticide concentrations were quite high. 

At the lower depths of 0.4 and 0.7 cm, the model simulated the concentrations as 

zero, which were almost the same as the measured concentrations at these depths, where 

the concentrations were either very low or non-detectable. Due to the lack of non-zero 

simulated values, correlation coefficients could not be determined, however, RMSE was 

ca1culated for these depths. The RMSE were 0.63 and 0.38 ~g kg-1 at the 0.4 and 0.7 m 

depths, respectively, showing the model performance to be satisfactory. Thus, it can be 

concluded that although the model performance was poor at the 0.2 cm depth, the model 

simulated well near the soil surface and also at or below 0.4 m, where the herbicide 

concentrations were reasonably high or very low. 
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Figure 4.2 Simulated vs. measured atrazine concentration at the soU surface and at different depths over time 
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4.4.3 Metolachlor simulation 

The observed and simulated metolachlor concentrations over time at different soil 

depths are presented in Figure 4.3. At the 0.1 m depth, the model slightly underestimated 

the leaching of metolachlor in the first half of the 90-day period and then slightly 

overestimated it in the second half of the period. Overall the model underestimated 

(AMD = 2.2 J..lg kg-l) the herbicide concentration at this depth. However, the correlation 

coefficient was 0.88 with and RMSE of 59.35 J..lg kg-l, RRMSE of 0.48, and EF of 0.77, 

indicating good agreement between simulated and measured concentrations. At the 0.2 m 

depth, the model also underestimated (AMD = 2.3 J..lg kg-l) metolachlor concentrations. 

The correlation coefficient and RMSE were 0.45 and 7.3 J..lg kg-t, respectively. The 

RRMSE was high and EF was low (Table 4.5), which indicates greater discrepancies 

between simulated and measured concentrations at 0.2 m depth than at a 0.1 m depth. At 

the 0.4 and 0.7 m depths, the observed concentrations were weIl matched those simulated 

by the model. Although the EF was negative, the RMSE was 0.17 at the 0.4 cm depth, 

which indicates that the discrepancies were very little between simulated and measured 

concentrations (Figure 4.3). At the 0.7 m depth the concentrations were non-detectable in 

measured data, and model simulated concentrations as zero. Thus, the model performed 

in a pattern similar to that for atrazine. 

4.4.3 Metribuzin simulation 

Simulated metribuzin concentrations are presented in Figure 4.4. At the 0.1 m soil 

depth, the correlation coefficient was 0.97, which indicates very close agreement between 

simulated and measured concentrations. The RMSE, RRMSE and EF were 1.35 J..lg kg-t, 

0.37 and 0.85, respectively (Table 4.5), which indicates little discrepancy between 

simulated and measured concentrations. At the 0.2 m depth, the model underestimated 

(AMD = 0.89 J..lg kg-l) soil metribuzin concentrations, and the correlation coefficient was 

0.45 (Table 4.5). High values of RRMSE and low values of EF indicate that the model 

poorly predicted the concentrations at the 0.2 m depth, probably due to the complex 

physiochemical behavior in soil. At lower depths, measured metribuzin concentrations 

were very low as metribuzin is a highly water-soluble compound, and degraded readily 

because of high temperature in the soil profile; however, the model performed fairly weIl 
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~, at these depths as the simulated metribuzin concentrations were very close to the 

measured concentrations. The RMSE were 0.89 and 0.72 ~g kg- I for the 0.4 and 0.7 m 

depths (Table 4.5). Although the performance of PESTFADE model was less than 

desirable at the 0.2 m depth, the model performed well at other depths. 

Table 4.5 Model performance indicators for PESTFADE simulations of the three herbicides 
concentrations at different depths 

Simulation Depth, m r Slope Intercept AMD t RMSE+ RRMSE EF 

Atrazine 

Metolachlor 

Metribuzin 

0.1 

0.2 
0.4 

0.7 

0.1 

0.2 
0.4 

0.7 

0.1 

0.2 

0.4 

0.7 

0.89 0.93 

0.3 0.43 

0.88 0.82 

0.45 0.28* 

0.97 1.14 

0.45 -0.07* 

23.8 

1.8 

19.7 

1.8 

0.42 

0.07 

-18.48 

-0.40 

0.37 

0.21 

2.2 

2.3 
0.07 

o 
-0.93 
0.89 

0.33 
0.27 

45.02 

3.9 

0.63 

0.38 

59.35 

7.3 

0.17 

o 
1.35 

1.41 

0.89 

0.72 

0.58 

1.60 

1.73 

1.81 

0.48 

1.27 

0.37 
1.36 

0.75 

-1.1 

-0.5 

-0.4 

0.77 

0.15 

-0.2 
o 

0.85 

-0.4 
-0.1 

-0.1 
tAMD- Arithmetic Mean Difference (!1g kg-1

) [-ve value for overestimation, +ve value is for 
underestimation]; *RMSE- Root Mean Square Error (!1g kg-1

); RRMSE- Relative Root Mean Square Error; 
EF- Model efficiency; * Significant. 

Overall, the performance results indicate that PESTF ADE performed 

satisfactorily in simulating herbicides concentrations. High model efficiencies were 

obtained for 0.1 m depth, however, the lower-depth performance were less satisfactory. 

The spatial variabilities in soil hydraulic properties could be the major reason for 

obtaining low performances by the PESTF ADE model for sorne depths. Although the 

efficiencies at lower depths were negative, the predicted values were within an order of 

magnitudes to the values obtained from the lysimeters, which satisfies the criteria of 

model acceptance by Pesticide Exposure Assessment Workshop (1982), where the 

recommendation was that the model should replicate field data on concentration within 

an order of magnitude for screening applications (Clemente et al., 1998). The findings of 

~. this study also follow the findings by Clemente et al. (1998). 
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Figure 4.3 Simulated vs. measured metolachlor concentration at the soU surface and at different depths over time 
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4.5 Conclusions 

Although to simulate herbicide concentrations in soil is not an easy task due to 

their complex physcio-chemical behavior in soils, the considerations of goveming 

processes for pesticide movement and persistent, such as sorption phenomena, macropore 

flow, and simulation under different management scenarios in agricultural fields, can 

provide close-to-reality performance by a mathematical model. One such model, 

PESTFADE, was used in this study for simulating the concentration of three agricultural 

herbicides, atrazine, metolachlor, and metribuzin in the soil profile. The data consisted of 

pesticide concentrations that were obtained from a lysimeter experiment carried out in 

summer of 2004. The model was calibrated with the data at the soil surface and validated 

with the data from four different depths (0.1,0.2,0.4, and 0.7 m) of the lysimeter. While 

calibrating the PESTFADE model, the most sensitive parameter was found to be the rate 

constant (dai1
) for the three herbicides. The model predicted weIl with high accuracy at 

the 0.1 m soil depth, but at the 0.2 m soil depth the model did not make good predictions 

for atrazine and metribuzin, however, prediction for metolachlor were reasonable. At the 

0.4 and 0.7 m depths, the model performed satisfactorily for the three herbicides with 

slight underestimations. The discrepancies between experimental and simulated results 

might be due to the measurement errors and variability in hydraulic conductivity in soils. 

Although the PESTFADE model slightly overestimated or underestimated the 

concentrations of the agricultural herbicides into soils, the simulated values for aIl depths 

were in an order of magnitude to that of lysimeter data. Therefore, it can be concluded 

that PESTF ADE model performed weIl in predicting the concentrations at upper soil 

profile as weIl as at lower depths, for the three agricultural herbicides. FinaIly, it is 

recommended to test the model using wide varieties of field conditions, as weIl soil and 

chemical properties, which will establish the acceptability of the model for wide range of 

applications. 
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PREFACE OF CHAPTER V 

To continue the use of pesticides for better crop production, as weIl as to reduce 

their impact on the environment, it is important to understand the physical transport 

phenomena of pesticides and to model their concentrations under different field 

conditions. Although, conventional mathematical models have been used successfully 

used to simulate the complex physcio-chemical behavior of pesticides in the soil profile, 

the search to find an alternative method for simple, accurate, and fast simulation 

modeling remains of interest. Therefore, in the following chapter (Chapter V) Artificial 

Neural Networks (ANN) were used to simulate the three herbicide concentrations in the 

soil profile, given such models' remarkable ability to derive meaning from complicated or 

limited data. An ANN can be used to extract patterns and detect trends that are too 

complex to be noticed via conventional computer models. The data from a lysimeter 

study, carried out in the summer of 2004, was used in this study to develop and evaluate 

the ANN models. Based on the results presented in chapter III, the treatment conditions 

in the lysimeter study were assumed to be a single treatment condition. 

The candidate, being the author of the manuscript, was responsible for carrying 

out the study, as weIl statistical analysis to ascertain the efficiency of the neural network 

mode!. Dr. Shiv O. Prasher, Professor of Bioresource Engineering and supervisor of the 

candidate, has provided his able guidance and has encouraged the author from the onset 

of the study. 

Research paper based on the chapter: 

Nilufar, F. and s.a. Prasher. Prediction of herbicide concentrations in agricultural soil 
using artificial neural network. (Manuscript to be submitted to the Canadian Bioresource 
Engineering Journal). 
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CHAPTERV 

PREDICTION OF HERBICIDE CONCENTRATIONS IN AGRICULTURAL 
SOILS USING ARTIFICIAL NEURAL NETWORK 

Abstract 

An Artificial Neural Network (ANN) model, using a cascade correlation leaming 

algorithm was used to simulate concentrations of three commonly used herbicides -

atrazine, metolachlor, and metribuzin- in agricultural soils. To examine between-sample 

variation in herbicide concentration predictions from small-sized datasets, a cross­

validation approach was used. The model was built and trained with the following input 

parameters: accumulated daily irrigation, number of days after pesticide application, and 

soil temperature. The outputs of ANN model inc1uded the herbicide (atrazine, 

metolachlor, and metribuzin) concentrations in soil at 0, 0.1, 0.2, 0.4, and 0.7 m depths 

throughout the study period. The outputs from the ANN model were then compared with 

the experimental data obtained from a lysimeter study. The ANN model produced 

consistently good model prediction performance efficiency with a relatively low relative 

root mean square error, and with a good correlation coefficient for the three herbicides at 

different depths of the soil profile. The relative importance of the input parameters 

considered by the ANN model was also investigated. The time of sample collection and 

temperature of the soil profile were found to be the two most important parameters for 

predicting pesticide concentrations at different depths of the soil profile. Although 

irrigation was important in the upper soil profile, its importance was reduced in the lower 

soil profile. Therefore, the ANN model produced an effective input-output relationship 

and simulated herbicide concentrations with a small number of input parameters, as weIl 

with a small-sized dataset. 

Keywords. Artificial Neural Network, cascade correlation algorithm, six-fold cross­

validation, atrazine, metolachlor, and metribuzin. 
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5.1 Introduction 

Pesticides applied to agricultural fields can potentially leach to the groundwater, 

depending on soil properties and the chemical properties of the pesticides (North Carolina 

Pesticide Board, 1997). Moreover, rainfall and irrigation are the main forces driving 

pesticides downwards through the soil. Consequently, in irrigated area or high rainfall 

regions, pesticides are being detected in deeper soil profiles as well as in ground water 

(Smith et al., 1995). The USEPA (1998) reported that as a result of the agricultural use of 

pesticides, 46 different pesticides had been detected in ground water and 76 pesticides in 

surface water bodies. Throughout the world, the accumulation of pesticides in food and 

drinking water has been generally recognized as dangerous, and the long-term persistence 

and toxicity of pesticides in groundwater is potentially responsible for causing various 

kinds of human illness (Mannion, 1995; Peralta ct al., 1994). Therefore, potentially 

undesirable effects of pesticides on the environment and human health have been among 

the main concems of recent research (Swancar, 1996; Colbom, et al., 1997; Stangil, 

2001; Hébert and Rondeau, 2004). 

To continue the use of pesticides for better crop production, as well as to reduce 

their impact on the environment, it is important to understand the physical transport 

phenomena of pesticides and to model their concentrations under different field 

conditions. Although several field (Clisanto et al., 1995; Cox et al., 1997; McDonald et 

al., 1999; Azevedo et al., 2000; Andreu & Picô, 2004), laboratory (Sânchcz-Camanzano 

et al., 1996; Abu-Zreig et al., 1999; Guo et al., 2000; Sânchez-Camanzano et al., 2000; 

Sanchez, 2004), and lysimeter studies (Jebellie, 1997; Renaud et al., 2004) have been 

conducted to asses the transport behavior of pesticides, their scope have been limited by 

sparse knowledge about natural variability (macro pore flow, micro pore flow, soil types, 

microorganisms, various chemical properties, etc), and also due to the lack of field and 

analytical research facilities. To eliminate such limitations and to consider the 

convergence of aIl possible phenomena, convention al mathematical models have been 

used to simulate the complex physcio-chemical behavior of pesticides in the soil profile 

(Mutch et al., 1993; NichoIs, 1994; Clemente et al., ] 998). However, mathematical 

models need a number of input parameters, sorne of which are either difficult or tedious 

to obtain at a sufficient spatial or temporal density to coyer the inherent variability in soil 
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and the weather. Although, sorne models need less input pararneters, the assumptions to 

simplify the models lirnit their use for variable field conditions, and produce inaccurate 

predictions. Nevertheless, the search to find an alternative method for simple, accurate, 

and fast simulation modeling remains of interest. 

An Artificial Neural network (ANN) is an information-processing model inspired 

by the biological nervous system. It can perform complex tasks like pattern recognition, 

and processes information in a way similar to the human brain. ANNs-which do not 

require explicit definitions between systems inputs and outputs-are an alternative to 

conventional mathematical models. Conventional computer models use an algorithmic 

approach, i.e., to solve a problem, the computer follows a set of instructions. Until the 

specific steps to follow are known, the computer model cannot solve the problem. Due to 

its remarkable ability to derive meaning from complicated or imprecise data by learning 

from examples, an ANN can be used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other conventional computer models. 

Moreover, the requirement for fewer input parameters and quick execution are additional 

advantages of ANNs. 

In recent research in the fields of hydrology, agriculture, surface, and subsurface 

water quality, ANNs are increasingly being used for predictive purposes (Hsu et al., 

1995; Maier and Dandy, 1999; Schleiter et al., 1999; Ni et al., 2004). ANNs have been 

effectively used for simulating water table depths in subsurface-drained and subirrigated 

fields (Yang et aL, 1996); and for simulating soil temperature and concentrations of 

pesticides in agricultural soils and wells (Yang et al., 1997; Sahoo et al., 2004). As well, 

ANNs have also been used to asses nitrate contamination in wells (Sahoo et al., 2004), 

saturated hydraulic conductivity in soils (Lcbron et al., 1999), and annual nitrate loss in 

drain outflow (Salehi et al., 2000). In this study the ability of ANNs to simulate pesticide 

fate in the soil is evaluated. The objectives are to: 

i) simulate, by using an ANN model, the concentrations of three herbicides­

atrazine, metolachlor, and metribuzin- over time at the soil surface as weIl at 0.1, 0.2, 

0.4 and 0.7 m soil depths; 

ii) compare predicted concentrations to those measured in a lysimeter study. 
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5.2 Methodology 

5.2.1 Experiment details and data 

An experiment was conducted in field lysimeters at the Macdonald Campus of 

McGill University, from June to September, 2004, to study the fate and transport of three 

commonly used pesticides in the soil. Nine PVC lysimeters (1 m high x 0.45 m diameter) 

were packed uniformly with a sandy soil (p = 1.35 kg m-3
) to a depth of 0.9 m. Table 5.1 

gives the physical properties of the soil. A free drainage system was provided for aIl the 

lysimeters. The study area was covered with a shed to prevent the rainfall from reaching 

the lysimeters throughout the period of experiment. The experiment was conducted with 

three different types of water applications: tap water, anionic surfactant with water, and 

nonionic surfactant with water. Atrazine (2-chloro-4-ethylamine-6-isopropylamino-S­

triazine), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl )-N-(2-methoxy-l-methylethyl) 

acetamide) , and metribuzin (4-amino-6-tert-butyl-4, 5-dihydro-3-methyltio-l, 2, 4-

triazin-5-one) were sprayed only once during the experiment (July, 2004), at the locally 

recommended rate (2.5, 2.75 and 1.0 kg ha-l, respectively) to aIl lysimeters. Sampling 

holes (lateraIly) were made at 0.1, 0.2, 0.4 and 0.7 m depths from the soil surface in aIl 

lysimeters for soil sampling. The soil samples were taken on da ys 0, 1, 2, 5, 10, 21, 30, 

50, and 90 after the application of pesticides. The extractions of the soil samples were 

done in the laboratory and the concentrations of three herbicides were measured using 

LCIMS (Liquid Chromatography with Mass Spectrum). Since there were no significant 

differences found among the three water application treatments on the occurrences of 

herbicides in the soil profile, aIl the data were taken for neural network prediction 

assuming one (Tap water) treatment condition having six replicates, as far as water is 

concerned. 

Table 5.1 Physical properties of soil 

Sand 

Silt 

Soil type: 

Bulk Density 

92.20% 

4.30% 

Sand 

1.35 kg m-3 

*SD=standard deviation 

Organic Matter Content 

Hydraulic conductivity 

pH 

CEC 

75 

2.97 % 

3.68 m day"l (SD*=0.87) 

5.5 

4.9 cmoi kil 



5.2.2 Artificial neural networks 

Artificial Neural networks are anal Y tic al techniques, which can acquire 

infonnation of a complex process from a set of observed data, sort the infonnation of the 

fundamental process, and assemble the infonnation to generate new observations 

(predictions) from same data types. While acquiring the knowledge of any situation from 

the observed data (training set), an iterative process is usually applied to a number of 

observed data to nonnalize the weights of the network and build the model. The typical 

structure of neural network technology is based on the computer-generated neuron 

showed in Figure 5.1. When any number of observed data (inputs) from an unknown 

environment is input to the neural network, the network processes the observed data to 

produce the network's predictions (outputs). 

Output layer 

Input layer 

Figure 5.1 Network Structure 

Neural networks are developed based on certain algorithms that allow a computer 

to make decisions based on past experiences. Although different types of neural networks 

are available, aIl of them function by imitating a human brain. The efficiency of a neural 

network is detennined by how the network "learns." Supervised leaming is the most 

widely used technique in the neural network held. The most popular supervised learning 

techniques used in the neural networks are back-propagation, radial-basis, and delta rule 

training algorithms. Although back-propagation was one of the first training algorithms, 

and is widely used for its simplicity, its learning rate is fairly slow. A simple network 

consisting of 2 inputs, 2 hidden and 1 output neuron, using back-propagation, can take 

thousands of epochs (epoch is one cycle through aIl the input data rows) to reach an 

acceptable error level. To overcome certain limitations of most popular back-propagation 

algorithms, Fahlman and Lebiere (1990) developed a new architecture for a supervised 
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learning algorithm for artificial neural networks named the Cascade Correlation 

algorithm. 

The main feature of the Cascade Correlation architecture is that the network 

begins with input neurons, output neurons and no hidden units. Hidden units are added to 

the network, one at a time, and connections of hidden units do not change after they have 

been added to the network (Figure 5.2).When the observed data are fed into an input 

neuron, the neurons starts activating. There is also a bias input, which is permanently set 

to + 1 in the network and connected to every hidden or output unit, which can be learned 

just like other weights. In a given training set, always at least two equally logical, but 

totally opposite (true or false), generalizations could be made. However, bias is simply 

used to distinguish between these two logical outcomes. In neural networks, the value of 

the output neuron is a function of the sum of aIl input neuron values multiplied by the 

weight of the corresponding link to the output neuron, which can be written 

mathematic aIl y as: 

where, 

y = the output from neurons 
X1, X2, X3 .•• = input values 
w 1, W2, W3 ... = connection weights 
f3 = the bias value 

J( .. .. )= the transfer function = 1_( ) (typical sigmoidal function) 
l+e ... 

The objective of a neural network is to generate an output value that is close to the 

observed value. At the beginning, the absolute difference between output from the 

network and the desired value (network error) can be high since the weights of the links 

are set randomly. But the network leams over time, which is called training, and sets new 

weights to each link, so as to give better prediction results. The absolute difference 

between the desired results and the network results are known as the network errors. The 

process is repeated for aH the input data rows, fed to the network one by one. If the 

network error is too large, then one hidden neuron is added between the inputs and the 

outputs, and network is trained by transferring aIl the weighted inputs through the hidden 
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unit towards the outputs (Figure 5.2). The hidden input weights are frozen at the time the 

unit is added to the network, and only the output connections are trained repeatedly using 

the delta rule, which is also known as least mean squares rule (Ouong et al., 1996). 

Inputs 

Two hidden unil 
added 

Output 

o 

tu 

Figure 5.2 Cascade Correlation architecture with 2 hidden units added, one after 
another (verticallines summing up aIl the incoming activations). Node connections 
are trained repeatedly and box connections do not change. [Source: Fahlman and Lebiere, 
1990] 

More hidden units are added, if necessary, one by one until the network performs 

adequately. Each hidden unit receives a connection from each of the input neurons and 

from any pre-existing hidden units resulting in a multilayered structure. The structure of 

the neural network becomes a deep net of cascaded hidden units, rather than a network 

with a wide hidden layer. For each hidden unit, the magnitude of the correlation between 

the new unit and output is maximized, and the residual error is eliminated using either a 

least mean square (LMS) rule or the Quickprop leaming algorithm. The leaming process 

is continued until an acceptable range of error is achieved. 

The advantages of the Cascade correlation algorithm are that it requires only a 

forward pass, and that, at any given time, only one layer of weights are trained in the 

network, while the rest of the network doesn't change so the results can be cached. 

Therefore, it can serve as a high-order feature detector without a dramatic slow down, 

and can be used successfully for incremental leaming. The Cascade correlation system 

leams very fast; the leaming time in epochs grows roughly as N log N, where N is the 

number of hidden units added to solve the specifie problem. The readers are referred to 
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Fahlman and Lebiere (1990) for further details about the cascade correlation algorithm 

and mathematical equations. 

In this study, a commercial software package NeuroShell® Predictor 2.2 by Ward 

Systems Inc. was used to model and test the neural networks. Neuroshell Predictor is 

designed using TurboProp 2™, a proprietary variant of the cascade correlation algorithm, 

to simplify the conception of neural network applications to solve problems of 

forecasting and pattern recognition. 

5.2.3 Model inputs and output 

To simulate the herbicide concentrations in soil, neural network models were 

developed with inputs that are known to affect degradation, persistence and movement of 

herbicides, as well to be easily available in the field (Yang et al., 1997). Soil depth, 

irrigation, soil temperature, potential evapotranspiration and time (da ys after the pesticide 

application) were used as inputs to simulate soil pesticide concentrations with the ANN 

model. The outputs of the ANN model inc1uded the herbicide (atrazine, metolachlor, and 

metribuzin) concentrations in the soil at 0, 0.1, 0.2, 0.4, and 0.7 m depths. At the 

beginning the neural network had four inputs and one output, one such neural network for 

each depth. However, potential evapotranspiration is found to have minute effect on the 

movement of the herbicides (Yang et al., 1997), and thus was exc1uded from the input 

set. 

5.2.4 Model development and validation 

The quality of prediction depends on the data used in training the neural network 

and the design of the ANN itself. If all the inputs that affect the prediction are not 

included in building the neural network, good predictions are not possible. Typically, a 

large database is required to train a neural network model. However, only a limited 

number of data can be obtained from field studies. Cross-validation, one of the most 

commonly used resampling techniques (Stone, 1974), can be used to ensure the reliability 

of the model when the number of values in the datas et are few (Liu 1995; Derks et al., 

1996; Yang et al., 1997; Prechelt, 1998; Zhang et al., 1999; Shaoo et al., 2004;). The 

principle of cross-validation is to divide the dataset into random training and test samples, 
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where aIl the observations or patterns in the available samples are used for training the 

mode!. The training samples are used for fitting the model or parameter estimations, 

while the predictive effectiveness of the fitted model is validated using the test samples. 

A cross-validation method is able to examine the predictive validity of a neural network 

model by overlapping training samples and predicting exclusive test samples, when a 

small dataset is used for prediction purposes. 

In this study, to split the available dataset evenly and to ensure the representative 

amount of data in the training and test sets, a six-fold cross-validation method was used. 

The total number of values in the dataset (herbicide concentrations at a particular depth) 

were randomized and then divided in to 6 subsets, with approximately the same number 

of samples. At any given time, five subsets were used as the training dataset, and the 

remaining subset (unseen data) was used for testing (Figure 5.3). 
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Figure 5.3 Original data set is subdivided into six sets having different training and test sets. 
[Source: Derks et al., 1996] 

Therefore, for each of the test datasets, a different prediction model was developed by the 

neural network, and those models were used to predict the unseen test datasets. The 

classical least square regression for the test sets was recorded for validation, and further 

evaluation was done using common statistical indices. This procedure was repeated to 

predict herbicide concentrations at different depths of the soil profile, for the three 

herbicides separately. 

To retain available information to build a model and to compare the performance 

of six fold cross-validation method, another network was developed using the whole data 

set (trained and tested with same dataset). The errors from this network were compared 

with the cross-validation mean errors of the six models, proving the reliable performance 

of the cross-validation method with neural networks. AIso, the relative importance of 
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each input parameter, over the other inputs, was determined. This step would allow us to 

determine minimum input data required by the neural network to make predictions 

accurately. 

5.2.5 Analysis of Results 

To evaluate the predictive analysis of the model, the most common statistical 

indices, Root Mean Square Error (RMSE), Relative Root Mean Square Error (R-RMSE) 

and modeling efficiency (EF) were used for the validation of test datasets, and the 

formula used are briefly explained below: 

RMSE The RMSE is used to measure estimator performance; it represents the expected 

accuracy under the simulated uncertainty conditions. The RMSE is expressed as (Fox, 

1981 ): 

RMSE= ;=1 

N 

where, Yi is predicted pesticide concentration (/lg g-l), for sample size of N 
Yi is measured pesticide concentration (/lg g-l), for sample size of N 

(5.2) 

RRMSE The RRMSE standardizes the RMSE, which represents the standard variation of 

the estimator. The RRMSE assigns equal weight to any overestimation or 

underestimation of the statistic. RRMSE is expressed as (Martin et al., 2003): 

RRMSE=RMSE 
y 

where, fis Mean of measured pesticide concentration (/lg g-l) 

(5.3) 

EF Modeling efficiency represents the overall model performance, and expressed as 

(Green wood et al., 1985; Yang et al., 2000): 

L(- )2 y-y 
EF=l 1 1 

I(Y; -ft 
where, Yi is predicted pesticide concentration (/lg g-l), for sample size of N 

Yi is measured pesticide concentration (/lg g-l), for sample size of N 

f is mean of measured pesticide concentration (/lg g-l) 
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5.3 Results and Discussion 

Neural network model is used to predict the three herbicide concentrations at 

different depths of the soil profile. A six fold cross-validation method was used to 

develop the neural network models, and the variations among the six cross-validation 

models were evaluated for the three herbicides. The prediction performance of the neural 

network model is presented using the best and worst model results, out of the six cross­

validation models, by comparing with the measured data obtained from the lysimeter 

experiment, for five different depths and for three herbicides. AIso, the relative 

importance of the input parameters used by the neural network model is discussed. 

5.3.1 Performance evaluation of six-fold cross-validation method 

Figure 5.4 represents the variations among six neural network models developed 

for the three herbicides at different depths of the soil profile. Each column of points 

represents the RRMSE values obtained from six cross-validation models corresponding 

to the particular depths. The wider the distribution of the points in each column, greater 

the variations arnong the six cross-validation sets. For atrazine, at 0, 0.1 and 0.7 m 

depths, the figure shows less variation among the cross-validation subsets (Figure 5.4). 

Also for metolachlor, at 0 and 0.1 m depths, and for metribuzin, 0.1 and 0.7 m depths the 

cross validation models show less variations. The standard deviation of prediction errors, 

expressed as STD (RRMSE), also indicates a relatively small variation among the six 

cross-validation subsets at those depths, for the three herbicides (Table 5.2). Figure 5.4 

also shows that for atrazine at 0.2 and 0.4 m depths, network predictions were varying 

widely (Figure 5.4). Similar behavior can be noticed at 0.2 m depth for metolachlor and 

0, 0.2, and 0.4 m depths for metribuzin (Figure 5.4). AIso, the STD (RRMSE) is 

relatively higher for these depths for the three herbicides (Table 5.2). This variation 

indicates the noise among the datasets at those particular depths and the variation might 

be due to highly complex input-output relationships. However, the RRMSE values 

change with the cross validation fold number and with depths. This indicates that neural 

network model is affected, to sorne extent, by the choice of the dataset. 

Therefore, conceming the robustness of the prediction performance using a six­

fold cross validation approach, a neural network model was developed using the whole 
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~ .. dataset (same data for both training and testing). The average RRMSE of six cross­

validation prediction models for atrazine, metolachlor and metribuzin are compared with 

the RRMSE of the network trained and tested with same dataset (Figure 5.5). The figure 

shows that, for atrazine, the average RRMSE of six fold cross-validation models had very 

little variation with the RRMSE of network developed with whole dataset for different 

depths of the soil profile. For metolachlor, the average cross-validation RRMSE were 

slightly higher than the network RRMSE with whole dataset. Similarly, for metribuzin, 

the average RRMSE of six cross-validation models were almost same as the network 

RRMSE with the who le dataset (Figure 5.5). Although the test sets were chosen in a 

completely randomized manner, the above comparison reveals that cross-validation 

subsets are also able to get, more or less, necessary information from the datasets used for 

training. Therefore, the samples in the six training and test sets were sufficiently 

representative for the appropriate input-output relationships to be made in the neural 

network model. 

Table 5.2 Mean RRMSE and standard deviation (STD) among six cross-validation models 
for the three herbicides at different de~ths 

Atrazine Metolachlor Metribuzin 
De~th, m Mean STD Mean STD Mean STD 

0 0.63 0.06 0.48 0.10 0.60 0.25 
0.1 0.65 0.09 0.87 0.13 0.79 0.17 
0.2 1.11 0.27 1.53 0.30 1.21 0.30 
0.4 1.21 0.25 0.79 0.27 
0.7 0.96 0.17 0.67 0.10 
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5.3.2 Prediction performance of neural network model 

To conceptualize the network' s prediction performance, the best and worst 

prediction models among the six prediction models are summarized in Tables 5.3, 5.4, 

and 5.5, for the three herbicides at different soil depths. For visual interpretation, the 

predicted vs. measured concentrations for the three herbicides from the best and worst 

neural network prediction models are also shown in Figures 5.6, 5.7, and 5.8. The 

prediction for metolachlor concentrations were done for only three depths (0, 0.1, and 

0.2 m) because the neural network could not be executed due to insufficient non-zero 

input data at the 0.4 and 0.7 m depths. One may notice that there are only a few points in 

the validation datas et (Figures 5.6, 5.7 and 5.8); this is because of the small set (6%) is 

used for testing since training is important for a network to develop an optimized input­

output relationship and to check data for necessary information. AIso, at lower depths 

(0.4 and 0.7 m), the lack of non-zero concentrations produced fewer points in the plot. 

At the soil surface, for atrazine, there was a close concurrence between measured 

and predicted concentrations for the best model (Figure 5.6). The RRMSE and EF 

indicates the sirnilarity of predicted and measured concentrations (Table 5.3). In the case 

of the worst model, the RRMSE was a little higher and the EF a little lower. Similar to 

atrazine, the predicted concentrations of metolachlor and metribuzin, for the best model, 

were in good agreement with measured concentrations, as can be seen from correlation 

coefficient (Figure 5.7 and 5.8), RRMSE and EF (Tables 5.4 and 5.5). However, the 

worst and best models for atrazine and metolachlor gave similar values of RRMSE and 

EF (Table 5.3 and 5.4), demonstrating the robustness of cross-validation approach in 

developing prediction models. For metribuzin, for the worst prediction model, although 

the RRMSE was high and EF was low, the correlation coefficient was good, and there 

were little variations between the magnitudes of predicted and measured dataset, (Figure 

5.8). Nevertheless, the high r values and good EF for atrazine and metolachlor at the soil 

surface reveals that the neural network performed well in both worst and best models, as 

was the case for the best metribuzin prediction model. 
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Table 5.3 Validation performance of the best and worst neural network for predicting 
atrazine concentrations at different soil depths 

Worst prediction Best prediction 

Depth, (m) r RMSE RRMSE EF r RMSE RRMSE EF 

0 0.94 1929.87 0.74 0.55 0.99 1276.19 0.59 0.74 

0.1 0.82 56.99 0.81 0.44 0.96 33.24 0.59 0.70 

0.2 0.40 6.62 1.35 -0.59 0.97 0.29 0.66 0.66 

0.4 0.49 1.80 1.22 -0.04 0.95 0.13 0.76 0.68 

0.7 0.75 0.28 1.06 0.12 0.97 0.13 0.78 0.63 

r - correlation coefficient, RMSE - Root Mean Square Error (ug kg- ), RRMSE- Relative Root Mean Square Error, EF- modeling 
efficiency 

Table 5.4 Validation performance of the best and worst neural network for predicting 
metolachlor concentrations at different soil depths 

Worst prediction Best prediction 

Depth, (m) r RMSE RRMSE EF r RMSE RRMSE 

0 0.98 968.37 0.46 0.76 0.99 610.22 0.33 

0.1 0.73 144.33 0.89 0.23 0.94 47.57 0.70 

0.2 0.11 6.29 3.59 -3.88 0.92 4.90 0.92 

EF 

0.90 

0.50 

0.58 

r - correlation coefficient, RMSE - Root Mean Square Error (ug kg- ), RRMSE- Relative Root Mean Square Error, EF- modeling 
efficiency 

Table 5.5 Validation performance of the best and worst neural network for predicting 
metribuzin concentrations at different soil depths 

Worst prediction Best prediction 

Depth, (m) r RMSE RRMSE EF r RMSE RRMSE EF 

0 0.94 163.73 0.98 0.11 0.99 207.38 0.26 0.92 

0.1 0.77 5.36 0.79 0.21 0.97 1.89 0.56 0.78 

0.2 0.07 3.41 1.57 -0.12 0.78 0.66 1.07 0.36 

0.4 0.92 0.45 0.85 0.61 0.99 0.13 0.46 0.88 

0.7 0.95 0.24 0.77 0.67 0.98 0.14 0.55 0.83 

r - correlation coefficient, RMSE - Root Mean Square Error (ug kg- ), RRMSE- Relative Root Mean Square Error, EF- modeling 
efficiency 
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At 0.1 m depth, predicted concentrations of atrazine were fairly close to the 

measured concentrations with a correlation coefficient of 0.96 for the best model, while 

the RRMSE and EF were 0.59 and 70%, respectively (Table 5.3). In the case of the worst 

model, the EF was lower, i.e. 44%, with a higher RRMSE. For metolachlor, the RRMSE 

and EF were 0.7 and 50%; while for metribuzin, the RRMSE was 0.56 and the EF 78%, 

in the case of the best model (Tables 5.4 and 5.5). However, the worst model performed 

poorly for metolachlor and metribuzin, showing a low EF (23% and 21%) and a 

relatively high RRMSE (Figures 5.7 and 5.8). 

At 0.2, 0.4, and 0.7 m soil depths, the best model predieted atrazine 

concentrations satisfactorily; RRMSE of 0.66,0.76 and 0.78 and EF values of 66%,68% 

and 63% at the 0.2, 0.4, and 0.7 m depths, respectively (Table 5.3). For the worst model, 

at 0.2 and 0.4 m soil depths, the model EF for atrazine was negative, and at 0.7 m depth, 

the model EF was also poor (Table 5.3 and Figure 5.6).The RRMSE and EF of 0.92 and 

58% were found for the best model when predicting metolachlor concentrations at the 0.2 

m depth (Table 5.4). For metribuzin, the best model performed poorly at 0.2 m depth, 

with an RRMSE of 1.07 and EF of 36% (Table 5.5). However, the model prediction for 

metribuzin concentrations at 0.4 and 0.7 m soil depths were fairly close to the measured 

concentrations, with higher EF (88% and 83%) and lower RRMSE (0.46 and 0.55). For 

the worst models, the mode! EF was negative for metolachlor and metribuzin at 0.2 m 

depth, along with a high RRMSE (Tables 5.4 and 5.5).The high values of RRMSE in the 

case of the worst models for the three herbicides reveal greater variations in the 

magnitudes between the predicted and measured concentrations, which were also the 

reason for poorer model efficiency. 

The underestimation by the worst model might be attributable to having 

inadequate information regarding herbicide concentrations given the small number of 

samples available. Also, with the small available dataset, it was hard to create a large 

datas et for training and another dataset for testing. The RRMSE for the three herbicides 

increased at the 0.1 m and 0.2 m soil depth, compared to the soil surface, showing a 

greater discrepancy between the predicted and measured values. Moreover, too much 

noise in the training dataset, as a result of the variability in the transport of the herbicides 

at the 0.1 m soil depth, appears to have led the neural network to predict poorly. The 
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general reason for these could be the variable hydraulic conductivity at different layers of 

the soil profile, macro pore flow, and also the typically complex chemical behavior of the 

herbicides. At the 0.4 and 0.7 m soil depths, herbicide concentrations in the training 

datasets were either very low or zero. Consequently, the lack of non- zero values could 

account for the neural network's poorer ability to predict the complex environmental 

information, and consequently the discrepancies between predicted and measured data. 

Although underestimation was observed for the worst models, the best models 

performed weIl with a small number of records in the data set for aIl depths. AIso, in 

sorne cases, less variation were found between the best and the worst model, which 

demonstrating similarity in model performance among the various cross-validation 

subsets. The mean performance, using the six-fold cross-validation approach, revealed a 

fairly good performance of the neural network at different soil depths for the three 

herbicide concentrations. Findings of this study were similar to those of Yang et al. 

(1997), Salehi et al. (2000), and Sahoo et al. (2004). Moderately high values of RRMSE 

were obtained for the three herbicides since small numbers of datasets were used 

(Limsombunchai, 2004). This can be reduced by using a larger dataset. Nevertheless, it is 

inspiring that limited amount of data and few input parameters were needed to develop 

the model in this study, and it provided good quality predictions. The execution time 

taken for each model development was less than one minute, which also demonstrated the 

simplicity and faster execution of the neural network model. 

5.3.3 Relative importance of the input parameters 

Another important aim in modeling herbicide concentrations with ANNs was to 

identify the role of different input parameters in the network prediction. The relative 

importance of the input parameters on herbicide concentrations at different depths were 

estimated by neural network during the development of the models. Figure 5.9 shows the 

mean relative importance of three input parameters, mean daily temperature, time after 

application of herbicides, and irrigation. Temperature of soil profile has an average 

importance on the concentrations of the three herbicides throughout the soil profile 

(Figure 5.9). In the field study, the lysimeters were placed above the ground, and seemed 

to have same average temperature throughout the lysimeter. Therefore, the temperature 
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might affect the degradation of the three herbicides in a similar pattern in the soil profile. 

The importance of time increased from the soil surface to the lower soil depths, whereas 

the importance of irrigation decreased at deeper soil profile. This demonstrates herbicide 

degradation was also directly related to time, which affects the persistence and 

degradation, and irrigation, which affects mobility. When the herbicides were applied at 

the beginning, they degrade at a faster rate and, at the same time, they move downwards 

with irrigation water. When herbicides move to lower profile with time, they degrade at 

slower rates, and the time after the application of the herbicides plays an important role. 

Therefore, time crucially affects the persistence of the herbicides throughout the soil 

profile, and the simulated herbicide concentrations were affected moderately by time. On 

the other hand, irrigation water moves the herbicides better in the upper soil profile, 

however, when herbicide reaches to lower profile, the irrigation water might have less 

effect on their mobility. This is the reason the simulated herbicide concentrations were 

not much affected by irrigation at lower soil profile. These findings demonstrate the 

similarity of the results with those obtained by Yang et al. (1997). Therefore, it can be 

concluded that these input parameters can be used to build a neural network model and 

they may be sufficient to recognize the flow transport phenomena of the three herbicides 

in the soil profile. 
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5.4 Conclusions 

Neural network model was used successfully in simulating the three herbicide 

concentrations in the soil profile with small amount of available data. A six fold cross­

validation method was used to split the dataset randomly into training and test sets, while 

developing the models. Although in sorne cases, predictive performance of the neural 

network model was not good, the overall results still show the effectiveness of neural 

network modeling to simulate herbicide concentrations in agricultural soils. The input 

parameters used to develop the neural network mode! were temperature, time after 

application of herbicides and irrigation, which are easily measurable and affect herbicide 

degradation and mobility. Temperature seemed to have similar effect on the degradation 

of the three herbicides throughout the lysimeters, this might be because lysimeters were 

placed above the ground surface and the average temperature was same throughout the 

profile. The relative importance of time and irrigation varied differently at different 

depths of the lysimeter. The effect of irrigation seemed to have more effect on upper soil 

profile than lower soil profile, and herbicide degradation was directly related to the time 

after the application throughout the soil profile. Therefore, it can be concluded that neural 

network models yielded consistentlY good quality results with very few input parameters 

and small-sized datasets. However, the use of a large dataset is recommended, as it would 

increase the certainty of the neural network model. 
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CHAPTERVI 

SUMMARY AND CONCLUSIONS 

A lysimeter study was undertaken to evaluate the influence of surfactants on the 

mobility of the three agricultural herbicides, atrazine, metolachlor and metribuzin. Nine 

lysimeters (3 pesticides x 3 irrigation treatments), packed with a sandy loam soil, were 

used to conduct the study. The study area was covered with a rainfall shelter to pre vent 

the lysimeters from being rained on. In order to simulate a worst case scenario, no crop 

was planted, and hence no plant uptake occurred. The three irrigation treatments 

consisted of tap water, water containing an anionic surfactant (LAS), and water 

containing degradation products (NP) of a non-ionic surfactants Soil and water samples 

were taken at pre-determined time intervals and were analyzed in the laboratory. 

A laboratory sorption study was also conducted to quantify the partition 

coefficient (kd) for the three herbicides in presence of LAS and NP. A mathematical 

model PESTF ADE was used to simulate the mobility of the three herbicides in the soil 

profile. An Artificial Neural Network (ANN) was also employed for predicting the three 

herbicide concentrations in the soil profile. A cross-validation approach was used for 

splitting the datasets into training and test sets for the neural network model. 

The following conclusions were drawn from this study: 

i. The application of anionic (LAS) and degradation products (NP) of a non­

ionic surfactant, at low concentrations, in irrigation water did not increase 

the mobility of atrazine, metolachlor and metribuzin. 

ii. Slight deviations were observed in the distribution of aIl three herbicides in 

the upper soil profile under LAS-containing irrigation water, which could be 

due to LAS might have slightly enhanced the dispersion of soil aggregates. 

This would have delayed the mobility of herbicides due to increased 

adsorption. 

iii. The laboratory adsorption test demonstrated that the adsorption of atrazine 

and metribuzin were increased in the presence of low concentration of LAS. 
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This was attributed to dispersion in soil aggregates, caused by the LAS, 

rather than the interaction between LAS and the herbicides. 

IV. In presence of NP, the effects on the three herbicides were negligible in the 

lysimeter study. Slight variations in the concentrations in presence of NP 

were possibly due to the macro pore flow and non-equilibrium sorption of 

the herbicide in the lysimeters. 

v. The presence of NP in the laboratory sorption test led to a slight increase in 

adsorption of metolachlor but decreased adsorption of metribuzin, whereas 

the effect was negligible for atrazine. The effects of NP on 

adsorption/desorption were not significant. 

VI. The presence of anionic (LAS) and degradation products (NP) of a non­

ionic surfactant at a low concentration in irrigation water should not cause 

any increased hazard by increasing the mobility of herbicides to ground 

water. 

vii. The PESTFADE model was used to simulate three agricultural herbicides, 

atrazine, metolachlor, and metribuzin in the soil profile. While calibrating 

the model, the most sensitive parameter was found to be the rate constant 

(day"l) for the three herbicides. The simulated results from the PESTFADE 

model showed a close agreement with the lysimeter data at the soil surface 

for the three herbicides. Model predicted well at a 0.1 m soil depth, but at 

0.2 m soil depth, the model predicted the concentrations of atrazine and 

metribuzin poorly, while for metolachlor predictions were reasonable. At 

0.4 and 0.7 m depths the model performed similarly for aIl three herbicides, 

giving slight underestimations. 

V111. An ANN model was developed to simulate the concentrations of the three 

herbicides. At the upper soil profile the results of all cross-validation subsets 

were in close agreement with the predicted herbicide concentrations. For the 

lower profiles, the ANN prediction result was not as good. These variations 

in results, between cross-validation test sets, occurred when the samples 

were split into subsets. In sorne cases, the training sets provided limited 

necessary information for the model to use, when predicting test sets. Also, 
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the limited number of data and the existence of non-zero values at lower soil 

profiles led to the poorer model predictions. This emphasizes the necessity 

of using good quality and large numbers of datasets to avoid poor ANN 

worst predictions and to obtain greater reliability. 

ix. Three input parameters, temperature, irrigation and time (after pesticide 

application), were found to be important variables, as far as ANN modeling 

of the three herbicides is concemed. Temperature was found to have similar 

effect on the three herbicides behavior throughout an depths, since the 

lysimeters were placed above ground and temperatures were almost same in 

the soil profile. 
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CHAPTERVII 

FUTURE RECOMMENDATIONS 

Although the study was conducted successfully in the lysimeters and in the laboratory, 

and computer models and ANNs were employed effectively, a few shortcomings were 

encountered during the study. In this context, future recommendations are as follows: 

i. The study was conducted in a sandy soil and with three herbicides. It 1S 

recommended to conduct similar experiments for other soil types. AIso, the use of 

various other pesticides is suggested for future investigations. 

ii. The wastewater was prepared in the laboratory using low concentrations of 

anionic and degradation products of non-ionic surfactants. A wide range of 

concentrations of those two surfactants should be used to evaluate their influence 

on herbicide movement. Wastewaters, obtained directly from sewage treatment 

plants or from an effluent-ri ch river, should be tested in further studies on 

pesticide fate and transport. 

iii. Computer simulation models can play a very important role in simulating 

complex scenarios; however, well-documented computer models which can 

handle the complexities of soil and environmental variables should be tested. 

iv. Although ANN models performed weIl in simulating the three herbicide 

concentrations in this study, the use of a large dataset is recommended to increase 

the reliability of their predictions. 
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Table 1 Atrazine concentrations ( Ilg kg-1
) in soil samples under different treatment 

conditions, Tap water(TW), Linear alkylbenzene sulfonates(LAS) & Nonylphenol(NP)* 

Treatment Depths, cm 

TWI 

TW2 

TW3 

LAS 1 

LAS2 

LAS3 

NPI 

NP2 

NP3 

Top soil 
10 
20 
40 
70 
Top soil 
10 
20 
40 
70 
Top soil 

10 
20 
40 
70 
Top soil 
10 
20 
40 
70 
Top soil 
10 
20 
40 
70 
Top soil 
10 
20 
40 
70 
Top soil 
10 
20 
40 
70 

Top soil 

10 
20 
40 
70 
Top soil 

10 
20 
40 
70 

2 

21757.38 11432 
0.00 0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

14508.08 12320 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
16606.38 10504 
0.00 0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

16914.75 11230 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
22014.26 9890 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
13184.18 10230 
0.00 0.00 
0.00 0.00 
0.00 
0.00 

0.00 
0.00 

17258.22 10230 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

20399.36 11523 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
17579.39 13963 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

• Zero concentration implies non-detectable level 

Time, days 

5 10 21 30 50 90 
2850.00 1978.56 526.56 92.24 5.80 

79.00 18.43 45.63 20.15 21.69 0.00 
2.00 
0.00 
0.00 

218.04 
1.80 
0.00 
0.00 

198.00 
0.97 
0.00 
0.00 

1.80 
1.60 
0.00 
0.00 

7.41 
0.00 
0.00 

5.50 
1.05 
0.67 

14.78 1.71 0.00 
0.00 
0.00 

0.00 0.56 
1.44 1.50 

1350.00 517 .53 
86.47 249.46 
1.60 1.49 
0.00 0.90 
0.00 0.55 
2820.00 599.97 
89.30 234.59 
5.02 
0.00 
0.00 

1.73 
1.12 
0.59 

297.43 
150.31 
5.19 
0.00 
0.64 
297.27 
156.76 
4.09 
0.00 
0.00 

2150.00 1327.75 37.22 
2.23 4.35 0.00 
5.02 
0.00 
0.00 

0.86 
0.82 
0.78 

7.52 
0.66 
0.00 

2150.00 785.72 79.69 

75.73 
17.28 
3.96 
0.77 
1.14 

56.65 
18.14 
0.11 
0.55 
0.61 

2.80 
1.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

332.70 3.50 
5.51 0.00 
2.51 0.00 
0.88 0.00 
0.66 0.00 
138.14 12.70 

247.00 181.10 161.15 87.33 3.28 0.00 
0.00 6.33 1.08 4.17 3.28 0.00 
0.00 0.00 0.43 
0.00 0.00 0.31 

1820.00 947.06 
323.70 262.02 312.16 
0.00 4.90 1.82 
0.00 
0.00 

0.00 
0.00 

0.62 
0.67 

0.40 0.96 0.00 
0.00 1.46 0.00 
16.15 169.18 2.90 
192.32 5.98 0.00 
9.41 2.98 0.00 
0.94 
0.00 

3.82 
0.67 

0.00 
0.00 

6321.00 1267.56 318.50 254.40 
6.98 
1.97 
4.18 
0.16 

3.40 
0.00 
0.00 
0.00 
0.00 

0.13 
2.50 
0.00 
0.00 

216.80 
1.70 
0.00 
0.00 

276.83 
2.44 
0.00 
0.00 

121 

5.97 
0.71 
0.00 
0.00 

3.94 
1.18 
0.65 
0.62 

7523.00 708.61 
71.42 249.58 
12.63 2.24 
0.00 1.17 
0.00 0.38 
6502.00 434.34 
172.63 240.51 
13.41 1.50 
0.00 0.87 
0.00 0.49 

170.97 
2.89 
0.00 
0.00 

253.85 
200.15 
9.82 
0.49 
0.00 
162.25 
137.98 
43.84 
4.49 
0.00 

198.26 
41.03 
3.07 
1.77 
0.63 
109.82 
62.63 
3.11 
1.75 
0.68 

33.10 
0.00 
0.00 
0.00 
0.00 
8.60 
0.00 
0.00 
0.00 
0.00 



Table 2 Metolachlor concentrations ( ).tg kg- I
) in soi! samples under different treatment 

conditions, Tap water(TW), Linear alkylbenzene sulfonates(LAS) & Nonylphenol(NP)* 

Treatment Depth, cm 1 2 

TWI 

TW2 

TW3 

LAS 1 

LAS2 

Top soil 
10 
20 
40 
Top soil 
10 
20 
40 
Top soil 
10 
20 
40 

Top soil 
10 
20 
40 
Top soil 
10 
20 
40 

21465.36 14230 
0.00 0.00 
0.00 0.00 
0.00 0.00 
17257.67 10352 
0.00 0.00 
0.00 0.00 
0.00 0.00 
15548.83 11252 
0.00 0.00 
0.00 
0.00 

0.00 
0.00 

23162.45 13630 
0.00 0.00 
0.00 0.00 
0.00 0.00 
17873.35 12300 
0.00 0.00 
0.00 
0.00 

0.00 
0.00 

5 

20.00 
40.00 
0.00 

22.45 
37.10 
0.00 

49.60 
35.80 
0.00 

21.75 
31.20 
0.00 

37.60 
0.00 
0.00 

Top soil 
10 

17599.57 13677.40 -
LAS3 

NPI 

NP2 

NP3 

20 
40 

Top soil 
10 
20 
40 
Top soil 
10 
20 
40 
Top soil 
10 
20 
40 

0.00 
0.00 
0.00 

0.49 
0.00 
0.00 

18179.87 12522 
0.00 0.00 
0.00 0.00 
0.00 0.00 
20143.41 11131 
0.00 0.00 
0.00 0.00 
0.00 0.00 
24896.79 13652 
0.00 378.45 
0.00 0.00 
0.00 0.00 

• Zero concentration implies non-detectable level 

37.17 
31.68 
0.00 

28.40 
38.90 
0.00 

28.64 
35.80 
0.00 

36.51 
23.60 
0.00 
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Time, days 

10 21 30 50 90 
3120 
28.47 
11.01 
0.00 

1201.78 387.89 
78.06 43.30 
2.57 2.89 
0.00 0.00 

155.11 
31.24 
0.00 
0.00 

1.20 
0.00 
0.00 
0.00 

2300 585.74 15.64 82.26 3.60 
171.21 492.88 250.03 46.42 2.70 
3.90 0.00 9.82 4.75 0.00 
0.00 
2350 
70.60 
7.33 
0.00 

2120 
3.86 
7.33 
0.00 

0.00 0.00 0.00 0.00 
643.69 16.65 39.65 0.00 
233.78 167.65 75.73 0.00 
2.70 
0.00 

43.84 0.00 0.00 
0.00 0.00 0.00 

1036.06 412.18 124.75 2.70 
3.33 0.00 8.44 0.00 
0.00 0.00 1.81 0.00 
0.00 0.00 0.00 0.00 

2423 584.51 47.94 98.47 3.40 
445.10 272.14 98.60 112.30 3.20 
1.35 
0.00 
3850 
335.22 
1.18 

0.00 

2310 
47.55 
1.07 
0.00 

0.00 
0.00 
935.56 
488.83 
1.78 
0.00 

953.44 
19.33 
0.85 
0.00 

0.00 1.67 0.00 
0.00 0.00 0.00 
5.53 90.89 4.50 
299.82 173.70 6.70 
18.69 5.16 0.00 
0.00 0.00 0.00 

102.13 231.96 3.80 
43.30 12.58 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 

4533 728.46 290.88 172.20 23.30 
119.24 379.80 113.66 89.28 0.00 
8.30 6.81 8.15 9.36 0.00 
0.00 0.00 0.00 2.76 0.00 
3214 356.75 116.35 65.61 5.50 
304.88 364.56 163.24 127.67 0.00 
5.99 3.33 7.12 22.57 0.00 
0.00 0.00 0.00 0.00 0.00 



Table 3 Metribuzin concentrations ( Ilg kg-1
) in soil samples under different treatment 

conditions, Tap water(TW), Linear alkylbenzene sulfonates(LAS) & Nonylphenol(NP) * 

Treatment Depth, cm 1 2 

TW1 

TW2 

TW3 

LAS 1 

LAS2 

LAS3 

NP1 

NP2 

NP3 

Top soil 
10 

20 
40 
70 
Top soil 
10 

20 
40 
70 
Top soil 

10 

20 
40 
70 
Top soil 
10 

20 
40 
70 
Top soil 
10 
20 
40 
70 
Top soil 
10 

20 
40 
70 
Top soil 
10 

20 
40 
70 

Top soil 

10 
20 
40 
70 
Top soil 
10 

20 
40 
70 

5760.19 2853.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
4204.94 2610.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
5986.91 3380.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
5649.96 2850.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
6572.04 3170.00 
0.00 0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

5969.66 2820.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
6836.18 3220.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

5771.90 3521.00 
0.00 0.00 
0.00 
0.00 
0.00 
6969.73 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
3532.00 
0.00 
0.00 
0.00 
0.00 

• Zero concentration implies non-detectable level 

5 

0.00 
4.09 
0.00 
0.00 

27.00 
3.70 
0.00 
0.00 

24.60 
6.15 
0.00 
0.00 

0.30 
3.70 
0.00 
0.00 

25.40 
0.00 
0.00 
0.00 

32.40 
10.50 
0.00 
0.00 

11.30 
3.17 
0.00 
0.00 

15.66 
2.90 
0.00 
0.00 

15.49 
3.78 
0.00 
0.00 
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Time, days 

10 21 

560.00 
2.97 
1.02 
0.00 
0.00 
338.00 
5.43 
0.00 
0.00 
0.00 
540.00 
12.32 
0.00 
0.00 
0.00 
531.00 
0.90 
0.00 
0.00 
0.00 
538.00 
11.98 
0.00 
0.00 
0.00 
620.00 
8.95 
1.17 
0.00 
0.00 
991.20 
1.26 
0.00 
0.00 
0.00 

847.20 
5.94 
1.82 
0.00 
0.00 
798.00 
10.27 
1.75 
0.00 
0.00 

390.56 
0.58 
0.64 
0.00 
0.00 
110.61 

7.57 
0.75 
0.00 
0.00 
174.95 
19.41 
0.00 
0.00 
0.00 
360.78 
0.77 
0.00 
0.00 
0.00 
306.93 
8.07 
4.92 
0.00 
0.00 
303.36 
12.56 
9.27 
0.00 
0.00 
321.25 
5.91 
0.00 
0.00 
0.00 

176.98 
32.84 
2.85 
0.00 
0.00 
131.59 
9.09 
1.60 
0.00 
0.00 

30 
103.62 

1.45 
0.00 
0.00 
0.00 
12.04 
5.27 
0.00 
0.00 
0.00 
17.45 
4.54 
0.00 
0.00 
0.00 
18.40 
7.33 
0.00 
0.00 
0.00 
27.80 
0.79 
0.00 
0.00 
0.00 
10.54 
3.27 
4.14 
0.00 
0.00 
10.59 
0.00 
0.00 
0.00 
0.00 

9.31 
4.60 
0.00 
0.00 
0.00 
10.69 
9.40 
0.00 
0.00 
0.00 

50 
28.17 
1.77 
1.48 
1.90 
2.61 
Il.54 
2.55 
1.52 
2.84 
1.60 
16.80 
4.61 
1.50 
3.38 
2.09 
80.28 
0.00 
2.03 
7.46 
2.35 
41.60 
5.66 
2.53 
1.76 
2.12 
52.26 
4.27 
2.94 
2.67 
2.04 
5.56 
2.78 
2.78 
2.70 
1.68 

4.73 
2.72 
2.72 
1.60 
1.18 

3.12 
1.33 
1.33 
2.16 
1.50 

90 
3.20 
0.00 
0.00 
0.00 
0.00 
1.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
2.10 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
2.10 
0.00 
0.00 
0.00 
0.00 

2.30 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 



\ 
} 

Table 4 Atrazine, metolachlor and metribuzin concentrations ( /lg L-1
) in Water samples under different treatment conditions, Tap 

water(TW), Linear alkylbenzene sulfonates(LAS) and Nonylphenol(NP)§ 

Herbicides Time, day TW1 TW2 TW3 LAS 1 LAS2 LAS3 NP1 NP2 NP3 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.005 0.006 0.008 0.006 0.003 0.005 0.004 0.005 0.021 

Atrazine 21 0.008 0.009 0.013 0.009 0.006 0.009 0.007 0.008 0.008 
30 0.003 0.002 0.003 0.001 0.003 0.002 0.002 0.003 0.009 
50 0.002 0.001 0.002 0.00 0.00 0.00 0 0.00 0.00 
90 0.005 0.007 0.003 0.008 0.006 0.001 0.0004 0.001 0.003 
1 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.007 0.007 0.00 0.00 0.00 0.00 0.022 

Metolachlor 21 0.00 0.00 0.008 0.009 0.00 0.00 0.00 0.00 0.008 
30 0.00 0.00 0.002 0.002 0.00 0.00 0.00 0.00 0.009 
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
90 0.067 0.003 0.005 0.005 0.006 0.009 0.009 0.009 0.021 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.003 0.004 0.00 0.00 0.00 0.003 0.017 

Metribuzin 21 0.00 0.00 0.002 0.004 0.00 0.00 0.00 0.0004 0.005 
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
90 0.00 0.00 0.00. 0.00 0.00 0.00 0.00 0.00 0.00 

§ Zero concentration implies non-detectable level 
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