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Abstract

Radio interferometric images have revealed that concentric dust rings are a common

feature of protoplanetary disks. These rings provide observational evidence that there are

mechanisms to slow and even halt the expected rapid inward radial drift of dust particles.

As they are areas of high density, they are also thought to be potential sites for

planetesimal, and eventually planet, formation. How efficiently the dust grains collect into

these rings is dependent on the source of pressure perturbations in the disk gas and the size

of the grains themselves. We investigate this dust trapping efficiency and the dust-gas

dynamics within the pressure bump using GIZMO, a particle-based hydrodynamics code,

by performing 2D global disk and 3D local shearing box simulations of protoplanetary

disks with an embedded planet to establish the pressure bump. Using the dust-to-gas mass

ratio and turbulent viscosity within the pressure bump, we will provide some initial

calculations on the coagulation and formation of dust clumps within the rings. Our 3D

local shearing box simulation is run with a planet of mass Mp = 0.5Mth and particle Stokes

number τS = 0.1. From our preliminary 3D results, we find that within the pressure bump
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and the particle disk scale height, the dust-to-gas mass ratio is above the critical ratio

required for dust clumping by the streaming instability. The 2D global disk simulation is

still in development, so we present the progress thus far and discuss the current code

behaviour and future modifications required.
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Abrégé

Les images radio-interférométriques ont révélé que les anneaux concentriques de poussière

sont une caractéristique commune aux disques protoplanétaires. Ces anneaux prouvent qu’il

existe des mécanismes permettant de ralentir, et même d’arrêter, la dérive radiale et rapide

des particules de poussière, vers l’intérieur du disque. Etant donné que ces anneaux sont des

zones de densité élevée, on pense qu’ils sont également des sites potentiels pour la formation

de planétésimaux et, finalement, de planètes. L’efficacité de l’accumulation de poussière dans

ces anneaux dépend de la source des perturbations de pression dans le gaz et de la taille

des particules elles-mêmes. Nous utilisons le code hydrodynamique basé sur les particules

GIZMO pour étudier l’efficacité des pièges à poussière et la dynamique gaz-poussière au sein

du maximum de pression dans les disques protoplanétaires. Cela implique des simulations

globales en 2D ainsi que des simulations locales en 3D de bôıtes de cisaillement avec une

planète intégrée pour déterminer les conditions du maximum de pression. En utilisant le

rapport de masse poussière/gaz et la viscosité turbulente dans le maximum de pression,

nous fournirons des calculs initiaux sur la coagulation et la formation d’amas de poussière
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dans les anneaux. Notre simulation 3D de bôıte de cisaillement locale est effectuée avec une

planète de masse Mp = 0.5Mth et un nombre de Stokes des particules τS = 0.1. D’après nos

résultats préliminaires en 3D, nous constatons qu’à l’intérieur de la perturbation de pression

et de la hauteur caractéristique du disque de particules, le rapport de masse poussière/gaz est

supérieur au rapport critique requis pour l’agglomération de la poussière par l’instabilité de

courant. La simulation globale du disque en 2D est encore en cours de développement. Nous

présentons donc les progrès réalisés jusqu’à présent et discutons des performances actuelles

du code ainsi que des modifications futures requises.
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Chapter 1

Introduction

Observations of protoplanetary disks have revealed that dust and gas substructures are

ubiquitous among the observed disks (see, e.g., Andrews et al., 2018). However, due to

the relative velocity between the dust and the sub-Keplerian gas, we expect rapid inward

radial drift of the dust grains, suggesting that they drift onto the star on timescales several

orders of magnitude shorter than the typical disk lifetime of ∼few Myr (Mamajek, 2009).

The growth from sub-micron sized dust particles into larger objects thus presents many

physical challenges. These substructures therefore provide observational evidence which

suggests there is some mechanism slowing, and even halting, the rapid inward drift. Such

a mechanism may be a pressure bump in the disk gas. A pressure perturbation in a disk

with an otherwise monotonically decreasing radial gas pressure profile can act as a dust trap,

halting the inward drift and allowing the survival and collection of dust grains in the disk
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on timescales appropriate for planetesimal formation.

As these observations make it evident that dust can be trapped within pressure bumps,

our goal is to investigate the dust-gas dynamics within these pressure bumps to determine

whether they are capable of dust coagulation, clumping, and eventually forming cores capable

of growth by pebble accretion. We perform both 2D global disk and 3D local shearing box

simulations, using the particle-based hydrodynamic code, GIZMO. We choose GIZMO over

other hydrodynamic codes because it is the only publicly available code that supports self-

gravity, and does so not only for dust particles, but also gas. Although self-gravity is not

necessary for initial dust clumping to occur, it is required to keep the clump intact against

tidal shearing over time.

Our objective is to develop the GIZMO code and the 2D/3D simulation setups and

initial conditions, so that they behave physically over the relevant timescales, while also

reducing the error associated with numerical artifacts from the code’s hydrodynamic solvers.

In particular, our goal is to ensure that the boundary conditions in both the global and

local shearing box simulations do not introduce error that is then propagated through the

simulation domain, affecting the dynamics of the dust and gas behaviour, so we aim to

achieve a specified target precision of the relevant disk properties.
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Chapter 2

Literature Review

Over the past two decades, the exoplanet community has successfully detected over 5000

exoplanets (NASA Exoplanet Archive, 2024). It is confirmed that planet formation is not an

event isolated to our solar system, which begs the question, how are planets and planetary

systems born? Thoroughly answering this question requires an understanding of the entire

planet formation process, all the way back to the birth of the young host star and its

circumstellar disk of dust and gas, known as a protoplanetary disk.

Early on in this process, the growth from sub-micron sized dust particles into larger

objects involves complex processes which present many physical challenges (Pinilla et al.,

2012). In a smooth disk with a radial gas pressure that monotonically decreases with radius,

the gas moves at a sub-Keplerian velocity due to the outwards gas pressure gradient force.

The dust particles, which do not experience this pressure gradient force and orbit at Keplerian
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velocities, feel a headwind from the gas, which causes the dust to lose angular momentum

and drift inwards. Typically, we invoke mm to cm-sized dust grains at the midplane in the

outer disk regions (> 50 AU) to match mm to cm-wave spectra and images (e.g., D’Alessio

et al., 2001; Testi et al., 2003), assuming an optically thin disk. Around ∼ 50 AU, these

grains have characteristic lifetimes (due to radial drift towards the star) between 105 yr down

to 103 yr (Weidenschilling, 1977), approximately 1 − 3 orders of magnitude shorter than the

typical disk characteristic lifetime of ∼ 2.5 Myr (Mamajek, 2009). As a result, the dust

moves toward the star before a large object can be formed. Furthermore, the solid particles

can reach velocities that lead to fragmentation by collisions, further preventing dust particles

from forming larger bodies. This problem is commonly referred to as the “meter-size barrier”,

as a one-meter-sized object at 1 AU moves towards the star on timescales as short as 100

years, 4 orders of magnitude shorter than the ∼few Myr disk lifetime, preventing the growth

of any larger objects.

However, protoplanetary disk surveys reveal that the dust remains in the outer regions

of disks over Myr timescales, providing observational evidence that there must be some

mechanism slowing and even preventing the rapid inward radial drift of the dust. One survey

in particular is the Disk Substructures at High Angular Resolution Project (DSHARP),

conducted using the Atacama Large Millimeter/submillimeter Array (ALMA) (Andrews

et al., 2018). This survey found that dust substructures are ubiquitous in the 20 nearby,

bright disks that were imaged, most commonly manifesting as rings and gaps, but also as
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spirals and crescents (Andrews et al., 2018), shown in Figure 2.1. As such, these substructures

may be the key to explaining the mechanism responsible for preventing the radial drift

of the dust. Furthermore, as these substructures are areas of high density, they may be

appropriate sites for planet formation, thus playing a crucial role in the overall formation

process. However, Lee (2024) suggests that this may not be the case in the outer disk regions,

so further discussion on this topic is required before any concrete conclusions can be made.

As observations indicate that dust grains persist over ∼ few Myr timescale, the mechanism

acting to prevent the rapid inward radial drift may help us to understand how grain growth in

disks can overcome the meter-size barrier. Unfortunately, the inner disk region is challenging

to observe, as its small size on the sky makes it difficult to spatially resolve, and it is optically

thick. The outer disk region (> 50AU), on the other hand, is more accessible for observations

because it is much easier to spatially resolve and we assume the dust thermal emission to be

optically thin at millimeter wavelengths. In addition, in the outer regions of the disk, the

meter-size barrier is equivalent to a “millimetre-size barrier”, and millimetre observations of

the outer region probe precisely this grain size range (Pinilla et al., 2012). So, probing the

outer disk region and studying the dust growth may provide insight into the planet formation

processes in the inner regions.

The question is then, what mechanism acts to trap the dust and prevent the rapid inward

drift? In the presence of a gas pressure perturbation in the disk, the relative velocities of

the dust and gas due to the gas pressure gradients on either side of the pressure peak cause
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Figure 2.1: Imaged protoplanetary disks showing substructures in the form of rings, gaps,
and spirals. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S.
Dagnello.

the dust to drift towards the peak, trapping it within the bump. We therefore must consider

a disk with a radial gas pressure profile that is not monotonically decreasing with radius.

Although a variety of possible sources of gas perturbations have been suggested to explain

the formation of pressure bumps in the disk, one plausible and widely postulated hypothesis

are gaps carved by perturbations from massive planets embedded in the disk, which is what

we will focus on.

The literature review will proceed as follows: Section 2.1 will discuss the dust-gas

dynamics within the disk, including dust-coupling to the gas and radial drift; Section 2.2

will describe the formation mechanism of the gas pressure bump due to an embedded

planet in the disk; Section 2.3 will discuss the mechanism by which this pressure bump

collects and traps the dust within it; Section 2.4 will further discuss the dust-gas dynamics

within the pressure bump, including the processes responsible for dust coagulation,

clumping, and core growth; and, finally, Section 2.5 will present recent studies which also

apply hydrodynamic codes to investigate dust-gas dynamics and planetesimal formation in
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protoplanetary disks.

2.1 Dust-Gas Dynamics in Disks

When dust particles move through a gas with some relative velocity, the dust experiences a

drag force. The type of drag force acting on the dust may be either Stokes drag or Epstein

drag, for a ≫ λmfp or a ≲ λmfp, respectively, where a is the size of the dust grain and

λmfp = 1/nσ is the mean free path (mfp) of the gas (i.e., the average distance a gas particle

will travel before colliding with another particle). The mfp is written in terms of σ, the

collisional cross-sectional area of the gas particles, and n = ρ/µmH, the volume number

density, where ρ is the volume mass density, µ is the mean molecular weight, and mH is the

mass of a hydrogen atom.

In our simulations, we are primarily interested in dust grains which are smaller than or

comparable in size to the gas mean free path, so we assume an Epstein drag law. In the

presence of a drag force, we define the dust particle stopping time as the time it takes a

particle with a given momentum to reach its terminal velocity, i.e., the velocity at which the

net force is zero (Pinilla et al., 2012). It is given by

ts = ρaa

ρgcs

, (2.1)

where ρa is the material density of a dust grain, ρg is the volumetric mass density of the disk
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gas, and cs =
√

kBT
µmH

is the gas sound speed (with the Boltzmann constant kB). We can then

characterize the dust particles using a dimensionless stopping time parameter, known as the

particle Stokes number

τS = tsΩK = ΩK
ρaa

ρgcs

, (2.2)

i.e., the momentum-stopping time normalized to the local orbital time. The Keplerian orbital

frequency is given by ΩK =
√

GM∗/r3, where G is the gravitational constant and r is the

orbital distance from the star.

As previously explained, the dust grains drift radially inwards through the disk as they

lose angular momentum. The drift velocity is given by Weidenschilling (1977)

ṙ = −2ηvK
τS

1 + τ 2
S

, (2.3)

where vK = ΩKr is the Keplerian orbital velocity of the dust grain, η ≡ −1
2

(
H
r

)2
∂lnP
∂lnr

,

H = cs

ΩK
is the disk gas scale height, and ∂lnP

∂lnr
= β is the pressure gradient term which

follows a power law according to P ∝ rβ. The power law index β is determined by the

density and temperature profiles of the gas in the disk through the equation of state for

pressure P = ρc2
s ∝ ρT ∝ r−pr−q ∝ r−(p+q), so that β = −(p + q).

We see that when τS ≪ 1, ṙ → 0, because the particles are well coupled to the gas and

flow with it. When τS ≫ 1, ṙ → 0, because the large particles do not care about the gas flow

and continue to flow in their regular orbit. The radial drift is maximized when τS ∼ 1. This
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is relevant for our understanding of the dust-gas dynamics within the gas pressure bump in

the disk, which will be discussed further in Section 2.3 and 2.4.

2.2 Gas Pressure Bump Formation in Disks

This section will present the the formation process of a pressure bump in the disk gas due

to an embedded planet. A relevant length scale to consider is the Hill radius, given by

RHill = r
(

Mp

3M∗

)1/3
, (2.4)

where Mp is the planet mass and M∗ is mass of the central star. The Hill radius is the spatial

extent of the embedded planet’s gravitational influence against the tidal acceleration from

the star the planet orbits. When the Hill radius is comparable to the disk scale height H,

this yields what is known as the “thermal mass”

Mth = 2c3
s

3GΩK

. (2.5)

The presence of an embedded planet in the gas disk can excite density waves (Dong

et al., 2017) which carry both energy and angular momentum, and when a wave is dissipated,

angular momentum is deposited in the disk gas (Lin & Papaloizou, 1993). In an inviscid or

low viscosity disk, the waves dampen less by viscous dissipation, and more by steepening and
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then breaking. It is at this breaking point that the wave deposits its angular momentum.

The result is that the gas is repelled away from the planet, carving out the gaps in the

vicinity of the planet’s orbit. From Goodman & Rafikov (2001), they show that the waves

launched to either side of the planet’s orbit will travel a radial distance

lsh ≈ 0.8
(

γ + 1
12/5

Mp

Mth

)−2/5

H, (2.6)

where γ is the adiabatic index, before shocking and dissipating. The gas originally in the gap

regions is pushed away and piled up at the gap edges to form regions of high gas pressure,

and hence the gas pressure bump.

2.3 Gas Pressure Bump as a Dust Trap

The question is then how do the dust particles collect in a gas pressure bump? Let us

consider a local radial pressure maximum in the disk at radius rmax, as shown in Figure

2.2. At r < rmax (left of pressure max), gas is super-Keplerian due to the adverse pressure

gradient force directed inwards. At r > rmax (right of pressure max), the gas is sub-Keplerian

due to the additional pressure gradient force directed outwards. Therefore, dust particles

receive a tailwind at r < rmax, and feel a headwind at r > rmax. The tailwind gives the

dust particles angular momentum, drifting them radially outwards (towards pressure peak),

while the headwind removes angular momentum causing inward radial drift (also towards
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the pressure peak, but from the other side). Overall, the dust migrates towards the pressure

maximum from both sides. The dust also exerts a drag force on the gas, known as dust

‘back-reaction’, which drags more gas into the perturbation and acts to further grow the

pressure bump.

Figure 2.2: Schematic of the streaming instability acting on dust due to a gas pressure
perturbation. A runaway process leads to the collection of dust within the pressure maxima
which acts as a dust trap, eventually forming substructures within the disk.

2.4 Dust Coagulation and Clumping

We are also interested in investigating the ability of these dust rings to form planetesimals

and eventually planets. Even if pressure perturbations in the disk act as efficient dust

traps, we also require some mechanism to coagulate the dust and begin the early stages of

planet formation. In this section, we will review the current understanding of the necessary

conditions and criteria which must be met for coagulation, clumping, and eventually core
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growth to occur.

2.4.1 Streaming Instability

The streaming instability (SI) (Youdin & Goodman, 2005) arises from the mutual interactions

of gas and dust via aerodynamic drag. The SI involves a minimal amount of physics, namely,

Keplerian orbital motion, gas pressure, and a drag acceleration that is linear in relative

velocities. It will always be active in the linear instability regime as long as there is some

relative velocity between the dust and gas. The differential motion can concentrate dust

particles into streams, forming regions of enhanced dust density. Unlike the gravitational

instability (GI), SI does not require self-gravity, yet it generates growing particle-density

perturbations that could potentially seed planetesimal formation. In a gas pressure bump,

SI is not active at the pressure maximum because there is zero pressure gradient, so both

the gas and dust move at Keplerian velocities. Rather, SI will be active on either side of the

peak where there exists a non-zero drift velocity of grains.

Although SI is always active in the linear regime as long as there is some relative velocity,

it is also possible for the SI to produce strong particle clumping if it is active in the nonlinear

instability regime. For SI clumping, the ratio of the average solid to gas surface density,

or metallicity, (Z = ⟨Σd/Σg⟩, where Σd and Σg are the dust and gas surface densities,

respectively) must exceed a critical value (Li & Youdin, 2021). This exact value is set

by τS and the level of turbulence (characterized by the turbulent viscosity parameter α
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(Shakura & Sunyaev, 1973)). Li & Youdin (2021) quantify the thresholds by performing a

suite of vertically stratified SI simulations over a range of dust sizes, dust-to-gas ratios, and

turbulence levels.

In the disk, particle settling competes with stirring by the gas to establish the particle

scale height Hp =
√

H2
p,η + H2

p,α, where Hp,η ≡ hηηr is the particle scale height without

additional turbulence beyond the dust–gas interactions that drive the SI, and is measured in

the SI simulations performed by Li & Youdin (2021), written as a fraction hη of the SI length

scale ηr (Youdin & Goodman, 2005), and Hp,α/H =
√

α/(α + τS) for additional turbulence

which increases stirring (Youdin & Lithwick, 2007). The particle settling and stirring also

establishes the dust-to-gas density ratio at the disk midplane, written as

ϵα = Σd

Σg

H

Hp
= Z√

h2
ηΠ2 + α

α+τS

, (2.7)

where Π = ηvK/cs is the parameterized global radial pressure gradient, known as the

headwind parameter. Additional turbulence can provide additional stirring, thus increasing

Hp and reducing the midplane particle density. Therefore, a critical value for the density at

the midplane must also be considered for SI clumping in the presence of additional

turbulence, given by the following piecewise quadratic function fitting log(ϵcrit) as a

function of log(τS) to the simulation results of Li & Youdin (2021):

log(ϵcrit) ≈ A(logτS)2 + B(logτS) + C, (2.8)
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with 
A = 0, B = 0, C = log(2.5) if τs < 0.015

A = 0.48, B = 0.87, C = −0.11 if τs > 0.015.

They present a single criterion for SI clumping including additional turbulence, which can

be expressed as a condition on the particle metallicity Z as

Z > Zcrit,α ≡ ϵcrit(τS)
√

h2
ηΠ2 + α

α + τS

≈ ϵcrit(τS)

√√√√(Π
5

)2

+ α

α + τS

, (2.9)

where they find a characteristic hη ≈ 0.2, with variations about that value that have a

complicated τS and Z dependence, but stating this to be sufficiently accurate considering

uncertainties in simulations and real disks. To apply this criterion, the local disk values of

Z, Π, α, and τS must be considered, and ϵcrit is calculated using Equation 2.8.

A key result is that in a smooth disk, strong particle clumping occurs at subsolar

metallicities (Zcrit < 0.01) for τS > 0.01, with the lowest Zcrit = 0.004 for dust grains with

τs = 0.3. Smaller particles (τS < 0.01), however, require a supersolar threshold

(Zcrit > 0.02). When the authors include the effects of additional non-SI turbulence, they

find that the required midplane dust-to-gas ratios are ϵcrit ≲ 0.5 for 0.02 < τS < 1, and

ϵcrit ∼ 2.5 for τS ≤ 0.01.
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2.4.2 Dust Clumping

In the previous section, we discuss the possibility of dust clumping due to the streaming

instability, but what are the conditions required for a dust clump to be bound? In order to

be considered bound, the clump must be stable against both turbulent diffusion and tidal

shear. For the first of these criteria, let us consider the contraction timescale

tcontr = ΩK

4πGρclτS

(2.10)

where ρcl = 3Mcl/4πR3
cl is the density of the clump (Mcl and Rcl are the mass and radius of

the clump, respectively), and the diffusion timescale

tdiff = R2
cl

Dd

= R2
clΩK

v2
rms,clτS

, (2.11)

where Dd = v2
rms,clτS/ΩK is the particle diffusion coefficient, and vrms,cl is the root mean

squared dispersion velocity of the dust particles in the clump. To be stable against turbulent

diffusion, Klahr et al. (2018) and Gerbig et al. (2020) outline the diffusion-limited collapse

criterion for planetesimals, which is derived from the condition in which the contraction

timescale is shorter than the diffusion timescale. The collapse criterion tcontr < tdiff is then

v2
rms,clRcl

3GMcl
∼ αvir/15 < 1, (2.12)
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where we define αvir ∼ (5v2
rms,clRcl)/(GMcl) as the virial parameter for a spherical clump

(e.g., Bertoldi & McKee, 1992) that is gravitationally bound when αvir ≤ 1. This condition

also guarantees collapse against turbulent diffusion from Equation 2.12. If αvir > 1, however,

the dust particles have enough kinetic energy to expand through the gas.

If a clump is stable against turbulent diffusion, it may still be tidally sheared apart in

the protoplanetary disk. Gerbig et al. (2020) defines the condition for stability against tidal

shear to be that the clump’s self-gravity is larger than the tidal acceleration in three-body

dynamics:
GMcl

R2
cl

> 3GM∗

r2
d

Rcl

rd
=⇒ Mcl > 3M∗

(
Rcl

rd

)3
, (2.13)

where rd is the orbital distance of the dust clump.

2.5 Related Studies

Before presenting our work, we will first offer a brief review of related studies which also

explore dust particle trapping and planetesimal formation in protoplanetary disks using

multi-dimensional hydrodynamics codes. Carrera et al. (2021) present the first 3D

simulations of planetesimal formation in the presence of a pressure bump modeled

specifically after those observed by ALMA. The authors conduct a series of 3D shearing

box simulations using ATHENA gas+particle code (not publicly available), an Eulerian

(grid-based) code. The code is run in pure hydrodynamic mode with particle feedback and
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particle self-gravity, implemented using a particle-mesh approach. In these simulations, a

pressure bump is placed at the center of the box, along with an initial solid-to-gas ratio of

Z = 0.01. They conduct a total of nine simulations varying several parameters, in

particular the pressure bump amplitude and the dust grain size.

Carrera et al. (2021) find that for centimeter-size particles, pressure bumps reliably

create the conditions necessary to trigger planetesimal formation by the SI, even for

smaller amplitude bumps where there is no particle trap (a particle trap means that

particle drift is halted). They also find that removing particle feedback significantly delays

the particle accumulation and planetesimal formation, and ultimately conclude that

planetesimal formation in pressure bumps relies on SI and not only pure GI due to

concentration. However, the results for smaller millimeter-size particles were inconclusive,

which is a significant limitation because the maximum particle sizes that we observe in

ALMA rings are ∼millimeter-sized. Therefore, Carrera & Simon (2022) extends on this

work by running a new high-resolution simulation with millimeter-size grains and a large

pressure bump. The objective is to determine whether the SI can form planetesimals in a

pressure bump out of millimeter-size grains.

Carrera et al. (2021) note that clumping by SI only seems to be an efficient process when

the dust-to-gas ratio Z has already reached some minimum threshold, and that it is more

efficient when the headwind Π induced by the pressure gradient is lower (e.g., Bai & Stone,

2010). As shown in Sekiya & Onishi (2018), the overall clumping structure of the particle
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filaments produced by the SI scales with Z/Π, which allows Carrera & Simon (2022) to

rescale the strong clumping criteria of Li & Youdin (2021) for any pressure profile. They

report that, although the Z/Π value they measure is well above the critical limit where

previous studies found clumping would occur, they did not observe any strong clumping

nor planetesimal formation. This is likely because the region with high Z/Π is narrow and

the particle crossing time across this region is shorter than the growth timescale of the SI.

Therefore, this introduces an additional criterion, which is that the time particles spend

within a high-Z/Π region must be long enough to allow the SI to develop filaments. Thus,

the possible pathways to planet formation are significantly limited by this result, indicating

that either protoplanetary disks routinely form centimeter-sized grains or the model that

planetesimals form when a pressure bump triggers the SI is incorrect. Either way, further

investigations are required of both the theory and numerical work behind these simulations.

We emphasize that the work presented in this thesis is not intended to be a follow up

to the work by Carrera et al. (2021) and Carrera & Simon (2022). Instead, we present

their work here to offer valuable context on the current scope of studies and simulations

being conducted in this field. Their work is capable of directly simulating fragmentation

and formation of bound clumps by gravitational collapse, whereas our simulations do not

have sufficiently high resolution to achieve this, as it becomes too computationally costly.

Instead, we are only reporting on the general dust-gas dynamics inside a pressure bump

generated by a planet. We are, however, using the first publicly available code that supports
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self-gravity, which, again, is not necessary for initial dust clumping to occur, but is required

to keep the clump intact against tidal shearing over time. So, future work may build off of

the results presented here to further investigate the ability of these pressure bumps to form

and maintain bound dust clumps.
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Chapter 3

Methods

3.1 Numerical Methods

The code we are using to perform the simulations is GIZMO, a flexible, massively-parallel,

multi-physics code, presented in Hopkins (2015). Although originally designed for large

scale cosmological simulations, we choose to use GIZMO because it is the only publicly

available hydrodynamics code that supports self-gravity for both dust and gas particles,

which is necessary for directly simulating dust clumping that is then stable against tidal

shear. The numerical method used for the hydrodynamics is the Lagrangian “meshless

finite mass” (MFM) method, which has been validated in various studies using a series of

benchmark tests and comparisons (e.g., Hopkins & Raives, 2016; Hopkins, 2016, 2017; Su

et al., 2017). Several standard hydrodynamic tests performed are the Sod shock tube and
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Kelvin-Helmholtz instability, showing MFM’s excellent agreement with analytical solutions.

The MFM formulation conserves particle masses by eliminating mass fluxes between

particles, i.e., no mass flux across the particle faces. The volume partition of the particles

is determined by the weighted kernel at each point corresponding to the location of the

particle. This is similar to a Voronoi tessellation, but with the boundaries smoothed. The

fluid equations are then solved by integrating over the domain of each particle/cell. MFM

belongs to the category of arbitrary Lagrangian-Eulerian finite volume Godunov methods

and is most closely related to Voronoi-based moving-mesh methods. In the MFM method,

the “particles” are actually just moving cells representing a finite volume, with a

well-defined volume partition. The equations used in these methods are derived from

explicit volume integrals (Hopkins, 2015).

Smoothed Particle Hydrodynamics (SPH) (described in, e.g., Monaghan, 1992, 2005; Liu

& Liu, 2010) is another particle-based computational method used to simulate fluid flows. It

is a mesh-free, Lagrangian technique that represents fluids with particles carrying properties

such as mass, position, and velocity. These particles move with the fluid flow, simplifying the

tracking of interfaces and boundaries. SPH uses smoothing kernels to interpolate physical

quantities over neighbouring particles, ensuring a smooth representation of the fluid. This

method is well-suited for problems with complex geometries and free surfaces.

SPH has several limitations, however, which MFM addresses, improving accuracy,

stability, and computational efficiency. As mentioned above, the equations used in MFM
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are derived from explicit volume integrals, and an important consequence of this is that the

MFM method is second-order consistent, while SPH is not even zeroth-order consistent.

N-th order consistency refers to the rate at which the error in a numerical approximation

decreases as the discretization parameter (e.g., particle spacing h) is refined, or in other

words, as the particle resolution is increased. The error in the approximation of quantities

like density, pressure, and velocity fields decreases at a rate O(hn), so these quantities

become more accurate at a predictable and quantifiable rate. MFM also better handles

boundary conditions and reduces inaccuracies near solid boundaries. By using adaptive

algorithms, MFM mitigates issues related to kernel choice and smoothing length, reducing

numerical artifacts like particle clustering. It enhances the treatment of incompressibility

and stability, reducing reliance on artificial viscosity and providing more realistic fluid

behavior. MFM also has superior shock-capturing capabilities and improves consistency

and convergence through adaptive particle management, ensuring higher accuracy in

long-term simulations and regions with steep gradients. These advancements make MFM a

more robust and accurate approach for fluid dynamics problems.

GIZMO also supports the inclusion of multiple species, allowing us to investigate the

dust-gas dynamics. The dust particles are integrated using a super-particle method, where

each ‘super-particle’ represents an ensemble of grains with similar properties, such as size,

mass, and velocity. The effect of the drag force exerted by the dust on the gas, known as

dust ‘back-reaction’, is also accounted for in the simulations as in Moseley et al. (2019) and
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Seligman et al. (2019), using a two-fluid approach where gas and dust are treated as

coupled fluids. The drag force between gas and dust, based on their relative velocities, is

calculated. Adaptive resolution methods ensure high accuracy in regions with significant

dust-gas interactions, and advanced numerical solvers handle the coupled equations of

motion, maintaining stability and accuracy over long simulation periods. These methods

ensure self-consistent feedback between dust and gas, capturing their mutual influence

accurately. Validation against analytical solutions and observational data confirms the

accuracy and realism of the simulations.

3.2 Problem Setup

In this section, we present the two problem setups for our simulations; the first is for the

2D global protoplanetary disk simulation, and the second is for the 3D local shearing-box

simulation.

3.2.1 2D Global Protoplanetary Disk

Initial Conditions

The protoplanetary disk is modelled as a gas disk around a solar mass star, with an inner

radius of 0.2 and an outer radius of 4.0 (unitless values which can be scaled to any appropriate

disk size). All values are scaled such that M⊙ = 1. The Keplerian orbital frequency, gas
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sound speed, and gas scale height, temperature, and surface density at the reference radius

r0 = 1 are as follows; ΩK,0 = 1, cs,0 = 0.05, H0 = 0.05, T0 = 0.0025, and Σ0 = 8.84 × 10−4.

In physical units, taking r0 = 1AU, these values correspond to ΩK,0 = 2 × 10−7s−1 (i.e. a

period of ∼ 365 days), cs,0 = 1500m/s, and T0 = 270K.

The gas in the disk is governed by the following equations for conservation of angular

momentum (in polar coordinates) which describe the radial and azimuthal motion,

respectively:
∂

∂t
(Σr2Ωgas) = −1

r

∂

∂r
(Σurr

3Ωgas) + 1
r

∂

∂r
(νΣr3 dΩgas

dr
), (3.1)

and
u2

ϕ

r
= GM∗

r2 + H

Σ
dP

dr
, (3.2)

where ur and uϕ are the radial and azimuthal velocities of the gas, Σ is the gas surface

density, and ν = ηviscH/Σ is the kinematic viscosity with dynamic viscosity parameter ηvisc

to be set in the code. Under the viscous α-disk model presented in Shakura & Sunyaev

(1973), the gas viscosity is adopted from the α−prescription ν = αcsH, where α is the

dimensionless viscosity parameter (usually prescribed a maximum value of α ≲ 10−3 (e.g.,

Flaherty et al., 2017), although it is highly uncertain). In a steady-state disk, the inward

radial velocity of the gas is given by ur = −3ν
2r

, derived by combining the angular momentum

conservation and mass conservation of a viscously accreting disk. The mass accretion rate
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through the disk is spatially and temporally constant, and is given by

Ṁ = 2πΣrur = −3πΣν = constant. (3.3)

Note that Ṁ < 0 implies an inward accretion.

Both observational evidence and theoretical models of protoplanetary disks suggest that

their density and temperature profiles typically follow a power-law distribution with radius.

We use a radial gas surface density profile Σ ∝ r−1, with a total disk gas mass of 0.01M⊙. The

r−1 surface density profile is supported by several empirical observations. Zhang et al. (2017)

present the first partially spatially resolved observations of the 13C18O J = 3−2 line emission,

a gas tracer that probes the bulk mass distribution, in the closest protoplanetary disk, TW

Hya. They report a gas mass distribution scaling of r−0.9+0.4
−0.3. Zhang et al. (2021) present

high-resolution observations of CO isotopologue lines, providing analysis for observations

of five protoplanetary disks. From their best-fit disk model parameters, they find the gas

surface density exponent to be −1 for four of the disks, and −0.8 for the other.

The r−1 density scaling then also implies ν ∝ Σ−1 ∝ r, with α usually being a spatially

constant value. However, ηvisc is currently a parameter set in the code and is spatially (and

temporally) constant, which implies that ν ∝ r9/4 and α ∝ r5/4, but we plan to implement

a more physically realistic profile in the future. In the code, we set ηvisc = 3.305 × 10−8

in code units, so at r0 = 1.0, α = 4.42 × 10−5. We choose a low α compared to the usual
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α = 10−3 prescription, because using a value for ηvisc that is even one order of magnitude

higher significantly slows the simulation runtime.

The radial gas temperature profile we use is T ∝ r− 1
2 . The following derivation considers

the main source of heating to be irradiation by the star, and provides the motivation behind

this choice of temperature profile. The flux from stellar radiation is

F∗(r) = L∗

4πr2 , (3.4)

where L∗ is the luminosity of the star. But considering that the irradiating flux is the

projection of this flux onto the surface of the disk, we have

Firr(r) ≈ ϕ
L∗

4πr2 , (3.5)

where ϕ is the shallow grazing angle that the stellar light can illuminate. The irradiation

heating of the disk (for the two sides) is then

Qirr
+ = ϕ

L∗

2πr2 . (3.6)

We assume that the disk’s effective temperature is exactly enough to radiate this heating
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away, and assuming the disk to be optically thick (i.e., radiating as a blackbody), we have

2σSBT 4
eff = ϕ

L∗

2πr2 =⇒ Teff =
(

ϕ
L∗

4πσSBr2

)1/4
∝ r−1/2, (3.7)

where σSB is the Stefan-Boltzmann constant.

Another possible heating source is viscous heating due to the accretion process, which

results in a temperature scaling Teff ∝ r−3/4 in the α-disk model (Shakura & Sunyaev, 1973).

Since Teff from viscous accretion drops off at a steeper rate than from irradiation by the

star, Teff is dominated by irradiation at large r, so we will consider irradiation to be our

main source of heating. Furthermore, Chiang & Goldreich (1997) explore the role of stellar

irradiation and vertical disk structure, finding that the disk’s absorption and re-emission of

stellar radiation contributes to the observed temperature distribution. D’Alessio et al. (1998)

supported these findings with detailed simulations that incorporate both radiative transfer

and thermal balance, finding that a r− 3
7 scaling emerges as a result of heating through

irradiation by the star. Although this is the more realistic scaling profile, −3/7 is very close

to our derived −1/2, so we choose to use the simpler r− 1
2 scaling.

The gas sound speed then scales as cs =
√

kBT (r)
µmH

∝ T
1
2 ∝ r− 1

4 , where kB is the Boltzmann

constant, µ is the mean molecular weight, and mH is the mass of a hydrogen atom (normalized

to 1 in code units). The Keplerian orbital frequency scales as ΩK ∝ r− 3
2 , so that the gas scale

height scales as H = cs

ΩK
∝ r

5
4 . All our calculations consider a viscous gas described by the
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ideal gas equation of state P = ρc2
s, with the volume density ρ = Σ(r)

H(r) ∝ r− 9
4 . This results

in the gas pressure profile scaling as P ∝ r− 11
4 , causing an outward pressure gradient force

acting on the gas, so the gas orbits the central star at sub-Keplerian velocities. Accordingly,

the gas particles’ initial velocity is set as

uϕ = Ωgas · r = (Ω2
Kr2 − 11

4 T0r
− 1

2 )1/2, (3.8)

where the gas temperature T0 = 0.0025 at r0 = 1. The temperature profile is kept constant

throughout the runtime of the simulation in order to reduce numerical errors from the

hydrodynamics. When the temperature was allowed to evolve based on the hydrodynamic

solution found by the code, it caused a steep nonphysical temperature gradient near the

inner radius of the disk, leading to nonphysical behaviour of the gas. This is due to the

void of particles at the center of the disk, which does not properly capture the physics near

the inner disk region.

We form the initial protoplanetary disk using concentric rings of gas particles. These

particles are evenly distributed around each ring, and each ring is radially spaced by dr =

0.1H(r). As such, the spacing between rings increases with orbital distance, scaling with

dr ∝ r
5
4 . If the mass per gas particle mi,gas is kept constant throughout the disk, then

the number of particles per ring scales as N1D,gas(r) ∝ r
5
4 . This results in a high number of

particles per ring in the outer regions of the disk, which consequently increases the resolution
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and hence, runtime. To offset this effect, mi,gas is varied to increase with radius so that there

is an equal number of particles per log(r). This ensures that the resolution does not become

unnecessarily high at the outer region of the disk, while the resolution at the inner region

can still remain appropriately high. Specifically, the inner ring has N1D,gas(rin) > 128 and

the disk has a total resolution of Ntotal,gas ≈ 5 × 105 particles. We achieve convergence at

this resolution, as increasing the resolution beyond this point does not significantly alter the

root mean square error on uϕ and Σgas, shown in Figure 3.1.

(a) Azimuthal Velocity (b) Surface Density

Figure 3.1: Resolution analysis for 2D global disk simulation using root mean square error
on (a) azimuthal velocity and (b) surface density. Both plots show convergence around
4.5 × 105 particles.

Boundary Conditions

Initially, the boundary conditions at the inner and outer radius were the combination of a

confining term and an additional pressure gradient force. The confining term confines the
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particles within the disk so that they cannot flow beyond the set radii by providing a small

acceleration kick, defined as follows for the inner boundary:

aα = −xα ×
(

rcur

rin

)2
/(x2

0 + x2
1)1.5 +

(
xα × rin − rcur

rin

)
/(x2

0 + x2
1)1.5, (3.9)

and for the outer boundary:

aα = −xα ×
(

1 + rcur − rout

∆r

)
/(x2

0 + x2
1)1.5, (3.10)

where α = (0, 1, 2) = (x, y, z), rcur is the current radial position of the particle and ∆r is

the radial distance the particle has gone beyond the boundary. The pressure gradient force

is to account for the lack of particles at the center and outside of the disk. It is added as an

additional term in the particle’s acceleration, defined as follows:

a∇P,α = ±11
4 (0.052) × xα/(x2

0 + x2
1)

5
4 , (3.11)

where ± will be + for the inner boundary and − for the outer boundary. This additional

term is added for gas particles that are between rin to rin + 4Hin and rout − Hout to rout. Hin

and Hout are the scale heights at the inner and outer radius, respectively.

Currently, the boundary conditions at the inner and outer radii of the disk are inflow

(accretion onto the central star) and outflow, respectively. To implement these boundary
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conditions, we delete any particles that happen to flow beyond the set inner and outer

boundaries, instead of using a prescribed mass loss rate. Due to the void of particles, both

at the centre of the disk and outside of the disk, we pad the inner and outer radius with

ghost gas particles. Ghost particles are particles that are not treated by the hydrodynamics

of the code, but instead follow an analytic solution for a circular orbit around the star at the

appropriate sub-Keplerian velocity from Equation 3.8. We calculate the change in azimuthal

position ∆ϕ = ω × ∆t = uϕ

r
× ∆t to adjust the position of each ghost particle after every

timestep ∆t. This reduces the effect that the void of particles has on the hydrodynamic

solution found by the code, since this sudden lack of particles causes a steep, nonphysical

density gradient, and hence pressure gradient, resulting in nonphysical gas dynamics and

spurious wave propagation.

3.2.2 3D Local Shearing Box

Initial Conditions

We are investigating the dust-gas dynamics near and at a local pressure perturbation in a

gas disk, with the inclusion of both dust self-gravity and dust ‘back-reaction’. The pressure

perturbation is established by a tidal interaction with an embedded planet (as described in

Section 2.2). For our 3D simulation, we focus on the local dynamics using a ‘shearing-box’

approximation, which means the calculations are carried out on a small Cartesian section

of the disk within a rotating frame centered at (r0, ϕ0 + Ω0t, zmid), where Ω0 = Ω(r0)
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represents the Keplerian orbital frequency at r0, and zmid is the coordinate of the disk

midplane. In this frame, the local Cartesian coordinates are given by x = (x, y, z) =

(r − r0, r0(ϕ − ϕ0) − r0Ω0t, z). The momentum equation for gas is then

Du

Dt
= −∇P

ρ
− 2Ω0ẑ × u + 3Ω2

0x − Ω2
0z + adust + aplanet, (3.12)

where D/Dt = ∂/∂t + (u · ∇) is the Lagrangian derivative, ρ is the gas density, P is the gas

pressure, u is the gas velocity, adust is the “back-reaction” acceleration, and aplanet accounts

for the planet’s gravitational force, defined below.

First, we will consider the gas particles. The 3D box is set up with a uniform gas density

distribution in the azimuthal and radial directions, and a stratified density distribution in

the vertical direction, following ρ ∝ exp(−z2), where z is in units of H. The box has side

lengths Lbox,x = Lbox,y = 12H and Lbox,z = 8H, with ND−1
1D,gas(z) resolution elements, or gas

particles of mass mi,gas, where D is the number of dimensions. All our calculations consider

an inviscid, locally isothermal gas described by the equation of state P = ρc2
s (Lee et al.,

2022). The initial velocity field is set to the equilibrium solution in the absence of a planet

and in the absence of dust “back-reaction”:

ū =
(

0, −3
2xΩ0 − ηUK , 0

)
=
(

0, −3
2xΩ0 − Πcs, 0

)
, (3.13)

where UK = Ω0r0 is the Keplerian velocity at the center of the simulation box, η ≡ η(r =
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r0) = −(∂P0(r)/∂r)/(2ρ0Ω2r) is the usual dimensionless pressure support parameter, P0 =

P0(r0) is the unperturbed gas pressure evaluated at the center of the simulation box, and

Π ≡ η(Uk/cs).

Next, we consider the dust particles. The dust “super-particles” are spawned at a constant

rate from a 2D particle spawning mesh at the right edge +x̂ of the box. Dust grains enter

the right side of the box at +x̂ (i.e., r > r0 + Lbox/2) and exit the left side of the box at −x̂

(i.e., r < r0 −Lbox/2). The dust spawning mesh has the same vertical distribution as the gas

density, and is uniformly distributed in the azimuthal direction with a particle resolution of

N1D,gas(z). We set the mass of the dust particles to be mi,dust = 0.01mi,gas. The particles are

spawned at a constant rate, set to the equilibrium drift:

v̄ = ū − (2τS, τ 2
S, 0)Πcs/(1 + τ 2

S), (3.14)

so that the steady-state dust-to-gas ratio in the box without a bump is ⟨µ0⟩ = 0.01.

The dust grains drift radially inwards with a drift velocity that is dependent on the input

parameter τS. We focus on smaller grains with τS = 0.1. In general, we only plan to focus

on grains with τS = 0.01 − 1, because when τS > 1, the dust grains are essentially decoupled

from the gas, so there is no physically reasonable size of pressure bump that can trap the
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dust. The momentum equation for dust particles is

dv

dt
= −v − u

ts

− 2Ω0ẑ × v + 3Ω2
0x − Ω2

0z, (3.15)

where v is the dust particle velocity, dv/dt is its Lagrangian derivative. The simulation is

run with no dust until the gas distribution reaches a steady-state. We determine this point

to be when the amplitude of the pressure bump established by the planet no longer varies

with time, at which point dust spawning is turned on.

Finally, we will consider the gravitational effect of a planet of mass Mp located at xp =

(xp, yp, zp) on the gas. We use a planet to establish and enforce the pressure bump in our

simulations, and the planet’s mass controls the shape of the resulting bump. Lee et al.

(2022) find that pressure bumps form when Mp ≥ 0.5Mth. We use Mp = 0.5Mth, because

we find that higher mass planets engulf nearly all the gas in the shearing box. We place the

planet at the midplane in the center of the box. Since the governing equations are solved

with respect to the center of the shearing-box, placing the planet at the center simplifies our

analysis of the fluid flow with respect to the planet. Placing the planet at the center of the

box also allows enough space (6H) to the right of the planet for the pressure bump to form.

The planet’s gravitational potential is given by

Φp = − GMp√
(x − xp)2 + (y − yp)2 + (z − zp)2 + r2

s

, (3.16)
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where the smoothing length parameter rs = 0.1. The planet’s gravitational potential is

accounted for in Equation 3.12 by aplanet, defined as

aplanet = 2ΠcsΩ0x̂ − ∇Φp, (3.17)

where the first term on the right hand side also accounts for the acceleration due to the

large-scale gas pressure gradient. The pressure discontinuity between the ±x̂ boundaries is

not otherwise allowed in shear-periodic boundaries.

Boundary Conditions

The boundary conditions for the gas are periodic in the azimuthal (y) direction and outflow

in the vertical (z) direction. The boundary condition in the radial (x) direction is periodic,

but we impose killing zones along the x boundaries where the velocity is gradually damped

back to its initial condition in order to damp out spurious waves propagating radially through

the gas. The damping helps to minimize the boundary effects, and is particularly important

for periodic boundary conditions because any waves propagating radially will loop back

through the box, which is an artificial effect and can cause nonphysical behaviour. The

damping condition is given by the following expression from Fung & Ono (2021):

∂uα

∂t
= (uα,0 − uα) sin2

(
π

2 |x − xkill|
)

, (3.18)
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where uα are the components of the particle’s velocity, with α = (x, y, z), uα,0 is the initial

velocity at t=0, x is the radial position of the particle, and xkill is −x̂ + 0.6H and +x̂ − 0.6H

for the inner and outer radial boundaries, respectively. The width of the boundary was taken

to be 0.05Lbox,x = 0.05 × 12H = 0.6H. This value was chosen to be a small enough fraction

of the box’s radial size so as not to significantly affect the physics in the main simulation

box, while also being large enough to have enough particle resolution. In future work, we

intend to experiment with this choice by varying the value and investigating its effect on the

results.
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Chapter 4

Results

4.1 2D Global Protoplanetary Disk

As we are still in the process of code development for the 2D global disk simulation, we will

present the progression of the simulation results thus far. We will highlight the effect of

various boundary conditions and parameters on the behaviour and evolution of the gas disk

and its properties, including surface density, velocity and acceleration, summarized in Table

4.1. Figure 4.1 shows the global protoplanetary disk. The goal of varying the boundary

conditions is to determine an appropriate disk setup that will allow us to achieve a certain

target precision of the desired solution. Our target precision is dependent on the scale of the

subsonic turbulence, which is the source of viscosity in the disk. The kinematic viscosity is
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given by

ν = αcsH = αc2
s/Ω =⇒ νΩ = αc2

s, (4.1)

so that the turbulent velocity, length scale, and acceleration are parameterized by

[νΩ] = [σ2] = [L
2

T 2 ] =⇒ σ =
√

αcs, (4.2)

[ σ

Ω] = [l] = [L] =⇒ l =
√

α
cs

Ω =
√

αH, (4.3)

[σΩ] = [δa] = [ L

T 2 ] =⇒ δa =
√

αcsΩ, (4.4)

respectively. We can also relate the surface density to α through ∆ρ
ρ

= Ma2 =
(

ug

cs

)2
∝ α,

where Ma is the mach number, and Σ = ρH, so then the error on Σ is given by

δΣ =
√

(∆ρ)2 + (∆H)2 ∝
√

α2 + α ∝
√

α, (4.5)

since
√

α dominates for α < 1. All properties are then characterized by
√

α ∼ 0.03 for

a typical α ∼ 10−3. So, we are aiming to achieve variations in velocity, acceleration, and

surface density on an order of magnitude below this value. We will now present the test

cases that have been run thus far, showing the results for these disk properties.

Test 1: Initially, the simulations were run with no viscosity and no boundary conditions,

shown in Figure 4.2. The particles near the outer edge of the disk are then able to flow
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Test Fig. Boundary Condition Disk Properties Results
1 4.2 None Inviscid, rout = 2.0 Outwards spreading in outer disk

region. Indefinite expansion of
disk causes a nonphysical density
profile.

2 4.3 Inner+Outer: confining
term and extra pressure
gradient force

Inviscid, rout = 2.0 Particles cannot flow beyond
inner and outer boundaries.
Cause gas particle pile up at
inner radius.

3 4.4 Inner: Inflow, Outer:
confining term and extra
pressure gradient force

Inviscid, rout = 2.0 Similar results to test 2, but
reduces further potential wave
propagation/reflection at inner
radius, so we keep inflow.

4 4.5 Inner: Inflow, Outer:
confining term and extra
pressure gradient force

Viscous, rout = 2.0 Smoother gas density
distribution, e.g., smaller gas
perturbation near inner edge.
Slight gas pile up at outer radius
due to viscous spreading +
confinement.

5 4.6 Inner: Inflow, Outer:
confining term and
extra pressure gradient
force (smaller boundary
width)

Viscous, rout = 2.0 Similar to test 5, but with slightly
larger gas pile up at outer radius.

6 4.7 Inner: Inflow, Outer:
confining term and extra
pressure gradient force

Viscous, rout = 4.0,
particle mass varied
with r

Similar results to test 5, but
smoother density profile in the
middle region of disk.

7 4.8 Inner: Inflow, Outer:
Outflow, both padded
with ghost particles

Viscous, rout = 4.0,
particle mass varied
with r

Mass loss at outer radius due
to initial spreading past physical
outer radius into ghost particle
region. Gas pile ups at inner
radius are still occurring.

Table 4.1: Summary of all 2D global disk simulation test cases which were run using
different boundary conditions. Column 1: Figure reference. Column 2: Boundary conditions
used for the test case. Column 3: Disk properties and parameters used for the test case.
Column 4: Summary of the key results and disk behaviour for the test case.



4. Results 40

Figure 4.1: Surface density image of the global protoplanetary disk after 356Ω−1
K,0, where

Ω−1
K,0 is the orbital period defined at the reference point r0 = 1, identified by the dashed

black circle. Disk properties and boundary conditions are those described in Figure 4.8.

outwards indefinitely, and this causes the drop in surface density at the outer radius (see

Figure 4.2d). Although some spreading is expected in a viscous disk, this is an inviscid test

case, so physically we do not expect to see this behaviour. Since this is a numerical effect

which significantly impacts the density distribution, it leads to nonphysical behaviour and

we lose too many particles at the outer edge.

Test 2: The first boundary conditions introduced at the inner and outer radius were a

combination of 1) a confining term to keep the particles within the set boundaries, and 2) an
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Figure 4.2: Test 1: No boundary conditions. This is an inviscid disk with outer radius at
r = 2.0 and constant particle mass. The plots show the results of the evolution of the gas
disk after 200Ω−1. Plot a) Azimuthally averaged radial gas velocity. Theoretically, for an
inviscid disk without numerical errors, ur = 0. Plot b) Azimuthally averaged azimuthal gas
velocity (see Equation 3.8 for theoretical uϕ). Upper panel: Hydrodynamic GIZMO solution
and theoretical solution are plotted. Lower panel: Fractional difference error between the
code solution and theoretical solution is plotted. The theoretical solution refers to the
initial condition of the disk since, if it were not for numerical errors, the disk should
be in steady state and maintain its initial condition exactly. Plot c) Top+Middle panel:
Fractional difference error between the code solution and theoretical solution for azimuthally
averaged radial acceleration due to the gas pressure gradient force and the centrifugal force,
respectively. Bottom panel: Azimuthally averaged net radial acceleration of the gas, which
theoretically should be zero. Plot d) Azimuthally averaged gas surface density, with upper
and lower panels the same as those described in Plot b. Theoretical solution should follow
Σ ∝ r−1 (see Section 3.2.1).
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additional pressure gradient force to account for the effect of the particle void at the center

and outside of the disk. The details of these two conditions are described in Section 3.2.1.

The results are shown in Figure 4.3. These boundary conditions ensure that the particles do

not flow beyond the set inner and outer radii. As we see in Figure 4.3d, there is no loss of

particles at the outer radius, unlike in Figure 4.2d. We also see a decrease in the error of the

net radial acceleration near the inner radius, shown in Figure 4.3c as compared to Figure

4.2c. However, these boundary conditions result in nonphysical behaviour, in particular near

the inner region of the disk, because they cause gas particles to pile up, driving spurious

waves through the disk.

Test 3: In an attempt to reduce these perturbations in the density profile near the inner

edge of the disk, both the confining and additional pressure gradient terms are removed at

the inner boundary, and replaced with an inflow boundary condition instead, as described in

Section 3.2.1. The results are shown in Figure 4.4. This modification does not significantly

impact the density distribution, and we continue to see gas perturbations near the inner

edge. However, we choose to keep inflow as the inner boundary condition to reduce potential

wave propagation as the disk evolves over longer timescales.

Test 4: We then introduce viscosity with the goal of smoothing out the gas perturbations

in the disk using the α−disk model (Shakura & Sunyaev, 1973). This is also a more physically

accurate model of protoplanetary disks. Figure 4.5 shows the results for a viscous disk with

ηvisc = 3.305 × 10−8 in code units, corresponding to α = 4.42 × 10−5 at r0 = 1.0 (see Section



4. Results 43

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

0.00

0.02

0.04

0.06

0.08

v r

GIZMO Solution

(a) Radial Velocity

1.0

1.5

2.0

v

GIZMO Solution
Theoretical

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

0.01

0.00

0.01

v

(b) Azimuthal Velocity

2.5

0.0

2.5

a r
,p

re
ss

0.025

0.000

0.025

a r
,c

en
t

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r

0.5

0.0

0.5

a r
,n

et

Azimuthally averaged net acceleration

(c) Radial Acceleration

10 3ga
s

GIZMO Solution
Theoretical

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

1.0

0.5

0.0

0.5

1.0

(d) Surface Density

Figure 4.3: Test 2: Confining term and additional pressure gradient force conditions for
both boundaries. This is an inviscid disk with an outer radius at r = 2.0 and constant
particle mass. The plots shown here are the same as those described in Figure 4.2.



4. Results 44

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

0.00

0.02

0.04

0.06

0.08

v r

GIZMO Solution

(a) Radial Velocity

1.0

1.5

2.0

v

GIZMO Solution
Theoretical

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

0.01

0.00

0.01

0.02

v

(b) Azimuthal Velocity

2

0

a r
,p

re
ss

0.00

0.05

a r
,c

en
t

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r

0

1

a r
,n

et

Azimuthally averaged net acceleration

(c) Radial Acceleration

10 4

10 3

ga
s

GIZMO Solution
Theoretical

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

1.0

0.5

0.0

0.5

1.0

(d) Surface Density

Figure 4.4: Test 3: Confining term and additional pressure gradient force at outer
boundary and inflow at inner boundary. This is an inviscid disk with an outer radius at
r = 2.0 and constant particle mass. The plots shown here are the same as those described
in Figure 4.2.
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3.2.1 for details on the chosen viscosity prescription), and the same boundary conditions

as in Figure 4.4. We see some smoothing in the gas density distribution (Figure 4.5d) as

compared to the inviscid case (Figure 4.4d), in particular the pile ups near the inner radius.

Although the outer boundary conditions have not changed, we see a slight gas pile up at

the outer edge. This is due to the viscosity causing some spreading in the outer disk region,

leading to a pile up where the particles are being confined. However, we choose to keep this

confining term at the outer boundary in test 5 and 6 because, otherwise, we lose too many

particles from the disk in the outer region as the particles spread outwards indefinitely.

Test 5: In Figure 4.6, the boundary conditions are the same as in Figure 4.5, however

the width of the boundary on which the additional pressure gradient force is acting is half

the width of that in the previous test case (4.5). We see a slight increase in density at

the outer radius (Figure 4.6d), which makes sense since there is less of an inward pressure

gradient force acting on the gas at the outer edge to work against the disk spreading.

Test 6: Our goal is to eventually introduce a planet in the disk. The planet’s location

should be at a radius that is far enough away from each boundary to reduce the boundary

effects in the vicinity of the planet, and to leave enough space on the outside of the planet to

establish a pressure bump that is also a reasonable distance from the outer edge. Therefore,

we then choose to increase the outer radius from rout = 2.0 to 4.0 to allow for more flexibility

in the placement of the planet, and to further reduce the boundary effects near the planet

and the pressure bump. As described in Section 3.2.1, we also vary the particle mass with
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Figure 4.5: Test 4: Confining term and additional pressure gradient force at outer
boundary and inflow at inner boundary. This is a viscous disk with an outer radius at
r = 2.0 and constant particle mass. The plots shown here are the same as those described
in Figure 4.2.
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Figure 4.6: Test 5: Confining term and additional pressure gradient force (with smaller
boundary width) at outer boundary and inflow at inner boundary. This is a viscous disk
with an outer radius at r = 2.0 and constant particle mass. The plots shown here are the
same as those described in Figure 4.2.
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radius to offset the increase in Ntotal,gas as we increase the size of the disk. The behaviour

of the disk, shown in Figure 4.7, is very similar to the previous test cases, however there is

a larger radial width (between ∼ r = 1.0 − 3.0) that shows smoother behaviour since this

region is now further from the boundaries and is less affected by the outer boundary.

Test 7: Finally, in a further attempt to reduce the nonphysical boundary effects, we add

ghost particles inside and outside of the disk to pad the inner and outer radius, as described

in Section 3.2.1. The boundary conditions used are inflow and outflow at the inner and outer

radius, respectively, so that if the gas particles flow into the ghost particle region, they are

deleted. The results are shown in Figure 4.8. The radial width of the ring of ghost particles

added interior to the inner radius is 0.1 and exterior to the outer radius is 1.0. These ghost

particles follow an analytic solution for a circular orbit at the appropriate sub-Keplerian

velocity, described in Section 3.2.1, and are not evolved by the hydrodynamic solution of

the code. They are intended to lessen the effect of the sudden gap of particles inside and

outside of the disk. Figure 4.8d shows a drop in gas density at the outer physical radius

(rout = 4.0), due to some initial mass loss from gas particles spreading beyond their physical

radial limit into the ghost particle region. There are still pile ups occurring in the inner

region, so further test cases will be run in the attempt to mitigate these boundary effects.
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Figure 4.7: Test 6: Confining term and additional pressure gradient force at outer
boundary and inflow at inner boundary. This is a viscous disk with an outer radius at
r = 4.0, and the particle mass is varied with radius. The plots shown here are the same as
those described in Figure 4.2.
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Figure 4.8: Test 7: Inflow at the inner radius and outflow at the outer radius, which are
both padded with ghost particles. This is a viscous disk with an outer radius at r = 4.0,
and the particle mass is varied with radius. The plots shown here are the same as those
described in Figure 4.2.



4. Results 51

4.2 3D Local Shearing Box

Next, we present the results thus far from the 3D local shearing box simulations. As described

in Section 3.2.2, the simulation is first run with only gas particles before turning on dust

spawning. Figure 4.9, 4.10a, and 4.10b visualize the 2D gas density distribution and gas

velocity streamlines by taking a slice at the planet location in the ϕ − r, z − r, and z − ϕ

planes, respectively. The gravity from the planet embedded in the disk causes some of the

surrounding gas to be accreted onto the planet, exciting density waves in the gas and pushing

the gas away toward the radial boundaries, as discussed in Section 2.2. The result is a density

gap around the planet’s orbit and a pile up of gas a few H away from the planet, at x ≈ 3H.

In Figures 4.10a and 4.10b, the gas streamlines show both accretion onto the planet, as well

as some turbulence in the vertical direction. The expectation in the z − r plane is to see

meridional flows (Fung et al., 2015), however turbulence may suppress these flows (Fromang

et al., 2011). Turbulence in our simulations may be caused by waves driven through the gas,

inducing localized variations in density. This turbulence promotes particle stirring, reducing

dust settling onto the midplane and increasing Hp. Figure 4.11 shows the radial gas flux in

the z − r plane, with slices taken at different ϕ behind, at, and ahead of the planet location.

At the planet location (center panel) we see that the flow direction is towards the planet

due to the planet’s gravitational pull. Further from the planet (azimuthally) we see that the

flow direction changes, which may be due to perturbations from the planet driving the gas

radially away. Figure 4.12 shows all three components of the gas flux in the ϕ − r plane at
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the planet location, but as made evident in Figure 4.12b, there appears to be an overly high

gas density buildup to the left of the planet, which we will discuss further in Section 5.2.

Figure 4.13a and 4.13b visualize the 2D gas density distribution (background) and the

spatial distribution of dust particles (cyan) by taking a slice at the planet location in the

ϕ − r and z − r plane, respectively, at 350Ω−1 after turning on dust spawning for grains

with τS = 0.1. In Figure 4.14, we observe a pressure bump established by the embedded

planet mass before adding dust. The bump is located a few H to the right of the planet.

For τS = 0.1, we find that the dust particles become trapped slightly outside the center

of the bump, around x ∼ 4H (Figure 4.13), which differs from expectation based on 2D

shearing box simulations (e.g., Lee et al., 2022), so may be a physical consequence of the 3D

simulation.

To investigate the dust-gas dynamics within the pressure bump and the potential for

coagulation and dust clumping, we evaluate the level of turbulence of the gas and dust in

the bump. The level of turbulence is quantified using the root mean squared dispersion

velocity, σg,vel and σd,vel, of the gas and dust particles within in the bump, respectively. We

consider the bump to have a radial width of 2H (1H on either side of the peak) and we

average over the full azimuthal and vertical range of the box. We find that σg,vel = 0.39 and

σd,vel = 0.18, so then the turbulent viscosity parameter for gas is α = σ2
g,vel/c2

s = 0.15 ∼ 10−1,

and for dust αd = 0.033 ∼ 10−2 (with cs = 1). These values are very high, ∼ 1 − 2 orders

of magnitude above the typical maximum quoted α ∼ 10−3 for protoplanetary disks (e.g.,
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Figure 4.9: 2D snapshot of ϕ − r plane (slice at the planet location zp = 0H), showing
the gas density field with streamlines of the gas velocity field (blue lines) after 370Ω−1. The
planet is of mass 0.5Mth. We observe vortices at the center of the box due to shearing,
since the gas velocity is in the reference frame of the center of the box. All our numerical
experiments show the same qualitative behavior.

Flaherty et al., 2017), significantly increasing particle stirring and reducing dust settling at

the midplane, which can also make dust coagulation and clumping more difficult. This level

of turbulence in the gas may be due to perturbations by the planet, stirring up the gas which

then interacts with the dust, making it turbulent. We then calculate the particle disk scale

height using α and τS, finding Hp = 0.78H. We also evaluate the dust-to-gas mass ratio Z

as a function of radius, shown in Figure 4.14. We calculate Z by dividing the box radially by

smoothing length (rs = 0.1) into sub-box elements with dimensions Lbox,y × Lbox,z × rs. We

add up the total gas mass and dust mass within each element and then take the dust to gas

mass ratio. We find Zpeak = 0.84 in the pressure bump. We repeat the same calculation, but
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Figure 4.10: 2D snapshot of a) z − r plane and b) z − ϕ plane (slices taken at the planet
location), showing the gas density field with streamlines of the gas velocity field (blue lines)
after 370Ω−1. The planet is of mass 0.5Mth.

reducing the vertical range of each box element to Hp (above and below the midplane), and

find Zpeak = 1.50 (also shown in Figure 4.14). We also note that we do not reach the steady

state value Z = 0.01 to the right of the pressure bump. The parameters of the simulation

are set such that the Z = 0.01 ratio is obtained when the disk is in its initial condition state,

so we see a higher ratio due to the drop in gas density on the right of the planet as compared

to its initial condition state, whereas the dust spawning rate does not change.

Finally, as a sanity check, we present the results for the simulation run with no planet.

These results are shown in Figure 4.15 and will be discussed in Section 5.2.
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Figure 4.11: 2D snapshot of z − r plane for a range of azimuthal locations, showing the
radial component of the gas flux. The slices, from bottom to top, show azimuthal locations
behind the planet at y = −5H and y = −1H, at the planet location yp (center panel), and
then ahead of the planet at y = 1H and y = 5H. We note a velocity direction change near
the planet, where the gas flows radially towards it (accretion), compared to further away
from the planet, where gas is being driven radially away by perturbations from the planet.
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Figure 4.12: 2D snapshot of ϕ − r plane at the planet location showing each of the
directional components of the gas flux after 370Ω−1.

(a) (b)

Figure 4.13: 2D snapshot of a) ϕ − r plane and b) z − r plane (slices taken at the planet
location), showing the gas density field (background) and the spatial distribution of dust
particles with τS = 0.1 (cyan points), after 350Ω−1. The pressure bump was created by a
0.5Mth planet. We find that dust particles become trapped slightly outside the center of the
bump, around x ∼ 4H. Plot b) shows some dust settling, but turbulent mixing prevents
total settling at the midplane and maintains dust suspension between z ≈ −2H to 2H, with
Hp = 0.78H.
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Figure 4.14: Azimuthally and vertically averaged dust-to-gas mass ratio profile (solid
lines) and radial gas pressure profile (scatter points and dashed line) in the shearing box
after 300Ω−1. We observe the formation of a pressure bump near x = 3H, established by the
0.5Mth planet located at x = 0H, and a peak in the dust-to-gas ratio Zmet around x = 4H,
to the right of the pressure bump. The Zmet profiles are calculated using the same method,
but differ by the vertical extent included in calculating the mass average. We find a value
Zpeak = 0.84 when the entire vertical extent of the box is considered (solid blue line), which
is lower than Zpeak = 1.50 when taking only Hp = 0.78H above and below the midplane
(dashed purple line). This is expected as Hp < H, so dust is more concentrated towards the
midplane.
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Figure 4.15: 2D snapshot of a) ϕ − r, b) z − r, and c) z − ϕ planes (slices taken at the
center of the shearing box), showing the gas density distribution and velocity streamlines for
the case with no planet and no dust after 900Ω−1.
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Chapter 5

Discussion

5.1 2D Global Protoplanetary Disk

The 2D global disk simulation is still in the development stage. As such, this section will

focus primarily on the next steps of the code development process. We have yet to establish

a steady state disk setup (see Figure 4.8) as the boundaries continue to cause non-physical

behaviour in the disk gas. Future work includes running follow up test cases in an attempt

to further reduce the numerical error and numerical artifacts associated with the boundary

conditions. We currently plan to implement three modifications in particular, but this is a

constantly evolving process. The first will be to run further resolution tests, with the goal

of testing the effects of increasing the resolution near the inner radius, as this area has the

highest error and appears to be driving spurious density waves. We will also introduce a
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damping term for the gas particles near the inner radius, which will damp the velocity back

to its initial condition (according to Equation 3.8). Finally, we will investigate the effect of

varying the width of the inner ghost particle ring, by filling more of the gap in the middle

of the disk with ghost particles and by moving the boundary of the physical inner radius

further out. Again, these future tests will be done with the aim of achieving the target

precision (
√

α ∼ 0.03 see Section 4.1) for the disk gas properties (velocity, acceleration, and

surface density).

Eventually, we will introduce a planet in the disk to establish the gas pressure bump

and investigate the bump’s dust trapping efficiency and the dust-gas dynamics within the

bump. In order to effectively evaluate the physics from the code results, we must ensure

that the behaviour is due to the underlying physics and not numerical errors. Spurious

wave propagation may interfere with establishing a pressure bump, and consequently result

in physically unreliable behaviour of the gas and dust, so we must first ensure that the

numerical error causes perturbations on a scale smaller than the expected subsonic scale.

5.2 3D Local Shearing Box

We will begin our discussion of the 3D local shearing box results by considering the simplest

test case, which is that with no planet, shown in Figure4.15. Without numerical error,

the gas should be in steady-state as it is uniformly distributed in the azimuthal and radial

directions, and is vertically stratified such that the gas is in hydrostatic equilibrium (vertical
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pressure gradient force balanced with gravitational force). Figure 4.15a and 4.15c appear

to behave as expected, whereas in Figure 4.15b, there appears to be a net gas flow in the

vertical direction, suggesting that the disk may be in a transient state due to numerical

effects, so the code is trying to re-establish an equilibrium solution. We note, however,

that when comparing consecutive snapshots, there appears to be a cyclical behaviour as the

direction of the net vertical flow of the gas inverts approximately once every orbital period.

This behaviour may be due to insufficient resolution in the vertical direction, in particular

because the resolution diminishes in the outer layers (∼ the outer 2H) where the gas density

is much lower than at the midplane.

It is necessary to investigate this effect further because the impact on the gas dynamics

during the transient state may cause non-physical behaviour if the planet is introduced before

a steady state is reached. The perturbations from the planet may amplify the transient state,

and their interaction could interfere with the waves being driven by the planet, consequently

affecting the pressure bump that is to be established by these waves. So, if it is the case that

the code requires a higher resolution as well as time to establish a steady-state, we must

allow this state to be reached before introducing the planet to ensure that the results are

physically accurate and not due to numerical artifacts.

We also consider whether we expect to see dust clumping by the SI (see Section 2.4.1)

within the pressure bump using the dust-to-gas mass ratio from our simulation results.

Applying Equation 2.8 for τS > 0.015, we find ϵcrit(τS = 0.1) = 1.54. Then applying



5. Discussion 62

Equation 2.9, with Π = 0.05 and α = 0.15, we find Zcrit = 1.20. From Figure 4.14, we find

Zpeak = 0.84 < Zcrit in the pressure bump for the full vertical extent of the box, whereas

Zpeak = 1.50 > Zcrit when calculated within only Hp above and below the midplane. We

therefore expect to see dust clumping by the SI within the particle disk scale height, but not

necessarily throughout the entire vertical range of the disk. As part of the next steps, we

hope to directly simulate dust clumping and potentially pebble accretion. We would also like

to turn on particle self-gravity to further investigate dust clumping in the pressure bump,

according to the conditions outlined in Section 2.4.2.
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Chapter 6

Conclusion

In this thesis, we investigate dust trapping in protoplanetary disks by gas pressure

perturbations established by an embedded planet, and report on their ability to coagulate

and clump dust particles. To do so, we modify the GIZMO code so that it is appropriate

for the domain and timescales of our simulations and develop the initial condition setups

and boundary conditions of the disk for both global and local, to reduce numerical error

and achieve a specified target precision in the results. Our 3D simulation uses Mp = 0.5Mth

to establish the pressure bump and dust grains with τS = 0.1, and from our preliminary

analysis, we find that within the pressure bump and vertical particle disk scale height, the

dust-to-gas mass ratio exceeds the critical value required to trigger clumping by the

streaming instability. We then expect to see clumping. The target precision for our 2D

global simulation has still not been achieved, likely due to numerical artifacts caused by
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the boundaries, such as spurious wave propagation. Further code development is required

to reduce the numerical error, including introducing velocity damping at the boundaries

and increasing particle resolution. The next steps will then be to introduce a planet and

dust to investigate the effect of the global setting on the dust-gas dynamics in the disk and

within the pressure bump.
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