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Abstract 

Head and Neck Cancer (HNC) is the seventh most common tumor in the world, with the main risk 

factors associated with cigarette smoking and alcohol consumption. However, human papilloma 

virus positive (HPV+) HNC cases are increasing significantly from 16.3% to 72.7% in the last 

three decades. Similar to other cancer types, HPV-driven tumors exhibit alterations in DNA 

methylation profile. In this study, DNA methylation was evaluated in HNC patients following their 

characterization regarding the main risk factors. Bisulfite-converted DNA from 24 patients were 

hybridized in the Human Methylation 450 BeadChip microarrays. Fluorescence signals were 

analyzed using GenomeStudio software with the methylation module v.1.9.0 (Illumina). To 

characterize the expression of genes containing differentially methylated regions (DMRs), the 

initial sample set was evaluated using Reverse Transcription Quantitative Polymerase Chain 

Reaction (RT-qPCR). Protein validation was validated by immunohistochemistry (IHC) reaction 

for the top two candidates (PITX2 and TGM2) using an independent cohort of 100 patients with 

HNC and the results were associated with clinicopathological outcomes. The analysis of tumor 

microenvironment (TME) components, the cell-cell interactions and the neighbor’s spatial 

distribution were evaluated by imaging mass cytometry analysis (IMC) in patients diagnosed in 

early-clinical stage but with metastatic competence. As a result, we identified 2,655 DMPs located 

at 1,073 genes, being 384 hypomethylated and 2,271 hypermethylated CpG sites. Considering only 

the risk factors (high- risk versus low risk), it was identified 15 DMRs located at promoter regions 

of 12 genes. From the 12 genes (ZNF323, FBXO39, SLFN12, TGM2, ZAP70, STK32B, HOXA2, 

LMO3, C1orf74, ST8SIA4, C12orf42, and PITX2), we confirmed a concordant mRNA expression 

for eight genes (ZNF323, FBXO39, TGM2, ZAP70, LMO3, C1orf74, C12orf42, and PITX2). 

LMO3, PITX2, and TGM2 were selected for further validation in a large cohort of patients' samples 

and PITX2 and TGM2 showed higher protein expression in HPV positive HNC cases, compared 

to the low-risk cases. Besides, higher expression was associated with tumor depth (P=0.0011) and 

advanced tumor stage (P=0.0042). This data was also independently validated in The Cancer 

Genome Atlas (TCGA) platform using 530 HNC samples. IMC showed that the TME impacts the 

biological behavior of the tumor comparing HPV-positive and HPV-negative, however its effect 

on clinical outcomes in HNC showed that PITX2 and TGM2 may play a critical role in various 

pathophysiological conditions, including inflammation and cancer. The development of epigenetic 

drugs to combat inflammation or tumors is predicated on immune system cells. During disease 
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progression, epigenetic modifications may influence transcription patterns (genes), which can 

either help with the clearance of pathogens or result in evasion by the pathogens. In this study, it 

was identified PITX2 and TGM2 as the main candidates in HPV-negative and HPV- positive HNC 

respectively. The role of these genes on tumor development and HNC progression will be assessed, 

and the relevant mechanisms will be investigated as potential new targets for the diagnostic, 

prognostic and therapeutic approaches for patients with HPV-positive HNC.   
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Resume 

Le cancer de la tête et du cou (CHC) est la septième tumeur la plus courante dans le monde, les 

principaux facteurs de risque étant associés au tabagisme et à la consommation d'alcool. 

Cependant, les cas de CHC positifs au virus du papillome humain (VPH+) augmentent 

significativement, passant de 16,3 % à 72,7 % au cours des trois dernières décennies. Comme pour 

d'autres types de cancer, les tumeurs entraînées par le VPH présentent des altérations dans le profil 

de méthylation de l'ADN. Dans cette étude, la méthylation de l'ADN a été évaluée chez des patients 

atteints de CHC, suivant leur caractérisation par rapport aux principaux facteurs de risque. L'ADN 

converti par le bisulfite de 24 patients a été hybridé dans les microréseaux BeadChip de 

méthylation humaine 450. Les signaux de fluorescence ont été analysés en utilisant le logiciel 

GenomeStudio avec le module de méthylation v.1.9.0 (Illumina). Pour caractériser l'expression 

des gènes contenant des régions différentiellement méthylées (DMR), l'ensemble initial 

d'échantillons a été évalué en utilisant la réaction en chaîne de la polymérase quantitative en 

transcription inverse (RT-qPCR). La validation des protéines a été validée par réaction 

d'immunohistochimie (IHC) pour les deux principaux candidats (PITX2 et TGM2) en utilisant une 

cohorte indépendante de 100 patients atteints de CHC et les résultats ont été associés à des résultats 

clinicopathologiques. L'analyse des composants de l'environnement tumoral (TME), des 

interactions cellule-cellule et de la distribution spatiale des voisins a été évaluée par analyse de 

cytométrie de masse d'imagerie (IMC) chez des patients diagnostiqués à un stade clinique précoce 

mais avec compétence métastatique. En conséquence, nous avons identifié 2 655 DMP situés sur 

1 073 gènes, étant 384 hypométhylés et 2 271 hyperméthylés sur les sites CpG. En considérant 

uniquement les facteurs de risque (risque élevé contre faible risque), 15 DMR situés dans les 

régions promoteurs de 12 gènes ont été identifiés. Parmi les 12 gènes (ZNF323, FBXO39, SLFN12, 

TGM2, ZAP70, STK32B, HOXA2, LMO3, C1orf74, ST8SIA4, C12orf42 et PITX2), nous avons 

confirmé une expression concordante de l'ARNm pour huit gènes (ZNF323, FBXO39, TGM2, 

ZAP70, LMO3, C1orf74, C12orf42 et PITX2). LMO3, PITX2 et TGM2 ont été sélectionnés pour 

une validation supplémentaire dans un grand échantillon de patients et PITX2 et TGM2 ont montré 

une expression protéique plus élevée dans les cas de CHC positifs au VPH, par rapport aux cas à 

faible risque. De plus, une expression plus élevée a été associée à la profondeur de la tumeur 

(P=0,0011) et à un stade tumoral avancé (P=0,0042). Ces données ont également été validées 
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indépendamment sur la plateforme The Cancer Genome Atlas (TCGA) utilisant 530 échantillons 

de CHC. L'IMC a montré que le TME impacte le comportement biologique de la tumeur en 

comparant les cas positifs et négatifs au VPH, cependant son effet sur les résultats cliniques dans 

le CHC a montré que PITX2 et TGM2 peuvent jouer un rôle critique dans diverses conditions 

pathophysiologiques, y compris l'inflammation et le cancer. Le développement de médicaments 

épigénétiques pour combattre l'inflammation ou les tumeurs est fondé sur les cellules du système 

immunitaire. Durant la progression de la maladie, les modifications épigénétiques peuvent 

influencer les modèles de transcription (gènes), ce qui peut soit aider à l'élimination des 

pathogènes, soit entraîner une évasion par les pathogènes. Dans cette étude, PITX2 et TGM2 ont 

été identifiés comme les principaux candidats dans les cas de CHC négatifs et positifs au VPH 

respectivement. Le rôle de ces gènes dans le développement tumoral et la progression du CHC 

sera évalué, et les mécanismes pertinents seront investigués comme de nouvelles cibles potentielles 

pour les approches diagnostiques, pronostiques et thérapeutiques pour les patients atteints de CHC 

positif au VPH. 
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Format of the Thesis 
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the conclusion and future directions (chapter 4), and the bibliography that mainly includes the 

references cited in the general introduction and general discussion (chapter 5). 
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1 Chapter 1. Introduction  

1.1 Cancer 

 

Cancer is a subject of great interest in the scientific community due to the complex biology and 

multi-step of tumor development, resulting in a range of overlapping and sometimes conflicting 

theories. Recently, Hanahan and Weinberg (2000) in one of the most significant study in cancer 

biology, proposed six key hallmarks of cancer (Figure 1), including: 1. proliferative capacity  

without control, often due to mutations that activate growth-promoting pathways; 2. evasion of the 

mechanism that prevent excessive growth, such as  tumor suppressor genes; 3. avoidance of the 

programmed cell death (apoptosis), allowing cancer cells to survive and accumulate genetic 

changes; 4. maintenance of the telomeres, the protective caps on chromosomes, allowing cells to 

divide indefinitely; 5. stimulation of  angiogenesis to supply nutrients and tumor growth; and 6. 

ability to invade and spread to distant sites (metastasis) (1).  This study mainly focused on the 

process by which normal cells undergo alterations that lead to the formation of cancer (2). 

Weinberg's further studies expanded the hallmarks of cancer into the molecular mechanisms 

underlying tumor initiation and progression (3). It was showed that genome instability and 

mutations play an essential role in shaping these hallmarks of cancer. This model relies on an 

evolutionary process that begins with single mutations in individual cells, leading to increase 

adaptability over neighboring cells, enabling them to grow and adapt to their environment (4) (5). 

Mutations that provide a selective growth advantage, and thus promote cancer development, are 

called driver mutations, and those that do not promote any selective advantages are called 

passenger mutations (6). Since the researchers gained a better understanding of cancer progression 

concepts, they included additional hallmarks such as deregulated cellular energetics, immune 

evasion, tumor-promoting inflammation, genomic instability, and reprogramming of energy 

metabolism (7). 

 

. 
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Figure 1. Overview of the hallmarks of cancer. These hallmarks include sustained proliferative 

signaling, which contributes with continuous cell growth, evasion of growth suppressors, 

activation of promoter signals towards invasion and metastasis, inducing angiogenesis, and 

resisting cell death (apoptosis). The emerging hallmarks include immune evasion and deregulation 

of the metabolism. Inflammation has a key role in promoting tumor growth, genome instability 

and mutation, that can lead to tumor progression and metastasis. The figure created by 

biorender.com. 

 

This thesis highlighted three key factors that contribute to cancer development including:  1. 

epigenetics and risk factors associated with HNC; 2. tumor-promoting inflammation; 3. changes 

in the tumor microenvironment (TME) which create conditions that support cancer cells growth, 

survival, and dissemination. 

 

1.2 Epigenetics 

Epigenetics are changes in gene expression that are inherited and do not affect the DNA nucleotide 

sequence (8). However, the epigenetic definition extended to include stable, long-term variations 

in the cellular transcriptional profile that are not necessarily inherited through epigenetic events 

(9). Several lifestyle and environmental factors, such as tobacco smoke, alcohol consumption, 

polycyclic aromatic hydrocarbons, infectious pathogens, heavy metals exposition, and other 
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indoor and outdoor pollutants can modify disease risk and health outcomes through epigenetic 

pathways (10). Three central mechanisms are involved in regulating gene expression through 

epigenetic which include: 1. DNA methylation; 2. histone modification and 3. regulatory non-

coding RNAs such as microRNAs that regulate expression at the post-transcriptional level (11). 

These mechanisms can affect the accessibility of genomic loci to transcription enzymes and 

regulate key cellular processes, therefore they are essential for cell growth, tissue differentiation 

and tumor development (12). 

1.2.1 DNA methylation 

 DNA methylation is the most studied epigenetic mechanism involving the transfer of a methyl 

group onto C5 position of the cytosine to form 5-methylcytosine (13). The majority of DNA 

methylation occurs on cytosines that precede guanine nucleotide or CpG sites (14). DNA 

methylation in the CpG promoter regions is often associated with repression of gene expression 

by altering the conformation of DNA itself and local histone structures leading to a transcription 

silencing (15). Methylation can be didactyly explained as an on or off switch for gene expression 

as shown in Figure 2. In summary, flow of genetic information in biological systems from 

DNA>RNA>Protein is the central dogma in molecular biology. When a gene is actively expressed, 

the DNA can be transcribed into mRNA, which is then translated into a protein (16). If the gene is 

silenced or "off” through a DNA methylation for example, this can prevent the transcription and 

consequently the protein expression (Figure 2).  
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Figure 2. Unmethylated versus methylated promoter region. DNA methylation serves as a 

critical epigenetic mechanism for modulating gene expression and chromatin architecture. 

Unmethylated genes (left top) are often actively transcribed, while hypermethylation (left bottom) 

leads to gene silencing, as depicted by the transition from 'open' euchromatin to 'closed' 

heterochromatin (right). Figure created with biorender.com. 

 

Broad changes of the epigenome are linked with cancer initiation and progression (17). Cancer 

cells show a global loss of CpG methylation, including regions with low density of CpG sites, 

repeat elements, retrotransposons, and laminin-associated domains (LADs) (18). This can result 

in both hypomethylation of the whole genome and hypermethylation of specific genes within the 

same cell. The alterations in the DNA methylation profile, influenced by various risk factors, can 

contribute to the tumor phenotype, including HNC progression (19). 
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1.2.2 Risk factors 

There are several lifestyle and environmental risk factors associated with HNC development. 

Oncogenic viruses such as HPV, alcohol and tobacco consumption are considered the main risk 

factors for HNC (20). The other risk factors are poor oral hygiene, chronic mechanical irritation in 

case of oral cavity cancers, tobacco or betel nut chewing, and Epstein-Barr virus (EBV) in cases 

of nasopharyngeal carcinoma (21). However, this section will focus on the main risks' factors 

associated with HNC development.  

1.2.2.1. Tobacco and alcohol consumption 

Smoking is an independent risk factor for HNC (22). It is estimated that 90% of HNC is linked to 

tobacco use (23). The cumulative lifetime risk is linked to several factors such as daily amount of 

tobacco, the duration of smoking, and intensity of cigarette smoking, including the frequency of 

inhalations. Studies have hypothesized that covalent DNA modifications caused by tobacco can 

induce DNA damages through DNA methylation. Specifically, the alteration in the DNA 

methylation profile in promoter/regulatory region related to tobacco consumption are associated 

with cancer progression, lymph node invasion, metastasis and other processes (24) (25) (26).  

 

In the same way, alcohol is the other major independent risk factor for HNC. For alcohol abuse, a 

case-control study using 11,221 cases and 16,168 controls showed that the population attributable 

risk for tobacco and alcohol was 72% for HNC, of which 35% was tobacco and alcohol combined 

(27). Recent studies have confirmed that the epigenetic changes induced by alcohol, including 

DNA methylation, are associated with tumorigenesis (28). 

 

1.3 HPV+ HNC 

HPV is a sexually transmitted infection (29), with approximately 200 different subtypes (30). HPV 

infection is associated with different types of cancers, including anal cancer, cervical cancer, HNC, 

penile cancer, vaginal and vulvar cancer (31) Globally, the number of reported cases of HPV+HNC 

has increased by 26.6% (32). In the United States, half of the HNC cases are linked to HPV 

infections [27]. In HNC the most common site affected by HPV is the OPC region (33). (These 

tumors are divided into two entities based on the presence or absence of HPV: HPV+ and HPV- 
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negative (HPV-) types. These two types differ phenotypically. Although the underlying process is 

still unclear, patients with HPV+OPC have a better radiotherapy response and better overall 

survival (34). (Table 1). In the United States, individuals diagnosed with HPV+OPC are often 

younger, have a higher socioeconomic status, and have less exposure to alcohol and tobacco 

compared with those diagnosed with HPV-HNC (35). (Table 1). The American Joint Committee 

on Cancer (AJCC/UICC) has added information about the presence or absence of HPV infection 

in HNC to complement the traditional TNM staging system (tumor, nodes and metastasis) since 

2018 (36). The introduction of HPV vaccinations is expected to reduce the number of cases of 

OPC that are caused by HPV infection (37). It is also necessary to emphasize that the best strategy 

to fight against HNC is prevention, especially when the pathogenic agent is known and identifiable 

and the primary prevention tool such as HPV immunization is available. (38) 

 

Table 1. Characteristics and comparison between HPV- negative and HPV+HNC. 

  

Characteristics  HPV-Negative  HPV-Positive  

Site (39) All sites  Tonsil, base of tongue  

Risk factors (40) Tobacco/alcohol  Sexual behavior  

Age (41) 65 years and higher cohorts  25-45 years (Younger cohorts) 

Stage (42) 
Variable, often diagnosed at 

later stages  
Early T stage - advanced N stage  

Histology (43) Keratinized  
Basaloid/poorly differentiated, non-

keratinized  

p16 (44) 
Decreased expression, linked 

to worse outcomes  

Increased expression, linked to better 

outcomes  

Adaptive immunity (45) 
Lower immunogenicity, 

reduced immune recognition  

Higher tumor immunogenicity, 

improved immune recognition  

Disease onset and 

progression  

Altered tumor suppressor 

genes and signaling 

pathways (46) 

Integration of HPV into host genome, 

action of E6 and E7 proteins (47) 
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TP53 gene (encodes p53) 

(48) 

Frequently deleted or 

mutated, impaired tumor 

suppression  

Rarely altered: p53 function 

eliminated by HPV E6 proteins  

Molecular alterations  

HRAS and CASP8 

alterations, amplification of 

RTK, PIK3CA, EGFR, 

HER2, FGFR1 (49) 

Amplification of PIK3CA, E2F1 

oncogenes, TRAF3 truncation, 

FGFR2/3 mutation/fusion (50) 

Retinoblastoma associated 

protein (RB1)  

Inactivated by 

phosphorylation, leading to 

cell cycle dysregulation (51) 

(52) 

Proteasomal destruction by HPV E7 

protein, affecting cell cycle control 

(53) 

Treatment response (54) 

Reduced response to 

standard therapies and poor 

prognosis  

Better response to standard therapies, 

improved prognosis  

Angiogenesis (55) Increased angiogenesis  
Less reliant on angiogenesis for 

growth  

Distant Metastasis  

Higher tendency for distant 

metastasis  

Atypical distant metastasis 

pattern observed (56) 

Lower propensity for distant 

metastasis  

Distant spread classically to lungs (57) 

Treatment resistance (58) 

(59) 

Often resistant to radiation 

and chemotherapy  

More sensitive to radiation and 

chemotherapy  

Genetic instability (60) 
Higher degree of genetic 

instability  
Lower genetic instability  

 

Abbreviation: HPV: Human Papillomavirus, T stage: Tumor stage, N stage: Node stage,p16: 

Protein p16 (no further abbreviation), TP53: Tumor Protein p53, HRAS: Harvey Rat Sarcoma 

Viral Oncogene Homolog, CASP8: Caspase 8, RTK: Receptor Tyrosine Kinases, PIK3CA: 

Phosphatidylinositol-4,5-bisphosphate 3-kinase Catalytic Subunit Alpha, EGFR: Epidermal 

Growth Factor Receptor, HER2: Human Epidermal Growth Factor Receptor 2, FGFR1: Fibroblast 
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Growth Factor Receptor 1, FGFR2/3: Fibroblast Growth Factor Receptor 2/3, E2F1: E2F 

Transcription Factor 1, TRAF3: TNF Receptor-Associated Factor 3, RB1: Retinoblastoma 1 

1.3.1 HPV in the pathogenesis of HNC 

HPVs are single double-stranded, circular and covalently closed DNA genome within a protein 

capsid (61). HPV comprises both high-risk and low-risk strains, each with distinct implications for 

cancer development (62). Among them, 12 strains are considered as ‘high-risk' including HPV -

16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, and –59 (63). High- risk HPV types -16, -18, -

31, and/or -33 are responsible for nearly (90%) of HPV-positive HNC infections (64). Among these 

strains, HPV16 is the most prevalent subtype contributing to 85-90% of the OPC cases (65). 

The HPV genome integrates into the host's chromosome leading to carcinogenesis (66). The virus's 

oncoproteins E6 and E7 interfere with the function of the cellular tumor-suppressor protein p53 

and pRB (67) (68). The inactivation of these proteins contributes with the dysregulation of key 

cellular processes related with cell-cycle control and differentiation, which leads to tumor initiation 

and progression (69). HPV+HNC not only shows a different aetiology as “classical” tobacco and 

alcohol associated HPV-HNC, but it also distinct in their epidemiology, pathogenesis, clinical 

presentation, molecular findings and more importantly prognosis and treatment response (Figure 

3) (70). 

Chronic HPV infection can contribute to HNC development through epigenetic changes (71). 

Literature shows that HPV+HNC has higher rates of hypermethylation compared to the negative 

ones(72). Viral HPV proteins E6 and E7 promote DNA methyltransferase 1 (DNMT1) activity, 

which suppresses TP53, RB, and CDH1 gene expression, and induces the upregulation of cell cycle 

genes (73). The protein p16INK4a, coded by P16 gene, involved in cell cycle progression, and is 

a surrogate marker for HPV infection in HNC, has differential methylation in its promoter region 

(74). In addition, miR-139-3p and miR-375, which are involved in tumor suppression and targeting 

viral oncoproteins have been linked with HPV+HNC (75). These findings suggest that HPV 

infections play a role in epigenetic modulation, though further studies are necessary to understand 

their impact in HNC development (76). 
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Figure 3. HPV infection induces tumorigenesis in patients with HNC. Under normal cellular 

conditions, p53 is ubiquitinated by MDM2 and degraded by proteasomes. When there is cellular 

stress, MDM2 is inhibited and p53 can travel to the nucleus to promote the transcription of genes 

involved in apoptosis, senescence, and DNA repair. In the presence of HPV infection, the virus 

integrates itself into the host cell. HPV oncogenic protein E7 sequesters pRB from E2F. E2F can 

then travel to the nucleus and initiate the transcription of cell cycle genes. p53 will try to mitigate 

these effects but it will be marked for degradation by HPV oncogenic protein E6 and ubiquitin 

ligase E6AP.  Ub: Ubiquitin, p53: Tumor protein p53, MDM2: Mouse double minute 2 homolog, 

E2F: E2 factor, pRB: Retinoblastoma protein, HPV: Human papillomavirus, E7: HPV E7 
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oncoprotein, E6: HPV E6 oncoprotein, E6AP: E6-associated protein. Figure created with 

biorender.com. 

1.4 The tumor microenvironment in HNC 

The tumor microenvironment is composed of cancer cells, stromal tissue and the extracellular 

matrix (ECM) in a complex and dynamic interaction (77) (78). These interactions are determined 

by structural and biochemical properties of the ECM as well as by communication among the cells 

such as endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stem cells 

(MSC), and a variety of different immune cells including lymphocytes and tumor-associated 

macrophages (TAMs) (Figure 4). These multiple interactions with the tumor stroma determine 

not only cancer growth and metastasis but may also influence the drug sensitivity/resistance (79). 

The next topics will provide an explanation for each of these components. 

 

 

 

Figure 4. The tumor microenvironment (TME) of head and neck cancer (HNC). The TME 

involves a complex extracellular matrix (ECM) and a variety of nonmalignant cells interspersed 

with cancer cells. The TME comprises of T lymphocytes, tumor-associated macrophages (TAMs), 

myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, tumor-associated neutrophils 
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(TANs), and cancer-associated fibroblasts (CAFs), which are the main cellular components of the 

TME (80).  Figure created with biorender.com. 

1.4.1 Cancer-associated fibroblas (CAFs) 

CAFs are the primary cell type found in the tumor stroma (81). These cells are responsible for 

creating a TME that promotes cell proliferation, angiogenesis, inflammation, invasion, metastasis, 

and drug resistance[ (82). CAFs produce several growth factors, cytokines, and chemokines such 

as epidermal growth factor , (EGF), hepatocyte growth factor (HGF), vascular endothelial growth 

factor (VEGF), C-X-C motif chemokine ligands (CXCCLs): CXCL12 and CXCL14, CC 

chemokine ligands (CCLs): CCL5 and CCL7, and interleukins (IL) such as IL-6 and IL-17A to 

change the TME (83). They also produce matrix-metalloproteinases (MMPs), which remodeling 

and degrading ECM, ultimately promoting an invasive tumor phenotype (84) (85). 

CAFs have a spindle-like shape and share similarities with mesenchymal and smooth muscle cells 

(86). Compared to normal fibroblasts, CAFs have different biological and morphological 

characteristics and are in a constitutively activated state (87). CAFs can be identified using 

different markers, including alpha-smooth muscle actin (a-SMA), fibroblast activation protein 

(FAP), fibroblast specific protein-1 (FSP-1), platelet-derived growth factor receptor alpha 

(PDGFR) and vimentin, which are indicative of their activated state (88). These cells can be 

derived from various types of progenitor cells, including resting resident fibroblasts, pericytes, 

endothelial cells, epithelial cells, adipocytes, and bone marrow-derived mesenchymal cells 

(BDMCs) (89). In HNC, a-SMA is the most commonly used marker to detect CAFs, which are 

frequently observed in the myofibroblast phenotype (90). Upregulation of a-SMA has been linked 

to poor prognosis in oral carcinoma (91). CAFs can also be identified by the absence of epithelial 

and endothelial markers, such as cluster of differentiation 31 (CD31)  and cytokeratin (92). Several 

methods for targeting CAFs to inhibit tumor progression and enhance anti-tumor immunity have 

recently been reported (93). While preclinical studies have shown promise, to date they have been 

unsuccessful in human clinical trials (94). 

1.4.2 Macrophages 
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Macrophages are a crucial type of immune cells that help maintain tissue balance and fight against 

pathogens (95). They are considered to be among the most important immune cells (96). 

Macrophages display remarkable flexibility, with the M1 and M2 states representing two extremes 

of activation (97). In vitro studies have shown that various cytokines can polarize macrophages 

towards another phenotype (98). These distinct phenotypes are regulated by different cytokine and 

chemokine (99). For instance, M1 macrophages produce pro-inflammatory cytokines and 

chemokines and are activated by interferon-y (IFN-y) and/or bacterial lipopolysaccharide (LPS) 

(100). They play a role in anti-tumor immunity, prevent proliferation, and have cytotoxic activity 

(101). In another hand, M2 macrophages are involved in tissue remodeling, angiogenesis, wound 

healing, and tumor progression (102). Various cytokines induce the M2 phenotype, which is 

characterized by an increased secretion of anti-inflammatory cytokines (103). TAMs are a 

significant portion of the macrophage population and play a major role in tumor cell growth, 

invasion, and metastasis. They promote tumor progression, angiogenesis, and suppress T cell 

immune response (104). TAM infiltration levels have been linked to poor outcomes in HNC, 

making it a potential prognostic marker (105). TAMs were previously considered a subpopulation 

of macrophages within the M2 phenotype, but it is now clear that they can adopt a wide range of 

activation states between M1 and M2, expressing both M2 and M1 markers (106). These markers 

include increased levels of interferon-(INF)-inducible chemokines CCL2, CCL5, CXCL9, 

CXCL10, and CXCL16 (M1), upregulated IL-10 (M2), arginase-1 (M2), peroxisome proliferator-

activated receptor y (PPARy) (M2), TNF-a (M1), and MMP-9 (M1) (107). 

1.4.3 CD8+ T cells 

CD8+ T cells are a crucial component of the immune system (108). They express T-cell receptors 

(TCRs) that enable them to detect peptides presented by major histocompatibility complex 1 

(MHC-I) (109). When exposed to an antigenic peptide, naïve T cells undergo a massive clonal 

expansion and differentiation process to become potent effector cells, also known as cytotoxic T 

cells (CTLs) (110). CTLs can destroy tumor cells by releasing cytotoxic mediators or triggering 

first apoptosis signal receptor ligand (FasL)-mediated apoptosis (111). 

Recent high-dimensional profiling technologies, such as single-cell RNA sequencing (scRNA-

seq), spatial transcriptomics, mass cytometry (CyTOF), and proteomics have revealed three 

distinct functional states of tumor-infiltrating lymphocytes (TILs): naive, cytotoxic, and 
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dysfunctional (112). Although TILs with decreased effector function may show different degrees 

of exhaustion, they may still provide long-lasting responses to immune checkpoint inhibitors (ICIs) 

(113). Higher infiltration of CD8+ T cells has been linked to a better response to anti-programmed 

cell death protein 1 (PD1) and programmed death receptor ligand 1 (PD-L1) antibodies in patients 

with cutaneous HNC (114). Moreover, studies have shown that higher infiltration of CD4+ and 

CD8+ TILs are positively correlated with overall survival (OS), relapse-free survival (RFS), and 

better clinical outcomes (115). 

1.4.4 Neutrophil 

Neutrophils are critical component of the innate immune system, also known as 

polymorphonuclear leukocytes (PMNs) (116). They are the most abundant white blood cell 

population in circulation (117).  Neutrophils and macrophages are the first responders to infections, 

pathogens, and injuries. (118).  The previous belief was neutrophils acted only as phagocytic cells 

by producing lytic enzymes and reactive oxygen species (ROS) (119). But recent studies have 

revealed that neutrophils can also create neutrophil extracellular traps (NETs) (120). NETs are 

formed following the activation of neutrophils and play an important role in the development of 

cancer, especially metastatic disease (121). This network is activated by releasing the cytotoxic 

cytosolic and granule proteins on a scaffold of decondensed chromatin, which occurs during a cell 

death process called NETosis (122).  NETs are associated with several mechanisms linked to tumor 

metastasis and immune escape, including in HNC (123). Identifying and characterizing neutrophil 

subpopulations based on the expression of specific surface markers is challenging due to the lack 

of a unique biomarkers (124).  So, researchers use various markers individually or in combination, 

such as CD11b, CD14, CD15, CD16, CD62L, and CD66b, to identify a similar subset of neutrophil 

population (125). 

TANs in cancer display both pro- and anti-tumor properties (126). TANs also exhibit a phenotypic 

duality in the form of polarization states, similar to TAMs (127). These states have been identified 

as N1 and N2, where N1 presents anti-tumor and N2 has pro-tumor activity (128)Neutrophils 

acquire the pro-tumor N2 phenotype by increasing the expression of angiogenesis and invasion 

promoting factors such as CXCR4, VEGF, and MMP-9 and no expression of IFN-β (129).  

However, neutrophils can switch back to the cytotoxic N1 phenotype, which has high expression 
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levels of intercellular adhesion molecule 1 (ICAM1) and TNF-α and increased formation of NETs 

(130). This can occur in the presence of IFN-β or by blocking TGF-β (131). Targeting NETs could 

play a promising role in anti-cancer therapy, however, due to the complexity and multifaced roles 

of neutrophils within the TME, further investigation is needed (132). 

1.4.5 Regulatory T-cells (Treg) 

Treg are an immunosuppressive subset of CD4+ T cells characterized by the expression of the 

master transcription factor forkhead box protein P3 (FOXP3), cytotoxic T-lymphocyte antigen 4 

(CTLA-4), CD4, and CD25 (133). However, these markers are also expressed by effector T cells, 

which makes it difficult to distinguish between the two populations (134).  Treg have a  critical 

role in controlling immune response, as well as maintaining homeostasis, and regulating other 

immune cells:such as  CD4 T helper cells, CD8 T-cells, B cells, NK cells, macrophages,  and 

dendritic cells (135). Tregs can be divided into different subpopulations based on their location, 

origin, and expression profile of markers (136). At present, increasing evidence suggests that 

FOXP3+ T cells in humans, including suppressive and nonsuppressive subpopulations, have 

heterogeneous phenotypes and functions(136). For instance, Tregs that arise in the thymus are 

called natural regulatory T cells are important for maintaining self-tolerance (137). These cells 

constantly express the FOXP3 transcription factor . On the other hand, induced or adaptive Tregs, 

which can differentiate from conventional mature CD4+ T cells outside of the thymus, require 

activation in the presence of the cytokines IL-2 and TGF-β to upregulate FOXP3 (138). Their main 

function is to prevent inflammation (139). A systematic-review confirmed that increased levels of 

circulating Treg cells in peripheral blood can be a prognostic factor of survival in patients with 

oral cancer (140).  Since the frequency and function of Tregs is related to tumor prognosis, 

researchers are studyng the effect of the therapy targeting Treg (141). New therapies such as the 

use of nanoparticles and the chimeric antigen receptor (CAR)-T cells bring to reality the 

possibilities of more efficiency, better outcome, and less toxicity in cancer treatment (142). 

However, further investigation involving these novel therapies are needed  to provide a widespread 

use of engineered Tregs (143). 

1.4.6 Myeloid-derived suppressor cell  
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A group of immature immune cells knowned as MDSCs have a role in regulating the immune 

response in several pathological conditions such as cancer and inflammatory diseases by inhibiting 

both adaptive and innate immunity (144).  MDSCs are regulated by tumor-derived factors, such as 

granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF, and IL- (145). They 

control the inflammatory microenvironment by depleting several amino acids (such as L-arginine, 

L-tryptophan, and L-cysteine), increasing the production of nitric oxide (NO), ROS, inducible NO 

synthase (iNOS), and arginase-1 (146). MDSCs also express PD-L1, which inhibits T cell 

activation, proliferation, and causes T cell apoptosis (147). Additionally, they regulate the activity 

of NK cells and the induction of immunosuppressive Tregs (148). MDSCs were initially found in 

the bloodstream of HNC patients as immature CD34+ cells that can suppress the activity of T cells 

(149).  However, it is difficult to identify MDSCs based on surface markers due to the phenotypic 

diversity of the MDSC population (150). Different subpopulations of MDSCs express various 

myeloid markers, including CD11b, CD33, CD14, CD15, and CD16, but do not express HLA-DR 

(151). Although MDSCs were initially discovered for their immune-suppressive function in 

cancer, they have also been associated with other processes within the TME, such as promoting 

tumor angiogenesis inducing invasion in the ECM through the production of significant levels of 

MMPs (especially MMP-9), and most importantly, forming pre-metastatic niches (152). 

1.4.7 Natural killer cell 

NK cells are effector lymphocites that can rapidly identify and eliminate cells infected with a virus 

or cancer (153). These cells an be classified into two groups based on the surface markers they 

express, CD16 and CD56 (154).  The majority of NK cells found in peripheral blood belong to the 

CD56dimCD16bright subset, which is responsible for high natural cytotoxicity (155). The 

CD56brightCD16dim subset produces higher levels of various immunomodulatory cytokines (156). 

NK cells secrete important cytokines including IFN-y and TNF-a, as well as other factors such as 

GM-CSF, IL-5, IL-8, IL-10, IL-13, CCL2, CCL3, CCL4, CCL5, and CXCL10 (157). In HNC, NK 

cells are important for tumor surveillance and prevent tumor growth, furthermore, NK cell 

infiltration has been associated with a favorable prognosis (157). HNC-infiltrating NK cells are 

susceptible to an array of immune evasion strategies regulated by tumors that must be overcome 

in order to induce the antitumor potential of NK cells (158).  NK cell therapy in combination with 

conventional chemotherapy could potentially improve the outcome of oncology treatment (159).  
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1.4.8 Dendritic cells (DCs) 

DCs are a heterogenous population of antigen presenting cells that infiltrate tumors and present 

tumor-derived antigens to naïve T cells (160). These cells generate primary signals that recruit T-

cells, secondary signals that activate T-cell, signals that differentiate T-cells, and specific signals 

that direct attract T-cells to specific tissues (161). There are two types of DCs  (cDC1 and cDC2) 

which activate anti-tumor immune responses by either presenting tumor antigens or secreting 

cytokines (162). In the TME, cDC1 facilitate CD8+ T-cells to fight tumor cells and secrete IL-12 

to support T-cell function (163).  Studies have shown that the cDC1 signature in the TME is related 

to higher TILs quantification scores and better patient survival (164). 

The chapter 2 is the manuscript-related thesis project presenting  these markers to characterize and 

understand the tumor phenotyping in HPV+ and HPV-HNC with distinctive metastatic 

competence. 
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1.5 Hypothesis and objectives 

 

Hypothesis 

The hypothesis of this study is that alterations in PITX2 and TGM2 gene expression may have a 

significant impact in the development and progression of HPV-related HNC and this can regulate 

critical biological mechanisms affecting the aggressive phenotype. 

 

Objectives 

1: Establish the clinical relevance of PITX2 and TGM2 in a large cohort of patients (n=200) 

including metastatic and non-metastatic samples to evaluate their impact to predict HNC 

progression.  

 

2: Understanding the tumor microenvironment differences of patients with early-stage HPV+HNC 

and HPV-HNC with different metastatic competence.  
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2.1 Abstract 

Head and Neck Cancer (HNC) is the 6th most common tumor in the world, with the main risk 

factors associated with cigarette smoking and alcohol consumption. However, human papilloma 

virus positive (HPV+) HNC cases are increasing significantly from 16.3% to 72.7% in the last 

three decades. Recent studies have shown that HPV-driven tumors exhibit unique DNA 

methylation profile alterations. In this study, DNA methylation alterations were evaluated in HNC 

patients following their characterization regarding the main risk factors. Bisulfite-converted DNA 

from 24 patients were hybridized in the Human Methylation 450 BeadChip microarrays. 

Fluorescence signals were analyzed using GenomeStudio software with the methylation module 

v.1.9.0 (Illumina). To characterize the expression of genes containing differentially methylated 

regions (DMRs), the initial sample set was evaluated using reverse transcription quantitative 

polymerase chain reaction (qRT-PCR). Protein validation was validated by immunohistochemistry 

(IHC) reaction for the top two candidates (PITX2 and TGM2) using an independent cohort of 100 

patients with HNC and the results were associated with clinicopathological outcomes. The analysis 

of tumor microenvironment (TME) components, the cell-cell interactions and the neighbor’s 

spatial distribution were evaluated by imaging mass cytometry analysis (IMC) in patients 

diagnosed in early clinical stage but with metastatic competence. As a result, we identified 2,655 

DMPs located at 1,073 genes, being 384 hypomethylated and 2,271 hypermethylated CpG sites. 

Considering only the risk factors (high- risk versus low risk), it was identified 15 DMRs located 

at promoter regions of 12 genes. From the 12 genes (ZNF323, FBXO39, SLFN12, TGM2, ZAP70, 

STK32B, HOXA2, LMO3, C1orf74, ST8SIA4, C12orf42, and PITX2), we confirmed a concordant 

mRNA expression for 8 genes (ZNF323, FBXO39, TGM2, ZAP70, LMO3, C1orf74, C12orf42, 

and PITX2).  PITX2 and TGM2 were selected for validation in a large cohort of patients' samples 

and showed overexpression in HPV-negative and HPV- positive HNC respectively show This 

overexpression was associated with tumor depth (P=0.0011) and advanced tumor stage 

(P=0.0042). This data was also independently validated in The Cancer Genome Atlas (TCGA) 

platform using 530 HNC samples. Single-cell analysis of more than 209,302 cells revealed 

differences in immune landscapes between HPV+ and HPV-negative tumours with different 

metastatic competences. The analyses showed cellular neighbourhoods associated with metastasis 

in patients with HNC, which we leveraged to identify a unique population of PDL1, and NK cells 

associated with HPV+HNC. Our findings provide insight into the biology of HPV+HNC, 
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reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the 

microenvironmental contexture of cancer. 

 

Keywords: Head and neck cancer; DNA methylation; PITX2; TGM2; HPV; prognostic marker.   
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2.2  Introduction 

Head and neck cancer (HNC) is the 6th most common cancer worldwide presenting 890.000 new 

cases and 450.000 deaths per year [1]. The actual incidence is expected to rise 30% by the year 

2030 due to the exponential increase in human papillomavirus (HPV) infection [2]. Patients with 

HNC receive standard therapy based on surgery, radiotherapy, chemotherapy, immunotherapy, or 

combinations of these modalities [3]. These approaches do not consider that HNC differs from one 

patient to another and that the inter and intra-tumor heterogeneity can directly impact the treatment 

response [4]. Despite all the advances in surgical procedures and image-guided technologies, the 

outcomes of patients with advanced disease remain poor and the 5-years survival is stagnant at 

<50% [5]. Molecular and epidemiological research have identified a consistent set of risk factors 

linked with tobacco, alcohol consumption, and HPV infection leading to somatic mutations, 

epigenetic changes and ultimately to HNC formation [6]. Despite of the knowledge of these 

epidemiological associations, the epigenetic mechanisms underlying the role of these risk factors 

in HNC aetiology are poorly understood. Epigenetic modifications such as DNA methylation of 

genes related to cancer are key to detect cancer development as potential biomarkers [7]. Different 

types of cancers may have specific DNA methylation profiles which could impact on clinical 

outcomes [8]. DNA methylation is key to transcription silence and have critical role in the 

maintenance of cell stability [9]. Consequently, the DNA methylation is not only prognosis and 

predictive biomarker but also the target of therapy through inhibiting activity of DNA 

methyltransferase (DNMT1) enzymes such as 5-azacitidine and decitabine [10]. In this study, 

DNA methylation profiles were evaluated in HNC tumors following their characterization 

regarding the main risk factors and the impact on the tumor microenvironment. 

 

2.3 Material and Methods 

2.3.1 Study population 

For methylation analysis, primary frozen samples from HNC patients with confirmed risk factors 

for tobacco and alcohol (n = 12) and non-risk patients (n = 12) followed up for 157 months (over 

10 years) were surgically removed at the Department of Head and Neck Surgery (Jewish General 

Hospital - McGill University). For imaging mass cytometry (IMC) and immunohistochemistry 

(IHC), archival formalin-fixed and paraffin-embedded tissue (FFPE) blocks were obtained from 
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each patient and representative hemotoxylin and eosin (HE) slides taken from each tumor for 

histological confirmation. Approval for the study protocol was granted (CR17-44) following 

ethical review. Two pathologists reviewed the slides to select paraffin-embedded oral cancer 

specimens (Table S1). Tumor relapse was histologically confirmed, and patients were followed 

up after treatment. Eligibility criteria included previously untreated HNC patients submitted for 

treatment in the same institution without any distant metastasis at the diagnosis (M0). The tumor 

staging was re-classified according to the International Union Against Cancer (TNM) and grouped 

as early clinical stage (T1 + T2) or advanced clinical stage (T3 + T4) (165). The medical records 

were the main source to obtain detailed clinicopathological information. Strengthening the 

reporting of observational studies (STROBE Statement) was used to ensure appropriate 

methodological quality. All patient information and tissues were obtained after written informed 

consent and used in accordance with ethical guidelines. 

 

Table 1. Clinical characteristic of samples submitted to DNA methylation profiling, 

immunohistochemistry, and imaging mass cytometry. 

Sample 

ID  

Ag

e  

sex  Location  Smo

ke  

Alcoh

ol  

T 

stage  

N 

stage  

HPV  risk factor  

C03  80  Male  Tongue  Yes  Yes  T4a  N0  Positiv

e  

Positive  

C01  51  Femal

e  

Tongue  Neve

r  

Never  T2  N2c  Negativ

e  

Negative  

C02  55  Male  Tongue  EX  Never  T-  N-  Negativ

e  

mixed  

C04  67  Femal

e  

Buccal 

mucosa  

Neve

r  

Never  T-  N-  Negativ

e  

Negative  

C05  70  Femal

e  

Nasal 

cavity  

Yes  Yes  T4a  N0  Positiv

e  

Positive  

C06  71  Male  Buccal 

mucosa  

Neve

r  

Never  T4a  N1  Negativ

e  

Negative  

https://www.mdpi.com/2072-6694/13/1/153#app1-cancers-13-00153
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C08  50  Femal

e  

Tongue  EX  Never  T-  N-  Negativ

e  

mixed  

C09  42  Male  Larynx  Yes  Yes  T-  N-  Positiv

e  

Positive  

C010  73  Femal

e  

Tongue  Neve

r  

Never  T1  N0  Negativ

e  

Negative  

C012  70  Male  Tongue  Yes  Yes  T2  N2b  Positiv

e  

Positive  

C013  32  Male  Tongue  Neve

r  

Never  T3  N2b  Positiv

e  

mixed  

C014  76  Femal

e  

Buccal 

mucosa  

Neve

r  

Never  T4a  N2c  Negativ

e  

Negative  

C015  49  Femal

e  

Tongue  Neve

r  

Never  T1  N1  Negativ

e  

Negative  

C016  63  Male  Tongue  Yes  Yes  T3  N2b  Positiv

e  

Positive  

C017  58  Male  Tongue  Neve

r  

Never  T-  N-  Negativ

e  

Negative  

C018  72  Male  Pharynx  Neve

r  

Never  T4a  N2b  Negativ

e  

Negative  

C020  69  Male  Floor of 

mouth  

Neve

r  

Never  T3  N0  Negativ

e  

Negative  

C021  60  Male  Larynx  Yes  Yes  TX  N1  Positiv

e  

Positive  

C022  48  Male  Larynx  Yes  Yes  T2  N2c  Positiv

e  

Positive  

C023  83  Male  Tongue  Yes  Yes  T2  NX  Positiv

e  

Positive  

C024  62      Neve

r  

Never  T-  N-  Negativ

e  

Negative 
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2.3.2 DNA methylation analysis 

DNA was converted using the EZ DNA Methylation kit (Zymo Research,USA) according to the 

manufacturer’s recommendations. Bisulfite-converted DNA was hybridized in the Human 

Methylation 450 BeadChip microarrays (HM450K, Illumina, USA), following the Illumina 

Infinium HD methylation protocol, followed by images acquisition by the Illumina iScan SQ 

scanner (Illumina, USA). The fluorescence signals were interpreted with the GenomeStudio 

software [11]. (v.2011.1 with the methylation module v.1.9.0; Illumina, USA). Probes were 

annotated according to the Illumina annotation file using UCSC version hg19 of the human 

reference genome.  

2.3.3 Copy-number variation (CNV) analysis 

450k methylation array data were subjected to copy-number variation (CNV) analysis using the 

conumee Bioconductor software version 1.32.0 [12]. Each probed CpG is typically represented by 

two probes on the array (one for methylated and one for unmethylated). The methylation and 

unmethylated signal intensities are combined for the computation of CNV, and a ratio is created 

against healthy reference samples with a flat genome. The location of each chromosome is then 

used to plot this copy-number ratio on a graph. For normalization, a set of 71 control samples with 

a balanced copy-number profile from both male and female donors were used. We included genes 

that are often altered in HNC in our plots.  

ChAMP package was applied to the dataset [13]. Using standard parameters in packages 

implemented in ChAMP, three samples were excluded due to not passing the QC parameters and 

XYS and multihit probes were excluded from further analysis. Signal intensities from type I and 

II probes were normalized using FunNorm[14]. Cellular compositions were corrected using the 

REfFreeEWAS package [15] as implemented in ChAMP, followed by comparison between 

groups.  Differentially methylated positions (DMPs) and regions (DMRs) were characterized by 

comparing HNC cases positive and negative for risk factors.  
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2.3.4 qRT-PCR 

To characterize and validate the expression of genes containing a DMR, the initial sample set was 

evaluated using qRT-PCR. cDNA was synthesized using Superscript II reverse transcriptase 

(Invitrogen, Carlsbad, CA, USA) and random primers (Invitrogen, Carlsbad, CA, USA). qRT-PCR 

amplification was conducted using Power SYBR Green® Master Mix (Thermo Fisher, Carlsbad, 

CA, USA) and the quality control steps followed MIQE Guidelines [16] All reactions were 

performed in duplicate, and no-template reactions were used as a negative control. HPRT was 

selected as the most stable control gene from three endogenous genes tested (GAPDH, ACTB, 

HPRT1) using the geNorm algorithm [17]. 

 

Table 2. Primer details for amplification of specific DNA sequences: genes and orientation. 

Gene 
 

Orientation 
Sequence 

ZNF323 Forward AGTTGGCATCAAAGCAAGAAATC 

ZNF323 Reverse CTGTGGCGTCTCTCTCCAG 

ST8SIA4 Forward GAAAGGCTGGCTCTTCAATCT 

ST8SIA4 Reverse ACCACTGACACATCTCGTTCT 

C12orf42 Forward CGGCCCGAGTAACACAGAG 

C12orf42 Reverse GCCCAGGAGTCTGCTTTGG 

PITX2 Forward TGTGGACCAACCTTACGGAAG 

PITX Reverse ATGAGCCCATTGAACTGCGG 

FAM89A Forward GAGAACGGCTTCTTCGATGAA 

FAM89A Reverse GAGAACGGCTTCTTCGATGAA 

RFX8 Forward TCCTTAATGCTTTGGAAGGTGTT 

RFX8 Reverse CGCATAGTCTTAGCCATGTTGG 

FBXO39 Forward TCGACTCCCTCAGCTACATGA 

FBXO39 Reverse ACATGGTCTTTTTGAACTGGGG 

SLFN12 Forward AAGATAACCGTGTGATGCAGTT 

SLFN12 Reverse GGGGAGCAGGTAATGACGTATTT 

TGM2 Forward CAAGGCCCGTTTTCCACTAAG 
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TGM2 Reverse GAGGCGATACAGGCCGATG 

ZAP70 Forward ACGCCAAGATCAGCGACTIT 

ZAP70 Reverse GGGTGCGTACCACTTGAGC 

STK32B Forward CAACATAGCGACGGTAGTGAAA 

STK32B Reverse CAGCTCATAGGCTGTGATG 

HOXA2 Forward CCECTGTCGCTGATACATTTC 

HOXA2 Reverse TGGTCTGCTCAAAAGGAGGAG 

LMO3 Forward CTGCTTTGCATGTCAGCTTTG 

LMO3 Reverse AACCTTCCTCGTAGTCCGTCT 

C1orf74 Forward GGGACTTATCTCTAGCAGTCTCC 

C1orf74 Reverse GGTATAGGGAACAGGATAGCCC 

GAPDH Forward AATGAAGGGGTCATTGATGG 

GAPDH Reverse AAGGTGAAGGTCGGAGTCAA 

ACTB Forward GCACCCAGCACAATGAAG 

ACTB Reverse CTTGCTGATCCACATCTGC 

HPRT Forward GAACGTCTTGCTCGAGATGTGA 

HPRT Reverse TCCAGCAGGTCAGCAAAGAAT 

 

2.3.5 Tissue micro-array (TMA) construction 

1.0 mm cores were extracted from previously microscopically defined HNC representative areas 

and matched morphologically normal epithelium from adjacent margins free of tumor with a 

Tissue Microarrayer® (Beecher Instruments, Silver Springs, MD, USA). Tissue cores were 

punched and arrayed in duplicate on a single recipient TMA paraffin block. Each core was spaced 

0.2 mm apart. After cutting sections from the recipient block, the slides received a layer of paraffin 

to prevent oxidation and stored at −20 °C.  

 

2.3.6 Immunohistochemistry (IHC) 
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IHC reaction was carried out on the TMA as we described [18].  In brief, the slides were incubated 

with primary antibodies diluted in PBS overnight at 4 °C using: anti-TGM2 (Thermofisher, USA, 

1-2 µg/mL), anti-PITX2 antibody (Thermofisher, USA, 1:200), anti-p16 antibodies) (Roche 

Ventana 1:200) were used, following the manufacturer's protocols. Sections were incubated with 

secondary antibodies (Advanced TM HRP Link, DakoCytomation, Denmark) for half-hour 

followed by the polymer detection system (Advanced TM HRP Link, DakoCytomation) for half-

hour at room temperature. Reactions were developed using a solution of 0.6 mg/mL of DAB 

(Sigma, St Louis, MO, USA) and 0.01% H2O2 and then counter-stained with hematoxylin. Positive 

controls were included in all reactions in accordance with manufacturer’s recommendations. 

Negative control consisted in omitting the primary antibody and replacing the primary antibody 

by normal serum. IHC reactions were replicated on distinct TMA slides to represent different 

tissues levels in the same lesion. The second slide was 25–30 sections deeper than the first slide, 

resulting in a minimum of 300μm distance between sections representing 4-fold redundancy with 

different cell populations for each tissue.  

  

2.3.6.1 IHC data acquisition 

 

All TMA slides were scanned using an Aperio ScanScope CS (Leica Biosystems, Canada) whole 

slide scanner at 20X magnification, with a resolution of 0.25 μm/pixel. The resolution of all images 

was within the range 0.231–0.253 μm/pixel. 

 

2.3.6.2 QuPath combination with StarDist 

 

All tumor sections were analyzed in QuPath (version 0.2.3 University of Edinburg, UK) [19] based 

on a computerized digital image-processing system using the segmentation method StarDist [20]. 

After whole slide scan, an entire image was selected for analysis and imported into QuPath. The 

StarDist model was used for estimating positive tumor cells within the annotations. Positive tumor 

cells classifiers were trained, and quantification was based on the nuclear (p16) or cytoplams 

(TGM2 and PITX2) staining specificity of each marker. Data were extracted from QuPath, the 

ratio including percentages for each marker were further calculated in MS Excel by dividing the 

total number of positive tumor cells per each marker by the total number of tumor cells in the 
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corresponding H&E section. TensorFlow's [21] framework was used to enable the training and 

interference of deep neural networks. 

 

2.3.6.3 Statistical analysis 

Statistical analyses of associations between variables were performed by the Fisher’s exact test 

(with significance set for P<0.05) and for continuous variables the non-parametric Mann–Whitney 

u test. All analyses were performed using the statistical software package STATA-13 (STATA 

Corporation, College Station, TX, USA).  

2.3.7 Imaging mass cytometry (IMC) 

 

IMC was done at the Rosalind and Morris Goodman Cancer Institute and the Quebec Cancer 

Consortium using the Fluidigm Hyperion Imaging Mass Cytometer System for laser-based cell 

ablation and imaging in their Single Cell and Imaging Mass Cytometry Platform (SCIMAP).The 

system had a 1μm resolution and gathered channel-specific signal data on a per-pixel basis This 

data helped record signal localization (corresponding to nuclear, cytoplasmic, and membrane) and 

intensity per individual cells. Cellular regions were identified by correlating with Ir191/193 which 

labels DNA, and CD45, e-cadherin, Pan-CK, smooth muscle actin (SMA) and vimentin for the 

cytoplasmic. The antibody panel including the target, clone information and metal isotype tag, is 

available in the Table 3. Conjugations of the metal to the antibodies were done using the Maxpar 

labeling kit (Fluidigm, USA). The concentration of the antibodies was adjusted by titration, 

ranging from 100 to 500 μg ml−1, using Nanodrop (Thermo Scientific, USA). 

Table 3. Antibody panel design and metal conjugation. 

Metal Target Clone Vendor Cat # 

106Cd α-SMA 1A4 Abcam ab240654 

110Cd Vimentin D21H3 Cell Signal 46173SF 

141Pr CD11c EP1347Y Abcam ab216655 

143Nd CD31 EP3095 Abcam 226157 

144Nd CD21 BU32 Biolegend 354902 
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146Nd Ki-67 B56 BD 556003 

148Nd Pan-CK C11 Fluidigm 3148020D 

150Nd PD-L1 SP142 Fluidigm 3150033D 

151Eu CD163 EdHu-1 Fluidigm 91H005151 

155Gd FoxP3 PCH101 Fluidigm 3155018D 

156Gd CD4 EPR6855 Fluidigm 3156033D 

158Gd E-Cad 24E10 Fluidigm 3158029D 

159 Tb CD68 KP1 Fluidigm 3159035D 

161Dy CD20 E7B7T Cell Signal 92688SF 

162Dy CD8a CD8/144B Fluidigm 3162034D 

165Ho PD-1 EPR4877(2) Fluidigm 3165039D 

167Er GranB EPR20129-217 Fluidigm 3167021D 

169Tm Collagen I Polyclonal Fluidigm 3169023D 

170Er CD3 Polyclonal Fluidigm 3170019D 

173Yb CD45RO UCHL1 Fluidigm 3173016D 

195Pt Cell Seg Kit 1 N/A Fluidigm TIS-00001 

196Pt Cell Seg Kit 2 N/A Fluidigm TIS-00001 

198Pt Cell Seg Kit 3 N/A Fluidigm TIS-00001 

191/193Ir DNA N/A Fluidigm 201192A 

 

 

2.3.7.1 Immune staining 

FFPE TMA slides underwent deparaffinization and heat-mediated antigen retrieval using the 

Ventana Discovery Ultra auto-stainer platform (Roche Diagnostics) according to the 

manufacturer’s instructions. FFPE slides were incubated at 70°C in pre-formulated EZ Prep 

solution (Roche Diagnostics), followed by incubation at 95°C in pre-formulated Cell Conditioning 

1 solution (Roche Diagnostics) for a total run time of ~2.5 h. Slides were rinsed in 1× PBS and 

incubated for 45 min at room temperature in Dako Serum-free Protein Block solution (Agilent). 

An antibody cocktail containing metal-conjugated antibodies was prepared in Dako Antibody 

Diluent at optimized dilutions. Slides were stained with primary antibodies at 4 °C overnight and 

subsequently washed with 0.2% Triton X-100 and 1× PBS. A secondary antibody cocktail 
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containing metal-conjugated anti-biotin was prepared in Dako Antibody Diluent at the optimized 

dilution. Slides were incubated with anti-biotin for 1h at room temperature and subsequently 

washed with 0.2% Triton X-100 and 1× PBS. Slides were counterstained with Cell-ID Intercalator-

Ir (Fluidigm) diluted at 1:400 in 1× PBS for 30 min at room temperature, rinsed for 5 min with 

distilled water, and air-dried prior to IMC acquisition. 

 

2.3.7.2 IMC data acquisition 

 

IMC image was obtained for each sample using the Hyperion Imaging Mass Cytometry™ (IMC™, 

Fluidigm, USA) after following the manufacturer's instructions for instrument calibration. Laser 

ablation was performed on the regions of interest at a frequency of 200Hz, resulting in a pixel 

size/resolution of 1 µm2. The raw data underwent preprocessing using the CyTOF software v7.0 

(Fluidigm, USA) [22]. 

 

 

Figure1. Project design and sample processing.  The workflow involves several stages including 

1) Sample collection and tissue preparation; 2) Antibody panel design with specific antibodies  

conjugated with heavy metal isotopes; 3) Tissue staining involving tissue microarray (TMA) 

section stained with a cocktail of metal-conjugated antibodies, which enables the binding to 

specific cellular targets; 4) The hyperion imaging system was used to process the tissue samples; 
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5) Laser ablation feature coupled with mass cytometry for ionizing and analyzing the metal tag; 6) 

Ionized metal isotopes are generated and go towards the mass spectrometry component for 

ionization and analysis and data accusation. Figure created using biorender.com. 

 

2.3.7.3 IMC data preprocessing and analysis 

The images were analyzed following the protocol published by Windhager et al. [23]. The first 

step includes the quality control by manually reviewing the raw data using plugins like napari-imc 

[23] or ImageJ [24] for IMC. T. After this, the data undergoes preprocessing to extract multichannel 

images in TIFF format from the raw data. The raw. MCD (MathCad document) files were 

processed using the HistoCat++ V 3.0.0 [25], Initially, the raw files were converted into .tiff files. 

Following this, the data imported to enable medicine platform and a pretrained neural network was 

employed to segment the cells. The objective of this stage is to allow for deep learning 

segmentation, specifically using the DNA1 and DNA2 channels for the nuclear channel.  

 

2.3.7.4 Artifact detection 

An artifact annotation created using the enable medicine platform using the sensitivity method 

parameter “9” and the DNA1 and DNA2 channels for the nuclear channel. The clustering outcomes 

were evaluated to determine the presence of batch effects between samples and acquisition day, 

and the significant batch effects were corrected. 

 

2.3.7.5 Clustering and dimensionality reduction 

Cells were clustered using the Louvain method for graph-based modularity optimization provided 

by Enable Medicine inc. For the projection of multi-parametric data into a 2-dimensional space, the 

UMAP method was applied. 

 

2.3.7.6 Cell–cell pairwise interaction analysis 

To identify significant pairwise interaction and avoidance behaviours between cell types, we 

performed permutation tests of single-cell interactions as previously described [26]. Cells within 

a 6-pixel radius (6 µm) were considered interacting. Significant interaction was considered with 

P≤0.01. 
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2.3.7.7 Cellular neighborhood analysis 

A spatial neighborhood graph was established using Enable Medicine's Spatial Neighbor Distance 

function [27] Following this, neighborhood cell type composition and mean marker intensities 

were aggregated.   

 

2.4 Results 

2.4.1 Study population 

 

Methylation analysis combined with clinicopathological data from our cohort containing HPV+ 

(n = 171) vs. HPV negative cases patients (n = 20) with 15.7 (7.3%) months follow-up, identified 

a set of genes that are selectively overexpressed HPV+ compared to HPV- (Table 4).  

 

Table 4. The demographic characteristics of HNC patients that were included in the methylation 

study. 

Characteristics 
HPV+ 

(n=15) 

HPV- 

 (n=20) 

Validation 

cohort 

(n=136) 

All patients 

(n=171) 
P-value 

Age (years) 

Mean (SD) 

 

57.3 (14.6) 

 

46.0 (14.7) 

 

46.0 (14.4) 

 

47.0 (14.6) 

 

0.025 

Gender 

Female 

Male 

 

9 (60.0%) 

6 (40.0%) 

 

13 (65.0%) 

7 (35.0%) 

 

112 (82.4%) 

24 (17.6%) 

 

134 (78.4%) 

37 (21.6%) 

 

0.041 

pT category 

pT1 

pT2 

pT3/4 

 

NA 

 

4 (20.0%) 

5 (25.0%) 

11(55.0%) 

 

21 (15.4%) 

33 (24.3%) 

82 (59.6%) 

 

25 (16.0%) 

38 (24.3%) 

93 (59.6%) 

 

0.001 

pN category 

pN0 

pN1a 

 

NA 

 

6 (30.0%) 

6 (30.0%) 

 

74 (54.4%) 

29 (21.3%) 

 

80 (51.2%) 

35 (22.4%) 

 

0.001 



 

 
48 

pN1b 

pNx 

4 (20.0%) 

4 (20.0%) 

18 (13.2%) 

15 (11.0%) 

22 (14.1%) 

19 (12.1%) 

Follow-up (months) 

Mean (SD) 

 

14.5 (11.2) 

 

15.7 (7.3%) 

 

68.1 (30.9) 

 

59.8 (34.5) 

 

0.001 

 

2.4.2 Methylation 

DNA methylation levels in the tumor tissue from patients with and without exposition to risk 

factors (smoke, alcohol, and HPV) were associated with genes with a DMR located at the 

respective promoter region to evaluate the mRNA levels (Figure 2).  

 

Figure 2. DNA methylation profiles and methylation levels observed in HNC with and 

without associated risk factors. The graphs show the DNA methylation at each CpG site in the 

different target regions. 

Comparison between cases considering the risk factor exposition did not point to a DMP after 

multiple correction tests (adjP≤0.05).  It was identified CpG sites with a P-value <0.001 and 

methylation levels higher than 10% (Supplementary Table 1). There are 2,655 DMPs located at 
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1,073 genes, being 384 hypomethylated and 2,271 hypermethylated CpG sites. Considering 

DMRs, we found 12 hypermethylated and 3 hypomethylated in cases positive to risk factors, 

compared to the negative group (Table 5). The 15 DMRs are located at 17 genes (ZNF323, 

FBXO39, SLFN12, TGM2, ZAP70, STK32B, STK32B, HOXA2, LMO3, C1orf74, ST8SIA4, 

C12orf42, PITX2, C17orf46, MIR1182, and RFX8). To validate these findings, qRT-PCR in 

samples from HNC patients HPV+ and HPV- were performed, which confirmed the expression 

changes predicted by the methylation data for genes most importantly in LMO3, PITX2, and TGM2 

(Figure 3), where the expression profiles of each validated gene show agreement with the 

methylation changes (Table 5). LMO3, PITX2, and TGM2, showed consistent patterns of gene 

expression (Figure 3). TGM2 (HPV+) and PITX2 (HPV-) were choose as potential candidates for 

additional investigation based on the availability of the commercial antibodies. 

Table 5. Differential methylation analysis results for genes in different chromosomal regions. 

ID Gene chr start end width value area 

p.valu

e fwer 

p.value

Area 

fwerAr

ea 

DMR_

1 

ZNF32

3 6 

283036

29 

283044

51 822 -2.54 32.99 

1.37E

-05 0.00 

1.59E-

03 0.24 

DMR_

2 

FBXO

39 17 

667925

4 

667978

1 527 1.97 23.68 

4.65E

-04 0.09 

5.22E-

03 0.57 

DMR_

3 

SLFN1

2 17 

337594

84 

337605

27 1043 1.77 23.07 

9.85E

-04 0.16 

5.84E-

03 0.58 

DMR_

4 

TGM2 

20 

367936

08 

367940

02 394 1.76 21.11 

1.55E

-03 0.24 

8.56E-

03 0.66 

DMR_

5 

ZAP70 

2 

983506

51 

983520

02 1351 1.38 20.77 

3.24E

-03 0.41 

9.35E-

03 0.69 

DMR_

6 

STK32

B 4 

505252

6 

505359

6 1070 1.65 16.53 

6.13E

-03 0.49 

2.45E-

02 0.87 
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DMR_

7 

HOXA

2 7 

271425

27 

271434

78 951 1.22 20.81 

3.83E

-03 0.50 

9.26E-

03 0.69 

DMR_

8 

LMO3 

12 

167586

92 

167593

91 699 1.74 13.91 

9.81E

-03 0.60 

4.76E-

02 0.95 

DMR_

9 

C1orf7

4 1 

209957

601 

209958

343 742 -1.35 17.55 

7.37E

-03 0.60 

1.88E-

02 0.83 

DMR_

10 

ST8SI

A4 5 

100238

260 

100239

319 1059 1.47 16.16 

9.55E

-03 0.66 

2.68E-

02 0.88 

DMR_

11 

C12orf

42 12 

103889

516 

103889

960 444 1.58 14.24 

1.29E

-02 0.66 

4.37E-

02 0.94 

DMR_

12 

PITX2 

4 

111544

016 

111544

463 447 1.54 13.85 

1.57E

-02 0.71 

4.84E-

02 0.95 

DMR_

13 

C17orf

46 17 

433390

40 

433397

44 704 -1.32 14.57 

1.70E

-02 0.80 

4.02E-

02 0.94 

DMR_

14 

MIR11

82 1 

231155

632 

231156

359 727 1.22 14.65 

1.77E

-02 0.82 

3.93E-

02 0.94 

DMR_

15 

RFX8 

2 

102090

791 

102091

656 865 1.12 14.59 

1.58E

-02 0.83 

4.00E-

02 0.94 
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Figure 3. Validation of 15 differentially methylated regions (DMRs) in17 genes by qRT-PCR. 

Line graphs represent the expression profiles of each DMR with standard deviation indicated by 

error bars. box plots show detailed expression distribution. Identifiers above each plot correspond 

to specific DMRs and their associated genes. Color coding on the line graphs correlates with 

genomic features such as transcription start sites and CpG island regions. Box plots highlight 

expression fold changes, with significance denoted by p-values and fold changes (FC). this figure 

categorizes expression data into negative and positive deviations from the control mean. 

2.4.3 Protein expression validated methylation data 

Protein expression from two genes that presented agreement between DNA methylation and 

mRNA expression were evaluated in an independent cohort of cases. The analysis showed that in 

HPV-negative HNC cases, moderate levels of PITX2 expression were detected, whereas a down-

regulation of TGM2 expression was seen, suggesting a potential inverse correlation with HPV 

status (Figures 4B and 4C). on the contrary, PITX2 showed weak expression in HNC cases, but 

specially down expressed in HPV+ cases; TGM2 was overexpressed in HPV+HNC. 
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Table 6. Demographic and clinical features of patients with P16 positive and negative HNC. 

Feature P16 Negative P16 Positive p-value 

Age (years) 60.57 ± 10.54 64.08 ± 16.53 0.388 

Sex (M/F %) Male: 48.57%, Female: 

51.43% 

Male: 61.54%, Female: 

38.46% 

0.635 

PITX-Positive % 0.69 ± 1.68 0.08 ± 0.12 0.202 

HPV-Positive % 1.48 ± 1.58 3.72 ± 4.63 0.015 

TGASE-Positive % 21.99 ± 20.03 24.94 ± 18.34 0.644 

 

 

Figure 4. Validation of the protein expression of selected genes identified by DNA 

methylation in HNC patients with and without associated risk factors by 

immunohistochemical expression. A) TMA stained with HPV16/18 are showing the expression 

HPV+ in the left and HPV- in the right; a morphologically normal epithelium was used as control. 

B) First panel showed HPV- HNC case analyzed. Protein expression for PITX2 showed moderate 

to overexpression in HPV- HNC and TGM2 was down-regulated in HPV- HNC. C) First panel 
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showed the HPV+ case analyzed. Protein expression for PITX2 showed down-expression in HPV+ 

HNC cases and TGM2 was overexpressed in HPV+ HNC. Magnification of 200x; scale bar = 

50um). D) Boxplots shows the percentage of positive expression for HPV-16/18, PITX2, and 

TGM2 markers expression categorized by P16 status. Median values and interquartile ranges are 

represented as individual points. The annotations 'ns' indicate no statistical significance in marker 

expression between P16(-) and P16(+) categories. 

 

2.4.4 Image analysis identified distinct immune infiltration patterns within HNC samples. 

In the heatmap analysis of normalized expression values (Figure 5A) different cellular markers 

and clusters of cells were shown. Whitin the enable medicine platform High expression of CD3 

and CD4, clusters as helper T cell markers; High expression of CD20 and CD45RA, cluster as B 

cell markers; High expression of E-Cadherin and Pan-Cytokeratin, clusters as epithelial cell 

markers. High expression of Vimentin, aSMA, and CollagenI, clusters as fibroblast markers and 

High expression of CD14, CD163, and CD68, clusters as macrophage markers. Between the 

markers with their normalized expression values there was a significant overexpression of CD68 

and CD163, suggesting a strong presence of these phagocytic cells, interestingly, helper T cells 

also showed a markedly higher expression of CD4 and FoxP3, which are typically associated with 

the regulatory functions of T cells. 
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Figure 5. Unsupervised clustering. A) Heatmap provides a summary of the normalized 

expression values of marker across cell populations. Each row represents a different marker 

such as CD117, CD11c, CD14, CD163, CD20, CD3, CD45, CD56, Ki67. The colors range from 

red (high expression) to blue (low expression), shows the expression levels across the different 

cell types B) The t-SNE clustering offer a two-dimensional representation of the high-dimensional 

single-cell data, highlights the distribution and density of cells based on marker expression. 

Individual maps are provided for markers: Pan-Cytokeratin, E-Cadherin, CD68, CD163, CD11c, 

and CD146. Each point on a map represents a single cell, with the color that indicates the 

expression level of the marker from low (blue) to high (red). The lowermost t-SNE map shows the 

clustering of cells into distinct populations, color-coded by cell type: epithelial cells, fibroblasts, 

macrophages, helper T cells, and natural killers.  
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Figure 6. IMC showing the cell dynamics within the TME of the head neck cancer tissue. A) 

The heatmap shows the cell type frequencies in patient samples. The z-score transformation 

enables a direct comparison of cell type between samples categorized as 'positive' and 'negative' 

for HPV related HNC. B) Spatial distribution maps show the tissue compartmentalization of cell 

types in 'Positive' and 'Negative' patient groups. C) Box plots shows the variation and distribution 

of z-scores for cell frequencies among 'positive' and 'negative' groups.  

In the HPV+ HNC there is a higher amount of macrophages and helper T cells compared to the 

negative condition, as indicated by the median values and the spread of the data points in their 

respective plots (Figure 6C) although the frequency of natural killers, B cells, and fibroblasts 

appears to be relatively consistent between the positive and negative conditions, with overlapping 

interquartile ranges and no significant shift in median values. Epithelial cells, while showing some 

variability, do not exhibit a marked difference between the two conditions. 
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Figure 7. Neighborhood analysis identifies cell populations associated with HNC phenotypes 

of interest from single-cell interaction. HNC cell phenotypes A) Interactions present in 20 HNC 

tumor images and three matched normal tissue images are represented as a heatmap in which the 

cell type in the row is significantly neighbored (red) or avoided (blue) by the cell type in the 

column. Significance was determined by permutation test (P < 0.01). B) Boxplots shows the 

distribution of interaction frequencies between different cell types in HNC tumors. Each boxplot 

corresponds to a specific neighborhood or interaction type and displays the median, interquartile 

range, and outliers of interaction frequency. The 'whiskers' of the boxplot extend to the extreme 

data points not considered outliers, and points are plotted individually to show the spread of the 

data beyond the quartiles. The statistically significant interaction between the frequencies of two 

cohorts is highlighted with p-values calculated using a Mann-Whitney U test to compare the 

distributions. 



 

 
57 

 

The boxplots across neighborhoods 0 to 9 and heatmap show variation in the distribution of the 

measured variable between the two cohorts. (Figure 7 A and B). Some neighborhoods show a 

statistically significant difference between the cohorts (as indicated by p-values), suggesting that 

these neighborhoods could be potential areas of interest, so the spatial neighborhood analysis was 

done for the next step to better understand and investigate the cellular interactions in TME. 

2.4.5 Spatial neighborhood analysis reveals specific cellular interactions associated with 

tumor behavior. 
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Figure 8. Inter- and intra-cellular interaction profiling A) This heatmap shows the ratios of 

cell-cell interactions in different patient samples, with an emphasis on the co-occurrence of various 

cell types within the 'positive' and 'negative' cohorts. Each row represents a specific cell interaction 

pair, with color intensity corresponding to the frequency ratio, normalized across all patient 

samples. B) The box plots show a detailed statistical analysis of selected cell-cell interaction ratios. 

The distribution of interaction ratios between various cellular pairs such as fibroblasts with 

themselves and with B cells, epithelial cells with natural killers, macrophages, and B cells, and B 

cells with themselves.  

 

 

Figure 9. The spatial cellular neighbourhoods of HNC tumors. Representative Voronoi 

diagrams categorized with patients in P16+ cohorts and P16 negative cohort. 

In addition to cell densities, cellular interactions can also play a crucial role in tumor control. We 

therefore determined which cellular interactions within the primary tumors were associated with 

metastases. immune populations from the IMC datasets were performed, generating 21 clusters. 

We determined which clusters interacted with each other and which clusters avoided each other. 

Focusing on interactions or avoidance that were significantly different between positive and 

negative patients, we could identify specific interactions or avoidance that could be associated with 

clinical outcomes. 
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Among the significant interactions associated with favorable outcomes P16 negative were a 

subset of natural killers- B cells interactions, and a subset of natural killers interacting with 

themselves.  In contrast, in patients with P16 positive showed strong interaction in macrophages- 

natural killers. (figure 8, 9) 

2.5 Discussion 

 

Tobacco and alcohol consumption, as well as HPV infection, are known risk factors for HNC. The 

biological mechanisms involved in the development and progression of HNC are complex, 

Increased DNA methylation levels of tumor suppressor genes have been associated HNC. In our 

study, we used genome-wide DNA methylation data from HM450K to identify changes in DNA 

methylation in HNC patients and their potential association with primary cancer risk factors. We 

analyzed a well-defined cohort of HNC patients treated in a single center and identified a high 

frequency of gene hypermethylation, including FBXO39, SLFN12, TGM2, ZAP70, STK32B, 

HOXA2, LMO3, C1orf74, ST8SIA4, C12orf42, and PITX2. Previous works reported aberrant 

hypermethylation in gene promoters of HPV (+) oropharyngeal cancer cases, however, our 

analysis identified hypermethylation of new genes associated with HPV status, including two 

additional cadherin-associated genes (TGM2 and PITX2) for which methylation levels were not 

previously described as deregulated in HPV (+) HNC. TGM2 is an enzyme that plays a role in cell 

differentiation, apoptosis, signal transduction, and wound healing. Recent studies suggest that 

TGM2 is involved in the clearance of apoptotic cells and that its suppression can lead to a pro-

inflammatory phenotype. PITX2, on the other hand, is a transcription factor associated with 

inflammation in acute appendicitis and is linked to the progression of different cancers. PITX2 

gene expression is known to facilitate invasion, proliferation, and metastasis in different types of 

cancer such as lung, ovarian, and colorectal cancer. DNA methylation at CpG island influences 

PITX2 expression and is associated with prostate recurrence. In our study, we investigated the 

prognostic value of PITX2 and TGM2 DNA methylation level, gene, and protein expression in 

HNC patients and its potential clinical impact. PITX2 and TGM2 may play a crucial role in the 

pathophysiology of various conditions, including inflammation and cancer. While further studies 

are needed to investigate the precise molecular mechanism underlying these findings, one can 

speculate that this methylation signature is able to integrate alterations induced by the multiple 
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exposures occurred in these patients (notably, heavy smoking, alcohol consumption and HPV 

infection), resulting in a better discriminator for survival. Developing epigenetic therapies to 

combat inflammation or tumors is based on immune system cells. Epigenetic modifications might 

affect transcription patterns during disease progression, which can either facilitate the clearance of 

pathogens or make it possible for the pathogens to evade the immune system. Understanding the 

relationships between the different immune effector pathways will permit improved 

immunomodulatory therapeutics, development of improved vaccines, and avoidance of 

unintended tissue damage. Our candidates should be tested in larger cohorts of patients with HNC, 

using multivariate statistical models, to improve the power and eventually provide a better marker 

for establishing more targeted treatments, especially when considering HPV status for de-

escalation regimens to avoid long-term toxicity of standard-of-care treatment. 
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2.9 Supplementary material 

 

Table S1. CpG sites with a P-value <0.001 and methylation levels higher than 10% 

 

chrom strand cdsStart cdsEnd name2 

chr17 + 7993552

2 

7997519

8 

ASPSCR

1 

chr11 + 1,02E+08 1,02E+08 BIRC3 

chr16 - 8894338

3 

8904321

5 

CBFA2T

3 

chr9 - 2196822

7 

2197482

6 

CDKN2A 

chr7 + 5508697

0 

5527331

0 

EGFR 

chr17 + 3785581

2 

3788429

7 

ERBB2 

chr4 - 1,88E+08 1,88E+08 FAT1 

chr8 - 3826990

6 

3831496

4 

FGFR1 

chr2 - 1,41E+08 1,43E+08 LRP1B 

chr2 - 1,78E+08 1,78E+08 NFE2L2 

chr3 + 1,79E+08 1,79E+08 PIK3CA 

chr10 + 8962370

6 

8972522

9 

PTEN 

chr9 - 8317873 8733843 PTPRD 

chr13 + 4887804

8 

4905420

7 

RB1 

chr8 - 1,46E+08 1,46E+08 RECQL4 

chr17 + 7823748

0 

7836729

8 

RNF213 
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3 Chapter 3 

3.1 Discussion 

 

The incidence of HPV+ HNC is increasing rapidly and has exceeded cervical cancer to become 

the most common HPV-induced cancer in developed countries. Since patients with HPV + HNC 

respond very favorably to standard treatment, the emphasis has changed to reducing treatment 

intensity in order to improve patient’s quality of life.  Aberrant DNA methylation is an epigenetic 

hallmark of tumors and leads to tumor development and progression by silencing tumor suppressor 

genes and activating oncogenes. DNA methylation is a promising candidate for specific 

mechanisms by which environmental carcinogens and chronic inflammation can contribute to 

cancer development. Our study identified two main candidates associated with environmental risk 

factors is HNC: TGM2 and PITX2. 

 

TGM2 is an enzyme belonging to the transglutaminase family that serves multiple functions, such 

as participating in cell differentiation, signal transduction, apoptosis, and wound healing. TGM2 

is present in various cells, including macrophages. It has been known to aid in the clearance of 

apoptotic cells (efferocytosis), and recent findings suggest that defective efferocytosis is involved 

in the consequences of inflammation-associated illnesses. Suppressing TGM2 activity leads to a 

pro-inflammatory phenotype. The functional involvement of PITX2 in tumorigenesis remains 

undetermined. PITX2 gene expression is related to inflammation in acute appendicitis. PITX2 is a 

transcription factor during vertebrate embryogenesis, and irregular PITX2 expression is associated 

with the progression of various cancers. PITX2 and TGM2 may play a critical role in various 

pathophysiological conditions, including inflammation and cancer. The development of epigenetic 

therapeutics to combat inflammation or tumors is predicated on immune system cells. During 

disease progression, epigenetic modifications may influence transcription patterns (genes), which 

can either help with the clearance of pathogens or result in evasion by the pathogens. 
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4 Chapter 4 

4.1 Conclusions 

Aberrant methylation of DNA and inflammation can be induced by environmental carcinogens. 

Our results, based on genome-wide DNA methylation data from different cohorts, considered risk 

factors (smoking, tobacco and HPV infection) show that HPV infection greatly affects DNA 

methylation in HNC. Recognition of HPV + HNC with its favorable clinical outcomes drives the 

interest in de-escalating treatment to reduce side effects. However, inter- and intratumoral 

heterogeneity are the most significant challenge. Biomarkers are important for assigning patients 

to accurate risk subgroups. There is a need to integrate clinical, histopathologic, and molecular 

variations to develop a robust and clinically actionable paradigm that groups HPV+ HNC in 

accordance with these risk factors. Overall, this study provides new insight into epigenetic 

biomarkers that could help to improve risk stratification and treatment management, but further 

research is necessary to explore HPV status and subtypes in a large cohort of tumor samples. 

4.2 Future Directions 

The possibility of investigating whether monocyte polarization into M2-like macrophages can be 

induced by TGM2, a phenotype associated with promoting tumor growth, angiogenesis, 

metastasis, and immunosuppression, is planned to be explored further in future experiments. This 

may suggest a role of TGM2 in tumor progression. Additionally, it is hypothesized that a potential 

therapeutic strategy for invasive HNC could be the silencing of PITX2, and this hypothesis is 

planned to be explored in future experiments. We plan to conduct further experiments to 

investigate whether TGM2 is capable of inducing monocyte polarization into M2-like 

macrophages, a phenotype associated with promoting tumor growth, angiogenesis, metastasis, and 

immunosuppression. This may suggest the role of TGM2 in tumor progression. Additionally, we 

hypothesize that silencing PITX2 could be a potential therapeutic strategy for invasive HNC, and 

we plan to explore this hypothesis in future experiments. 
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