
D-AIDA: A Distributed Framework for
Unified Query Processing and Machine

Learning

Yu Jia He

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Faculty of Science

McGill University
Montréal, Québec, Canada

October 2023

© Yu Jia He 2023

Abstract

The advent of machine learning in the present day computer science landscape invites the collection

of larger and larger datasets by interested entities. These datasets are often stored in a distributed

fashion, across different computer nodes instead of in one monolithic system for multiple reasons.

Moreover, much of the data is stored in relational databases, one of the most popular data manage-

ment systems. The relational database system offers many tools for data analytics and processing,

spawning its own realm of research topics.

Much research has gone into performing machine learning on such distributed data. Traditional

methods may include amassing all the data on a singular machine, which is unlikely to be feasible

in terms of available resources. Some frameworks have arisen allowing computation to instead be

pushed to the data nodes, but these still involve extracting data from the database. This inhibits

further operations using the database engine.

To this end, we create a unified framework that can perform these machine learning operations

without removing data from the database – thus allowing a user to interweave operations required

for machine learning and relational operations optimized by the database engine efficiently. Using a

previous project designed for in-database analytics, we expand it to perform distributed operations

across several database nodes, each hosting a partition of data. This extended project allows

distributed relational queries and user-defined machine learning algorithms to be executed near

data and by the database engine where applicable.

In this thesis, we present a proof of concept of such a framework designed using a middle-

ware architecture. We present implementations of basic distributed relational operations, as well

as frameworks provided for users to write distributed machine learning algorithms. We explore

ii

Abstract

the comprehensiveness of these frameworks by implementing several distributed machine learning

algorithms that are common for relational data. We additionally examine the scalability of this

system by testing the performance times of such algorithms in our system, and comparing them

against pre-existing, database external distributed machine learning frameworks. Through this, we

are able to identify the current limitations of this framework in its architectural and communicative

sub-components.

iii

Abrégé

L’avènement de l’apprentissage automatique dans le paysage de l’informatique contemporaine invite

les entités intéressées à collecter des ensembles de données de plus en plus vastes. Ces ensembles de

données sont souvent stockés de manière distribuée, sur différents nœuds informatiques plutôt que

dans un système monolithique, pour de multiples raisons. De plus, une grande partie des données

est stockée dans des bases de données relationnelles, l’un des systèmes de gestion de données les plus

populaires. Le système de base de données relationnelles offre de nombreux outils pour l’analyse et

le traitement des données, donnant naissance à son propre domaine de sujets de recherche.

De nombreuses recherches ont été menées pour réaliser l’apprentissage automatique sur de telles

données distribuées. Les méthodes traditionnelles peuvent inclure l’accumulation de toutes les

données sur une seule machine, ce qui est peu probable en termes de ressources disponibles. Cer-

tains frameworks ont émergé permettant au calcul d’être délégué aux nœuds de données, mais

ils impliquent toujours l’extraction de données de la base de données. Cela limite les opérations

ultérieures utilisant le moteur de base de données.

À cette fin, nous créons un framework unifié capable d’exécuter ces opérations d’apprentissage

automatique sans retirer les données de la base de données, permettant ainsi à un utilisateur

d’entrelacer efficacement les opérations requises pour l’apprentissage automatique et les opérations

relationnelles optimisées par le moteur de base de données. En utilisant un projet précédent conçu

pour l’analyse en base de données, nous l’étendons pour effectuer des opérations distribuées sur

plusieurs nœuds de base de données, chacun hébergeant une partition de données. Ce projet étendu

permet l’exécution de requêtes relationnelles distribuées et d’algorithmes d’apprentissage automa-

tique définis par l’utilisateur à proximité des données et par le moteur de base de données lorsque

iv

Abrégé

cela est applicable.

Dans cette thèse, nous présentons une preuve de concept d’un tel framework conçu à l’aide

d’une architecture intermédiaire. Nous présentons des mises en œuvre d’opérations relationnelles

distribuées de base, ainsi que des frameworks fournis aux utilisateurs pour écrire des algorithmes

d’apprentissage automatique distribués. Nous explorons l’exhaustivité de ces frameworks en mettant

en œuvre plusieurs algorithmes d’apprentissage automatique distribués courants pour les données

relationnelles. Nous examinons également l’extensibilité de ce système en testant les temps de perfor-

mance de ces algorithmes dans notre système et en les comparant aux frameworks d’apprentissage

automatique distribués externes à la base de données existants. Ainsi, nous sommes en mesure

d’identifier les limitations actuelles de ce framework dans ses sous-composants architecturaux et

communicatifs.

v

Acknowledgements

This thesis would not have been possible without the support of my supervisors, Professor Bettina

Kemme and Joseph D’Silva. Their hard work, advice and oversight has been invaluable in the

writing of this thesis. In particular, Dr Kemme has provided funding and editing in support of this

thesis, and Dr D’Silva the technical aid and knowledge required for the implementation of several

aspects.

I am also grateful for my friends and peers who have supported and taught me along the way.

Through them, I was introduced to many concepts outside my scope of research, enriching my time

at school.

Lastly, I would like to thank my parents for their never ending support and patience throughout

my time working on this thesis.

vi

Table of Contents

Abstract . ii

Abrégé . iv

Acknowledgements . vi

Table of Contents . vii

List of Figures . x

List of Programs . xi

1 Introduction . 1
1.1 Problem Statement . 1
1.2 Thesis Methodology and Contribution . 3
1.3 Thesis Overview . 4

2 Background and Related Work . 5
2.1 Relational Data and Databases . 5
2.2 Big Data and Distributed Data . 9
2.3 Distributed Database Operations . 10
2.4 Machine Learning . 13

2.4.1 Gradient Descent Methods . 14
2.4.2 Linear Regression . 16
2.4.3 Matrix Factorization . 17
2.4.4 Clustering . 19
2.4.5 PyTorch . 20

2.5 Distributed Machine Learning . 22
2.5.1 Distributing Stochastic Gradient Descent . 22
2.5.2 Implementations of Distributed Stochastic Gradient Descent (SGD) 23
2.5.3 Clustering . 27

2.6 Advanced In-Database Analytics (AIDA) . 28
2.6.1 AIDA structure . 29
2.6.2 TabularData . 30
2.6.3 Remote Execution Operator . 33
2.6.4 Data Transferring in Advanced In-Database Analytics (AIDA) 34

3 Distributed AIDA Architecture . 35
3.1 Distributed AIDA Architecture . 35
3.2 DistTabularData . 37

vii

Table of Contents

4 Distributed Query Processing . 40
4.1 Base Operators . 41
4.2 Distributed Joins in AIDA . 43

4.2.1 Broadcast Join . 44
4.2.2 Distributed Hash Join . 46

4.3 Discussion . 49

5 Distributed Machine Learning . 51
5.1 Central Framework . 52
5.2 Workflow framework . 59
5.3 Parameter Server framework . 64
5.4 Discussion . 71

6 Experiments . 73
6.1 Iterative Algorithms . 74

6.1.1 Linear Regression . 75
6.1.2 Matrix Factorization . 84
6.1.3 Conclusion . 94

6.2 Clustering . 94
6.2.1 Data . 95
6.2.2 Implementation . 95
6.2.3 Results . 98
6.2.4 Conclusion . 100

7 Conclusion . 101
7.1 Contributions and Findings . 101
7.2 Future Work . 102

Bibliography . 105

Appendices

A Appendix . 109

viii

Acronyms

AIDA Advanced In-Database Analytics

D-AIDA Distributed AIDA

DBDC Density Based Distributed Clustering

DBSCAN Density-Based Spatial Clustering of Applications with Noise

MSE Mean Squared Error

ORM Object Relational Mapping

RDBMS Relational Database Management System

RMI Remote Method Invocation

RPC Remote Procedure Call

SGD Stochastic Gradient Descent

SQL Structured Query Language

SSP Stale Synchronous Parallelism

ix

List of Figures

2.1 Example of relational database schema . 6
2.2 Distributed server architectures . 10
2.3 Example demonstrating matrix factorization . 18
2.4 Example of differences in clusters found between K-Means and Density-Based Spatial

Clustering of Applications with Noise (DBSCAN). Taken from [33]. 20
2.5 Parameter server architecture as described by Dean et al. [8] 24
2.6 Diagram of Advanced In-Database Analytics (AIDA) architecture 29

3.1 Distributed Advanced In-Database Analytics (AIDA) architecture. 37
3.2 Data distribution for Distributed AIDA (D-AIDA). 38

4.1 Sequence diagram for distributed broadcast join . 45
4.2 Sequence diagram for hash join . 47

5.1 Sequence diagram for training on the central framework 53
5.2 Sequence diagram for workflow framework . 60
5.3 Sequence diagram for parameter server framework 65

6.1 Comparison of execution times for linear regression between all frameworks with two
worker nodes. 78

6.2 Linear regression microbenchmarks for D-AIDA with two worker nodes. 80
6.3 Comparison of execution times for linear regression between all frameworks with four

worker nodes. 81
6.4 Linear regression microbenchmarks for Distributed AIDA (D-AIDA) with four worker

nodes. 83
6.5 Comparison of execution times for matrix factorization between all frameworks with

two worker nodes. 88
6.6 Matrix Factorization microbenchmarks for Distributed AIDA (D-AIDA) with two

worker nodes. 90
6.7 Comparison of execution times for matrix factorization between all frameworks with

four worker nodes. 91
6.8 Matrix Factorization microbenchmarks for Distributed AIDA (D-AIDA) with four

worker nodes. 93
6.9 Comparison of clustering times . 99

x

List of Programs

2.1 Example of linear regression written in PyTorch. 21
2.2 Example of Advanced In-Database Analytics (AIDA) database connection usage. . . 30
2.3 Example of TabularData object usage . 32
2.4 Example of custom remote function . 33

5.1 Linear regression preprocess and initialization using central framework. 57
5.2 Linear regression iteration and aggregation using central framework 57
5.3 Linear regression model training execution using central framework 58
5.4 First step for a linear regression model implemented in the workflow framework . . . 62
5.5 Iterate step for a linear regression model implemented in the workflow framework . . 63
5.6 Matrix Factorization model definition in PyTorch . 68
5.7 Matrix Factorization server definition in PyTorch . 69
5.8 Matrix Factorization run_training user-method . 69
5.9 Execution of training using parameter server model. 70

6.1 Model used in experiments for linear regression . 76
6.2 Model used in experiments for matrix factorization 85
6.3 Work phase of first step for Density Based Distributed Clustering (DBDC) implmen-

tation in workflow framework. 96
6.4 Aggregate phase of first step for DBDC implmentation in workflow framework. . . . 97
6.5 Work phase of the second step for DBDC implmentation in workflow framework. . . 97

A.1 Example of linear regression written in NumPy using the central framework in Dis-
tributed AIDA (D-AIDA). 110

A.2 Linear Regression using PyTorch with D-AIDA’s workflow framework. 112
A.3 Matrix Factorization written using the D-AIDA parameter server framework. 114

xi

1
Introduction

In this first chapter, we present the motivation behind this thesis, introduce our contributions and

give a brief overview of the organization of this thesis.

1.1 Problem Statement

Machine learning has become an integral part of new technologies being researched and deployed

in the modern era. Problems too large and complex to be solved by traditional algorithms can be

approached through use of various machine learning techniques.

Moreover, much of the data used in machine learning exists in relational form. This model

of data is popularized by its ease of use, scalability, and the powerful query language supporting

it. Indeed, many popular datasets used for machine learning can be found in relational form –

either as separate tables or as a result of a relational query. In fact, much of the data available

1

1.1. Problem Statement

to enterprises is already stored in relational form in a Relational Database Management System

(RDBMS). This system serves as the powerhouse for the management of relational data natively.

As businesses expand and more data is collected, data storage becomes naturally distributed to cope

with increasing storage and retrieval costs. Now, it is more essential than ever that such systems

are able to support machine learning and data analytic tasks alongside their traditional relational

operations.

However, organizing and managing such a distributed database system is a non-trivial task.

Much effort has gone into distributed processing of relational queries and implementing systems

to manage large-scale distributed databases. Kossman [26] offers a survey of various optimizations

and methodologies for traditional relational database operations in a distributed setting. However,

scalable platforms that support advanced analysis and maching learning are mostly built outside

the database execution environment. Many assume that the data resides in a distributed shared file

system and data is then retrieved from this data storage to worker nodes to perform the analytic

computation. The MapReduce programming paradigm [9], for instance, assumes a distributed file

system, but can optimize performance by executing the map phase on the same nodes on which

the data partitions reside. Spark [1], a general purpose data processing platform, is also based on

a shared file system, but can also retrieve data from relational database systems. However, should

further relational operations be needed to be performed on the retrieved data, they must be executed

within Spark. Although Spark has its own query execution system, it is not as sophisticated as those

offered by the traditional RDBMS. Some machine learning tools such as PyTorch or Tensorflow

support distribution, but all take data out of the database system initially and generally do not

support any relational operations on the data.

As such, we are not aware of a unified framework where distributed relational query process-

ing, data analytics and machine learning tasks are carried out in a distributed relational database

ecosystem. In this thesis, we aim to provide such a framework. This framework should be able to

use features of the RDBMS for efficient query processing as well as offer convenient methods for

distributed data processing and machine learning tasks, such as those provided by Spark.

2

1.2. Thesis Methodology and Contribution

1.2 Thesis Methodology and Contribution

In this thesis, we present D-AIDA, a user-friendly framework for conducting distributed data pro-

cessing and machine learning for data existing in relational database systems. D-AIDA supports

embedding of these processes within the database system in order to take advantage of the querying

capabilities provided by the underlying engine. This framework allows the user to perform relational

operations on distributed data as well as allowing easy deployment of distributed machine learning

algorithms across several data servers. It offers a user friendly programming API with a unified

data abstraction for relational and data analysis tasks.

D-AIDA builds off of previous work presented in [12]. AIDA is a framework that provides

an agile programming environment that allows data analytic computations to be pushed into a

RDBMS to be executed near data. This thesis seeks to expand on this idea by scaling AIDA up

to allow data processing and computation to occur across multiple nodes. The AIDA framework

is extended to provide global views of data partitioned across multiple AIDA servers, distributed

query processing on such partitioned data, and infrastructure for supporting user-defined data

processing and machine learning tasks in such a system. The API of the framework provides a

unified data abstraction and allows for use of popular machine learning libraries such as PyTorch.

The middleware-based distributed architecture we propose enables the client to connect to and

execute programs across the overall system through a single point of contact. It also provides the

user with an easy to understand architecture for global views and models.

We also identify several weak points in the D-AIDA architecture that may impede more perfor-

mant results. The sole reliance on AIDA Remote Method Invocation (RMI) as a communication

paradigm over potentially faster ones causes D-AIDA to perform worse in cases where there is a lot

of communication between nodes. As D-AIDA is coded in Python, it is subject to the limitations of

Python as a programming language – namely, the global lock interpreter which prevents true paral-

lelism, and the relatively slower speed of Python compared to compiled languages. While D-AIDA

can access libraries such as PyTorch or NumPy, which are natively written in C, the communication

process must happen in Python. Additionally, users must be more involved when writing models

using the D-AIDA frameworks – they must be able to separate parts of the algorithm according to

how they wish to distribute it.

3

1.3. Thesis Overview

Despite this, D-AIDA shows more flexibility in the distributed algorithms that can be imple-

mented and executed in it. D-AIDA implements three distributed machine learning frameworks in

order to increase the scope of distributed algorithms that can be implemented in D-AIDA. We then

test these frameworks against those offered by PyTorch and present the results. Furthermore, we

show that distributed relational algorithms can be implemented in D-AIDA through use of a mid-

dleware architecture, through implementing a subset of relational operators as a proof of concept.

The middleware architecture also provides an intuitive site for accessing a global view of the data,

and storing shared variables.

1.3 Thesis Overview

The rest of the thesis is organized as follows:

• Chapter 2 pertains to the background of data processing and machine learning techniques

referenced in this thesis, as well as the AIDA system and related research in this area.

• Chapter 3 contains a description of the architecture and data structures used in D-AIDA.

• Chapter 4 provides an in-depth overview of the distributed relational operations provided by

D-AIDA.

• Chapter 5 delves deeper into the frameworks provided for distributed machine learning tasks

in D-AIDA.

• Chapter 6 contains experimental results for execution of various distributed machine learning

algorithms written using the frameworks provided by D-AIDA, comparing it with distributed

implementations offered by PyTorch [34].

• Chapter 7 concludes this thesis, presenting a summary of the results and expands on future

work.

4

2
Background and Related Work

2.1 Relational Data and Databases

First introduced by E. F. Codd in 1970 [5], relational databases are an often used method of storing

data. In a relational database, data is stored in tabular format. Each row in the table signifies a

data record (or tuple) and each column describes an attribute of that data. Tuples are unordered

and unique in the table. Data records can be inserted, deleted or updated in their table. The

collection of data tables is managed by the RDBMS, which also provides various operations used

for managing and querying the data. The type of data stored in relational databases is referred to

as relational data and it, along with the relational operations available on it, will be the focus of

this thesis.

The relational model is so called because each table represents the mathematical n-ary relation

between the n attribute sets which compose the columns of the table. The attribute or set of

5

2.1. Relational Data and Databases

COURSE
course_code name description professor_id

REGISTRATION
registration_id student_id course_code grade

STUDENT
student_id name email year department

PROFESSOR
professor_id name email department office

DEPARTMENT
name phone lead location

Figure 2.1: Example of relational database schema

attributes which define a unique tuple in the table is called the primary key and is used for identifying

and accessing the tuple. Tuples in relations can also be linked to tuples in other relations by having

one or more attributes of the first relation refer to the key attributes of the second — this is known

as the foreign key.

Figure 2.1 shows an example of a relational database that one might find in a school server.

Each of the tables has multiple attributes describing the data contained within. The underlined

attributes are the primary keys of the table, and must be unique within the table. Furthermore,

the arrows represent foreign keys referencing other tables. These relationships can be varied – for

instance, a student may belong only to one department, but may register for many courses.

This setup allows definition and usage of various operations to be performed on the data. These

operations are called relational operations and can be written through the use of Structured Query

Language (SQL) [4], a standardized and powerful language used across different relational database

implementations. Many database implementations not only fully support SQL queries, but include

many optimizations in their engine to rewrite and optimize such queries. The queries themselves

are constructed from a set of base relational operators that can be combined in various ways:

1. Projection (πa): The projection operation on a table T , denoted πa(T) returns a subset a

6

2.1. Relational Data and Databases

of columns of all the data records in T . This operations focuses on displaying only cer-

tain attributes of interest in a table, and discarding the rest. For example, the operation

πstudent_id, email(STUDENT) returns the student id and name of all students in the table, with

nothing else. In SQL, this operation can be expressed as SELECT column_1, column_2 FROM

table_name.

2. Selection (σc): The selection operation on a table T , denoted σc(T) returns the set of all records

in T fulfilling the condition c. This operation filters the output data to a limited amount of

records realizing the condition. An example of this would be σdepartment=’math’(PROFESSOR),

which returns all the professors in the math department. In SQL, this operation is expressed

as SELECT * FROM table_name WHERE condition.

3. Join (▷◁c): The join operation between two tables T and S, denote T ▷◁c S returns the combi-

nation of T and S on some condition c. The condition c is some comparison or equality on at-

tributes of both table T and S – the attribute on which c acts on is called the join attribute. On

the schema portrayed in figure 2.1, the operation COURSE ▷◁professor_id PROFESSOR returns the

data for all courses, along with the data for all professors teaching those courses. The result ta-

ble of this query would have attributes spanning both tables, each record matching the records

of COURSE and PROFESSOR where the professor_id attribute is the same. This operation in

SQL is SELECT * FROM table_1 JOIN table_2 ON table_1.column=table_2.column.

4. Aggregation operations, such as finding the maximum, minimum, count, or average of a certain

column in the table, return a single value to produce summary statistics of data stored in a

table. An example of an aggregate operation in SQL could be expressed as SELECT AVG(grade)

FROM REGISTRATION which computes the average grade across all records in REGISTRATION.

5. The GROUP BY SQL operator allows a single query to perform multiple aggregates on different

groups of data defined by distinct values in the column provided to the GROUP BY operator.

For example, the statement SELECT course_code, AVG(grade) FROM REGISTRATION GROUP

BY(course_code) retrieves averages of all courses, along with the course codes, from the

registration table. In most instances, GROUP BY operations are implemented by sorting the

data tuples on the GROUP BY attribute, and performing the aggregation on each unique value.

7

2.1. Relational Data and Databases

A single difference exists between relational operators and SQL queries – relational operators

discard duplicates in their results, while SQL queries do not. For thes rest of this thesis, we treat

them as equivalent.

As each of the operators returns a relation, these operations can be performed consecutively,

building a complex query containing multiple joins and selections additionally to projections and

group bys. From there, query processing is a multi-step process [18, 26] executed by the database

engine. First, the engine must parse the query – it will be translated to some internal representation,

such as a tree that shows the order in which the operations will be executed, to simplify the later

steps. Next, the query will be rewritten. There are many queries that may return the same result

set, so the query is rewritten in order to eliminate redundancies and simplify expressions to improve

performance. Query optimization is the next step – the database management system uses table

metadata and other tools to decide how best to execute a query. This can include reordering the

operations in the tree and deciding how exactly to execute each operation. Finally, the query will

be executed according to the plan generated by the previous steps.

There has been much research done in the database community for query optimization. The

classic method of optimization involves minimizing the disk I/O cost of a given query. For in-

stance, modern day databases provide a variety of indices to make retrieving data faster and eas-

ier. As an example, the B-tree [3] is a popular index which speeds up selection queries, as it

stores for each unique attribute value the location of all tuples that have this value. A query such

as SELECT student_id FROM REGISTRATION WHERE course_code='101', which finds all students

registered for the course '101', would require a full table scan to check all tuples in the table to

find the matching ones if an index does not exist. However, should an index exist on the attribute

course_code, then all the database needs to do is look up the index to find the locations of the

tuples with course_code='101', and load those into memory instead of the entire table. Further-

more, there exists several join implementations whose performance depends on the cardinality of

the input relations.

8

2.2. Big Data and Distributed Data

2.2 Big Data and Distributed Data

With the ever-growing popularity of machine learning, the need for large amounts of data to facilitate

the training of models has increased dramatically within the last decade. To train models that

are used for increasingly complex tasks, large amounts of training data are required to ensure

adequate performance. To this end, many corporations depending on large training sets make use

of distributed data — that is, data that are not contained within a single machine. Often, the

amount of data is large enough as to not be able to fit in the disk space of a single machine, and

it is likely cheaper to expand storage space by adding more machines, rather than augmenting a

single monolithic system.

Additionally, data can become distributed through natural use, even without considering the

costs of improving a single server. Applications might choose to host their data across servers

for many reasons – to avoid a single point of failure, so that data and transactions would not be

lost should a single server shutdown, or to give clients in different locations a data server located

geographically closer to them to speed up response times. Database servers hosting the same kind

of data may have grown independently, each managed by a different corporation in a competing

sector before being consolidated through a merger.

However, distributing data is not without its own obstacles. Algorithms that use such data must

now consider the cost of transferring and locating data. Data processing pipelines and algorithms

must adapt to the fact that not all the data resides on a singular node, and may not be visible from

every part of the system. Yet it also allows for further parallelization of tasks — since the data

is spread across multiple nodes, so too may the computation. As each separate node has its own

storage, so too does each have its own computational power. In recent years, much effort has been

devoted creating and improving algorithms designed for deployment in such distributed systems.

There are even multiple ways of distributing data. Vertical partitioning splits a data table into

smaller tables based on columns, where each database node only holds a subset of the columns in

the entire table. In horizontal partitioning, or sharding, data is partitioned based on rows. Each

database server contains a subset of the rows belonging to the global schema. Often, the partitioning

can be based on a specific attribute of the table – for example, all records belonging to a certain

geographic region existing in one database node. For this paper, we will assume the latter case

9

2.3. Distributed Database Operations

when discussing distributed data. That is, each database node holds a subset of rows of a larger

table, which we will refer to as a partition.

2.3 Distributed Database Operations

Distributed relational operations refer to relational operations executed on data that is distributed

across several nodes. While some queries are easy to distribute, such as projections and selections,

others are more difficult.

Request

Client

Response

Server

(a) Classic Client-Server architecture

Node

Client

Server

Node

Client

Server

Node

Client

Server

(b) Peer-to-Peer Architecture

Client Node

Client

Middleware Node

Server

Client

Server Node

Server

Server Node

Server

Server Node

Server

(c) Middleware/Multi-tiered Architecture

Figure 2.2: Distributed server architectures

In a survey on distributed query processing, Kossman [26] presents various architectures and

techniques used in such systems. To begin, we must first examine the architecture available to

distributed database systems. In particular, we focus on client-server systems – systems wherein a

client node sends a request to a server, which then returns some response. In peer-to-peer systems,

each node can act as both a server that stores a partition of the database and a client which requests

data from another. In middleware or multi-tiered systems, nodes are layered hierarchically in such

a way that they act as servers for nodes in the level higher than them, and as clients for the nodes

the level lower. Diagrams of these architectures can be found in figure 2.2. In all of these systems,

the client node is the one to initiate the query, and the server nodes the ones that contain the data.

With these architectures in mind, the question of executing distributed queries remains. Koss-

10

2.3. Distributed Database Operations

man [26] further presents three techniques: query shipping, data shipping and hybrid shipping.

1. Query shipping has the client ship the SQL code of the query to the server, which then executes

the query and returns the result to the client. If there are multiple database servers, some

middleware server must exist in order to perform joins on tables that are stored in different

nodes. This technique is performant when the server machines are much more powerful than

the client machines, but could be bottlenecked by server performance if there were many

clients.

2. In data shipping, queries are executed at the client side instead. Data is requested by, then

cached at, the client, which can then execute the query locally. Subsequent queries on the

same data can then use these cached copies. Data shipping scales well to many clients as

the execution for all of the clients is not performed all on the same servers, but can incur

extremely high communication costs if the data tables are big. Additionally, client machines

must be able to support relational operators, which may not always be the case.

3. Hybrid shipping is a combination of the previous two methods. For instance, in a join between

two tables, one table could be cached at the client while the other is at the server. The server

will scan its stored table and send the results back to the client, which will perform the join.

The table sent by the server will not be cached by the client. However, the optimization of

hybrid shipping is far more difficult than either of the prior shipping options and may perform

poorly if done incorrectly.

For this thesis, we focus on query shipping, as we assume an environment where only the server

has a database execution engine, thus only the server has access to the query optimizations provided

by the database management system. Due to this, we also focus on the most natural architecture

for query shipping: the middleware architecture which provides a middleware server to which the

client can request queries, and which can perform joins and aggregates for data spread across several

database servers.

A selection operation on a horizontally partitioned database table involves sending the query

to each node containing a partition of the data. The client will communicate the query with the

middleware, which will then broadcast the query to each of the database servers holding a partition.

11

2.3. Distributed Database Operations

Each server evaluates the selection condition on its local data, filtering out the records that do not

meet it. Then, each servers sends the result of their own local query to be aggregated at the

middleware, which will then forward the aggregation to the client. Naturally, the records in the

resultant table represent all records in the distributed table matching the selection criteria. By

performing a distributed selection in this manner, each node works only on their local partition,

and less data is sent over the network compared to if the entire dataset is aggregated on a single

node, and the selection performed afterwards. Performing a distributed projection is very much the

same.

Most aggregate queries exhibit simple distributed algorithms. Operations like count or sum

merely perform that operation on each database node, and sum the results at the middleware.

Finding the minimum and maximum values are similar, only requiring the operation to be performed

again on the results. Calculating the average of data is merely finding the sum, then dividing by

the count of records.

Distributed joins require some degree of data transfer between databases to ensure all records are

matched. There are many algorithms for distributed joins, but this paper explores two: broadcast

join and hash join.

Broadcast join involves transmitting the entirety of one table to all the database servers holding

a partition of the second table. Each server conducts a local join between the entirety of the first

table and the local partition of the second table, and the results are sent to the middleware to

aggregate. This technique is easy to understand and useful when one table is much smaller than

the other. In that case, the smaller table will be replicated to all the other nodes to minimize the

amount of data being sent over the network. Naturally, this technique fails if the table is too large.

Instead of broadcasting a single table, distributed hash join seeks to have each database server be

responsible for a subset of the tuples of both tables. These subsets are determined through hashing.

Given n database servers, n hash buckets are created at each server and each server hashes the join

attribute of their data partition of each table. The data records are each put into a hash bucket

corresponding to the hashed join attribute – thus, data records with the same join attribute are put

in the same bucket. Each hash bucket is assigned a server, and the data records assigned to that

bucket are transmitted to that server. This ensures that all records with the same join attribute are

located at the same node. Now housing a new partition of the data according to the join attribute,

12

2.4. Machine Learning

each database server performs a local join in parallel on their partitions, and the results are sent to

the middleware to be aggregated.

Query optimization is another concern for distributed query processing. In a centralized system,

disk I/O cost estimation correlates well with query throughput. Distributed systems, on the other

hand, introduce intra-query parallelism, the cost incurred by transporting data through the network,

as well as load balancing and servers with different capabilities. Kossman’s survey [26] describes

many such optimizations, but those are out of scope for this thesis.

2.4 Machine Learning

Machine learning is a subset of Artificial Intelligence (AI) which focuses on using data to create a

statistical model that is able to provide insights on the data or predict the behaviour of future data

points. Hernán et al. [19] identify several data science tasks – description, prediction, and causal

inference – that machine learning can be used for [24]. In this thesis, we will focus on the former

two tasks: description and prediction.

Description is a task dedicated to examining data and providing a quantitative summary of

certain features contained within. It is a task suited to unsupervised learning algorithms [24].

Unsupervised learning algorithms work on unlabelled data (thus, ’unsupervised’), to find structure

and patterns inherent with the data [10]. Some examples of unsupervised learning include clustering

– grouping together and separating data based on their similarities and differences – or principal

component analysis – finding which features in the data are most important and descriptive in order

to reduce the dimensionality of data with many features. For example, unsupervised learning can

be used in recommendation systems where users with similar features can be grouped together by

the algorithm, and recommended the same product. The model learned in descriptive tasks refers

to the outcome of the task – for instance, the group labels assigned by the learning algorithm.

Prediction is a task that analyzes data in order to predict a certain outcome. For this, super-

vised learning algorithms are used [24]. Supervised learning requires labelled datasets for learning –

datasets that include both features of the data as well as the desired outcome that is being studied.

Using the labels of the dataset, supervised learning algorithms are able to learn when their predic-

tions are correct or not, and change the predictions accordingly based on the result. Supervised

13

2.4. Machine Learning

learning tasks involve classification – assigning data to certain categories – and regression – pre-

dicting the numerical outcome of a given data point. These algorithms could have applications in

health care, such as predicting the likelihood of a particular disease given the patient’s symptoms.

The model in prediction tasks is often a mathematical function, which takes data as input and

performs some transformation on it in order to output the predicted labels. The process of finding

a function that outputs the correct labels – by changing the parameters of the function – is referred

to as "training".

For this thesis, we will focus mainly on algorithms that are popular on relational data. The data

points will be the rows of a table, written as [xi1, xi2, ..., xin, yi] ∈ Rn, where i represents the ith

record in the database table, and the indices of the vector represent the columns of the table. Each

x represents an attribute of the training data, whereas y represents the true label, in the case of

supervised learning. In the following sections, we explain the algorithms behind linear regression,

matrix factorization, and clustering without considering implementation details for the time being.

Out of these, linear regression and matrix factorization are supervised learning algorithms, whereas

clustering is unsupervised.

2.4.1 Gradient Descent Methods

Iterative methods are defined by the iterations undergone by the algorithm as it moves gradually

towards the optimal solution – the optimal solution being values for model parameters that result

in the model’s predictions being the most accurate. Both supervised and unsupervised learning

use them. Gradient descent is a well-known and extremely popular iterative method for supervised

learning. At the start of the algorithm, model parameters are initialized with random variables. In

each iteration, the algorithm goes through the entire labelled training data, uses the current model

to predict the labels for the data and calculates an error (or loss) value as a measure of the difference

between the predicted value for each training record and its true value. The goal of gradient descent

is to move towards the minima of the loss value function through iterative updates to the model

parameters of the prediction function. Thus, an iteration of gradient descent is described as having

two phases: the forward pass, which calculates the predicted values, and the backward pass, which

updates parameters based on the loss.

Stochastic Gradient Descent (SGD) is a variant of gradient descent that, instead of calculating

14

2.4. Machine Learning

the loss and updates for all of the training data in each iteration, calculates it instead for a randomly

selected data point. Because updates occur more frequently, SGD moves faster towards the local

minima, but exhibits more variance due to its stochastic nature. A technique which takes advantage

of both variations is minibatch stochastic gradient descent – a version which calculates in each

iteration the update according to a randomly selected subset of the data – known as a "minibatch".

Algorithm 1 A generalized minibatch stochastic gradient descent algorithm
Input: Training data D

1 f ← Randomly initialized model
2 α← learning rate
3 while loss > some threshold do
4 batch_features, batch_labels← get_batch(D)
5 preds← f(batch_features)
6 loss← loss_function(preds, batch_labels)
7 ▽← δ

δω loss_function
8 f ← f − α ∗ ▽

The algorithm 1 presents a general overview of minibatch stochastic gradient descent. In line 1,

the prediction function (or model) f is initialized with random values as parameters – call these ω.

Line 2 sets the learning rate, or step size, α as a constant hyperparameter. The iterative process of

the algorithm starts at line 3. Every iteration retrieves a minibatch (hereon referred to as a ’batch’

for simplicity) of the overall data. Predicted labels for the data are made by inputting the data

through the prediction function, and the loss is calculated between the predicted values and the true

values through some loss function. Since the predicted values are the output of the f function, the

loss function can then be differentiated with respect to f ’s parameters, ω. This differentiation ▽ is

calculated at line 7. In order to minimize the loss function, the weights of the model should step in

the opposite direction of the gradient; the magnitude of the step is defined in the beginning as α, the

learning rate. This occurs at line 8, as is commonly referred to as the gradient update. While this

example stops the iterations after the loss passes some arbitrary threshold, other stopping points

exist. Common metrics for stopping the algorithm involve stopping it after a certain number of

iterations or after a certain amount of time has passed.

Optimizing gradient descent is a well studied field in machine learning, due to its ubiquity of

use in supervised learning algorithms [41]. The choice of learning rate α is non-trivial – setting it

too low causes convergence to occur very slowly, whereas setting it too high may prevent it from

15

2.4. Machine Learning

converging at all. Many algorithms choose to introduce adaptive learning rates – learning rates that

change based on the number of iterations passed, the direction of previous gradients [37], or even

the parameter being updated [13].

It is important to note that each iteration of minibatch stochastic gradient descent builds on

the previous iterations; updates applied to the model in one iteration will reflect on the predictions

of the model for the next. Every update samples a minibatch from the training dataset without

replacement. An epoch passes when the entire dataset has been sampled. Often, training a model

involves several epochs over the training data. The data is often shuffled once at the beginning

of each epoch, so the iterations comprising the epoch can select minibatches without replacement,

and once the iterations have gone through the entire dataset, the epoch ends, and the dataset is

reshuffled for the next epoch.

2.4.2 Linear Regression

Linear regression is a well-known algorithm used for deriving a real-valued outcome variable yi from

a data point xi with one or more features xi1, xi2, ..., xin. To do so, linear regression models the

relationship using the equation

yi = w0 + w1xi1 + w2xi2 + ...+ wnxin

where the weights, or parameters, of the model w0, w1, ..., wn must be learned. The w0 term is also

known as the bias term, as the data features do not interact with it. Note that if the data has d

features, then the model has d+ 1 parameters, including the bias term.

While linear regression can be solved analytically for small datasets, it becomes impossible and

extremely hard when the datasets grow large. Thus, scientists use gradient descent. Gradient

descent, as described in Section 2.4.1 focuses on minimizing the error function (also known as the

loss or cost function). While there exists many different error functions, we will focus on Mean

Squared Error (MSE) for linear regression.

Let us first consider the algorithm for SGD, which uses a singular data point each iteration. Let

ŷi = f(xi) be the output predicted by the model f on the output xi and yi be the true label. Then,

the MSE can be written as:

16

2.4. Machine Learning

(ŷi − yi)
2 = (f(xi)− yi)

2 = ((w0 +
n∑︂

j=1

wjxij)− yi)
2

To minimize this error function, we find the partial derivative of the loss with respect to each

of the parameters. This becomes a direction that the value of the parameter must travel in order

to approach the true value. For example, the partial derivative of MSE with respect to wj is:

∆j = 2 ∗ ((w0 +

n∑︂
k=1

wkxik)− yi)(xij)

This gradient ∆j must then be applied to the specific parameters after being multiplied by the

learning rate α. Thus, the weight going forward from this iteration will be:

w′
j = wj − α ∗∆j

Many iterations of this algorithm will be run until the error function converges, or until the

update is near zero. Other stopping rules exist, as briefly explained in section 2.4.1. The variation

in performance of the function can be reduced by using multiple data points per iteration instead

of a single one, as in the case of minibatch SGD. In that case, the gradient ∆ must be divided by

the number of data points in the batch. Thus, in a case where there are n data points in a batch,

with each data point providing a gradient of ∆i, the update equation will be as follows:

w′
j = wj −

α

n
∗

n∑︂
i=1

∆ij

2.4.3 Matrix Factorization

Matrix Factorization [25] is an algorithm used for recommendation systems and determines the

matrix factors of a larger dimensional and often sparse matrix. Given a large m× n matrix M , the

goal of matrix factorization is to find two smaller m× p and p× n matrices, U and V respectively,

that multiply to the larger matrix, where p is a user-defined hyperparameter. In essence, this creates

a vector representation of each row and column of M , also known as an embedding.

Consider the use case for movie recommendation systems. The matrix M consists of all the

ratings for every film given by every user on the platform. Thus, the element Mi,j represents the

17

2.4. Machine Learning

1 3 3

1.8 2 4

5 1

2 2

-1.7 -1.5

0

-1.2

Matrix representing movie reviews by users

 Matrix
columns are

movie
embeddings

Matrix rows are
user embeddings

Figure 2.3: Example demonstrating matrix factorization

rating given by user i on the film j. Naturally, this matrix is very sparse and can be stored in an

RDBMS as tuples of the form (i, j,Mi,j). The matrix U represents embeddings for all the users –

each row being the vector respresentation of one user, while the matrix V represents embeddings

for all the movies – each column being the vector representation of a movie. In this manner, the

prediction for user i’s affinity to a movie j can be found by multiplying the ith row of U with the

jth column of V . The figure 2.3 presents this example. The blue indices in the matrix are the given

samples: movies which users have rated. The green columns and rows in the two factor matrices

represent the learned embeddings for the user and movie we are interested in – in this case, the

second user and the third movie. The orange value represents the predicted rating given to the

third movie by the second user.

Thus, the model for matrix factorization consists of both U and V . The factorization process

performs gradient descent in much the same way as linear regression by calculating the gradient on

the error between the prediction and the true values. It must be noted that for each iteration, that

not all model parameters are used. Instead, only the specific rows and columns of U and V are

used by the learning for that iteration are needed and updated. For example, if an iteration uses a

batch of ratings made by the same user on different movies, then the iteration would only require

18

2.4. Machine Learning

and update a single row from matrix U representing that user, and only the columns of matrix V

representing the movies that user rated.

2.4.4 Clustering

Clustering data involves grouping the data points such that each group consists of data points that

are deemed similar to each other by some metric, and such that data points belonging to different

groups deemed relatively dissimilar. There are many such metrics of similarity, and thus many

different clustering algorithms [15]. For this paper, we will focus on two of the simplest and most

common algorithms, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and

K-means. Stored in a database, cluster data is often just a table with an arbitrary number of

features.

K-means [30] is an algorithm in which every data point is assigned a cluster that it belongs

to. It requires the user to choose a hyperparameter k defining the number of clusters. The naïve

implementation, introduced by Lloyd [29], starts with selecting k random data points to act as

cluster centroids. The algorithm then repeats the following two steps:

1. Assign all data points to a cluster according to which centroid is closest, measured by Euclidean

distance.

2. After all the clusters have been assigned, find the centre of each cluster and re-assign the

centroids as the centre.

The algorithm terminates when the centroids are stable and no longer need to be reassigned each

iteration. Though simple and widely used, there are some disadvantages to this algorithm. The

number of clusters, k, must be manually chosen and may not represent the true number of clusters

in the data, and the solution found by k-means is not guaranteed to be optimal. Correctness of the

algorithm can be improved by restarting it with different initial centroids and keeping the clustering

with the minimal distance between every centroid and the data belonging to its cluster, or choosing

better initialization centroids [2].

Another algorithm is DBSCAN [14]. The input for this algorithm requires two parameters:

a distance ϵ defining an ϵ-neighbourhood around each point, and an integer minPts defining the

19

2.4. Machine Learning

Figure 2.4: Example of differences in clusters found between K-Means and DBSCAN. Taken from
[33].

minimum number of points within the ϵ-neighbourhood of a center point required for a cluster to

be formed. DBSCAN defines the notion of core points. A point p is a core point if there are at least

minPts points within its ϵ-neighbourhood. A point q is directly-density reachable from p if p is a

core point and q is within its ϵ-neighbourhood. A point q is density reachable from p if there exists

a path p1, p2, .., pn such that pi+1 is directly density reachable from pi and p1 = p and pn = q. If

any point p is a core point, then the cluster it belongs to are all the other points that are density

reachable from it. The border of the cluster is formed by points that are directly density-reachable

to another point in the cluster, but are not core points themselves.

This approach has its advantages and disadvantages. Once again, ϵ and minPts are chosen

arbitrarily and may not represent the true form of the data. However, unlike K-Means, DBSCAN

can detect arbitrarily shaped clusters, can choose to not include outliers or noise in its clusters,

and does not require the number of clusters to be known beforehand. The differences in these two

algorithms are show in figure 2.4. As this figure shows, K-means takes a defined number of clusters,

and must sort the data into these clusters, whereas DBSCAN can determine without input the

number of clusters in the data.

2.4.5 PyTorch

PyTorch [34] is a popular Python library that implements several modules allowing for users to write

and run deep learning models, but can also support simpler models such as linear regression and

20

2.4. Machine Learning

matrix factorization. All mathematical operations use the torch.tensor class for data representa-

tion, which supports multi-dimensional data. The PyTorch library is known for its use of automatic

differentiation through its engine autograd. The autograd engine keeps track of operations per-

formed during the forward pass and loss calculation in a directed acyclic graph, and the gradient

update is automatically calculated through backwards traversal of this graph. The gradient update

is stored in the .grad attribute of the tensors involved. This library supplies functions for various

layers, costs, and optimizers to facilitate all aspects of training.

1 import torch
2

3 class LinearRegression(torch.nn.Module):
4 def __init__(self):
5 super().__init__()
6 self.linear = torch.nn.Linear(5, 1)
7

8 def forward(self, x):
9 return self.linear(x)

10

11 model = LinearRegression()
12 loss_func = torch.nn.MSELoss()
13 opt = torch.optim.SGD(model.parameters(), lr=0.02)
14 for i in range(iterations):
15 opt.zero_grad()
16 preds = model(data)
17 loss = loss_func(preds, target)
18 loss.backward()
19 opt.step()

Listing 2.1: Example of linear regression written in PyTorch.

The listing 2.1 provides an example of the program flow for training a linear regression model

in PyTorch. The model is defined from lines 3-9; this one contains only a single layer, pro-

vided by torch.nn.Linear. The loss function, in this case mean squared error provided by

torch.nn.MSELoss(), is defined at line 12. The optimizer is the function that applies the gra-

dient update to the model parameters. In this case, it is defined at line 13, using the default

stochastic gradient descent update rule on the parameters provided by model.parameters() with

a fixed learning rate of 0.02. The iterations start from line 14 onwards – this example uses a fixed

number of iterations. First, any existing gradients stored by the model parameters are discarded in

21

2.5. Distributed Machine Learning

line 15. Next, the forward pass of the iteration occurs, as predictions are made on provided data by

the model. At line 17, the loss is calculated between the predicted labels and the true labels. The

loss.backward() step in line 18 performs the backward pass – gradients are calculated and stored

in the .grad attribute of the model parameters – in this case, just model.linear.grad. Finally,

the optimizer applies the stored gradients to the model parameters, and the process repeats itself

for the next iteration.

2.5 Distributed Machine Learning

Distributed machine learning is the process of running these algorithms over multiple machines.

Recall from section 2.2 that it is preferable to increase computational power and storage space

through adding more machines than improving a single one. State of the art machine learning

models can consume data in the order of terabytes and models with trillions of parameters [16].

However, such models often learn on datasets consisting typically of images or text that do not

typically reside in a RDBMS. Learning on purely relational data is usually conducted on smaller

data sets with smaller models, but can still scale to fairly large numbers.

There are two main approaches for distributing machine learning across machines: model parallel

and data parallel [44]. In the data parallel approach, data is partitioned across the different worker

nodes, while the same algorithm runs on all of them. In most systems, it is assumed that the data

is in a shared file system and the worker nodes can load any data they need. In this case, the same

model should be used in all the machines, either through the workers accessing a central model

located in a server, or the model being replicated in all the workers. The model parallel approach

distributes the model instead of the data, which is important when the model is very large, and

thus less relevant for learning on data residing in a RDBMS. Each machine has access to the entire

dataset, and works on only a part of the model. These two techniques can also be combined for an

approach where both the data and the model are distributed across several machines.

2.5.1 Distributing Stochastic Gradient Descent

The most natural way to distribute algorithms using stochastic gradient descent is through data

parallelism. Each machine runs an iteration on a minibatch of their own partition of data. The

22

2.5. Distributed Machine Learning

prediction, loss and gradient calculations can all be done simultaneously and independently from

each other. The model updates can then either be applied synchronously or asynchronously.

Synchronous parallelism is when all the machines start each iteration synchronously. That is,

every machine will wait until every other machine has finished their iteration and applied the model

updates before starting on the next iteration. This ensures that the model being used for prediction

at the start of the iteration is the same model being used in all machines. However, this results

in the straggler problem, where all machines must wait until the slowest machine has finished its

iteration. As the number of machines increase, the problem worsens as the possibility of having a

straggler machine increases.

Asynchronous parallelism negates this issue entirely by allowing every machine to start its next

iteration as soon as the previous one finishes. Even so, asynchronous parallelism introduces its

own suite of problems. A slow machine could be iterating on a stale model and returning updates

that are no longer applicable to the current model. A fast machine containing biased data could

transform the model into one that is not applicable to the entire dataset. Models may exhibit slower

convergence rates. However, this form of parallelism can still be useful in certain circumstances,

such as if the model is sparsely updated – that is, if individual iterations performed by machines

only access and update a small subset of the model parameters at a time [39].

Stale Synchronous Parallelism (SSP) [21] is an attempt to bridge the gap between these two

forms of parallelism. SSP is similar to synchronous parallelism, but allows machines to read models

that are stale. The staleness of the model will be bounded by a user-defined constant. This allows

machines to work without needing to wait for slower machines, while at the same time providing

better correctness guarantees than asynchronous parallelism.

2.5.2 Implementations of Distributed SGD

There are several ways model parameters can be managed across the nodes for SGD. In this section,

we present several implementations of SGD across different frameworks.

2.5.2.1 Parameter Server

First introduced by Smola and Narayanamurthy [42] for distributed training of topic models, the

parameter server architecture has been generalized for distributed training of many different model

23

2.5. Distributed Machine Learning

Parameter
Server

Worker
Machines

Data
Partitions

Figure 2.5: Parameter server architecture as described by Dean et al. [8]

architectures. Parameter servers [27] are servers that maintain the global model accessed by the

worker machines. While the bulk of the computation is handled by the worker machines, the

parameter servers merely aggregate updates sent by the workers and provide synchronization if

necessary. To this end, the parameter server holds a global view of the model which all the other

worker machines can access.

Communication between the server and the computation machines use two operations: push

and pull. Pushing sends locally calculated gradients to the server to be applied to the global model,

whereas pulling retrieves the updated model parameters for use in the next iteration – as described

in figure 2.5. Here, the model parameters are labelled as ω, the gradient update as ▽ω and the

learning rate as α.

Additionally, parameter servers are implemented as key-value stores – this allows the push and

pull of only a subset of the model. In this manner, parameter servers support both model parallel

and data parallel approaches to distributed machine learning and minimizes network load by only

communicating necessary data. This is useful in cases where each iteration only works on a small

subset of the model, such as in matrix factorization (described in section 2.4.3) where each iteration

would only use and update parts of the model according to the data batch it trains on in each

iteration. In the matrix factorization example described in 2.4.3, an iteration only requires the

embeddings for the specific users and movies present in the minibatch it is working on. Thus, a

worker machine running this iteration would only pull the vector embeddings for those specific users

and movies, and only send back the updates for those embeddings.

24

2.5. Distributed Machine Learning

2.5.2.2 AllReduce Machine Learning

The parameter server approach is contrasted with the AllReduce approach. Allreduce is a commu-

nication pattern used in distributed systems which expects all participants in the system to produce

some partial result, upon which an aggregation is performed to produce a final result, and and

each participant receives this final result. While model updates are performed at a single site in the

parameter server approach, AllReduce instead distributes the updates as well. Instead of sending all

parameter updates to a single server where aggregation is performed, AllReduce instead has worker

machines broadcast parameter updates to all fellow workers. Each worker, having a replica of the

model, must then apply the updates in sequence. More efficient implementations of AllReduce,

such as Ring AllReduce or Tree AllReduce, capitalize on specific network topologies to further op-

timize this operation [35]. However, AllReduce is generally a synchronous algorithm – every worker

must submit their gradient update before the entire system can proceed. Thus, AllReduce works

only for synchonous parallelism, and works well for systems were workers exhibit small variance in

performance.

2.5.2.3 Distributed PyTorch

PyTorch [34] supports distribution across GPUs and machines. It allows for both model parallel

and data parallel distributed machine learning using their Remote Procedure Call (RPC) [7] and

DistributedDataParallel [28] libraries. Unlike MapReduce and Spark, these procedures do not sup-

port distributed data processing methods, and are solely optimized for distributed machine learning.

With these distributed libraries, PyTorch attempts to maintain a similar code structure to its non-

distributed variant so as to simplify the process of distribution. Both implementations start with a

PyTorch process being run on each worker machine initializing the process group. Each machine is

assigned a rank, and then discover each other by accessing the machine with rank 0.

The PyTorch RPC framework can wrap model parameters into remote references which can be

accessed by workers. The remote reference (RRef) is a wrapper that can be created around any ten-

sor object, and shared to remote workers. Operations done on tensors referenced through RRef can

be done synchronously, in that the operation blocks until value is returned, asynchronously, which

immediately returns a future for the value that will be returned, or remotely, which is done asyn-

25

2.5. Distributed Machine Learning

chronously and returns a remote reference to the return value. The RPC library uses dist_autograd

in place of PyTorch’s native autograd, which extends the backward pass to parameters that exist

on different machines and are accessed through RRefs. Similarly, a distributed optimizer provided

by PyTorch is used in place of the original – it takes RRefs in place of model parameters, and

each worker applies the optimizer locally for each parameter. The optimizer applies only one set of

gradients at a time, with no guaranteed ordering across different machines. Thus, the main differ-

ences between a non-distributed PyTorch model and one that uses the RPC framework is that each

machine must acknowledge which parameters they contain, and obtain a reference to any remote

parameters through RRef. The loss and optimizer functions are replaced with distributed versions,

and each iteration must be run under the dist_autograd context. The RPC framework is ideal

for model parallel training as it allows model parameters to exist on different machines and the

gradient to be calculated across all of them. This framework can also support the parameter server

model of distributing machine learning [43], where all the parameters are on the parameter sever

node, and the worker nodes access them via RRefs.

On the other hand, the PyTorch DistributedDataParallel library supports data parallel training.

This library uses model replication across computation nodes and supports synchronous parallel

execution through broadcasting gradient updates and AllReduce. Models are created in each worker,

then wrapped in the torch.nn.parallel.DistributedDataParallel class, which will synchronize

it across workers in the same process group. Instead of giving the base model parameters to the

optimizer, it takes instead the parameters provided by the DistributedDataParallel wrapper.

Gradients are broadcasted and applied across all workers transparently. For that, PyTorch uses the

Gloo or NCCL libraries that implement the AllReduce API.

2.5.2.4 Other implementations

As distributed machine learning is a highly studied field, there are many more implementations

other than what is described here.

Distributed machine learning can take advantage of pre-existing architectures designed for large-

scale distributed data processing. Many of these data processing architectures are built on dis-

tributed file stores, such as the Google File System (GFS) [17] or the Hadoop File System (HDFS)

[36]. MapReduce [9] is a well-known data processing framework that uses such systems. Each worker

26

2.5. Distributed Machine Learning

node starts off with applying a map function to its local data. Each data record will be assigned a

key during map phase. During the shuffle phase, the workers redistribute the data based on these

keys such that all records with the same key are placed in the same node. The reduce phase is

next, where each worker performs some aggregation on the new partitions of data. Naturally, the

reduce phase depends on completion of the previous two phases, and thus is a strictly synchronous

operation. Machine learning algorithms using synchronous parallelism can be expressed using the

MapReduce paradigm [44].

Apache Spark [1] is yet another data processing system, optimized for iterative tasks. While

MapReduce makes heavy use of its access to a distributed file system to write intermediate results,

Spark instead focuses on executing tasks directly in memory. As many linear algebra and machine

learning tasks are iterative, this approach saves much time by eliminating disk reads and writes.

Furthermore, MLlib [32] is a distributed machine learning library built for Spark which implements

scalable versions of several common machine learning algorithms. However, Spark itself still runs

on a distributed file system.

Further studies have gone into improving parameter servers, such as NuPS [40], a parameter

server designed for non-uniform parameter access. In NuPS, parameters are either replicated across

all computation nodes, or pulled from a specific home node depending on how much they are

accessed. Parameters that are accessed often by all nodes are replicated and given bounded staleness

guarantees, whereas parameters that are accessed by one node but not often by others are relocated

to the node where it is most accessed and from where other nodes must request to access it.

2.5.3 Clustering

Clustering algorithms are very different in distributed settings. Centralized clustering algorithms

often assume a complete view of the entire dataset, and thus are hard to directly translate to a

distributed setting. While there are many distributed clustering algorithms available, we will focus

on Density Based Distributed Clustering (DBDC) for this thesis.

DBDC [23] is a multi-step algorithm that assumes all data points to reside in different machines.

Unlike the previously explored distributed stochastic gradient descent, DBDC is not an iterative

algorithm. It goes through a fixed number of steps – a local clustering on each worker machine,

followed by determination of a global clustering, then finally application of the global clustering back

27

2.6. Advanced In-Database Analytics (AIDA)

on the local data. Furthermore, DBDC assumes data to be residing in different worker machines

and the existence of a global site which can access all worker machines. The algorithm starts off

by having every machine do an independent local clustering in parallel. Each machine determines

a set of local representatives for each local cluster and transfers these representatives to a central

site, where the global model is determined. The global clustering is then communicated back to the

other machines to update the cluster labelling of the data points residing on those machines.

The first local clustering is determined by each machine running DBSCAN with a given ϵ and

minPts. A specific set S of core points are extracted from the core points found by DBSCAN. The

set S comprises of points that are not in the ϵ-neighbourhood of any other point in S, and all core

points in the cluster can be found in the ϵ-neighbourhood of a point in S. This set S can be found

by running k-means with k = |S| on each cluster, where each centroid found is a point in S. Each

point r in S is then assigned an ϵr value, representing the neighbourhood around the point which

it represents. Thus, each local clustering model is a set of pairs (r, ϵr) that act as representatives.

The set of representatives are sent to a central system to determine the global model. DBSCAN

is run again on the representatives from all the machines with minPtsglobal = 2 and ϵglobal = 2 ∗

max(ϵlocal). Clusters represented by the local representatives may be merged if they are sufficiently

close enough. The global model, consisting of representative points, their clustering labels and ϵ,

are sent back to each of the machines to update their local clustering labels.

2.6 Advanced In-Database Analytics (AIDA)

Advanced In-Database Analytics (AIDA) is a system introduced by Joseph D’Silva [11] that runs

inside the RDBMS and allows the user to perform data operations without incurring the overhead of

moving data out of the database. It runs on a Python interpreter that is embedded in the database

so that the user can take advantage of optimizations provided by the RDBMS for database queries

while simultaneously making use of well known data science and machine learning libraries that

Python provides.

28

2.6. Advanced In-Database Analytics (AIDA)

Client Machine

Python Interpreter

DBAdapter Stub

TabularData Stub

AIDA Server

Database Application

Embedded Python Interpreter

DBAdapter

TabularData

Database Engine

Database
Tables

RMI RMI

Relational Operations pushed
to Database Engine

Communication over
AIDA RMI

Figure 2.6: Diagram of AIDA architecture

2.6.1 AIDA structure

The AIDA framework uses a client-server architecture. The user uses the client-side API to connect

to the AIDA server that is embedded in the database through the use of RMI. This allows the user

to send commands and computation to the AIDA process running in the database server.

When the user on the client side connects to AIDA on the server side, AIDA creates a database

connection to the database it is currently running in. This database connection object sits on the

server side, but a proxy is shipped to the client space so that the client can call functions on it

and access the data inside the database remotely. All tasks that the server performs are initialized

by the client through calling on server objects using their proxies residing on the client site. This

architecture is described in Figure 2.6 – the DBAdapter object in the AIDA server and object stub

on the client side representing the database connection object.

For instance, in the code segment 2.2, the user first connects to the AIDA server using the

AIDA.connect function. That function returns the stub of the database connection object to the

user, and the user then calls the _tables function on it to acquire a list of all tables in the database.

The stub gets the function name that the user calls and ships it over to the actual object residing on

the server side, where a database query is then executed in the database, and the result is shipped

back to the client side.

Indeed, all communication between the client and the AIDA server must be achieved through the

RMI communication paradigm supported by AIDA. RMI uses a blocking request-reply structure,

29

2.6. Advanced In-Database Analytics (AIDA)

1 from aida.aida import *
2

3 hostname = "localhost"; database = "db"; username="user";
4 password = "password"; jobname = "job";
5 dw = AIDA.connect(hostname, database, username, password, jobname)
6 print(dw._tables())

Listing 2.2: Example of AIDA database connection usage.

meaning that execution on the AIDA server must be initiated by the client through a request, and

the client blocks until a reply from the server is received. We will use this RMI primitive in our

distributed architecture to exchange data, be it part of the database tables or model parameters,

between the components of AIDA.

2.6.2 TabularData

TabularData objects in AIDA are abstractions of data in the database system. They can represent

data that exists in several different formats: as database tables, as numpy matrices or in form

of dictionaries. Conceptually, they are similar to other tabular data abstractions such as Pandas

Dataframes [31] or Spark Dataframes [1], both of which in turn are inspired by R Dataframes [38].

AIDA TabularData objects differ from those by residing on the server-side AIDA system, and can

be accessed through a stub on the client side. Any operations done on the client-side stub will be

shipped to the server-side object, where they will be executed within the database environment,

as described in Figure 2.6. Relational operations on data represented by the TabularData object

will be translated into its equivalent SQL commands, and executed by the database engine. This

ensures execution of any relational operations can take advantage of the many optimizations the

database engine provides for executing such operations.

The TabularData abstraction exposes an Object Relational Mapping (ORM) API so that the

user can perform relational queries on the object directly. The TabularData object also supports

linear algebra operations. Relational queries and linear algebra operations can be interwoven at

the user’s will. Every operation done on a TabularData object returns a new TabularData object

containing the result of the operation. The data contained in a TabularData object may not be ma-

terialized yet; relational operations are performed lazily and only when the user explicitly requests

30

2.6. Advanced In-Database Analytics (AIDA)

for the results of the operations will they be performed. In particular, if a user submits several

relational operations and then asks for matrix data, AIDA will combine the relational operations

into a single SQL statement to allow the database to perform more sophisticated query optimiza-

tion. AIDA also supports combining TabularData objects – the .vstack method on a TabularData

object allows rows of two or more TabularData objects to be concatenated, and the .hstack call

concatenates the columns of multiple TabularData objects.

Additionally, TabularData supports NumPy matrix representation of the data contained within.

This is useful when performing linear algebraic operations. To transform the data into a NumPy

matrix format, the client merely needs to call the .matrix attribute of the TabularData object. The

attribute will first materialize the data, if it has not been materialized already, and then transform

it into the NumPy matrix format.

Thus, there are in the end three states a TabularData object can exist in. The first occurs when

a client accesses a database table – the AIDA server will create a TabularData representation of this

table, but the data itself remains in the database and will not be materialized yet. Indeed, the first

and all subsequent relational operations done on this data will not trigger the materialization of the

data until the user explicitly requests for the data to be materialized through either the .cdata,

the .matrix call, or any linear algebra operation. While the data has not been materialized,

every operation done on the TabularData object will return a new TabularData object containing a

reference to the original object, and the operation being performed. The operation will not actually

be performed until it is time for materialization, in which case the TabularData object can trace its

lineage through the references and construct a complete query from all the operations.

The second state a TabularData object can be in is after the data has been materialized. Then,

the client can access the result of all relational operations performed on the original database table.

It is stored in the form of an Python ordered dictionary, where the keys of the dictionary are the

column names and the values of the dictionary the column data in NumPy vector form. This is

known as columnar storage – the data is stored in columns as opposed to rows. This makes it easy

for data to transfer in and out of the database engine, as AIDA uses the MonetDB database [22],

which also stores its tables in columnar format. Indeed, MonetDB supports zero-copy data transfer

– queries done by the MonetDB database engine returns results to the embedded Python application

without creating a copy of it. Since MonetDB stores objects in the same format as NumPy arrays,

31

2.6. Advanced In-Database Analytics (AIDA)

the ordered dictionary format merely references the underlying data, instead of making a copy of

it.

The final state in which the TabularData can store its data is the NumPy matrix form. When

requested, the TabularData object will materialize its data in the Ordered Dictionary form as

described earlier, then transform that into a NumPy matrix by stacking its columns horizontally.

In this fashion, linear algebraic operations such as matrix multiplications and transposes can be

done on TabularData objects. Certain linear algebra operations will cause a TabularData object to

automatically materialize its data in matrix form.

1 td = dw.lr_data
2 targets = td.project(('y'))
3

4 x = td.project(('x1', 'x2', 'x3'))
5 biases = db._ones(x.shape[0])
6 data = biases.hstack(x)
7 print(data.cdata)

Listing 2.3: Example of TabularData object usage

In code segment 2.3, the user accesses the relational table called lr_data located in the database

through the database connection object stub at line 1. This invites the server to create a Tabular-

Data object referencing the lr_data table in the database. Then, the user projects only columns

they wish to retrieve from the data – in this case, the column named 'y' and the columns named

'x1', 'x2', 'x3'. The result of these two projections are returned as TabularData objects, the

stubs of which are sent back to the client side and stored in the variables targets and data respec-

tively. The database connection object offers a method called _ones, which returns a TabularData

object consisting of ones in the shape provided. The shape provided is the number of rows in the x

table, resulting in a single-column TabularData object with the same number of rows as x, contain-

ing all ones. Since calling shape is a linear algebra operation, and not a relational one, the data for

x is materialized. At this time point, the data resides in a dictionary stored by the x TabularData

object – it has not yet been sent to the user. This column is then appended to the x table and the

result stored in the variable data. At the end, the user calls the cdata property on data, which

causes the execution of all the previous operations since the last materialization – in this case, just

hstack. The cdata call also retrieves the newly-materialized data to the client side, where it can

32

2.6. Advanced In-Database Analytics (AIDA)

be printed.

2.6.3 Remote Execution Operator

AIDA also provides the user with functionality to ship their own functions to be executed on the

server side through use of the _X operator, provided by the database connection object. This allows

the user to implement their own operations on the remote data that may not be supported by the

AIDA API. It also allows the user to perform many operations using only one RMI call by wrapping

the operations in a single function to be shipped and executed on the server side. Libraries can also

be imported and used in the remote function, as long as the library is installed on the server side.

The function defined by the user must take the database connection object as its first argument.

The user can define any other arguments, and the function can return any object. The database

connection object also acts as a workspace in which the user can add their own variables, possibly

containing complex objects, that are persistent and can be accessed from either the remote function

or the client side workspace. Thus, the user can set persistent variables in the database workspace,

and access them from within the remote execution function. It also allows the remote execution

function to access database tables and other functionalities of the database connection object.

1 def linear_regression(db, iterations, batch_size):
2 import numpy as np
3 x = db.data.matrix.T
4 y = db.targets.matrix
5 learning_rate = 0.002
6 for i in range(iterations):
7 batch = np.random.choice(x.shape[0], batch_size, replace=False)
8 batch_x = x[batch, :]
9 batch_y = y[batch]

10 preds = batch_x @ weights.T
11 loss = 2 * (((preds - batch_y).T @ batch_x) / preds.shape[0])
12 db.model = db.model - (learning_rate * loss)
13

14 dw.model = np.ones((1, dw.data.shape[1]))
15 dw._X(linear_regression, 5000, 32)

Listing 2.4: Example of custom remote function

The code segment 2.4 provides an example of a user-defined function that is shipped and ex-

ecuted on the server side. Here, the user creates a function linear_regression to perform some

33

2.6. Advanced In-Database Analytics (AIDA)

linear regression iterations on the data provided by the TabularData object db.data and the labels

provided by db.targets. The database connection object is storing a linear regression model in

db.model, which is updated every iteration in the function. The function is executed at the end

using the db._X operator, where the function itself, along with its arguments, are shipped from the

client space to the server space and executed.

2.6.4 Data Transferring in AIDA

While AIDA aims to push computation to the data side, it also supports operations for pulling and

pushing data to and from the database server. This is useful for cases where data that wishes to

interact reside on different nodes – they can then be transferred into the same AIDA environment.

These operations are also executed using the AIDA RMI message passing system – the client can

request data to be pulled to the client side by calling .cdata on the TabularData stub, and can

push data to the server side using the ._L method provided by the DBAdapter object.

As stated previously, the cdata call on TabularData objects materialize the data. It returns the

columnar dictionary format for the data, which will then be serialized and transmitted to the client

site by the RMI functionality. Using this operation, clients can pull data from the AIDA server.

Additionally, the database connection implements the ._L load function, used to load data at

the server. It will take a dictionary or NumPy array, and return a TabularData object stored at the

server. This method can thus be used to push data to the server, and later be able to manipulate

the data using the TabularData API, and have it interact with other data at the server.

34

3
Distributed AIDA Architecture

Recall that the goal of D-AIDA is to be an in-database framework supporting both distributed query

processing and distributed machine learning in a modular manner. In this chapter, we present the

overall architecture of D-AIDA and the data abstraction it implements to provide a global view of

partitioned data table to the client and facilitate both these forms of distributed data processing.

3.1 Distributed AIDA Architecture

Extending the AIDA system to be distributed requires consideration of the distributed architecture

and what we aim to do with it. So far, we assume all the data is horizontally partitioned across

several database nodes, each running their own AIDA system. However, we believe this architecture

can also be extended to support vertical partitioning. Recall as well that each AIDA server lives

within the Python environment embedded in the RDBMS – in this case, MonetDB. When a user

35

3.1. Distributed AIDA Architecture

accesses a table, they should be presented with a global view of the data table, with the precise

distribution of the data hidden. Furthermore, the user should be able to perform operations and

write algorithms without needing to manually push computation to where the data resides.

A new middleware AIDA system is introduced to manage the communication with the client

and with the database nodes. As discussed in section 2.3, middleware architectures allow for the

performance of distributed joins in systems where computation – the query – is shipped to the data

location. Moreover, the middleware architecture allows a natural implementation of the parameter

server architecture described in section 2.5.2.1 for distributed machine learning. A middleware

server with knowledge of the data distribution can provide both a global view of the data, access to

operations on the data that may require data sharing, as well as a common access point for shared

global data, such as models. For the rest of this paper, the sites where the data resides will be called

the database or worker nodes, whereas the middleware site will be known as the middleware node.

Instead of connecting to each of the AIDA servers where the data is hosted, the user needs only

to connect to the middleware server. The infrastructure supporting this is provided by the RMI

functions inherent to AIDA, and is outlined in figure 3.1. This middleware AIDA system acts as

a client to the database AIDA servers, propagating client operations to the database servers where

they will be executed. Since each AIDA client-server relationship creates a DBAdapter object in the

AIDA server as well as a DBAdapter stub in the client space, the middleware AIDA server contains

stubs to the AIDA database servers. Meta-information detailing where partitions of each table

in the database lie is stored in the middleware. Like the original AIDA system, the middleware

AIDA server creates a database adapter object and returns it as a stub to the client. The database

connector also supports frameworks for pushing user-defined algorithms to the database nodes,

which will be further expanded upon in Chapter 5.

Meta-information keeps track of the database nodes and the data each of them maintains. This

information is stored in a SQLite [20] database file. SQLite is a light-weight database that stores all

its data in ordinary files. It does not run its own server process, but supports data access through

the use of libraries in various programming languages. The meta-information contains two tables:

servers and tables. The servers table contains only one attribute: the hostname of the AIDA

servers in the cluster. The tables table contains two attributes: each row is a tuple (table_name,

hosts) where table_name is the name of the partitioned data table, and hosts is a foreign key

36

3.2. DistTabularData

Client Machine

Python Interpreter

Middleware
DBAdapter

Stub

Middleware AIDA server

Embedded Python
Interpreter

DBAdapter

DBAdapter Stub

DBAdapter Stub

Data Distribution
Metainformation

Database Servers

Embedded Python
Interpreter

DBAdapter

Database Servers

Embedded Python
Interpreter

DBAdapter

Figure 3.1: Distributed AIDA architecture.

referencing servers describing the location of a partition of the table. Because we assume the data

to be horizontally partitioned, we expect each partition of the dataset to share the name of the

global dataset and have the same features. That is, our current set-up allows a data node to not

have all rows of a table, but it should have all the columns.

Upon connecting to the middleware server, the middleware database connection object is ini-

tialized. It establishes a connection with all the servers in the cluster, as outlined by the servers

table in the SQLite meta-information database. It also initializes a thread pool for future parallel

distributed tasks. The middleware AIDA server is also embedded in an RDBMS, although the

database is empty as we assume the data is partitioned across other AIDA servers. This database

engine can be used for operations that require data movement to the middleware, such as certain

aggregations and the DISTINCT SQL operation that are needed for post-processing of distributed

relational operators.

3.2 DistTabularData

In AIDA, the TabularData abstraction enables the client to perform both relational and linear alge-

bra operations on relational data. It also allows a wide range of data transformations. In D-AIDA,

we aim to support this in a distributed setting. For this, D-AIDA implements the DistTabularData

abstraction.

37

3.2. DistTabularData

Client Machine

Python Interpreter

DistTabularData
Stub

Middleware AIDA server

Embedded Python
Interpreter

DistTabularData

TabularData
 Stub

TabularData
Stub

Global Model

Model
Definition Code

Database Servers

Embedded Python
Interpreter

TabularData

Model Data

Database Servers

Embedded Python
Interpreter

TabularData

Model Data

Figure 3.2: Data distribution for D-AIDA.

Like the original AIDA connection, tables in the database can be accessed by referring to the

table by name using the database connection object, DBAdapter. Instead of consulting the database,

the AIDA middleware server consults the meta-information it has on hand to learn where parti-

tions of the table are hosted. For example, if the table clustering_data is accessed through the

middleware DBAdapter stub, the middleware finds all tuples with table_name='clustering_data'

in the tables table in the SQLite database file. The hosts attribute of these tuples indicate the

servers on which a partition of the data resides. Each of these partitions can be accessed normally

by the middleware, since the middleware server holds references to the database workspace objects

supplied by each server. From here, the middleware offers a holistic view of such a distributed table

by implementing the DistTabularData abstraction, which is a wrapper around a list of TabularData

objects and their home connections. Like TabularData, the actual DistTabularData object remains

at the middleware, and the user only receives a stub when accessing it.

Figure 3.2 presents how the DistTabularData object, along with its component TabularData

objects, are distributed in the D-AIDA system. Additionally, it shows how machine learning models,

defined at the client, will be held at the middleware and sent to the database servers for work. This

will be further expanded upon in Chapter 5.

So far, DistTabularData supports a subset of the operations TabularData objects support. In

38

3.2. DistTabularData

most cases, these operations will be pushed to the database nodes that hold the data. To manage

operations done in parallel on the database nodes, the DistTabularData uses a thread pool initialized

by the middleware database connection object to execute remote operations on the TabularData

objects it references. These operations are done transparently to the client; the client will not have

access to any of the individual TabularData stubs or direct connections to a database server. Each

DistTabularData object holds a dictionary whose keys are the database base connection object

stubs to the database nodes, and whose values are the TabularData stubs referencing the database

table partition at those nodes. This dictionary can be accessed by the tabular_datas property of

a DistTabularData object, which is hidden from the client.

39

4
Distributed Query Processing

Distributed query processing is a well-explored field. In this chapter, we present a proof-of-concept

that D-AIDA’s architecture allows for a convenient implementation of distributed query operators.

We have implemented the most common operators and show in this chapter how their execution is

coordinated across the D-AIDA components.

In the majority of these cases, the execution of the relational operators are pushed down to

the database nodes where the data resides. Each of these nodes hosts an AIDA database server

which the middleware AIDA server will interact with. When pushing the relational operations to

the AIDA servers, they will be executed by the RDBMS in which the AIDA servers are embedded.

In this fashion, the execution is performed near data and by the optimized relational query engine.

For now, the relational operators implemented in D-AIDA serve as a simplified proof of concept.

Thus, many are executed immediately instead of the lazy approach followed by the original AIDA

implementation.

40

4.1. Base Operators

4.1 Base Operators

DistTabularData objects support most of the distributed relational operations, outlined in section

2.3. Since DistTabularData inherits from the original AIDA TabularData object, many of the

method signatures remain identical, with some exceptions. The base operators that execute on a

single table remain quite simple and will be listed here:

1. .project(projcols): This directly inherits from the TabularData API. This method per-

forms a projection on the list of columns projcols, passed as the parameter. When this

is called on a DistTabularData, the object will internally call this same function with the

same arguments on all tabular_datas it has a reference to in parallel. Each TabularData

object then returns a stub to the result of the operation; these stubs are collected and a new

DistTabularData object referencing these is returned to the client.

2. .filter(*selcols): This operation similarily inherits from the TabularData API. This is a

selection operation with filter conditions selcols. Like the projection operation, the Dist-

TabularData object merely forwards the method call along with the parameters to the Tabu-

larData objects in the database servers.

3. Simple aggregate functions like sum, count and average go through similar processes, end-

ing with an aggregation at the middleware server. The sum and count methods are both

executed independently at each database server, and the results summed at the middleware

and returned to the client. The average method performs the distributed sum and count,

then divides the result of the former by the result of the latter at the middleware. In the

current implementation, the middleware does not use its database engine for these simple

aggregations.

4. Complex .aggregate(projcols, groupcols) operations are also supported, although with a

non-optimal method. The projcols parameter takes the column names and requested aggre-

gations of the output, while the groupcols parameter indicates the columns on which the user

wishes to perform a GROUP BY operation. For instance, dw.registration.aggregate(('cou ⌋

rse_code', {COUNT('student_id'): 'num_students'}, {AVG('grade'): 'average'}), ⌋

('course_code')) is the equivalent of the SQL statement SELECT course_code, COUNT(st ⌋

41

4.1. Base Operators

udent_id) AS num_students, AVG(grade) AS average FROM REGISTRATION GROUP BY co ⌋

urse_code. This query returns the number of students and the class average for every course

that has been registered. Complicated aggregation queries with group bys such as these are

fully executed at the middleware server. The data in the table is pulled from each database

server and loaded in the database at the middleware – a new DistTabularData object, con-

taining only a reference to the database connection object at the middleware and the result

of the query in TabularData format, is returned to the client. An optimal implementation

would perform the aggregations at the database nodes, and perform a final aggregation of the

results on a per-value and per-column basis at the middleware.

5. Like group bys, the DISTINCT and ORDER BY operations are queries that require sorting of

the global data. Thus, execution for both of these queries also occur at the middleware after

pulling the data from the database servers.

6. The cdata performs a special function for TabularData objects – it will initialize transmitting

data from a server AIDA process to the client site. DistTabularData also supports this func-

tion: calling cdata on DistTabularData objects will also call cdata on the TabularData objects

at the database nodes. The middleware concatenates all the tuples of data transmitted, and

returns that data to the client.

To conclude, there are three main algorithms at use for these operations. The first algorithm

involves the middleware server propagating the query to be independently executed at each of the

nodes, and returning the concatenation of the results. The second is much the same, only requiring

an additional aggregation at the end. The final algorithm merely pulls all the data towards the

middleware, where the query will be executed by the middleware RDBMS engine set aside for that

specific purpose. Kossman [26] laid out how operators like group by or order by could be distributed

across the data nodes with some post-processing at the middleware. Given that D-AIDA has the

middleware embedded in a database already, implementing this optimized version is possible.

42

4.2. Distributed Joins in AIDA

4.2 Distributed Joins in AIDA

Joins are highly complex queries involving multiple tables. Distributing joins do not come as

naturally as simpler operations – data must be able to move around in the system and interact

with other data. Thus, in this section, we will describe the two join algorithms provided by a

DistTabularData object. Both joins are accessed through the same join call on a DistTabularData

object. So far, it is up to the user to decide which join argument to use by providing an optional

argument. The default is broadcast join. Currently, only inner joins are supported. The join call

of the DistTabularData object is similar to that of the TabularData object, with the exception of

one argument.

The DistTabularData join method takes the following as arguments:

1. otherTable: The other DistTabularData object on which to perform the join.

2. src1joincols: The names of the columns of the DistTabularData object on which the join

is performed – the join attributes.

3. src2joincols: The names of the columns of the other DistTabularData object on which the

join is performed.

4. cols1: The columns of the first DistTabularData object that will be returned in the output,

equivalent to performing a projection on the columns of the first table along with the join.

5. cols2: The columns of the second DistTabularData object that will be returned in the output,

equivalent to performing a projection on the columns of the second table along with the join.

6. hash_join: True or False, depending on whether the client wishes to use broadcast or hash

join. This argument is unique to the DistTabularData join and defaults to False.

In contrast to the above, the join call offered by TabularData does not have the sixth argument,

but an argument that decides the type of join to be performed – inner joins, cross joins and a variety

of outer joins are all options. Since DistTabularData only supports inner joins, this argument has

been dropped.

43

4.2. Distributed Joins in AIDA

4.2.1 Broadcast Join

Recall from section 2.3 that broadcast joins are the simplest algorithm for distributed joins. One

table, optimally the larger one, remains partitioned, while the other table is broadcasted to all

database nodes. The join is performed between each partition of the first table and the entirety of

the second table at each database node, and the concatenation of the local result sets form the end

result. In D-AIDA, it is up to the user to decide which table will be broadcasted. The join should

always be performed on the table that remains partitioned, with the broadcasted table forming the

first argument.

Conceptually, the implementation of the broadcast join in D-AIDA is a three phase process.

Consider a broadcast join between the first table A and the second table B, which will be broadcasted.

First, the TabularData stubs for each partition of B are sent to each database node holding a

partition of the first table. These nodes then use these stubs to pull all partitions of B. The

partitions are concatenated together to create a copy of B in each database node. In the second

step, a join is performed between each copy of B and partition of A. This join is performed by the

database engine on each node where a partition of A resides. Finally, the results of the join are sent

to the middleware, where they will be aggregated to form the final result.

For a visualization on where the functions are executed, consult figure 4.1 for a sequence diagram

of the broadcast join process. For clarity’s sake, the external_join on the second worker is omitted,

but should be noted that it is executed in parallel with the external_join on the first worker.

The implementation for this join in the distributed AIDA framework is presented as algorithm

2. The user first calls join function. If the hash_join parameter is set to false, the algorithm

continues on to the function outlined in lines 6-10 of algorithm 2. The function external_join is

defined at the middleware and shipped to each of the database nodes to be executed in parallel. This

function, outlined in lines 1-5, takes as input the TabularData object representing the partition of

the first database table that resides at the same site the join is executed on, and all the TabularData

stubs belonging to the second table. Using these TabularData references, each database node pulls

each database partition of the second table from the other database nodes, and recreates the entire

second table. Then, it performs the join between its partition of the first table and the entirety

of the second table. The second table is loaded into MonetDB, where the partition of the first

44

4.2. Distributed Joins in AIDA

Client Middleware Worker 1 Worker 2

join

external_join

pull partition
partition

join local tables

join result

In parallelIn parallel external_join called on both workers

join result

Figure 4.1: Sequence diagram for distributed broadcast join

table already resides, and the join is executed by the MonetDB database engine. The resultant

TabularData object is then returned to the middleware, which will aggregate it along with the

results from the other sites, and return a new DistTabularData object to the user. Note that when

a database node pulls a table partition from a different database node, it becomes a client to the

other node without going through the middleware. Indeed, the pull action is a simple execution

of the cdata call on the TabularData stub pointing to a TabularData object on another database

node.

Algorithm 2 Broadcast join algorithm for DistTabularData
1 function external_join(db, firstTable, secondTable, src1joincols, src2joincols, cols1, cols2)
2 tempTable ← {}
3 for partition in secondTable in parallel do
4 partition ← partition.cdata
5 concatenate(tempTable, partition)

return firstTable.join(tempTable, src1joincols, src2joincols, cols1, cols2)

6 function DistTabularData.join(otherTable, src1joincols, src2joincols)
7 result ← {}
8 for con, table in this.tabular_datas in parallel do
9 r = con._X(external_join, table, otherTable.tabular_datas, src1joincols, src2joincols,

cols1, cols2)
10 result[con] = table

return DistTabularData(result)

45

4.2. Distributed Joins in AIDA

4.2.2 Distributed Hash Join

Described in detail in section 2.3, distributed hash joins involve the re-shuffling of data across

database nodes such that all data having the same join attribute in both tables are moved to the

same site. The implementation of hash join in distributed AIDA makes use of AIDA’s ability to

push and pull data between servers.

The hash join algorithm implemented in AIDA is a three-step process. First, each database

node hashes and re-partitions the data they are responsible for. These new partitions are pushed,

using the AIDA ._L operator to the other worker nodes. This first step is executed in a function

called hash_partition, that the middleware pushes and executes on each worker node using the

._X AIDA function. Next, each worker node now holds new partitions of each table from all the

other workers – the partitions belonging to the same table must be consolidated into one. Finally,

with the newly consolidated table partitions, the local joins between the new table partitions are

execution on each worker node, and the results sent to the middleware to be aggregated.

The distributed hash join algorithm implemented in D-AIDA is visualized in a sequence dia-

gram in figure 4.2. Like figure 4.1, the helper function hash_partition is called on both workers

simultaneously, but omitted in the sequence diagram on worker 2 for clarity. As can be seen, the

hash_partition function uses the AIDA ._L function to push the new data partitions to the other

database nodes.

The hash join algorithm will be triggered when the hash_join parameter is set to True. It

enters the hash_join function shown in algorithm 3 starting from line 11. To begin with, the

middleware executes the hash_partition function on the TabularData objects referred to by both

the DistTabularData objects involved in the join. From the point of view of a single database node,

this function – outlined in lines 1-10 – hashes the join attribute of all the tuples in the TabularData

object that is passed to it. The hashed tuples are sorted into the same number of buckets as there

are machines involved in the join. Each bucket is assigned one of these machines, and the data in

the bucket pushed to that machine. This function then returns the stubs of the new partitions.

After the new partitions are created on each machine, the hash_join function continues on line 20

by consolidating the new partitions into a single table on each worker node. For example, if a client

were to join table A and B, both distributed on three worker nodes labelled w1, w2, w3, then after

46

4.2. Distributed Joins in AIDA

Client Middleware Worker 1 Worker 2

join

hash_partition

hash data

._L(partition data)

new data
partitions

new partitions

In parallelIn parallel called on both workers

consolidate partitions

new tables
join local partitions

join result
join result

Figure 4.2: Sequence diagram for hash join

47

4.2. Distributed Joins in AIDA

Algorithm 3 Hash join algorithm for DistTabularData
1 function hash_partition(db, table, connections, joincols)
2 num_connections ← length of connections
3 partitions ← list of num_connections length
4 for record in table do
5 hashed ← hash(record[joincols])
6 partitions[hashed % num_connections].append(record)
7 table ← {}
8 for i in {0..num_connections-1} in parallel do
9 remote_table ← connections[i]._L(partitions[i])

10 table[connections[i]] ← remote_table
return table

11 function hash_join(otherTable, src1joincols, src2joincols, cols1, cols2)
12 ▷ Hashing and redistributing partitions
13 connections ← {this.tabular_datas.keys, otherTable.tabular_datas.keys }
14 redistributed_tables ← {}
15 other_redistributed_tables ← {}
16 for con, table in this.tabular_datas in parallel do
17 redistributed_tables += con._X(hash_partition, connections, src1joincols)
18 for con, table in otherTable.tabular_datas in parallel do
19 other_redistributed_tables += con._X(hash_partition, connections, src2joincols)
20 ▷ Consolidating subpartitions in each node
21 new_table ← {}
22 new_other_table ← {}
23 for c in connections do
24 new_table[c] += concatenate([pt[c] for pt in redistributed_tables])
25 new_other_table[c] += concatenate([pt[c] for pt in other_redistributed_tables])
26 ▷ Joining partitions on the same node
27 result ← {}
28 for c in connections do
29 result[c] = new_table[c].join(new_other_table[c], src1joincols, src2joincols, cols1, cols2)

return DistTabularData(result)

48

4.3. Discussion

the execution of hash_partition, each worker would hold three segments of the new partition. Let

Ai be the partition of A on worker wi. The records in Ai would be hashed and stored into three

buckets during hash_partition – call these three buckets A1
i , A

2
i , A

3
i . Each of these three buckets

are assigned and pushed to a worker, A1
i to w1, A2

i to w2 and A3
i to w3. Thus, after the execution

of hash_partition, each worker wi would hold three new partitions for table A – Ai
1, A

i
2, A

i
3, and

the same for table B. These new partitions need to be consolidated into one whole partition of A

– call that A′
i, which is achieved through concatenating the partitions together. Note that while

the concatentation is called at the middleware (lines 24/25), the actual concatenation of the data

is done at the database nodes that hold the data. After the consolidation of the local segments for

both tables, the two tables are finally joined on their local partitions by the MonetDB database

engine, the results of which will be sent to the middleware and forwarded to the client.

4.3 Discussion

Currently, the relational operations implemented by D-AIDA represent only a proof of concept. For

a full fledged system, further improvements are required.

For one, better post-processing is required at the middleware for a more optimized implementa-

tion of aggregation queries. Currently, simple aggregations are performed outside of the database

engine, and complex aggregations require pulling all the data to the middleware. Both of these

implementations are unoptimal, and may be even unfeasible in the latter case. Instead, the query

needs to be rewritten, to do partial grouping/ordering at the database nodes, then a final group-

ing/ordering at the middleware.

Additional join implementations could be added as well. Joins are a well-studied and integral

part of relational database operations. The two distributed joins implemented by AIDA offer some

choice of join optimization to the client, but many other implementations exist. Furthermore, the

system could automatically decide which join implementation to use. To optimize this, the middle-

ware would require more meta information regarding the statistics of each database table. Indeed,

previous work [45] has shown that the feasibility of systems automatically optimizing distributed

joins given table meta information.

Optimized systems might choose to re-order parts of a complex query or otherwise change

49

4.3. Discussion

portions of a query to return equivalent results in a faster manner, but D-AIDA does not currently

support such an optimization due to a lack of lazy evaluation. In the current system, joins and

aggregations are immediately executed. The original AIDA implementation generates a linage

tree, which it then rewrites into SQL upon evaluation, allowing the database engine to perform

optimization. A similar technique could be implemented at the D-AIDA middleware for distributed

queries. A database engine capable of optimizing for distributed queries, like those mentioned in

Kossman’s survey [26], would be useful here.

50

5
Distributed Machine Learning

D-AIDA provides several frameworks that a user can use to write their machine learning algorithms.

The central framework is well-designed for iterative machine learning tasks. The workflow-based

framework allows for more freedom in iterative or non-iterative tasks. Finally, the parameter sever

framework allows some degree of model-parallelism in designing the tasks.

These frameworks have been chosen because they are best suited for the middleware architecture

that distributed AIDA implements. Each of them has the middleware server hold a global model

that the client may query after training. Furthermore, these frameworks can be used to implement a

variety of distributed machine learning models, particularly those trained on relational data. Indeed,

we chose to implement multiple different frameworks instead of a single one in order to increase the

level of expressiveness D-AIDA allows for in writing distributed machine learning algorithms. We

used these frameworks to evaluate the ease of use in incorporating different algorithmic designs in

the D-AIDA ecosystem.

51

5.1. Central Framework

In all of these frameworks, the model and method definitions are written by the user on the

client-side python interpreter, and all of it is shipped to the middleware, which will then manage

the execution of the methods. All of these frameworks support user-defined models written using

whatever library they prefer. Any libraries used by the code, such as NumPy or PyTorch, must

be imported at the start of each function. The libraries must also be installed on the server-

side embedded Python interpreters. The methods that the client must define are different in each

framework, reflecting the differences in execution. Furthermore, users must be cognizant of the

format of the data – AIDA natively supports NumPy matrices through the TabularData object,

but extra transformations must be performed when dealing with PyTorch tensors.

Additionally, all of these frameworks aim to only transfer data pertaining to the model or

gradient updates between the middleware and the worker nodes, not the learning data. Indeed,

each of these frameworks require a DistTabularData to act on, which indicates which workers are

involved in the execution of the framework. To the functions executed at the database nodes,

the middleware passes the TabularData stub belonging to that database node so that the work is

done on the proper dataset – however, the actual data will remain in that node. Data stored in

non-TabularData format, such as NumPy arrays or PyTorch tensors, will be actually serialized and

transferred across nodes. Indeed, users must be of cognizant of the format of the data that is being

passed as parameters or return values for remote methods – lest they transfer large amounts of data.

5.1 Central Framework

The central framework is designed for ease of use when training models using iterative methods

in the distributed AIDA system. The usage of it is simple: the user designs a model object,

incorporating several necessary methods, and sends it to the middleware server, which will then

automatically distribute the work defined by the user to the worker nodes where the data resides.

In this abstraction, the user knows that the data and the learning is distributed. The user starts

training with a DistTabularData stub, but is aware that each node will work on a data partition –

the local TabularData object. However, the user is not concerned with the distribution process –

the middleware takes care of that. The figure 5.1 illustrates the model calls and data flow for the

central framework.

52

5.1. Central Framework

Client Middleware Worker 1 Worker 2

dw._RegisterModel

ModelService

ModelService
.fit(data, iterations)

preprocess

preprocessed_data

initialize

iterate

gradient updates

aggregate

For n iterationsFor n iterations Synchronous or asynchronous

Figure 5.1: Sequence diagram for training on the central framework

This framework is optimized for distributed stochastic gradient descent. The methods designed

by the user should follow the standard programming flow for gradient descent – the process starts

off with data preprocessing, then model initialization, followed by iterations which calculate the loss

and gradient updates, and an aggregation step which applies those gradients to the model. Each of

these steps needs to be defined explicitly by the client – the middleware will automatically take care

of the execution and distribution of the steps. The data preprocessing step is pushed to each of the

database nodes by the middleware, where they will then be executed on their partition of the data.

This could, for example, be the selection of rows in the database tables, linear algebraic operations

or data transformations that need to be performed. Following that, the model initialization occurs

at the middleware, which will keep track of the global model, perform updates to it, and send

53

5.1. Central Framework

it to the workers when necessary. The iterate method, defined by the client, should define the

operations necessary for a single iteration. This method is performed by each of the workers for a

client-defined number of iterations. Each iterate execution should calculate the loss on a minibatch

of data and return the gradient update. The aggregation occurs next, on the middleware. It takes

the result from the previous iteration and applies it to the central model. The execution of the

iterations can be done synchronously or asynchronously. In the synchronous case, each iterate

function is called by the middleware in a separate thread; the middleware waits until each iterate

function has completed and returned before applying the updates received to the model by calling

the aggregate method. In the asynchronous case, a separate thread is created for each worker

which will independently alternate calling work in a worker and aggregate in the middleware until

the number of iterations is satisfied.

Every call to the workers is initiated by the middleware, acting as a client to the database

AIDA servers. The calls are performed using the._X operator provided by the database adapter

connections, which are stored in the DistTabularData. Thus, the work is only performed on the

nodes holding a partition of the training data. Each remote call is executed using RMI – the

execution must complete and return before the next step can commence. Only the preprocess and

iterate methods are executed at the worker nodes, whereas aggregate, the model update, occurs

at the middleware.

The methods that need to be defined by the user are as follows:

• preprocess(con, data):

Where con is the database connection, and data is the data in TabularData format. It should

return the preprocessed data in another TabularData object. This function will be executed

in each of the workers. The preprocessing step could vary for different models – many of them

would not require a preprocessing step at all. Since the preprocessing step is only performed

once at the beginning of training, it could also be used to set up variables that are only

initialized once – such as the loss function, or a counter. In the case of linear regression, it

could be used to add an additional bias term to the data.

• initialize(self, data):

Where data is the distributed tabular data representation of the output of the preprocessing

54

5.1. Central Framework

step. This method will be executed on the middleware, and should be used to initialize the

model weights. The weights should be initialized as a property of the model object, and will

be passed to the workers in each iteration. Like the preprocess method, it is only executed

once, but this time at the middleware. In addition to model initialization, it could also be

used to initialize objects that are used to update the model during the aggregate steps, such

as the PyTorch optimizer.

• iterate(con, data, weights):

Where con is the database connection, data is the data in tabular data format and weights

is the model weights. This function will be run on each of the worker nodes in each iteration,

and will require the user to define the prediction, loss, and gradient calculation for a single

iteration. It should return the gradient for a single iteration.

• aggregate(self, results):

Where results is the output of the iterate function. If the model is being trained syn-

chronously, it will be a list of the gradients sent from each worker node to the middleware,

and if not, it will be a single result. This will be executed at the middleware.

• weights:

While not a function, the weights property of the model should hold the model parameters,

in whatever format the user sees fit. The object defined in weights will be held as the global

model in the middleware. The data held by weights will be sent by the middleware to the

worker nodes every iteration in place of the entire model, so as to limit the amount of data

being sent.

After defining these methods in a user-created model object, the user would then register

this object using the _RegisterModel() method of the middleware connection. It then returns

a ModelService object, on which the user can call fit(data,iterations,sync) to define and

start the training loop. The parameters of the fit function are fairly self-explanatory: data is

the distributed tabular data representation of the data meant to be used in training, iterations

is the number of iterations to be run, and sync is whether or not the iterations should be run

synchronously.

55

5.1. Central Framework

Algorithm 4 Middleware algorithm run during .fit call on central framework
Input: x: Input data, M : user defined model, n: number of iterations, sync: synchronise flag

1 data ← {}
2 for connection in x.tabular_datas in parallel do
3 data[connection] ← connection._X(M.preprocess(x.tabular_datas[connection]))
4 preprocessed_data ← DistTabularData(data)
5 M.initialize(preprocessed_data)
6 if sync then
7 for n iterations do
8 for con in preprocessed_data.tabular_datas in parallel do
9 updates ← M.iterate(preprocessed_data.tabular_datas[con], M.weights)

10 M.aggregate(updates)
11 else
12 L ← lock
13 for con in preprocessed_data.tabular_datas in parallel do
14 for n iterations do
15 updates ← M.iterate(preprocessed_data.tabular_datas[con], M.weights)
16 L.lock()
17 M.aggregate(updates)
18 L.unlock()

The algorithm 4 outlines the steps taken by the middleware process when .fit is called on the

ModelService object. All of the commands in red are methods or properties that the user must

define as part of their model. The preprocess step is executed first in parallel, at lines 2-3. The

result of the preprocess step is stored in a new DistTabularData object, and will be passed to the

next step, initialize, which will initialize the weights of the model. This is so models, like linear

regression, that depend on the shape of the data can be initialized properly. The program flow after

the model initialization depends on whether or not the client wishes the training to be synchronous

or not. If synchronous, the middleware executes the iterate method at each worker node, waits

until they are all complete, then executes the aggregate method with the results at the middleware.

This repeats for a user-defined number of iterations. If asynchronous, each worker node performs

the iterate function, and the middleware immediately executes the aggregate function afterwards.

The aggregation will occur behind a lock, so model updates are serial. Depending on whether the

algorithm is performed synchronously or asynchronously, the aggregate function takes either a list

of updates – in the case of synchronous execution – or a single update – in the case of asynchronous

execution. It is up to the user to implement aggregate in such a manner that the updates are

applied correctly.

56

5.1. Central Framework

1 class LinearRegressionModel:
2 def __init__(self):
3 self.weights = ...
4

5 @staticmethod
6 def preprocess(db, data):
7 ...
8 return (x_bias, y)
9

10 def initialize(self, data):
11 import numpy as np
12 x = data[0]
13 self.weights = ...

Listing 5.1: Linear regression preprocess and initialization using central framework.

Listing 5.1 presents a partial implementation of linear regression using the central framework.

The full implementation can be found in the appendix at listing A.1. In this example, the algorithm

and model are written using NumPy objects, though PyTorch can also be used. At the construction

of the linear regression model at line 2, global constants such as the learning rate are defined.

The preprocess method, as one that is executed on the workers, is wrapped in a @staticmethod

decorator, and does not have access to any of the instance variables. Since it will be shipped to the

workers using the ._X functionality provided by AIDA, the first argument must be the database

adapter. The data parameter is a TabularData object residing on the same node as where it is

executed. Next, the initialize method is defined at line 10. This method will be executed at the

middleware, and initializes the model in the self.weights property.

14 @staticmethod
15 def iterate(db, data, weights):
16 import numpy as np
17

18 batch = np.random.choice...
19 preds = ...
20 grad_desc_weights = ...
21 return grad_desc_weights
22

23 def aggregate(self, results):
24 self.weights = self.weights - ...

Listing 5.2: Linear regression iteration and aggregation using central framework

57

5.1. Central Framework

The model definition is continued in listing 5.2 with the iterate and aggregate methods.

Line 18 retrieves the data from the TabularData objects by accessing the internal NumPy matrix

representation, and retrieving a batch from it. Then, the predictions are made and the gradient

update is calculated. The updates are returned to the middleware through the return statement.

Next, the aggregate function defined at lines 23-24 show the application of the weights to the

model.

25 from aida.aida import *
26 dw = AIDA.connect('middleware', 'database', 'username', 'password', 'lr')
27

28 model = LinearRegressionModel
29 data = dw.lr_data
30

31 service = dw._RegisterModel(model)
32

33 # Send start model training, specifying number of iterations
34 service.fit(data, 5000, sync=True)

Listing 5.3: Linear regression model training execution using central framework

Finally, the listing 5.3 shows how the linear regression model is executed on the client side. The

client first connects to the AIDA middleware server on line 26. Line 31 registers the model at the

middleware, returning the ModelService object. Finally, the model training is started by calling

.fit on the ModelService object with the data to be used during the training, and the number

of iterations to be performed. On calling the .fit method, it should be noted that the client only

has the references to the AIDA server at the middleware, ModelService and the DistTabularData

object representing the data to be trained on. These are all located at the middleware server. The

client does not have access to the individual partitions or the workers – the distribution is handled

by the middleware.

The main limitation with this framework is that it is limited to distributing iterative algorithms

– without running several iterations, using this framework makes no sense. Additionally, since the

model is passed to the workers as part of the call that starts the iteration on each worker, the worker

cannot pre-load the data and identify which parts of the model are more useful: algorithms such

as matrix factorization which could be optimized by passing only a small part of the model every

iteration could suffer when implemented using the central framework.

58

5.2. Workflow framework

5.2 Workflow framework

The workflow framework, inspired by map-reduce, is a more fine-grain framework that allows users

more control over independent iterations. Unlike the central framework, which only supports it-

erative algorithms, the workflow framework supports a wider variety of iterative and non-iterative

algorithms, at the cost of requiring more involvement on the part of the client to implement. Follow-

ing the steps of map-reduce, the workflow framework is comprised of a series of user-defined steps.

Each step consists of two phases: the work phase, which is run in parallel in each of the worker

nodes, and the aggregate phase, which occurs in the middleware. In essence, it can be thought of

as a MapReduce job where the map phase is the work phase and the reduce phase is the aggregate

phase. While data transfer occurs between the phases, in the form of models or gradients being sent

between the middleware and the worker nodes, the actual training data does not leave the worker

nodes.

Each work phase is an RMI call by the middleware to each of the workers, executing the user

defined work function. Each aggregate phase is executed on the middleware, using the middleware

dbAdapter object as a context manager to store persistent variables between steps. The workflow

framework works on a DistTabularData object – each work function executes on a node containing

a TabularData object referenced by the DistTabularData object. The workflow model also passes a

context object – in the form of a Python dictionary – to each execution of the work function. This

context object can be modified at the start and at every aggregate execution at the middleware in

order to pass additional variables in between the middleware and the workers at every setp.

The sequence diagram for the workflow framework is found in figure 5.2. Simply, each work step

is executed at each worker in parallel, whereas the aggregate step is executed at the middleware

using the results from the work step. In synchronous execution, the middleware will wait until each

worker has completed the work step, before starting the aggregate step locally with the results

from the workers. In the asynchronous version, a thread for each worker will be started at the

middleware. Each thread will start the work method on one worker, wait until that method has

returned, then perform the aggregate step at the middleware. The aggregate step is surrounded

by a thread lock, so no two threads can perform that step at the same time. However, the aggregate

step will not wait for any other worker to complete their work step before executing and moving on

59

5.2. Workflow framework

Client Middleware Worker 1 Worker 2

dw._workAggregateJob
(steps, data, ctx)

step.work

result
aggregate(results)

For steps in jobFor steps in job Synchronous or asynchronous

Figure 5.2: Sequence diagram for workflow framework

to the work function of the next step.

To start a workflow job, the user must first create a list of Step objects, which must have the

following methods:

1. work(con, data, context)

Where con is the database connection object, data is the data being worked on in TabularData

format, and context is a dictionary consisting of whatever else the user may need. In steps

following the first step, context['previous'] consists of the output of the aggregate method

of the previous step.

2. aggregate(con, results, context)

Where con is the database connection, and results is a list of what is returned from the

worker nodes in the previous phase in an arbitrary order. The context object is the same

object that is given to the work function – if the user wishes to change it for the next step, it

can be changed here.

The user can then submit the list of steps using the _workAggregateJob(list, data, context,

sync) method, where data is the DistTabularData representation of the data being used in the job,

60

5.2. Workflow framework

context is the context dictionary to be passed to the work phases and sync the parameter to be set

if the steps should run synchronously or not (defaults to True). The framework will then alternate

between executing the work and aggregate phases of each step synchronously or asynchronously

until completion. In addition, the list can contain a tuple (step, iterations) if a step is meant

to be run multiple times in sequence during the training.

Algorithm 5 Middleware algorithm run during _workAggregateJob call
Input: li list of steps, x data, sync synchronize flag, ctx context dictionary

1 if sync then
2 for step in li do
3 for con in x.tabular_datas in parallel do
4 result ← step.work(x.tabular_datas[con], ctx)
5 agg_result ← step.agg(result, ctx)
6 ctx["previous"] ← agg_result
7 else
8 L ← lock
9 for con in x.tabular_datas in parallel do

10 ct ← copy of ctx
11 for step in li do
12 result ← step.work(x.tabular_datas[con], ct)
13 L.lock()
14 agg_result ← step.agg(result, ct)
15 L.unlock()
16 ct["previous"] ← agg_result

The general program flow the workflow framework executes is presented in algorithm 5. Like

before, the red methods are user-defined methods. While not presented in the above algorithm, if

the user wishes to have one step repeat several times in a row, they merely need to encase it in a

tuple.

As an example of the workflow framework, we present linear regression, this time written in

PyTorch. The model and first step of the job is presented in Listing 5.4. The full code for this

example can be found in the appendix at Listing A.2. The linear regression is written as normal

in PyTorch. The FirstStep class contains both the work and aggregate functions for the first

step of the program. Unlike in the central framework, both of these functions are wrapped in the

@staticmethod decorator, even though aggregate is run on the middleware. This is because the

workflow framework does not create any object instances in the middleware, so any objects that

need to be maintained through iterations, such as the model, must be stored in the AIDA database

61

5.2. Workflow framework

1 import torch
2 from aida.aida import *
3

4 class LinearRegression(torch.nn.Module):
5 def __init__(self, input_size, output_size): ...
6

7 def forward(self, input):
8 return self.linear(input)
9

10 dw = AIDA.connect('middleware', 'database', 'username','password', 'lr')
11 dw.lr_model = LinearRegression(5, 1)
12

13 class FirstStep():
14 @staticmethod
15 def work(dw, data, context=None):
16 data.makeLoader([('x1', 'x2', 'x3', 'x4', 'x5'), 'y'], 1000)
17 ...
18 return
19

20 @staticmethod
21 def aggregate(dw, results, context):
22 dw.optimizer = ...
23 ...
24 return dw.lr_model

Listing 5.4: First step for a linear regression model implemented in the workflow framework

adapter workspace. This holds true for the workers and the middleware. Thus, the model is ini-

tialized and stored at the middleware beforehand in line 11. Additionally, the FirstStep.work

method, implemented from lines 14-18, initializes objects that should be persistent. At line 16, this

function makes use of a new in-built method for transforming TabularData data into a PyTorch

tensor format – the makeLoader function. This creates a loader that will be stored in the Tabular-

Data. The first argument is a tuple x, y, where x is a list of columns forming the input variables,

while y is the label. The second parameter is the size of the batch retrieved each iteration from the

loader. The client may choose to load data in a different format – in that case, they will have to

implement it themselves. In this example, the work method for the FirstStep class is equivalent to

the preprocess method in the previous framework. Next, the aggregate method simply initializes

the PyTorch optimizer with the parameters from the model stored at the middleware. This function

returns the dw.lr_model model object because objects that the aggregate function returns will be

62

5.2. Workflow framework

passed on to the work functions executed on the next step.

25 class Iterate():
26 @staticmethod
27 def work(dw, data, context):
28 import torch
29

30 model = context['previous']
31 batch, target = ...
32

33 preds = ...
34 loss = ...
35 loss.backward()
36 grads = [param.grad for param in model.parameters()]
37 return grads
38

39 @staticmethod
40 def aggregate(dw, results, context):
41 dw.optimizer.zero_grad()
42 ...
43 dw.optimizer.step()
44 return dw.lr_model
45

46 job = [FirstStep(), (Iterate(), 50000)]
47

48 dw._workAggregateJob(job, dw.lr_data)

Listing 5.5: Iterate step for a linear regression model implemented in the workflow framework

The next step is written in the listing 5.5. The Iterate.work function executes on the worker

nodes and is equivalent to the iterate function in the previous central framework. At line 30, the

return value from the previous aggregate function is found in the 'previous' key of the context

dictionary that will be passed from workers to middleware and back again at every step. Line 31

retrieves data from the dataloader one iteration at a time, then the predictions, loss and gradients

are calculated from lines 33-35. The gradients are then extracted from the model at line 36, and

returned from the work function to be shipped back to the middleware. The next aggregate

function will update the model with the gradients by applying the gradients to the model at the

middleware and running the optimizer initialized in the FirstStep. Like before, the model will be

returned so as to be shipped for the next iteration.

The workflow job is created at line 46. Since this is an iterative algorithm, this example program

63

5.3. Parameter Server framework

puts the Iterate class in a tuple, with the second element indicating how many times to run the

step. Then, the job is submitted along with the data being worked on at line 48. This program will

run synchronously by default, but if the client wishes to change that, they may pass sync=False as

the last argument to _workAggregateJob.

This framework has a similar shortcoming as the central framework, in that execution on the

workers must be started by the middleware, and further communication between the workers and

the middleware is blocked until the iteration finishes. Thus, like the central framework, the workflow

framework would not be able to send only subsets of the model according the minibatch loaded each

iteration by the workers. However, due to its more flexible structure, the workflow framework allows

for non-iterative distributed algorithms, such as clustering.

5.3 Parameter Server framework

The parameter server framework is quite different from the previous two frameworks implemented

for D-AIDA. Unlike either of the previous frameworks, the parameter server framework does not

support synchronous parallelization. Additionally, the previous two frameworks have the middleware

drive the work on each of the worker nodes: it indicates when they should start an iteration, and

pushes the necessary data to each worker. In the parameter server framework, each worker instead

chooses when to start an iteration by themselves, and pulls and pushes model related data as

necessary from the middleware.

In this framework, the user must define the model they wish to train and some additional

functions that will allow the workers to interact with the model. The model itself will be an object

residing in the middleware AIDA server. The model object will be wrapped in a server object,

also residing at the middleware, which implements the pull and push functions required by the

workers to interact with the model. The middleware will create and pass the stubs for this server

object to the worker nodes when the workers start training. Then, to pull and push parameters

and parameter updates to and from the model at the middleware, the workers need only interact

with the server object stub they hold. The server object runs a thread for each of the workers,

using an RMI method call to initialize the training at each worker, as well as a separate thread in

the middleware to continuously update the model when new model updates come in as workers use

64

5.3. Parameter Server framework

Client Middleware Worker 1 Worker 2

dw._MakeParamServer

CustomParamServer

CustomParamServer
.start_training

start_server

run_training

pull(param_ids)

parameters
push(updates)

aggregate

For n iterationsFor n iterations Asynchronously

Figure 5.3: Sequence diagram for parameter server framework

the push function. Because of this implementation, the parameter server framework only supports

asynchronous training. The server object stub is also passed to the client side, so the client can

indicate when to start the training.

Thus, each pull and push function is an RMI method belonging to the stub of the parameter

server residing in the middleware. As such, each method is a call to the middleware, an execution

by the middleware, and a return from the middleware. The workers block until the call is completed

– it is therefore suboptimal for the execution by the user-defined pull function to be long. It can,

however, be used to grant a primitive form of consistency – each push function transfers the model

update to a queue in the middleware. The length of the queue is user-defined – if a worker tries to

push into a queue that’s full, it will block until the queue has room – i.e. when an update has been

used by the thread performing the model updates.

65

5.3. Parameter Server framework

The figure 5.3 demonstrates the flow of a process using the parameter server framework. As the

diagram demonstrates, this framework, unlike the previous two, has the workers initiate method

calls to the middleware instead of only the other way around. Any parameter pulls and update

pushes are done asynchronously, and the aggregate function is called arbitrarily in the middleware

when there are updates available to be applied. An implementation of matrix factorization through

the parameter server framework can be found in the following listings.

The parameter server framework allows the user to create the model, then register it as a

parameter server in the middleware to allow the processes being run on the data nodes to push

and pull parameters during training. In the middleware, the parameter server exists as a key-value

storage of parameters from which the workers can request specific parameters through their keys,

and update those same parameters by sending the updates. The updates are stored in a queue. A

separate thread in the server will update the parameters and empty the queue periodically. This

type of framework is useful for when algorithms do not need to access the entire model during the

training phase. The user should define the parameters in the server, and the parameter server itself

exposes the following functions to the worker nodes:

1. pull(self, param_ids)

This function pulls the parameters indicated by param_ids to the worker nodes. The model

can be accessed via self.model, and the parameter ids as well as how to access parts of the

model using them must be defined by the user.

2. push(self, update)

This function pushes parameter updates to the parameter server. Often, this would be gradient

updates, along with the param_ids of the parameters they’re updating.

For this framework, the user must define their model, along with the following functions:

1. run_training(con, ps, data)

Where con is the database connection and ps is a reference to the parameter server. The user

should write this function as if all the training for a single data node is contained within it.

Naturally, data is the data the training is being run on.

2. pull(self, param_ids)

66

5.3. Parameter Server framework

Where param_ids is a list of parameter ids to be pulled from the parameter server ps by the

run_training method. This overrides the pull method of the parameter server.

3. update(self, update)

Where update is a single update sent by the push method of the parameter server. This is

run in the parameter server intermittently.

The user then initializes the parameter server using the function _MakeParamServer(model,

server, max_queue_length). The model object can have any form the client wishes – be a NumPy

array or PyTorch model. The server object should implement the user-defined functions described

above. In its constructor, it should take the model object featured as the first parameter. The

max_queue_length parameter is an integer limiting the length the update queue can grow to. If a

worker tries to push an update while the queue has hit its max length, the push function will block

until the queue has been emptied. This parameter can be used to ensure the model is frequently

updated, and as long as workers are pushing updates before pulling the updated model, no worker

will be working on models that are overly stale. This will return a CustomParamServer object, on

which the user can call start_training(data) to distribute and run the user-defined run_training

function on the workers.

Algorithm 6 describes the execution of the user-defined functions in the middleware. The pull

and push functions, written in blue, are the functions available to the database nodes as they run

the training. The function start_training, defined at lines 22-25, merely starts the server update

thread, then starts the training on each worker. To ensure workers only pull models that have

completed an entire update step, both the update function and the pull function are behind locks.

Listing 5.6, along with the next two listings, demonstrates an example of matrix factorization,

written using PyTorch and the parameter server framework. The full program can be found in

Listing A.3 in the Appendix. First, the machine learning model is defined normally as a PyTorch

model. In this case, the model holds two embeddings – embeddings for the users and embeddings

for the items – which represent the two matrices to be learned. Naturally, this will vary based on

the data.

Listing 5.7 demonstrates some of the functions implemented by the user for matrix factorization

using a parameter server. The constructor takes the model, and defines an optimizer on it using

67

5.3. Parameter Server framework

Algorithm 6 Process flow for parameter server framework
Input: model: user-defined model, server: user-defined functions, schedule: integer

1 sever ← server(model)
2 updates_queue ← Queue(max=schedule)
3 L ← lock
4
5 function pull(param_ids)
6 L.lock()
7 server.pull(param_ids)
8 L.unlock()
9

10 function push(update)
11 updates_queue.push(update)
12
13 function run_server(updates_queue)
14 while is_running do
15 update ← updates_queue.pop()
16 if update == "finish" then
17 break
18 L.lock()
19 server.update(update)
20 L.unlock()
21
22 function start_training(data)
23 Start run_server in another thread
24 for con in data.tabular_datas in parallel do
25 con._X(server.run_training, data._tabular_datas[con])

1 import torch
2

3 class MatrixFactorization(torch.nn.Module):
4 def __init__(self):
5 super().__init__()
6 self.user_factors = torch.nn.Embedding(...)
7 self.item_factors = torch.nn.Embedding(...)
8

9 def forward(self, data):
10 return (self.user_factors(data[0]) * self.item_factors(data[1])).sum(1)

Listing 5.6: Matrix Factorization model definition in PyTorch

the PyTorch library. The pull function is defined to return the embeddings requested through the

param_ids parameter. The update function takes a list of two gradients – the gradient update for

the users, and the gradient update for the items – records them in the .grad property of the model

68

5.3. Parameter Server framework

11 class CustomMF:
12 def __init__(self, model):
13 import torch
14 self.model = model
15 self.optimizer = ...
16

17 def pull(self, param_ids):
18 return (self.model.user_factors(param_ids[0]),

self.model.item_factors(param_ids[1]))↪→

19

20 def update(self, update):
21 self.model.grad = update
22 self.optimizer.step()
23 self.optimizer.zero_grad()

Listing 5.7: Matrix Factorization server definition in PyTorch

parameters and lets the optimizer perform the model update.

24 @staticmethod
25 def run_training(con, ps, data):
26 import torch
27

28 data.makeLoader(...)
29

30 loss_fun = torch.nn.MSELoss()
31 for i in range(iterations):
32 users, items = ...
33 factors = ps.pull((users, items))
34 preds = ...
35 loss = ...
36 loss.backward()
37

38 grads = [f.grad for f in factors]
39

40 ps.push(grads)

Listing 5.8: Matrix Factorization run_training user-method

Listing 5.8 shows the training phase of the algorithm. Like in the central framework, the

run_training is wrapped by a @staticmethod decorator since it is deployed at the workers. The

dataloader and the loss function, using one of PyTorch’s in-built methods, are initialized here.

Every iteration starts with retrieving the data from the loader, expressed at line 32. Then, the

69

5.3. Parameter Server framework

parameter ids are retrieved from the data – in this case, the user ids from the first column and the

item ids from the second column of the data tensor. Line 33 demonstrates pulling of parameters

from the parameter server. Lines 34-36 is the standard method of gradient descent using PyTorch,

as demonstrated back in section 2.4.5. Afterwards, the gradients are retrieved from the factors. As

the final step of the iteration, the gradients are then pushed back to the parameter server at line

40.

41 from aida.aida import *
42

43 dw = AIDA.connect('middleware', 'database', 'username', 'password', 'mf')
44 server = dw._MakeParamServer(MatrixFactorization, CustomMF)
45 data = dw.mf_data
46 server.start_training(data)

Listing 5.9: Execution of training using parameter server model.

Finally, listing 5.9 demonstrates how to start and execute the training. The _MakeParamServer

method takes the class of the model and the user-defined server methods, and returns a Custom-

ParameterServer object. Then, start_training is called on the object along with the DistTabular-

Data object to be used in the training, which will start the server update thread at the middleware,

and execute the previously defined run_training method at the worker sites.

Algorithms built using the parameter server framework will always be run asynchronously. The

iterations are not driven by the middleware; rather, each worker executes their iterations in a loop,

using only the push and pull functions provided by the parameter server. There is no guaranteed

ordering of any updates. Additionally, even the aggregations are performed in a separate thread. In

the previous two frameworks, even when executing asynchronously, each worker will wait to start

the next iteration until the middleware has applied the previous iteration’s updates to the global

model. This is not the case in the parameter server framework – the updates are pushed to a

queue, and the worker can continue its next iteration without waiting for aggregation to occur at

the middleware.

This framework is the only framework in which the workers drive the execution instead of the

middleware – as such, they can complete a partial iteration by loading the minibatch of data, then

demand the model from the middleware by acting as a client to the middleware AIDA server instead

70

5.4. Discussion

of the other way around. Thus, unlike the previous two frameworks, the parameter server framework

can request for a subset of the model, making it ideal for algorithms like matrix factorization.

However, this is not without its downsides. While an iteration in the previous two frameworks

would consist of two communication steps – the middleware starting the iteration and the worker

returning a value from the iteration – an iteration using the parameter server framework would

instead have four communication steps – the worker would make a request to the middleware for

specific parameters, the middleware would return those parameters, the worker would push updates

to the middleware, and the middleware would acknowledge the push. This can incur a larger

communication overhead in instances where optimizations provided by the parameter server are not

applicable, such as in linear regression, which requires the entire model for every iteration.

5.4 Discussion

As a proof of concept, the frameworks implemented by D-AIDA are malleable, but could still be

improved upon. For now, the central and workflow frameworks support both synchronous and

asynchronous execution, and the parameter server framework asynchronous execution. To further

expand these frameworks, a tracker in the middleware could be implemented to keep track of

iterations in each worker – with this, stale synchronous parallelism (SSP) could be supported.

While the parameter server framework can support a weak form of consistency by ensuring that

the number of updates in the queue does not exceed a certain number, the queue is global, and

could still allow one worker to perform iterations much faster and finish earlier than another. SSP

would ensure that no worker proceeds when they are a user-defined number of iterations ahead of

the slowest worker.

Currently, all these frameworks support running each worker for a fixed number of iterations.

While this is useful, non-distributed iterative machine learning methods often employ other criteria

for stopping – such as after the loss decreases past a certain threshold, or when the magnitude of the

gradient nears zero. Some of these could potentially be employed in the synchronous frameworks

provided by D-AIDA. For instance, a user could choose to throw an exception when the aggregate

function at the middleware encounters a small gradient – this would prevent the middleware in either

the central framework or the workflow-based framework from starting the next iterations. This

71

5.4. Discussion

could be expanded upon, by introducing other methods the user could define in order to check for

certain stopping conditions. However, from review of the literature surrounding distributed machine

learning, there does not appear to be a popularly employed condition for stopping asynchronous

models aside from stopping after a certain number of iterations. Loss or gradient calculations

could differ depending on worker – stopping a worker early because its stopping conditions are met

may result in another worker continuing and moving the model parameters towards an undesirable

position.

72

6
Experiments

For experimental results, we focus mainly on testing the machine learning frameworks provided by

D-AIDA. As our current implementation of the distributed relational operators serve merely as a

proof of concept – in that classical distributed processing can be implemented in D-AIDA, and it does

not feature a full-fledged implementation, we focus more on the capability of D-AIDA to support

machine learning algorithms and its ability to scale. We compare the different frameworks we have

developed against the well-known distributed machine learning libraries provided by PyTorch. For

data, we mainly use generated data for simplicity. Our analysis focuses on performance in terms

of runtime of learning and how easily the algorithms can be implemented, and not so much on the

performance of the model in terms of accuracy, precision, or F-score. Thus, we believe generated

data is sufficient for our purposes.

These experiments are performed on multiple machines, each with 32 GiB system memory, with

an Intel (R) Xeon(R) CPU E3-1220 v5 @ 3.00GHz. They are run in a non-distributed fashion, in

73

6.1. Iterative Algorithms

a system with two worker nodes, and in a system with four worker nodes. In the D-AIDA tests,

we assume the data to be pre-distributed and residing in the database at the worker nodes in the

form of tables residing in the database. The program is written at the client side, which calls the

middleware AIDA server to submit and execute the code. The PyTorch tests access the same data

at each worker by reading from a csv file. The code for the PyTorch tests are present at each site,

and executed locally everywhere. In our runtime measurements, we do not include the time needed

to read the data from the database into TabularData objects, nor the time from csv file to PyTorch

tensors.

6.1 Iterative Algorithms

To test these machine learning frameworks, we first ran experiments using linear regression and

matrix factorization using all three frameworks. We compared the performance of the D-AIDA

system against distributed PyTorch setups using parameters servers made using PyTorch RPC

and the PyTorch DistDataParallel modules. We also compared the performance against a central

PyTorch model with no distribution – in this central solution, all the data is local to this central

node, i.e. no data is transferred. Were we to assume distributed data, a centralized solution would

first need to transfer all data to the central node – an additional overhead. For comparison, we run

each framework with a set number of gradient descent iterations and time how long it takes for each

to finish. For the PyTorch RPC implementation, we follow the tutorial in PyTorch’s documentation

[43]. However, we find that that implementation is a non-standard parameter server implementation

– instead of parameters being moved to the data sites, the data is instead moved to the model sites.

As such, this has a negative impact on the performance of the PyTorch RPC parameter server. For

DistDataParallel, recall that the worker nodes each run an iteration, then broadcast their gradients

and update the local model copy in an AllReduce fashion. The next iteration is started afterwards

in a synchronous manner.

Each iterative algorithm is given a set number of iterations to complete – in single, non-

distributed systems, all iterations will be completed on one node, whereas in multiple node sys-

tems, the iterations will be split equally between every node. While we are not focused too much

on the performance of these models in terms of achieved loss after completion, it must be noted

74

6.1. Iterative Algorithms

that DistDataParallel automatically scales the gradient step with the number of workers present in

the system – for it to achieve a similar loss as the implementations provided by PyTorch RPC or

D-AIDA, it must run the full set of iterations on every worker. However, for the purposes of these

experiments, we ignore this, and scale the number of iterations run per worker the same for each

framework.

In D-AIDA experiments with two workers, three nodes are used: two for each worker node, and

one for the middleware and client. The PyTorch RPC setup uses the same configuration, with two

nodes acting as workers and one acting as the parameter server, but the PyTorch DistDataParallel

approach uses only two workers, as there is no coordinator process. Likewise, setups with four

worker nodes are tested on 5 nodes for the D-AIDA frameworks and PyTorch RPC, and 4 nodes

for PyTorch DistTabularData.

6.1.1 Linear Regression

Linear regression, described in Section 2.4.2, is a simple gradient descent algorithm. Compared to

deep learning algorithms, its model size is quite small, and its computations simple. It is common

for use on relational data to detect trends, or to predict an unknown attribute given the others.

6.1.1.1 Dataset

For linear regression, we generate 5 million rows of data following the equation:

f(x) = 3x1 + 5.1x2 − 6x3 − 1.5x4 + 0.2x5 + 2.33 +N(0, 1)

where xi are the features of the data, and N(0, 1) is the normal distribution with mean of 0 and

variance of 1. Each xi is a random integer between the values of -15 and 15. The coefficients are

chosen arbitrarily, and the equation written for ease of use in model implementation. The generated

data is stored in a database table with 6 attributes, one for each of the data features and one for the

label. In the distributed case, the tuples are randomly and equally divided amongst each partition.

When loading data from the TabularData object to the PyTorch DataLoader, the data is first

materialized as the columnar dictionary described in Section 2.6.2. The values of this dictionary,

being NumPy arrays, are then transformed into PyTorch tensors. Since they use the same C

75

6.1. Iterative Algorithms

language data structure, no copying of the data is necessary. In this case, each of the features,

x1, x2, x3, x4, x5 are loaded as integers, while the labels, y, are loaded as doubles.

6.1.1.2 Implementation

As we are comparing with PyTorch implementations, we use PyTorch to write algorithms we are

running using the frameworks D-AIDA provides.

1 import torch
2

3 class LinearRegression(torch.nn.Module):
4 def __init__(self):
5 import torch
6 super().__init__()
7 self.linear = torch.nn.Linear(5, 1)
8

9 def forward(self, data):
10 return self.linear(data)

Listing 6.1: Model used in experiments for linear regression

Listing 6.1 shows the model used for all of the implementations. It is a simple model using

a single linear layer to represent the linear regression function learned. The linear layer has five

parameters, one bias term, and outputs a one-dimensional number.

The loss function used is MSE, provided by the torch.nn.MSELoss() function. The model

is updated using standard SGD with a learning rate of 0.0003, also provided by the PyTorch

optimizer torch.optim.SGD(model.parameters(), lr=0.0003). In each of the D-AIDA setups,

the loss function is initialized at each worker, and the optimizer initialized at the middleware, where

the model resides. The linear regression algorithm is run with a minibatch of 1 000 records, with a

total of 10 000 iterations. On the central node, all 10 000 iterations are run for comparison. On the

setup with two worker nodes, each worker node runs 5 000 iterations each on their local dataset.

With four worker nodes, each worker runs 2 500 iterations.

The D-AIDA central framework follows the same process as described in Section 5.1, using Py-

Torch instead. The preprocess step on each worker first loads the data in a PyTorch DataLoader

and initializes the PyTorch loss function and stores it in the local workspace. The initialize

function in the middleware initializes the PyTorch model as well as the PyTorch optimizer taking

76

6.1. Iterative Algorithms

the model parameters. The iterate function loads the next minibatch of data from the dataloader,

calculates the gradients from the copy of the model it holds. It returns the gradients to the middle-

ware. The gradients are a list of two PyTorch tensors, representing the gradients for the weights of

the single linear layer, and the gradient for the bias of that same layer. The aggregate function at

the middleware then applies the gradients to the model using the optimizer initialized during the

initialize function.

The workflow framework creates two steps: the FirstStep step and the Iterate step. The work

phase of FirstStep does the same operations as the preprocess call in the central framework, and

the aggregate phase does the same operations as the initialize call. The next step, Iterate, is

run multiple times in a row on each worker – 5000 times on each worker if there were two workers.

The work phase performs the forward and backward pass, retrieving and returning the gradients,

and the aggregate phase in the middleware applies those gradients.

Since each data record needs the entire model to make a prediction, the parameter server setup

lets each worker pull the entire model every time they call pull on the parameter server object

residing in the middleware. The run_training method, implemented by the client and executed

on the workers, executes all iterations in a loop. The run_training method on each worker first

loads in the data in a dataloader and initializes the loss, before proceeding onto the iterations. Each

iteration starts with data being retrieved from the dataloader. Then, a pull is performed on the

parameter server, retrieving the latest model from the middleware server. The loss and gradient

updates are calculated, and the gradients are pushed to the middleware as a list of two PyTorch

tensors: the gradient for the weights, and the gradient for the bias.

6.1.1.3 Results

To begin, we present the comparisons between linear regression run on several frameworks using

two worker nodes. In this instance, each worker node runs 5 000 iterations.

Figure 6.1 presents the difference in execution time between a non-distributed Pytorch (labelled

’Central Pytorch’), PyTorch RPC, PyTorch DistDataParallel, and all D-AIDA frameworks. The

execution time takes only the time it takes to execute the iterations – the preprocessing step and

data loading step are not included. As these times may differ depending on the way the data is

stored and we wanted to focus on the execution time for the machine learning, those steps are not

77

6.1. Iterative Algorithms

Central
Pytorch

PyTorch
RPC

PyTorch
DistDat-
aParallel

D-AIDA
Central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
Central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

40

60

80

100

120

140

160

80.8

165.4

42.9

73.8
71.4

99.6 101.1

72.5

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 6.1: Comparison of execution times for linear regression between all frameworks with two
worker nodes.

included in the times we measured. For each implementation, the algorithm is run five times, and

the average of execution time of all 5 runs is presented in the figure.The error bars represent the

standard deviation across all trials for each framework.

For linear regression, the PyTorch RPC framework performs the worse, at nearly twice the

amount of time it takes for a non-distributed implementation. The PyTorch DistDataParallel per-

forms the best, reducing the execution time by nearly half compared to the central version. This

is natural: this linear regression model is very small, offering only 6 parameters, and thus moving

78

6.1. Iterative Algorithms

the data to the model site, like the PyTorch RPC implementation, incurs large amounts of over-

head. Otherwise, broadcasting only the model gradients to a small group of two worker nodes,

like the PyTorch DistDataParallel implementation, saves in communication costs. Calculation of

the new parameter values, which must be executed at all nodes, is not as expensive, comparably.

Indeed, for linear regression, the performance improvement is nearly linear over the non-distributed

version. This shows that the AllReduce library used by PyTorch offers efficient communication

of the gradients. The performance of the D-AIDA frameworks vary: the asynchronous version of

the central framework, the asynchronous version of the workflow framework, and the parameter

server framework, which is by default asynchronous, perform slightly better than a non-distributed

implementation, whereas synchronous versions of both frameworks that support it perform worse.

Compared to the magnitude of the mean execution time, the standard deviation of the execution

times is relatively small. Of the frameworks that are faster than the non-distributed version, Dist-

DataParallel exhibits a speedup of around 1.88 times, much higher than the speedups from the

D-AIDA frameworks, showing a speedup of 1.10 times for the asynchronous central framework, 1.13

times for the asynchronous workflow framework, and 1.11 times for the parameter server framework.

Figure 6.2 presents a more in-depth comparison between the D-AIDA frameworks. We note that

we cannot take these microbenchmarks for the distributed PyTorch frameworks, as communication

and calculation is linked internally in the library. In this diagram, the calculation time refers to

the time it takes to perform the forward pass and gradient calculations on each worker node. The

aggregation time refers to the time it takes to aggregate the gradient results and update the model

on the middleware node. The batch time refers to the amount of time required to retrieve each

minibatch of data from the PyTorch DataLoader at each worker node, and the remaining time refers

to the difference between the total execution time and the times previously calculated – any time

spent for communication or blocking is recorded here. For times that are individually calculated at

each worker node – such as the calculation time or batch time, the average between the two worker

nodes is taken.

In Figure 6.2, it can be seen that the calculation time, aggregation time and batch time remains

similar across the different frameworks. As batch time is the largest component, this time being

roughly half the total execution time of the non-distributed version, it is well distributed across the

two workers. Comparably, the communication cost is much larger for the synchronous frameworks.

79

6.1. Iterative Algorithms

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

10

20

30

40

50

60

70

80

90

100

110

73.8
71.5

99.6
101.2

72.6

40.2

36.6
38.1

40 39.3

4 3.4 4.4 4.4
5.9

1.8 1.4 2.5 2.6 2

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Calculation time Aggregation time Batch time Remaining time

Figure 6.2: Linear regression microbenchmarks for D-AIDA with two worker nodes.

This is to be expected – as synchronous frameworks need to wait for the slowest worker each

iteration, the amount of time spent blocked by each worker is much larger than in asynchronous

versions. Despite the fact that the parameter server framework takes two more communication steps

to pull the updated model and push model updates, its performance remains roughly equivalent to

that of the asynchronous central and workflow frameworks – this is likely due to the asynchronous

aggregation execution at the middleware.

80

6.1. Iterative Algorithms

Compared to DistDataParallel, the time spent in calculation, aggregation, and batching data

is similar to the total execution time DistDataParallel exhibits. Indeed, most of the time lost by

D-AIDA compared to the DistDataParallel execution time is in the remaining time – the time spent

in communication and blocking. This is to be expected – all distributed versions must execute the

same calculations, however, PyTorch uses a much faster communication library than AIDA RMI,

and likely has more efficient and specialized serialization techniques.

Central
Pytorch

PyTorch
RPC

PyTorch
DistDat-
aParallel

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

20

30

40

50

60

70

80

90

80.8

85.3

27

60.6 61.8

89
92.1

58.1

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 6.3: Comparison of execution times for linear regression between all frameworks with four
worker nodes.

Figure 6.3 presents the same frameworks, running on 4 workers nodes instead. We see large

81

6.1. Iterative Algorithms

improvements for the PyTorch RPC framework, cutting its execution time nearly in half – rep-

resenting a nearly linear improvement. PyTorch DistDataParallel goes from being nearly 2 times

faster than non-distributed PyTorch in the two worker environment to being nearly 3 times faster

in the four worker environment. D-AIDA also see its execution times decrease across all offered

frameworks by around 10 seconds – not nearly as much as either PyTorch frameworks. Now, the

asynchronous frameworks are faster than the non-distributed PyTorch version by around 20 sec-

onds, while the synchronous frameworks are around 10 seconds slower. The difference between the

synchronous and asynchronous versions of the framework sit at around the difference – 20 seconds

– regardless of the number of workers. While we expect synchronous frameworks to be slower than

their asynchronous counterparts, this is slower than we expected. It is possible that this difference

comes not from increased blocking in the synchronous framework, but from a more static source,

such as the overhead incurred from using AIDA’s RMI communication in a highly parallel manner.

We present as well the microbenchmarks for the D-AIDA frameworks running with four workings

in Figure 6.4. Compared to the two-worker version, the calculation times have gone down by nearly

half in all frameworks. This is to be expected, as each worker nodes runs only half as many iterations

as in the two worker case. The batch time has also decreased, by half in the synchronous frameworks

and by about a third in asynchronous frameworks. As for aggregation time, it has remained the

same in synchronous frameworks, whereas the asynchronous frameworks see it doubled compared

to the two worker version. This is because asynchronous frameworks perform aggregation once

for every iteration from every worker; due to iterations being more likely to occur in parallel, the

likelihood of an aggregation needing to occur concurrently with another calculation increases. The

aggregation for the synchronous frameworks remain the same – there are less aggregations over all,

but the same number of model updates. However, the remaining time remains a bottleneck for

all the D-AIDA frameworks, while the working time (i.e. time spent in calculation, aggregation,

or batching) roughly matches the total execution time of DistDataParallel. Indeed, across all D-

AIDA’s frameworks, while the working time has decreased as expected, the communication time

remains relatively static across both environments.

Finally, we note that we do not present the loss at the end of the algorithm runtime. The reason

for this is simple – the loss is similar across all executions, and thus comparing the loss presents

little value. However, we also note that the loss for PyTorch DistDataParallel is slightly higher at

82

6.1. Iterative Algorithms

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

10

20

30

40

50

60

70

80

90

100

60.6
61.9

89
92

58.1

22.7 22.6

26.1 27.1 27

5.3 5.2
3.3 2.8

8.9

1.1 1.1 1.7 1.3 1

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Calculation time Aggregation time Batch time Remaining time

Figure 6.4: Linear regression microbenchmarks for D-AIDA with four worker nodes.

the four worker system – this is because PyTorch DistDataParallel scales its gradient updates with

the number of workers in the system. In the four worker environment, only 2 500 iterations are

carried out in parallel – thus, PyTorch DistDataParallel treats it as if only 2 500 iterations in total

were carried out. In the other frameworks, all 10 000 iterations apply the gradient update at full

magnitude, and show only the converged loss at the end of the execution. The loss in this instance

converges at around 3 200 iterations, and so the two worker system, having 5 000 iterations in each

83

6.1. Iterative Algorithms

worker, does not exhibit this quality. This scaling of the gradient updates is possible in the D-AIDA

frameworks as well, but must be implemented by the user.

The results of these performance tests show that the communication overhead using D-AIDA is

the largest bottleneck when using the D-AIDA frameworks over distributed PyTorch frameworks.

While limited by its use of the AIDA RMI module, asynchronous modules are still faster than a

non-distributed implementation. We see expected decreases in both calculation time and batch

time, while the time it takes for communication is relatively constant across both environments.

Compared to the frameworks implemented by PyTorch, D-AIDA does not scale as well. Unlike

PyTorch DistDataParallel, which overlaps communication with computation by performing gradient

calculations as soon as a subset of the model parameters have received gradients from all workers,

the synchronous nature of AIDA’s RMI communication means there is little overlap – all gradients

for the entire model must be received before the model updates begin. Additionally, AIDA RMI

uses a general serialization technique which is applicable for all objects in Python – it is likely that

any serialization performed by PyTorch libraries are optimized for work on PyTorch objects.

6.1.2 Matrix Factorization

Matrix factorization, described in Section 2.4.3, is an algorithm used for recommendation systems.

As input, it often takes relational data in the form of reviews given to certain items by users. Com-

pared to linear regression, matrix factorization uses a much larger model. Unlike linear regression,

it does not need the entire model in order to perform prediction and loss calculations – this makes

parameter servers or other model parallel tactics better suited for this algorithm.

6.1.2.1 Data

The matrix factorization experiments use the anime ratings dataset from Kaggle [6]. This is a set

of ratings, ranging from 1-10, by users on anime that they have watched. The full dataset contains

information on 73 516 users and 12 294 anime. Originally, the dataset contains information on users

who have watched anime, but have not rated it, assigning that tuple a value of −1 in the rating.

These tuples have been discarded, leaving 6 337 242 ratings. Each of these features a user id, an

anime id and the rating the user gives that particular anime. The data is sorted in increasing order

by user id, then by anime id, and partitioned equally when distributed. The data is not shuffled

84

6.1. Iterative Algorithms

before being partitioned, so in the case of two workers, one worker would have the first 3 168 621

ratings, and the other worker the last half of the dataset. Thus, much of the data for a particular

user will exist on one data node. Due to this, it is unlikely that two nodes will update the same

user in an iteration.

Like the linear regression dataset, the matrix factorization dataset is first transformed into

PyTorch tensors when it is loaded in the PyTorch DataLoader. In this case, the user ids and the

item ids are integers, and the ratings are doubles.

6.1.2.2 Implementation

Like linear regression, since we compare the D-AIDA framework against the PyTorch RPC and

DistDataParallel implementations, we write our model in PyTorch.

1 import torch
2

3 class MatrixFactorization(torch.nn.Module):
4 def __init__(self):
5 import torch
6 super().__init__()
7 self.user_factors = torch.nn.Embedding(73517, 3, sparse=True)
8 self.item_factors = torch.nn.Embedding(34476, 3, sparse=True)
9

10 def forward(self, data):
11 import torch
12 user = torch.squeeze(data[:,[0]])
13 item = torch.squeeze(data[:,[1]])
14 return (self.user_factors(user) * self.item_factors(item)).sum(1)

Listing 6.2: Model used in experiments for matrix factorization

The listing 6.2 describes the implementation for matrix factorization in PyTorch that we use.

The user and item matrices are represented by PyTorch embeddings, which act as a dictionary for

embeddings. In this case, each embedding is a vector of size 3, and there are 73 517 user embeddings

and 34 476 item embeddings. The length of each embedding is a hyperparameter, while the size of

the dictionary is determined by the highest id number given to an item or a user in the dataset.

The embeddings are stored in a sparse tensor – the gradients will also be sparse in this case. Sparse

tensor gradients are stored in a Pytorch torch.sparse_coo_tensor object, which internally acts as

85

6.1. Iterative Algorithms

a key-value store – the keys representing non-zero indices of the tensor, and the values representing

the values at those indices. This makes it so that gradients require less storage when they are sparse,

and are thus more optimal for D-AIDA’s frameworks which moves gradients between nodes. The

forward function takes the user ids and item ids as a tuple of vectors, and returns the predicted

ratings.

Like in linear regression, we use MSE loss as our loss function using the PyTorch torch.nn.-

MSELoss() function. The model is likewise updated using SGD with a learning rate of 0.1, initialized

as a Pytorch optimizer torch.optim.SGD(model.parameters(), lr=0.1). The loss function is

initialized at each of the workers; the optimizer at the middleware. For matrix factorization, we use

a minibatch size of 64, and 80 000 total iterations spread evenly across each worker. Thus, in the

two worker environment, each worker would run 40 000 iterations, and in a four worker environment,

each worker would run 20 000 iterations.

In the central framework, preprocess initializes the loss function and loads the data at each

worker, while initialize initializes the model and optimizer at the middleware. Each iteration

on a worker must be started by the middleware – since the model is passed as a parameter to the

iterate call, the middleware does not yet know which embeddings each iteration would require.

Thus, the middleware passes the entire model to each worker with the iterate call. The iterate

call performs the standard loss and gradient calculations, and returns the gradient updates to the

middleware at the end of the iterate call. The gradient updates are a list of two tensors – the

gradient for the user embeddings, and the gradient for the item embeddings. The aggregate call

on the middleware applies the gradients, and the next iteration starts.

The workflow model is much the same. First, the client initializes and stores the matrix fac-

torization model in the middleware DBAdapter workspace. The FirstStep.work process on each

worker loads the data into the dataloader and initializes the loss function, both of which are stored

in the local database workspace. The FirstStep.aggregate function initializes the optimizer on

the model, and returns the model so that it will be passed to the work phase of the next step.

The Iterate step is performed repeatedly for each worker – 40 000 times each in the case of two

workers. Like in the central framework, the loss and gradient calculations performed by the worker

are driven by the middleware pushing and executing the Iterate.work function each iteration –

thus, the middleware must pass the entire model as a parameter to the Iterate.work function each

86

6.1. Iterative Algorithms

iteration. The Iterate.work function returns the gradients – again, in the form of a list of tensors

– where it will be applied to the model in the following Iterate.aggregate call by the middleware.

The parameter server framework is a natural option for the matrix factorization algorithm. The

middleware starts the run_training method on all workers. Each worker starts by initializing

the loss and dataloader, then continues on to the iterations. Each iteration starts with the client

retrieving a batch of data from the loader – consisting of user ids, item ids and ratings. Then, a

portion of the model is pulled from the middleware using the user ids and the item ids retrieved

in the batch. The client-defined pull function takes as input a tuple of two tensors, representing

the list of user ids and the list of items ids the worker wishes to pull. The middleware parameter

server returns the embeddings indicated by the ids in another tuple. If an id appears multiple

times, the embedding for that id will also be returned multiple times. Using these embeddings,

the loss and gradient updates are calculated. In particular, the gradients are transformed to a

torch.sparse_coo_tensor object. After being transformed to these sparse tensors, the gradients

for the user ids and the item ids are then pushed to the middleware using the push operation on the

parameter server. The updates are stored in a queue with max length 3, and applied to the model

by another thread running in the middleware.

6.1.2.3 Results

Figure 6.5 presents the execution times, alongside their standard deviations, of the PyTorch frame-

works compared with the D-AIDA frameworks in a two worker environment. We note firstly that

the non-distributed implementation is faster than any distributed implementation. Due to the rel-

atively small size of the dataset and the large amount of iterations, it is optimal to perform all the

computation centrally. However, this may not be the case for larger datasets, or if the datasets

cannot leave their database. Here, compared to PyTorch, D-AIDA fares relatively poorly. The

central and workflow based frameworks lack the capacity for model parallelization – thus, the entire

model must be sent from middleware to workers in every iteration. Comparabed to those, however,

the D-AIDA parameter server framework is much faster – the ability to pull only parts of the model

to the workers at each iteration speeds up the execution time by nearly 5 times compared to its

asynchronous D-AIDA counterparts. The PyTorch DistDataParallel implementation performs the

best – en par with the non-distributed version, if error were taken into account. Since DistData-

87

6.1. Iterative Algorithms

Central
Pytorch

PyTorch
RPC

PyTorch
DistDat-
aParallel

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

200

400

600

800

1,000

1,200

1,400

69.1

548.9

73.1

1,005.2 1,016

1,272

1,387.9

215.5

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 6.5: Comparison of execution times for matrix factorization between all frameworks with
two worker nodes.

Parallel does not send model updates, but each worker broadcasts their parameters to the entire

group, it has fewer communication steps than the parameter server framework. It sends only the

non-zero gradients every iteration, so the communication overhead for DistDataParallel remains

small. At nearly 8 times slower than the central version, PyTorch RPC performs much worse than

the DistDataParallel version, though it beats the non-parameter server D-AIDA frameworks. In

this case, since the data sent per iteration is much smaller than the model itself, it is natural that

PyTorch RPC is faster than the workflow and central frameworks in D-AIDA. Just as well, it is

88

6.1. Iterative Algorithms

natural that the D-AIDA parameter server is faster than nearly all the others – it pulls only parts of

the model. DistDataParallel is, in this case, still faster than the parameter server approach – every

worker only needs to send and receive gradients at every iteration, whereas the parameter server

framework forces each worker to request parameters, receive them, push gradients, then return from

pushing gradients.

However, we note that the issue regarding the loss in DistDataParallel is prevalent here as well –

while the other implementations converge to a loss value of around 5 after the total 80 000 iterations

spread across the workers, the PyTorch DistDataParallel only achieves a loss of around 18 after 40

000 iterations across two worker nodes.

Compared to linear regression, the standard deviation of the execution times is smaller relative

to the mean (although still larger in absolute magnitude). This is likely due to the increased amount

of iterations compared to linear regression, which would reduce the effects of variance in a single

iteration on the variance of the overall execution time.

Figure 6.6 presents a breakdown of the execution time for matrix factorization in a two worker

environment. We see that for the central framework and the workflow framework, the majority of

the time is spent in communication or blocking due to the large size of the model being passed

from middleware to worker. The calculation time, aggregation time and batch time is similar

across all four measurements. Due to the larger number of iterations, the time difference between

synchronous and asynchronous executions are more prevalent here than in the linear regression

case – with the synchronous workflows being around 300 seconds slower than their asynchronous

counterparts. Compared to the previous two frameworks, the D-AIDA parameter server spends

less time at every phase. Evidently, its ability to transmit only parts of the model across the

network means its communication cost is much lower than the previous two frameworks. The

calculation and aggregation time is much lower as well – it is possible this is due to how the parameter

server framework performs the gradient calculations – backwards propagation on a small subset of

the model in form of smaller tensors rather than over the entire model. While linear regression

featured a bottleneck at the communication phase in D-AIDA, wherein the calculation, aggregation

and batch phases of each of D-AIDA’s frameworks took about as much time as the entirely of

the execution for DistDataParallel, matrix factorization does not show this same characteristic.

Compared to the execution time of DistDataParallel, these phases take longer in the central and

89

6.1. Iterative Algorithms

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

200

400

600

800

1,000

1,200

1,400

1,005.2 1,016

1,271.9

1,387.9

215.5

112.5 112.9 107.7 105.3

40.6
70.1 70.2 63.7 61.5

21.333.7 33.5 35 34.4
9.6

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Calculation time Aggregation time Batch time Remaining time

Figure 6.6: Matrix Factorization microbenchmarks for D-AIDA with two worker nodes.

workflow frameworks, and shorter in the parameter server framework. Thus, DistDataParallel

displays a larger communication overhead in matrix factorization than in linear regression – normal

due to the increased number of iterations and the increased message size.

Figure 6.7 presents a comparison between execution times on 4 worker nodes. Here, we see vast

improvements in execution time for each of the frameworks. The most improved is PyTorch RPC,

which speeds up by nearly 250 seconds – around a 1.87 times speed up. Most of this is due to the

90

6.1. Iterative Algorithms

Central
Pytorch

PyTorch
RPC

PyTorch
DistDat-
aParallel

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

69.1

293.7

66.9

888 888

1,159.9 1,163.1

153.3

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 6.7: Comparison of execution times for matrix factorization between all frameworks with
four worker nodes.

increased parallelism that comes with 4 workers – each worker only needs to perform half as many

iterations as before. This shows that the majority of the time comes from the communication costs

of moving data to the parameter server node and the batch time, since that cost can be parallelized

more efficiently than the calculation and aggregation phases, which occur on a single node in this

implementation. The D-AIDA implementations also speed up somewhat with 4 workers – by around

100 seconds each, which is only a 1.13 times speedup for asynchronous models and slightly less for

synchronous ones. The D-AIDA parameter server framework sees an improvement by around 60

91

6.1. Iterative Algorithms

seconds – a 1.4 times speed up. Still, it lags behind DistDataParallel as the fastest implementation.

PyTorch DistDataParallel does not exhibit such a dramatic improvement – only speeding up

by around 6 seconds. Notably, since each worker only runs 20 000 iterations, the loss reached by

PyTorch DistDataParallel is much higher than the other frameworks; it only manages to achieve

a loss of 62.76 on average compared to the other frameworks, which achieve an average loss of

4.61. Even so, PyTorch DistDataParallel shows the potential to match or even be faster than the

non-distributed variation given four worker nodes.

In Figure 6.8, the amount of time spent by each D-AIDA framework in each part of the algo-

rithm is presented. Compared to the two-worker variation with double the amount of iterations

per worker, the time each worker spends in calculation and retrieving data from the dataloader is

cut by almost half for every framework. This is to be expected, as the number of iterations each

worker executes is also cut in half. The time spent aggregating and performing model updates in the

middleware has increased in the asynchronous versions of the central and workflow frameworks, as

well as the parameter server framework, due to the increase in parallelization. For the synchronous

frameworks, the aggregation time has decreased, due to the lower number of iterations. In the

non-parameter server frameworks, the remaining time has decreased by around 100 seconds each,

while the parameter server framework reduces it by nearly 60 seconds on average. While each of the

computation times – calculation, aggregation and batch – have decreased by 30% for central and

workflow frameworks, and 40% for the parameter server framework, the remaining communication

time has not nearly decreased as much. Since PyTorch RPC has large deceases in communication

time when moving from two workers to four workers, we can assume D-AIDA has some bottleneck

during communication that cannot fully parallelize the communication aspect – likely the serializa-

tion and deserialization of objects at the middleware which cannot be fully parallelized in AIDA

due to Python’s global interpreter lock, but can be in PyTorch due to its implementation in C.

In conclusion, we see that the D-AIDA frameworks perform on average worse than the PyTorch

DistDataParallel framework, and only the parameter server framework performs better than Py-

Torch RPC. From the difference exhibited between the two worker and four worker environments,

we see that the D-AIDA frameworks show some bottleneck during the communication phase that

causes poorer parallelization than during other phases of execution. The communication overhead

is heavy in the D-AIDA frameworks, especially in the central and workflow frameworks which do

92

6.1. Iterative Algorithms

D-AIDA
central
Asyn-

chronous

D-AIDA
Workflow

Asyn-
chronous

D-AIDA
central
Syn-

chronous

D-AIDA
Workflow

Syn-
chronous

D-AIDA
Parameter

Server

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

888 888

1,159.9 1,163.1

153.2

87.1 84.3
66.7 67

35.6
61.9 59.1

41.3 41.8
24.820.7 19.5 20 19.5 5.4

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Calculation time Aggregation time Batch time Remaining time

Figure 6.8: Matrix Factorization microbenchmarks for D-AIDA with four worker nodes.

not support model parallelism. In an algorithm like matrix factorization which uses such a large

model, the parameter server framework is the only viable approach. It should be noted that, while

PyTorch DistDataParallel performs the same number of iterations across each worker much faster

than the D-AIDA frameworks, the actual performance of the model remains much worse due to the

scaling of the gradient updates. There is no option in PyTorch to prevent such scaling, so models

achieving the same level of accuracy as those trained by the D-AIDA frameworks must go through

93

6.2. Clustering

many more iterations.

6.1.3 Conclusion

Overall, the performance of distributed linear regression and matrix factorization in D-AIDA com-

pared to the PyTorch distributed implementations is not favorable. While the scaling of the calcula-

tion phases can match the overall execution time by PyTorch DistDataParallel, the communication

overhead is extreme. The D-AIDA RMI was originally meant to optimize the transferal of small

amounts of data and facilitate remote execution – using it for large or repetitive data transferals is

shown to be suboptimal here. Further evaluation of the runtime in the D-AIDA implementations

is required in order to identify other potential bottlenecks, such as those imposed by the Python

global interpreter lock, or time spent serializing data. These and other such disadvantages may be

hidden by the "remaining time" portion of the runtime evaluations presented in this section.

Additionally, Pytorch implementations – especially DistDataParallel – allow an easier imple-

mentation of distributed algorithms if using a PyTorch model. Writing a PyTorch algorithm using

DistDataParallel is as simple as creating a wrapper around a PyTorch model and initializing a

communication group – whereas for D-AIDA, the user must manually write the code for retriev-

ing gradients from PyTorch tensors and applying them to the model. However, the deployment

of D-AIDA frameworks is easier than deployment of PyTorch DistDataParallel or RPC, since the

client need only write the code at a local site and interact with the D-AIDA middleware, which will

automatically distribute the rest to the workers. In distributed PyTorch, the code must be present

at all sites and run at each.

While the PyTorch implementations – especially DistDataParallel – are faster than D-AIDA’s,

they are more rigid as well. Distributed PyTorch, naturally, works only on PyTorch models and

PyTorch models mostly implement iterative algorithms. In the next section, we perform experiments

on clustering, a non-iterative algorithm which is not supported by PyTorch.

6.2 Clustering

Clustering is a more traditional, non-iterative unsupervised algorithm common on relational data.

Instead of training a global model, it seeks to instead create labels for unlabelled data based on

94

6.2. Clustering

similarities in the data. In this section, we perform distributed clustering experiments with D-AIDA

by implementing the DBDC algorithm described in Section 2.5.3.

6.2.1 Data

The data used for clustering is generated using the make_blobs function provided by the SciKit-

Learn sklearn.datasets library. We generate 4 000 000 samples in total, with four features each,

spread across nine clusters. The standard deviation of each cluster is 32, and each feature of the

cluster centers generated are bounded by (−750, 750). These values are chosen arbitrarily. In two

worker systems, each database holds 2 000 000 data points and in four worker systems, each database

holds 1 000 000 data points. The data points are shuffled before being distributed. On partitioning

the data, it is possible that more clusters are formed as subsets of each cluster are sent to different

nodes. Thus, a global step is required to amalgamate any local clusters found by each worker that

may overlap.

Each data point is stored in a database table containing four columns – one for each feature.

The features are stored as doubles, and accessed by the SciKit-Learn functions using the .matrix

property of the TabularData object. Like in the iterative algorithms, the non-distributed test case

outside of D-AIDA will read the data from a csv file. The time spent retrieving the data, in either

the non-distributed and distributed cases, will not be included in the total execution time.

6.2.2 Implementation

As clustering is a non-iterative algorithm that does not build upon a single model, both the central

and parameter server frameworks offered by AIDA do not support this form of algorithm. However,

the workflow framework was especially designed to support such algorithms that are not able to be

managed by other frameworks. Thus, experiments for distributed clustering are performed using an

algorithm written using the D-AIDA workflow framework. Additionally, PyTorch does not natively

support any clustering algorithms, so a comparison between PyTorch and D-AIDA frameworks will

not be performed here.

For distributed clustering, we implement the DBDC algorithm described in Section 2.5.3. As

a reminder, this algorithm consists of three overall steps – a local clustering step at each of the

workers, a global clustering step at the middleware which takes the clusters from the first step and

95

6.2. Clustering

1 @staticmethod
2 def work(dw, data, context=None):
3 from sklearn.cluster import DBSCAN, KMeans
4 import numpy as np
5

6 dw.matrix_data = data.matrix.T
7 db = DBSCAN(eps=16, min_samples=3).fit(dw.matrix_data)
8 classes = []
9 for i in range(len(np.unique(db.labels_))-1):

10 classes.append(dw.matrix_data[np.where(db.labels_ == i)])
11 clusts = [KMeans(n_clusters=3).fit(c) for c in classes]
12 rep = []
13 for j in range(len(clusts)):
14 centers = clusts[j].cluster_centers_
15 dists = []
16 for i in range(len(centers)):
17 sub_clust = classes[j][np.where(clusts[j].labels_ == i)]
18 dist = max([np.linalg.norm(centers[i] - point) for point in sub_clust])
19 dists.append(dist)
20 rep += zip(centers, dists)
21 return rep

Listing 6.3: Work phase of first step for DBDC implmentation in workflow framework.

finds global clusters, and then a last re-labelling step at each of the workers which adjusts the cluster

labels given to the local data according to the global clusters found in the step previous. As each

of these steps require waiting for all of the results from the previous steps, this algorithm in run

synchronously using the workflow framework.

The work phase of the first step implements the local clustering on each worker, as well as the

determination of the local representatives of each local cluster, to be sent to the middleware. The

code for this first phase can be found in Listing 6.3. First, DBSCAN, implemented by the SciKit-

Learn library, is ran on the data to find the local clusterings at line 7. In this instance, we run

DBSCAN with ϵ = 16 and minPts = 3. Next at line 11, after the clusters have been found in the

local data, the representatives for each cluster are determined using K-means, also implemented by

SciKit-Learn. K-means is run on each cluster with k = 3 to find 3 subcluster centers – these 3

would become representatives for the entire cluster. From here, each subcluster center determined

by K-means finds the maximum distance between it and every other point in the subcluster. The

results are stored in a list of tuples matching the cluster centers and the distances. This is performed

96

6.2. Clustering

22 @staticmethod
23 def aggregate(dw, results, context):
24 from sklearn.cluster import DBSCAN
25

26 centers = sum(results, [])
27 epsilon = max([r[1] for r in centers])
28

29 db = DBSCAN(eps=epsilon, min_samples=2).fit([r[0] for r in centers])
30

31 return db

Listing 6.4: Aggregate phase of first step for DBDC implmentation in workflow framework.

32 @staticmethod
33 def work(dw, data, context=None):
34 from scipy import spatial
35 import numpy as np
36

37 db_results = context['previous']
38 tree = spatial.cKDTree(dw.matrix_data)
39 labels = np.asarray([-1] * len(dw.matrix_data))
40 eps = db_results.eps
41 centers = zip(db_results.components_, db_results.labels_)
42 for point, label in centers:
43 cluster = tree.query_ball_point(point, eps)
44 labels[cluster] = label
45 l = dw._L(lambda d: d, {"label": labels})
46 return data.hstack([l])

Listing 6.5: Work phase of the second step for DBDC implmentation in workflow framework.

in lines 13-20.

Following the DBDC algorithm, the aggregate phase of the first step takes all the cluster

representatives and distances from all the workers. This step is shown in Listing 6.4. At line 27, the

maximum distance for all representatives is found, and set as the ϵ. DBSCAN is run again, using

that ϵ and minPts = 2 as arguments. This finds the global clustering, and this global clustering is

then passed to the workers in the next step.

The final step in the DBDC algorithm involves the worker nodes assigning their local data points

to the global clusters found in the previous step. This is shown in Listing 6.5. The global clustering

is retrieved from the context['previous'] variable at line 37. From there, a kd-tree, implemented

97

6.2. Clustering

by the SciPy library, is used to index the local data in order to find nearest neighbors of each data

point quickly. The cluster centers, their labels, and the ϵ is retrieved from the global clustering. In

lines 42-44, the labels are applied to the data by going through the cluster centers and assigned all

data points to the cluster label if they are within ϵ distance of the cluster center. Lines 45-46 merely

load the labels as another TabularData object, and append them as a column to the original data

points. The final aggregate phase of the second step involves taking the TabularData of labelled

data returned from the work phase and wrapping them in a DistTabularData object for the user to

manage.

We compare the execution of this algorithm on two and four worker AIDA nodes. Additionally,

we compare it to a non-distributed clustering algorithm – DBSCAN, running on a single node.

The non-distributed DBSCAN will use ϵ = 16 and minPts = 3, the same hyperparameter values

used as in the first step of the D-AIDA workflow implementation. The DBDC algorithm is more

complex than DBSCAN, so a comparison between the two is flawed. Nevertheless, this is the best

comparison to be had, as DBDC uses a similar metric as DBSCAN for clustering, and indeed uses

a local DBSCAN when performing the inital clustering at each worker node.

6.2.3 Results

Figure 6.9 presents a comparison of execution times for a non-distributed clustering using DBSCAN,

DBDC run using the D-AIDA workflow framework on two worker nodes, and DBDC run using the

D-AIDA workflow framework on four worker nodes. The standard deviation of the entire execution

time is presented as an error bar. For each distributed algorithm, the different steps of it has

been timed. The "local clustering" step refers to the first step where each worker node performs

the local clustering using DBSCAN and finds the cluster representatives using K-Means. The

"global clustering" step refers to when the middleware finds the global clusters from the cluster

representatives sent by the workers. The "local cluster readjustment" step refers to the final step

when each worker assigns each data point to a cluster found by the previous global clustering step.

The "remaining time" bar refers to any time not measured – the communication time and the time

spent blocking.

As Figure 6.9 shows us, the majority of the execution time is in the first step: local clustering.

Compared to the non-distributed version, both the distributed versions are much faster in this

98

6.2. Clustering

DBSCAN 2 Worker
D-AIDA

4 Worker
D-AIDA

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200
1,128.4

392.06

191.6

Framework

E
xe

cu
ti

on
ti

m
e

(s
)

Local clustering Global clustering Local cluster readjustment Remaining time

Figure 6.9: Comparison of clustering times

regard – in the distributed version, each worker only needs to work on a subset of the data, and this

can be completed in parallel. The non-distributed version must run DBSCAN on 4 million data

points – in the 2 worker environment, each worker only needs to run DBSCAN on 2 million data

points, and in the 4 worker environment, only 1 million. The next largest time share is the final step,

the local cluster readjustment. This only occurs in the distributed versions, and involves finding

where every data belongs in the global clusters. Compared to those two steps, the global clustering

and communication takes very little time. Taking only the local clustering time into consideration,

the two worker environment is around 3 times as fast as the the non-distributed environment, and

99

6.2. Clustering

the four worker environment 3 times as fast as the two worker environment. This is a super-linear

increase – and to be expected, given the average runtime of DBSCAN to be O(nlogn). As the first

local clustering step performs the same DBSCAN algorithm on each of the worker nodes, only on

smaller partitions of the dataset, this is a fairly meaningful comparison. The additional time – spent

either in communication, the global clustering step, and the local cluster readjustment step – can

be seen as overhead from the distribution.

In these experimental times, the non-distributed DBSCAN presents the highest degree of vari-

ation in its observed times. Indeed, the majority of the runtime, and therefore the variation in

runtime, is cause by the local DBSCAN clustering algorithms run on each node in the distributed

versions as well. As the time taken for DBSCAN decreases, so too does the runtime variation.

We note finally that we do not compare the clusters found by each algorithm. For one, DBSCAN

and DBDC are different algorithms which are not guaranteed to find the same clusters. For another,

there is no definite measure of the goodness of a clustering, thus, it is difficult to adequately compare

two separate clusterings.

6.2.4 Conclusion

Distributed clustering works out very well for D-AIDA. Unlike matrix factorization and linear

regression, there is no well known library in Python supporting distributed clustering. In our

implementation, we prove that it is simple to implement a version of distributed clustering using

one of D-AIDA’s frameworks, and it performs better than a non-distributed version.

Compared to the iterative algorithms, clustering does not have so much communication – the

majority of the time is spent in calculation. Thus, the RMI is not as big of a bottleneck here,

and indeed, the performance by D-AIDA here is much better than in the non-distributed case.

Furthermore, there is no library offering an implementation of DBDC, but its implementation in

the D-AIDA workflow framework was quite simple. A user needs only identify the separate steps

to be performed at the local level by the workers, or at the global level by the middleware, and

D-AIDA will distribute the execution accordingly.

100

7
Conclusion

7.1 Contributions and Findings

In this thesis, we implemented a proof of concept for a system that performs distributed relational

queries and offers frameworks for writing distributed machine learning algorithms on relational

data that is distributed across several database systems. Each database system hosts an embedded

Python interpreter that can execute Python code with minimal data transfer out of the database.

This distribution of the data across these database nodes will be hidden from the user, and managed

by a new middleware server.

We have demonstrated the viability of implementing distributed relational operations by imple-

menting several basic ones using D-AIDA – including selections, projections, aggregations and two

distributed join implementations. D-AIDA’s middleware architecture allows the client to access a

global view of partitioned data through the DistTabularData object, and allows them to perform

101

7.2. Future Work

simple relational operations on tables that have been partitioned horizontally. Computation of

relational operators will be transparently pushed down to the worker nodes and executed by the

RDBMS, using its query optimization engine.

Several frameworks designed for distributed machine learning have been implemented in D-

AIDA. We have also proven the viability of these frameworks through implementing several algo-

rithms using them. The D-AIDA middleware server offers a site to manage a global model which will

be trained by the worker nodes. Common algorithms using relational data, such as linear regression,

matrix factorization and clustering, can be implemented using the various frameworks provided by

D-AIDA. Additionally, by testing in environments with different number of workers, we have shown

that algorithms implemented using these frameworks have the potential to scale well.

Furthermore, both these features will use the same API – the DistTabularData object, which

indicates how the data tables are partitioned. Using this, relational queries and user-defined al-

gorithms can be automatically distributed to the nodes where the data resides. This also allows

the interweaving of relational queries and machine learning algorithms without unnecessary data

transferal – something novel to this framework.

7.2 Future Work

Further experiments could be done using the D-AIDA framework to test its ability to host multiple

different algorithms. While we have explored gradient methods and clustering in this thesis, future

work could explore ensemble methods where each worker node hosts a local model whose predictions

can be aggregated by a global model to produce a singular prediction. Additionally, machine

learning methods such as hyperparameter searching, early stopping and regularization have not been

thoroughly explored in the D-AIDA system. While this thesis has focused much on the training

aspect of machine learning, further research could be performed on prediction phase execution in

such a system.

The D-AIDA design still has some flaws that could be fixed in future work. Currently, no

optimization exists in the middleware for distributed relational queries. As indicated by Kossman

[26], a middleware architecture could have a query optimizer at the middleware that decides how best

to optimize a query. Even without a query optimizer, the current implementations of distributed

102

7.2. Future Work

queries in D-AIDA could be optimized. For instance, complex aggregations and group bys currently

pull all data from the database nodes to the middleware to be executed – this could be optimized

by having the aggregations be performed at the worker nodes, and their results further aggregated

by the middleware.

Additionally, we find that the AIDA RMI communication library may not be sufficient for

all machine learning algorithms. Currently, all RMI communication is synchronous – that is, a

client performing a request on the server blocks until a response a received. By introducing an

asynchronous call – a client making a request on the server, but can continue execution until they

require the response – further optimizations can be made to distributed execution by allowing more

overlap between the computation and communication phases. Additionally, RMI is a peer-to-peer

communication system. By implementing a broadcast message, other paradigms such as AllReduce

could become viable. Thus, add an AllReduce communication library into D-AIDA and developing

a learning framework based on it would definitely be worthwhile.

Other than those proposed, more research could be pursued in identifying the exact cause of D-

AIDA’s underwhelming performance in distributed machine learning compared to that of PyTorch.

While some effort has been made in this thesis, further improvements to D-AIDA will likely need

to study the time difference between the recorded computation time and the total execution time

– labelled in this thesis as "remaining time". Identifying exactly what is taking up this time would

help steer future development of the D-AIDA framework.

For now, all machine learning frameworks support by D-AIDA offer a global model hosted by the

middleware which the worker nodes must update. Allowing for model replication across the workers

could open the doors for more sophisticated frameworks, such as the parameter server offered by

NuPS [40] or the AllReduce gradient update implemented by PyTorch DistDataParallel [28].

Furthermore, the D-AIDA middleware server can be extended to run not only on a dedicated

middleware node, but also the worker nodes. In this case, every worker node can act as a middleware

server for the client to connect to, granting the client access to the entire system no matter which

node they connect to. Further optimizations for relational queries and machine learning operations

could be performed depending on whether the middleware server the client accesses also hosts data.

Finally, another direction that could be explored by D-AIDA is failure handling in the distributed

system. Data replication across different nodes is a common form of ensuring data is available

103

7.2. Future Work

despite any one node failure – however, in the current implementation, we assume that data is non-

replicated. The training should occur only on the primary copy of each data point so as to avoid

bias from reading multiple copies of the same data point. Many distributed learning frameworks

support the use of checkpoints so as to be able to restore trained model parameters in the event of

a failure – this too has been neglected in the current implementation. Currently, the middleware

serves as a single point of failure for the trained model. Model replication across the system could

resolve this issue, in addition to potentially improving the training speed.

104

Bibliography

[1] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X.,
Kaftan, T., Franklin, M. J., Ghodsi, A., et al. Spark sql: Relational data processing in
spark. In 2015 Association for Computing Machinery Special Interest Group on Management
of Data (ACM SIGMOD) International Conference on Management of Data (2015), pp. 1383–
1394.

[2] Arthur, D., and Vassilvitskii, S. K-means++ the advantages of careful seeding. In
Eighteenth Annual Association for Computing Machinery-Society (ACM) for Industrial and
Applied Mathematics Symposium on Discrete Algorithms (2007), pp. 1027–1035.

[3] Bayer, R., and McCreight, E. Organization and maintenance of large ordered indices.
In 1970 Association for Computing Machinery Special Interest Group on File Description &
Translation (ACM SIGFIDET) (Now Special Interest Group on Management of Data (SIG-
MOD)) Workshop on Data Description, Access and Control (1970), Association for Computing
Machinery, p. 107–141.

[4] Chamberlin, D. D., and Boyce, R. F. Sequel: A structured english query language.
In 1974 Association for Computing Machinery Special Interest Group on File Description &
Translation (ACM SIGFIDET) (Now Special Interest Group on Management of Data (SIG-
MOD)) Workshop on Data Description, Access and Control (1974), Special Interest Group on
File Description & Translation ’74, Association for Computing Machinery, p. 249–264.

[5] Codd, E. F. A relational model of data for large shared data banks. Communications of the
Association for Computing Machinery (ACM) 13, 6 (June 1970), 377–387.

[6] CooperUnion. Anime recommendations database. https://www.kaggle.com/datasets/
CooperUnion/anime-recommendations-database, Dec 2016.

[7] Damania, P., Li, S., Desmaison, A., Azzolini, A., Vaughan, B., Yang, E., Chanan,
G., Chen, G. J., Jia, H., Huang, H., et al. Pytorch rpc: Distributed deep learning built
on tensor-optimized remote procedure calls. Machine Learning and Systems 5 (2023).

[8] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.,
Senior, A., Tucker, P., Yang, K., et al. Large scale distributed deep networks. Advances
in Neural Information Processing Systems 25 (2012), 1223–1231.

[9] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large clusters.
Communications of the Association for Computing Machinery (ACM) 51, 1 (2008), 107–113.

[10] Delua, J. Supervised vs. unsupervised learning: What’s the difference? https://www.ibm.
com/cloud/blog/supervised-vs-unsupervised-learning, Mar 2021.

[11] D’silva, J. V. AIDA: An Agile Abstraction for Advanced In-Database Analytics. PhD thesis,
McGill University, 2020.

105

https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning

Bibliography

[12] D’silva, J. V., De Moor, F., and Kemme, B. Aida: Abstraction for advanced in-database
analytics. Very Large Data Bases (VLDB) Endowment 11, 11 (2018), 1400–1413.

[13] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12, 7 (2011), 2121–2159.

[14] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Second International Conference
on Knowledge Discovery and Data Mining (1996), KDD’96, AAAI Press, p. 226–231.

[15] Estivill-Castro, V. Why so many clustering algorithms: A position paper. Association for
Computing Machinery Special Interest Group on Knowledge Discovery and Data Mining (ACM
SIGKDD) Explorations Newsletter 4, 1 (Jun 2002), 65–75.

[16] Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research 23, 1
(2022), 5232–5270.

[17] Ghemawat, S., Gobioff, H., and Leung, S.-T. The google file system. In Nineteenth
Association for Computing Machinery (ACM) Symposium on Operating Systems Principles
(2003), pp. 29–43.

[18] Haas, L. M., Freytag, J. C., Lohman, G. M., and Pirahesh, H. Extensible query
processing in starburst. In 1989 Association for Computing Machinery Special Interest Group
on Management of Data International Conference on Management of Data (ACM SIGMOD)
(1989), pp. 377–388.

[19] Hernán, M. A., Hsu, J., and Healy, B. A second chance to get causal inference right: A
classification of data science tasks. CHANCE 32, 1 (2019), 42–49.

[20] Hipp, R. D. SQLite. https://www.sqlite.org/index.html, 2020.

[21] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B., Gibson, G. A.,
Ganger, G., and Xing, E. P. More effective distributed ml via a stale synchronous parallel
parameter server. In Advances in Neural Information Processing Systems (2013), C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., vol. 26, Curran Associates,
Inc., pp. 1223–1231.

[22] Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K. S., and Kersten,
M. L. Monetdb: Two decades of research in column-oriented database architectures. Institute
of Electrical and Electronics Engineers Data Eng. Bull. 35, 1 (2012), 40–45.

[23] Januzaj, E., Kriegel, H.-P., and Pfeifle, M. Dbdc: Density based distributed clustering.
In Advances in Database Technology-EDBT 2004: 9th International Conference on Extending
Database Technology, Heraklion (2004), Springer, pp. 88–105.

[24] Jiang, T., Gradus, J. L., and Rosellini, A. J. Supervised machine learning: a brief
primer. Behavior Therapy 51, 5 (2020), 675–687.

[25] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for recommender
systems. Computer 42, 8 (2009), 30–37.

106

https://www.sqlite.org/index.html

Bibliography

[26] Kossmann, D. The state of the art in distributed query processing. Association for Computing
Machinery (ACM) Computing Surveys 32, 4 (Dec 2000), 422–469.

[27] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V.,
Long, J., Shekita, E. J., and Su, B.-Y. Scaling distributed machine learning with the pa-
rameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14) (2014), pp. 583–598.

[28] Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith,
J., Vaughan, B., Damania, P., et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704 (2020).

[29] Lloyd, S. Least squares quantization in pcm. Institute of Electrical and Electronics Engineers
Transactions (IEEE) on Information Theory 28, 2 (1982), 129–137.

[30] MacQueen, J., et al. Some methods for classification and analysis of multivariate observa-
tions. In Fifth Berkeley Symposium on Mathematical Statistics and Probability (1967), vol. 1,
pp. 281–297.

[31] McKinney, W., et al. pandas: a foundational python library for data analysis and statistics.
Python for High Performance and Scientific Computing 14, 9 (2011), 1–9.

[32] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S., et al. Mllib: Machine learning in apache spark. The
Journal of Machine Learning Research 17, 1 (2016), 1235–1241.

[33] NSHipster. Dbscan. https://github.com/NSHipster/DBSCAN, 2021.

[34] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chin-
tala, S. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[35] Patarasuk, P., and Yuan, X. Bandwidth optimal all-reduce algorithms for clusters of
workstations. Journal of Parallel and Distributed Computing 69, 2 (2009), 117–124.

[36] Patel, A. B., Birla, M., and Nair, U. Addressing big data problem using hadoop and
map reduce. In 2012 Nirma University International Conference on Engineering (NUiCONE)
(2012), Institute of Electrical and Electronics Engineers, pp. 1–5.

[37] Qian, N. On the momentum term in gradient descent learning algorithms. Neural Networks
12, 1 (1999), 145–151.

[38] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, 2022.

[39] Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems 24 (2011),
693—-701.

[40] Renz-Wieland, A., Gemulla, R., Kaoudi, Z., and Markl, V. NuPS: A parameter server
for machine learning with non-uniform parameter access. In 2022 International Conference on
Management of Data (jun 2022), Association for Computing Machinery, pp. 481–495.

107

https://github.com/NSHipster/DBSCAN

[41] Ruder, S. An overview of gradient descent optimization algorithms. arXiv e-prints (Sept.
2016), arXiv:1609.04747.

[42] Smola, A., and Narayanamurthy, S. An architecture for parallel topic models. Very Large
Data Bases (VLDB) Endowment 3, 1-2 (2010), 703–710.

[43] Varma, R. Implementing a parameter server using distributed rpc framework. https://
pytorch.org/tutorials/intermediate/rpc_param_server_tutorial.html.

[44] Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and
Rellermeyer, J. S. A survey on distributed machine learning. Association for Computing
Machinery (ACM) Computing Surveys 53, 2 (March 2020).

[45] Wang, X. Lad: A locality-aware dataframe. Master’s thesis, McGill University, 2023.

108

https://pytorch.org/tutorials/intermediate/rpc_param_server_tutorial.html
https://pytorch.org/tutorials/intermediate/rpc_param_server_tutorial.html

A
Appendix

1 class LinearRegressionModel:
2 # Initialize model and learning rate
3 def __init__(self):
4 self.weights = None
5 self.lr = 0.05
6

7 # Separate training data and labels
8 @staticmethod
9 def preprocess(db, data):

10 x = data.project(('x1','x2','x3','x4','x5'))
11 y = data.project(('y'))
12 x_bias = db._ones(x.shape[0]).hstack(x)
13 return (x_bias, y)
14

15 # Initialize model using preprocessed data
16 def initialize(self, data):
17 import numpy as np
18 x = data[0]
19 if self.weights is None:
20 self.weights = np.ones((1,x.shape[1]))
21 else:
22 if self.weights.shape[0] + 1 != x.shape[1]:
23 raise ValueError("Model weights are not the same dimension as

input.")↪→

24

25 @staticmethod
26 def iterate(db, data, weights):
27 import numpy as np
28

109

Appendix A. Appendix

29 x = data[0].matrix.T
30 y = data[1].matrix
31 batch_size = 64
32

33 # Retrieve data batches
34 batch = np.random.choice(x.shape[0], 64, replace=False)
35 batch_x = x[batch, :]
36 batch_y = y[batch].reshape(batch_size, 1)
37

38 # Make predictions and perform gradient descent
39 preds = batch_x @ weights.T
40 grad_desc_weights = (-2/batch_size) * (batch_x.T @ (batch_y - preds))
41 return grad_desc_weights
42

43 def aggregate(self, results):
44 # Synchronous aggregation -- results is list of gradients from each worker
45 if self.sync:
46 n = len(results)
47 for i in range(n):
48 self.weights = self.weights - (self.lr * results[i].T / n)
49 else: # Asynchronous aggregation -- results is single gradient
50 self.weights = self.weights - (self.lr * results.T)
51

52 from aida.aida import *
53 dw = AIDA.connect('middleware', 'database', 'username', 'password', 'lr')
54

55 model = LinearRegressionModel
56 data = dw.lr_data
57

58 service = dw._RegisterModel(model)
59

60 # Send start model training, specifying number of iterations
61 service.fit(data, 5000, sync=True)

Listing A.1: Example of linear regression written in NumPy using the central framework in D-AIDA.

110

Appendix A. Appendix

1 import torch
2 from aida.aida import *
3

4 class LinearRegression(torch.nn.Module):
5 def __init__(self, input_size, output_size):
6 super().__init__()
7 self.linear = torch.nn.Linear(input_size, output_size)
8

9 def forward(self, input):
10 return self.linear(input)
11

12 dw = AIDA.connect('middleware', 'database', 'username','password', 'lr')
13 dw.lr_model = LinearRegression(5, 1)
14

15 class FirstStep():
16 # Preprocess data at the workers, initialize batch iterator and loss function
17 @staticmethod
18 def work(dw, data, context=None):
19 import torch
20

21 data.makeLoader([('x1', 'x2', 'x3', 'x4', 'x5'), 'y'], 1000)
22 dw.iterator = iter(data.getLoader())
23 dw.loss = torch.nn.MSELoss()
24 return
25

26 # Initialize optimizer at middleware
27 @staticmethod
28 def aggregate(dw, results, context):
29 import torch
30 dw.optimizer = torch.optim.SGD(dw.lr_model.parameters(), lr=1e-3)
31 return dw.lr_model
32

33 class Iterate():
34 # Perform forward and backward pass at workers
35 @staticmethod
36 def work(dw, data, context):
37 import torch
38

39 model = context['previous']
40 try:
41 batch, target = next(dw.iterator)
42 except StopIteration:
43 dw.iterator = iter(data.getLoader())
44 batch, target = next(dw.iterator)
45

46 preds = model(torch.squeeze(batch).float())

111

Appendix A. Appendix

47 loss = dw.loss(torch.squeeze(preds), target)
48 loss.backward()
49 grads = []
50 for param in model.parameters():
51 grads.append(param.grad)
52 return grads
53

54 # Perform gradient update at middleware
55 @staticmethod
56 def aggregate(dw, results, context):
57 dw.optimizer.zero_grad()
58 for r in results:
59 for grad, param in zip(r, dw.lr_model.parameters()):
60 param.grad = grad
61 dw.optimizer.step()
62 return dw.lr_model
63

64 job = [FirstStep(), (Iterate(), 50000)]
65

66 dw._workAggregateJob(job, dw.lr_data)

Listing A.2: Linear Regression using PyTorch with D-AIDA’s workflow framework.

112

Appendix A. Appendix

1 import torch
2 from aida.aida import *
3

4 class MatrixFactorization(torch.nn.Module):
5 def __init__(self):
6 super().__init__()
7 self.user_factors = torch.nn.Embedding(1500, 3, sparse=True)
8 self.item_factors = torch.nn.Embedding(2000, 3, sparse=True)
9

10 def forward(self, data):
11 user = data[0]
12 item = data[1]
13 return (self.user_factors(user) * self.item_factors(item)).sum(1)
14

15 class CustomMF:
16 def __init__(self, model):
17 import torch
18 self.model = model
19 self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
20

21 def pull(self, param_ids):
22 return (self.model.user_factors(param_ids[0]),

self.model.item_factors(param_ids[1]))↪→

23

24 # Model update at middleware
25 def update(self, update):
26 self.model.user_factors.grad = update[0]
27 self.model.item_factors.grad = update[1]
28 self.optimizer.step()
29 self.optimizer.zero_grad()
30

31 # All iterations at worker
32 @staticmethod
33 def run_training(con, ps, data):
34 import torch
35

36 # Data preprocessing
37 data.makeLoader((['user_id', 'movie_id'], 'rating'), 64)
38 x = iter(data.getLoader())
39 iterations = 40000
40 loss_fun = torch.nn.MSELoss()
41

42 for i in range(iterations):
43 try:
44 data, rating = next(x)
45 except StopIteration:

113

Appendix A. Appendix

46 x = iter(data.getLoader())
47 data, rating = next(x)
48

49 users = torch.squeeze(batch[:, [0]])
50 items = torch.squeeze(batch[:, [1]])
51

52 # Pull parameters from middleware
53 factors = ps.pull((users, items))
54 preds = (factors[0] * factors[1]).sum(1)
55 loss = loss_fun(preds, torch.squeeze(rating))
56 loss.backward()
57 grads = []
58

59 # Put gradients into sparse tensor
60 grads.append(torch.sparse_coo_tensor(torch.unsqueeze(users, dim=0),

factors[0].grad, (1500,3)))↪→

61 grads.append(torch.sparse_coo_tensor(torch.unsqueeze(items, dim=0),
factors[1].grad, (2000,3)))↪→

62 ps.push(grads)
63

64 dw = AIDA.connect('middleware', 'database', 'username', 'password', 'mf')
65 server = dw._MakeParamServer(MatrixFactorization, CustomMF)
66 data = dw.mf_data
67 server.start_training(data)

Listing A.3: Matrix Factorization written using the D-AIDA parameter server framework.

114

	Abstract
	Abrégé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Programs
	Introduction
	Problem Statement
	Thesis Methodology and Contribution
	Thesis Overview

	Background and Related Work
	Relational Data and Databases
	Big Data and Distributed Data
	Distributed Database Operations
	Machine Learning
	Gradient Descent Methods
	Linear Regression
	Matrix Factorization
	Clustering
	PyTorch

	Distributed Machine Learning
	Distributing Stochastic Gradient Descent
	Implementations of Distributed SGD
	Clustering

	Advanced In-Database Analytics (AIDA)
	AIDA structure
	TabularData
	Remote Execution Operator
	Data Transferring in AIDA

	Distributed AIDA Architecture
	Distributed AIDA Architecture
	DistTabularData

	Distributed Query Processing
	Base Operators
	Distributed Joins in AIDA
	Broadcast Join
	Distributed Hash Join

	Discussion

	Distributed Machine Learning
	Central Framework
	Workflow framework
	Parameter Server framework
	Discussion

	Experiments
	Iterative Algorithms
	Linear Regression
	Matrix Factorization
	Conclusion

	Clustering
	Data
	Implementation
	Results
	Conclusion

	Conclusion
	Contributions and Findings
	Future Work

	Bibliography
	Appendix

