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Abstract

With quantum computers rapidly becoming more powerful, proving that cryptographic pro-

tocols are secure against quantum adversaries is more important than ever. Moreover, it is

the goal of every cryptographer to loosen assumptions, in particular, restrictions on the ad-

versary’s ability to perform long computations. In this thesis, a multi-party structure is used

to create two polynomial time Zero-Knowledge Proofs (ZKPs) that are secure with no com-

putational restrictions on any party, even for adversaries that share quantum entanglement.

A ZKP allows one party to convince another party of a fact without disclosing any extra

knowledge except the validity of the fact. For example, it could be used to allow a customer

to prove their identity to a bank machine without giving away private information such as a

personal identification number. An important tool in many ZKPs is bit commitment, which

is essentially a digital way for a sender to put a message in a lockbox, lock it, and send it to

the receiver. Then, when the sender would like the receiver to read the message, the key is

sent for the receiver to open the box. This way, the message is hidden from the receiver until

they receive the key, and the sender is unable to change their mind after sending the lockbox.

In the thesis, the homomorphic properties of a certain multi-party bit commitment scheme

will be exploited to allow the receiver to perform operations on commitments, resulting in

ZKPs for two NP-Complete problems: the Subset Sum problem and 3SAT.
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Abrégé

Avec la montée en puissance des ordinateurs quantiques, il est plus important que jamais

de démontrer que les protocoles cryptographiques sont sécuritaires contre des adversaires

quantiques. De plus, l’objectif de tout cryptographe est d’assouplir certaines hypothèses, en

particulier celles qui restreignent la capacité de l’adversaire à effectuer de longs calculs. Dans

cette thèse, un système multi-parties est utilisé pour créer deux preuves Zéro-Knowledge

(ZK), celles-ci opèrent en temps polynomial et sont sécurisées. De plus, elles n’ont aucune

restriction calculatoire pour aucune partie, même pour les adversaires qui partagent une

intrication quantique. Une preuve ZK permet à une partie de prouver à une autre partie

d’un fait sans révéler aucune connaissance autre que la véracité du fait. Par exemple, une telle

preuve pourrait être utilisée pour permettre à un client de prouver son identité à un guichet

bancaire sans donner des renseignements confidentiels tel que son numéro d’identification

personnel. Un des principaux outils utilisés lors d’une preuve ZK est le schéma de mise en

gage. Celui-ci est essentiellement un outil numérique permettant à un expéditeur de sceller

un message dans un coffre-fort et de l’envoyer à un destinataire. Ensuite, quand l’expéditeur

veut que le destinataire lise le message, la clé du coffre fort lui est envoyée. Ceci permet

au message de rester inconnu du receveur jusqu’à ce qu’il reçoive la clé de l’expéditeur. De

plus, l’expéditeur ne peut pas changer le message une fois le coffre-fort envoyé. Au cours

de cette thèse, les propriétés homomorphiques d’un schéma multi-parties de mise en gage

sont utilisées pour permettre au destinataire d’effectuer des opérations sur le gage. Ceci
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donne ainsi des preuves ZK pour deux problèmes NP-complets, les problèmes de la somme

de sous-ensembles et 3-SAT.

iii



Acknowledgements
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Chapter 1

Introduction

Imagine being in a foreign country needing to buy food, but your bank card is not accepted

for payment. Luckily, there is a bank machine around the corner, however you are unsure

whether it can be trusted - after all, there are many instances of fraud in which criminals

plant fake bank machines or hide discrete cameras on legitimate machines to obtain the

private banking information of the users. Ideally, interacting with a bank machine would

not leak any private information that could be used in a malicious way by the creators of

the machine at a later time. This is where zero-knowledge proofs (ZKPs) come in.

Zero-knowledge proofs were first introduced by [GMR85]. A couple years later, Blum

presented an elegant ZKP for the Hamiltonian cycle problem in [Blu87]. A Hamiltonian

cycle is a cycle in a graph which passes through each vertex exactly once. After a graph G is

fixed, Blum’s protocol allows a prover to convince a verifier that G contains a Hamiltonian

cycle without giving away any knowledge of the cycle. Like many other ZKPs, Blum’s

protocol uses bit commitment, which is essentially a cryptographically secure way for Alice

to send Bob a message in a locked box so that he cannot see the message until she sends

the key at a later time, but she also cannot change the message after she sends the box. Bit

commitment schemes typically rely on computational assumptions such as existence of one-
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way functions as in [GMW91], however there is a protocol that was proposed in [BCMS98]

that only uses spatial separation between parties as its sole assumption to prove security.

In [CL17], the authors adapted Blum’s ZKP from [Blu87] to use the bit commitment

protocol from [BCMS98]. Chailloux and Leverrier managed to prove that this new protocol

is secure against quantum adversaries. One interesting aspect of the bit commitment scheme

that they used is its homomorphic properties. In particular, the contents of two commitments

can be added together before unveiling, and in general, it is possible to form a new commit-

ment containing any linear combination of the contents of the commitments. For this reason,

along with rising public interest in homomorphic encryption, it would be an interesting result

to have a ZKP that explicitly uses this homomorphic property while still being secure against

quantum adversaries. Similar ideas have been considered for classical adversaries in [BC86]

and [BC87], where a perfectly hiding and computationally binding bit commitment scheme

is used to create ZKPs that rely on the commitment scheme’s homomorphic properties for

many steps.

In addition to the homomorphic properties of [BCMS98], the commitment scheme can

be used to commit to values other than bits as long as the field FQ is chosen carefully. An

excellent NP-Complete problem to showcase this homomorphic property of the bit commit-

ment scheme is the Subset Sum problem, which asks the following: Given a set S of positive

integers and a target integer k, is there a subset of S which sums to k [KT05]? In Section

3.1, a novel ZKP is given for this problem, and then in Section 3.2, another new ZKP is

given for the well-known 3SAT problem which is also NP-Complete [AHU74]. Both proofs

use a technique similar to that used in [CL17] in order to prove soundness against quantum

adversaries.

Before the protocols are introduced, the relevant quantum information theory and cryp-

tography background material is covered. In addition, to demonstrate the need for quantum

proofs of security to newer readers, the magic square game is discussed in Section 2.3. Follow-
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ing this is an introduction to the relativistic bit commitment scheme in Section 2.5. Finally,

the two protocols are presented, accompanied by proofs of security.
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Chapter 2

Background and Preliminaries

2.1 Quantum Information Theory

2.1.1 The Qubit

The content of this chapter has been adapted from [Wil16]. Classically, information is

stored in bits which can take on one of two possible values, either 0 or 1. However, in quantum

theory, information can also be stored in qubits, and the state of a qubit is represented by

a vector. In particular, any qubit can be expressed as a two-dimensional unit vector with

complex entries, meaning it can be written as

α
β

 where |α|2 + |β|2 = 1.

We often call the above vector a pure state. Later, we will see mixed states, which

are represented as matrices as opposed to vectors. In quantum information theory, Dirac

notation tends to be useful for representing states. It involves using the ket |·⟩, which is
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defined as follows

|0⟩ :=

1
0

 and |1⟩ :=

0
1

 .
Using Dirac notation, the above pure state can be written as α|0⟩+ β|0⟩. Typically, the

state of an arbitrary qubit is abbreviated as |ψ⟩ =

ψ0

ψ1

.
A Hilbert space is a vector space with an inner product. In this thesis, we will only deal

with finite-dimensional Hilbert spaces and the inner product will always be the usual dot

product. Note that any single qubit state lives in the Hilbert space C2. However, not all

vectors in C2 are valid states; only those vectors with unit norm. In Dirac notation, the

conjugate transpose is abbreviated as a bra:

⟨ψ| := |ψ⟩†.

The reason for the particular naming of this notation is that the inner product of two vectors

can be written as a bra-ket ⟨ψ||ϕ⟩. This allows us to characterize vectors with unit norm as

those |ψ⟩ ∈ C2 such that ⟨ψ||ψ⟩ = 1.

2.1.2 Composite Quantum Systems

While computations using only a single qubit can be useful, we will often consider com-

putations with multiple qubits. In the classical case, the state of two bits b1 and b2 is usually

stored as the pair (b1, b2), meaning that the space of the composite system is the Cartesian

product Z2 × Z2. However, in the quantum case, the state of two pure qubit states is de-

scribed as the tensor product |ψ1⟩⊗ |ψ2⟩ of the two individual pure states, meaning that the
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space of the composite quantum system is the tensor product C2 ⊗C2, to be defined below.

As a reminder, the tensor product of two matrices is given below:

Definition 2.1.1. For any m × n matrix A and any p × q matrix B, we define the tensor

product ⊗ as follows

A⊗B :=



A11B A12B . . . A1nB

A21B A22B . . . A2nB

...
...

. . .
...

Am1B Am2B . . . AmnB


where AijB is a submatrix of size p× q, hence A⊗B has size mp× nq.

In Dirac notation, we abbreviate the tensor product |ψ⟩⊗|ϕ⟩ by concatenating the strings

|ψϕ⟩. For example, we can write

|01⟩ = |0⟩ ⊗ |1⟩ =

1
0

⊗

0
1

 =



0

1

0

0


.

Using the definition of tensor products of matrices, we can now define the tensor product

of vector spaces. Note that throughout this section, the vector spaces are over the complex

field C.

Definition 2.1.2. If V and W are m and n dimensional vector spaces, then V ⊗W is the

vector space of column vectors of size mn.

By equipping V ⊗W with the usual dot product, we obtain a Hilbert space. In general,

an n-qubit quantum state is represented as a unit vector in the Hilbert space (C2)⊗n :=

C2 ⊗ ...⊗ C2 with n copies of C2. Note that (C2)⊗n is the set of all 2n dimensional vectors

with complex entries equipped with the usual dot product.
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We will often abbreviate an n-qubit space by H. In addition, if Alice and Bob both have

one or more qubits, then we will denote the Hilbert space containing Alice’s qubits as HA

and the Hilbert space containing Bob’s qubits as HB. Note that HA will take the form of

(C2)⊗n for some n ∈ N, and HB will take the form of (C2)⊗m for some m ∈ N. To make

reading easier, we often label quantum states with subscripts. For example, if |ψ⟩ ∈ HA and

|ϕ⟩ ∈ HB, we would write the state of the composite system as |ψ⟩A ⊗ |ϕ⟩B. This state lives

in HA ⊗HB.

We’ve seen how tensoring two single-qubit states leads to a state in (C2)⊗2. However,

one special property is that there are unit vectors in (C2)⊗2 that are not simply the result

of tensoring two unit vectors in C2. These vectors describe entangled states and have very

remarkable qualities. Before we describe more about entanglement of quantum states, we

give a precise definition below.

Definition 2.1.3. Let HA and HB be finite dimensional Hilbert spaces. We say that |ψ⟩AB ∈

HA ⊗HB is a separable state with respect to HA and HB when there exist states |ϕ⟩A ∈ HA

and |γ⟩B ∈ HB such that |ψ⟩AB = |ϕ⟩A ⊗ |γ⟩B.

Definition 2.1.4. A state |ψ⟩AB ∈ HA⊗HB that is not separable with respect to HA and HB

is said to be entangled with respect to HA and HB.

For example, consider the entangled two-qubit state |ψ⟩ = 1√
2
(|00⟩+ |11⟩). We can prove

that it is entangled by first rewriting it in vector form 1√
2

[
1 0 0 1

]T
. Next, if it were

separable, then by Definition 2.1.3 there would exist two states

[
α β

]T
and

[
γ δ

]T
such

that

1√
2



1

0

0

1


=

α
β

⊗

γ
δ

 =



αγ

αδ

βγ

βδ


7



where the second equality comes from using the definition on the tensor product. Since C is

a field, then in particular α = 0 or δ = 0. However, in the first case αγ = 0 ̸= 1√
2
and in the

second case βδ = 0 ̸= 1√
2
. Hence no such states

[
α β

]T
and

[
γ δ

]T
exist, meaning that

1√
2
(|00⟩+ |11⟩) is not separable. By Definition 2.1.4, we conclude that |ψ⟩ is an entangled

state. This state is one of the four Bell states and is used throughout quantum information

theory.

2.1.3 Unitaries

In the same way that there are gates that can be applied to bits, like the NOT gate on a

single bit or an AND gate on two bits, there are gates that can be applied to qubits as well.

In the classical case, any function from {0, 1}n to {0, 1} can be made into a gate, however

in the quantum case there are several constraints. Firstly, a quantum gate must be linear,

so its action on an n-qubit state can be represented by multiplication on the left with a

2n × 2n matrix. By quantum theory, such a matrix must be a unitary so that the output of

a quantum gate is also a valid quantum state. As a reminder, a matrix U is unitary when

UU † = U †U = I, and this means that U |ψ⟩ is a valid quantum state since it has unit norm:

(U |ψ⟩)†U |ψ⟩ = ⟨ψ|U †U |ψ⟩ = ⟨ψ||ψ⟩ = 1.

An example of a common two-qubit gate is the CNOT gate

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

1 0 1 0


.
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The effect of this gate on a two-qubit state can be seen clearly by using Dirac notation

with the usual basis of {|00⟩, |01⟩, |10⟩, |11⟩}. The CNOT gate flips the second qubit condi-

tioned on the first qubit being |1⟩. For example, CNOT|00⟩ = |00⟩ and CNOT|10⟩ = |11⟩.

Interestingly, if the basis is changed, then the effect of the CNOT gate appears to be reversed.

For example, consider the alternate basis {|++⟩, |+−⟩, | −+⟩, | −−⟩}, where |+⟩ := |0⟩+|1⟩√
2

and |−⟩ := |0⟩−|1⟩√
2

. If the second qubit is |+⟩, the CNOT acts as the identity on the first

qubit, whereas if the second qubit is |−⟩, the CNOT gate flips |+⟩ to |−⟩ and vice versa. For

instance, CNOT| + +⟩ = | + +⟩ and CNOT| + −⟩ = | − −⟩. In this way, one’s perspective

heavily influences the apparent action of a quantum gate.

2.1.4 Measurements

Performing a measurement to a quantum state allows us to extract classical information

about the state. For example, many quantum algorithms consist of inputting a state into

a quantum circuit, then performing a measurement at the end to decide on the outcome of

the algorithm. In our representation, a state is just a vector. If we are given an arbitrary

state and we would like to learn about its vector representation, then we can perform a

measurement. To model an n-qubit measurement, we use a finite collection of 2n × 2n

matrices {Mi}i∈I called measurement operators. These matrices must satisfy

∑
i

M †
iMi = 1

where 1 is the identity matrix. The probability of obtaining outcome i when measuring state

|ψ⟩ with the measurement operators {Mi}i∈I is

Pr
[
i
∣∣∣ |ψ⟩] = ⟨ψ|M †

iMi|ψ⟩.
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One important point is that performing a measurement can alter the state. In particular,

after obtaining outcome i from the measurement, the resulting state is

Mi|ψ⟩√
Pr [i | |ψ⟩]

.

Remark 2.1.5. Note that two states can not be distinguished by a measurement if they only

differ by a constant. In other words, if |ϕ⟩ = a|ψ⟩ for some complex number a, then we say

that |ϕ⟩ is the same state as |ψ⟩. This is because we must have |a| = 1, so a†a = 1 hence the

outcomes of measurements are the same:

Pr
[
i
∣∣∣ a|ψ⟩] = ⟨ψ|a†M †

iMia|ψ⟩ = ⟨ψ|M †
iMi|ψ⟩ = Pr

[
i
∣∣∣ |ψ⟩] .

For this reason, we consider two states to be equal if they only differ by a constant.

Next is a thought provoking example of quantum measurements. Consider again the

state |ψ⟩ = 1√
2
(|00⟩ + |11⟩). It is a two-qubit state, so assume Alice has one qubit and Bob

has the other. They would both like to perform a measurement on their qubit using the

operators M0 = |0⟩⟨0| and M1 = |1⟩⟨1|. First Alice will measure, then Bob will measure.

We must therefore describe the action of the measurements to the entire two-qubit state.

The measurement operators for Alice’s measurement on this two-qubit state become A0 =

|0⟩⟨0| ⊗ 1 and A1 = |1⟩⟨1| ⊗ 1 since Alice will not apply any measurement to Bob’s qubit.

To calculate the resulting state and probabilities, we start with the following calculation.

Ai|ψ⟩ =(|i⟩⟨i| ⊗ 1)
1√
2
(|00⟩+ |11⟩)

=
1√
2
(|i⟩⟨i| ⊗ 1)(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

=
1√
2
(|i⟩⟨i| ⊗ 1)(|0⟩ ⊗ |0⟩) + 1√

2
(|i⟩⟨i| ⊗ 1)(|1⟩ ⊗ |1⟩)

=
1√
2
|i⟩⟨i||0⟩ ⊗ 1|0⟩+ 1√

2
|i⟩⟨i||1⟩ ⊗ 1|1⟩

10



=
1√
2
|i⟩ ⊗ |i⟩ = 1√

2
|ii⟩

The last line follows since ⟨i||j⟩ = δi,j. Then the probability of Alice obtaining outcome

i is

Pr
[
i
∣∣∣ |ψ⟩] = ⟨ψ|A†

iAi|ψ⟩ =
1√
2
⟨ii| 1√

2
|ii⟩ = 1

2

and the resulting state after her measurement is

Ai|ψ⟩√
Pr[i ||ψ⟩]

=

1√
2
|ii⟩√
1
2

= |ii⟩.

Next, Bob measures his qubit. Since his measurement will not apply any gate to Alice’s

qubit then the measurement operators are Bj = 1⊗ |j⟩⟨j| for j ∈ {0, 1}.

Bj|ii⟩ = (1⊗ |j⟩⟨j|)(|i⟩ ⊗ |i⟩)

= 1|i⟩ ⊗ |j⟩⟨j||i⟩

= |i⟩ ⊗ |j⟩δi,j = |ii⟩δi,j

The probability that he obtains outcome j is

Pr
[
j
∣∣∣ |ii⟩] = ⟨ii|B†

jBj|ii⟩ = ⟨ii|δi,j|ii⟩δi,j = δi,j.

Therefore he will always obtain outcome i, the same result as Alice. After this measure-

ment, the state will then become

Bi|ii⟩√
Pr[i | |ii⟩]

=
|ii⟩δi,i√

1
= |ii⟩.
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This means that Bob’s qubit does not change as a result of him measuring it. This ex-

ample leads us to locality, which will be described next.

2.1.5 Locality

Working with qubits allows for more than just fast computation. Distant qubits can also

be correlated in ways not permitted by classical physics. For example, the experiment in

the previous section could be realized by having Alice and Bob meet up to prepare their

two-qubit state, then they could travel far apart before Alice performs her measurement on

her qubit. As soon as she measures her qubit to obtain outcome i, the second qubit will

instantly ”collapse” to the same state |i⟩. When Bob measures his qubit, he will of course

also get the outcome i. It appears that Alice’s qubit is communicating with Bob’s qubit,

however one fundamental principle in physics is that signalling cannot exceed the speed of

light. Indeed, this experiment does not allow for instant communication between Alice and

Bob at a distance despite their qubits having a strong correlation.

For many of the protocols that will be given in the thesis, we will refer to local parties.

By local, we mean that the parties are classical, and they are allowed to share random strings

before the protocol begins, then make computations using only resources available in their

lab during the protocol. Formally, the parties can be modelled by Turing machines, each of

which receiving its own input as well as a shared common random tape. If instead the parties

are quantum, then they may share a quantum state before the protocol, than make quantum

operations and measurements in their lab during the protocol. Formally, the parties would

be modelled as quantum circuits, with each receiving its own quantum input and a shared

finite dimensional quantum state. This multi-prover quantum model is described in more

detail in [VW16]. These constraints are meant to capture the spirit of not communicating,

however the distinction is more subtle than one might expect. For more on this, see [CY17].
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2.1.6 Mixed States

Often, the exact representation of a quantum state is not known. For example, imagine

Bob plans to send Alice |0⟩ with probability 1
4
, and |1⟩ with probability 3

4
. Knowing this,

how can Alice represent this unknown quantum state that she will receive? Well, we can

capture the notion of a mixed state using the density operator.

Definition 2.1.6. Let J be a random variable and for each i ∈ J , let |ψi⟩ be a state. Then

the density operator ρ of the ensemble {p(i), |ψi⟩}i∈J is defined as

ρ :=
∑
i∈J

p(i)|ψi⟩⟨ψi|.

For example, the density matrix ρA corresponding to Alice’s state above would be

ρA =
1

4
|0⟩⟨0|+ 3

4
|1⟩⟨1| =

1
4

0

0 3
4

 .
One important density matrix that finds endless use in quantum information theory is

1

d
, often called the maximally mixed state. Note that here, 1 is the 2n × 2n identity matrix

on n qubits and d is the dimension of the Hilbert space, so the maximally mixed state on

n qubits is 1

2n
. For example, if Bob had instead decided to send Alice |0⟩ or |1⟩ with equal

probability, then ρA would be 1

2
. In fact, for any choice of orthonormal basis, if Bob chooses

a random state from that basis and sends it to Alice, then her density matrix will be the

maximally mixed state.

2.1.7 No-Cloning Theorem
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One important principle in quantum information theory is that it is impossible to per-

fectly copy an arbitrary quantum state. In fact, even arbitrary close approximations cannot

be copied. Observe that this contrasts classical information theory since a string of bits can

easily be written down and copied. This no-go theorem makes proving the zero-knowledge

property much more difficult than in the classical case since a simulator can rewind a classical

verifier, however rewinding can not always be performed on a quantum verifier. Many re-

searchers are devising techniques to rewind a quantum verifier under specific conditions such

as in [Unr10], however the zero-knowledge protocols presented here involve two provers and

rewinding is not necessary. While this multi-prover structure allows authors to easily prove

the Zero-Knowledge property, the soundness property is still difficult to prove due to the

inability to freely rewind. However, Chailloux and Leverrier showed a technique in [CL17]

that bypasses rewinding for proving soundness. These techniques will be used in Sections

3.1 and 3.2.

2.2 Cryptographic Background

In this section, we define two cryptographic objects that will appear throughout the

thesis: bit commitment schemes and zero knowledge proofs. We start with a definition of

the complexity class NP from [Sip13].

Definition 2.2.1. A verifier for a language A is an algorithm V such that

A = {w | V accepts ⟨w, c⟩ for some string c}

The running time of a verifier is measured relative to the length of w, meaning that V is a

polynomial time verifier if it runs in polynomial time relative to the length of w.

Definition 2.2.2. NP is the class of languages that have polynomial time verifiers.
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An example of a language in NP is Hamiltonian Cycle, which we’ll denote by HAM. An

undirected graph is in HAM if it contains a cycle that passes through every vertex exactly

once. For example, the graph below is in HAM since it contains a cycle from 1 → 3 → 2 →

4 → 1 shown below with the edges in bold.

Figure 2.1: Graph with Hamiltonian cycle

2.2.1 Commitment schemes

Cryptographic protocols often require a sort of digital lockbox. These are called com-

mitment schemes. They are analogous to Alice placing a message in a box, locking it, and

sending the box to Bob while maintaining possession of the key. Then, when Alice would

like Bob to see her message, she sends Bob the key. We give the following definition adapted

from Chailloux and Leverrier in [CL17].

Definition 2.2.3. A commitment scheme is an interactive protocol between Alice and Bob

with a Commit phase and a Reveal phase.

Commit Phase: Alice chooses a message m that she wants Bob to see only after the

unveil phase. Then, they perform a communication protocol that corresponds to this commit

phase.
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Unveil Phase: In order for Alice to reveal the message m to Bob, they complete a

communication protocol that corresponds to this unveil phase. At the end of the protocol,

Bob outputs either Accept or Reject.

The commitment scheme is a description (COM,UNV ) of the protocol that is followed

by the honest parties during the commit and unveil phases of the protocol. In order to

be useful, commitment schemes must satisfy two properties: hiding and binding. Roughly

speaking, a commitment scheme is hiding if before the reveal phase, Bob can not figure out

Alice’s message. Below is a formal definition of perfect hiding, but first we introduce some

terminology. Generally, Alice and Bob are modelled as Turing machines A and B. If B∗ is

a (possibly malicious) probabilistic Turing machine, then the random variable ⟨A(m), B∗⟩

denotes the output of B∗ after A commits the message m to B∗. Finally, M is the message

set of possible messages m.

Definition 2.2.4. We say that a commitment scheme is perfectly hiding if for any probabilistic

machine B∗, the random variables {⟨A(m), B∗⟩}m∈M are identically distributed.

In practice, this means that despite Bob’s best efforts, he will not be able to deduce

Alice’s message before she has revealed it to him. On the other hand, a commitment scheme

is binding if Alice cannot change her message after the commit phase. Defining the binding

property is a subtle matter. Here, we give a definition of the sum-binding property of com-

mitment schemes, given also in [CL17]. We begin with a cheating strategy (COM ′, UNV ′)

for Alice when interacting with an honest Bob. Ideally, once Alice has chosen her commit-

ment strategy, there should be only one message to unveil. In a perfect world, the probability

of Alice successfully unveiling that message is 1, whereas the probability of Alice deceptively

unveiling any other message is less than ϵ. However, note that Alice could just as well choose

a probabilistic approach to committing. For example, suppose COM ′ either commits to 0

or 1, each with probability 1
2
. Then she would be able to successfully unveil a 0 with proba-

bility at least a half, and the same would go for unveiling a 1. For this reason, a particular
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commitment made by a malicious Alice does not necessarily have a message associated with

it. With all this in mind, consider the following definition:

Definition 2.2.5. (Sum-Binding) A commitment protocol is ϵ-sum-binding if

∀COM ′,
∑
m∈M

max
UNV ′

(Pr[Alice successfully unveils m | (COM ′, UNV ′)]) ≤ 1 + ϵ

In Section 2.5, we will see an example of a commitment scheme withM = {0, 1, ..., P −1}

which is 1+ 4P
Q1/3 -sum-binding where Q is the size of the field that will be used for the protocol.

An example of a simple problem with a solution that uses a bit commitment scheme is

given in [Blu81] and will be outlined next. Suppose Alice and Bob are getting divorced and

must decide how to split all their belongings. They have already settled on who gets the

furniture, the house, the kids, but they are unable to decide who gets the car. Eventually,

they agree to flip a coin to determine the new owner of the car. However, since Alice and

Bob are unable to be in the same room together, they can only communicate over the phone,

hence neither is willing to let the other one flip the coin. They need a way to randomly

decide who gets the car by communicating only over the phone.

An easy way to solve this using a bit commitment scheme is to have Alice toss a coin to

obtain a random bit b, then send Bob a commitment of b over the phone. Bob then tosses a

coin to obtain a random bit b′, and sends b′ to Alice over the phone. Finally, Alice unveils

b to Bob over the phone, and if b = b′, then Alice walks away with the car, otherwise Bob

is the lucky owner. Notice that for any strategies that Alice and Bob use, the two bits will

be equal with probability 50%, meaning that this is a fair way to flip a coin over the phone.

This is because Bob’s bit is chosen after Alice’s bit was decided, but since he is unable to

see her bit, then their choice will be independent.

2.2.2 Zero-Knowledge Protocols
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We saw in the example above of flipping a coin over the telephone that commitment

schemes can be very useful building blocks in cryptography. One area that they find endless

usage is in zero-knowledge protocols (ZKPs). A ZKP is a communication protocol between

two parties: a prover and a verifier. The prover’s goal is to convince the verifier of a fact

without giving away any more information than the validity of that fact. For example,

suppose a prover wants to convince a red-green colourblind verifier that two marbles are not

the same colour. The verifier does not trust the prover, so he gets the prover to answer a

series of questions. The verifier holds a marble in each hand, then hides his hands behind his

back and randomly decides whether or not to switch the marbles. When he puts his hands

out in front again, the prover must say whether the marbles were swapped or not. This is

repeated multiple times with the prover guessing whether or not the marbles were swapped

in each round. If the prover succeeds for many rounds, the verifier will be convinced that the

marbles are indeed different, however the verifier will not know where that difference lies.

For example, after many rounds of the protocol, the verifier will still not know which marble

is red and which one is green, or whether those are even the colours of the marbles.

In many ZKPs, a single verifier will interrogate multiple provers. Generally, we require

that the provers cannot communicate, however they can use quantum resources such as

entangled states and local operations. The provers are represented as Turing machines

P1, ..., Pk and the verifiers are represented as one Turing machine V . The following model is

given in [BOGKW88]

Definition 2.2.6. Let P1, ..., Pk be Turing machines which are computationally unbounded

and V be a probabilistic polynomial time Turing machine. All machines have a read-only

input tape, a work tape and a random tape. In addition, P1, ..., Pk share an infinite read-only

random tape of 0’s and 1’s. Every Pi has one write-only communication tape on which it

writes messages for V . V has k write-only communication tapes. On communication tape i,

V writes messages to Pi. In addition, V has one output tape, generally used to write Accept

or Reject, however no restriction is placed on the contents of this tape. We call (P1, ..., Pk, V )
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a k-prover interactive protocol, and ⟨P1, .., Pk, V ⟩(x) is a random variable referring to the

content of the output tape of V , upon its termination, after interacting with P1, ..., Pk on

input x.

As an example, we will introduce Blum’s ZKP for HAM given in [Blu87]. First, we give

notation that will be used in the protocol. Suppose we have a graph G = (V,E).

Notation Meaning

V set of vertices {v1, ..., vn}
E set of edges of the graph
Π random permutation on vertices

Π(G) graph (V, {(Π(u),Π(v)) | (u, v) ∈ E})
MΠ(G) adjacency matrix of Π(G)
C a Hamiltonian cycle {(vi1 , vi2), (vi2 , vi3), ..., (vin , vi1)}

Π(C) permuted Hamiltonian cycle {(Π(u),Π(v)) | (u, v) ∈ C}

Table 2.1: Notation used in ZKP for Hamiltonian Cycle

The following protocol allows a prover that knows a Hamiltonian cycle of G to con-

vince a verifier that G has a Hamiltonian cycle without giving away any knowledge of its

whereabouts. It assumes the existence of a bit commitment protocol.

The ZKPs considered in this thesis must satisfy three conditions: completeness, sound-

ness, and zero-knowledge. For each of these conditions, the above HAM-ZKP example will

be discussed. The first two conditions are given below from [BOGKW88].

Definition 2.2.7. We say that a language L has a k-prover interactive proof-system (IPS) if

there exists an interactive BPP machine V such that:

1. (Completeness) ∃P1, ..., Pk such that (P1, ...Pk, V ) is a k-prover interactive protocol and

∀x ∈ L, prob( V accepts input x) ≥ 2/3.

2. (Soundness) ∀P1, ..., Pk such that (P1, ...Pk, V ) is a k-prover interactive protocol and

∀x /∈ L, prob( V accepts input x) ≤ 1/3.
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Hamiltonian Cycle ZKP (HAM-ZKP) using bit commitment

1. The prover picks a random permutation Π : V → V . He then sends the verifier
a commitment of each bit of MΠ(G).

2. The verifier replies with a challenge bit chall ∈ {0, 1}.
3. If chall = 0 then the prover unveils MΠ(G) and sends Π to the verifier. If
chall = 1 then the prover unveils only the bits of MΠ(G) that correspond to Π(C)
in Π(G).

4. If chall = 0, the verifier confirms that applying Π to G yields the unveiled
permuted adjacency matrix MΠ(G). If chall = 1, the verifier confirms that each
unveiled bit is a 1 and that they form a Hamiltonian cycle. If any check fails, then
the verifier rejects, otherwise the verifier accepts.

Table 2.2: ZKP for Hamiltonian Cycle

If the bound of 2/3 is changed to 1, then the condition is known as perfect completeness,

which essentially states that if both the provers and the verifier follow the protocol, then the

verifier will accept. The HAM-ZKP has perfect completeness. Indeed, if the honest prover

P is given a graph with a Hamiltonian Cycle, then since P has unbounded computation, P

can find the cycle, then proceed with the steps of the protocol and the checks by the honest

verifier V will succeed.

On the other hand, soundness asserts that no provers should be able to successfully cheat.

Suppose that a graph without a Hamiltonian cycle is given to a dishonest prover P ′. Then

since this graph has no Hamiltonian cycle, the commitment of P ′ cannot be both a permuted

version of G and containing a Hamiltonian cycle at the same time. If the dishonest prover’s

commitment is neither of the above, then the probability that the unveil successfully passes

the verifier’s check is essentially 0. However, if the prover committed to one of the above, then

since the honest verifier V randomly chooses which question to ask, then with probability

essentially 1
2
, the commitment that prover P ′ unveils will not pass the check of the honest

verifier V .

Note that the upper bound in Definition 2.2.7 is 1
3
, whereas our analysis obtained a

value of 1
2
. This may appear to not satisfy soundness, but by repeating the protocol twice,
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then the probability that any prover P ′ correctly passes in two rounds is (1
2
)2 = 1

4
, which is

below 1
3
. In this way, sequential repetition can reduce the soundness error of any protocol

by repeating a polynomial number of times since we require the parties to communicate for

at most a polynomial number of steps. To avoid having to repeat protocols, we generally

replace the 1
3
in Definition 2.2.7 with 1 − 1

p(|x|) for some polynomial p that takes as input

the size of the instance x. Repeating such a protocol 2p(|x|) times yields a probability of

acceptance at most (1 − 1
p(|x|))

2p(|x|) ≤ e−
1

p(|x|)2p(|x|) = e−2 < 1
3
as desired, still in polynomial

time.

Finally, we say that a protocol has the Perfect Zero-Knowledge property if it satisfies the

following definition from [Gol01].

Definition 2.2.8. Definition 4.3.6 (Perfect Zero-Knowledge, Liberal Formulation): We say

that (P1, ..., Pk, V ) is perfect zero-knowledge in the liberal sense if for every probabilistic

polynomial-time interactive machine V ∗ there exists an expected polynomial-time algorithm

S∗ such that for every x ∈ L, the random variables ⟨P1, ..., Pk, V
∗⟩(x) and S∗(x) are identi-

cally distributed.

The above definition needs some unpacking. Firstly, what does it mean intuitively for a

protocol to be perfect ZK? It means that regardless of the questions asked by any verifier,

malicious or not, the verifier cannot gain additional knowledge about the witness. However,

quantifying additional knowledge can be tricky. One way to circumvent this is to require

that the entire transcript between the prover(s) and verifier should be easy to simulate

without any prover. For this reason, Definition 2.2.8 refers to the output of the verifier,

which may be a transcript since no restriction is placed on the output of the verifier. In

other words, for a protocol to be zero-knowledge, the content of any transcript between a

potentially dishonest verifier and the honest prover(s) needs to be producible by only using

the potentially dishonest verifier and polynomial extra work. If this is the case, then the

transcript cannot contain any additional knowledge.
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Formally, V refers to the Turing machine describing the actions of the honest verifier,

hence a dishonest verifier is another Turing machine, V ∗. Importantly, since V ∗ is pro-

grammed to communicate with the prover(s), then simulating a transcript of V ∗ and P1, ..., Pk

must be done by another algorithm S∗. For obvious reasons, this algorithm S∗ is referred to

as the Simulator, and its program depends on V ∗, but not P1, ..., Pk.

We will now briefly explain why the HAM-ZKP has perfect ZK. Intuitively, the verifier

either sees a random permutation of the graph or a random cycle with no context, both

giving no additional information. This is captured in the formal proof outlined briefly below.

Suppose we have a possibly malicious verifier V ∗. We define a simulator S∗ that starts by

guessing a random challenge chall′ ∈ {0, 1}, then sends a commitment to V ∗ that will pass

the check if the challenge chall ends up being equal to chall′. More precisely, if chall′ = 0,

then S∗ commits to a permuted adjacency matrix of the graph G, and if chall′ = 1, then S∗

commits to a matrix of all 1’s. This way, if chall = chall′, then the simulator is fortunate

since it will be able to unveil a response that appears correct to V ∗ in order to imitate an

honest prover’s response. If chall ̸= chall′, which will happen with probability 1
2
, then S∗

will rewind V ∗ to the start of the protocol to reattempt the process. After rewinding, S∗ can

make a new random choice of chall′, then proceed with committing as before. Each time

that chall ̸= chall′, the simulator must rewind the verifier.

The two challenges are expected to match with probability 1
2
, hence the simulator runs

in expected polynomial time since an average of 2 attempts will be needed for the simulator

to succeed in a round. Since the simulator will erase the failed attempts and not record

the rewinding on the transcript, then the final transcript outputted by S∗ will only show

the successful rounds. For this reason, the distribution of transcripts output by S∗ will be

identical to the distribution of transcripts output by interactions between V ∗ and P .

Note that this ZKP used only one prover and the proof of zero-knowledge required rewind-

ing the verifier. In the two-prover ZKPs presented in this thesis, the simulator will not need
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to rewind the verifier(s), hence proving zero-knowledge in the quantum setting will be easier

for reasons described in Section 2.1.7.

2.3 Pseudo-Telepathy games

In this section, we introduce a multi-party game, also presented in [BBT05], that is

perfectly winnable with quantum players but not with classical players. The purpose of

including this example is to highlight the importance of proving soundness against quantum

adversaries. In the magic square game that will be presented, it will be clear to the reader

that a classical winning strategy is not possible. However, there exists a winning quantum

strategy.

The magic square game is a two-player game in which Alice and Bob work together to

answer certain questions about a 3 × 3 matrix. In particular, Alice will be asked for the

entries in a certain row, while Bob will be asked for the entries in a certain column. The

entries can only be 0 or 1, and they win if the following three conditions are satisfied:

(a) Their common entry is the same.

(b) The sum of the Alice’s row entries is even.

(c) The sum of the Bob’s column entries is odd.

Even more, Alice and Bob are separated during the game. For details on this, refer to the

section on Locality (2.1.5). For this reason, they may not send each other messages during

the game and therefore must agree on a strategy beforehand. However, we’ll now explain

why no local classical winning strategy exists using a proof by contradiction.

2.3.1 Impossibility of a Classical Winning Strategy
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Since the winning probability of any randomized strategy cannot exceed that of the

best deterministic strategy, then we consider a winning local deterministic strategy. This is

because any randomized strategy can be viewed as a combination of deterministic strategies,

and so the winning probability of the randomized strategy is the average of the winning

probabilities of the deterministic strategies. The responses of Alice and Bob correspond to

3× 3 matrices. By condition (a), their two matrices must be identical since any entry could

be common depending on the row and column asked. However, the conditions (b) and (c)

are contradictory since summing all the entries in the matrix will be even by (b), but odd

by (c). For example, if Alice and Bob’s strategy corresponds to the matrix below, then in

order to satisfy (b), the last bit would have to be 0, but to fulfill (c), the last bit would have

to be 1.

0 1 1
1 0 1
0 0 ?

Table 2.3: Impossibility of winning classical strategy for Magic Square

2.3.2 Quantum Winning Strategy

This is a surprising result, demonstrating the strength of quantum correlations. The strategy

starts with a shared quantum state. The first two qubits of the following state belong to

Alice, whereas the last two belong to Bob.

|ψ⟩ = 1

2
|0011⟩ − 1

2
|0110⟩ − 1

2
|1001⟩+ 1

2
|1100⟩

When Alice is asked for the three entries of row x, she applies the operation Ax to her

two qubits. Similarly, when Bob is asked for the three entries of column y, he applies the

operation By to his two qubits.
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A1 =
1√
2



i 0 0 1

0 −i 1 0

0 i 1 1

1 0 0 i


A2 =

1

2



i 1 1 i

−i 1 −1 i

i 1 −1 −i

−i 1 1 −i


A3 =

1

2



−1 −1 −1 1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1



B1 =
1

2



i −i 1 1

−i −i 1 −1

1 1 −i i

−i i 1 1


B2 =

1

2



−1 i 1 i

1 i 1 −i

1 −i 1 i

−1 −i 1 −i


B3 =

1√
2



1 0 0 1

−1 0 0 1

0 1 1 0

0 1 −1 0



Next, Alice and Bob both measure their two qubits in the standard basis. This will give

Alice two bits a1, a2, and Bob two bits b1, b2. Alice will output (a1, a2, a1⊕ a2), and Bob will

output (b1, b2, 1 ⊕ b1 ⊕ b2). It is clear that this strategy will satisfy conditions (b) and (c)

since

a1 ⊕ a2 ⊕ (a1 ⊕ a2) = 0 and b1 ⊕ b2 ⊕ (1⊕ b1 ⊕ b2) = 1.

On the other hand, it is more work to show that condition (a) is satisfied. One example

will be shown here. Suppose Alice was asked for row 3 and Bob was asked for column 3. We

first compute the state A3 ⊗B3|ψ⟩.
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1

2



−1 −1 −1 1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1


⊗ 1√

2



1 0 0 1

−1 0 0 1

0 1 1 0

0 1 −1 0


1

2
(|0011⟩ − |0110⟩ − 1001⟩+ 1100⟩)

=
1

4
√
2





−1

1

1

1


⊗



1

1

0

0


−



−1

1

−1

−1


⊗



0

0

1

−1


−



−1

−1

1

−1


⊗



0

0

1

1


+



1

1

1

−1


⊗



1

−1

0

0




=

1

4
√
2

[
0 −2 2 0 2 0 0 2 2 0 0 −2 0 2 2 0

]
=

1

2
√
2
(−|0001⟩+ |0010⟩+ |0100⟩+ |0111⟩+ |1000⟩ − |1011⟩+ |1101⟩+ |1110⟩)

Next, Alice measures her two qubits of A3 ⊗ B3|ψ⟩ to obtain the bits a1, a2 and Bob

measures his two qubits to get the bits b1, b2. We check that in each case, a3 = b3. In

Table 2.4 we show the possible measurement outcomes, where the third bits are computed

as described above to satisfy conditions (b) and (c).

Alice’s Results 000 000 011 011 101 101 110 110
Bob’s Results 010 100 001 111 001 111 010 100

Table 2.4: Measurement results of quantum strategy for Magic Square

Therefore Alice and Bob’s answers will match in the third positions and win the game in

this case.

In a world where quantum computation is quickly advancing, any new cryptographic

protocol must pass stringent security measures. This thought-provoking pseudo-telepathy

game highlights the importance of proving that such protocols are indeed secure against

quantum adversaries, even if they appear to be secure in the classical case.
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2.4 Related Works

The protocol in 3.1 is mainly based off of the Relativistic 2-prover protocol given in [CL17].

In the same paper, the authors prove a strong lower bound regarding consecutive measure-

ments of quantum states. They proceed to apply this theorem to bound the soundness error

of their two-prover ZKP for HAM, originating from Blum’s protocol in [Blu87]. This protocol

has a structure common to many other ZKPs, called a Σ-protocol. It is defined by Unruh

in [Unr10] where the author discusses proofs of knowledge.

Definition 2.4.1. A Σ-protocol is a 3-message ZKP between a prover and a verifier consisting

of a commitment comm from the prover, then a challenge chall from the verifier, and finally

a response resp from the prover.

The security of Σ-protocols often rely on a property called special soundness.

Definition 2.4.2. A Σ-protocol has special soundness when there exists a polynomial time

algorithm K that computes a witness given two accepting conversations of the same com-

mitment with different challenges.

For example, the ZKP for the Hamiltonian cycle problem (2.2) has special soundness

since the response to chall = 0 gives away the permutation and the response to chall = 1

indicates the location of the Hamiltonian cycle in the permuted graph. By combining both

responses, the Hamiltonian cycle of the original graph can be easily reconstructed. On the

other hand, an example of a Σ-protocol without special soundness would be the following

protocol from [GMW91]. It is a ZKP for the 3-Colouring problem, which concerns labelling

each vertex of a graph with an element of {0, 1, 2} such that no two adjacent vertices have

the same label. The protocol goes as follows:

This protocol does not have special soundness because if two different questions are

answered, then the colours of at most 4 vertices are revealed, but it is unclear how the
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ZK Protocol for 3-COL using a commitment scheme

1. The prover starts with a 3-colouring and picks a random permutation Π :
{0, 1, 2} → {0, 1, 2} to permute the colours in the graph. He then sends the verifier
a commitment for each vertex indicating the colour after applying Π.

2. The verifier replies with a random edge (i, j) ∈ E.

3. The prover unveils the permuted colours of the ith and jth vertices.

4. The verifier confirms that the colours of the endpoints are different. If not, then
the verifier rejects, otherwise the verifier accepts.

Table 2.5: ZKP for 3COL

rest of the vertices should be coloured. For example, if there is a triangle between vi, vj, vk

in the graph, then having the colours of both endpoints of (i, j) and (i, k) does not give

any new information since all three colours must be different. For a protocol to have special

soundness, every pair of responses should allow an extractor to construct a witness, assuming

the commitments were the same and the challenges were different.

It is known that the Hamiltonian cycle problem is NP-complete, therefore the existence

of Blum’s ZKP (2.2) immediately guarantees that any problem in NP has a ZKP. However,

Blum’s construction relies on the existence of a bit commitment scheme. If we choose only

a computationally hiding commitment scheme, defined in [Gol01], then the protocol is only

zero-knowledge for a certain period of time. In fact, even if the verifier could not compute

the committed bits during the protocol, the verifier can continue to compute long after the

protocol has finished. This means that with enough time and possibly faster computers, all of

the committed information in the protocol could potentially be revealed. In many contexts,

this information should always stay private, even after the protocol is finished, hence this is

not a desirable property for zero-knowledge protocols.

For the reason described above, we prefer to use perfectly-hiding protocols. However,

there is a balance between the hiding and binding properties of any bit commitment scheme.

If we restrict ourselves to the typical model of a single prover and single verifier communi-

cating through a perfect channel, then if a bit commitment scheme is perfectly hiding, the
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binding property can be broken with a computationally unbounded prover. This can be

seen intuitively as follows. Note this is merely a rough idea of the proof since it is lacking

rigour for the sake of brevity. Assume the commitment scheme is perfectly hiding, and Al-

ice sends a commitment c to Bob. Then a computationally unbounded Bob could find two

message-reveal string pairs (m1, r1) ̸= (m2, r2) that both produce c as a commitment. This

follows because if Bob could only find one message-reveal string pair that produced c as a

commitment, then the commitment scheme would not be perfectly hiding. The issue is that

a computationally unbounded Alice could also find (m1, r1) ̸= (m2, r2) for the reveal phase

and break the binding property.

This means that if a commitment scheme is chosen to be perfectly hiding, then the scheme

can be computationally binding at best, where the computationally binding property is

defined in [Gol01]. Note that the definitions of computational hiding and binding are omitted

from this thesis, however one can think of them as assumptions that certain problems cannot

be solved in polynomial time. As always, cryptographers try to limit their assumptions

when designing protocols, so choosing a computationally binding commitment scheme is not

ideal either. For example, the long standing factoring problem is soon to be insecure with

the arrival of efficient quantum computers that use Shor’s algorithm [Sho94]. Fortunately,

these issues can be avoided by instead using a relativistic commitment scheme like the one

in [LKB+15]. It requires Alice and Bob to each split into two parties: A1, A2 and B1, B2,

where each party is local. Then, they must follow the protocol given in 2.5. This change of

structure from that of typical commitment schemes results in perfect hiding and statistical

binding for the relativistic bit commitment scheme. The adjective, relativistic, refers to the

assumption of distanced local provers. This assumption is in fact possible to enforce by

distancing the verifiers, then requiring each response from the provers to be within a certain

time period. This way, the verifiers can be sure that there was not enough time for any

question to travel to the other prover before the response was received from the appropriate

prover.
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In [CL17], the authors adapted Blum’s HAM-ZKP to use a relativistic bit commitment

scheme requiring multiple provers, described in 2.5. We will denote the protocol of [CL17]

by Relativistic Hamiltonian Cycle ZKP (REL-HAM-ZKP). Even though Blum’s HAM-ZKP

and the relativistic bit commitment scheme are both secure on their own, combining the

two protocols may not necessarily be secure against quantum adversaries, hence it requires

its own proof. Fortunately, the authors of [CL17] managed to prove this by relating the

probability of provers successfully cheating their protocol with the probability of provers

winning a slightly different game. They called this related game Gcoup. Here is the formal

definition of the game that dishonest provers play when analyzing soundness of REL-HAM-

ZKP.

Definition 2.4.3. A game G = (IA, IB, OA, OB, V ) is defined by

• 2 input sets IA,IB which are respectively Alice’s and Bob’s input sets.

• 2 output sets sets OA, OB which are respectively Alice’s and Bob’s output sets.

• A valuation function V : IA × IB × OA × OB → {0, 1} which indicates whether the

game is won for some fixed inputs and outputs. The game is won if the value of V is

1.

Next is the definition of the related game. Gcoup.

Definition 2.4.4. For any game G = (IA, IB, OA, OB, V ) on the uniform distribution we define

Gcoup as follows:

• Alice receives a random x ∈ IA. Bob receives a random pair of different inputs (y, y′)

from IB.

• Alice outputs a ∈ OA. Bob outputs b, b′ ∈ OB.

• They win the game if V (x, y, a, b) = V (x, y′, a, b′) = 1.
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The twist with Gcoup is that the second prover must answer two questions at once, making

it more difficult for Alice and Bob to win Gcoup. In fact, the maximum probabilities of

winning the two games are related. If we denote the maximum probability of winning a

game H among all local classical strategies by ω(H), then we have the following result.

Proposition 2.4.5. For any game G with questions asked uniformly at random and IB =

{0, 1}, the classical winning probabilities have the following relationship: 2ω(G) − 1 ≤

ω(Gcoup).

We will present our own proof of this result. It is a classical version of the quantum result

proved in [CL17].

Proof. Suppose Alice and Bob can win G with probability ω(G). Then we will design a

strategy for Gcoup that wins with probability at least 2ω(G)− 1. On input (x, (y, y′)), Alice

and Bob do the following:

• Alice runs on x and outputs a

• Bob runs on y and outputs b

• Bob is re-winded

• Bob runs on y′ and outputs b′.

Note that since Bob is entirely classical, he can be re-winded without any issues. Now, we

analyze the probability that both answers are correct. In other words, what is the probability

that V (x, y, a, b) = 1 and V (x, y′, a, b′) = 1?

Letting n := |IA|, we denote v, w ∈ [0, 1]n to be the probability vectors such that

vx = E[V (x, 0, A(x), B(0))] and wx = E[V (x, 1, A(x), B(1))]

where A(x), B(y) are Alice and Bob’s outputs on input x and y. The expectation is taken

over Alice and Bob’s random coin flips. This allows us to write the probability of winning
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G as

ω(G) = E
x,y
[V (x, y, A(x), B(y))] =

v · 1⃗ + w · 1⃗
2n

.

Then since winning Gcoup requires succeeding for both inputs, we get

ω(Gcoup) ≥ E
x
[V (x, 0, A(x), B(0))V (x, 1, A(x), B(1))] =

v · w
n

.

Then by noting that each entry of v and w is between 0 and 1, we can obtain the result as

follows:

0 ≤ (⃗1− v) · (⃗1− w) = v · w − v · 1⃗− w · 1⃗ + 1⃗ · 1⃗ = v · w − 2nω(G) + n

=⇒ 2ω(G)− 1 ≤ v · w
n

≤ ω(Gcoup).

The above proposition for the classical case relies on rewinding Bob. In the quantum

case, rewinding cannot always be done after measuring the output b since this would allow

for copying of quantum states. However, the authors of [CL17] managed to prove a theorem

that bounds the amount of error that arises from making two consecutive measurements on

a quantum state. They applied this theorem to a strategy for Gcoup that involves running

Bob on both inputs consecutively with no rewinding in between. This gave them an analo-

gous quantum result to Proposition 2.4.5. However, before stating their result, we quickly

introduce a definition.

Definition 2.4.6. Let S ∈ N. We say that a game is S-projective if Bob has at most S possible

outputs to win the game for any possible x, y, a. So maxx,y,a |{b | V (x, y, a, b) = 1}| ≤ S.

Now we can state the result of [CL17].
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Proposition 2.4.7. For any game G on the uniform distribution which is S-projective, we

have

ω∗(Gcoup) ≥
1

64S

(
ω∗(G)− 1

|IB|

)3

.

The proof begins in the same way as the proof above of Proposition 2.4.5, building a

strategy of Gcoup using a strategy for G. Their proof then uses the bound on consecutive

measurements of quantum states in order to lower bound the success of their Gcoup strategy.

The purpose of deriving Proposition 2.4.7 is to upper bound the success probability of

cheating quantum provers in REL-HAM-ZKP. This allowed the authors of [CL17] to prove

that their protocol was sound. The convenience of Gcoup is that even in the quantum case,

upper bounding ω∗(Gcoup) can be relatively simple, then it can be translated into an upper

bound for ω∗(G) with the help of their proposition. Their proof technique will be used to

prove soundness for the ZK protocols proposed in Sections 3.1 and 3.2.

Remark 2.4.8. When analyzing the proof, it becomes apparent that it can be applied to any

protocol with a similar enough structure. In particular, the proof should extend to any Σ-

protocol with special soundness. For example, very similar ZK-protocols to Blum’s exist for

the k-clique problem, the k-independent set problem, the k-longest path problem, and the

subgraph problem. Using a similar contruction to that of the REL-HAM-ZKP, multi-prover

ZK-protocols for all of these problems can be directly proven to be sound against quantum

provers.

2.5 Properties of the Relativisitic Commitment Scheme

In [BCMS98] the authors introduce a bit commitment scheme involving two provers and

two verifiers. Several variations of the protocol have had their security examined in [Ken05],

[CSST11], and [LKB+15]. Here, we will present the scheme, a brief explanation to why it is

hiding and binding, then finally explore some of its useful properties. The scheme requires
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two separated provers P1 and P2, as well as two verifiers V1 and V2. The operations will be

over the field FQ for some large prime power Q. Suppose that the provers want to commit

to an element b ∈ FQ. They choose a random c ∈ FQ, and the protocol goes as follows:

Commit Phase

1. V1 chooses a random a ∈ FQ and sends a to P1.

2. P1 replies with w := ab+ c to V1.

Now the provers have committed to b. When the provers would like the verifiers to know

their hidden value b, then they complete the unveil phase:

Unveil Phase

1. P2 sends b, c to V2.

2. V1 and V2 verify that w = ab+ c.

This protocol is illustrated in Figure 2.2.

Figure 2.2: Relativistic Two-Prover Bit Commitment Scheme

We’ll now explain why the protocol is perfectly hiding. Once V1 has sent a and received

w, then for each possible b that P1 could be committing to, there is a unique c such that

c = w− ab. Since b and c are inaccessible to V1 and V2 before the unveil phase, this means

that in Definition 2.2.4, B∗ is sending an a then receiving a completely random w, hence
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B∗’s outputs for any message b must be identically distributed. For this reason, the protocol

is perfectly hiding.

Now we discuss why the protocol is binding. In other words, what keeps the provers

from changing their mind from one secret b to another secret b′ after they have committed?

The formal proof of the sum-binding property against quantum parties is given in [CL17],

therefore we will merely give an intuition. If the commitment was w, then to open to the

secret b, P2 would have to send (b, w − ab) to V2, whereas to open to the secret b′, then P2

would have to send (b′, w − ab′) to V2. This means that if the provers could unveil both to

b and to b′, then P2’s outputs could be combined in order to guess a since

((w − ab′)− (w − ab)) (b− b′)
−1

= a.

However, P2 should only be able to guess a with probability 1
Q

since it was chosen

randomly by the verifiers and only sent to P1 who is separated from P2. As mentioned, the

quantum case is analyzed in [CL17]. If the set of messages is restricted to [P ] = {0, 1, ..., P −

1}, then the protocol is ϵ-sum-binding with ϵ = 1 + 4P
Q1/3 . For this reason, when using this

protocol, the set of messages [P ] should be chosen first, then a sufficiently large field FQ can

be chosen to make ϵ small. The authors arrived at this bound by comparing it with the

well-known CHSHQ(P ) game and using existing work on its quantum winning probability.

One can notice that the value w calculated by P1 is an affine function of b. This turns

out to be very useful when designing protocols. Imagine a prover commits to b and b′, but

they want to have the option to unveil the sum b+ b′ and nothing else. Then by combining

the commitments, the provers and the verifiers are able to transform the commitments of b

and b′ into a commitment of the sum b+ b′. More specifically, if they complete the Commit

phase so that the verifiers possess the values

w = a · b+ c and w′ = a′ · b′ + c′
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then as long as a = a′, the verifiers can add the values they receive to obtain a commitment

w + w′ of b+ b′ since

w + w′ = (a · b+ c) + (a · b′ + c′) = a(b+ b′) + (c+ c′).

From the expression above, one can see that the key needed to unveil b + b′ is c + c′.

This property is exploited in Section 3.1 where it is the primary mechanism for a simple

ZKP for the subset sum problem. Note that this behaviour can be generalized to any linear

combination of commitments. If the provers have committed to b and b′ but want to unveil

db + d′b for some d, d′ ∈ FQ, then they can have the verifiers combine the commitments in

the same way, dw + d′w, and then unveil using the key dc+ d′c′ since the following holds:

dw + d′w′ = d(a · b+ c) + d′(a · b′ + c′) = a(db+ d′b′) + (dc+ d′c′).

This can be useful in the case of taking d = 1 and d′ = −1 to prove that two commitments

are equal. Indeed, if P1 commits to b and b′ and then P2 decides to convince the verifiers

that b = b′, then he can send 0, c− c′ for the verifiers to check that w−w′ = a(0) + (c− c′).

This trick is the main tool used in the ZKP of Section 3.2 for 3SAT.
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Chapter 3

Main Results

3.1 A ZKP for the Subset Sum Problem

3.1.1 General Idea

In this section, we’ll introduce a two-prover ZK proof of the Subset Sum Problem that relies

on the affine properties of the relativistic bit commitment. We’ll start by stating the problem:

Subset sum problem: Given a set {s1, ..., sn} of positive integers, is there a subset that

sums to k? A solution is a binary vector v ∈ Fn
2 for which

∑n
i=1 visi = k. This version of the

subset-sum problem is NP-complete [KT05].

The intuition for why the following protocol works is quite simple. Imagine Alice is trying

to convince Bob that the set {1, 4, 5, 7, 8} has a subset that sums to 14, without giving away

the subset. She sets up two rows of 5 upside-down cups on a table, and in the ith column,

one cup has no marbles and the other cup has si marbles. This is done randomly and

independently so that Bob does not know which cup is empty in each column. At this stage,

the upside-down cups may have an arrangement of marbles similar to Figure 3.1.

Next, Bob can ask Alice either to lift each cup up one-by-one in order for him to check

that Alice set it up properly, or he can ask her to slide one cup from each column to the edge
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Figure 3.1: Original arrangement of marbles

of the table, then knock those cups into a bowl in order for him to count the 14 marbles.

This second option is represented in Figure 3.2.

Figure 3.2: Action of Alice if Bob asks to see that the marbles sum to k

Since the cups are knocked into the bowl quickly, he has no idea which marbles came from

which cups, but he can count the number of marbles in total. By repeating this experiment

multiple times with new random arrangements in each round, Bob will gain confidence that

there is a subset that sums to 14, but he will never get any clues to which subset it may be.

3.1.2 Protocol

We describe the notation in Table 3.1 that will appear in the protocol. The operations

of the protocol will be over the field FQ for some large prime Q that exceeds the sum of

all the elements in the set s. This way, the integers of the set s and their sums can be

interpreted as values of FQ. The operation · is scalar multiplication defined entry-wise:

a · (x1, ..., xn) := (ax1, ..., axn).
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Notation Purpose Data-Type

c0, c1 keys for rows of cups Fn
Q

w0, w1 encryption of rows of cups Fn
Q

a randomly chosen by V FQ

s input set Fn
Q

k subset sum target FQ

v solution to the problem Fn
2

x indicates cups for solution Fn
2

z indicates empty cups Fn
2

c′ sum of keys of cups of x FQ

chall randomly chosen by V F2

· scalar multiplication operation
∗ entry-wise multiplication operation

Table 3.1: Notation used in ZKP for Subset Sum

We now introduce a ZKP between two provers and verifiers. Assuming the two provers

know a witness v, they will be able to convince two verifiers that there exists a solution to

the given subset sum problem instance. Before engaging in a round of the protocol, P1 and

P2 share random vectors c0, c1 ∈ Fn
Q and z ∈ Fn

2 . The protocol is described in 3.2.

Two-Prover, Two-verifier Subset Sum ZK protocol

1. V1 sends P1 a random value a ∈ FQ.

2. P1 replies with w0 = a · (s ∗ z) + c0 and w1 = a · (s ∗ z) + c1.

3. V2 sends P2 chall ∈ {0, 1}.
4. If chall = 0, then P2 sends V2 z, c0, c1. If chall = 1, then P2 will send to V2

the binary vector x = v ⊕ z and the value c′ =
n∑

i=1

(cxi
)i.

5. After the round, if chall = 0, then the verifiers confirm that w0 = a · (s ∗ z) + c0
and w1 = a · (s ∗ z) + c1. If instead chall = 1, then the verifiers check that
n∑

i=1

(wxi
)i = ak + c′. If a check fails, they reject, otherwise they accept.

Table 3.2: ZKP for Subset Sum

3.1.3 Proof of Security

Proposition 3.1.1. The ZK Subset Sum protocol has perfect completeness.
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Proof. Suppose the provers have a solution v ∈ Fn
2 and random shared vectors c0, c1 ∈ Fn

Q

and z ∈ Fn
2 . Then it is clear that if steps (2) and (4) are followed properly by the provers,

then the verification in (5) for chall = 0 will pass. On the other hand, if chall = 1, then the

checks will still pass since we have

n∑
i=1

(wxi
)i =

n∑
i=1

xi(w0)i + xi(w1)i

=
n∑

i=1

xi(asizi + (c0)i) + xi(asizi + (c1)i)

=
n∑

i=1

asi(xizi + xizi) + (xi(c0)i + xi(c1)i)

=
n∑

i=1

asivi +
n∑

i=1

(xi(c0)i + xi(c1)i)

= a
n∑

i=1

sivi +
n∑

i=1

(cxi
)i

= ak + c′.

Therefore all the checks by the verifiers will pass, so the probability that the provers are

accepted by the verifiers is 1.

Proposition 3.1.2. The Subset Sum ZKP is sound against malicious quantum provers with

soundness exponentially close to 1
2
in a single round.

The proof uses a technique similar to the proof of soundness in [CL17]. Here are the

steps that will be taken in the formal proof.

• Formalize the game that cheating provers play. This allows Gcoup to be defined by

Definition 2.4.4 where the second prover must answer both challenges at once. Note

that Gcoup is not zero-knowledge.
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• Since the subset sum problem instance has no solution, combining the answers for

both challenges must not yield a solution. Using this, we construct a strategy for P2

to guess a using basic modular arithmetic, assuming P2 can successfully answer both

challenges.

• By no-signalling, the probability of P2 successfully guessing a is not more than 1
Q
. This

yields an upper bound on the probability that P2 can answer both challenges, hence

upper bounding ω∗(Gcoup).

• We use Proposition 1 from [CL17] to relate the winning probability of Gcoup with the

winning probability of the ZKP for the Subset Sum Problem for cheating provers.

Proof. We define the game GSS so that it satisfies Definition 2.4.3.

• P1 receives value a ∈ FQ, and P2 receives chall ∈ {0, 1}.

• P1 outputs values w0, w1 ∈ Fn
Q. If chall = 0, then P2 outputs z ∈ Fn

2 and c0, c1 ∈ Fn
Q.

If chall = 1, then P2 outputs a value c′ ∈ FQ and a vector x ∈ Fn
2 .

• If chall = 0, then the two players win if w0 = a · (s ∗ z) + c0 and w1 = a · (s ∗ z) + c1.

If chall = 1, then players win if
n∑

i=1

(wxi
)i = ak + c′.

Recall Definition 2.4.6. The game GSS is 2n-projective since after z or x is chosen by P2, then

the winning values of c1, c2 or c′ are fixed. This can be seen by rearranging the equations

in the last bullet-point. In order to upper bound ω∗(GSS), we consider the game GSS
coup,

given in Definition 2.4.4. Our goal is to show that if cheating provers can win the game

GSS
coup, then P2 has a strategy to perfectly guess a, which should only happen with negligible

probability. Fix an input/output pair (a, (w0, w1)) for P1, and consider the outputs for P2

for both inputs. For chall = 0, we have

w0 = a · s ∗ z + c0 and w1 = a · s ∗ z + c1
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=⇒ wb = a(b · s ∗ z + b · s ∗ z) + cb.

For chall = 1, we have

n∑
i=1

(wxi
)i = ak + c′.

Substituting the left hand side, then rearranging, we get

ak + c′ =
n∑

i=1

(wxi
)i =

n∑
i=1

a · (xisizi + xisizi) + (cxi
)i

=⇒ a

(
n∑

i=1

(xisizi + xisizi)− k

)
= c′ −

n∑
i=1

(cxi
)i.

CLAIM:
n∑

i=1

(xisizi + xisizi) ̸= k.

Assume by contradiction that we have equality. Then we will construct a solution to the

subset sum problem, however since we are proving soundness in the case of a dishonest prover,

we have implicitly assumed this to not be possible. The candidate solution is v′ := x ⊕ z.

Indeed, we have

n∑
i=1

v′isi =
n∑

i=1

(x⊕ z)isi =
n∑

i=1

(xizi + xizi)si =
n∑

i=1

xizisi + xizisi = k.

Therefore we have constructed a solution v′, hence k cannot be equal to the sum.

By the result of the claim, we can divide and obtain

=⇒ a =

(
c′ −

n∑
i=1

(cxi
)i

)(
n∑

i=1

(xisizi + xisizi)− k

)−1

.
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However, since the value on the right hand side is completely determined by the output

of P2 and the value on the lefthand side is chosen uniformly at random for P1, this can

happen with probability at most 1
Q
by no-signalling. This means that ω∗(GSS

coup) ≤ 1
Q
. Now,

we can apply Proposition 1 from [CL17] to obtain

ω∗(GSS) ≤ 1

2
+

(
64 · 2n

Q

)1/3

.

If we take Q ≥ 64 · 2n+3K , then the protocol has soundness 1
2
+ 2−K . Lastly, we verify

that there is only a polynomial amount of communication needed for the protocol. In (1),

V1 sends log(Q) bits, then in (2), P1 sends 2n log(Q) bits, then in (3), only 1 bit is sent,

and finally in (4), n+ 2n log(Q) bits are sent if chall = 0, and if chall = 1, then n+ log(Q)

bits are sent. Therefore each step requires only a polynomial number of bits in n and k since

log(Q) ∈ O(n+ k).

Proposition 3.1.3. The ZK Subset Sum protocol has perfect zero knowledge against malicious

quantum verifiers

Proof. We’ll show that this protocol is zero knowledge in the model of 2-provers and a single

quantum verifier. We will give the verifier the freedom to query the provers in any order,

without needing to respect relativistic timing restraints. Proving the ZK property in this

model will be even stronger since the model gives as much power to the malicious verifier as

possible. We model a cheating verifier V ∗ as two families of circuits (V ∗
1 , V

∗
2 ), where V

∗
i takes

as input a sub-view and outputs the message to prover i for an instance of size n. Since the

verifier can ask the questions in either order, we have two cases:

• Case 1: V ∗
2 depends on the interaction with P1.

• Case 2: V ∗
1 depends on the interaction with P2.

Since the cases are treated very similarly, we will just present the proof of Case 1. In

other words, we’ll consider a verifier that queries P1 and waits for a response before querying
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P2. Our first step is to describe the view when V ∗ interacts with two honest provers. Then,

we will define a simulator that can create the same view using only query access to V ∗ despite

not having any access to provers. Since these two views will be the same, then the protocol

will be zero-knowledge.

The view will consist of classical registers Q1 and Q2 that will hold the questions that

will be asked to P1 and P2. Also, the responses of the two provers will be stored in classical

registers R1 and R2. In addition, the verifier will hold a private quantum register V . In

addition, we will adopt the notation D(ψ) := |ψ⟩⟨ψ| for quantum states to avoid the need

to write ψ twice.

Case 1 with Honest Prover

We assume that the operation of V ∗
2 will depend on the interaction with P1. At the

beginning of the protocol, the verifier’s view is an auxiliary state σ0 := ρV .

Next, after the verifier’s first message, the view is

σ1 := V ∗
1 (ρV ) =

∑
a∈FQ

paD(a)Q1 ⊗ ρ(a)V .

Here, pa is the probability of a being the query for P1, and ρ(a)V is the verifier’s private

quantum state after sending a to P1. Following the response of P1, the verifier’s view is

σ2 :=
1

Q2n

1

2n

∑
c0,c1∈Fn

Q

∑
z∈Fn

2

∑
a∈FQ

paD(Y (z, c0, c1))R1 ⊗D(a)Q1 ⊗ ρ(a)V .

where Y (z, c0, c1) := (a · s ∗ z+ c0, a · s ∗ z+ c1). Next, the verifier sends the challenge, which

can be influenced by all that has happened up to this point. In other words, the verifier
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applies the circuit V ∗
2 to the view σ2. The view becomes

σ3 :=
1

Q2n

1

2n

∑
c0,c1∈Fn

Q

∑
z∈Fn

2

∑
a∈FQ

∑
chall∈{0,1}

pa,challD(Y (z, c0, c1))R1

⊗D(chall)Q2 ⊗D(a)Q1 ⊗ ρ(a, chall, Y (z, c0, c1))V .

After the final message, we have two cases. If the challenge is 0, then P2 sends z, c0, c1

in the second response register. On the other hand, if the challenge is 1, then that register

should instead contain a value c′ and a binary vector x. In particular, an honest prover will

choose x = v ⊕ z and c′ =
n∑

i=1

(cxi
)i, yielding

σ4 :=
1

Q2n

1

2n

∑
c0,c1∈Fn

Q

∑
z∈Fn

2

∑
a∈FQ

D(Y (z, c0, c1))R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗D(z, c0, c1)R2 ⊗ ρ(a, 0, Y (z, c0, c1))V

+ pa,1D(1)Q2 ⊗D(v ⊕ z, c′)R2 ⊗ ρ(a, 1, Y (z, c0, c1))V

)
.

This is the final view for an honest prover. Now, before moving onto the simulator, we

will rewrite this final state so that it will resemble the simulator’s final state later on. The

first step is to let (w0, w1) := Y (z, c0, c1) and sum over w0, w1 instead of c0, c1. This means

that c0 = w0 − a · s ∗ z and c1 = w1 − a · s ∗ z. So far, this gives us

σ4 =
1

Q2n

1

2n

∑
w0,w1∈Fn

Q

∑
z∈Fn

2

∑
a∈FQ

D(w0, w1)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗D(z, w0 − a · s ∗ z, w1 − a · s ∗ z)R2 ⊗ ρ(a, 0, w0, w1)V

+ pa,1D(1)Q2 ⊗D(v ⊕ z, c′)R2 ⊗ ρ(a, 1, w0, w1)V

)
.
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The next step is to move the sum over z past the terms on which it does not act. We obtain

σ4 =
1

Q2n

∑
w0,w1∈Fn

Q

∑
a∈FQ

D(w0, w1)R1 ⊗D(a)Q1 ⊗
(
pa,0|0⟩⟨0|Q2⊗

1

2n

∑
z∈Fn

2

D(z, w0 − a · s ∗ z, w1 − a · s ∗ z)R2 ⊗ ρ(a, 0, w0, w1)V

+ pa,1D(1)Q2 ⊗
1

2n

∑
z∈Fn

2

D(v ⊕ z, c′)R2 ⊗ ρ(a, 1, w0, w1)V

)
.

The final step is to rename x := v⊕ z in the third line and sum over x instead. We can also

use the relation from Proposition 3.1.1 to obtain c′ =
n∑

i=1

(wxi
)i − ka. Putting this together,

we get

σ4 =
1

Q2n

∑
w0,w1∈Fn

Q

∑
a∈FQ

D(w0, w1)R1 ⊗D(a)Q1 ⊗
(
pa,0D(0)Q2⊗

1

2n

∑
z∈Fn

2

D(z, w0 − a · s ∗ z, w1 − a · s ∗ z)R2 ⊗ ρ(a, 0, w0, w1)V

+ pa,1D(1)Q2 ⊗
1

2n

∑
x∈Fn

2

D(x,
n∑

i=1

(wxi
)i − ka)R2 ⊗ ρ(a, 1, w0, w1)V

)
.

Case 1 with Simulator

Now, we describe how to simulate the views of the verifier without the help of any provers.

We will denote the ith simulated view as σ′
i. Since the simulator has access to V ∗

1 and ρV ,

then σ0 and σ1 are straightforward to simulate. Intuitively, no effort is required at this stage

because the prover has not acted yet. For σ2, the response from P1 is two uniformly random

vectors w0, w1 since c0 and c1 act as one-time pads. Then

σ′
2 =

1

Q2n

∑
w0,w1∈Fn

Q

∑
a∈FQ

paD(w0, w1)R1 ⊗D(a)Q1 ⊗ ρ(a)V .
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This can be created from σ′
1 by tensoring with the maximally mixed state in register R1.

Next, the simulator applies V ∗
2 to σ′

2 to get σ′
3:

σ′
3 =

1

Q2n

∑
w0,w1∈Fn

Q

∑
a∈FQ

∑
chall∈{0,1}

pa,challD(w0, w1)R1

⊗D(chall)Q2 ⊗D(a)Q1 ⊗ ρ(a, chall, w0, w1)V .

The final step is to simulate σ4. Again, this depends on the challenge bit chall.

• For chall = 0 in register Q2, the simulator chooses a random z ∈ Fn
2 and then puts

D(z, w0 − a · s ∗ z, w1 − a · s ∗ z̄) in register R2.

• For chall = 1 in register Q2, the simulator chooses a random x ∈ Fn
2 and then places

D(x,
n∑

i=1

(wxi
)i − ka) in register R2.

This gives a final view of

σ′
4 =

1

Q2n

∑
w0,w1∈Fn

Q

∑
a∈Fn

Q

D(w0, w1)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗

1

2n

∑
z∈Fn

2

D(z, w0 − a · s ∗ z, w1 − a · s ∗ z̄)R2 ⊗ ρ(a, 0, w0, w1)V

+ pa,1D(1)Q2 ⊗
1

2n

∑
x∈Fn

2

D(x,
n∑

i=1

(wxi
)i − ka)R2 ⊗ ρ(a, 1, w0, w1)V

)
.

Now, it is clear that the two views σ4 and σ′
4 are equal, hence our simulator succeeded.

Case 2 The proof of Case 2 is very similar and is left out.

3.1.4 Analysis of Efficiency

Now we analyze the efficiency of the Subset Sum ZKP. The best known quantum algorithm

for the Subset Sum Problem has time complexity O(2n/3) [AHJ+22]. In order to take roughly
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time 2100 to solve, the instance must therefore be of size n ≥ 300. The prime Q is chosen

such that Q > 64 ·2n+3K with K = 5 so that soundness is 1
2
+2−K ≈ 0.53. Then the expected

number of bits sent in each round is

log2(Q) + 1 + 2n log2(Q) + (n+
2n log2(Q) + log2(Q)

2
) ≈ 290, 000

where the terms correspond to the number of bits sent by V1, V2, P1, P2, in that order. This

means that each round requires roughly 36KB of communication. This is far less than the

1.89MB required by [CL17], and comparable to the 17KB required by the protocol of [CB21].

Note however that the Subset Sum ZKP has a lower soundness error than [CB21] (roughly 1
2

compared to 2
3
), meaning that less rounds are required. To reduce the total soundness error to

2−100, our Subset Sum ZKP would require only 110 rounds (0.53110 ≈ 2−100), whereas [CB21]

would require 170 rounds (0.67170 ≈ 2−100). Putting this together, the total information sent

in our protocol is roughly 3.96MB (36KB per round with 110 rounds), compared to 2.89MB

of total communication for [CB21] (17KB per round with 170 rounds). This means that our

ZKP is very comparable to [CB21] in terms of total information sent.

One important consideration is the complexity of computation for the provers. We will

first motivate this by explaining the experimental setup, which is depicted in Figure 3.3.

Figure 3.3: Message propagation in experimental setup
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Before the rounds, the verifiers position themselves a known distance apart. Then in

every round, they each send their message to their respective prover. The provers each

receive a message, perform some computation, then reply back to their respective verifier. In

order to ensure that the provers are separated, the verifiers time the responses to ensure that

the provers reply within fixed time limits. These time limits depend on the distance between

the verifiers, and ensure that the provers are inside the dotted circles, hence separated.

Importantly, the response of P2 is not influenced by the question of V1 and similarly, the

response of P1 is not influenced by the question of V2. For example, after V1 sends the

message a intended for P1, then if P2 receives a as well, then P2 will still not have enough

time to reply to V2 with a message influenced by a. This is crucial to fulfill the assumption

that each prover only has access to the question intended for them. For more details on the

experimental setup, see [ABC+21] or [CB21].

In theory, if all the messages travel towards the other parties at the speed of light, and

each party can instantly reply when they receive a message, then as long as the provers

stay within the dotted circles, then the protocol should run smoothly. However in practice,

the messages may not follow such a direct path to their intended recipients, and the provers

must take some time to perform internal computations once they have received their message

before they can reply. Effectively, this means that the provers cannot be close to the edges

of the dotted circles since it will not give them enough time to respond, and slower protocols

require the verifiers to further increase their separation. Experimentally, large distances

have been required by the verifiers in order to give the provers enough time to respond.

For example, the small-scale setup in [CB21] required the verifiers to position themselves

400km apart, whereas in [ABC+21], the verifiers were only 60m apart. These differences are

a result of the amount of communication required in each round and the time complexity

of the operations required by the provers. For this reason, we also seek to speed up the

computations required by the honest provers in order to allow for more practical, small-scale

uses of ZKPs.
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With the experimental setup explained, we can now compare multiplication complexities.

While only three multiplications must be performed by the prover in [CB21], their field FQ

is far larger than ours, chosen to have 223209 − 1 elements. To their benefit, they only need

to perform three multiplications per round, whereas in our protocol, 2n multiplications must

be performed, albeit in a much smaller field of size roughly 2321. As an added bonus, our

multiplications are all by the same constant a, hence parallelism is very straightforward.

Multiplication can have varying time complexities depending on the implementation, and

some algorithms contain large hidden constants. To simplify the comparison, tests were run

using Python with and without parallelism (array multiplication in NumPy). In our brief

experiments, our multiplications were roughly 3 times faster without parallelism and roughly

7 times faster with parallelism when compared to [CB21]. We leave a more thorough analysis

for future work.

In short, faster multiplication can allow the verifiers in the protocol to be at closer

distances, making it more practical, and allowing the protocol to run faster. In Table 3.3

we present a summary of the results by comparing our Subset Sum ZKP with other known

quantum-secure ZKPs in the literature.

Protocol #Bytes/Round #Rounds Multiplication complexity

[ABC+21] 2B 1019 negligible
[CL17] 1.89MB 177 40 to 300× slower
[CB21] 17.03KB 170 3 to 7× slower

Subset Sum ZKP 36KB 110 Baseline

Table 3.3: Comparison of efficiency of known ZKPs

Note that although the protocol of [ABC+21] has very efficient rounds, three provers are

required to achieve quantum security, and the number of rounds is impractical. Note that

the numbers presented here differ slightly from in [CL17]1 and in [CB21]2.

1 [CL17] requires 177 rounds because in [CB21], Q is chosen to be 10000n! = 64n!23k so k ≈ 2.4, hence
soundness is 1

2 + 2−2.4 ≈ 0.69
2In [CB21], 340 rounds were chosen for loss tolerance
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One last point is that generating positive instances of the Subset Sum Problem is straight-

forward by sampling n random numbers between 1 and Q/n, then determining the target k

by randomly choosing a subset of the n numbers.

3.2 A ZKP for 3-SAT

3.2.1 General Idea

3-SAT problem: Given a Boolean expression ϕ of the variables x1, ..., xn in conjunctive normal

form with m clauses of size 3 (3-CNF), determine whether there is an assignment for the

variables that satisfies ϕ. For example, the variables may be x1, ..., x5, and ϕ may be

ϕ′ ≡ (x3 ∨ ¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ x4 ∨ x2).

Then ϕ′ has a satisfying assignment of x = (1, 0, 1, 0, 0). This problem is known to be

NP-complete [AHU74].

Note that a witness to the a 3SAT instance is typically viewed as an assignment x of the

variables, but instead for this section, we will construct a witness differently. An alternate

way to present a solution to the 3SAT problem is to provide a vector e ∈ {1, 2, 3}m that

indicates the position of a 1 in each clause of ϕ. This way, one could perform a linear scan

through ϕ and determine the variable assignments. The only required check would be that

the same variable does not obtain two different assignments based on two different clauses.

For example, an e ∈ {1, 2, 3}4 for ϕ′ could be e′ := (1, 2, 1, 1), though it is not unique.

Many ZKPs require a randomized step to ensure that the verifier does not learn anything

about the witness when the prover unveils an answer. Here, the randomization will be

independent cyclic permutations of the variables in each clause.

Definition 3.2.1. Let ϕ be a CNF with m clauses, each of size 3. We define a cyclic CNF

permutation Π to be a collection of m cyclic permutations on {1, 2, 3}. By Π(ϕ), we denote
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ϕ after each clause has been permuted by the corresponding permutation of Π. We define

CP to be the set of all cyclic CNF permutations on ϕ.

For example by choosing a random Π ∈ CP , with ϕ′ as above, then Π(ϕ′) could be the

following:

Π(ϕ′) ≡ (x5 ∨ x3 ∨ ¬x2) ∧ (¬x4 ∨ ¬x5 ∨ ¬x1) ∧ (x5 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ x4 ∨ x2).

Note that simply re-arranging the contents of the CNF does not change the satisfiability of

the formula since ∨ is commutative. In fact, the values of e ∈ {1, 2, 3}m must get adjusted

according to Π. We write Π(e) to denote the witness in {1, 2, 3}m for Π(ϕ) where each

coordinate of e has undergone the corresponding permutation in Π. For example, Π(e′) =

(2, 1, 2, 1). The idea with the protocol below is that the provers will commit to the satisfying

assignment, as well as the formula Π(ϕ) with the satisfying assignment substituted in for

the variables. For example, with the running example of ϕ′, the provers would make the

following commitment:

Figure 3.4: Commitment by provers

Next, the verifiers can either challenge the provers to unveil a 1 in each clause, or to

prove that the variable assignments were consistent. If the challenge was the former, then

the verifiers would see the following:

Note that the unveiled 1’s are in the positions specified by Π(e′). On the other hand, if the

verifiers asked to see that the variable assignments were consistent, then the provers would

go through each variable of Π(ϕ) and prove that it’s value is consistent with the satisfying

assignment. The diagram below depicts this step for only the third clause to avoid clutter.
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Figure 3.5: Provers unveil a 1 in each clause

Figure 3.6: Provers show consistent variable assignments

Note that the provers will use their ability to unveil the difference of commitments for

the green lines, and use their ability to unveil the sum of commitments for the red lines. In

particular, the difference of two equal bits is 0, and the sum of two different bits is 1.

3.2.2 Protocol

First, we introduce notation that will be used throughout the protocol. The operations

will be mainly addition and multiplication over the field FQ, however, we will also multiply

elements of FQ by bits, hence Q may be any large prime power since every field has elements

0,1.

Next, we introduce a ZKP between two provers and two verifiers. Assuming the two

provers know a witness s′ ∈ {0, 1}n, they will be able to convince two verifiers that there

exists a solution to the given 3SAT problem instance. First, they compute an e ∈ {1, 2, 3}m

from s′ that indicates the position of a 1 in each clause. Then, before each round, the provers

share random Π ∈ CP , c ∈ F3m
Q , c′ ∈ Fn

Q.
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Notation Purpose Data-Type

Π cyclic 3-CNF permutation CP
ϕ 3-CNF formula CP
s′ satisfying assignment of ϕ Fn

2

p bits of permuted formula Π(ϕ) F3m
2

c key for p F3m
Q

c′ key for s′ Fn
Q

w encryption of p F3m
Q

w′ encryption of s′ Fn
Q

e indicates a 1 in each clause of ϕ {1, 2, 3}m
chall random challenge bit chosen by verifier {0, 1}

Table 3.4: Notation used in ZKP for 3SAT

Two-Prover, Two-verifier 3-SAT ZKP

1. V1 sends P1 a random value a ∈ FQ.

2. P1 replies with w′ = a · s′ + c′ and w = a · p+ c.

3. V2 sends P2 chall ∈ {0, 1}.
4. If chall = 0, P2 first sends Π to V2. Then for each i = 1, ..., 3m: let xj be at
position i of Π(ϕ). P2 sends to V2:

• ci + c′j if variable xj is negated at position i.

• ci − c′j if variable xj is not negated at position i.

Instead if chall = 1, then for each i = 1, ...,m, P2 sends (Π(e)i, c3(i−1)+Π(e)i) to V2,
unveiling a 1 in each clause.

5. After the round, if chall = 0, then the verifiers confirm that for each i = 1, ..., 3m,
if variable xj is at position i of Π(ϕ), then

• wi + w′
j = a+ (ci + c′j) if variable xj is negated at position i.

• wi − w′
j = ci − c′j if variable xj is not negated at position i.

If instead chall = 1, then the verifiers check that for each i = 1, ...,m, it is the case
that w3(i−1)+Π(e)i = a+ c3(i−1)+Π(e)i .

Table 3.5: ZKP for 3SAT

3.2.3 Proof of Security

Proposition 3.2.2. The 3-SAT ZKP has perfect completeness.
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Proof. Assume that the two honest provers have a witness s′. Then if they follow the steps

in the protocol with two honest verifiers, then when chall = 0, the checks that the verifiers

make will pass. Indeed, if i ∈ {1, ..., 3m} and variable xj is negated at position i in Π(ϕ),

then s′j + pi = 1, yielding

wi + w′
j = (api + ci) + (as′j + c′j) = a(pi + s′j) + (ci + c′j) = a+ (ci + c′j).

If instead variable xj is not negated at position i in Π(ϕ), then s′j = pi, meaning that

wi − w′
j = (api + ci)− (as′j + c′j) = a(pi − s′j) + (ci − c′j) = ci − c′j.

Next we confirm that the checks will pass when chall = 1. The provers are honest, meaning

each clause contains a 1, therefore p3(i−1)+Π(e)i = 1 ∀i ∈ {1, ...,m}, hence

w3(i−1)+Π(e)i = ap3(i−1)+Π(e)i + c3(i−1)+Π(e)i = a+ c3(i−1)+Π(e)i .

Therefore all the checks by the verifiers will pass for both values of chall.

Proposition 3.2.3. The 3-SAT ZKP is sound against malicious quantum provers with sound-

ness exponentially close to 1
2
in a single round.

Proof. We define the game G3SAT .

• P1 receives value a ∈ FQ, and P2 receives chall ∈ {0, 1}.

• P1 outputs values w ∈ F3m
Q , w′ ∈ Fn

Q. If chall = 0, then P2 outputs a Π ∈ CP and a

value δ ∈ F3m
Q . If chall = 1, then P2 outputs f ∈ {1, 2, 3}m, γ ∈ Fm

Q .

• After the round, if chall = 0, then the provers win if for each i = 1, ..., 3m, it holds

that
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– wi + w′
j = a+ δi where variable xj appears negated at position i of Π(ϕ),

– wi − w′
j = δi where variable xj appears not negated at position i of Π(ϕ).

If instead chall = 1, then the provers win if for each i = 1, ...,m, it is the case that

w3(i−1)+fi = a+ γi.

Recall Definition 2.4.6. The game G3SAT is 3m-projective where since after P1 has output

values w,w′, then P2 has 3m choices for Π and 3m choices for f , and in both cases the second

value (δ or c) will be uniquely determined. This can be seen by rearranging the equations

in the last bullet-point. In order to upper bound ω∗(G3SAT ), we consider the game G3SAT
coup ,

given in Definition 2.4.4. From a winning strategy for G3SAT
coup , we’ll devise a strategy for P2

to guess a based solely on P2’s local input chall and output.

Fix an input/output pair (a, (w0, w1)) for P1, and suppose P2 successfully answers both

challenges. Note that constructing a satisfying assignment is implicitly assumed to be im-

possible since soundness is currently being considered. Then there must be a variable xj

and two conflicting clauses i, i′ ∈ {1, ...,m} such that xj is negated at position 3(i− 1) + fi

of Π(ϕ) but not negated at position 3(i′ − 1) + fi′ of Π(ϕ). Otherwise, a solution could be

formed as discussed in the introduction, and there would not be any conflicts between any

variable assignments. This situation is illustrated below.

Figure 3.7: Conflicting variable assignments. The green line represents that the difference

of the two bits was unveiled to be 0, and the red line means that the sum was unveiled to

be 1
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Then the conflict between clauses i, i′ ∈ {1, ...,m} for variable xj leads to the following.

w3(i−1)+fi + w′
j = a+ δ3(i−1)+fi and w3(i′−1)+fi′

− w′
j = δ3(i′−1)+fi′

Summing the contents of the two equations cancels out w′
j.

w3(i−1)+fi + w3(i′−1)+fi′
= a+ δ3(i−1)+fi + δ3(i′−1)+fi′

Next, we use the equality from satisfying chall = 1, and then finally isolate for a.

(a+ γi) + (a+ γi′) = a+ δ3(i−1)+fi + δ3(i′−1)+fi′

=⇒ a = δ3(i−1)+fi + δ3(i′−1)+fi′
− γi − γi′

Note that the values on the right hand side are all decided by P2, hence P2 has a strategy to

guess a. However, P2 can achieve this correlation with probability at most 1
Q
by no-signalling,

thus ω∗(G3SAT
coup ) ≤ 1

Q
. Now, we can apply Proposition 1 from [CL17] to obtain

ω∗(G3SAT ) ≤ 1

2
+

(
64 · 3m

Q

)1/3

.

If we take Q ≥ 64 · 2log(3)m+3k, then the protocol has soundness 1
2
+ 2−k. Next, there is

a polynomial amount of communication in total since each step requires only a polynomial

number of bits in n and m since log(Q) ∈ O(m). Indeed, in (1), V1 sends log(Q) bits, then in

(2), P1 sends (n+3m) log(Q) bits, then in (3), only 1 bit is sent. Finally in (4), if chall = 0

then sending Π takes at most 2m bits and sending the rest is 3mQ bits. On the other hand,

if chall = 1, then at most m(Q+ 2) bits are sent.

Proposition 3.2.4. The 3SAT ZKP has perfect zero-knowledge against malicious quantum

verifiers.
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Proof. We’ll again use the model of 2-provers and a single quantum verifier, giving the verifier

the freedom to query the provers in any order, without needing to respect relativistic timing

restraints. As before, we model a cheating verifier V ∗ as two families of circuits (V ∗
1 , V

∗
2 ),

where V ∗
i takes as input a sub-view and outputs the message to prover i for an instance of

size n. Since the verifier can ask the questions in either order, we have two cases:

• Case 1: V ∗
2 depends on the interaction with P1.

• Case 2: V ∗
1 depends on the interaction with P2.

Since the cases are treated very similarly, we will just present the proof of Case 1. In

other words, we’ll consider a verifier that queries P1 and waits for a response before querying

P2. Our first step is to describe the view when V ∗ interacts with two honest provers. Then,

we will define a simulator that can create the same view using only query access to V ∗ despite

not having any access to provers. Since these two views will be the same, then the protocol

will be zero-knowledge.

The view will consist of classical registers Q1 and Q2 that will hold the questions that

will be asked to P1 and P2. Also, the responses of the two provers will be stored in classical

registers R1 and R2. In addition, the verifier will hold a private quantum register V . In

addition, we will adopt the notation D(ψ) := |ψ⟩⟨ψ| for quantum states to avoid the need

to write ψ twice.

Case 1 with Honest Prover

We assume that the operation of V ∗
2 will depend on the interaction with P1. At the

beginning of the protocol, the verifier’s view is an auxiliary state σ0 := ρV .

Next, after the verifier’s first message, the view is

σ1 := V ∗
1 (ρV ) =

∑
a∈FQ

paD(a)Q1 ⊗ ρ(a)V .
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Here, pa is the probability of a being the query for P1, and ρ(a)V is the verifier’s private

quantum state after sending a to P1. Following the response of P1, the verifier’s view is

σ2 :=
1

Qn+3m

1

3m

∑
c′∈Fn

Q,c∈F3m
Q

∑
Π∈CP

∑
a∈FQ

paD(a · s′ + c′, a · p+ c)R1 ⊗D(a)Q1 ⊗ ρ(a)V .

Note that p is uniquely determined by ϕ, Π, and s′, so it is not part of the sum. Also,

|CP | = 3m. Next, the verifier sends the challenge, which can be influenced by all that has

happened up to this point. In other words, the verifier applies the circuit V ∗
2 to the view σ2.

The view becomes

σ3 :=
1

Qn+3m

1

3m

∑
c′∈Fn

Q,c∈F3m
Q

∑
Π∈CP

∑
a∈FQ

∑
chall∈{0,1}

pa,challD(a · s′ + c′, a · p+ c)R1

⊗D(chall)Q2 ⊗D(a)Q1 ⊗ ρ(a, chall, a · s′ + c′, a · p+ c)V .

After the final message, we have two cases. If the challenge is 0, then P2 sends the CNF

permutation Π and a vector δ ∈ F3m
Q in the second response register. On the other hand, if

the challenge is 1, then that register should instead contain vectors Π(e) ∈ {1, 2, 3}m,γ ∈ Fm
Q .

In particular, an honest prover will choose δi = ci ± c′j as described in step 4 of the protocol,

and γi = c3(i−1)+Π(e)i where Π(e)i indicates the position of a 1 in the i-th clause of Π(ϕ).

σ4 :=
1

Qn+3m

1

3m

∑
c′∈Fn

Q,c∈F3m
Q

∑
Π∈CP

∑
a∈FQ

D(a · s′ + c′, a · p+ c)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗D(Π, δ)R2 ⊗ ρ(a, 0, a · s′ + c′, a · p+ c)V

+ pa,1D(1)Q2 ⊗D(Π(e), γ)R2 ⊗ ρ(a, 1, a · s′ + c′, a · p+ c)V

)

This is the final view when interacting with an honest prover. Now, before moving onto

the simulator, we will rewrite this final state so that it will resemble the simulator’s final

state later on. The first step is to let w′ := a · s′ + c′ and w := a · p + c and sum over
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w′, w instead of c′, c. Rewriting the sum this way may seem problematic since δ and γ were

explicitly defined using c and c′, however using the relations c′ = w′− a · s′ and c = w− a · p,

the definition of γ becomes

γi = c3(i−1)+Π(e)i = w3(i−1)+Π(e)i − a · p3(i−1)+Π(e)i = w3(i−1)+Π(e)i − a.

since the honest prover gives Π(e)i such that p3(i−1)+Π(e)i = 1. The definition of δ becomes

δi =


wi + w′

j − a if variable xj is negated at position i of Π(ϕ).

wi − w′
j if variable xj is not negated at position i of Π(ϕ).

where xj is the variable at position i of Π(ϕ). Now, we can replace the summation over c′, c

with a summation over w′, w in σ4 to obtain:

σ4 :=
1

Qn+3m

1

3m

∑
w′∈Fn

Q,w∈F3m
Q

∑
Π∈CP

∑
a∈FQ

D(w′, w)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗D(Π, δ)R2 ⊗ ρ(a, 0, w′, w)V

+ pa,1D(1)Q2 ⊗D(Π(e), γ)R2 ⊗ ρ(a, 1, w′, w)V

)
.

The next step is to move the sum over Π past the terms on which it does not act. We obtain

σ4 :=
1

Qn+3m

∑
w′∈Fn

Q,w∈F3m
Q

∑
a∈FQ

D(w′, w)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗

1

3m

∑
Π∈CP

D(Π, δ)R2 ⊗ ρ(a, 0, w′, w)V

+ pa,1D(1)Q2 ⊗
1

3m

∑
Π∈CP

D(Π(e), γ)R2 ⊗ ρ(a, 1, w′, w)V

)
.
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At this point, we can rename Π(e) to f and sum over all f ∈ {1, 2, 3}m instead. We obtain

σ4 :=
1

Qn+3m

∑
w′∈Fn

Q,w∈F3m
Q

∑
a∈FQ

D(w′, w)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗

1

3m

∑
Π∈CP

D(Π, δ)R2 ⊗ ρ(a, 0, w′, w)V

+ pa,1D(1)Q2 ⊗
1

3m

∑
f∈{1,2,3}m

D(f, γ)R2 ⊗ ρ(a, 1, w′, w)V

)
.

Case 1 with Simulator

Now, we describe how to simulate the views of the verifier without the help of any provers.

We will denote the ith simulated view as σ̃i. Since the simulator has access to V ∗
1 and ρV ,

then σ0 and σ1 are straightforward to simulate. Intuitively, no effort is required at this stage

because the prover has not acted yet. For σ2, the response from P1 is two uniformly random

vectors w ∈ F3m
Q , w′ ∈ Fn

Q since c and c′ act as one-time pads. Then

σ̃2 =
1

Qn+3m

∑
w∈F3m

Q ,w′∈Fn
Q

∑
a∈FQ

paD(w′, w)R1 ⊗D(a)Q1 ⊗ ρ(a)V .

This can be created from σ̃1 by tensoring with the maximally mixed state in register R1.

Next, the simulator applies V ∗
2 to σ̃2 to get σ̃3:

σ̃3 =
1

Qn+3m

∑
w∈F3m

Q ,w′∈Fn
Q

∑
a∈FQ

∑
chall∈{0,1}

pa,challD(w′, w)R1

⊗D(chall)Q2 ⊗D(a)Q1 ⊗ ρ(a, chall, w′, w)V .

The final step is to simulate σ4. Again, this depends on the challenge bit chall.
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• For chall = 0 in register Q2, the simulator chooses a random CNF permutation Π and

then puts D(Π, δ̃) in register R2 where δ̃ ∈ F3m
Q is defined below

δ̃i =


wi + w′

j − a if variable xj is negated at position i of Π(ϕ)

wi − w′
j if variable xj is not negated at position i of Π(ϕ)

where xj is the variable at position i of Π(ϕ).

• For chall = 1 in register Q2, the simulator chooses a random f̃ ∈ {1, 2, 3}m and then

places D(f̃ , γ̃) in register R2, where γ̃ ∈ Fm
Q is defined below:

γ̃i = w3(i−1)+f̃i
− a.

This gives a final view of

σ̃4 =
1

Qn+3m

∑
w∈F3m

Q ,w′∈Fn
Q

∑
a∈FQ

D(w′, w)R1 ⊗D(a)Q1⊗

(
pa,0D(0)Q2 ⊗

1

3m

∑
Π∈PERM

D(Π, δ̃)R2 ⊗ ρ(a, 0, w′, w)V

+ pa,1D(1)Q2 ⊗
1

3m

∑
f̃∈{1,2,3}m

D(f̃ , γ̃)R2 ⊗ ρ(a, 1, w′, w)V

)
.

Now, it is clear that the two views σ4 and σ̃4 are equal since δ̃, γ̃ are defined identically to

δ, γ in the honest case, hence our simulator succeeded.

The proof of case 2 follows the same logic.
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Chapter 4

Conclusion and Future Work

The zero-knowledge protocols presented in this thesis highlight the usefulness of homo-

morphic bit commitment. Using the relativistic commitment scheme described in Section

2.5 contents of commitments and be easily combined to allow for new protocols. For exam-

ple, a protocol that allows provers to prove that two commitments are equal is extremely

simple with this approach by unveiling the difference of the contents. In addition, the proof

technique used for soundness in [CL17] is extremely powerful and can be applied to a wide

range of protocols.

Note that in both protocols from Sections 3.1 and 3.2, the commitments that were com-

bined were commitments made only by the provers. It would be interesting to devise a

protocol that verifies whether two strings are equal when one string is in the possession of

one party and the other string is kept by the other party. Indeed, this could allow for novel

zero-trust identification protocols that have no computational assumptions, only relativistic

ones. One difficulty of directly applying the existing approach to this problem is that at

the end of the protocol, the parties should not necessarily know the difference of their two
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strings. They should only learn one bit of information from the protocol: whether the two

strings are equal or not.

Finally, in [CB21], the authors managed to prove a similar bound as in [CL17], except

that it can be applied to protocols with three challenges. If these bounds could be extended

to prove soundness for protocols with a polynomial number of challenges, then perhaps a

similar proof technique could be applied to prove soundness of the ZKP for QMA presented

in [BG22] when using the relativistic commitment scheme seen in Section 2.5. This would

allow for a simple two-prover ZKP for QMA using only relativistic assumptions.
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