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ABSTRACT                                            

A mining complex is an integrated mineral value chain that consists of multiple interrelated 

activities, from material extraction to a set of sellable products. Simultaneous stochastic 

optimization of the long-term plan of a mining complex provides asset valuation, strategic 

decisions, forecasts, and targets while accounting for geological supply uncertainty, and 

commodity price uncertainty. However, supply uncertainty related to non-additive 

geometallurgical properties of materials that affect the performance of the processing streams 

is still not accounted for in the existing simultaneous stochastic optimization models. A short-

term plan developed within the long-term plan provides decisions on the monthly/weekly/daily 

sequence of extraction, the destination of materials, the allocation of equipment, and the 

utilization of processing streams, and aims to ensure compliance with the long-term targets 

while maximizing cash flow. With digital technologies, a mining complex can acquire new 

information about the quality and quantity of materials at, and performance of its different 

components while it operates. However, the new information is partial and noisy, therefore 

uncertain, and referred to as “soft” data. This “softness” is attributed to the characteristics of 

the related sensors that generate indirect measurements compared to the geochemical analysis 

of drillhole samples. Existing technologies cannot integrate the soft incoming new information 

and respond accordingly in real-time to adapt the short-term plan.  

This thesis contributes a new self-learning framework for adapting short-term planning 

decisions by learning to integrate soft incoming new information. This follows an extension of 

the simultaneous stochastic optimization model to account for the geometallurgical supply 

uncertainty. 
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This thesis first introduces an approach that characterizes the materials as hard or soft, then 

links them to the simultaneous stochastic optimization model through geometallurgical targets. 

An application at a copper-gold mining complex indicates higher chances of meeting targets, a 

substantial increase in metal production, and a 19.3% increase in net present value. 

Next, a self-learning framework is presented that proposes a new extension of the ensemble 

Kalman filter for updating the supply uncertainty of multiple correlated properties of materials 

with incoming new information. Then, a model-free policy gradient reinforcement learning 

algorithm is extended to learn to adapt the destination of materials in a multi-product mining 

complex. The proposed framework is applied at a copper mining complex and compared to 

industry-standard approaches to highlight its abilities. 

A new model-based self-play reinforcement learning algorithm is proposed next, which 

uses a Monte Carlo tree search and a deep neural network agent in a self-play architecture to 

learn to respond to incoming new information by adapting the short-term sequence of 

extraction, destination of materials, and utilization of processing streams simultaneously. The 

algorithm plays the game of short-term production planning by itself using a Monte Carlo tree 

search to train a deep neural network agent. This work also proposes a Monte Carlo simulation 

algorithm to update the equipment performance uncertainty. An application at a copper mining 

complex shows its ability to adapt the short-term plan almost in real-time to better meet 

production requirements while increasing metal production and cash flows.  

The existing methods to update the supply uncertainty of materials cannot learn from the 

incoming new information and do not account for high-order spatial statistics. Therefore, a new 

model-free actor-critic reinforcement learning algorithm is proposed. First, the actor and critic 

agents respectively predict and evaluate the updated properties of a mining block, then the 

updated block properties are evaluated with a conditional probability distribution function 
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generated using high-order spatial statistics and, finally, the evaluations are used to train the 

agents. An application at a copper mining operation demonstrates its applied aspects. 

The self-learning artificial intelligence framework proposed in this thesis can allow a 

mining complex to learn and adapt with incoming new information while it operates to make 

more informed short-term planning decisions. Future work can improve the performance of the 

algorithms and develop new methods to adapt the long-and short-term plans simultaneously. 
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RÉSUMÉ 

Un complexe minier est une chaîne d’approvisionnement intégrée composée de plusieurs 

activités interreliées, allant de l’extraction de minerai, à la livraison de produits 

commercialisables. L’optimisation stochastique simultanée du plan de production à long terme 

d’un complexe minier fournit des décisions stratégiques, des prévisions, des objectifs, ainsi 

qu’une évaluation des actifs, tout en tenant compte des incertitudes géologiques, et de 

l’incertitude des prix des marchandises. Cependant, l’incertitude liée aux attributs 

géométallurgiques non-additifs de matériaux qui affectent la performance des réseaux de 

traitement n’est toujours pas pris en compte dans les modèles existants d’optimisation 

stochastique simultanée. Un plan de production à court-terme, créé pour fournir des décisions 

sur une base mensuelle/hebdomadaire/journalière dans le contexte d’un plan de production à 

long-terme, vise à assurer la conformité avec les objectifs à long terme, tout en maximisant la 

liquidité. Avec des technologies numériques, un complexe minier peut acquérir de nouvelles 

informations pendant son opération concernant la performance de ses différentes composantes, 

ainsi que la qualité et la quantité de matériaux qui s’y retrouvent. Cette information qui, 

toutefois, est partielle et bruitée, donc incertaine, est connue sous le nom de données 

« souples ». La « souplesse » de cette nouvelle information est due aux caractéristiques des 

capteurs associés qui génèrent des mesures indirectes, plutôt que celles provenant de l’analyse 

géochimique d’échantillons de forage. Les technologies existantes ne peuvent pas incorporer 

l’information entrante bruitée et incertaine, et y répondre adéquatement en temps réel pour 

adapter la planification à court-terme. 

La contribution de cette thèse est de proposer un nouveau cadre d’auto-apprentissage qui 

permet d’adapter les décisions de planification à court terme en apprenant à intégrer 
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l’information entrante bruitée et incertaine. Ceci s’ajoute à une extension du modèle 

d’optimisation stochastique simultanée pour prendre en compte l’incertitude géométallurgique 

des ressources. 

Cette thèse introduit d’abord une approche qui caractérise les matériaux comme durs ou 

mous, puis les relie au modèle d’optimisation stochastique simultanée à travers des objectifs 

géométallurgiques. Une application dans un complexe minier de cuivre-or démontre de plus 

grandes chances d’atteindre les différents objectifs de production, une augmentation 

considérable de production de métaux, et une hausse de 19.3% de la valeur présente nette.  

Ensuite, un cadre d’auto-apprentissage est présenté, qui propose une extension du filtre de 

Kalman d’ensemble pour mettre à jour l’incertitude d’approvisionnement d’une multitude 

d’attributs corrélés de matériaux avec la nouvelle information entrante. Par la suite, un 

algorithme de gradient de politique d’apprentissage par renforcement sans modèle est appliqué 

pour apprendre à répondre à la nouvelle information entrante dans un complexe minier à 

multiples produits. Le cadre proposé est appliqué dans un complexe minier de cuivre, et 

comparé aux approches standards de l’industrie afin de démontrer son habileté.  

Un nouvel algorithme d’apprentissage par renforcement auto-jouant basé sur un modèle est 

ensuite proposé, qui utilise une recherche arborescente de Monte Carlo et un agent de réseau 

neuronal profond dans une infrastructure auto-jouante pour apprendre à réagir à la nouvelle 

information entrante en adaptant simultanément la séquence d’extraction, la destination des 

matériaux et l’utilisation des réseaux de traitement à court terme. L’algorithme proposé emploie 

une recherche arborescente Monte Carlo pour jouer seul au jeu de la planification de production 

à court terme, afin d’entrainer un agent de réseau neurones profond. Cette thèse propose aussi 

un algorithme de simulation Monte Carlo pour la mise à jour de l’incertitude liée à la 

performance de l’équipement. Une application dans un complexe minier de cuivre démontre 
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une capacité d’adapter la planification à court terme presque en temps réel afin de mieux 

atteindre les objectifs de production tout en améliorant la production de cuivre et la liquidité. 

Les méthodes existantes pour mettre à jour l’incertitude d’approvisionnement des 

matériaux ne tirent pas profit de la nouvelle information entrante et ne tiennent pas compte des 

statistiques spatiales d’ordre supérieur. Un nouvel algorithme d’apprentissage par renforcement 

sans modèle avec agents acteur-critique est donc proposé. Premièrement, l’agent acteur prédit, 

puis l’agent critique évalue, les attributs mis à jour d’un bloc de minerai, et ces attributs sont 

ensuite évalués selon une fonction de distribution de probabilité conditionnelle, générée en 

utilisant des statistiques spatiales d’ordre supérieur puis, finalement, les évaluations sont 

utilisées pour entrainer les agents. Une application dans une opération minière de cuivre 

démontre sa faisabilité. 

Le cadre d’intelligence artificielle d’auto-apprentissage proposé dans cette thèse peut 

permettre à un complexe minier d’apprendre et de s’adapter avec la nouvelle information 

entrante pendant ses opérations, afin de prendre des décisions de planification à court terme 

plus éclairées. Des recherches futures pourraient améliorer la performance des algorithmes et 

développer de nouvelles méthodes pour adapter simultanément la planification à long et à court 

terme. 
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CHAPTER 1                                                                                                                    
Introduction 

 

 

1.1 Overview 

A mining complex is an integrated mineral value chain that consists of multiple 

interrelated activities, starting from mineral deposits and material extraction to a set 

of sellable products delivered to various customers and/or the spot market. Figure 1-1 

presents an example of a mining complex with different components including, but 

not limited to, suppliers of raw materials (mines/mineral deposits and external sources 

such as existing stockpiles), earth moving equipment (shovels and trucks), handling 

facilities (crushers, conveyor belts, re-handling stockpiles, and waste dumps), 

processing facilities (mineral processing mills and leach pads), tailing facilities, 

transportation facilities (pipelines, trucks, and, ports), and customers/commodity 

markets. The primary activities in a mining complex are: (i) -scheduling the extraction 

of material from available mines, (ii) selecting and allocating equipment selection and 

allocation to excavate the scheduled material, (iii) determining the destination of 

extracted material, (iv) blending of materials to supply multiple processing streams 

(processing and handling facilities), (v) transformation transforming of materials 

through different processing paths and alternatives (smelter, electrowinning, and 

refinery), and (vi) transporting of the final sellable products to markets using multiple 

transportation schemes (pipelines, trucks, and , ports). Supply uncertainty and market 

uncertainty are major sources of technical risk in a mining complex. They stem from 
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the uncertainty in the supply of materials from the mineral deposits and existing 

stockpiles associated with the mining complex, and uncertainty about the price of the 

different commodities produced, respectively. In addition, equipment performance 

uncertainty related to the production capabilities of the different equipment is another 

source of technical risk in an operating mining complex.  

 

Figure 1-1 Example of a mining complex (Goodfellow, 2014) 

Supply uncertainty is the uncertainty associated with the geological properties of 

materials available in the mineral deposits associated with a mining complex, and can 

be grouped into three categories: continuous properties, categorical properties, and 

non-additive properties (which can be either continuous or categorical). Continuous 

properties include grades and deleterious rock properties and rock mass. Categorical 

properties are material types, lithologies, minezones, mineralization, alterations etc. 

Continuous and categorical non-additive properties include geometallurgical 

properties such as hardness, recovery, ore texture, grindability, soft/hard domains, etc. 



3 

 

Stochastic simulation methods quantify supply uncertainty by generating a set of 

equally probable scenarios/realizations that capture the uncertainty and variability of 

materials. Equipment performance uncertainty is the uncertainty associated with 

equipment performance properties such as availability, utilization, productivity, 

breakdowns, cycle time, repair time, and so on. A set of equally probable Monte Carlo 

stochastic simulations quantify the equipment performance uncertainty. 

The strategic or long-term production plan of a mining complex provides annual 

strategic decisions that maximize the cumulative discounted cash flows (net present 

value) and meets the different production targets and customer demands. The annual 

strategic decisions in a mining complex include the determination of the sequence of 

material extraction, destination policies, processing stream utilization, capital 

expenditure, and the transportation of products to customers/market decisions. A 

short-term plan is then generated within the predefined long-term plan to provide 

daily/weekly/monthly production decisions. The short-term production decisions in a 

mining complex include defining the daily/weekly/monthly sequence of material 

extraction, the destination of materials, utilization of processing streams, fleet 

assignment and allocation, the operating modes of processing streams, transportation 

schemes, and waste/tailings management decisions.  

Simultaneous stochastic optimization of a mining complex aims to 

simultaneously optimize its several interrelated activities while accounting for related 

uncertainties, to minimize the deviation from production targets and maximize the 

value of the integrated mineral value chain. For example, short-term simultaneous 

stochastic optimization of a mining complex simultaneously optimizes the different 

short-term decisions, while simultaneously managing supply and equipment 
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performance uncertainties, to maximize metal production and compliance with the 

long-term plan and production targets.  

 A mining complex collects new information during its day-to-day operations 

according to the short-term plan. This new information can be categorized into two 

groups, the first being information collected with conventional methods, and the 

second being information collected using new technologies and advanced sensors. 

Conventionally collected new information includes geochemical laboratory analysis 

of blasthole drilling samples to characterize geological properties of blasthole 

materials, global positioning systems (GPS) installed on the equipment that tracks 

their movement and location, radio frequency ID (RFID) tags used in blastholes to 

track the flow of materials in a mining complex, and built-in control units in trucks, 

shovels, and drilling machines that characterize their fuel consumption, power 

consumption, brake efficiency, engine torque, temperature, and speed. Control units 

in crushers, processing mills, and conveyor belts measure their throughput, power 

consumption, utilization, and so on. New information collected with advanced sensors 

and new technologies comes from three different types of sensors that differ in terms 

of what geological properties of materials they measure, and whether such 

measurements are surface or volumetric. Near-infrared (NIR), short-wavelength 

infrared (SWIR), mid-wavelength infrared (MWIR), long-wavelength infrared 

(LWIR), and X-ray diffraction (XRD) sensors generate surface measurements about 

the categorical geological properties (mineralization) of materials. X-ray fluorescence 

(XRF) and laser-induced breakdown spectroscopy (LIBS) sensors generate surface 

measurements of continuous geological properties (grades and deleterious elements) 

of materials. Dual-energy X-ray transmission (DE-XRT) sensors generate volumetric 
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measurements of continuous geological properties (grades, deleterious elements, and 

density) of materials. 

The new information generated from conventional technologies and advanced 

sensors can be used to update the supply uncertainty of materials in the mineral 

deposits as well as the equipment performance uncertainty. However, the new 

information, collected spatially with drilling machines at the mineral deposits (spatial 

data) or collected in time at conveyor belts and processing mills (temporal data), is 

noisy, therefore uncertain, and referred to as “soft” data. The uncertainty and noise in 

the incoming new information are attributed to the characteristics of the related 

sensors that generate indirect measurements (for example, the wavelength of light 

refracted, transmitted, and absorbed) about the geological properties of materials. 

Direct measurements, on the other hand, such as those derived from the analysis of 

drillhole samples in geochemical laboratories, are substantially more precise and 

known as “hard” data. 

The incoming new information, along with the updated supply and equipment 

performance uncertainties, provides an opportunity for mining complexes to learn to 

adapt, to make more informed short-term production decisions to better respect their 

long-term production plan, and better meet their production targets. However, the 

current combinatorial optimization methods cannot respond to the noisy incoming 

new information to make real-time decisions. Moreover, the combinatorial 

optimization methods cannot learn and integrate the noisy incoming new information 

in the optimization models. Artificial intelligence (AI) agents have shown advanced 

computational and learning capabilities in recent years to respond quickly to incoming 

new information, for very complex and challenging planning environments such as 



6 

 

Atari games, traffic control, games of Go and chess, equipment maintenance 

scheduling, multi-site production, material destinations for mining complexes, and 

many more. However, unlike the other planning environments mentioned above, a 

mining complex is substantially more intricate. It has multiple operational and 

environmental constraints with multiple interlinked components, starting from 

mineral deposits with spatial characteristics, to the handling of material with trucks, 

shovels, crushers, conveyor belts, processing mills, tailing facilities, and finally 

customers/markets that receive the final products. In addition, the description of the 

different components of a mining complex quantified by their uncertainty models is 

continuously changing as new information is collected. For example, supply 

uncertainty of materials in mineral deposits changes as new information regarding 

quality and quantity of materials is collected from different components of a mining 

complex with advanced and conventional sensors, and equipment production 

capabilities change as new information is collected about their performance. A new 

continuously learning and updating\adapting framework inspired by existing AI 

algorithms must be developed that can handle the intricacies of a mining complex and 

can learn, integrate, and respond simultaneously to the incoming new information to 

adapt the short-term production planning decisions.  

1.2 Literature Review 

This section presents a review of the literature pertinent to the topics discussed in 

this thesis to highlight the existing state-of-the-art frameworks and outline their 

contributions and limitations. Section 1.2.1 discusses the optimization of strategic 

decisions, or long-term production planning, in a mining complex. Section 1.2.2 
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describes the quantification of supply uncertainty. Section 1.2.3 details the 

optimization of the short-term production plan of a mining complex. Section 1.2.4 

discusses the quantification of equipment performance uncertainty. Section  1.2.5 

provides details about the data collected with sensors in real-time during the day-to-

day operations in a mining complex. Section 1.2.6 describes the available frameworks 

and their limitations for updating the supply and equipment performance uncertainties 

with the incoming new sensor production data. Section 1.2.7 discusses the state-of-

the-art artificial intelligence algorithms and their applications in mining and other 

planning domains. 

1.2.1 Strategic or long-term production planning 

Long-term, or strategic planning focuses on optimizing the annual strategic 

decisions of a mining complex that maximize the life of the asset (net present value) 

and meet the different production targets. The strategic decisions in a mining complex 

include defining the yearly sequence of extraction of materials from mines, the 

destination of extracted materials, the utilization of processing and other facilities, the 

selection of processing alternatives, the selection of transportation alternatives, and 

capital investments. Traditionally, these different strategic decisions are optimized in 

isolation and, more importantly, over estimated orebody models. For instance, the 

destination of materials is optimized using cut-off grade optimization (Lane, 1984, 

1988; Asad and Dimitrakopoulos, 2013; Asad et al., 2016; Del Castillo and 

Dimitrakopoulos, 2016; Li et al., 2020), the extraction sequences of the materials from 

the mines are optimized individually using integer/mixed-integer/linear programming 

models (IP/MILP/LP) (Johnson, 1969; Gershon, 1983; Barbaro and Ramani, 1986; 
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Underwood and Tolwinski, 1998; Hustrulid et al., 2013), and processing stream 

utilization decisions are optimized separately with another optimization model, e.g. 

Farzanegan and Vahidipour (2009). This separate stepwise optimization of multiple 

interrelated components of a mining complex generates sub-optimal long-term 

production plans. 

Earlier attempts at long-term simultaneous deterministic optimization of multiple 

components of mining complexes include Hoerger et al. (1999), Stone et al. (2007), 

Whittle (2007), Whittle and Whittle (2007), and Whittle (2010). Hoerger et al. (1999) 

presented a model that optimizes mining decisions (timing of open-pit layback and 

underground stope development, capital expenditures and mining rates), destination 

decisions (mine to plant, mine to stockpile, and stockpile to plant material flow), and 

processing decisions (timing of plant startup and shutdown, capital expenditures, ore 

processing rates) simultaneously. The model has material flow decisions as linear 

variables, and plant startup and shutdown, extraction sequencing, and capital 

expenditure decisions as integer variables. Stone et al. (2007) presented a mine 

planning optimization tool, “Blasor,” that optimizes long-term mining, destination 

and blending decisions to maximize the discounted cash flows (NPV) while meeting 

production targets. Blasor is limited in the sense that: (i) it only optimizes the 

proportion of material extracted annually from each of the multiple pits (mining 

decision), rather than generating an extraction sequence for multiple pits, (ii) it 

aggregates mining blocks into aggregation units/panels to reduce the computational 

requirement to solve the model, and (iii) it ignores the supply uncertainty of mineral 

deposits. The stochastic version of “Blasor” that considers geological supply 

uncertainty is shown in Menabde et al. (2007). The stochastic version of “Blasor” 
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optimizes the long-term mining, destination, and blending decisions to maximize the 

expected discounted cash flow under supply uncertainty. In addition, the maximum 

mining and processing rate constraints need to be respected over all the scenarios of 

supply uncertainty. However, with this approach, if any simulation violates these 

constraints, then the solution for the optimization model becomes unfeasible. Whittle 

(2007) presented a model for optimizing several components of mining complexes 

simultaneously and termed it "global asset optimization.” However, the model uses a 

sequential optimization approach, which first defines the production schedules and 

then locally optimizes blending and processing stream decisions. Therefore, although 

the model considers multiple components of mining complexes, it does not optimize 

them all simultaneously. In addition, it aggregates mining blocks into panels and 

parcels to reduce computations requirements, and disregards supply uncertainty. 

Whittle and Whittle (2007) used the global asset optimization model for two case 

studies: (i) five pits with a total of 37 material types, five concentrators and multiple 

stockpiles that produce 14 products and (ii) 130 pits with five material types, 

concentrators, and stockpiles that produce two products. Whittle (2010, 2014) 

presented the ProberB and ProberC algorithms used in global asset optimization to 

solve mining complexes. The algorithm repeatedly creates a random feasible solution 

(a solution that satisfies mining constraints) and then finds the nearest local maximum 

solution using a linear programming model. An integrated approach was presented by 

Pimentel et al. (2010) to address the simultaneous optimization of mining complexes 

and possible solution strategies. Place et al. (2018) presented the advanced 

deterministic simultaneous optimization model (SIMO) that uses the ProberB 

algorithm to optimize the extraction sequences, stockpiling strategies, cut-off grade 
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policies, and blending strategies of multiple mines. Similar to Whittle’s global asset 

optimization model (Whittle, 2007), the algorithm aggregates the blocks into 

pushbacks, panels, and blend bins, converts the non-linear simultaneous optimization 

model into a linear model using approximation techniques, generates a random 

feasible schedule, finds the nearest local maximum by solving the linear model and, 

finally, uses a method analogous to the Monte-Carlo method to start from the different 

initial feasible solutions to find a global maximum. The deterministic simultaneous 

optimization models discussed above have several limitations. For example, they all  

(i) consider block economic value (defined using a pre-optimized cut-off grade 

policy) in the optimization model, (ii) combine mining blocks into aggregate units 

such as parcels and panels to overcome the computational requirements of solving 

such large optimization models of mining complexes, (iii) do not jointly optimize all 

the relevant long-term production planning decisions in a mining complex, and (iv) 

do not account for uncertainty related to the supply of materials and to commodity 

prices in the optimization models. 

Recent advances in the long-term simultaneous stochastic optimization of 

multiple components in a mining complex are based on two-stage stochastic 

optimization techniques developed in the last decade that account for supply 

uncertainty, consider a single mining operation, and focus on the economic value of 

blocks  (Dimitrakopoulos, 2011). The stochastic approaches developed in the past can 

be grouped into three different categories. The first approach involves models that 

minimize deviations from ore and waste production targets and are based on a 

simulated annealing algorithm (Godoy, 2002; Godoy and Dimitrakopoulos, 2004; 

Leite and Dimitrakopoulos, 2007; Albor Consuegra and Dimitrakopoulos, 2009). The 
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second approach involves models that maximize the expected net present value (NPV) 

while minimizing deviations from production targets, and are based on stochastic 

integer programming (Menabde et al., 2007; Ramazan and Dimitrakopoulos, 2007, 

2013). The third approach illustrated in Boland et al. (2008) uses a multistage 

programming approach that considers scenario-dependent mining and processing 

decisions to provide a set of policies (mining and processing decisions) to follow 

according to the scenario observed during the progress of the  extraction. However, 

this approach is not operationally realistic because it does not provide a single 

extraction sequence to follow and, moreover, it is not possible to differentiate and 

identify which scenario is observed during the advancement of the mining operation. 

The recent models of long-term simultaneous stochastic optimization of 

multiple -product mining complexes optimize the multiple mines, destinations, and 

processing streams in a single optimization model which focuses on the value of the 

products sold, considers supply and market uncertainty, and accounts for the non-

linear interactions that happen in a mineral value chain. Goodfellow and 

Dimitrakopoulos (2016, 2017) proposed a model (first and the second part of the 

objective function represented in Eq. 1.1) for the long-term simultaneous stochastic 

optimization of mining complexes that integrates the extraction sequence, cluster-

based destination policies, and processing streams utilization decisions. The first part 

of the objective function maximizes the expected value of products, minus any costs 

incurred to generate products over the planning horizon and under supply uncertainty. 
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max 
1

|𝕊|
∑ ∑ ∑ ∑ 𝑝𝑎,𝑖,𝑡 ⋅ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℍ𝑖∈𝕃𝑡∈𝕋𝑠∈𝕊

 

−
1

|𝕊|
∑ ∑ ∑ ∑ 𝑐𝑎,𝑖,𝑡

+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠
+ + 𝑐𝑎,𝑖,𝑡

− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠
−

𝑎∈ℍ𝑖∈𝕃𝑡∈𝕋𝑠∈𝕊

− ∑ ∑ 𝑝𝑘,𝑡 ⋅ 𝑤𝑘,𝑡 

𝑘∈𝕂𝑡∈𝕋

   (1.1) 

 

The second part of the objective function minimizes the deviations from the upper and 

lower production capacities. The third part of the objective function accounts for the 

expenses that are incurred by exercising a capital investment decision 𝑘 ∈ 𝕂 at time 

𝑡 ∈ 𝕋.  Here, 𝕂, 𝕋, 𝕃, and 𝕊 define the set of capital investments, time periods, 

locations, and supply uncertainty scenarios, respectively. The quantity of attribute 𝑎 ∈

ℍ at location 𝑖 ∈ 𝕃 at time 𝑡 ∈ 𝕋 under supply uncertainty scenario 𝑠 ∈ 𝕊 is defined 

by 𝑣𝑎,𝑖,𝑡,𝑠. The set, ℍ, represents the set of rock properties such as the quantity of rock 

mass, copper mass, gold mass, etc., which are additive.  The discounted price and 

costs per unit of attribute ℎ at location 𝑖 at period 𝑡 are denoted by 𝑝𝑎,𝑖,𝑡. The variables 

𝑑𝑎,𝑖,𝑡,𝑠
+  and 𝑑𝑎,𝑖,𝑡,𝑠

−  calculate the deviation from upper and lower production capacities, 

respectively, for the quantity of attribute ℎ at location 𝑖 at time 𝑡 in scenario 𝑠. The 

constants 𝑐𝑎,𝑖,𝑡
+  and 𝑐𝑎,𝑖,𝑡

−  define the discounted penalty cost associated with deviating 

from the upper and lower production capacities, respectively, for the quantity of 

attribute ℎ at location 𝑖 at time 𝑡 in scenario 𝑠. The decision variable 𝑤𝑘,𝑡 represents 

the quantity of investment 𝑘 exercised with a unit discounted cost of 𝑝𝑘,𝑡 at time 𝑡. 

The model maximizes the value of products, 𝑝𝑎,𝑖,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠, generated in a mining 

complex minus any cost incurred to generate the products, instead of block economic 

values. Accounting for the value of products allows this one single optimization 

Part I 

Part II Part III 



13 

 

model to optimize all the relevant long-term production planning decisions 

simultaneously, and to account for any non-linear relationships that exist within a 

mining complex. The extraction sequence decisions define the period in which blocks 

are extracted from multiple mines. Cluster-based destination policies first generate 

clusters of materials based on the multivariate properties of materials in the mines 

(such as copper, gold, silver, arsenic etc.), and then decide the destination of the 

clusters in the optimization model. Therefore, the cluster definition is scenario-

independent, but block destination is scenario-dependent because of the block 

membership the changes to different clusters in different supply uncertainty scenarios. 

Processing stream utilization decisions define the proportion of materials sent from 

one location to another in a mining complex while preserving mass balancing of 

materials. Results from a copper-gold operation indicate large deviations from 

capacity targets of sulphide leach pad and sulphide mill (40% and 31%) when a 

conventional mine plan is tested under supply uncertainty of mineral deposits. In the 

case study, simultaneous stochastic optimization model manages the technical risk 

associated with the geological supply uncertainty better and reduces the average 

deviation in capacity target for sulphide leach pad to 10% and sulphide mill to less 

than 1% in the initial 10 years to 12% near the end of life-of-mine, while maximizing 

the cumulative discounted value of the business to 22.6 % compared to conventional 

plan. Goodfellow and Dimitrakopoulos (2017) used the proposed model at a Nickel-

laterite mining complex to simultaneously optimizes the cluster-based destination 

policies and processing stream utilization and achieves a 3% higher value with an 

average deviation of less than 1% for capacity and blending targets compared to 

results from deterministic optimization on estimated mineral deposits using the 
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proposed method. Saliba and Dimitrakopoulos (2019a) used this model at a gold 

mining complex with supply and market uncertainty. In the case study, the model can 

simultaneously optimize all the components to reduce operating complexity by 

utilizing only 12 stockpiles compared to 38 in the current mine plan. Additionally, the 

model can account for market uncertainty by adapting the schedule to mine and 

process more materials during periods of the elevated price while being conservative 

during downside exposure of prices. Levinson and Dimitrakopoulos (2019) used this 

model at a gold mining complex under supply uncertainty to manage and reduce waste 

production. In the case study, the model can balance the requirement of the processing 

facility and potentially acid-generating waste to satisfy the environment, permitting, 

and processing limits while increasing the NPV by 6%. 

Goodfellow and Dimitrakopoulos (2015) and Farmer (2016) proposed a long-

term simultaneous stochastic optimization model of mining complexes that integrates 

extraction sequence, destination policies, processing stream utilization and capital 

expenditure decisions (complete objective function represented in 1.1). The model 

includes constraints that account for changes in the mining and processing rates with 

capital investment decisions. A case study of the proposed model at a copper mining 

complex shows 5.4 % higher NPV, higher utilization of processing mill capacities, 

and better management of mining investment decisions (truck and shovel), compared 

to the deterministic design. Farmer (2016) accounts for both processing (mill) and 

mining (truck and shovel) capital investment decisions in the proposed model. A case 

study at a copper-gold mining complex shows an increase of 12% in NPV compared 

to the deterministic design. Farmer (2016) also proposed an approach to account for 

market uncertainty. First, the extraction sequence, capital expenditure, and cluster-
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based destination policies are optimized accounting for supply uncertainty, such 

decisions are then fixed, and finally, the processing stream utilization decisions are 

optimized, accounting for market uncertainty. Saliba and Dimitrakopoulos (2019b) 

used this model for the simultaneous optimization of a gold mining complex with 

tailings management under supply uncertainty. In the case study, the model can find 

the optimal quantity and timing of tailing facility expansion to enlarge mine footprint, 

generating 14% and 4% of higher gold ounces and NPV respectively compared to a 

model without tailing management. 

Montiel and Dimitrakopoulos (2015, 2017, 2018) proposed a model for long-

term simultaneous stochastic optimization of mining complexes that incorporates 

extraction sequence, block destination policies, processing mill operating modes, 

transportation alternatives, and processing stream utilization decisions. Block 

destination policies define the destination of blocks as scenario-independent decisions 

over the supply uncertainty scenarios. Processing mill operating modes decisions 

defines how to process materials at the processing mill (fine or coarse grinding). 

Transportation alternative decisions define what quantity of processed materials to 

transport to customers with trucks and pipelines. Results from a multi-pit copper 

operation with stringent blending requirements indicated that conventional mine plans 

generated using commercial mine planning software perform adversely when tested 

under supply uncertainty. Significant and impractical deviation in terms of capacity 

(40% and 30%) and blending targets (11% and 22%) were observed. In the given case 

study, the simultaneous stochastic optimization model minimizes such large 

deviations from capacity targets to 1% and 3% and blending targets to 0.7% and 1.2% 

for two mills, while improving the value of the business to 5% compared to the 



16 

 

conventional mine plan. Montiel and Dimitrakopoulos (2017) used this model at a 

copper mining operation indicated a significant and impractical deviation in the 

capacity target (45%) when the conventional mine plan is tested under supply 

uncertainty. The proposed method minimized the deviation to less than 1% while 

increasing the value of the business to 30%, as compared to the conventional mine 

plan. Montiel et al. (2016) used this model at a mining complex comprised of multiple 

open-pits, underground operations, and destinations under geological supply 

uncertainty. Results from the copper-gold operation with stringent blending targets 

indicated large and impractical deviations in the capacity target for open-pit (60%) 

and underground mine (40%) and blending targets for the mill (SS/CO3 – 50%, SS – 

45%, CO3- 25%) when tested under supply uncertainty. The proposed method 

minimizes the deviation from capacity targets to 1%, and 15% and blending targets to 

20%, 15%, and 10%, along with a 14% increase in the value of business compared to 

the conventional mine plan. Montiel and Dimitrakopoulos (2018) used this model to 

optimize long-term production plan of Newmont’s Nevada mining complex that 

consisted of two open pit mines, three external sources of concentrate materials, an 

oxide mill, an autoclave, a heap leach, a waste dump, multiple re-handling sulfide and 

oxide stockpiles. An adaption technique is then applied to adapt the simultaneous 

stochastic long-term production plan to be operational given the existing 

infrastructure, mining constraints, access and mining equipment available at the 

mining complex. The mine’s plan is tested under the supply uncertainty of materials 

and showed a 4% decrease in forecasted recoverable gold, 6% decrease in NPV, and 

large and impractical deviations from blending and capacity requirements. The 

adapted simultaneous stochastic long-term production plan increases the forecasted 
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recovered gold by 6%, NPV by 7%, and satisfy the blending and capacity 

requirements. In addition, the adapted simultaneous stochastic long-term is mineable 

given the constraint of existing shapes from previously mined-out areas and existing 

infrastructure.  

Simultaneous stochastic optimization models of mining complexes are large 

combinatorial optimization models with 10ths of millions of binary decision variables, 

which requires substantial computational time to solve using general-purpose 

commercial solvers such as CPLEX. Metaheuristic algorithms based on methods such 

as multiple neighbourhood simulated annealing (Goodfellow and Dimitrakopoulos, 

2016; Montiel and Dimitrakopoulos, 2017), Tabu search (Lamghari and 

Dimitrakopoulos, 2012), variable neighbourhood descent (Lamghari et al., 2014), 

hybridization of linear programming and variable neighbourhood descent (Lamghari 

et al., 2015), progressive hedging (Lamghari and Dimitrakopoulos, 2016a), network 

flow (Lamghari and Dimitrakopoulos, 2016b), ant colony optimization  (Gilani and 

Sattarvand, 2016), and hyper-heuristic (Lamghari and Dimitrakopoulos, 2018), were 

proven efficient for solving such large optimization model of mining complexes. A 

review of the metaheuristics algorithms for optimizing long-term plan of mining 

complexes is discussed in Lamghari and Dimitrakopoulos (2017) and Franco-

Sepúlveda et al. (2019). 

Extensions of simultaneous stochastic optimization models are presented in 

Del Castillo and Dimitrakopoulos (2019), Del Castillo (2018) and Zhang and 

Dimitrakopoulos (2017). Del Castillo and Dimitrakopoulos (2019) and Del Castillo 

(2018) proposed a dynamic simultaneous stochastic optimization model that 

integrates dynamic mining and processing capacities (capital investment), extraction 
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sequence, processing stream utilization and destination policy decisions in the long-

term simultaneous stochastic optimization of mining complexes under geological 

supply uncertainty. The method first fixes extraction and capital investment decisions 

as first-stage for period 𝑡 and second-stage for others and optimizes the model to 

generate scenario-dependent mine plans for periods other than 𝑡. If the number of 

scenario-dependent mine plans is higher than a specified threshold value, the plan 

branches for that decision and the whole model is reoptimized fixing period 𝑡 and 𝑡 +

1 as the first-stage and others as the second-stage. The model, therefore, compromises 

between risk management and flexibility, providing a fixed plan for initial years, but 

at the same time allowing dynamic long-term decision change. A case study at a 

copper-gold mining complex indicated that the simultaneous stochastic optimization 

model with dynamic capital investment decisions generates a 3 % higher value 

compared to a model where capital investment decisions are set as first-stage.  

Zhang and Dimitrakopoulos (2017) proposed a long-term dynamic material-

value-based Benders decomposition method to decompose the simultaneous 

stochastic optimization model. The method decomposes the model into a master 

model with mine production scheduling optimization under supply uncertainty and a 

sub-model with material flow optimization under market uncertainty. The solution of 

the two models is then iteratively synchronized to determine the optimal mine 

production schedule accounting for the downstream congestions and market 

fluctuations. Results from a copper mining complex indicated that (i) the life of the 

two mines increased from 8 to 12 years and from 14 to 20 years, (ii) the stockpile 

quantity is reduced by 33 % for both of the mines, (iii) investment in the processing 



19 

 

capacity is reduced by 13 % at the beginning of planning horizon, (iv) utilization of 

processing capacity is increased from 74 % to 88 %, (v) increase in the NPV of the 

mineral value chain by  6 %, as compared to the local optimization approach where 

the mine production schedule is optimized for an individual mine without considering 

the downstream material flow.  

Supply uncertainty related to non-additive geometallurgical properties such as 

texture, granularity, hardness, recovery, power consumption, etc. influences the 

performance of the processing mills in a mining complex. Geometallurgical properties 

of materials affect the mine planning decisions (Coward et al., 2009; Dunham and 

Coward, 2011; Macfarlane and Williams, 2014). Macfarlane and Williams (2014) 

suggested that using the geometallurgical properties in the long-term mine planning 

optimization will help to maintain a consistent geometallurgical and grade feed of 

materials, which can then generate better NPV. Williams and Richardson (2004) 

proposed a geometallurgical mapping approach that uses ore characterization 

procedure to map geometallurgical response of mining blocks into the orebody 

models for forecasting mining block recoveries. With this method, the future cash 

flows of the mining operation can be generated while incorporating the metallurgical 

response of the individual mining blocks in the mine planning models.  

Kumral (2011) proposed an approach that first associates mining blocks with 

their recoveries, throughputs and processing costs using a regression model of 

historical processing mill data. It then uses two models to solve the mine production 

scheduling optimization, first with a two-stage stochastic model and second with 

maximin model. Navarra et al. (2018) proposed a method that combines mineralogy, 

liberation, texture, and mineral chemistry data of each mining block to compute a 



20 

 

geometallurgical factor that then defines the recovery, processing cost, and processing 

rate of mining blocks in the supply uncertainty scenarios for different processing 

modes. It then used the supply uncertainty scenarios within a two-stage stochastic 

optimization to decides the extraction sequence as a first-stage decision and then 

decides where to process the materials as a second-stage scenario dependent decision 

which looks at the recovery, processing cost and processing rate of the blocks in the 

given scenario to decides the best processing operating mode. Morales et al. (2019) 

proposed a two-stage stochastic optimization model that integrates recoveries and 

throughput (time required to process materials) of mining blocks in mine production 

scheduling optimization. The model accounts for uncertainty in individual block 

processing time and recovery and then maximizes the NPV to meet the constraints 

with the maximum total available annual processing time. However, all the methods 

assume that each mining block is processed independently, and there is no blending 

of materials. However, in a mining complex, the materials are blended and processed 

together, which affects their response in the processing mills. 

The simultaneous stochastic optimization models mentioned above optimizes 

the relevant long-term production planning decisions in mining complex in one single 

optimization model, but do not account for supply uncertainty related to 

geometallurgical properties of materials and do not provide links to the short-term 

production plan.  

1.2.2 Quantification of supply uncertainty 

Supply uncertainty is a major source of technical risk in long-term planning. 

Studies have shown that long-term plan based on estimated orebody model of mineral 
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deposits is not realized when tested under supply uncertainty of materials 

(Ravenscroft, 1992; Dowd, 1994, 1997; Dimitrakopoulos et al., 2002; Godoy, 2002; 

Ramazan and Dimitrakopoulos, 2007, 2013; Goodfellow and Dimitrakopoulos, 2017; 

Montiel and Dimitrakopoulos, 2018; Mai et al., 2019). Stochastic simulation methods 

are efficient at quantifying the supply uncertainty by generating a set of equally 

probable representation of mineral deposits, referred to as stochastic orebody 

models/simulations. Stochastic orebody simulations reproduce the statistics of 

available drill hole information and the local variability of materials, compared to 

estimated orebody models that generate a smooth representation of mineral deposits 

by smoothing the distribution of extreme values and local variability of materials. 

 Continuous and categorical geological properties 

In the 1970s, turning-bands method (Journel, 1974; Journel and Huijbregts, 1978) 

was proposed to generate stochastic simulations of mineral deposits; however, the 

method had a loss of accuracy due to approximation and difficulties in reflecting 

anisotropic covariances. Later, a sequential simulation framework (Deutsch and 

Journel, 1992; Journel, 1994) was proposed that overcomes such limitation and is a 

well-known method up to now for quantifying geological supply uncertainty by 

generating multiple stochastic orebody simulations. It is based on the decomposition 

of the multivariate probability density function (PDF) of a stationary and ergodic 

random process 𝑍(𝑢), 𝑢 ∈ 𝑅𝑛 to the product of univariate posterior distribution 

functions and then sequentially sampling the posterior probability density functions 

to generate simulated value for a point. For instance, let 𝑓(𝑧1, 𝑧2) be the probability 

distribution function with a bivariate process 𝑍 = {𝑍1, 𝑍2} at 𝑢 = {𝑢1, 𝑢2}, generating 
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realization begins with product decomposition of univariate posterior PDF function, 

𝑓(𝑧1, 𝑧2) = 𝑓(𝑧1) ∙ 𝑓(𝑧2|𝑧1), and then sampling a value 𝑧1 based on 𝑓(𝑧1); 𝑧2 is 

drawn based on 𝑓(𝑧1, 𝑧2). For a 𝑁-variate (simulation grid size) process considering 

stationary Gaussian random field 𝑍(𝑢𝑖), 𝑢𝑖 ∈ 𝑅𝑛, 𝑖 ∈ {1, 𝑁}, and a set of available 

conditioning data 𝑑𝑛 = {𝑧(𝑢𝛼), 𝛼 ∈ {1, 𝑛}}, then the N-variate probability 

distribution posterior to the data set 𝑑𝑛 such that 𝛽1 = {𝑑𝑛, 𝑍1}, … , 𝛽𝑁 =

{𝑑𝑛, 𝑍1 … 𝑍𝑁}  is given by Equation 1.2 with a  conditional cumulative distribution 

function (CCDF) equal to the product of N single-variate posterior density functions 

(CPDF) given by Equation 1.3. 

𝐹(𝑢1, … , 𝑢𝑁; 𝑧1, … , 𝑧𝑁|𝑑𝑛) = 𝑃(𝑍(𝑢1) ≤ 𝑧1, … , 𝑍(𝑢𝑁) ≤ 𝑧𝑁|𝑑𝑛)               (1.2) 

𝑓(𝑢1 … 𝑢𝑁; 𝑧1 … 𝑧𝑁|𝑑𝑛) = ∏ 𝑓(𝑢𝑖; 𝑧𝑖|𝛽𝑖−1)

𝑁

𝑖=1

                              (1.3) 

When 𝑍(𝑢) is Gaussian, the method is termed as sequential Gaussian simulation 

(SGS) (Deutsch and Journel, 1992; Journel, 1994; Goovaerts, 1997; Remy, 2005; 

Remy et al., 2009; Rossi and Deutsch, 2013). Dimitrakopoulos and Luo (2004) 

introduced group sequential Gaussian simulation (GSGS) to improve the 

computational efficiency of SGS. In GSGS, the simulation grid, 𝑁, is divided into a 

set of groups of size 𝑣, and the nodes within the group share the same neighbourhood 

with a maximum number of conditional data, 𝑣𝑚𝑎𝑥. A random path is then selected to 

visit each group, the nodes inside this group is simulated using lower-upper 

decomposition (LU) (Davis, 1987) and added as the conditioning data, the process 

continues until all groups are visited. This reduces the computational cost of GSGS 

because the nodes inside the groups are simulated simultaneously compared to 
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visiting each node to solve distinct, simple kriging equations in SGS. A critical 

problem of the SGS and GSGS methods is that the simulation is performed at a point-

support scale, as seen with Eq. 1.3, which needs to be re-blocked into the block scale. 

The block support corresponds to selective mining units that are used for planning 

purposes. Re-blocking of point-support is often generated by approximating the block 

value through a linear average of contained point values. Such linear averaging 

introduces problems with connectivity of high-grade values, which are essential for 

planning purposes and require substantial time and memory to store the point-support 

simulated values. Godoy (2002) introduced the method direct block simulation 

(DBSIM) that simulates directly at block support scale. The method uses the block 

size as selective mining unit dimension and then subdivides the block into internal 

nodes. A random path is selected to visit each block, and the internal nodes are 

simulated simultaneously using LU decomposition, the internal simulated nodes are 

averaged and then discarded to generate the simulated block value which is used as 

new conditioning data until all the blocks are visited. The method accounts for point-

point, block-point, and block-block covariances during the simulation of internal 

nodes. 

Mineral deposits frequently consist of multiple spatially correlated 

elements/properties of interest. Stochastic orebody simulations should preserve such 

spatial correlation of multiple elements in the mineral deposits. In the past, principal 

component analysis (PCA) has been used to de-correlate the collocated correlated 

variables (Davis and Greenes, 1983; David, 1988); however, the de-correlation with 

PCA only guaranteed decorrelation of the zero-lag distance covariance matrices 

ignoring the spatial correlation of the variables at non-zero lag distances. Switzer and 
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Green (1984) proposed an alternative method, called minimum/maximum 

autocorrelation factor (MAF), that uses two PCA decomposition, to transform a set of 

spatial collocated correlated elements into independent factors at all the lag distance, 

provided there are up to two structures in the linear model of coregionalization. MAF 

performs two sequential eigenvalue decomposition of the covariance matrix to 

decorrelate the variables into independent MAF factors. For this case, cross-

variogram matrix, Γ(ℎ), at a lag distance of ℎ is given by Eq. 1.4. 

Γ(ℎ) =  𝐵1𝛾1(ℎ) + (𝐵 − 𝐵1)𝛾2(ℎ)                                  (1.4) 

𝑌(𝑢) =  Λ1 2⁄ 𝑄𝑇𝑍(𝑢) = 𝐴𝑍(𝑢)                                        (1.5) 

𝐹(𝑢) =  𝑄1
𝑇𝑌(𝑢) = 𝑄1

𝑇Λ1 2⁄  𝑄𝑇𝑍(𝑢)                                (1.6) 

𝐵1 is the cross-covariance matrix for the first structure, 𝐵 is the variance-covariance 

matrix, Λ is a diagonal matrix in decreasing order of eigenvalues of 𝐵, and 𝛾1(ℎ) and 

𝛾2(ℎ) are the unit variograms for elements 1 and 2, respectively. The first spectral 

decomposition gives 𝐵 = 𝑄Λ𝑄𝑇 where 𝑄 is the orthogonal matrix of eigenvectors, 

then PCA factors with respect to 𝐵 is given by Eq. 1.5. The second spectral 

decomposition gives 𝐴𝐵1𝐴𝑇 = 𝑄1Λ1𝑄1
𝑇, where 𝑄1 is an orthogonal matrix of the 

eigenvectors. Then the MAF factors are expressed using Eq. 1.6. These MAF factors 

can then be simulated independently and back-transformed into original data space to 

maintain the spatial correlation in the orebody simulations. Desbarats and 

Dimitrakopoulos (2000) applied the MAF method for generating stochastic 

simulations of regionalized pore size distribution and observed the excellent 

performance of the method for retaining the spatial correlation of correlated variables 

in the simulations. Bandarian et al. (2008) proposed a direct minimum/maximum 
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autocorrelation factor that transforms the multiple correlated elements into MAF 

factors without normal score transformation and further presented the efficiency of 

the method for a multivariate soil dataset. Boucher and Dimitrakopoulos (2009) 

proposed direct block simulation with minimum/maximum autocorrelation factor 

(DBMAFSIM) method for generating stochastic simulations, that combines the 

DBSIM and MAF technique to efficiently simulate large deposits with multiple 

correlated elements at block support scale, further utilized to simulate iron ore deposit 

with multiple correlated elements in Boucher and Dimitrakopoulos (2012). The 

Gaussian simulation methods described above require the random variable to be in 

Gaussian space. Therefore, in practice, a normal score (Gaussian transformation) is 

performed to convert original data into Gaussian space before the simulation method 

begins. The aforementioned two-point simulation methods rely on variogram models 

to infer pairwise second-order spatial statistics, which is not sufficient to characterize 

complex spatial non-linear patterns and curvilinear geological structures that are 

typically found in a mineral deposit (Journel, 2005, 2007).  
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Figure 1-2 Limitations of two-point simulation methods for the simulation of 

complex geological structures (Journel, 2007) 

Figure 1-2 represents the limitation of two-point spatial statistics methods where 

three significantly different geological structures present the same variogram model. 

The figure shows that three different geological patterns share the same variogram 

models and are therefore hard to differentiate if only two-point statistics (variograms) 

inferred from the drillhole samples are considered during the simulation process. In 

contrast, multiple-point simulations methods that consider multiple points 

simultaneously and uses multiple-point statistics are efficient at modelling and 

reproducing the complex and non-linear geological structures and patterns. Multiple-

point simulation method visits the simulation node in the simulation grid in a random 

path, then finds 𝑛 closest conditioning data points within a neighbourhood. The 

geometry of the 𝑛 points around the simulation (central) node is defined by a spatial 

distance-vector called template. The conditioning values of the 𝑛 points in the 
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template is called the conditioning data event. It then searches for replicates that match 

the template in the training image (TI) to infer the multiple-point spatial statistics to 

generate the probability density function.  The probability density function is sampled 

to generate the simulated value for the central node and then added as new 

conditioning data in the followed simulations. TI is a three-dimensional representation 

of geological structures generated using sparse drill hole information, and therefore is 

subjective to the perception of a geological modeller. 

Guardiano and Srivastava (1993) introduced a multiple-point simulation (MPS) 

pixel-based method called ENESIM further developed in Strebelle (2002) to a 

computationally manageable multiple-point statistics method called single normal 

equation simulation (SNESIM). ENSEIM algorithm first transforms the original data 

into indicator/categorical codes using Eq. 1.7 and then the corresponding indicator 

random function represented by Eq. 1.8 is used to characterize the random field.  

𝑖(𝑢; 𝑧𝑘) = {
1 𝑖𝑓 𝑧(𝑢) ≤ 𝑧𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ∀ 𝑘 ∈ 1, … , 𝐾                         (1.7) 

𝐼(𝑢; 𝑧𝑘) = {
1 𝑖𝑓 𝑍(𝑢) ≤ 𝑧𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ∀ 𝑘 ∈ 1, … , 𝐾                        (1.8) 

Here, 𝑧𝑘 are the threshold value used to divide the original data into 𝐾 + 1 classes. 

At each simulation node 𝑍(𝑢𝑜) visited in a random path, a template 𝜁 defining the 

geometry is formed by finding the 𝑛 closest conditioning data points. Let 𝑑𝑛 =

{𝑍(𝑢1) = 𝑧1, … , 𝑍(𝑢𝑛) = 𝑧𝑛}, where 𝑧𝑖 ∈ {1, … , 𝐾}, represent the data event values 

of the template. The TI is then searched to find replicates of the template 𝜁. A system 

of simple kriging equations is solved using single normal equations to derive the 

conditional probability distribution represented by Eq.1.9.  
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𝑃𝑟𝑜𝑏[𝑍(𝑢𝑜) = 𝑧𝑘|𝑑𝑛] =
𝑃𝑟𝑜𝑏[𝑍(𝑢𝑜) = 𝑧𝑘, 𝑑𝑛]

𝑃𝑟𝑜𝑏(𝑑𝑛)
                      (1.9) 

Here, 𝑃𝑟𝑜𝑏[𝑍(𝑢𝑜) = 𝑧𝑘, 𝑑𝑛] represent the probability that the central node in the 

replicates of the template 𝜁 is 𝑧𝑘. 𝑃𝑟𝑜𝑏(𝑑𝑛) represent the probability of occurrence 

of the template, 𝜁, in the TI. The conditional probability distribution is sampled and 

added to the conditioning data. The method continues until all the nodes in the 

simulation grid are visited. The conditional probability distribution function now 

captures multiple points statistics. However, the algorithm has a high computational 

cost because of the scanning of TI for replicates every time a simulation node is visited 

and simulated. SNESIM algorithm overcomes this limitation by storing all the 

possible template configuration and its statistics by scanning the TI only once as a 

preprocessing step. The tree is then used to derive the statistics of the template when 

a node is visited and simulated. This method is further improved to overcome the 

memory requirement of creating the tree in Straubhaar et al. (2011) to include list-

based storage of patterns by direct sampling of the patterns (Mariethoz and Renard, 

2010) from training images. The direct sampling method does not create a tree; 

instead, for every data event, it randomly picks a replicate from the TI and then uses 

a distance function to define the similarity between replicates and the data event. If 

the replicate is similar, then the simulation node is assigned as the central node value 

of the replicate; otherwise, it picks another replicate. Strebelle and Cavelius (2014) 

improved the SNESIM algorithm and proposed two methods to reduce the data search 

neighbourhood (i) multiple-grid approach introducing additional intermediary sub-

grids and (ii) new search neighbourhood to preferentially include previously 

simulated nodes. Goodfellow et al. (2012) used the SNESIM method for simulation 
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of categorical geological property minezones and the DBMAFSIM method for 

simulation of correlated continuous geological properties nickel, copper, gold, 

platinum and palladium. The case study showed that the SNESIM method generates 

simulations/realizations that reproduces the spatial statistics of the TI, since the 

method relies on a TI to infer spatial statistics, but do not reproduces the spatial 

statistics of the drillhole data. Other MPS pattern-based methods for simulation of 

categorical and continuous geological properties are SimPat (Arpat and Caers, 2007), 

FilterSim (Zhang et al., 2006), WaveSim (Chatterjee et al., 2012, 2016; Chatterjee 

and Dimitrakopoulos, 2012),  and are based on distance-based similarity measurement 

functions. Avalos and Ortiz (2019) presented a method for simulation of categorical 

geological properties using a convolutional neural network (CNN). The CNN is 

trained by extracting the template and its data event values from a TI. The simulation 

grid is then visited in a random path, the data event formed for each simulation node, 

the date event with the template is fed to the CNN that outputs the value of the central. 

Multiple simulations are generated by changing the random path to visit the nodes in 

the simulation grid.  

Pixel and pattern-based MPS methods described earlier only accounts for 

multiple-point statistics in an ad-hoc way by either only accounting for the occurrence 

of a data event in the TI or by matching the data event with the replicate from TI 

through distance-based similarity measurements. These methods do not account for 

low and high-order spatial statistics and the relations between the different values in 

the data event. In addition, they rely on TI to infer the statistics and therefore 

reproduces the statistics of TI. However, a TI is hard to acquire, and moreover, is 

subjective and can have spatial statistics different from the conditioning data leading 
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to simulations that conflict with the spatial statistics of the conditioning data. 

Mustapha and Dimitrakopoulos,  (2010a) proposed high-order stochastic simulation 

(HOSIM) that uses spatial statistics (spatial cumulant and moments) for simulation of 

complex geological structures and non-linear patterns. Spatial moments for a template 

𝜁 with data event 𝑑𝑛 is defined using Eq. 1.10 

𝑀𝑜𝑚𝑍
𝜁 (𝑤1, … , 𝑤𝑛) = 𝐸[ℎ1, … , ℎ𝑛; 𝑍1

𝑤1 , … , 𝑍𝑛
𝑤𝑛]                  (1.10) 

Here, ℎ𝑖 , ∀𝑖 ∈ 𝑛  defines the distance vector that represents the geometry of 

template 𝜁 and 𝑤𝑖, ∀𝑖 ∈ 𝑛 defines the order of moments for each node in data event 

𝑍(𝑢𝑖), ∀𝑖 ∈ 𝑛. The simulation algorithm still follows the sequential simulation 

framework. Templates are defined as prior to scan the TI and conditioning data for 

replicates and compute spatial cumulants. The spatial cumulants, along with its 

templates, are then stored in a tree. The nodes in the simulation grid are visited in a 

random path to find the conditioning data event. The tree is used to infer the spatial 

cumulants of the data event and Legendre polynomials are used to approximate the 

CPDF build with spatial cumulants. A value is sampled from the CPDF and added to 

the conditioning data. However, defining templates as a priori to avoid computation 

costs is not efficient because the quality of simulation then becomes dependent on the 

set of templates used. This method is further used in Mustapha and Dimitrakopoulos 

(2010b, 2011), Mustapha et al. (2011), and is parallelized in Li et al. (2014). Yao et 

al. (2018) presented a computational model for high-order simulation that does not 

require a prior definition of templates and computation of moments or cumulants and 

reduces the computational requirements of the HOSIM method significantly. The 

method improves the high-order simulation method by approximating the CPDF using 
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spatial Legendre polynomials with location-dependent templates. Minniakhmetov et 

al. (2018) improved and stabilized the performance of the high-order simulation 

method by using Legendre-like orthogonal splines to approximate the CPDF. The 

proposed Legendre-like splines functions were able to approximate better the CPDF. 

de Carvalho et al. (2019) presented an extension of Legendre-like orthogonal spline 

high-order simulation method for simulations at the block support scale. The method 

computes the CCDF by using the high-order spatial statistics of point to block relation 

inferred from a training image. Minniakhmetov and Dimitrakopoulos (2017a) 

proposed a joint high-order simulation method for simulation of spatially correlated 

continuous geological properties. The method first orthogonalizes the correlated 

elements into independent factors using the diagonal domination condition of high-

order cumulants; then, the independent factors are simulated independently using 

high-order univariate simulation method based on high-order spatial cumulants and 

Legendre polynomials; finally, the simulated factors are back-transformed to generate 

simulations that respect low-and-high-order spatial statistics. Minniakhmetov and 

Dimitrakopoulos (2017b) presented a high-order data-driven simulations method that 

does not require training images for simulation of categorial geological properties in 

mineral deposits. The proposed method used high-order spatial indicator moments 

and advanced recursive B-splines to approximate the CPDF. The method further 

showed that the high-order indicator moments are related to lower order through a 

boundary condition.  de Carvalho and Dimitrakopoulos (2019) showed the effect of 

using high-order simulations compared to two-point SGS simulations in the mine 

production scheduling optimization. High-order simulations reproduce the spatial 

connectivity of high and low grades and result in a more informed long-term mine 
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production plan with 5% more NPV compared to mine production plans based on 

simulations generated using SGS method. 

 Non-additive geometallurgical properties 

Simulations of geometallurgical properties of materials are hard to generate and 

even harder to integrate into the long-term planning optimization models due to their 

non-additive properties. There are three major categories of approaches available in 

the literature for modelling the geometallurgical properties of materials, first that 

models the geometallurgical properties as a function of other rock properties, second 

that generates domains/clusters of materials with similar geometallurgical properties, 

and third that models the geometallurgical properties by generating orebody 

simulations using Gaussian simulation methods. 

  Alruiz et al. (2009) used a model to simulate the response of the ball mill 

circuit with different hardness indexes. The simulation results are then used to fit a 

simple power model that predicts the power consumption of the ball mill circuit. The 

hardness values of materials can then be related to the ball mill power consumption 

and throughput. Coward et al. (2009) proposed an approach to divide the 

geometallurgical properties in the primary and response framework, where primary 

represents the geometallurgical properties such as density, colour, grain size, 

alternation, etc. that can be directly measured and response that represents the non-

linear geometallurgical properties such as throughput, grindability, recovery, size 

distribution etc. of the materials. Boisvert et al. (2013) developed a two-stage linear 

regression model to predict different geometallurgical properties of interest from 204 

different input variables and achieved a Pearson correlation coefficient between 0.65 
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and 0.9. However, the methodology was based on different grouping variables based 

on consultation with a geologist to simplify the regression model input and overcome 

the problem of sparse sampling and missing information. Sepúlveda et al. (2017) 

proposed a projection pursuit method to model geometallurgical properties.  

Projection pursuit is a statistical modelling technique in which data from several 

variables (grade, tonnage, which are additive properties) are projected onto a direction 

that optimizes the fit of the regression models for the prediction of geometallurgical 

properties. Lishchuk et al. (2019) studied different machine learning algorithms, 

namely, elastic net, support vector regression, instance-based learning, instance-based 

classifier, random forest, decision trees, and model trees for predicting 

geometallurgical properties from the grade of mining block.  The predicted 

throughputs/hardness of materials from the above-mentioned methods can be used in 

the long-term planning models mentioned in Sect. 1.2.1. However, the 

predictions/calculations do not account for the blending of materials, which 

commonly happens in any mining operation. 

Sepúlveda et al. (2018) proposed a method for material domaining that uses 

fuzzy clustering and graph-based labelling to generate clusters/domains in the mineral 

deposit that has similar geometallurgical properties. The method also accounts for the 

spatial location of the materials compared to k-mean clustering algorithms, which 

only accounts for material properties. Bhuiyan et al. (2019) proposed the use of the k-

means clustering algorithm with random forest classifiers for modelling 

geometallurgical domains. The method uses k-means clustering algorithms on the first 

three principal components scores of isometric log-ratio coordinates of geochemical 

and geometallurgical (bond work index (BWI)) data to establish geometallurgical 
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domains. A random forest classifier is then used to identify the importance of 

geochemical data compared to geophysical data for geometallurgical domaining. 

Rajabinasab and Asghari (2019) studied the effect of k-means, hierarchical, and self-

organizing maps clustering algorithms for generating clusters/domains of materials 

based on its geometallurgical properties. These geometallurgical domains generated 

from the above-mentioned methods can be used in the long-term planning models 

mentioned in Sect. 1.2.1 to schedule extraction of materials from specific 

geometallurgical domain of interest in a year. However, it's hard to determine which 

geometallurgical domain is of interest for a particular year. 

Barnett and Deutsch (2012) discussed a systematic approach to use the 

transformation methods such as log ratios, MAF, normal score, stepwise conditional 

and introduced conditional standardization for transforming geometallurgical 

properties and then using such transformed values in Gaussian simulation methods to 

generate simulations of geometallurgical properties. Deutsch et al. (2016) presented 

an approach to handle the non-linearity, uneven sampling, and different scale 

measurements of geometallurgical properties. The proposed approach uses the 

Gaussian simulation method to handle non-linearity issues, the use of multiple 

regression of collocated properties within a super secondary approach (Babak and 

Deutsch, 2009) for modelling correlated continuous geological and geometallurgical 

properties at a different scales, uneven sampling is handled with a non-parametric 

Bayesian imputing method. Garrido et al. (2019) used a Gibbs sampler with rejection 

condition on non-linear geometallurgical recoveries at the processing mills to impute 

unevenly sampled geometallurgical properties. The method then uses Gaussian 

simulation methods conditioned on imputed geometallurgical samples to generate 
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simulations of geometallurgical properties. Ortiz et al. (2019) used the sequential 

Gaussian co-simulation method to generate simulations of geometallurgical property 

sag power index (SPI) and copper grades. The simulations of geometallurgical 

properties generated with the approaches mentioned above can then be used in the 

long-term planning models mentioned in Sect. 1.2.1. However, the long-term 

planning models cannot account for non-linearity with the blending of materials with 

different geometallurgical properties.  

1.2.3 Short-term production planning 

The long-term plan of a mining complex provides yearly plan and production 

targets, which are then used to develop a short-term plan. The short-term plan provides 

decisions about extraction sequence, destination policies, equipment assignment, and 

processing stream utilization at daily/weekly/monthly time scale and aims at 

maximizing the compliance to the yearly plan and production targets. Earlier work of 

Wilke and Reimer (1977), Fytas and Calder (1986), Mann and Wilke (1992), Schleifer 

(1996), Hustrulid et al. (2013) discusses some of the intricacies of short-term 

planning. A review of short-term planning can be found in Blom et al. (2018). The 

available literature can be categorized into three groups; first, models that determine 

the optimal allocation of fleets for a single mine operation, second, models that 

optimize the short-term extraction sequence and destination policies for a single mine 

operation, and third, models that simultaneously optimize fleet allocation, extraction 

sequence, and destination policies of a mining complex. 

Li (1990) presented a deterministic LP model to determine the number of trucks 

required to haul the materials with minimum haulage cost, then a maximum inter 
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truck-time deviation rule is used to determine dispatching of trucks to a shovel. Alarie 

and Gamache (2002) discussed different solution strategies such as 1 Truck-N Shovel, 

M Trucks-1 Shovel, and M Trucks-N Shovels available for mine fleet allocation. Ta 

et al. (2005) presented a stochastic optimization model based on chance-constrained 

for the fleet assignment that accounts for uncertainty cycle time and truckload. 

Ercelebi and Bascetin (2009) used closed queuing network theory to determine the 

optimal number of trucks assigned to a shovel and then used a deterministic LP model 

to dispatch trucks to different shovels. Ta et al. (2013) proposed a stochastic MILP 

model for determining the truck allocation in an open-pit mine operation while 

accounting for shovel idle probabilities. Zhang and Xia (2015) presented a 

deterministic IP model that determines the optimal number and trips of trucks 

assigned to all shovels to minimize total truck operating costs and meet production 

targets. Nguyen and Bui (2015) used a multi-agent decision support system for the 

truck dispatching and solved it using a genetic algorithm. Kozan and Liu (2016) 

present a deterministic MILP model that determines timetabling, usage and 

scheduling of drilling, blasting, and excavating equipment to maximize the efficiency 

of mining equipment. Upadhyay and Askari-Nasab (2016) presented a deterministic 

mixed integer goal programming model that determines the allocation of shovel and 

trucks in an open-pit mine while maximizing shovel utilization and minimizing 

deviations from production targets and operating cost. Upadhyay and Askari-Nasab 

(2018) integrated a discrete event simulator in the mixed-integer goal programming 

model to determine shovel and truck allocation in an open-pit mine under uncertainty 

of the mining operation. Chaowasakoo et al. (2017) presented the use of global 

positioning system technology installed in trucks (Chaowasakoo et al., 2014) for 
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truck-shovel allocation in open-pit mines. Koryagin and Voronov (2017) presented a 

two-step approach that first determines the production target for each shovel material 

flow to different destinations and then uses a heuristic to determine the allocation of 

trucks to shovels that minimizes the total idle time. Ozdemir and Kumral (2019) used 

a simulation-based optimization method that first uses a discrete event simulator to 

determine an optimal number of trucks assigned to each mine and then uses a 

deterministic LP model to determine the allocation of each truck to different shovels 

in the pit. A review of models and algorithms used for mine fleet allocation and 

management can be found in Bielli et al. (2011) and  Moradi Afrapoli and Askari-

Nasab (2017). 

Wilke and Reimer (1977) presented a deterministic LP model that determines 

the short-term extraction sequence for an iron ore mine and maximizes revenue 

subjected to blending and quantity constraints. Fytas and Calder (1986) proposed a 

deterministic LP model that determines the short-term extraction sequence to 

maximizes the revenue subjected to quantity, stripping ratio, and quality constraints. 

Fytas et al. (1993) presented a deterministic LP model that maximizes revenue 

considering head grade, concentrator tonnage, and stripping ration targets. Smith 

(1998) presents a mixed-integer goal programming model that optimizes the short-

term extraction sequence to maximize ore production while minimizing the deviation 

from blending constraints. Kumral and Dowd (2002) presented a two-step 

deterministic model that uses integrated Langrangian parametrization and multi-

objective simulation annealing framework to improve short-term extraction sequences 

generated from the Lerch and Grossman method (Lerchs and Grossman, 1965). The 

method also accounts for mining width accessibility constraints for equipment 
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operation. Gholamnejad (2008) presented a deterministic MILP model that optimizes 

the short-term extraction sequence while maximizing metal production and 

accounting for mining width accessibility, blending, slope, mining, and processing 

constraints. Huang et al. (2009) presented the MineSight Schedule Optimizer software 

that determines short and medium-term extraction sequences using a deterministic 

MILP model. Eivazy and Askari-Nasab (2012) proposed a deterministic MILP model 

that determines short-term extraction sequence and destination policies while 

minimizing total operating cost and account for blending, stockpile, horizontal mining 

direction, and ramp constraints.  

L’Heureux et al. (2013) presented a deterministic MILP problem model that 

optimizes extraction sequence, displacement of shovels, drilling and blasting 

operations. The method uses batch constraints for scheduling drilling and blasting 

operations and minimizes the total operating cost. Mousavi et al. (2016a) present a 

deterministic MILP model that optimizes the extraction sequence and destination of 

mining blocks along with the assignment of the fleet. The model minimizes the total 

operating cost that includes re-handling, holding, misclassification and drop-cut costs. 

Drop cuts were defined as the blocks which are in the middle of surrounding blocks 

and were considered costly to extract and can be mined if new benches are required 

to be opened. The model also considered short-term stockpiles. A hybridized heuristic 

approach consisting of simulated annealing, large neighbourhood search and branch 

and bound is utilized to generate solutions with a deviation of 1 % from the solution 

achieved using exact methods for small instances problems. Mousavi et al. (2016b) 

further presented a comparative study of three different metaheuristics algorithms for 

solving the MILP model presented in Mousavi et al. (2016a). Three different 
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metaheuristics, namely, simulated annealing, Tabu search, and a hybrid Tabu search 

simulated annealing algorithm, were tested to solve the short-term production 

planning model. The hybrid algorithm performed better compared to the other 

metaheuristics. Blom et al. (2017) present a deterministic MILP model that 

determines the short-term extraction sequence, destination policies, and fleet 

assignment decisions. The model is solved using a multi-objective rolling horizon 

algorithm, which solves the model over the planning horizon sequentially. In addition, 

the solution approach first optimizes the short-term decisions to minimize deviation 

from the production target and then re-optimize such decisions to maximize 

equipment productivity. All the models mentioned above do not account for supply 

and equipment performance uncertainties. The two sources of uncertainty related to 

the supply of material and operation of different equipment affect the short-term 

operations. Matamoros and Dimitrakopoulos (2016) proposed a stochastic model that 

optimizes the extraction sequence and fleet assignment decisions while accounting for 

supply and equipment performance uncertainties, to meet the operational and 

blending requirements and minimize the cost of extracting and hauling materials, cost 

of equipment movement, lack of production from shovels, deviation from mineability 

and production targets. However, to reduce the computational cost aggregated 

continuous period, fixed mining direction and sequential solution approach was 

utilized. The models presented above for short-term production planning are limited 

to a single mine operation and do not optimize the several components of a mining 

complex simultaneously in one single optimization model while accounting for supply 

and equipment performance uncertainties.  
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Quigley and Dimitrakopoulos (2019) proposed a stochastic short-term planning 

model that optimizes the extraction sequence and fleet assignment decisions while 

accounting for supply and equipment performance uncertainties. The model 

minimizes the shovel movement cost, deviation from the different processing mill 

production targets, deviation from shovel production targets, and deviation from total 

available truck hours. Horizontal precedence relation that ensures a more practical 

and realistic extraction sequence is utilized in the model. Both and Dimitrakopoulos 

(2020) extend the models presented in Goodfellow and Dimitrakopoulos (2016) to a 

stochastic short-term planning model that optimizes the extraction sequence, 

destination policies, fleet assignment, and processing alternative decisions while 

accounting for supply and equipment performance uncertainties. The model 

maximizes cumulative cash flows while minimizing the deviations from processing 

mill production targets, shovel movements, shovel production targets, truck haulage 

hours, and mineability targets.  

The models described above related to either short-term fleet allocation or 

production planning cannot learn from the incoming new information collected during 

the operations in a mining complex, and therefore cannot respond accordingly to adapt 

the short-term production plan.  

1.2.4 Quantification of equipment performance uncertainty 

Equipment performance uncertainty referred to the uncertainty associated with 

availability, utilization, productivity, break down, performance, repair time, cycle 

time, etc. associated with all the equipment used in a mining operation. For instance, 

the performance of shovels in an operating mine is uncertain in terms of load time, 
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productivity, availability, utilization, and more. Monte Carlo simulations are equally 

probable scenarios that are generated based on historical equipment performance data 

and can quantify the uncertainty associated with the performance of different 

equipment in a mining operation. These types of simulation methods do not require 

spatial statistics (a characteristic found in mineral deposit) but generate 

scenarios/simulations that reproduce the behaviour/statistics inferred from the 

historical data. There are two different types of approaches available in the literature 

to quantity equipment performance uncertainty. First, that estimates the parameters of 

an assumed distribution defined as a priori for equipment performance, and second, 

that generates empirical distribution without any assumption, using the historical 

equipment performance data.  

Matamoros and Dimitrakopoulos (2016) generated simulations of shovel and 

truck availability, assuming a Gaussian distribution. Quigley and Dimitrakopoulos 

(2019) generated simulations of truck cycle time, also assuming a Gaussian 

distribution. Ozdemir and Kumral (2019) assume a PERT distribution to generate 

simulations of truck fill factor, loading time, dumping time, log-normal, normal and 

Weibull distributions for truck hauling time. Paduraru and Dimitrakopoulos (2019) 

generated simulations of the shovel load time, truck cycle time assuming a Gaussian 

distribution, shovel breakdown time assuming an exponential distribution, shovel 

repair time assuming a log-normal distribution. Both and Dimitrakopoulos (2020) 

generated simulations of shovel productivity and truck availability assuming a 

Gaussian distribution. Quigley and Dimitrakopoulos (2019) generate simulations of 

shovel production, utilization, availability, and truck utilization and availability with 

Monte Carlo simulation. The different correlated parameters (production, utilization, 
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and availability) of equipment performance are first decorrelated into independent 

factors using PCA (Hotelling, 1933); then, the PCA factors are simulated separately 

with Monte Carlo simulation methods; and finally, back-transformed into original 

space to generated simulated models of correlated equipment performance properties.  

1.2.5 Incoming new information in mining complexes 

The short-term plan is implemented to perform the day-to-day operations in a 

mining complex. New and conventional digital technologies, including advanced 

sensors and monitoring devices, allows a mining complex to monitor and collect new 

information in real-time from its different components during the day-to-day 

operation. The new information collected in a mining operation with conventional 

technologies includes mining equipment fuel consumption, engine power 

consumption, engine torque, engine temperature, production rates, efficiency, 

utilization, location and location of materials in a mining complex. The new 

information collected in a mining operation with advanced sensor include quality of 

materials extracted, transported, handled, conveyed, process and sold to the 

customers. 

Koellner et al. (2004) discussed the use of conventional sensors installed on 

mining haul trucks that continuously monitors the status and performance of the 

trucks. These sensors can also monitor the fuel consumption, engine power 

consumption, brake efficiency, engine torque, engine temperature, engine speed, etc. 

of a truck. Conventional technology, such as the global positioning system (GPS), can 

pinpoint the location and status of the mining fleet in real-time (Chaowasakoo et al., 

2014). The GPS data about the spatial location of the different equipment in a mining 
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operation can be used to improve the control systems (Sládková et al., 2011). Radio-

frequency identification (RFID) tags are another example of conventional technology 

that can track and locate the flow of materials in a mining operation. Brewer et al. 

(1999) highlighted the scope to use such an RFID-GPS combined system to perform 

production scheduling in a job shop supply chain. Rosa et al. (2007) discussed the use 

of RFID tags during blasthole drilling to locate the displacement of materials during 

blasting and also the location of extracted material throughout the mining complex. 

Kargupta et al. (2010) discussed the MineFleet tool that monitors the health, fuel 

consumption, driver behaviours and gas emission from mining equipment. Wei et al. 

(2011) reviewed the critical conventional technology internet of things for labelling 

and precepting people, equipment, and environmental changes in an underground 

mine. Baek and Choi (2019) discussed the use of the conventional communication 

technology (ICT) system for tracking the location of equipment and people in real 

time and monitoring the environmental changes in an underground mine.  

New digital technologies include IR (Larkin, 2011), and XRD (Jenkins and 

Snyder, 1996) sensors that generate surface measurements about mineralization of 

materials; XRF (Jenkins, 1999) and LIBS (Singh and Thakur, 2007) sensors that 

generate surface measurements about the grade and deleterious elements of materials; 

and DE-XRT (Eilbert, 2009) sensors that generate volumetric measurements about 

the grade, deleterious elements, and density of materials. Infrared (IR) sensors such 

as NIR/SWIR/MWIR passes a beam of infrared radiation through the surface of 

materials to excite their harmonic molecular vibrations. The molecules in the material 

absorb frequencies of the infrared beam that are characteristics of their mineralization. 

A detector then measures the amount of energy absorbed at each frequency. The 
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energy absorption profile at different frequencies is matched against a database of 

energy absorption profiles of known materials to find the type of mineralization of the 

materials. Some form of calibration techniques such as regression , PCA, partial least 

square, etc. is used to determine the composition of such mineralization.  

XRD sensors bombard the surface of the material with X-ray beams and use a 

detector to measure the intensity and angle of diffraction of the X-ray beams. The 

detector and the X-ray beam are rotated through a range of angles to generate the 

intensity and diffraction profile. The intensity and diffraction profile are dependent on 

the mineralization of the materials. The profiles are matched against a database of 

diffraction profiles of known materials to find the mineralization and its concentration 

in the materials. XRF sensors bombard the surface of the materials with high energy 

X-rays, which causes the electron in the inner orbital of atoms to eject from their orbit. 

Electrons in the higher orbitals subsequently fall into the hole, causing to release 

energy in the form of photons. This photon energy depends on the type of atom and 

its concentration, which is measured by a spectrometer installed in the XRF sensors. 

XRF sensors, therefore, generates measurements about the concentration of different 

atoms by using this process. XRD and XRF data have higher precision compared to 

the IR, LIBS, and DE-XRT data because they require sample preparation and 

laboratory testing but are still considerably faster compared to geochemical laboratory 

analysis data. LIBS sensors consist of similar components, except that the material 

surface is ablated by a laser beam that breaks down the surface into a plasma 

consisting of atoms, ions, and free electrons. The spectrometer in LIBS sensors reads 

the radiation generated by electromagnetic radiations during the cooling of the 

plasma. The intensity of the radiation is related to the concentration of atoms and is 
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used to generate the surface measurements about the concentration of different atoms 

with the LIBS sensors. DE-XRT bombards broad-band radiation from an X-ray tube 

on the materials. The X-ray radiations penetrate the materials and get absorbed. The 

degree of absorption depends on the material composition, specifically its atomic 

density and thickness. The intensities of the transmitted attenuated X-ray is detected 

by two sensors that capture different energy level allowing to characterize the material 

by its atomic density. The scanners generate a grayscale image showing the fraction 

of high (dark) and low (light) atomic density. 

Goetz et al. (2009) used the NIR to detect alteration (swelling clays, kaolinite, 

muscovite, and biotite) of materials transported through conveyor belts in a mining 

operation. The NIR measurements were then used with XRD and XRF data in a 

regression model to predict the concentration of such alterations. Dalm et al. (2014) 

used the NIR sensors to determine the alternation (white mica, chlorite, tourmaline, 

and kaolinite) of drillhole core samples at a copper porphyry deposit. The results from 

NIR sensors showed good validation results against XRD sensor data. A multivariate 

logistic regression model is then used to determine the relationship between copper 

grade data acquired using XRF sensors and the alteration data acquired from NIR 

sensors. Iyakwari et al. (2016) used the NIR sensor to detect the alternation 

(chrysocolla, muscovite, kaolinite, biotite, chlorite, tourmaline, hematite, malachite, 

calcite, ankerite, and apatite) of run-of-mine samples collected from a copper deposit. 

The NIR sensor data showed good validation results against the XRD sensor data. The 

detected alternation from NIR data is used to classify materials as waste, ore, and 

middling and showed a good validation against the classification of materials with 

cut-off grades using XRF sensor grade data. Dalm et al. (2017) used the SWIR sensors 
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to determine the alteration (white mica, chlorite, tourmaline, nontronite, and kaolinite) 

of drillhole core samples at a copper deposit. Subsequently, a PCA method is used to 

find and analyze the correlation between grade data from XRF sensors and alternation 

data from SWIR sensors. Dalm et al. (2018) used the NIR and SWIR sensors to 

determine the alternation (iron oxide, pyrite, pyrophyllite, alunite, dickite, illite, 

zunyite, jarosite, water, and diaspore) of drillhole core samples at an epithermal gold-

silver deposit. The results of the NIR and SWIR detections showed a good validation 

against the XRD data of the drillhole core samples. A partial least square discriminant 

analysis method is then used to associate NIR and SWIR data to geochemical 

laboratory analysis data.  

Cremers (1987) proposed and used the LIBS sensor to determine the grade 

(manganese, chromium, silicon, copper, and iron) of steel products. Bolger (2000) 

used the LIBS sensor for determining the grade (arsenic, copper, chromium, cobalt, 

iron, manganese, nickel, and zinc) of drillhole core samples. A normalization scheme 

based on total plasma emission is used to correct variations in radiation measurements 

of uneven drillhole core samples. The LIBS sensor data showed a good correlation 

with the geochemical laboratory analysis data. Bette et al. (2005) used the LIBS sensor 

to measure the grade of steel products. Elements such as carbon, nitrogen, oxygen, 

phosphorus, and sulphur are detected in the steel products, which leads to the 

identification of non-metallic inclusion about aluminum nitride, aluminum oxide in 

steel products. Death et al. (2008, 2009) used the LIBS sensor to determine grade 

(iron, aluminum, silicon, manganese, potassium, phosphorus) of run-of-mine samples 

from iron ore deposits and grade (aluminum, cobalt, chromium, iron, manganese, 

magnesium, nickel, chlorine, sodium, sulphur, silicon, and titanium) of drillhole core 
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samples at a nickel laterite deposit. A principal component regression (PCR) model is 

used to build a relationship between LIBS sensor data and XRF sensors grade data. 

The PCR model showed a good correlation with the XRF sensor grade data. 

 De Jong (2004) used the DE-XRT sensors to determine ash content, zinc grade, 

and lead grade of samples from the conveyor belt. The authors suggested using such 

sensors for the sorting of materials fed to the processing mill. Lessard et al. (2014) 

used the DE-XRT sensor to determine the molybdenum grade of run-of-mine samples 

at two molybdenum deposits. The authors further showed that using DE-XRT data for 

sorting the materials fed to the processing mill can help to reduce the operating cost 

by 30% by processing less materials with high molybdenum grades, increases the life 

of mine by identifying profitable materials during sorting procedure, and determine 

operating expenditure requirements to further increase the throughput and recovery of 

molybdenum materials. Kern et al. (2019) used the DE-XRT sensor to determine the 

abundance (grade) of mineral cassiterite (primarily contains tin), and the SWIR sensor 

to determine the alternation (chlorite) in run-of-mine samples at a tin-indium-zinc 

deposit. The DE-XRT and SWIR data were used to build proxies for the mineral 

liberation analysis data (mineralogy, mineral density, mineral area, mineral grain size, 

etc.), which is commonly used for sorting materials fed to the processing mill.  

The new information collected either with the conventional technologies and 

advanced sensors can allow a mining complex to learn and respond accordingly to 

update the supply and equipment performance uncertainties and subsequently adapt 

the short-term production plan. However, the technologies outlined above only allows 

for the collection of the new information, but do not use the incoming new information 
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to learn and respond accordingly to update supply uncertainty and adapt short-term 

production planning decisions.  

1.2.6 Updating supply and equipment performance uncertainties with 

incoming new information  

The new information collected from the different components of a mining 

operation can be transmitted using Wi-fi networks (Boulter and Hall, 2015) to be 

stored in a central system containing internet database management platforms 

(Ramírez-Gallego et al., 2018). The stored data can then be retrieved, whenever 

required, to update the supply and equipment performance uncertainties. However, 

methods to update the supply and equipment performance uncertainties should 

account for the “soft” characteristic of the incoming new information. This is a well-

known issue in petroleum and groundwater reservoirs (Oliver et al., 2008), also 

known as history matching, where uncertain production data (oil production, flow 

rates, well pressure, seismic data, tracer observations, etc.) is used to update the set 

(simulations) of static (such as porosity, permeability, etc.) and dynamic reservoir 

variables (such as pressure, fluid saturation, etc.), such that the updated variables 

better matches the observed behaviour (production data). Oliver and Chen (2011) 

provided a review of the methods used for history matching.  

Ensemble Kalman filter (Evensen, 2009) is a well-known, studied, and applied 

method for history matching in groundwater and petroleum reservoirs (Aanonsen et 

al., 2009; Oliver and Chen, 2011). Kalman filter (Kalman, 1960; Kalman and Bucy, 

1961) was used initially for updating reservoir models with new information. 

However, the method was limited to linear models and was improved in Jazwinski 
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(1970) and Brown and Hwang (1992), to introduce extended Kalman filter (EKF) for 

small-scale nonlinear models. Evensen (1994a) introduced the ensemble Kalman filter 

(EnKF) method and used it (Evensen, 1994b) to assimilate information in large-scale 

nonlinear oceanic models. The performance of EnKF and EKF is compared in Miller 

et al. (1999) and Madsen and Canizares (1999). Other applications of EnKF include 

water model (Van Loon et al., 2000), stock assessment model (Grønnevik and 

Evensen, 2001), atmospheric circulation model (Houtekamer and Mitchell, 2001; 

Mitchell et al., 2002). 
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EnKF consists of two main steps, the forecast step and the assimilation step. The 

forecast step represented by Eq. 1.11 generates the predictions at time step 𝑡 about the 

state vector based on all the information available prior to time step 𝑡. The updated 

state vector, 𝑦𝑡−1,𝑗
𝑢 , at time step 𝑡 − 1 for simulation number 𝑗 contains variables 

required to describe the system, i.e. model variables (static and dynamic) and 

predicted observed data. 𝑓 represent the reservoir flow simulator, 𝑝 denotes predicted, 

𝑢 denotes updated, 𝑗 is the simulation index, 𝑁 denotes the total number of 

simulations, 𝑡 is the time step index, and 𝑦𝑡,𝑗
𝑝

 is the predicted state vector.  The forecast 
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step only changes the dynamic variables and the predicted observed data, but the static 

variables remain unchanged in the forecast step. The observed (𝑡𝑟𝑢𝑒) data, 𝑑𝑡𝑟𝑢𝑒,𝑡, 

measured with sensors at time step 𝑡 is perturbed by adding noise to reflect the 

uncertainty in the measurement with sensors, using Eq. 1.12. 𝑑𝑜𝑏𝑠,𝑡,𝑗 denotes the 

perturbed observation (𝑜𝑏𝑠) at time step 𝑡 and for simulation number 𝑗. 𝜖𝑡 represent 

the measurement noise and is usually assumed to be Gaussian. The second step in the 

EnKF method is the assimilation step that adjusts all the variables in the state vector 

to honour the observed data using Eq. 1.13. 𝐻𝑡 is an operator that extracts the 

components of the state vector corresponding to the observed data. 𝐾𝑡 is the Kalman 

gain matrix that weighs the relevance of observed data compared to the state vector 

and is computed using Eq. 1.14. 𝐶𝐷,𝑡 is the covariance matrix of measurement error, 

𝐶𝐷,𝑡 = 𝐸[𝜖𝑡 ∙ 𝜖𝑡
𝑇], and is typically assumed to be diagonal. 𝑃𝑡

𝑝
 is the covariance 

matrix of the predicted state vector, computed using Eq. 1.15, and consist of 

covariance of model variables, the covariance of predicted observed data, and cross-

covariance between model variables and predicted observed data.  

Variant of EnKF such as EnKF with ensemble Kalman Smoother (Skjervheim 

et al., 2007), EnKF with iterative confirming option (Wen and Chen, 2005), EnKF 

with confirming option that update the dynamic variables based on updated static 

variables to achieve consistent dynamic and static parameter (Wen and Chen, 2006), 

EnKF with Gaussian mixture model (Dovera and Della Rossa, 2011), EnKF with 

iterative ensemble smoother (Chen and Oliver, 2012), EnKF with multi-point 

simulation method (Hu et al., 2013), combination of EnKF with pilot point and 
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gradual deformation parameterization technique (Heidari et al., 2013), gathered EnKF 

(Shuai et al., 2016), were also utilized for updating different nonlinear models.  

Other methods for history matching of petroleum and groundwater reservoir 

includes gradual deformation (Hu, 2000), neighbourhood methods (Sambridge, 

1999), evolutionary algorithms (Schulze-Riegert and Ghedan, 2007), gradient-based 

methods (He et al., 1997), maximum a posteriori (Oliver, 1996), Markov chain Monte 

Carlo (Oliver et al., 1997), randomized maximum likelihood (Sarma et al., 2006; Chen 

and Oliver, 2012; Vo and Durlofsky, 2014; Shirangi, 2017), Tau-model (Naraghi and 

Srinivasan, 2015), multi-point statistics and convolution neural network (CNN) with 

PCA (Liu et al., 2019), stepwise CNN-PCA and recurrent neural network (RNN) 

approach (Tang et al., 2019), and Markov mesh models (Panzeri et al., 2016). The 

CNN-PCA method is highly subjective to training images used in the method to train 

the CNN and will perform adversely when the static variables (captured in the training 

images) of the reservoirs changes significantly. Similarly, the CNN-PCA-RNN 

method uses the results of the flow simulator over the initial simulations, which makes 

the RNN model highly subjective to initial simulations. This method will perform 

adversely when the initial simulations and, subsequently, the results from flow 

simulation change.  

Unlike petroleum and groundwater reservoirs, mineral deposits only consist of 

static variables (geological properties) that needs to be updated with incoming new 

information. Benndorf (2015) introduced the use of EnKF for updating estimated 

orebody models. Benndorf and Buxton (2016) presented a closed-loop conceptual 

framework for real-time reserve management that integrates the sensor-based 

measurement to update the supply uncertainty of mineral deposits. The framework is 
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tested at a Walker Lake dataset (Isaaks and Srivastava, 1989) to show the efficiency 

of EnKF compared to Kalman filter for one, two, and three shovels simultaneous 

operations in a mine. Yüksel et al. (2016) used the EnKF method to update supply 

uncertainty (ash content) with XRD ash content data of drillhole samples at a coal 

deposit. The method also incorporates a rejection sampling technique to validate and 

reject some of the updated simulations. Yüksel et al. (2017) used the EnKF method to 

update the supply uncertainty (ash content) from radiometric measuring system sensor 

data (ash content) of materials passing on conveyor belt at a coal deposit. The authors 

further showed that initial simulations generated by either adding noise to estimated 

model or using SGS are updated with EnKF with similar performance.  

Wambeke and Benndorf (2017) used the EnKF method with a forward 

simulator (similar to reservoir simulator) to update the supply uncertainty with sensor 

data of conveyor belt materials at a synthetic mining operation. The method also 

incorporates a connected updating cycle technique to split the updating equations of 

EnKF and a local neighbourhood while updating to reduce the computational 

requirements of the EnKF covariance calculations. Wambeke and Benndorf (2018) 

studied the effect of measurement volumes, blending ratio, and sensor precision 

within the EnKF method to update supply uncertainty at a synthetic mining operation. 

The study showed that optimal conditions for using the EnKF method for maximizing 

the potential of updating supply uncertainty are when the measurement of sensor data 

are recorded on small extracted volumes of materials from single shovel with high 

sensor precision and minimal blending. Wambeke et al. (2018) used the EnKF method 

to update the supply uncertainty (geometallurgical property BWI) at Tropicana gold 

mine with the processing mill conventional sensor data (throughput, power draw, feed 
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and product size). The method used a forward simulator to mimic the mining 

operation. The simulator provides the estimates about the characteristics of the 

materials fed to the mill and then the Bond’s work theorem of comminution (Bond, 

1952) is used to estimate the power and throughput of the mill. The EnKF method 

updates the supply uncertainty (SGS simulations of BWI property conditioned on 

XRF and NIR drillhole samples) to update the historical and future forecasts by 72% 

and 26%, respectively. Other methods for updating supply uncertainty of mineral 

deposits with new information include conditional simulation by successive residual 

(Vargas-Guzmán and Dimitrakopoulos, 2002, 2003; Jewbali, 2006; Jewbali and 

Dimitrakopoulos, 2011) and co-simulation with soft data (Dimitrakopoulos and 

Kaklis, 2001; Neves et al., 2018). The co-simulation methods are based on 

developments in petroleum reservoirs to simulate static variables with soft seismic 

data (Journel and Alabert, 1990; Zhu, 1991; Verly, 1993; Fichtl et al., 1997; Mao and 

Journel, 1999b; Soares, 2001; Horta and Soares, 2010; Tahmasebi and Sahimi, 2015; 

Soares et al., 2017).  

Equipment performance uncertainty related to its utilization, availability, 

downtime, repair time, productivity etc. can be updated with the new information 

collected from the equipment during the mining operation. The available literature 

regarding updating equipment performance uncertainty is limited. Upadhyay and 

Askari-Nasab (2018) and Ozdemir and Kumral (2019) suggested using the equipment 

production sensor data to update the coefficients of the distributions that quantify the 

equipment performance uncertainty. 

The EnKF method outlined above to update supply uncertainty with incoming 

new information is limited to (a) updating of Gaussian variables, therefore imposes 
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Gaussian assumptions to the geological properties of mineral deposits, (b) cannot 

learn from the incoming new information, and, (c) cannot account for high-order 

spatial statistics in the incoming new spatial information. Updating equipment 

performance uncertainty with methods outlined above cannot integrate the incoming 

new information that does not fit the distribution that was used to quantify the 

equipment performance uncertainty. 

1.2.7 Responding to incoming new information using machine learning in 

industrial complexes 

The incoming new information, along with the updated supply and equipment 

performance uncertainties, can be used to make real-time decisions in a mining 

complex. Traditionally, the blasthole drilling data is used to define destination of 

materials using cut-off grade policies (Verly, 2005; Abzalov et al., 2010; 

Dimitrakopoulos and Godoy, 2014; Vasylchuk and Deutsch, 2018), equipment GPS 

data is used to decide for dispatching decisions (Kargupta et al., 2010; Nguyen and 

Bui, 2015), and trend analysis of equipment performance to determine the appropriate 

time for maintenance (Myrzabekova et al., 2020). However, all the above-mentioned 

methods do not (i) integrate all the incoming new information, (ii) account for the 

“softness” in the incoming new information, (iii) learn from the incoming new 

information, (iv) account for interactions of components in a mining complex, and (v) 

make all the short-term decisions simultaneously in a mining complex. The 

combinatorial optimization methods, although they can simultaneously optimize all 

the short-term decisions but cannot use the incoming new information to learn and 

respond accordingly to make such short-term decisions. Machine learning algorithms 
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are known for their ability to learn how to make decisions based on incoming new 

information. These algorithms are classified into three different categories, 

supervised, unsupervised, and reinforcement learning. Supervised learning is learning 

from a training set of labelled examples (Hastie et al., 2009). Each example in the 

training set consists of predictors (features that describe the situation) and label (the 

correct action). The objective of supervised learning is then to learn to extrapolate or 

generalize the responses so that it acts correctly in unseen situations. Unsupervised 

learning tries to find hidden patterns and structures in the collection of an unlabeled 

training set that only contains predictors (Hastie et al., 2009).  

Supervised machine learning algorithms have been used in mining for 

determining rock types (Chatterjee, 2013; Patel and Chatterjee, 2016), reliability 

estimation of mining equipment (Chatterjee et al., 2015), prediction of equipment 

failure (Campeau and Dubois, 2019), prediction of fuel consumption by trucks 

(Siami-Irdemoosa and Dindarloo, 2015), detecting objects in shovel bucket (Shariati 

et al., 2019), predicting fly rock (Amini et al., 2012; Khandelwal and Monjezi, 2013a), 

back break (Khandelwal and Monjezi, 2013b), and ground vibration (Iphar et al., 

2008; Monjezi et al., 2013) during blasting operation, predicting landscape changes 

(Demirel et al., 2011; Mountrakis et al., 2011; Petropoulos et al., 2013), performance 

of hydro cyclones (Karimi et al., 2010), jigging (Panda et al., 2012), and vibrating 

table concentrator (Panda and Tripathy, 2014) in processing mills, and predicting 

groundwater inflow in open pit mines (Bahrami et al., 2016). Unsupervised machine 

learning algorithms have been used in mining for defining clusters/domains of 

materials in mineral deposits based on their geometallurgical properties (Sepúlveda et 
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al., 2018; Lishchuk et al., 2019; Bhuiyan et al., 2019; Rajabinasab and Asghari, 2019) 

and grade properties (Goodfellow and Dimitrakopoulos, 2016, 2017).    

Unlike supervised and unsupervised machine learning, reinforcement learning 

(RL) algorithms aim at generating agents that learn to make decisions given some 

observations, through its own experience by interacting with an environment that 

provides feedback, to maximize/minimize the long-and-short-term 

goal/reward/objective/value. An agent is usually a function approximator, defined 

using parameters 𝜃, such as neural networks, deep neural networks, convolution 

neural networks, decision trees, and so on. An environment is a model of the industrial 

process that encapsulates the critical intricacies of its operations and is responsible for 

providing feedback to the actions taken by the agent. An industrial process is usually 

assumed to be a Markov decision process (MDP). An MDP is a discrete time-step 

stochastic process, where at each time-step, a decision-maker/agent makes an action 

based on the state provided by the environment and one time-step later receives a 

scalar reward and next state from the environment. The probability that the process 

transition to a new state is only dependent on immediately preceding state and action 

but is independent of the rest of the previous states and actions.  

Let's assume an environment represents a mining complex, and the agent is 

denoted by 𝑓𝜃, where 𝜃 are the parameters/policy of the agent. For example, the 

environment of a mining complex will encapsulate the intricacies of its day-to-day 

operation. The agent receives an observation 𝑆𝑡 (states) at time 𝑡, from the 

environment and usually assumed to be a fully observable Markov decision process 

(Figure 1-3). For example, states in a mining complex can be quantity and quality of 
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materials available, handled, and processed; quantity and performance of equipment 

available and used. 

 

Figure 1-3 The agent-environment interaction in an MDP (Sutton and Barto, 2017) 

The agent receives the state 𝑆𝑡 from the environment and the takes/proposes an action 

𝐴𝑡 = 𝑓𝜃(𝑠𝑡). For example, actions in a mining complex can be the short-term 

decisions like whether to extract the materials, what equipment to use to extract the 

materials, where and how to process the extracted materials, etc. The action 

taken/proposed by the agent is then executed by the environment to transition to the 

new state 𝑆𝑡+1. The environment also provides a scaler reward 𝑅𝑡 as a feedback for 

actions taken/proposed by the agent. For example, in a mining complex, this can be 

profit/cashflows/costs/metal production/equipment queue. The RL algorithm then 

teaches the agent to find a policy, given the data generated by the interaction of the 

agent with the environment, to maximize the expected future reward. Alternatively, 

some RL algorithms try to find an agent that maximizes the reward of the state-action 

pair and then takes the action which has the highest state-action reward.  

Deep reinforcement learning (DRL) uses a deep neural network as an agent in the 

RL algorithm. DRL algorithms are classified into two categories, first, model-based 
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DRL that has access to the model of the environment and second, model-free DRL 

that do not have access to the environment. Since model-based DRL has access to the 

environment model, they can plan better by looking ahead in the future, usually done 

via Monte Carlo rollouts that perform simulations to see what happens in the future. 

Model-free DRL, on the contrary, are usually sample inefficient (transitions from one 

state to another are not sampled efficiently by the agent) but are usually scalable and 

easier to implement and tune for different types of planning tasks. Ivanov and 

D’yakonov (2019)  and Arulkumaran et al. (2017) provided a survey about the 

different types of DRL algorithms. 

Paduraru and Dimitrakopoulos (2018) proposed a model-free Bayesian RL 

algorithm to optimize the destination policies of materials in a mining complex. 

However, the method developed requires a predefined extraction sequence to 

calculate the expected a posteriori improvement in the objective function during the 

optimization. Paduraru and Dimitrakopoulos (2019) proposed a model-free policy 

gradient RL algorithm to optimize the neural network destination policies of materials 

in a mining complex while accounting for supply and equipment performance 

uncertainties. The neural network destination policies increased the expected cash 

flows by 6.5 % compared to the mine’s cut-off grade destination policies for a copper 

mining complex. However, the method is (a) limited to a single product mining 

complex, and (b) does not provide a required continuous updating of the short-term 

production plan regarding destination policies of materials with the incoming new 

information generated from sensors. 

Application of model-free DRL algorithms in different areas of planning include 

scheduling tasks in manufacturing and industrial environments  (Aissani et al., 2012; 
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Leal et al., 2019), scheduling tasks and jobs to computer resources (Mao et al., 2016), 

detecting and defending against cyber attacks (Li et al., 2019), managing financial 

portfolios  (Sato, 2019), controlling traffic lights to avoiding congestion  (Arel et al., 

2010), controlling network access in communication networks (Luong et al., 2019), 

controlling movement of robotic arm (Kober et al., 2013; Lillicrap et al., 2015; Levine 

et al., 2016), maintenance of truck fleet (Barde et al., 2019), ads bidding and 

placement  (Jin et al., 2018; Zhao et al., 2019), news recommendation (Zheng et al., 

2018), web system configuration (Bu et al., 2009), playing games (Mnih et al., 2013; 

Guo et al., 2014; Hausknecht and Stone, 2015; Lillicrap et al., 2015; Baker et al., 

2019), learning to paint like humans (Ganin et al., 2019), etc. Model-based DRL 

algorithms are used for playing games (Silver et al., 2016, 2017, 2018; Schrittwieser 

et al., 2019), finding experimental conditions for chemical reaction trials (Zhou et al., 

2017), learning to paint like humans (Huang et al., 2019), etc.  

The above-mentioned RL algorithms are suitable for learning how to make short-

term production planning decisions in a mining complex to respond to the incoming 

new information since a labelled training data set is not available. However, RL 

algorithms have not been used to develop a self-learning mining complex, where 

agents learn to respond to the incoming new information to update the supply 

uncertainty of mineral deposits and then adapt the short-term production plan of a 

mining complex. 
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1.3 Goal and objectives 

The goal of this thesis is to develop a self-learning mining complex that can 

update its supply and equipment performance uncertainties and then adapt its short-

term production plan in real-time by responding to the incoming new information.  

The following objectives are addressed to achieve this goal: 

(1) Review and outline limitations of past work related to stochastic integer 

programming, simultaneous optimization, modelling and updating of supply 

and equipment performance uncertainties, and reinforcement learning 

algorithms in mining and other areas of planning. 

(2) Expand the simultaneous stochastic optimization model for long-term 

production planning in mining complexes to account for supply uncertainty 

related to continuous non-additive geometallurgical properties (SPI and BWI) 

of materials.  

(3) Develop a self-learning mining complex that uses incoming new spatial 

information about properties of materials extracted to update the supply 

uncertainty with an extended EnKF, and learn to adapt the short-term 

destination of extracted materials with an agent trained via a model-free policy 

gradient reinforcement learning algorithm, within the long-term production 

plan developed in objective (2). 

(4) Extend the self-learning mining complex in objective (3) to use the incoming 

new information about equipment performance to update the equipment 

performance uncertainty with a Monte Carlo simulation algorithm. 

Subsequently, develop a new model-based self-play deep reinforcement 

learning algorithm to train agents to learn to adapt the short-term production 

plan of a mining complex (extraction sequence, destination of extracted 
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materials, and processing stream utilization decisions simultaneously) within 

the long-term plan developed in objective (2). 

(5) Develop a new model-free deep reinforcement learning algorithm replacing 

the extended EnKF in objective (3) to train agents that learn to update the 

supply uncertainty of materials with incoming new spatial and temporal 

information while accounting the high-order spatial statistics of available data.  

(6) Outline the contributions and limitations of the developed methods and 

provide directions for future work.  

1.4 Thesis outline 

This thesis is organized into the following chapters: 

Chapter 1 provides a general overview and motivation behind this thesis. It also 

provides the relevant literature review related to all the topics covered in this thesis, 

which include simultaneous stochastic optimization of long-term and short-term 

production plan of mining complexes, quantification of supply and equipment 

performance uncertainties, incoming new information collected in a mining complex, 

methods to update supply and equipment performance uncertainties with incoming 

new information, and reinforcement learning algorithms for making decisions by 

responding to the incoming new information. This chapter also states the goal and 

objectives of the thesis. 

Chapter 2 describes an approach to integrate supply uncertainty related to two 

continuous non-additive geometallurgical properties (SPI and BWI) of materials in 

the simultaneous stochastic optimization of the long-term production plan of a mining 

complex. The results of the proposed method at a copper mining complex are 



62 

 

compared with a long-term production plan optimized using industry-standard 

practices to show its benefits and added value. 

Chapter 3 develops a self-learning mining complex for adapting the destination 

of materials in a mining complex with incoming new information within the long-

term plan developed in Chapter 2. The framework first uses an extended ensemble 

Kalman filter (EnKF) that combines minimum/maximum autocorrelation factors with 

EnKF to update the supply uncertainty about multiple properties of materials with 

incoming new spatial information. The updated supply uncertainty, along with 

equipment performance uncertainty, is then fed to a neural network agent trained via 

a model-free policy gradient reinforcement learning algorithm to adapt the short-term 

flow of materials in a mining complex. An application of the proposed framework at 

a copper mining complex with multiple mines, destinations, processing streams, and 

products demonstrates the benefits of the proposed framework. 

Chapter 4 develops a model-based self-play reinforcement learning algorithm for 

adapting all the relevant short-term production planning decisions simultaneously 

(extraction sequence, the destination of materials, and processing stream utilization) 

in a mining complex with incoming new information within the long-term plan 

developed in Chapter 2. The self-play reinforcement learning algorithm combines a 

Monte Carlo tree search with a deep neural network agent. The proposed algorithm is 

integrated into the self-learning mining complex proposed in Chapter 3. The new self-

learning framework uses the extended EnKF to update the supply uncertainty and a 

proposed Monte Carlo simulation method to update the equipment performance 

uncertainty. The updated supply and equipment performance uncertainties is then fed 

to the deep neural network agent trained via the proposed self-play reinforcement 
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learning algorithm to adapt all the short-term planning decisions simultaneously. The 

new framework is applied at a copper mining complex with multiple mines, 

destinations, processing streams, and products to demonstrates its efficiency, benefits 

and applied aspects.  

Chapter 5 develops a model-free deep deterministic policy gradient reinforcement 

learning algorithm replacing the extended EnKF in Chapter 3 to train agents that learn 

how to update the supply uncertainty of materials with incoming new spatial and 

temporal information about properties of materials. The proposed algorithm combines 

high-order spatial statistics with an actor and critic convolutional neural network 

agents within a deep deterministic policy gradient reinforcement learning algorithm. 

An application of the proposed algorithm at a copper mining operation with incoming 

spatial sensor data from drilling machines, and temporal processing plant sensor data, 

demonstrates its applied aspects in updating the supply uncertainty while reproducing 

spatial patterns and high-order spatial statistics. 

Chapter 6 outlines the contributions, summarizes the findings of the thesis, and 

provides recommendations for future work.  
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CHAPTER 2                                                                                                             

Application of Simultaneous Stochastic Optimization with 

Geometallurgical Decisions at a Copper-Gold Mining Complex 

 

 

This chapter introduces an approach to integrate uncertainty and decisions about 

two non-additive geometallurgical properties (semi-autogenous power index (SPI) 

and bond work index (BWI)) in the simultaneous stochastic optimization of the long-

term production plan of a mining complex.  

 

2.1 Introduction 

A mining complex consists of multiple components such as mines, crushers, 

stockpiles, leach pads, processing mills, waste dumps, means of transportation and 

customers. The components are interlinked to form the mineral value chain. Material 

extracted from the mines flows through the mineral value chain to finally produce the 

products which are delivered to customers and/or spot markets. In the last decade, 

developments have been made to integrate different decisions in the mineral value 

chain into one single optimization model. The integrated model of a mining complex 

simultaneously optimizes the different decisions in the related mineral value chain to 

utilize synergies by jointly developing the sequence of extraction, destination policies, 

processing stream utilization, operating modes, transportation alternatives, capital 

expenditure, and so on.  

Past work in simultaneous optimization models of mining complexes can be 

categorized into two groups: conventional approaches and stochastic approaches. 



65 

 

Hoerger et al. (1999) present a model for Newmont’s Nevada mining complex that 

simultaneously optimizes the timing of open-pit layback, underground stope 

development, capital expenditure, the timing of processing plant startup and 

shutdown, and, material routing decisions. Stone et al. (2007) present BHP’s 

advanced mine planning optimization tool, “Blasor,” which simultaneously optimizes 

the long-term panel extraction sequence and amount of material extracted from 

multiple mines. Whittle and Whittle (2007) present a global asset optimization model 

that includes optimization of the extraction sequence, mining rate, cut-off grade 

policy, processing path selection, and stockpiling strategy to satisfy production 

targets. The model does not optimize the different components simultaneously. It 

instead repeatedly creates random feasible extraction sequences and finds a locally 

optimal blending and processing stream utilization strategy. Whittle (2010, 2014) 

presents the ProberC algorithm that generalizes the algorithm used to solve the global 

asset optimization model. In ProberC, grades are expressed as an additive quantity, 

such as metal quantity. This structure allows the integration of aspects of stockpiling, 

transportation, and so on, in the global asset optimization model. An integrated 

approach is presented by Pimentel et al. (2010) to address the simultaneous 

optimization of mining complexes and possible solution strategies. Some of the 

typical limitations of the conventional approaches include: (i) the aggregation of 

mining blocks into larger volumes before starting the optimization process to reduce 

computation requirements, (ii) not simultaneously optimizing the different 

components of mining complex, i.e. having separate models for different components 

of mining complexes that interact through some form of heuristic approach, (iii) not 
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considering uncertainties in grade, geometallurgy and material types of the mineral 

deposits.  

Simultaneous stochastic optimization of mining complexes overcomes the 

abovementioned limitations of earlier models by considering one single optimization 

model to simultaneously optimize the different components of a mining complex 

under uncertainty. Montiel and Dimitrakopoulos (2015) propose a model that 

simultaneously optimizes block extraction, block destination, processing stream 

utilization, operating modes, and transportation alternatives, under grade and material 

type uncertainties.  Results from a copper-gold mining complex indicate deviations 

of less than 3% and 1.2% from capacity and blending targets respectively for the 

proposed model compared to large and impractical deviations in the range of 30 to 40 

% and 11 to 22 %, respectively, in the conventional mine production plan (Gemcom, 

2005). In addition, the proposed method increases the net present value (NPV) by 5% 

as compared to the conventional mine production plan. Montiel et al. (2016) extend 

the model to include underground mines. Montiel and Dimitrakopoulos (2018) 

present another extension integrating the specification of additional practical 

operational constraints to mine production schedules, as well as a large-scale 

application and comparisons with conventional methods at the Twin Creeks gold 

mining complex, Nevada. Montiel and Dimitrakopoulos (2017) present a 

metaheuristic algorithm to solve the large optimization model of mining complexes. 

The algorithm first changes the block extraction and destination decisions to improve 

the NPV and then selects the optimal operating and transportation modes. The 

decisions are synchronized as the algorithm progresses. The proposed method 

increases the NPV by 30% and decreases the deviation from production targets by 
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45% compared to the conventional mine production plan. Goodfellow and 

Dimitrakopoulos (2016) present a model that simultaneously optimizes block 

extraction decisions, multiple element destination policies, and processing stream 

utilization strategies, under grade and material type uncertainties. The proposed 

method is applied at a copper-gold mining complex and shows deviations of less than 

10% compared to 40% in the conventional mine production plan while increasing the 

NPV by 22.6%. Goodfellow and Dimitrakopoulos (2017) study the efficiency of the 

multiple element destination policies. Results from a nickel-laterite mining complex 

show a deviation of less than 1% for blending targets and an improved NPV of 3% 

for multiple element destination policies under supply uncertainty compared to 

multiple element destination policies for estimated deposits. Some of the common and 

useful aspects of simultaneous stochastic optimization models of mining complexes 

can be summarized as: (i) the ability to capitalize on synergies between different 

components of mining complexes, (ii) the capability to take advantage of and 

capitalize on the variability of grade and material type, (iii) not aggregating mining 

blocks into large volumes to misrepresent mining selectivity, (iv) focusing on the 

value of product sold to the different customers instead of the value of mining blocks, 

(v) increased expectation of meeting production forecasts, and (vi) higher NPV and 

metal production. 

The stochastic mine planning models reviewed above, although they do 

incorporate grade and material type uncertainties, do not integrate the uncertainty and 

variability related to geometallurgical properties of the material. Geometallurgical 

properties such as grinding ability/hardness of material processed, ore texture, and so 

on, affect the throughput and energy consumption of the comminution circuits. Not 



68 

 

accounting for such geometallurgical aspects in strategic mine planning models may 

result in sub-optimal mine plans (Dowd et al., 2016). More specifically, comminution 

circuits in a mining complex typically account for 33% to 50% of the mine costs 

(Curry et al., 2014), which depend on factors such as the feed particle size, hardness 

of the material and many more. Ballantyne and Powell (2014) present a survey of the 

comminution circuit energy consumption of a major Australian gold and copper 

producer which accounts for 1.3% of Australian electricity consumption. The 

hardness of the material is measured using grindability tests such as the semi-

autogenous (SAG) power index (SPI) for SAG mills and the Bond work index (BWI) 

for ball mills. Verret et al. (2011) present the overview of the different grinding ability 

tests used, characterizing ore hardness for comminution circuits. Hardness indexes 

such as the SPI and BWI are hard to model due to their sparse sampling nature. 

Different approaches are proposed to model geometallurgical properties such as a 

primary and secondary response framework (Coward et al., 2009), a combination of 

simulation and power approaches (Alruiz et al., 2009), the use of two-stage linear 

regression models (Boisvert et al., 2013), a projection pursuit method (Sepulveda et 

al., 2017), and fuzzy clustering (Sepúlveda et al., 2018).  However, it is even harder 

to include the hardness indexes such as the SPI and BWI in the strategic mine planning 

models due to their non-additive nature. In addition, blending of material with 

substantially different hardness properties can introduce the problem of inconsistent 

throughput and higher energy consumption in the comminution circuits.  

The work presented herein introduces an approach to integrate the 

geometallurgical uncertainty of two hardness indexes, the SAG power index (SPI) 

and the Bond work index (BWI), into the simultaneous stochastic optimization model 
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of mining complexes. In addition, the proposed model also deals with the blending of 

multiple materials with different hardness properties to ensure a consistent throughput 

of material to the comminution circuits. In the following sections, a brief description 

of the extended model of Goodfellow and Dimitrakopoulos (2016) is provided, 

followed by an application at a large copper-gold mining complex that consists of 2 

mines with 12 different material types, 5 crushers, 2 stockpiles, 3 processing mills, 1 

waste dump, and 2 leach pads, and produces copper, gold, silver, and molybdenum 

products. Conclusions and future work follow. 

2.2 Method 

This section discusses the model for simultaneous optimization of mining 

complexes under uncertainty proposed in Goodfellow and Dimitrakopoulos  (2016), 

which is extended in this work to include uncertainty and constraints related to 

geometallurgical properties associated with grindability (SPI and BWI). 

Geometallurgical properties are non-additive in nature and this specific aspect is not 

accounted for in Goodfellow and Dimitrakopoulos  (2016). The work presented herein 

provides an approach to include constraints and uncertainty related to such non-

additive geometallurgical properties in the context of the simultaneous optimization 

of mining complexes. In addition, and most importantly, the work presented 

highlights the applied aspects of the method with an application at a large copper-gold 

mining complex with over 1.6 million binary and 50,000 continuous variables. First, 

definitions and notation are provided, then, the different decision variables are 

discussed. Finally, the objective function and constraints are outlined.  
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2.2.1 Definitions and notations 

The notations used in this section are as follows. 𝕄 represents a group of mines. 

𝔹𝑚 represents the set of mining blocks for mine 𝑚 and 𝑀𝐶𝑏,𝑡 represents the mining 

cost of a block 𝑏 in period 𝑡. A block 𝑏 is accessible to extract following the extraction 

of its overlying blocks represented by a set 𝕆𝑏. 𝕊 denotes a set of scenarios that 

quantify the joint uncertainty in grade, geometallurgical properties and material types. 

𝕋 represents the set of scheduling periods. Extracted material from mines can either 

be stockpiled, processed after crushing, or sent to waste.  𝑣𝑎,𝑖,𝑡,𝑠 represents the amount 

of property 𝑎 at location 𝑖 in period 𝑡 and scenario 𝑠. 𝒮 represents the set of 

stockpiles. 𝑆𝐶i,a,t represents the stockpiling cost of stockpile 𝑖 for property 𝑎 in period 

𝑡.  𝑅𝐻i,a,t represents the cost of re-handling material from stockpile 𝑖 for property 𝑎 in 

period 𝑡. 𝒮𝑐 represents the set of crushers. 𝐶𝑅𝑖,𝑎,𝑡 represents the crushing cost of 

material with crusher 𝑖 for property 𝑎 in period 𝑡. 𝒫 represents the set of processing 

mills.  𝑃𝑖,𝑎,𝑡 represents profit (selling price − selling cost) for recovered product 𝑎 

with processing destination 𝑖 in period 𝑡. 𝑃𝐶𝑖,𝑎,𝑡 represents the processing cost with 

processing destination 𝑖 for property 𝑎 in period 𝑡. Properties such as metal tonnage, 

rock tonnage, and ore tonnage are represented by ℙ, and are calculated by adding the 

amount of metal, rock, and ore tonnage processed at different locations in a mining 

complex. Properties such as head grade copper, head grade arsenic, etc., are calculated 

thus:  head grade copper is equal to total copper metal tonnage / total ore tonnage, 

head grade arsenic is equal to total arsenic metal tonnage / total ore tonnage at 

different locations. ℍ𝑝 represents the amount of different products recovered.  
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Production targets are usually present in a mining complex, such as (i) capacity 

targets represented by a set ℙ𝑐, (ii) quality targets represented by a set ℍ𝑞, and (iii) 

geometallurgical targets represented by a set ℍ𝑔. Mineability targets are also included 

in the model. Mineability targets ensure that the production schedules are practically 

mineable.  𝑁𝑏  is the specified mining width. 𝑤𝑏,𝑡 is the number of blocks scheduled 

in multiple periods inside a mining width. 𝑐𝑡
𝑠𝑚𝑜𝑜𝑡ℎ is the penalty cost associated with 

not scheduling blocks inside the mining width in the same mining period.  𝑐𝑎,𝑖,𝑡
+  and 

𝑐𝑎,𝑖,𝑡
−  represent the penalty costs for deviations from maximum/upper and 

minimum/lower production targets respectively for property 𝑎 in period 𝑡. Profits and 

costs are discounted using an economic discount factor 𝑑, as in 𝑃𝑖,𝑎,𝑡 =

 𝑃𝑖,𝑎,1 (1 + 𝑑)𝑡⁄ . Costs of deviation from capacity, blending, geometallurgical and 

mine ability targets are also discounted using a geological discount rate 𝑟, as in 𝑐𝑎,𝑖,𝑡
+ =

 𝑐𝑎,𝑖,1
+ (1 + 𝑟)𝑡⁄  used from Dimitrakopoulos and Ramazan (2005), Ramazan and 

Dimitrakopoulos (2013), and Spleit and Dimitrakopoulos (2017). Geological risk 

discounting helps to defer the risk of not meeting production targets to later years 

when more information will be available. 

2.2.2 Decision variables 

Decision variables for the model are: (i) mine extraction sequence 

variables, 𝑥𝑏,𝑡 ∈ {0,1}, which define whether (1) or not (0) a block 𝑏 ∈ 𝔹𝑚 is 

extracted in period 𝑡 ∈ 𝕋, (ii) processing stream utilization variables, 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1], 

which define the proportion of material sent from location 𝑖 to subsequent location 𝑗 

in period 𝑡 and under scenario 𝑠, and (iii) cluster destination policy variables, 𝑧𝑐,𝑗,𝑡 ∈
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{0,1}, which define whether (1) or not (0) a cluster 𝑐 ∈ 𝒞 is sent to one of the allowed 

destinations 𝑗 in period 𝑡. Cluster destination policies are based on clusters defined 

over multiple elements of interest (Goodfellow and Dimitrakopoulos, 2016). 

Continuous variables that allow deviations from different targets are also included in 

the model. Surplus variables, 𝑑𝑎,𝑖,𝑡,𝑠
+ , represent excesses from maximum target 𝑈𝑎,𝑖,𝑡 

for property 𝑎 in period 𝑡 and scenario 𝑠. Shortage variables, 𝑑𝑎,𝑖,𝑡,𝑠
− , represent 

shortages from minimum target 𝐿𝑎,𝑖,𝑡 for property 𝑎 in period 𝑡 and scenario 𝑠. 

2.2.3 Objective function 

The objective function (Eq. 2.1) of the model is a two-stage function that 

maximizes the value of the product generated from a mining complex and delivered 

to customers or spot markets, while minimizing the deviations from capacity, 

blending, geometallurgical and mineability targets, under grade, geometallurgical and 

material type uncertainties. 

max 
1

|𝕊|
{∑ ∑ {∑ ∑ 𝑃𝑖,𝑎,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℍ𝑝𝑖∈𝒫

− ∑ ∑ 𝑃𝐶𝑖,𝑎,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℙ𝑖∈𝒫𝑡∈𝕋𝑠∈𝕊

 

Part I Part II 

− ∑ ∑ 𝐶𝑅𝑖,𝑎,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℙ𝑖∈𝒮𝑐

− ∑ ∑ 𝑆𝐶𝑖,𝑎,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℙ𝑖∈𝒮

− ∑ ∑ 𝑅𝐻𝑖,𝑎,𝑡 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℝ𝑖∈𝒮

 

Part IV Part V Part III 

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℙ𝑐𝑖∈𝒫

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℍ𝑞𝑖∈𝒫

 

Part VI Part VII 
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Part I in the objective function represents the profits of different products 

produced and sold to the customers. Part II is the processing cost of the material at the 

different processing destinations. Part III represents the crushing cost at the different 

crushers. Part IV represents the stockpiling cost at the different stockpiles. Part V 

represents the cost of re-handling material from the different stockpiles. Parts VI, VII, 

and VIII represent the costs of deviation from the capacity, quality and 

geometallurgical targets at the processing streams. Part IX is the cost of deviation 

from the crusher capacity target. Part X is the cost of deviation from the stockpile 

capacity target. Part XI represents the cost of deviation from the mining capacity 

target. Part XII represents the mining cost at the different mines. Part XIII is the cost 

associated with the smoothness of schedules.  

2.2.4 Constraints 

The processing mill in the mining complex has multiple operating modes. 

Operating modes are defined herein as the configuration of the processing mill that 

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℍ𝑔𝑖∈𝒫

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℙ𝑐𝑖∈𝒮𝑐

 

Part VIII Part IX 

Part XI Part XII 

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℙ𝑐𝑖∈𝒮

− ∑ ∑ (𝑐𝑎,𝑖,𝑡
+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

+ + 𝑐𝑎,𝑖,𝑡
− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠

− )

𝑎∈ℙ𝑐𝑖∈𝕄

ቑൢ       

Part X 

− ∑ ∑ ∑ {𝑀𝐶𝑏,𝑡 ⋅ 𝑥𝑏,𝑡 + 𝑐𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ⋅ 𝑤𝑏,𝑡}

𝑏∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋

                                (2.1) 

Part XIII 
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determines the grinding size of the materials. For example, fine grinding compared to 

coarse grinding operating mode. Different operating modes have different costs, 

energy consumption, and throughput. However, the cost, energy consumption, and 

throughput for a fixed operating mode might change based on the hardness of the 

material processed. For example, the fine grinding of hard material will require a 

longer residence time when compared to softer material, which results in higher costs 

and lower throughput. Uncertainty about the hardness of material results in 

inconsistent throughput, energy consumption, and operating costs with a fixed 

operating mode at the processing mill. Hardness indexes such as the SPI and BWI are 

non-additive properties which cannot be directly included in the outlined optimization 

model. A different approach is utilized in this work to overcome such non-additive 

issues with hardness indexes. First, the operating mode is fixed and linked to the 

proportion of hard and soft material that the processing mills can process to achieve 

maximum throughput and recovery, and minimum cost. Such proportions of hard and 

soft material are defined as geometallurgical targets  ℍ𝑔 with the different processing 

mills for a fixed operating mode. Further, the material at the mine is characterized as 

soft and hard material based on its hardness indexes. For instance, if the hardness 

indexes of the mining block are above a certain threshold, it is defined as hard.  

A certain amount of hard and soft material is extracted from the mine and sent to 

different processing streams, and is finally processed at the different processing mills. 

At the different processing mills, the total amount of hard and soft material is 

determined, and their ratio is calculated as (
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑎𝑟𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑜𝑓𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
). Finally, 

deviations from the upper and lower limits of predefined geometallurgical targets ℍ𝑔, 
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are calculated using Equations 2.2 and 2.3. Such deviations are penalized in the 

objective function with a penalty cost. Penalizing such deviations ensures that the 

proportion of hard and soft material processed at the processing mills is within the 

required geometallurgical targets.  

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡  ∀ ℎ ∈ ℍ𝑔, 𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, s ∈ 𝕊                      (2.2) 

𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡   ∀ ℎ ∈ ℍ𝑔, 𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, s ∈ 𝕊                       (2.3) 

𝑁𝑏 ⋅ 𝑥𝑏,𝑡 − ∑ ∑ 𝑥𝑛,𝑡′

𝑡′∈ 𝑡𝑛∈𝑁𝑏

≤ 𝑤𝑏,𝑡                                     (2.4) 

Equation 2.4 calculates the number of blocks scheduled in multiple periods, 𝑤𝑏,𝑡, 

inside a mining width of  𝑁𝑏 and penalizes it with a cost of 𝑐𝑡
𝑠𝑚𝑜𝑜𝑡ℎ in the objective 

function.  Other constraints implemented in the model are capacity/quantity, 

blending/quality, destination policy, processing stream flow, reserve, and slope 

constraints as detailed in Goodfellow and Dimitrakopoulos (2016).  

2.2.5 Solution approach 

The simultaneous stochastic optimization model of mining complexes outlined in 

the previous sections is a large combinatorial optimization model with millions of 

binary decision variables. Such large optimization models cannot be solved with 

general purpose commercial solvers such as CPLEX. Metaheuristic algorithms have 

proven effective in generating good solutions in a reasonable computational time. The 

solution approach used to solve the model is the same as mentioned in Goodfellow 

and Dimitrakopoulos (2016, 2017). A brief review of the solution approach is outlined 

in Appendix 2.2. 
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2.3 Application at a large copper-gold mining complex 

This section outlines the application of the method presented in the previous 

section at a large copper-gold mining complex and demonstrates its applied aspects. 

The management of the mining complex makes decisions based on a given strategic 

mine plan. The strategic mine plan currently  used at the mining complex is developed 

with high-end conventional technologies as outlined in Section 2.3.3. The framework 

proposed herein generates a stochastic strategic mine plan that accounts for variability 

and uncertainty in the supply of materials and jointly optimizes the different 

components of the mining complex. The following sections compare and highlight 

the differences between the forecasted performance of the conventional and stochastic 

mine plans. The key aspect of the comparison is to highlight that the decision makers 

will make different decisions with the conventional mine plan as compared to the 

stochastic mine plan.  

2.3.1 Overview of the copper-gold mining complex 

The copper-gold mining complex consists of two mines (Mine A and Mine B) 

with 120,000 and 78,000 blocks, respectively, measuring 25x25x15 𝑚3 in size. The 

two mineral deposits consist of 8 different mine zones, 8 different alterations and 10 

lithologies each (as provided by the mining company operating the mining complex). 

The stratigraphic sequence of material is waste rock, followed by copper oxide, mixed 

and copper sulphide. The mining complex produces copper concentrate and copper 

cathode as primary products, and gold, silver and molybdenum concentrates as 

secondary products. The material extracted from both mines is classified into 12 

different material types for each mine and can be sent to one out of 9 different 
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destinations (5 crushers, 2 stockpiles, 1 bio leach pad (sulphide leach pad) and 1 waste 

dump) as shown in Figure 2-1. Material from five different crushers is further sent to 

three different processing mills that supply material to the port, and an oxide leach 

pad that supplies material to a copper cathode plant. The primary product generated 

at the port is copper concentrate. In addition, different secondary products such as 

gold concentrate, silver concentrate, and molybdenum concentrate are also generated 

at the port.  

 

Figure 2-1 Flow of material at the copper-gold mining complex 

The copper cathode plant generates copper cathode as the product. The port and 

the copper cathode plant produce the final products of the mining complex which are 

transported and sold to different customers. Geometallurgical targets related to the 

SPI and BWI hardness indexes are present with the three processing mills in the 
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mining complex. Different blending and capacity targets are also present with the 

different components of the mining complex. 

2.3.2 Stochastic optimization 

The stochastic optimization model generates the stochastic mine production plan 

which is referred to herein as the “stochastic plan”. The different parameters 

associated with the stochastic plan are discussed in Sections 2.3.2.1 to 2.3.2.4. 

 Stochastic orebody simulations 

Fifteen stochastic simulations are generated for each mine that quantify 

uncertainties in grade, geometallurgical properties and material types, using the direct 

block simulation with minimum/maximum autocorrelation factors (Boucher and 

Dimitrakopoulos, 2009). A brief review of the above simulation method can be found 

in Appendix 2.1. Grade uncertainty is quantified for seven different correlated 

properties, namely copper soluble (CuS), copper total (CuT), iron (Fe), arsenic (As), 

gold (Au), silver (Ag), and molybdenum (Mo). The major elements CuS, CuT, Fe, 

and As with higher sampling density were decorrelated and simulated together. The 

minor elements Au, Ag, and Mo with lower sampling density were decorrelated and 

simulated together. 

The two mines have 8 different mine zones each, thus the simulation of grade 

properties were generated separately for each mine zone of each mine, each time using 

the samples of the seven correlated grade properties within the corresponding mine 

zone. The direct block simulation method was used to generate the correlated grade 

properties of the mining blocks within each mine zone. The combination of the 

simulated mining blocks from different mine zones provided the final simulation of 
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correlated grade properties for each mine. Figure 2-2 represents the three randomly 

selected simulations for the two deposits for the copper total grade property compared 

to the estimated deposit. Variability in the copper total grade property can be easily 

perceived from the simulations compared to a smooth representation of the estimated 

deposits. Geometallurgical uncertainty is quantified for two hardness index values, 

the SPI and BWI. The two mines have 10 different lithologies each, thus the 

simulations of geometallurgical properties were generated separately for each 

lithology of each mine, each time using the samples of the SPI and BWI within the 

corresponding lithology. The direct block simulation method was used to generate the 

correlated geometallurgical properties of the mining blocks within each lithology. The 

combination of the simulated mining blocks from the different lithologies provided 

the final simulation of the correlated geometallurgical properties for each mine. 

 

Figure 2-2 Simulation of copper total for the two deposits compared to the estimated 

deposits 
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Figure 2-3 represents the three randomly selected simulations for the two deposits 

for the SPI hardness index compared to the estimated deposits. A large variability in 

hardness properties is perceived from the simulations compared to a very smooth 

representation from the estimated deposits.  Variability and uncertainty in the grade 

and geometallurgical properties result in an uncertainty in material types which is 

shown in Figure 2-4. Materials are first classified as sulphide, oxide, waste and mixed 

based on geological properties (alteration and lithology) and grade properties (copper 

soluble, copper total, and copper soluble to copper total ratio), then geometallurgical 

properties (SPI and BWI) are used to further characterize the materials as soft or hard. 

Such classification strategies result in twelve different material types with distinct 

geological, grade, and geometallurgical properties. Material type uncertainty is 

quantified for the twelve different material types (i) soft waste, (ii) hard waste, (iii) 

mixed, (iv) high grade oxide, (v) low grade oxide, (vi) soft high grade sulphide, (vii) 

hard high grade sulphide, (viii) soft low grade sulphide, (ix) hard low grade sulphide, 

(x) soft sulphide ore, (xi) hard sulphide ore, and (xii) oxide ore. A comparision 

between the histograms of the estimated and simulated SPI models is presented in 

Appendix 2.3 
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Figure 2-3 Simulation of SPI for the two deposits compared to the estimated 

deposits 

 

Figure 2-4 Uncertainty in material types for the two deposits compared to the 

estimated deposits 
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 Economic and operational parameters 

The economic and operational parameters used for the copper-gold mining 

complex are outlined in Table 2-1 and Table 2-2, respectively. The parameters are 

scaled values for reasons of confidentiality. 

Table 2-1 Parameters used for the mining complex  

Attribute Value 

Economic discount rate 8% 

Geological discount rate 10% 

Gold, silver, and molybdenum price (US M$/Metal 

Ton Recovered) 
36, 0.44 and 0.011 

Copper price (US $/Metal Ton Recovered) 4960 

Mining cost {excluding hauling cost} (US $/Rock 

Ton) 
0.60 

Hauling cost based on depth (US $/Rock Ton) 
Mine A: 0.4 to 1.27 

Mine B: 0.52 to 1.09 

Milling cost including crushing cost (US $/Ore Ton) 5.7 

Cost for re-handling material from stockpile (US 

$/Ore Ton) 
0.18 

Oxide leach pad leaching cost including crushing 

cost (US $/ Ore Ton) 
5.7 

Bio leach pad leaching cost (US $/Ore Ton) 1.65 

Selling Cost (US $/Metal Ton Recovered) 

Mill -514 

Oxide leach pad - 496 

Bio leach pad - 496 

Table 2-2  Operational parameters used for the mining complex 

Attribute Value 

Blocks for Mine A 120634  

Blocks for Mine B 78355 

Scheduling period 8 years 

Number of clusters of the different material types 25 

Mining width 200 m 

Slope angle for Mine A 37  

Slope angle for Mine B 45 
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Recovery of copper at mills (Mill1, Mill2, and, 

Mill3) 
0.80, 0.83 and 0.82 

Recovery for minor elements at processing mills 0.20 

Recovery of copper at oxide leach pad  0.65 

Recovery of copper at bio-leach pad 0.27 

 

 Production targets 

Figure 2-5 and Figure 2-6 represent the different yearly quality, quantity, and 

geometallurgical targets of the different processing streams in the mining complex. 

The maximum capacity in these figures represent the upper limit capacity constraint. 

The color legend represents the different rocktypes in the two mines, and the different 

processing streams have an associated color band that shows what rocktypes are 

eligible to be processed at that processing stream.  

 

Figure 2-5 Yearly quantity and quality targets with crushers, stockpiles, and leach 

pads used for the mining complex 
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Figure 2-6 Yearly quantity, quality, and geometallurgical targets with processing 

mills used for the mining complex 

The geometallurgical targets mentioned in Figure 2-6 were selected based on the 

information provided by the mining company operating the mining complex. The 

mining complex had selected such targets based on studies about the configuration 

and operating modes of their different processing mills to achieve optimal 

throughputs. The modelling of hardness properties can also be integrated in the model 

by associating materials to throughput and cost based on their hardness properties. 

However, the approach outlined in this work is selected to adhere to the specification 

and targets provided for the specific case study and the given mining complex. The 

different quantity and quality targets are scaled values for reasons of confidentiality. 

Penalty costs associated with the violation of different production targets with the 

different components of the mining complex are summarized in Table 2-3. The 

penalty costs mentioned in Table 2-3 were applied on the absolute amount of deviation 

from the different production targets. However, the key aspect to note is that a 
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deviation of 1 ton from the processing mill tonnage target will not have the same effect 

as a deviation of 1 ppm from the processing mill arsenic grade target. Therefore, the 

penalty costs are selected to reflect the magnitude of the penalty value, which would 

be incurred with 1 unit of deviation from the related production target. For example, 

as shown in Table 3, the processing mills have a penalty cost of 100 US $/Ton for 1 

unit of deviation from the tonnage target, compared to a penalty cost of 0.1 billion US 

$/PPM for 1 unit of deviation from the arsenic grade target. Similarly to other input 

parameters, the penalty costs are decided based on trial and error with consideration 

of the magnitude of different production targets to manage and minimize the technical 

risk for the different production targets. The trial and error approach entailed changing 

the different penalty costs while accounting for the magnitude aspect described above 

and observing the amount of deviations from the different production targets in the 

mining complex, finally selecting the penalty costs which provided the minimum 

technical risk for the different production targets. Additional discussion on penalty 

costs may be found in Benndorf and Dimitrakopoulos (2013). 

Table 2-3  Penalty costs used for the mining complex 

Targets Penalty Cost  

Capacity (C1, C2, C3, C4, C5) 40, 40, 40, 40, and, 40 US $/Ton 

Capacity (Mill1, Mill2, Mill3) 100,100, and,100 US/Ton 

Mining width constraint 50000 and 50000 US $ 

Stockpile Capacity (Oxide, 

Sulphide) 
40 and 40 US $/Ton  

Leach pad Capacity (Oxide, 

Sulphide) 
40 and 40 US $/Ton 

Ratio (CuT/Fe, CuS/CuT, hard/soft) 1 billion US $/unit 

Fe Grade, and As Grade 
0.1 billion US $/%, and 0.1 billion US 

$/PPM 
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 Metaheuristic parameters 

The solution approach outlined in Section 2.2.5 for solving the simultaneous 

stochastic optimization model of mining complexes requires different parameters 

which are summarized in Table 2-4. These parameters are selected by trial and error 

using the following criterion: they must generate a stable solution that maximizes the 

NPV while meeting production targets. The model has 1.61 million binary and 50,000 

continuous decision variables. The solution time for the model is around 72 hours.  

Table 2-4 Metaheuristic parameters used in the solution approach for the mining 

complex 

Parameter Value 

Initial annealing temperature 0.5 

Cooling factor 0.95 

Cooling after perturbations 2000 

Perturbations before diversification 120,000 

Number of diversifications 13 

 

2.3.3 Conventional optimization 

The long-term mine production plan currently used at the mining complex is 

optimized using a two-step optimization approach: (a) the extraction sequences of 

multiple mines are optimized independently of each other using Whittle version 4.5.4 

(Gemcom, 2005; Dassault, 2017), a widely used software for strategic mine planning, 

(b) the destination of the extracted material is decided based on cut-off grade policy 

presently used at the mining complex and is based on Lane’s approach (Lane, 1988; 

Rendu, 2014; Khan and Asad, 2020). Then, the utilization of different processing 

streams is defined using a separate optimization model. In addition, this two-step 

optimization process is performed over the estimated mineral deposits, as is the 
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standard practice in the mining industry. This long-term mine production plan of the 

copper-gold mining complex generated with this two-step approach is referred to 

herein as the “conventional plan”. Economic parameters, operational parameters and 

production targets used to generate the conventional plan are the same as the ones 

used for the stochastic plan. The different geometallurgical and quality targets are 

only used during the optimization of the processing stream utilization decisions in the 

conventional mine plan. The extraction sequence and cut-off grade policy in the 

conventional mine plan accounts only for the quantity targets.  Estimated mineral 

deposits used in the conventional plan are shown in Figure 2-2 and Figure 2-3 for 

grade and geometallurgical properties respectively. Material types of the estimated 

mineral deposits are shown in Figure 2-4. 

2.3.4 Results of the stochastic optimization and comparison to conventional 

optimization 

The results of the stochastic optimization of the copper-gold mining complex are 

presented in this section. Results are reported using the 10th, 50th, and 90th percentile 

risk profiles (P10, P50, and P90, respectively) of the different performance indicators 

with respect to the simulated orebody models of the two mines. P10 stands for a 10 % 

probability that the values are below this value, P50 is 50 % probability of having 

values below this value and, similarly, P90 stands for 90 % probability of having 

values below this value. The forecasts of the stochastic plan are compared to the 

forecast of the conventional plan throughout its presentation and discussion, to 

highlight the differences in forecasted performance between the two mine plans and 

to show the added value of the stochastic framework, where appropriate. 
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 Capacity targets 

Figure 2-7(a)-(h) presents the risk profiles of meeting the capacity target for 

crushers 1, 2, 3, 4 and 5, and mills 1, 2, and, 3. Figure 2-7(a) shows that the stochastic 

plan better utilizes and respects the crusher capacity (P10, P50, and P90 of the risk 

profiles are very close to the capacity target). The capacity target is only violated 

slightly in year 7, but is, overall, well controlled throughout the scheduling period in 

the stochastic plan (Figure 2-7(a)). Similar behavior is observed for the stochastic plan 

for crusher 2 (Figure 2-7(b)), crusher 3 (Figure 2-7(c)), and crusher 5 (Figure 2-7(e)), 

where the capacity target is well respected and utilized over all the scenarios and 

throughout the scheduling period. However, the conventional plan shows very low 

production in year 6 for crusher 1, crusher 2, and crusher 5. In addition, the production 

for crusher 2 and crusher 3 is lower throughout the scheduling period in the 

conventional plan (Figure 2-7(b) and (c) respectively) compared to the stochastic plan.   
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Figure 2-7 Forecasts for crushers 1 to 5 and capacity targets for the stochastic and 

conventional plans for mills 1 to 3 

Crusher 4 (Figure 2-7(d)) shows only a small violation of the capacity target in 

the stochastic plan in year 2, but it utilizes the capacity of crusher 4 better than the 

conventional plan. However, the risk profile for the stochastic plan for crusher 4 has 
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a much wider envelope compared to the other crushers. Similar behavior is present 

for mill 1 (Figure 2-7(f)) and mill 2 (Figure 2-7(g)) for the stochastic plan. Such a 

wide risk envelope in the capacity target of crusher 4, mill 1 and mill 2 originates from 

the processing of materials from both the mines, which results in relatively high grade, 

geometallurgical and material type uncertainties. The high uncertainties originate 

from the combination of supply uncertainty scenarios from multiple mines. In the 

conventional plan, the capacity target is respected for crusher 4 (Figure 2-7(d)) but 

does not utilize the maximum crusher capacity. Similarly, the mill capacity is not fully 

utilized in the conventional plan for mill 1 and mill 2 with almost negligible 

production in year 6 for mill 1 (Figure 2-7(f)) and mill 2 (Figure 2-7(g)). The capacity 

target of mill 3 (Figure 2-7(h)) has a relatively narrow risk envelope compared to the 

other mills because it processes material from only one mine. The stochastic plan 

better utilizes the capacity target in mill 3 compared to the conventional plan, where 

the production is almost negligible for the conventional plan in years 1, 6, and 7 

(Figure 2-7(h). Both the conventional and stochastic plans respect the capacity target 

of all the mills throughout the scheduling period.  
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Figure 2-8 Forecasts for sulphide stockpile, oxide stockpile, oxide leach pad, bio-

leach pad capacity target, and mining rate of mines A and B for the stochastic and 

conventional plans 

Figure 2-8(a)-(d) presents the risk profiles of the capacity target for the oxide 

leach pad, bio-leach pad (sulphide leach pad), sulphide stockpile and oxide stockpile. 

A small violation is only observed in year 2 in the stochastic plan for the oxide leach 

pad capacity target (Figure 2-8(a)) with a wide risk envelope originating from the 

reason explained above. The capacity target is well respected for the bio-leach pad 

(Figure 2-8(b)), stockpile sulphide (Figure 2-8(c)), and stockpile oxide (Figure 2-8(d)) 

in the stochastic and conventional mine plans. Figure 2-8(e)-(f) present both the 
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forecasted mining rates of the stochastic and conventional mine plans for mines A and 

B, respectively. The mining rates and, consequently, the mine production plans of the 

two mines are very different; more specifically, the stochastic mine plan extracts more 

materials from mine A and less materials from mine B during the initial periods, when 

compared to the conventional mine plan. 

 Blending targets 

Figure 2-9(a)-(d) represents the risk profiles for the blending target of the copper 

total to iron ratio at the different processing mills, and the ratio of copper soluble to 

copper total at the bio-leach pad. The blending target is very well respected for the 

stochastic plan for mill 1 (Figure 2-9(a)), mill 2 (Figure 2-9(b)), and mill 3 (Figure 

2-9(c)) with minor violations in years 2 and 4. The conventional plan shows larger 

violations from such targets for all the mills. The blending target of the bio-leach pad 

is very well respected in the stochastic and conventional plans. Figure 2-10(a), (c), 

and (e) show the risk profile of the iron (Fe) head grade target for the different 

processing mills. The stochastic plan has a small violation for the iron head grade 

target for mill 1 (Figure 2-10(a)) in year 6. Mill 2 (Figure 2-10(c)) presents a small 

violation in year 6 for the iron head grade target in the stochastic plan. Mill 3 (Figure 

2-10(e)) presents no violation for the iron head grade target in the stochastic plan.  The 

conventional plan also presents a violation from year 6 onwards for mill 1 (Figure 

2-10(a)) for the iron head grade target. The conventional plan shows no violation for 

the iron head grade target for mill 2 (Figure 2-10(c)) and mill 3 (Figure 2-10(e)).  
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Figure 2-9 Forecasts of blending target (CuT/Fe and CuS/CuT ratio) for mill 1, 2, 

and 3 and bio-leach pad for the stochastic and conventional plan 

Figure 2-10(b), (d), and (f) show the risk profile of the arsenic (As) head grade 

target for the different processing mills. The stochastic plan respects the arsenic head 

grade target very well for mill 1 (Figure 2-10(b)), mill 2 (Figure 2-10(d)), and mill 3 

(Figure 2-10(f)). In the conventional plan, a large violation from the arsenic head 

grade target is expected over the scheduling period, particularly in years 2,3,6,7, and 

8 for mill 1 (Figure 2-10(b)). Similar behavior is observed for the arsenic grade target 

of mill 2 (Figure 2-10(d)), with a small violation in the initial years and a larger one 

in the later years. The arsenic target is well respected in the stochastic and 

conventional plans for mill 3 (Figure 2-10 (f)). 
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Figure 2-10 Forecasts of blending target (Fe and As head grade) for mill 1, 2, and 3 

for the stochastic and conventional plan 

 Geometallurgical targets 

Figure 2-11(a), (b), and (c) display the risk profiles of geometallurgical targets 

(hard/soft material ratios) for mill 1, mill 2, and mill 3. The stochastic plan only 

presents a very small violation from geometallurgical targets for mill 1 as compared 

to the conventional plan, which presents a very large violation from such targets for 

mill 1 and mill 2 (Figure 2-11(a) and (b) respectively). The conventional plan does 

not account for geometallurgical properties in the optimization model but only uses it 
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for determining processing stream utilization decisions. The geometallurgical targets 

are well respected for mill 3 for the stochastic and conventional plans (Figure 2-11(c)). 

In addition, the stochastic plan shows stable geometallurgical target forecasts with 

significantly less fluctuation over the scheduling period as compared to a higher 

fluctuation in the conventional plan. Maintaining such a stable proportion of hard and 

soft material helps to achieve better throughput rates and efficient planning of 

processing mill operations. 

 

Figure 2-11. Forecasts of geometallurgical target for mill 1, 2, and 3 for the 

stochastic and conventional plan 

 Metal production 

Figure 2-12(a)-(d) shows the risk profiles of the recovered primary (copper 

concentrate) and secondary products (gold concentrate, silver concentrate, and 

molybdenum concentrate). The values are scaled with respect to the conventional plan 

(the conventional plan is 100 %) for reasons of confidentiality. The stochastic plan 
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produces 12.5 % higher primary copper product (Fig. 12(a)) as compared to the 

conventional plan over the scheduling period of 8 years.  

 

Figure 2-12 Forecasts of cumulative copper, gold, silver, and molybdenum 

recovered in the mining complex for the stochastic and conventional plan 

A higher production of secondary products, that is (i) 22.9 % of gold (Figure 

2-12(b)), (ii) 32.4 % of silver (Figure 2-12(c)), and (iii) 34.7 % of molybdenum 

(Figure 2-12(d)), is observed in the stochastic plan compared to the conventional plan. 

Such significant differences come from (i) capitalizing on the synergies of 

simultaneous optimization of a complete mining complex, (ii) capitalizing on the 

variability of material supply, and (iii) capitalizing on the added value of secondary 

products to drive the optimization process. Note that the conventional plan only 

considers copper in its production planning because the mining complex is a major 

producer of copper products and, therefore, does not account for other minor elements 
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in planning decisions. As a result, the conventional plan is unable to capitalize on 

benefits generated from the added value of such secondary products to drive the 

optimization process. The secondary products are recovered as by-products and, 

therefore, the value from such products are included in the forecast of the conventional 

plan during the comparison presented herein. 

 Discounted cash flows 

Figure 2-13 represents the risk profile for NPV forecasts. NPV is the cumulative 

discounted cash flow. The values are scaled with respect to the forecast of the 

conventional plan (the conventional plan is 100 %) for reasons of confidentiality. The 

stochastic plan presents a 19.3 % higher NPV compared to the conventional plan, for 

several compounding reasons. The large difference in the NPV forecast of the 

stochastic plan compared to the forecasts of the conventional plan is due to:  

(i) The ability to capitalize on synergies between the different components of the 

mining complex by jointly developing the extraction sequence, destination 

policies, and processing stream utilization under grade, geometallurgical and 

material type uncertainties, to maximize the value of products sold to the 

different customers.  

(ii) Incorporating uncertainty and variability of grade, material type and 

geometallurgical properties of the material in the stochastic optimization 

model , which helps to manage the technical risk throughout the life of the 

mining complex and increases the expectation of meeting the different 

production targets, including major effects on blending, destination policies, 

and processing stream utilization. 

(iii) The integration of different blending and capacity restrictions in the 

simultaneous stochastic optimization model, which allows for better 
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utilization of processing mills and crushers through the blending of material 

from multiple mines (as observed in Figure 2-7). The conventional plan, on 

the other hand, optimizes the extraction sequence of multiple mines 

independently and, then, uses a separate optimization model to define 

processing stream utilization decisions to satisfy blending restrictions. Two-

step optimization leads to the underutilization of processing mills and crushers 

to meet the blending restriction. 

(iv) The ability to focus on the value of product sold rather than the economic value 

of the mining blocks 

(v) The utilization of secondary products such as gold, silver, and molybdenum in 

the optimization process of the long-term stochastic mine plan (as observed in 

Figure 2-12).  

 

Figure 2-13 Cumulative discounted cash flow forecasts for the stochastic and 

conventional plan 

2.3.5 Production schedule 

Figure 2-14 displays the cross-sectional and top views of the extraction sequence 

of the copper-gold mining complex. The smoothing constraints implemented with the 
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model help to generate mineable shapes for the extraction sequence in the stochastic 

plan. The stochastic plan extracts material in different proportions form the multiple 

mines compared to the conventional plan, to meet the required production targets. In 

addition, the stochastic and conventional schedules are physically different, with 

different areas being mined in different years in the two schedules.  

  

Figure 2-14 Generated schedule (a) top view mine A, (b) cross-section view mine A, 

(c) top view mine B, (d) cross-section view mine B; for the stochastic and 

conventional plan 

2.4 Conclusions 

The simultaneous stochastic optimization of mining complexes is revisited and 

extended to include geometallurgical uncertainty and decisions. The model presented 

herein is very flexible and can be applied at any mining complex with different 

geometallurgical properties, production characteristics and constraints. The 

parameters of the stochastic optimization model presented require some trial and error 

in generating mine plans that maximize NPV and generates stable solutions, similarly 
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to any other optimization method for strategic mine planning. The contribution and 

applied aspects of the proposed approach are highlighted with an application at a large 

copper-gold mining complex that consists of 2 mines, 5 crushers, 2 stockpiles, 3 

processing mills, 1 waste dump and 2 leach pads, and produces copper, gold, silver 

and molybdenum products for different customers and spot markets. Two 

geometallurgical properties related to the grindability of the material, the SPI and 

BWI, are considered in the optimization model, which increases the utilization of 

different processing mills in the mining complex. The forecasts of the stochastic mine 

production plan show an increased expectation of meeting the different production 

targets, including consistency in throughput and hardness of material processed at the 

processing mills and crushers, when compared to the forecasts of the conventional 

mine production plan. In addition, the forecasts of the stochastic mine production plan 

show a 12.5% higher production of copper metal compared to the forecasts of the 

conventional mine production plan.  

The utilization of secondary products in the stochastic optimization model 

increases the forecasts of production of gold, silver, and molybdenum by 22.9%, 

32.4%, and 34.7% compared to the forecasts of the conventional mine production 

plan. The stochastic mine production plan also improves the NPV of the mining 

complex by 19.3% compared to the conventional mine production plan. Future work 

can consider integrating the decisions about operating modes such as coarse, medium, 

and fine grinding of material in the optimization model. Incorporating such operating 

mode decisions in the optimization model will help to enhance the performance of 

comminution circuits by choosing different operating modes based on the hardness of 

the material. Future directions also aim at integrating more geometallurgical 

properties in the optimization model directly instead of characterizing materials as 

hard and soft. The results from the case study indicate that the available facilities 
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(crushers, processing mills, leach pads, etc.) may be better utilized, providing further 

opportunities for value improvement through the inclusion of capital expenditure 

decisions in the simultaneous stochastic optimization model.  
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Appendix 2.1  

This section briefly describes the direct block simulation method and the results 

of the simulation algorithm utilized to generate stochastic orebody models of the 

mineral deposits in the copper-gold mining complex. Interested readers are referred 

to Boucher and Dimitrakopoulos (2009) for more details. 

 

Figure 2-15 Direction block simulation with minimum/maximum autocorrelation 

factor method  

The direct block simulation method with a minimum/maximum autocorrelation 

factor requires the discretization of blocks into point support scale, transforming the 

correlated attributes from data space to normal score space, utilizing MAF to 

orthogonalize the correlated attributes into independent MAF factors, simulating 

MAF factors in point support scale, averaging point support scale values to generate 

block support scale values for further conditioning, concurrently back transforming 
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the point support simulated values to data space and averaging to generated simulated 

values at block support scale (Figure 2-15). 

Appendix 2.2  

This section briefly describes the metaheuristic solution approach used in the case 

study to solve the stochastic optimization model of mining complexes. The 

metaheuristic algorithm is the same used in Goodfellow and Dimitrakopoulos (2016): 

𝑃(𝑔(𝛷), 𝑔(𝛷′), 𝑇𝑒𝑚𝑝) = {

1,                                                     𝑖𝑓 𝑔(𝛷) ≤ 𝑔(𝛷′)

exp (−
|𝑔(𝛷′) − 𝑔(𝛷)|

𝑇𝑒𝑚𝑝
) ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 (2.5) 

 

Metaheuristic approaches require an initial solution and therefore an initial 

solution is first generated using a greedy algorithm. The greedy algorithm generates 

a solution with the highest objective function value that satisfies the slope restrictions. 

The initial solution is then modified by a set of perturbations (neighborhood solution) 

to generate a new solution. Let 𝛷 be the current solution with an objective value 

of 𝑔(𝛷). The algorithm first groups the neighborhoods by the decisions they modify 

and then randomly selects one out of three decisions to modify: (i) the extraction 

sequence, 𝑥 ∈ 𝛷, (ii) the destination policy, 𝑧 ∈ 𝛷, and (iii) the processing stream 

utilization decision, 𝑦 ∈ 𝛷. Suppose that 𝛷′ is the new neighborhood solution and is 

accepted or rejected using Equation 2.5. In the normal simulated annealing algorithm 

(Equation 2.5), a single temperature is used for a single neighborhood. In multi-

neighborhood simulated annealing, a parameter 𝛿 ∈ [0,1] is defined and used, which 
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represents the probability of accepting a solution. The temperature 𝑇𝑒𝑚𝑝 for each 

decision is calculated using the parameter 𝛿. 

Each decision has a set of perturbations that can be used to modify the initial 

solution. For instance, the extraction sequence has perturbations such as (i) swapping 

the period of a block, (ii) changing the period of a block, (iii) changing the period of 

a block and all of its predecessors, etc.; processing streams have perturbations such as 

(i) changing the proportion of material at one or multiple processing streams, etc.; 

destination policies have perturbations such as (i) changing the destination of one or 

multiple clusters, etc. As the algorithm progresses, the probability of selecting the 

perturbations are modified and adapted, which is why it is known as an adaptive 

neighborhood search method. 

Appendix 2.3  

This section compares the simulated and estimated orebody models of the mineral 

deposits in terms of their grade-tonnage curves and histogram plots for estimated vs 

simulated values for the hardness index (SPI). Figure 2-16 represents the grade-

tonnage curves for CuT for mines A and B. Figure 2-16 shows that the proportions of 

high- and low-grade materials are different in the estimated and simulated deposits. 

The smoothing of high values in the estimated deposits, as observed in Figure 2-2, is 

also shown in the grade-tonnage curves.  Figure 2-17 shows the histograms of the SPI 

values of the estimated and simulated deposit models for mines A and B. Both Figure 

2-17(a) and (b) show the effects of smoothness of the conventionally estimated 

deposits. The histograms are consistent with the conclusions drawn from Figure 2-3, 
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which also show the smoothed representation of SPI values in the estimated deposits 

compared to the variability of SPI values in the corresponding simulated models. 

 

Figure 2-16 Grade-tonnage curve for copper total grade for (a) mine A and (b) mine 

B 

 

Figure 2-17 Histograms of estimated and simulated hardness index (SPI) of the 

mineral deposits in (a) mine A and (b) mine B  
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CHAPTER 3                                                                                                                            

Adaptive Self-learning Mechanisms for Updating Short-term Production 

Decisions in an Industrial Mining Complex 

 

 

The previous chapter proposed a new approach to integrate supply uncertainty 

related to geometallurgical properties in the simultaneous stochastic optimization of 

long-term production plan of a mining complex. This chapter develops a new self-

learning framework to learn to respond to the incoming new information by adapting 

the short-term flow of materials in a mining complex within its long-term production 

plan.  

 

3.1 Introduction 

A mining complex is an integrated value chain network with multiple interlinked 

components including suppliers of raw materials (mineral deposits and external 

inventories), heavy earth moving equipment (shovel, trucks, and conveyor belts), 

handling facilities (crushers, stockpiles, and waste dumps), processing facilities 

(mineral processing mills and leach pads), and customer/commodity markets. 

Uncertainty is a characteristic of a mining complex, starting from the supply of 

different types of raw materials extracted from the mineral deposits involved 

(Dimitrakopoulos et al., 2002). Stochastic optimization models account for 

uncertainty and generate production decisions that yield higher value and manage the 

technical risk of not meeting the production targets (Matamoros and Dimitrakopoulos, 
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2016; Mai et al., 2019). A long-term production plan of a mining complex determines 

the annual strategic decisions that maximize net present value (NPV) and meets 

different production targets, while accounting for uncertainty in the supply of different 

types of materials (Montiel and Dimitrakopoulos, 2015, 2017, 2018; Goodfellow and 

Dimitrakopoulos, 2016, 2017). The short-term production plan determines the 

daily/weekly/monthly production decisions within the long-term production plan to 

meet annual targets. A review of short-term production planning in mining operations 

can be found in Blom et al. (2019). In addition to supply uncertainty, the short-term 

production plan accounts for uncertainty in the performance of equipment to 

determine the production decisions about the sequence of extracting materials from 

the mineral deposits, equipment assignment and allocation (Matamoros and 

Dimitrakopoulos, 2016; Quigley and Dimitrakopoulos, 2019), as well as the flow of 

materials from mineral deposits to customers and commodity markets. A major short-

term production decision is to determine the flow of materials in a value chain that 

first includes deciding which handling facilities to send the extracted materials, often 

refered to as destination policies (Asad et al., 2016), and then involves determining 

how to utilize the processing facilities to produce the final products sold to 

customers/markets, often referred to as processing stream utilization.  

New digital technologies, including the development of advanced sensors and 

monitoring devices, have enabled the acquisition of new information about the 

performance of the different components of a mining complex that affect the flow of 

materials in a value chain. Sensors installed on drills, shovels, trucks, conveyor belts, 

crushers, and mineral processing mills (Goetz et al., 2009; Dalm et al., 2014, 2018; 

Iyakwari et al., 2016; Wambeke and Benndorf, 2018) continuously measure the 
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performance of the mining equipment and processing streams (processing and 

handling facilities), as well as different pertinent properties of the materials being 

handled. In addition to the new sensor information, conventional sources of new 

information include blasthole sampling that determines the pertinent properties of 

materials extracted (Rossi and Deutsch, 2013), monitoring devices that measure the 

performance of equipment  (Koellner et al., 2004), and tracking devices that track the 

location of materials (Brewer et al., 1999; Rosa et al., 2007).  

 

Figure 3-1 The proposed continuous updating framework to adapt the short-term 

production plan of a mining complex with incoming new information 

The core existing technologies can only integrate new information that is 

conventionally collected, such as grade control that integrates blasthole data to 

identify ore/waste boundaries in the blasted areas of mineral deposits (Verly, 2005; 

Dimitrakopoulos and Godoy, 2014) or dispatching stations that monitor the 

equipment for assignment and dispatch decisions (Kargupta et al., 2010; Nguyen and 
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Bui, 2015). However, these technologies are unable to integrate the sensor-generated 

information to adapt the short-term production plan. A continuous updating 

framework, shown in Figure 3-1, is needed to adapt the short-term production plan of 

a mining complex with new information generated from both sensors and 

conventional sources. The continuous updating framework consists of two parts. First, 

the new information generated from the different sources in a mining complex is used 

to update the performance of its different components, which includes uncertainty in 

the supply of materials from the mineral deposits, the performance of equipment, and 

the processing streams’ capabilities (productivity, recovery, etc.). Second, the updated 

performance of the different components of a mining complex is then fed to an 

artificial intelligence framework, which, in the present work, is a neural network agent 

that is trained using policy gradient reinforcement learning to adapt the short-term 

production plan. The adapted short-term production plan is fed back to the mining 

complex to generate updated production forecasts. The adapted production plan is 

then followed, more sensor data is collected as the mining operations progress, and 

the production plan is adapted again, and the cycle continues. Benndorf and Buxton 

(2016) proposed a framework to update the mine planning decisions with new 

information. Related is also the work of Hou et al. (2015) and Shirangi (2017), who 

proposed a continuous updating framework to update the production plan of smart oil 

fields. However, the existing frameworks, both in mine planning and smart oil fields, 

require re-optimization of the production plan, which is computationally expensive 

with the available optimization techniques. Lamghari (2017) provided a detailed 

review of the different techniques used for production planning in mining complexes 

and smart oil fields. The new information generated in a mining complex can be 
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categorized as “soft” and “hard” data, based on the precision of their measurement. 

Sensor-generated information is “soft” data because it is noisy, uncertain, and 

ambiguous when collected during operations from different components of a mining 

complex. Direct measurements, such as those derived from drillhole samples, which 

are analyzed in geochemical laboratories and are substantially more precise, are 

considered “hard” data. Consequently, the first part of the continuous updating 

framework in a mining complex, as shown in Figure 3-1, aims at generating updated 

uncertainty models of the different components of a mining complex that are 

consistent with the hard data and minimize the mismatch between (a) the observed 

and forecasted production data, as well as (b) the soft and hard data. Evensen et al. 

(1994a) proposed the ensemble Kalman filter (EnKF) that updates the non-linear 

processes with new information and has long been used for petroleum reservoir flow 

simulation and production forecasting (Dovera and Della Rossa, 2011; Xue and 

Zhang, 2014; Kumar and Srinivasan, 2019; Xu and Hernández, 2019). The ensemble 

Kalman filter is a two-step assimilation process that first generates a model-based 

prediction based on initial simulations for a non-linear process and then corrects such 

predictions with new observed information. For example, in mining, observations 

made at the processing mills can be integrated to correct the initial simulated 

properties.  The flow of materials from mine to mill is first tracked using sensors, then 

the initial simulated models are used to generate model-based prediction for the 

processing mill observations, and finally initial simulated properties are corrected 

based on the weighted difference between the model-based prediction and the 

observation. The method has been successfully applied to update pertinent attributes 

of mineral deposits (Benndorf, 2015; Dalm et al., 2018; Yüksel et al., 2018). Methods 
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such as randomized maximum likelihood (Sarma et al., 2006; Chen and Oliver, 2012; 

Vo and Durlofsky, 2014; Shirangi, 2017) and Markov mesh models (Panzeri et al., 

2016) are also used to update the pertinent petroleum reservoir-related attributes. 

Vargas-Guzmán and Dimitrakopoulos (2002) and Jewbali and Dimitrakopoulos 

(2011) proposed a column-wise decomposition of the covariance matrix (CSSR) to 

update the pertinent attributes of mineral deposits with new hard data. However, the 

CSSR method cannot integrate the soft information generated from sensors. The 

outlined methods for updating pertinent attributes of mineral deposits with EnKF and 

CSSR are limited to a single attribute. This paper presents a new extension of EnKF 

that allows the updating of multiple correlated attributes in mineral deposits with 

minimum/maximum autocorrelation factors (Desbarats and Dimitrakopoulos, 2000). 

The second part of the updating framework (Figure 3-1) aims at adapting the 

short-term production plan of a mining complex with the updated uncertainty models 

of its different components. Reinforcement learning methods are efficient in decision-

making with new information. In recent years, reinforcement learning-based methods 

have shown exceptional performance at generating neural network agents that are 

capable of making very efficient decisions for different complex environments 

(Aissani et al., 2012; Mnih et al., 2013; Silver et al., 2016; Barde et al., 2019). 

Paduraru and Dimitrakopoulos (2018) proposed a Bayesian reinforcement learning 

algorithm to optimize the destination policies of materials in a mining complex. 

However, the method developed requires a predefined extraction sequence to 

calculate the expected a posteriori improvement in the objective function during the 

optimization. Paduraru and Dimitrakopoulos (2019) proposed a policy gradient 

reinforcement learning algorithm to optimize the neural network destination policies 
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of materials in a mining complex while accounting for supply and equipment 

performance uncertainties. The neural network destination policies increased the 

expected NPV by 6.5 % compared to the mine’s cut-off grade destination policies for 

a copper mining complex. However, the method is (a) limited to a single product 

mining complex, and (b) does not provide a required continuous updating of the short-

term production plan regarding destination policies of materials with the new 

information generated from sensors and/or conventional sources. 

The work presented herein proposes a novel continuous updating framework that 

combines a new extension of the EnKF method and a policy gradient reinforcement 

learning method to adapt the short-term flow of materials in a multiple product mining 

complexes with incoming new information. The continuous updating framework 

allows a mining operation to learn, adapt, and make more informed short-term 

production planning decisions in real-time with incoming new information, allowing 

the operation to meet its production targets more closely. First, the proposed extension 

of the EnKF model is used to update the multiple pertinent correlated attributes in a 

mineral deposit with incoming new information. This part of the updating framework 

ensures that the ambiguous information is handled efficiently using Kalman gain in 

the proposed extension of the EnKF method. Second, the model presented in Paduraru 

and Dimitrakopoulos (2019) is further developed to account for multiple products in 

a mining complex. The second part of the updating framework uses an extraction and 

hauling simulator to generate samples for training the neural network destination 

policies agent through policy gradient reinforcement learning. In the following 

sections, the proposed continuous updating framework that adapts the short-term 

production plan in terms of the flow of materials with incoming new information is 
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detailed. Next, an application of the proposed continuous updating framework at a 

real copper mining complex is presented to show the efficiency and applied aspects 

of the proposed framework compared to the mine’s cut-off grade destination policies. 

Conclusions and directions for future research follow.  

3.2 Method 

This section outlines the algorithm related to the two parts of the proposed 

continuous updating framework to update the short-term flow of materials in a mining 

complex with incoming new information. Please note that the notation used in the 

proposed framework is provided in Appendix 3.1. 

3.2.1 Updating stochastic orebody simulations 

The method proposed to update simulations of a mineral deposit with new 

information uses ensemble Kalman filter (EnKF) (Evensen, 1994a), which is modified 

to account for multiple correlated attributes. The group of simulations of mineral 

deposits is herein referred to as ensembles. The complete process to update ensembles 

with multiple correlated elements based on new information is shown in Figure 3-2. 

First, the exploration drill information with multiple elements is de-correlated using 

minimum/maximum autocorrelation factors (MAF) (Desbarats and Dimitrakopoulos, 

2000). The de-correlated MAF factors are then used to generate initial ensembles. The 

new information acquired in the mining complex about the quality of the materials is 

de-correlated using MAF. Then, the new decorrelated information and the initial 

ensembles are used in the EnKF method to generate the updated ensembles of multiple 

correlated elements. The updated ensembles are finally transformed back from MAF 
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factors into correlated elements and averaged to mining block sizes that represent the 

selectivity of the operation in the mining complex. 

 Updating algorithm 

A mineral deposit is discretized into an array of three-dimensional volumes 

referred to as mining blocks. The mining blocks are further discretized into multiple 

internal nodes. Let  ℤ𝑒
𝑡′,𝔰(𝑥), ∀𝔰 ∈ 𝑆, be a realization of the vector of the spatial random 

field consisting of elements 𝕫𝑒
𝑡′,𝔰(𝑥𝑖). 𝕫𝑒

𝑡′,𝔰(𝑥𝑖) represents the simulated MAF value of 

element 𝑒 at location 𝑥𝑖  at time 𝑡′ under the scenario 𝔰, with 𝑖 ∈ [1, 𝒩] being the 

index of internal nodes. Initial ensembles of MAF values are represented by 

ℤ𝑒
𝑡′,𝔰(𝑥) for the multiple elements in the mineral deposit. Let matrix 𝐴𝑡′  describe the 

contribution of each internal node at the location 𝑥𝑖 at time 𝑡′ towards the new 

information observed in the mining complex. The new information observed at time 

𝑡′ is also de-correlated using MAF into MAF factor 𝑙𝑒
𝑡′
 for element 𝑒. The Gaussian 

assumption in the ensemble Kalman filter is handled by transforming ℤ𝑒
𝑡′,𝔰(𝑥), 𝕫𝑒

𝑡′,𝔰(𝑥𝑖), 

and 𝑙𝑒
𝑡′
 using the Gaussian anamorphosis function, 𝛷𝐺

𝑒 . The transformed vectors, 

𝑈𝑒
𝑡′,𝔰(𝑥),  𝑢𝑒

𝑡′,𝔰(𝑥𝑖) = 𝛷𝐺
𝑒 (𝕫𝑒

𝑡′,𝑠(𝑥𝑖)), and 𝑚𝑒
𝑡′

= 𝛷𝐺
𝑒 (𝑙𝑒

𝑡′
) are then used in the EnKF 

updating process. 𝑈𝑒
𝑡′,𝔰(𝑥) is the vector of elements 𝑢𝑒

𝑡′,𝔰(𝑥𝑖). A random noise 𝜖𝑒
𝑡′
 is 

added in the new information to represent the noise with the measurement of new 

information as shown in Eq. 3.1. The model-based prediction 𝑃𝑒
𝑡′,𝔰

, which represents 

the predictions based on initial ensembles at the location of observed information is 

calculated by Eq. 3.2.  
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𝑜𝑒
𝑡′

= 𝑚𝑒
𝑡′

+ 𝜖𝑒
𝑡′

                                      , ∀𝑒 ∈ 𝐸                        (3.1) 

𝑃𝑒
𝑡′,𝔰 = 𝐴𝑡′ ∙ 𝑈𝑒

𝑡′,𝔰(𝑥)                           , ∀𝑒 ∈ 𝐸, 𝔰 ∈ 𝑆                   (3.2) 

𝑈𝑒
𝑡′+1,𝔰(𝑥)  = 𝑈𝑒

𝑡′,𝔰(𝑥)  + 𝐾𝑒
𝑡′

∙ (𝑜𝑒
𝑡′

− 𝑃𝑒
𝑡′,𝔰)          , ∀𝑒 ∈ 𝐸, 𝔰 ∈ 𝑆              (3.3) 

𝐾𝑒
𝑡′

= (𝐴
𝑡′
𝑇 ∙ 𝐶𝑢𝑒𝑢𝑒

𝑡′
∙ 𝐴𝑡′ + 𝐶𝑜𝑒𝑜𝑒

𝑡′
)−1𝐴

𝑡′
𝑇 ∙ 𝐶𝑢𝑒𝑢𝑒

𝑡′
             , ∀𝑒 ∈ 𝐸                    (3.4) 

EnKF uses Eq. 3.3 to update the initial ensembles 𝑈𝑒
𝑡′,𝔰(𝑥) with the new 

information based on the difference between new information and model-based 

predictions, and the Kalman gain. The Kalman gain, 𝐾𝑒
𝑡′

, is calculated using Eq. 3.4 

and defines the significance of the model compared to the new information through 

the error covariance matrix of the model, 𝐶𝑢𝑒𝑢𝑒
𝑡′

, and observations, 𝐶𝑜𝑒𝑜𝑒
𝑡′

.  For instance, 

if the new information is inaccurate, then the term 𝐶𝑜𝑒𝑜𝑒
𝑡′

, will be high, which results 

in low Kalman gain. 

 

Figure 3-2 Updating stochastic simulations of mineral deposits with new 

information 
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A low value of Kalman gain indicates a noisy observation and, therefore, the 

initial ensembles are not updated. On the other hand, if the Kalman gain is large, 

meaning the new information is accurate, then the initial ensembles are updated with 

the new information. 

𝐶𝑢𝑒𝑢𝑒
𝑡′

(𝑥𝑖) ≅
1

|𝑆|
∑ (𝑢𝑒

𝑡′,𝔰(𝑥𝑖) − 𝑢𝑒
𝑡′,𝔰(𝑥𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) ∙ (𝑢𝑒

𝑡′,𝔰(𝑥𝑖) − 𝑢𝑒
𝑡′,𝔰(𝑥𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝑇

, ∀𝑖 ∈ [1, 𝒩], 𝑒

𝑆

𝔰=1

∈ 𝐸                                                                                                              (3.5) 

EnKF approximates the model error covariance matrix with a finite set of 

ensembles as shown in Eq. 3.5. The measurement error covariance matrix, 𝐶𝑜𝑒𝑜𝑒
𝑡′

, is 

initialized randomly from a standard normal distribution. The updated ensemble 

values are back-transformed using Gaussian inverse transformation function, 

𝛷𝐺
𝑒−1

(𝑈𝑒
𝑡′+1,𝔰(𝑥)), to generate updated MAF ensemble values ℤ𝑒

𝑡′+1,𝔰(𝑥). The updated 

MAF ensemble values are further back-transformed using the MAF inverse 

transformation function and averaged to generate values of different elements in the 

mining blocks for different ensembles using Eq. 3.6.  

𝑑𝑒
𝑡′+1,𝔰(𝑏) ≈

1

𝑉
∑ 𝛷𝑀

𝑒−1
(𝕫𝑒

𝑡′+1,𝔰(𝑥𝑖))

𝑉

𝑖=1

    , ∀𝑥𝑖 ∈ 𝑏, 𝑏 ∈ 𝐵, 𝔰 ∈ 𝑆, 𝑒 ∈ 𝐸      (3.6) 

3.2.2 Updating short-term destination policies in a mining complex 

The method proposed to update the short-term destination policies of materials in 

a multiple product mining complex uses policy gradient reinforcement learning with 

neural network agents and extends upon the work of Paduraru and Dimitrakopoulos 

(2019). The method accounts for the uncertainty in the supply of different materials 

and the performance of equipment. A short-term stochastic model detailed in Sect. 
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3.2.2.1 is used in the policy gradient reinforcement learning framework presented in 

Sect. 3.2.2.2 to train the neural network destination policies. 

 A stochastic model of a mining complex 

A stochastic model of a mining complex is presented in this section that uses 

concepts from discrete event simulation, stochastic modelling, and system dynamics 

to calculate the total time to move materials out of the mineral deposits. Consider an 

illustrative example shown in Figure 3-3, where the materials are first loaded into 

trucks at mine 𝑚, with shovels, that have an uncertain performance with regards to 

productivity, breakdown time, and repair time. Uncertainty scenarios for the shovel 

performance are generated from historical data. The loaded materials in the trucks are 

then hauled to different destinations. The decision of hauling the materials to a 

destination is based on destination policies, which, in this work, are neural networks 

that are trained through policy gradient reinforcement learning. Uncertainty scenarios 

for truck performance (cycle time) are also generated from historical data. Depending 

on the performance of the destinations, the trucks at different destinations might have 

a waiting time. The total extraction time 𝑇𝑚,𝑑,𝑠
𝐸  to mine materials from mine 𝑚 until 

it is processed at destination 𝑑 under joint uncertainty scenario 𝑠, is therefore, a 

function of loading time 𝑇𝑚,𝑠
𝑙 , hauling time to a destination 𝑇𝑚,𝑑,𝑠

ℎ , and wait time at a 

destination 𝑇𝑑,𝑠
𝑞

, and is calculated using Eq. 3.7.  

𝑇𝑚,𝑑,𝑠
𝐸 = 𝑓(𝑇𝑚,𝑠

𝑙 , 𝑇𝑚,𝑑,𝑠
ℎ , 𝑇𝑑,𝑠

𝑞 )   , ∀𝑚 ∈ ℳ, 𝑑 ∈ 𝒞 ∪ ℒ𝑆 ∪ 𝒲, 𝑠 ∈ 𝕊  (3.7) 

Here, 𝒞, ℒ𝑆, and 𝒲 define the set of crushers, sulphide leach pads, and waste 

dumps in the mining complex. The trucks return to the same shovel they came from 

after delivering the materials to a destination. The neural network does not decide 
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which shovel the truck should go after it has finished delivering materials. The 

materials are crushed at the crushers and then conveyed to one of the processing mills 

with the highest available capacity (processing stream utilization). The processing 

mills recover the metal from the materials and generate multiple products in the 

mining complex. The recovery of the processing mills is also uncertain and depends 

on the quality of the feed materials. The stochastic scenarios of equipment 

performance and processing mills recovery are combined with the stochastic 

simulations of mineral deposits to generate the joint uncertainty scenarios 𝕊. For 

instance, 15 orebody and 15 equipment performance scenarios will result in 225 joint 

uncertainty scenarios. 

 

Figure 3-3 An illustrative example of a stochastic model of a mining complex 

 Updating algorithm 

The stochastic model of a mining complex presented in Sect. 3.2.2.1 simulates 

the flow of materials in the mining complex under the joint uncertainty scenario 𝕊, 

which is used to train the neural network destination policies. Note, the proposed 
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model decides the destination of materials based on multiple elements in a mining 

complex, given a fixed extraction sequence.  

 

Figure 3-4 Process of training the neural network and adapting to new information 

The complete training process of the neural network is presented in Figure 3-4(a). 

The joint uncertainty scenarios are fed to the stochastic model to perform the 

extraction and hauling simulations that generate information about the input state 

(𝑆𝑉𝑖), which includes the quality and quantity of materials extracted, hauled, crushed, 

leached, and discarded under joint uncertainty scenarios. 𝑆𝑉𝑖 is fed to input neurons 

in the fully connected feed-forward neural network. The input to different hidden 

neurons (ℎ𝑗) is calculated using Eq. 3.8.  Equation 3.9 is used to calculate the output 

of hidden neurons using the rectified linear function (Nair and Hinton, 2010). The 

input to output neurons (𝑜𝑘) is then calculated using Eq. 3.10. The weights 𝑤𝑖𝑗
ℎ  and 

𝑤𝑗𝑘
𝑜  represent the weight associated with arcs from input (𝑖) to hidden (𝑗) and hidden 

to output (𝑘) neurons. 
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𝑖𝑛𝑝𝑢𝑡 (ℎ𝑗) = ∑ 𝑤𝑖𝑗
ℎ 𝑆𝑉𝑖

𝑖∈𝑛𝐼

                       , ∀ 𝑗 ∈ 𝑛𝐻                          (3.8) 

𝑜𝑢𝑡𝑝𝑢𝑡(ℎ𝑗) = max (0, 𝑖𝑛𝑝𝑢𝑡(ℎ𝑗))                    , ∀𝑗 ∈ 𝑛𝐻                          (3.9) 

𝑖𝑛𝑝𝑢𝑡(𝑜𝑘) =  ∑ 𝑤𝑗𝑘
𝑜

𝑗∈𝑛𝐻

∙  𝑜𝑢𝑡𝑝𝑢𝑡(ℎ𝑗)                   , ∀𝑘 ∈ 𝑛𝑂                       (3.10) 

𝑧𝑏,𝑑,𝑡 =  
𝑒𝑖𝑛𝑝𝑢𝑡(𝑜𝑘)

∑ 𝑒𝑖𝑛𝑝𝑢𝑡(𝑜𝑘)
𝑘  

             , ∀𝑡 ∈ 𝕋, 𝑏 ∈ ℬ𝑚, 𝑑 ∈ 𝒞 ∪ ℒ𝑆 ∪ 𝒲     (3.11) 

The output from output neurons generates the probabilities for different actions 

𝑧𝑏,𝑑,𝑡, that determine if (1) or not (0) a block 𝑏 is sent to a destination 𝑑 in a period 𝑡, 

as shown in Eq. 3.11. The probabilities are sampled to select an action during the 

training phase of the proposed algorithm. Sampling the probabilities in Eq. 3.11 also 

ensures that the blocks are only assigned to one destination. Equations 3.12 and 3.13 

are then used to calculate the amount of metal property 𝑎, and mass respectively at 

the different destinations 𝑖.  

𝑣𝑎,𝑖,𝑡,𝑠 = ∑ 𝑔𝑎,𝑏,𝑠 ∙ 𝑚𝑏,𝑠 ∙ 𝑧𝑏,𝑑,𝑡

𝑏∈ℬ𝑚

    , ∀𝑡 ∈ 𝕋, 𝑎 ∈ ℙ𝑀 , 𝑖 ∈ 𝒞 ∪ ℒ𝑆, 𝑠 ∈ 𝕊   (3.12) 

𝑣𝑎,𝑖,𝑡,𝑠 = ∑ 𝑚𝑏,𝑠 ∙ 𝑧𝑏,𝑑,𝑡

𝑏∈ℬ𝑚

    , ∀𝑡 ∈ 𝕋, 𝑎 ∈ ℙ𝑇 , 𝑖 ∈ 𝒞 ∪ ℒ𝑆 ∪ 𝒲, 𝑠 ∈ 𝕊    (3.13) 

The materials from the different destination 𝑖 ∈ 𝒞 ∪ ℒ𝑆 is further sent to different 

processing streams 𝑗 ∈ 𝒫 ∪ ℒ𝑂. Processing stream utilization decisions 𝑦𝑎,𝑖,𝑗,𝑡,𝑠, 

represents the amount of materials property 𝑎, sent from destination 𝑖 to 𝑗 in period 𝑡, 

under scenario 𝑠, and is decided based on available capacity at the different processing 

streams. Equation 3.14 is used to calculate the materials at the different processing 
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streams in the mining complex. Equation 3.15 ensures that flow conservation is 

preserved with the processing stream utilization decisions.  

𝑣𝑎,𝑗,𝑡,𝑠 =  ∑ 𝑦𝑎,𝑖,𝑗,𝑡,𝑠

𝑖∈𝒞

∙ 𝑣𝑎,𝑖,𝑡,𝑠   , ∀𝑡 ∈ 𝕋, 𝑎 ∈ ℙ𝑀 ∪ ℙ𝑇 , 𝑗 ∈ 𝒫 ∪ ℒ𝑂 , 𝑠 ∈ 𝕊      (3.14) 

∑ 𝑦𝑎,𝑖,𝑗,𝑡,𝑠

𝑗∈𝒫∪ℒ𝑂

= 1   , ∀𝑡 ∈ 𝕋, 𝑖 ∈ 𝒞, 𝑠 ∈ 𝕊                                (3.15) 

𝑣𝑎,𝑖,𝑡,𝑠 − 𝑑𝑎,𝑖,𝑡,𝑠
+ ≤ 𝑈𝑎,𝑖,𝑡   , ∀  𝑡 ∈ 𝕋, 𝑎 ∈ ℙ𝑀, 𝑖 ∈ 𝒫 ∪ ℒ𝑆 ∪ ℒ𝑂 , s ∈ 𝕊          (3.16)  

𝑣𝑎,𝑖,𝑡,𝑠 + 𝑑𝑎,𝑖,𝑡,𝑠
− ≥ 𝐿𝑎,𝑖,𝑡    , ∀ 𝑡 ∈ 𝕋 , 𝑎 ∈ ℙ𝑀, 𝑖 ∈ 𝒫 ∪ ℒ𝑆 ∪ ℒ𝑂 , s ∈ 𝕊          (3.17)  

𝑓(𝑋) =
1

|𝕊|
∑ ∑ ∑ ∑ 𝑃𝑎,𝑖 ∙ 𝑣𝑎,𝑖,𝑡,𝑠 ∙ 𝑟𝑎,𝑖,𝑠

𝑎∈ℙ𝑀𝑖∈𝒫∪ℒ𝑂∪ℒ𝑆𝑡∈𝕋𝑠∈𝕊

 

−
1

|𝕊|
∑ ∑ − ∑ ∑ 𝐶𝑎,𝑖 ∙ 𝑣𝑎,𝑖,𝑡,𝑠

𝑎∈ℙ𝑇𝑖∈𝒫∪𝒞∪ℒ𝑆∪ℒ𝑂∪𝕄𝑡∈𝕋𝑠∈𝕊

 

−
1

|𝕊|
∑ ∑ ∑ ∑ (𝑐𝑎,𝑖

+ ⋅ 𝑑𝑎,𝑖,𝑡,𝑠
+ + 𝑐𝑎,𝑖

− ⋅ 𝑑𝑎,𝑖,𝑡,𝑠
− )

𝑎∈ℙ𝑀𝑖∈𝒫∪ℒ𝑆∪ℒ𝑂𝑡∈𝕋𝑠∈𝕊

          (3.18) 

Equations 3.16 and 3.17 are used to calculate the amount of deviation from 

different production targets in the mining complex. The metal is finally recovered at 

the different processing destinations. The objective/cash flow/reward function is 

given by Eq. 3.18. Part I in the objective function represents the profits from selling 

different products; Part II represents the different costs incurred throughout the flow 

Part I 

Part II 

Part III 
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of materials, and Part III represents the penalties incurred due to deviation from 

different production targets. The objective function is an expected value. Equations 

3.12-3.18 are based on recent developments in stochastic mine planning models 

(Montiel and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; 

Quigley and Dimitrakopoulos, 2019). Policy gradient reinforcement learning (Sutton 

et al., 2000) offers the ability that, given a reward function 𝑓 and probability density 

function 𝑧𝑊 parameterized by 𝑊, the equality in Eq. 3.19 below holds true.  

𝛻𝑊𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)] =  𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)𝛻𝑊 log(𝑧𝑊(𝑥))]                       (3.19) 

In Eq. 3.19, 𝑓(𝑥) corresponds to the reward function calculated using Eq. 3.18 

and 𝑧𝑊(𝑥) corresponds to the action-selection probabilities computed using Eq. 3.11. 

The weight matrix, 𝑊, contains the values of the hidden 𝑤𝑖𝑗
ℎ  and the output neurons 

𝑤𝑗𝑘
𝑜 . As it is common in stochastic gradient methods (Bottou, 2010), 

𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)𝛻𝑊 log(𝑧𝑊(𝑥))] is replaced with 𝑓(𝑋)𝛻𝑊 log(𝑧𝑊(𝑋)), where 𝑓(𝑋) 

represent the cumulative reward obtained during the planning horizon 𝕋 using the 

vector of decisions 𝑋. The gradient of log(𝑧𝑊(𝑋)) can, therefore, be calculated using 

Eq. 3.20, where the sum is over the planning horizon and over the destinations. 

Finally, the stochastic approximation of 𝛻𝑊𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)] can be computed using 

Eqs. 3.18-3.20. 

𝛻𝑊 log(𝑧𝑊(𝑋)) =  ∑ ∑ 𝛻𝑊 log 𝑧𝑊(𝑑) 𝑧𝑏,𝑑,𝑡

𝑑∈𝒞∪ℒ𝑆∪𝒲𝑡∈𝕋

                  (3.20) 

𝑔𝑖+1 = γ𝑔𝑖 + (1 − γ)𝛻𝑊𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)]2            , ∀ 𝑖 ∈ [1, 𝑛𝐼𝑡𝑒𝑟]            (3.21) 
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𝑊𝑖+1 = 𝑊𝑖 +
η𝛻𝑊𝐸𝑥∼𝑧𝑊(𝑥)[𝑓(𝑥)]

√𝑔𝑖+1 + 𝜕
            , ∀𝑖 ∈ [1, 𝑛𝐼𝑡𝑒𝑟]             (3.22) 

The weight matrix 𝑊 = {𝑤𝑖𝑗
ℎ , 𝑤𝑗𝑘

𝑜 } of the neurons in the neural network is 

initialized randomly and updated using the gradient ascent method named RMSprop 

(Hinton et al., 2012). The RMSprop method uses Eqs. 3.21 and 3.22 to backpropagate 

and update the weight of the neurons in the training phase of the neural network.  This 

process (Eqs. 3.8-3.22) continues, and the neural network is trained until the pre-

defined stopping criteria, 𝑛𝐼𝑡𝑒𝑟, is reached.  

The training phase of the neural network allows the generation of destination 

policies that can adapt to new information. Figure 3-4(b) represents the process of 

adapting the neural network destination policies when new information is acquired in 

a mining complex. The new information is first used to update the joint uncertainty 

scenarios using the method outlined in Sect. 3.2.1. The updated joint uncertainty 

scenarios are then fed to the stochastic model outlined in Sect. 3.2.2, which simulates 

the extraction and hauling of materials. The information from the previous step is fed 

to the trained neural network that decides the destination of materials (the action with 

maximum probability is selected) and the materials from such destinations are then 

sent to one of the processing streams based on the available capacity of the different 

processing streams. Finally, the forecasts for the different production targets are 

calculated using Eqs. 3.12-3.18 and further evaluated regarding their probability of 

meeting the different production targets. The neural network is retrained for a few 

iterations if the production targets are not met to adjust the weight of the neural 

network and better meet the production targets. 
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3.3 Application at a copper mining complex 

The proposed framework for updating the short-term destination of materials is 

applied at a copper mining complex, which demonstrates the applied aspects of the 

proposed method. In the case study, the blasthole data collected during the mine’s 

operation is used to update the stochastic simulations of mineral deposits with 

multiple elements. The neural network destination policies account for uncertainty in 

(a) supply of multiple materials with multiple elements, (b) performance of equipment 

related to its availability, cycle times, utilization, downtime, repair time, and 

productivity, and (c) recovery of metal in processing mills. However, the framework 

is flexible to include different types of new information in the updating framework. 

The implementation assumes that the mining complex has the necessary infrastructure 

related to wireless internet server/system and cloud services to handle, store, and 

transmit the new collected information and feedback the adapted short-term 

production plan to the mining operation, as it is the case in mining complex involved 

in the application present herein. 

3.3.1 Overview of the copper mining complex 

The copper mining complex consists of two mineral deposits (A and B) with 

mining blocks of size 25x25x15 𝑚3. The mineralization has eight different mine 

zones each. The materials are extracted from both deposits and are sent to one of the 

seven destinations (five crushers, one sulphide leach pad, and one waste dump), as 

shown in Figure 3-5. For measuring the performance of the proposed framework, a 

part of the deposit that consists of 5,581 mining blocks in each deposit extracted over 
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210 days is used. Materials from five different crushers are then processed at three 

different processing mills and an oxide leach pad.  

  

Figure 3-5 The copper mining complex 

The materials from the leach pads are sent to a copper cathode plant that produces 

copper cathodes. The processing mills generate copper concentrate as the primary 

product and gold (Au), silver (Ag), and molybdenum (Mo) concentrate as secondary 

products, which are transported to the port. The products from the port and copper 

cathode plant are finally transported and sold to different customers and/or the spot 

market. Additional details about the case study are presented in Appendix 3.2.  

3.3.2 Cut-off grade vs adaptive neural network destination policies 

The copper mining complex currently uses a single element (copper) predefined 

cut-off grade based destination policies optimized using Lane’s theory (Lane, 1984, 

1988; Rendu, 2014) and cannot account for new information collected during the 

mine’s operation. The copper mining complex is a major producer of copper products 
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and does not consider secondary products in the optimization of its cut-off grade 

destination policies. The details of the cut-off grade destination policies are outlined 

in Table 3-1. First, the materials are classified as sulphide high grade (SHG), sulphide 

low grade (SLG), oxide based on the materials classification criteria (i.e., ratio of 

soluble copper (CuS) to total copper (CuT)). The materials classification criteria are 

necessary to determine the possible processing destinations allowed to process the 

materials. The cut-off grade destination policies then use the cut-off grades specified 

in Table 3-1 to determine the destination at which the material will be processed.  

Table 3-1 Material classification criteria and cut-off grade destination policies used 

at the copper mining complex 

Materials 

classification 

Materials 

classification 

criteria 

Cut-off grade 

destination policies 
Destination 

SHG 
𝐶𝑢𝑆

𝐶𝑢𝑇
≤ 0.2 

𝐶𝑢𝑇 ≥ 0.6 Processing Mill 

0.3 ≤ 𝐶𝑢𝑇 < 0.6 Sulphide Leach Pad 

𝐶𝑢𝑇 < 0.3 Waste Dump 

SLG 0.2 <
𝐶𝑢𝑆

𝐶𝑢𝑇
< 0.5 

𝐶𝑢𝑇 > 0.3 Sulphide Leach Pad 

𝐶𝑢𝑇 ≤ 0.3 Waste Dump 

Oxide 
𝐶𝑢𝑆

𝐶𝑢𝑇
≥ 0.5 

𝐶𝑢𝑆 ≥ 0.2 Oxide Leach Pad 

𝐶𝑢𝑆 < 0.2 Waste Dump 

The neural network destination policies decide the destination of mining blocks 

based on the properties of multiple elements in a mining block, as well as the 

performance of and interaction between the different components of the mining 

complex. In addition, the proposed method adapts such destination decisions of 

mining blocks with incoming new information in the mining complex (See Sect. 

3.2.2). Similar to the cut-off grade destination policies, the materials are first 

characterized as SHG, SLG, and oxide, based on the material classification criteria 
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mentioned in Table 3-1 to find the allowed processing destinations for a mining block. 

However, instead of using the cut-off grade destination policies mentioned in Table 

3-1, the neural network destination policies are used to decide the destination of such 

materials. As mentioned in Sect. 3.2.2, the neural networks decide whether (1) or not 

(0) to process the materials at (i) the processing mills, (ii) a sulphide leach pad, or (iii) 

an oxide leach pad. Four different neural networks are built and trained using policy 

gradient reinforcement learning. The different neural networks are designed to decide 

the destinations of extracted materials, which can be either sulphides or oxides. The 

first neural network is for SHG materials extracted from mine A, the second is for 

SHGs from mine B, the third is for SLGs from mines A and B, and the fourth is for 

oxides from mines A and B. The first neural network takes 32 inputs, has 800 hidden 

neurons, and generates 5 outputs. The five outputs each correspond to the probability 

of selecting crusher 1, crusher 2, crusher 3, the sulphide leach pad, and the waste 

dump, as the destination of the materials. The second neural network takes 20 inputs, 

has 600 hidden neurons, and generates 3 outputs. The three outputs correspond to the 

probability of selecting crusher 5, the sulphide leach pad, and the waste dump as the 

destination of materials. The third and fourth neural networks take 7 inputs, have 300 

hidden neurons, and generate 2 outputs. The two outputs from third neural network 

correspond to the probability of selecting the sulphide leach pad and waste dump as 

the destination of materials. The two outputs from the fourth neural network 

correspond to the probability of selecting crusher 4 (oxide leach crusher) and the waste 

dump as the destination of materials. 
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3.3.3 Parameter selection 

This section discusses the selection of different parameters associated with the 

proposed adaptive neural network destination policies. The state vector information 

𝑆𝑉𝑖 consists of 7 to 32 different types of information depending on the complexity of 

the processing destination and are fed to the input neurons of the neural network.  For 

instance, the  𝑆𝑉𝑖 for the processing mill neural network consists of information about 

the mass of a mining block, different elements such as total copper, soluble copper, 

arsenic, gold, silver, and molybdenum in the mining block, the materials being 

crushed and leached, the performance of equipment, and the wait times at the crushers. 

Similarly, the number of hidden neurons in the neural network ranges from 300 to 

800, depending on the number of input neurons. There are only two output neurons to 

decide whether (1) or not (0) the mining block is processed at the respective 

destination. The learning rate and the decay rate with the neural network is set to 10−3 

and 0.99, respectively, as suggested in Hinton et al., (2012). The smoothing term is 

set to 10−6 (Ruder, 2016). The weight of the neurons in the neural network is 

initialized randomly using the Xavier initialization (Glorot and Bengio, 2010). The 

number of iterations required to train the neural network is set to 7,500. The number 

of mineral deposit simulations to use for training the neural network is set to 15 based 

on the tests show in the supplementary material. The details of parameter selection 

are presented in Appendix 3.3. 

3.3.4 Results 

The results of the proposed adaptive neural network destination policies to update 

the short-term destination decisions with new information are presented in this 
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section. Results are reported using the 10th, 50th, and 90th percentile risk profiles (P10, 

P50, and P90 respectively) of the different performance indicators considering 100 

joint uncertainty scenarios (10 equipment performance and 10 orebody scenarios). 

The results reported in this section are based on a set of 100 joint uncertainty scenarios 

that were not used to train the neural network destination policies. Testing the neural 

network destination policies on an unseen set of joint uncertainty scenarios shows the 

reliability of the proposed framework and highlights the overfitting issues, if any, with 

the neural network destination policies. The forecasts of the production targets with 

the proposed framework are compared to the forecasts of the cut-off grade destination 

policies over the same 100 joint uncertainty scenarios throughout its presentation and 

discussion to highlight the differences and added value of the adaptive framework, 

where appropriate. The training phase of the neural network takes about 52 hours, 

with 12,500 iterations on an Intel processor core i7 with 8GB of RAM.  However, it 

only takes about five minutes to update the stochastic simulations of the two mineral 

deposits and to adapt the destination decisions of mining blocks for 210 days using 

the proposed adaptive framework. The results are presented for both the destination 

policies for initial and update stochastic simulations of mineral deposits. The results 

presented for metal production and cash flows are scaled for confidentiality purposes 

(mine’s cut-off grade destination policies for initial simulations being 100%). 

Additional results from the case study are presented in Appendix 3.4 and Appendix 

3.5. 
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 Updated stochastic simulations of mineral deposit 

Figure 3-6 shows one of the initial and updated simulations of the total copper 

mineral attribute of the mineral deposit A at block support. The initial stochastic 

simulations of six correlated elements in the two mineral deposits, conditional to the 

exploration drillholes’ samples, are generated using a generalized sequential Gaussian 

simulation (Dimitrakopoulos and Luo, 2004).   

 

Figure 3-6 Updated block simulations compared to initial block simulations for 

bench 1 for the mineral deposit A 

Six different correlated elements: soluble copper, total copper, arsenic, gold, 

silver, and molybdenum, in the two mineral deposits are updated using the method 

discussed in Sect. 3.2.1 with the new blasthole data collected during the short-term 

operations. The blasthole data in a mine zone are only considered to update the mining 

blocks in the same mine zone to respect the geological features of the mineral deposit. 

It is clear from Figure 3-6 that the updated simulations maintain the significant 

structures inferred from the exploration drillholes data and updates the local 
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characteristics with the new blasthole data. A histogram of the initial and updated 

simulations at point support confirms such results, where the distribution of total 

copper in bench 1 for mineral deposit A is very different for the initial and updated 

simulations. The updated simulations show a higher proportion of high-grade copper 

materials, as compared to the initial simulations. 

 Production target 

The forecasts for the different production targets are shown in this section for the 

neural network destination policies and are compared to the cut-off grade destination 

policies.  

 

Figure 3-7 Forecasts of the capacity target of mill-2 with the (a) initial cut-off grade 

block destinations, (b) initial neural network block destinations, (c) updated cut-off 

grade block destinations, and (d) updated neural network block destinations 

Figure 3-7(b) shows the risk profile of meeting the capacity target with mill-2 for 

initial simulations using neural network destination policies compared to the cut-off 
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grade destination policies in Figure 3-7(a). The neural network destination policies 

are better at meeting the target with maximum utilization of the mill’s capacity, as 

compared to high fluctuations and lower chances of meeting the target in the cut-off 

grade destination policies. The neural network destination policies (Figure 3-7(d)) has 

increased the chance of meeting production targets compared to the high fluctuations 

in the cut-off grade destination policies (Figure 3-7(c)) over the updated simulations. 

 

Figure 3-8 Forecasts of arsenic blending target of mill-2 with the (a) initial cut-off 

grade block destinations, (b) initial neural network block destinations, (c) updated 

cut-off grade block destinations, and (d) updated neural network block destinations 

Figure 3-8(b) and Figure 3-8(a) show the risk of meeting the blending target of 

arsenic at mill-2 for initial simulations with neural network and cut-off grade 

destination policies, respectively. The neural network destination policies have higher 

chances of meeting such a target with minimal deviations only after 80 days, as 
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compared to the cut-off grade destination policies, which have a higher chance of 

deviating from such targets, more specifically during the first 80 days. The two 

destination policies are unable to meet the blending restrictions as shown in Figure 

3-8(d) and Figure 3-8(c) over the updated simulations. The lower chances of meeting 

the arsenic target with the updated destination decisions are due to the fixed extraction 

sequence decision in the proposed framework. Therefore, if there is a high 

concentration of arsenic in the updated simulations, it is hard to control the arsenic 

concertation in the mill without adapting the extraction sequence.  

 Metal production 

Figure 3-9(b) and Figure 3-9(a) represent the risk profile of cumulative copper 

production at the mills for the initial simulations with neural network and cut-off grade 

destination policies, respectively. The neural network destination policies recover 

11% additional copper metal, as compared to the mine’s cut-off grade destination 

policies for the initial simulations. The neural network destination policies recover an 

additional 19 % copper metal (Figure 3-9(d)), as compared to an additional 8% copper 

metal in the mine’s cut-off grade destination policies (Figure 3-9(c)) over the updated 

simulations.  
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Figure 3-9 Forecasts of total copper production at the processing mills with the (a) 

initial cut-off grade block destinations, (b) initial neural network block destinations, 

(c) updated cut-off grade block destinations, and (d) updated neural network block 

destinations 

 

Figure 3-10 Forecasts of total gold production at the processing mills with the (a) 

initial cut-off grade block destinations, (b) initial neural network block destinations, 

(c) updated cut-off grade block destinations, and (d) updated neural network block 

destinations 
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Figure 3-10 shows the risk profiles of the production of secondary product gold 

concentrate using the neural network and the cut-off grade destination policies. The 

neural network destination policies generate 27% additional gold product (Figure 

3-10(b)), as compared to the mine’s cut-off grade destination policies (Figure 3-10(a)) 

over the initial simulations. The adapted decisions of neural network destination 

policies generate an additional 53% of the gold product (Figure 3-10(d)), as compared 

to an additional 38% for the mine’s cut-off grade destination policies (Figure 3-10(c)) 

over the updated simulations. 

 Cash flows 

Figure 3-11 shows the risk profile of cumulative cash flows with the neural 

network and cut-off grade destination policies. The neural network destination 

policies present a 15% higher cumulative cash flows compared to the mine’s cut-off 

grade destination policies for the initial simulations (Figure 3-11(a)).  

 

Figure 3-11 Forecasts of the cumulative cash flow of the mining complex with the 

(a) initial cut-off grade and neural network block destinations, and (b) updated cut-

off grade and neural network block destinations 
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The neural network destination policies generate an additional 22% cumulative 

cash flows, as compared to an additional 11% for the mine’s cut-off grade destination 

policies (Figure 3-11(b)) over the updated simulations.  

 Updated destination decisions 

Figure 3-12(b) shows the destination decisions of the neural network destination 

policies compared to the cut-off grade destination policies in Figure 3-12(a) for initial 

simulations. The adapted destination decisions of the neural network and the cut-off 

grade destination policies are shown in Figure 3-12(d) and Figure 3-12(c), 

respectively. The neural network destination decisions are very different from the cut-

off grade destination decisions for initial and update simulations, which result in better 

chances of meeting production targets, consistently higher cumulative cash flows, and 

increased metal production.  

 

Figure 3-12 Destination decisions of mining blocks for bench 1 in mineral deposit A 

with the (a) initial cut-off grade block destinations, (b) initial neural network block 

destinations, (c) updated cut-off grade block destinations, and (d) updated neural 

network block destinations 
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The reason for the better performance of neural network destination policies is 

due to its ability to: 

1. Acount for and capitalize on the performance of and interaction amongst the 

different components in the mining complex, thus enabling complex decision-

making under different sources of uncertainties.  

2. Integrate multiple sources of uncertainty, such as the supply of materials, the 

performance of equipment, and the recovery of metal during the decision-making 

process  

3. Account for multiple products, such as copper, gold, silver, and molybdenum, as 

well as deleterious elements such as arsenic, while deciding the destination of 

mining blocks. 

3.4 Conclusions 

This paper presents a novel continuous updating framework for adapting the 

short-term flow of materials in a mining complex with incoming new information. 

The framework consists of two parts: first updating uncertainty models with a new 

extension of ensemble Kalman filter and second, feeding the updated uncertainty 

models to a neural network agent (trained using policy gradient reinforcement 

learning) that adapts the destination decisions of extracted material. The proposed 

framework is applied at a copper mining complex, which shows its applied aspects 

and an excellent performance to respond and integrate the incoming new information 

efficiently in an operational mining environment for adapting the materials flow. The 

proposed framework better meets the capacity and blending requirements of the 

different processing mills of the copper mining complex compared to the mine’s cut-

off grade destination policies. The proposed framework generates an additional 11%, 
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27%, 29%, and 29% of copper, gold, silver, and molybdenum products, respectively, 

and an additional 15% of cash flows, as compared to the mine’s cut-off grade 

destination policies for the initial simulation. The extended ensemble Kalman filter 

updates multivariate local features of the mineral deposits with new blasthole 

information. The neural network destination policies are better at responding to the 

new information and adapt the destination decisions over the updated simulations 

more intelligently to meet the targets better. The updated destination decisions from 

neural network destination policies generate an additional 19%, 53%, 71%, and 76% 

of copper, gold, silver, and molybdenum products, respectively, as well as an 

additional 22% of cash flows. The mine’s cut-off grade destination policies only 

generate an additional 8%, 38%, 56%, and 61% of copper, gold, silver, and 

molybdenum products, respectively, and an additional 11% of cash flows, over the 

updated simulations. The proposed framework only adapts the destination decisions 

of the mining blocks, thus limiting the full potential and use of new information. In 

the future, a framework that can adapt all the relevant decisions of the short-term 

production plan will be developed. 
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Appendix 3.1 

Table 3-2 outlines the notations, sets, indices, parameters, and constants used in 

the proposed framework. Table 3-3 shows the variables used in the proposed 

framework. 

Table 3-2 Sets, indices, parameters, and constants used in the proposed framework 

Parameters Definition 

𝑆 Set of stochastic orebody simulations, 𝔰 ∈ 𝑆 

𝕊 
Set of joint uncertainty scenarios that include orebody and 

equipment simulations, 𝑠 ∈ 𝕊 

𝕋 Production planning horizon, 𝑡 ∈ 𝕋 

ℳ Set of mines in a mining complex, 𝑚 ∈ ℳ 

ℬ𝑚 Set of mining blocks in a mine 𝑚, 𝑏 ∈ ℬ𝑚 

𝒩 Set of internal nodes in a mine  

𝑥𝑖 Location of internal nodes in a mining block 𝑏, 𝑖 ∈ [1, 𝒩]  
𝒞 Set of crushers in a mining complex 

𝒫 Set of processing mills in a mining complex 

ℒ𝑂 Set of oxide leach pads in a mining complex 

ℒ𝑆 Set of sulphide leach pads in a mining complex 

𝒲 Set of waste dumps in a mining complex 

𝑡′ Time step when new information is collected 

𝑉 Set of internal nodes in a mining block 𝑏 

𝐸 Set of elements in a mineral deposit, 𝑒 ∈ 𝐸 

𝑑𝑒
𝑡′,𝔰(𝑥𝑖) 

Initial data value of the internal node at the location 𝑥𝑖  for element 

𝑒 at time 𝑡′, and scenario 𝔰 

𝑑𝑒
𝑡′,𝔰(𝑏) 

Initial data value of mining block 𝑏 for element 𝑒 at time 𝑡′ and 

scenario 𝔰 

𝕫𝑒
𝑡′,𝔰(𝑥𝑖) 

Initial MAF value at location 𝑥𝑖   for element 𝑒 at time 𝑡′ and scenario 

𝔰 

ℤ𝑒
𝑡′,𝔰(𝑥) Vector of 𝕫𝑒

𝑡′,𝔰(𝑥𝑖) for element 𝑒 at time 𝑡′ and scenario 𝔰 

𝐴𝑡′  
Matrix of the contribution of internal nodes towards new information 

at time 𝑡′  

𝐴𝑡′
𝑇  Transpose of matrix 𝐴𝑡′ 

𝜖𝑒
𝑡′

 Error in the new information for element 𝑒 at time 𝑡′ 

𝑃𝑒
𝑡′,𝔰

 Model-based prediction for element 𝑒 at time 𝑡′ and scenario 𝔰 
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𝐾𝑒
𝑡′

 Kalman gain for element 𝑒 at time 𝑡′ 

𝐶𝑜𝑒𝑜𝑒
𝑡′

 Measurement error covariance matrix for element 𝑒 at time 𝑡′ 

𝐶𝑢𝑒𝑢𝑒
𝑡′

 Model error covariance matrix for element 𝑒 at time 𝑡′ 

𝑢𝑒
𝑡′,𝔰(𝑥𝑖) 

Initial Gaussian values for element 𝑒 at time 𝑡′generated by 

transforming MAF values at the location 𝑥𝑖 

𝑈𝑒
𝑡′,𝔰(𝑥) Vector of 𝑢𝑒

𝑡′,𝔰(𝑥𝑖) for elements 𝑒 at time 𝑡′ 

𝑚𝑒
𝑡′
 

MAF value of new information transformed to Gaussian values for 

element 𝑒 at time 𝑡′ 

𝑈𝑎,𝑖,𝑡 Upper production limit for property 𝑎 at 𝑖 in period 𝑡 

 𝐿𝑎,𝑖,𝑡 Lower production limit for property 𝑎 at 𝑖 in period 𝑡 

𝐶𝑎,𝑖 Cost of processing material property 𝑎 at 𝑖 

𝑐𝑎,𝑖
+  

Cost of deviation from the upper target 𝑈𝑎,𝑖,𝑡 for material property 𝑎 

at 𝑖 

𝑐𝑎,𝑖
−  

Cost of deviation from the lower target 𝐿𝑎,𝑖,𝑡 for material property 𝑎 

at 𝑖 
𝑛𝐼 Number of input neurons 

𝑛𝐻 Number of hidden neurons 

𝑛𝑂 Number of output neurons 

ℎ𝑗  Hidden neuron 𝑗 

𝑜𝑘 Output neuron 𝑘 

𝑚𝑏,𝔰 Mass of block 𝑏 under scenario 𝔰 

𝑔𝑎,𝑏,𝔰 Grade of material property 𝑎 in block 𝑏 under scenario 𝔰 

𝜖𝑒
𝑡′

 Noise in the new information for element 𝑒 at time 𝑡′ 

𝑛𝐼𝑡𝑒𝑟 Number of training iterations 

𝑔𝑖 Gradient at iteration 𝑖, 𝑖 ∈ [1, 𝑛𝐼𝑡𝑒𝑟] 
η Decay rate 

∂ Smoothing term 

γ Learning rate 

𝛷𝑀
𝑒  MAF transformation function for element 𝑒 

𝛷𝐺
𝑒  Gaussian transformation function for element 𝑒 

𝛷𝑀
𝑒−1

 MAF inverse transformation function for element 𝑒 

𝛷𝐺
𝑒−1

 Gaussian inverse transformation function for element 𝑒 

𝐶𝑢𝑒𝑢𝑒
𝑡′

 Model error covariance matrix for element 𝑒 at time 𝑡′ 

𝐶𝑜𝑒𝑜𝑒
𝑡′

 Measurement error covariance matrix for element 𝑒 at time 𝑡′ 

𝑙𝑒
𝑡′

 MAF value of new information collected for element 𝑒 at time 𝑡′ 

ℙ𝑇 Property tonnage that flows in the mining complex 
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ℙ𝑀 Set of metal properties that flow in the mining complex 

𝑇𝑚,𝑠
𝑙  

Loading time with the shovel at mine 𝑚 under joint uncertainty 

scenario 𝑠 

 

Table 3-3 Variables used in the proposed framework 

Variables Definition 

𝑧𝑏,𝑑,𝑡 ∈ {0,1} 
Defines if (1) or not (0) a block 𝑏  is sent to destination 𝑑 in period 

𝑡 

𝑦𝑎,𝑖,𝑗,𝑡,𝑠 ∈ [0,1] 
Amount of property 𝑎 send from 𝑖 to 𝑗 in period 𝑡 under joint 

uncertainty scenario 𝑠 

𝑑𝑎,𝑖,𝑡,𝑠
+ ∈ ℝ 

Excess from target 𝑈𝑎,𝑖,𝑡 for material property 𝑎 at 𝑖 in period 𝑡 

under joint uncertainty scenario 𝑠 

𝑑𝑎,𝑖,𝑡,𝑠
− ∈ ℝ 

Shortage from target 𝐿𝑎,𝑖,𝑡 for material property 𝑎 at 𝑖 in period 𝑡 

under joint uncertainty scenario 𝑠 

𝑣𝑎,𝑖,𝑡,𝑠 ∈ ℝ 
Amount of material property 𝑎 at 𝑖 in period 𝑡 under joint 

uncertainty scenario 𝑠 

𝑟𝑎,𝑖,𝑠 ∈ [0,1] 
Recovery of material property 𝑎 at 𝑖 under joint uncertainty 

scenario 𝑠 

𝑈𝑒
𝑡′+1,𝔰(𝑥) Updated Gaussian values 

𝕫𝑒
𝑡′+1,𝔰(𝑥𝑖) 

Updated MAF value at location 𝑥𝑖   for element 𝑒 at time 𝑡′ +
1 and scenario 𝔰 

ℤ𝑒
𝑡′+1,𝔰(𝑥) Vector of 𝕫𝑒

𝑡′+1,𝔰(𝑥𝑖) for element 𝑒 at time 𝑡′ + 1 and scenario 𝔰 

𝑑𝑒
𝑡′+1,𝔰(𝑏) 

Updated data value of mining block 𝑏 for element 𝑒 at time 𝑡′ and 

scenario 𝔰 

𝑃𝑎,𝑖 
Profit of product 𝑎 at location 𝑖. The profit is calculated after 

deducting all the costs incurred to generate the products 

𝑇𝑚,𝑑,𝑠
ℎ  

Hauling time from mine 𝑚 to destination 𝑑 under joint 

uncertainty scenario 𝑠 

𝑇𝑑,𝑠
𝑞

 Queue time at destination 𝑑 under joint uncertainty scenario 𝑠 

𝑇𝑚,𝑑,𝑠
𝐸  

Total extraction time from mine 𝑚 to destination 𝑑 under joint 

uncertainty scenario 𝑠 

𝑆𝑉𝑖 Components of input state vector fed to input neuron 𝑖 
𝑤𝑖𝑗

ℎ  Weight with an arc connecting input neuron 𝑖 to hidden neuron  𝑗 

𝑤𝑗𝑘
𝑜  

Weight with an arc connecting hidden neuron 𝑗 to output neuron 

𝑘 
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Appendix 3.2 

This section outlines the additional details of the case study presented in the paper. 

The production targets with different components of the mining complex are 

presented in Table 3-4. The operational and economic parameters used in the case 

study are outlined in Table 3-5. The production targets and economic parameters are 

scaled for confidentiality purposes. 

Table 3-4 Production target for copper mining complex 

Table 3-5 Operational and economic parameters for copper mining complex 

Attribute Value 

Number of mining blocks – mineral deposit A 

and B 
5581 and 5581 

Scheduling period 210 days 

Recovery of copper at oxide and sulphide 

leach pad 
0.651 and 0.275 

Recovery of copper at processing mills Stochastic 

Recovery of gold, silver, and molybdenum at 

processing mills 
0.25 

Processing cost – mills, oxide leach pad, and 

sulphide leach pad 
3.82, 6.4, and 1.84 $/tonne 

Selling cost – mills, oxide leach pad, and 

sulphide leach pad 
0.26, 0.25, and 0.25 $/lb 

Selling price – copper, gold, silver, and 

molybdenum 

5511, 35.2x106 ,4.9x105, and 

1.3x104 $/ tonne 

Fixed processing cost – Mill 1, 2, and 3 
11925.5, 14252.5, and 16288.5 $/ 

hour 

Attribute Value 

Crusher 1, 2, 3, 4, and 5 (Per Day) 
13.19, 25.69, 32.06, 20.83, and 29.06 

tonne 

Mill 1, 2, and 3 (Per Day) 28.4, 34.02, and 38.88 tonne 

Oxide and sulphide leach pad (Per Day) 20.83 and 93.7 tonnes 

Arsenic grade limit (Per Day) 100 % 
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Penalty arsenic grade (As) 3 $/ % above limit 

Appendix 3.3  

This section presents the parameter selection criteria of the adaptive neural 

network destination policies presented in the paper. A critical parameter is the number 

of stochastic simulations of mineral deposits and the number of iterations used to train 

the adaptive neural network destination policies. The basis for selecting such 

parameters is the evolution of objective function. The iteration number at which the 

objective function plateaus is selected for training the model. Figure 3-13 shows one 

such test with the progression of the objective function in the training phase of the 

neural network with 15 mineral deposits simulations (𝑆). At around 7,500 training 

iterations, the objective function plateaus for 15 mineral deposits simulations, which 

presents the relation in Eq. 3.23. 

𝑛𝐼𝑡𝑒𝑟 = 500 ∗ 𝑆                                                         (3.23) 

 

Figure 3-13  Progression of the objective function with varying iteration number 
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Table 3-6 Comparison of training the neural network destination policies with 

varying number of mineral deposits simulations 

Destination 

(Number of blocks) 

Number of Simulations (𝑺) 

5 10 15 20 25 30 35 

Mill 2040 2008 1967 2053 2155 2070 2095 

Sulphide leach pad 3111 3357 3447 3758 3303 3218 3544 

Oxide leach pad 308 301 301 294 304 301 308 

Waste 4010 3758 3873 3431 3515 3978 3705 

Objective Function 

(%) 
111 111 112 114 115 115 115 

The number of simulations of mineral deposits to use for training the neural 

network is decided by training the network with different values of 𝑆 and, then, testing 

the trained network on a new set of 100 joint uncertainty scenarios (which includes 

10 orebody and 10 equipment performance scenarios) to compare the performance in 

terms of meeting different production targets. The value of the 𝑆 at which the objective 

function stabilizes is selected to be used for training the neural network destination 

policies. The details of this study are shown in Table 3-6. From Table 3-6, it can be 

seen that after 15-20 simulations the number of decisions does not change 

significantly and also the change in the objective function value is negligible, which 

highlights that 15-20 simulations are enough to achieve a stable solution for the 

proposed short-term adaptive neural network destination policies. 

Appendix 3.4  

This section outlines the additional results of updating the stochastic simulations 

of mineral deposits with new blasthole data. Table 3-7 represents the number of 

blasthole data used to update the two benches in the two mineral deposits in the copper 

mining complex.  
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Figure 3-14  Updated block simulations compared to initial simulations for bench 2 

for mineral deposit A 

Figure 3-14 represents one of the initial and updated stochastic simulations of the 

copper total mineral attribute in the mineral deposit A for bench 2 at block support 

with the new blasthole data. The updated simulations preserve the structures inferred 

from the exploration drillhole samples and update the local features of the deposits 

with the new blasthole data. The histograms of initial and updated simulations at point 

support in Figure 3-14 also show that the updated simulation has a higher proportion 

of high-grade materials compared to initial simulations. 

Table 3-7 Blasthole data used to update the stochastic simulations of the two mineral 

deposits 

Bench number 
Number of blasthole data 

Mineral deposit A Mineral deposit B 

Bench 1 3437 222 

Bench 2 3309 258 
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Appendix 3.5  

This section outlines the additional results of updating and adapting the 

destination of mining blocks with the proposed framework.  

 

Figure 3-15  Destination decisions of mining blocks for bench 2 in mineral deposit 

A with the (a) initial cut-off grade block destinations, (b) initial neural network 

block destinations, (c) updated cut-off grade block destinations, and (d) updated 

neural network block destinations  

Figure 3-15 represents the destination decisions of mining blocks for bench 2 in 

the mineral deposit A using the neural network destination policies and cut-off grade 

destination policies. Figure 3-15(b) and Figure 3-15(a) represent the destination 

decisions of the neural network destination policies and cut-off grade destination 

policies respectively for initial simulations. The updated decisions with neural 

network destination policies and cut-off grade destination policies are shown in Figure 

3-15(d) and Figure 3-15(c), respectively. 
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Figure 3-16  Forecasts of the capacity target of mill-1 with the (a) initial cut-off 

grade block destinations, (b) initial neural network block destinations, (c) updated 

cut-off grade block destinations, and (d) updated neural network block destinations 

Figure 3-16 (b) and (a) shows the risk profiles of the capacity target with mill-1 

using neural network and cut-off grade destination policies for initial simulations. The 

neural network policies meet the capacity targets better than the cut-off grade 

destination policies. Figure 3-16(d) and (c) shows the risk of meeting capacity target 

with mill-1 when the decisions are adapted with neural network and cut-off grade 

destination policies, respectively. It is observed that both the policies have lower 

chances of meeting the mill-1 target arising from combined uncertainty in the supply 

of materials from both the mineral deposits.  
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Figure 3-17  Forecasts of the capacity target of mill-3 with the (a) initial cut-off 

grade block destinations, (b) initial neural network block destinations, (c) updated 

cut-off grade block destinations, and (d) updated neural network block destinations 

Figure 3-17(b) and (a) represents the risk profiles for mill-3 for both the policies 

for initial simulations. The neural network policies can meet the target better than the 

cut-off grade destination policies, which has high fluctuations and lower chances of 

meeting the mill-1 target. The adapted destination decisions with the neural network 

(Figure 3-17(d)) has increased chances of meeting the mill-1 target compared to the 

cut-off grade destination policies (Figure 3-17(c)). 
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Figure 3-18  Forecasts of arsenic blending target of mill-1 with the (a) initial cut-off 

grade block destinations, (b) initial neural network block destinations, (c) updated 

cut-off grade block destinations, and (d) updated neural network block destinations 

 

Figure 3-19  Forecasts of arsenic blending target of mill-3 with the (a) initial cut-off 

grade block destinations, (b) initial neural network block destinations, (c) updated 

cut-off grade block destinations, and (d) updated neural network block destinations 
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Figure 3-18 and Figure 3-19 show the risk profile of arsenic blending target for 

mill-1 and mill-3, respectively. The destination decisions with the neural network and 

cut-off grade policies show very few deviations from such blending targets over the 

initial simulations, however, with updated simulations, such targets will be violated, 

and large deviations are expected with both the policies. Since the extraction sequence 

decisions are fixed in the proposed framework and the model is only deciding the 

destination of materials. Therefore, the high concentration of arsenic in the 

simulations cannot be controlled at the processing mills without adapting the 

extraction sequence.  

 

Figure 3-20  Forecasts of total silver production at the processing mills with the (a) 

initial cut-off grade block destinations, (b) initial neural network block destinations, 

(c) updated cut-off grade block destinations, and (d) updated neural network block 

destinations 
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Figure 3-21  Forecasts of total molybdenum production at the processing mills with 

the (a) initial cut-off grade block destinations, (b) initial neural network block 

destinations, (c) updated cut-off grade block destinations, and (d) updated neural 

network block destinations 

The neural network destination policies generate an additional 29% higher silver 

product (Figure 3-20(b)), and an additional 29% higher molybdenum product (Figure 

3-21(b)), as compared to the mine’s cut-off grade destination policies (Figure 3-20(a) 

and Figure 3-21(a)) over the initial simulations. The adapted decisions of neural 

network destination policies generate an additional 71% and 76% of silver and 

molybdenum products respectively (Figure 3-20(d) and Figure 3-21(d)) over the 

updated simulations. The mine’s cut-off grade destination policies generate an 

additional 56% and 61% of silver and molybdenum products respectively (Figure 

3-20(c) and Figure 3-21(c)) over the updated simulations. The updated decisions with 

the present mine’s cut-off grade destination policies produce significantly less 
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quantity of secondary products compared to the updated decisions from adaptive 

neural network destination policies. 
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CHAPTER 4                                                                                                                            

Production Scheduling in Industrial Mining Complexes with Incoming 

New Information using Tree Search and Deep Reinforcement Learning 

 

 

The previous chapter presented a self-learning artificial intelligence framework 

for adapting the flow of materials with incoming new information in a mining 

complex. This chapter develops a new self-play reinforcement learning algorithm for 

adapting all the major short-term production planning decisions simultaneously, i.e. 

adapting the short-term sequence of extraction, the destination of materials, and the 

utilization of processing streams simultaneously with incoming new information.  

 

4.1 Introduction 

Artificial intelligence (AI) algorithms have already been developed for 

applications in different engineering fields, but have not been developed and extended 

for short-term production scheduling in industrial mining complexes (Matamoros and 

Dimitrakopoulos, 2016; Quigley and Dimitrakopoulos, 2019). A mining complex is 

an integrated value chain with multiple interrelated components, such as raw material 

suppliers (mineral deposits), heavy machinery (shovels and trucks), destinations 

(crushers, stockpiles, and waste dumps), processing streams (processing mills and 

leach pads), tailings, and customers. Heavy machinery extracts and transports raw 

materials to the destinations. The materials from the destinations are then transported 

to processing streams, which process the materials to generate products that are 
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delivered to different customers. A long-term production schedule is developed for a 

mining complex to provide the annual strategic decisions, targets, and forecasts, while 

maximizing the cumulative discounted cash flows and accounting for supply and 

market uncertainties (Montiel and Dimitrakopoulos, 2015; Goodfellow and 

Dimitrakopoulos, 2016; Mai et al., 2019; Paithankar and Chatterjee, 2019; Paithankar 

et al., 2020). A short-term production schedule, i.e. an operational production 

schedule at a monthly/weekly/daily timescale, is then generated within the predefined 

long-term schedule, and aims to ensure compliance with the long-term targets while 

maximizing cash flows. The major short-term production scheduling decisions in a 

mining complex are extraction sequencing, destination policies, and processing 

stream utilization. Extraction sequencing refers to determining the location and time 

of raw material extraction from the mineral deposit while adhering to mine slope 

stability and equipment movement restrictions. Mine slope stability constraints state 

that a block cannot be extracted safely until all overlying blocks within a predefined 

inclination are extracted first. Equipment movement restrictions state that a block 

cannot be extracted until one of the surrounding blocks is extracted first to provide 

access. Destination policies refer to finding the destination of the extracted raw 

materials while satisfying material eligibility conditions. Material eligibility 

conditions state that specific types of materials cannot go to some destinations due to 

limitations with their downstream recovery process. Processing stream utilization 

refers to finding what proportions of materials to send from a destination to different 

processing locations (downstream processes) while respecting the mass flow 

conservation constraints. In addition, various production limit constraints related to 

the quality and quantity of materials mined, handled, processed, and sold also need to 
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be respected in the short-term production schedule. Like any complex network, 

uncertainty is inherent in a mining complex. This uncertainty stems from the quality, 

quantity, and spatial location of raw material within the mineral deposits – referred to 

as supply uncertainty – and from the production capabilities of different machinery, 

destinations, and processing streams – referred to as equipment performance 

uncertainty. A set of equally probable scenarios/simulations are generated using 

stochastic simulation methods to quantify supply uncertainty and variability 

(Goovaerts, 1997; Godoy, 2002; Boucher and Dimitrakopoulos, 2009; Remy et al., 

2009), and equipment performance uncertainty (Quigley and Dimitrakopoulos, 2019).  

A mining complex collects new information during its day-to-day operations with 

conventional and new digital technologies, specifically advanced sensors and 

monitoring devices. The new information acquired can pertain to the flow of materials 

(Rosa et al., 2007), equipment location (Chaowasakoo et al., 2014), equipment 

production capabilities (Koellner et al., 2004; Kargupta et al., 2010), and the quality 

and quantity of the material extracted, handled, and processed (De Jong, 2004; Goetz 

et al., 2009; Death et al., 2009; Iyakwari et al., 2016; Dalm et al., 2017, 2018; Kern et 

al., 2019). This new information provides an opportunity to better understand the state 

of a mining complex and to respond accordingly by adapting the short-term 

production schedule quickly (in real-time) to better meet the long-term targets. 

However, the core short-term scheduling decisions, such as the extraction sequence 

and destination policies, comprise a difficult combinatorial optimization problem and 

are computationally expensive to reoptimize with existing techniques (Lamghari, 

2017). In addition, the incoming new information is partial and noisy, and is, 

therefore, uncertain. Thus, the new information cannot be used directly in an 
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optimization model to make short-term production scheduling decisions. The 

uncertain incoming new information needs to be assimilated to update the material 

supply and equipment performance uncertainties. Updating the supply uncertainty is 

more challenging compared to the equipment performance uncertainty due to the 

presence of multivariate spatial correlation. Ensemble Kalman filter is a well-known, 

two-step assimilation process that has been used to assimilate uncertain new 

information in petroleum reservoirs for decades (Aanonsen et al., 2009; Oliver and 

Chen, 2011) and has, recently, been extended to mineral deposits (Benndorf, 2015; 

Wambeke et al., 2018). 

AI agents, such as deep neural networks and convolution neural networks, are 

function approximators that are trained to make decisions by responding to the 

incoming new information/observations/states (Sutton and Barto, 2017) via 

reinforcement learning algorithms that use their own experiences generated by 

interacting with an environment (a model that mimics the intricacies of the industrial 

process under consideration). The updated supply and equipment performance 

uncertainties allow such an AI agent to better perceive the updated state of a mining 

complex to adapt the short-term production schedule in real-time. The adapted 

production schedule is then used to perform day-to-day operations. In parallel, a new 

AI agent is trained with the updated supply and equipment performance uncertainties 

to further learn from the incoming new information. Therefore, a continuous updating 

framework is necessary, which first updates the uncertainties with the incoming 

uncertain new information, and then learns and adapts the short-term production 

schedule of a mining complex with AI agents. Benndorf and Buxton (2016) and Hou 

et al. (2015) proposed a framework that updates the supply uncertainty with incoming 
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new information but relies on existing optimization techniques for adapting the 

production scheduling decisions. Paduraru and Dimitrakopoulos (2019) proposed a 

policy gradient reinforcement learning algorithm for deciding the short-term 

destination of materials in a single product mining complex. However, the method 

does not adapt the extraction sequence, destination policies and processing stream 

utilization decisions simultaneously and does not update the supply and equipment 

performance uncertainties. 

The work presented herein proposes a novel self-play reinforcement learning 

algorithm that adapts all the short-term production scheduling decisions 

simultaneously in a mining complex. The proposed algorithm is inspired by the 

AlphaGo and AlphaGoZero algorithms (Silver et al., 2016, 2017). The proposed 

algorithm plays the game of short-term production scheduling by itself using a Monte 

Carlo tree search to train a deep neural network agent to learn how to adapt the short-

term production schedule with incoming new information in an operating mining 

environment. Additionally, the work also proposes a Monte Carlo simulation 

algorithm to update the equipment performance uncertainty. In the following sections, 

the proposed method that learns and adapts short-term decisions in a mining complex 

is detailed first. Next, an application at a copper mining complex is presented to show 

the efficiency of the proposed algorithm in terms of learning and adapting the short-

term production schedule to generate more metal and achieve improved compliance 

with production targets. Conclusions and directions for future research follow. 



158 

 

4.2 Method 

This section describes the algorithm for learning short-term production 

scheduling and then adapting the short-term production schedules with incoming new 

information in an operating mining environment. Section 4.2.1 details the process of 

transforming raw material into sellable products in a mining complex. The algorithm 

for learning and adapting the short-term production schedule is detailed next. A list 

of the notations used in this section is available in Appendix 4.1. The pseudo-code for 

the different parts of the proposed algorithm is provided in Appendix 4.3-Appendix 

4.6. 

4.2.1 Modelling a mining complex 

Raw material in a mining complex can be supplied from various sources, such as 

multiple mines, 𝑚 ∈ 𝑀. A mine is developed within the mineral deposit to extract 

materials. The materials in the mines consist of revenue-generating properties, ℙℝ, 

deleterious properties, ℙ𝔻, and rock mass, ℙ𝕄. The material in the mines is discretized 

into a set of three-dimensional volumes called mining blocks, 𝕫 ∈ ℤ𝑚(𝑥), where 𝑥 

denotes the spatial location of the block within the mine 𝑚. The quality of material in 

the mines is uncertain, therefore a set of initial, 𝐼, stochastic simulations, 𝕤𝐼,𝑎,𝑚 ∈

𝕊𝐼,𝑎,𝑚, of mining blocks, ℤ𝑎,𝑚
𝐼,𝕤 (𝑥), about multiple spatial correlated properties 𝑎 ∈

ℙℝ ∪ ℙ𝔻 is generated based on existing drill hole information 𝑑𝐻𝑎,𝑚
𝐼  to quantify the 

supply uncertainty for mine 𝑚 ∈ 𝑀. Each mine has a set of associated shovels, 

𝒮𝑚. The material extracted with the shovels is loaded into trucks, 𝒯𝑚, available at each 

mine. The trucks haul the materials to their destinations, 𝒟. The materials from the 

destinations are then transported via conveyor belts to processing streams, 𝒫, to 
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generate products, ℙℝ, which are then transported and sold to customers/markets. The 

processing streams have restrictions about the quantity of deleterious properties, ℙ𝔻 

in the final product. In addition, the trucks, shovels, destinations, and processing 

streams, 𝔼 = {𝒯, 𝒮, 𝒟, 𝒫}, have restrictions on their production capacity, 

ℙℙ,𝑒 (𝑇), ∀𝑒 ∈ 𝔼, 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘]). 𝑁𝑤𝑒𝑒𝑘 denotes the total number of weeks. A set of 

initial stochastic simulations, 𝕤𝐼,𝑒
′ ∈ 𝕊𝐼,𝑒

′ (𝑇) , ∀𝑒 ∈ 𝔼, 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘], of production 

capabilities is generated based on historical production information 𝑒𝑃𝑒
𝐼 to quantify 

the performance uncertainty of components 𝑒 ∈ 𝔼. The initial supply, 𝕊𝐼,𝑎,𝑚, and 

equipment performance uncertainties, 𝕊𝐼,𝑒
′ (𝑇), are used in a self-play reinforcement 

learning algorithm to train a deep neural network (DNN) agent (see Sect. 4.2.2). The 

trained DNN agent is then used to make the short-term production scheduling 

decisions in real-time with the incoming new information (see Sect. 4.2.3). 

The first short-term production scheduling decision in a mining complex is to 

decide when to extract a mining block. However, the multiple shovels located within 

the mine operate simultaneously; therefore, this decision variable is modified in such 

a way to take this into account. Let the blocks that can be extracted by a shovel be 

denoted by a set ℤ𝑚(𝓈𝑖), ∀𝓈𝑖 ∈ 𝒮𝑚 , 𝑚 ∈ 𝑀. Let 𝐵 represent a set whose elements are 

computed by finding all possible combinations that have exactly one element from 

each set ℤ𝑚(𝓈𝑖), ∀𝓈𝑖 ∈ 𝒮𝑚 , 𝑚 ∈ 𝑀. The second short-term production scheduling 

decision in a mining complex is to decide the destination of the extracted block. Let 

𝒟(𝕫), ∀ 𝕫 ∈ ℤ𝑚(𝑥), 𝑚 ∈ 𝑀 denote the set of permissible destinations where each 

mining block can be sent. Therefore, the decision variable/action is defined by 

𝑥𝑏,𝑑,𝑡 , ∀𝑏 ∈ ℬ, 𝑑 ∈ {𝒟(𝑖), ∀𝑖 ∈ 𝑏} and represents whether (1) or not (0) a set of 
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mining blocks 𝑏 is extracted, and each block within the set 𝑏 is sent to a set of 

destinations 𝑑 at time step 𝑡.  

𝑥𝑏,𝑑,𝑡 ≤   𝑥𝑘,𝑑′,𝑡−1   , ∀𝑘 ∈ 𝑏𝑉, 𝑑′ ∈ {𝐷(𝑘), ∀𝑘 ∈ 𝑏𝑉}, 𝑏 ∈ 𝐵, 𝑑 ∈ {𝐷(𝑖), ∀𝑖 ∈ 𝑏} (4.1) 

In order to extract a block safely, it is necessary to extract all its overlying blocks 

to ensure the stability of the mine wall, and at least one surrounding block to provide 

access to the equipment. The vertical predecessor 𝑉(𝑖) defines all the mining blocks 

that overlie a block 𝑖, and is calculated by finding blocks that are within a predefined 

vertical inclination (known as the slope angle), as shown by the dashed lines in Figure 

4-1. Let 𝑏𝑉 = {𝑉(𝑖), ∀𝑖 ∈ 𝑏} be a set consisting of all the blocks that lie above the 

blocks in a set 𝑏. Therefore, an action 𝑥𝑏,𝑑,𝑡 is only eligible to be made if all the 

overlying blocks (represented by decisions 𝑥𝑘,𝑑′,𝑡−1, ∀𝑘 ∈ 𝑏𝑉) are extracted first, as 

shown in Eq. 4.1. 

 

Figure 4-1 Permissible block extraction representation in a mining operation 

Horizontal and vertical successor mining blocks define mine equipment access 

constraints. Horizontal successors 𝐻(𝑖, 𝑟) and vertical successors 𝑉(𝑖, 𝑟) for a block 
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𝑖 ∈ 𝑏, define all the surrounding blocks within a given radius 𝑟 of a block 𝑖 in the 

horizontal (solid line in Figure 4-1) and vertical directions (dotted line in Figure 4-1), 

respectively.  

𝑥𝑏,𝑑,𝑡 ≤ ∑ 𝑥𝑘,𝑑′,𝑡−1

𝑘∈𝑏𝐻

, ∀𝑘 ∈ 𝑏𝐻, 𝑑′ ∈ {𝐷(𝑘)}, 𝑏 ∈ 𝐵, 𝑑 ∈ {𝐷(𝑖), ∀𝑖 ∈ 𝑏}  (4.2) 

Let 𝑏𝐻 be a set consisting of 𝑘 sets, where each set 𝑘 consists of one of the blocks 

that surround a block 𝑖 in the set 𝑏 within a given radius 𝑟 in either the horizontal or 

vertical directions. Therefore, an action 𝑥𝑏,𝑑,𝑡 is permissible only if at least one of the 

horizontal or vertical successors blocks (represented by decisions 𝑥𝑘,𝑑′,𝑡−1, ∀𝑘 ∈ 𝑏𝐻) 

is extracted first, as shown in Eq. 4.2. The blocks that satisfy Eq. 4.1 and 4.2 also need 

to satisfy material classification conditions related to their destination, because the 

processing streams that are fed by destinations are designed to process a specific type 

of material. For example, a sulphide ore processor, by the construction of its metal 

recovery process, cannot accept oxide type materials. Therefore, a material 

classification condition is defined that finds the permissible destinations for a mining 

block. For example, if a mining block 𝑖 has more soluble copper, then the permissible 

destination for this block can either be a destination that feeds the oxide processing 

stream or a waste dump. The permissible destinations of a mining block under supply 

uncertainty are determined as the most probable destinations (ties are broken 

randomly). The materials at the destinations incur a cost denoted by 𝐶𝑎,𝑑, ∀𝑎 ∈

ℙ𝕄, 𝑑 ∈ 𝒟 and are then sent to the processing streams. The third short-term 

production scheduling decision is to determine how to utilize the processing streams 
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in a mining complex, represented by 𝑦
𝑎,𝑑,𝓅,𝑡,𝕤𝐼

𝕁 . The decision variable 𝑦
𝑎,𝑑,𝓅,𝑡,𝕤𝐼

𝕁  

denotes the amount of attribute 𝑎 ∈ ℙℝ ∪ ℙ𝔻 ∪ ℙ𝕄 sent from a destination 𝑑 ∈ 𝒟 to 

a processing location 𝓅 ∈ 𝒫 at time step 𝑡 under joint uncertainty scenario 𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
. 

Here, joint uncertainty scenarios refer to uncertainty in both the supply of materials, 

𝕊𝐼,𝑎,𝑚, and performance of equipment, 𝕊𝐼,𝑒
′ . The processing streams recover the metal 

with a factor of 𝑟𝑎,𝓅, ∀𝑎 ∈ ℙℝ, 𝓅 ∈ 𝒫  and incur a processing cost of 𝐶𝑎,𝓅 , ∀𝑎 ∈

ℙ𝕄, 𝑗 ∈ 𝒫. The products are then transported and sold to the customers with a price 

of 𝑃𝑎,𝓅, ∀𝑎 ∈ ℙℝ, 𝓅 ∈ 𝒫. 

4.2.2 A self-play reinforcement learning algorithm 

The algorithm proposed to learn to adapt the short-term production schedule 

(extraction sequence, destination policies, and processing stream utilization decisions, 

simultaneously) of a mining complex consists of a deep neural network (DNN) agent 

𝑓𝜃 with parameters 𝜃 and a Monte Carlo tree search (MCTS) within a self-play 

reinforcement learning architecture. This type of algorithm is called a model-based 

deep reinforcement learning (DRL) algorithm. The motivation behind using a model-

based DRL algorithm is to allow the algorithm to plan better by looking ahead in the 

future by accessing the environment. The proposed algorithm starts at time 𝑡 = 1 with 

the input state 𝑠1 of a mining complex. The state 𝑠𝑡 of a mining complex at any time 

step 𝑡 is described by the performance of its different components and is herein 

defined by (i) the position of the different shovels (the mining blocks that the shovels 

are extracting) located in the multiple mines, (ii) the supply uncertainty 𝕊𝐼,𝑎,𝑚 of 

blocks located within a neighbourhood of the different shovels, (iii) the equipment 
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performance uncertainty of different components 𝕊𝐼,𝑒
′ , and (iv) history about the 

quality and quantity of material at destinations and processing streams (see Sect. 

4.2.2.1 on how the history is generated). At each state, a set of permissible actions 

𝑥𝑏,𝑑,𝑡 is identified using the mine wall slope stability, equipment access, and material 

classification criteria defined in Sect. 4.2.1. The state 𝑠𝑡 is then fed to a DNN agent 

which outputs both a vector of selection probabilities and a vector of scalar 

evaluations (𝑝𝑡, 𝑣𝑡) = 𝑓𝜃(𝑠𝑡) for all the permissible actions 𝑥𝑏,𝑑,𝑡 with the given input 

state 𝑠𝑡, as shown in Figure 4-2(b).  

 

Figure 4-2 Self-play reinforcement learning algorithm for short-term production 

scheduling in mining complexes 

For each time step 𝑡 < 𝑇 an MCTS search 𝛼𝜃 is executed  using tree policy 𝑃𝜋 

(see Sect. 4.2.2.1), guided by the DNN agent 𝑓𝜃 until the end time step 𝑇. The MCTS 

outputs probabilities 𝜋𝑡 of selecting each action and scalar evaluations 𝑧𝑡 for each 

action from the set of permissible actions at time step 𝑡 as shown in Figure 4-2(a). An 

action 𝑥𝑏,𝑑,𝑡 at time step 𝑡 is selected proportional to 𝜋𝑡(𝑥𝑏,𝑑,𝑡|𝑠𝑡) (selection 

probabilities). These tree search probabilities 𝜋𝑡 select much stronger actions 𝑥𝑏,𝑑,𝑡 

than the raw probabilities 𝑝𝑡 of the DNN agent 𝑓𝜃(𝑠𝑡). At this point, the DNN agent’s 
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parameters 𝜃 are updated to make its selection probabilities and scalar evaluations 

(𝑝𝑡, 𝑣𝑡) = 𝑓𝜃(𝑠𝑡) match the improved search probabilities 𝜋𝑡 and evaluations 𝑧𝑡 more 

closely (see Figure 4-2(b)). These new parameters make the MCTS search even 

stronger in the next round of self-play. The selected action 𝑥𝑏,𝑑,𝑡 is then used to update 

the input state as 𝑠𝑡+1 and the process is repeated until 𝑡 = 𝑇, ∀ 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘].  

 Monte Carlo tree search 

The MCTS uses the DNN agent 𝑓𝜃 to guide its search. The search involves 

generating a rollout simulation of a feasible (that satisfies Eqs. 4.1 and 4.2) short-term 

production schedule (extraction sequence, destination policies, and processing stream 

utilization).  

 

Figure 4-3 Monte Carlo tree search phases for short-term production scheduling in a 

mining complex. (a) selection; (b) expansion; (c) evaluation and simulation; (d) 

backup; and (e) playing an action (executed by repeating a-d) 

For simplicity and without loss of generality, consider next a case where two 

shovels are located at the extreme ends of the mine (represented by a 2-dimensional 

grid), as shown in Figure 4-3(a). The colour of the grid cell indicates whether the 
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block is extracted (coloured) or not (white) and which destination it is sent to after it 

is extracted (red –crusher, green – leach, yellow – waste, and white – not extracted). 

Each node in the search tree represents a state 𝑠𝑡, and contains edges which represent 

a state-action pair 𝑠𝑡, 𝑥𝑏,𝑑,𝑡 where 𝑥𝑏,𝑑,𝑡 is a permissible child/action of the node 𝑠𝑡. 

Each edge in the search tree stores a set of statistics as prior probability 𝑃(𝑠𝑡, 𝑥𝑏,𝑑,𝑡), 

visit count 𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡), total action value 𝑊(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) and mean action-value 

𝑄(𝑠𝑡, 𝑥𝑏,𝑑,𝑡). Multiple roll-out simulations are executed by iterating over four phases 

(a-d in Figure 4-3) and then selecting an action proportional to the search probabilities 

𝜋𝑡(𝑥𝑏,𝑑,𝑡|𝑠𝑡) = 𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 𝑁(𝑠𝑡−1, 𝑥𝑏,𝑑,𝑡−1)⁄  (Figure 4-3(e)). The details of the 

MCTS in terms of selection, expansion, evaluation, simulation, and play phase are 

described next. 

Selection 

The selection phase (Figure 4-3(a)) is the first step in the tree search, which begins 

at the root node, i.e. in the input state 𝑠1 of the MCTS, and finishes when the leaf node 

𝑠𝐿 at time step 𝐿 is encountered. At each of these time steps 𝑡 < 𝐿, an action (𝑥𝑏,𝑑,𝑡) 

is selected that maximizes the upper confidence bound, 𝑄(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) + 𝑈(𝑠𝑡, 𝑥𝑏,𝑑,𝑡), 

calculated using the statistics stored in the tree search, as shown in Eq. 4.3, a variant 

of the PUCT algorithm (Silver et al., 2017). 

𝑥𝑏,𝑑,𝑡 = argmax
𝑥

(𝑄(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) + 𝑈(𝑠𝑡, 𝑥𝑏,𝑑,𝑡))                         (4.3) 

𝑈(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) = 𝑐𝑝𝑢𝑐𝑡𝑃(𝑠𝑡, 𝑥𝑏,𝑑,𝑡)
√𝑁(𝑠𝑡−1, 𝑥𝑏,𝑑,𝑡−1)

1 + 𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡)
                      (4.4) 
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Here, 𝑈(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) is calculated using Eq. 4.4 that uses the prior probability 

𝑃(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) generated by the DNN agent and the visit count statistics 

𝑁(𝑠𝑡−1, 𝑥𝑏,𝑑,𝑡−1) stored in the MCTS for state-action pairs 𝑠𝑡, 𝑥𝑏,𝑑,𝑡. 𝑐𝑝𝑢𝑐𝑡, is a 

constant that determines the level of exploration in the search, such that the search 

prefers actions with a high prior probability and a low visit count, but asymptotically 

prefers actions with high mean action-value.  

Expansion 

The leaf node 𝑠𝐿 encountered during the selection phase of MCTS is then 

expanded (Figure 4-3(b)) to find the next permissible actions that satisfy Eqs. 4.1 and 

4.2 which are then added to the search tree as children of node 𝐿. The different 

statistics of the edges 𝑠𝐿 , 𝑥𝑏,𝑑,𝐿 connecting node 𝑠𝐿 to its children nodes 𝑥𝑏,𝑑,𝐿 are 

initialized to zero, i.e. 𝑁(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿) = 0, 𝑄(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿) = 0, 𝑃(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿) =

0, 𝑃(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿) = 0. 

Evaluation and rollout simulation 

The leaf node 𝑠𝐿 state-action pair 𝑠𝐿 , 𝑥𝑏,𝑑,𝐿 is then evaluated in two ways (Figure 

4-3(c)), first by the DNN agent, and second by performing a rollout simulation until 

the end of time 𝑇 using a tree policy 𝑃𝜋 in MCTS. In comparison to playing games, 

the evaluation of short-term production scheduling in a mining complex (see Sect. 

4.2.1) is more intricate. For instance, in the game of Go, the outcome is either a win 

or a loss but, in a mining complex, the outcome is an expected monetary gain from 

selling the products minus any losses and costs incurred to produce the products. In 

addition, the evaluation from the DNN agent requires some inputs about the history, 



167 

 

i.e. the quantity and quality of materials at the destination and the processing streams 

(see Sect. 4.2.2). The history of the quantity of attribute  𝑎 ∈ ℙℝ ∪ ℙ𝔻 ∪ ℙ𝕄 at time 

step 𝐿 at different destinations 𝑑 in a state 𝑠𝐿 is calculated by observing all the actions 

taken to reach node 𝑥𝑏,𝑑,𝐿.  

𝑣𝑎,𝑑,𝐿,𝕤𝐼
= ∑ ∑ ℤ𝑎,𝑚

𝐼,𝕤 (𝑏′)

𝑏′∈ 𝑏

∙ ℤℙ𝕄,𝑚
𝐼,𝕤 (𝑏′) ∙ 𝑥𝑏,𝑑,𝑡

𝑡<𝐿

 , ∀𝑑 ∈ 𝒟, 𝕤𝐼 ∈ 𝕊𝐼,𝑎,𝑚, 𝑎

∈ ℙℝ ∪ ℙ𝔻                                                                                                (4.5) 

𝑣ℙ𝕄,𝑑,𝐿,𝕤𝐼
= ∑ ∑ ℤ𝑎,𝑚

𝐼,𝕤 (𝑏′) ∙ 𝑥𝑏,𝑑,𝑡

𝑏′∈ 𝑏𝑡<𝐿

 , ∀𝑑 ∈ 𝒟, 𝕤𝐼 ∈ 𝕊𝐼,𝑎,𝑚        (4.6) 

Equation 4.5 calculates the quantity 𝑣𝑎,𝑑,𝐿,𝕤𝐼
 of attribute 𝑎 ∈ ℙℝ ∪ ℙ𝔻 at 

destination 𝑑 ∈ 𝒟 at time step 𝐿 under supply uncertainty 𝕤𝐼,𝑎,𝑚 ∈ 𝕊𝐼,𝑎,𝑚. Here, 

ℤ𝑎,𝑚
𝐼,𝕤 (𝑏′) represents the quantity of attribute 𝑎 of a mining block 𝑏′ at mine 𝑚 in the 

initial 𝐼 supply uncertainty scenario 𝕤. Equation 4.6 calculates the mass of materials 

at different destinations at time step 𝐿. The history of the quantity of attribute 𝑎 ∈

ℙℝ ∪ ℙ𝔻 ∪ ℙ𝕄 at processing stream 𝓅 ∈ 𝒫 at time step 𝐿 is calculated by optimizing 

the decision variable 𝑦
𝑎,𝑑,𝓅,𝑡,𝕤𝐼

𝕁. For this, a stochastic mathematical programming 

model is solved using the simplex method that maximizes the objective function 

𝑓𝐿 (𝕤𝐼
𝕁
), as shown in Eq. 4.7. 

                𝑓
𝐿
(𝕤𝐼

𝕁
) = ∑ ∑ 𝑃𝑎,𝓅 ∙ 𝑣

𝑎,𝓅,𝐿,𝕤𝐼
𝕁 ∙ 𝑟𝑎,𝑖

𝑎∈ℙℝ𝓅∈𝒫

− ∑ ∑ 𝐶𝑎,𝓅 ∙ 𝑣
𝑎,𝓅,𝐿,𝕤𝐼

𝕁

𝑎∈ℙ𝕄𝓅∈𝒫

 

− ∑ ∑ (𝑐𝑎,𝓅
+ ⋅ 𝑑

𝑎,𝓅,𝐿,𝕤𝐼
𝕁

+ + 𝑐𝑎,𝓅
− ⋅ 𝑑

𝑎,𝓅,𝐿,𝕤𝐼
𝕁

− )

𝑎∈ℙ𝔻∪ℙ𝕄

 

𝓅∈𝒫

   , ∀𝕤𝐼
𝕁 ∈ 𝕊𝐼

𝕁     (4.7) 
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subjected to: 

𝑣
𝑎,𝓅,𝐿,𝕤𝐼

𝕁 − 𝑑
𝑎,𝓅,𝐿,𝕤𝐼

𝕁
+ ≤ 𝑈𝑎,𝓅,𝑇   , ∀ 𝑎 ∈ ℙ𝔻 ∪ ℙ𝕄, 𝓅 ∈ 𝒫, 𝕤𝐼

𝕁
∈ 𝕊𝐼

𝕁
              (4.8) 

𝑣
𝑎,𝓅,𝐿,𝕤𝐼

𝕁 + 𝑑
𝑎,𝓅,𝐿,𝕤𝐼

𝕁
− ≥ 𝐿𝑎,𝓅,𝑇   , ∀ 𝑎 ∈ ℙ𝔻 ∪ ℙ𝕄, 𝓅 ∈ 𝒫, 𝕤𝐼

𝕁
∈ 𝕊𝐼

𝕁
               (4.9) 

∑ 𝑦
𝑎,𝑑,𝓅,𝐿,𝕤𝐼

𝕁

𝓅∈𝒫

= 1  , ∀𝑑 ∈ 𝒟, 𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
                            (4.10) 

where, 

𝑣
𝑎,𝓅,𝐿,𝕤𝐼

𝕁 =  ∑ 𝑦
𝑎,𝑑,𝓅,𝐿,𝕤𝐼

𝕁

𝑑∈𝒟

∙ 𝑣𝑎,𝑑,𝐿,𝕤𝐼
  , ∀ 𝑎 ∈ ℙℝ ∪ ℙ𝔻 ∪ ℙ𝕄 , 𝓅 ∈ 𝒫, 𝕤𝐼

𝕁
∈ 𝕊𝐼

𝕁
    (4.11) 

The objective function (Eq. 4.7) computes the profit generated by processing the 

materials, minus the cost of processing the material and penalties due to deviations 

from the upper 𝑈𝑎,𝓅,𝑇 and lower 𝐿𝑎,𝓅,𝑇 production capacities. Here, 𝑐𝑎,𝓅
+  and 𝑐𝑎,𝓅

−  is 

the penalty cost for deviating from the upper and lower production capacities, 

respectively. 𝑣
𝑎,𝓅,𝐿,𝕤𝐼

𝕁  is the quantity of attribute 𝑎 at processing location 𝓅 under joint 

uncertainty scenario 𝕤𝐼
𝕁
 at time step 𝐿. Equations 4.8 and 4.9 constrain the quantity of 

attribute 𝑎 ∈ ℙ𝔻 ∪ ℙ𝕄 at processing location 𝓅 ∈ 𝒫 under joint uncertainty scenario 

𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
 within the upper and lower production capacities while allowing for 

deviations 𝑑
𝑎,𝓅,𝐿,𝕤𝐼

𝕁
+  and 𝑑

𝑎,𝓅,𝐿,𝕤𝐼
𝕁

−  from such capacities, respectively. Equation 4.10 

ensures that mass flow balancing is conserved while solving the stochastic 

optimization model. The history of materials at different destinations and processing 

streams, along with other information mentioned in Sect. 4.2.2, is then fed to the DNN 
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agent to generate both prior probabilities 𝑝𝐿 and scalar evaluations 𝑣𝐿 for nodes 𝑥𝑏,𝑑,𝐿. 

The second evaluation is the rollout simulation until the time step 𝑇 using a tree policy 

𝑃𝜋. The rollout policy 𝑃𝜋 consists of, at each time step 𝑡 ∈ [𝐿, 𝑇], (i) finding 

permissible blocks to extract using Eqs. 4.1 and 4.2, (ii) finding permissible block 

destinations using cut-off grade policies (Lane, 1988; Rendu, 2014), (iii) combining 

the two to form permissible actions 𝑥𝑏,𝑑,𝑡 for state 𝑠𝑡, (iv) randomly selecting an action 

for state 𝑠𝑡 among the set of permissible actions, and then (v) optimizing the 

processing stream utilization decisions with the stochastic mathematical programming 

model (Eqs. 4.7-4.11). Equations 4.5 and 4.6 are then used to update the history of 

materials at destinations at time step 𝑇 with the actions 𝑥𝑏,𝑑,𝑡, ∀𝑡 ∈ [𝐿, 𝑇] selected 

during the Monte Carlo tree search.  

𝑣𝑎,𝑑,𝑇,𝕤𝐼
− 𝑑

𝑎,𝑑,𝑇,𝕤𝐼
𝕁

+ ≤ 𝑈𝑎,𝑑,𝑇   , ∀ 𝑎 ∈ ℙ𝕄, 𝑑 ∈ 𝒟, 𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
                       (4.12) 

𝑣𝑎,𝑑,𝑇,𝕤𝐼
+ 𝑑

𝑎,𝑑,𝑇,𝕤𝐼
𝕁

− ≥ 𝐿𝑎,𝑑,𝑇   , ∀ 𝑎 ∈ ℙ𝕄, 𝑑 ∈ 𝒟, 𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
                        (4.13) 

Equations 4.12 and 4.13 are used to calculate the deviations 𝑑
𝑎,𝑑,𝑇,𝕤𝐼

𝕁
+ , 𝑑

𝑎,𝑑,𝑇,𝕤𝐼
𝕁

−  from 

upper and lower production capacities, respectively, at the destinations at time step 𝑇. 

Here, 𝑈𝑎,𝑑,𝑇 is the max (𝕊𝐼,𝑑
′ (𝑇)) and 𝐿𝑎,𝑑,𝑇 is the min (𝕊𝐼,𝑑

′ (𝑇)) , ∀𝑎 ∈ ℙ𝕄, 𝑑 ∈ 𝒟.  

𝑟𝑇 =
1

|𝕊𝐼
𝕁(𝑇)|

∑ ∑ ∑ 𝑃𝑎,𝓅 ∙ 𝑣𝑎,𝓅,𝑇,𝑠 ∙ 𝑟𝑎,𝓅

𝑎∈ℙℝ𝓅∈𝒫𝑠∈𝕊𝐼
𝕁(𝑇)

 

Part I 
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−
1

|𝕊𝐼
𝕁(𝑇)|

∑ ∑ ∑ 𝐶𝑎,𝑖 ∙ 𝑣𝑎,𝑖,𝑇,𝑠

𝑎∈ℙ𝕄𝑖∈𝒫∪𝒟∪𝑀𝑠∈𝕊𝐼
𝕁(𝑇)

 

−
1

|𝕊𝐼
𝕁(𝑇)|

∑ ∑ ∑ (𝑐𝑎,𝑖
+ ⋅ 𝑑𝑎,𝑖,𝑇,𝑠

+ + 𝑐𝑎,𝑖
− ⋅ 𝑑𝑎,𝑖,𝑇,𝑠

− )

𝑎∈ℙ𝔻∪ℙ𝕄

 

𝑖∈𝒫∪𝒟𝑠∈𝕊𝐼
𝕁(𝑇)

               (4.14) 

 

The stochastic mathematical programming model (Eqs. 4.7-4.11) is used to 

compute 𝑦
𝑎,𝑑,𝓅,𝑇,𝕤𝐼

𝕁  and deviations 𝑑
𝑎,𝓅,𝐿,𝕤𝐼

𝕁
+  , 𝑑

𝑎,𝓅,𝐿,𝕤𝐼
𝕁

−  at time step 𝑇. Finally, the 

expected future reward 𝑟𝑇 under joint uncertainty 𝕊𝐼
𝕁(𝑇) for the rollout simulation is 

computed using Eq. 4.14. Part I of Eq. 4.14 represents the profit from selling all the 

products, Part II includes all the costs incurred to generate the products, such as 

mining, crushing, stockpiling, and processing costs, and Part III represents the 

penalties for deviating from the different production limits. 

Backup 

The last phase of the tree search is the backup phase (Figure 4-3(d)) where first 

the visit count of all nodes 𝑠𝑡, visited at each time step 𝑡 ≤ 𝐿 until the leaf node was 

reached in the selection phase, is increased by 1 using Eq. 4.15 shown below.  

Part II 

Part III 
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𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) =  𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) + 1             , ∀𝑡 ≤ 𝐿               (4.15) 

𝑊(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) =  𝑊(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) + 𝑟𝑡            , ∀𝑡 ≤ 𝐿              (4.16) 

𝑄(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) =  
𝑊(𝑠𝑡, 𝑥𝑏,𝑑,𝑡)

𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡)
 (1 − 𝛾) + 𝛾 ∙ 𝑣𝑡       , ∀𝑡 ≤ 𝐿              (4.17) 

The total action value of each node 𝑠𝑡 visited at each time step 𝑡 ≤ 𝐿 is updated 

using Eq. 4.16. The mean action value for each node 𝑠𝑡 visited at each time step 𝑡 ≤ 𝐿 

is then updated by mixing the scalar evaluations from the DNN agent with a factor 𝛾, 

and the mean action value stored in the search tree with a factor 1 − 𝛾, as shown in 

Eq. 4.17. 

Play 

The MCTS search is repeated for 𝑁𝑀𝐶𝑇𝑆
𝑇𝑟𝑎𝑖𝑛 times and then finally an action 𝑥𝑏,𝑑,𝑡 at 

time step 𝑡 is selected (Figure 4-3(e)), proportional to the visit counts of all actions 

𝑥𝑏,𝑑,𝑡, i.e. 𝜋𝑡(𝑥𝑏,𝑑,𝑡|𝑠𝑡) ∝ 𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 𝑁(𝑠𝑡−1, 𝑥𝑏,𝑑,𝑡−1)⁄ . The selected action is used 

in Eqs. 4.5-4.11 to update the state to 𝑠𝑡+1. The selected action becomes the new root 

for the next round of self-play, and the process continues until terminal time step 𝑇 is 

reached.  

 DNN agent training 

The DNN agent 𝑓𝜃𝑡
 is initialized at time 𝑡 = 1 with random weights 𝜃1. At each 

subsequent time step 𝑡 ≤ 𝑇, an MCTS search 𝛼𝜃𝑡−1
(𝑠𝑡) is executed using the DNN 

agent from the previous step 𝑓𝜃𝑡−1
 and tree policy 𝑃𝜋 to return both the search 

probabilities  𝜋𝑡 and search scalar evaluations 𝑧𝑡.  
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𝑙 = ||𝑧 − 𝑣||2 − 𝜋T log 𝑝 + 𝑐‖𝜃‖2                                 (4.18) 

The data for each time-step 𝑡 is stored as (𝑠𝑡, 𝜋𝑡 , 𝑧𝑡) and used to locally train the 

DNN agent to generate new parameters 𝑓𝜃𝑡
, for 𝑁𝐿 iterations. More specifically, the 

DNN parameter 𝑓𝜃 is adjusted by stochastic gradient descent on a loss function (𝑙) 

that minimizes the cross-entropy loss between action probabilities 𝑝 and search 

probabilities 𝜋, and the mean-squared error between scalar predicted 𝑣 and search 

evaluations 𝑧 as shown in Eq. 4.18. An L2 regularization with penalty cost 𝑐 is added 

in the loss function to avoid overfitting. At time step 𝑡 = 𝑇, all the stored training data 

prior to time step 𝑡 is then used to train the DNN agent globally for 𝑁𝐺  iterations to 

avoid overfitting to any specific data instances generated from any specific time step. 

The new DNN agent is then used for further rounds of self-play and training.  

4.2.3 Responding to incoming new information 

The self-play reinforcement learning algorithm (Sect. 4.2.2) generates a DNN 

agent that can adapt the short-term production schedule of a mining complex with 

incoming new information. The new information collected during mining operations 

is first used to generate updated supply 𝕊𝑈,𝑎,𝑚 and equipment performance 

uncertainties 𝕊𝑈,𝑒
′ . The updated uncertainties are then fed to the trained DNN agent to 

adapt the short-term production schedule, which is then used to generate the updated 

production forecasts. In parallel, a new DNN agent is trained with the updated 

uncertainties to further adapt the agent parameters. The algorithm is general and can 

be applied to different mining complexes. 
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4.3 Application at a copper mining complex 

The proposed self-play reinforcement learning algorithm is applied at a copper 

mining complex. In the case study, the incoming new information about the supply of 

materials is the blasthole data measured during drilling at the mine, and the 

productivity data about the shovels, trucks, and crushers collected during the mine’s 

operation. However, the algorithm is flexible enough to include different types of 

incoming new information related to the supply of materials and the performance of 

the different components of a mining complex.  

4.3.1 Overview of the mining complex 

The copper mining complex consists of two mines, mine A and mine B. The 

materials extracted with the multiple shovels at the two mines are transported via 

trucks to five different crushers, a waste dump, and a sulphide leach pad, represented 

by 𝒟 as shown in Figure 4-4. The materials from the crushers are then transported to 

three different processing mills and an oxide leach pad via conveyor belts. The 

processing mills produce copper (Cu) concentrate as a primary product and gold (Au), 

silver (Ag), and molybdenum (Mo) concentrates as secondary/by-products. The leach 

pads supply materials to a copper cathode plant that generates copper plate products. 

The processing mills and the cathode plant are represented by 𝒫. The products 

(concentrates and plates) are then transported and sold to different customers.  
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Figure 4-4 The Copper mining complex 

Table 4-1 Material classification criteria and cut-off grade policies for copper 

mining complex 

Materials 

classification 

Materials 

classification 

criteria 

Permissible 

destinations 

Cut-off grade 

destination 

policies 

Cut-off grade 

destination 

High-grade 

Sulphide 

𝐶𝑢𝑆/𝐶𝑢𝑇
≤ 0.2 

Processing 

mill, sulphide 

leach pad, and 

waste dump 

𝐶𝑢𝑇 ≥ 0.6 
Processing 

mill 

0.3 ≤ 𝐶𝑢𝑇
< 0.6 

Sulphide 

leach pad 

𝐶𝑢𝑇 < 0.3 Waste dump 

Low-grade 

Sulphide 

0.2
< 𝐶𝑢𝑆/𝐶𝑢𝑇
≤ 0.5 

Processing 

mill, sulphide 

leach pad, and 

waste dump 

𝐶𝑢𝑇 > 0.3 
Sulphide 

leach pad 

𝐶𝑢𝑇 ≤ 0.3 Waste dump 

Oxide 
𝐶𝑢𝑆/𝐶𝑢𝑇
≥ 0.5 

Oxide leach 

pad and waste 

dump 

𝐶𝑢𝑆 ≥ 0.2 
Oxide leach 

pad 

𝐶𝑢𝑆 < 0.2 Waste dump 

The proposed algorithm is used to adapt the weekly (𝑁𝑤𝑒𝑒𝑘 = 13) short-term 

production schedule of the copper mining complex within a given quarterly 
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production schedule which, for this case study, consists of 3,600 and 1,200 mining 

blocks from each of the two mines, respectively. The mining blocks have properties 

such as copper soluble (CuS), copper total (CuT), gold (Au), silver (Ag), and 

Molybdenum (Mo), which generate revenue, arsenic (As) which is deleterious, and 

the mass of the block. All the components of the mining complex have limits on their 

production capacity. Additionally, the processing mill has a limit on the amount of 

arsenic in the product. Table 4-1 shows the material classification criteria, permissible 

destinations, and cut-off grade policies used at the copper mining complex.  The 

production limits of the different components of the mining complex are listed in 

Appendix 4.2. The economic and operational parameters used at the copper mining 

complex are also detailed in Appendix 4.2. Additional results of the case study are 

presented in Appendix 4.8. 

4.3.2 Parameters 

The proposed algorithm was run on an Intel® i7-8700 machine with an 8-core 

processor and an NVIDIA GeForce GTX 1050 GPU. The algorithm uses the 

Tensorflow Adam optimizer with default settings (Kingma and Ba, 2015) to train the 

DNN agent for approximately 2 days. The neighbourhood of blocks used as an input 

was set to 81 blocks for each shovel. The inputs to the DNN agent are normalized 

between 0 and 1. The scalar evaluations of the MCTS are also normalized between 0 

and 1 for them to be of the same magnitude as the search probabilities. The number 

of next permissible actions is fixed to be 256. The missing actions are filled in by 

duplicating the existing actions until 256 is reached. If there are more than 256 

permissible actions, then only the first 256 actions are considered. The training 
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process in this case study was executed with 2 local and 20 global iterations. Over the 

course of training, 1.9 million different weekly production schedules were generated 

to train the DNN agent. 500 (𝑁𝑀𝐶𝑇𝑆
𝑇𝑟𝑎𝑖𝑛) rollout simulations were performed for selecting 

an action in the MCTS, which corresponds to approximately 30s of think time. The 

mixing parameter, L2 regularization cost, and MCTS exploration parameter are set to 

0.25, 0.01, and 2, respectively. Most of the parameters in the case study are set by a 

trial and error mechanism to generate stable solutions. The most sensitive parameters 

in the proposed algorithm are the mixing and MCTS exploration parameters. The rest 

of the parameters such as the number of rollout simulations, neighbourhood blocks, 

and number of permissible actions should be set based on the intricacy of the mining 

complex. Ten stochastic simulations for each of the two mines and all their equipment 

were used to train the DNN agent. The stochastic simulations of the mines were 

combined with stochastic simulations of the equipment to generate joint uncertainty 

scenarios. For example, 10 stochastic simulations of the mines and 10 stochastic 

simulations of the equipment result in 100 joint uncertainty scenarios. The 

architecture of the DNN used in the case study is presented in Appendix 4.7. 

4.3.3 Results 

Section 4.3.3.1 shows the result of updating the supply and equipment 

performance uncertainties with incoming new information, and Sect. 4.3.3.2 details 

the result of adapting the 13-week short-term production schedule. The results in this 

section are scaled for confidentiality reasons, with the forecast of an initial production 

schedule over the initial uncertainties being 100%.  
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 Updated supply and equipment performance uncertainties 

The incoming new information about the properties of materials 𝑙𝑎
𝑁𝐼 , ∀𝑎 ∈ ℙℝ ∪

ℙ𝔻 is used to generate the updated supply uncertainty 𝕊𝑈,𝑎,𝑚 with an extended 

ensemble Kalman filter (EnKF) method that accounts for the multivariate spatial 

correlation of different properties. The details of the method can be found in Chapter 

3. Supply uncertainty about six correlated properties, namely CuS, CuT, As, Au, Ag, 

and Mo, is updated with the new blasthole information (3,437 blasthole data) collected 

during the mine’s operation. Figure 4-5 shows one of the initial and updated stochastic 

simulations of the CuT and As properties at bench 1 of mine A. The extended EnKF 

method updates the local characteristics of materials at mine A based on the new 

blasthole information. The concentration and spatial distribution of As have changed 

significantly in the updated simulations, as seen in Figure 4-5.  

 

Figure 4-5 (a) Initial simulation updated with (b) incoming blasthole data to generate 

(c) updated simulation for bench 1 at mine A 
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The incoming new information about the productivity of different components 

𝑙𝑒
𝑁𝐼 , ∀𝑒 ∈ 𝔼 is used to update the initial equipment performance uncertainty 𝕤𝐼,𝑒

′ ∈

𝕊𝐼,𝑒
′ (𝑇) , ∀𝑒 ∈ 𝔼 by first computing the empirical cumulative distribution function 

(ECDF) with both the historical data 𝑒𝑃𝑒
𝐼 and incoming new information 𝑙𝑒

𝑁𝐼. The 

ECDF is then sampled to generate the updated, 𝑈, equipment performance uncertainty 

𝕤𝑈,𝑒
′ ∈ 𝕊𝑈 𝑒

′ (𝑇) of the different components 𝑒 ∈ 𝔼. Figure 4-6 shows the initial and 

updated simulations of the production capabilities of crusher 5. The production 

capabilities of crusher 5 in the initial and updated simulations are different but still 

respect the data. Updating the supply and equipment performance uncertainties with 

incoming new information takes about five minutes in this case study. 

 

Figure 4-6 (a) Initial and (b) updated simulations about crusher 5 production 

capacity 

The updated supply 𝕊𝑈,𝑎,𝑚, and equipment performance uncertainties 𝕊𝑈,𝑒
′ (𝑇) are 

fed to the DNN agent that responds to the updated uncertainties by adapting the short-

term production schedule (see Sect. 4.2.3). The results of the adapted short-term 

production schedule are discussed next. 
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 Adapted short-term production schedule 

The results in this section are reported using the 10th, 50th, and 90th percentile risk 

profiles (P10, P50, and P90, respectively) of the different performance indicators over 

a set of 100 joint uncertainty scenarios (separate from the ones used to train the DNN 

agent). Three different types of results are reported, (a) green lines: performance of 

an existing short-term production schedule under initial supply and equipment 

uncertainties, (b) black lines: risk of the initial short-term production schedule under 

the updated uncertainties generated in Sect. 4.3.3.1 (the block extraction sequence and 

destination decisions are fixed from the initial production schedule, and the processing 

stream utilization decisions are reoptimized using Eqs. 4.7-4.11), and (c) blue lines: 

performance of the adapted short-term production schedule generated by the DNN 

agent based on the updated uncertainties. The results indicated by (b) and (c) in Figure 

4-9-Figure 4-13 show the value of updating the uncertainties and the added value of 

adapting the short-term production schedule (the ability of the DNN agent to respond 

to incoming new information), respectively. Although a mining operation will use this 

framework to adapt and learn continuously, for simplicity and fair comparison, no 

Monte Carlo tree searches or training are performed over the updated uncertainties. 

This algorithm takes only about two minutes to adapt the 13-week short-term 

production schedule in this case study. 

Extraction sequence and destination of materials  

Figure 4-7 and Figure 4-8 show the block extraction sequence and destination 

decisions, respectively, for bench 1 at mines A and B for the (a) initial and (b) adapted 

short-term production schedules. The initial and adapted short-term production 
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schedules respect the permissible block extraction and destination constraints. The 

adapted block extraction and destination decisions are very different from the initial 

ones. The DNN agent is efficient at responding to the updated uncertainties by 

adapting the extraction sequence to better blend the material and respect the 

production limits of the different components. Additionally, the destination of the 

blocks is adapted by the DNN agent to better utilize the processing capabilities and 

produce a higher quantity of primary products. The reasons for the major differences 

in the initial and adapted short-term production schedules are due to: 

a. The ability of the proposed algorithm to capitalize on the synergies between 

the different components of the mining complex to simultaneously adapt all 

relevant short-term production scheduling decisions. 

b. The ability of the proposed algorithm to account for multiple sources of 

uncertainty related to the supply of material and production capabilities of 

different components of the mining complex. 

c. The ability of the continuous updating framework to allow the DNN agent to 

better observe the updated state of the mining complex, which includes 

uncertainty about revenue-generating and deleterious properties of materials 

and the production capabilities of its components. 
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Figure 4-7 Block extraction sequence in (a) the initial short-term production 

schedule compared to (b) the adapted short-term production schedule for bench 1 

 

Figure 4-8 Block destination decisions in (a) the initial short-term production 

schedule compared to (b) the adapted short-term production schedule for bench 1 

Ore production forecasts 

The forecasts for the initial and adapted short-term production schedules for the 

different production limits are shown in this section. Figure 4-9(a) shows the 

performance of the initial short-term production schedule for the production capacity 

limit of mill 1. The production schedule respects the capacity limits of mill 1 with 

some weeks of lower utilization. Figure 4-9 (b) shows the risk profile of the initial 

production schedule over the updated uncertainties and presents a lower utilization of 
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the capacity of mill 1. Figure 4-9 (c) shows the performance of the adapted short-term 

production schedule generated by the DNN agent. The capacity of mill 1 is better 

utilized in the adapted production schedule. 

 

Figure 4-9 Mill 1 production limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

 

Figure 4-10 Mill 1 arsenic limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

Figure 4-10(a), (b), and (c) show the forecasts for the initial short-term production 

schedule, its risk profile over the updated uncertainties, and the adapted schedule for 

the arsenic quality limit for mill 1, respectively. The arsenic quality limit is well 

respected until week 8 in the initial schedule (Figure 4-10(a)); however, the risk of 

the initial schedule over the updated uncertainties (Figure 4-10 (b)) shows that this 
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limit will be violated in the early weeks (because of a high arsenic concentration in 

the materials in mine A as seen from Figure 4-10(c)). The DNN agent adapts the short-

term schedule to blend materials from multiple mines, and the violations are minimal 

in the adapted schedule (Figure 4-10(c)). 

Metal production forecasts 

Figure 4-11(a), (b), and (c) show the forecasts for copper concentrate production 

for the initial short-term production schedule, the risk of the initial schedule over the 

updated uncertainties, and the adapted schedule, respectively. The initial schedule 

realized over the updated uncertainties (Figure 4-11(b)) shows an increase of 2 % in 

recovered copper concentrate production. However, the DNN agent adapts the short-

term schedule to increase the copper concentrate by 14%. The adapted schedule better 

blends the materials to better utilize the processing mill capacities and results in a 

higher copper concentrate production.  

 

Figure 4-11 Copper concentrate forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 
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Figure 4-12 Gold concentrate forecasts for (a) initial short-term production schedule, 

(b) risk profile of initial schedule over the updated uncertainties, and (c) adapted 

schedule 

Figure 4-12 shows the forecasts for gold concentrate production. The initial short-

term production schedule realized over the updated uncertainties shows an 11% 

increase in recovered gold production (Figure 4-12(b)). The adapted schedule by the 

DNN agent increases gold production by 22% (Figure 4-12 (c)). The adapted schedule 

processes less material with the leach pads to better blend the materials to meet the 

arsenic quality limits of the processing mills (Figure 4-10(c)), to better utilize the 

processing mill capacities (Figure 4-9(c)), and to generate a higher quantity of primary 

copper concentrate and secondary gold, silver and molybdenum products (Figure 

4-11(c) and Figure 4-12(c)). 

Cash flow forecasts 

Figure 4-13(a), (b), and (c) show the cumulative cash flow forecasts of the initial 

short-term production schedule, the initial schedule realized over the updated 

uncertainties, and the adapted schedule, respectively.  
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Figure 4-13 Cumulative cash flow forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

The initial short-term production schedule shows an increase of 5% in cash flow 

when realized over the updated uncertainties, which shows the value of updating the 

uncertainties with incoming new information. However, the DNN agent adapts the 

short-term production schedule to generate a 12% increase in cash flow, i.e. an 

additional 7% of added value in adapting the short-term schedule. The added cash 

flow value in the adapted schedule is generated by a better extraction sequence and 

destination decisions, and improved blending strategies to maximize the utilization of 

the processing stream capacities. 

4.4 Conclusions 

This paper proposes a new self-play reinforcement learning algorithm that 

combines a Monte Carlo tree search with a deep neural network agent to adapt the 

short-term production schedule of a mining complex with incoming new information. 

The deep neural network agent evaluates the short-term production scheduling 

decisions and, in parallel, uses the evaluations in a Monte Carlo tree search to gather 

self-play experiences by performing random rollouts. The gathered experiences are 

then used to train the deep neural network agent, which improves the strength of the 
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tree search and results in stronger self-plays to generate better experiences. First, the 

incoming new information is used in the extended EnKF algorithm proposed in 

Chapter 3 and the Monte Carlo simulation algorithm proposed in this work to update 

the supply and equipment performance uncertainties. The updated uncertainties are 

then fed to the self-play reinforcement learning algorithm proposed in this work, to 

adapt all the relevant short-term production scheduling decisions (sequence of 

extraction, the destination of materials, and utilization of processing stream) in a 

mining complex simultaneously. An application of the proposed algorithm at a copper 

mining complex shows its exceptional performance in adapting the 13-week short-

term production schedule with incoming new information. The risk profiles of 

realizing the initial 13-week short-term production schedule of the copper mining 

complex over the updated supply and equipment performance uncertainties showed 

an increase of 5% in cumulative cash flow, and an increase of 2%, 11%, 23%, and 

32% in copper concentrate, gold, silver, and molybdenum production, respectively. It 

also showed a large violation of the arsenic content limit and a lowered utilization of 

processing capacities. The proposed self-play reinforcement learning algorithm 

adapted the short-term production schedule to increase the cumulative cash flow by 

12%, and the copper concentrate, gold, silver, and molybdenum production by 14%, 

22%, 43%, and 61%, respectively. In addition, the adapted short-term production 

schedule makes better use of the processing mill capacities and shows a minimal 

violation of the arsenic quality limit of the processing mills by finding better blending 

strategies, which result in a 2% reduced copper cathode production. The process of 

adapting the 13-week short-term production schedule of the copper mining complex 

takes two minutes in this case study. In the future, the research will focus on 
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integrating more sources of incoming new information to update the supply 

uncertainty and modifying the self-play reinforcement learning algorithm to use 

convolution neural network agents without a tree policy, like the AlphaGoZero 

algorithm. 
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Appendix 4.1 

This section presents the notations used in the proposed self-play reinforcement 

learning algorithm. Table 4-2 shows the sets and indices used in the proposed 

algorithm. Table 4-3 and Table 4-4 present the decision variables and constants used 

in the proposed algorithm, respectively.  

Table 4-2 Sets and indices used in the proposed algorithm 

Parameters Definition 

𝑀 Set of mines, 𝑚 ∈ 𝑀 

𝐼 Initial 

𝑈 Updated 

𝑁𝑤𝑒𝑒𝑘 
Number of weeks in the quarterly short-term production 

schedule 

ℙℝ Set of revenue-generating properties attribute 

ℙ𝔻 Set of deleterious properties attribute 

ℙ𝕄 Rock mass attribute 

ℤ𝑚(𝑥) Set of mining blocks in mine 𝑚 located at 𝑥, 𝕫 ∈ ℤ𝑚(𝑥) 

𝑑𝐻𝑎,𝑚
𝐼  Initial drill hole information for attribute 𝑎 in mine 𝑚 

𝕊𝐼,𝑎,𝑚 
Set of initial stochastic simulations for attribute 𝑎 in mine 𝑚, 

𝕤𝐼,𝑎,𝑚 ∈ 𝕊𝐼,𝑎,𝑚 

ℤ𝑎,𝑚
𝐼,𝕤 (𝑥) 

Property of a set of blocks located at 𝑥 in mine 𝑚 for attribute 𝑎 

in initial stochastic simulation 𝕤𝐼,𝑎,𝑚 

𝕊𝐼
𝕁
 

Set of initial joint uncertainty scenarios, 𝕤𝐼
𝕁

∈ 𝕊𝐼
𝕁
, 𝕊𝐼

𝕁
= 𝕊𝐼,𝑎,𝑚 ∪

𝕊𝐼,𝑒
′ (𝑇), ∀ 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘] 

𝒮𝑚 Set of shovels located in mine 𝑚, 𝓈𝑖 ∈ 𝒮𝑚 

𝒯𝑚 Set of trucks used in mine 𝑚 

𝒟 Set of destinations in the mining complex 

𝒫 Set of processing streams in the mining complex 

𝕊𝐼,𝑒
′ (𝑇) 

Set of initial stochastic simulations for component 𝑒 in period 

𝑇, 𝕤𝐼,𝑒
′ ∈ 𝕊𝐼,𝑒

′ (𝑇), ∀ 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘] 

𝑒𝑃𝑒
𝐼 

Initial production information (historical information) for 

component 𝑒 

ℙℙ,𝑒 (𝑇) 
Production capacity for component 𝑒 in period 𝑇, ∀𝑒 ∈ 𝔼, 𝔼 = 
{𝒯, 𝒮, 𝒟, 𝒫}, ∀ 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘] 
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ℤ𝑚(𝓈𝑖) 
Set of permissible blocks that can be extracted from mine 𝑚 with 

the shovel 𝓈𝑖 

𝐵 
Set consisting of sets where each set has one element from each 

set in ℤ𝑚(𝓈𝑖) 

𝐷(𝕫) Set of permissible destinations for each mining block 𝕫 

𝕊𝑈 𝑒
′ (𝑇) 

Set of updated stochastic simulations for 𝑒 in period 𝑇, 𝕤𝑈,𝑒
′ ∈

𝕊𝑈 𝑒
′ (𝑇), ∀ 𝑇 ∈ [1, 𝑁𝑤𝑒𝑒𝑘] 

𝑙𝑒
𝑁𝐼 

Real-time new information about the performance of component 

𝑒 

𝑙𝑎
𝑁𝐼 

Real-time new information about the supply of material attribute 

𝑎 

𝕊𝑈,𝑎,𝑚 
Set of updated stochastic simulations for attribute 𝑎 in mine 𝑚, 

𝕤𝑈,𝑎,𝑚 ∈ 𝕊𝑈,𝑎,𝑚 

𝑉(𝑖) Set of blocks that are the vertical predecessor of block 𝑖 
𝑏𝑉

′  Set of all the blocks that overlie all the blocks in set 𝑏, ∀𝑏 ∈ 𝐵 

𝐻(𝑖, 𝑟) 
Set of blocks that are horizontal successor (surrounding blocks) 

of block 𝑖 within a radius 𝑟 

𝑏𝐻
′  

Set consisting of 𝑘 sets, with each set 𝑘 consist of one block that 

surrounds a block 𝑖 in set 𝑏 within a radius 𝑟, ∀𝑏 ∈ 𝐵 

𝑣𝑎,𝑑,𝑡,𝕤𝐼
 

Quantity of the attribute 𝑎 at destination 𝑑 at time step 𝑡 under 

stochastic simulation 𝕤𝐼,𝑎,𝑚, ∀ 𝑡 ∈ [1, 𝑇] 

𝑣
𝑎,𝓅,𝑡,𝕤𝐼

𝕁  
Quantity of the attribute 𝑎 at processing stream 𝓅 at time step 𝑡 

under joint uncertainty scenario 𝕤𝐼
𝕁
, ∀ 𝑡 ∈ [1, 𝑇] 

𝐿𝑎,𝑗,𝑇 
Lower limit for attribute 𝑎 at location 𝑗 in period 𝑇, ∀ 𝑇 ∈
[1, 𝑁𝑤𝑒𝑒𝑘] 

𝑈𝑎,𝑗,𝑇 
Upper limit for attribute 𝑎 at location 𝑗 in period 𝑇, ∀ 𝑇 ∈
[1, 𝑁𝑤𝑒𝑒𝑘] 

Table 4-3 Variables used in the proposed algorithm 

Variable Definition 

𝑥𝑏,𝑑,𝑡 ∈ {0,1} 
Defines if a set of blocks 𝑏 is extracted from a set of shovels and 

sent to a set of destinations 𝑑 at time step 𝑡, ∀ 𝑡 ∈ [1, 𝑇] 

𝑦
𝑎,𝑑,𝓅,𝑡,𝕤𝐼

𝕁

∈ [0,1] 

Amount of attribute 𝑎 sent from destination 𝑑 to processing 

stream 𝓅 at time step 𝑡 under joint uncertainty scenario 𝕤𝐼
𝕁
, , ∀ 𝑡 ∈

[1, 𝑇] 
𝑓𝜃 Deep neural network (DNN) agent with parameters 𝜃 

𝑠𝑡 State of the mining complex at time 𝑡, ∀ 𝑡 ∈ [1, 𝑇] 
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𝑝𝑡, 𝑣𝑡 

Vector of selection probabilities and scalar evaluation for all the 

permissible actions 𝑥𝑏,𝑑,𝑡 in the state 𝑠𝑡, (𝑝𝑡, 𝑣𝑡) = 𝑓𝜃(𝑠𝑡) , ∀ 𝑡 ∈
[1, 𝑇] 

𝛼𝜃 Monte Carlo tree search (MCTS) 

𝜋𝑡 
Selection probabilities at time step 𝑡 output from Monte Carlo 

tree search 𝛼𝜃, ∀ 𝑡 ∈ [1, 𝑇] 

𝑧𝑡 
Scalar evaluation at time step 𝑡 from Monte Carlo tree search 

𝛼𝜃, ∀ 𝑡 ∈ [1, 𝑇] 
𝑃(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) The prior probability for state-action pair (𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 

𝑊(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) Total action value for state-action pair (𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 

𝑄(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) Mean action value for state-action pair (𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 

𝑁(𝑠𝑡, 𝑥𝑏,𝑑,𝑡) Visit count for state-action pair (𝑠𝑡, 𝑥𝑏,𝑑,𝑡) 

𝑑
𝑎,𝑗,𝑡,𝕤𝐼

𝕁
+  

Continuous variable for deviation from the upper limit 𝑈𝑎,𝑗,𝑇 at 

time step 𝑡 for attribute 𝑎 at location 𝑗 under joint uncertainty 

scenario 𝕤𝐼
𝕁
, ∀ 𝑡 ∈ [1, 𝑇] 

𝑑
𝑎,𝑗,𝑡,𝕤𝐼

𝕁
−  

Continuous variable for deviation from the lower limit 𝐿𝑎,𝑗,𝑇 at 

time step 𝑡 for attribute 𝑎 at location 𝑗 under joint uncertainty 

scenario 𝕤𝐼
𝕁
, ∀ 𝑡 ∈ [1, 𝑇] 

𝑟𝑡 
Total cumulative future expected reward from time step 𝑡, ∀ 𝑡 ∈
[1, 𝑇] 

Table 4-4 Constants used in the proposed algorithm 

Constants Definition 

𝐶𝑎,𝑑 Cost incurred for material attribute 𝑎 at destination 𝑑 

𝑟𝑎,𝓅 Recovery factor for attribute 𝑎 at processing location 𝓅 

𝐶𝑎,𝓅 Cost of processing material attribute 𝑎 at processing location 𝓅 

𝑃𝑎,𝓅 Price of selling material attribute 𝑎 at processing location 𝓅 

𝑃𝜋 Sub-optimal tree policy 

𝑐𝑝𝑢𝑐𝑡 
A factor that determines the level of exploration in the selection 

phase of MCTS 

𝛾 
Mixing parameter for neural network policy reward and MCTS 

reward 

𝑐 L2 regularization factor with neural network 

𝑁𝐿 Number of local epochs for training DNN agent 

𝑁𝐺  Number of global epochs for training DNN agent 

𝑁𝑀𝐶𝑇𝑆
𝑇𝑟𝑎𝑖𝑛 Number of MCTS simulations in the training phase 
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𝑁𝑀𝐶𝑇𝑆
𝑈𝑝𝑑𝑎𝑡𝑒

 Number of MCTS simulations in adapting phase 

𝐴 Vertical Slope angle 

𝑟 Horizontal radius  

Appendix 4.2 

This section presents the production limits and operational and economic 

parameters of the copper mining complex. The production limits of the different 

components of the mining complex are presented in Table 4-5. The operational and 

economic parameters used in the case study are outlined in Table 4-6. The production 

targets and economic parameters are scaled for confidentiality purposes. 

Table 4-5 Production limits of the different components of the copper mining 

complex 

Table 4-6 Operational and economic parameters used at the copper mining complex 

Attribute Value 

Number of mining blocks Mine A: 3600; Mine B: 1200 

Production scheduling horizon 13 weeks 

Slope angle (Mine A and B) 45, 45 

Radius (Mine A and B) 10 mining blocks 

Recovery of copper 

Oxide leach pad: 65 %; Sulphide leach 

pad: 27 %; Processing mills:  80.4 %, 80 

% and 82.6 % 

Recovery of gold, silver, and 

molybdenum 
0.25 

Selling cost – processing mills, oxide 

leach pad, and sulphide leach pad 
571, 551, and 551 $/tonne 

Attribute Value (Weekly) 

Crusher 1, 2, 3, 4, and 5 production capacity limit (Tonnes) Stochastic 

Mill 1, 2, and, 3 capacity limit (Tonnes) 
28, 33.5, and 38.5 

% 

Oxide and sulphide leach pad capacity limit (Tonnes) 18.2 and 81.8 % 

Arsenic grade limit for processing mills (PPM) 1 % 
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Selling price – copper, gold, silver, 

and molybdenum concentrate, copper 

plate 

5511, 35.2x106 ,4.9x105, and 1.3x104 $/ 

tonne 

Processing cost – processing mills, 

oxide leach pad, and, sulphide leach 

pad 

5.79, 5.81, and 1.84 $/tonne 

Crushing cost (Crusher 1, 2, 3, 4, 

and, 5) 
0.58 $/tonne 

Mining cost (Depending on depth) 
Mine A: 0.4 - 1.27 ; Mine B: 0.52 - 1.09 

($/tonne) 

Penalty cost: arsenic grade limit, 

capacity limit at crusher, oxide leach 

pad, sulphide leach pad, and, 

processing mills 

5 $/ PPM, 1$/tonne, 1$/tonne, 1$/tonne, 

and 2$/tonne 

Appendix 4.3 

 This section presents the continuous updating framework for adapting the short-

term production schedule of a mining complex with incoming new information. 

Input: Deep neural network (DNN) agent 𝑓𝜃, Monte Carlo tree search (MCTS), 

ensemble Kalman filter (ENKF), equipment performance simulation 

(ESIM) parameters 

Output: Updated short-term production plan 

Data: Drillhole data 𝑑𝐻𝑎,𝑚
𝐼 , sensor material information 𝑙𝑎

𝑁𝐼, mineral value chain 

[𝑀, 𝒯𝑚, 𝒮𝑚, 𝒟, 𝒫], planning horizon 𝑁𝑤𝑒𝑒𝑘, historical equipment data 𝑒𝐼𝑒
𝐼, 

sensor equipment information 𝑙𝑒
𝑁𝐼, input state 𝑠1, 𝑁𝑀𝐶𝑇𝑆

𝑇𝑟𝑎𝑖𝑛, , 𝑁𝑀𝐶𝑇𝑆
𝑈𝑝𝑑𝑎𝑡𝑒

 

1. Generate 𝕊𝐼,𝑎,𝑚 using 𝑑𝐻𝑎,𝑚
𝐼  

2. Generate 𝕊𝐼,𝑒
′  using 𝑒𝑃𝑒

𝐼 

3. 𝑓𝜃Self-playRL(NN, MCTS, True, 𝕊𝐼,𝑎,𝑚, 𝕊𝐼,𝑒
′  , 𝑁𝑤𝑒𝑒𝑘, 𝑠1, 𝑁𝑀𝐶𝑇𝑆

𝑇𝑟𝑎𝑖𝑛)  

                                                                                      ⊳ Appendix 4.4 

4. if (𝑙𝑎
𝑁𝐼): 𝕊𝑈,𝑎,𝑚 ENKF(𝕊𝐼,𝑎,𝑚, 𝑙𝑎

𝑁𝐼)                             ⊳ Sect. 4.3.3.1 

5. if (𝑙𝑒
𝑁𝐼): 𝕊𝑈,𝑒

′  ESIM(𝑒𝑃𝑒
𝐼 , 𝑙𝑒

𝑁𝐼)                  ⊳ Sect. 4.3.3.1 

6. if (𝑙𝑎
𝑁𝐼 ∥ 𝑙𝑒

𝑁𝐼 ) execute in parallel:  

a. Self-playRL(DNN, MCTS, False, 

𝕊𝑈,𝑎,𝑚, 𝕊𝑈,𝑒
′ , 𝑁𝑤𝑒𝑒𝑘, 𝑠1, 𝑁𝑀𝐶𝑇𝑆

𝑈𝑝𝑑𝑎𝑡𝑒
) 

b. Self-playRL(DNN, MCTS, True, 𝕊𝑈,𝑎,𝑚, 𝕊𝑈,𝑒
′  , 𝑁𝑤𝑒𝑒𝑘, 𝑠1, 𝑁𝑀𝐶𝑇𝑆

𝑇𝑟𝑎𝑖𝑛)  
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Appendix 4.4 

This section presents the self-play reinforcement learning algorithm for training 

a DNN agent to learn short-term production scheduling in a mining complex and then 

adapt it with incoming new information.  

Input: DNN agent 𝑓𝜃, MCTS, train, planning horizon 𝑁𝑤𝑒𝑒𝑘, input state 𝑠1, 𝑁𝑀𝐶𝑇𝑆 

Output: Trained DNN agent 𝑓𝜃 

Data: 𝕊𝐼,𝑎,𝑚, 𝕊𝐼,𝑒
′ , mineral value chain [𝑀, 𝒯𝑚, 𝒮𝑚, 𝒟, 𝒫] 

1. Initialized 𝑓𝜃 randomly 

2. for 𝑤 < 𝑁𝑤𝑒𝑒𝑘: 

a. Initialize MCTS with root node 𝑠𝑡 = 𝑠1  

b. Compute:  

𝑈ℙ𝕄,𝑗,𝑤max (𝕊𝐼,𝑗
′ (𝑤)) , 𝐿ℙ𝕄,𝑗,𝑤min (𝕊𝐼,𝑗

′ (𝑤)), ∀ 𝑗 ∈ 𝒟 ∪ 𝒫 

c. Compute 𝐴𝑣𝑒ℙ𝕄,𝑗,𝑤(∑ 𝐸[𝕊𝐼,𝑗
′ (𝑤)]𝑗 ), ∀ 𝑗 ∈ 𝒯𝑚, 𝒮𝑚 

d. Compute 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤min(𝐴𝑣𝑒ℙ𝕄,𝒯,𝑤, 𝐴𝑣𝑒ℙ𝕄,𝒮,𝑤) 

e. while 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤 ≥ 0 

i. for 𝑛 ≤ 𝑁𝑀𝐶𝑇𝑆        ⊳ Appendix 4.5 

1. 𝑠𝐿 MCTS.Selection(𝑠𝑡, 𝑓𝜃) 

2. Permissible actions 

(𝑥𝑏,𝑑,𝐿) MCTS.Expansion(𝑠𝐿) 

3. 𝑝𝑛, 𝑣𝑛 MCTS.Evaluation(𝑓𝜃(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿)) 

4. 𝑧𝑛 MCTS.Simulation(𝑠𝐿 , 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤) 

5. MCTS.BackUp(𝑠𝐿, 𝑧𝑛, 𝑣𝑛) 

ii. 𝜋𝑡 , 𝑧𝑡MCTS.GetStatistics(𝑠𝑡) 

iii. 𝑥𝑏,𝑑,𝑡MCTS.Play(𝜋𝑡) 

iv. Compute 𝑠𝑡+1 with  𝑥𝑏,𝑑,𝑡 

v. Compute 𝑣ℙ𝕄,𝑀,𝑡,𝕤𝐼
∑ 𝑣ℙ𝕄,𝑑,𝑡,𝕤𝐼𝑑∈𝒟  with 𝑥𝑏,𝑑,𝐿+1 , ∀ 𝕤𝐼 ∈

𝕊𝐼,𝑒
′  ⊳  Eq.  4.6 

vi. 𝑡𝑡 + 1  

vii. 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤 − 𝑣ℙ𝕄,𝑀,𝑡,𝕤𝐼
 

viii. if train: Train 𝑓𝜃with (𝑠𝑡, 𝜋𝑡, 𝑧𝑡) for 𝑁𝐿 iterations 

f. if train: Train 𝑓𝜃with all (𝑠𝑡, 𝜋𝑡, 𝑧𝑡) for 𝑁𝐺  iterations 

3. Save production plan and forecasts 
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Appendix 4.5 

This section outlines the Monte Carlo tree search algorithm.  

Input: DNN agent 𝑓𝜃, MCTS parameters 

Output: 𝜋𝑡, 𝑧𝑡, 𝑥𝑏,𝑑,𝑡 

Data: 𝕊𝐼,𝑎,𝑚, 𝕊𝐼,𝑒
′ , mineral value chain [𝑀, 𝒯𝑚, 𝒮𝑚, 𝒟, 𝒫], planning horizon 

𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤, input state 𝑠𝑡 

1. for 𝑛 ≤ 𝑁𝑀𝐶𝑇𝑆 

a. 𝑠𝐿 MCTS.GetLeaf(𝑠𝑡, 𝑓𝜃)                                     ⊳ Eq. 4.3 and 4.4 

b. Update state (𝑣𝑎,𝑑,𝐿,𝕤𝐼
, 𝑣

𝑎,𝓅,𝐿,𝕤𝐼
𝕁 , ∀ 𝑎 ∈ ℙℝ ∪ ℙ𝔻 ∪ ℙ𝕄, 𝓅 ∈ 𝒫, 𝑑 ∈

𝒟) with 𝑥𝑏,𝑑,𝑡, ∀𝑡 < 𝐿, 𝕤𝐼 ∈ 𝕊𝐼,𝑒
′ , 𝕤𝐼

𝕁
∈ 𝕊𝐼,𝑎,𝑚        ⊳ Eqs. 4.5-4.11 

c. Legal actions (𝑥𝑏,𝑑,𝐿) MCTS.LegalAction(𝑠𝐿) ⊳ Appendix 4.6 

d. MCTS.addnode(𝑥𝑏,𝑑,𝐿) and initialize 𝑁(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿), 𝑄(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿), 

𝑃(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿), 𝑃(𝑠𝐿 , 𝑥𝑏,𝑑,𝐿) = 0 

e. 𝑝𝑛, 𝑣𝑛𝑓𝜃 (𝑣𝑎,𝑑,𝐿,𝕤𝐼
, 𝑣

𝑎,𝓅,𝐿,𝕤𝐼
𝕁 , ℤ

𝑎′𝑚
𝐼,𝕤 ) , ∀ 𝑎 ∈ ℙℝ ∪ ℙ𝔻, 𝓅 ∈ 𝒫, 𝑑 ∈

𝒟, 𝑚 ∈ 𝑀  

f. 𝑟𝑛MCTS.Simulation(𝑠𝐿 , 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤): 

g. 𝑡𝐿 

i. while 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤 > 0: 

1. 𝑡𝑡 + 1 

2. Legal action (𝑥𝑏,𝑑,𝑡)MCTS.LegalAction𝑃𝜋(𝑠𝑡−1) 

3. 𝑥𝑏,𝑑,𝑡MCTS.RandomSelect((𝑥𝑏,𝑑,𝑡)) 

4. 𝑣ℙ𝕄,𝑀,𝑡,𝕤𝐼
∑ 𝑣ℙ𝕄,𝑑,𝑡,𝕤𝐼𝑑∈𝒟  with 𝑥𝑏,𝑑,𝑡 ∀ 𝕤𝐼 ∈ 𝕊𝐼,𝑒

′  

5. 𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤𝐴𝑣𝑒ℙ𝕄,𝑀,𝑤 − 𝑣ℙ𝕄,𝑀,𝑡,𝕤𝐼
 

ii. Compute 𝑣
𝑎,𝑗,𝑡,𝕤𝐼

𝕁 , 𝑑
𝑎,𝑗,𝑡,𝕤𝐼

𝕁
+ , 𝑑

𝑎,𝑖,𝑡,𝕤𝐼
𝕁

− ∀𝑎 ∈ ℙ𝔻 ∪ ℙ𝕄 ∪ ℙℝ, 𝑗 ∈

𝒫 ∪ 𝒟 ∪ 𝑀 and then 𝑟𝑛                     ⊳ Eqs. 4.5-4.14                                 

h. MCTS.BackUp(𝑠𝐿, 𝑟𝑛,  𝑣𝑛): 

i. Update visit count, reward, and mean reward for all 𝑥𝑏,𝑑,𝑡 

until ∀𝑡 ≤ 𝐿                                       ⊳ Eqs. 4.17-4.19 

2. 𝜋𝑡 , 𝑧𝑡MCTS.GetStatistics(𝑠𝑡): 

a. Get the MCTS search probability and scalar evaluation for state  𝑠𝑡 

3. 𝑥𝑏,𝑑,𝑡MCTS.Play(𝜋𝑡): 

a. 𝑥𝑏,𝑑,𝑡 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜋𝑡) 
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Appendix 4.6 

 This section outlines the algorithm to find the permissible block extraction and 

block destination decisions. 

Appendix 4.7 

 The DNN agent consists of fully connected: 

1. Input layer with 3700 neurons that describes the size of the input state 

2. Hidden layer 1: 1000 neurons with Xavier initialization (Glorot and Bengio, 

2010) and ReLU activation (Nair and Hinton, 2010) 

Input: 𝒮𝑚, input state 𝑠𝑡 

Output: All legal actions (𝑥𝑏,𝑑,𝑡) for state  𝑠𝑡 

Data: Slope angle (𝐴) and radius (𝑟) 

1. for 𝑚 𝑖𝑛 𝑀: 

a. for 𝓈𝑖 in 𝒮𝑚: 

i. 𝑅1 

ii. Find vertical successors blocks 𝑉(𝓈𝑖, 𝑅) for 𝓈𝑖 

iii. Find horizontal successors blocks 𝐻(𝓈𝑖, 𝑅) for 𝓈𝑖 

iv. for block 𝑗 in 𝑉(𝓈𝑖, 𝑅) and 𝐻(𝓈𝑖, 𝑅): 

1. Find vertical predecessor 𝑉(𝑗, 𝐴) of block 𝑗 

a.  if all the blocks in 𝑉(𝑗, 𝐴) is already mined then 𝑗 is a 

valid block         ⊳ Eq. 4.1 

b. 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘(𝓈𝑖)𝑗 

2. 𝑟𝑟 − 1 

v. if 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘(𝓈𝑖) null and 𝑟 ≠ 0: 𝑅𝑅 + 1 and go to (ii) 

vi. else: 

1. for each block 𝑘 in 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘(𝓈𝑖): 

a. Find legal destinations 𝑑(𝑘)  ⊳ see Sect. 4.2.1 

b. for 𝑑 in 𝑑(𝑘): 

i. 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑠𝑡(𝓈𝑖) (𝑗, 𝑑) 

vii. Check and remove an elements of 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑠𝑡(𝓈𝑖) if it 

exist for any other 𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑠𝑡(𝓈𝑗), ∀𝓈𝑗 ≠ 𝓈𝑖 

2.  Find all the legal actions (𝑥𝑏,𝑑,𝑡) such that each action in (𝑥𝑏,𝑑,𝑡) is a set 

consisting of exactly one element from each 

𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑠𝑡(𝓈𝑗), ∀𝓈𝑖  ∈  𝒮𝑚 
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3. Hidden layer 2: 800 neurons with Xavier initialization and ReLU activation  

4. Hidden layer 3: 600 neurons with Xavier initialization and ReLU activation  

5. Hidden layer 4: 400 neurons with Xavier initialization and ReLU activation 

The output from hidden layer 4 is fed to two separate heads for computing policy 

and value, respectively. The policy head 𝑝 consist of fully connected: 

1. Policy layer 1: 400 neurons with Xavier initialization and ReLU activation 

2. Policy layer 2: 300 neurons with Xavier initialization and ReLU activation 

3. A fully connected linear layer that outputs a vector of size 256 corresponding 

to logit probabilities for all actions 

The value head 𝑣 consist of fully connected: 

1. Value layer 1: 400 neurons with Xavier initialization and ReLU activation 

2. Value layer 2: 300 neurons with Xavier initialization and ReLU activation 

3. A fully connected linear layer of dimension 256 with tan ℎ non-linearity to 

output a scaler value in the range [−1,1] 

Appendix 4.8 

 This section shows the additional results of the case study presented in the 

manuscript. Figure 4-14 and Figure 4-15 show, respectively, the (a) forecasts of the 

initial schedule compared to (b) its risk over the updated uncertainties, and (c) the 

adapted schedule, for the production limit of mills 2 and 3. The initial and adapted 

schedules respect the capacity limit of mill 2. The initial schedule has a lower 

utilization in weeks 7, 11, and 13, compared to a higher utilization of the capacity of 

mill 2 in the adapted schedule. The initial schedule has a lower utilization in periods 

5, 9, and 12 compared to a higher utilization in the adapted schedule of the capacity 

of mill 3. Figure 4-16 and Figure 4-17 show forecasts for the arsenic content limit for 
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mills 2 and 3, respectively. The arsenic limit is respected in the initial schedule for 

mills 2 and 3.  The updated supply uncertainty of mine A shows a higher concentration 

of arsenic; therefore, the risk profile of the initial schedule shows violations in the 

arsenic content limits for mills 2 and 3 in the initial schedule. The DNN agent adapts 

the schedule to minimize such violations.  

 

Figure 4-14 Mill 2 production limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

 

Figure 4-15 Mill 3 production limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

Figure 4-18 and Figure 4-19 show the (a) forecasts of the initial schedule, (b) risk 

of the initial schedule over the updated uncertainties, and (c) the adapted schedule for 

the sulphide leach pad and oxide leach pad production limit. The initial and adapted 
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schedules respect the production limit for both leach pads. However, the adapted 

schedule processes less material at the leach pads compared to the initial schedule, to 

achieve a blending of materials at the processing mills that complies with the arsenic 

content limit. 

 

Figure 4-16 Mill 2 arsenic limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

Figure 4-20 and Figure 4-21 show the forecasts for the quantity of recovered silver 

and molybdenum products, respectively. The forecasts of the initial schedule over the 

updated uncertainties (Figure 4-20(b)) show an increase of 23% in silver production. 

The adapted schedule shows an increase of 43% in silver production (Figure 4-20(c)). 

The forecasts of initial schedule over the updated uncertainties show an increase of 

32% (Figure 4-21(b)) in Molybdenum production. Molybdenum production is 

increased by 61% in the adapted schedule (Figure 4-21(c)). Figure 4-22 shows the 

forecasts for copper cathode plate production with leach pads for the initial and 

adapted schedule. The forecasts of the initial schedule over the updated uncertainties 

show an increase of 5% in copper cathode production; however, the DNN agent adapts 

the plan to reduce copper cathode production by 2%. 
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Figure 4-17 Mill 3 arsenic limit forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

 

Figure 4-18 Sulphide leach pad production limit forecasts for (a) initial short-term 

production schedule, (b) risk profile of initial schedule over the updated 

uncertainties, and (c) adapted schedule 

 

Figure 4-19 Oxide leach pad production limit forecasts for (a) initial short-term 

production schedule, (b) risk profile of initial schedule over the updated 

uncertainties, and (c) adapted schedule 
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Figure 4-20 Silver production forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

 

Figure 4-21 Molybdenum production forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 

 

Figure 4-22 Copper cathode production forecasts for (a) initial short-term production 

schedule, (b) risk profile of initial schedule over the updated uncertainties, and (c) 

adapted schedule 
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Figure 4-23 Block extraction sequence in (a) the initial short-term production 

schedule compared to (b) the adapted short-term production schedule for bench 1 

 

Figure 4-24 Block destination decisions in (a) the initial short-term production 

schedule compared to (b) the adapted short-term production schedule for bench 1 

Figure 4-23 and Figure 4-24 show the block extraction and destination decisions, 

respectively, for bench 2 of mines A and B for the (a) initial and (b) adapted short-

term production schedules. Although the distribution of metals has not changed 

significantly in this bench, the DNN agent still adapts the schedule to better blend 

materials to respect the production limits. 
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CHAPTER 5                                                                                                                            

Updating Geostatistically Simulated Models of Mineral Deposits in Real-

time with Incoming New Information using Actor-Critic Reinforcement 

Learning 

 

 

The extended ensemble Kalman filter developed in chapter 3 to update the 

geostatistically simulated models of pertinent properties of mineral deposits does not 

learn from the incoming new information and does not account for high-order spatial 

statistics. This chapter develops a new actor-critic reinforcement learning algorithm 

that learns from the incoming new information to update geostatistically simulated 

models of pertinent properties of mineral deposits while accounting for high-order 

spatial statistics.  

 

5.1 Introduction 

New information is readily available with conventional and modern smart digital 

technologies used during production activities in industrial environments. These 

technologies include advanced sensors and monitoring devices that are used during 

production activities in mines and oilfields, and in monitoring activities in the fields 

of hydrogeology, hydrology, meteorology, atmospheric sciences, geomorphology and 

oceanography. For example, in an industrial mining environment, global positioning 

systems can locate and monitor the status of the mining fleet in real-time 

(Chaowasakoo et al., 2014). Built-in control units can monitor the health and 

utilization of the mining fleet (Koellner et al., 2004). Radiofrequency identification 
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tags can locate and track (Rosa et al., 2007), and infrared and X-ray sensors can 

measure the geological properties of the materials mined, hauled, conveyed, 

processed, and sold (De Jong, 2004; Goetz et al., 2009; Iyakwari et al., 2016; Dalm et 

al., 2018). The incoming new information is typically used to update the relevant 

properties of geostatistically simulated models. However, this new information, 

referred to as “soft data”, is partial and noisy, and is therefore uncertain. The soft 

nature of the new information is attributed to the characteristics of the related sensors 

that generate indirect measurements compared to, for example, those derived from the 

analysis of drillhole samples in geochemical laboratories. Assimilating incoming new 

information in geostatistically simulated models is similar to history matching in 

petroleum reservoirs (Oliver et al., 2008; Gilman and Ozgen, 2013). History matching 

entails using production data such as oil production, flow rates, and well pressure, to 

update geostatistically simulated models of static reservoir properties, such as 

porosity and permeability, along with dynamic reservoir properties, such as pressure 

and fluid saturation, to better match the observed production data.  

Ensemble Kalman filter (EnKF) is a thoroughly studied and applied method for 

history matching in petroleum and groundwater reservoirs (Aanonsen et al., 2009; 

Evensen, 2009; Oliver and Chen, 2011; Xu et al., 2013). Benndorf (2015, 2020) 

introduced the use of the EnKF for updating geostatistically estimated models of 

mineral deposits. Yüksel et al. (2016, 2017) used the EnKF method to update 

geostatistically simulated models of ash content with incoming new information at a 

coal deposit. Wambeke and Benndorf (2017) proposed a combination of the EnKF 

method with a forward simulator, while incorporating a connected updating cycle and 

a local neighborhood technique, to update the geostatistically simulated models with 
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the sensor data collected from the conveyor belt at a synthetic mining operation. 

Wambeke and Benndorf (2018) studied the effect of measurement volumes, blending 

ratios, and sensor precision within the EnKF method. Wambeke et al. (2018) used a 

forward simulator and Bond’s work theorem with the EnKF method to update the 

geostatistically simulated models of the Bond work index – a geometallurgical 

property – at the Tropicana gold mine with the processing mill sensor data about 

throughput, power draw, feed and product size. Other methods for updating 

geostatistically simulated models of pertinent properties in a mineral deposit include 

co-simulation with soft data (Journel and Alabert, 1990; Neves et al., 2018) and 

conditional simulation by successive residuals (Vargas-Guzmán and 

Dimitrakopoulos, 2002; Jewbali and Dimitrakopoulos, 2011). Methods such as 

gradual deformation (Hu, 2000), neighborhood algorithm (Sambridge, 1999), 

evolutionary algorithm (Schulze-Riegert and Ghedan, 2007), maximum a posteriori 

(Oliver, 1996), Markov chain Monte Carlo (Oliver et al., 1997; Fu et al., 2017), 

inverse sequential simulation (Xu and Gómez-Hernández, 2015), classification and 

regression tree algorithm (Gutiérrez-Esparza and Gómez-Hernández, 2017), 

randomized maximum likelihood (Sarma et al., 2006; Chen and Oliver, 2012; Vo and 

Durlofsky, 2014), Tau-model (Naraghi and Srinivasan, 2015), Markov mesh model 

(Panzeri et al., 2016), variants of the ensemble Kalman filter, and co-simulation with 

soft data (Journel and Alabert, 1990; Mao and Journel, 1999b; Soares et al., 2017) 

have also been used for updating geostatistically simulated models of pertinent 

properties of petroleum and groundwater reservoirs. The abovementioned methods 

update the relevant properties of geostatistically simulated models but do not learn 
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from the incoming new information. Additionally, they do not account for nor respect 

high-order spatial statistics while updating the geostatistically simulated models. 

Recent developments in history matching include artificial intelligence (AI) 

algorithms based on supervised machine learning, such as a convolutional neural 

network (CNN) with principal component analysis (PCA) (Liu et al., 2019) and 

stepwise CNN-PCA with recurrent neural network (RNN) (Tang et al., 2019). The 

CNN-PCA method trains a CNN to post-process a given PCA geostatistical model, 

which involves using a training dataset to learn to minimize the difference between 

the style and content of the generated post-processed PCA model, and the target style 

and content calculated from either a training image or an initial geostatistical model. 

The CNN-PCA-RNN trains an RNN to generate flow simulation results for given 

geostatistical models of porosity and permeability, and involves using a training 

dataset to learn to minimize the difference between the predictions of the RNN and 

the targets generated by a high-fidelity flow simulator. These methods aim to 

minimize the mismatch between the targets and generated outputs for a given training 

dataset and, therefore, cannot perform well if the inputs differ greatly from the training 

dataset.  

The work presented herein, inspired by the continuous control algorithm 

(Lillicrap et al., 2015), proposes a novel self-learning artificial intelligence algorithm 

that trains agents (typically function approximators) to update geostatistically 

simulated models of pertinent properties of mineral deposits in real-time with new 

incoming spatial and temporal information. New incoming temporal information is 

sensor data collected over time about the properties of materials at different parts of a 

mining operation. The proposed algorithm uses deep policy gradient reinforcement 
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learning with an actor and a critic agent (in this work, both are convolutional neural 

networks) to learn about the relationships between incoming new information and 

geostatistically simulated models. These relationships are defined by high-order 

spatial statistics. High-order spatial statistics (Dimitrakopoulos et al., 2010; Mustapha 

and Dimitrakopoulos, 2011; Minniakhmetov et al., 2018; Yao et al., 2018) can capture 

complex spatial geological characteristics, curvilinear features, geometric relations, 

and the connectivity of extreme values needed for updating spatially dependent 

geological phenomena. In the following sections, first the proposed self-learning AI 

algorithm is detailed. Next, an application at a copper mining operation is explored to 

illustrate the efficiency and applied aspects of the proposed algorithm in updating 

geostatistically simulated models of relevant properties of mineral deposits with 

incoming new information while reproducing spatial patterns and high-order spatial 

statistics. Conclusions and directions for future research follow. 

5.2 Method 

Section 5.2.1 details how new information is collected from different day-to-day 

production activities in a mining operation. Section 5.2.2 provides the details of the 

proposed self-learning AI algorithm. Section 5.2.3 details the process of using the 

proposed algorithm in an operating mining environment. A list of notations used in 

this section is available in Appendix 5.1. The pseudo-code related to the different parts 

of the proposed algorithm is outlined in Appendix 5.2-Appendix 5.8. 

5.2.1 Incoming new information in a mining operation and related notations 

In a mining operation, materials extracted from the mine are sent to destinations 

and flow through processing streams to generate products that are sold to customers. 
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Let 𝑍(𝑥) be a spatial random field with random variables 𝑍(𝑥𝑖), representing a 

property of a mining block at location 𝑥𝑖, with 𝑖 = 1, … 𝑁 being the index of the 

blocks. Initial direct measurements, Ι, derived from the analysis of exploration 

drillhole samples in geochemical laboratories is denoted by 𝐷I. A finite set of initial 

geostatistically simulated models, 𝕊I, is generated using exploration drillhole samples, 

𝐷I, that represent realizations, 𝑧𝕤(𝑥), of the spatial random field, and quantify the 

uncertainty about the spatial property of materials in the mine. The drilling machines, 

𝐵, located spatially within the mine, drill holes for the blasting of materials. The 

sensors installed on the drilling machines measure the quality of materials drilled. The 

new information, ΝΙ, generated spatially by the sensors on the drilling machine about 

the property of blocks, 𝑍(𝑥), within the mine is denoted by NI𝐵(𝑥). The blasted 

materials are then loaded with shovels, 𝑆, into trucks, 𝑇. The sensors on the shovels 

measure the quantity, 𝑞𝑖(𝑥), and quality, NI𝑖(𝑥), ∀𝑖 ∈ 𝑆, of a block, 𝑍(𝑥), loaded. The 

sensors on the truck measure the quantity, 𝑞𝑖(𝑥), and quality, NI𝑖(𝑥), ∀𝑖 ∈ 𝑇, of 𝑍(𝑥) 

hauled. The incoming new information about the quality of blocks 𝑍(𝑥) located 

spatially within the mine is herein referred to as “spatial sensor data” and denoted by 

𝒮 ∈ 𝐵 ∪ 𝑆 ∪ 𝑇. The trucks haul the materials to different destinations, 𝐷. Let 

𝑓𝑑 , ∀𝑑 ∈ 𝐷 represent a function that mimics the transformation of materials at 

destination 𝑑. The sensors at the destinations measure the quality, NI𝑑(𝑞𝑑), ∀𝑑 ∈ 𝐷, 

and quantity, 𝑞𝑑, of materials at destination 𝑑. The materials from the destinations are 

transported via conveyor belts, 𝐶, to processing streams, 𝑃. The conveyor belt 

analyzer monitors the rate, 𝑞𝑑,𝑝,𝑐, and quality, NI𝑐(𝑞𝑑,𝑝,𝑐), ∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, of 

material transported via conveyor 𝑐 from destination 𝑑 to processing stream 𝑝. The 



208 

 

processing streams generate the products which are sold to customers. Let 𝑓𝑝, ∀𝑝 ∈

𝑃 denote the function that mimics the transformation of materials at processing stream 

𝑝. The sensors at the processing stream measure the quality, NI𝑝(𝑞𝑝), and quantity, 

𝑞𝑝, ∀𝑝 ∈ 𝑃, of products generated. Let 𝒯 represent a set that consists of all the 

components in a mining operation that handle and process the materials and collect 

sensor data, i.e. 𝒯 = {𝐷, 𝐶, 𝑃}. Let NI𝑖(𝑞𝑖) and 𝑞𝑖 represent the incoming new 

information collected over time with sensors at component 𝑖 ∈ 𝒯 about the quality 

and quantity of related materials, referred to herein as “temporal sensor data”. The 

tracking devices installed on component 𝑖 ∈ 𝒯 ∪ 𝒮 of the mining operation, help to 

locate and track the flow of materials. Let 𝑇𝑟𝑎𝑐𝑘 represent an operator that can locate 

and track the flow of materials from the mine to the destinations and subsequently to 

the processing streams. 

5.2.2 A self-learning AI algorithm 

The proposed self-learning AI algorithm for updating the geostatistically 

simulated models of pertinent properties of mineral deposits with incoming new 

information uses deep deterministic policy gradient (DDPG) reinforcement learning 

(Lillicrap et al., 2015) with an actor and a critic agent (in this work, both are 

convolutional neural networks (CNN)). This class of algorithm is called a model-free 

deep reinforcement learning (DRL) algorithm. A model-free DRL algorithm is used 

to update simulated models because the blocks that need to be updated (actions taken 

by actor agent) are visited in a random path, therefore the actions are not strongly 

correlated over time. Additionally, no planning is required to update geostatistically 

simulated models. The agents are only learning the dependencies between an action 
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and its associated reward in terms of high-order spatial statistics and new incoming 

information. CNNs are used as agents because they can capture spatial patterns in the 

inputs, which are present in mineral deposits. The actor, 𝜇, and critic, 𝑄, agents (𝑓𝜃𝜇 , 

and 𝑓𝜃𝑄 parametrized by 𝜃𝜇, and 𝜃𝑄, respectively) interact with an environment (see 

Sect. 5.2.2.1 for details of the environment) in discrete timesteps. Herein, a time step 

𝑡 denotes the point at which a block is visited along a random path visiting all blocks, 

similar to the sequential simulation approach (Deutsch and Journel, 1992; Journel, 

1994). At each time step 𝑡 the actor takes an action 𝑎𝑡 ∈ ℝ which is to predict the 

updated property 𝑍𝕤′
(𝑥) of a block located at 𝑥 based on a state, 𝑠𝑡 – which is fully 

observable – for a given geostatistically simulated model 𝕤 ∈ 𝕊I. The action is 

executed in an environment, meaning that the block property, 𝑍𝕤(𝑥), is updated with 

the taken action 𝑎𝑡 to generate an updated geostatistically simulated model  𝕤′ ∈ 𝕊U 

and the agent receives a scalar reward 𝑟𝑡 and a next state 𝑠𝑡+1 (see Sect. 5.2.2.1 for 

calculation of 𝑟𝑡 and 𝑠𝑡+1). The process continues until all the blocks are visited and 

updated. The state, action, reward, next state tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, and 𝑠𝑡+1 respectively) 

from all the time steps is stored in a replay memory buffer, 𝑅, of finite-sized cache. 

The replay memory is sampled uniformly at regular intervals to train both the actor 

and critic agents (see Sect. 5.2.2.3 for the training of actor and critic agents). The 

algorithm terminates when 𝑁𝑇 iterations are reached, and the trained actor agent 𝑓𝜃𝜇  

can be used to update the geostatistically simulated models, 𝕊U, of pertinent properties 

of mineral deposits with the spatial and temporal new information collected during 

day-to-day production activities in a mining operation (see Sect. 5.2.3 for using the 

agent for an operating mining environment). 
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 Environment 

In the context of the present study an environment is a model of the mining 

operation that encapsulates how materials extracted from mineral deposits are 

transformed from raw materials to products with day-to-day production activities. The 

agents interact with the environment by visiting mining blocks in a random path. The 

environment provides a representation of the mining operation during its interaction 

with the agents. The representation is called a state, and includes information such as 

the property of blocks in initial geostatistically simulated models, conditioning data 

events and geometry, incoming spatial and temporal new information from sensors, 

conditional variance of the blocks in the initial geostatistically simulated model and 

error in the incoming spatial and temporal sensor new information, and the model-

based predictions. The environment is also responsible for evaluating and using the 

action 𝑎𝑡 taken by the agent to generate a scalar value 𝑟𝑡, called a reward, and a new 

representation, called the next state 𝑠𝑡+1. The calculation of the state, reward, and next 

state in the environment are detailed in the following sections.  

State 

The state 𝑠𝑡 is comprised of 10 components. The first component is a property of 

the blocks in the initial geostatistical simulation 𝕤 ∈ 𝕊I including and surrounding the 

block located at 𝑥 in consideration at time step 𝑡 denoted by 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥). Here, 

𝑁𝑒𝑖𝑔ℎ𝑥 defines the radius/neighbourhood to consider around a block located at 𝑥, and 

is an input for the algorithm. If there are missing blocks within the neighbourhood 

𝑁𝑒𝑖𝑔ℎ𝑥 of a block located at 𝑥 they are initialized with a default value of -1. The 

second is the conditioning data event 𝐷𝑥
𝕤′

 which includes a property of 𝑁𝕤 closest 
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blocks for a block 𝑥 in the geostatistically simulated model 𝕤′ ∈ 𝕊U.  𝕤′ is formed by 

first creating a copy of 𝕤 ∈ 𝕊I and then updating the simulated property of blocks that 

have been visited until time 𝑡 − 1 with the actions taken by the actor agent. This 

captures the history of actions taken until 𝑡 − 1. The quantity of conditioning data 𝑁𝕤 

is an input for the algorithm. For example, suppose 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) and 𝑥 are respectively 

represented by the grid and black circle in Figure 5-1(a) then a property of the blocks 

in the updated geostatistical simulation 𝕤′ which are closest to a block located at 𝑥 – 

represented by the ends of black arrows in Figure 5-1(b) – constitutes 𝐷𝑥
𝕤′

.  

 

Figure 5-1 State representation of (a) a property of the blocks in the neighborhood 

𝑁𝑒𝑖𝑔ℎ𝑥 of a block located at 𝑥 in consideration at time step 𝑡 in the initial 

geostatistically simulated model 𝕤 ∈ 𝕊I; (b) conditioning data event found in the 

geostatistically simulated model  𝕤′ ∈ 𝕊U until 𝑡 − 1; and (c) spatial sensor data with 

its conditioning data event 

The third is the incoming spatial new information 𝒮 including and surrounding a 

block located at 𝑥, denoted by NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥). The absent values in the spatial new 

data are initialized to -1. The fourth is the conditioning data event 𝐷𝑥
𝒮 found in the 

spatial sensor data which includes the 𝑁𝒮 closest spatial sensors’ data. For example, 

suppose NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥) and 𝑥 are respectively represented by the grid and the black 
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circle in Figure 5-1(c), then the data collected by the spatial sensors which are closest 

to the block located at 𝑥 – represented by the ends of black arrows in Figure 5-1(c) – 

constitutes 𝐷𝑥
𝒮. The quantity of conditioning data 𝑁𝒮 is computed based on the density 

of the spatial sensor data. The white colour in Figure 5-1(c) denotes that no spatial 

sensor data was available. The fifth component is the conditional variance 𝐸𝑥
𝕤 

associated with a property of a block located at 𝑥 in the initial geostatistically 

simulated model 𝕤 ∈ 𝕊I in the neighbourhood 𝑁𝑒𝑖𝑔ℎ𝑥. 𝐸𝑥
𝕤 is calculated as: 

𝐸𝑥
𝕤 =

𝛾𝕤

|𝑁𝑒𝑖𝑔ℎ𝑥|
∑ 𝑉(𝑍𝕤(𝑥𝑖))

𝑖∈𝑁𝑒𝑖𝑔ℎ𝑥

, ∀𝕤 ∈ 𝕊I                    (5.1) 

where, 𝑉(𝑍𝕤(𝑥𝑖)) is the conditional variance of the initial simulated property of 

a block 𝑥𝑖 and 𝛾𝑠 is an adjustment factor to adjust the magnitude of the conditional 

variance of the geostatistically simulated models. The sixth is the error in the spatial 

sensor data 𝐸𝑥
NI𝒮  collected in the neighbourhood 𝑁𝑒𝑖𝑔ℎ𝑥 of a block located at 𝑥. The 

error with each of the measured spatial sensor data is an input to the algorithm. 𝐸𝑥
NI𝒮  

is computed by averaging the error in the available spatial sensor data in the 

neighbourhood 𝑁𝑒𝑖𝑔ℎ𝑥 as: 

𝐸𝑥
NI𝒮 =

1

|𝑁𝑒𝑖𝑔ℎ𝑥|
∑ 𝐸(NI𝒮(𝑥𝑖))

𝑖∈𝑁𝑒𝑖𝑔ℎ𝑥

                                 (5.2) 

The seventh is the incoming temporal sensor data, 𝑞𝑖 , NI𝑖(𝑞𝑖), ∀𝑖 ∈ 𝒯. The eighth 

component is the errors in the temporal sensor data, 𝐸NI𝑖 , ∀𝑖 ∈ 𝒯, and is an input to 

the algorithm. The ninth is the model-based prediction for the updated geostatistical 
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simulation 𝕤′ ∈ 𝕊U at the location of the different temporal sensor data (see sections 

below for details on how the model-based prediction is generated). Calculating the 

model-based prediction for the updated geostatistical simulation captures the history 

of the actions taken until time step 𝑡 − 1. If there are no new temporal sensor data, 

then such data along with their model-based predictions are initialized to -1. The tenth 

is the geometry of the conditioning data events 𝐷𝑥
𝕤′

 and 𝐷𝑥
𝒮,defined by normalized 

distance vectors 𝐻𝑥
𝕤′

 and 𝐻𝑥
𝒮, respectively (the distance of the conditioning data point 

from a block located at 𝑥).  

Model-based predictions 

Model-based predictions, MP, calculate the values that should have been observed 

based on geostatistically simulated models at the location where temporal sensor data 

was collected. The model-based prediction MP𝑑
𝕤 at a destination 𝑑 for a geostatistical 

simulation 𝕤 is calculated with Eq 5.3. 

MP𝑑
𝕤 = 𝑓𝑑 (∑ 𝑇𝑟𝑎𝑐𝑘(𝑞𝑖(𝑥); 𝑍𝕤(𝑥))

𝑖∈𝑇

)   , ∀𝕤 ∈ 𝕊I, 𝑑 ∈ 𝐷             (5.3) 

Equation 5.3 uses the 𝑇𝑟𝑎𝑐𝑘 operator first to find the quantities of materials, 

𝑞𝑖(𝑥), ∀𝑖 ∈ 𝑇, hauled with trucks 𝑖 ∈ 𝑇 to a destination 𝑑 then utilizes the function 𝑓𝑑 

to calculate how the materials are transformed at the destination, and finally uses the 

geostatistically simulated property 𝑍𝕤(𝑥) along with the tracking and transformation 

data to compute MP𝑑
𝕤. The model-based prediction MP𝑐

𝕤 for a geostatistical simulation 

𝕤 at a conveyor belt 𝑐 which transports materials from a destination 𝑑 to a processing 

stream 𝑝 is calculated as:  
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MP𝑐
𝕤 = 𝑇𝑟𝑎𝑐𝑘(𝑀𝑃𝑑

𝕤) ∙ 𝑞𝑑,𝑝,𝑐    , ∀𝕤 ∈ 𝕊I, 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶       (5.4) 

Equation 5.4 first uses the 𝑇𝑟𝑎𝑐𝑘 operator to find the quantity of material 𝑞𝑑,𝑝,𝑐 

flowing from a destination 𝑑 to a processing stream 𝑝 with conveyor belt 𝑐 and then 

utilizes the model-based prediction from Eq. 5.3 along with the tracking information 

to compute MP𝑐
𝕤. The model-based prediction MP𝑝

𝕤 at a processing stream 𝑝 for a 

geostatistical simulation 𝕤 is calculated as follows: 

MP𝑝
𝕤 = 𝑓𝑝 (∑ 𝑇𝑟𝑎𝑐𝑘(MP𝑐

𝕤)

𝑐∈𝐶

)    , ∀𝕤 ∈ 𝕊I, 𝑝 ∈ 𝑃                 (5.5) 

Equation 5.5 first uses the 𝑇𝑟𝑎𝑐𝑘 operator to find the quantity of materials fed to 

a processing stream with different conveyors, then uses the function 𝑓𝑝 to find how 

materials are transformed into products, and finally uses the model-based prediction 

from Eq. 5.4 along with the tracking and transformation information to compute MP𝑝
𝕤.  

Action 

The state 𝑠𝑡 is fed to the actor agent, 𝑓𝜃𝜇 , to generate an action 𝑎𝑡 ∈ ℝ+ as shown 

below:  

𝑎𝑡 = 𝑓𝜃𝜇(𝑠𝑡) + 𝒩𝑡                                                          (5.6) 

where, 𝒩𝑡 is the noise added to the action to ensure exploration during the training 

phase of the proposed AI algorithm. The action 𝑎𝑡 is to predict the updated property, 

𝑍𝕤′
(𝑥), of a block located at 𝑥 based on a state 𝑠𝑡 in a geostatistical simulation 𝕤 ∈ 𝕊I.  

Next state 
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The next state 𝑠𝑡+1 is generated by first replacing 𝑍𝕤(𝑥) in 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) with the 

action 𝑎𝑡 taken by the actor agent to form 𝑍𝕤′
(𝑁𝑒𝑖𝑔ℎ𝑥), and then generating the 

model-based prediction with 𝑍𝕤′
(𝑥). The rest of the information in the next state 𝑠𝑡+1 

remains the same as in the state 𝑠𝑡.   

Reward 

The action 𝑎𝑡 taken by the agent in the state 𝑠𝑡 is evaluated by the environment to 

generate a reward 𝑟𝑡. The reward 𝑟𝑡 leverages high-order spatial statistics and consists 

of three parts, as shown below: 

𝑟𝑡 = 𝑟𝕤,𝑡+𝑟𝒮,𝑡 + ∑ 𝑟𝑖,𝑡

𝑖∈𝒯

                                                  (5.7) 

The first part, 𝑟𝕤,𝑡, evaluates the likelihood of an action 𝑎𝑡 in the conditional 

probability distribution function (CPDF), which is generated by searching for 

replicates of a conditioning data event 𝐷𝑥
𝕤′

 within a geostatistically simulated model. 

The second part, 𝑟𝒮,𝑡, evaluates the likelihood of an action 𝑎𝑡 in the CPDF, which is 

generated by searching for replicates of a conditioning data event 𝐷𝑥
𝒮 within the spatial 

sensor data. The third part, 𝑟𝑖,𝑡, ∀𝑖 ∈ 𝒯, computes the error between a model-based 

prediction and temporal sensor data for an action 𝑎𝑡. The CPDF of a given 

conditioning data event is generated using high-order spatial Legendre moments 

(Dimitrakopoulos et al., 2010; Mustapha and Dimitrakopoulos, 2011; Yao et al., 

2018). High-order spatial Legendre moments capture multi-point spatial statistics and 

approximates the CPDF of the center node 𝑍(𝑥) for a given data event 𝐷𝑥
𝕤′

 using 

Legendre polynomials. The initial geostatistical simulated property 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) 
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inside a neighbourhood 𝑁𝑒𝑖𝑔ℎ𝑥 is searched for all available replicates, 𝑁𝜁
𝕤, of the 

conditioning data event, 𝐷𝑥
𝕤′

, defined by a distance vector, 𝐻𝑥
𝕤′

. Let 𝜁𝕤,𝑖,𝑗 denote the 

values of each node 𝑗 ∈ 𝑁𝕤 in the replicate 𝑖 ∈ 𝑁𝜁
𝕤. The replicates 𝜁𝕤,𝑖,𝑗 of the data 

event 𝐷𝑥
𝕤′

 are used to compute the CPDF of the center node 𝑍(𝑥) with Legendre 

polynomials as: 

𝑓𝕤(𝑍(𝑥)|𝐷𝑥
𝕤′

) ≈ 𝑓𝕤
�̃�(𝑍(𝑥)|𝐷𝑥

𝕤′
) =

∑ 𝑋𝑖(𝑍(𝑥)) ∙ ∏ 𝑋𝑖(𝜁𝕤,𝑖,𝑗)𝑗∈𝑁𝕤𝑖∈𝑁𝜁
𝕤

∑ ∏ 𝑋𝑖(𝜁𝕤,𝑖,𝑗)𝑗∈𝑁𝕤𝑖∈𝑁𝜁
𝕤

  , ∀𝕤 ∈ 𝕊I  (5.8) 

where,  

𝑋𝑖(𝑍(𝑗)) = ∑ (𝑤 +
1

2
) 𝑃𝑤(𝜁𝕤,𝑖,𝑗)𝑃𝑤(𝑍(𝑗))

𝑊

𝑤=0

                              (5.9) 

𝑊 is the degree of the Legendre polynomials. 𝑃𝑤(𝑍(𝑥)) is the 𝑤th-degree 

Legendre polynomial for center node 𝑍(𝑥) calculated as follows: 

𝑃𝑤(𝑍(𝑥)) =
1

2𝑤𝑤!

𝑑𝑤

𝑑𝑍(𝑥)𝑤
[(𝑍(𝑥)2 − 1)𝑤]                                     (5.10) 

For more details on the computation of CPDF with high-order spatial Legendre 

moments, readers are referred to Mustapha and Dimitrakopoulos (2011) and Yao et 

al. (2018). The first part of the reward calculation, 𝑟𝕤,𝑡, which defines the likelihood 

of 𝑎𝑡 compared to the initial geostatistically simulated property 𝑍𝕤(𝑥) in the CPDF 

𝑓𝕤(𝑍(𝑥)|𝐷𝑥
𝕤′

) and is calculated as: 
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𝑟𝕤,𝑡 = 𝜆𝕤 ∙ (𝑓𝕤
�̃�(𝑍(𝑥) = 𝑍𝕤(𝑥)|𝐷𝑥

𝕤′
) − 𝑓𝕤

�̃�(𝑍(𝑥) = 𝑍𝕤′
(𝑥)|𝐷𝑥

𝕤′
)) , ∀𝕤 ∈ 𝕊I   (5.11) 

where,  

𝜆𝕤 =
1 − 𝐸𝑥

𝕤

1 − 𝐸𝑥
𝕤 + 1 − 𝐸𝑥

NI𝒮 + ∑ 1 − 𝐸NI𝑖𝑖∈𝒯  
        , ∀𝕤 ∈ 𝕊I  (5.12) 

𝜆𝕤 is the weight associated with reproducing the spatial statistics of the initial 

geostatistically simulated model 𝕤. The second part of the reward calculation, 𝑟𝒮,𝑡, 

which defines the likelihood of action 𝑎𝑡 compared to the initial geostatistically 

simulated property 𝑍𝕤(𝑥) in the CPDF 𝑓𝒮(𝑍(𝑥)|𝐷𝑥
𝒮) is calculated as: 

𝑟𝒮,𝑡 = 𝜆𝒮 ∙ (𝑓𝒮
�̃�(𝑍(𝑥) = 𝑍𝕤(𝑥)|𝐷𝑥

𝒮) − 𝑓𝒮
�̃�(𝑍(𝑥) = 𝑍𝕤′

(𝑥)|𝐷𝑥
𝒮))  , ∀ 𝕤 ∈ 𝕊I (5.13) 

where,  

𝑓𝒮(𝑍(𝑥)|𝐷𝑥
𝒮) ≈ 𝑓𝒮

�̃�(𝑍(𝑥)|𝐷𝑥
𝒮) =

∑ 𝑋𝑖(𝑍(𝑥)) ∙ ∏ 𝑋𝑖(𝜁𝒮,𝑖,𝑗)𝑗∈𝑁𝒮𝑖∈𝑁𝜁
𝒮

∑ ∏ 𝑋𝑖(𝜁𝒮,𝑖,𝑗)𝑗∈𝑁𝒮𝑖∈𝑁𝜁
𝒮

               (5.14) 

and 

𝜆𝒮 =
1 − 𝐸𝑥

NI𝒮

1 − 𝐸𝑥
𝕤 + 1 − 𝐸𝑥

𝒮 + ∑ 1 − 𝐸NI𝑖𝑖∈𝒯  
     , ∀ 𝕤 ∈ 𝕊I       (5.15) 

𝜆𝒮 is the weight associated with reproducing the statistics of the spatial sensor 

data. 𝑓𝕤
�̃�(𝑍(𝑥)|𝐷𝑥

𝒮) is the CPDF and is computed using Eq. 5.14. For this, the spatial 

sensor data NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥) is searched for all replicates, 𝑁𝜁
𝒮, of the conditioning data 

event, 𝐷𝑥
𝒮, defined by a distance vector, 𝐻𝑥

𝒮. Let 𝜁𝒮,𝑖,𝑗, denote the values of each node 
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𝑗 ∈ 𝑁𝒮 in the replicate 𝑖 ∈ 𝑁𝜁
𝒮. The value of the replicates 𝜁𝒮,𝑖,𝑗 are used in Eqs. 5.9 

and 5.10 to compute the CPDF with Eq. 5.14. The third part of the reward calculation, 

𝑟𝑖,𝑡, ∀𝑖 ∈ 𝒯, which defines the difference between the model-based prediction and the 

temporal sensor data for action 𝑎𝑡 and the initial  geostatistically simulated property 

𝑍𝕤(𝑥) is calculated as: 

𝑟𝑖,𝑡 = 𝜆𝑖 ∙ (|MP𝑖
𝕤 − NI𝑖| − |MP𝑖

𝕤′
− NI𝑖|) ∙ 𝛾𝑖

MP  , ∀𝑖 ∈ 𝒯, 𝕤 ∈ 𝕊I, 𝕤′ ∈ 𝕊U  (5.16) 

where, 

𝜆𝑖 =
1 − 𝐸NI𝑖

1 − 𝐸𝑥
𝕤 + 1 − 𝐸𝑥

NI𝒮 + ∑ 1 − 𝐸NI𝑖𝑖∈𝒯   
         , ∀𝑖 ∈ 𝒯, 𝕤 ∈ 𝕊I  (5.17) 

MP𝑖
𝕤 and MP𝑖

𝕤′
 are the model-based predictions at component 𝑖 ∈ 𝒯 (calculated 

using Eqs. 5.3-5.5) for the initial geostatistically simulated property 𝑍𝕤(𝑥) and the 

action 𝑎𝑡 respectively. 𝜆𝑖 , ∀𝑖 ∈ 𝒯 is the weight associated with minimizing the 

difference between the model-based prediction and the temporal sensor data at 

component 𝑖. 𝑟𝑖,𝑡 is a subtraction of two differences, as seen in Eq. 5.16, as opposed 

to 𝑟𝕤,𝑡 and 𝑟𝒮,𝑡, which are subtractions of two probabilities. Therefore, an adjustment 

factor 𝛾𝑖
MP is used in Eq. 5.16 to ensure that the third part of the reward calculation is 

of the same magnitude as the other parts. 

 Actor and critic architecture 

The actor agent, 𝑓𝜃𝜇, is a CNN which takes as input the state 𝑠𝑡 which includes 

the initial geostatistically simulated model, spatial sensor data, and some additional 

data. The additional data includes the temporal sensor data, conditional variance of 
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the initial geostatistically simulated models (Eq. 5.1), error in the spatial (Eq. 5.2) and 

temporal sensor data, and model-based predictions (Eqs. 5.3-5.5). The additional data 

are not added as inputs until the fully connected layer in the actor agent, as shown in 

Figure 5-2(a). The actor agent takes an action 𝑎𝑡 based on the state 𝑠𝑡, which is to 

predict the updated geostatistically simulated property 𝑍𝕤′
(𝑥) of a block located at 𝑥. 

The critic agent, 𝑓𝜃𝑄, is also a CNN, which takes as input the state 𝑠𝑡 that includes all 

the inputs for the actor agent and as an additional input the action taken by the actor 

agent. Similar to the actor agent, the additional data and the action are not added as 

inputs until the fully connected layer in the critic agent as shown in Figure 5-2(b). The 

critic agent is an action-value function which evaluates the action 𝑎𝑡 taken by the actor 

agent in the state 𝑠𝑡. 

 

Figure 5-2 (a) Actor and (b) critic agent configuration in the proposed AI algorithm 

 Actor-critic training 

The actor and critic agents are trained using DDPG reinforcement learning, as 

shown in Figure 5-3. The actor and critic agents are initialized randomly at time, 𝑡 =

1, with weights, 𝜃𝜇 and 𝜃𝑄, respectively. In addition to the actor and critic agents, 

two target agents (target actor and target critic), denoted by 𝑓𝜃𝜇
′ , and 𝑓

𝜃𝑄
′ , and 
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parametrized by 𝜃𝜇′
 and 𝜃𝑄′

, are created to avoid divergence issues. The parameters 

of the target network are initialized to the actor and critic parameters as 𝜃𝜇′ ← 𝜃𝜇 and 

𝜃𝑄′
← 𝜃𝑄. The replay memory buffer is initialized at time, 𝑡 = 1. 

 

Figure 5-3 Actor and critic agents training in the proposed AI algorithm 

A random path is defined to visit all the blocks in the mineral deposit, and the 

point at which a block located at 𝑥 is visited along this path is referred to as a time 

step 𝑡. At every time step  𝑡 an action is taken by the actor agent based on the state 𝑠𝑡 

generated from the environment (see Sect. 5.2.2.1) for the mining block in 

consideration. The action is evaluated in the environment to generate the reward 𝑟𝑡 

and the next state 𝑠𝑡+1. The state, action, reward, and next state tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, and 

𝑠𝑡+1 respectively) is stored in replay memory 𝑅. At every 𝑁𝐼 iteration the memory is 
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sampled to generate mini batches of transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, and 𝑠𝑡+1) of size 𝑁𝐵𝑆. The 

sampled mini batches are used to train the actor and critic agents. More specifically, 

the parameters, 𝜃𝑄, of the critic agent are updated to minimize the temporal difference 

error loss 𝐿 given by: 

𝐿 =  
1

𝑁𝐵𝑆 
∑ (𝑟𝑖 + 𝛾. 𝑓

𝜃𝑄
′ (𝑠𝑖+1, 𝑓𝜃𝜇

′ (𝑠𝑖+1)) − 𝑓𝜃𝑄(𝑠𝑖, 𝑎𝑖) + 𝑐 ∙ ‖𝜃𝑄‖2)

𝑖∈𝑁𝐵𝑆 

(5.18) 

𝑐 ∙ ‖𝜃𝑄‖2 is an L2 regularization added to the loss function with a penalty cost of 

𝑐, to avoid overfitting. The actor agent is trained by the sampled policy gradient given 

as: 

∇𝜃𝜇𝐽 ≈  
1

𝑁𝐵𝑆
∑ (∇𝑓𝜃𝜇(𝑠𝑖)𝑓𝜃𝑄(𝑠𝑖, 𝑓𝜃𝜇(𝑠𝑖))∇𝑓𝜃𝜇(𝑠𝑖)𝑓𝜃𝜇(𝑠𝑖))

𝑖∈𝑁𝐵𝑆 

           (5.19) 

The sampled policy gradient first takes the gradient of the critic agent parameters, 

𝜃𝑄, with respect to the action 𝑎𝑡 taken by the actor, and then takes the gradient of the 

actor agent parameters, 𝜃𝜇, with respect to the action 𝑎𝑡. The parameters of the trained 

actor and critic agents are then used to perform soft updates to the target agents as 

follows:  

𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′                                             (5.20) 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

                                             (5.21) 
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𝜏 defines the strategy to blend the target agent parameters with the trained agent 

parameters. The new parameters of the actor and critic agents are used for further 

learning.  

5.2.3 Responding to incoming new information 

The proposed AI algorithm in Sects. 5.2.2.1-5.2.2.3 trains the CNN actor agent 

which can update the geostatistically simulated models of pertinent spatial properties 

of mineral deposits with new spatial and temporal information collected in an 

operating mining environment.  

 

Figure 5-4 Real-time learning and updating with incoming new spatial and temporal 

information 

The spatial sensor data, NI𝑖(𝑥), 𝑖 ∈ 𝒮, and temporal sensor data, 𝑞𝑖, NI𝑖(𝑞𝑖),  ∀𝑖 ∈

𝒯, along with the tracking sensor data, 𝑇𝑟𝑎𝑐𝑘, and initial geostatistically simulated 

models of pertinent spatial properties of the mineral deposit, 𝕤 ∈ 𝕊I, are fed to the AI 
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algorithm as shown in Figure 5-4. The AI algorithm then initializes the environment 

presented in Sect. 5.2.2.1 with all the information. A random path is then defined by 

the environment to visit all the blocks within the mineral deposit. At each block, a 

state generated by the environment is fed to the trained actor agent that takes an action, 

which is to predict the updated geostatistically simulated property of the block. The 

environment uses the action to generate the next state, and the process continues until 

all the blocks in the random path are visited. The updated geostatistically simulated 

property of all the blocks forms the set of updated geostatistically simulated models 

𝕊U. The updated models are then used to generate the updated model-based 

predictions. In parallel, the actor and critic agent parameters are updated by training 

over the updated models and newly collected information, as presented in Sects. 

5.2.2.1-5.2.2.3. 

5.3 Application at a synthetic copper mining operation 

The proposed self-learning AI algorithm is programmed using Python and 

Tensorflow. It is applied in this section to a fully known public dataset (Mao and 

Journel, 1999a), which represents a copper deposit in this case study. 20 initial 

geostatistically simulated models of copper grades are generated with 416 drillhole 

data points sampled from a section of the fully known dataset using random stratified 

sampling. The incoming spatial sensor data of copper grades is generated by randomly 

sampling 2600 data points from the same sections of the fully known dataset. The 

error in each spatial sensor data point is sampled from a normal distribution with a 

mean of 0 and a standard deviation of 0.45. The temporal sensor data of copper grades 

from the processing mill is generated by randomly sampling the same section of the 
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fully known dataset in such a way that it imitates the process of collection of the 

temporal sensor data in a mining operation. The generated temporal sensor data 

contains 2600 data points. The error in each temporal sensor data point is sampled 

from a normal distribution with a mean of 0 and a standard deviation of 0.6. The 

standard deviation of the normal distribution for error in the temporal sensor data is 

lower than in spatial sensor data to reflect the quality of the respective sensors. 

 

Figure 5-5 The copper mining operation  

The copper mining operation considered in this case study is shown in Figure 5-5, 

and consists of a mine, a waste dump, a processing mill, and a customer. Multiple 

drilling machines located at the mine perform the drilling operations and capture the 

spatial new information about the grade of the drilled mining blocks. The materials 

from the mine are extracted by two shovels and are loaded into trucks which haul the 

materials to either a processing mill or a waste dump. The processing mill blends and 

processes the received materials to generate copper products, which are transported 

to the customers. The sensors at the processing mill capture the temporal new 

information by measuring the grade of the generated copper products.  
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Two different datasets – training and testing – are generated using the process 

outlined above to represent the operations and collection of new information in two 

areas, Area 1 and Area 2, of the deposit. Each area of the deposit consists of 13,000 

mining blocks. The data from Area 1 of the deposit is used to train the proposed AI 

algorithm. In an operating mine, this dataset would be the historical data. Section 5.3.1 

discusses the training results and shows the learning capabilities of the proposed 

algorithm. The data from Area 2 of the deposit is used for testing the proposed 

algorithm. This dataset was never used for training and represents how the proposed 

algorithm would be used in an operating mine to update the geostatistically simulated 

models of pertinent properties of the deposit with incoming new information. Section 

5.3.2 discusses the testing results of the proposed algorithm and shows that the 

algorithm can generalize and has practical applications in an operating mine. 

Throughout the presentation and discussion of the results, the fully known data and 

its histogram, variogram and spatial cumulant maps are also shown for reference 

purposes. The fully known data is referred to hereafter as the ground truth model. The 

algorithm takes less than 30 seconds to update the copper grade simulated models of 

the different areas of the deposit. The architecture of the agents and the value of the 

different parameters used in this case study are outlined in Appendix 5.9 and 

Appendix 5.10, respectively. 

5.3.1 Training dataset 

This section presents the results of training the proposed AI algorithm at Area 1 

of the deposit and highlights its learning capabilities. Figure 5-6 shows the drillhole 

data and two of the initial simulated copper grade models for Area 1 of the deposit. 
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The initial models in Figure 5-6 show the presence of vertical curvilinear structures 

in Area 1 of the deposit.  

 

Figure 5-6 Drillhole data and the 2 of the initial copper grade simulated models for 

Area 1 of the deposit 

 

Figure 5-7 (a) Spatial sensor data; (b) error in the spatial sensor data; and (c) 

processing mill sensor data of copper grades from Area 1 of the deposit  
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Figure 5-7(a) shows the spatial sensor data collected during the drilling operations 

in Area 1 of the deposit. The spatial sensor data shows the presence of a similar 

vertical curvilinear structure at this area of the deposit, however, Figure 5-7(b) shows 

the error in the spatial sensor data and thereby introduces uncertainty about the visual 

assessment. Figure 5-7(c) shows the processing mill sensor data collected during 

operations in Area 1 of the deposit. The black line represents the actual measurement, 

and the gray lines show the error in the processing mill sensor data.  

 

Figure 5-8 (a) One of the initial simulated models compared to (b) its corresponding 

updated model and (c) the ground truth model of copper grades for Area 1 of the 

deposit 

Figure 5-8(a) and (b) show one of the initial and its corresponding updated copper 

grade simulated models for Area 1 of the deposit. The updated model shows more 

connected high-grade vertical curvilinear structures inferred from the noisy spatial 

sensor data when compared to the initial model, while still maintaining the geological 

structures found in the initial model. Figure 5-8(c) shows the ground truth model of 
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copper grades for Area 1 of the deposit for reference only. The algorithm does not 

have access to the ground truth model. The updated model closely resembles the 

structures and geological patterns seen in the ground truth model. 

 

Figure 5-9 Histogram and variogram of (a-b) the initial simulated models compared 

to (c-d) the updated models of copper grades for Area 1 of the deposit 
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Figure 5-10 Third- and fourth-order spatial cumulant maps for (a-b) the initial 

simulated model compared to (c-d) its corresponding updated model and (e-f) the 

ground truth model of copper grades for Area 1 of the deposit 

Figure 5-9(a) and (b) show the histogram and variogram, respectively, for the 

initial copper grade simulated models for Area 1 of the deposit. The initial models 

reproduce the histogram and variogram of drillhole data. The updated models have a 

somewhat different distribution of materials (histogram in Figure 5-9(c)) compared to 

the initial models. The histogram of the updated models reproduces the histogram of 

the drillhole data and more closely resembles the histogram of the spatial sensor data. 

The variogram of the updated models, as shown in Figure 5-9(d), reproduces the 

variogram of the drillhole data and resembles the variogram of the spatial sensor data. 

Figure 5-10(a) and (b) show the 3rd and 4th order spatial statistics (cumulant), 

respectively, for the initial copper grade simulated model of Area 1 of the deposit. 

Figure 5-10(c) and (d) show the 3rd and 4th order spatial cumulant maps, respectively, 

for the corresponding updated model of Area 1 of the deposit. The 3rd and 4th order 
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spatial cumulant maps for the updated model show the presence of more connected 

structures, which are also seen in the spatial cumulant maps of the ground truth model 

(Figure 5-10(e-f)). 

 

Figure 5-11 Model-based prediction generated with (a) an initial simulated model 

compared to (b) its corresponding updated model of copper grades for Area 1 of the 

deposit 

Figure 5-11(a) shows the model-based prediction generated with an initial copper 

grade simulated model of Area 1 of the deposit, for the collected processing mill 

sensor data. The model-based prediction generated with an initial model shows 

significant deviations from the processing mill sensor measurements. However, the 

model-based prediction generated with its corresponding updated model, as shown in 

Figure 5-11(b), shows minimal deviations from the processing mill sensor 

measurements. The model-based prediction generated with the updated model still 

has some deviations because the proposed AI algorithm is not trying and should not 
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get as close as possible to the sensor measurements, given that the sensor 

measurements are soft, therefore uncertain. 

5.3.2 Testing dataset 

The proposed AI algorithm is applied at Area 2 of the deposit, which was not used 

to train the algorithm.  

 

Figure 5-12 Drillhole data and two of the initial copper grade simulated models for 

Area 2 of the deposit 

Figure 5-12 shows the drillhole data and two of the initial copper grade simulated 

models for Area 2 of the deposit. The initial models for Area 2 in Figure 5-12 show a 

presence of very different geological patterns compared to Area 1: the curvilinear 

structures are horizontal instead of vertical. Figure 5-13(a-c) show the spatial sensor 

data, the error in the spatial sensor data and the processing mill sensor data, 

respectively, collected during operations in Area 2 of the deposit. 
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Figure 5-13 (a) Spatial sensor data; (b) error in the spatial sensor data; and (c) 

processing mill sensor data of copper grades from Area 2 of the deposit 

 

Figure 5-14 (a) One of the initial simulated models compared to (b) its 

corresponding updated model and (c) the ground truth model of copper grades for 

Area 2 of the deposit 

Figure 5-14(a-b) show one of the initial and its corresponding updated simulated 

models of copper grades, respectively, for Area 2 of the deposit. The proposed AI 
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algorithm can reproduce the horizontal curvilinear structures in the updated model as 

inferred from the initial model and the spatial sensor data for this area, even though 

the training data set had vertical curvilinear structures. In addition, the updated model 

closely resembles the ground truth model shown in Figure 5-14(c). 

 

Figure 5-15 Histogram and variogram of (a-b) the initial simulated models 

compared to (c-d) the updated models of copper grades for Area 2 of the deposit 
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Figure 5-16 Third- and fourth-order spatial cumulant maps for (a-b) the initial 

simulated model compared to (c-d) its corresponding updated model and (e-f) the 

ground truth model of copper grades for Area 2 of the deposit 

 

Figure 5-17 Model-based prediction generated with (a) an initial simulated model 

compared to (b) its corresponding updated model of copper grades for Area 2 of the 

deposit 
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The initial and updated models are validated through the analysis of the histogram 

and variogram reproductions in Figure 5-15. The initial and updated models both 

respect the histogram and variogram of the drillhole data. The updated models present 

a closer resemblance to the histogram and variogram of the spatial sensor data, as 

shown in Figure 5-15(c) and Figure 5-15(d), respectively. Figure 5-16(a-b) show the 

3rd and 4th order spatial cumulant maps, respectively, for the initial copper grade 

simulated model for Area 2 of the deposit. The spatial cumulant maps of the updated 

model (Figure 5-16(c-d)) show more connected structures, as seen in the spatial 

cumulant maps of the ground truth model (Figure 5-16(e-f)). The proposed AI 

algorithm was not trained with data from this area, yet still reproduces the histogram, 

variogram, and spatial cumulant maps while updating the initial geostatistically 

simulated models of copper grades for Area 2 of the deposit. Figure 5-17(a-b) show 

the model-based prediction for an initial and its corresponding updated simulated 

model of copper grades, respectively, for Area 2 of the deposit. The model-based 

prediction for the updated model shows fewer deviations from the processing mill 

sensor measurements when compared to the initial model.  

5.4 Conclusions 

This paper proposes a new self-learning artificial intelligence algorithm that uses 

deep policy gradient reinforcement learning and leverages high-order spatial statistics 

to train actor and critic agents to update the simulated models of pertinent spatial 

properties of a mineral deposit with incoming new information. The algorithm is 

general and can be applied to any mining operation with multiple sources of incoming 

spatial and temporal new information. The algorithm visits the mining blocks within 
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the mineral deposit following a random path. For each mining block, a state 

representation is generated and fed to the actor agent. The actor agent, in this case, a 

convolutional neural network, takes an action, which is to predict the updated spatial 

properties of blocks based on the state representation. The action is evaluated by the 

critic agent, in this case, also a convolutional neural network. In parallel, the 

environment also evaluates the action using high-order spatial statistics and generates 

a reward and the next state representation. The state, action, reward, next state data is 

stored in a replay memory, which is sampled at regular intervals to train the agents. 

The improved agents are then used for further training. An application of the proposed 

algorithm at a synthetic copper mining operation demonstrates its efficiency and 

applied aspects. The case study shows that the algorithm can account for softness in 

the incoming new information (whether spatial or temporal) to update the copper 

grade simulated models of the deposit while reproducing geological patterns and high-

order spatial statistics. The case study also highlights the learning and generalization 

capabilities of the algorithm by its application in different parts of the deposit, which 

have different geological patterns and curvilinear structures. Future research will 

focus on expanding and applying the algorithm for multiple elements. 
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Appendix 5.1 

This section presents the notations used in the proposed self-learning AI 

algorithm. Table 5-1 shows the sets, indices, and constants used in the proposed 

algorithm. Table 5-2 presents the variables used in the proposed algorithm. 

Table 5-1 Sets, indices, and constants used in the proposed algorithm 

Parameters Definition 

𝑍(𝑥) 
Spatial random field consisting of random variables 𝑍(𝑥𝑖), ∀𝑖 ∈
[1, 𝑁] 

𝑍(𝑥𝑖) 
Random variable representing a property of a mining block at 

location 𝑥𝑖 , ∀𝑖 ∈ [1, 𝑁] within the mine 

𝐷I Initial (I) drillhole (𝐷) samples at the mine 

𝕊I 
Set of initial stochastic simulations generated with  
𝐷I for all blocks 𝑧(𝑥) ∈ 𝑍(𝑥) in the mine 

𝑍𝕤(𝑥) 
A property of a block located at 𝑥 in the initial geostatistical 

simulation 𝕤 ∈ 𝕊I  

𝕊U 
Set of updated geostatistically simulated models for all blocks 

within the mine; 𝕤′ ∈ 𝕊U 

𝑍𝕤′
(𝑥) 

A property of a block located at 𝑥 in the updated geostatistical 

simulation 𝕤′ ∈ 𝕊U 

𝐵, 𝑇, 𝑆, 𝐷, 𝐶, 𝑃 

Set of blasthole drilling machines, trucks, shovels, destinations, 

conveyor belts, and processing streams, respectively in a 

mining operation 

NI𝐵(𝑥) 
New spatial information (NI) generated by sensors in blastholes 

(𝐵) about the quality of material drilled  

𝑞𝑖(𝑥), NI𝑖(𝑥) 
New information about the quantity and quality of materials, 

respectively at component 𝑖 ∈ 𝑆 ∪ 𝑇  

𝒮 
Set of sensors that generate spatial new information, i.e.  𝒮 ∈
𝐵 ∪ 𝑆 ∪ 𝑇 

𝑞𝑑, NI𝑑(𝑞𝑑) 

Temporal new information generated by the sensor at 

destination 𝑑 ∈ 𝐷 about the quantity and quality of materials, 

respectively 

𝑓𝑑 
A function that mimics the transformation of materials at 

destination 𝑑 ∈ 𝐷 
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𝑞𝑑,𝑝,𝑐, NI𝑐(𝑞𝑑,𝑝,𝑐) 

Temporal new information generated by the sensor at conveyor 

belt 𝑐 ∈ 𝐶 about the quantity and quality of materials, 

respectively transported from destination 𝑑 ∈ 𝐷 to processing 

stream 𝑝 ∈ 𝑃 

𝑞𝑝, NI𝑝(𝑞𝑝) 
Temporal new information generated by the sensor at 

processing stream 𝑝 ∈ 𝑃 about the quantity and quality of 

materials, respectively 

𝑓𝑝 
A function that mimics the transformation of materials at 

processing stream 𝑝 ∈ 𝑃 

𝒯 
Set of sensors that generate temporal new information, i.e. 𝒯 ∈
𝐷 ∪ 𝐶 ∪ 𝑃 

𝑇𝑟𝑎𝑐𝑘 
An operator that tracks the flow of materials in a mining 

operation 

𝑁𝑒𝑖𝑔ℎ𝑥 
The neighbourhood of mining block at location 𝑥 that also 

includes block located at 𝑥 

𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) 
Simulated value of all the block in simulation 𝕤 in the 

neighbourhood  𝑁𝑒𝑖𝑔ℎ𝑥 

𝐷𝑥
𝕤′

 
Conditioning data event value for a block located at 𝑥 in 

updated simulation 𝕤′ 

𝑁𝕤 
Number of conditioning values in the data event in the 

simulation  

𝑁𝜁
𝕤 Number of replicates for data event 𝐷𝑥

𝕤′
 found in the initial 

simulation 𝕤 within a neighbourhood 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) 

𝜁𝕤,𝑖,𝑗 Value of node 𝑗 ∈ 𝑁𝕤′
 in the replicate 𝑖 ∈ 𝑁𝜁

𝕤 

NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥) Spatial sensor data in the neighbourhood  𝑁𝑒𝑖𝑔ℎ𝑥 

𝐷𝑥
𝒮 

Conditioning data event value for block located at 𝑥 in spatial 

sensor data 

𝑁𝒮 
Number of conditioning values in the data event in the spatial 

sensor data  

𝑁𝜁
𝒮 

Number of replicates for data event 𝐷𝑥
𝒮 found in the spatial 

sensor data 𝒮 within a neighborhood NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥) 
𝜁𝒮,𝑖,𝑗 Value of node 𝑗 ∈ 𝑁𝒮 in the replicate 𝑖 ∈ 𝑁𝜁

𝒮 

𝑉(𝑧𝕤(𝑥𝑖)) 
The variance of a block at a location 𝑥𝑖 computed over the set 

of simulations 𝕊I 

𝐸𝑥
𝕤 

Average conditional variance of the initial simulations 𝕤 in 

neighbourhood 𝑁𝑒𝑖𝑔ℎ𝑥 of a block located at 𝑥 

𝛾𝕤 Adjustment factor to adjust the magnitude of 𝐸𝑥
𝕤 
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𝐸(NI𝒮(𝑥𝑖)) 
The error of spatial sensor data at the location of the mining 

block 𝑥𝑖 

𝐸𝑥
NI𝒮  

Average error with the spatial sensor data in the neighborhood 

𝑁𝑒𝑖𝑔ℎ𝑥 of a block located at 𝑥 

𝐸NI𝑖 
Error with new information collected from the component 𝑖 ∈
𝐷 ∪ 𝐶 ∪ 𝑃 in a mining operation 

𝐻𝑥
𝕤′

 

The geometry of conditioning data event 𝐷𝑥𝑐
𝕤′

 found in the initial 

simulation defined by a normalized three-dimensional distance 

vector  

𝑊 
Legendre series polynomial order for the approximation of 

CPDF 

𝐻𝑥
𝒮 

The geometry of conditioning data event 𝐷𝑥𝑐
𝐵  found in the 

spatial sensor data defined by a normalized three-dimensional 

distance vector  

𝑍𝕤′
(𝑁𝑒𝑖𝑔ℎ𝑥) 

Simulated value of all the block in the updated simulation 𝕤′ in 

the neighbourhood  𝑁𝑒𝑖𝑔ℎ𝑥 

𝜏 The soft target update parameter 

𝑁𝐵𝑆 Batch size 

𝛾 Discount factor 

𝑁𝑅 Replay memory cache size 

𝑁𝐼 Training interval 

𝛾𝑖
MP 

The adjustment factor for adjusting the magnitude of model-

based prediction error 

𝑐 L2 regularization cost 

𝑁𝑈 Update training iterations 

𝑁𝑇𝐸 Number of training episodes 

𝑁𝑇 Number of training iterations 

𝑁𝑈𝐸 Number of update training episodes 

Table 5-2 Variables used in the proposed algorithm 

Variable Definition 

𝑓𝜃𝜇 Actor CNN agent parameterized by 𝜃𝜇 

𝑓𝜃𝑄 Critic CNN agent parametrized by 𝜃𝑄 

𝑠𝑡 State at time 𝑡 

𝑎𝑡 Action proposed by actor agent at time 𝑡 

𝑟𝑡 Reward computed by the environment at time 𝑡 

𝒩𝑡 
Random noise process added to the actions at time 𝑡, for exploration 

during training 
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𝑓
𝜃𝑄
′  Target critic CNN agent parameterized by 𝜃𝑄′

 

𝑓𝜃𝜇
′  Target actor CNN agent parameterized by  𝜃𝜇′

 

 

Appendix 5.2 

 This section outlines how to use the algorithm in an operating mining 

environment to update the geostatistically simulated models of pertinent spatial 

properties of the mineral deposit with incoming spatial and temporal new information. 

Appendix 5.3 

 This section presents the deep deterministic policy gradient reinforcement 

learning algorithm for training the agents. 

Input: Actor and critic parameters (𝑓𝜃𝜇 and 𝑓𝜃𝑄), Environment (𝐸𝑛𝑣), training 

iterations (𝑁𝑇), update training iterations (𝑁𝑈), training episodes (𝑁𝑇𝐸), 

update training episodes (𝑁𝑈𝐸) 

Data: Drillhole data (𝐷I), incoming new information (NI𝑖(𝑥), 𝑖 ∈
𝒮; 𝑞𝑖 , NI𝑖(𝑞𝑖),  ∀𝑖 ∈ 𝒯), material flow sensor data (𝑇𝑟𝑎𝑐𝑘) 

Output: Updated stochastic simulations (𝕊U), trained actor and critic agents 

(𝑓𝜃𝜇 , 𝑓𝜃𝑄), updated model-based prediction (MP𝑖
𝕤′

, ∀𝑖 ∈ 𝒯, 𝕤′ ∈ 𝕊U) 

1. Generate initial stochastic simulations 𝕊I using 𝐷I 

2. Generate historical spatial sensor data H𝑖(𝑥), ∀𝑖 ∈ 𝒮, temporal sensor data 

𝑞𝑖, H𝑖(𝑞𝑖),  ∀𝑖 ∈ 𝒯 , and tracking sensor data (𝐻𝑇𝑟𝑎𝑐𝑘) for training the agents 

3. Initialize environment: 𝐸𝑛𝑣 ← 𝐸𝑛𝑣. 𝑠𝑒𝑡𝑢𝑝(𝑞𝑖, H𝑖(𝑞𝑖), H𝑖(𝑥), 𝕊I, 𝐻𝑇𝑟𝑎𝑐𝑘) 

4. 𝑓𝜃𝜇 , 𝑓𝜃𝑄 ← ProposedAIAlgorithm(𝜃𝜇, 𝜃𝑄 , 𝑇𝑟𝑎𝑖𝑛, 𝐸𝑛𝑣, 𝑁𝑇 , 𝑁𝑇𝐸) 

5. If new information is available, then execute in parallel: 

a. 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐸𝑛𝑣 ← 𝐸𝑛𝑣. 𝑠𝑒𝑡𝑢𝑝(NI𝑖(𝑥), 𝑞𝑖, NI𝑖(𝑞𝑖), 𝕊I, 𝑇𝑟𝑎𝑐𝑘)  

b. 𝕊U ← ProposedAIAlgorithm(𝑓𝜃𝜇 , 𝑓𝜃𝑄 , 𝑇𝑒𝑠𝑡, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐸𝑛𝑣) 

c. MP𝑖
𝕤′

←

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐸𝑛𝑣. 𝑀𝑜𝑑𝑒𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑇𝑟𝑎𝑐𝑘, 𝕤′, 𝑗, 𝕊U𝑞𝑖, NI𝑖(𝑞𝑖)) , ∀𝑖 ∈

𝒯, 𝑗 ∈ [1, |𝑍(𝑥)|], 𝕤′ ∈ 𝕊U 

d. 𝑓𝜃𝜇 , 𝑓𝜃𝑄 ← ProposedAIAlgorithm(𝜃𝜇 , 𝜃𝑄 , 𝑇𝑟𝑎𝑖𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐸𝑛𝑣, 𝑁𝑇 , 𝑁𝑇𝑈) 
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  Input: Actor and critic parameters (𝑓𝜃𝜇 and 𝑓𝜃𝑄), initial simulation (𝕊I),Training 

(𝑇𝑟𝑎𝑖𝑛), Environment (𝐸𝑛𝑣), training iterations (𝑁𝑇), episodes (𝑁𝐸) 

Data: Replay memory size (𝑁𝑅), training interval (𝑁𝐼), mini-batch size (𝑁𝐵𝑆), 

soft updated parameter (𝜏), discount factor (𝛾), L2 regularization cost (𝑐) 

Output: Trained actor and critic agent 𝑓𝜃𝜇  and 𝑓𝜃𝑄 

1. Initialized 𝑓𝜃𝜇  and 𝑓𝜃𝑄 with 𝜃𝜇 and 𝜃𝑄and replay memory 𝑅 of size 𝑁𝑅 

2. Initialize target actor (𝑓𝜃𝜇
′ ) and critic (𝑓

𝜃𝑄
′ ) agent with 𝜃𝜇′ ← 𝜃𝜇 and 𝜃𝑄′

← 𝜃𝑄 

3. for 𝑒 in 1. . 𝑁𝐸  do 

a. 𝑛𝐼 = 0 

b. for 𝕤 in 𝕊I do 

i.Initialize 𝕊U ← 𝕊I 

ii.Define random path, 𝑅𝑎𝑛𝑑([1, |𝑍(𝑥)|]) to visit all mining blocks 

iii. if 𝑇𝑟𝑎𝑖𝑛: Initialize random process 𝒩 for action exploration 

iv.for 𝑡 in 𝑅𝑎𝑛𝑑([1, |𝑍(𝑥)|]) do   ⊳ Here 𝑡 represent the location of a block 

1. Receive state 𝑠𝑡, 𝑁𝑒𝑖𝑔ℎ𝑡 = 𝐸𝑛𝑣. 𝑠𝑡𝑎𝑡𝑒(𝑡, 𝕤, 𝕊U)         

2. if 𝑇𝑟𝑎𝑖𝑛: 

       Select action 𝑎𝑡 = 𝑓𝜃𝜇(𝑠𝑡) + 𝒩𝑡 

       else: 

    Select action 𝑎𝑡 = 𝑓𝜃𝜇(𝑠𝑡) 

3. 𝑍𝕤′
(𝑡)  ← 𝑎𝑡 ; ∀ 𝕤′ ∈ 𝕊U 

4. 𝑟𝑡, MP𝑡+1
𝕤′

= 𝐸𝑛𝑣. 𝑟𝑒𝑤𝑎𝑟𝑑(𝕤, 𝑠𝑡, 𝑎𝑡, 𝑁𝑒𝑖𝑔ℎ𝑡, 𝑍𝕤(𝑡), 𝕊I, 𝕊U) 

5. 𝑠𝑡+1 = 𝐸𝑛𝑣. 𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝑠𝑡, 𝑡, 𝑎𝑡, MP𝑡+1
𝕤′

)                         

6. if 𝑇𝑟𝑎𝑖𝑛: Store tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, and 𝑠𝑡+1) in 𝑅 ; and 𝑛𝐼 ← 𝑛𝐼 + 1 

7. if 𝑛𝐼 𝑚𝑜𝑑 𝑁𝐼 = 0 and 𝑇𝑟𝑎𝑖𝑛: for 𝑛𝑇 in 1. . 𝑁𝑇  do 

a. Sample minibatch of size 𝑁𝑅 from 𝑅 

b. Update critic by minimizing TD error 𝐿 =  
1

𝑁𝑅 
∑ ((𝑟𝑖 +𝑖∈𝑁𝑅 

𝛾. 𝑓
𝜃𝑄
′ (𝑠𝑖+1, 𝑓𝜃𝜇

′ (𝑠𝑖+1))) − (𝑓𝜃𝑄(𝑠𝑖, 𝑎𝑖)) + 𝑐 ∙ ‖𝜃𝑄‖2)  

c. Update actor by sampled policy gradient ∇𝜃𝜇𝐽 ≈

 
1

𝑁𝑅
∑ (∇𝑓𝜃𝜇(𝑠𝑖)𝑓𝜃𝑄(𝑠𝑖 , 𝑓𝜃𝜇(𝑠𝑖))∇𝑓𝜃𝜇(𝑠𝑖)𝑓𝜃𝜇(𝑠𝑖))𝑖∈𝑁𝑅   

d. Update target actor and target critic 𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 −

𝜏)𝜃𝜇′ and 𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′
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Appendix 5.4 

 This section outlines the algorithm for the calculation of model-based 

predictions. 

 

Appendix 5.5 

 This section presents the algorithm for the calculations of the next state. 

 

Appendix 5.6 

 This section presents the algorithm for reward calculations.  

Input: Material flow operator (𝑇𝑟𝑎𝑐𝑘), simulation number (𝕤), block location 𝑥, 

simulations (𝕊I), new information at component 𝑖 (𝑞𝑖, NI𝑖(𝑞𝑖)) 

Output: MP𝑖
𝕤 

1. MP𝑖
𝕤 ← []            ⊳ Initialize model-based prediction vector 

2. If new information (𝑞𝑖 , NI𝑖(𝑞𝑖)) is available about mining block 𝑥: 

1. 𝐿𝑜𝑐 ← 𝑇𝑟𝑎𝑐𝑘(NI𝑖)      ⊳ Tracking the blocks that generated the sensor data  

2. MP𝑖
𝕤. 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑖(𝑇𝑟𝑎𝑐𝑘(𝑍𝕤(𝐿𝑜𝑐), 𝑞𝑖))) , ∀𝕤 ∈ 𝕊I, 𝑖 ∈ 𝒯  ⊳ Eq. 5.3-5.5 

3. Else: 

1. MP𝑖
𝕤. 𝑎𝑝𝑝𝑒𝑛𝑑(−1)                       ⊳ Returning the default value 

Input: Initial state (𝑠𝑡) , location (𝑥),  action (𝑎𝑡) , model prediction MP𝑡+1
𝕤′

  
Output: 𝑠𝑡+1 

1. Initialize 𝑠𝑡+1 ← 𝑠𝑡 

2. 𝑠𝑡+1. SimState[𝑥] ← 𝑎𝑡 

3. 𝑠𝑡+1. AdditionalDataMP[𝑖] ← MP𝑡+1
𝕤′

[𝑖], ∀ 𝑖 ∈ 𝒯  
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Input: Simulation number (𝕤), state (𝑠𝑡), updated simulation value (𝑍𝕤′
(𝑥)), 

neighborhood (𝑁𝑒𝑖𝑔ℎ𝑥), initial simulation value (𝑍𝕤(𝑥)), initial simulations 

(𝕊I), updated simulations (𝕊U) 

Data: Degree polynomials (𝑊), temporal new information error adjustment factor 

(𝛾𝑖
𝑀𝑃) 

Output: Reward and new model prediction  

1. Reward ← 0, MP ← [] 
2. 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) ← 𝑠𝑡. SimState, 𝐸𝑥

𝕤 ← 𝑠𝑡. AdditionalDataES 

3. 𝐷𝑥
𝕤′

, 𝐻𝑥
𝕤′

← 𝑠𝑡. AdditionalDataSim , 𝐷𝑥
𝒮, 𝐻𝑥

𝒮 ← 𝑠𝑡. AdditionalDataSpatial 

4. NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥) ← 𝑠𝑡. SpatialState, 𝐸𝑥
NI𝒮 ← 𝑠𝑡. AdditionalDataEB 

5. 𝐸NI𝑖 ← 𝑠𝑡. AdditionalDataEI[𝑖], NI𝑖(𝑞𝑖), 𝑞𝑖 ← 𝑠𝑡. AdditionalDataOS[𝑖] ; ∀ 𝑖 ∈ 𝒯 

6. 𝑁𝜁
𝕤, 𝜁𝕤,𝑖,𝑗 ← 𝐸𝑛𝑣. 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥), 𝐷𝑥

𝕤′
, 𝐻𝑥

𝕤′
) 

7. 𝑓𝕤
�̃�(𝑍(𝑥)|𝐷𝑥

𝕤′
) ← 𝐸𝑛𝑣. 𝐵𝑢𝑖𝑙𝑑𝑃𝐷𝐹(𝑁𝜁

𝕤, 𝜁𝕤,𝑖,𝑗, 𝑊, 𝑁𝕤)                   ⊳ Eq. 5.8-5.10 

8. 𝜆𝕤 ←
1−𝐸𝑥

𝕤

1−𝐸𝑥
𝕤+1−𝐸𝑥

NI𝒮 +∑ 1−𝐸NI𝑖𝑖∈𝒯

                                                         ⊳ Eq. 5.12 

9. 𝑟𝕤 ← 𝜆𝕤 ∙ (𝑓𝕤
�̃�(𝑍(𝑥) = 𝑍𝕤′

(𝑥)|𝐷𝑥
𝕤′

) − 𝑓𝕤
�̃�(𝑍(𝑥) = 𝑍𝕤(𝑥)|𝐷𝑥

𝕤′
))  ⊳ Eq. 5.11 

10. Reward ←  Reward + 𝑟𝕤 

11. If NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥)is available: 

a. 𝐷𝑥
𝒮, 𝐻𝑥

𝒮 ← 𝐸𝑛𝑣. 𝐷𝑎𝑡𝑎𝐸𝑣𝑒𝑛𝑡(NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥), 𝑁𝒮 , 𝑥) 

b. 𝑁𝜁
𝒮 , 𝜁𝒮,𝑖,𝑗 ← 𝐸𝑛𝑣. 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒(NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥), 𝐷𝑥

𝒮 , 𝐻𝑥
𝒮) 

c. 𝑓𝒮
�̃�(𝑍(𝑥)|𝐷𝑥

𝒮) ← 𝐸𝑛𝑣. 𝐵𝑢𝑖𝑙𝑑𝑃𝐷𝐹(𝑁𝜁
𝒮 , 𝜁𝒮,𝑖,𝑗, 𝑊, 𝑁𝒮) 

d. 𝜆𝒮 ←
1−𝐸𝑥

NI𝒮

1−𝐸𝑥
𝕤+1−𝐸𝑥

NI𝒮+∑ 1−𝐸NI𝑖𝑖∈𝒯

                                       

e. 𝑟𝒮 ← 𝜆𝒮 ∙ (𝑓𝒮
�̃�(𝑍(𝑥) = 𝑍𝕤′

(𝑥)|𝐷𝑥
𝒮) − 𝑓𝒮

�̃�(𝑍(𝑥) = 𝑍𝕤(𝑥)|𝐷𝑥
𝒮)) 

12. Reward ← Reward + 𝑟𝒮 

13. For all 𝑖 in 𝒯 do: 

a. If new information (NI𝑖(𝑞𝑖), 𝑞𝑖) is available: 

i. 𝜆𝑖 ←
1−𝐸NI𝑖

1−𝐸𝑥
𝕤+1−𝐸𝑥

NI𝒮+∑ 1−𝐸NI𝑖𝑖∈𝒯

                                       

ii. MP𝑖
𝕤 ← 𝑠𝑡. AdditionalDataMP[𝑖] 

iii. MP𝑖
𝕤′

← 𝐸𝑛𝑣. 𝑀𝑜𝑑𝑒𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑐𝑘, 𝕤, 𝑥, 𝕊U, NI𝑖(𝑞𝑖), 𝑞𝑖) 

iv.  MP. 𝑎𝑝𝑝𝑒𝑛𝑑(MP𝑖
𝕤′

) 

v. 𝑟𝑖 ← 𝜆𝑖 ∙ (|MP𝑖
𝕤 − NI𝑖(𝑞𝑖)| − |MP𝑖

𝕤′
− NI𝑖(𝑞𝑖)|) ∙ 𝛾𝑖

𝑀𝑃       ⊳ See Eq. 5.16 

vi. Reward ← Reward + 𝑟𝑖 
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Appendix 5.7 

 This section outlines the algorithm for finding the conditioning data event and its 

geometry for a mining block. 

 

Appendix 5.8 

 This section shows the algorithm for generating the state description. 

Input: Number of closest conditioning data 𝑁𝕤, location of mining block 𝑥, 

neighborhood values 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥), and location 𝑁𝑒𝑖𝑔ℎ𝑥 

Data: Tolerance for search 𝑇𝑜𝑙𝑖
𝕤, ∀𝑖 ∈ 𝑁𝕤 

Output: Conditioning data event value 𝐷𝑥
𝕤 and its geometry 𝐻𝑥

𝕤 

1. 𝑅𝐷 ← 𝑁𝑒𝑖𝑔ℎ𝑥 − 𝑥             ⊳ Finding relative distance vector of neighborhood 

2. 𝐿 ← 𝐿𝑒𝑛𝑔𝑡ℎ(𝑁𝑒𝑖𝑔ℎ𝑥)      ⊳ Length of the neighborhood 

3. 𝐵 ← 𝐵𝑟𝑒𝑎𝑑𝑡ℎ(𝑁𝑒𝑖𝑔ℎ𝑥)      ⊳ Breadth of the neighborhood 

4. 𝐻 ← 𝐻𝑒𝑖𝑔ℎ𝑡(𝑁𝑒𝑖𝑔ℎ𝑥)        ⊳ Height of the neighborhood 

5. 𝐿𝑜𝑐𝑁𝕤 ← min (𝑅𝐷, 𝑁𝕤)    ⊳ Computing location of 𝑁𝐷
𝕤  points with minimum RD 

6. 𝑁𝐶 ← √𝐿2 + 𝐵2 + 𝐻2          ⊳ Normalizing coefficient for distance vector 

7. If 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) is available: 

a. 𝐷𝑥
𝕤 ← 𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥)[𝐿𝑜𝑐𝑁𝕤]           ⊳ Returning data event value 

b. 𝐻𝑥
𝕤 ←

𝑅𝐷+𝑁𝐶

2∗𝑁𝐶
                                     ⊳ Returning normalized distance vector 

8. Else: 

a. 𝐷𝑥
𝕤 ← [−1] ∗ 𝑁𝕤                              ⊳ Returning default value 

b. 𝐻𝑥
𝕤 ← [−1] ∗ 𝑁𝕤                              ⊳ Returning default value 
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Input: Location of mining block (𝑥), simulation number (𝕤),updated simulation 

𝕊U 

Data: New information (NI𝑖(𝑥), 𝑖 ∈ 𝒮; 𝑞𝑖, NI𝑖(𝑞𝑖),  ∀𝑖 ∈ 𝒯), material flow data 

(𝑇𝑟𝑎𝑐𝑘), initial stochastic simulations (𝕊I),conditioning simulation data 

(𝑁𝕤), conditioning spatial sensor data (𝑁𝒮), number of block in 

neighbourhood in X, Y, and Z direction (𝑛𝑋, 𝑛𝑌, 𝑛𝑍), block size in X, Y, 

and Z direction (𝑠𝑋, 𝑠𝑌, 𝑠𝑍) 

Output: State (𝑠𝑡) and neighborhood block location (𝑁𝑒𝑖𝑔ℎ𝑥) 

1. 𝑁𝑒𝑖𝑔ℎ𝑥 ← [] 
2. For 𝑖 in (−𝑛𝑋, 𝑛𝑋, 𝑠𝑋) do 

a. For 𝑖 in (−𝑛𝑌, 𝑛𝑌, 𝑠𝑌) do 

1. For 𝑖 in (−𝑛𝑍, 𝑛𝑍, 𝑠𝑍) do 

i. 𝑁𝑒𝑖𝑔ℎ𝑥 . 𝑎𝑝𝑝𝑒𝑛𝑑([𝑖 + 𝑥[0], 𝑗 + 𝑥[1], 𝑘 + 𝑥[2]]) 

3. SimState ← 𝐸𝑛𝑣. 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑍𝕤(𝑁𝑒𝑖𝑔ℎ𝑥) ), ∀𝕤 ∈ 𝕊I              ⊳ Image input 

4. If spatial new information (NI𝒮) is available: 

a. SpatialState ← 𝐸𝑛𝑣. 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥))                     ⊳ Image input 

b. AdditionalDataSpatial ←  𝐸𝑛𝑣. 𝐷𝑎𝑡𝑎𝐸𝑣𝑒𝑛𝑡(NI𝒮(𝑁𝑒𝑖𝑔ℎ𝑥), 𝑁𝒮 , 𝑥, 𝑁𝑒𝑖𝑔ℎ𝑥) 

5. AdditionalDataSim ←  𝐸𝑛𝑣. 𝐷𝑎𝑡𝑎𝐸𝑣𝑒𝑛𝑡(𝑍𝕤′
(𝑁𝑒𝑖𝑔ℎ𝑥), 𝑁𝕤, 𝑥, 𝑁𝑒𝑖𝑔ℎ𝑥), ∀𝕤′ ∈

𝕊U     
6. AdditionalDataES ←  𝐸𝑥

𝕤                                                           ⊳ Eq. 5.1 

7. AdditionalDataEB ←  𝐸𝑥
NI𝒮                                                        ⊳ Eq. 5.2 

8. If temporal new information (𝑞𝑖, NI𝑖(𝑞𝑖)) is available: 

a. AdditionalDataEI ← [], AdditionalDataOS ← [], AdditionalDataMP ← [] 
a.  For 𝑖 in 𝒯 do: 

1. AdditionalDataEI. ← (𝐸NI𝑖) 

2. AdditionalDataOS. ← (NI𝑖(𝑞𝑖), 𝑞𝑖) 

3. AdditionalDataMP. ←

(𝐸𝑛𝑣. ModelPrediction(𝑇𝑟𝑎𝑐𝑘, 𝕤, 𝑥, 𝕊I, NI𝑖(𝑞𝑖), 𝑞𝑖)) 

b. Else 

a.  For 𝑖 in 𝒯 do: 

1. AdditionalDataEI. ← (−1) 

2. AdditionalDataOS. ← (−1, −1) 

3. AdditionalDataMP. ← (−1) 

9. 𝑠𝑡 ← (SimState, SpatialState, AdditionalDataSim, AdditionalDataSpatial , 
AdditionalDataES, AdditionalDataEB , AdditionalDataEI , AdditionalDataOS , 

AdditionalDataMP) 
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Appendix 5.9 

 This section details the architecture of the agents used for the case study in the 

manuscript. The total number of parameters for the actor agent is ≈ 497,000, and the 

critic agent is ≈ 498,000. 

The actor agent consists of: 

1. A simulation state and a spatial sensor data state, each having the following 

convolution layers: 

a. Convolution layer 1:  8 filters, kernel size 5, strides 1, ReLU activation, 

valid padding and Xavier initialization (Glorot and Bengio, 2010) 

b. Convolution layer 2: 8 filters, kernel size 3, strides 1, ReLU activation, 

valid padding and Xavier initialization 

c. Dense layer 1: Takes flattened convolution output as input and have 

128 neurons with ReLU activation and Xavier initialization 

The outputs from the convolution layers are concatenated with the additional data. 

The actor agent then has the following layers: 

2. Dense layer 2: 100 neurons with Xavier initialization and ReLU activation 

3. Dense layer 3: 50 neurons with Xavier initialization and ReLU activation 

4. Dense layer 4: 1 output with Xavier initialization and sigmoid activation 

The critic agent consisted of: 

1. A simulation state and a spatial sensor data state, each having the following 

convolution layers: 

a. Convolution layer 1:  8 filters, kernel size 5, strides 1, ReLU activation, 

valid padding and Xavier initialization (Glorot and Bengio, 2010) 

b. Convolution layer 2: 8 filters, kernel size 3, strides 1, ReLU activation, 

valid padding and Xavier initialization 
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c. Dense layer 1: Takes flattened convolution output as input and have 

128 neurons with ReLU activation and Xavier initialization 

The outputs from the convolution layers are concatenated with the additional data 

and the action. The critic agent then has the following layers: 

2. Dense layer 2: 100 neurons with Xavier initialization and ReLU activation 

3. Dense layer 3: 50 neurons with Xavier initialization and ReLU activation 

4. Dense layer 4: 1 output with Xavier initialization and no activation 

Appendix 5.10 

The proposed AI algorithm is trained on an Intel® i7-8700 machine with an 8-

core processor and an NVIDIA GeForce GTX 1050 GPU for approximately 2 days. 

The training process was executed with 100 training episodes (𝑁𝑇𝐸), a training 

interval of 65000 (𝑁𝐼), training iterations of 200 (𝑁𝑇), a batch size of 500 (𝑁𝐵𝑆), 20 

initial geostatistically simulated models (𝕊I), an L2 regularization cost of 0.001 (𝑐), a 

discount factor of 0.99 (𝛾), a soft update parameter of 0.001 (𝜏),  an adjustment factor 

for initial geostatistical simulation conditional variance of 10 (𝛾𝕤), a model-based 

prediction error adjustment factor of 10 (𝛾𝑖
MP, ∀𝑖 ∈ 𝒯), a Legendre polynomial order 

of 10 (𝑊), a number of conditioning data events in the geostatistically simulated 

model of 8 (𝑁𝕤),  and a replay memory buffer size of 1 million (𝑁𝑅). The noise process 

used for the exploration during the training phase of the algorithm is the Ornstein-

Uhlenbeck method, with a standard deviation of 0.1 (Uhlenbeck and Ornstein, 1930). 

The learning rates of the actor and critic are set to 0.0001 and 0.001, respectively. 

Most of the parameters used in the proposed algorithm are taken from Lillicrap et al. 

(2015). 
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CHAPTER 6                                                                                                                            

Conclusions and Future Work 

 

 

6.1 Conclusions 

A mining complex is an integrated value chain where raw materials flow from 

mines to market after being treated and transformed into sellable products through the 

available processing streams. The simultaneous stochastic optimization model for 

long-term production planning of a mining complex aims to jointly optimize the 

different strategic decisions in a single optimization model to maximize asset 

valuation while accounting for uncertainty in the supply of materials and commodity 

prices. The single optimization model capitalizes on synergies between the different 

components and the quantified variability and uncertainty, to better meet the 

production targets. The existing simultaneous stochastic optimization models do not 

account for supply uncertainty related to the geometallurgical properties of materials. 

Geometallurgical properties of materials such as hardness, grindability, ore texture, 

and so on, affect the throughput and energy consumption of the processing streams in 

a mining complex. A short-term production plan is then generated within the 

predefined long-term production plan to provide monthly/weekly/daily time scale 

production decisions that aim to ensure compliance with the long-term targets while 

maximizing cash flow. Conventional and new digital technologies, including the 

development of advanced sensors, monitoring, and tracking devices, have enabled a 

mining complex to acquire new information about the performance of its different 
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components, and about pertinent properties of materials at those components. 

However, the new information is “soft,” i.e., noisy, and therefore uncertain, because 

of the characteristics of the related sensors that generate indirect measurements 

compared to those derived from the analysis of the drillhole samples in geochemical 

laboratories. The existing technologies cannot integrate the noisy and uncertain 

incoming new information and respond accordingly to adapt the short-term 

production plan of a mining complex. 

 This thesis presents a new self-learning artificial intelligence framework to allow 

a mining complex to learn to integrate noisy and uncertain incoming new information 

and respond quickly by adapting the short-term production planning decisions. This 

follows an initial general effort to extend the simultaneous stochastic optimization 

model to account for the geometallurgical properties of materials. 

Chapter 2 presents an approach to include geometallurgical supply uncertainty 

and decisions in the simultaneous stochastic optimization of the long-term production 

plan of a mining complex. This approach characterizes the materials as hard and soft, 

depending on their geometallurgical properties, and then links those properties to the 

simultaneous stochastic optimization model through geometallurgical targets. The 

contribution and applied aspects of the proposed approach are highlighted with an 

application at a large copper-gold mining complex. Two geometallurgical properties 

related to the grindability of the material, i.e., the semi-autogenous power index and 

the bond work index, are considered in the optimization model. The forecasts for the 

stochastic mine production plan show a 12.5% higher production of the primary 

copper product, 22.9%, 32.4%, and 34.7% higher production of gold, silver, and 

molybdenum secondary products, higher chances of meeting the different production 
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targets, and a 19.3% increase in net present value compared to the conventional mine 

production plan. 

Chapter 3 presents a new self-learning artificial intelligence framework for 

adapting the short-term flow of materials in a mining complex with incoming new 

information. The framework consists of two parts: first, updating the supply 

uncertainty related to multiple correlated properties of materials with a new extension 

of ensemble Kalman filter and, second, training neural agents to respond to incoming 

new information by adapting the short-term flow of materials in multiple product 

mining complexes with a model-free policy gradient reinforcement learning 

algorithm. The short-term flow of materials includes deciding which destinations to 

send the extracted materials and then determining how to utilize the processing 

streams. The proposed framework is applied at a real-world copper mining complex 

to show its applicability in an operating mine, and its ability to adapt the flow of 

materials in real-time to more closely meet the production requirements while 

increasing the production of primary copper products by 11% and cash flow by 15% 

compared to industry-standard approaches. 

The major short-term production decisions in a mining complex, such as 

extraction sequence, destination policies, and processing stream utilization, are 

interrelated and dependent on the performance of its different components. Therefore, 

in Chapter 4, a new model-based self-play reinforcement learning algorithm is 

proposed to adapt all the major short-term production planning decisions 

simultaneously by responding to the incoming new information. The proposed 

algorithm plays the game of short-term production planning by itself using a Monte 

Carlo tree search, to train a deep neural network agent to adapt the short-term 
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production plan by responding to incoming new information in an operating mine. An 

application of the proposed algorithm at a real-world copper mining complex shows 

its applicability in an operating mine and its ability to adapt the short-term production 

plan in real-time to more closely meet the production requirements while increasing 

copper production by 7% and cash flow by 12%.  

The existing methods to update the supply uncertainty of materials do not learn 

from the incoming new information, do not capitalize on the spatial statistics in the 

incoming spatial new information (collected spatially with drilling machines located 

in the mineral deposits), and do not account for nor respect high-order spatial 

statistics. Therefore, in Chapter 5, a new model-free actor-critic reinforcement 

learning algorithm is proposed that leverages concepts of high-order spatial statistics 

to train convolutional neural network agents to update the supply uncertainty of 

materials by integrating the incoming new information. An application of the 

proposed algorithm at a copper mining operation with incoming drilling machine 

sensor data (spatial), and processing mill sensor data (temporal) demonstrates its 

applied aspects in updating the supply uncertainty of materials in real-time while 

reproducing spatial patterns and high-order spatial statistics. 

This proposed self-learning artificial intelligence framework will allow a mining 

complex to learn from and adapt to incoming new information while it operates, to 

make more informed short-term production planning decisions and more closely meet 

its long-term production plan and targets. 



252 

 

6.2 Future Work 

There are several possible directions for future research based on the work 

presented in this thesis. The approach outlined in Chapter 2 to integrate 

geometallurgical properties of materials in the simultaneous stochastic optimization 

model for long-term planning could be further developed to integrate more 

geometallurgical properties of materials and operating mode related decisions. The 

results from the case study in Chapter 2 indicate that the available destinations and 

processing streams may be better utilized, providing further opportunities for value 

improvement through the inclusion of capital expenditure decisions in the 

simultaneous stochastic optimization model. 

The self-play reinforcement learning algorithm proposed in Chapter 4 could be 

improved to match the performance of recent algorithms proposed in Silver et al.  

(2017, 2018) and Schrittwieser et al. (2019). It could also be tested at different mining 

complexes with different sources of incoming new information to evaluate its 

robustness along with a sensitivity analysis of the parameters used in proposed 

algorithm. Future research could also investigate incorporating supply uncertainty and 

incoming new information related to the geometallurgical properties of materials in 

the proposed algorithm. The algorithm could be extended in the future to adapt the 

fleet allocation and assignment decisions in addition to the major short-term planning 

decisions it already considers. In the future, this algorithm could also be integrated 

into the hyper-heuristic algorithms used for solving simultaneous stochastic 

optimization models of mining complexes. The adaptation of the short-term 

production plan within a predefined long-term production plan limits the scope for 

significant improvements and adaptation; therefore, future research could also focus 

on adapting the short and long-term production plans simultaneously by responding 

to incoming new information. Mining complexes consist of different components that 



253 

 

compete for resources and cooperate to generate products. A multi-agent architecture 

could be explored in the future to assign different agents to different short-term 

production planning decisions that compete and cooperate, like the algorithm 

proposed in Baker et al. (2019). 

The actor-critic reinforcement learning algorithm proposed in Chapter 5 could be 

improved to match the performance of advantage, and asynchronous advantage actor-

critic algorithms proposed in Mnih et al. (2016). In the future, research could focus 

on integrating additional sources of incoming new information, applying this 

algorithm at different mining operations, sensitivity analysis of the parameters, and 

expanding it to update multiple properties of materials at block support scale. In the 

future, the proposed algorithm could also be expanded and applied to reservoirs and 

oil fields. It could also be extended to update the categorical geological, and non-

additive geometallurgical properties of materials. 
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