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Abstract

Leveraging demonstrations to learn complex maneuvers is a handy technique to teach robots

when other techniques like reinforcement learning are difficult to implement. However, the

world is diverse and partially observable, and generating demonstrations under all possible

situations in hard. As a result, a lot of times the robot’s decision on the situation it has

not seen earlier is wrong.

One line of potential solutions to handle this problem of incorrect decision-making at

previously unseen situations begins with equipping the robots with a sense of confidence

in their decisions. In this work, we develop one such technique using a data-driven proba-

bilistic method.

Specifically, we use a Bayesian Neural Network to generate a cheap to obtain quantity

for the robot to gauge its confidence of doing well in a given situation. These different

situations are more relatable to the real world in the sense that the differences between

them are unobservable. We show the scalability and consistency of our approach to such

situations in high dimensional simulated and real robotic domains. Also, we show that

such a confidence based solution allows making an informed decision about when to invoke

a fallback strategy. One fallback strategy is to request more data. We empirically show

that providing data only when requested results in increased data-efficiency. This is crucial

in the real-world as data is expensive and painstaking to obtain.
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Le Résumé

L’utilisation de démonstrations pour apprendre des manoeuvres complexes est une tech-

nique pratique pour enseigner aux robots lorsque d’autres techniques telles que l’apprentissage

par renforcement sont difficiles à mettre en oeuvre. Cependant, le monde est divers et par-

tiellement observable, et générer des démonstrations dans toutes les situations possibles est

dur. Par conséquent, la décision du robot sur la situation qu’il n’a pas vue est souvent

erronée.

Une ligne de solutions potentielles pour adresser ce problème de prise de décision incor-

recte dans des situations observées pour la première fois commence par donner aux robots

une notion de confiance dans leurs décisions. Dans ce travail, nous développons une telle

technique en utilisant une méthode probabiliste basée sur les données.

Plus précisément, nous utilisons un réseau de neurones bayésien pour générer une quan-

tité peu coûteuse à obtenir pour que le robot puisse évaluer sa confiance afin de bien réussir

dans une situation donnée. Ces différentes situations sont davantage liées au monde réel en

ce sens que les différences entre elles ne sont pas observables. Nous montrons l’évolutivité

et la cohérence de notre approche sur de telles situations dans des domaines robotiques

simulés et réels de grande dimension. En outre, nous montrons qu’une telle solution basée

sur la confiance permet de prendre une décision éclairée en temps réel, afin d’́ınvoquer

potentiellement une stratégie de repli. Une stratégie de repli consiste à demander plus de

données. Nous montrons de manière empirique que l’obtention de données uniquement à

la demande entrâıne une efficacité accrue des données. Ceci est crucial dans le monde réel

car les données sont chères et difficilesà obtenir dans le monde réel.
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Chapter 1

Introduction

Being able to extract and leverage useful information from demonstrations is one of the

hallmarks of highly evolved intelligence. Learning by observing how others do something

is one of the primary ways by which humans learn social constructs, protocols and other

pertinent behavioral aspects of life [1]. Hence being able to leverage demonstrations is a

critical piece to building a more capable artificial intelligence.

1.1 The Dichotomy of Leveraging Demonstrations for Learning

Learning from Demonstrations (LfD) is an umbrella term used for any technique that lever-

ages demonstrations to build machine intelligence. Behavioral Cloning (BC) in particular,

is a technique for learning from demonstrations where a mapping is learnt directly from in-

puts or observations to their corresponding outputs or actions. It has been highly effective

for learning decision-making architectures or controllers for complex and high-dimensional

tasks. One of the success stories of BC in developing such complex controllers is self-driving

cars [6, 7]. BC is handy where other techniques such as deep reinforcement learning and

optimal control are challenging to implement or are highly prone to failure. This is be-

cause learning the right solution is relatively easier to attain using BC as compared to

other frameworks such as reinforcement learning. Other benefits of BC and learning from

demonstrations in general include opening up a convenient way of communicating an intent

between a layman person and an AI system.

However, BC is not a silver bullet for all our AI problems. BC based methods can fail

when there is a mismatch between the situations at deployment and situations at training.
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We call these diverse situations as contexts in our work. Our state of the art learning

architectures such as Neural Network (NN) is prone to fit to the data from seen contexts in

a way that its prediction at previously unseen contexts could be wrongly estimated. This

problem is more pronounced when demonstrations are non-exhaustive and the contexts are

high-dimensional, extremely diverse in nature, and partially observable. For example, a

self-driving car might transfer its knowledge positively to a dry road after training from

demonstrations on a wet one but might fail on a slippery icy road. Hence, BC is marred

with its own set of problems.

1.2 Contribution of the Work

One potential direction towards mitigating the problems that we describe above would be

to have a cheap proxy that reflects the chances of success of a learner in any given situation.

Such a proxy should also be easy be obtain and be integrated in a way that facilitates better

decision-making abilities for our learner [8]. This proxy would be particularly invaluable in

the failure prone contexts which are otherwise hard to know.

Previous works have shown that training on multiple diverse conditions helps [9] but

demonstrations are expensive and modelling all possible situations is hard. A few works [10,

11] also show that conditioning on history to learn useful behavior ameliorates the situa-

tion but cannot adjust to drastic changes. In this work, I study and analyze integration

of probabilistic methods with BC using Bayesian Neural Networks (BNN) under diverse

high dimensional contexts where the demonstrations are close to optimal. What makes

the problem more interesting is the fact that the differences between these contexts can

be unobservable. In our self-driving car example given earlier, this unobservability would

correspond to the fact that a self-driving car does not have any sensor to tell the difference

in the friction coefficient of a dry road and an icy one. Specifically, I investigate whether

a relation can be obtained between the predictive uncertainties of the BNN and its per-

formance. The idea is to use the predictive uncertainties as a cheap proxy to gauge the

learner success in a given context.

I further go on to develop a framework which can leverage the predictive uncertainties to

appropriately time the invocation of a fallback strategy. Such an uncertainty aware learner

has the ability to not only effectively make decisions when encountering diverse contexts as

in the real-world but also opens up a gamut of possibilities of adopting reasonable fallback
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strategies in the light of high uncertainty. As an example of such a reasonable fallback

strategy, we propose a learner that stops and seeks for context specific demonstrations.

Our contributions in this work are

• to design a framework to generate predictive uncertainties over multiple contexts as

a confidence measure in a BC setting scalably, and

• to propose an approach for actively requesting context-specific training data where

the learner is not confident.

Note that our work is closely related to Adaptive Control and System Identification as

our methodology adjusts its behavior (adaptive) depending on what it infers as the under-

lying situation (identification) as a latent variable. We first support our claims through a

proof-of-concept experiment on a real pendulum swing up robot. We then do experiments

on simulated environments like OpenAI Gym [12] supported MuJoCo tasks of HalfCheetah

and Swimmer where the differences in contexts are unobservable. We first show that BNNs

scale up easily to higher-dimensional tasks. We then show that there exists an inverse re-

lation between the predictive uncertainty given by the BNN and the performance of the

controller, so, the uncertainty can be used as a confidence to predict its success. Finally, as

fallback strategy we propose requesting more demonstrations when the predictive uncer-

tainty is too high. We show that seeking more context specific demonstrations only when

the learner is highly uncertain on that particular context leads to data-efficient learning.

1.3 Thesis Outline

In the next chapter (chapter 2), we describe the background relevant to our work such

as LfD and learning predictive uncertainties. We describe in detail the intricacies and

significance of various methods in each of those categories while positioning similar methods

to our work such as active learning from demonstrations and learning across multiple task

variants.

We then highlight the scope of our work by formalizing our problem set-up and method-

ology of how we use the probabilistic methods to represent uncertainty while learning by

BC in chapter 3. We describe how do we generate predictive uncertainties using BNN

that scales naturally to the high-dimensional tasks and number of data-points where the

underlying contexts can vary considerably in an unobservable way. We also describe our
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fallback strategy to leverage the obtained uncertainty in the context of active learning from

demonstrations on multiple diverse contexts. We describe how we ground the confidence of

the controller in a way that helps it to discern between the contexts that it can generalize

to and the contexts it cannot generalize to satisfactorily.

We explain our experimental set-ups of a physical pendulum swing-up task, as well as

several simulated robotics tasks in chapter 4. We explain their observation space, action

space, the reward structure, and their respective demonstrators. We also explain briefly

what makes these experiments interesting for the solutions to the problem that we care

about in this work.

We explain the viability and benefits of our approach in chapter 5 where we show that

our methodology can scale up organically, can successfully capture the success in a given

context through the predictive uncertainty metric and yield a data-efficient active learning

mechanism.

Finally, in chapter 6, we delineate the possible lines of future work based on what can

be built on top of our approach and the avenues where our methodology might not be

effective.
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Chapter 2

Background

In this chapter, we describe the background knowledge needed to fully understand and

estimate the scope of our work. We define methodologies and frameworks used in this

work mean and explain their scope while also covering their broad categories, advantages

and limitations. We also highlight methods that are built on these methodologies and are

related to our work in a bid to position our work in the space of similar methods.

2.1 Learning from Demonstrations

Learning by imitation in human history has played a pivotal role in steering our evolution

and continues to play a crucial role in shaping intelligent behavioral societies [1]. Chil-

dren learn most of their daily life routines like cleaning, and cooking by observing their

caregivers [13]. Hence the pursuit of a stronger AI involves, in part, equipping the AI

agents with the ability to learn useful behavior by observing. Additionally, as more and

more AI powered systems will permeate into our societies in the form of self-driving cars,

care-giving robots, cobots etc, the need for devising ways for better learning by imitation

will be appealing as it opens up the possibility for even a layman person to tweak their

robot’s behavior by demonstrating their intention.

Learning from Demonstrations (LfD) or Imitation Learning is an umbrella term used for

any learning methodology that leverages demonstrations to learn any function of interest.

The simple nature of many LfD techniques had prompted researchers for quite some time

to leverage it for complicated tasks such as navigation avoidance through pedestrian tra-

jectories [14], helicopter control [15], autonomous driving [16], one-shot visual transfer [17],
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Fig. 2.1 A bulk of our behavior patterns are motivated by observing others
(top figure) [1]. Hence in order to attain more capable AI systems, we have to
endow them with the mechanism to learn from demonstrations (bottom figure,
taken from [2]).

etc. In this section we will first develop perspective around why LfD is significant today,

followed by formalizing LfD and different ways of approaching it, then talk about unique

complications arising from the nature of LfD based techniques and finally talk briefly about

getting around these unique LfD problems and extensions.

2.1.1 Why do we need LfD

Very broadly, LfD has three major advantages over other learning paradigms:

1. Communication of intent is easy: A major way of communicating intent in

control applications is through reward or cost functions but these functions are hard

to design. Given the fact that LfD techniques allow communication of intent easily,

methods that leverage demonstrations seem more enticing to adopt.

2. Finding a good control solution is hard: Optimization is hard. Often, the

converged solution is not the best possible achievable answer. However conveying the

best solution through demonstrations is an easier task. This phenomenon even exists

in the real world, as it had been observed with Fosbury Flop [18], see figure 2.2).



2 Background 7

3. Learning from scratch is time-consuming and dangerous: Usually learning

from scratch necessitates making an catastrophic error to know what was bad. This

is unacceptable especially in the real world. However, demonstrations can be used to

effectively communicate how to avoid such situations.

Fig. 2.2 Fosbury Flop: Until demonstrated by Dick Fosbury in 1968 Summer
Olympics, all elite high jumpers used less effective techniques of high jump.
This turn of events has remarkable similarity to finding the optimal policy
for problems by current techniques versus by using demonstrations. Image is
taken from Wikipedia.

2.1.2 Formalizing LfD

Decision making problems are usually cast in a Markov Decision Process (MDP) setting

where an MDP is defined as a set of (S,A, T,R) which corresponds to states space, action

space, transition-dynamics function, and reward dynamics function respectively. Let st

and at denote the state and action respectively at time step t and τ = (s0, a0, s1, a1, ..) be

any trajectory or rollout. The demonstrations are fed by a demonstrator π∗ in the form

of a dataset D = {(si, ai)}Ni=0, where ai = π∗(si) ∈ A. Let P (τ |π) and Pt(s|π) be the

trajectory distribution and the state distribution at time t respectively induced by any

policy π. Finally, let P (s|π) = ( 1
T

)
∑

t Pt(s|π) be the overall state distribution induced by

policy π. The general goal of LfD is to find a θ parameterized learner policy πθ such that

some loss function L is minimized with respect to the demonstrator policy π∗ on the state
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distribution induced by the learner, i.e.,

arg min
θ

Es∼P (s|πθ)[L(π∗(s), πθ(s))], (2.1)

Usually, there is either limited or no access to L and so a surrogate function that uses

demonstrations is used instead. For the sake of simplicity here, we will use L to represent

the surrogate function. See figure 2.3 for an example.

Fig. 2.3 A snapshot of the TORCS simulator [3]. Here s would be the game
screen and a would be the amount of throttle and steering angles of the car.
π∗ can be a human demonstrator controlling a car using a joystick and πθ can
be a neural network policy. τ would be the coupled state-action pairs at every
time-step in a game run and the loss (surrogate) function can be mean-squared
error on the demonstrated and predicted actions.

2.1.3 Broad kinds of LfD

Very broadly LfD methods can be categorized into two kinds:

1. behavioral cloning (actively or passively with an interactive demonstrator),

2. inverse reinforcement learning

In this subsection, we will cover the above mentioned two categories of LfD. Later in this

chapter we will also talk briefly about other important extensions of LfD such as third

person imitation learning.
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2.1.4 Behavioral Cloning

Behavioral Cloning (BC) is the simplest of all LfD techniques where the learner tries to learn

the mapping between the state and action pair in the demonstrations fed to it. It can be

done either actively (with an interactive demonstrator) or passively (without an interactive

demonstrator). What makes BC interesting is that the fact that it is a sequential decision

making problem where the future states depend on the previous states and actions. We

will describe below the important consequence of this phenomenon as well.

Behavioral Cloning Passively

BC passively means learning the state-action mapping from demonstrations without any

feedback from the demonstrator. Another way of putting this is that the learner tries to

minimize the loss function L in the demonstrator induced distribution of states. Formally,

this is equivalent to

arg min
θ

Es∼P (s|π∗)[L(π∗(s), πθ(s))], (2.2)

This looks clean and intuitive. However, the applicability of behavioural cloning is limited

in the real-world.

Notice the difference between the induced state distributions in equations 2.1 and 2.2

that correspond to general LfD and behavioral cloning objectives respectively. Usually

there is a per time-step learner error in mimicking the demonstrator, which we will denote

as ε, i.e. ε = Es∼P (s|π∗)(L(π∗(s), πθ(s))). As the subsequent states depend on the previous

states and actions, this becomes a sequential decision making problem that violates the

i.i.d assumption of supervised learning. As a result, ε keeps accumulating which results in

inconsistencies in the learner induced and the demonstrator induced distribution of states.

It has been shown that in a T -step horizon of episodes, the accumulated error in passive BC

grows in the order of O(T 2ε) [19, 20]. See figure 2.4 for an example. As a result, behavioral

cloning techniques work well when the demonstrations exhaustively span across the whole

state-space of interest, ε remains small and long-term planning is not necessary.

BC can be however, made to do well by gathering additional demonstrator actions from

nearby states to the current one. One way of doing this is by maintaining a 3-camera setup

to generate demonstrations where the inputs to the right and left camera are annotated

automatically with left and right directional controls respectively [6, 21]. Another way
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Fig. 2.4 Naive Behavioral Cloning (left figure) leads to gradual away drift
from the demonstrations that can lead to potentially unwanted situation. In-
teractive approaches (right figure) mitigates this problem by having learner use
demonstrator feedback on learner induced states. Image used with permission
from the course material of Deep RL, 2015 offered at UC Berkeley.

of doing this is by adding a gaussian noise to generate such additional data instead of a

3-camera setup [22].

Active Behavioral Cloning with an Interactive Demonstrator

An interactive Demonstrator in the context of LfD is a demonstrator which can be asked

for demonstrations at any state. Methods like SEARN [23], DAGGER [4] and SMILe [20]

showed that by repetitively doing behavioral cloning on the interactive demonstrator feed-

back on the learner induced distribution of states in an online fashion (see figure 2.5)

guarantees that the accumulation of errors does not exceed O(Tε). The methods in this

category are analyzed using reduction-based approaches [24]. Theoretically , the LfD tech-

niques in this category are equivalent of performing the operation in equation 2.3.

arg min
θ

Es∼P (s|πθ)[L(π∗(s), πθ(s))], (2.3)

Figure 2.6 shows how the skeleton of interactive LfD techniques looks like in one of its

member techniques called DAGGER [4] which works the best almost invariably among all

other interactive LfD techniques and serves as an ideal benchmark for newer algorithms

in its category. Note that N, p, T are number of iterations, rate to decay demonstrator

interjection in a rollout and number of time-steps in an episode respectively.

However, this category of LfD methods are not a silver bullet either. All interactive

LfD methods assume the availability of an interactive demonstrator which is not always

realistic. Moreover, they also have drawbacks that emanate from not having a notion of
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Fig. 2.5 Any interactive LfD technique repetitively keeps training itself on
the demonstration feedback received on the learner rollouts.

Fig. 2.6 DAGGER [4] is an iterative and interactive LfD technique that has
demonstrated impressive results on learning policies by directly mimicking the
demonstrations. The red boxes highlights the important steps in this method
as described in figure 2.5.
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planning integrated in the control process such as treating all deviations equally (some of

them could be catastrophic) and asking for demonstrations at every visited state even if

they might not be required.

In this subsection, we described BC. We explained that BC is a straightforward approach

which is a promising technique to build complex systems but are susceptible to failure when

the data is scarce. This is not an easy problem to solve as generating data is expensive. A

part of our work involves reducing the required number of demonstrations by doing active

learning. In the next section (section 2.2), we will see how a metric can be generated to

automatically base decision on when to seek more demonstrations. In section 2.5, we will

describe some techniques similar to our method of active learning.

2.1.5 Inverse Reinforcement Learning

Inverse Reinforcement Learning [25] is the problem setting where the reward dynamics

function R is unknown or difficult to formulate and the learner has to estimate it from

the demonstrations. It has also been cast as the problem of Inverse Optimal Control [26],

estimating energy-based models [27], or learning parameters of probabilistic graphical mod-

els [28]. Such techniques have a huge applicability mainly because of two reasons

1. they allow for the for demonstrator and the learner to possess different embodi-

ments (different S, A, and T in the definition of their MDPs),

2. the learner can do well even in the unseen part of the state-space.

Most Inverse Reinforcement Learning techniques start with demonstrations and iterate

over finding a good reward estimate, evaluating it using a forward RL model, and refining

the estimated reward function (see figure 2.7). However, robustly estimating the reward

function and evaluating it takes a lot of compute and experiences [8].

One interesting work along the lines of IRL is Maximum Entropy Inverse Reinforcement

Learning [28] where the reward function rθ is estimated in an MDP setting which has

deterministic and known dynamics, discrete state and action spaces, and linear rewards

over the set of pre-defined features. Although this technique has some success so far [29, 30],

it is hard to scale up to higher dimensional problems such as pedestrian detection as it has

an expensive forward RL step and an exponential complexity in the number of state and

action dimensions. Improvements were made to have Inverse Reinforcement Learning work
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Fig. 2.7 Flow of operations in inverse reinforcement learning

with non-linear rewards [31] which was demonstrated to produce good results in complex

tasks such as path planning [32]. Recently, techniques have been devised for doing Inverse

Reinforcement Learning with non-linear rewards, continuous state and action spaces, and

unknown dynamics [33, 34]. The performance is, however, sensitive to the estimate of the

partition function which is evaluated using importance sampling.

2.1.6 Other interesting applications of LfD

Other interesting contexts where reward estimation have been used are

• Inverse Planning/Structural Estimation in POMDPs: Inverse Reinforcement

Learning has been shown to effectively deduce rewards even in POMDPs [35, 36]. An

example would be to estimate the destination of pedestrians [37].

• Cooperative Inverse Reinforcement Learning [38]: Here the robot has to learnt

to cooperate with people where robots try to reduce the uncertainty of their reward

estimation whose complete knowledge only lies with the human.

• Task Level Inverse Reinforcement Learning [39, 40]: The objective in this

line of work is to segment sub-tasks from demonstrations without having to specify

the order of their execution. This has applications where the task at hand can be
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completed with a different ordering of sub-tasks which is not explicitly described in

the demonstrations.

• Reward learning from preferences [41, 42, 43]: Specifying the right reward func-

tion is hard [44]. One promising way that has evolved recently to estimate the reward

function has been through human preferences over certain options. For example, it

has been shown that a complicated reward function to doing a backflip can be learned

from a very low number of human feedback [43].

• Third person imitation learning: Another interesting line of work using LfD

is third person imitation learning where the goal of the learner is to estimate the

demonstrator policy with the limitation that the observation and action space of

the learner is different from the demonstrator. Major ways of doing this has been

through domain adaptation [45] and developing viewpoint invariant representations

of the demonstrations [46].

2.2 Learning Predictive Uncertainties

By virtue of its ability to approximate any function [47, 48], Neural Network (NN) based

architectures have achieved massive success in learning complex input-output mappings

from data. However, a mere knowledge of the input-output mapping falls short when it is

needed to gauge predictive uncertainty in their predictions. This can be important when the

data available is limited. NNs have a propensity to overfit to the data they see. This causes

unwarranted extrapolation to the unseen space of interest (see figure 2.8). This problem

is glaringly apparent when the seen data does not span the whole space of interest. Hence

it would be useful to generate predictive uncertainties that could reflect the confidence of

the predictor about its prediction.

The probabilistic explanation behind these downsides of deterministic NN is that they

attempt to evaluate the maximum likelihood point estimates or MLE. It does that by

maximizing the log-likelihood of the seen data (see equation 2.4) given the parameters of

the NN (denoted as w) which is typically solved by using backpropagation.

wMLE = arg max
w

logP (D|w). (2.4)
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Fig. 2.8 The red line shows the typical extrapolation by any NN. Ideally it
should have also predicted an uncertainty measure that should be higher at
farther places in the input space. Image used from[5].

Such an optimization leads to overfitting of the NN to the seen data. Hence this fails to

generalize [49]. One partial fix to this problem is instead of evaluating the MLE, esti-

mate maximum a posteriori point estimates or MAP which makes the NN relatively more

resistant to overfitting (see equation 2.5).

wMAP = arg max
w

logP (w|D) (2.5)

Using a Gaussian prior is equivalent to doing L2 regularization while using a Laplace prior is

equivalent to L1 regularization. However this does not guarantee against any unwarranted

extrapolation.

Ideally, we would like to not just have predictions but also the uncertainty in the

predictions in the light of the seen data and prior beliefs. This uncertainty ideally should

be higher at points that are far away from the seen region than the points that are closer. In

other words, given a dataset of demonstrations D, we would like to estimate the posterior

distribution over policies p(π|D) to make predictions at possibly unseen states s∗ as given
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in equation 2.6.

p(a∗|s∗) =

∫
p(a∗|s∗, π)p(π|D)dπ. (2.6)

In this section, we will describe two state of the art methods that follow this approach:

Gaussian Process (GP) regression and Bayesian Neural Networks (BNN).

2.2.1 Gaussian Process

Gaussian Processes are a popular non-parametric method for solving regression problems

as shown in equation 2.6. GP regression proceeds by assuming that beliefs over different

evaluations of π(s) for s ∈ D are jointly Gaussian. GP regression requires specifying a

mean function m(s) and a kernel function k(s, s′). The mean functions acts as a prior

for π, while the kernel function models the covariance of the outputs π(s), π(s′) given the

inputs s, s′. In this case, the learnable parameters of the policy θ correspond to the hyper-

parameters of m(s) and k(s, s′). Fitting is done by optimizing θ to maximize the marginal

likelihood p(a|s) for all s,a ∈ D.

To evaluate the predictive distribution, we construct a kernel matrix KS1S2 , where its

entry at ith row and jth column is k(s1, s2) with s1 ∈ S1 and s2 ∈ S2. We define S and

S∗ as two dimensional matrices of seen inputs (s) and inputs to be predicted (s∗) where

each row correspond to one input. Since the outputs are assumed to be jointly Gaussian,

the resulting predictive distribution is a Normal distribution with the mean µ(S∗) and

variance σ2(S∗) given as in equation 2.7.

µ(S∗) = m(S∗) +KS∗SK
−1
SS (a−m(S∗))

σ2(S∗) = KS∗S∗ −KS∗SKSS
−1KSS∗

(2.7)

We use µ(s∗) as the action to be applied by the agent and σ2(s∗) as a measure of its un-

certainty. Although inference can be done exactly, this method has a higher computational

cost than inference with BNNs. We refer the reader to [50] for more details.

2.2.2 Bayesian Neural Networks

Bayesian Neural Networks (BNN) are NN whose weights or parameters are expressed as

a distribution rather than a deterministic value and learned using Bayesian inference (see

figure 2.9). Their innate potential to simultaneously learn complex non-linear functions
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from data and express uncertainties have lent them a major role in our pursuit to develop

more capable AI. The posterior distribution in this case is defined over the parameters of

Fig. 2.9 Unlike deterministic Neural Networks (left) that have a fixed value
of their parameters, BNN (right) have a distribution defined over them.

the model which also represents our policy, P (π|D) = P (w|D), where w are the weights

of the NN model.

One way to generate uncertainty in the prediction in the light of seen data and prior

beliefs is to estimate the whole posterior distribution by doing a Bayesian Inference. Doing

a Bayesian Inference uses Bayes rule in the light of seen data D to estimate a posterior

distribution of the parameters. This is the underlying concept of the BNN training (see

equation 2.8).

P (w|D) =
P (D|w).P (w)

P (D)

where,

P (w|D) =⇒ Posterior parameter distribution

P (D|w) =⇒ Data likelihood

P (w) =⇒ Prior parameter distribution

P (D) =⇒ Evidence

(2.8)

The prediction step to compute output of the new samples, say s∗ is done by taking an

expectation of the output over the optimized posterior parameter distribution, say P (w∗|D)
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Fig. 2.10 Bayesian inference adjusts the beliefs about a distribution in the
light of data or evidence.

as given in equation 2.9.

P (a∗|s∗) = EP (w∗|D)P (a∗|s∗,w∗) (2.9)

This expectation is equivalent to predicting using ensembles of an infinite number of NNs

which leads to model averaging and hence resistance to noise.

However, both the exact computation of the posterior in the form in equation 2.8 and the

prediction step as shown in equation 2.9 are computationally intractable. Computing the

denominator term in equation 2.8 needs marginalizing the evidence over all the possible

parameters in our parameter space which is hard. Also, computing the exact Bayesian

inference on the weights of a neural network is intractable as the number of parameters

is very large and the functional form of a neural network does not lend itself to exact

integration [5]. Hence various ways to approximate this in the context of BNNs have been

developed which yields us a wide variety of BNNs today [5, 51, 52, 53, 54, 55, 56, 57]. Also,

finding a form to differentiate with respect to parameters of distributions is not possible

which is indispensable for backpropagation.

Note that BNNs should be seen as different from NNs that have distribution estimation

applied to stochastic hidden units rather than over the parameters. The former is a way to

choose suitable NNs (hence regularization and model averaging) while the latter is about

expressing uncertainty about a particular observation [5].

In conclusion, BNNs are useful for integrating and modelling uncertainties. Further-

more, they have also been shown to improve predictive performance [58, 5] and carry out
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systematic exploration [59]. Recent advances in the field of deep learning and hardware

allow us to approximate the relevant quantities scalably using off-the-shelf optimizers. The

fundamental problems in developing BNNs or any probabilistic model are computations

of the posterior distribution and their expectations. Hence we have to resort to their ap-

proximation. There are broadly two categories of methods of doing this approximation -

stochastic (eg. Markov Chain Monte Carlo) and deterministic (eg. variational inference).

For readers interested in knowing more about them, I would point to chapters 10 and 11

of the book[60].

Bayes-by-Backprop: A Bayesian Neural Network

As explained in the subsection 2.2.2 BNNs provide a framework to capture uncertainty in

• Parameters through equation 2.8

P (w|D) = P (D|w)P (w)
P (D)

• Predictions through equation 2.9

P (a∗|s) = EP (w∗|D)P (a∗|s,w∗)

However, these two operations are intractable in general because of the following:

• Intractable Posterior Updates: The shape of the parameter distribution makes it

difficult to compute the evidence term [P (D) =
∑
w P (D|w)P (w)] in equation 2.8.

Hence, computing the posterior is impossible.

• Non-integrable: Functional form of NN does not lend itself to exact integration

which makes making prediction as in equation 2.9 impossible.

Bayes-by-Backprop [5, BBB] is a Variational-Inference [61] based BNN technique where

a probability distribution is defined over the weights of the network. It approximates

the intractable posterior distribution of the weights of the network by Variational In-

ference. Monte-Carlo samples are used to evaluate and update the variational approx-

imation. This whole set-up is made amenable for back-propagation using Gaussian re-

parameterization [62, 5]. The re-parametrization makes all randomness an input to the

model, making the network deterministic for differentiation (see figure 2.11).

The approximating (variational) distribution q over the policy w is given by a Gaussian

with diagonal co-variance, q(w|θ) = N (µ,σ). This Gaussian is parametrized with θ =
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Fig. 2.11 BBB gets around the problem of intractable posterior updates,
intractable prediction, and unsuitable form for backpropagation by using
the techniques of Variational Inference, Monte-Carlo sampling, and Gaussian
Reparameterization.

[µT ,ρT ]T , where σii = log(1 + exp(ρi)). σii is computed in this way to make sure that it

is always positive.

Fitting the model by a mere use of Variational Inference is done by minimizing the

Kullback-Leibler divergence between the true and approximate posterior, which also has

an information theoretic justification by means of a bits-back argument [63]. Here, θ∗ =

[µT∗ ,ρ
T
∗ ]T is the optimized variational posterior (See 2.10).

θ∗ = arg min
θ

KL [q(w|θ)||P (w|D)]

= arg min
θ

∫
q(w|θ) log

q(w|θ)

P (w|D)

= arg min
θ
−Eqθ(w) [P (D|w)] + KL [qθ(w)||P (w)]

(2.10)

However, it is intractable to compute the terms in equation 2.10. Hence we approximate

it using Monte-Carlo samples which may be expressed with an objective of the form

L(D,θ) ≈ 1

M

M∑
i=1

log q(w(i) | θ)− log
(
P (w(i))P (D | w(i))

)
, (2.11)
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where w(i) is the ith Monte-Carlo sample from q(w|θ). We use a zero-mean Gaussian as

prior P (w(i)).

The inference on a new input s∗ is done via Monte Carlo sampling as shown in equa-

tion 2.12.

p(a∗|s∗) ≈
1

M

M∑
i=1

p(a∗|s∗, πwi), w(i) ∼ q(w|θ∗) (2.12)

Predictive uncertainties have been shown to be useful for multiple purposes. For exam-

ple, PILCO [64] uses Gaussian processes for learning a probabilistic dynamics model and

long-term planning. In Deep-PILCO [65, 66] a dropout training approach [67] was used to

quantify the uncertainty of a learned neural network dynamics model. As an alternative, a

heuristic measure has been used to quantify trust on the demonstrations in [68]. However,

unlike in our work, all these methods focused on a single task, and most of them focus on

model-uncertainty and not policy-uncertainty.

In our work, we use predictive uncertainties to help the controller distinguish familiar

from non-familiar contexts. However, the world can be partially observable where its

partial observability can can show up in forms of changes in the reward function or the

transition function of the MDP. One way to identify such partially observable changes is

by conditioning the policies on the history or the sequences of previous observations. In

the next section (section 2.3), we will see the different ways to learn from sequential data.

2.3 Learning from sequential data

There are four broad classes of methods for capturing sequential information [69] as ex-

plained below.

1. sliding window: The easiest to use with any off-the-shelf supervised learning

methods, which we also employ in our work is using a sliding temporal windows on

sequences [70].

2. recurrent models: The second method is using recurrent models such as LSTM

networks which are relatively difficult to train and work with evenly sampled se-

quences [71].

3. regression based extrapolation: The third technique which works well with un-

evenly sampled data is regression-based extrapolation where training data is fitted to
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a curve [72, 73].

4. convolutional models: Lately Convolution based NN techniques have been shown

to perform at least as good as recurrent models for learning from sequences [74], [75],

[76], [77], [78]. Some of its exclusive advantages include allowing more support for

more parallelism, controllable length of history intended to be learnt, stabler gradients

than recurrent models, and lower memory requirements [74].

2.4 Adaptive Control

Adaptive Control [79] is the umbrella term for techniques that allow controllers to adapt

their control law based on the inputs they receive. Note that it is different from a similar

class of techniques called robust control [80] that uses the same control law for a range of

values of inputs, i.e. they do not change their control law. For example, adaptive control

based techniques change the control law for an aircraft system depending on the amount

of fuel it has in its tank during its flight. Usually, parameters of the system are estimated

which makes use of the update laws to update the control laws. These update laws are

derived using Lyapunov stability. Estimation of the parameters uses techniques from Sys-

tem Identification [81] that uses statistical methods to estimate data-driven mathematical

models of dynamical systems.

2.5 Active Learning

In the learning from demonstration paradigm, the learner usually waits passively for the

demonstrator to produce a dataset. Active learning, on the other hand, aims to reduce

time-consuming data generation and training by seeking to select the most informative

learning experiences [82, 83]. Active learning is more effective in learning from demonstra-

tion frameworks where judicious use of demonstrations is vital but a lack of exhaustive

dataset could result in compounding errors [4].

Active learning for control has been widely studied while doing LfD. Confidence-Based

Autonomy [84] is an example where rich interactions between an agent, aware of its own

uncertainty, and a benevolent teacher lead to rich learning interactions. This work uses

additional supervised models to detect unfamiliar and ambiguous states. Unlike using such
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supervised learning techniques, our work uses the same network that does control to detect

such unfamiliar and ambiguous states. The approaches in [85], and [86] are similar to

the approach in Confidence-Based-Autonomy. While the former was vague in terms of

the mechanism to detect the bad states, the latter used a set of pre-conditions and post-

conditions to identify the mismatch in the resulting states which is hard to scale up. In our

work, we will show how we can leverage the predictive standard deviation as uncertainty

to invoke demonstrations only when their absence could lead to sub-par performance in a

manner that scales up naturally.

In the next section (section 2.6), we explain transfer learning (TL). TL addresses how

policies can be transferred positively [87, 88] when there are subtle changes between train-

time and test-time conditions which might cause controllers to fail silently [8, 89, 90, 87].

We call these different settings as different contexts in our work. Our methodology can be

seen as one such method. Hence we find it relevant to explain TL.

2.6 Transfer Learning

Transfer learning is an umbrella term for methods that seek to develop high performing

learners on a target task in a target domain by previously learning source tasks in source

domains [91]. In the real-world, source tasks are the tasks where it is easy to obtain data

or experience. Effective transfer learning is important as training separately on each task

is impossible given the data-inefficiency of our current data-driven AI algorithms. Perfor-

mance of these transfer learners are usually compared with learners that learn from scratch

on the target task. The gained improvements are generally captured through metrics such

as jumpstart, asymptotic performance, total reward, transfer ratio, time to the threshold

and so on [91]. Transfer learning also takes place in our living world as crucial information

is passed from generation to generation through genes [92]. There have been attempts

like allowing the simulator policy to initialize the real world policy [93], to allow policy

adjustment model that compensates for simulator-real world discrepancies [94], training

a RNN across multiple MDPs, to obtain useful biases that will aid the learning of other

tasks in the future [10, 95]. However, these approaches lack an easily scalable way to detect

training-testing distribution discrepancies and quantify confidence in a transfer.

What makes transfer learning complicated is the fact that the training conditions

(source) and the deployment conditions (target) can vary in multiple different ways. A
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few of them are task distributions mismatch, state space mismatch, feature space mis-

match, action space mismatch, a discrepancy in the optimal (true) underlying mapping

between input and output etc. This creates many subtypes of transfer learning problems

such as Continual Learning, Multitask Learning, Lifelong Learning, Domain Adaptation,

learning under Co-Variate Shift which we will cover in the following subsections. In the

context of our work, we will restrict ourselves to describing transfer learning only in control

or Reinforcement Learning.

2.6.1 Multitask Learning

Unlike transfer learning where the source and the target tasks can come from different

distributions, in multitask learning they always come from the same distribution. This

constraint makes working under multitask learning relatively easier than transfer learning.

For example unlike some problems in transfer learning, the action and observation dimen-

sions in multitask learning set up are always consistent between training and deployment

settings. Also usually, training times on the source tasks are assumed to be free of cost.

Some popular multitask learning techniques include [96], [97], and [98].

2.6.2 Lifelong/Continual Learning

Artificially intelligent agents in the real world are bound to encounter a stream of data

from different tasks sequentially that can vary both temporally and spatially. Learning

under such settings are referred to as Lifelong or Continual Learning. Learning under

continual learning setting is harder than transfer learning as knowledge has to be transferred

positively with limited system resources while being resistant to catastrophic forgetting [99].

The field of lifelong learning is still not mature and even the right metrics to evaluate these

systems are yet to be established.

2.6.3 Domain Adaptation

Domain adaptation is a way of doing transfer learning where the goal is to learn to represent

a source domain into another domain which can be the same or different from the target

domain in a way that the learner does well on the target domain. The most successful

methods in this category are based on finding a common representation space using adver-

sarial learning [100] techniques which seek to find indistinguishable feature representation
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in the source and the target domains.

2.6.4 Learning under Covariate-Shift

Covariate shift refers to the problem where the distribution of the independent vari-

ables/features also known as covariates change while the underlying true mapping func-

tion remains unchanged. Usually, the task stays the same during training and valida-

tion/deployment. It can also be seen as looking at an unexplored area of the input space.

Covariate shift is different from the problems that can be handled by the domain adap-

tation approach as unlike covariate shift, such problems can have their underlying true

mapping function changed on deployment. This problem has been intensively studied in

LfD domains.

In this chapter, we explained in detail the various methodologies that we draw upon to

build our work like LfD (section 2.1), techniques to generate predictive uncertainties (sec-

tion 2.2). We also describe some related work in the space of active LfD in section 2.5. At

the end, we briefly touched upon TL to help the readers position our work with respect

to TL. We highlighted various ways of approaching them while anchoring them around

their advantages and disadvantages. In the next chapter (chapter 3), we will describe our

methodology that is built using techniques described in this chapter.
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Chapter 3

Design and Methodology

In this chapter, we formalize and explain how we set our test-beds and our motivation

behind setting them up in the way we did. Similarly, we also explain our proposed method-

ology that is designed to work well under diverse situations as posed by our set-up. By the

end of this chapter, the reader will know the kind of problems our methodology is aimed

to solve and the exact way it goes about doing so.

3.1 Formalizing the set-up

In a lot of situations, the way a robot faces the situations in the world is online in the sense

that observations appear one after another in a temporally linear fashion. This online world

is also structured as future observations depend on the decisions made at earlier points

of time. Moreover, these observations can come from different unobservable underlying

functions and yet look similar. Such diverse underlying functions can be formalized as

different contexts. As a result, there are a huge number of problems out in the wild

real world that necessitate their solutions to be equipped with the ability to deal with

such structured streaming incoming data from multiple contexts with the guarantees of

performance and safety. Such an ability has to be learnt in a data-driven fashion given

the complex and high-dimensional nature of our world. Hence, we set our set-up as an

incoming sequence of diverse contexts.

We denote each context in a domain as an MDP defined as d = (S,A,Rd, Td) where

S is the state-space, and A is the action space. Rd(st, at) and Td(st, at) are the reward

and transition dynamics function which take as arguments an action at and state st. All
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contexts in a domain share S and A but can have different Rd and Td.

To test the capability of our proposed methodology (section 3.2) to invoke a fallback

policy in a timely manner, we set D as the set of diverse contexts that a robot might

encounter one after another sequentially. In our example of a self-driving car given ear-

lier, this sequential nature of multiple contexts would correspond to a situation where the

car drives on a dry road (a context) before driving on a icy road (another context). To

test one such example of an effective fallback strategy, we let the controller actively seek

demonstrations of any context d. Every d has an expert demonstrator π∗d which provides

demonstrations upon request. These new requested demonstrations are merged with the

complete dataset D. A good way to see the effectiveness of our approach would be to see

if such an active learner can bring such requests for context-specific demonstrations to a

minimum while not compromising on performance(see figure 3.1).

Fig. 3.1 Set up for validating effectiveness of our proposed active learner.
The controller faces contexts sequentially where at each context it has to decide
whether or not to ask for more demonstrations.
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3.2 Proposed Methodology

In this section, I will walk the readers through our proposed methodology for BC on multiple

contexts using BNNs. We use a BNN called Bayes-by-Backprop [5] (BBB) to quantify

uncertainty over the unseen situations. We then build on this to perform active learning on

multiple-contexts in the BC framework. In short, we use the predictive standard deviation

of BBB to quantify the confidence in the controller performing well on the current task.

High uncertainty means low confidence of the policy that it would be successful.

To detect unfamiliar dynamics rather than just unfamiliar states, we use BBB to learn

policies for which the inputs are temporal windows of the interaction history (see subsec-

tion 3.2.1). The associated uncertainty is used to decide whether the agent is confident

enough that it can perform well in the current situation, or if it should request demonstra-

tions for additional training on the current context (subsection 3.2.3).

The novelty in our mechanism lies in three parts that interact with each other, and

together allow the application of Bayesian methods to quantify uncertainty in imitation

learning policies: temporal-windows for input representation, learning policies for generat-

ing both actions for control and uncertainty over a given situation, and the detector that

decides whether the current policy generalizes well to the current situation. These three

elements are described in detail in the sections below.

3.2.1 Temporal Windows

In order to implicitly identify differences in dynamics and adapt to those changes, we use

short histories of k time-steps or temporal windows instead of just a single state as input to

the policy. For example, if the task dynamics depends on the mass of a system, the greater

inertia can only be identified when comparing two subsequent states while a known force

is applied.

The dataset D for training is extracted from the demonstrations with such a temporal

window, with a stride of one time-step. The overlapping windows xt consist of the last k

states st−k:t paired with their associated actions at−k:t−1 and rewards rt−k:t−1 (see figure 3.2).

The mapping to xt in D is kept as at. On deployment/validation of the learned controller,

a similar process is followed with updating of the temporal window taking place in an online

fashion.
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Fig. 3.2 The process of creating the training-dataset: A temporal window
of size of k time-steps moves over the history of the demonstration history
and captures the transitions. This set-up gives the policy learning BNN the
opportunity to infer the underlying latent dynamics.

3.2.2 Learning BNN Policies

In order to use BBB to train on temporal-windows to output predictive uncertainties that

reflects the level of generalizability of the learner to a given situation along with the actions,

we train BBB on the dataset D = {(xi, ai)}Ni=0 created as described in subsection 3.2.1. The

BBB learner is trained by minimizing Eq. 2.11. Hence, the parameters θ∗ of the learned

controller π̂θ∗ are defined as in equation 3.1.

θ∗ = arg min
θ
L(D,θ), (3.1)

where, L is defined in equation 2.11. After optimization, the controller computes its pre-

diction of the expert action and its uncertainty about the current situation with xt as input

according to equation 3.2, i.e.

at,σt = π̂θ∗(xt), with at = E [ât|xt] , σt =
√

Var [ât|xt], (3.2)

which are estimated using Monte-Carlo samples. The vector σt is then converted to a scalar

σt by taking the average over the standard deviations obtained for each action-dimension.
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Algorithm 1 Select action and train if necessary

Require: xt,D,θ, d, c
1: at, σt ← π̂θ(xt)
2: if smoothed(σt)>cΩ and t>tstart then
3: D ← D ∪GetDemonstrations(d)
4: θ∗ ← arg minθ L(D,θ) #relearn
5: t← 0 # re-start episode in current context
6: Ω = AverageUncertainty() # adapt query threshold
7: at, σt = π̂θ∗(xt) # re-select action
8: end if
9: return at,D,θ∗

3.2.3 Detector

The controller will likely encounter both situations with dynamics that are sufficiently

similar to allow good policy generalization, as well as dynamics that are quite different.

Based on the controller’s confidence, it decides whether to continue with the task, or to

stop and ask for demonstrations of the current task.

Particularly, we first smooth σt with a moving average over m time steps. The controller

deems itself to be not confident enough to proceed if the average uncertainty exceeds a

scaled adaptive threshold cΩ where c is a scaling factor and Ω is the adaptive threshold.

The value of adaptive threshold Ω is automatically set to the average uncertainty obtained

over all the contexts the controller has trained itself on so far. Both the constants c and m

can be tuned to yield more or less sensitive learners, which we show in subsection 5.3.2.

3.2.4 Connecting the dots

Algorithm 1 describes the steps of our proposed approach, with Figure 3.3 showing how

our method is used in our set up. Using a BNN instead of a DNN allows us to obtain

the predictive standard deviation along with the action for each history window. The

temporal windows contain the controller’s state information over consecutive time-steps,

which allows the BNN to implicitly infer the underlying dynamics. The uncertainty is

passed to a detector that smooths this signal and compares it to a threshold. When the

uncertainty is high, continuing will likely lead to poor performance. Hence, task execution

is paused and more training is done using new demonstrations solicited on the task at

hand. The value of the adaptive threshold Ω is initialized with 0 so that it always trains on
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Sample task d ∼ D

evaluate policy µ;σ ∼ π

σ > cΩ?

get demonstrations for task d

time t > H?

retrain

no

yes

noyes

sample state s in task d
on taking action µ

certainty

Fig. 3.3 The proposed active learner: The controller has to perform well on
all tasks it faces sequentially with limited requests for task-specific demonstra-
tions. A certainty threshold on the predictive variance is used to decide when
to ask for demonstrations.

requested demonstrations during the first task it faces. Following each training episode, the

threshold Ω is adapted according to the uncertainty obtained in the most recent re-learning

step.

In the next chapter (chapter 4), we will explain the experiments that we set up to

highlight the exclusive features of our proposed methodology. We would also explain the

unique characteristics of these experiments that make them a good fit for our proposed

methodology.
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Chapter 4

Experiments

In this chapter, we walk the readers through the experiments that we have set up to

gauge the viability and effectiveness of our approach in real-world like high-dimensional and

complex tasks. Our experiments consist of training robust controllers for different contexts.

These closely related contexts are obtained by varying parameters of the environment, for

example the masses and lengths of parts of the system to be controlled. These parameters

are not directly observable by the learning agent, but do have an effect on the outcome of

applying an action. Since the learner is not told the context explicitly, it has to infer it from

the past transitions within the temporal window. For all experiments, we require expert

demonstrations. While our system can in principle operate with a human demonstrator, for

purposes of reproducible science, we base our experiments on previously optimized agents.

Note that our experiments are set in a way that the ε as explained in subsection 2.1.4

within a context is not too bad and long-term planning is not necessary. As a result, there

is no significant compounding loss observed by the learner in a context after it trains on it.

However, our method can indeed be used to mitigate some of the effects of the compounding

of errors in BC learning settings. We have described it in detail in chapter 6.

4.1 Double Integrator experiment of sliding block on ice

We did some simpler experiments on a low-dimensional task: a double integrator domain

of a point mass sliding on a friction-less surface, where the goal is to apply forces so as

to come to an halt exactly at coordinate x = 0. The demonstrator here is an LQR based

controller obtained by solving the Riccati equation. The intention behind setting up this
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experiment is to highlight the ability of our methodology to scale up to high-dimensional

tasks organically.

4.2 Real Robotic Pendulum Swing up

We tested parts of our method on a physical Furuta pendulum ([101]). The goal in this

environment is to swing-up and balance the pendulum upright, by applying a torque to the

base joint. This is analogous to the standard cart-pole swing-up task, with 4 continuous

state dimensions and 1 continuous action dimension. To obtain data from different contexts,

we varied the pole mass. This was done by attaching weights of varying sizes to the pole. We

used the model-based method described in [66] to obtain expert policies for each context.

Precisely, 7 contexts are generated by varying the mass of the tip of the pendulum as

Fig. 4.1 Illustration of the experimental set-up for the real robotic pendulum
swing up experimental platform.

specified in the following table ( 4.1).

The goal behind doing this real-robot experiment is two-fold. The first goal is to prove

viability of our approach for real-robots which are hard to control in general. The second

goal is to show that it is possible to generate data-driven uncertainty in decision-making

that consistently reflects the degree of success that a given policy can achieve.
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Context Identity Pole Mass

0 70.
1 91.0
2 105.0
3 149.0
4 104.0
5 121.0
6 252.0

Table 4.1 Masses of the poles of different contexts of the real robotic pen-
dulum

4.3 MuJoCo

Fig. 4.2 Illustration of the HalfCheetah(left) and Swimmer(right) MuJoCo
experiments that we employed in our work.

We tested our method on two modified OpenAI Gym environments ([12]) by creat-

ing 10 contexts on both HalfCheetah and Swimmer. In both environments, the goal is

to find locomotion controllers to more forward as fast as possible. To simulate different

contexts, we changed either or both the lengths and masses of various body parts like

torso, middle, and back. The MuJoCo version used is mjpro131 with the domains identi-

fied as HalfCheetah-v1 and Swimmer-v1. For these experiments, we used proximal policy

optimization (PPO) ([102]) to obtain expert policies for each context.

A family of related contexts was created for the swimming environment by changing

the mass of body segments (for the first five contexts) or the length of body segments (for

the last five contexts. The default body lengths of the Swimmer is a 3-dimensional vector

of value (1, 1, 1). The exact configuration details are specified in tables 4.2 and 4.3.

The motive behind setting this experiments is to show the viability of our approach to
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Context Identity Mass dimension(s) Original Mass Changed Mass

0 No change 0. No change
1 (1, 2) (6.3, 1.5) (10., 5.)
2 (1) (6.3) (0.5)
3 (2) (1.5) (4.5)
4 (2) (1.5) (3.0)
5 (1) (6.3) (0.8)
6 (1, 2) (6.3, 1.5) (0.8, 0.5)
7 (1, 2) (6.3, 1.5) (0.5, 0.5)
8 (1, 2) (6.3, 1.5) (10.0, 4.5)
9 (1, 2) (6.3, 1.5) (10.0, 6.0)

Table 4.2 Masses of body segments of different tasks of HalfCheetah domain

Context Identity Length dimension Mass dimension Changed Value

0 No change No change No change
1 0 No change 1.5
2 1 No change 1.5
3 0 No change 4.0
4 0 No change 10.0
5 NA 2 28.0
6 NA 2 32.0
7 NA 3 32.0
8 NA 2 25.0
9 NA 1 30.0

Table 4.3 Masses of body segments of different contexts of Swimmer do-
main. Note that the default body lengths of the Swimmer is a 3-dimensional
vector of value (1, 1, 1) and default body mass is a 4-dimensional vector of
value (0, 34.558, 34.558, 34.558).
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efficiently navigate through a sequence of tasks that are complex and high dimensional.

Note that we build our method to deal with this sequence of tasks on top of our empirically

proven method on a real-robotic pendulum swing-up that successfully captures the degree

of success through its generated data-driven uncertainty.
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Chapter 5

Results

In this chapter, we walk the reader through how well our methodology worked on exper-

iments that we had set up. In this chapter, we will first show that our approach is more

scalable and hence has the potential to do well even in high-dimensional tasks. We then

evaluate whether the confidence of our policy as its predictive uncertainty is a good proxy

for task success. Then, we will show how we can leverage the confidence to devise any

fallback policy when the situation in hand in non-generalizable, in particular we show how

to reduce the number of requests for demonstrations when the fallback strategy is to ac-

tively train from demonstrations on the non-generalizable situation that is captured by the

confidence metric of the controller. We finally investigate the effect of the main tunable

parameters where these tunable parameters can tune the degree of conservativeness of our

controller.

5.1 BNNs outperform GPs in high-dimensional tasks

We compare our BNN based proposed mechanism with GP in figure 5.1. Although GPs

can do as well as BNNs in lower-dimensional domains, they fare significantly worse in

higher-dimensions. In contrast, the number of input dimensions has an insignificant effect

on the BNN’s ability to learn. This is critical in most of the interesting real-world problems

as they are high-dimensional. The hyperparameter values used in this experiment BBB is

reported in table 5.1 and the initial values of trainable GP parameters is listed in table 5.2.
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Settings Swimmer Sliding Block

Temporal Window size(k)
Mini-Batches

Activation Unit
Optimizer

Learning Rate
Hidden Units

M
β

Prior

1
20

RELU
Adam
0.001

[90, 30, 10]
25

0.01
N (0, 0.4)

2/5
20

RELU
Adam
0.001

[90, 30, 10]
25

0.01
N (0, 0.4)

Table 5.1 Hyperparameters values of BBB used in our experiments to com-
pare ability of BNNs of GPs to scale up to higher dimensions.

Fig. 5.1 GPs do not do as well as BBB when the number of input dimensions
increases. Left figure shows how the performance of GP deteriorates with the
increase in dimensions where the number of input dimensions corresponding
to window sizes of 2 and 5 is 6 and 18 respectively. As a result, they never
work with tasks that are already high dimensional (right figure) even with a
temporal window size of 1, let alone use of deeper histories.

Settings Values

Kernel
Kernel Variance

Kernel Lengthscales
Likelihood Variance

RBF
1.0

0.01*Std(Data)
0.0001

Table 5.2 We use the same initial values of trainable parameter of GPs in
both Swimmer and sliding block on ice in our experiments to compare ability
of BNNs of GPs to scale up to higher dimensions.
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5.2 Uncertainty as a predictor of success

In our work, the predictive uncertainty σd is used to detect and possibly preempt the exe-

cution on contexts the policy is unlikely to do well on. To test whether σd is indeed a good

predictor for success, we compared the obtained σd and its corresponding empirical episodic

reward rd. We performed this experiment on the physical Furuta pendulum. Although the

imitation learner does not attempt to optimize the reward, the demonstration policy does.

Thus, high rewards are indicative of the learner closely following the demonstrator.

Figure 5.2 shows that σd is indeed related directly to the performance measurement rd,

so it can be used to predict whether the learner will do well. In particular, if the learner

has been trained on contexts that are similar to the new context, it will tend to have a

low predictive uncertainty and generalize well. If the new context is quite different, the

policy will tend to have a high predictive uncertainty, and instead of attempting to perform

the new context, the learner will first solicit new demonstrations for this context and then

re-trains its policy on the full data-set. The hyperparameter values are listed in table 5.3.

Videos for the corresponding can be found at https://goo.gl/aCaHir.

Settings Values

k
tstart

#Mini-Batches
Activation Unit

Optimizer
Learning Rate
Hidden Units

M
β

Prior

2
0
20

RELU
Adam
0.001

50, 25, 10
8

0.01
N (0, 0.4)

Table 5.3 Hyperparameters used in the robotic pendulum swing up exper-
iment to show that task success is captured by the BBB.

5.3 Data efficiency by deciding when to query

One way of validating if our proposed active learner invokes the fallback strategy effectively

is by comparing the number of requests it makes for context-specific demonstrations with

https://goo.gl/aCaHir
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Fig. 5.2 For each swing-up task context, σd and rd obtained during five
independent runs are plotted against each other. Note the strong relationship
between these quantities: higher σd is correlated with lower rd. Thus, σd
can be used as a predictor for task success. Training was performed on task
context 6 in this case.

a naive baseline that solicits such context-specific demonstrations on every context it faces

and a random baseline that never seeks any demonstration. We do two kinds of analysis

for evaluating our active learner:

1. Active LfD using predictive uncertainty sanity check: Can the learner effec-

tively ground its adaptive threshold in tandem with generating predictive uncertainty

in any situation in order to correctly predict whether the controller can generalize to

that context?

2. Data-efficiency and tuning learner conservativeness: How judiciously the

learner seeks demonstration and how does it affect the overall performance with

respect to the naive and random baselines?

Answering these questions entails gathering data and evaluating policies over multiple

task contexts. To keep experiments doable, we will do so in simulation rather than on the

real robot system. All hyperparameter values used in the experiments described in this

subsection are reported in table 5.4
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5.3.1 Active LfD using predictive uncertainty sanity check

We first do a sanity check to see if our active learner has the ability to adapt its threshold

to actively request context-specific demonstrations when it is most necessary. For this

we purposefully arrange the sequence of contexts in a way that the first two contexts are

similar and different from the third. While the first two demonstration request for naive

controller would be on the first and second context, our active learner’s first two requests

should correspond to the first and the third context. Figure 5.3 shows that our proposed

active learner achieves higher cumulative rewards over all the contexts in D than the naive

controller after 2 requests for demonstrations which is a reflection of the fact that our active

learner learns to perform well across a larger number of contexts than a naive controller

with the same number of requests for demonstrations. The exact details of the ordering of

the task can be found in the provided code.

Fig. 5.3 Cumulative reward over all contexts in D after making 2 requests
for demonstrations. Our active learner outperforms the naive learner that
requests demonstrations in every context. Bars show average rewards over 10
episodes with error bars showing minimum and maximum values.

In order to visualize how our controller handles the familiar and non-familiar contexts,

we randomize the ordering to contexts, then let the controller solve them sequentially while

validating its performance on a diverse variety of contexts, and visualize the progression as

snapshots at a few consecutive iterations of facing contexts. Figure 5.4 visualizes a portion

from such a progression of our proposed mechanism on the Swimmer domain. At the first

subfigure, the controller is finds itself having low confidence on all shown contexts except

context 3 (predictive uncertainties on these contexts exceeded the adaptive thresholds). So
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our actively learning controller trains on demonstrations specific to context 4 after facing it.

As a result, the respective uncertainty goes down in the next subfigure. Another interesting

aspect to note here is how the predictive uncertainty on context 9 dropped despite the fact

that controller never experienced this context earlier(second subfigure). This is because the

controller is able to generalize to context 9 from the training performed on context 4. At the

next step, the controller seeks for demonstrations specific to context 0 as its uncertainty

exceeding the adaptive threshold again. Also note that the value of adaptive threshold

adapts itself post training on any context. Note that generating the plots by validating the

controller on all the diverse set of contexts after facing any context is done only for gaining

insight into the working of the mechanism. This is in no way a non-compliance with our

described problem setup (3.1) where the controller faces tasks one at a time sequentially in

tandem with making decisions on whether or not to seek task specific demonstrations on

the current task based on the value of the obtained predictive uncertainty.

5.3.2 Data-efficiency and tuning learner conservativeness

After validating the potential of our active learner to make informed decisions about where

to request for demonstrations, we now randomize the ordering of contexts in D to analyze

data requirements for successfully solving all contexts in D. Figure 5.5 shows various

configurations of our active learner using combinations of c and m to solve all D contexts.

With a moderate number of requests for demonstrations, our proposed agents learn to solve

the task adequately - appreciably better than random and close to the naive learner. hence

attaining data-efficiency (minimizing the number of, possibly expensive, demonstrations).

Note that the naive learner here solicits demonstrations on all the contexts it faces.

We would also like to note the effect of hyperparameters c (threshold scale) and m

(amount of smoothing) on the conservativeness (asking for more demonstrations in case of

doubt). Note that lower c and lower m leads to the agent asking for more demonstrations.

These additional demonstrations offer greatly diminished returns, as the average reward

attained did not go up appreciably as a result.
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Fig. 5.4 Visualization of how the predictive uncertainties and adaptive
thresholds change after facing contexts 4 and 0 sequentially. The controller
decides to train on these contexts as their predictive uncertainties exceeded
the adaptive thresholds. As a result the predictive uncertainties dropped on
these contexts and other controller generalizable context (context 9) while the
controller also adapts its adaptive threshold. The controller then goes on to
request demonstrations specific to context 0 in the next step. Note that, the
set-up where all the tasks are available for validation at every step, is purpose-
fully set to get insights into the working of our methodology. All our other
experiments are done in a set-up where the controller has no idea about the
tasks other than the task it is dealing with at any moment.
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Fig. 5.5 The plots above show that lower c and m leads to seeking more
context-specific demonstrations or more conservative behavior without much
gain in reward. The plots also show that performance close to a naive learner
that seeks demonstrations on every context, can be obtained by lesser number
of such requests. The results were obtained by averaging over 5 simulation
runs with different randomized orderings of contexts in D.

Settings Values

k
tstart

#Mini-Batches
Activation Unit

Optimizer
Learning Rate
Hidden Units

M
β

Prior

2
200
20

RELU
Adam
0.001

90, 30, 10
25

0.01
N (0, 0.4)

Table 5.4 Hyperparameters values used in both HalfCheetah and Swimmer
experiments to show the ability of our actively learning controller to be data-
efficient.
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Chapter 6

Conclusion and Future Work

In this work, we analyzed integration of probabilistic methods in a Learning from Demon-

stration based technique called Behavioral Cloning through a Bayesian Neural Network

technique called Bayes-by-Backprop.

Unlike deterministic neural networks which only yield point estimates, Bayesian Neural

Network allows to model of predictive distribution scalably. This predictive distribution

allows to gauge the confidence of the controller in its predictions. Through our experiments

on a real robotic pendulum swing up and a simulated double integrator set up, we showed

that given demonstrations of optimal behavior, it is possible to have a cheap estimate of

the confidence of the controller to do well in a given situation. We also showed that such

a technique to obtain a confidence measure scales up easily even in the high dimensional

tasks. Furthermore, we showed that this confidence measure can be exploited to learn in

a data-efficient way. By only querying for demonstrations where the confidence is low,

the amount of demonstrations needed is reduced. In other words, our proposed confidence

measure can help in identifying satisfactorily transferable and non-transferable tasks. We

demonstrate this on MuJoCo tasks of HalfCheetah and Swimmer. Such a data-efficient

technique has a lot of utility in areas where demonstrations are painstaking to obtain and

hence have to be sought judiciously while ensuring that performance is not compromised.

This work motivates to further develop theoretical bounds and guarantees when an

imitation learner is given a probabilistic treatment, especially when an interactive demon-

strator is available. Another interesting line of work would be to find better fallback

strategies that can integrate well with our proposed probabilistic Behavioral Cloning, such
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as a back-up controller or gracefully coming to a stop. Another useful addition could be

an way to automatically adjust to suboptimal demonstrations.

Note that one downside of our methodology is that it is designed in a way that it

works where either there is no covariate shift or if the covariate shift has no effect on the

performance in the context on which the controller has trained itself. Hence, another line

of work would be under the circumstances where there could be a possibility of covariate

shift even on the trained context. An interesting approach in this direction would be to

analyze the effect of probabilistic treatment of BC algorithms that have an access to an

interactive demonstrator such as in DAGGER ([4]) or AggreVaTe ([103]). These algorithms

are specifically designed to reduce the effect of covariate shifts when doing BC.
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