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Abstract 

 

This thesis compares GAMs and GLMMs in the context of modeling nonlinear curves. The 

study contains a comprehensive simulation and a few real life data analyses. The 

simulation uses thousands of generated datasets to compare and contrast the two models’ 

(and linear models as a benchmark) fit, extent of nonlinearity, and shape of the resulting 

curve. The data analyses extend the results of the simulation to GLMM/GAM curves of lung 

function with measures of smoking as the independent variable. An additional and larger 

real life data analysis with dichotomous outcomes rounds out the study and allow for more 

representativefresults
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Introduction 

 

Linear modeling is arguably the most prolific form of inferential analysis in modern 

statistics. However, these models carry obvious limitations in that they (in their most basic 

form) can only describe linear or parametric relationships between variables. In being 

constrained to this simplified functional format, many statistical tests have reduced power 

and often fail to identify trends in datasets.   

This thesis seeks to compare two specific methods for modeling nonlinear 

associations. The Generalized Additive Model (GAM) and the Generalized Linear Mixed 

Model (GLMM) are two commonly used approaches to fit nonlinear curves. They are far 

from the only methods available (others are discussed in the literature review), but they 

are rigorous, effective and implemented in current statistical software such as R and SAS. 

They are also important in that they do not presume the form of the nonlinearity, which 

plagues many other techniques. However, it is unknown if applying both techniques to the 

same dataset would result in different curves and inferences. If so, deciding on which 

model is best suited for one’s analysis is an important a priori consideration.  

The first section of this thesis is a statistical simulation with datasets that vary in 

sample size, error variance, and degree of nonlinearity. Comparisons between GAMs and 

GLMMs examined included the Kullback Liebler distance, several information criteria, and 

graphical representations on the fitted curves. The thesis is also instructional as to the 

curve fitting role of GLMMs and GAMs. While many researchers may be familiar with one 

technique (or both in a different capacity, such as longitudinal analysis), the other may be 

foreign to them. In addition to a systematic review this thesis may serve as an introduction 

to the implementation of both GAMs and GLMMs with respect to fitting nonlinear 

relationships. Finally each manuscript examines a real life dataset. The first examines the 

relationship between smoking duration and intensity and several spirometric indicators of 

lung function. The second manuscript seeks to models the associations between four 

different vital parameters and mortality in post-surgery ICU patients.  

 In the literature review, there is a brief overview of the basis, mechanics and known 

strengths and weaknesses of GAMs and GLMMs. This is followed by background on 

alternative methods to modeling nonlinear data. The Kullback Liebler distance and the 

three information criteria used are reviewed. Finally there is a more in depth discussion on 

the variables involve in the real life datasets and their current and historical analytic 

strategies. 
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Development of linear statistical modeling as a research tool 

 Generalized Additive Models (GAMs) and Generalized Linear Mixed Models 

(GLMMs) are variants of Generalized Linear Models (GLMs) and Additive Models (AMs) 

with some of the model assumptions relaxed [1, 2]. The simplest way to approach GLMs is 

to understand them by their namesake, a generalization of linear models. AMs are 

discussed in the following section. The standard notation from the linear model is shown 

below. 

y       

X is the data matrix, whose rows contain sequential data on each subject. y is the 

response vector.  The   are the error terms, a vector of zero-mean normally-distributed 

random variables. The  vector (or vector of covariates) is chosen in such a way to 

minimize the magnitude of the   s   Estimation for  is most commonly achieved through 

least squares minimization [3]. 

To maintain the interpretability of the model and facilitate locating the least squares 

estimators  ̂ ŷ and   ̂ (final parameter being the estimator for the variance of the  s).  

several assumptions about the data must be made [3]. 

I. y     A linear predictor is the quantity which incorporates the information 

about the independent variables into the model. 

II. The errors have identical normal distributions:              

III. Independence of these error terms 

IV. The fitted errors must have a mean of zero     

V. The model assumes no multicollinearity in the data matrix. Mathematically 

this is realized by E(xi xj) = a positive semi-definite matrix. 

The result of these assumptions is a hypothesis where data takes on the distribution 

N (     ). From this model a likelihood function can be created and inferences about the 

effect of certain variable on the likelihood function can be made through likelihood ratio 

tests.  Solving a multilinear regression (or Gaussian GLM) is done through Ordinary Least 

Squares (OLS) [4]. 

OLS/Maximum Likelihood Results for the Covariate Vector, Fitted Values, and Model 

Variance 

 ̂           y            ̂            y             ̂  
   

n
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GLM 

GLMs were first introduced as method of statistical inference and modeling in 1972, 

and dropped the first assumption of linear modeling. This is possible through restriction 

the models’ class of probability distributions to those with similar enough properties to the 

normal distribution to allow parameter estimation and statistical inferences. This is called 

the single parameter exponential family of probability distributions and includes the 

Normal, Binomial, Poisson, Gamma, Inverse, Geometric, and Negative Binomial 

distributions. This greatly increased the type of response data one can model[3].  

One additional quality that GLMs gained is that of a link function. The link function 

provides the relationship between the linear predictor and the mean of the chosen 

distribution function. Such a relationship aligns the response domain with independent 

variables’ domain and allows for an interpretable model and inferences[5]. 

Smoothing in linear models 

Smoothing methodology offers a means by which non-linear relationships can be 

handled without the restrictions of parametric functional forms. It has become a widely 

used tool for data analysis and inference. Its integration into complex models and use in 

applications is also becoming more and more pervasive. Two models, amongst others, 

which implement model smoothing are GAMs and GLMMs. Also examined in the review are 

Bayesian methods for smoothing.  

 

Additive Models 

The additive model (AM) is a nonparametric modeling technique suggested by [6]. 

The AM uses a one dimensional smoother to build a restricted class of nonparametric 

regression models. The general form of AMs is: 

     f      f        f      

Where E[ ]    , Var       2 and E[fj(Xj)] = 0 on mean-centered data. The 

functions fj(xij) are unknown smooth functions whose shape is estimated directly from the 

data. Fitting the AM (i.e. the functions fj(xij)) can be done using the back fitting 

algorithm proposed by Hastie and Tibshirani  [7]. 

GAMs 

g(    )     f      f        f      
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GAMS are a combination of the GLMs and additive models. A link function relates the 

response data with the independent variables, which are adapted again to estimated 

functions. The functions fi(xi) may be fit using parametric or non-parametric means, thus 

providing the potential for better fits to data than other methods. The method hence is very 

general – a typical GAM might use a scatterplot smoothing function such as a locally 

weighted mean for f1(x1), and then use a factor model for f2(x2). By allowing nonparametric 

fits, well designed GAMs allow good fits with relaxed assumptions on the actual shape of 

the relationship, though perhaps at the expense of interpretability of familiar results.  

One way GAMs may also be computed is by penalized estimating equations. The key 

is to express each function as a linear combination of basis functions common to all  s. 

      ∑       

 

 

 

Where    are the coefficients to be estimated, and       are the basis functions  

chosen for convenience. The penalization term (to promote smoothness) is chosen to be 

the integral of the second derivative of  . 

∫           ∫   b       b          

   ∫b       b                 

              where b        
          

      by linearity and   ∫b       b        is  

the matri  of coffeciants. The penalized estimating equation is: 

∑  y        
            . 

 Most statistical packages use restricted maximum likelihood (REML) or generalized 

cross validation (GCV) to compute a   value or allow the user to specify one. Computation 

for  ̂ and  ̂ directly follows. 

Lambda controls the trade-off between smoothness and fit. 

 

As with all flexible modeling methods, over-fitting can be a problem with GAMs and 

the fitted process is potentially very sensitive to the data. The smoothing parameter can be 

specified, and in most epidemiologic applications this number should be reasonably small, 

certainly well under the degrees of freedom offered by the data. Cross-validation (in 
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addition to the smoothing parameter) can be used to detect and/or reduce over-fitting 

problems with GAMs (or other statistical methods). If GAMs improve the predictive ability 

substantially for the application in question, such as in the nonlinear case, then their use is 

warranted. 
 

Generalized Linear Mixed Models (GLMMs) 

Smoothing methods that use basis functions with penalization can be formulated as 

fits in a mixed model framework. One of the major benefits is that software for mixed 

model analysis can be used for smoothing. Mixed model representations used for 

smoothing also allow for easy combination of smoothing with other modeling tools such as 

random effects for longitudinal data [8]. 

 In this context, the LMM is of the following form: 

y                    ∑           ⏟        
                  

 

   

   ∑             ⏟        
                  

 

    

     

where            {
               

        
;        are the “knots”  These are pre specified 

points along the independent data. Their selection can be data-driven, random, uniformly 

space, amongst others. [8]   

Most terms here are analogous to their GLM counterparts. The piecewise effect terms, 

  are modelled as identically independent. Determination of the     using ordinary least 

squares (as if there were m+k   s) results in a fixed effects model. This produces a smooth 

(up to p, the degree on polynomial used for the mixed terms) and nonlinear interpolation 

of the knots.   

Constraining the    such that            
   and independent of each other changes it to a 

mixed effect model. With a finite variance providing additional penalty to the size of the  

  s, slope changes around the knots are much smoother. Adding the piecewise effects is 

known as penalized spline regression or P-splines for short. The full model in matrix form 

is shown below: 

   [    ]                   

[      
]     
     

    [      
 
]
 

     
        

          [       ]
  

              [
 
 
]    [

 
 
]  [

  
   

   
  

]  
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The ratio of   
  to   

  is known as the smoothing parameter and determines the amount of 

smoothing. The interpretation of this parameter [2] is as an indicator of the relative level of 

smoothing around the knots. A higher ratio indicates a more nonlinear curve. Mixed model 

software packages typically provides the option to estimate the smoothing parameter 

based on restricted maximum likelihood estimation of variance components or allow the 

parameter to be specified by the user. 

An additional challenge in using GLMMs to smooth, is specifying the number and location of 

the knots. Ruppert (2002) provides the following rules for knot location and density: 

              ⁄     sample  uantile of uni ue   s 

or all k knots. The general choice for the total number of knots, K is: 

   ma (  min (
number of uni ue   s

 
   )) 

Refer to [9] for further discussion on default knot specification. 

The most relevant parameter for interpretation of the model are the means of the fixed ( ) 

and random ( ) effects. 

Solving for the         with GLMMs:  

Initialize  ̂       where is g is the link function (identity function for the Gaussian case)  

1)Minimize the penalized sums of squares to obtain a new  ̂      ̂  

∑            
 

 

   

   (    
     ) 

Where   is the smoothing parameter. 

2)Set   ŷ    ̂    ̂ and repeat 

Note the Linear Mixed Model case does not need to be iterated.[2] For a full break down of 

the minimization algorithm as well as the iterated sampling technique to for the 

generalized case see Wand et al. [10] 

Similarities and differences between GAMs and GLMMs 

The largest commonality between GLMMs and GAMs is the penalty imposed on the log-

likelihood to ensure that GAMs remain economical with their use of parameters. It is 

similar to the constraint imposed on the predictors in GLMMs that require them to behave 
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like a sample from the specified distribution family. With GLMMs this often causes the 

predictors to be less volatile and ‘spread out’ than would be separate parameter estimates  

This could be beneficial analysis of large fragmentary data sets with many influential points 

sensitive to small perturbations in the models specification [11]. 

 

 One important benefit of GLMMs over GAMs is the ability to accurately model 

correlated data in a highly interpretable manner. By assigning grouped processes to 

random effects terms, GLMMs may be able to capture the multi-correlation and allow the 

fixed term (and other possible random effects terms) an unbiased result. While not the 

focus of this thesis, it may be an important benefit to consider when deciding between the 

models [12]. 

 GAMs are not necessarily encumbered by knots as GLMMs are. However once the 

number of knots is above a critical data dependent level, knot placement is not thought to 

significantly affect modeling [9]. Thus, once the degree of nonlinearity has been decided 

upon, the most prominent difference in smoothing GAMs and GLMMs are their fitting 

methodologies.  

In GLMMs the level of smoothing may be estimated from the data [2], whereas the level 

of smoothing in GAMs must be specified by the user (see below on methods to do this). They 

also roughly obey the data structure of linear models whereas the only restriction on the 

predictors of GAMs are that they be additive. GAMs are more akin to numerical analysis 

techniques such as interpolation while LMMs rely on error reduction through a complex variance 

matrix. 

 

Degrees of Freedom  (df)  

The number of degrees of freedom is the number of values in the final calculation of a 

statistic that are free to vary. In other words, it is the dimension of the vector space a 

statistic spans. A fitted curve within given data can be defined by its residual error.  It 

follows that the df  for the residuals is the df of the curve. For a multilinear regression (or 

Gaussian GLM) computed through OLS, the df of the fitted line is n-p where the response 

sample size is n and p is the number of parameters specified including the intercept term. 

The “n” points being estimated is constricted by being forced to satisfy p e uations  
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Effective Degrees of Freedom (edf) 

The complexity of a GLM is proportional to the number of explanatory terms (model 

parameters) used. Every parameter corresponds to one degree of freedom (df) due to the 

assumption that each has only a linear relation with the data. Flexible regression models 

have nonlinear predictors that may require more than one df. The total number of 

equivalent degrees of freedom used by the model is known as the effective degree of 

freedom or edf [13]. For the purposes of this thesis df will be used interchangeably with 

edf. 

 
The edf is controlled by , the smoothing parameter. [14] The smoothing parameter 

controls the amount of smoothing in GLMMs and has an analog in GAMs and other non-

parametric smoothing techniques. The edf is a measurement of the additive df accrued 

from fitting the smoothing terms to GAMs, GLMMs, or other flexible models. Calculation of 

the edf  can be explained through the mechanics of regression [15]. 

GLMMs and many additive regression methods use regularized (generalized and/or 

penalized) least-squares, so edf defined in terms of dimensionality are generally not useful 

for these procedures. However, these procedures are still linear in the observations, and 

the fitted values of the regression can be expressed in the traditional form  ŷ   y  where ŷ 

is the vector of fitted values at each of the original covariate values from the fitted model 

and y is the original vector of responses. H is the “hat matrix” in linear regression or  more 

generally as in GAMs and GLMMs models, the smoother matrix. Nonlinear GLMMs generate 

their hat matrices via iterated fitting [2]. With respect to different existing methods of 

fitting GAMs, the hat matrix may be numerically constructed [16]. However, because H does 

not correspond to an ordinary least-squares fit (i.e. is not an orthogonal projection), the 

sum-of-squares no longer have (scaled, non-central) chi-squared distributions, and 

geometrically-defined df are not potentially as useful. Below is the explicate form of the hat 

matrix (available when fitting normal GLMMs). Note there is a 1 to 1 and monotonic 

relationship between  and   (  k ) or the edf 

 ̂  (       
    )

  
    

ŷ   (       
    )

  
    

  k   (       
    )

  
   

The edf of the fit can be defined in various ways to implement goodness-of-fit tests, 

cross-validation and other inferential procedures. Here, we use the form tr(2H - H H'). [17]. 

Once the total edf is known then the df allocated to modeling the non-linear variable of 

http://en.wikipedia.org/wiki/Hat_matrix
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interest can be explicitly determined.  

 In GAMs and GLMMs, the smoothing parameter, and the edf, can be selected a 

priori, graphically, or to optimize some  criteria that balance the model’s fit (usually a 

function of the likelihood function) and overspecification (dependant on sample size and 

the actual EDF). Here we focus on data dependent edf selection. One downside to data 

dependent edf selection strategies  is that it precludes formal statistical inference about the 

nonlinearity of the curve [18].  This would be an appropriate course of action if a priori 

selection of the df could be well founded on previous studies and background information. 

However, this information is often not available, and previously unknown nonlinearities of 

higher degree may still be missed with a priori df selection 

 

Alternative methods to select edf 
 

An alternative method for selecting the df in mixed models was presented by 

Cantoni and Hastie in 2002. The paper suggests a test statistic as opposed to any mean 

squared error based criteria. However the test necessitates the declaration of null and 

alternative hypothesis edfs. These declarations may be subjective to the researcher’s 

definition of an acceptable threshold of nonlinearity  Also  based on the paper’s simulation  

the test power (alpha = 0.05) only exceeds 80% if the difference between the hypothesis is 

above four edf.  

 
Alternatives to GAMs and GLMMs for fitting nonlinear associations There are many 

strategies available to deal with nonlinear dose response curves. Here I outline some 

options. 

Dichotomization 

Dichotomization on independent prediction can be a useful method to simplify ones 

analysis and potentially more effect future decision making with the model. Interpretability 

and inference are straightforward and easy (ANOVA, t-test, etc).  It is sometimes essential 

in the cases of “soft” statistics when over-quantification would introduce some bias. 

However there are limited situations when dichotomizing well behaved continuous data is 

necessary and beneficial [19]. These variables should be left to be modeled in their natural 

distributions (e.ge guassian). Some specific downsides to dichotomization in critical 

velocities are discussed below. 
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Transformations 

Prior to the modeling of data, the response or predictor variable may be 

transformed with the goal of maintaining the regression assumptions (homogeneity, 

linearity, over/under dispersion or the correct distribution). Nonlinear dose response 

curves may violate one or more of these principles so a well specified transformation could 

possibly correct these. Transformations are generally less complex (use fewer parameters) 

than a polynomial regression with the similar level of accuracy. [20] 

As in all types of exploratory analysis, attempting multiple transformations may 

lead to inflated type I errors.  In small samples with linear fit featuring heterogeneity, it 

may be easy to infer a nonlinear relationship   yeballing the data and “connecting the dots” 

may allow post specified transformations to be a significant source of bias. Most texts 

recommend response and covariate transformations to be scientifically motivated as 

opposed to statistically motivated.  Texts often recommend changing models over changing 

data as to avoid the issue entirely. [21] 

Polynomial Regression 

Often, when dealing with a smaller number of possibly nonlinear covariates it may 

be beneficial to add polynomial terms to a covariate. If there exists some true function 

relating a covariate to the response it can be approximated as: 

y  a  a   a  
  a  

  a  
       a     

with the error term inversely proportional to the number of polynomial terms. This 

approach seems to fail with all but the simplest type of non-linear data. In lower 

dimensions sharp changes in slope will not be accurately modeled as there are a limited 

number of shapes a lower dimensional curve can hold. As the number of polynomial terms 

increases the correlation between each of the terms will add up. This results in 

multicollinearity which can severely reduce the power of a linear model. Centering the data 

by subtracting the means will reduce this multicollinearity, but correlation will remain. 

Bayesian Methods 

Given that for almost all analyses computation is no longer a restriction, it is 

important to mention that there are several Bayesian approaches to curve fitting. To my 

best knowledge there has not been any systematic comparison of Bayesian vs Frequentist 

flexible curve fitting. However Bayesian curve fitting does compensate for major 

Frequentist modeling drawbacks. The curve is no longer conditionally dependent on a 
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prespecified (or criterion specified) smoothing parameter. Also the specification of basis or 

knots make GLMM and GAM modeling work more effectively with homogeneous (variance) 

functions.  Heterogeneous functions are cumbersome for these models [22]. 

The Bayesian mode is as follows: 

  |        |         

Where the goal is to estimate the unknown function f by maximizing the posterior 

distribution p with (         parameters. The posterior probability distribution is the 

unknown distribution conditional on the evidence obtained from an experiment or survey. 

Model terms are additive: 

            

There are many possible specifications for the structure of the Bayesian curve fitting 

model. Computation is dependent of this. One technique is known as piecewise 

polynomials. Like GLMM knots divide the data in to subintervals. Unlike GLMM each 

subinterval fitted with a low order polynomials (with priors and estimated again to 

maximize the posterior distribution) [23]. 

y                   ∑∑          
 
 ⏟        

                  

 

   

   

 

   

 

 Bayesian modeling opens the possibility to highly complex models. 

Once a model framework is established with formulae, distributions, and variable one must 

decide on the proper method of evaluating and comparing models. 

 

Goodness of fit 

Measures of goodness of fit usually summarize the discrepancy between observed 

values and the values expected under the model in question. Some results from this can be 

used in statistical hypothesis testing [24]. 

There are several types of fit one can measure ranging from sampling from a 

distribution to fitted values on linear models. Thus one can test to see if two sets of 

observations come from the same distribution or if one set follows a specified distribution. 

This is particularity useful in linear modeling since a key assumption is that the residuals 

are normally distributed. There are a number of commonly used, both Frequentist and 

Bayesian, tests for normality. 

http://en.wikipedia.org/wiki/Conditional_probability_distribution
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 For a basic regression analysis with model assumption as specified above, an 

established indicator of goodness of fit is the ratios of the sum of squares. The sums of 

square represent various squared error totals (fitted vs observed, average vs fitted, etc). 

From this an F statistic can be constructed: 

   
 esidual      df 
error      df 

 

This does not give a relative definition for comparison between models.  

The coefficient of determination offers a more relative (for comparison between 

similar models) evaluate of goodness of fit. 

T   ∑ y  y  
 

   

       ∑ ŷ  y  
 

   

      ∑ y  ŷ  
 

   

 

Sums of square lose relevance with non-Gaussian GLMs. The analogous statistic in 

GLMs is called the model deviance. Two models may be tested under the null hypothesis 

that they are not statistically different using their model deviance. This is known as a 

likelihood ratio test. It forms a chi square distribution with k degrees of freedom under the 

said null hypothesis where k is the difference in the number of parameter of each of the 

models being compared. 

 

Deviance (Model1)    =      [  log(p y|   )    log(p y|            )  ] 

As shown before, when dealing with the Gaussian distribution the residual deviance 

can be reduced to the residual sum of squares. The same also applies to the null deviance 

reducing to the total sum of squares It has recently been show.[25]. Deviance/Likelihood is 

important for model selection. It forms the main component of data driven information 

criterion commonly used to select between comparable models. 

 

Kullback Leibler distance 

The Kullback Leibler distance (KL-distance) is a natural distance function [26] from 

a "true" probability distribution, p, to a "target" probability distribution, q. It is heavily 

based on information theory. The KL distance can be interpreted as summed (or 

integrated) log odd ratios of the two distribution weighted by a reference distribution[27-

29]. 

Continuous 
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          ∫ p   log
p   

    
d 

 

  

 

Discrete 

          ∑p i log
p i 

  i 
 

 

When comparing curves generated from a single common variable, the KL-distance 

has an interpretation as a “distance” metric   t is essentially the logged “distance” between 

the curve and normalized by its location on the distribution [26].  

 

The KL-divergence of a statistical model where the true curve is not known may be 

estimated, to within additional terms, by a function (like the squares summed) of the 

deviations observed between data and the model's predictions. Estimates of such 

divergence for models that share the same additional terms can in turn be used to choose 

between models. Many of these functions overlap with the concepts of goodness of fit and 

deviance mentioned about. We refer to them as data driven information criteria. [28] 

 

Information Criteria  
 
 Burham and Anderson approach model selection as a two stage process: selection of 

candidate models followed by a scientific and objective comparison between such models 

[30]. As this thesis examines GAMs and GLMMs the first objective is not a concern. The only 

level of flexibility in models under direct comparison is the extent of nonlinearity of the 

variable of interest. Which level of nonlinearity optimizes the goodness of fit amongst the 

candidate model? With a basis in information theory, various information criteria provide 

such a scientific and objective comparison. 

 
Akaike’s  nformation Criterion  A C  and AICc  

In the general case, the AIC is 

A C   odel    k  log(p y|   ) 

where k is the number of parameters in the statistical model, and L is the maximized value 

of the likelihood function for the estimated model. 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Likelihood
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From a set of potential models for the data, the preferred model is the one with the 

minimum AIC value. With the two parameters in the formula, AIC not only rewards 

goodness of fit, but also includes a penalty that is an increasing function of the number of 

estimated parameters. This penalty discourages overfitting since increasing the number of 

free parameters in the model always improves the goodness of the fit [31]. 

AIC is based on information theory. Suppose that the data is generated by some 

unknown process I. Consider two candidate models to represent the data: m1 and m2. 

Knowing the true model one could find the information lost from using m1 to represent I  

by with the KL of I and m1; similarly, the information lost from using m2 to represent I 

would be found by calculating the KL of I and m2.   One would then choose the model that 

minimized the information loss. [29] 

Since the true model m is not known the KL distance cannot be verified. Akaike [31] 

showed, however, that we can estimate, via AIC, how much more (or less) information is 

lost by m1 than by m2. It is remarkable that such a simple formula for AIC is the result. The 

estimate, though, is only valid asymptotically; if the number of data points is small, then 

some correction is often necessary. The derivation examines the mean expected maximum 

log likelihood (MELL). 

  |   |  [log    | ̂      ]      |  [log    | ̂ ]   
k

 
 

  |  [log    | ̂ ]     |  [log    | ̂     ]   
k

 
 

  |   |  [log    | ̂      ]     |  [log    | ̂     ]   k 

 
   k   ln     

 
Where Y is the response variable and X is that data matrix. log    | ̂       is the log 

likelihood for a model with estimated k parameter vector  ̂ . 

Akaike showed that the expected maximized log likelihood of a  ̂  parameterized 

model is a biased estimate of MELL. The bias is asymptotically equal to k, the number of 

estimable parameters in the model. 

  As the AIC was designed to approximate the expected Kullback-Leibler distance, a 

measure of the difference between the true and estimated curves, a smaller AIC is more 

desired. However, as the model dimension increases in relation to the sample size, AIC 

underestimates the KL-distance, which may lead to overfitting. 

http://en.wikipedia.org/wiki/Overfitting
http://en.wikipedia.org/wiki/Asymptotic_analysis
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The AIC is meaningless as an absolute number and is always compared with a similar 

model of differing size. Changes in AIC must be evaluated as a strong or weak improvement 

if it is expected to influence model selection. Burnham & Anderson (2002, p.446) offer the 

following for deciding on an absolute difference that signifies improvement. 

 
As a rough rule of thumb, models having their AIC within 1–2 of the minimum 

have substantial support and should receive consideration in making inferences. 

Models having their AIC within about 4–7 of the minimum have considerably less 

support, while models with their AIC > 10 above the minimum have either 

essentially no support and might be omitted from further consideration or at least 

fail to explain some substantial structural variation in the data. 

 

AICc [30] is a proposed correction to the AIC that accounts for smaller finite sample 

sizes: 

 AIC   =   AIC   +   
       

     
  

where k denotes the number of model parameters. Thus, AICc is AIC with a greater 

penalty for extra parameters. 

Burnham & Anderson recommends using AICc, rather than AIC, if n is small or k is 

large. Using AIC, instead of AICc, when n is not many times larger than k2, may increase the 

probability of selecting models that have too many parameters, i.e. of overfitting. The 

probability of AIC overfitting can be substantial, in some cases. Despite this many modern 

studies continues to use only AIC to help select their optimal models. 

lim
   

 k   ln   ( ̂)     ln   ( ̂)  

 
 
So in addition to low sample size bias, AIC is commonly optimized by a greater 

number of parameters even in large samples. In a sense there is just more explanatory 

room in large models so adding a parameter has less of a dramatic effect. Some other 

information criteria (BIC, HQ) are known to have an asymptotic desirable property, the so-

called consistency or dimension consistent [32].  
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Bayesian Information Criterion (BIC) 
 

In the general case, the BIC is 

  C   odel   k  ln  n  log(p y|   ) 

 
 The philosophy behind the BIC is that the candidate model corresponding to the 

minimum value of the criterion is also the model corresponding to the highest Bayesian 

posterior probability. BIC was originally justified for the limited case of independent, 

identically distributed observations within a linear model under the assumption that the 

likelihood is from the regular exponential family [33]. This justification has become more 

generalized over time [34]. If we assume k to be the number of specified parameters of a 

candidate model (degrees of freedom), then the goal is to maximize p k|y  which is 

proportional to distribution on the parameters. 

 

  log (p k|y )       log (  k ∫p  |y p   |k   m y ⁄ ) 

   log   k ∫ p  |y p   |k          

p   |k       nd degree Taylor e pansion of log (p  |y )  

   log (  k log (p( ̂|y))∫ e p (
 

 
(   ̂)

 
log (p  |y )

  
     ̂ )   ) 

    log(  k )  log ( ( ̂| ))        
 

 ⁄ (n   ̂|y )
  

 ⁄  

   log(  k )  log (p( ̂|y))  k log (
n

  
)  log(   ̂|y) 

 
   k  ln  n  log(p y|   ) 

This results in both AIC and BIC both being justified, but in unique and different 

ways. BIC makes the assumption of a flat prior distribution (  k     ) whereas AIC is 

affected by the decision to minimize information lost. 

In this thesis, I  examine three commonly used criteria, Akaike’s Information 

Criterion (AIC) [31], the Bayesian Information Criterion (BIC) [33], and Generalized Cross 

Validation (GCV) [35]. BIC is generally more conservative, while AIC and GCV are more 
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aggressive in their allocation of EDF [32].  Other criteria are less frequently used such as 

unbiased risk estimator, corrected GCV, but are not used here. [36]. 

Generalized Cross Validation (BIC) 

GCV (Model1)   

 
[       ] [

 

 
             ]

 
⁄  

Where n is the number of observations in the dataset, k is the number of model 
parameters (edf taken in to account), and A(k) = X(XTX- nKI)-1XT [35] 

 

GCV was originally devised as a method for selecting ridge parameters for solving 

general ridge regression problems [35]. Ridge regression often serves as the basis for 

solving GLMMs and in some software packages  e g  ’s mgcv package  GA s [2, 37]. The 

theoretical limitations of GCV as a popular technique for the selection of tuning parameters 

for smoothing and penalty for nonlinear models are acknowledged by authors [38, 39]. It is 

put forward as an effective criterion for a model that is low on extra df.[35] Few 

alternatives have been put forward that preserve the cross validation basis of GCV. 

Successful candidates approximate the UBRE or AIC [40].   

In computationally intensive scenarios or models with many possible nonlinear 

covariates selecting EDF by information criteria is not ideal. Wood 2004 suggests a method 

based on minimizing the QR decomposition, which is both stable and efficient. It is limited 

to models using a GAM fitted by using penalized iteratively re-weighted least squares [41]. 

 

 

 

 

Real life datasets 

In addition to the statistical simulation, this thesis investigates two real life data sets: The 

effect of smoking history on lung function and vital parameters on mortality in post-

surgery ICU patients. The following is a brief review on how each is currently modeled in 

literature. 
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Review of Smoking modeling and implication on statistical inference and interpretability  

The effect of tobacco smoking on lifespan and various diseases such as lung cancer 

has been modeled by scientists since at least the 1940s [42, 43]. Smoking is a traditionally 

hard to model variable. A simple and common method is the categorical (indicator) 

variable signaling that the subject either has or has not smoked at some point in the past. 

More sophisticated representations assume a linear (or nonlinear) relationship between 

various aspects of smoking history such as the smoking intensity and or the total duration 

of smoking and health outcomes. A more recent development, Pack Years combines 

intensity and duration. Pack Years is defined by multiplying the number of packs of 

cigarettes smoked per day by the number of years the person has smoked {NCI, 2009 #93}. 

The decision of which model to choose is based on lowering bias and/or achieving a 

desired efficiency (power), and interpretability [44]. It is a fine balance and too large a 

selection of choices introduces its own bias from multiple fittings. 

A number of variables have been established to predict the extent of smoking 

damage (both acute and chronic). These variables are correlated with each other so 

including them together within any linear model would be disastrous.  A non exhaustive list 

includes pack years, smoking duration, time since smoking cessation, smoking intensity, 

and cumulative smoking weighted by time [45, 46].  In addition, several investigators have 

shown evidence of a nonlinear relation between smoking and disease outcomes linked to 

sustained smoking such as lung cancer, periodontal damage, and emphysema [44]. Light 

and early smokers seem particularly sensitive to increasing lung damage from stepping up 

their habit when compared to average smokers who increase smoking.  There may also be 

a leveling of risk at higher intensities [47]. Few studies undertake a systematic approach to 

assessing nonlinearity as it is usually of secondary concern. One exception is the 

Comprehensive Smoking Index (CSI) which seeks to develop an ideal single 

transformation, a priori, onto a linear smoking variable[44, 46]. However there is not a 

consensus on the exact form of the CSI. 

 

Review of critical velocity (and other vital indicators) modeling  

Several studies have used smoothing to improve inference when modeling mortality [48, 

49]. Mortality is often triggered by extreme and abrupt conditions. Give this, it is logical 

that modeling the effect of an exposure on mortality should be flexible enough to be both 

nonlinear and somewhat discontinuous [48]. 

The benefits of flexible modeling with respect to identifying critical rates within the 

body have been known for some time [49]  To the author’s knowledge there has been little 

work applying flexible regression models to vital parameters such as oxygen delivery, 
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cardiac index, and serum lactate concentration outside of measuring kinetics in response to 

exercise stimulation. Much research has been focused on dichotomizing the parameter of 

interest.  

Cardiac Output is the volume of blood being pumped by the heart, in particular by a 

left or right ventricle over one minute. [50]. Mixed Venous Oxygen Saturation (MV    is 

dependent on arterial oxygen saturation, hemoglobin concentration, cardiac output, and 

tissue oxygen demands.   uptake does not desaturate blood hemoglobin more the 

necessary [51] and a drop in saturation implies the body is drawing an addition percentage 

of   from the blood. Such a drop usually implies anemia, arterial oxygen desaturation, 

and/or decreased cardiac output. Serum lactate is involved in the conversion of pyruvate 

and lactate when tissue   levels are low. Elevated initial through 24-hour lactate levels 

have been shown to be significantly correlated with mortality [52]. DO2 is the delivered 

oxygen. It explains the rate at which oxygen reaches the organ tissues. The normal state 

DO2 is more than sufficient to meet the demands of all tissues and organs. Even with a 

moderate reduction in DO2, the MV  can slightly adjust to compensate. When DO2 drops 

below the critical DO2, M  O2 becomes supply dependent [53].  

A threshold may exist in the associations between mortality and these parameters. 

The primary method most papers adopt is to specify a specific threshold based on previous 

studies and then dichotomize the variable [54, 55]. This allows for direct hypothesis testing 

within a linear model framework. However, there is considerable loss of power and 

increases the prevalence confounding [19, 56]. Vital indicators within humans such as 

those examined in the second stage of this thesis (oxygen delivery, oxygen saturation, 

cardiac index, and serum lactate) are often both directly and indirectly related with each 

other and the outcome of mortality [57, 58]. Rather than specifying a cutpoint in advance, 

sometimes a cutpoint is derived from the data – however, this may lead to serious bias. 

These factors lead to a significant variation in cutpoints selected in papers which 

seek to establish the critical values of vital indicators. Critical in this context refers to the 

level associated with the onset of negative symptoms. The negative outcomes associated 

with these thresholds are shock and increased morbidity.  Critical mixed venous oxygen 

saturation has been measured as anywhere between 40% and 70% [54, 59, 60]. The critical 

Cardiac index is reported between 1.8 and 2.2 L / min / m2 [50, 61, 62].  Critical Delivered 

Oxygen is reported as between 7-10 ml/kg-min [63]. Critical lactate is reported as between 

2-4 mmol / L [64, 65]. However, some authors propose there is no theoretical basis to have 

a threshold concentration serum lactate and that the relationship tends to increase in a 

somewhat linear fashion [64].  
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Flexible modeling would address the power and bias engendered by 

dichotomization in linear models [1]. Thus GAMs and GLMMs have the potential to provide 

a better estimation of the critical value. 

 

The interpretation of nonlinear smoothing is less straightforward than for plain 

GLMs.  What was previously perceived as a hard and fast critical value may in fact be 

modeled as a rounded plateau when plotted. The sharpness (and by extent the edf) can 

serve as evidence for a critical value. One drawback that remains is that it is a heuristic 

measurement, albeit and transparent and consistent one. It also has the potential to show 

repeatability in other similar data sets. GAMs have been proposed for isolating thresholds, 

but have encountered difficulties [18]. 
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Objectives 

The objective of this thesis is an analysis, both representative and comprehensive, 

and comparison of flexible modeling of nonlinear curve with Generalized Additive Models 

and Generalized Linear Mixed Models. The goal will is to achieve repeatable results via 

simulation and examine the process of analysis of real life data from representative medical 

data 

 

Linking Statement 

This manuscript compares GAMs and LMMs in their capacity to fit non-linear curves 

as discussed in the literature review, and addresses both objectives of the thesis. This 

includes a simulation and real life data component using smoking and lung function data. 

The simulation examines a variety of data conditions for robustness. Different sample sizes, 

variances, and degrees of nonlinearity are considered. Edf is also selected by optimizing 

each of the information criteria discussed in the literature review in both the simulation 

and real life data analysis. The results are captured both in tables which describe the 

relevant dfs and optimized information criteria and in graph of the nonlinear (and linear 

for reference) curves which have been isolated from the GAMs and LMMs.  
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Abstract 

 

Generalized Additive Models (GAMs) and Linear Mixed Models (LMMs) are two methods of 

fitting curves to data without strong a priori assumptions about the functional form of the 

association under study. The extent of the smoothing may be selected via data-dependent 

approaches such as the Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC) 

or generalized cross-validation (GCV).  

A simulation study was performed to compare GAMs to LMMs with smoothing selected to 

optimize AIC, BIC, or GCV.  Sample size, functional form and strength of the association under 

study were varied. LMMs outperformed GAMs in situations of high variability and low sample 

size. Under more ideal condition GAMs outperformed although most models were roughly in 

agreement in these scenarios. 

The approaches were also applied to investigate the effect of smoking intensity and duration on 

lung function in COPD.  Overall, there seemed to be limited evidence of nonlinearity in the 

associations between smoking and lung function. 

 

 

Keywords: Linear mixed models, smoothing, generalized additive models, chronic 

obstructive pulmonary disease  
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Generalized linear models (GLMs) are the backbone of most epidemiologic statistical analyses. 

Usually, in these analyses, the shape of the association between the predictors and the outcome is 

assumed to have a linear or other a priori specified functional form (e.g. quadratic) [1]. While 

tests for significance are straightforward in this scenario, the required a priori specification of 

the functional form may introduce bias and loss of statistical power [66].  

Flexible modeling can achieve higher power and better fit in the presence of nonlinear 

relationships and significant noise in the predictor variables.  One of the challenges inherent in 

flexible modeling is specifying how complex a curve should be fit.   

Whereas the complexity of a GLM is proportional to the number of explanatory terms used, with 

each parameter assumed to have linear effect on the outcome corresponding to one degree of 

freedom (df); nonlinear predictors may require more than one df. The total number of equivalent 

df used by the model is known as the effective degree of freedom (edf). 

The Generalized Additive Model (GAM) generalizes the conventional regression model to: 

     ∑      

   

∑       

   

   

where Sj(Xj) are smooth functions whose shapes are estimated directly from the data for those 

predictors (     modeled non-parametrically, and             .  A number of smoothing 

methodologies are available in GAMs, though here we focus on cubic smoothing splines [3, 4]. 

Another approach to flexible modelling is to use Linear Mixed Models (LMMs). LMMs 

generalize linear models by including random effects, usually in order to properly account for 

correlated or clustered observations (e.g. to model data arising from longitudinal studies) [5, 6]. 

By  specifying a number of predefined points on the data, called knots [7] and including a series 

of knot-dependent basis functions whose regression coefficients appear in the model as random 

effects we can achieve a smoothed curve [8].  In LMMs the level of smoothing may be estimated 

directly from the data, or user-specified [7].   

The LMM regression equation is: 
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 represent the fixed effects; the  

 
 represent the normally distributed random effects 
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           ; the    are the pre-specified knots, the     are normally distributed errors ( 

              ), and p is the degree of the polynomial. The variance of the random effects,   , is 

usually estimated by Restricted Maximum Likelihood (REML), though can also be arrived at by 
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minimizing the penalized least squares formulation:  kYY 2)ˆ(
[3]

 . In this 

representation,  
 

  
⁄     is the “smoothing parameter” [9].  

The smoothing parameter, , controls the level of smoothing in LMMs, and is analogous to the 

smoothing term in a smoothing spline equation [2]. In both LMMs and GAMs, the smoothing 

parameter is directly related to the calculation of the edf [10]. The edf is a measurement of the 

additive df accrued from fitting the smoothed terms in GAMs, LMMs, or other nonlinear models 

[2]. 

In GAMs, and other flexible regression methods, the fitted values can be expressed in the 

traditional form  ŷ   y  where ŷ is the vector of fitted values at each of the original covariate 

values from the fitted model and y is the original vector of responses. S is the “smoother matrix” 

(analogous to the “hat matrix” in linear regression [3]).The edf of the fit can be defined in 

various ways to implement goodness-of-fit tests, cross-validation and other inferential 

procedures. Here, we use df=tr(2H - H H') as it is less prone to numerical error, though other 

definitions are possible [11].  

The smoothing parameter or edf explicitly control the bias-variance trade-off [12].  Choosing the 

correct df is not trivial, and the estimated curve can differ qualitatively depending on the edf. In 

GAMs and LMMs, the smoothing parameter, and the edf, can be selected using various criteria. 

This paper examines three commonly used criteria, the Akaike Information Criterion (AIC) [31], 

the Bayesian Information Criterion (BIC) [66], and Generalized Cross Validation (GCV) [13]. 

BIC is generally more conservative, while AIC and GCV are more aggressive in their allocation 

of edf [8].  

One downside to data dependent edf selection strategies such as these is that it precludes 

standard formal statistical inference about the nonlinearity of the curve [14][67].  While a priori 

selection of the edf may be well founded on previous studies and background information, 

usually there is not enough information. Even then, previously unknown nonlinearities of higher 

degree may be missed.  

The main goal of this paper is to investigate and compare the modeling of nonlinear relationships 

using LMMs and GAMs via simulation study and then to illustrate their use to investigate the 

effect of smoking on lung function in subjects with chronic obstructive pulmonary disease.  

Methods 

Data generation 

The independent variable (X) was generated from a uniformly spaced interval constant (0-40 and 

0-200).  The continuous dependent variable (Y) was generated from a linear (y = 0.03x for the 

large sample datasets) or nonlinear function 

(y         ⁄  or y   |cos      | for the large sample datasets  see  igure   ) with normal 

http://en.wikipedia.org/wiki/Hat_matrix
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error distribution, and similar functions for the smaller sample datasets.  Two levels of variance 

were attached to the error term to reflect varying levels of uncertainty (standard deviations of 0.7 

and 2) (see Figure 2).  All the curves were scaled to fit in a response range of roughly between 0 

and 6. This scaling is generalizable to any other dataset and allow for visual comparisons to be 

made. Sample sizes of 40 and 400 were investigated. The sample sizes were chosen to mimic 

common epidemiological datasets.  Within each permutation of sample size, distribution of X, 

type of X-Y association, and variance, individual datasets were generated independently 500 

times over.  

Data analysis 

For each data sample, LMMs and GAMs were fit to the generated data.    For GAMs, smoothing 

splines were used and the models were estimated using the backfitting algorithm [1] using the 

gam package in R.  For LMMs, restricted maximum likelihood was used to estimate the model, 

with one knot  specified per every 6 observations, uniformly spaced on the domain of the 

covariate [15].  The “gam” package was used in R [68]. Code for the LMM was adapted from 

Wand [10]. 

Finally, for each generated data sample, a linear model was also fit.  

For both GAMs and LMMs, flexibility of the curve was selected by fitting curves with 1 to 20 

edfs with increments of 0.25 and choosing as the final model that which optimized AIC, BIC or 

GCV. The df that resulted in the lowest AIC, BIC, or GCV was chosen as the “optimal df”.  All 

models were scaled to be roughly on the same domain and range so visual comparisons in curves 

could be assessed.   

AIC BIC, and GCV were calculated according to the following formulas: 

A C   odel    k  log(p y|   ) 

  C   odel   k  ln  n  log(p y|   ) 

GCV (Model1)   

 
[       ] [

 

 
             ]

 
⁄  

 
Where n is the number of observations in the dataset, k is the number of model 

parameters (edf taken in to account), and p y|    is the likelihood of all the model 
event occurring given the model’s assumptions on its distribution   

Also A(k) = X(XTX- nKI)-1XT 

 

Performance of methods 

We investigated how close the X-Y association curves estimated via GAMs or LMMs with df 

chosen to optimize a given criterion were to the true associations via the Kullback-Leibler 

distance (KL-distance) [16].  We assessed the KL-distance across the entire independent variable 

range as well as over the tails (defined as the lower and upper 10%), using the following 

formula: 
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The COLD data analysis 

Chronic obstructive pulmonary disease (COPD) is one of the most common causes of morbidity 

and mortality in the US. COPD is characterized by airflow limitation that is not fully reversible 

[69]. COPD, once present, may have a lengthy and costly course, with significant impacts on 

quality of life [69]. Smoking is the leading cause of COPD, being a primary factor in up to 90% 

of all cases. Smoking is a traditionally hard to model variable [70].  Several investigators have 

shown evidence of a nonlinear relationship between sustained smoking and disease outcomes 

such as lung cancer, and COPD [71]. However, few studies have undertaken a systematic 

approach to assessing nonlinearity as it is usually of secondary concern.  

The “Canadian Obstructive Lung Disease” Initiative (COLD study) is a national study of COPD 

and the first population-based lung health study including spirometry measurements in Canada.  

Design and data collection have been described in detail elsewhere [72].  Information on 

spirometric measurements, patient characteristics (such as age, sex, socio-economic status, 

medical history, etc.), and smoking history were collected.  Here, we analyze data from the 

Montreal site [73].  Forced expiratory volume (FEV1), is an important in the diagnosis of 

obstructive and restrictive lung disease.  It is the volume exhaled during the first second of a 

forced expiratory maneuver started from the level of total lung capacity.  

Pack years was investigated as the exposure.  Non-smokers were given a 0 for these variables 

[24].  Models adjusted for weight, age and sex.  GAMs and LMMs were fit, as described in the 

simulation study methods section.  

The primary objective for the analysis of the COLD dataset was to compare traditional 

regression models that assume a linear association between smoking and lung function to  

flexible modeling (via GAMs and LMMs).   

Results 

For larger datasets (n=400), GAMs and LMMs showed little difference in allocating edfs (Tables 

1, 3 and 5). This was the case whether the edfs were selected by minimization on any 

information criteria (AIC, BIC, or GCV). As expected more edfs were allocated as the 

nonlinearity of the data increased (linear vs. nonlinear vs. discontinuous X-Y association).  

AIC and GCV allocated roughly the same edfs at all levels of nonlinearity (Tables 1 and 5). 

Relative to these, mean BIC-allocated edfs were significantly lower (Table 3). When the mean 

edfs were not identical between GAM- and LMM-estimated curves, they were slightly higher in 

http://en.wikipedia.org/wiki/Obstructive_lung_disease
http://en.wikipedia.org/wiki/Restrictive_lung_disease
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the former.  However, GAM-derived curves had lower KL-distances. This difference was larger 

in the data generated with low error variance. GAMs had KL-distances ranging from 1 to 10 

times smaller. KL-distance in the 10% tails at either end showed similar patterns. When the edfs 

were chosen to optimize AIC or GCV as opposed to BIC the KL-distance was smaller in 

nonlinear and discontinuous data. However, with linear data, the converse was seen and the 

models with edfs chosen to optimize BIC had smaller KL-distances. 

For large datasets generated with a linear X-Y association with low variance the optimal edfs 

were near 1, no matter the criteria used. In the high variance data, this was only true when BIC 

was used.  

The difference between GAMs and LMMs was more apparent with the smaller datasets (Tables 

2, 4, and 6). When the data were generated to have both high and low error variance, any 

functional form between the independent and dependent variable, and edfs were chosen to 

optimize AIC, BIC, or GCV, fewer edfs were used by LMMs than GAMs. This trend was 

particularly strong when modeling data with lower error variance.   

As when the sample size was large, in general more edfs were allocated with increasing levels of 

nonlinearity. However, when modeling the discontinuous functional form the edfs were only 

slightly higher compared to the smooth non linear functional form, and in some high variance 

cases the edfs were reduced. (See Tables 2,4, and 6.)  

Again, as expected, BIC was optimized by fewer edfs in GAMs and LMMs than AIC or GCV 

when the sample size was small (Tables 2,4,and 6). AIC-optimal dfs were generally higher and 

GCV somewhere in between.  GAM-derived curves had mostly lower KL-distances than LMM-

derived curves when the sample size was lower, the only exception being the discontinuous 

functional form with high variance errors. KL-distance in the 10% tails at either end again 

showed similar patterns. Improvements in KL-distance were more modest in the smaller sample 

size data, rarely going beyond halving the distance (Tables 3 and 4). 

Finally, for the smaller datasets with linear X-Y association, GAMs and LMMs consistently 

misallocated the edfs. The edfs were smaller when optimizing BIC, but the average edfs were 

closer to 2 in most cases for all criteria (Tables 3 and 4). 

In smaller and larger datasets with higher error variance, LMM-estimated curves optimized the 

criteria with higher edfs than GAM-estimated curves. However the differences were marginal 

even considering the large datasets. In addition the variability in the edfs chosen also increased 

substantially.  

COLD dataset analysis 

 

Data from 514 COPD patients from the Montreal site of the COLD study were analyzed.  These 

subjects were 58% female and 58% were smokers at some point in their life. The average 

amount of time spent as a smoker was 26 years. Both older (above 60) and female patients had 

lower spirometry values (FEV1, FVC, and PEF). (See Table 7). 
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When GAMs and LMMs were used to model the associations between pack-years and 

spirometry measures, GAM AIC-optimal curves used more edfs than LMM AIC-optimal curves 

and had correspondingly lower AIC.  These curves also had lower AIC than the linear model.  

However, BIC-optimal curves had df near 1, suggesting little evidence for nonlinearity. (See 

Table 8). Moreover, the estimated AIC-optimal curves appeared overfit. (See Figures 2, 3 and 

4.).  

 

  

 

When GAMs and LMMs were used to model the associations between duration of smoking and 

spirometry measures, there was little evidence for nonlinearity. For PEF and FVC, the optimal df 

was near 1 for every criterion, and the linear model had the lowest criterion in nearly every case.  

For FEV1, the GAM and LMM curves were optimized by higher df, but the estimated curves 

were quite linear. (See Table 9 and Figures 5, 6 and 7.). 

 

 

 

Discussion 

The performance of both GAMs and LMMs with the flexibility of estimated curves selected via 

AIC, BIC, and GCV was compared in a variety of simulated and one real dataset.  

In most instances, GAMs were optimized by a greater edf and had lower KL-distance (even 

when edfs were similar) than LMMs. When edfs were chosen to optimize BIC the difference in 

edfs were smaller, but when selected to optimize AIC or GCV there was up to 1 edf (especially 

in linear datasets and datasets with high variance and low sample size) at times. LMMs had 

lower KL-distances only when the data set was small, the X-Y association was nonlinear and the 

variance was high. Whereas the GAM-estimated curves were clearly over-fitting the linear X-Y 

associations, they may have been inferring the true extent of the non-linear curves, given that the 

KL-distance was often smaller. Aside from the linear case, it is difficult to estimate what should 

be the exact (or “true”) edfs allocated for a given curve. In fact the true curve may not even be 

relevent as small, non clinically significant, deviations can dramatically raise the edf.  

LMMs and GAMs inherently differ in several ways. With LMMs the level of smoothing may be 

estimated directly from the data  [25], though we did not explore that here. Knot selection may 

also directly impact the shape of curves estimated via LMMs.  GAMs are more akin to numerical 

analysis techniques such as interpolation while LMMs rely on error reduction through a complex 

variance matrix . 

Our results confirmed some well-known characteristics of information criteria. Lower edfs were 

allocated when BIC was used . Also, using either AIC and GCV on the simulated data resulted in 

models that were similar in terms of both KL-distance and edfs which has been shown to be true 

for large sample size linear mixed models. AIC was generally a poor performer in all measures 

with combined high variance and a low sample size datasets. In such scenarios, models which 

optimized the AIC allocated the highest edfs (including the linear data) and almost never claimed 
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the lowest KL-distance in any category. The log likelihood component could be 

overcompensating for small sample size in the very nonlinear curves. Allocation based AICc 

instead of AIC may have lowered the edfs in these cases .   

Previous simulations have shown that BIC that falsely selects spurious functions less frequently 

than AIC [74].  It is the more consistent of the two criteria, but often biases the result toward 

linearity. AIC and GCV are optimal for inferring the true extant of a highly non-linear curve.  

Indeed, when the X-Y association was linear, we found that BIC rarely selected for an edfs that 

resulted in a nonlinear curve. Conversely, when the X-Y association was nonlinear or 

discontinuous, the edfs chosen by BIC were greater than at least 1.5, and KL-distances were 

often similar to curves with df chosen via AIC for the larger datasets.  Results were less clear in 

the smaller datasets where the BIC-curves allocated less df and had better KL-distances when the 

true curve was linear or smoothly nonlinear, but not when discontinuous.  Thus, if a researcher 

was unsure of the linearity of a given covariate and wanted to be conservative, fitting a GAM or 

LMM with its df chosen to optimize BIC would minimize type II error and still have a strong 

chance of detecting nonlinearities. 

An alternative method for selecting the edfs in mixed models was presented by [14]. In this work 

a test statistic as opposed to any mean squared error based criteria is suggested. However the test 

necessitates the declaration of null and alternative hypothesis edfs. These declarations may be 

subjective to the researcher’s definition of an acceptable threshold of nonlinearity. Also, based 

on the paper’s simulation, the test power (alpha = 0.05) only exceeds 80% if the difference 

between the null and alternative hypotheses is above four edfs .  

In this work, we focused on proper model selection as opposed to inference on the nonlinearity 

of the estimated curve. While statistical significance may be an important tool in determining if a 

flexible regression approach is warranted, attempted inference after data-dependent selection of 

the smoothing parameter leads to an inflation of type I error [18]. Minimizing the number of 

models fit is thus desirable.. 

Another weakness of this work is that we generated data with only one continuous covariate. In 

computationally intensive scenarios or models with many possible nonlinear covariates selecting 

edfs by information criteria may be computationally intensive. Moreover, we focused only on 

GAMs and smoothing in LMMs, whereas many other flexible regression methods are available. 

(See the literature review p. 15) Finally, although in LMMs the amount of smoothing may be 

determined by the data, here we used AIC, BIC or GCV to enhance comparability with GAMs. 

One strength of this work is the use of statistical simulation.  Statistical simulation has its 

strength in its flexibility and ability to vary several features of the generated data. Any statistical 

simulation is the result of an artificial data generation process (DGP), driven by model choice 

and parameter settings, whose output is a synthetic sample. A simulation model is useful if it can 

be designed and calibrated so that, in terms of relevant criteria, the synthetic samples it produces 

approximate well the output of a real DGP.   

GAM- and LMMs- estimated curves were often not similar in the COPD data, despite the large 

sample size. Optimal GAM and LMM estimated curves suggested that the effect of smoking 
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duration on the three spirometric measures was linear or of non-relevant nonlinearity. With 

respect to pack years, the effect on FEV1 and PEF appeared to level off somewhat after 100, 

when the df were chosen to optimize AIC. The LMM modeled this more sharply than the GAM 

despite retaining the same numerical edf trends as in the simulation. A researcher may exercise 

caution before assuming that most nonlinear modeling methods will result in similar curves as 

sample size increases. However, overall we conclude that there is limited evidence of a nonlinear 

association between smoking and lung function in our cohort of COPD patients. The similar 

information criteria between the flexible models and the linear model, as well as the edfs which 

were mainly close to 1, especially for smoking duration certainly implied this. 

In some instances, the pattern of edf allocation observed in the simulations was reversed with 

LMM-estimated curves optimizing the criteria with higher edfs than GAMs. Generally the 

difference was below one extra df but since the overall edfs were all well under 4 it made an 

impact on the resulting curves.  It is possible that the nature of the nonlinearity in the COPD data 

differed from the smoother and more uniform nonlinearity generated in the simulated data. In 

addition the independent data was either highly skewed (Pack Years) or sparse (Smoking 

Duration) in the COPD dataset. The GAM's basis fitting as opposed to the LMM's knots are one 

of the possible differences that might have been responsible for this pattern of df-allocation .  

In this work, we systematically compared LMMs and GAMs in a variety simulated, and one real-

life dataset. Whereas, GAMs had the slight advantage over LMMs in large datasets, LMMs may 

be more reliable in small datasets with relatively large amounts of variability. In large datasets, 

edfs chosen by BIC with LMMs could be particularly useful for a conservative assessment of the 

nonlinearity of the curve. In the reverse scenario with a high sample size to variance ratio, GAMs 

or LMMs with AIC/GCV are most likely to capture the full extent of the nonlinear behavior. 
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Tables & Figures 

 

 

Figure 1: Shape of the X-Y association used for data generation. Three different theoretical 

curves (Linear, Non-Linear and Discontinuous) representing varying degrees of nonlinearity. 
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Table 1: Mean Kullback Liebler distance, and other information, for curves fit  by Generalized additive models and 

generalized linear mixed models
1
 with df chosen to minimize AIC for large datasets (n=400)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association
2
. 

X-Y Association  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 1.68 (1.30) 1.68 (1.30) 1.13 (0.81) 1.13 (0.81) 

 Mean Criterion
3
(SD) 561.58 (27.35) 561.58 (27.35) -282.13 (28.49) -282.12 (28.48) 

 KL-total
4
 9.14E-04 1.88E-02 5.88E-03 1.00E-01 

 First-10%
5
 1.39E-03 1.91E-02 9.64E-03 9.23E-02 

 Last-10%
6
 1.60E-03 2.13E-02 1.09E-02 1.14E-01 

Nonlinear Mean Df (SD) 2.61 (2.10) 2.61 (2.10) 6.99 (2.42) 6.94 (2.4) 

 Mean Criterion (SD) 565.15 (27.45) 565.15 (27.45) -261.44 (28.89) -261.45 (28.90) 

 KL-total 2.64E-03 2.64E-03 5.19E-02 8.45E-02 

 First-10% 4.74E-03 4.74E-03 8.51E-02 8.71E-02 

 Last-10% 1.35E-02 1.35E-02 3.55E-01 1.46E-01 

Discontinuous Mean Df (SD) 5.83 (1.72) 5.83 (1.72) 9.21 (1.53) 9.22 (1.53) 

 Mean Criterion (SD) 571.77 (27.79)  571.76 (27.79) -261.46 (28.74) -261.49 (28.74) 

 KL-total 3.28E-03 1.63E-02 3.83E-02 7.51E-02 

 First-10% 3.23E-03 1.67E-02 3.05E-02 7.10E-02 

 Last-10% 4.05E-03 1.86E-02 3.93E-02 8.94E-02 

 
  

                                                           
1
 Degrees of freedom for the GAMs and LMMs were chosen from 0 to 20 by 0.25 increments to optimize the Akaike information criterion 

2
 The X-Y association was for was linear y = 0.03x, nonlinear    

     ⁄ , discontinuous    |cos      | and scaled accordingly for the small samples. 
3
 This is the mean minimized AIC score over all the possible degrees of freedom that could be allocated to the parameters  

4
 Mean Kullback Liebler distance of the optimal df model across all simulated samples 

5
 Mean Kullback Liebler distance the first 40 data points 

6
 Mean Kullback Liebler distance the last 40 data points 
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Table 2: Mean Kullback Liebler distance, and other information, for curves fit  by  Generalized additive models and 

generalized linear mixed models with df chosen to minimize AIC for small datasets (n=40)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association. 

X-Y Association  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 2.25 (2.10) 1.83 (0.75) 2.42 (2.13) 2.04 (0.96) 

 Mean Criterion
1
 (SD) 31.18 (7.30) 31.53 (6.91) -11.06 (7.73) -10.48 (7.39) 

 KL-total
2
 9.17E-02 9.67E-02 2.71E-01 2.84E-01 

 First-10%
3
 8.98E-02 9.88E-02 2.60E-01 3.01E-01 

 Last-10%
4
 1.07E-01 1.20E-01 3.89E-01 4.54E-01 

Nonlinear Mean df (SD) 2.35 (1.99) 2.35 (1.99) 4.56 (2.53) 3.67 (1.85) 

 Mean Criterion (SD) 33.53 (7.12) 33.53 (7.12) -3.31 (7.83) -1.73 (6.75) 

 KL-total 1.13E-01 1.13E-01 9.76E-01 1.13E+00 

 First-10% 2.02E-01 2.02E-01 3.83E+00 5.74E+00 

 Last-10% 2.14E-01 2.14E-01 4.28E+00 6.00E+00 

Discontinuous Mean df (SD) 2.58 (2.14) 2.31 (1.19) 4.98 (2.31) 4.68 (1.97) 

 Mean Criterion (SD) 34.50 (7.18) 34.85 (6.52) -0.97 (7.89) -0.73 (6.67) 

 KL-total 1.54E-01 8.63E-02 8.08E-01 2.56E+00 

 First-10% 1.26E-01 7.94E-02 4.96E-01 1.51E+00 

 Last-10% 1.48E-01 1.04E-01 7.16E-01 2.14E+00 

 

 

 

 

 

 

 

  

                                                           
1
 This is the mean minimized AIC score over all the possible degrees of freedom that could be allocated to the parameters  

2
 Mean Kullback Liebler distance of the optimal df model across all simulated samples 

3
 Mean Kullback Liebler distance the first 4 data points 

4
 Mean Kullback Liebler distance the last 4 data points 
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Table 3: Mean Kullback Liebler distance, and other information, for curves fit  by Generalized additive models and 

generalized linear mixed models
1
 with df chosen to minimize BIC for large datasets (n=400)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association
2
. 

  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 1.14 (0.36) 1.15 (0.37) 1.02 (0.05) 1.02 (0.05) 

 Criterion
3
(SD) 570.66 (27.54) 570.65 (27.54) -274.03 (28.36) -274.03 (28.36) 

 KL-total
4
 7.52E-04 1.91E-02 5.52E-03 1.01E-01 

 First-10%
5
 9.45E-04 1.95E-02 8.14E-03 9.27E-02 

 Last-10%
6
 1.06E-03 2.16E-02 9.18E-03 1.14E-01 

Nonlinear Mean df (SD) 1.46 (0.57) 1.46 (0.57) 3.29 (1.15) 3.31 (1.14) 

 Mean Criterion (SD) 576.29 (27.92) 576.29 (27.92) -238.04 (29.35) -238.03 (29.35) 

 KL-total 2.94E-03 2.94E-03 7.88E-02 9.43E-02 

 First-10% 5.43E-03 5.43E-03 1.40E-01 9.61E-02 

 Last-10% 1.63E-02 1.63E-02 6.19E-01 1.52E-01 

Discontinuous Mean df (SD) 4.78 (0.64) 4.78 (0.64) 6.92 (1.27) 6.92 (1.27) 

 Mean Criterion (SD) 596.37 (27.76) 596.36 (27.76) -225.35 (28.36) -225.41 (28.36) 

 KL-total 3.82E-03 1.68E-02 5.75E-02 7.97E-02 

 First-10% 3.02E-03 1.71E-02 3.23E-02 7.51E-02 

 Last-10% 3.74E-03 1.91E-02 4.37E-02 9.41E-02 

 

  

                                                           
1
 Degrees of freedom for the GAMs and LMMs were chosen from 0 to 20 by 0.25 increments to optimize the Bayesian information criterion 

2
 The X-Y association was for was linear y = 0.03x, nonlinear    

     ⁄ , discontinuous    |cos      | and scaled accordingly for the small samples. 
3
 This is the mean minimized BIC score over all the possible degrees of freedom that could be allocated to the parameters 

4
 Mean Kullback Liebler distance on these models 

5
 Mean Kullback Liebler distance the first 40 data points 

6
 Mean Kullback Liebler distance the last 40 data points 
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Table 4: Mean Kullback Liebler distance, and other information, for curves fit  by Generalized additive models and 

generalized linear mixed models
1
 with df chosen to minimize BIC for small datasets (n=40)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association
2
. 

  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 1.86 (1.58) 1.67 (0.61) 2.06 (1.86) 1.76 (0.77) 

 Mean Criterion
3
 (SD) 34.21 (6.92) 34.28 (6.84) -7.85 (7.34) -7.58 (7.38) 

 KL-total
4
 6.59E-02 9.94E-02 2.41E-01 2.91E-01 

 First-10%
5
 6.38E-02 1.02E-01 2.27E-01 3.09E-01 

 Last-10%
6
 8.00E-02 1.23E-01 3.48E-01 4.63E-01 

Nonlinear Mean df (SD) 2.09 (1.77) 2.09 (1.77) 3.56 (2.23) 2.91 (1.22) 

 Mean Criterion (SD) 36.71 (6.71) 36.71 (6.71) 1.67 (7.11) 2.45 (6.66) 

 KL-total 1.07E-01 1.07E-01 1.14E+00 1.02E+00 

 First-10% 2.02E-01 2.02E-01 5.09E+00 5.21E+00 

 Last-10% 2.13E-01 2.13E-01 5.47E+00 5.49E+00 

Discontinuous Mean df (SD) 2.17 (1.83) 1.97 (0.88) 4.06 (1.86) 3.78 (1.14) 

 Mean Criterion (SD) 37.83 (6.61) 37.96 (6.44) 4.36 (7.03) 4.42 (6.42) 

 KL-total 1.57E-01 8.81E-02 9.15E-01 2.08E+00 

 First-10% 1.28E-01 8.20E-02 4.71E-01 1.10E+00 

 Last-10% 1.53E-01 1.06E-01 7.19E-01 1.64E+00 

 

 

  

                                                           
1
 Degrees of freedom for the GAMs and LMMs were chosen from 0 to 20 by 0.25 increments to optimize the Bayesian information criterion 

2
 The X-Y association was for was linear y = 0.03x, nonlinear    

     ⁄ , discontinuous    |cos      | and scaled accordingly for the small samples. 
3
 This is the mean minimized BIC score over all the possible degrees of freedom that could be allocated to the parameters 

4
 Mean Kullback Liebler distance on these models 

5
 Mean Kullback Liebler distance the first 40 data points 

6
 Mean Kullback Liebler distance the last 40 data points 
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Table 5: Mean Kullback Liebler distance, and other information, for curves fit  by Generalized additive models and 

generalized linear mixed models
1
 with df chosen to minimize GCV for large datasets (n=400)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association
2
. 

  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 1.67 (1.30) 1.68 (1.30) 1.13 (0.81) 1.13 (0.81) 

 Mean Criterion
3
 (SD) 4.08 (0.28) 4.08 (0.28) 0.50 (0.04) 0.50 (0.04) 

 KL-total
4
 9.14E-04 1.88E-02 5.88E-03 1.00E-01 

 First-10%
5
 1.39E-03 1.91E-02 9.64E-03 9.23E-02 

 Last-10%
6
 1.61E-03 2.13E-02 1.09E-02 1.14E-01 

Nonlinear Mean df (SD) 2.56 (1.97) 2.56 (1.97) 6.96 (2.42) 6.94 (2.41) 

 Mean Criterion (SD) 4.12 (0.28) 4.12 (0.28) 0.52 (0.04) 0.52 (0.04) 

 KL-total 2.61E-03 2.61E-03 5.20E-02 8.45E-02 

 First-10% 4.68E-03 4.68E-03 8.52E-02 8.71E-02 

 Last-10% 1.34E-02 1.34E-02 3.56E-01 1.46E-01 

Discontinuous Mean df (SD) 5.82 (1.71) 5.82 (1.71) 9.20 (1.52) 9.20 (1.52) 

 Mean Criterion (SD) 4.19 (0.29) 4.19 (0.29) 0.52 (0.04) 0.52 (0.04) 

 KL-total 3.28E-03 1.63E-02 3.83E-02 7.51E-02 

 First-10% 3.23E-03 1.67E-02 3.05E-02 7.10E-02 

 Last-10% 4.04E-03 1.86E-02 3.93E-02 8.94E-02 

 

  

                                                           
1
 Degrees of freedom for the GAMs and LMMs were chosen from 0 to 20 by 0.25 increments to optimize the Generalized Cross Validation 

2
 The X-Y association was for was linear y = 0.03x, nonlinear    

     ⁄ , discontinuous    |cos      | and scaled accordingly for the small samples. 
3
 This is the mean minimized GCV score over all the possible degrees of freedom that could be allocated to the parameters 

4
 Mean Kullback Liebler distance on these models 

5
 Mean Kullback Liebler distance the first 40 data points 

6
 Mean Kullback Liebler distance the last 40 data points 
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Table 6: Mean Kullback Liebler distance, and other information, for curves fit  by Generalized additive models and 

generalized linear mixed models
1
 with df chosen to minimize GCV for small datasets (n=40)  with high and low variance and 

linear, nonlinear or discontinuous X-Y association
2
. 

  High Variance (
2 

= 2.0) Low Variance (
2 
= 0.7) 

  GAM LMM GAM LMM 

Linear Mean df (SD) 1.81 (0.69) 1.78 90.64) 2.12 (1.62) 1.94 (0.87) 

 Mean Criterion
3
 (SD) 5.23 (1.71) 5.24 (1.71) 0.64 (0.22) 0.65 (0.23) 

 KL-total
4
 5.01E-02 9.70E-02 2.38E-01 2.86E-01 

 First-10%
5
 4.92E-02 9.91E-02 2.28E-01 3.04E-01 

 Last-10%
6
 6.57E-02 1.21E-01 3.55E-01 4.57E-01 

Nonlinear Mean df (SD) 1.97 (0.99) 1.97 (0.99) 3.57 (1.89) 3.07 (1.26) 

 Mean Criterion (SD) 5.91 (1.89) 5.91 (1.89) 1.00 (0.33) 1.03 (0.33) 

 KL-total 8.42E-02 8.42E-02 1.06E+00 1.04E+00 

 First-10% 1.79E-01 1.79E-01 4.85E+00 5.31E+00 

 Last-10% 1.91E-01 1.91E-01 5.25E+00 5.59E+00 

Discontinuous Mean df (SD) 2.07 (0.92) 2.10 (0.95) 4.01 (1.56) 3.87 (1.12) 

 Mean Criterion (SD) 6.21 (1.88) 6.20 (1.89) 1.13 (0.36) 1.11 (0.34) 

 KL-total 1.21E-01 8.77E-02 8.73E-01 2.09E+00 

 First-10% 9.34E-02 8.10E-02 4.52E-01 1.10E+00 

 Last-10% 1.17E-01 1.05E-01 6.92E-01 1.63E+00 

 

  

                                                           
1
 Degrees of freedom for the GAMs and LMMs were chosen from 0 to 20 by 0.25 increments to optimize the Generalized Cross Validation 

2
 The X-Y association was for was linear y = 0.03x, nonlinear    

     ⁄ , discontinuous    |cos      | and scaled accordingly for the small samples. 
3
 This is the mean minimized GCV score over all the possible degrees of freedom that could be allocated to the parameters 

4
 Mean Kullback Liebler distance on these models 

5
 Mean Kullback Liebler distance the first 4 data points 

6
 Mean Kullback Liebler distance the last 4 data points 
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Table 7: Basic characteristics of subjects (n=541) from the COLD study 

Variable Mean (SD) or Proportion 

Male 41.21% 

Age 54.40 (10.20) 

FEV1 2.71 (0.80) 

FVC 3.72 (1.03) 

PEF 7.17 (2.15) 

Ever smoked 58.15% 

Years of smoking 26.50 (12.80) 

Pack years 14.33 (20.40) 

Weight 74.70 (17.30) 
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Table 8: Measures of fit and degrees of freedom used to model the association between 

pack-years
1
 and lung function

2
 

 GAM
3
 GLMM

4
 Linear

5
 

 

 

FEV1 

AIC -655.47 -648.78 -646.47 

df 4.45 3.35 1.00 

BIC -638.47 -614.21 -638.20 

df 1.00 2.55 1.00 

GCV 0.30 0.30 0.30 

df 4.45 3.35 1.00 

 

 

FVC 

AIC -375.92 -366.87 -372.02 

df 4.50 2.95 1.00 

BIC -363.65 -338.24 -363.44 

df 1.00 1.02 1.00 

GCV 0.50 0.51 0.50 

df 4.50 2.95 1.00 

 

 

PEF 

AIC 478.65 485.56 486.07 

df 4.25 3.35 1.00 

BIC 494.35 519.63 494.65 

df 1.00 2.55 1.00 

GCV 2.43 2.46 2.46 

df 4.20 3.35 1.00 

 

  

                                                           
1
 The effect of pack years was smoothed, with df chosen to optimize AIC, BIC or GCV. 

2
 Separate models were fit using FEV1, FVC, or PEF as the response. Age, sex and weight were included as 

confounders in the model. 
3
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to Pack Years 

4
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned to Pack Years 

5
 Results from a linear model 
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Table 9: Measures of fit and degrees of freedom used to model the association between 

smoking duration
1
 and lung function

2
 

 GAM
3
 GLMM

4
 Linear

5
 

 

 

FEV1 

AIC -382.58 -374.50 -380.48 

df 2.80 2.55 1.00 

BIC -372.98 -349.98 -372.98 

df 1.00 1.00 1.00 

GCV 0.30 0.30 0.30 

df 2.80 2.55 1.00 

 

 

FVC 

AIC -229.65 -221.65 -229.65 

df 1.00 1.00 1.00 

BIC -222.16 -199.15 -222.16 

df 1.00 1.00 1.00 

GCV 0.48 0.49 0.48 

df 1.00 1.00 1.00 

 

 

PEF 

AIC 280.42 288.40 280.51 

df 1.35 1.35 1.00 

BIC 288.01 311.01 288.01 

df 1.00 1.00 1.00 

GCV 2.44 2.51 2.44 

df 1.30 1.35 1.00 

 

 

  

                                                           
1
 The effect of duration was smoothed, with df chosen to optimize AIC, BIC or GCV. 

2
 Separate models were fit using FEV1, FVC, or PEF as the response.  Age, sex and weight were included as 

confounders in the model. 
3
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to Smoking 

Duration 
4
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned to Smoking 

Duration 
5
 Results from a linear model 
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Figure 2: Association between Pack Years and FEV1 estimated via a linear 

model (solid line), a GAM (dotted line) and a LMM (dashed line) with df 

chosen to optimize AIC (upper panel), BIC (middle panel) or GCV (lower 

panel) 
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Figure 3: Association between Pack Years and FVC estimated via a linear model (solid 

line), a GAM (dotted line) and a LMM (dashed line) with df chosen to optimize AIC 

(upper panel), BIC (middle panel) or GCV (lower panel) 
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Figure 4: Association between Pack Years and PEF estimated via a linear model 

(solid line), a GAM (dotted line) and a LMM (dashed line) with df chosen to 

optimize AIC (upper panel), BIC (middle panel) or GCV (lower panel) 
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Figure 5: Association between Smoking Duration and FEV1 estimated via 

a linear model (solid line), a GAM (dotted line) and a LMM (dashed line) 

with df chosen to optimize AIC (upper panel), BIC (middle panel) or GCV 

(lower panel) 
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Figure 6: Association between Smoking Duration and FVC estimated via a linear 

model (solid line), a GAM (dotted line) and a LMM (dashed line) with df chosen to 

optimize AIC (upper panel), BIC (middle panel) or GCV (lower panel) 
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 Figure 7: Association between Smoking Duration and PEF estimated via a linear 

model (solid line), a GAM (dotted line) and a LMM (dashed line) with df chosen 

to optimize AIC (upper panel), BIC (middle panel) or GCV (lower panel) 
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Linking Statement 

The first manuscript compared GAMs and LMMs via simulation study and in one 

real life example for continuous outcomes. The second manuscript focuses on modeling 

known non-linear associations between continuous independent variables and a binary 

outcome variable, investigating a previously established trend. A comparison is still made 

between GAMs and GLMMs. However, since the study is focused on real life data it lacks a 

simulation. Thus the true accuracy of GAMs vs GLMMs cannot be known and so this 

investigation may not be as a thorough as in the first manuscript.  The advantage of this 

manuscript lies in the fact that the nonlinear characteristics of the data are strong. These 

relationships are of high clinical importance. Interpretation of their nonlinear curves is 

clinically relevant.  

 



Modeling Nonlinear trends in ICU patients  Page 55 
 

 

 

 

Full title: Modeling Nonlinear trends in ICU patients: A Comparison of Generalized Additive 

Models and Generalized Linear Mixed Models 

 

 

Short title: Modeling Nonlinear trends in ICU patients 

 

Daniel Hercz
1 

Sandra Dial 

 

Andrea Benedetti
1,2

 

 

 
1
Department of Epidemiology, Biostatistics and Occupational Health, McGill University 

2
Respiratory Epidemiology and Clinical Research Unit, Department of Medicine, McGill 

University 

 

 

Corresponding Author:  Andrea Benedetti 

     

Address:   Montreal Chest Institute, K-135 

    3650 St. Urbain 

    Montreal, QC 

    H4A 2Z6 

Telephone:   (514) 934-1934 ext. 32161 

Fax:    (514) 843-2083 

Email:    Andrea.benedetti@mcgill.ca 

  

mailto:Andrea.benedetti@mcgill.ca


Modeling Nonlinear trends in ICU patients  Page 56 
 

Abstract 

Patients with sepsis have an increased risk of mortality when several key 

vital parameters fall below certain threshold levels. This research focuses 

on whether and where this occurs with patients receiving critical care post 

cardiac surgery.  Generalized Additive Models (GAMs) and Generalized 

Linear Mixed Models (GLMMs) were used to model the associations 

between Mortality vs Cardiac Index, Mixed Venous Oxygen Saturation, 

Oxygen Delivery, and Serum Lactate. Flexibility of the smooth curves was 

determined by data driven criteria (AIC, BIC or GCV). All variables except 

Serum Lactate exhibited a nonlinear relationship with Mortality. GAMs had 

a tendency to assign stronger nonlinearity to models than GLMMs. GLMMs 

were more likely to estimate curves suggestive of the existence of a 

threshold while at the same time not overfitting. 

Background 

In the intensive care unit, certain postoperative physiological variables and hemodynamic 

parameters, such as oxygen delivery, cardiac index, mixed venous oxygen saturation and serum 

lactate are monitored. These measurements are variable and may change in the hours after 

surgery while in the intensive care unit (ICU). It is suggested that the inability to achieve or 

reach certain levels, may predict an increased risk of mortality. [75] 

The Cardiac Index (CI) is the volume of blood being pumped by the heart, in particular by a left 

or right ventricle over one minute, scaled by the patient’s body size. In a healthy patient the CI is 

demand based; such that it can vary depending on the metabolic and oxygen requirements of the 

subject. The normal range of CI is 2.6 - 4.2 L/min/m
2
[50]. 

The tissues and organs of the body require oxygen and other nutrients, in particular glucose, to 

meet their metabolic needs. The delivery of oxygen to the tissues (DO2) is determined by the 

cardiac output, and the oxygen content of the blood.  The oxygen content of the blood in turn is 

determined by the hemoglobin level and the oxygen saturation of the hemoglobin after it has 

been oxygenated in the lungs (arterial oxygen saturation).  The tissues then extract oxygen from 

the hemoglobin for metabolism (VO2). Under normal conditions the DO2 is more than sufficient 

to meet the demands of all tissues and organs. Even with a moderate reduction in DO2, the 

tissues may be able to obtain sufficient oxygen by extracting more oxygen from the hemoglobin. 

The O2 uptake is denoted by VO2 on Figure 1. The level of DO2 at which the VO2 is affected is 

known as the critical DO2. When DO2 drops below the critical DO2, V O2 becomes supply 

dependent [53]. The tissues, because of insufficient oxygen delivery, may convert from a normal 

aerobic metabolism, to an anaerobic type of metabolism to try to meet their energy requirements. 

When this occurs lactic acid may be produced [53], leading to an increase in serum lactate.   
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The Mixed Venous Oxygen Saturation (MVO2) refers to the oxygen saturation of blood 

returning to the heart after the tissues have extracted oxygen required for their metabolic needs.  

MVO2 depends on the DO2 and the VO2. The VO2 in turn is dependent on the tissue oxygen 

demands. As shown in Figure 1, even in the presence of increased DO2, the oxygen uptake 

remains constant and  does not desaturate blood hemoglobin more than necessary [51]. If there is 

a significant drop in saturation of the blood, this implies the body is drawing an additional 

percentage of O2 from the blood. Such a drop usually implies the possibility of an inadequate 

DO2, which could be because of the hemoglobin being too low (anemia), decreased arterial 

oxygen saturation, and/or decreased cardiac output; however, a normal or high value does not 

exclude such disturbances. When employed in conjunction with the other indicators of tissue 

oxygenation available in an intensive care unit, MVO2 can be useful as a guide for both 

prognosis and urgency of therapy [76].  

 

 

Figure 1: Oxygen Delivery per DO2 

 

Serum lactate is involved in the conversion of pyruvate and lactate when tissue O2 levels 

are low and implies the occurrence of anaerobic metabolism, which can is considered a marker 

of insufficient DO2. The normal blood lactate concentration in unstressed patients is 0.5-1 

mmol/L [52].  

Because the associations between these measures and mortality are often nonlinear [77, 

78], methods that impose a linear functional form will produce biased effect estimates. 
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Categorization of the independent variable could be used, but this may result in an untrue [19] 

functional form and can reduce power to detect an effect. A priori specification of the functional 

form (e.g. quadratic) often requires information that is not available, and as with assuming 

linearity, can result in a biased estimate if the shape is wrong.  A better option is to use a flexible 

regression method in which the shape of the association is estimated directly from the data.  

There are many possible approaches – here we consider two.  [77, 78] 

 

 

Generalized Linear Mixed Models (GLMMs) are extensions to Generalized Linear 

Models through the addition of “random” effect term[17]. Typically, GLMMs are used to model 

longitudinal data, but mixed models have a much wider generality than those used for handling 

correlation or clustering. By treating the terms from a regression spline as random effects a 

smooth curve can be estimated.  Both the shape and flexibility of this curve can be estimated 

directly from the data.[2]. 

Generalized additive models (GAMS) generalize the regression equation to include 

smooth functions of some independent variables, conditional on the user-specified degrees of 

freedom (df) that control the flexibility of the curve.  The smooth functions have shapes that are 

estimated directly from the data. Several smoothing strategies are available in GAMs – here we 

use smoothing splines. [79] 

The Generalized Additive Model (GAM) generalizes the conventional regression model to: 

         y        

 

where Sj(Xj) are smooth functions whose shapes are estimated directly from the data for those 

predictors (  modeled non-parametrically, and .  A number of smoothing 

methodologies are available in GAMs, though here we focus on cubic smoothing splines [79]. 

 

The GLMM regression equation for a binomial outcome is: 
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and  represent the fixed effects; the  represent the normally distributed random effects; the 

 are the pre-specified knots, the   are normally distributed errors , and p is the degree of the 

polynomial. The variance of the random effects, is usually estimated by maximum likelihood 

when the outcome is continuous, though can also be arrived at by minimizing the penalized least 

squares [17]. The smoothing parameter, , is the ratio of the variance to the two normal 

distributions above. It controls the level of smoothing in GLMMs. [2] 

When the outcome is binary, estimation involves an intractable likelihood.  Two popular 

approaches are penalized quasi likelihood and numerical integration via adaptive Gaussian 

hermite quadrature [17]. Here we focus on PQL.  

Several “threshold” relationships are known to exist between the vital indicators of ER 

patients with sepsis and mortality however, their exact values are either not well established or 

subject to debate [53, 64]. Moreover, it is not clear whether the associations between these 

parameters and mortality can be applied to other patient populations such as the one used here. 

The main objective of this paper is to model the associations between vital indicators and 

mortality using GAMs and GLMMs in a population of subjects receiving critical care post 

cardiac surgery. 

Methods  

Data was collected at two adult tertiary care university affiliated hospitals in Montreal, 

Canada, retrospectively between January 1, 2005 and December 31, 2005 by trained reviewers 

using standardized data collection sheets from patient charts. Consecutive patients who had a 

coronary artery bypass (CABG), valve replacement or repair, or combined CABG and valvular 

aortic procedures, were included in the study. Patients undergoing a heart transplant, pulmonary 

thromboendarterectomy, or placement of a ventricular assist device were excluded. 

All patients were admitted postoperatively to the intensive care unit (ICU). A Swan-Ganz 

catheter was used perioperatively at both hospitals to guide patient resuscitation. Serum lactate 

and mixed venous oxygen saturation levels were measured in all patients at one site, and selected 

patients at the other site. In order to avoid bias, only the data from the patients treated at the 

hospital with routinely measured serum lactate and mixed venous oxygen saturation were used 

for the analysis of those variables. 
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The postoperative physiological variables (delivered oxygen, cardiac index, mixed 

venous oxygen saturation and serum lactate) were measured at three time points:  at admission to 

the ICU; 6 and 24 hours post ICU admission. 

The primary study outcome was hospital mortality. Data were collected on patient age, 

sex, Parsonnet's score [80], past medical history, procedure related variables, and six-hour 

postoperative physiological variables. Past medical history was abstracted from patient records. 

Conditions considered were any prior cardiac surgery, hypertension, diabetes, atrial fibrillation, 

preoperative hospitalizations for heart failure, preoperative renal dysfunction, preoperative 

dialysis, preoperative ejection fraction and left ventricular dysfunction.  

All research was in keeping with the principles outlined in the Helsinki declaration. The 

research ethics committee of the McGill University Health Centre Research Institute approved 

the study. The ethics committee waived the Need for informed consent as the data were collected 

retrospectively. 

 

Statistical analysis 

A generalized linear mixed model (GLMMs), a generalized additive models (GAMs) and 

a linear logistic model were fit to the ER patient data at each time point and for each independent 

variable, with mortality as the binary outcome and adjusted for important confounders (age, sex 

and Parsonnet’s score) as linear effects.  

Knots for the GLMMs were uniformly distributed proportionally to the density of the 

independent data as per Wand 2003 [2], and. estimated via penalized quasi likelihood using the 

algorithm provided by Wand [10]. GAMs were fitted using the “gam” library of the R statistical 

software package [81].  

The complexity of a linear model is proportional to the number of explanatory terms; 

every parameter corresponds to one degree of freedom (df) due to the assumption that each has 

only a linear relation with the data. Flexible regression models estimate the shape of the 

association under study directly from the data.  The smoothness of the estimated curve depends 

on the df – with more df resulting in a bumpier curve that follows the data more closely. The 

total number of equivalent degrees of freedom used by the model is known as the effective 

degree of freedom or edf [13]. For the purposes of this study df will be used interchangeably 

with edf. 

Both GLMMs and GAMs can fit their nonlinear aspects as proportional to the df [1, 37]. 

The calculation is based on the resultant curve. In GLMMs, it is functionally connected to the 

ratio of variability in the random vs. the fixed effects. In GAMs (which have a broadest range of 

methods to fit their curves), the connection is less strict.  This is convenient as all the 
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nonlinearity of a model is expressed as a one dimensional value, the edf. Through stepwise 

specification of the df (from 1 to 20 with increments of 0.25 for the purposes of this paper), one 

can achieve a gradient of models and select the one with the best fit.  Three measures of fit were 

used: the Akaike Information Criterion (AIC), Baysian Information Criterion (BIC), and 

Generalized Cross Validation (GCV) were used to select df for both GAMs and GLMMs. The 

minimized criterion score is reported. [31, 35, 66] 

 

 

 

Results 

Table 1 Basic characteristics of subjects (n=520) from the ICU study 

Variable Mean (SD) or Proportion in 

Subjects who Survived (n=452) 

subjects who died (n=68) 

Male 62.31% 54.41% 

Age 68.4 (10.60) 74.8 (8.19) 

Parsonnet’s Score 17.38 (11.10) 29.44 (14.0) 
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Table 2: Results for modeling the association between cardiac index at three time points and 

mortality via GAMs, GLMMs and a linear model 
1
 

Cardiac Index 

 GAM
2
 GLMM

3
 Linear

4
 

 

 

At 

admission 

AIC -1218.27 -1196.24 -1192.25 

df 5.10 5.90 1.00 

BIC -1199.12 -1164.24 -1183.76 

df 1.00 1.35 1.00 

GCV 9.39E-02 9.82E-02 9.88E-02 

df 5.80 5.40 1.00 

 

 

At 

6 hours 

AIC -1219.62 -1197.57 -1182.25 

df 4.30 3.60 1.00 

BIC -1197.33 -1166.72 -1173.77 

df 2.20 3.60 1.00 

GCV 9.37E-02 9.82E-02 1.01E-01 

df 8.25 6.55 1.00 

 

 

At 

24 hours 

AIC -1208.82 -1190.27 -1177.93 

df 3.30 3.10 1.00 

BIC -1197.71 -1163.94 -1169.46 

df 1.40 1.40 1.00 

GCV 9.35E-02 9.76E-02 9.93E-02 

df 3.30 3.10 1.00 

 

 

 

                                                           
1
 Age, sex and Parsonnet’s score as confounders were included in the model as linear effects. 

2
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to Cardiac Index 

3
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned to Cardiac 

Index 
4
 Results from a linear model 
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Table 3 

Results for modeling the association between MVO2 at three time points and mortality via 

GAMs, GLMMs and a linear model 
1
 

 

MVO2 

 GAM
2
 GLMM

3
 Linear

4
 

 

 

At 

admission 

AIC -917.46 -904.35 -904.46 

df 3.10 3.95 1.00 
BIC -904.38 -880.03 -896.54 

df 1.90 1.00 1.00 

GCV 9.29E-02 9.63E-02 9.60E-02 

df 3.05 3.00 1.00 

 

 

At 

6 hours 

AIC -951.12 -936.77 -937.29 

df 4.15 3.25 1.00 

BIC -939.10 -910.94 -929.29 

df 1.00 1.00 1.00 

GCV 9.55E-02 9.94E-02 9.88E-02 

df 4.10 3.10 1.00 

 

 

At 

24 hours 

AIC -1006.12 -992.40 -987.97 

df 3.35 3.85 1.00 

BIC -994.43 -966.73 -979.83 

df 1.80 1.90 1.00 

GCV 9.74E-02 1.01E-01 1.02E-01 

df 3.80 4.10 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 Age, sex and Parsonnet’s score as confounders were included in the model. 

2
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to MVO2 

3
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned MVO2 

4
 Results from a linear model 
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Table 4:  

Results for modeling the association between DO2 at three time points and mortality via GAMs, 

GLMMs and a linear model 
1
 

 

DO2 

 GAM
2
 GLMM

3
 Linear

4
 

 

 

At 

admission 

AIC -1146.52 -1129.45 -1131.77 

df 2.25 1.15 1.00 

BIC -1138.11 -1104.02 -1123.36 

df 1.00 1.00 1.00 

GCV 9.82E-02 1.02E-01 1.01E-01 

df 1.15 1.15 1.00 

 

 

At 

6 hours 

AIC -1072.58 -1048.79 -1032.71 

df 7.20 4.10 1.00 

BIC -1044.92 -1019.92 -1024.46 

df 1.60 1.45 1.00 

GCV 9.57E-02 1.01E-01 1.04E-01 

df 10.00 3.85 1.00 

 

 

At 

24 hours 

AIC -1154.53 -1140.32 -1111.08 

df 4.9 5.15 1.00 

BIC -1131.46 -1110.14 -1102.70 

df 3.05 1.55 1.00 

GCV 9.39E-02 9.72E-02 1.03E-01 

df 7.10 6.85 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 Age, sex and Parsonnet’s score as confounders were included in the model. 

2
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to DO2 

3
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned to DO2 

4
 Results from a linear model 
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Table 5:  

Results for modeling the association between Serum Lactate at three time points and mortality 

via GAMs, GLMMs and a linear model 
1
 

 

Lactate 

 GAM
2
 GLMM

3
 Linear

4
 

 

 

At 

admission 

AIC -908.03 -883.39 -885.53 

df 1.00 1.00 1.00 

BIC -882.10 -857.57 -877.79 

df 1.00 1.00 1.00 

GCV 7.75E-02 8.41E-02 8.25E-02 

df 1.10 1.35 1.00 

 

 

At 

6 hours 

AIC -893.43 -881.12 -876.24 

df 1.30 1.30 1.00 

BIC -871.98 -857.48 -868.51 

df 1.20 1.20 1.00 

GCV 7.97E-02 8.28E-02 8.36E-02 

df 1.00 1.50 1.00 

 

 

At 

24 hours 

AIC -917.69 -897.89 -894.41 

df 1.40 2.20 1.00 

BIC -904.75 -874.68 -886.68 

df 1.05 1.05 1.00 

GCV 7.43E-02 7.92E-02 7.94E-02 

df 5.00 4.80 1.00 

 

 

 

 

 

 

 

  

                                                           
1
 Age, sex and Parsonnet’s score as confounders were included in the model. 

2
 Results from the generalized additive model: The optimal (lowest AIC, BIC, or GCV) df assigned to Serum Lactate 

3
 Results from the generalized linear mixed model: The optimal (lowest AIC, BIC, or GCV) df assigned to Serum 

Lactate 
4
 Results from a linear model 
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Information was collected on 520 post-surgical ICU subjects, 68 who did not survive. 

Basic characteristics of the included subjects are presented in Table 1. 62.3% of the surviving 

group was male (54.41% in nonsurviving), with a mean age of 68.4 years (74.8 years in 

nonsurviving) and mean parsonnet score of 17.38 (29.44 in nonsurviving). The total incidence of 

mortality was 13%. 

 

Both GAMs and GLMMs captured consistent and similar directional trends within each 

ER variable modeled (all figures). Mortality decreased as Cardiac Index, MVO2, and DO2 

increased (Figures 1, 2, and 3). Mortality increased as serum lactate (Figure 4) increased. In 

addition, there appeared to be threshold values for both Cardiac Index and MVO2 (Figures 1-18 

and 19-36). Above 2-2.5 for Cardiac Index and slightly above 40% for MVO2 the reduction in 

mortality rate leveled off (Figures 1-9 and 10-15). DO2 showed a similar threshold at 250, but 

only after initial admission (Figure 22-27). There was some nonlinearity beyond this point, but 

for most models it appeared localized and idiosyncratic. This was usually in the form of a 

periodic function having little or no trend. 

 

             GAMs with higher (Tables 1 and 3: Cardiac Index and DO2) or the same edf (Tables 2 

and 4: MVO2 and DO2) fit better than GLMMs. Most differences were subtle, but in some 

variables such as serum lactate (a theoretically roughly linear relationship), GAMs yielded 

nonlinear curves. In some curves there were also possible signs of over fitting when using GAMs 

(small and idiosyncratic deviations from the curve visualized as “bumpiness”) with all 

information criteria (Figures 4-6 and 10-12).  

 Selection of edf through optimization of AIC allocated more edf than through 

optimization of BIC. In fact, models with edf chosen to optimize BIC were mostly linear or close 

to it (<2 edf). This was similar for GLMMs and GAMs.  Instead of estimating similarly to AIC 

as predicted for large datasets, in some cases GCV allocated higher edf than AIC or BIC. In 

some cases the extra edf seemed arbitrary in relation to those selected by the other criteria, 

resulting in it almost being the lone nonlinear model (e.g. The Serum Lactate models Tables 28-

36).     

             In addition to GCV allocating the highest edf over the other information criteria, the 

estimated curves appear to be overly fitting noise with particularly “bumpy” results. (See Figures 

47-48, 53-54, and 71-72). 
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Discussion 

In this work, we used GAMs and GLMMs, as well as a linear logistic regression to model 

the associations between Cardiac Index, Mixed Venous Oxygen Saturation, Oxygen Delivery, 

and Serum Lactate and mortality. Edf for GAMs and GLMMs were chosen to optimize one of 

three criterion: AIC, BIC or GCV. 

Our results suggested that selection with BIC likely failed to capture the extent of 

nonlinearity present in Cardiac Index, DO2, and MVO2. Used with both GAMs and GLMMs, 

BIC was repeatedly minimized with nearly linear curves (i.e. with df near 1). GCV presented the 

opposite problem and was often optimized with unrealistically high df. While it is not possible to 

know the true edf of a given model, the GCV-selected df resulted in implausibly bumpy curves. 

AIC picked up on the nonlinear data more than BIC and produced less extreme edfs than GCV. 

Both GAM- and GLMM-estimated curves suggested the possible existence of a threshold 

level of vital indicators, such that values lower than these thresholds were associated with a 

higher rate of mortality. Visual estimates of the threshold levels, determined from the curves, 

were similar to those reported in septic patients. GLMM curves produced sharper curves in the 

regions where a threshold may exist.  

 

Our results show some notable differences with previously published information.  While 

levels of  MVO2  of 60% or lower are considered abnormal or dangerous [76], we found that 

MVO2 had little impact on mortality until almost 40%.  In one study of 17 critically ill septic and 

nonseptic patients, the mean critical DO2 was approximately 300 mL/min for a 75-kg patient or 

60% [59]. We found that DO2 levels would often be much lower at time of admission and shortly 

after (closer to 40-50%). 

On the other hand, our results were similar for other exposure variables. CI values below 

1.8 L/min/m² potentially indicate that the patient is in cardiogenic shock [50].  Our results are 

similar, suggesting that this is roughly the case with CI’s contribution to mortality starting below 

2 L/min/m². 

Elevated initial through 24-hour lactate levels, and lactate clearance time have been 

shown to be significantly correlated with mortality [52, 82],  independently of clinically apparent 

organ dysfunction and shock in patients admitted to the ED with severe sepsis [64]. Overall, our 

results suggest a linear association between these variables and mortality.  

The overall negative effect of low oxygen delivery when a patient is admitted (Figures 

37-42) had a lower effect on mortality than at 6 or 24 hours after admission. This difference is 
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possibly because of extra patient treatment delivered to the severe cases with low DO2. There 

were 27 patients with DO2 below 200 ml/min, but only 15 such patients at 6 hours. More serious 

and systemic problems can manifest with persistently low DO2[57]. 

Given the established nonlinear nature of critical velocities, it follows that untransformed 

linear models would result in biased results. The relative drop in a given information criterion 

from a linear model to a GAM or GLMM can yield information on the strength of the nonlinear 

relationship. By this standard, Cardiac Index and MVO2 benefitted the most from flexible 

modeling. 

There are several weaknesses to this work. Statistical significance of nonlinearity was not 

assessed. Given that data driven criterion such as AIC and BIC were used to choose the edf, 

statistical inference is problematic [18]. Previous work on the associations between postoperative 

physiological variables and hemodynamic parameters and mortality focused on identification of 

a threshold [83].  However, previous work has indicated that estimating a threshold using more 

objective criteria using GAMs was difficult [18], thus we only estimated curves here. 

Additionally, we used GLMMs estimated via PQL which is known to perform poorly in 

some situations, whereas it may be interesting to consider estimation via numerical 

integration[84]. While there is a large body of work comparing GLMMs estimated via PQL to 

those estimated using numerical integration for analyzing correlated or clustered data, we found 

no comparisons of the two estimation methods in this context. 

Our results also demonstrated that GCV did not perform well when used in this context 

with a binomial outcome. GCV is not a likelihood based method for binomial GLMMs. 

For normal linear mixed models the marginal distribution of Y is directly computed as a 

multivariate normal. For binomial mixed models the marginal distribution of Y can be 

approximated using penalized quasi-likelihood [85]. For small 
2
 or high n, GCV is a rough 

transformation of AIC on a Gaussian likelihood [86, 87]. In most binomial cases, GCV is 

emulating the wrong distribution. By being geared toward Gaussian distributions it is possible 

that GCVs are under penalizing additional df. This would require systematic testing to draw a 

substantial conclusion. 

 

 

 Previous modeling of the vital parameters has relied on a priori specification of 

the functional form to capture the threshold relationship (e.g. binary variables created by 

thresholds). GAMs and GLMMs deliver comparable results without this encumbrance. There is 

an apparent region for where the probability of mortality begins to increase at 250 ml/min for 
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DO2. For Cardiac Index, there is a corresponding area just above 2 L/min/m
2
. For MVO2 only 

saturation below 40% appears to be harmful.  Evidence for a threshold is less strong for Serum 

Lactate. GLMMs in general produced a sharper and more consistent threshold point. GAMs, 

however, produced lower minimized information criterion when selecting degrees of freedom 

with AIC, BIC, and GCV. When selecting this binomial model’s effective df GCV behaved 

inconsistently. As well, BIC may have been too conservative, and seemed to fail to capture the 

extent of the nonlinearity, and repeatedly selected a linear result. 
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Small sample size GLMM model selection by AIC 

 

  

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 2.04 EDF on Linear/Low Variance Data

Figure 1

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 1.83 EDF on Linear/High Variance Data

Figure 2

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 3.67 EDF on Nonlinear/Low Variance Data

Figure 3

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 2.35 EDF on Nonlinear/High Variance Data

Figure 4

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 4.68 EDF on Discontinuous/Low Variance Data

Figure 5

0 2 4 6 8 10

0
1

2
3

4
5

6

GLMM Model: 2.31 EDF on Discontinuous/High Variance Data

Figure 6



Curve plot results for the simulation  Page 71 
 

Small sample size GAM model selection by AIC 
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Large sample size GLMM model selection by AIC 
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Large sample size GAM model selection by AIC 
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Small sample size GLMM model selection by BIC 
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Small sample size GAM model selection by BIC 
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Large sample size GLMM model selection by BIC 

 

 

 

 

 

 



Curve plot results for the simulation  Page 77 
 

 

Large sample size GAM model selection by BIC 
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Small sample size GLMM model selection by GCV 
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Small sample size GAM model selection by GCV 
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Large sample size GLMM model selection by GCV 
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Large sample size GAM model selection by GCV 
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Concluding Discussion 

While the two manuscripts of this thesis had distinct objectives, in this section I 

review the results and findings from both. In the first manuscript I conducted a simulation 

study comparing GAMs and GLMMs in a series of comprehensive scenarios for continuous 

outcomes, which gave the real life data analyses some theoretical context. In this 

manuscript I also explored the relationship between smoking and lung function. In the 

second manuscript, I dealt with a larger and more practical real life application, in which 

log-linear modeling is an inadequate method for capturing curvilinear associations. Its 

objective was simpler: To evaluate each model’s capacity to model a known nonlinear 

effect (the leveling off of morbidity risk in ICU patients).  

The first manuscript concluded that GAMs had the slight advantage over LMMs in 

large datasets. LMMs were shown in some cases be more reliable in small datasets with 

relatively large amounts of variability. Again in the large datasets of the first manuscripts 

simulation study, edfs chosen by BIC with LMMs provided a consistent and relatively 

conservative assessment of the nonlinearity of the curve. In the reverse scenario with a 

high sample size to variance ratio (with less information), GAMs or LMMs with AIC/GCV 

used to choose the df were most likely to capture the full extent of the nonlinear behavior. 

The curves that estimated via GAMs or GLMMs in the second manuscript gave 

roughly similar results that supported the existence of thresholds of increased ICU 

mortality known in the literature. However, the estimated curves for MVO2 suggested 

increased mortality at significantly lower levels (closer to 40%). In general, GLMMs produced a 

sharper and more consistent threshold point than did GAMs.  However, we did not formally 

estimate the threshold, and instead relied on visual identification. 

Both the ICU and COLD data featured similar curves with similar character of 

nonlinearity. They both roughly approximated the "nonlinear" category of curves, from the 

simulated dataset of the first manuscript. However, the independent variable for the ICU data 

distribution was quite different from those used to generate data for the simulations presented in 

Manuscript 1. The independent variable was slightly sparser than the Smoking Duration variable 

and much less skewed than the Pack Year variance. There were also more observations in the 

suspected areas of nonlinearity. The one ICU dataset variable that lacked data in the location of 

nonlinearity had the weakest evidence for nonlinearity (Serum Lactate Table 4, Figures 28-36). 

In general for the real life data it seems that GLMMs are a better performer than GAMs. This is 

in contrast to the simulation. As mentioned in the methods of the first manuscript, the 

independent variable of the simulated data was generated from a uniform distribution while the 

smoking variables are heavily skewed towards zero with a small number of highly influential 
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outliers. Such outliers increased the variance of the edf results in the simulation, but to what 

degree this would change edf is unclear. 

This thesis has several strengths. Both Gaussian and non-Gaussian models were 

explored (with binomial outcomes being exceedingly common in epidemiological studies). 

A variety of methods commonly used in model selection were used to determine the degree 

of nonlinearity implemented (via the edf). Finally results were examined both graphically 

and analytically (via KL-distance, curve edf, and information criteria). 

Overall, the simulation study described in the first manuscript gave a slight edge to 

GAMs in its ability to capture the extent nonlinear relations and return fitted values with a 

lower KL-distance from the true curves. Both sets of our models derived from the real life 

datasets, however, tended to favor GLMMs. Although the simulation study did not address 

modeling dichotomous outcomes, it seemed that GLMMs did a better job than GAMs, since 

the general form of the existing nonlinear relationship was well established.  

There is room for further comparison between to the two classes of models; we 

focused on proper model selection as opposed to inference on the nonlinearity of the 

estimated curve. The direct inference method has seen mixed success[18]. Also, for each 

GAM and GLMM we only examined a single algorithm to fit the model, but several are 

commonly used in practice. It is possible that other algorithms may yield different results 

(REF to Engel B from 2nd manuscript). Finally we could examine flexible regression 

methods beyond GAMs and GLMMs entirely using methods discussed in the literature 

review. 

Several overall conclusions can be drawn from both manuscripts. Despite GAMs and 

GLMMs both exceling in certain and district scenarios they were both appropriate for the 

task in almost all the examined situations. Thus if a researcher has other stronger 

considerations that heavily favor one type of model over another (e.g. mixed models for 

longitudinal data) then in general the non-optimal one may become the optimal. This is 

especially true with larger datasets where simulation results converged in many cases.  

Finally both the simulation and the real life analyses were constructed in a controlled 

fashion. More exotic considerations such as additional covariates (both linear and 

nonlinear) or selective usage of variables (for example having them determined by AIC) 

could have been employed   t is important to consider the results of this thesis in an “all 

things considered e ual” setting  

The work contained in thesis can also be viewed beyond its primary purpose of a 

comparison and evaluation of GAMs and GLMMs in the context of nonlinear modeling. It is 

useful for those who wish to add these models to their research project. There is 

considerable variability on how both these models should be generated and for what is 
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their exact usage and interpretation. A meta-analysis or survey on how GAMs and GLMMs 

are commonly implemented for nonlinear modeling could shed some light on how 

researchers commonly use these tools.  

Future directions in the juxtaposition of GAMs and GLMMs may include a simulation 

and/or real life analysis of data that demands an alternative distribution (e.g. Poisson 

rates) or where an entirely nonparametric model must be employed. In the vein of 

e panding the scope of the simulation  more “types” of nonlinear and discontinuous 

scenarios could be examined.  Similarly, the scenarios examined here could be made more 

realistic by adding other covariates which may or may not have a linear association with 

the outcome. Another possible method of evaluation is to examine the rates of type I and II 

errors through hypothesis testing.  

This thesis has been able to provide a comparison of GAMs and GLMMs in a 

theoretical and comprehensive context, as well as two applied and applicable to medical 

research cases. The simulation has provided distinct scenarios where each GAM or GLMM 

may excel in accuracy and interpretability. The real life data sets have shown that these 

models can identify both established and exploratory nonlinear relations in clinical 

variables. 
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