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Abstract 

 

Periodic structures have been widely used in the radio frequency (RF) and microwave 

industries in the past few decades. Understanding the modal behavior of these structures 

requires an eigenvalue study called dispersion analysis, to which the finite element 

method (FEM) has been successfully applied.  The classical FEM approach is to specify a 

purely imaginary propagation constant and find the corresponding frequency. This 

method provides information regarding the behavior in the passband, but not in the 

stopband, and moreover cannot accommodate lossy or frequency-dependent materials.  

 

Recently a new FEM was reported that allows the user to specify the frequency and find 

the complex propagation constant. However, the method is computationally inefficient 

and unable to handle realistic 3D problems. The focus of this thesis is on improving the 

efficiency, in three steps. In the first step, the quadratic matrix eigenvalue problem is 

turned into a linear eigenproblem of the same size without loss of generality and a sparse 

method is used to solve it. This reduces the computational cost from ����� to ����.��, 

where � is the matrix dimension. With this dramatic improvement, the method is able to 

analyze realistic 3D geometries for the first time. In the second step, a model order 

reduction (MOR) technique is applied. With MOR, only two full-size eigenproblems 

need to be solved, at a single“expansion point” frequency, in order to generate the 

dispersion diagram over a range of frequencies. Since the full-size analysis does not need 

to be repeated at a large number of frequency points, the overall computational cost is 

lowered considerably. Despite the efficiency of this approach, it suffers from a limited 

bandwidth because the error increases as the frequency moves further from the expansion 

point. In the third step, an adaptive algorithm is developed which uses multiple expansion 

points and a smart error estimator which indicates where a new expansion point needs to 

be employed so that the error does not exceed a given threshold. Also, an adaptive mode 

tracking system is developed which adjusts the frequency step size to guarantee that the 

same propagation mode is being tracked over the whole frequency range. 

 



At each step, the new methods are applied to four periodic structures: a triply periodic 

array of metallic cubes and three planar structures used for noise suppression in high-

speed digital circuits. In addition, the  adaptive method is applied to a singly-periodic iris-

loaded waveguide. The computational cost for these cases is at least an order of 

magnitude lower than even the cost of solving the full size linear eigenvalue problem at 

each frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Résumé 

Dans les dernières décennies Les structures périodiques ont connu un très grand succès 

dans les domaines technologiques comme la radiofréquence (RF) et les micro- ondes 

suite à une large utilisation. 

 La compréhension du comportement modal de ces structures nécessite une étude des 

valeurs propres appelée analyse de la dispersion, à laquelle la méthode des éléments finis 

(FEM) a été appliquée avec succès. L'approche classique consiste à spécifier une 

constante de propagation purement imaginaire et de trouver la fréquence 

correspondante. Cette méthode fournit des informations concernant le comportement 

dans la bande passante, mais pas dans la bande d'arrêt, et en outre ne permet pas 

d'appliquer des matériaux avec  pertes ou qui dépendent de la fréquence. 

 

Récemment, une nouvelle variante de la FEM a été rapportée et qui permet à l'utilisateur 

de spécifier la fréquence et de trouver la constante de propagation complexe. Cependant, 

la méthode est arithmétiquement inefficace et incapable de gérer les problèmes réels en 

3D.  

L'objectif de cette thèse porte sur l'amélioration de l'efficacité, en trois étapes.  

Dans la première étape, le problème de la forme quadratique de matrice à valeurs propres 

est transformé en un problème linéaire qui a la même taille de la matrice sans perte de 

généralité, une méthode pour matrices creuses a été utilisée pour le résoudre. Ce qui a 

permis de réduire le coût du calcul de 	�
�� à 	�
�.
�, où n est la dimension de la 

matrice.  

Grâce à cette amélioration spectaculaire, la méthode est capable d'analyser les géométries 

réalistes 3D pour la première fois.  

Dans la deuxième étape, une technique de réduction d'ordre du modèle (MOR) est 

appliquée.  Avec MOR, à un seul «point d'expansion» fréquentiel, seulement deux 

solutions complètes de valeurs propres doivent être obtenues afin de générer le 

diagramme de dispersion sur toute une bande de fréquences. Puisqu’il n’est plus 



nécessaire de refaire une résolution complète du système en entier à chaque point de 

fréquence, le coût global de calcul est considérablement réduit. Malgré l'efficacité de 

cette approche, la méthode souffre d'une bande de convergence réduite, car l'erreur 

augmente au fur et à mesure que la fréquence s'éloigne du point d'expansion. 

 Dans la troisième étape, un algorithme adaptatif a été développé. Cet algorithme utilise 

des points d'extension multiples et un estimateur d'erreur intelligent qui nous indique 

l'endroit où on doit utiliser un autre point d’expansion de telle sorte que l'erreur ne 

dépasse pas un seuil donné. De plus, un système de suivi adaptatif a été élaboré, qui 

ajuste la valeur du pas fréquentiel pour garantir que le même mode de propagation est 

suivi sur toute la bande de fréquence. 

 

A chaque étape, les nouvelles méthodes ont été appliquées pour quatre structures 

périodiques: un tableau triplement périodique de cubes métalliques et trois structures 

planaires utilisées pour la suppression du bruit dans les circuits numériques  à grande 

vitesse. En outre, la méthode adaptative a été appliquée à un guide d'ondes à période 

unique chargé d’iris.  Le coût de calcul pour ces cas est d'au moins un ordre de grandeur 

plus faible que le même  coût de la résolution de la taille linéaire du problème au complet 

aux valeurs propres et à chaque fréquence.  
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Chapter 1 

Introduction 

 

People have always been interested in periodicity. There are many examples of 

periodic structures in nature. For example, bees create their hives in a periodic 

way (Fig. 1.1).  

 

 

Fig. 1.1 The periodic pattern of a bee hive. (Taken from [36]). 
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The existence of different seasons in a year is also a periodic phenomenon. 

Observing periodic structures in nature encouraged people to think of using this 

concept artificially to obtain some new and extraordinary properties. Many 

periodic structures have been proposed and used in different branches of 

engineering.  

In scientific terms, a periodic structure is defined as a structure in which a single 

region of space containing a specific arrangement of materials is repeated over and 

over again, indefinitely. The single region which is repeated is called the unit cell. 

An example is shown in Fig. 1.2. The unit cells can be of different, e.g., hexagonal 

(Fig. 1.1) or cubic (Fig. 1.2). 

A periodic structure can be singly, doubly or triply periodic. A singly periodic 

structure is a structure in which the unit cell is repated only in one direction. The 

unit cell in doubly and triply periodic structures is repeated in two or three 

directions respectively. Figs. 1.1 and 1.2 are both examples of triply periodic 

structures. 

 

 

Fig. 1.2 A periodic structure and one unit cell of the structure [37]. 
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Periodic structures are widely used in radio-frequency (RF) and microwave 

engineering because of their ability to create passbands and stopbands. The 

passband is a range of frequencies over which the structure allows electromagnetic 

waves to propagate. On the other hand the stopband is a range of frequencies over 

which the structure blocks electromagnetic waves. The first question that arises 

when designing a microwave system including a periodic structure is the exact 

location of the passbands and stopbands. The second question is the level of the 

attenuation in the stopband and the phase constant of the wave in the passband. 

Analyzing periodic structures in order to calculate the propagation constant as a 

function of frequency is called dispersion analysis. Dispersion analysis not only 

locates the passbands and stopbands, but also gives us the phase constant in the 

passband and the attenuation constant in the stopband. 

The beauty of the dispersion analysis of periodic structures lies in the fact that 

we do not need to model the whole structure to be able to analyze it. We only need 

to model the unit cell.  

There are several different ways to analyze the unit cell. The classical method of 

dispersion analysis is transmission line modelling. As the name suggests, in this 

method the unit cell is modeled with lengths of transmission line and lumped 

components. The important advantage of this kind of modelling is the rapidness of 

the method. On the other hand the disadvantage is poor accuracy, because of a 

circuit level approximation of Maxwell’s equations. Also the method is not able to 

handle unit cells with complicated geometries.  

The other way to perform dispersion analysis is to use a numerical method like 

the finite element method or the boundary element method. In this thesis, the finite 

element method is used. 

The Finite Element Method (FEM) is used widely in engineering because of its 

accuracy and flexibility in handling very complicated geometries. FEM is based 

on dividing the structure into a number of small elements, approximating the field 
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in each element and then assembling the elements to obtain a matrix equation. 

Solving the matrix equations gives the field.   

The following section reviews the different methods for analyzing periodic 

structures and obtaining propagation constants.  

 

1.1 Literature review 

 

Methods for the dispersion analysis of periodic structures can be classified into 

two major categories: methods which model the unit cell with transmission lines 

and lumped components and methods based on numerical analysis of the 

electromagnetic field in the unit cell, such as FEM. From now on the second 

category will be called field analysis methods.  

After a brief review of Floquet’s theorem there will be survey of the literature in 

the two main categories. 

 

1.1.1 Floquet’s theorem 

 

In 1883 Floquet managed to solve the differential equation of the form   

 

*+*, = -�,�+ 
(1.1) 
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where -�,� is a known periodic function and + is an unknown function of , [1]. 

He transformed the periodic system into a linear system by giving a canonical 

form to the matrix solutions of the system [1]. Floquet’s theorem was the 

mathematical basis for the application of the periodic boundaries in solid state 

physics which was proposed in 1928 by Bloch [2].  

In 1966 Collin discussed Bloch waves in singly-periodic microwave structures 

[3]. He showed that a time harmonic electromagnetic field at any point in one cell 

is ./01
 times the field at the corresponding point in the preceding cell, where � is 

the cell length and 2 = 3 + 45 is a complex propagation constant, called the 

Floquet constant, which is not a function of position within the cell. Naturally 2 is 

a function of the frequency of oscillation, or, equivalently, the free-space 

wavenumber, �). 

The proof of this result is as follows. According to Floquet’s theorem, for a 

structure which is periodic in the , direction the complex vector field at an 

arbitrary point can be written as  

 

6��, �, ,� = ./0869 ��, �, ,� (1.2) 

 

where 69 ��, �, ,� is a periodic function of z with period D. Now the field at 

point , + �, according to (2), would be: 

 

6��, �, , + �� = ./0�8:1�69 ��, �, , + �� (1.3) 

 

           and since Fp(x, y, z) is a periodic function with period �, 
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69 ��, �, , + �� = 69  ��, �, ,� (1.4) 

  

Therefore  

 

6��, �, , + �� = ./0�8:1�69 ��, �, ,� = ./01./0869 ��, �, ,�= ./016��, �, ,� 

(1.5) 

 

          which is the desired result. 

Looking at equations (1.2) to (1.5), we can see that two different approaches can 

be considered to find the electromagnetic field ;:  

1) Find the spatial harmonics of the periodic function +<��, �, ,� and use 

equation (1.2) to get the field.  

2) Find the field for one unit cell and use equation (1.5) to express the field all 

along the structure.  

The first approach requires the expansion of +<��, �, ,� into a Fourier series. 

This way the electromagnetic field will be solved as: 

 

F��, �, ,� = ∑ 6<>��, ��./0?8>  (1.6) 

 

where in this equation: 
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2> = 3 + 4�5 + 2
A� � (1.7) 

 

6<>��, �� = 1� C 6<��, �, ,�.D!>E1 81
) *, (1.8) 

   

The Floquet mode number is defined as the phase constant of the n
th 

 harmonic 

in (1.6). To find the complex mode numbers in (1.7) and Floquet vector fields in 

(1.8), the plane wave expansion method has been proposed [33]. This provides the 

solution for the complex Fourier coefficients only for singly periodic structures. 

For doubly and triply periodic problems there is no general solution for arbitrary 

geometries, only some formulas for simple geometries. 

On the other hand the second approach, finding the field for a single unit cell 

and then applying equation (1.5), provides us with a finite domain and gives us the 

freedom to use different methods to find the field inside that domain.  Finding the 

field inside the unit cell means that the field has been found everywhere in the 

structure.  

 The rest of this chapter explains the various methods reported in literature for 

the second approach.  Both transmission-line modelling and field analysis 

methods will be reviewed. 

 

1.1.2 Transmission line modelling of the unit cell 
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Modelling the unit cell of periodic structures by transmission line components is 

a inexpensive way to analyze simple geometries like periodically loaded 

waveguides [4].  

In this method, wave propagation is formulated based on transmission line 

theory. To date, transmission line modelling has been applied to printed structures 

loaded with lumped elements [6], [7], microstrip periodic structures [8], [9], and 

some metamaterials [10], [11]. 

    

 

 

Fig. 1.3 A singly periodic structure and its transmission line model. The Z0 regions are free space and 

the red regions are dielectric slabs. 

 

Fig. 1.3 shows a typical transmission line model for the one dimensional, 

singly-periodic structure shown on the left. As we can see in the picture, each part 

of the unit cell is modelled with a different length of transmission line. In this 

example the two short lines with characteristic impedance of F) represent free 

space and the long line with characteristic impedance of FG represents the 

dielectric slab.   
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Instead of different lengths of transmission lines, the cell can also be modeled 

by capacitive and inductive lumped components.  

Now, to characterize the propagation along the periodic structure, we only need 

to analyze the behaviour of the circuit parameters (voltage H and current I) of the 

transmission line model by multiplying the transfer matrix of the cascade 

composition of the three transmission line sections. That will give us an ABCD 

matrix [3] of the unit cell which relates the incoming (left-hand side) voltage and 

current to the outgoing (right-hand side) voltage and current. As the periodicity of 

the structure imposes another transfer matrix in terms of the propagation constant, 

equating the two ABCD matrices will give us the unknown propagation constant.  

Doubly periodic structures can also be modeled with transmission line sections 

and lumped elements. The general idea is the same as before, but with this 

difference: unlike the singly periodic case, we deal with it as a multiple-input 

multiple-output system and we find the transfer matrix for any path between an 

input and an output. As an example in Figure 4, we would have four ABCD 

matrices which will give us four linear equations to figure out the dispersion 

parameters of the unit cell. 
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Fig. 1.4 A two dimensional doubly periodic structure 

 

1.1.3 Field analysis methods 

 

Computational electromagnetics has found a significant place in the design and 

analysis cycles of the microwave industry. Among the many computational 

methods, the following are reported in the literature for analyzing periodic 

structures [13]: the finite difference method in the time domain (FDTD) and in the 

frequency domain (FDFD), the method of moments (MoM), the finite element 

method (FEM), and the transmission line matrix method (TLM).  

There are two completely different ways to employ any of these methods in 

periodic structure analysis. One way, which is called deterministic, is to examine 
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the fields inside a periodic structure in the presence of a known source, e.g., an 

incident plane wave. 

The other way of analyzing periodic structures is dispersion analysis or eigen-

analysis. This approach deals with the unit cell of the periodic structure as a source 

free object and finds the modes of this structure by solving an eigenvalue problem.  

Since this thesis is concerned with dispersion analysis, the following survey will 

largely concentrate on methods for that kind of analysis.  

 

1.1.3.1 Method of moments 

 

MoM or the boundary element method (BEM) is a computational method for 

solving linear partial differential equations which have been formulated as integral 

equations (i.e. in boundary integral form). In the 1980s it became a popular tool in 

electromagnetic analysis. 

In MoM the unknowns in the matrix equation correspond to fields (typically 

currents or charges) defined on surfaces rather than volumes, which leads to far 

fewer unknowns. Consequently, it is a very efficient method for structures with a 

small ratio of surface to volume. On the other hand, for problems containing large 

areas of material interface or complicated geometries, MoM tends to be less 

efficient than differential methods such as FEM.  

For the deterministic analysis of periodic structures, the spectral MoM has often 

been used [13], [14]. In [14], a method is proposed to analyze arbitrarily shaped 

periodic structures composed of dielectrics and conductors which is based on the 

coupled volume-surface integral equation. It uses the free space periodic Green’s 

function and solves the coupled integral equations using Rao-Wilton-Glisson 

(RWG) triangular elements.  
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The dispersion analysis of planar periodic structures by MoM is addressed in 

[45] and [46] for singly- and doubly-periodic structures. In [45], Bacarelli et al. 

report a novel approach which is based on a mixed-potential integral equation in a 

unit cell of singly periodic, microstrip structures.  The integral equation is solved 

in the spatial domain through a triangular Delaunay mesh. In his approach, the one 

dimensional periodic vector and scalar Green's functions are derived in the 

spectral domain and an efficient sum of spectral integrals is carried out to obtain 

the spatial-domain quantities.  

 

1.1.3.2 Finite difference method 

 

FDTD is now one of the most popular computational methods in 

electromagnetics and over 30 commercial and university-developed FDTD based 

codes are available. The basic algorithm was first introduced by Yee in 1966 [18], 

but it was Taflove in 1980 who developed the method further and called it the 

“Finite-Difference Time–Domain” method. In FDTD the partial differential form 

of Maxwell’s equations turns into a central-difference equation, applied at every 

node of a regular, rectangular grid. The electric and magnetic field are solved 

consecutively as the algorithm steps forward in time.   

Being a time domain method, provided the simulation has a step size satisfying 

the Nyquist theorem for the highest frequency, a wide range of frequencies can be 

covered with a single run. 

FDTD has been widely used in analyzing periodic structures [19]-[21], but only 

for deterministic analysis, not dispersion analysis. The periodic boundary 

conditions have to be imposed in the time domain. The proper way to do this is to 

translate the phase shift into a time shift, which can be done by dividing the length 

of the unit cell by the phase velocity. Then a number of time shifts are recorded at 

both terminal boundaries. After that, the electric and magnetic fields at the master 
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side update the associated fields at the slave side considering the forward time 

shift [22]. 

Despite all the merits of the FDTD method, there are some drawbacks with this 

method which particularly makes it less suitable for dispersion analysis of periodic 

structures. Stability constraints, staircase error, and the inability to consider the 

propagation constant as an unknown are among these drawbacks. To explain the 

latter more one should know that direct implementation of equation (1.5) for J and K field is technically impossible in an FDTD framework. The reason lies in the 

fact that such implementation results in update equations which involve unknown 

future values for J and K.  

On the other hand the FDFD method has been applied for modal analysis of 

waveguide based periodic structures [47]-[49]. The problem with this method is 

that converting the periodic problem into a standard eigenproblem needs a mesh 

which is uniform in the propagation direction and also the number of meshes in 

this direction has to be odd [48].  

 

1.1.3.3 Finite element method 

 

FEM is one the most popular field analysis methods, capable of handling any 

kind of boundary value problem. Accuracy and ability to analyze complex three 

dimensional geometries are the advantages that FEM has over other numerical 

methods. FEM was first proposed in 1941 to solve complex elasticity and 

structural analysis problems in civil and aeronautical engineering, but soon found 

its place in many engineering fields and from 1968 was used widely in 

electromagnetics.  

In the field of dispersion analysis of periodic microwave structures, FEM was 

first applied by Ferrari [23] in 1991. He proposed a FEM formulation capable of 
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modal analysis of a two dimensional periodic structure and generation of the 

corresponding dispersion curve. He validated his formulation by applying it to a 

ridged waveguide. Later [25]-[27], FEM formulations for periodic structures were 

improved but all were focused on singly periodic structures, although the 

geometries were three dimensional. In 1999, Mias et al. in [28] proposed a FEM 

formulation for modeling waves in doubly and triply periodic structures. They 

validated their formulation by applying it to 2D and 3D examples.  

Despite the novelty and strength of these methods, there are many problems that 

cannot be solved using them. In all of them, an imaginary propagation constant is 

specified and the corresponding eigenvalue problem with k0 as an unknown is 

solved. This fixed-2 approach cannot handle lossy materials. Also frequency-

dependent materials and boundary conditions are very difficult to handle as their 

presence leads to a complicated nonlinear eigenproblem. Beyond all these 

difficulties, the fact of specifying a purely imaginary propagation constant and 

finding the corresponding frequency means that it is unable to handle the stopband 

of the periodic structures, where the attenuation constant is nonzero. The stopband 

behavior of periodic structures is important; without it there is no way of 

determining the degree of attenuation experienced by signals at stopband 

frequencies, something which is crucial, for example, in electromagnetic bandgap 

(EBG) power distribution networks for electronic circuits [9].  In 2007, Davanco 

et al. [30] proposed an FEM formulation to tackle this problem for 2D structures 

and in 2008, Tavallaee and Webb [29] introduced a formulation for 3D structures.  

In their fixed-�) approach, �) is specified and the problem is solved for the 

complex propagation constant (2 = 3 + 45).  

Although the approach is reliable and in theory is capable of handling any 

geometry and perodicity in one, two or three directions, here are two important 

shortcomings of the method proposed in [29]:  

1) In [29] the eigenproblem is quadratic, which is more costly to solve than the 

more usual linear eigenproblem.  



15 | P a g e  

2) In [29], only dense matrix methods are used to solve the eigenproblem, 

making it impossible to solve realistic three-dimensional (3D) problems involving 

large numbers of unknowns.  

The next section describes the goals of the thesis and describes how it addresses 

the drawbacks of the previous methods. 

 

1.2 Research goals 

 

The main research goal was to find a more efficient FEM to analyze dispersion 

in periodic structures, in both passbands and stopbands.  

The first achievement was to transform the quadratic eigenvalue problem into a 

linear eigenproblem of the same size and then to solve the linear eigenproblem 

with a sparse matrix technique. In this way the complexity of the problem was 

reduced from 	�
�� to 	�
�.
�, where n is the number of unknowns, and 

consequently it was possible to analyze realistic 3D periodic structures for the first 

time.    

Even with this improvement it is still time consuming to compute a dispersion 

curve since we have to solve a large eigenvalue problem once for each of many 

frequencies. In order to accelerate the overall solution a model order reduction 

(MOR) technique was applied to the problem. To do that, an adaptive MOR-FEM 

code was developed that is able to handle any kind of periodic structure in any 

desired frequency range.  

 

1.3 Outline of the thesis 
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Chapter 2 explains the details of the approach that Tavallaee and Webb 

proposed in [29]. It describes the fixed-2 formulation first and then explains that 

this can only handle the passband of the periodic structures. The chapter continues 

by explaining the fixed-�) formulation and shows the possibility of predicting the 

behaviour of periodic structures both in the passband and the stopband. Chapter 2 

closes by discussing the quadratic eigenvalue problem resulting from this FE 

formulation, the methods for solving it and their computational cost. 

Chapters 3, 4 and 5 contain the three main new contributions of this thesis. 

These are reported in [31],[32] and [58], respectively. 

Chapter 3 describes how the quadratic eigenproblem resulting from the FE 

formulation can be turned into a linear eigenproblem of the same size. After 

introducing the linear formulation the accuracy of the proposed method is verified 

by applying it to four different realistic structures. The chapter ends with a 

comparison between the computational complexities of the proposed method 

versus the method proposed in [29].  

Chapter 4 is dedicated to a model order reduction (MOR) of the method 

described in chapter 3. It describes the MOR formulation and shows how the 

dispersion diagram over a band of frequencies can be obtained by solving the 

eigenproblem only for one frequency and using a Taylor series based on that 

expansion point. Again the accuracy of the proposed formulation is examined by 

analyzing different realistic examples. The computational speed-up achieved by 

employing the proposed method is shown as well. At the end of this chapter the 

limited bandwidth of MOR is discussed as a drawback of the method. 

In chapter 5, a general adaptive algorithm is proposed that computes the 

accurate dispersion diagrams of periodic structures both in the passband and in the 

stopband very rapidly. The algorithm employs a smart multi-expansion point 

method that picks automatically the number of expansion points required to cover 

the desired frequency band by estimating the error caused by MOR 
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approximation. It also employs a tracking system for choosing the right eigenvalue 

for the Floquet mode under study.  

The proposed algorithm is applied to five different realistic geometries and the 

results are validated either by comparing them to the results obtained using other 

techniques or comparing the results in the passband with those published in the 

literature. A dramatic reduction in computational is demonstrated.  
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Chapter 2 

The finite element method for the 

eigen-analysis of periodic 

structures 

 

 

 

The finite element method is one of the most powerful tools for the dispersion 

analysis of periodic structures. Although FEM has been used for this purpose for 

more than 20 years, it was only in 2007 that a FEM was proposed which was able 

to find both real and imaginary parts of the propagation constant [29] [30]. Before 

that, in FE formulations a purely imaginary propagation constant was specified 

and the corresponding frequency was sought, but in 2007, a new formulation was 

proposed which allows the frequency to be specified and solves an eigenvalue 

problem to find the complex propagation constant. In this chapter, the periodic 
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boundary value problem will be explained and both formulations will be discussed 

briefly. 

 

2.1 Applying periodic boundary conditions to Maxwell’s 

equations 

 

The first step in studying the propagation of electromagnetic waves in a periodic 

structure is to give periodic boundary conditions for Maxwell equations and to 

define the boundary value problem that needs to be solved.  

The phasor electric and magnetic fields, J and K, are governed by the 

differential form of Maxwell’s equations and specifically Ampere’s Law 

 

∇ × K = 4NOJ (2.1) 

                                 

and Faraday’s law  

 

∇ × J = −4NQK (2.2) 

                             

In the above equations, O is the permittivity of the material and Q is the 

permeability. Combination of Faraday’s law and Ampere’s law results in a vector 

wave equation in either J or K that describes the propagation of the 

electromagnetic wave in a periodic structure. The version of the equation given in 

[28] is: 
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∇ × 1R ∇ × 6 − �)!S6 = 0 
(2.3) 

                     

where NTO)Q) has been replaced by the free space wavenumber, �) .  F on the 

other hand could either mean E or H depending on which field is sought. If it is E, 

then R = Q  and S = O  while if it is H, then S = Q  and R = O .  From now on 

the equations will be written only for the electric field.  

 

 

Fig. 2.1 An arbitrarily shaped unit cell of a periodic structure 

Consider the structure shown in Figure 1. This structure is periodic in the x 

direction with period D. The geometry is totally arbitrary as long as the translation 

of the master surface, UV, through distance D along the x-axis, exactly overlaps 

the slave surface. UW in Fig.1 represents the surfaces which separate perfect electric 

conductor (PEC) from the domain, X. On this surface the PEC boundary condition 

is enforced which eliminates the unknowns on that surface (YZ = 0 where t 

denotes the tangential part). On the other hand, U) represents either the perfect 

magnetic conductor surface (PMC) or perfect electric conductor (PEC) or even 

another periodic constraint. In such a structure, as explained in section 1.1.1, the 

field E must satisfy the following equation: 

x

S0

Ω
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slavemaster
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z

D
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J[��, �, ,� = \]  J[�0, �, ,� (2.4a) 

                           

where  

 

\] = ./01  (2.4b) 

 

and 2 is the Floquet propagation constant. The magnetic field must satisfy a 

similar condition, leading to:  

 

^ 1Q �∇ × J[�_Z �� + �� = \]  ^ 1Q �∇ × J[�_Z ��� 
(2.4c) 

 

The finite element formulation of this problem aims to find the unknown J  in 

the unit cell. This way, the field can be calculated all along the structure using 

(1.5). 

 

2.2 FE formulation 

 

There are two fundamental formulations of FEM, Rayleigh-Ritz and weighted 

residual. In this thesis the weighted residual formulation is adopted [29]. This 

method weights the residual of the governing differential equation and tries to 
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minimize the weighted residual to obtain an approximate solution for the defined 

domain.   

 

The solution F that makes the following residual integral vanish for all weight 

functions W will also satisfy equation (2.3). 

 

` = C a∇ × b. 1Q ∇ × J − �)!b. O Jc *ΩΩ  (2.5) 

             

In addition to satisfying (2.3), setting R to zero implies that the following 

surface integral vanishes for every weight function; 

 

e ab × 1Q ∇ × Jc . f*g = 0h  (2.6) 

 

where U is the entire boundary of Ω. E is constrained to satisfy (2.4-a). W 

needs to be constrained as well:  

 

 

                              

bZ��] , �, ,� = 1\] bZ�0, �, ,� (2.8) 
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 The choice 
�ij  rather than the expected \]   in this equation is necessary in order 

that (2-4c) follows from (2-6). 

 

The trial function E and weight functions W have to be constrained tangentially 

to zero on PEC walls to satisfy boundary condition (Y" = 0 k
 UW) while the PMC 

walls do not need any treatment as the boundary condition (YZ = 0 kl �Q /�∇ ×Y�Z = 0 k
 U)�  is already satisfied in the weighted residual formulation (see 

(2.6)). 

 

2.2.1 FE interpolation function  

 

The first step in a finite element analysis is discretizing the domain into a finite 

number of elements of simple shape; tetrahedra are used in this thesis. This 

process is also called meshing.  The next is selecting the interpolation functions. 

The interpolation functions approximate the field in each element and make sure 

that the solution fulfills the continuity requirements between adjacent elements. 

There are two types of finite element used for representing vector fields [50]: 

nodal elements and edge elements (sometimes called tangential vector elements).  

In nodal elements, the interpolation functions are associated with the nodes of the 

element while in edge elements they are associated with the edges and faces. 

Imposing continuity with nodal elements enforces continuity of both the tangential 

and normal parts of the vector, while imposing continuity with edge elements 

enforces just tangential continuity. Edge elements avoid spurious modes which 

usually appear when using nodal finite elements. Another advantage of edge 

elements is their ability to handle sudden changes in permittivity or permeability 

and also sharp corners of dielectric or metallic objects. For these reasons, edge 

elements are used in this thesis. 
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Consider a single tetrahedron within the mesh and call this element e (see Fig. 

2.2). 

 

Fig. 2.2 Tetrahedral mesh and a tetrahedral element. 

 

 In this tetrahedron, we represent E using vector interpolation functions: 

 

Jm = n YDopqr
s

Dt�  (2.9) 

                    

In this equation, pDm is a vector interpolation function and YDo  is the scalar degree 

of freedom (DOF), or unknown, associated with the vector function. The 

interpolation functions used here are those of thehigh order, hierarchal elements 

described in [39]. Now if we go back to equation (2.5) where the weighted 

residual was introduced, we see that in order to complete the right hand side of the 

equation we need to have the weight functions, W, as well. In Galerkin’s method, 

the weight functions are the same as the interpolation functions (also called basis 

functions): 
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bm = n uDopDo
s

Dt�  (2.9a) 

                         

According to Jin [34], this choice of weight function gives the most accurate 

solution to the boundary value problem.  

 

 

Fig. 2.3 A unit cell with an identical mesh on the master and slave surfaces. 

 

For each v associated with unknown + on the master surface, there needs to be  

a matching basis function v’ associated with unknown +’ on the slave surface. 

Therefore, as seen in Fig. 2.3, it is very important to have an identical surface 

mesh on the master and slave boundaries. This way the unknowns associated with 

the slave boundary, like +’, can be eliminated from the unknown list in the system 

of equations. Forming the system of equations will be explained in the next 

section. 

 



26 | P a g e  

2.2.2 Matrix assembly 

 

So far the unit cell has been discretized into a finite number of elements and 

interpolation functions have been introduced to associate  DOFs with the edges, 

faces and interior of a single element. In the next step, the DOFs in all elements 

are assembled into a system of equations which can be written in matrix form. 

This whole process is called matrix assembly. 

The first matrix to be formed is the local matrix of each element. The local 

matrix is l⨉l matrix where l is the number of DOFs in one element. For example in 

a first order tetrahedron there are six DOFs associated with the six edges of the 

element. These DOFs are numbered locally from 1 to y inside each element.  

 

Consider the part of the residual (2.5) coming from element .: 

 

`o = C a∇ × bm. 1Q ∇ × Jr − �)!bm . O Jrc *X zo  (2.10) 

 

Substituting equations (2.9) and (2.9-a) in equation (2.10) and writing it in 

matrix form results in: 

 

`o = {uo|}�~Uo� − �)!~�o��{Yo| (2.11) 

                 

where {uo| and {Yo| are y × 1 column vectors containing the quantities uDo  

and YDo , respectively. ~Uo� and ~�o� are y × y matrices with entries defined by : 
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U�Do = 1Q C ∇ × p�r. ∇ × p�r*Xz�  (2.12) 

     

��Do = O C p�r. pqrz� *X (2.13) 

 

Since Q  and O  are assumed to be uniform through the element, they have been 

taken outside the integral.  

In addition, each DOF has a global number which determines the position of 

that DOF in the global FE matrix. The global FE matrix is an 
⨉
 matrix where 
 

is the total number of DOFs in the unit cell. Of course the size of the global FE 

matrix is smaller than the number of elements times the number of degrees of 

freedom in each element, because adjacent elements share the DOFs on their 

common edges and faces.  

The next step in the assembly process after calculating the local matrices is to 

sum over all elements and produce the global FE residual equation [34]: 

 

` = {u|}�~U� − �)!~���{+| (2.14) 

       

{+| is a column vector representing all 
 unknowns in the unit cell and {u| is 

the column vector of weights. Setting the residual to zero, we get: 
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{u|}�~U� − �)!~���{+| = 0 (2.15) 

         

In order to impose the periodic boundary conditions (2.4a) and (2.8), the DOFs 

are divided into two groups: the ones lying on (i.e., controlling the tangential field 

on) the periodic boundaries, either on the master or slave surface, and all the rest, 

which will be called “interior”. The DOFs are then numbered so that the interior 

DOFs come first, the DOFs lying on the master boundary come second and the 

ones lying on the slave boundary come third. The important point is that the 

master DOFs and the slave DOFs are numbered in exactly the same way, so that 

the first master DOF matches the first slave DOF, etc. The slave DOFs are now 

prepared to be eliminated.(In the case that doubly or triply periodic structures are 

being analyzed, the interior DOFs are further divided along the same lines, so that 

a known periodicity can be applied in, say, the � direction. For simplicity, this 

case will not be explicitly considered below.)   

With this numbering, the slave DOFs can be eliminated from the matrix 

equation if we express {Y| and {u| as follows: 

  

{Y| = �����Y�� = �I 00 I0 \]I� �Y�� 

 

{u| = ~����u� � = �I 00 I0 1\] I� �u� � 

 

 

(2.16) 
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where  �u� � and �Y�� are reduced column vectors, containing just the interior and 

master DOFs. The block matrices ���� and ~��� incorporate the periodic 

boundary conditions (2.4a) and (2.8), respectively.  

Equation (2.15) can be rewritten as: 

 

�u� �}��U�� − �)!������Y�� = 0 (2.17) 

 

where �U�� and ���� are 
 × 
 matrices given by: 

 

�U�� = ~���}~U����� (2.18) 

       

 

���� = ~���}~������ 
 

(2.19) 

and since equation (2.19) is correct for all �u� �s, the equation to be solved is: 

 

��U�� − �)!������Y�� = 0 (2.20) 

 

The next section describes some ways of solving equation (2.20).  
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2.3 Solving the global system of equations 

 

This section is dedicated to ways of solving the eigenproblem (2.20) that have 

been reported in the literature. The purpose of explaining these methods is to show 

how far the dispersion analysis of periodic structures has been addressed to date.  

Equation (2.20) can represent two different eigenvalue problems. The first 

problem specifies the propagation constant, 2, and hence \], and solves for �)! as 

the eigenvalue. This has been the traditional way to find the dispersion diagram of 

periodic structures.  

The second eigenproblem is one that, more usefully, specifies �)! and solves for \] as the eigenvalue. This is the main contribution in [29]. The next sections 

explain the solution of both types of eigenproblem.  

 

2.3.1 Solving the fixed-�    problemproblemproblemproblem    
    

Equation (2.20) can be rewritten as: 

 

�U���Y�� = �)!�����Y�� (2.21) 

        

This equation is a typical generalized eigenvalue problem that looks like: 

 

~��{�| = �~��{�| (2.22) 
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in which A and B are 
 × 
 matrices while � is the eigenvalue and x is the 

eigenvector. This kind of problem has 
 solutions for � and x, i.e., in equation 

(2.21) we can find 
 eigenvalues, �)!, and 
 eigenvectors, �Y��.   
 

The presence of multiple �)g, corresponds to the presence of multiple 

propagation modes in a periodic structure, i.e., for a specified propagation 

constant, 2,    there will be n frequency points satisfying the eigenproblem. 

 

As mentioned before, for the fixed-    2 problem 2 must be imaginary. The reason 

lies in the fact that the eigenvalue to be found in (2.21) is �)!, which has to be real. 

Choosing a purely imaginary 2,  ~��� is the conjugate transpose of ���� and the 

matrices [A] and [B] are hermitian, which guarantees that the eigenvalues of 

(2.22) are real given that [B] is a positive definite matrix. The next section 

explains the solution for the fixed-�) problem. 

 

2.3.2 Solving the fixed-k0 problem 

 

In order to turn equation (2.20) into an eigenproblem with an eigenvalue that 

corresponds to the propagation constant, first the �U�� and ���� matrices have to be 

expanded as follows: 

 



32 | P a g e  

�U�� = ~���}~U����� = �I 0 00 I 1\]� �U�� U�! U��U!� U!! U!�U�� U�! U��� �I 00 I0 \]�
= � U�� U�! + \]U��U!� + 1\] U�� U!! + \]U!� + 1\] U�! + U��� 

 

(2.23) 

 

���� = ~���}~������ = �I 0 00 I 1\]� ���� ��! ����!� �!! �!���� ��! ���� �I 00 I0 \]�
= � ��� ��! + \]����!� + 1\] ��� �!! + \]�!� + 1\] ��! + ���� (2.24) 

 

[S] and [T] in (2.23) and (2.24) are in their block form. Subscripts 1, 2 and 3 

represent the interior, master and slave DOFs respectively.  

Group 1 includes all the unknowns of the unit cell except the ones determining 

the tangential electric field on the periodic boundaries. In other words this group 

represents the internal unknowns. 

Group 2 includes the unknowns controlling the tangential electric field on the 

master surface.  

Group 3 includes the unknowns controlling the tangential electric field on the 

salve surface. 

 

One may then rewrite equation (2.20) as follows: 
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a~��� + \]~�!� + 1\] ~���c �+�� = �\]~��� + \]!~�!� + ~�����+��
= 0 

(2.25) 

       

where 

 

~��� = �U�� − �)!��� U�! − �)!��!U!� − �)!U!� U!! + U�� − �)!��!! + U���� (2.26) 

 

~�!� = �0 U�� − �)!���0 U!� − �)!�!�� 
(2.27) 

                 

~��� = ^ 0 0U�� − �)!��� U�! − �)!��!_ 
(2.28) 

    

The quadratic eigenvalue problem introduced in (2.25) is the main contribution 

of [29] which enables us to characterize the attenuation in the stopband of periodic 

structures, since the eigenvalue, \], can take complex values. The most important 

difficulty here is to find an efficient solution for the quadratic eigenvalue problem 

in (2.25). There are two main categories of quadratic eigensolvers: ones that solve 

the quadratic eigenvalue problem directly like the methods proposed in [36] and 

[37]; and ones that first convert the quadratic eigenvalue problem into a linear 

eigenvalue problem with matrices of double the size [35]. In [29] the second 

approach was chosen.  
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Although the second approach seems to work better for this problem, it gives a 

linear eigenproblem ~��{�| = �~��{�| that is double-sized and has matrices [A] 

and [B] that are unsymmetric, complex and singular. In [29], a dense-matrix 

method was used to solve this problem, but this is too expensive to be able to 

apply to realistic three dimensional problems even for a single frequency, let alone 

a wide range of frequencies.  As a result, only simple structures are analyzed in 

[29], with coarse meshes, e.g., a metal cube centered in a cubical cell.  

 

In the following chapters it will be shown how to address this problem and an 

inexpensive and efficient approach to generate the dispersion diagrams for more 

complicated, realistic structures will be presented.  

 

 

 

 

 

 

 

 

 

 

 

 



35 | P a g e  

 

 

 

Chapter 3 

Linearizing the quadratic 

eigenvalue problem 

 

In the previous chapter we have seen that applying FEM to the analysis of the 

unit cell in a periodic structure yields a matrix equation that is linear in �)! , but 

quadratic in  2. As explained in the previous chapters, the fixed- �) problem which 

gives the quadratic eigenproblem has significant advantages over the fixed-2 

problem. However the computational cost of the fixed- �) approach has so far 

prevented the dispersion analysis of realistic 3D structures. 

To address this problem, this chapter is dedicated to introducing an efficient 

method for solving the quadratic eigenproblem which exploits the sparsity of the 

FE matrices and significantly reduces the computational complexity. 

  

3.1 The quadratic eigenvalue problem 

 

As we saw in chapter 2, the FE formulation reported in [29] deals with the 

unknowns of the unit cell as three different groups: 1, 2 and 3 which represent the 
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interior, master and slave DOFs respectively.  

 This division is reflected in the global matrix, [W], in the form of 9 blocks. 

Each block corresponds to the interaction between two of the groups defined 

above.  

 

~u� = �u�� u�! u��u!� u!! u!�u�� u�! u��� (3.1) 

where ~u�D� = ~U�D� − �)!~��D�. 

As discussed in the previous chapter, in order to obtain the complex propagation 

constant in the �-direction, the following matrix equation has to be solved, which 

is a quadratic eigenvalue problem (QEP) of size n: 

 
  

a~��� + �~�!� + 1� ~���c {�| = 0 (3.2) 

where � = \] = ./01  and  

 

~��� = ^u�� u�!u!� �u!! + u���_ (3.3) 

 

 

~�!� = ^0 u��0 u!�_ (3.4) 
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~��� = ^ 0 0u�� u�!_ (3.5) 

 

All of these matrices are sparse.  

In the next section an approach is explained which turns the quadratic 

eigenvalue problem into a linear eigenvalue problem of the same size where the 

matrices are still sparse. Moreover, unlike the alternative, double-sized linear 

eigenvalue problem, they are non-singular. 

 

3.2 The linear eigenvalue problem 

 

Consider the quadratic eigenproblem discussed in the previous section. 

Substituting the block form of matrices ~���, ~�!� and [��] from equation (3.3) 

to (3.5) into equation (3.2) gives the following:  

 

a� ^0 u��0 u!�_ + ^u�� u�!u!� u!! + u��_ + �� ^ 0 0u�� u�!_c ����!� = 0         (3.6) 

             

 Equation (3.6) can be expanded into two equations: 

 

�~u���{�!| + ~u���{��| + ~u�!�{�!| = 0 (3.7a) 
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�~u!��{�!| + ~u!��{��| +  �~u!!� + ~u����{�!| + 1� ~u���{��|
+ 1� ~u�!�{�!| = 0 

 

(3.7b) 

 

Multiplying equation (3.7-b) by � it becomes: 

 

�!~u!��{�!| + �~u!��{��| + ��~u!!� + ~u����{�!| +~u���{��| + ~u�!{�!}=0 

(3.8) 

 

Equations (3.7-a) and (3.8) in matrix form are: 

 

a�! ^0 00 u!�_ + � ^ 0 u��u!� u!! + u��_ + ^u�� u�!u�� u�!_c ����!� = 0  
(3.9) 

 

As explained in the previous section, subscripts 2 and 3 correspond to the 

unknowns lying on the master and slave boundaries, respectively, while subscript 

1 corresponds to all the other unknowns. It is important to notice that entry ij of 

any matrix block in (3.9) is zero unless both unknowns i and j belong to the same 

finite element. This means that if there is a nonzero in the u!� block, there must 

be at least one finite element which contains unknowns belonging to both the 

master and the slave surfaces. The only way that can happen is shown in Fig. 3.1: 

one edge of a tetrahedron lies on one face of the cell (slave) and another edge of 

the same tetrahedron lies on the opposite side of the cell (master). Avoiding this 

case assures us that the u!� and u�! blocks are zero, which makes the coefficient 

of �! equal to zero. One might ask how to make sure that this particular case is 
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avoided. The answer is that most mesh generators give an option to the user to 

specify the maximum length of the edges in the mesh. Simply by specifying a 

length smaller than the period �, this problematic case will be avoided.  

 

 

Fig. 3.1 A tetrahedron which has an edge on two opposite sides of a cube. If the cube is considered to 

be the unit cell in a periodic structure, this is the case that has to be avoided in order to linearize the QEP 

in (3.9). 

 

Then equation (3.9) can be written as 

 

� ^ 0 u��u!� u!! + u��_ + ^u�� u�!u�� 0 _ ����!� = 0 (3.10) 

 

Equation (3.10) is a linear eigenproblem ~��{�| = �~��{�| in which 
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~�� = ^u�� u�!u�� 0 _        and      [�� = − ^ 0 u��u!� u!! + u��_ 

 

(3.11) 

The important point here is that this linear eigenproblem (3.10) has the same 

dimension, n, as the quadratic eigenproblem (3.2). In the next section the sparse 

solution of this problem will be explained, leading to the calculation of dispersion 

curves both in the passband and the stopband. 

 

3.3 Computing the dispersion curve 

 

Although turning the quadratic eigenproblem into a linear generalized 

eigenproblem is a big step in reducing the computational cost, an efficient method 

for solving the linear problem can save a significant amount of additional time. A 

linear eigenproblem, ~��{�| = �~��{�|, with 
⨉
 matrices ~�� and ~��, has 
 

eigenvalues. In the dispersion analysis of periodic structures, n eigenvalues mean 
 dispersion modes. Normally only one of these dispersion modes is the required 

one and if we can find a way to compute the associated eigenvalue directly rather 

than computing all 
 eigenvalues and then choosing the right one, we would save 

a huge amount of time. In fact, for efficient sparse eigensolvers the computational 

cost is roughly proportional to the number of eigenvalues sought.  

The eigenvalue solver used in [29] is of the kind that finds all the eigenvalues at 

each frequency point. There are two main drawbacks with this approach:  

1) the time taken to find all the eigenvalues when only one of them is needed;  

and  

2) the difficulty of selecting the right eigenvalue among all the eigenvalues 

found at each frequency, which is a manual task. 
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The approach proposed here to solve the eigenproblem (3.10) over a range of 

frequencies is to use the Arnoldi method, as implemented in MATLAB`s eigs 

function [12, 13]. Using this method, it is possible to compute only one eigenvalue 

at each frequency. Moreover, the eigs function in MATLAB has the ability to find 

the closest eigenvalue to a specified complex point,  . For the first frequency 

point a good guess is given for the propagation constant of the desired mode and   

is set to the \] value corresponding to that. The   at subsequent frequency points 

is set to be the eigenvalue of the previous frequency point. Choosing a small 

frequency step makes it very likely that the eigenvalue does not change much from 

one point to the next and so this technique will successfully track the desired 

mode. The challenge is to find the right value of   for the first frequency.  

In order to address this challenge, the initial    is calculated by solving the fixed 2 problem (2.21) for the lowest few modes and selecting the desired mode. The 

fixed 2 problem is solved for an arbitrary 2 in the passband (e.g., 4 E!) and the 

associated frequency is found. Depending on the location of that frequency point, 

the frequency sweep is made toward the right or toward the left, or both, until the 

required range is covered. In this way, we can have the dispersion diagram 

automatically for any range of frequencies.  

The Arnoldi method solves the following linear matrix equation at each 

iteration: 

 

�~�� −  ~���{�| = ~��{¡| (3.12) 

                       

The equation is solved for {�|, while the vector {¡| is known. Equation (3.12) 

can be either solved directly using MATLAB’s “\” operator, which employs a 

sparse direct method, or iteratively using the different Krylov methods available in 
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MATLAB. Using the direct solver was less expensive for the test cases reported in 

this thesis.  

 

3.4 Results 

 

This section shows the capability of the new method. A comparison in CPU 

time is made between the new method and the method reported in [29]. The 

comparison is only made for three simple structures as this is all that is possible 

using the method in [29], but afterwards the dispersion curves of three other, more 

realistic, periodic structures are presented.  

 

3.4.1 Computational complexity comparison  

As mentioned in chapter 2, the largest problem analyzed with the method of 

[29] was a cubic unit cell containing a centrally-placed metallic cube. In this 

section, the computational times of the solution of the quadratic eigenproblem 

(3.2) using the MATLAB function polyeig is compared with the computational 

time of the new method.  

Fig. 3.2 shows the dramatic reduction in computation time using the new 

method. This figure gives the CPU time for the analysis of three structures 

described in [29]. These are, respectively, singly periodic, doubly periodic and 

triply periodic, and all are analyzed in 3D with tetrahedral finite elements, all first 

order. The matrix dimension, 
, for these structures is 345, 900 and 2960, 

respectively. The triply periodic problem is the metallic cube problem. The length 

of the unit cell in this problem is 10 mm while the length of the centered metallic 

cube is 1 mm. The timings for this and subsequent figures are for finding one 

point of the dispersion curve. The computer is a P8700 Dual Core processor 
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running at 2.53 GHz.  

 

 

Fig. 3.2  Comparison of the CPU times of the new method and the old method [29]. 

 

Fig. 3.3 shows the variation of the CPU time versus n, for problems obtained by 

refining the mesh for the metallic cube problem (Fig. 5 of [29]).  The problem is 

analyzed with finite elements at first, second and third orders. Linear regression 

gives the slopes of the three lines in Fig. 2 as 1.31, 1.45 and 1.54, respectively, 

indicating a growth of CPU time with n that is slower than n
1.6

. 
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Fig. 3.3  The variation of CPU time of the metallic cube problem for first, second and third order 

elements. The blue diamonds, red squares and green triangles correspond to element orders one, two and 

three, respectively. 

 

Fig. 3.4 shows the dispersion diagrams for the metallic cube problem, both for 

the phase and attenuation constants (5 and 3, the imaginary and real parts of 2, 

respectively). The results obtained using the new method agree closely with the 

results in [29], showing that the efficiency of the new method does not come at the 

cost of any loss of accuracy. 
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Fig. 3.4  Complex propagation constant of the metallic cube problem. The lines correspond to the new 

method while the circles correspond to the results reported in [29]. For this problem the step size for k0D 

is 0.1. There are 1,925 elements of order 3. The matrix size, �, is 35,500. 

 

3.4.2 Results for the dispersion analysis of other structures 

 

The most important benefit of the new method is that it gives us the ability to 

compute the dispersion curve for realistic structures, which was impossible using 

the previous method. In this section, three realistic periodic structures are analyzed 

using the new method and the results are validated by comparing the phase 

constant in the passband of the structures with results from the published 

literature. Attenuation constants are also presented, even though no comparison 

with previously published results is possible.   
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3.4.2.1 Mushroom structure 

 

Fig. 3.5 shows a widely-used periodic structure called a mushroom structure [9].  

 

 

Fig. 3.5 Unit cell of the mushroom structure. The unit cell is a square in the ¢£ plane. The side of the 

metallic square patch is 2mm.  

The main application of this is in power distribution networks (PDN) where 

they are used as ground planes [9]. As can be seen in Fig. 3.5, the mushroom 

structure is formed of a square, metallic surface printed on a dielectric substrate 

and connected to a metal plane with a narrow metallic via. The metal is modeled 

as perfect electric conductor (PEC). The structure is three dimensional and doubly 

periodic, in the � and � directions. Fig. 3.6 shows the side view of the structure. 
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Fig. 3.6  The side view of the mushroom structure. The black lines indicate PEC.  In this figure: ¤¥� = 30, ¤¥¦= 2.33, §� = 0.016 mm, §¦ = 0.1 mm, via diameter = 0.125 mm. 

 

Fig. 3.7 shows the dispersion curves of the mushroom structure both in the 

passband and the stopband.  
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Fig. 3.7 Complex propagation constant of the mushroom structure (Figs. 3.5 and 3.6). The lines 

correspond to the new method while the circles correspond to the results reported in [9]. The frequency 

step size is 0.1 rad/m and the elements are third order. The number of elements used is 2,047 and the 

matrix size is 32,232.  

 

The propagation constant shown in Fig. 3.7 is actually the propagation constant 

in the � direction when it is set to zero in the � direction. The results in the 

passband are compared with the results reported in [9] which are obtained using 

commercial FEM software, HFSS from Ansys [51].  

To check the computational complexity of the method, the increase in CPU time 

as the matrix size grows is plotted in Fig. 3.8. The growth in matrix size is 

obtained by refining the mesh.  Linear regression gives the slopes of the three lines 

as 1.53, 1.57 and 1.55 for the first, second and third orders, respectively. 
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Fig. 3.8  The variation of CPU time of the mushroom problem for first, second and third order elements. 

The blue diamonds, red squares and green triangles correspond to element orders one, two and three, 

respectively. 

 

3.4.2.2 LPC-EBG structure  

The long period coplanar electromagnetic band gap (LPC-EBG) structure is 

another popular periodic structure which is used to isolate the power noise in 

PDNs [40]. Like the mushroom, the unit cell of an LPC-EBG structure is formed 

of a metallic pattern printed on a dielectric substrate. Fig. 3.9 shows an LPC-EBG 

structure.  
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Fig. 3.9 The top view of the square unit cell of LPC-EBG structure. The metallic patch is printed on a FR4 

substrate with relative permittivity of 4 and thickness 1.6 mm [40]. ¨� = ¨¦ = © = �. ª««. 
 

This structure is analyzed using the new method. The dispersion diagram is 

depicted in Fig. 3.10.  The propagation constant shown in Fig. 3.10 is for the x 

direction; the propagation constant in the � direction is set to 4A. Like the 

mushroom structure, only the results in the passband are validated, by comparing 

with the results obtained by commercial FEM software. The results in the 

stopband are generated for the first time.  
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Fig. 3.10  Complex propagation constant of the LPC-EBG structure. The lines correspond to the new 

method while the circles correspond to the results reported in [40]. The frequency step size is 0.1 rad/m 

and the elements are third order. The number of elements used is 1,032 and the matrix size is 19,968.   

 

 

3.4.2.3 AS-EBG structure  

 

The artificial substrate EBG (AS-EBG) structure is another structure designed 

to suppress the switching noise on PDNs [40]. It is designed by periodically 

embedding high and low dielectric constant rods in the LPC-EBG structure (Fig. 

3.9), through the full height of the dielectric substrate. The geometry of the AS-

EBG structure is depicted in Fig. 3.11.   
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Fig. 3.11  The top view of the unit cell of the AS-EBG structure. The  metallic patch has the same 

dimensions as the LPC-EBG structure and the substrate is the same as well (§=1.6mm, ¤¥=4). 

The AS-EBG structure is analyzed by the new method and the phase constant 

and the attenuation constant is computed for a frequency band between 0 and 5.5 

GHz. The dispersion diagram of the AS-EBG structure is shown in Fig. 3.12. The 

propagation constant in Fig. 3.12 is for the x direction; the propagation constant in 

the y direction is set to 4A.  Like the other two structures in this section, the 

passband results are validated against HFSS results. The stopband results are 

generated for the first time. 
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Fig. 3.12  Complex propagation constant of the AS-EBG structure. The blue line corresponds to the 

proposed method in this chapter while the green circles correspond to the results reported in [40]. The 

frequency step size is 0.1 rad/m and the elements are third order. The number of elements used is 2,247 

and the matrix size is 46,530. 
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Chapter 4  

A Model-Order Reduction Method 

for the Passband and Stopband  

 

 

As discussed in the previous chapters, the finite element method (FEM) has been 

applied very successfully to the analysis of the unit cell of periodic structures. The 

original FEM specifies a purely imaginary 2 and finds the corresponding 

frequency, which gives the passband behavior, but not the stopband [28] [38]. The 

FE formulation introduced in [29] allows the frequency to be specified and the 

resulting complex 2 to be computed, though the method is not really practical 

because it involves a quadratic eigenproblem. This problem was solved with the 
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linearization technique described in chapter 3. With this technique, both the 

passband and the stopband of periodic structures can be explored.  

Getting the curves of 2 versus frequency requires stepping through the frequency 

band in small increments. Since an eigenvalue problem must be solved at each 

frequency, the overall computational cost is still very high for realistic three 

dimensional geometries. This chapter is dedicated to introducing a model-order 

reduction (MOR) technique to reduce considerably the cost of the frequency 

sweep.  

MOR is an established concept in science and engineering. Often, simulating 

realistic systems results in high-dimensional mathematical models. Therefore 

engineers and scientist always look for the simplest mathematical model that is 

still capable of providing the required data. One solution is MOR, which is the 

systematic way of reducing the dimensionality. Dealing with lower dimensional 

models simplifies the analysis and simulation.  MOR has been successfully 

employed to solve large-scale problems in control engineering [53], signal 

processing [54], circuit simulation [55] and many other areas of engineering. 

  

In the field of electromagnetics, MOR has been applied to the 2-D waveguide 

mode problem [41][42], making use of a Taylor series expansion at one frequency 

point. It was also applied to the analysis of periodic structures in [43], but only for 

the fixed-2 problem.  

In this chapter MOR is applied to the fixed-�) problem. It is a single point 

technique, similar to what has been used for the 2-D waveguide mode problem 

[41][42]. The first section of this chapter reviews briefly the FE analysis of periodic 

structures while the second section explains in detail the procedure for obtaining 

the reduced order model. The results of applying MOR to the FE analysis of some 

periodic structure are shown and discussed in the last section. 
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4.1 Review of FE analysis of periodic structures 

 

In the previous chapter it was seen that once the FE global matrix is obtained, it 

is partitioned as follows: 

 

~u� = �u�� u�! u��u!� u!! u!�u�� u�! u���  (4.1) 

 

                 
To conduct a fixed-�) analysis, the following eigenproblem needs to be solved:  

 

~��{�| = �~��{�| 

 

(4.2) 

 

where  

 

� = .0¬  (4.3) 

 

 

and ~�� and ~�� are these complex, asymmetric and sparse 
⨉
  matrices: 
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~�� = ^u�� u�!u�� 0 _ 
(4.4) 

 

 

~�� = − ^ 0 u��u!� u!! + u��_ 
(4.5) 

 

                

 

  

As explained in chapter 3, the matrix [W] is frequency dependent. Each block 

takes the form: 

 

~u�D� = ~U�D� − �)!~��D� (4.6) 

 

 

  

 ~U�D� and ~��D�
 

are �)-independent matrices. Consequently, [A] and [B] can be 

written as 

 

~�� = ~�­� − �)!~�}� (4.7) 

 

~�� = ~�­� − �)!~�}� (4.8) 

 



58 | P a g e  

where ~�­�,  ~�}�, [�­� and ~�}� are �)-independent matrices. The following 

section describes the details of applying MOR to the eigenvalue problem (4.2) 

using the expansion of these matrices around a specified wavenumber.  

 

4.2 Applying MOR  

 

This section describes the application of MOR to the FE analysis of periodic 

structures. The method is similar to that proposed for the 2D FE analysis of 

waveguide modes [41].  

In equations (4.7) and (4.8), the frequency dependence of the matrices [A] and 

[B] is shown. Using equation (4.7), matrix [A] can be expanded about a chosen 

wavenumber, �o: 

 

~�� = n~����∆�)��!
�t)  (4.9) 

 

  

where  

∆�) = �) − �o 

~�)� = ~�­� − �o!~�}� 
~��� = −2�o~�}� 

~�!� = −~�}� 

 

 

(4.10) 
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The matrix ~�� can be expanded the same way.  

The next step is to expand the unknowns {�| and � as Taylor series in  ∆�). The 

unknowns can be written as: 

 

� = n ���∆�)��¯
�t)  (4.11) 

� = n ���∆�)��¯
�t)  (4.12) 

 

  

     Now that the all parameters and matrices are expanded, they can be 

substituted into equation (4.2). Equation (4.2) can be rewritten as: 

 

°n~����∆�)���!
�t) ± °n ���∆�)��¯

�t) ±
= °n ���∆�)��¯

�t) ± °n~����∆�)���!
�t) ± °n ���∆�)��¯

�t) ± 

(4.13) 

 

Equation (4.13) is a polynomial in ∆�).  To solve the equation approximately 

we can equate the term in the p
th
 power of ∆�) on both sides. This yields:  

 

~�)�{�)| = �)~�)�{�)| 

& 

 

(4.14) 
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~��{�<| = �<{%| + {¡|        R=1,2,… 

 

where 

 

~�� = ~�)� − �)~�)� (4.15) 

 

and {w} and {v} are 
-vectors which can be calculated from {��| and �� for ³ = 1, … , R − 1:  

 

{%| = ~�)�{�)| (4.16) 

     

{¡| = − n �~��� − �)~������</��µ¶·�!,<�
�t� + n ��

</�
�t�

∙ n ~�D�{�</�/D|µ¶· �!,</��
Dt)  

 

(4.17) 

 

To find the starting values �) and �) the eigenproblem (4.2) has to be solved 

at �) = �o. Then �< and �< can be found from (4.14), in the following way. ~�� in 

(4.14) is singular, having one right null-vector {�)|, corresponding to the solution 

at �) = �o. Therefore (4.14) is only soluble if the right-hand side lies in the column 

space of ~��. This can be guaranteed by choosing �<
 

to satisfy the following 

equation: 
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{�)¹|��<{%| + {¡|� = 0 (4.18) 

                                                                                                                             

where º stands for hermitian (i.e.,  conjugate transpose). In this equation, {�)| is 

the left null-vector of ~�� and is obtained by solving a second eigenproblem, with 

a known eigenvalue: 

 

~�)�¹{�)| = �)¹  ~�)�¹{�)|  (4.19) 

 

Once {�)| is found, (4.18) can be solved for  �<, and then equation (4.14) can be 

solved for {�<|.  

However, since [M] is a singular matrix, equation (4.14) cannot be solved 

directly. In order to tackle this problem, in [41] the row and column corresponding 

to the largest entry of {�)| is eliminated to make the matrix non-singular. However 

that method was not found to work well in the present case. Instead, equation 

(4.14) is solved iteratively using the bi-conjugate gradient method with LU 

preconditioning employing threshold partial pivoting [52]. The LU preconditioning 

is based not on ~��, but on the non-singular matrix ~�� − »�)~�)�, where » ≪ 1. 

The value » = 0.01 was used for the results in this thesis.   

Once vectors {�<| for R = 0, … , # have been computed, an orthonormal set of ½ ≤ # + 1 vectors is found that spans the same space as the {�<|. The 

orthonormality is achieved using QR decomposition. The L vectors are placed in 

the columns of an 
 × ½ matrix ~Y�. ~Y� is the matrix that achieves the ultimate 

dimension reduction. ~Y�¹ and ~Y� are multiplied by both ~�� and ~�� from the left 

and right side. This way the size of the eigenproblem is reduced from 
 to  ½: 
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�~Y�¹~��~Y��{�| = ��~Y�¹~��~Y��{�| (4.20) 

 

where {y} is an ½-vector. Since ½ is typically in the range 5 to 20, the 

eigenproblem (4.20) can be solved very quickly at each frequency over the range of 

interest. Solving equation (4.20), gives all ½ eigenvalues. To track the dispersion 

curve, the closest eigenvalue to the one found for the previous frequency point is 

selected.  

 

4.3 Results 

 

The method described in chapter 2 was only able to analyze very simple 

structures like the metallic cube, while the method introduced in chapter 3 enabled 

us to analyze more complicated 3-D structures. In this chapter, the four periodic 

structures analyzed in chapter 3 (the metallic cube, the mushroom, the LPC-EBG 

and the AS-EBG) are analyzed again using MOR. The results obtained are 

compared with those obtained in chapter 3. Also, the computational cost (CPU 

time) of the MOR analysis is compared with the cost of solving without MOR. The 

dispersion curves presented is this section are computed using a similar eigenvalue 

tracking technique to the one used in chapter 3 with this difference: in chapter 3, 

the eigs function found the closest eigenvalue to the eigenvalue of the previous 

frequency point, while here all the eigenvalues of the reduced matrix are found and 

the code selects the one that is closest to the eigenvalue of the previous frequency 

point. 
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 4.3.1 The metallic cube  

 

Fig. 4.1 shows the dispersion curve of the cube structure when the expansion 

point �o� = 2 rad is in the passband of the periodic structure. The MOR results 

are obtained by solving the FE model at the expansion point and obtaining {�<| vectors up to #=20. Orthogonalizing the vectors gives 20 linearly 

independent vectors out of 21 {�<| vectors, i.e., for this problem ½=20. Then the 

reduced order model (the 20⨉20 eigenproblem) is solved.  

As can be seen, the MOR results closely match the ones obtained in chapter 3. 

The maximum difference in  2� between the two sets of results shown in the figure 

is 10
-3

.   
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Fig. 4.1  The dispersion curve of the metallic cube problem. The straight line corresponds to the MOR 

results while the circles correspond to the results obtained in chapter 3.  The step size for the MOR results, 

for ��¿, is 0.01. There are 1,925 elements of order 3. The matrix size, �, is 35,500.  

 

Fig. 4.2 gives results for the same structure with this difference, that the 

expansion point is now �o� = 2.5 rad, which is in the stopband.  As can be seen 

here as well, the results match the ones obtained in chapter 3; the maximum 

difference in  2� is again 10
-3

. The reason for including this figure is to show that 

MOR works equally well whether the expansion point is in the passband (�o� =2 

rad) or in the stopband (�o� =2.5 rad).  
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Fig. 4.2  The dispersion curve of the metallic cube problem. The straight line corresponds to the MOR 

results while the crosses correspond to the results obtained in chapter 3. The step size for the MOR 

results, for ��¿, is 0.01. There are 1,925 elements of order 3. The matrix size, �, is 35,500.  

 

 

4.3.2 The mushroom structure 
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As in the previous case, the MOR is tried once with the expansion point in the 

passband and once with the expansion point in the stopband. Fig. 4.3 shows the 

dispersion diagram of the mushroom structure when the expansion point is in the 

passband, at - = 2.38 GHz. As can be seen, the results match the ones obtained in 

chapter 3; the maximum difference is 10
-4

.  

 

 

Fig. 4.3  The dispersion curve of the mushroom structure with the expansion point in the passband. The 

straight line corresponds to the MOR results while the circles correspond to the results obtained in 

chapter 3. The frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The 

number of elements used is 2,047 and the matrix size is 32,232.    
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The MOR results are obtained by solving the FE model at the expansion point 

and obtaining {�<| vectors up to P=15. Orthogonalizing the vectors gives 14 

linearly independent vectors out of 16.  

Fig. 4.4 shows the dispersion diagram of the same structure with the expansion 

point located in the stopband at - = 3.1 GHz. 

 

 

Fig. 4.4 The dispersion curve of the mushroom structure with the expansion point in the stopband. The 

straight line belongs to the MOR results while the crosses belong to the results obtained in chapter 3. The 
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frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The number of 

elements used is 2,047 and the matrix size is 32,232.     

 

4.3.3 The LPC-EBG structure 

 

Fig. 4.5 shows the dispersion curve of the LPC-EBG structure when the 

expansion point is inside the passband, at - = 2 GHz. The MOR results are 

obtained by solving the FE model at the expansion point and obtaining {�<| vectors 

up to P=15. Orthogonalizing the vectors gives 12 linearly independent vectors out 

of 16.  

 

Fig. 4.5  The dispersion curve of the LPC-EBG structure with the expansion point in the passband. The 

straight line belongs to the MOR results while the circles belong to the results obtained in chapter 3. The 
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frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The number of 

elements used is 1,032 and the matrix size is 19,968.  

  

Fig. 4.6 shows the dispersion curves of the same structure when the MOR 

expansion point is located in the stopband, at  - = 1.5 GHz. As can be seen, the 

results match the ones obtained in chapter 3; the maximum difference is 10
-3

.   

 

 

Fig. 4.6   The dispersion curve of the LPC-EBG structure with the expansion point in the stopband. The 

straight line belongs to the MOR results while the crosses belong to the results obtained in chapter 3. The 

frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The number of 

elements used is 1,032 and the matrix size is 19,968.  
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4.3.4 AS-EBG structure 

 

Fig. 4.7 shows the dispersion curve of the AS-EBG structure with the expansion 

point in the passband, at - = 1.8 GHz.  

 

Fig. 4.7   Dispersion curve of the AS-EBG structure with the expansion point in the passband. The 

straight line belongs to the MOR results while the circles belong to the results obtained in chapter 3. The 

frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The number of 

elements used is 2,247 and the matrix size is 46,530.    

 

The MOR results are obtained by solving the FE model at the expansion point 

and obtaining {�<| vectors up to P=15. Orthogonalizing the vectors gives 11 

linearly independent vectors out of 16 .  
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Fig. 4.8 shows the dispersion curve of the structure when the expansion point is 

inside the stopband, at - = 2.2 GHz.  

 

Fig. 4.8   The dispersion curve of the AS-EBG structure with the expansion point in the stopband. The 

straight line belongs to the MOR results while the crosses belong to the results obtained in chapter 3. The 

frequency step size for the MOR results is 0.01 rad/m and the elements are third order. The number of 

elements used is 2,247 and the matrix size is 46,530.    

 

The results match the ones obtained in chapter 3 with a maximum difference of 

10
-3

.  

 

4.3.5 Computation Time 
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The main purpose of MOR is to reduce the computational cost. Table 1 shows 

the computational costs of analyzing the four structures. The table compares the 

cost of solving the eigenproblem using the method introduced in chapter 3 (the 

“direct” method) with the cost of solving the same problem using the MOR method 

explained in this chapter. As seen in the table, the cost is greatly reduced by using 

MOR, even though there are ten times more frequency points. This makes sense, 

because in MOR analysis only two full-size eigenproblems are solved plus P full 

size linear matrix equations, (4.14). For the other frequency points, only the 

reduced eigenproblem needs to be solved, which has an almost negligible cost 

compared to the cost of solving a full-size eigenproblem.   

Therefore, the speed up that can be achieved depends on the number of 

frequencies that are used in computing the dispersion diagram using the direct 

method. This can be seen clearly by comparing the speed up in different structures. 

For example, the MOR speed-up in the mushroom case is more than in the cube 

case (10.4 versus 7.4) because there are more frequency points used in the direct 

analysis of the mushroom case (111 points versus 50).  

 

 

 

 

 

 

 

TABLE I. Comparison of the computational cost of the direct method (chapter 3) and the MOR method. 
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Simulated Structure Cube Mushroom LPC-EBG AS-EBG 

Number of 

DOFs 
35,500 32,232 19,968 46,530 

Direct 

Method 

Number 

of freq. 

points 

 

50 

 

111 

 

61 

 

43 

CPU 

Time (s) 

 

3,027 

 

4,140 

 

1,756 

 

4,287 

MOR 

Number 

of freq. 

points 

 

500 

 

1101 

 

601 

 

421 

CPU 

Time (s) 

 

407 

 

398 

 

206 

 

591 

Speed-

up 

 

7.4 

 

10.4 

 

8.5 

 

7.2 
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Chapter 5  

Adaptive Model Order Reduction 

 

In the previous chapters, it was shown how FEM can be used for the dispersion 

analysis of periodic structures. Moreover it was shown that applying MOR to FE 

analysis reduces the computational cost significantly. One might ask what would 

be the motivation of continuing to work on this subject. The answer lies in 

addressing two very important issues.  

The first issue is the eigenvalue tracking system which was introduced in 

chapter 3. The system was based on finding, at each frequency, the closest 

eigenvalue to the one obtained for the previous frequency. Although the system 

was shown to work very successfully in a number of cases, it has some limitations. 

The frequency steps have to be small enough to make sure that the right 

eigenmode is being tracked, but no quantative measure was given for “small 

enough”. If it is set too big, there might an eigenvalue corresponding to a different 

mode that happens to be closer to the previous eigenvalue, which would cause the 

tracking system to switch modes. The worst case happens when the dispersion 

curves for two eigenmodes intersect each other. 

The second issue is the limited bandwidth of the MOR method introduced in 

chapter 4. Looking at figures 4.1 to 4.8 in chapter 4 and comparing them with the 

corresponding dispersion curves in chapter 3, one sees that although the results 
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match very well, the MOR results are given for more limited bands of frequencies. 

If the bands are extended, the error grows and leads to inaccurate results.  Fig. 5.1 

shows how the error grows as we move away from the expansion point.  

 

Fig. 5.1   Error in the MOR eigenvalue for the AS-EBG structure (Chapter 4, Fig. 4.8). The expansion 

point is at 1.8 GHz. 

In this chapter both issues are addressed. A comprehensive algorithm is 

proposed that enables us to track any desired eigenmode over any given range of 

frequencies with high accuracy in a short time. The next section describes the 

algorithm. 
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5.1 Multiple expansion point MOR with adaptive tracking over a 

frequency range 

 

In order to generate the dispersion curve over a given frequency range, a 

mechanism is required that employs new expansion points when the current 

expansion point stops giving results with a given accuracy. Applying this multiple 

expansion point mechanism requires a way of estimating the accuracy of the 

calculated eigenvalue at any frequency point. The details of the multiple 

expansion point procedure are explained in the following algorithm.   

 The other issue that is addressed in the algorithm is making sure that the correct 

eigenmode is tracked over the frequency range and that an eigenvalue belonging 

to another mode is not picked accidently. The automatic adjustment of the 

frequency step size is an important part of the tracking mechanism. 

 

5.2 The adaptive FE-MOR algorithm 

 

The algorithm is written in pseudocode format from the top level downwards  

At each level the pseudo code comes first and the corresponding interpretation 

follows. Bold-face indicates pseudo code that is later expanded into further pseudo 

code. 

 

Initialization (5.2.1). 

Repeat: 

build an MOR system at a new expansion point (5.2.2); 
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find � vs. �� using MOR until the error is too big (5.2.3); 

until the desired frequency range has been covered. 

 

5.2.1 Initialization 

 

Select an initial step size, *�. 

Solve a fixed-2 problem to get the initial point,   �)�. 
Set  �) =  �)� .  
 

  After selecting an arbitrary frequency step size, the algorithm requires a good 

guess for the eigenvalue of the starting frequency point. The best way to do so is 

to solve a fixed-2 problem (section 2.3.1) for a passband point like 2� = 4 E!  (this 

is the value used for the results below). The calculated eigenvalues for this 

problem are different wavenumbers, each of which belongs to a different 

dispersion mode. The only thing that needs to be done is to select as the initial 

point, k0i, the wavenumber corresponding to the mode of interest and the algorithm 

will generate the dispersion curve for that mode.  

The initial step size, *�, is actually the greatest step size that will be used in the 

algorithm. It will be reduced automatically whenever it is necessary.  

 

5.2.2. Build an MOR system at a new expansion point 

 

For the first expansion point, the method described in chapter 4 is used at the 
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wavenumber  �)  determined by the initialization. Using the Arnoldi method, the 

closest eigenvalue to \] = ./01  is found, where 2� is the value used for the 

initial fixed-2 problem. Then following the procedure explained in chapter 4, the 
⨉½ matrix ~Y� is computed the L⨉ L eigenproblem is set up and solved for all L 

eigenvectors.  

For subsequent expansion points, the following algorithm is applied: 

 

Let  �o= last expansion point, with expansion matrix ~Y� 
Let � and {�| be the eigenvalue and eigenvector of the last frequency point. 

Repeat: 

 Set  {¡ÂsG| = ~Y�{�| . 
 Solve the n⨉ n eigenproblem at  �) , for 2 eigenvalues closest to �.  

 Find the angle, », between {¡ÂsG  | and the two eigenvectors, {¡�|  

and {¡!| .  
 If this angle is too big (cos »< 0.8): 

  Set  �) = biggest frequency  ≤  Å�:ÅÆ!    at which � and {�| are 

available. 

  If  �) =  �o : Abort. 

  Set � and {y} to the values obtained there. 

Until angle is small enough. 

Choose the tracking eigenpair, �, {¡|.  

Find the MOR expansion vectors for {¡|.  
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From them, compute the 
⨉ ½ matrix ~Y�. 
Solve the ½⨉ ½ eigenproblem at �) , for all ½ eigenvectors.  

Let {�|=eigenvector in ~Y� which has eigenvalue � . 
 

  Since a small increment in frequency is expected to make a small change in the 

corresponding eigenpair ��, {¡|�, the eigenpair at the new expansion point is 

established by using Arnoldi to find the eigenvalue closest to the eigenvalue at the 

last (i.e., closest) frequency. However it is not enough to ask Arnoldi to find just 

this one eigenvalue, because if the previous eigenvalue was at, or very close to, the 

intersection of two dispersion curves, the eigenvalue selected by this procedure 

could easily lie on the wrong dispersion curve. Instead, Arnoldi is asked to find 

both the closest and the next closest eigenvalues. Between these two eigenvalues, 

the one whose eigenvector creates a smaller angle with {¡ÂsG  | is selected as the 

new expansion point.  This ensures that the correct dispersion mode is tracked by 

the algorithm and the rest of the MOR procedure is followed as explained in 

chapter 4.  

It may happen that the two new eigenvectors are too different from {¡ÂsG | for 

this procedure to be reliable. To check this, the angle, Ç, between {¡ÂsG  | and the 

two-dimensional space spanned by the new eigenvectors, {¡�|  and {¡!|, is found, 

using: 

 

cos » = |¡¹ #¡|É¡ÉÉ#¡É 
(5.1) 

 

              

where ~#�{¡| is the orthogonal projection of {¡| onto the space spanned by 
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{¡�|  and {¡!|.  If cos » is not close enough to 1, an incorrect eigenmode is being 

tracked by the reduced order model and the correct eigenmode has been lost 

somewhere between the previous expansion point and the new expansion point. In 

such a case, the only solution is to try to find out where the correct mode has been 

lost. To do that the frequency band between the new expansion point and the old 

one is bisected and an MOR solution close to this middle point is considered as 

the new expansion point. The procedure is repeated until a small enough angle is 

found.  

To find out which of the two eigenpairs is the right one to be followed in order 

to calculate the rest of the dispersion curve, the following piece of pseudocode is 

used:  

 

Choose the tracking eigenpair, �, {¡|.  

If either � � or � !  (but not both) has a magnitude greater than 1+10
-4

: 

 Choose the other eigenvalue as tracking. 

Else if either � � or � !   (but not both) is in the lower half space (Imag(� i) < -

10
-4

): 

 Choose the other eigenvalue as tracking. 

Else 

 Find the angle between {¡�|  and  {¡ÂsG  | . 
 Find the angle between {¡!|  and  {¡ÂsG  | . 
 The eigenvector with the smaller angle is tracking. 

Set �, {¡| to the tracking eigenpair.   
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The first criterion that has to be tested to choose the right eigenpair is to check if 

the mode is physical. Any eigenvalue having a magnitude greater than 1 has to be 

rejected since it represents exponential growth. The second thing that is checked is 

whether or not the eigenvalue is located in the upper half space of the complex 

plane. The validity of this test lies in the fact that the eigenvalues always occur in 

conjugate pairs for lossless problems [56]. Therefore this is sufficient to arbitrarily 

choose to compute only the eigenvalues with positive or zero imaginary part.  

In most cases, the eigenvalues pass both of these tests. The tie breaker then is 

comparing the angle that each eigenvector makes with the previous eigenvector. 

The one with the smaller angle is chosen.  

Next the MOR procedure from chapter 4 is applied to generate the 
⨉ ½ matrix ~Y�. In implementing this, the value P=15 is used for all the results. Since the first 

column of Y is just a scaled version of �), the reduced eigenvector � that 

corresponds to �) is just �1,0, … . ,0�} . 
 

5.2.3 Find � vs. �� using MOR until the error is too big    

  

 Set  *� = *�  
Repeat 

 Record solution point �), �. 

 Set flag limitReached to true if a band limit has been met. 

 DoOneFrequencyStep (�� , Ê�¥ , ~Ë�, {£| , � �. 
 Estimate the MOR error in  . 
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Until MOR error is greater than predetermined threshold or limitReached. 

Set {�| and � to the values for the frequency �) − *� .  

 

This is the part of algorithm that sweeps the frequency band and finds the 

eigenvalue at each frequency point using the reduced order model. It also detects 

when the expansion point needs to be replaced with a new one. The following 

lines show how the eigenvalue is found for each frequency point.  

 

DoOneFrequencyStep (�� , Ê�¥ , ~Ë�, {£| , � �. 
{�ÂsG| = {�|. 

Repeat  

 �) = �) + *�  .  
 Use ~Y� to build the reduced matrices ~Y�¹~��~Y�, ~Y�¹~��~Y� at �). 

 Solve the ½⨉ ½ eigenproblem at �) , for all ½ eigenvectors.  

 Find eigenvector {�| with the smallest angle to {�ÂsG  |. 

 If angle is greater than predetermined threshold: 

  Find the angle between {�ÂsG  |  and each pair of eigenvectors in 

turn. 

   Let {�� |, {�! | be the pair with the smallest angle. 

  If angle is greater than predetermined threshold:  

   �) = �) − *�   
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   *� = GÅÌ!  

Until angle is less than predetermined threshold 

If a pair of eigenvectors was found: 

 Choose the tracking eigenvector, {y}. 

 

First of all the reduced size eigenproblem (½⨉ ½) is solved for all ½ eigenvalues 

and eigenvectors. Now that ½ eigenpairs have been calculated, a mechanism is 

needed to choose the correct one. This mechanism is based on the angle that the 

calculated eigenvectors make with the eigenvector, {�ÂsG|, corresponding to the 

previous frequency point. The smallest angle determines the correct eigenpair, 

provided the smallest angle is smaller than a given tolerance. If this condition is 

not satisfied there might be two possibilities: either this point is close to where two 

dispersion curves cross or the frequency step is too big and the correct mode may 

have been lost. First the angle between {�ÂsG| and the space spanned by each pair 

of eigenvectors in turn is found. If the smallest of these angles satisfies the 

tolerance condition then the tracking eigenvector is chosen from those two using 

the procedure explained in 5.2.2. Otherwise, the step size is halved, and the 

reduced eigenproblem is solved again for the new point, which is closer to the 

previous point. This continues until the smallest angle meets the tolerance. After 

that the eigenvector with the smallest angle becomes the new {�|.  

This procedure generates the dispersion curve gradually while the 

computational cost is very low. Since the step size is adjusted automatically, 

tracking the right mode is also guaranteed.  The only thing left is to recognize 

when the bandwidth of the expansion point is over and the eigenvalues found for 

the reduced order model are not matching the ones that would have been found if 

the full eigenproblem were solved. This issue can be addressed by estimating the 

difference between the MOR eigenvalue and the “full size” eigenvalue. This error 



84 | P a g e  

estimator is calculated as follows: 

 

.� = É{Í| − {Î|É (5.2) 

 

where 

 

{Í| = ~��{�|É��É  

 

(5.3) 

 

                                                 and 

 

{Î| = �~��{�|É��É  

 

(5.4) 

 

 

   In equation (5.3), � is the MOR eigenvalue and {�| is the corresponding full-

size eigenvector, which is calculated from the MOR eigenvector, {�|, using 

 

{�| = ~Y�{�| (5.5) 
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For an accurate � and an accurate {�| the eigenvalue equation ~��{�| = �~��{�| 

is satisfied exactly and then .�  is zero. In addition, we have ÉÎÉ = |�|. The 

reliability of the error estimator will be examined later, in the results section.  

One might ask whether this error estimation will increase the cost of the 

algorithm, since the matrices ~�� and ~�� have to be built at each frequency point. 

The answer is that although ~�� and ~�� are expensive to build, the vectors ~��{�| 

and ~��{�|  can be built cheaply from the matrices ~�Ï<� and [�Ï<�, which are 
⨉½ matrices constructed once per expansion point: 

 

~�Ï<� = ~�<�~Y� 
��Ï<� = ~�<�~Y� 

for R = 0,1,2 

 

 

(5.6) 

 

The vectors ~��{�| and ~��{�| are then found using: 

  

~��{�| = Ðn��Ï<���) − �o�<!
<t) Ñ {�| 

& 

~��{�| = Ðn��Ï<���) − �o�<!
<t) Ñ {�| 

 

(5.7) 
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 Once the error estimate is greater than a given threshold, the loop is aborted 

and a new expansion point is inserted.  

As an alternative to the above error estimator, a second error estimator was 

considered which has almost no cost, but might not be valid for all situations. This 

error estimator is based on the fact that usually the true propagation constant, 2, is 

either purely real or purely imaginary. If the calculated 2 is neither real nor 

imaginary, it indicates that a new expansion point needs to be employed. Although 

this procedure is very cheap, it is not recommended for all structures because of its 

lack of generality. First of all, the assumption that the propagation constant is 

either purely real or purely imaginary is not proven to be correct all the time. 

Secondly, it might be possible that an eigenvalue passes the test and yet is not the 

correct eigenvalue, i.e., it is an incorrect eigenvalue which happens to be either 

real or imaginary. The reason that, despite the lack of the generality, this approach 

is mentioned is that it has given satisfactory results for all the structures that have 

been analyzed so far. 

 

5.3 Results 

 

In this section the four structures that have been analyzed in chapters 3 and 4, 

are analyzed again using the algorithm given above. All of the results obtained are 

compared with those obtained independently in the published literature. Of course 

for some of the structures, only the passband results are available for comparison. 

In addition, a new structure is analyzed in this chapter, called corrugated 

waveguide.  This structure is a rectangular waveguide periodically loaded with 
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asymmetrical capacitive irises [44]. For this structure, the dispersion curve 

produced by the new algorithm is compared both in the passband and stopband 

with the results obtained using the integral equation method in [44].  

In all structures studied in this section, third order elements are used [39]. 

Geometric models and unstructured tetrahedral meshes, respecting the periodic 

constraints, were built using commercial FE software [44]. The initial step size for �) is 0.01 rad/m and the threshold for the eigenvalue error is 10
-3

. 

Later on in this section, the estimated error is plotted for one of the periodic 

structures and at the end the efficiency of the algorithm is assessed.  

 

5.3.1 The metallic cube  

 

The first example is the PEC cube centered in a cubic, air-filled cell. The 

structure is analyzed using the new algorithm and as seen in Fig. 5.2, the whole 

dispersion curve is calculated employing 7 expansion points, which are shown as 

crosses on the frequency axis in this and subsequent figures.    
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Fig. 5.2   Dispersion curve for a triply-periodic array of PEC cubes. The solid line corresponds to the 

results obtained with the new algorithm while the circles are from [28]. The period ¿  is10mm. The 

number of tetrahedral elements is 1,925 and the matrix size is 35,500.  

 

5.3.2 The mushroom structure 

 

The second example is the mushroom structure: a metal square connected to the 

ground plane by a PEC via through the substrate. Although the structure has been 

described in detail in the previous chapters, a top view of the model is inset inside 

the dispersion diagram. As can be seen in Fig. 5.3, the frequency band of 14 GHz 

is handled with 4 expansion points.    
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Fig. 5.3  Dispersion curve for a simple mushroom structure. The solid line corresponds to the results 

obtained with the new algorithm while the circles are from [9]. The period ¿ =2.2 mm. The number of 

tetrahedral elements is 2,047 and the matrix size is 32,232. 

 

 

5.3.3 The LPC-EBG structure 

 

The third example is the long periodic coplanar EBG structure (LPC-EBG). 

Again the geometry of the structure is repeated here as an inset inside the 

dispersion diagram. As can be seen in Fig. 5.4, the given frequency band of 4.5 
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GHz needs only 2 expansion points to give the results with the required accuracy.    

  

 

 

Fig. 5.4   Dispersion curve for LPC-EBG structure. The solid line corresponds to the results obtained with 

the new algorithm while the circles are from [40]. The period ¿ =15 mm. The number of tetrahedral 

elements is 1,032 and the matrix size is 19,968.  

 

5.3.4 The AS-EBG structure 

 

The fourth example is the artificial substrate-EBG structure (AS-EBG). Again 

the geometry of the structure is repeated here as an inset inside the dispersion 

diagram. Fig. 5.5 shows the dispersion diagram corresponding to this structure, 
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which is obtained with 3 expansion points.    

  

 

Fig. 5.5   Dispersion curve for AS-EBG structure. The solid line corresponds to the results obtained with 

the new algorithm while the circles are from [40]. The period ¿ =15 mm. The number of tetrahedral 

elements is 2,427 and the matrix size is 46,530.  

 

5.3.5 The corrugated waveguide 

 

The final example is a rectangular waveguide periodically loaded with 

asymmetrical capacitive irises[44]. This structure is singly periodic. The 

rectangular waveguide is 22.86 mm x 5.08 mm in cross-section and the E-plane of 

one cell is shown inset in Fig. 5.6. The results are compared in both passbands and 

stopbands with those obtained independently, by an integral equation method [44]. 
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Fig. 5.6 shows the dispersion diagram of this structure which is obtained with 9 

expansion points.    

  

 

Fig. 5.6   Dispersion curve for a waveguide loaded with capacitive irises. Solid line corresponds to the 

results obtained with the new algorithm while the circles are from [40]. Dimensions shown are in mm. The 

number of tetrahedral elements is 893 and the matrix size is 20,898.    

 

5.3.6 MOR eigenvalue error  

 

The results presented so far demonstrate the ability of the proposed algorithm to 

compute eigenvalues accurately and generate the dispersion curve through both 

passbands and stopbands. 
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In all the examples the threshold for the eigenvalue error was set to 10
-3

, which 

is a threshold satisfied by the estimated error and not the real error. Obtaining the 

real error requires solving the full eigenvalue problem at each frequency point 

which is very expensive. In order to examine the reliability of the error estimator, 

in this section the real error is calculated for the AS-EBG structure. Fig. 5.7 plots 

this error when the threshold is set to 10
-3

 while Fig. 5.8 plots it for a threshold of 

10
-4

.  The decrease to zero error occurs at the expansion points. As expected, it can 

be seen that the higher accuracy requires more expansion points. The interesting 

point is that in both cases the error stays with a factor of 2 of the threshold value 

used. 

 

Fig. 5.7   The true eigenvalue error versus frequency when the eigenvalue error threshold is 10
-3 
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Fig. 5.8   The true eigenvalue error versus frequency when the eigenvalue error threshold is 10
-4 

 

5.3.7 Computation time   

 

This section presents the efficiency of the algorithm. In Table I, the dimensions 

and timings for all five test structures are given.  Three different sets of times are 

presented. The first set gives the time for solving one full-sized eigenproblem, ~��{�| = �~��{�|, using the Arnoldi method to find one mode. The other two sets 

provide the timing information for the solution of the whole frequency band using 

the algorithm proposed in this chapter. The only difference between these two sets 

is the initial step size for �). The examples in this chapter have all been solved 

with the initial step size of 0.01 rad/m (the period D is between 2.2 mm and 15 

mm for these test cases). One set represents this initial step size and the other set 

represents an initial step size 10 times bigger (i.e., 0.1 rad/m).  
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In the first case, the algorithm never needs to reduce the step size to meet the 

angle threshold for all examples, while in the second case there are situations 

where the step size is reduced by the adaptive mechanism of the algorithm.  For 

both values of the initial step size the number of expansion points is the same and 

the plots are obtained with the same accuracy. There are two important points 

here. First of all, any value can be given to the algorithm as the initial step size and 

the algorithm refines it itself whenever it is needed. The second point is that there 

is only a small difference in the computation time, because most of the time is 

taken by the calculations at the expansion points. 

For these problems, the direct method typically needs a step size of around 1 

rad/m for reliable tracking. From the timings in the table, then, it is evident that 

the cost of the solution by adaptive MOR is more than 10 times less than the cost 

of the direct solution.  

TABLE I   PROBLEM SIZES AND TIMINGS 

 Cube Mush-

room 

LPC-

EBG 

AS-EBG Loaded 

waveguide 

Elements 1,925 2,047 1,032 2,427 893 

Matrix size, n 35,500 32,232 19,968 46,530 20,828 

Time (s) for solving 

one nxn eigenproblem 
61 41 29 98 30 

MOR, Initial step size=0.01 rad/m 

Number of 

expansion points 7 4 2 3 9 

Number of 

frequency points 50,001 25,001 8,001 11,001 63,001 

Total time (s) 2,734 929 382 1,403 1,753 

MOR, Initial step size=0.1 rad/m 

Number of 

expansion points 7 4 2 3 9 

Number of 

frequency points 7,442 2,957 801 1,101 8,635 

Total time (s) 2,691 898 361 1,376 1,704 
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Chapter 6  

Conclusion 

 

6.1 Original contributions 

 

The original contributions reported in this thesis are the following: 

• Linearizing the quadratic eigenproblem resulting from fixed-�)  finite 

element analysis of periodic structures, without doubling the matrix dimension. 

 

• A model order reduction scheme for fixed-�) finite element analysis of 

periodic structures. 

 

• A comprehensive MOR algorithm with multiple expansion points and 

adaptive eigenmode tracking to generate the dispersion curve of periodic 

structures rapidly and accurately. 

 

6.2 Discussion 
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In the past few decades periodic structures have been an active and growing 

subject in the field of microwave electromagnetics. Periodic structures have found 

application in power distribution networks, filters, antennas and even in artificial 

materials. For designers, exploiting the merits of periodic structures requires a 

deep understanding of the wave dispersion in these structures. They either need to 

conduct a deterministic study by introducing a source and observing the scattering 

parameters of the structure or to conduct an eigenvalue analysis of the unit cell of 

the periodic structure in order to obtain the characteristic modes . Only the 

eigenvalue analysis can provide complete dispersion curves. Applying the 

conventional method of eigenvalue analysis offered by commercial software 

requires the designer to specify a purely imaginary Floquet propagation constant 

(2 = 45) and to seek the corresponding frequency (�)). Plotting the so-called � − 5 diagram is the result of this analysis.  

Imagine that an engineer needs to investigate the insertion loss characteristics of 

an EBG filter. He would need to know about the evanescent modes of the periodic 

structure, which is not possible with the conventional method. He needs a tool that 

can find the evanescent and even complex modes of the structure that he is 

studying.  

Now imagine another scenario in which the engineer is not interested in the 

evanescent mode. He does not even care what happens in the stopband. He simply 

needs to see the � − 5 diagram, but the problem is that he has a material in his 

structure which is lossy or frequency dependant. Again he is unable to analyze that 

structure with the conventional method which specifies 5 and seeks the frequency. 

He needs a tool that allows him to specify the frequency and gives him the 

complex propagation constant at that frequency. This way he can use any kind of 

material in his design no matter if is lossy, anisotropic or even frequency 

dependant.  

The suggested method in [29] is a remedy for these shortcomings. In this 

method the frequency (�)) is specified and the dispersion equation is solved for 



98 | P a g e  

the complex 2. This way all the eigenmodes including complex modes of the 

structure can be found and both � − 5 and � − 3 diagrams are obtained by 

plotting the imaginary and the real part of 2 versus frequency. The only drawback 

of this method is the huge computational cost associated with a dense-matrix 

solution of the quadratic eigenvalue problem, which made it almost impossible to 

apply it to realistic 3D geometries. The three original contributions listed in the 

previous section are 3 steps towards solving the fixed-�) problem efficiently and 

accurately over a desired band of frequency, for any 3D geometry. The first 

contribution, explained in detail in chapter 3, turns the quadratic eigenvalue 

problem into a linear eigenproblem without increasing the matrix size or losing 

any generality. The only assumption made is that there should be no finite element 

which goes the whole way through the unit cell of the periodic structure. The 

second contribution, which was the subject of chapter 4, applies MOR to the 

analysis. By solving the eigenvalue problem for only one frequency and 

considering it as an expansion point, the propagation constant for a surrounding 

frequency band is found by solving a reduced order model. The computational 

cost for analyzing the whole band is only a little bit more than the cost of solving 

the eigenvalue problem for one point. The only drawback is that as we get further 

from the expansion point the error in the eigenvalue grows. The third contribution, 

described in chapter 5, applies multiple expansion points to the FE-MOR analysis. 

An error estimator is employed that indicates when the error exceeds a certain 

tolerance and a new expansion point needs to be selected. In this way, any given 

frequency band can be swept with a given accuracy. A smart adaptive tracking 

mechanism is proposed which guarantees that the same mode is tracked over the 

frequency range.  

Although the method proposed in this thesis offers an efficient and accurate 

approach for dispersion analysis of periodic structures, there is always room for 

improvement. The following are some suggestions for future work: 
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� Applying the method to open periodic structures, like antenna arrays. This 

can probably be done by applying perfectly matched layers (PML) [34] to model 

the unbounded region.  

 

� Investigating the complex eigenmodes of a periodic structure containing 

non-reciprocal material [57]. This material is usually ferrite which is biased by a 

static magnetic field and devices built with it can phase-shift, displace or absorb 

signals by different amounts, depending on the bias field and on the direction of 

propagation. Such structures give new degrees of freedom to designers to achieve 

the desired properties of the stopband because both periodicity resonance and 

ferromagnetic resonance can be employed in the design.  

 

 

� Improving the adaptive multiple expansion point algorithm. It should be 

possible to use both the left and right-hand band of each expansion point.  

 

� Applying the method to find higher propagating and evanescent modes. In 

all of the test cases, only the lowest mode has been studied. The higher modes can 

be obtained by choosing other eigenvalues of the fixed-2 problem which is solved 

to initiate the algorithm.   
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