Join Index Implementation

in a Distributed Partitioned Columnar
Relational Database Management System

Joseph Vinish D’silva

Master of Science

School of Computer Science
McGill University

Montreal, Quebec, Canada

August 2015

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

(©Joseph Vinish D’silva, 2015



Abstract

Join indices have been proposed as an efficient way of addressing the high resource costs
associated with join computation, ever since the inception of relational database manage-
ment systems (RDBMS). Although there are plenty of implementations of join indices
in row-based RDBMS that have demonstrated significant performance benefits, not much
research has been done in terms of their performance benefits in column-based and/or dis-
tributed DBMS.

In this thesis, we propose a join index implementation for a commercial distributed
columnar database, Informatica IDV, and show that it provides significant performance
benefits compared to the current join processing in Informatica. We present a join index
architecture that is scalable and easy to integrate with the partitioned and columnar archi-

tecture of Informatica IDV.

We then measure the performance for queries of the TPC-H benchmark considering
many different parameters such as database size, number of partitions, query selectivity,
and number of joining tables. The performance results from our tests show that our join
index implementation offers significant performance improvements compared to standard

join processing in terms of query execution times, as well as resource consumption.



Abrégé

Avec I’émergence des systemes de gestion de bases de données relationnelles (SGBDR),
les index de jointure ont été proposés en tant que techniques efficaces permettant de réduire
les cofits élevés en ressources lors des calculs de jointures. Bien qu’il y ait déja plusieurs
implémentations d’index de jointure dans les systtmes SGBDR orientés-rangées qui ont
fait preuve de gains de performance significatifs, peu de recherche a été effectuée en ce qui
a trait a la performance des index de jointure au sein de systemes SGBDR orientés-colonnes

et/ou distribués.

Dans cette these, nous proposons une implémentation d’index de jointure pour une
base de données distribuée orientée-colonnes, Informatica IDV, et nous démontrons qu’elle
mene a des gains de performance significatifs en comparaison au mécanisme actuel de
traitement des jointures dans Informatica. Nous présentons ici une architecture d’index de
jointure qui est extensible et facilement intégrable au sein de 1’architecture partitionnée,

orientée-colonne, du systeme Informatica IDV.

Nous mesurons ensuite la performance de requétes provenant du banc d’essai TPC-
H, en prenant en compte différents parametres tels que la taille de la base de données, le
nombre de partitions, la sélectivité des requétes et le nombre de tables de jointure. Les
résultats obtenus de nos tests démontrent que notre implémentation du mécanisme d’index
de jointure amene a des gains significatifs de performance par rapport a I’approche standard
de traitement des jointures et ce, autant en termes de temps d’exécution des requétes qu’en

termes de consommation des ressources.

i



Acknowledgements

I would like to thank my supervisor Prof. Bettina Kemme for her support and guidance
throughout this research. I am grateful for her confidence in me, and the amazing ability to

keep things sane even when the road seems long.

I am also lucky to have been able to work with an awesome team at Informatica R&D
in Montreal, whose vast depth of knowledge of IDV was always available at a moments

notice.

I am especially grateful to Richard Grondin, Evgueni Fadeitchev, Vassili Zarouba and

rest of the team at ILM R&D for being so supportive throughout my research.

And to all the wonderful people who have encouraged me in this endeavor, Deo gratias
for the small joys in life.

11



Contents

1 Introduction 1
1.1 Contribution . . . . . . . . ... e 3
1.2 ThesisOutline . . . . . . . .. ... e 4

2 Background and Related Work 6
2.1 Relational Model and the ConceptofJoins . . . . . . ... ... ... ... 6

2.1.1 Joins between Relations . . . . . ... ... ... .. ... .... 7

2.2 Column-Oriented Database Systems . . . . . . ... .. ... ....... 9
2.3 Distributed & Parallel Database Management Systems . . . . . .. .. .. 15
2.3.1 Architectural Options . . . . . . . . . ... ... .. 17

2.3.2 DataPartitioning . . . .. ... ... ... e 18

2.4 TPC-H based Benchmark - an Overview . . . . . . .. ... ... ..... 20
25 IDVOverview . . . . . . oo e e e e e 22
2.6 1DV Database Architecture . . . . . . . ... ... . L. 22
2.6.1 Physical Storage Layout . . . . . ... ... 24

2.7 Joins & Optimization Strategiesin RDBMS . . . . . ... ... ... ... 27
27.1 JoinAlgorithms . . . . . . . .. ... .. .. . 27
27.1.1 NestedJoin . . ... ... ... ... ... ... 27

2.77.1.2  Sort-MergeJoin . . .. ... ... 0oL 28

2.7.1.3 HashJoin Algorithms . . . . . ... ... ... ..... 29

2.7.2  Joins using specialized Data Structures . . . . .. ... ... ... 30
2721 Links. ... ... 30

2.7.2.2 Materialized Views . . . . .. .. ... ... ... 32

2723 Joinlndices . . ... ... ... ... 34

2.7.3  Joins in conjunction with Predicates and Projections . . . . . . .. 38

v



28 JoinsinIDV . . . ..o 43
2.8.1 Overview . . . . . .. e e 43
2.8.2  Applying Predicates and Performing Projections . . . . . ... .. 44
29 Related Work . . . . . . . . .. . e 48
291 C-StOre . . . v v vt e e e e 48
292 MonetDB . . . .. 49
Columnar Join Index 53
3.1 OVerVIEW . . . o o e e e e e 53
3.2 Join Index Architecture . . . . . . . . ... ... e 54
32.1 CreatingalJoinIndex . . . .. ... ... ... .. .. ....... 57
3.3 Join Processing Overview: oldandnew . . . . . ... ... ... ..... 62
3.4 Joins and Selection Predicates . . . . . . ... ... ... 62
3.4.1 Limitations of current TSV approach . . . . ... ... ... ... 63
3.4.2 Selection Predicates with Join Indices . . . . ... ... ... ... 65
3.4.3 The need for uncompressed TSV structures . . . . .. ... .... 68
3.5 Worker Tasks . . . . . . . . . . e 68
35.1 TSV CreationTask . . . ... ... ... ... ... ........ 69
352 JoinIndex Query Task . . .. ... ... ... .. ... ...... 70
3.5.3 Resultset Generator . . . . . . . .. ... ..o 72
3.6 Workflow Execution Summary . . . . ... ... ... ... ... ..., 72
3.6.1 Pipelined Processing . . . . ... ... ... ... ... .. ... . 74
37 Summary ... .. e e e e e e e e e e 75
Experimental Results & Performance Evaluation 77
41 OVEIVIEW . . . v v i e e e e e e e e e e e e e e e 77
42 Experimental Setup . . . . . . .. ... e 77
4.2.1 Test Objectives Overview . . . . . . . . . o v v v v v v v .. 77
4.2.2 Performance Metrics . . . . . . ... ... ... . 79
423 TPC-Hbased Benchmark . ... ... ............... 81
4.2.4  Test Environment Configuration . . . . .. ... ... ....... 82
4.3 Experimental Test Cases & Results . . . . . ... ... ... ........ 84
4.3.1 Two-table single partitionjoins. . . . . . . . . ... ... ..... 84



432
433

4.3.4
4.3.5

4.3.6

Multi-table single partition joins . . . . . . .. ... ... ... ..
Two-table multi-partition joins . . . . . . ... ... ... .....
Materialization . . . . . . . . .. .. . e
Query selectivity . . . . . . . ... e

Reduced source table lists . . . . . . . . . ... ... ... ...

4.4 ResultsSummary . . . . . . . .. L

5 Final Conclusion & Future Work
5.1 Conclusion . . . . . . . . . e e
5.2 Future work . . . . . ... L e e

5.2.1
522
523

Bibliography
Acronyms

Appendices

Complex Query Types . . . . . . . .. .. .
Storage techniques forrowids . . . . ... ... ...,

Processing techniques for JI partitions . . . . . . .. ... ... ..

A TPC-H based SQLs used for testing

Vi

108
108
110
110

111
111

122

123

125

126



2.1
22

2.3
24

2.5
2.6

2.7

2.8

29

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221

3.1
32

33

List of Figures

Joinsin arelational model . . . . . ... ... ... L oL 7
Physical data storage in a row-oriented RDBMS . . . . .. ... ... ... 10
Physical data storage in a column-oriented RDBMS . . . . . ... ... .. 10
Column data compression . . . . . . . . o v v v vt vt e e 14
TPC-Hschema . ... ... .. .. .. .. .. ... . .. . ... 21
High level database architecture . . . . . ... ... ... ... ...... 23
Database storage layout . . . . . . .. ... ... Lo oo 25
IDV data compression . . . . . . . . ... e e 26
Example of a materialized view . . . . . . .. ... ... oL, 33
Join index implementation according to Valduriez . . . . . . ... ... .. 35
Bitmap based joinindex . . . ... ... .. ... . o 37
Joins, selection predicates and projections . . . . . .. ... ... .. ... 39
Query for May Finance payroll . . . . . . ... .. ... .. .. ...... 41
Early materialization approach to fig. 2.13 . . . . . . ... ... ... ... 42
Late materialization approach to fig. 2.13 . . . . . .. ... .. ... ... 42
Compressed Tuple Selection Vector . . . . . .. ... ... .. ...... 46
Joinsteps fora3tablejoin . . ... ... ... ... ... .. ... ... 47
SQL for joining Country, Region and Customer relations . . . . . .. . .. 48
C-storejoinindeX . . . . . . . . . v i v i it e e e 49
BAT decomposition and storage in MonetDB . . . . . . .. ... ... .. 51
Join processing and resultset projection in MonetDB . . . . .. ... ... 52
Join index Architecture for IDV . . . .. ... oL Lo oL 56
Join index storage structure . . . . . . . . ... ... Lo 57
Creation of a three table joinindex . . . . . ... ... ... ........ 59

vii



3.4 Jlcreation with empty JI partitions . . . . . . . . ... ... ... ..... 61
3.5 Activity diagram for join query processing . . . . . . . . . ... ... ... 63
3.6 TSV generation . . . . . . . . . . . i i e e 64
3.7 Source table to join index partition mapping . . . . . . . . ... ... ... 66
3.8 TSV evaluation and usage in new query workflow . . . . .. ... ... .. 67
3.9 Uncompressed TSV mapping torowids . . . . .. ... ... .. ..... 69
3.10 Example of a TSV creationtask . . ... ... ... ... .. ....... 70
3.11 Example of ajoinindex querytask . . . . . .. .. ... ... ... .. 71
3.12 Activity diagram for query processing workflow using join index . . . . . . 73
3.13 join index query task processing . . . . . . .. ... ..ol 74
3.14 Multi-table join indexes and foreign key relationships . . . . . .. ... .. 76
4.1 TPC-H Schema and cardinality of the relations . . . ... ... ... ... 82
4.2 Performance of 2-table 1-partitionjoins . . . .. ... ... ........ 85
4.3 Performance metrics forq19_01 . . ... ... ... ... .. ....... 87
4.4 Performance metrics forq17_01 . . ... ... ... ... .. ....... 88
4.5 Execution time for multi-table joins . . . . . ... ... ... .. 89
4.6 First row return time for join index based query workflows . . .. ... .. 91
4.7 Resource utilization comparison with multi partition queries . . . . . . . . 92
4.8 Performance improvements because of late materialization . . . . . . . .. 95
4.9 Execution time and selectivity . . . . .. ... ..o Lo 97
4.10 CPU seconds and selectivity . . . . . .. .. .. .. ... ... ..... 98
4.11 /Oandselectivity . . . . . . . . . o i i s e e e e 100
4.12 Peak memory and selectivity . . . . . . .. .. ... oL 102
4.13 Resource utilization comparison of adaptivereadsonJI . . . . . . ... .. 104
5.1 Improvised joinindex processing . . . . . . . . . . . ... ..o 113
Al SQLgO2_ 01 . . . . . e 127
A2 SQLGO3_01. .. . . e 128
A3 SQLg03_02. . . . . e 129
A4 SQLGO03_03. . . . . e 130

viii



A5 SQLQOS_ 01 . . ... o 130

A6 SQLQI2. 01 . o o oo 131
A7 SQLQI2_10-ql2_19 . o oot 131
A8 SQL Q302 . o o oot 132
A9 SQLQIA_O1 . . o oo et 132
AT0OSQLQI6_ 01 . o o v oo e e e 132
ATLSQL QL7 01 . o ot e e e 133
A12SQL QIO 01 . o o v e e e e 133

X



3.1

4.1

Join index metadata

List of Tables

Test environment configuration . . . . . . . . ... ... ... ... 83



Introduction

Relational Database Management Systems (RDBMS), have come a long way, since first
proposed by Codd in 1970 [Cod70]. Its widespread adoption is attributed to a combination
of ease of use and the application flexibility that was obtained by decoupling the storage

and access semantics that had plagued its predecessor data models.

Throughout the years, the burgeoning growth in the data storage requirements of or-
ganizations, fueled primarily by an ever increasing reliance on information technology to
build solutions to empower businesses, has continued to put constant evolutionary pressure

on contemporary database technologies.

The initial demands for a scalable solution that will provide more storage and comput-
ing power at a reasonable cost eventually led to the development of distributed database
management systems by harvesting commodity hardware and building a distributed soft-
ware framework that can provide network transparency to data access [OV11]. These sys-
tems provide performance improvements by the means of data partitioning and parallel

processing.

However, as more businesses started moving online, the amount of data that was being
generated as well as the business potential it offered increased dramatically [MBD ™ 12].
This eventually has lead to the emergence of Big Data, that warrants an exponential in-
crease in demand for storage and processing power. International Data Corporation (IDC)
forecasts that by 2020, the digital data generated will grow to an estimated 40 Trillion
Gigabytes of data [GR12].



Introduction

Contemporary row-based RDBMS technologies are already struggling to keep up with
the current demands, which is expected to double every two years [GR12]. This has lead
to a revival of interest in column-stores that are better suited for the performance needs of

analytical applications.

Relational DBMS have, since their very beginning, relied on indexing mechanisms as
auxiliary data structures to bolster the performance of specific database queries. Among
the various index structures, join indices hold a significant interest when it comes to ame-
liorating the performance costs associated with join computation, the most expensive of

relational operations.

Conceptually, join indices are special relations whose contents are managed internally
by the DBMS. They represent a fully pre-computed join between two or more relations by
storing some form of source table row identifier for each resultset tuple [ME92]. The cost
associated with the join index maintenance is amortized across the multiple queries that

can benefit from the pre-computed results of the join.

Though widely accepted as beneficial over conventional join algorithms [[LR99] in the
context of traditional row-based RDBMS, there is very little research literature that de-
scribes the implementations and performance characteristics of join indices with respect to

column stores and horizontally partitioned databases.

Even though column-based RDBMS offer far better performance over row-based RDBMS
due to the column-store based data storage model that makes many auxiliary performance
data structures like conventional secondary indexes redundant or less effective, we believe
that constructing a join index will still be beneficial in providing some relief to the cost of
join computations in column-stores. This is because, as in the case of a row-based RDBMS,

a columnar RDBMS also needs to perform similar procedures for join execution that in-
volves matching tuples from joining relations. This is often performed by algorithms that
are identical to those employed in row-based RDBMS. Therefore, we hypothesize that hav-
ing the joins precomputed in the form of a join index should prove beneficial in reducing

the join cost of the queries.

To understand the performance implications of join indices on query execution in colum-

nar RDBMS, we enhance a commercial, distributed columnar RDBMS, Informatica IDV



1.1 Contribution

that employs a horizontal partitioned approach of storing data to support join index struc-
tures. We also implement new query execution workflows that can utilize the join indices
for join query processing. We simplify the join index implementation mechanism by lever-
aging the existing columnar storage structure by persisting the join indices as special sys-
tem tables whose columns are rowids of tuples of the relations participating in the join that

will form the resultset.

We follow a partitioning approach for join indices created in IDV that facilitates ef-
fortless join index maintenance (addition / removal of partitions) and is in concordance
with the way partitions are processed currently in IDV that facilitates parallel processing of
join queries. We also develop a new methodology of evaluating selection predicates which
addresses the costs associated with redundant predicate processing in the current system.
Finally, we implement the late materialization strategy when materializing resultsets using
join indices that offers superior performance in lieu of the existing early materialization

approach.

1.1 Contribution

The main contributions of this thesis are:

¢ A comprehensive review of the technologies and associated research literature com-

prising the background of the thesis, constituting of.

A brief introduction of the relational model and the concept of joins and selec-

tion predicates.

Comparative analysis of column stores and row stores.

Evolution and architectural styles of distributed & parallel database manage-

ment systems.

— Relevance of data partitioning in the context of parallelism.

Overview of the TPC-H Benchmark suite used for decision support systems

benchmarking.

— Brief overview of IDV, its software architecture, physical storage layout, etc.



1.2 Thesis Outline

— A literature review of the popular join optimization strategies that are widely

employed in relational database management systems (RDBMS).

— Review of various existing join index implementation techniques, including in

other contemporary columnar RDBMS.

— Comparative analysis between late materialization and early materialization

strategies of producing the final resultset.

e Join index design for IDV that conforms to the partitioned, distributed and columnar

nature of the database system.

¢ An improved selection predicate processing strategy that avoids any redundant eval-

uations of selection predicates in multi-partition joins.

e A late materialization based approach for generating the output resultset from join
indices that offers better performance benefits compared to the early materialization

technique currently employed.

e Discussion on the various query criteria that influence the performance of utilizing
join indices.

e A detailed analysis of the performance of join index implementation using the TPC-
H benchmark suite.

1.2 Thesis Outline

The remainder of this thesis follows the below organization.

Chapter 2 covers the background information for our work. In this chapter, we discuss the
evolution of relational database management systems (RDBMS), the emergence of
column based RDBMS and distributed databases. This chapter also provides a brief
introduction to TPC-H, a widely used decision support benchmark suite that we use
for our performance testing. We also present a literature review of various popular
join optimization strategies employed by RDBMS. A brief introduction to IDV, the
database system that we have been extending in this thesis work, is provided includ-

ing the database architecture and existing join processing mechanism. We conclude



1.2 Thesis Outline

this chapter by reviewing two contemporary columnar RDBMS, especially with re-

spect to their join index implementations.

Chapter 3 describes our approach to join index implementation in IDV. We also present
a new way of efficiently evaluating selection predicates. This chapter also describes

the new query processing workflow utilizing the join indices.

Chapter 4 provides the test objectives, describes the performance metrics that are being
measured and the configuration of the test environment. We then go over each of the

test cases along with the observations, finally summarizing the performance results.

Chapter 5 presents the conclusions that are drawn from the join index implementation and
performance evaluations. It also presents possible future performance enhancements

that can be explored for the join index implementation in IDV.



Background and Related Work

2.1 Relational Model and the Concept of Joins

Prior to the 1970’s, the Database Management Systems (DBMS) available were mostly
based on network and hierarchical models that suffered from poor decoupling of the nature
of data from the storage and retrieval mechanisms associated with it. Edgar Codd’s proposal
of the Relational Data Model [Cod70] as a data representation framework that addressed
these shortcomings as well as defining a more formal mathematical form [Got75] to the
data model spurred the development of many Relational Database Management Systems
(RDBMS) [GRO3]. The relational model provided flexibility to application programs to

read information from the database in a physical representation agnostic manner.

Using the relational model, the database consists of one or more relations, where each
relation is a table that consists of rows and columns. A relation can be viewed as com-
bination of (i) a relation schema that is associated with the table, which describes the at-
tributes along with their value domains (ii) and a relation instance, which consists of a set
of records (tuples) consisting of individual fields/columns that correspond to the attributes

in the schema definition.

Every relation has a primary key, that consists of a set of one or more attributes whose
values can be used to uniquely identify a tuple. Keys also function as a cross-reference
between tuples of the same relation or a different relation [Cod70]. A set of attributes F of

arelation R forms a foreign key in ‘R if the values in the attributes F of the relation instance



2.1 Relational Model and the Concept of Joins

EMPLOYEE DEPT N EMPLOVEEINFO
EID ENAME DID DID DNAME ENAME | DNAME
3001 JAKE 10 10 FINANCE JAKE | FINANCE
3002 TREVOR 21 21 HR E> TREVOR HR
3003 SEAN 10 2 T SEAN__| FINANCE
3004 MAGGIE 21 MAGGIE HR
3005 SUE 22 ) SUE T
/STUDENT ENROLLMENT COURSE \
[ |sNAME | SID === sID ap [ 7—cap| ctme \
JANE _|1000 1000 | 102 101] PHysics STUDENTSCHEDULE
EMILY |1001 1000 | 103 102| CHEMISTRY SNAME | CTITLE | DAYOFWEEK| TIME
PETER |1002 1001 | 105 103[  MATH IANE | CHEMISTRY|]  TUE  |10:00 AM
ROBERT |1003 1002 | 103 [105| BIOLOGY JANE | CHEMISTRY FRI 11:00 AM
MARK_|1004 1003 | 106 106| ECONOMICS JANE MATH WED | 10:00 AM
1004 | 101 EMILY | BIOLOGY MON _ |12:30PM
1004 | 103 COURSESCHEDULE PETER | MATH WED | 10:00 AM
b DAYOFWEEK]  TIME ROBERT |ECONOMICS|  THU 3:00 PM
101] mon | 200em | MARK | PHYSICS MON | 2:00PM
101 wep 2100 PM MARK | PHYSICS WED | 4:00PM
102 TUE 10:00 AM MARK | MATH WED | 10:00 AM
102 FRI 11:00 AM
103]  WED 10:00 AM

\ 105 MON 12:30 PM
\ 106 THU 3:00 PM

Figure 2.1: Joins in a relational model

‘R are a subset of the values of P where P is the primary key of a relation S (which could
be identical to R). In the database literature, R is called a referencing relation and S is
called a referenced relation [GR0O3, EN13, SKS10].

Fig. 2.1 depicts a foreign key relationship where foreign key column DID of Employee

is referencing the primary key column DID of Dept.

2.1.1 Joins between Relations

Join is one of the most fundamental operations in a Relational DBMS that is performed
as part of query processing. In its basic form, a join is used to combine tuples from two
(possibly identical) relations to produce an output relation that contains tuples constructed
from attributes of both the relations. Since the output of joining two relations is in itself a
relation, by extension, the output relation could be joined with a third relation to produce
another output relation. Hence a complex relational join operation can have multiple re-
lations involved in it. In practice, an N-way join can be viewed as a sequence of N — 1

two-way joins [ML86].



2.1 Relational Model and the Concept of Joins

Although, in principle, a cartesian product of the tuples from two relations constitute
a join, it is often of little practical significance. Hence, the most common version of joins
used in relational systems is a conditional join, where the join operation produces only

those tuples in the output relation which satisfy the condition specified.

A special case of conditional join is the equi-join where the condition provided is purely
based on equalities of a subset of attributes from the joining relations [GRO03]. Fig. 2.1 pro-
vides two examples of a relational equi-join. In the first join, Employee and Dept rela-
tions are joined based on a common attribute DID which is a foreign key in Employee and
a primary key in Dept to produce Employee information as the output result. This is a triv-
ial example of a join, in which the primary key and foreign key attributes are compared for
equality between the two relations while constructing the output tuples. It can be observed
as a corollary that in the case of equi-joins over the foreign key relationship of the joining
relations, in the absence of any other predicates, the cardinality of the output relation will
be the same as that of the referencing relation with the foreign key. This example is also a
special case of equi-join, called natural join, which consists of equality conditions between
all attributes that are common to both relations [Cod70, GR03, EN13, SKS10]. However,
it has to be pointed out that, in practice, RDBMS implementations don’t necessarily distin-
guish natural joins from other equi-joins and use the same fundamental algorithms for join

processing.

A significant number of joins in a Relational DBMS are performed over foreign key re-
lationships, and as such this is often an incentive for applying performance optimizations.
However, we will delay the further discussion of how to implement efficient join mecha-
nisms and the various optimization strategies employed by different RDBMS in practice
to a later part of this chapter in section 2.7. We conclude the discussion on the relational
concept of join by mentioning that the foreign key - primary key joins are not the only way
of combining relations, and in practice, the cardinality of the join relation need not match
that of any of the participating relations. The second join in Fig 2.1 involving four relations
is a good example for this case, where a schedule for the student needs to be constructed
based on the courses he/she is enrolled in. Here, the cardinality of the final output relation
is not that of any of the relations participating in the join. We will take this observation into

consideration when we design the join index for IDV.



2.2 Column-Oriented Database Systems

2.2 Column-Oriented Database Systems

As the size of the data collected by institutions grew, the existing row-based relational
database technologies were found to be inadequate to cater effectively to a wide spectrum
of data volumes that ran gamut from a few Megabytes to several Terabytes, forcing database
vendors to develop technologies that were best suited to certain bands of the size and nature
of usage spectrum. This spurred the specialization of database implementations into various

forms demarcated by the underlying technology.

The most prominent classification of the size and nature of usage spectrum resulted
in the implementations being categorized as Online Transaction Processing (OLTP) and
Decision Support System (DSS) applications, with Big Data joining in later as a new, much

larger class of its own.

One of the fallouts of this specialization was the evolution of Column Oriented RDBMS
as a compelling technology in storing large scale data. Column stores have been around
since the 1970s [Raa07, ABHO9].

Column stores differ from their row-oriented peers primarily in the way the various
attributes of a tuple of a relation are stored in the physical disk block. As shown if fig 2.2,
in a traditional row-oriented database, the data from a table is stored on disk such that all the
attributes of a particular tuple are stored together in a block in a contiguous manner. This
contrasts from the storage mechanism of a columnar database depicted in fig. 2.3, where
the values of different attributes of a tuple are separated out and are stored distinctively
such that a given data block contains only values from a particular attribute of the relation
[Raa07, AMF06, ABHO9].

The difference in the physical storage model of row and columnar databases draws out
interesting results when it comes to performance comparisons. In research done by Abadi
et al.[AMHO8] and Harizopoulos et al.[HLAMO6], column stores were found to perform

better than their row-oriented peers.

Columnar databases were over-shadowed by row oriented databases during the for-
mer’s inception, primarily attributed to the availability of low cost hardware to offset for

performance shortcoming. However the burgeoning growth in the size and popularity of



2.2 Column-Oriented Database Systems

Physical Disk Storage

Walker

Figure 2.2: Physical data storage in a row-oriented RDBMS

Physical Disk Storage

S@ S22 29
SRER
5 =
=S Es

Smith s Marselle
Willkins__[Steele Peterson _ |McPhpee |
Walker |Atkins m
Washinton \Warner m

McPhpee |
Atkins |
perry |
Fang |
Washington |
Merind |

Figure 2.3: Physical data storage in a column-oriented RDBMS

10



2.2 Column-Oriented Database Systems

analytical databases has resulted in the resurgence of column stores [Raa07].

Advantages of Columnar Storage

Column-oriented DBMS are more efficient when working on smaller subsets of columns
when compared to row-based DBMS as often the number of data blocks that are required
to be processed is much less. This is because in the case of a row-oriented database, the
data blocks that are read will contain columns which are not required for the final result set,
which leads to unnecessary I/O operations. In contrast, since columnar databases store the
columns in separate data blocks, only the data blocks of required columns are read, avoid-
ing any unnecessary 1/O. This makes them particularly suitable for analytical queries that

need to read only a few attributes, but from a significant number of rows [Raa07, ABH09].

Column-oriented DBMS are also more efficient when entire columns of a table are
updated. This can be inferred again from the above context, as in the case of a columnar
database, all (and only) the data blocks of the relevant columns could be discarded and
replaced by new data blocks containing the new values. This is way more efficient com-
pared to an update in the row based system where every data block will have to be read and

re-written.

Storing data in a columnar fashion gives distinct advantages when it comes to exploit-
ing the computing power of modern super-scalar CPUs that are capable of instruction
pipelining [AMDMO7, BZNOS5]. A processor capable of instruction pipelining strives to
achieve maximum parallelism by trying to execute instructions in all of its pipelines si-
multaneously, which leads to a high Instructions Per Cycle (IPC) throughput, i.e. faster
execution of the program code. A necessary condition for achieving instruction pipelin-
ing is that the instructions that are being simultaneously executed in different pipelines
should be independent of each other [BZNOS5]. Column stores that use vectorized query
processing, where usually a simple operation is performed over an entire block of data
(holding elements from the same column) are perfect candidates for exploiting this feature
[ABH09, AMHO08, BZN05, ZHNBO06]. In most programming constructs, this would be a
simple loop iteration over all the elements of the data block, sometimes termed as block it-
eration. Modern compilers are capable of transforming such code to take better advantage

of instruction pipelining.

11



2.2 Column-Oriented Database Systems

Column storage also leads to better CPU cache performance since the data block con-
tains only relevant data elements [AMDMO7], unlike the row-stores where a data block
could contain columns not required by the query. This contributes to efficient usage of
cache lines, ensuring that the pipelines are not starved of instructions, waiting for them to

be fetched from main memory.

A further benefit of columnar data storage is that, as a column has a restricted and
specific domain, compression techniques can be effectively applied [Raa08, ABHO09] . This
can provide significant space savings without compromising on performance related to
I/O compression/decompression operations. The reduced 1/O as a result of compression
can in fact be beneficial for query performance under appropriate circumstances [AMF06,
AMDMO07, ZHNBO06, BHF09, MF04].

Like many of their row-based peers, column stores are capable of using dictionary
encoding as a compression mechanism. Due to its simplicity and ease of implementation,
dictionary encoding [Sal04, Wil91] is probably the most commonly employed compression
scheme in DBMS. The fundamental idea of dictionary encoding is to reduce the size of the
individual values stored in data blocks by replacing them with a smaller code which is a
reference to the dictionary location that contains the actual value [AMF06, BHF09]. The
reference is usually an index if the dictionary is represented as a fixed size array. This could
result in considerable amount of storage savings, especially when the data values are very
wide and the number of distinct values is relatively small compared to the cardinality of
the table.

Many implementations that use dictionary encoding for compression try to preserve the
ordering [AMF06, BHFO09] as this would facilitate the execution of various query opera-
tions like sorting, searching etc. without uncompressing the columns first. An implication
of this is that when a new value needs to be entered into the dictionary, it will require the
dictionary to be re-encoded and this could incur significant cost to the system. [BHF(09]

proposes a dictionary implementation that reduces this overhead.

Many column stores like Blink[BBC™12], SAP-HANA[FML* 12], SQL Server 2012[LHP12],

HYRISE[GCMK™ 12] use some form of dictionary encoding to achieve data compression.

The column based storage model also naturally leads to higher similarity of adjacent

12



2.2 Column-Oriented Database Systems

elements within a data block. This helps column stores to exploit lightweight block com-
pression techniques such as Run Length Encoding (RLE) to further reduce physical stor-
age size [AMF06, ABH09, AMDMO7]. Run length encoding [Sal04, Wil91] in its ba-
sic form consists of coding a run of identical data as a sequence of < wvalue,n > pairs
[ABH" 13] which is used to indicate that value is repeated n times, also termed as a run
length of n and is therefore a suitable choice for compressing data blocks in column stores
[AMF06, AMDMO7]. C-store [SABT05, ABH" 13, AMDMO07] is a column store that uses

run length encoding for compression.

Since dictionary encoding works on individual data elements whereas run length en-
coding works at the block level, it is often possible to apply both in tandem to achieve
greater amount of compression than is attainable by just using one method. Fig 2.4 shows
a simplified example of how this can be achieved. The column Count ryName has 30 val-
ues which take 170 bytes ignoring any overhead of storing variable length data, assuming
1 character = 1 byte. If we apply dictionary encoding, using a 1 byte integer to encode the
dictionary location, the data storage will cost 30 bytes, i.e. one byte per value. The dictio-
nary will take an additional 50 bytes to represent all distinct values for Count ryName,
thus making the net cost 80 bytes. However, the data storage component can be further
reduced in size by applying run length encoding on the dictionary codes as shown in the
figure, compacting it into 20 bytes. Therefore the net size of compressed storage is now 20

bytes for data and another 50 bytes for dictionary, totaling 70 bytes.

Advantages of Row-based Storage

Row oriented databases are more efficient when all the columns are required or when
row sizes are smaller. This is because there are no wasted I/Os, as all the data in the blocks
are used in the output result set; also, since the data is already stored in tuple format,
which is how resultsets are produced, row-oriented database systems do not suffer from the
processing overhead that is incumbent on a columnar database to build a tuple by reading

column values from different data blocks.

Row-oriented databases also have a performance advantage when it comes to inserting
anew record. This is because in most cases this just involves processing a single disk block

for a row-oriented storage as the entire tuple is stored together. On the contrary, a columnar

13



2.2 Column-Oriented Database Systems

DATA / DICTIONARY ENCODING \

ICOUNTRYNAME COUNTRYNAME
1 |cANADA 1 1

2_|cANADA 2 1 Dictionary

3_|GERMANY 3 4

4 |GERMANY 4 4 1 |CANADA

5 |GERMANY 5 4 2. |cHINA

6 _|CANADA 6 1 3 |FRANCE

7. [cANADA 7 1 4 |GERMANY

8. [CANADA 8 1 5. [TALY RUN LENGTH
9 |cANADA 9 1 6 |MEXICO

10 |ITALY 10 5 7 |poLaND ENCODING
11 |ITALY 11 5 s |RussIA

12 |ITALY 12 5 9 IE

13 |ITALY 13 5

14 [CHINA :> 14 2
15 [CHINA 15 2

16 |CHINA 16 2 ,
17 |RUSSIA 17 8 NIFX
18 RUSSIA 18 8 %

19 RUSSIA 19 8

20 |usA 20 9

21 |usa 21 9 L '
22 |POLAND 22 7

23 |POLAND 23 7

24 |POLAND 24 7

25 |FRANCE 25 3

26 |FRANCE 26 3

27 [FRANCE 27 3

28 |MEXICO 28 6

29 |MEXICO 29 6

30 [MEXICO 30 6 /

Figure 2.4: Compression of column data through dictionary encoding and RLE

database will have to break down the tuple into multiple columns and update different data

blocks resulting in several 1/0 operations.

Summary

Such nature of operations means that row-oriented systems are better suited for OLTP
workloads, where in general the amount of data being processed can be summarized to
reading or writing a few tuples at a time. On the other hand, columnar storage tends to
provide better performance for DSS workloads, such as in the case of data warehousing
applications. These in general involve processing a specific subset of columns from a large
number of tuples, where avoiding I/O on unnecessary columns of the tuples manifests as

performance savings in query processing.

We refer to existing literature [AMHO08, HLAMO06, Raa07] for further detailed compar-

ative analysis of both storage types.

14



2.3 Distributed & Parallel Database Management Systems

2.3 Distributed & Parallel Database Management Systems

Increased reliance on information technology and burgeoning growth in data storage re-
quirements of organizations, in tandem with ubiquitous use of data analytics have put huge

demands on the storage size and computing power expected from database systems.

The initial attempts to address this demand for increased computing power was by
building specialized database machines comprising of exotic hardware. But this did not
gain foothold as they were too expensive to build and required special softwares to be
developed for them. This was in addition to the fact that by the time the system was fully
developed for the market, commodity hardware technology had improved to the degree that
they offered cheaper, powerful machines [Bon02, Val93]. It was also believed that unless
the I/O bandwidth issue was not addressed, having powerful machines for computation
would not provide any benefits [BD83] since database systems were highly I/O bound in
nature. Due to these reasons, high performance computing technology which was already
adopted by the scientific community for number-crunching, did not make ground in the
DBMS market.

Instead, researchers started looking into the possibilities of using off-the-shelf commod-
ity hardware for building solutions for high performance database management systems.

The general expectations out of such a system is threefold [Val93, OV11].

1. High-performance, employing inter-query (executing multiple queries simultane-
ously) and intra-query (performing multiple operations with in a query simultane-

ously) parallelism to increase throughput and decrease response times.

2. High-availability of the DBMS wherein the system is resilient to failures of individ-

ual components to a reasonable extent.

3. Extensibility, characterized by two properties of the system [DG92, Val93], viz.
(i) linear speed-up, the ability of a database of given size to linearly increase per-
formance in proportion to linear increase in computing and storage power. (ii) and
linear scale-up, where a system can sustain its performance with a linear increase in

database size and processing and storage power. .

15



2.3 Distributed & Parallel Database Management Systems

In the beginning, distributed DBMS and parallel DBMS referred to two related, but
architecturally different approaches to build high performance database management sys-
tems. Distributed DBMS were conceived as a conglomerate of multiple, stand-alone com-
puting nodes, each with its own CPU, main memory and disks; with possibly distinct
datasets, but consisting of logically interrelated databases. The computing nodes were con-
nected together over a network and functioned as a single logical DBMS [OV11]. The
network that interconnected the individual database nodes ranged from private, high speed
networks to slower, wide area networks (WAN) that connected systems which spanned
larger geographical distances. The main challenge of a distributed DBMS was the cost as-
sociated with the data transfer between the nodes, which had to be done at times as part of

query processing.

Parallel DBMS, on the other hand, were built on tightly-coupled multiprocessor hard-
ware and usually followed the symmetric multiprocessing (SMP) architecture, where multi-
ple identical processors were connected to the same shared memory [Val93]. They provided
performance benefits by virtue of being able to (i) execute multiple programs / operations in
parallel (multi-processing) (ii) and by being able to perform the same operation on different
parts of the data simultaneously (multi-threading). Most of these designs were reminiscent
of the technologies behind the database machines as well as by-products of high perfor-
mance computing technology that was driving the super computer research. As such, their
scalability was still limited by I/O bandwidth.

With the evolution of high performance computing hardware technology, almost every
modern processing unit is now a collection of CPUs in a single chip and servers are capable
of bundling multiple such processing units together to provide a much powerful computing

hardware. This essentially makes every modern computer a parallel computer.

A natural consequence of this was the convergence of parallel and distributed DBMS
technologies to take the best of both the worlds. Distributed DBMS technologies had solved
the problem with I/O bandwidth and were scalable. Parallel DBMS techniques, on the other
hand, delivered more processing power per computing node by increasing the throughput
via multi-processing and multi-threading. In fact almost all the modern high performance
database management systems are both parallel and distributed DBMS. As such, in con-

temporary DBMS literature, while referring to high performance database management

16



2.3 Distributed & Parallel Database Management Systems

systems, the nomenclature parallel DBMS and distributed DBMS are often used inter-
changeably. This will be the context in which we will be using either of these two terms

throughout this thesis.

2.3.1 Architectural Options

The current accepted taxonomy of parallel systems are based on the classifications pro-

posed in [Sto86] and are as follows.

Shared-memory: architecture where all processors have access to a common memory mod-

ule and disk storage via high-speed interconnect networks.

Shared-disk: architecture in which all processors share a common disk storage accessed

through an interconnect and having access to all data.

Shared-nothing: approach where all processors function as stand alone units with their

own exclusive memory modules and disk storage.

[Sto86] evaluated the pros and cons of these architectures and posed shared-nothing as
a better choice. However, most modern systems rely on a hybrid approach [OV11] based on
the shared-something architecture proposed later in [Val93]. A common hybrid approach
is to interconnect a set of independent systems with fast networks to share resources such
as disk storage. Network-attached storage (NAS) and storage-area network (SAN) are the

popular disk storage choices for clustered systems [OV11].

The emergence of Relational DBMS as the database data model of choice also spurred
interest in distributed database systems [DG92]. The relational model had already removed
the dependency of applications on the storage architecture. Relational operators were aptly
suited for pipelined parallelism where multiple operators could be active at the same time,
with one feeding off the output of another [DG92]. However pipelined parallelism is of-
ten limited by the number of operators that need to be applied on a request and is also

constrained in throughput by the slowest operator.

17



2.3 Distributed & Parallel Database Management Systems

2.3.2 Data Partitioning

Data partitioning or fragmentation, performed by splitting the data into multiple chunks,

is a common approach to improve parallelism [DG92, OV 11, Ape88].

Data from a relation could be partitioned horizontally or vertically. In the former case,
we end up with multiple smaller relations that have identical attributes, but distinct sets of
records. These could often be worked independently by the existing relational operators,
and their output relations merged together to produce the desired output. Horizontal parti-
tioning is often accomplished via one of round-robin, hashing, or range-based partitioning

mechanisms.

Round-robin is a simple data distribution strategy that ensures near-uniform distribution
of data across all partitions. This can be achieved by simple numerical algorithms like
(i mod m) + 1 which maps the i™ tuple to one of the n partitions. However this technique
is not popular due to the fact that it is not possible to locate an individual tuple for retrieval
without scanning the entire relation or using an auxiliary data structure like some form
of an index. This is because unlike the next two partitioning mechanisms, round-robin

partitioning does not use any information contained in the tuple to decide its target partition.

Hash-partitioning is performed by applying a hashing function on the values of a pre-
determined set of attributes. The set of attributes on which the hashing function should be
applied are usually defined at the level of a relation. An example of a simple hashing func-
tion that can be applied to an integer attribute would be (key_col mod n)+ 1 which would
map the tuples to one of the n partitions depending on the value of the key_col attribute
of the tuple. Real-world implementations of hashing functions are often more complex as
they need to account for different data types and support maintenance operations such as in-
creasing the number of partitions later with minimal data redistribution, etc. Retrieval of an
individual tuple can be performed effectively by searching only in one partition, provided

the selection predicate contains the value of the attribute used for hashing.

Range-partitioning involves mapping the tuples to a target partition based on a range of
values of certain attributes of the tuple. A good example of this approach would be to parti-

tion the data based on the year part of an attribute used to store a date value. Similar to hash

18



2.3 Distributed & Parallel Database Management Systems

partitioning, retrieval of an individual tuple will involve only probing one partition if the
selection predicate contains the value of the attribute used in range-partitioning. Though,
in principle, hash-partitioning and range-partitioning have similar approach of mapping a
tuple to its target partition based on the values of a set of attributes of the tuple, the funda-
mental differentiating characteristic of range-partitioning is that tuples that are mapped to
the same partition have some kind of association between them, that can be effectively uti-
lized in queries. For example, an Orders table that is partitioned based on the year value
of the orderdate attribute will map all the tuples for the orders received in a particular
year into the same partition. This will result in all the tuples that map into a given partition
to have a chronological association (in this case orders received in the same year). Thus,
a query that needs to compute the sales revenue from orders received during a year, only
needs to process records from one partition; the one that contains the tuples for that years’

orders.

Range-partitioning has become popular with Very Large Database (VLDB) implemen-
tations because of its ability to incorporate such associativity. While thoughtfully choosing
the range-partitioning mechanism provides queries with performance benefits, there are
also other advantages. For example addressing maintenance issues like archival of histor-
ical data, adding new partitions etc., which are of prime concerns in VLDB implementa-
tions. In the example of Orders table, we can remove the data from previous years by
just dropping the partitions pertaining to those years. Also, since the partitioning is based
on the year attribute of orderdate, the system can automatically create new partitions

dynamically as required when orders for a new year are received.

In vertical partitioning, the various attributes of the relation are partitioned into differ-
ent segments. This is a natural extension for a columnar RDBMS, as columnar databases
inherently store each column of a relation in separate data blocks, making column stores
easily adaptable to function in a parallel environment. It is often possible to partition a

relation both horizontally and vertically to attain a higher degree of parallelism.

Thus, by facilitating the creation of multiple data streams via partitioning mechanisms,

existing relational operators could be put to work concurrently on them [DG92].

An important aspect of partitioning is the need to provide transparency on the frag-

19



2.4 TPC-H based Benchmark - an Overview

mented nature of the data to the application programs accessing them [OV11]. This has
been easily achieved due to the fact that most RDBMS use SQL as the language of choice
for client programs to request data [DG92]. SQL is a 4GL, declarative language, and de-
scribes only the characteristic of the data that is being requested and doesn’t concern itself
with the storage or control flow mechanisms, making it independent of the underlying ar-

chitecture.

The parallel architecture, however, introduces complexities into optimizer design. The
cost model will have to now account for the partitioned nature of the data, its locality, etc
[DG92, OV11, AKKS02]. New optimizer algorithms have to be developed that can gen-
erate optimum plans, such as to do local processing first [AHY83] to reduce data transfer
costs [AKKSO02].

Partitioning relations also introduces new ways of optimizing the performance of queries
by dynamically eliminating those partitions from being searched which have zero probabil-
ity of finding any data relevant to the query. In the case of vertical partitioning, this is very
intuitive, as only the partitions that store the attributes which are referenced by the query
need to be processed. However, with horizontal partitioning, a more informed approach is
necessary to enable that partitions that do not contain any records of interest are not pro-
cessed. Modern optimizers make use of some form of partition metadata to arrive at such
decisions. For example, in the case of range partitioning, if the query contains a selection
condition on the range attribute, it is possible to eliminate the partitions with ranges that

cannot possibly contain the values that will satisfy the selection predicate.

2.4 TPC-H based Benchmark - an Overview

TPC-H' [Cou08] is the industry-wide accepted standard for decision support benchmark-
ing. It contains a suite of queries that mimic ad-hoc business questions that are designed to
examine large volume of data with a variety of selectivity constraints. It has been widely
used for benchmarking column stores like C-Store [SAB05] and MonetDB [BZNO5,
Bon02].

As such, this benchmark will be used to perform the experimental test cases and for

!'Also refer to the specification document at http://www.tpc.org/tpch/spec/tpch2.15.0.pdf

20



2.4 TPC-H based Benchmark - an Overview

TPC-H Benchmark

LINEITEM ORDERS
PARTSUPP CUSTOMER
L_ORDERKEY (¢ |0_ORDERKEY
[™"|PS_PARTKEY j_[: L_PARTKEY O_CUSTKEY CUSTKEY
PS_SUPPKEY L_SUPPKEY O_ORDERSTATUS 7*/C_NATIONKEY
PS_AVAILQTY \ L_LINENUMBER O_TOTALPRICE C_NAME
PS_SUPPLYCOST L_QUANTITY O_ORDERDATE C_ADDRESS
PS_COMMENT L_EXTENDEDPRICE O_ORDERPRIORITY C_PHONE
L_DISCOUNT O_CLERK C_ACCTBAL
L TAX O_SHIPPRIORITY C_MKTSEGMENT
L_RETURNFLAG 0_COMMENT C_COMMENT
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECEIPTDATE
PART L_SHIPINSTRUCT
L_SHIPMODE
== P_PARTKEY | COMMENT
P_NAME
P_MFGR
P BRAND SUPPLIER
P TYPE NATION
b_size S_SUPPKEY ] REGION
P_CONTAINER S_NATIONKEY [#= N_NATIONKEY
P_RETAILPRICE S_NAME IN_REGIONKEY | |R_REGIONKEY |
P_COMMENT 'S_ADDRESS N_NAME R_REGIONNAME
S_PHONE N_COMMENT R_COMMENT |
S_ACCTBAL
S_COMMENT

Figure 2.5: TPC-H schema

explaining various database and design concepts throughout this thesis. To facilitate a thor-
ough discussion of those topics, a basic schema diagram of the TPC-H benchmark version
that will be used is introduced at this juncture. Fig. 2.5 depicts this diagram consisting of

the relations, attributes, primary key and foreign key constraints.

The schema could be viewed as a concise relational model of a B2C (Business to Con-
sumer) portal. Customers can order parts from multiple suppliers that is captured in the
Orders table. Individual items of the order, constituting of part identification and the
number of parts ordered is tracked in the Lineitem table along with the suppliers re-
sponsible to ship them. Part supp table keeps track of the suppliers who can provide
a specific part. Customer, Supplier and Part tables are used to capture the basic
information about the corresponding entities. Finally, Nat ion and Region are used to

associate the customers and suppliers to specific geographic countries and regions.

The actual scale factors of databases used for various test cases, cardinality of relations

etc. will be discussed in detail in Chapter 4.

21



2.5 IDV Overview

2.5 1DV Overview

IDV is the primary database component that functions as a Data Vault [IKM12] for In-
formatica’s ILM Application suite. It is used for managing organizational data growth in-
cluding data management, data discovery, data archival, application retirement and data
security. The application suite, among other things, helps organizations move inactive data
to another storage such as a highly compressed immutable file [Roy11, Inf14], thus reduc-
ing the size of data maintained in a production database and creating a lean application

portfolio which minimizes the maintenance cost [Inf13].

The principal underlying architecture of IDV is that of a Massively Parallel Processing
(MPP) based columnar database system that facilitates data partitioning at the physical
storage level. Along with conventional file systems, the system supports the storage of
archived data on the Hadoop Distributed File System (HDFS), Symantec, EMC and other
storage platforms [Roy11]. IDV supports the relational model and provides seamless access
to the archived data via application interfaces and standard ODBC/JDBC connectors to
reporting and BI tools using standard SQL queries [Roy11]. MonetDB [NK12] is another

column-store that is often used as a data vault [IKM12].

2.6 IDV Database Architecture

IDV is a columnar RDBMS that follows a distributed software architecture, with a storage
component that is shared between all of the computing nodes®. Thus, IDV is an exam-
ple of a DBMS that implements shared-disk distributed architecture. The DBMS provides
compressed storage of data which is a combination of a proprietary variation of dictionary
encoding via tokenization and customized block compression. This is then stored in a pro-
prietary file format called Segment Compacted Table (SCT). The data thus stored can be

accessed without uncompressing them first.

The primary software components of the database are depicted in fig. 2.6. They include

a server, metadata database, agents, worker tasks and a file system component which is

2A computing node is defined as a physical node in which a worker task gets executed by the agent.
Worker tasks and agents are explained later in this section.

22



2.6 IDV Database Architecture

Distributed
Node Shared FS
? DB Files

Metadata
Engine

Metadata DB —>

Figure 2.6: High level database architecture

usually a Distributed File System (DFS).

The Server is responsible for managing all client connections to the Data Vault and
handles the client requests to the optimized file archive. Information about all the archived
objects including their structures and the user authorization is maintained in a metadata
repository. The metadata repository is stored in an external analytical DBMS and is ac-
cessed through a metadata engine. A special admin client is used to update the metadata
information. The archived objects are created by special data loaders that make use of
metadata information and source database adaptors to connect to the source system and
generate the SCT files. All archived objects must be registered in the metadata repository
to be made accessible via the server. The metadata repository also serves as an abstraction

to provide support for multiple source databases.

The server is also responsible for parsing the client SQL requests, validating them
against the metadata repository and generating query execution plans. Users connect to
the IDV Server through clients that implement a proprietary communication (COM) layer
interface or through standard ODBC/JIDBC connectivity. The database supports the SQL99

query standard. The server breaks down the query into multiple smaller tasks, builds a task

23



2.6 IDV Database Architecture

list and places the tasks in the execution queue. The tasks in the execution queue are then

dispatched for execution to the agents that are not busy.

Agents are processes running in different physical nodes, that control the access to SCT
files, and are responsible for spawning worker tasks as needed, sending them the commands
required to be executed. They function as an intermediary between the server and worker

tasks to perform each step in the query execution.

The worker tasks are the processes that are responsible for accessing the data storage
and doing the computational part of the queries. They work on the instructions that were
originally generated in the task list by the server. Each instance of a worker task will per-
form only one task from the execution queue. A given task is not shared between multiple
worker tasks. However, multiple worker tasks may be usually required to perform the com-
plete query, consisting of numerous execution tasks and many worker tasks could be active
at the same time, performing independent tasks. The worker tasks are also stateless by de-
sign; this often means that information like the location of intermediate result sets as well
as their data characteristics is maintained by the server. The data (resultset) thus generated
by the worker tasks is sent back to the server. The worker tasks are equipped with a resultset

generator of its own to translate the output relation to the standard resultset tuple format.

The metadata generated as part of the tokenization process contains basic dictionary
information about the attributes in the partitions, such as the range of values, number of
records etc. The optimizer can make use of this information in generating intelligent query
plans, such as those that will result in partition eliminations, a technique that we discussed

in section 2.3, which reduces the number of partitions that need to be processed for a query.

2.6.1 Physical Storage Layout

As discussed before, IDV is fundamentally a column-store. The various attributes that con-
stitute the archived object are broken down into different columns by the data loader pro-
cess based on the metadata information. Also, as mentioned in the previous section, the
physical database is stored in a distributed system (naively a shared FS) that is shared be-
tween all computing nodes which are equipped to run the worker tasks. A table can (and

usually does) contain multiple partitions, each of which becomes a separate storage unit

24



2.6 IDV Database Architecture

Customer_1.sct Customer_2.sct Region_1.sct
orders_1.sct orders_2.sct Nation_1.sct
lineitem_1.sct lineitem_2.sct lineitem_3.sct

Shared file system

..................................................

Customer_1.sct Customer_2.sct

CUSTNAME CUSTNAME

NATIONKEY NATIONKEY

Shared Filesystem

Figure 2.7: Database storage layout

such as an SCT file. Each partition/SCT file contains its own copy of metadata, plus the
tokenization information relevant to that particular file. As a result of this, the database

storage is both horizontally and vertically partitioned, as depicted in fig. 2.7.

IDV data compression involves a process of tokenization of the actual data that is sim-
ilar to the dictionary encoding process which is used by many column stores like Blink
[BBC*12], SAP-HANA [FML™"12], SQL Server 2012 [LHP12], HYRISE [GCMK™12]
where every distinct column value is replaced by a corresponding fixed length integer code.
In IDV, the dictionary information, however, stays embedded local to the specific physical
storage unit® and is not stored in a separate metadata repository as is the case with the other
systems. In concept, this strategy of IDV resembles that of SQL Server 2012 [LHP12]
and MonetDB [NK12] which use dictionary encoding on variable width data types such as

strings, and then store the resulting dictionaries in the form of separate blobs.

The tokenized data is then further subjected to proprietary block level adaptive com-

pression to further reduce storage size. Fig. 2.8 depicts an abstract representation of this

3For example, a file that constitutes one specific partition of the table.

25



2.6 IDV Database Architecture

CUSTOMER DATA

NAME ADDR PHONE P —— .
BOB ! SCT

YURY

KYLE v
BOB

DENIS
GREG
DIANE
\ALBERT
DENIS
BOB

compressed

Metadata DB

data blocks

2. 0nno~TI0(

Q. 00nd—~o30C
OXO00—T D0

a
b
|
[o}
c
k
s

. J

Figure 2.8: Abstract representation of compressed storage of data.

data compression and storage methodology.

Keeping tokenization information localized to individual SCT files along with the as-
sociated data has the advantage, among other things, of not having to contiguously update
a centralized dictionary encoding repository as more data values come in for the attribute
when new partitions are added for that table. This translates to savings on computing and
processing speed. As we will see later, this mode of tokenization has no detrimental impact
on joins or other associated query processing.

The tokenized data is then stored in SCT files in a columnar fashion [Raa07, AMFO06,

ABHO09], whereby each column’s values are stored contiguously in its own data blocks.

Once an archived object is created and the metadata repository is set up for that object,
any further data for the object from the source systems, is usually archived into additional
new partitions, that are then registered with the metadata repository. IDV treats all archived
objects as immutable. It supports the concept of logical deletes, where an indicator is stored
in a separate file as to whether a physical record has been asked to be removed. But the

original archive is not modified for this operation.

26



2.7 Joins & Optimization Strategies in RDBMS

2.7 Joins & Optimization Strategies in RDBMS

In section 2.1.1 we covered the basic principles surrounding the concept of a join in the
relational model, its purpose and the various join types. Joins are ubiquitous in query pro-
cessing and they are one of the most costly operations. This is attributed to the fact that
the relational model does not necessitate the presence of storage links between participat-
ing relations. This has spurred a lot of research interest in academia and industry in order
to find efficient ways of executing the join operations [ME92]. Modern DBMS optimizers
are equipped with sophisticated cost models to reduce the overall cost of query processing
by evaluating possible plans based on different performance metrics [HCLS97] like /O,
CPU cycles, memory usage, cache performance, etc. Hence, it is important to consider the

impact that various join optimization methodologies can have on these metrics.

In this section, we will explore some of the prevalent join execution techniques in
RDBMS. Although most discussions are implied to be within the context of an equi-join,
many of these techniques or their variations could be leveraged to perform other forms
of joins. In general the join optimization methods can be classified as (i) depending on
specific data structures such as indices to be built and maintained to facilitate join perfor-
mance (ii) and not depending on such specialized data structures. Our description is not
exhaustive, as other methods like hardware-based join optimizations have been proposed.
One of the fundamental reasons for the continued existence of a variety of physical join
mechanisms is due to the differences in query processing strategies [MS88, Gra93], data
characteristics and the base DBMS architecture. However, we will confine our discussion to
brief descriptions of common join techniques from the above mentioned two classes which
represent the popular spectrum. A very detailed survey about join processing in RDBMS
can be found in [ME92].

2.7.1 Join Algorithms

2.7.1.1 Nested Join

Nested Join is the most straightforward join method and requires no special access paths

in the storage representation of the relations [EN13]. In its bare-bone form, this involves

27



2.7 Joins & Optimization Strategies in RDBMS

comparing the join attributes from two relations using two nested looping constructs, such
that for each tuple from the relation processed in the outer loop, the inner loop traverses
through all of the tuples from the other relation in the outer loop. When the values of the
join attributes match, the two tuples are combined to produce a tuple of the output relation
[SAC*79, ME92].

However, for performance reasons, often a variant of nested join called nested block
join is used in practice [EN13] which attempts on making maximal use of the available
main-memory [Kim80]. In this variant, the memory blocks are partitioned to be used be-
tween inner and outer relations. The output relation may or may not be stored in the mem-
ory blocks depending on the implementation. For each set of blocks from the outer re-
lation, the tuples from the inner relation are read into their own memory blocks (usually
one block at a time) and traversed through. Once the tuples from the current set of blocks
from the outer relation have been compared to all tuples of the inner relation, the next
set of blocks are read from the outer relation. The join process is best when the relation
with the smaller cardinality is used as the outer relation since it reduces the number of I/O
operations [ME92].

Due to the exhaustive nature of the algorithm which does O(n x m) comparisons,
there is a large computational cost involved, and it is only suitable when the ratio of the
cardinality of tuples in the output relation to that of the number of comparisons is high.
Hence, nested-joins are usually used only for complementing other conventional join meth-
ods [Kim80]. However the simpler nature of the algorithm makes it a popular choice for
parallelization of the join operation [ME92] as well as implementing hardware support for

joins.
2.7.1.2 Sort-Merge Join

A sort-merge join is fundamentally a two-phase join procedure and is devised to reduced
the number of comparisons involved, which is a major challenge with nested join algo-
rithms [ME92]. The first phase of the join operation involves sorting the tuples from both
the relations based on the attributes that are part of the join. Thus, the output of this phase
is two ordered relations that are otherwise identical to the original relations. In the second

phase, the tuples from the relations are scanned using the ordering created in phase one,

28



2.7 Joins & Optimization Strategies in RDBMS

comparing the values of the join attributes and constructing the output tuples similar to the

nested join process.

The working principle of the second phase of the algorithm bares close resemblance to

the merge procedure [CSRLO1] of the merge-sort algorithm [Knu98].

In general the cost of the sort-merge join operation is dependent on the sorting algo-
rithm used, which is usually O(nlogn + mlogm) [CSRLO1]

2.7.1.3 Hash Join Algorithms

Hash join has a similar philosophy as sort-merge join, i.e. to reduce computational cost
by reducing the number of comparisons made [ME92]. While the later makes use of the
ordering of join attributes to achieve a reduction in unwanted comparisons, the former

accomplishes the same through hashing [Got75].

In Hash join algorithms, first the join attribute values of the smaller relation are used to
construct a hash table, and then, in what is usually termed as the probing phase, the tuples
from the other (larger) relation are hashed using the same hashing function to identify their
hashing buckets. If these tuples from the second relation map into a non-empty bucket, then
there’s a potential for a match. At this point the value of the join attributes from the tuple
of the second relation are compared against the values of all the tuples in the hash bucket
(from the first relation) [ME92]. Any match results in an output row being generated by
combining the two tuples.

The optimum performance for this algorithm is contingent on the ability to fit the hash
table completely in main memory [Gra93]. With sufficient main memory, for large rela-
tions, the most efficient algorithms are hash-based [Sha86] with a complexity of O(n +m)
[ME92, Got75]. It’s difficult to implement non equijoins as most hashing functions cannot
retain the correct sense of ordering between the original attribute values. Performance of
hash joins are also based on the efficiency of the hashing algorithms which deteriorate with
increase in hash collisions as this results in more unproductive comparisons between the

tuples while verifying for a match.

29



2.7 Joins & Optimization Strategies in RDBMS

Hash Partitioned Joins [ME92] is a type of Hash join that applies a divide and conquer
approach which improves efficiency and is suited for parallel processing of joins. In this
approach, the tuples from both the relations are partitioned into disjoint sets by applying a
hashing function. This ensures that all the tuples from a particular set of a relation can find
their match in exactly one set of the other relation, thus reducing the number of comparisons
that need to be performed. It also helps in executing these comparisons in parallel where
each task can work on a pair of partitions independently of the others as there will be no

overlap of tuples.

Some other variants of Hash Partitioned joins are GRACE Hash join, Hybrid Hash join,
Hashed Loops join [ME92].

2.7.2 Joins using specialized Data Structures

While the conventional joins discussed in the previous section had no explicitly tailored
support from the existing physical storage mechanisms [ME92], researchers were exploring
ways to improve join performance by building additional data structures specifically meant
for supporting join operations. Below we will briefly discuss some of these mechanisms
that made a significant impression in this area.

2.7.2.1 Links

Links were one of the early attempts in building an auxiliary data structure to address
the cost of joins, which had already become prominent as a very expensive operation in
relational DBMS. The concept of links could perhaps be best attributed to the continued
influence of network and hierarchical models that were still prevalent during the inception
of relational model on the thought process of the database research community. Various
implementations of link like structures have been proposed [Hae78, SB75]. However, we

will keep our discussion of links to an abstraction that is based on [Hae78].

Joins in relational implementations were viewed as a way of traversing to tuple(s) of
one relation from the tuple of another relation that shared the same value of join attributes.
Related tuples from two different relations had to be at times "linked" to produce the desired

output result set of a query.

30



2.7 Joins & Optimization Strategies in RDBMS

To implement the concept of links, [Hae78] and [SB75] used the idea that the joins be-
tween relations are performed by matching the values of join attributes which had the same
domain and used this information in building a structure that can maintain this relationship
info between the tuples. In the relational model, unlike other data models like network and
hierarchical, all the relationship information between the tuples of relations is part of the
actual data values and has no bearing on the physical storage structure. So explicit pointers

need to be generated that would help in locating the physical rows efficiently.

[Hae78] proposed the idea of combining page numbers and the record offset to gener-
ate tuple identifiers (TIDs) to address this issue. A multipage balanced hierarchical index
structure can be constructed using the concept of B*-trees [Knu98]. The non-leaf nodes of
the B*-tree store key pointer pairs, where for a primary key - foreign key join, the key is
composed of the join attribute(s) values. The leaf nodes of the B*-tree are used to store a
combination of key value and a list of TIDs to tuples that had the same key. The TID list
for the referenced relation will have only one entry since it is the primary key in that re-
lation, whereas the list for the referencing relation is of variable length consisting of TIDs
for tuples that are related to the original tuple by virtue of having the same value for its

foreign key attribute.

Though this structure depicts a one-to-many relationship between the two relations, it
can be trivially extended to incorporate many-to-many joins with subtle modifications to
the storage structure and the join algorithms. Some queries (like counts) can be answered
directly by using this structure without accessing the base data. It can also be used to
enforce constraints like uniqueness of the primary key without incurring additional cost as

the index structure will have to be traversed anyhow to insert a new leaf node.

Updates to the structure have to be performed with changes to the underlying relations
and involves procedures similar to standard B*-tree traversal. However, due to the fact that
the structure is dependent only on the key attributes of data, which usually do not change,

the maintenance overhead is usually reduced to insertion and deletion of records.

31



2.7 Joins & Optimization Strategies in RDBMS

2.7.2.2 Materialized Views

In database terminology a view is sometimes termed as a derived relation and can be ei-
ther virtual which corresponds to the traditional understanding of a view or materialized

[BLT86] where the derived relation is evaluated and persisted.

Though there are a few variants of materialized views, the basic principle behind all
of them is the same; pre-compute the join between the relations and physically persist
the resultset representing the output relation so that any future queries can use this result
directly rather than having to perform the joins or access the base data. It is intuitive that

this approach will speed up query processing considerably.

In principle, the attributes of the materialized view would consist of those from the
base tables specified by the projection list as mentioned in the view definition. Materialized
views are not required to project all the attributes of the underlying base relations. This is
because of the fact that it would lead to more storage space, maintenance overhead and in
the case of row-based RDBMS, potentially lower performance if many of these attributes
are not referenced in the queries that frequently. Most RDBMS however, will store the
identifiers of the underlying tuples from the participating relations as hidden attributes.
This is usually a system generated surrogate on the base table like a rowid, that can uniquely
identify a record within a table. This can be useful in situations where only some attributes
of a query are provided by the materialized view. The database can then use the rowids
of the selected tuples to fetch the remaining attributes from the corresponding underlying
tables.

Fig. 2.9 shows a materialized view built from the base tables Employee and Dept
base on an equi-join on DID. The rowids are hidden attributes stored with the materialized
view. In the base tables, rowids may or may not be physical attributes depending on the

implementation mechanisms.

Since the structure of a materialized view resembles the structure of a normal relation
for all practical purposes, selection predicates and other query operations can be performed

on the materialized view using the same algorithms that are employed on regular relations.

With materialized views, the database takes care of ensuring that the data in the per-

32



2.7 Joins & Optimization Strategies in RDBMS

EMPLOYEE DEPT
rowid EID NAME PHONE JOBID | DID rowid DID DEPTNAME
1 100 SAMUEL  |425-543-1123 | 12 10 1 30 FINANCE
2 433 PASCAL  |523-123-5526 | 12 10 2 10 HR
3 123 LEE 983-233-2344 | 22 30 3 20 T
4 552 RYAN 345-215-6315 | 12 20
5 534 CHERIE 345-612-5116 | 12 30
6 233 SALLY 645-513-6113 | 23 10
7 245 SKYLE 635-613-5133 | 23 20
8 657 SHEILA 564-656-1344 | 22 30
9 234 LENON 634-651-1123 | 12 20
EMPLOYEEINFO (Materialized View)
rowid rowid
(employee)  (dept) EID NAME PHONE DEPTNAME
1 2 100 SAMUEL  |425-543-1123 12
2 433 PASCAL _ |523-123-5526 12

3 1 123 LEE 983-233-2344 22

4 3 552 RYAN 345-215-6315 12

5 1 534 ICHERIE 345-612-5116 12

6 2 233 SALLY 645-513-6113 23

7 3 245 SKYLE 635-613-5133 23

8 1 657 SHEILA 564-656-1344 22

9 3 234 LENON 634-651-1123 12

Figure 2.9: Example of a materialized view

sisted view is consistent with the data of the base tables involved in the join relation. A
primary challenge in implementing materialized views is to formulate an efficient process
of keeping the data in the view up-to-date to reflect the changes in the base tables. Though
a materialized view could be rebuilt by executing the complete join steps on the base re-
lations, this would be quite expensive on a regular basis [BLT86] and result in wastage of
computing power as many of the tuples in the new view would not have undergone any
change. Some work has been done on minimizing the effort required to keep the material-
ized view consistent [SI84, BLT86].

[BLT86] proposes an approach, by first identifying and ignoring irrelevant updates, 1.e.,
updates to base tables which have no impact on the state of the materialized view. This is
followed by applying a differential algorithm that re-evaluates the view expression, but with
respect to the changed records and incrementally updating the materialized view. [BLT86]
describes a process of computing incremental updates to the view by using the state of the
base relations and the view prior to the update, along with the set of tuples that actually

changed in the base relations.

33



2.7 Joins & Optimization Strategies in RDBMS

2.7.2.3 Join Indices

The term join index was initially used to refer to index structures that were built on the
join attributes of a table. These indices yielded a sorted order for the values of the join
attributes along with the corresponding record pointers which was useful for performing
joins [YJ78, YD78].

Join indices in its current familiar form were defined by Valduriez in [Val87]. Though
other variants [Des89, SABT05, OG95, MBNKO04] exists, the primary design concept of

join index has remained more or less the same.

Basics

Valduriez [Val87] described a join index as a special relation that represented the ab-
straction of the join of two relations. The tuples of the join index itself constituted of surro-
gates that uniquely identified a pair of tuples from the participating relations which satisfied

the join predicate.

For a join index built based on equi-join of two relations R and .S, the resulting relation

JI can be represented using the definition adapted from [Val87] as
JI = { (ri[rowid], s;[rowid]) | r;| joinattribute] == s;[joinattribute] }

Where r; and s; are tuples from the relations R and S respectively. rowid is an impure

surrogate” that is used to uniquely identify the tuple within that particular relation.

Join index has some similarity to the concept of links discussed in section 2.7.2.1 in the
sense that it uses rowids that are similar to the concept of TIDs used in links. The fact that a
join index is unique in a sense that it can connect two tuples from possibly distinct relations
makes it also suitable for use in non relational DBMS like Object-oriented databases to
establish object and class hierarchies [ XH94].

A join index can also be regarded as a special form of a materialized view [OG95]
as it represents a pre-computed join between two tables with only their rowid attributes

being materialized. But there is a crucial difference between a materialized view and a

*An impure surrogate[Dee82] is an identifier that is unique within a relation, but not with respect to the
entire database [Val87]. The concept of rowids as used in most modern DBMS falls into this definition.

34



2.7 Joins & Optimization Strategies in RDBMS

EMPLOYEE
rowid| EID | NAME PHONE JOBID |DID
1 | 100 |SAMUEL | 425-543-1123 | 12 | 10 DEPT
2 433 PASCAL | 523-123-5526 | 12 | 10 rowid DID |DEPTNAME
3 [123| LEE [983-233-2344| 22 |30 1 30 | FINANCE
4 [552| RYAN |345-215-6315| 12 |20 2 10 HR
5 |534| CHERIE | 345-612-5116 | 12 |30 3 20 T
6 |233| SALLY |645-513-6113| 23 |10
7 |245| SKYLE |635-613-5133 | 23 |20
8 |657 | SHEILA | 564-656-1344 | 22 | 30
9 [234| LENON | 634-651-1123 | 12 |20
JLE JI_D
rowid rowid rowid rowid
(employee) | (dept) (dept) | (employee)

1 2 1 3

2 2 5

3 1 1 8

4 2 2 1

5 1 2 2

6 2 2 4

7 3 2 6

8 1 3 7

9 3 3 9

Figure 2.10: Join index implementation according to Valduriez

join index. Whereas a materialized view can provide results to queries directly without
accessing base relations, a join index needs further processing to build the resultset by
accessing the required attributes of the selected tuples from the underlying tables. This
operation will have to be performed with significant efficiency, otherwise the join index
will have no distinct performance advantage over conventional join algorithms that do not

use specialized data structures.

If the join index has to be used in combinations with selects based on either of the
relations, Valduriez suggested that two copies of join index be maintained with each one
clustered on the rowids of different relations [Val87]. Fig. 2.10 shows an example of a join
index built between Employee and Dept. There are two join indices, one clustered on
Employee ( JI_E ) and the other one ( JI_D ) clustered on Dept.

The original algorithm proposed in [Val87] to use the join index for performing joins
was shown to execute repetitious I/O and was improved in [LR99]. They proposed two
new algorithms Jive Join and Slam Join that made a single sequential pass through each
input relation and the join index, but also used some temporary files. A consequence to the

way in which these algorithms worked was that they created a vertically partitioned output

35



2.7 Joins & Optimization Strategies in RDBMS

where attributes from each relation were stored in separate output files using the concept
of transposed files [Bat79]. [LR98] proposed a modification to jive join, called stripe join
which could perform efficiently even on a join index that was not clustered on any of the
relations. This algorithm could also perform self join efficiently by doing only a single pass

over the relation.

Like all the other auxiliary data structures built to improve join efficiency, there is, in
case of deletions, an update overhead associated with join index as well. In Valduriez’s
model of join index, as long as at least one copy of the join index is clustered on the tuples
that are being deleted, deletion of tuples from the underlying tables were easy to propagate
to the join index structure. Costs associated with the maintenance of join index during
inserts into the underlying tables could be often shared with referential integrity checks as

usually join indices are constructed between referencing relations [Val87].

Joins based on non-foreign key relationships could be costly to maintain in the absence
of indices on join attributes as this would result in a full scan of the relation. Hence main-

taining a join index could prove to be costly under such scenario [Val87].

A comparative study of the performance of join indices, materialized views and join
algorithms has been described in [BM90] and [ME92]. [BM90] concluded that the method
of choice to implement joins was dependent on various environmental characteristics like
join selectivity °, main memory availability, volatility of the attributes of base relations etc.
Join index was found to perform better when the selectivity was low to moderate, with very
high updates to the non-join attributes of the underlying tables, and lower update frequency

of join attributes.

In general, a join index suffers a lot less from data volatility compared to materialized
views and takes less storage space as it stores only the rowids of the participating relations.
Advanced Join Indexing

[OGI5] describes a bitmap-based join-index that is suited for star schema [HKPO6]

joins. In this approach, a join index is created such that for each record in the dimension

Sselectivity factor is defined as the ratio of the number of tuples that are part of a join operation to the
number of tuples in the cartesian product of the underlying relations [EN13]

36



2.7 Joins & Optimization Strategies in RDBMS

EMPLOYEE DEPT
rowid EID NAME PHONE JOBID DID rowid DID DEPTNAME
1 100 SAMUEL [425-543-1123 12 10 1 30 FINANCE
2 433 PASCAL |523-123-5526 12 10 2 10 HR
3 123 LEE 983-233-2344 22 30 3 20 IT
4 552 RYAN |345-215-6315 12 20
5 534 CHERIE |345-612-5116 12 30 JOBDESC
6 233 SALLY |645-513-6113 23 10 rowid JOBID | DEPTNAME
7 245 SKYLE |635-613-5133 23 20 1 22 MANAGER
8 657 SHEILA |564-656-1344 22 30 2 23 SECRETARY
9 234 LENON |634-651-1123 12 20 3 12 ENGINEER
JI_DEP_EMP Ul JOB EMP
|_rowid |rowid_bit_string| rowid |rowid_bit_string |
1 001010010 1 001000010
2 110001000 2 000001100
3 000100101 3 110110001

Bitmap join index between

employee and dept Bitmap join index between

employee and jobdesc

Figure 2.11: Bitmap based join index

table, a bit string that corresponds to the length of the fact table is stored in the join index
(i.e., the number of bits equals the number of rows in the fact table). Individual bits on the
bit string map to the rowids of the fact table. A bit is set if that fact table row joins with the

row corresponding to the dimension table entry.

Fig. 2.11 shows a bitmap based join index implementation where Employee is the
fact table with two dimension tables Dept and Jobdesc. The dimension tables have three
records each, and therefore the join indices have three entries each, one per dimension table
record. There are nine records in the fact table, hence each of the join index entry is a nine
bit long string.

This model has the advantage that the selection and join operation can be performed as

basic bit manipulation operations, which is faster and takes less storage.

[ZWL11] also proposed a join index that is suited for a star schema, which was based
on a hybrid-storage model. In this approach, the fact table is maintained as a row store,
whereas frequently accessed dimension tables are stored in a columnar fashion. Their idea

was to convert the fact table to a join index by replacing the dimensional attributes stored

37



2.7 Joins & Optimization Strategies in RDBMS

in the fact table with references to the corresponding tuple in the dimensional table.

[Des89] proposed a composite attribute and join index which is a variation of the con-
cept of links described in [Hae78] which we discussed in section 2.7.2.1. The index struc-
ture, termed B.-tree is based on the concept of a B*-tree. The leaf nodes of the B, -tree
contain the references to all the tuples in the database which share the same data values of
a common domain. Thus, the structure serves as a secondary index on an attribute as well
as a multi-way join index. The references to tuples of various relations are recorded in the
form of tuple identifiers (TIDs), which can uniquely identify a physical record across the
entire database. B.-tree can also be used to enforce integrity constraints, since the values

of the domain are stored as part of the tree structure.

Joins are performed by accessing the tuples via the references stored in each of the leaf
nodes. For non-selective joins, the search is performed by means of a sequential traversal
of the leaves of the B.-tree [Des89].

Compared to the regular join index [Val87], this implementation can support multiple

joins based on the same attribute simultaneously.

2.7.3 Joins in conjunction with Predicates and Projections

Most SQL queries do not only have a join, but also request only a subset of attributes from
the participating relations. Selection predicates and projection lists help isolate the data
elements of interest that can answer a particular question. This is especially relevant in
large database systems, where the amount of data stored in individual relations can be very

huge, of the order of several millions.

Selection predicates are a common way of constraining the output of a query to certain
records of interest. It is usually achieved by applying conditions on attributes that are part
of the relations participating in the join query. This naturally leads to the fact that only a
subset of tuples from some (or possibly all) of the relations participating in the join would
eventually get processed for the purpose of matching their join attributes. As such, evaluat-
ing selection predicates are usually tightly integrated into the join execution strategies and
often precedes the actual join steps itself. This is because by reducing the number of tuples

in advance, those that eventually make it to the join computation would be lesser in num-

38



2.7 Joins & Optimization Strategies in RDBMS

EMPLOYEE DEPT EMPLOYEE INFO

EID INAME  |PHONE JoBID| DID DID  |DEPTNAME EID |NAME _ |PHONE JOBID DID  |DEPTNAME
100 SAMUEL 14255430123 | 12 | 10 30 FINANCE 123 |LEE 983-233-2344| 22 30 |FINANCE

— 10 HR 534 |CHERIE  [345-612-5116 | 12 30 |FINANCE
433 PASCAL  523-123-5526| 12 | 10 20 i3 657 |SHEILA  |564-656-1344 | 22 30 |FINANCE
123 |LEE 983-233-2344 | 22 | 30
552 RYAN 345-215-6315 | 12 20 SELECT E.EID, E.NAME, E.PHONE
534 [CHERIE  345-612-5116 | 12 | 30 + E.JOBID, E.DID, E.DEPTNAME

FROM EMPLOYEE E INNNER JOIN DEPT D
ON E.DID = D.DID
WHERE D.DEPTNAME = ‘FINANCE’;

233 [SALLY 645-513-6113 | 23 10

245 |SKYLE 635-613-5133 | 23 20

657 |SHEILA 564-656-1344 | 22 30

234 LENON  l63a-651-1123 | 12 | 20 Example of selection predicate with joins.

SELECT E.NAME, E.PHONE
EMPLOYEE INFO FROM EMPLOYEE E EMPLOYEE INFO SELECT E.NAME, E.PHONE
NAME __[PHONE NAME _ |PHONE FROM EMPLOYEE E
INNNER JOIN DEPT D
SAMUEL _[425-543-1123 INNNER JOIN DEPT D
ON E.DID = D.DID LEE 983-233-2344
E:ESCAL z;ig:i;ii ; CHERIE  [345612-5116 | ON E.DID = D.DID
SHEILA 564-656-1344 WHERE D.DEPTNAME = ‘FINANCE’;
RYAN _ [345-215-6315
CHERIE __[345-612-5116
SALLY  lp45-513-6113
SKYLE  [635-613-5133

Example of applying both selection predicate

SHEILA 964-656-1344 Example of projection list with joins. and projection list with joins.

LENON 634-651-1123

Figure 2.12: Joins in the context of selection predicates and projection lists

ber; and join performance improves with the reduction of the cardinality of participating

relations.

Fig. 2.12 shows an example of selection predicate with joins, where we retrieve only
those tuples from Employee relation belonging to the employees who work in the finance

department.

Often, we are not interested in all of the attributes in a relation, as many questions
can be answered by using only a subset of the attributes from the selected tuples. Since
retrieving and processing attributes that are not of interest to the specific query will result
in wastage of resources, relational DBMS provides the flexibility of specifying a projection
list as part of the query, which can be used to restrict the attributes that are included in the
resultset. In the queries provided in fig. 2.12, we show examples of how to use projection
lists, both on its own, as well as in conjunction with the selection predicates. The later
being the case with the query that retrieves the name and phone number of employees
working in the finance department. In the database literature, this process of constructing
tuples by retrieving values of attributes described in the projection list is referred to as

materialization.

39



2.7 Joins & Optimization Strategies in RDBMS

The performance costs associated with materialization is often only second to the cost
of the acutal join computation itself. As such, finding optimal techniques for materialization
is of equal concern for database researchers. Since joins and materialization are very closely
associated steps, this usually involves the join and materialization strategies to be reviewed

in tandem to obtain the best combined query performance.

However, in the interest of keeping this discussion brief, we will confine our discussion
to the most prevalent techniques of materialization. Most materialization strategies can be

broadly classified into two categories. Early materialization and late materialization.

In early materialization, the database starts fetching the attributes required for the fi-
nal resultset projection as soon as a tuple passes its selection predicate condition, without
waiting for the results of further join steps or predicate evaluations. This has been tradi-
tionally the approach followed by most row-based database systems. Row-stores are nat-
ural candidates for implementing early materialization because of the fact that the tuples
are physically persisted with all its attributes stored contiguously in the same data blocks.
Therefore, in the process of reading attributes for applying selection predicates, or fetching
the key columns for performing join operations, the DBMS ends up fetching the whole

tuples containing all the remaining attributes from the relation.

Fig. 2.13 shows an example of a three table join. In this example, we have three relations
Employee, Dept and Payroll and we are interested in the paychecks that finance
employees received in May, 2014. The query for retrieving this information is also shown

in the figure.

Fig. 2.14 depicts the steps involved in the execution of this query, with the DBMS
employing an early materialization strategy. The Payrol1 table is first scanned for tuples
that qualify the selection predicate (PAYDATE='2014-05-01"). The qualified tuples
are then joined with the Employee table on EID attribute. The tuples in Payroll that
do not get qualified are shown in grey. This join produces an intermediate relation which
contains NAME, DID and SALARY attributes. In the next step, Dept table is scanned for
tuples that qualify the selection predicate (DEPTNAME='FINANCE’ ). The tuples from
Dept that passes this condition check are then joined with the intermediate relation from

step 1 on the attribute DID to produce the final output resultset comprising of attributes

40



2.7 Joins & Optimization Strategies in RDBMS

PAYROLL EMPLOYEE

rowid _ EID PAYDATE | SALARY rowid| EID |NAME _ |PHONE JOBID DID
1 100 | 2014-04-01 | 3000 1 100 |SAMUEL [425-543-1123 12 10
2 433 | 2014-04-01 | 2300 2 433 PASCAL  |523-123-5526 12 10
3 123 | 2014-04-01 | 3300 3 123 |LEE 983-233-2344 22 30
4 534 | 2014-04-01 | 2800 4 534 |CHERIE  [345-612-5116 12 30
5 100 | 2014-05-01 | 3025
6 433 | 2014-05-01 | 2315
7 123 | 2014-05-01 | 3320 DEPT
8 534 | 2014-05-01 | 2810 rowid| DID | DEPTNAME

1 30 FINANCE

2 10 HR

SELECT E.NAME, P.SALARY
FROM EMPLOYEE E
INNNER JOIN PAYROLL P
ON E.EID = P.EID
INNNER JOIN DEPT D
ON E.DID = D.DID
WHERE P.PAYDATE = ‘2014-05-01"
AND D.DEPTNAME = ‘FINANCE’

’

Figure 2.13: A database query joining Payroll, Employee and Dept tables to get payroll
info for Finance for the month of May.

NAME and SALARY.

In late materialization, as portrayed by the example in fig 2.15, the DBMS persists
only the rowids of the tuples that pass through the join steps. Only at the final step, the
DBMS translates the rowids to the resultset by looking up the source table for the attributes

required in the projection list.

This approach is not popular with the row-stores because of the fact that generating the
resultset using rowids involves reading the same data blocks two times. Once for fetching
the join attributes and a second time, while constructing the final resultset, to fetch ad-
ditional attributes from the tuples. This is not efficient in terms of I/O performance. The
exception to this is when there is an index present on the join columns. In this case, the
database can perform joins without accessing the base tables and then, while constructing
the final resultset, fetch the additional attributes of qualified tuples for the projection list

using the index.

Column-stores, on the other hand, benefit from late materialization [AMDMO07, AMHOS].

41



2.7 Joins & Optimization Strategies in RDBMS

PAYROLL
rowi
d EID PAYDATE | SALARY EMPLOYEE NAME DID SALARY
1 100 2014-04-01| 3000 rowid EID _ INAME PHONE JOBID DID SAMUEL 10 3025
2 433 |2014-04-01| 2300 >¢ 1 100 |SAMUEL |425-543-1123 12 10 » PASCAL 10 2315
3 123 |2014-04-01| 3300 2 433 |PASCAL _ |523-123-5526 12 10 LEE 30 3320
4 534 |2014-04-01| 2800 3 123 |LEE 983-233-2344 22 30 (CHERIE 30 2810
5 100 |2014-05-01| 3025 4 534 |CHERIE  [345-612-5116 12 30
6 433 |2014-05-01| 2315
7 123 1201405-01 3320 Apply selection predicate PAYDATE="2014-05-01" on Payroll and join the qualifying tuples
8.1 534 |20140501] 2810 with Employee on EID, projecting the columns NAME, DID and SALARY.
Step 1
NAME DID SALARY DEPT
e — I e > _ » MAY FINANCE PAYROLL
rEAESCAL 32 3:23 rowid| DID |DEPTNAME NAME SALARY
CHERIE 30 2810 ; 0 T LI 2220
2 i HR CHERIE 2810
St 2 Apply selection predicate DEPTNAME='FINANCE’ and join the qualifying tuples with the intermediate relation
ep from step 1 on the attribute DID and project only NAME and SALARY for the output resultset.

[ ]Records not qualified to perform join after selection predicate evaluation.
[ ] Records from the intermediate relation that will not make it to the final resultset.

Figure 2.14: An early materialization approach to generate the results for the query de-

scribed in fig. 2.13

) ‘ PAYROLL EMPLOYEE rowid rowid
rowid| _EID PAYDATE | SALARY rowid| EID__INAME __ |PHONE JOBID DID (employee) | (payroll) DID
1 100 | 2014-04-01 | 3000 1 100 [SAMUEL 425-543-1123 12 10 1 5 10
| Gii | O] 2300 BC 2 | 433 [PASCAL 5231235526 12 10 » 2 6 10
3. 128 201404013300 3 123 |LEE 083-233-2344 | 22 30 3 7 30
4 534 | 2014-04-01 | 2800 4 8 30
5 100 | 2014.05-01| 3025 4 4534 CHERIE  |345-612-5116 12 30
6 433 |2014-05-01 | 2315 y
7 123 | 20140501 | 3320 /' Apply selection predicate PAYDATE="2014-05-01" on Payroll and join the qualifying
8 534 2014-05-01 | 2810 I/ tuples with Employee on EID, projecting the rowids of both the tables and the
A / attribute DID.
Step 1 \ !
\. /
\ I’I rowid rowid DEPT rowid rowid
I“ Ill (employee) | (payroll) DID (payroll) |(employee)
\ / 1 5 10 € rowid| DID | DEPTNAME » 7 3
\ ! 2 6 10 1 30 FINANCE 8 4
\ / 3 7 30 2 10 HR
\ I,' 4 8 30
Step 2 \‘ l/ Apply selection predicate DEPTNAME="FINANCE’ and join the qualifying tuples with
‘|| ! the intermediate relation from step 1 on the attribute DID and project only the rowids
\ / of Payroll and Employee.
\ !
1 L
id id
(;:;”:L") (e::::vee) MAY FINANCE PAYROLL|  p¢tch, the attributes NAME and SALARY from the Employee
= 3 » [‘EAEME sg;:gv and Payroll tables respectively using the rowids of tuples
Step 3 8 4 CHERIE 3810 qualified for final resultset.

[ ]Records not qualified to perform join after selection predicate evaluation.
[ ] Records from the intermediate relation that will not make it to the final resultset.

Figure 2.15: Steps involved in a late materialization approach to join query processing for
the query described in fig. 2.13

42



2.8 Joins in IDV

This is because they are naturally suited for late materialization as all the columns are stored
in separate data blocks [AMHOS8]. Thus, column-stores can perform joins by reading just
the columns required for joins without fetching any other attributes. This makes them I/O
efficient compared to row-stores when it comes to performing joins. A column-store per-
forming the join depicted in fig. 2.15 will first go over the Paydate column of Payroll
table, record the rowids (often using bit encoding) that qualify the selection predicate, and
then use it to retrieve the EID attribute values for those rows from Payroll table. It
will be then joined to the Employee table on its EID attribute. This could be performed
by reading only the data blocks storing the EID attribute. The rowids thus selected from
Employee table would be stored along with the matching Payrol1 table rowids to form
an intermediate relation. Additionally, it will use the qualified rowids from the Employee

table to read the associated DID values and store them as part of the intermediate relation.

In the next step, the DBMS will scan the data blocks containing the DEPTNAME at-
tribute of Dept table and produce a list of rowids that passes the selection predicate. It will
then use this rowid list to retrieve the DID values associated with these records from Dept
table. This is then used to join with the DID attribute of the intermediate relation from step
1, producing a set of rowids from Payroll and Employee that passes all the join and

selection predicates of the query.

This set of rowids are then used to read the NAME and SALARY attributes from the

corresponding source tables to produce the final resultset.

In fact, it has been pointed out that for column-stores, the late materialization strategy

offers better performance over early materialization techniques [AMDMO07, AMHO08].

2.8 Joins in IDV

2.8.1 Overview

Joins in IDV currently do not use any index but employ a form of merged-join approach
to compute joins. They are performed between pairs of partitions of the joining relations.
Thus, each partition of a relation needs to be joined with every partition of the other re-

lation. Such a partition to partition join represents a query processing step that a Worker

43



2.8 Joins in IDV

task is equipped to do. So, if there are m partitions in one relation and n partitions in the
other, we could end up with m x n combinations of joins between the partitions of the two
relations. Each of these joins will be performed by a separate worker task instance. Also,
since each of these joins will be independent of each other, multiple worker task instances
could perform joins on different pairs of partitions simultaneously. However, as discussed
in section 2.6, by making use of partition elimination, the optimizer can ignore certain

combinations of source table partitions from the join processing.

An implication of the two-partition constraint on worker tasks for performing joins is
that all the joins will have to be performed as a series of two-table joins. In other words, the
server breaks down the submitted SQL query, such that, the database performs join between
two tables at any given step, forming a new intermediate relation at each step, whose result
will be the culmination of all the preceding joins up to that step. This intermediate relation
is persisted as a temporary table, which is then joined with the next table and so forth.
Hence a query involving N tables participating in the join will involve N — 1 steps before

the final result set is generated.

In traditional database join methodology, a join is performed by comparing the values
of the join attributes. But when a DBMS uses tokenization techniques to achieve data com-
pression, the most effective way to perform this matching would be to compare the tokens
instead of the real values of the attributes. Many DBMS vendors advertise this as a fea-
ture of the DBMS to operate directly on compressed data. However, given that, in IDV, the
tokenization encoding is local to each of the individual partitions, the join attributes from
two different partitions cannot be directly compared. Hence they need to be merged to a
common encoding to generate a centralized encoding table with a reverse mapping back
to the original encoding contained within each partition. A merged-join based approach is

then employed using this reverse mapping to compute the join output.

2.8.2 Applying Predicates and Performing Projections

Being a columnar database, IDV uses a concept similar to vectorized query processing
as described in [AMHO8]. The worker tasks are also equipped to perform the evaluation

of selection predicates that can be applied independently at individual tuple level (for e.g

44



2.8 Joins in IDV

REGIONNAME=’Africa’), prior to the actual join itself. For this purpose, it constructs
a bit string data structure called the fuple selection vector (TSV). The bit string of TSV has
its length equal to the number of records in the partition, with each bit position in the string
translating to the position of a row in the partition. The bits are used to indicate whether a

particular row in that partition has passed the predicate under evaluation or not.

If there are multiple selection predicates, (on different attributes) that need to be applied
on the same relation, and if they can be independently evaluated, then each of them can
be processed in tandem. After this, all of the TSVs belonging to the same partition are
combined together using the corresponding boolean operation on the bit strings, as briefly
described in [GFZ13]. Additionally, if there are any logical deletes present (which are
stored in a separate file of its own) those are also applied as bit operations on the TSVs to

ensure that such tuples do not get processed further.

The TSVs thus generated by the worker tasks are memory resident, optimized for se-
quential access, and are implemented as compressed lists to reduce the memory footprint
of the data structure (fig 2.16).

The TSVs are then used by the worker task to retrieve the remaining attributes from
the corresponding relations that are required for further query processing. These could be
either attributes required in the final resultset projection or for performing an intermediate
join step or in some cases, for delayed condition processing®. To retrieve the additional
attributes, the TSVs are sequentially read and after verifying if the bit for a particular tuple
is set, the remaining attributes for that tuple are read. This, as described previously, is an
early materialization approach, which is traditionally associated with row-stores. These
attributes will still be in their tokenized form. The joins are then performed as described in

section 2.8.1.

Once the relevant tuples from both the relations are thus selected, the join columns
need to be matched. Any outstanding predicates at this point can be applied to these tuples
to generate the next resultset. In the case of a two relation join, this constitutes the final

resultset, which is de-tokenized and returned to the server. For joins involving more than

®An example of delayed condition processing would be (lineitem.shipdate >
orders.orderdate + 7) as this cannot be performed prior to join computation.

45



2.8 Joins in IDV

Current W
Context

Figure 2.16: Abstract diagram representation of Tuple Selection Vector

two relations, the intermediate resultset is persisted into the shared FS, in the exact same
format as regular SCT files. The next task in the queue then joins this intermediate resultset,
which is given a pseudo table name, with the partition(s) of the next remaining table in the

join, following the same procedure as before.

Fig. 2.17 depicts a 3-table join being performed, based on the TPC-H Benchmark
schema [Cou08] which is depicted in page 21 for the SQL given in fig. 2.18.

The tables Region and Nat i on have one partition each whereas the table Customer
has two partitions. Nat ion has a predicate on COUNTRY. The task depicted in step1, first
scans Nation table, generates the TSV which is then used to retrieves the COUNTRY,
NATIONKEY and REGIONKEY attributes from Nat ion. This is then joined with REGTION
table based on REGIONKEY. The intermediate resultset is persisted into a pseudo table
"Temp" which contains the attributes COUNTRY,NATIONKEY and REGIONNAME,

Since CUSTOMER has two partitions, in step2 the temporary table Temp is joined with
both of these partitions of CUSTOMER on NATIONKEY by two different worker tasks
that create two distinct sets of resultsets. These are then sent back to the server, that then

presents the client with a unified view of the resultset.

Because of the shared nature of the filesystem across the computing nodes, each of the

worker task invocation could be potentially done on a different node.

46



2.8 Joins in IDV

Perform Join Based on
REGIONKEY

‘ Worker

Temp_1.sct

1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1

N.COUNTRY
I}

Metadata Scan the column NATION.COUNTRY _
Engine For Values ‘CUBA’ & ‘BELIZE’ _
Create a TSV for Nation

Metadata DB

Step 1

Perform Join Based on
NATIONKEY

Temp_2_1.sct
N.COUNTRY

Resultset:
Perform Join Based on NATION.COUNTRY

Server NATIONKEY REGION.REGIONNAME
CUSTOMER.CUSTNAME

Temp_2_2.sct
N.COUNTRY

Metadata
Engine

— 5
Metadata DB

Step 2

Figure 2.17: Join steps for a 3 table join

47



B Y N S

2.9 Related Work

SELECT N.COUNTRY, R.REGIONNAME, C.CUSTNAME
FROM NATION N INNER JOIN REGION R
ON N.REGIONKEY = R.REGIONKEY
INNER JOIN CUSTOMER C
ON N.NATIONKEY = C.NATIONKEY
WHERE N.COUNTRY IN (’CUBA’, ’'BELIZE’)

4

Figure 2.18: SQL for joining Country, Region and Customer relations

2.9 Related Work

2.9.1 C-store

C-Store’[SAB 03] is a read-optimized relational DBMS with a column store architecture.
Similar to IDV, C-Store performs compression on the attribute values and when possible

avoids performing decompression on query executor steps.

IDV is optimized based on the immutability of the archived objects. In contrast C-
Store implements a combination of update/insert-oriented Writable Store (WS) that works
in tandem with a much larger Read-optimized store (RS) with restricted support for batch

movement of data from WS to RS.

While C-Store does perform horizontal partitioning similar to that of IDV, it uses a
"shared nothing" architecture where each node has its own disk and memory. In contrast,
IDV uses a shared file storage service that is accessible from all computing nodes running

worker tasks.

IDV implements the relational concept of a table both in terms of logical data model
and physical storage. Though C-Store supports the relational logical data model of a table,
it does not use the concept to physically store the data. Instead, it stores the data as an
overlapping collection of projections.

A projection is a collection of columns, sorted on some attribute(s), with the possibility

of a column appearing in multiple projections, thus facilitating the storage of redundant

http://db.Ics.mit.edu/projects/cstore/

48



2.9 Related Work

NATION1 Join Index NATION2

COUNTRY _|REGION sip KEY [counTrY _[POPULATION
sid =1 |cANADA  |NA 2 320,932,000 sid =1

USA ‘NA 1] 204,263,000

ICOUNTRY _ |REGION SID KEY

. POPULATION
sid =2 [sraziL sA 1

35,702,707  sid =2
18,006,407

Figure 2.19: A join index representation in C-Store from Nation1 to Nation2

objects. The projection is anchored on a particular logical table and will contain a subset
of its attributes. It can contain attributes from other tables with which the anchor table has
a foreign key relationship. This implies that the projection has the same number of records

as the anchor table.

Each projection is horizontally partitioned into segments similar to IDV’s partitions,
and is identified using a segment identifier, sid. Within a segment, a storage key is implic-
itly associated with each logical row based on its physical position in the sorting order

associated with the projection.

C-Store needs to construct the logical table by joining the various projections associated
with it. This is performed via join-indices. A join index from projection 77 to T, will have

the same number of segments as 77 and will consists of tuples (sid-15, storagekey)

Fig. 2.19 shows an example JI from projection Nationl to Nation2, both anchored
on the Nat ion table with Nat ion1 sorted and horizontally partitioned based on Region
and Nat ion?2 sorted and horizontally partitioned on POPULAT ION.

2.9.2 MonetDB

MonetDB?® is a main-memory database system [MKB09], and was one of the early adopters
of the Decomposed Storage Model (DSM) [CKS85] that systematically examined the bene-

8https://www.monetdb.org/

49



2.9 Related Work

fits of a column storage model over that of row-stores. The DSM methodology allows the
mapping of a variety of logical data models like relational, object-oriented and network

data models into a physical model [Bon02].

MonetDB vertically fragments each relational table and stores each column in a sepa-
rate physical table called a Binary Association Table (BAT) [NK12, Bon02] that consists
of (surrogate, value) pairs, where the surrogate is also known as the object identifier (OID).
This is show in fig. 2.20. The OIDs are system generated and are similar to the concept
of rowids used by most of the mainstream databases. An OID identifies the attribute val-
ues belonging to a particular tuple. Since OID values form a dense ascending sequence in
accordance with the position of the tuple, for the base BAT's that constitute the direct phys-
ical mapping of their relational table counterpart, the OIDs are not materialized, but are
inferred from their position [NK12, Bon02]. Due to this implicit storage, these OIDs are
also referred to as virtual-OIDs. This tuple-order alignment of all the base BAT's associated
with the same relational table facilitates the reconstruction of tuples efficiently without the

need of an explicit join operation between the BATs [NK12].

MonetDB’s concept of BAT is very much similar to the column storage model used by
IDV. However, in IDV, all associated columns of a table are still part of the same physical
storage unit (SCT file). IDV has the concept of rowid that serves the identical function of
virtual-OIDs in MonetDB, and is not materialized, but inferred from the physical position

of the tuple.

MonetDB does not use compression as extensively as IDV. Fixed-width data types are
stored using their equivalent C language array representation. Variable-width data types
like strings are stored using a form of dictionary encoding where the BAT only contains ref-
erences to locations in a BLOB that constitutes all the unique occurrences of the actual val-
ues for the column [NK12]. MonetDB, however, provides an enumeration data type which
can be used to map real-world values of an attribute to small integers [Bon02, BZNOS5].
This is especially useful for those attributes whose values have very low cardinality. By
replacing the actual attribute values with an encoded BAT which consists of rowids of the
original value stored in the mapping table [BZNO05], enumerated types can facilitate com-
pact storage [BK99] of data (fig. 2.20). This is similar in principle to the tokenization
process that IDV follows.

50



2.9 Related Work

ORDERS LINEITEM
_ loroerKey| pARTKEY | suppey | ORDERS
235 2134 87
100 4567 [2014-01-12 321 2204 34
321 1456 |2014-04-07 [ 1203 | 52 100 SHIPPED
132 8764 [2014-07-02 132 2345 23 321 | RETURNED
355 8556 [2014-02-03 634 | 6567 | 43 | 132 | penpinG
| 63 | 7466 | 6521 | 87 355 CANCELLED
235 7299 7355 52 |63 SHIPPED
2471 33 235 PENDING
8742 2
l J Mapping Table
(o[ paRTKEY |
1000, 100 | 1000 4567 | 1000| 2014-01-12 1000, 235 | 1000 2134 | 1000 87 1000 4 .
1001 321 | 1001 1456 | 1001/ 2014-04-07 1001 321 1001 2244 | 1001 34 1001 3 A CANCELLED
1002 132 | 1002 8764 | 1002| 2014-07-02 1002 132 1002 1243 | 1002] 52 1002 2 Fe 2|_PENDING
1003 355 1003|8556 1003| 2014-02-03 1003 132 1003 2345 1003 23 1003 1 S, B3 [ RETURNED
1004 634 | 1004 7466 | 1004| 2014-09-14 1004 634 1004 6567 | 1004 43 1004 4 4l_SHIPPED
1005|235 | 1005 7299 | 1005| 2014-06-23 1005 235 | 1005 6521 | 1005 87 1005 2
1005|100 | 1005 7355 | 1005 52
1005 355 | 1005 2471 | 1005 33
1005|132 | 1005 8742 | 1005 25

Using enumeration types to store attributes
Decomposition of a relational table into BATs

Figure 2.20: BAT decomposition and storage in MonetDB

MonetDB was designed with the availability of large main memories [NK12] and
super-scalar CPUs with multiple instruction pipelines [BZNOS5] of modern computer sys-
tems in mind. Thus the query processing algorithms used by MonetDB are tuned to be
cache-conscious [MBNKO04, MKB09, Bon02] to maximize the cache hit-ratio for better
CPU throughput [BZNO5].

MonetDB keeps track of foreign-key relationships using join-index BATs that contain
(OID, OID) pairs from the related tables. In the case of / - N joins, the referencing OIDs
can be virtual as they would have the same OID values as the referencing relations’ base
BATs. This is, however, not the case if the joins are M - N, in which case the OIDs from
both relations need to be kept track of [Bon02].

The maintenance cost of join index is alleviated by the fact that it can be used in con-
junction with referential integrity checking [Bon02]. These join-index BATs can also serve
the purpose of facilitating relational joins and resultset projection as part of normal query

processing.

MonetDB was one of the pioneering databases to implement database cracking [NK12]
which involves data storage re-organization as a by-product of query processing, and is

therefore capable of performing run-time query optimization via adaptive indexing [NK12].

51



2.9 Related Work

~
bl
»iwin ko
)
W

Radix-Cluster
Partitioned
Hash Join

Positional Lookups
to project final resultset

0
4
4
0
2
3

Join Index

[)
[}
[V FNSE NS Y
~
[}
AWk o
m
i

Result Set BATs

Figure 2.21: Join processing and resultset projection in MonetDB

As part of the join execution, the database can choose to create a join-index on-the-fly. First,
it uses a radix cluster based partitioned hash join [BMK99, Bon02, MBNK04, MKB(9] that
builds a join-index based on the key columns of the join relations. This join index consists

of BATs that contain OIDs from both the joining relations.

In the second phase, the join index is traversed and the OIDs from the join-index BATs
are used to project the required attributes from the corresponding relations, constructing
an output BAT for each of the output columns. MonetDB uses radix-decluster algorithm
[MBNKO04, MKB09, Bon02] that uses memory cache efficiently for this purpose.

Fig. 2.21 shows an abstract flow of the join processes involved in MonetDB. The
radix-cluster based partitioned hash join to create the join-index and the de-clustering to
produce the final resultset are not explicitly shown for the sake of simplicity. The detailed
explanations can be found in associated literature [Bon02, MBNKO04, MKB09].

52



Columnar Join Index

3.1 Overview

In this chapter we discuss our principal design objectives, design considerations, the archi-
tecture of the join index, the associated new query processing workflow to utilize join index
and the enhancements to the worker task components of IDV to make use of join indices

to construct resultsets.

Our implementation of join index is roughly based on the model proposed in [Val87],
that we discussed in section 2.7.2.3, but without the clustering option. While the design
proposed in [Val87] was in the context of two-way joins, our approach was aimed at con-

structing a generic join index structure that can support /N-way joins.

Though the bitmapped join indices proposed in [OG95] facilitated N-way joins, we
felt that constraining the usability of the join index to a star schema association was not
pragmatic in today’s very large database environments which catered to a variety of en-
tity relationship arrangements. This approach also had the complexity of requiring to store
the fact table in the form of a row-store, which is not something the current database ar-
chitecture, which is fundamentally a column store, supports. Adopting this model would
also have increased the complexity of effort involved to adapt the current database physical

storage structures to support the join index implementation.

The join index approach of C-store (discussed in section 2.9.1) was designed to support

53



3.2 Join Index Architecture

joins in one direction; i.e, a join could be performed from table A to table B using a
particular join index. But to perform a join from B to A, another join index was required.
This was also a design that was more attune with a two-way join and did not cater to our
objectives of building a single join index structure which would directly support N-way
joins.

During the design process, we also had to take into consideration the column-oriented
nature of the database and the horizontal partitioning component to ensure that our join
index design can co-exist with these features and even leverage some performance benefits
out of them. Our implementation is conceptually similar to the join indices that are created
by MonetDB (discussed in section 2.9.2 ), but with the ability to support /N-way joins as

well as catering to the existence of multiple horizontal source partitions.

3.2 Join Index Architecture

As discussed in section 2.6.1, tables in the IDV database are stored as a set of partitions
(SCT Files), each of which has a distinct partition number assigned to it. These SCT files
are immutable, in the sense they do not undergo physical deletes. As such there is a vir-
tual rowid associated with each of the tuples in a partition which does not change. Thus,
while the rowid uniquely identifies a tuple within a partition, the combination of a partition

number and rowid can uniquely identify a tuple within a relation.

A join index built by associating three tables A,B,C, with z,y,2 number of partitions
respectively, could in theory have z x y x z number of partitions. This is because each

combination of the source table partitions maps to a distinct join index partition.

Therefore if A;, B;, Cj, represent the set of tuples from table A in the i partition, table
B in the j" partition and table C' in the k' partition respectively, then the join index tuples
corresponding to the join of the sets A;, B; and (), will map to the same join index partition

Jj, that is uniquely associated with the partitions (4, 7, k) of tables A,B and C.
Thus the number of feasible join index partitions is given by,

Al ezl <

[ <xxyxz}
=|{{teZ|]l1<t<x

fx{ueZll <u<y}x{velZll <v<zl}

54



3.2 Join Index Architecture

This approach provides us with multiple advantages.

e When using the join index in query execution, each join index partition can be pro-

cessed by a different worker task, increasing the amount of parallelism.

e Since in the IDV database, data is added or removed in terms of partitions, keep-
ing a separate join index partition for each combination of partitions makes it easy
to add or remove partitions. In case a partition, say p of table A is dropped, we
need to just remove all the join index partitions J; such that J; caters to any of the
source table partition joins {{p} x {u € Z|1 < u <y} x {ve Z|l < v < z}}. Simi-
larly, when a new partition p is added to table A, we can incrementally update the
join index by adding new join index partitions .J; by joining the source partitions
{p} x{ueZll<u<y}x{velZll <v <z}

Fig. 3.1 portrays the structure of the join index for a three-table, many-partition join.
For brevity of representation, we only show the foreign keys and primary keys associated
with the relations. The schema, which is a subset of the TPC-H schema that we briefly
introduced in section 2.4, consists of three relations Region, Nation and Customer.
Regionkey is the primary key for Region, which functions as foreign key for Nation.
Nation has Nationkey as its primary key which is referenced by Customer. Finally,
Customerkey is the primary key for the Customer table. Our objective is to build a
join index that will facilitate the join between these three tables based on their foreign key
relationships. L.e, we will join Region with Nation over Regionkey and Nation
with Customer over Nat ionkey to produce an output relation that describes customer

information, extended with their geographic locations.

In this setup, there is one partition for Region, two partitions for Nat ion and three
partitions for Cust omer. The resulting join index consists of 1 x 2 x 3 = 6 partitions,
one for each combination of source table partitions. For the sake of clarity, the partitions
of the join index are also labeled with their corresponding source partitions. For example,
partition 53 ;1) of the join index is built from the source partition 3 of Customer, 1 of

Nation and 1 of Region tables.

The fact that each of the source tables’partitions combination gets mapped to a different

join index partition also helps in reducing the storage by having to store only the rowid

55



3.2 Join Index Architecture

REGION NATION CUSTOMER JOIN INDEX
Region ~ Nation Region Cust Nation Rowid Rowid Rowid
Rowid ey Rowid key  Key Rowid ey Key b ti(gusmme')(NahO"XReg'U")
1 1 1 0 0 1 D artition e
2 o (Partition 5 1 | 4 Partition = , " o | 1 (11:11) 2l a | a
3 3 1 RN 173 4 | 2 S I
@y 2, 4 4 | 4 4 3 |21 Partition
n N 4 8 4
5 4 5 7 12 a2
L . 21 5 [ 7 | 4
Partition o - i
5,, 15 14 .
1 6 B Partition' 7 3 | 1
6 B S Partition 7 14 2 S
-~ -
Partition ‘2 @, 2 2 8 11 1 2,1,1)
2 8 21 2w 9 10 4 9 Lalls
0 3 1
9 14 o0 e
10 &5 2 Partition
4 6 9 2
ol 2 | © 221)
12 ™8, | 2 .
o "~...,\‘ Partition 11 | 1 2
Wl U2 120 I D!
. . L 13 "3, (3,1,1)
Rowid is a virtual column that does  Partition + > “#=. 14 3 1
not exist in the physical storage. 3 EDEEEEEEEE v, i
6 9 LA 3y O
Partition = ‘s A&
6 15 2
(321) 16 8 4

Figure 3.1: Join Index Architecture for a 3 table join

and not the partition numbers, which can be tracked at a higher level by using metadata

information of the join index partition.

Thus, the join index is in effect a set of tuples, constituting of attributes that are the
rowids of tuples from the source tables that satisfy the join condition. By making use of
the existing database storage APIs, we store the join index structure in a columnar fashion,
in SCT files as shown in fig. 3.2 . Thus, the join index is persisted as a special system
table whose attributes are of type rowids. The column-store storage model will help us
to leverage some benefits similar to the case of data tables. We will discuss these design

advantages in detail, later in section 3.6.

The storage of the rowid columns in the join index differs from a storage of regular
data attributes in a fundamental aspect. While regular data go through tokenization process
before being stored, resulting in data transformation and storage of additional dictionary
metadata, with the rowid columns of join index, we do not perform such tokenization on
the rowid columns of the join index. Instead, we store the rowids directly in the join index
system table. This is because rowids are of integer data type, and by virtue take far less

storage compared to other data types. Therefore, they benefit a lot less from the storage

56



3.2 Join Index Architecture

/ Ji_custinfo_1.sct / ji_custinfo_2.sct

NATION.ROWID NATION.ROWID

—J_J_J

]
[ CUSTOMER.ROWID ]
]

[ CUSTOMER.ROWID
[ [ REGION.ROWID

REGION.ROWID

NATION.ROWID NATION.ROWID

[ CUSTOMER.ROWID
[ REGION.ROWID

[ CUSTOMER.ROWID
[ REGION.ROWID

/ Ji_custinfo_S.sct /ji_custinfo_6.sct
NATION.ROWID ] NATION.ROWID ]

[ CUSTOMER.ROWID ] [ CUSTOMER.ROWID ]

[ REGION.ROWID ] [ REGION.ROWID ]

Figure 3.2: Join index storage structure

/ Ji_custinfo_3.sct / ji_custinfo_4.sct /

——J_J
—J_J

savings of tokenization, while still having to accommodate for the de-tokenization overhead
in terms of CPU and memory consumption. Therefore, we persist the rowids as is, which

are 32-bit signed integers, supporting a maximum of 2 billion tuples per partition.

3.2.1 Creating a Join Index

To build the join index, we make use of the existing join functionality of the database,
that we briefly discussed in section 2.8. A new client process, ji_builder was developed
to facilitate the creation of join index structures. This process iterates through the list of
partitions that is involved for each of the tables associated with the join and submits a join
SQL for each combination to the database, with a projection list constituting of the rowids
of the tables involved in the join. Rowids are obtained by invoking the urowid () function
on the corresponding relations. The urowid () function is an existing feature provided by
the database physical storage APIs to return the position of a tuple in the virtual ordering of
records in a database relation. Thus, the value generated by this function contains the rowid
of the tuple, preceded by the partition number, thus giving a unique logical identifier for that

tuple within the relation. Since in our join index storage format we require only rowids and

57



3.2 Join Index Architecture

not partition numbers, we persist only the rowids into the column storage associated with
the join index system table. The ji_builder process also generates metadata information
pertaining to the join index, by creating records that associate the join index partition with
its source table partitions, source table names and the column in the join index system table

that represents the rowids from the source table.

Fig. 3.3 shows the creation of a join index for the three tables we described in fig.
3.1. The metadata thus generated is shown in table 3.1. Notice how there are three records
for each join index SCT file (join index partition). This is because there are three tables

involved in the join.

For example, the first three records together indicate that the join index partition rep-
resented by the SCT file /infa/ji/ji_custino_1 is created from the partitions of three tables,
Customer (SCT file /infa/sct/toch/customer 1), Nation (SCT file /infa/sct/toch/na-
tion_1), Region(SCT file /infa/sct/tpoch/region 1), that the tables are associated with the
database schema called tpch, and that the rowids from Customer are in the first column
of the join index system table, rowids from Nat ion in the second column and rowids from

Region are stored in the third column (as indicated by the Table_pos field).

In general terms, if we build a join index by joining tables 7}, 75 ...T;,, each of which

has py, po, . .. p, partitions, then the number of join index partitions that will map to a given

n
partition of 7} is givenby [][ bpj;.
j=1j#i

However, it needs to be emphasized that not all the join index partitions would neces-
sarily be materialized. This is because, and as often is the case, in a real world scenario,
many combinations of source table partition joins will not yield any records in the output. A
common scenario is when using the range-partitioning technique that we briefly described
in section 2.3.2. When the tuples are chronologically associated within a partition, and
the related tables are partitioned based on the same mechanism, the number of combina-
tions of source table partition joins that will produce a non empty output relation will be
often reduced to only those partition combinations with identical values for the partitioning

attributes.

Fig. 3.4 shows an example of how this can happen. The tables Orders and Lineitem
are based on the TPC-H schema that we introduced in section 2.4. In this example, how-

58



3.2 Join Index Architecture

Metadata DB

temp_1.sct

N.ROWID

Perform Join Based on
REGIONKEY

temp_2.sct

N.ROWID

— =
Metadata DB

ji_custinfo_1.sct

r
1
! N.ROWID

Figure 3.3: Creation of a three table join index

59




3.2 Join Index Architecture

JINAME | JI_SCT TABLE | TABLE_SCT TABLE_ | TABLE_
NAME SCHEMA| POS
ji_custinfo| /infa/ji/ji_custinfo_1| customer | /infa/sct/tpch/customer_1| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_1 | nation /infa/sct/tpch/nation_1 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_1 | region /infa/sct/tpch/region_1 tpch 3
ji_custinfo | /infa/ji/ji_custinfo_2| customer | /infa/sct/tpch/customer_1| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_2 | nation /infa/sct/tpch/nation_2 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_2 | region /infa/sct/tpch/region_1 tpch 3
ji_custinfo| /infa/ji/ji_custinfo_3| customer | /infa/sct/tpch/customer_2| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_3 | nation /infa/sct/tpch/nation_1 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_3 | region /infa/sct/tpch/region_1 tpch 3
ji_custinfo| /infa/ji/ji_custinfo_4| customer | /infa/sct/tpch/customer_2| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_4| nation /infa/sct/tpch/nation_2 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_4| region /infa/sct/tpch/region_1 tpch 3
ji_custinfo| /infa/ji/ji_custinfo_5| customer | /infa/sct/tpch/customer_3| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_5 | nation /infa/sct/tpch/nation_1 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_5 | region /infa/sct/tpch/region_1 tpch 3
ji_custinfo| /infa/ji/ji_custinfo_6| customer | /infa/sct/tpch/customer_3| tpch 1
ji_custinfo| /infa/ji/ji_custinfo_6| nation /infa/sct/tpch/nation_2 tpch 2
ji_custinfo| /infa/ji/ji_custinfo_6| region /infa/sct/tpch/region_1 tpch 3

Table 3.1: Join index metadata

60




3.2 Join Index Architecture

JOIN_INDEX_1
LINEITEM_1 1 1
2 2
ORDERS 1 1 5234 2134 87 2013-12-01 3 3
2 5323 2244 34 2013-10-09 4 4
1 5234 | 201312017 3 5122 1243 52 |2013-0816 || s 4
2 5323 |2013-10-09 4 5667 2345 23 2013-04-24 6 4
3 5122 |2013-08-16 5 5667 6567 43 2013-04-24 7 5
4 5667 | 2013-04-24 6 5667 6521 87 2013-04-24 8 6
5 5668 | 2013-05-01 7 5668 7355 52 2013-05-01 9 6
6 5786 | 2013-02-23 8 5786 2471 33 2013-02-23
9 5786 8742 25 2013-02-23
PARTITION BY JOIN_INDEX_2
(YEAR OF orderdate) PARTITION BY
(YEAR OF orderdate)
ORDERS_2 JOIN_INDEX_3
lRowio] oroerKev [orDERDATE| LINEITEM 2
e iy [ROWID] ORDERKEY | PARTKEY | _SUPPKEY |ORDERDATE|
; Zzg; ;giz:g;:g; 1 6213 9123 42 2014-01-12
Do e[S e [oa eeno]  ohiogcg
2 6430 _|2014.09-14 | = 4 6972 9235 61 2014-07-02 1 1
8 6291 |20140623 5 6431 6724 66 2014-02-03 2 2
6 6431 5323 72 2014-02-03 3 3
7 6430 6230 63 2014-09-14 > 4 3
8 6291 5201 11 2014-06-23 5 4
9 6291 8250 23 2014-06-23 6 4
7 5
8 6
9 6

Figure 3.4: Example of a join index creation where some join index partitions are empty

ever, we have modified Lineitem to include Orderdate which was originally an at-
tribute only in the Orders table. This is a common database denormalization technique
that is employed for performance advantages. Both the tables are range-partitioned based
on the year value of Orderdate column. As a result, we can see that there are two parti-
tions for Orders table. Partition 1, for the orders received in the year 2013 and partition
2, for the orders of the year 2014. Similarly, we end up with two partitions on Lineitem

table as well.

It should be noted that, as Orderkey is the primary key for Orders table, an Orderkey
value can be present only in one partition of the Orders table, as it needs to be unique
across all the partitions and not just within a partition. Also, since Lineitem has a foreign
key relationship referencing Orders table on Orderkey attribute, it follows, that all the
tuples in Lineitem with a given value of Orderkey will map into the same Lineitem
partition. This is so, because an Orderkey value maps to only one Orderdate value,
as the former is the primary key of the Orders table. A corollary of this observation is
that, any join based on Orderkey between the tuples of partition 1 of Orders and par-

tition 2 of Lineitem or between the tuples of partition 2 of Orders and partition 1 of

61



3.3 Join Processing Overview: old and new

Lineitem will not produce any output, as they will not have any common Orderkey

values.

Thus it can be seen from the figure, that partitions 2 and 3 of the join index are empty

and will not be materialized.

3.3 Join Processing Overview: old and new

As described in section 2.8, the join query processing in IDV can be characterized as a se-
quence of two-table joins combined with early materialization. Each step in the workflow
incrementally builds the tuples containing the attributes required for the construction of the
final resultset, by applying selection predicates (building TSVs) and performing joins with
the next relation specified for join in the query. The worker tasks send the final resultset to

the server, who provides a merged interface for the multiple resultsets to the client process.

Fig. 3.5 shows a simplified activity diagram involving important steps for a query con-
taining N table join. For brevity, we have not accounted for the existence of multiple par-
titions of any table in the diagram. In case any of the tables have multiple partitions, more

worker tasks are executed in parallel in that step to process those partitions in tandem.

Using join indices, we can skip the join step, since the joins are already pre-computed.
By iterating through the join index system table, we are able to determine as to which
tuples of each of the relations are associated to each other using the rowid mapping in the
join index. However, we still have to perform selections in order to only join the tuples that

fulfill all selection criteria.

3.4 Joins and Selection Predicates

In this section, we briefly discuss how join processing is combined with the application
of selection predicates. In particular, we show how the current approach in IDV requires
redundant computation of selection predicates. We then demonstrate how the issues with
this methodology, if adopted as such, will be aggravated by the join index design, and how
we employ a different approach in our new query processing workflow for join indices that

avoids this.

62



3.4 Joins and Selection Predicates

CLIENT SERVER AGENTS WORKER TASKS

SQL into N-1
two-table
joins

_ _
Spawn worker Create TSVs for " JoinTlandT2 |

First join step task, manage T1/T2 Create Temp_1
communication I

——
el BT Spawn worker Create TSVs for “Join T W m
- o task, manage Temp_1/T3 Create Temp_2
communication :

v

N-1 join st Spawn worker Create TSVs for emp and T
-1 join step task, manage Temp_N-2 and TN p_N-1
communication ] l

[ process N server Resultset -

resultset Merger Resultset Generator

Figure 3.5: Activity diagram for join query processing

3.4.1 Limitations of current TSV approach

As discussed in section 2.8.2, the IDV worker tasks perform selection predicate evalua-
tions by retrieving the column on which the condition is specified and then testing them
for validity, constructing tuple selection vectors (TSVs) that are specialized compressed,
memory resident data structures for storing bit strings. The TSVs are also not shared be-
tween worker tasks, even if they are working on the same table partition, evaluating the
same selection predicates. Recollect from our discussion in section 2.8, that a single table
partition can often participate in multiple joins. This introduces a lot of redundant TSV
generations at times depending on the nature of the joins in the query and the predicates
applied.

To understand how exponentially this could grow, let us consider the join between
the tables Customer, Orders and Lineitem in Fig. 3.6. There are two partitions for
Customer, three for Orders, and four for Lineitem. We are applying three selec-
tion filters in the query, one on Customer (mktsegment = ‘FURNITURE’), one on

Orders (orderdate > ‘'2014-10-11')and anotheroneon Lineitem (shipmode

63



3.4 Joins and Selection Predicates

STEP 1 STEP 2
ATREN — <esa
e ||y | =
. customer2 v 4
= g —

[X =R | |y — s |

| o
) [ orderdate > 20141047 a‘- Xy ‘
| Y | oo
ey =r g
rir= 4 ;
shipmode = ‘RAIL’
L..mizaz‘..|'rwL-'x";:A.En-r\

X
:
2

Figure 3.6: Selection predicate evaluations for generation of TSVs in a three-table join

= ‘RAIL’).

We can already observe from the first join step between Orders and Customer that
each partition of Orders is joined with both the partitions of Customer, and that the
selection predicate is evaluated twice for each partition (because there are two Customer
partitions and each Orders partition is joined with each Customer partition trivially).
Similarly the selection predicate on Customer is evaluated thrice, once for each Cust omer

partition with which it is joined.

Further, join step 1 results in six intermediate partitions (because there are 2 x 3 = 6
source partition combinations in the first join step). In step 2, each of the Lineitem parti-
tions now needs to be joined with each of the six intermediate result partitions. This causes
the evaluation of the same selection predicate six times on each Lineitem partition. Thus
the cascaded effect of multi-partition joins is that, there are (2 x 3 x 4 —4 = 20) redundant
evaluations of predicates on Lineitem alone. Along with the (2 x 3 — 3 = 3) redundant
predicate evaluations for Orders and (2 x 3 — 2 = 4) redundant predicate evaluation for
customer from step 1, there are a total of 27 supernumerary predicate evaluations, along

with its associated I/O, computation and memory required to build TSVs.

64



3.4 Joins and Selection Predicates

In general, it can be seen that for a particular table partition, the database ends up
processing TSVs as many times as there are partitions in the (intermediate) table with
which it is being joined. lL.e, if p, is the number of partitions in table A and it is being
joined with a (intermediate) table 7" with p, partitions, then we are looking at a possible

Pa X (p¢ — 1) redundant TSV evaluations for the partitions of table A.

It can be observed that if tables 7}, 75, ... T}, are joined in that order, with each of
them having p1,ps, ...p, number of partitions, then the redundant TSV evaluations of the

i table T is given by,

2
(I1p)) —p wi=1
j=1

(I[Ipj)—pi :i>1
j=1

3.4.2 Selection Predicates with Join Indices

When using a join index for join query processing, we still need to evaluate the selection
predicates, as a join index in general is built with just an equijoin between the relations and

contains entries for all joining tuple combinations.

Let us first take a look at the join index partitions that get created by joining the three
tables from fig. 3.6. This is pictorially represented in fig. 3.7. It can be seen that we could
potentially end up with (2 x 3 x 4 = 24) partitions with the join index design approach that
we discussed in section 3.2. A side effect of having a join index in a partitioned form like
this is that each Customer partition is now mapped to (3 x 4 = 12) join index partitions,
each Orders partition is now mapped to (2 x 4 = 8) partitions and each Lineitem

partition is mapped to (2 x 3 = 6) partitions.

In order to achieve maximum parallelism, we need to employ a worker task to process
each join index partition. If we now consider following the current approach in generating
TSVs as part of evaluating selection predicates, we are now going to end up with 8 pred-
icate evaluations per partition of Orders table as 8 join index partitions map to the each

orders partition. This essentially means that there are (2x 3 x4—3 = 21) redundant TSV

65



3.4 Joins and Selection Predicates

Join Index System Table

FOTT ey 4
rogo ey 4
A=
X =
A% =
r o=y 4
= (o= e
=
A% =
% 5% 0 =

% s %

Figure 3.7: Source table partitions to join index partition mappings for the tables in fig. 3.6

evaluations for Orders table alone. By similar computation, we get (2 x3x4—2 = 22) re-
dundant TSV evaluations for Customer table. This is in addition to the (2x3x4—4 = 20)

redundant TSV evaluations for Lineitem table, resulting in a total of 63 redundant TSV

evaluations.
In general, each of the tables T; will contribute to p; x ( [[ p; — 1) redundant TSV
j=1.j#i
evaluations towards the join query, resulting in a total of
Yoix (] pi=D)=n[p) - s
i j=1,j#i j=1 j=1

redundant TSV evaluations for the entire query.

As can be observed, following the current approach on selection predicate evaluation
for join index based query processing will only result in aggravating an already existing
problem. We are also constrained by the fact that the worker tasks are stateless and do
not facilitate inter process communication otherwise we could have let one worker task

perform the selection predicate evaluation and then have the resulting TSVs be shared with

66



3.4 Joins and Selection Predicates

‘5‘ mktsegment = | =
FURNITURE’ "

Figure 3.8: Evaluating selection predicates and persisting generated TSV for use by mul-
tiple worker tasks

the other worker task instances.

In order to overcome this design predicament, we decided to separate the TSV genera-
tion step, which was tightly integrated with the join processing, into a separate step, and to
have the TSVs persisted in shared disks for reuse so that the same partitions undergo only
one selection predicate evaluation. Fig. 3.8 shows an example of a worker task process-
ing the TSV for partition one of Customer table which is then persisted. This TSV can
then be used for the processing of join index partitions which map to partition one of the

Customer table.

This method avoids all the redundant TSV generations and generates the bare minimum

number of TSVs required, which is the same as the total number of partitions across all

n

the participating tables in the join, i.e., D> p;. Another advantage of this strategy is that
j=1
the TSVs for all the partitions of all the tables can be processed in parallel, as they are

independent of each other, thereby reducing the overall processing time.

These persisted TSV files can be cleaned up by the existing final processing step which

67



3.5 Worker Tasks

takes care of removing any temporary files created as part of the query processing, and

hence adds no overhead in terms of housekeeping tasks.

3.4.3 The need for uncompressed TSV structures

As mentioned previously, the TSVs were originally designed to be memory resident and
were hence implemented as compressed lists, optimized for sequential access: whenever
a bit was set, the corresponding tuple qualified for the selection predicate and could be

further processed.

However, as we will discuss in the next section, in the join index approach of processing
the resultset, the primary mode of lookup of bit positions in TSV follow a random access.
Our prototype testing of random access on current compressed list implementations of
TSV proved this to be a potential bottleneck. Thus, we switched to using uncompressed
TSVs, which are stored as a contiguous 64-bit integer array, with each integer representing
the status of 64 tuples in the partition, as depicted in fig. 3.9. We surmised that the slight
increase in memory usage is well worth the performance, especially considering that we
were addressing the issue of redundant construction of TSVs in the current system. By
using uncompressed TSVs, we can access a bit position in TSV in ©(1). For scenarios in
which all the bits in the TSV for a partition are set to 1, which is for example the case in
the absence of selection predicates, we skipped creating the bit array, as all the tuples were

selected by default, hence the TSV lookups were always set to return true.

3.5 Worker Tasks

As discussed in section 2.6, the worker tasks in IDV are designed to process one fask at any
given instance. It does this by interpreting the directives mentioned in the task, which is a
form of command language. A task often consists of many information directives, that pro-
vide various settings and parameters for the worker task to use while executing an action,
and is followed by a single action directive, which causes the task to execute a concrete
action like executing a join on the tables indicated by the information directives. Most di-
rectives have a list of arguments associated with them which is interpreted by the worker

task in the context of the directive it is processing. As part of our join index implementa-

68



3.5 Worker Tasks

rowids

Uncompressed TSV (64 bit integer array)

1101101101101101101011001100110110111100111111000101010110101101 66

0110110010101011010101110101010011101010101001010011111101101010

2
12

16385
0110110010101011010101110101010011101010101001010011111101101010 16386

16447
16448

TR

Figure 3.9: Uncompressed TSV mapping to rowids

tion, we developed two new tasks, TSV creation task and join index query task, along with

the associated directives for the operations we developed for this implementation.

3.5.1 TSV Creation Task

The purpose of the TSV creation task was to evaluate the selection predicate and persist the
TSV in the shared drive. This would then be used by the worker tasks in the next step for
query processing. In accordance with the design philosophy of the database to work with
the individual partitions of a table, a worker task instance will process only one partition
of a table as part of the TSV creation. It can however evaluate multiple selection predicates
on the same partition that is constrained on different attributes of the same relation. For
this purpose, we made use of the current TSV evaluation predicates, with the output TSV
being persisted in the uncompressed format. This approach also helps us leverage process
parallelism by spawning multiple worker tasks in parallel to generate TSVs pertaining to

different partitions and relations simultaneously.

The directives for this task consist of the partition of the table being processed as a

69



N S

5

3.5 Worker Tasks

ssau —-tsv /infa/sct/tpch/customer_1.sct

.$TSVOUTPUTS ‘'tmp_18760.s£25_p01.903_03.03.tsv"’

.TSVQRY { SELECT 1 FROM CUSTOMER WHERE MKTSEGMENT = '
FURNITURE’ }

LEXIT

Figure 3.10: Example of a TSV creation task

fully qualified SCT path, the selection predicate, which is in the form of a simple SQL
query construct and finally the fully qualified name of the TSV that needs to be persisted.

Fig. 3.10 shows an example invocation of a worker task with TSV creation instructions.
The worker task is invoked along with the path of the SCT file that contains the partition it
is to process. The information directive $TSVOUTPUT$ indicates the name of the output
file to which the uncompressed TSV is to be persisted. TSVQRY is the action directive
that is used to specify the selection predicate. In this example, we are filtering the tuples
in the partition by the attribute qualification (MKTSEGMENT = ‘FURNITURE’ ). Notice
that TSVQRY is a normal SQL in every aspect, other than that it is a simple SELECT on the
table with no attributes being projected. We do a SELECT 1, to make sure that the SQL
semantic and syntactic requirements are met, so that the parsing API can build the predicate
evaluation logic and generate the TSV. However, no actual tuples would be generated as

part of the instruction.

3.5.2 Join Index Query Task

The join index query task defines the set of directives that are used by the worker task to
read a join index partition and associated source table partitions that map to that join index
partition, and to project the attributes as specified by the selection list. We will, however,
defer the detailed discussion pertaining to the implementation of the resultset processing to

the next section and restrict ourselves to the semantics and syntax of this task here.

Fig. 3.11 shows an example of a join index query task. The $JISCT% directive is
used to provide the location of the join index partition file that the task will be processing.

The $JITABLES directives’parameters are quadruples of the form <ji_column_pos, table-

70



N S

3.5 Worker Tasks

ssau

.$JISCT% "JI_TABLE" "/infa/Jji_orderinfo_18.sct"

.3JITABLES 1 "customer" "tmp_18760.sf25_p01.9g03_03.01.tsv"™ "
/infa/sct/tpch/customer_2.sct"

.%$JITABLES 2 "orders" "tmp_18760.sf25_p01.903_03.02.tsv" "/
infa/sct/tpch/orders_1.sct"

.SJITABLES 3 "lineitem" "tmp_18760.sf25_p01.9g03_03.03.tsv" "
/infa/sct/tpch/lineitem_3.sct"

.JIPRJN {1 C_NAME, 3 L_COMMITDATE,3 L_SHIPDATE, 2
O_ORDERPRIORITY} INTO /infa/share/tmp_18760_result.txt;

JEXTT

Figure 3.11: Example of a join index query task

name, tsv_path, source_table_partition_sct> and are used to indicate the column number
in the join index system table that corresponds to the rowids of the table/partition which
is also provided as additional arguments to this directive. The persisted TSV path for this
source table partition, which was created by a TSV creation task in a preceding step is also
provided as an argument to this directive. There can be as many $JITABLE$ directives as
the number of tables involved in the join, with each directive entry defining the parameter
values for a different source table’s partition that map to this join index partition defined by
$JISCT% directive. The information in the $JISCT% and $JITABLES directives can be
derived from the metadata generated by the ji_builder process that we discussed in section
3.2.1.

Finally, the JTPRJN action directive is used to project the resultset using the join in-
dex. This directive accepts two parameters, one a projection list and another an output
location, which could be a file. The projection list is a sequence of pairs of the form <pos,
attribute> where pos is used to indicate as to which source table SCT file (as defined by
the $JITABLES% directive) should be probed to read the value for that attribute.

In the above example, the projection consists of the columns C_NAME from Customner,
I_ COMMITDATE and I._ SHIPDATE from Lineitem followed by O_ORDERPRIORITY

from Orders.

71



3.6 Workflow Execution Summary

3.5.3 Resultset Generator

As mentioned in section 2.6, each worker task is equipped with its own copy of a resultset
generator that is responsible for compiling the output relation to the standard resultset tuple
format to be transmitted back to the client. However, this resultset generator is deeply
integrated with the join processing mechanism of the worker task, which, as was pointed
out before, was constructed to work with a maximum of two table partitions. Since a join
index can have arbitrary number of tables involved in it, this required us to develop a new

resultset generator.

In the interest of focusing on our primary objective, which is to evaluate the perfor-
mance of join queries in the context of using a join index, we designed a minimal resultset
generator than can produce output relations based on a given join index and set of projec-

tions, without delayed predicates.

3.6 Workflow Execution Summary

Fig. 3.12 shows the flow of activities between various components for incorporating
queries utilizing join indices. As discussed in section 3.4, the TSV generation for the
source table partitions were separated into a different step which could be executed in par-
allel for the partitions of all the tables involved. This constitutes the first step of the join

index query processing.

Once the TSVs are generated, in the second step, the join index query tasks are launched
one per join index partition; this step is also capable of parallel execution so that multiple
join index partitions are processed in tandem. These two steps constitute the primary com-
ponents of the join query workflow using join index, and are independent of the number
of tables involved in the join, contrary to the regular join workflow which involved N — 1
steps. Notice, how all the TSVs are evaluated and persisted in parallel in step 1 and all the

join index partitions are processed simultaneously for query output in step 2.

For a join index query task, the worker tasks executes its directives in three phases, as
described in fig. 3.13 In phase I, the worker task performs certain pre-processing steps

prior to the resultset generation, in an attempt to reduce the I/O and CPU processing over-

72



3.6 Workflow Execution Summary

CLIENT SERVER AGENTS WORKER TASKS

S ———— a
P Submit join .
query pred ate

Figure 3.12: Activity diagram for query processing workflow using join index

head by eliminating some redundant operations. For this purpose, the worker task goes
through the projection list specified by the JTPRJN directive, and the TSVs that are as-
sociated with the source table partitions referenced by the task job, and builds a reduced
list of source tables that either have their columns referenced in the projection list or have
TSVs whose bits are not made of all 1s. The later implies that there was some predicate
condition applied on the source table partition, which caused at least some of the tuples to

be eliminated from further processing.

Once the reduced source table list is generated, in phase 2, the join index iterator takes
over and iterates over the list of join index tuples. In doing so, however, it will only read
those columns from the join index system table that refer to the rowids of the tables ap-
pearing in the reduced source table list. By reading only the columns referring to the source
table list, we can (i) skip those source tables’rowid columns which are neither part of the
projection list so that we do not need them to lookup any other attributes, (ii) nor resulted

in any tuple elimination for that partition.

For each of the join index tuples the resultset generator checks the individual rowids

against the corresponding table TSVs to see if that join index tuple will qualify for the

73



3.6 Workflow Execution Summary

/ IDV Worker Task - join index query Column projection lit \
| EEE \

“ \
‘ bl
rovice <] Tsvs
Join index
System table
Reduced source
Eta
L] : [
Phase 2
% Join Index / [selected join //TableASCT //
| I index tuples
o osee |/ o (8]
BECE ) | OE | ste——"s

\ e ol *
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - result /

5 equential pipelined
\\ ' execution misil®]  tuples /

Figure 3.13: join index query task processing

output of the join query. As discussed in section 2.8.2, TSVs are bit string based data
structures that are used to keep track of the rowids of tuples that passed the selection pred-
icates. The status of a tuple is indicated by its bit position in the TSV data structure. A
value of 1 means the tuple passed the selection predicate evaluation. A join index tuple is
qualified to generate output for the query, if all the rowids in that join index tuple, map to a

1 bit in the corresponding source table partitions’ TSVs.

Once the join index iterator determines that a join index tuple is selected for output
attribute generation, it passes that join index tuple to phase 3, which comprises of the
resultset generator. The resultset generator uses the rowids from the join index tuple to
retrieve the attributes specified in the column projection list from the corresponding source

table partition SCT files to create the output result set.

3.6.1 Pipelined Processing

The join index tuple selection (phase 2) and output resultset generation (phase 3) happen in

a sequential pipeline, so that the process starts generating the output records before the join

74



3.7 Summary

index is completely traversed. This helps significantly in reducing the first row generation
time, as we do not wait for all the selected join index tuples to be built before producing

any output.

3.7 Summary

The join index based query processing methodology, that we discussed in this chapter,
implements late materialization. As we discussed in section 2.7.3, late materialization

provides better performance to join processing in column-store based database systems.

The join index iterator reads the entire join index only a maximum of once per query. As
part of the output tuple creation, when the source table attributes are fetched from the disk,
those data blocks are essentially loaded into a memory cache, so that any further lookups on
those data blocks do not have to incur a physical I/O. If the processing job is not memory
bound, this means that no data block of source tables will be physically read from disk
more than once. Another aspect of the join index processing is that only those source table
blocks will be read which are pertaining to the attributes required for the projection list or
for evaluation of selection predicates. Thus, our approach is in tune with the principles of

column-stores by avoiding I/O on irrelevant attributes.

The pipelined approach of join index query processing ensures that the client applica-
tions does not have to wait for the completion of the query to start reading the data. Often,
for queries performing data mining analysis, when only a sample of records are required,

this approach saves significant amount of time.

The reduced source table list approach of processing the join index also brings some
additional advantages. We can use an N-way join index to evaluate queries with number
of joins less than N (being a subset of the original /V tables), under certain conditions. To
understand this better, let us consider a simpler, single partition system of the 3-table join
index described in fig. 3.1. The number of partitions are irrelevant for our discussion. The

new join index arrangement is show in fig. 3.14.

Since the tables involved in the joins have foreign key relationships between them, we

have 1 : N mapping from Region to Nation and 1 : M mapping from Nation to

75



3.7 Summary

3 TABLE 2 TABLE
JOIN INDEX JOIN INDEX
REGION NATION CUSTOMER
Region ~Nation Region ~ Cust Nation Rowid  Rowid Rowid Rowid  Rowid
Rowid Key Rowid Key Key Rowid Key Key (Customer)(Nation)(Region) (Customer)(Nation)
101 10 o0 11 2 103 1 13
2 0 2 I 2 0 1 2 2 1 2 2
3 3 3 2 1 3 4 2 3 3 1 3 3
@ 2%, |4 aa 4 3 2 7o |z G
5 4 g o | o 5 7 12 5 7 a4 5 7
6 . 3 6 15 14 =1 a | a > | 3
T -~ |~
2 (l_g)r..z 7 14 2 5l a |« 5 | 2
8 21 2., g8 11 1 9 4 s 9 4
9 14 0 9 10 4 0 3 1 0 3
. LOSIN » 6 9 2 6 9
11w, 201110 1 1 2 11
2 8. 2 o0 I 2! 12 1
'“\...5 D
Wb, 2 14 3 1 14 3
1B 2T Gy G @ @
15 12 14
s . 15 9 2 15 9
Rowid is a virtual column that does ;¢ ¢ | 5;
o . 6 8 4 16 8
not exist in the physical storage. T T T T

Identical columns

Figure 3.14: Multi-table join indexes and foreign key relationships

Customer. If all the foreign keys of the referencing relations in the join are not nullable,
then we can make use of the original 3-table join index between Customer, Nation and
Region for a query that only joins Customer and Nation. This is because in foreign
key relationships, if the foreign key column is not nullable, then the equi-join between
the referencing relation and the referenced relation will always yield the same cardinality
in the output relation as the original referencing relation. In our example, the output of
both the 3-way join between Customer, Nation and Region tables and that of the
2-way join between Customer and Nation tables have the same cardinality as that of
the Customer table. By treating the output relation as a new relation of its own, we can

apply this principle recursively to take into account N-way joins.

76



Experimental Results & Performance

Evaluation

4.1 Overview

In this chapter, we evaluate the performance of our join index implementation and compare

it against the existing query processing workflow that does not use these indices.

In the initial sections, we introduce our test objectives, the various metrics we are trying
to measure, the modified TPC-H benchmark suite that we are using for the test execution
followed by the hardware & software environment setup. We then continue the discussion
by describing each of the actual test cases separately, the objectives covered by the particu-
lar test case, and analysis of the performance metrics measured from the test execution. In
the last section, we summarize our observations on the performance impact of join indices

across the various test cases and different performance metrics.

4.2 Experimental Setup

4.2.1 Test Objectives Overview

Join indices, and for that matter almost none of the database index structures, cannot func-

tion as a universal silver bullet in addressing the performance concerns surrounding all

77



4.2 Experimental Setup

kinds of queries. In fact, most of the research on the performance of using indices in tradi-
tional row-stores show that performance benefits are usually limited to queries that benefit
from high selectivity' of indices. This is because, with poor selectivity, often the DBMS
needs to access most of the data blocks pertaining to the base table along with the process-
ing of index structures. This intuitively results in an increase of net processing cost. In the
case of join indices, this might offset the cost of computing the joins. Hence, one of the
objectives is to study the influence of selectivity on the performance of join index based
queries, especially considering that in the case of column-stores we benefit from the ability
to restrict our I/O operations to strictly the columns of interest to the query irrespective of

the availability of an index.

A multi-partitioned environment where the data in a relation is fragmented into many
logically distinct chunks adds one more dimension to evaluate. While partitioning presents
the database designer with the opportunity to process data in parallel, it also introduces
challenges like having to compute the joins between various combinations of partitions. In
certain scenarios the optimizer may be able to make use of the partition metadata informa-
tion to avoid processing join combinations that will not produce any output (as discussed
in sections 2.3.2 and 2.6 ). However join indexes should fare better in this case because
all the joins are precomputed, and as discussed in section 3.2, in real-world scenarios, a
significant number of join index partitions could be empty, saving associated processing

overhead. We will try to validate this hypothesis as part of our test executions.

An extension to the multi-partition scenario is the case of many-table join, i.e., a join
containing more than two tables. While multi-partitioning naturally lends itself to optimiza-
tion via parallel processing, the same cannot be said of many-table joins. This is because
traditional join optimizations follow the join model that considers many-table joins as a
sequence of two-table joins. The optimization strategies usually lean toward the idea of
reducing the cardinality of the intermediate relations by applying selection predicates as
early in the join step as possible as join computation costs are usually proportional to the
size of the relations. However, join indices cannot follow the same technique, as selection
predicates can be applied only on top of a pre-computed join. But in our design we have

the advantage that the selection predicates can be evaluated in parallel to determine the

Iselectivity = number of unique values / total number of records.

78



4.2 Experimental Setup

rowids of tuples qualifying from each relation. In our test cases, we will try to compare and

contrast the performance of many-table joins in this context.

One of the drawbacks of the existing join query processing workflow in IDV was that
it followed the early materialization concept ( section 2.8.2 ); which as we discussed in
section 2.7.3 was a less favorable approach compared to late materialization for construct-
ing the final output relations in column-stores. We also discussed in section 3.7 as to
how a join index based query processing workflow naturally leads to a late materialization
concept. Joins and materialization strategies are often tightly integrated, making it hard to
demark between the performance benefits due to one and the other. In our performance
evaluations, we will attempt to compare and contrast similar queries whose performance
characteristics differ only in minimal ways such that the join costs remain constant between

them, while varying the impact of late materialization.

Finally, one of the design characteristics of the new join index based query workflow
that we claimed in section 3.6 were the pre-processing steps to reduce the source table
list adaptively, when possible, to minimize the columns that actually need to be fetched
from the join index system table. We will compare the resource savings attributed to this

by turning off this feature.

4.2.2 Performance Metrics

In this section we discuss briefly the various performance metrics that we will be measuring

as part of our experimental query executions.

The most popular metric when it comes to evaluating the performance of database
queries is the actual time that the query took for execution, often referred to as the wall-
clock time. Unless otherwise mentioned, our measurements of the query execution time is
from the time the query is submitted to the time the resultset is completely generated. We
track the execution time in our test scripts by logging the start and end times associated

with each query that is submitted.

In addition to wall-clock time, we realized that it would be worthwhile to measure
CPU cycle time consumed by the worker tasks during query processing. CPU cycle time

is often measured in terms of number of seconds and is a measure of the amount of time

79



4.2 Experimental Setup

that the process was actually utilizing the CPU. CPU cycle time can be often different
from wall-clock time because of many reasons. For example, an I/O bound process will
spend more time waiting for its I/O requests to be completed and will not have many
CPU instructions to perform during this time, causing it to wait and be often suspended
by the operating system. As a result such a process would have a larger wall-clock time
compared to CPU cycle time. On the other hand, a CPU bound process, that has very
little to no I/O and is multi-threaded, can often end up having CPU cycle time larger than
wall-clock time. This is because such a process is often capable of utilizing more than
one CPU core in a multiprocessor based hardware, which gives it the ability to consume
more CPU cycles in a given amount of time. There is often one more reason as to why
the wall-clock time and CPU cycle time may not match. This happens when the system is
loaded beyond its rated workload, resulting in a situation where there is more demand for
resources (I/O, memory , CPU) from multiple processes causing the process to experience
resource starvation, resulting in a longer wall-clock time, waiting for resources to become
available. In our experimental setup, we will execute each query in isolation so that this

situation does not arise.

To measure the CPU cycle time, we augmented the source code of the worker tasks to
invoke the get rusage () 2 system call at the end of its processing to collect and log the

CPU resource utilization of that process instance.

Database processes are traditionally I/O bound. Hence, we will also be measuring the
I/O utilization of each of the worker tasks associated with every query. In order to obtain
this metric less intrusively, we will make use of the linux proc file system * and have the

worker tasks log its I/O at the end its execution.

The final metric that is of interest to us, is the memory utilization of the worker tasks.
Traditionally, column-stores are optimized for utilizing maximum amount of main memory,
as they read only the data blocks with relevant attributes from the disks. We will make use
of the proc file system to record the maximum amount of memory taken by the worker tasks
throughout its lifetime to understand the impact of the join index based query workflow on

the memory footprint of the worker tasks.

Zhttp://linux.die.net/man/2/getrusage
3https://www.kernel.org/doc/Documentation/filesystems/proc.txt

80



4.2 Experimental Setup

4.2.3 TPC-H based Benchmark

As discussed in section 2.4 we will be using the TPC-H benchmark suite for the functional
testing and performance comparison of our join index implementation. TPC-H specifica-
tions forbid the use of any prior knowledge of the queries in the physical design. This
excludes structures like materialized views, many of the indexes etc. However, in our case,
the join indices are built specifically over the foreign key relationships, which follows di-
rectly from the relational model of the database schema and is independent of the queries.
Such exemptions have been used in the past for benchmark testing of similar implementa-

tion concepts [Bon02].

A characteristic of the TPC-H benchmark suite is the concept of using scale factors
(SF) for representing the database size. This is so, because the physical storage size of
the database for the same data could be different between vendors and implementations,
making the comparison ambiguous. The base TPC-H database designed for scale factor
1 is considered to be approximately equivalent to a 1GB database. Figure 4.1 shows the
TPC-H schema that we introduced in section 2.4 labeled with the cardinality of the tables
associated with scale factor 1. Larger database sizes are characterized by the tables, whose
record count is multiplied by the chosen scale factor. The only exception to this rule are the

tables Nat ion and Region whose sizes remain constant.

Most of our experimental runs are performed against TPC-H databases of scale factor
1,2, 4,8, 12, 16, 20, 25 and 50. Unless otherwise specified, these will be consisting of
tables with a single partition. We chose a single partition approach for most of our test
cases as this will be a worst case scenario for join index implementation. Any performance
benefits in single partition join is expected to propagate to many partition joins trivially.
Having a constant number of partitions will also help us focus on each dimension of the
performance evaluation by isolating other features as much as possible. However, we will
be performing a test case with a constant database size of SF = 50 and varying the number

of table partitions to observe the impact of partitioning on join index performance.

The SQLs used for our test cases are modified versions of the TPC-H benchmark SQLs.
This is because as discussed in section 3.5.3, our result generator is confined to producing

resultsets for simple joins and hence, cannot perform any sophisticated aggregation or sim-

81



4.2 Experimental Setup

TPC-H Benchmark

SF*6,001,215

SF*1,500,000

SF*800,000 LINEITEM ORDERS SF*150,000
PARTSUPP CUSTOMER
L_ORDERKEY (¢ |0_ORDERKEY
[™"|PS_PARTKEY j_[: L_PARTKEY O_CUSTKEY CUSTKEY
PS_SUPPKEY L_SUPPKEY O_ORDERSTATUS —>|C_NATIONKEY
PS_AVAILQTY \ L_LINENUMBER O_TOTALPRICE C_NAME
PS_SUPPLYCOST L_QUANTITY O_ORDERDATE C_ADDRESS
PS_COMMENT L_EXTENDEDPRICE O_ORDERPRIORITY C_PHONE
L_DISCOUNT O_CLERK C_ACCTBAL
L TAX O_SHIPPRIORITY IC_MKTSEGMENT |
L_RETURNFLAG O_COMMENT [C_COMMENT |
SF*200,000 L_LINESTATUS
PART L_SHIPDATE
L_COMMITDATE
= |P_PARTKEY L RECEIPTDATE Number of
P_NAME L_SHIPINSTRUCT records in the
[P_MFGR L_SHIPMODE
P_BRAND L_COMMENT table
P_TYPE
P_SIZE
P_CONTAINER SF*10,000
P_RETAILPRICE SUPPLIER &8
NATION 5
P COMMENT S_SUPPKEY J REGION

@ |N_NATIONKEY
IN_REGIONKEY
N_NAME

N_COMMENT

S_NATIONKEY
S_NAME
S_ADDRESS
S_PHONE
S_ACCTBAL
S_COMMENT

R_REGIONKEY
R_REGIONNAME
R_COMMENT

SF = Scale Factor of the database
SF=1 =»~1GB database size

Figure 4.1: TPC-H Schema along with the cardinality of the tables in the database

ilar operations that are performed by the TPC-H benchmark queries after the preliminary
joins. We also minimized the number of attributes that are retrieved by each SQL. This is
to reduce the performance benefits that the join index would otherwise have over the cur-
rent query processing workflow due to its late materialization approach. We, however, do
measure the effects of late materialization explicitly, in a separate test case to quantify its
benefits as claimed in the design approach of the join index. The actual SQLs used for the
test cases are provided in appendix A for further reference. We will constrain any discus-
sions of SQLs in this chapter to only those characteristics that are of relevance to the test

case itself.

4.2.4 Test Environment Configuration

The test environment databases was setup on a Dell XPS 9100 system, running Kubuntu
14.04. For the sake of simplicity, as well as to remove any factoring of network contention
between client-server processes as part of resultset transfers, we setup our test scripts also
on the same server. The fact that the system is a multi-processor machine and that the clients

are less demanding with respect to CPU and memory utilization, makes its presence less

82



4.2 Experimental Setup

intrusive to the DBMS processes. The detailed test environment configuration consisting

of hardware and software components is displayed in table 4.1.

Hardware

Server Model: Dell XPS 9100

Model: Intel® Core™i7 CPU 960 @ 3.20GHz
Processor architecture: 64 bit

CPU Processor cache: 8 MB

Number of Cores: 4

Total number of CPUs: 8

Total: 12 GB

Model:Hynix HMT325U6BFR8C-H9
Number of Modules: 6

Individual Module Capcity: 2GB
Memory Type: DDR3 SDRAM

Data Transfer Rate: 1333 MHz
Swap 12 GB

Model : Western Digital WD10EALX
Size: 1 TB/RAID 0

Bus: SATA 6 GB/s

RPM: 7200

Main Memory(RAM)

Storage

Software

Linux: Kubuntu 14.04
OS Kernel version: 3.13.0-29 generic
OS Type: 64 bit

ILM DV Version: 6.2R6

Table 4.1: Test environment configuration

83



4.3 Experimental Test Cases & Results

4.3 Experimental Test Cases & Results

4.3.1 Two-table single partition joins

For this base test case for evaluating the join index performance, we use all the single par-
tition databases that were built for this test case and execute two-table joins. As such, the
join index has no advantage of saving computation costs of multi-partition join permuta-
tions or significant benefits from late materialization which starts manifesting noticeably
as the number of tables involved in the join increases (due to the many-step nature of the

join) or with an increase in the size and number of output records.

Looking at the performance summary of the queries in fig. 4.2 , we notice that in
general, the execution time for join index queries were about 60% faster compared to the
runtime of the queries without a join index. A significant percentage of this savings comes
from reduced CPU requirement of join index based execution, as can be seen from the
CPU utilization chart, where the queries using join indices consumed only about 55% of

the CPU in comparison.

The reduced CPU usage has to do with the fact that there is no computational cost
involved in the case of join index to calculate the joins, including merging the domains of

join attributes from the two tables involved in the join.

The I/0 utilization, however, does not show any significant deviation when join indices
are used for query processing. This can be attributed to the fact that the worker tasks need
to process an additional data structure that stores the join index system table, and any I/O
savings that could be attributed to avoiding join computation is amortized over the cost of
reading the join index. This can be better understood in the context of the TPC-H database
schema where the key columns of the relations are of integer domain. While a query not
using any index has to read the join attributes in order to compute the join, a query using
a join index needs to read the rowids from the join index system table which are also of
integer domain. Hence, intuitively, both kinds of queries have to execute approximately the

same amount of I/O, in the absence of other influencing factors like late materialization.

Analyzing the memory utilization, we notice about 45% reduction in the memory con-

84



MB

4.3 Experimental Test Cases & Results

Query Execution Time

Number of partitions = 1 queries: q12_01,q13_02,q14_01,

Number of tables =2 q16_01,917_01,q19_01
700 500
450
600
400
500 350
%)
400 2 300
(s}
o 250
300 &
200
200 150
100 100
50
o 0
1 2 4 8 12 16 20 25 50
TPC-H Scale factor
1/0 utilization
Number of partitions = 1 queries: q12_01,q13_02,q14_01,
= 16_01,q17_01,q19_01
25000 Number of tables 2 qlo_0l,ql/7_0l,ql5_
25000
EN
20000 20000
C| o
=
15000 15000
10000 10000
5000 5000
. _,_,-il HE N .
1 2 4 8 12 16 20 25 50

TPC-H Scale factor

CPU Cycle consumption

Number of partitions = 1 queries: q12_01,q13_02,q14_01,

Number of tables =2 q16_01,q17_01,q19_01
E NoJI
EEL
— o Bm i1 BB
1 2 4 8 12 16

20 25 50
TPC-H Scale factor

Total memory consumed by all

active worker tasks
Number of partitions = 1 queries: q12_01,q13_02,q14_01,
Number of tables =2 ql6_01,q17_01,q19_01

E'No JI

i |
1 2 4 8 12 16 20 25 50

TPC-H Scale factor

Figure 4.2: Summary of performance comparison between ji and non-ji version of queries

for two table, single partition joins

85



4.3 Experimental Test Cases & Results

sumed by the worker tasks. This can be attributed to the fact that in the absence of a join
index, the worker tasks need to (7) load the domains of the key columns, (ii) create a com-
mon merged domain to facilitate joins (section 2.8). These are implemented as memory
resident structures for benefiting execution speed and hence, contribute to memory utiliza-
tion. With the join index based approach, our sequential scan technique requires only the
current block (which is being processed) of the join index to be in the memory. Thus, the
size of the join index does not have any significant memory impact. Also, sequential iter-
ation of the join index is a CPU cache - friendly operation, a property that lends itself to
faster program execution. Such cache conscious techniques of performance enhancements

have been successfully employed in other column stores before [Bon02]

Further, we analyze the two queries that are outliers to this general trend. Noticeably
we have q19_01, whose performance improvement is on an average only 10% better, and

on the other side we have q17_01 that ran 9 times faster.

On close inspection of the performance metrics for q19_01 (fig 4.3 ), we notice that
q19_01 has a very low selectivity of 0.002%. Further, q19_01 shares identical query char-
acteristics (selection predicate on the large table) as that of the q12_10-q12_19 queries used
in the selectivity test case ( section 4.3.5 ). While we will defer the detailed discussion on
selectivity to that section, an important outcome of that test case was the observation that

for low selectivity, the savings on execution time and CPU were very low.

However, analyzing the performance metrics of q17_01 (fig 4.4 ) we notice that though
having a selectivity of a meager 0.10%, this query has executed 9 times faster with almost
90% CPU savings. The important distinction here is that the selection predicate on q17_01

is on the smaller table with no predicates on the large table, which is Part.

Thus, the lack of any filter on the large table forced the join algorithm to process all the
records in LineItem for join computation. This is costly for the non join-index compu-
tation, but not a disadvantage for the join index implementation as the join index approach
just iterates over the entire join index, performing TSV lookups (which are ©(1) for each
lookup) for record selection. The cost for this particular activity is constant irrespective of
the number of records qualifying by the selection predicate. Our test results from section

4.3.5 will demonstrate in detail that as more tuples qualify, the more beneficial the join

86



seconds

70

60

50

40

30

20

10

4.3 Experimental Test Cases & Results

Query Execution Time CPU Cycle consumption
Number of partitions = 1 Number of partitions = 1
Number of tables =2 query: q19_01 o Number of tables =2 query: q19_01
60
50
3 .
==noji S 40 noji
- b “ji
i 30
20
10
0
10 20 30 40 50 60 0 10 20 30 40 50 60
TPC-H Scale factor TPC-H Scale factor

Figure 4.3: Performance metrics for q19_01
index is.

4.3.2 Multi-table single partition joins

Most of the real-world DSS queries have many tables involved in its join. Hence, for this
test case we will sample three queries from the TPC-H benchmark suite. q02_01 is a five
table join between Part, Supplier, Partsupp, Nation and Region. q03_02 is a
three table join between Lineitem, Orders and Customer. Our last query in this
test case is q05_01 which is a six table join between Lineitem, Orders, Customer,
Supplier, Nation and Region. Again, we restrict ourselves to single partitions to

isolate and observe the performance impact of having many tables involved in the join.

As shown in fig. 4.5, the three queries tested have different characteristics in their
performance comparisons, making it worthwhile to analyze them in detail separately. While
q03_02 shows 60% savings in execution speed, similar to the overall performance savings
observed in the two-table join queries from the previous test case, queries q02_01 and
q05_01 behave differently. Hence we will review the characteristics of these two queries in

finer details.

On further analysis, we can see that the tables involved in q02_01 are small in compar-

ison to other tables like Lineitem or Orders which are involved in most of the other

87



seconds

140

120

100

80

60

40

20

4.3 Experimental Test Cases & Results

Query Execution Time CPU Cycle consumption
Number of partitions = 1 Number of partitions = 1
Number of tables =2 query: q17_01 Number of tables =2 query:q17_01
140

120

~noji 100 “noji

80 “=ji

seconds

60

40

20

10 20 30 40 50 60 0 10 20 30 40 50 60
TPC-H Scale factor TPC-H Scale factor

Figure 4.4: Performance metrics for q17_01

queries. The largest table involved in q02_01 is part supp at 20 million records for scale
factor 25 database. Also, the query itself only returns about 0.08% of the records, being
very highly selective with its predicates. The selection predicate on part table causes
record elimination in the first join step with part supp, resulting in reducing the size of

intermediate tables in the succeeding join steps.

Thus, this query is inherently fast in nature and, as can be observed by the execution
time provided in the figure, takes only a few seconds even for large databases. Although it
is debatable as to whether one needs to implement join indices for such queries which are
inherently fast, it can be observed from our test case that join index execution still offers
better performance. This performance benefit results from a combination of avoiding the
join computation costs along with savings from late materialization. The later has a signif-
icant impact on this query’s performance as it retrieves a significant number of attributes
from different tables, making it an ideal candidate for savings from late materialization.
We will however, defer the detailed analysis on the relationship between the number of
attributes on the projection list of the query and late materialization benefits till a later test

case discussed in section 4.3.4.

On the other hand q05_01 is an outlier with the join index query running 75 - 90 times
faster. In principle, q05_01 has the same largest three tables involved in the join as q03_02

88



4.5

3.5

seconds
w

150

100

50

4.3 Experimental Test Cases & Results

Query Execution Time Query Execution Time
Ll Number of partitions = 1
Number of partitions = 1 . uery: 03 01
Number of tables =6 query: q02_01 120 Number of tables =3 query: qUs_
100
880
~ji § “=ji
[
/ 40 1
o °©
5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor

Query Execution Time

Number of partitions = 1

Number of tables =5 query: q05_01

o

“*noji

5 10 15 20 25 30
TPC-H Scale factor

Figure 4.5: Execution time comparison for queries with multi-table joins

&9



4.3 Experimental Test Cases & Results

and is also a six table join. Therefore, the general expectation would be for q05_01 to
be a lot slower than q03_02. This is true in the case of queries executed without join in-
dices. However in the case of queries utilizing join indices, q05_01 seems to be many fold
faster than both the non join index version of q05_01 as well as the join index version
of q03_02. A careful observation of q05_02 reveals that the query is confining its results
to local suppliers via the predicate (c_nationkey = n_nationkey). This drastically

reduced the size of the join index created for serving the query*.

On analyzing the various cardinalities, we see that the join index is only 4% of the
largest table - Lineitem, as well as the selection predicates on the query reduces the
records down to 3% of the join index or rather 0.12% of Lineitem. Hence, we see that the
culmination of high selectivity along with already inherent savings over join calculations

provides this query with a huge performance benefit.

Another metric that we are interested in observing from this test case is the time it
took for the join index to generate the first row. One of the features of having a join index
was that once all the TSVs were generated, we could immediately start processing the
join index and produce the output. Since TSVs can be generated in parallel, this means
that for multi-table joins, join index based workflow can process the output records almost
instantaneously once the selection predicates are evaluated in step 1. Fig 4.6 clearly shows
that the join index based workflows start producing the output in a matter of a few seconds.
This happens at the beginning of step 2, hence the workflow takes the amount of time
consumed by step 1 to generate TSVs to generate the first row. In other words, the first row

return time will be dictated by the most computationally intensive selection predicate.

4.3.3 Two-table multi-partition joins

Multi-partitioned tables are the most common scenario in very large databases like IDV.
For this test case, we setup 2,3,5 and 10 partition versions of the database with SF 50, to
facilitate the execution of a two-table join query, q12_01. This query joins Lineitem
and Orders tables which are the two largest tables in the TPC-H database. Further the

selection predicates on Lineitem limits the number of records retrieved by the query to

“This is also the only exceptional case where we created a join index specifically to support the joins that
are not of foreign key - primary key nature

90



4.3 Experimental Test Cases & Results

First row return time for join index

45
40
35
i Step 2
30 H
€25
Q
@ 20
15
10
5
- -
0 — . ‘-‘-‘:"‘!"‘

TPC-H Scale factor

Figure 4.6: First row return time for join index based query workflows

2.74% of Lineitem table.

As discussed in section 2.8, partitioning can result in m x n joins which can be com-
putationally expensive. But, as discussed in section 3.2.1, due to the associative nature of
data in partitions across related tables, we can often end up with empty join index parti-
tions. One of the key observations as we constructed the join indices was the confirmation
of the above notion. For example, in the case of the 10 partition database, where both the
tables involved in the join were partitioned to 10 equal size partitions, our index creation
process materialized only 19 join index partitions instead of the theoretical maximum of
10 x 10 = 100 partitions.

From the performance metrics in fig. 4.7, we can see that as we increase the number of
partitions from 2 to 10, the savings in runtime increases from 54% to 73%. The non-join
index version of the query also shows improvement in performance till 5 partitions, but

decreases in performance with 10 partitions.

This degradation of performance for non-join index query execution can be attributed

to the much higher demand for CPU and memory, as can be observed from the respective

91



seconds

2.00
1.80
1.60

1.80 190
1.67
1.50
1.40 -
1.20 -
1.00
0.80 -
0.60 -
0.40 -
0.20 -
2 3 5 10

0.00

4.3 Experimental Test Cases & Results

Query Execution Time

TPC-H Scale Factor = 50
Number of tables =2 query: q12_01

120
100 \\/

“noji
40 \
‘\

0 2 4 6 8 10 12
number of source table partitions

Ratio of number of

JI partitions / source table partitions
TPC-H Scale Factor = 50 Tables: Lineitem, Orders
Number of tables =2

number of source table partitions

CPU Cycle consumption

TPC-H Scale Factor = 50
Number of tables =2 query: q12_01

450
400
350
300

seconds

200
150
100

50

0

|

/

—

250

7 el

“noji

/

—

2 4 6 8 10
number of source table partitions

Figure 4.7: Resource utilization comparison with multi partition queries

92

12



4.3 Experimental Test Cases & Results

utilization charts. The fact that in the absence of a join index, the database should check all
of the source table partition combinations for possible joins, increases the overhead due to
parallelism. This is because, for each combination of source table partitions, a worker task

will have to be instantiated to do the processing.

While the attempts to perform joins between most of the source table partitions will
produce no results, this still consumes a certain minimal CPU in terms of processing and
computational overhead. However, the most significant cost is in terms of memory utiliza-
tion, as the worker tasks need to load the source table contents to memory cache prior to
any join computation. Hence we notice an exponential growth in memory utilization with
increase in number of source table partitions for the query that is not using the join index.
The combination of high CPU cost that is normally associated with join computation along
with the exponential demand for memory can lead to resource starvation resulting in overall

performance degradation, as is observable for this query.

The join index version of the query does indicate some increase in CPU and memory
utilization. This can be attributed to the increase in the number of join index partitions per
source table partition as shown in the figure. As a result of this, the same source table SCT
file will have to be processed by multiple worker tasks; once for each of the join index
partition that maps to it.

However, this is still not sufficient to cause degradation of performance to join index
queries with our test environment setup. This is because, as stated before, we do not need
to perform any computation on empty join index partitions. Therefore, unlike the non-join
index version of the query, no resources are spent on processing source table partition

combinations that are not relevant.

Hence, using a join index, more partitions can be effectively processed in parallel with

less overhead till we reach a point of resource saturation.

4.3.4 Materialization

One of the key performance benefits we had forecasted for the join index based query
processing was the use of late materialization. In order to understand this better, we used

the three table join query q03_01 that joins Lineitem, Orders and Customer. We

93



4.3 Experimental Test Cases & Results

had originally used this query in the test case involving multi-table joins (section 4.3.2
) and had found it to follow performance characteristics that were inline with the general

observed trend for join index-based query execution.

For this test case, we created two versions of the query. The first version, q03_02 selects
every attribute from the two tables joined in the first join step (Orders and Customer).
The second version q03_03 selects only key attributes, minimizing any impact due to late
materialization. The queries were identical in all other aspects such as the selection predi-

cates applied and hence have the same cardinality for the output.

The intention was to set the resource cost of q03_03 as the base cost associated with ac-
tual join execution for both q03_03 and q03_02. This can be done because they have iden-
tical join and selection predicates. Thus, any increase in resource utilization from q03_03
to q03_02 will be the cost associated with materializing the extra attributes that are in the
projection list of q03_02. If we show that the increase in resource utilization from q03_03
to q03_02 is lesser for the join index based approach, we can substantiate that the join index

based approach is benefiting from late materialization.
The queries were executed on single partition tables.

Analyzing the runtimes for queries (fig. 4.8) , we notice that the join index implemen-
tation is faster for both q03_03 and q03_02 which is to be expected based on the previous
test cases. To determine the additional execution time to materialize the extra attributes,
we compute (q03_02_ji - q03_03_ji) for join index implementation and (q03_02_noji -
g03_03_noji) for the non-join index approach.

As predicted, this difference in execution time is much higher for non-join index version
compared to the join index implementation. As an example, for scale factor 25, while the
query execution time for join index implementation increased by 244 seconds in order to
include additional attributes in the projection list, for non-join index implementation, the

execution time went up by 485 seconds.

The same analysis is performed on the difference in CPU consumption and I/O utiliza-
tion and they correlate with our observation for query execution timings. For scale factor
25, the CPU cost increased only by 84 seconds for the join index version, in contrast to an

increase of 242 seconds for the non-join index version. Similarly, we notice an I/O increase

94



4.3 Experimental Test Cases & Results

Query Execution Time Increase in query execution time
Number of partitions = 1 For materializing additional attributes
Number of tables =3 queries: q03_0[2-3] o g
600
500 - 500
5 ~=q03_02_ji 2
S 400 “q03_02_noji g 400 i
g ~-q03_03_ji g “noji
300 / =+q03_03_noji 300 /
200 — / 200 ,///
100 / 100 a?/;/__//
0 gy % +* = ¥ T 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor
CPU Cycle consumption Increase in CPU consumption
Number of partitions = 1 s aliog: e .
g Numberoftables =3 queries: q03_023] 1o, For materializing additional attributes
300 | 300
€ 250 ~-q03_02_ji g 20 /
o [
S <#-q03_02_noji S 200
v 200 / ~=q03_03_ji & =>=ji
150 ==q03_03_noji 150 - “noji
100 - 100
50 50
0 2 ¥ —— 7 . 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor
I/O activity Increase in 1/0 utilization
Number of partitions = 1 , For materializing additional attributes
Number of tables =3 queries: q03_0[2-3] 25000
25000
20000
20000 @
@ -~ " s
q03_02_ji
= . 15000 A -
15000 =#-q03_02_noji =i
=-q03_03_ji =noji
=+=g03_03_noji
10000 / 10000
=
0 = 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor

Figure 4.8: Performance improvements because of late materialization

95



4.3 Experimental Test Cases & Results

of 5,993 MB while using join index, whereas without the index the increase was 16,446
MB.

In general we observe that the increase in execution time, CPU and I/O are higher
without a join index when materializing more attributes, confirming that the join index
implementation does provide additional performance benefits in the form of late material-

ization.

4.3.5 Query selectivity

As stated in the test objectives, one of our concerns surrounding the use of a join index
was to understand how it will fare with variation in the selectivity of the records. For this
purpose, we took a two-table join query and made multiple versions of it by changing its
selection predicate values so that the percentage of records selected varied from 0.05% to
100% and executed them against different database sizes. Both the tables were composed

of a single partition each.

Analyzing the runtimes of the query (fig. 4.9), we notice that in general, the execution
times show a savings of approximately 18% for selectivity at 0.05%, gradually increasing

to 60% savings at 100% selectivity.

This is roughly in proportion to the CPU savings observed in fig. 4.10, where we
see savings of the range 14% - 71% for scale factor 8 as we vary the selectivity, which
gradually increases to 25% - 72% savings as we reach scale factor 50. Thus, we can see
that the benefits of the join index is proportional to the actual amount of data that will be
projected. At smaller selectivity and database sizes, it seems to has less advantage over a
non index approach, since the join index workflow needs to iterate over the entire index
subtable irrespective of the selection predicates, whereas the non-index based approach
can reduce the records involved in the join by applying selection predicates in advance,

minimizing its CPU consumption for join computation.

This is very evident by reviewing the outlier query q17_01 that we discussed in section
4.3.1. In that scenario, though the selectivity of the query was very low, the non-join index
execution had a poor performance in comparison to the execution using join index and our

analysis had shown that the lack of selection predicates on the large table forced the system

96



4.3 Experimental Test Cases & Results

Query Execution Time
Number of partitions = 1
I\Izté)rgber of tables =2 TPC-H Scale Factor = 8 queries: q12_1[0-9]
180

160 /
140 /

/-‘-noji_sf08
“-ji_sf08

seconds

0 20 40 60
% records selected

80

Query Execution Time
Number of partitions = 1

I\%enber of tables =2 TPC-H Scale Factor = 25 queries: q12_1[0-9]
600 ol
5 500
[ =4
[o]
o 400
® “-noji_sf25
300

=ji_sf25

40
% records selected

60 80 100

100

seconds

Query Execution Time
Number of partitions = 1
I\it[l)rgber of tables =2 TPC-H Scale Factor = 16 queries: q12_1[0-9]

el

350

-“+noji_sf16
“=ji_sf16

——

200

150
100

50

0 20 80 100

40 0
% records selected

Query Execution Time
Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 50 queries: q12_1[0-9]
2000
1800 /
1600
1400 /
1200
1000 Aji_sfso
800

=ji_sf50

600
400
200

0

80 100

40 60
% records selected

Figure 4.9: Execution time comparisons with change in percentage of selectivity for differ-

ent TPC-H scale factor databases

97



4.3 Experimental Test Cases & Results

CPU Cycle consumption

Number of partitions = 1

Number of tables =2 TPC-H Scale Factor =8 queries: q12_1[0-9]
300
250 /
3 200
5 .
S /"nOJI_SfOS
» 150

“ji_sf08

0 20 40 60 80
% records selected

100

CPU Cycle consumption
Number of partitions = 1
Number of tables =2 TPC-H Scale Factor = 25 queries: q12_1[0-9]

900
/
/
" ~noji_sf25

“ji_sf25

800

700

600

500

seconds

400
300
200
100

0

0 20 60 80

40 100
% records selected

CPU Cycle consumption

Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 16 queries: q12_1[0-9]
600
500 4
8 400
s .e
S =noji_sf16
& 300

“ji_sfl6

0 20 40 60 80
% records selected

100

CPU Cycle consumption

Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 50 queries: q12_1[0-9]
1800
1600
1400
g 0o “noji_sf50
g 109 ~ji_sf50

800
600
400
200

0

0 20 40 60 80
% records selected

100

Figure 4.10: CPU second comparisons with change in percentage of selectivity for different

TPC-H scale factor databases

98



4.3 Experimental Test Cases & Results

to process all the records from the large table towards join computation.

To understand the I/O implications of this, it is necessary to do a size comparison be-
tween the join index and the key columns of the source tables. For simplicity, we will
assume that the key columns are of integer type, and consist of a single attribute, which
is true for our example query. Thus, for a simple two table join index, the size of the join
index will be twice that of the key column of the large table as it needs to store match-
ing rowids from both tables. Thus, the I/O required to read the join index is proportional
to twice that of reading the key column of the largest table. This needs to be contrasted
against a non-join index join which needs to read the key columns of both the tables, but
with a net I/O that will be less than reading the join index as the key column of the second

table will be smaller in cardinality.

The impact of this can be observed by reviewing the I/O utilization graphs in fig 4.11.
It can be seen that for scale factor 8, the I/O utilization for non - join index execution is less
than that of the join index implementation, as is expected from the above discussion. We
also notice that as the number of records selected increases, the I/O utilization in the non -
join index version increases at a much faster rate in comparison, overtaking the utilization
of join index version at 27% selectivity. This faster rate of increase in I/O utilization is at-
tributed to the disadvantages of early materialization, whose performance impact increases
with an increase in the number of records in the output. For larger scale factor databases, it
can be noticed that the impact of early materialization sets in well at the beginning with the
join index already showing better I/O performance even at 0.05% selectivity. This is be-
cause for larger databases, even for smaller percentage of selectivity, the number of records

in the output is significant to have an I/O impact on the materialization strategies.

In general we observe by reviewing the I/O utilization charts that the I/O performance
of the join index improves with both increase in percentage of selectivity or increase in the
size of the tables. Thus, the philosophy, that the larger the size of the output - the better the
performance gain for join index could be deemed true. We summarize our analysis on I/O
by observing that for scale factors 16 and above, we obtain a stable I/O improvement of

23%-20% for queries with selectivity equal to or greater than 27%.

Finally, we review the memory consumption of the processes. While from fig 4.12, we

99



4.3 Experimental Test Cases & Results

1/0 utilization
Number of partitions = 1

Number of tables =2 TPC-H Scale Factor =8 queries: q12_1[0-9]
4000
3500 /
o 3000 —=
=
2500 »
=-noji_sf08
2000 ..
“ji_sf08
1500
1000
500 -
0
0 20 80 100

40 60
% records selected

1/0 utilization
Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 25 queries: q12_1[0-9]
12000
10000 -
8000
[2a] .o
S =-noji_sf25
6000 "
“ji_sf25
4000
2000
0
0 20 40 60 80 100

% records selected

1/0 utilization

Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 16 queries: q12_1[0-9]
8000
7000 /
o 6000

=
5000
-noji_sf16
4000

=ji_sf16
3000
2000
1000
0
0 20 40 60 80 100

% records selected

I/0 utilization
Number of partitions = 1

Number of tables =2 TPC-H Scale Factor = 50 queries: q12_1[0-9]
25000
20000 /
o
=
15000
=noji_sf50
10000 ..
5000
0

0 20 40 60 80
% records selected

100

Figure 4.11: I/O (MB) comparisons with change in percentage of selectivity for different

TPC-H scale factor databases

100



4.3 Experimental Test Cases & Results

can see that overall the memory utilization of the join index implementation is significantly
better, what captivates attention at first is that the memory utilization of the join index

implementation is constant within a particular scale factor.

In order to understand this, let us start our analysis by investigating the various factors
that contribute to memory utilization. First, we have a join index cache whose size is pro-
portional to the number of tables involved in the join and is not impacted by the selectivity
or the number of records. Then there are the tuple selection vectors, which are proportional
to the number of records in the tables involved (that has a selection predicate in the query)
and is not influenced by the selectivity of the query. Thus, we can see that these two factors
contribute a constant overhead in terms of memory consumption. This leaves out one last

factor, memory cache for data blocks.

Let us recollect from section 3.7 that the output records are generated by the worker
tasks by fetching the source table data blocks using the rowids stored in the join index
tuples. As we stated there, any data block that is retrieved gets added to a main memory data
cache. Since many rowids of a table will map into the same data block for a given attribute,
any further requests for rows that are contained in the cached blocks can be served from
the memory. This translates to the fact that given sufficient number of random requests, all
of the data blocks will be stored in the memory, with the system functioning similar to an
in-memory database. Hence, once all the data blocks are stored in the memory, we will not
experience any further increase in memory utilization. The takeaway from this test case is
that even at 0.05% selectivity, due to the random nature of the TPC-H data, almost all of

the data blocks are loaded into the memory.

To see why this is easily possible, let us look at some real numbers. The size of the
Lineitem table for scale factor 50 is 300,000,000 records. 0.05% of this would be
150,000 records. This is what our test query is supposed to retrieve. Since the database
uses tokenization to store data, each of the attributes that the query is referencing will fit
into 4 bytes. This gives 262144 elements in a 1MB main memory data cache buffer, requir-
ing a meager 1144 cache buffers to hold the values for all of the 300,000,000 elements of
an attribute. We can now see how the 150,000 record lookups can be easily scattered across
the 1144 cache buffers such that at least one record will map into a cache buffer, requiring

it to be fetched from the disk to the memory. Thus at 0.05% selectivity, we essentially have

101



4.3 Experimental Test Cases & Results

Total memory consumed by active worker tasks Total memory consumed by active worker tasks

Number of partitions = 1 Number of partitions = 1
Number of tables =2 TPC-H Scale Factor =8 queries: q12_1[0-9]  Number of tables =2 TPC-H Scale Factor = 16 queries: q12_1[0-9]
3000 - 6000
2500 5000
[2a] o
> =
2000 4000
=-noji_sf08 =“noji_sf16
1500 3000 .
“ji_sf08 “ji_sf16
1000 & 2000
500 1000
0 0
0 20 40 60 80 100 0 20 40 60 80 100
% records selected % records selected

Total memory consumed by active worker tasks Total memory consumed by active worker tasks

Number of partitions = 1 Number of partitions = 1
Number of tables =2 TPC-H Scale Factor = 25 queries: q12_1[0-9]1  Number of tables =2 TPC-H Scale Factor = 50 queries: q12_1[0-9]
7000 14000
o) @ 12000
6000 ..
2 “noji_sf25 2 ~-noji_sf50
5000 = 10000 ..
=ji_sf25 “ii_sf50
4000 = 8000
3000 - 6000
2000 a000
1000 2000
0 0
0 20 40 60 80 100 0 20 40 60 80 100
% records selected % records selected

Figure 4.12: Peak memory (MB) utilization comparisons with change in percentage of
selectivity for different TPC-H scale factor databases

102



4.3 Experimental Test Cases & Results

the entire data in main memory.

To prove our theory, we measured the memory utilization of the same query for SF 50,
after adjusting the selectivity to 0% (i.e, no record returned). This reduced the Memory
utilization from 5058 MB which was the utilization at 0.05% selectivity, to 166MB, all the
way down. Thus we can conclude that for all practical purposes, the memory utilization
will be constant with respect to selectivity.

The last observation in the memory utilization charts, is that, as the scale factor in-
creases, for queries with small percentage of selectivity, the memory utilization for the
non-join index version of the query starts getting closer to that of the join index implemen-
tation, to the point that at SF 25, it does better than join index implementation up to 1%

selectivity and for SF 50 up to 4.38% selectivity.

This is because the join index implementation has additional memory cost overhead in
the form of uncompressed TSVs, and join index buffers (to read and process join index
tuples), that are proportional to the size of the tables being joined. However, this cost is a

constant within a given SF and has no dependence on the selectivity of the predicates.

Whereas the non-join index version is also impacted by the memory data cache, the
overhead of structures required for join computation is proportional to the number of tuples
being joined, i.e., dependent on the selectivity.

For smaller values of selectivity, the non-join index version has less records to be joined
in comparison and utilizes less amount of memory for maintaining structures for join com-
putation. But, since this overhead is proportional to the actual number of records being
joined, as we notice from the charts, the memory utilization shoots up with the increase in
the percentage of records selected.

4.3.6 Reduced source table lists

Our last test objective was to quantify the performance impacts of using reduced source

table lists to adaptively read only the required columns from the join index system table.

For this, we used a 3-table join index built between Lineitem, Orders and Customer

to process a query whose join was only between Lineitem and Orders. It is possible

103



4.3 Experimental Test Cases & Results

Query Execution Time CPU Cycle consumption
Number of partitions = 1 Number of partitions = 1
90Number of tables =2 query: q12_01 goNumber of tables =2 query: q12_01
80 80
70 70
35 35
g 60 g 60 |
S 3 “norma
850 % 50
- .
20 20 adaptive
“-normal
30 i 30
“-adaptive
20 20
10 10
0 0
5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor
1/0 utilization Total memory consumed by active worker tasks
Number of partitions = 1 Number of partitions = 1
Number of tables =2 query: q12_01 Number of tables =2 query: q12_01
500 3000
4000
3500 /ﬁ 2500
= 3000 ~-normal 2000
o
2500 . s ~“normal
“-adaptive 1500 .
2000 “-adaptive
1500 1000
1000
500 / 500
0 / 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
TPC-H Scale factor TPC-H Scale factor

Figure 4.13: Resource utilization comparison of adaptive reads on JI

to do this because of the join index properties that we discussed in section 3.7 To measure
the performance impact, we executed the join index query processing workflow with and

without the reduced source table lists feature turned on.

Our first observation from the resource utilization charts in fig. 4.13 is that there is no
visible impact on memory consumption. In fact the measured difference was of the order
of < 0.1%. This is because we have a fixed join index memory buffer that is optimized for
sequential processing and an extra attribute will not result in significant increase in memory

utilization.

104



4.4 Results Summary

I/O utilization shows approximately 14% improvement, as the third irrelevant column
of the join index system table, belonging to Customer table is not accessed. This is ex-

pected and was the original objective for including this feature.

The CPU savings due to this feature are not much in comparison, averaging around
5%. This has to do with the fact that the result set generator has no necessity to process any
source tables further that have no data attributes referenced by the query. Hence, there is
no significant processing overhead in terms of CPU and the for the resource savings tend

to be primarily I/O oriented.

As a culmination of I/O and CPU savings, we notice that the execution times for the
query benefit by about 23% on an average, clearly demonstrating that overall, the approach

of using reduced source table lists adaptively is a beneficial feature.

4.4 Results Summary

Our tests based on the TPC-H benchmark on different query and database configurations
have shown conclusively that using a join index does indeed offer significant performance

improvements on join query processing.

In general, we see an overall improvement of around 60% on the execution time of the
average query while using join indices. This reduction in the execution time of the queries

is primarily contributed by savings in CPU and I/O due to the use of join indices.

The CPU savings are primarily attributed to the fact that the joins are pre-computed in
the case of a join index, making any CPU intensive steps required to perform the matching
of tuples unnecessary. This include the costs associated with merging the different domains
of the tokenized join key attributes as well as the actual matching of the tuples itself. CPU
savings also result from the fact that the join index approach follows late materialization,
an approach that will reduce the amount of irrelevant data that will otherwise go through
intermediate processing steps. Another contributor to CPU savings is the benefit from par-
titioning. With the availability of a join index, the source table partition combinations that
will not yield any output need not be processed, as they will be indicated by an empty join

index system table partition. We also observe that the queries with selection predicates that

105



4.4 Results Summary

qualify a higher percentage of records from the join have significantly higher CPU savings,
benefiting from late materialization as well as the elimination of join costs, the latter being

proportional to the number of tuples being joined.

Although, in principle, adding a new data structure tends to increase the I/O utiliza-
tion of the process, our observations show no deterioration in I/O performance and in
many cases even demonstrate significant savings in I/O because of utilizing join indices

for queries.

The primary sources of savings in I/O result from the late materialization approach
followed by join index, which as we already discussed, avoids processing of irrelevant data
and therefore, the I/O cost associated with it. The performance benefits for I/O due to late
materialization increase with the increase in data being processed, and hence, increases
with an increase in the percentage of records being selected as well as with the increase in

the number of attributes projected from the relations.

Though not our primary design objective, the join index implementation also resulted in
overall better memory utilization, with an average savings of 45%. The savings in memory
consumption are a direct consequence of not having to construct and hold memory-resident
structures for the purpose of computing joins. This is inclusive of any key-column domains,
maintenance of a common merged domain for executing joins, etc. The memory overhead
of having to process the join index structure was successfully mitigated by keeping a ba-
sic minimal cache for the join index system table and implementing sequential iteration
through the join index, with a read-once strategy. An important finding with respect to
memory utilization is that for all practical purposes, for selectivities beyond 0.05%, the
memory utilization is near constant for a given join predicate and projection list, irrespec-
tive of the number of records generated in the output by varying the selection predicates.

This is because of the data caching behavior of the database.

In summary, our test cases, which spanned various query and data characteristics, show
join indices to be beneficial in varying degrees towards improving the performance of query
execution, by providing resource savings in terms CPU, I/O and memory. However, we ob-
serve that the benefits and associated savings in query execution time are more substantial

with the increase in the size of the data, whether it be in terms of the number of records

106



4.4 Results Summary

qualified or the number of attributes requested in the projection list. This is a significant
observation as these are the characteristics of DSS queries, one of the primary targets for

such performance enhancements.

107



Final Conclusion & Future Work

5.1 Conclusion

Ever since its inception in the late 1970s, relational database management systems (RDBMS)
have continued to enjoy wide spread popularity thanks to the flexibility and ease of use that
has been the defining characteristics of the relational model. Although the column-based
physical storage model did not gain significant foothold initially in contrast to the row-
based approach, with increase in popularity of analytical applications and the burgeoning
growth in the amount of data accumulated and processed by institutions, the past decade
has seen a resurgence of interest in column-stores which offer superior performance in

catering to the computational demands of analytical queries.

While improved physical storage techniques like partitioning and successful integration
of distributed and parallel processing technologies have made significant contributions to
meet the increased demand for efficiency and computing power from database technologies
at a reasonable infrastructure cost, this has introduced new dimensions in the understanding
the benefits of some of the performance paradigms introduced in the original relational

systems.

One such case is the use of join indices, which was conceived in the 1980s as a data
structure based approach to address the high computational cost associated with the rela-

tional join operation.

108



5.1 Conclusion

In this thesis, we provide a join index design that is adapted for column-stores employ-
ing a partitioned physical storage. Our join index design takes into account the need for
scalability via parallelism and ease of maintenance by taking into account the partitioned
nature of the source tables involved in the join. The physical storage design employed for
persisting the join index simplifies the implementation by storing the join index structure
as a special system table, leveraging existing physical storage APIs. In doing so, we also
exploit the performance benefits associated with column store design by adaptively reading

only the subset of a join index structure that is needed for a particular query.

We put our design to test by implementing it on a commercial column based RDBMS,
Informatica’s IDV. In doing this, we also address some of the design issues with its current
query processing workflows by eliminating the redundant evaluation of selection predi-
cates, and replacing the resultset generation strategy of early materialization with a late

materialization strategy that is more suited for column stores.

For analyzing the performance advantages of the join index implementation, we set up
an elaborate test suite based on the TPC-H benchmark for DSS systems. Our test setup
took into account a variety of database sizes, number of partitions, selection predicates
influencing query selectivities, number of joining tables and finally the impact of number

of attributes in the projection list of the query.

In order to better understand the source of performance benefits, we also measured in
addition to the standard performance metric of query execution time, resource utilization

parameters like CPU, I/O and Memory consumption.

Our extensive analysis of the test results show significant performance improvements
on query execution time by using join indices compared to standard join execution. This is
accompanied by better utilization of resources like CPU, I/O and memory, thus reducing

the overall resource demands on the system, facilitating increased throughput.

109



5.2 Future work

5.2 Future work

5.2.1 Complex Query Types

As discussed in our join index implementation, the new query processing workflow was
equipped with a resultset generator that performs only simple joins between the tables
along with selection predicates and attribute projections. However, more than often, in
real-world applications, joins are often followed by such operations like aggregations and
other complex query operations. It would be worthwhile in exploring the possibilities and

benefits of using a join index in such contexts.

Many conventional join algorithms implement intelligent designs by exploiting proper-
ties of relational systems to optimize performance of such operations. This is often accom-
plished by executing some of these steps prior to the actual join computation. For example,
in our experiments, we saw how selection predicates help the conventional joins by re-
ducing the number of tuples that flow into the join computation by applying the selection
predicates prior to join execution. While this is a simple case, which we support in our
implementation, there are other complex but common operations like aggregations that can

benefit from similar techniques.

For example, consider the Employee and Dept relations (fig 2.10) that we discussed
in section 2.7.2.3. A query that requests the number of employees working in each depart-
ment could be processed with better efficiency by first aggregating the count of employee
records over DID , creating an intermediate relation which would have reduced cardinal-
ity, which can be then joined with Dept to obtain the department names. This benefits
from reduced join computation costs, which as we have already discussed in the past, is

proportional to the number of tuples involved in the actual join processing.

An equivalent approach to follow in the join index based implementation would be to
perform the aggregation on the join index first by grouping over the rowid column repre-
senting the Dept table, forming an intermediate relation consisting of record counts and
rowids of Dept, followed by looking up of the department name from Dept table using
the Dept rowids. The performance advantages are intuitive, because of less number of

lookups required.

110



5.2 Future work

5.2.2 Storage techniques for rowids

The approach for storing the individual rowids in our join index implementation was an
"as-1s" one where we persisted the rowids of tuples as such. These rowids are implemented
in the database as 32-bit signed integers, supporting a maximum of 2 billion tuples per
partition. However, most real-world tables will not contain such large number of records

per partition.

Rowids for table partitions that contain smaller number of records can be effectively
stored using smaller number of bits. For example rowids for a source table partition with
10 million records could be easily stored using 24-bit integers. This is a straight 25% sav-
ings on 1/0O. For 50,000 records, 16-bit integers are more than sufficient, which is 50%
I/O savings. Many of the tables that are involved in a join are usually dimension tables,
characterized by very small record counts, often to the extent of few tens of thousands per
partition. Hence we can see why this storage technique can boost the performance of the

join index implementation.

The cardinality of the source table partitions are easily available from metadata info,
making it easier to implement this join strategy, as we know prior to the creation of the join
index, what would be the maximum cardinality of each attribute that will make up the join

index system table.

5.2.3 Processing techniques for JI partitions

As a direct consequence of the design approach used to partition join indices, we noticed
that how a single source table partition could potentially end up being mapped to multiple

join index partitions. This have been empirically verified during our test execution.

While this approach has its maintenance benefits, and helps with parallelism and scal-
ability, it also could manifest as a potential I/O bottleneck. For example, consider a case
where a 10 x 10 partition join between Lineitem and Orders results in 100 join index
partitions. In this case, each source table partition will be mapped to 10 different join index
partitions (worst case scenario). If we follow our new query processing workflow, each of

the join index partitions would be processed by a different worker task instance.

111



5.2 Future work

In terms of I/O utilization, each source table partition will be read 10 times. Recol-
lect from our previous discussions as to how worker tasks are stateless as well as do not
communicate with each other. So, while each worker instance reads data from the disk to
its memory cache, it is not shared even between the worker task instances that are on the
same computing node. Further, the worker tasks that are processing the same source table

partitions need not even be executed on the same computing node.

Hence, there will be a significant amount of redundant I/O spent in reading the source
table partitions. An effective way of overcoming this problem would be to process all the
join index partitions that map to the same large table partition (in this case Lineitem )
using a single worker task instance. This can be trivially accomplished by modifying the
join index query task to accept one primary source table partition (in this case a Lineitem
partition), followed by a list of join index partitions that maps to it, and additional lists for

partitions and TSVs of other tables that map into it.

The worker tasks can process each join index partition in sequence, buteach Lineitem

partition would be accessed only once, resulting in significant I/O reduction.

Fig. 5.1 shows a conceptual representation of what each worker task will process for
a 10 source table partition example of join between Lineitem and Orders. While this
would have originally resulted with 100 worker task instances and each source table parti-
tion being read 10 times, with the new workflow, there will be only 10 worker task instances
and each Lineitem partition would be read only once. This presents a significant amount

of I/0 savings.

112



5.2 Future work

PRIMARY_SRC_TABLE_SCT Lineitem |"/infa/tpch/lineitem_1.sct" "/infa/share/lineitem_1.tsv"
UlI_SCT "/infa/tpch/ji/ji_orderinfo_1.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_1.sct" "/infa/share/orders_1.tsv"
UlI_scT "/infa/tpch/ji/ji_orderinfo_2.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_2.sct" "/infa/share/orders_2.tsv"
Ul_scT "/infa/tpch/ji/ji_orderinfo_3.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_3.sct" "/infa/share/orders_3.tsv"
Ul_scT "/infa/tpch/ji/ji_orderinfo_4.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_4.sct" "/infa/share/orders_4.tsv"
Ul_scT "/infa/tpch/ji/ji_orderinfo_5.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_5.sct" "/infa/share/orders_5.tsv"
UI_scT "/infa/tpch/ji/ji_orderinfo_6.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_6.sct" "/infa/share/orders_6.tsv"
JI_SCT "/infa/tpch/ji/ji_orderinfo_7.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_7.sct" "/infa/share/orders_7.tsv"
UlI_scT "/infa/tpch/ji/ji_orderinfo_8.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_8.sct" "/infa/share/orders_8.tsv"
UlI_scT "/infa/tpch/ji/ji_orderinfo_9.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_9.sct" "/infa/share/orders_9.tsv"
UI_scT "/infa/tpch/ji/ji_orderinfo_10.sct"

SRC_TABLE_SCT Orders "/infa/tpch/orders_10.sct" "/infa/share/orders_10.tsv"

Figure 5.1: Improvised join index processing

113




[ABHO09]

[ABH"13]

[AHYS83]

[AKKSO02]

[AMDMO7]

[AMF06]

[AMHO8]

Bibliography

Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-Oriented
Database Systems. Proc. of the VLDB Endowment, 2(2):1664—1665, 2009.

Daniel Abadi, Peter A Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. The Design and Implementation of Modern Column-
Oriented Database Systems.  Foundations and Trends in Databases,
5(3):197-280, 2013.

Peter M. G. Apers, Alan R. Hevner, and S. Bing Yao. Optimization Algo-
rithms for Distributed Queries. IEEE Transactions on Software Engineering,
9(1):57-68, 1983.

Ishfag Ahmad, Kamalakar Karlapalem, Yu-Kwong Kwok, and Siu-Kai So.
Evolutionary Algorithms for Allocating Data in Distributed Database Sys-
tems. Distributed and Parallel Databases, 11(1):5-32, 2002.

Daniel J Abadi, Daniel S Myers, David J DeWitt, and Samuel R Madden.
Materialization Strategies in a Column-Oriented DBMS. In Proc. of the
IEEE Int. Conf. on Data Engineering (ICDE), pages 466—475. IEEE, 2007.

Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compres-
sion and Execution in Column-Oriented Database Systems. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, pages 671-682. ACM,
2006.

Daniel J Abadi, Samuel R Madden, and Nabil Hachem. Column-Stores vs.
Row-Stores: How different are they really? In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 967-980. ACM, 2008.

114



BIBLIOGRAPHY

[Ape88]

[Bat79]

[BBC*12]

[BD83]

[BHF09]

[BK99]

[BLT86]

[BMI0]

[BMK99]

Peter MG Apers. Data Allocation in Distributed Database Systems. ACM
Transactions on Database Systems (TODS), 13(3):263-304, 1988.

Don S Batory. On Searching Transposed Files. ACM Transactions on
Database Systems (TODS), 4(4):531-544, 1979.

Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho,
Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, et al.
Business Analytics in (a) Blink. /IEEE Data Eng. Bull., 35(1):9-14, 2012.

Haran Boral and David J DeWitt. Database Machines: An Idea Whose Time
has Passed? A Critique of the Future of Database Machines. Springer, 1983.

Carsten Binnig, Stefan Hildenbrand, and Franz F'arber. Dictionary-Based
Order-Preserving String Compression for Main Memory Column Stores. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 283—
296. ACM, 2009.

Peter A Boncz and Martin L Kersten. MIL primitives for querying a frag-
mented world. The VLDB Journal-The International Journal on Very Large
Data Bases, 8(2):101-119, 1999.

Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently Updat-
ing Materialized Views. In ACM SIGMOD Record, volume 15, pages 61-71.
ACM, 1986.

José A Blakeley and Nancy L. Martin. Join Index, Materialized View, and
Hybrid-Hash Join: a Performance Analysis. In Proc. of the IEEE Int. Conf.
on Data Engineering (ICDE), pages 256-263. IEEE, 1990.

Peter A Boncz, Stefan Manegold, and Martin L Kersten. Database Architec-
ture Optimized for the New Bottleneck: Memory Access. In Proc. of the Int.
Conf. on Very Large Data Bases (VLDB), volume 99, pages 54—65. VLDB
Endowment, 1999.

115



BIBLIOGRAPHY

[Bon02]

[BZNO5]

[CK85]

[Cod70]

[Cou08]

[CSRLO1]

[Dee82]

[Des89]

[DGI2]

[EN13]

Peter A Boncz. Monet; a Next-Generation DBMS Kernel For Query-

Intensive Applications. PhD thesis, University of Amsterdam (UvA), May
2002.

Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In Proc. of the Conf. on Innovative Data Sys-
tems Research (CIDR), volume 5, pages 225-237, 2005.

George P Copeland and Setrag N Khoshafian. A Decomposition Storage
Model. In ACM SIGMOD Record, volume 14, pages 268-279. ACM, 1985.

Edgar F Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377-387, 1970.

Transaction Processing Performance Council. TPC-H Benchmark Specifi-
cation. Published at http://www. tcp. org/hspec. html, 2008.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. [Introduction to Algorithms. McGraw Hill Higher Education, 2nd
edition, 2001.

S. Misbah Deen. An Implementation of Impure Surrogates. In Proc. of
the Int. Conf. on Very Large Data Bases (VLDB), pages 245-256. Morgan
Kaufmann Publishers Inc., 1982.

Bipin C. Desai. Performance of a Composite Attribute and Join Index. IEEE
Transactions on Software Engineering, 15(2):142—152, 1989.

David DeWitt and Jim Gray. Parallel Database Systems: the Future of High
Performance Database Systems. Communications of the ACM, 35(6):85-98,
1992.

R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Pearson
Education, Limited, 6th edition, 2013.

116



BIBLIOGRAPHY

[FML*12]

[GCMK™12]

[GFZ13]

[Got75]

[GRO3]

[GR12]

[Gra93]

[Hae78]

[HCLS97]

[HKPO6]

[HLAMO6]

Franz Farber, Norman May, Wolfgang Lehner, Philipp GroBe, Ingo Miiller,
Hannes Rauhe, and Jonathan Dees. The SAP HANA Database—An Archi-
tecture Overview. IEEE Data Eng. Bull., 35(1):28-33, 2012.

Martin Grund, Philippe Cudré-Mauroux, Jens Kriiger, Samuel Madden, and
Hasso Plattner. An Overview of HYRISE-a Main Memory Hybrid Storage
Engine. IEEE Data Eng. Bull., 35(1):52-57, 2012.

Richard Grondin, Evgueni Fadeitchev, and Vassili Zarouba. Searchable
Archive, February 26 2013. US Patent 8,386,435.

Leo R Gotlieb. Computing Joins of Relations. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 55-63. ACM, 1975.

Johannes Gehrke and Raghu Ramakrishnan. Database Management Sys-
tems. McGraw Hill, 2003.

John Gantz and David Reinsel. The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East. IDC iView:
IDC Analyze the Future, 2007:1-16, 2012.

Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys (CSUR), 25(2):73-169, 1993.

Theo Haerder. Implementing a Generalized Access Path Structure for a Re-
lational Database System. ACM Transactions on Database Systems (TODS),
3(3):285-298, 1978.

Laura M Haas, Michael J Carey, Miron Livny, and Amit Shukla. Seeking
the Truth about Ad hoc Join Costs. The VLDB Journal-The International
Journal on Very Large Data Bases, 6(3):241-256, 1997.

J. Han, M. Kamber, and J. Pei. Data Mining, Southeast Asia Edition: Con-
cepts and Techniques. Elsevier Science, 2006.

Stavros Harizopoulos, Velen Liang, Daniel J Abadi, and Samuel Madden.

Performance Tradeoffs in Read-Optimized Databases. In Proc. of the Int.

117



BIBLIOGRAPHY

[IKM12]

[Inf13]

[Inf14]

[Kim80]

[Knu9s]

[LHP12]

[LRI8]

Conf. on Very Large Data Bases (VLDB), pages 487-498. VLDB Endow-
ment, 2006.

Milena Ivanova, Martin Kersten, and Stefan Manegold. Data Vaults: a Sym-
biosis Between Database Technology and Scientific File Repositories. In
Proc. of the Scientific and Statistical Database Management (SSDBM) Int.
Conf., pages 485-494. Springer, 2012.

Informatica Corporation. The Benefits of a Lean Application Portfolio.
https://informatica-prod.adobecgms.net/content/
dam/informatica-com/global/amer/us/collateral/
white-paper/benefits—-lean—-application-portfolio_
white-paper_1769.pdf, September 2013.

Informatica Corporation. Informatica Data Archive Manage Applica-
tion Data throughout its Lifecycle. https://www.informatica.
com/content/dam/informatica-com/global/amer/us/
collateral/data-sheet/data—-archive_data-sheet_
6955.pdf, August 2014.

Won Kim. A New Way to Compute the Product and Join of Relations. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 179—
187. ACM, 1980.

Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison Wesley Longman Publishing Co., Inc., 2nd edition,
1998.

Per-Ake Larson, Eric N Hanson, and Susan L Price. Columnar Storage in
SQL Server 2012. IEEE Data Eng. Bull., 35(1):15-20, 2012.

Hui Lei and Kenneth A Ross. Faster Joins, Self-Joins and Multi-way Joins
Using Join Indices. Data & Knowledge Engineering, 28(3):277-298, 1998.

118


https://informatica-prod.adobecqms.net/content/dam/informatica-com/global/amer/us/collateral/white-paper/benefits-lean-application-portfolio_white-paper_1769.pdf
https://informatica-prod.adobecqms.net/content/dam/informatica-com/global/amer/us/collateral/white-paper/benefits-lean-application-portfolio_white-paper_1769.pdf
https://informatica-prod.adobecqms.net/content/dam/informatica-com/global/amer/us/collateral/white-paper/benefits-lean-application-portfolio_white-paper_1769.pdf
https://informatica-prod.adobecqms.net/content/dam/informatica-com/global/amer/us/collateral/white-paper/benefits-lean-application-portfolio_white-paper_1769.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6955.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6955.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6955.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6955.pdf

BIBLIOGRAPHY

[LR99]

[MBD*12]

[MBNKO04]

[ME92]

[MF04]

[MKBO09]

[ML86]

[MS88]

[NK12]

Zhe Li and Kenneth A Ross. Fast Joins Using Join Indices. The VLDB
Journal-The International Journal on Very Large Data Bases, 8(1):1-24,
1999.

Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and
Dominic Barton. Big Data. The Management Revolution. Harvard Bus Rev.,
90(10):61-67, 2012.

Stefan Manegold, Peter Boncz, Niels Nes, and Martin Kersten. Cache-
Conscious Radix-Decluster Projections. In Proc. of the Int. Conf. on Very
Large Data Bases (VLDB), pages 684—-695. VLDB Endowment, 2004.

Priti Mishra and Margaret H Eich. Join Processing in Relational Databases.
ACM Computing Surveys (CSUR), 24(1):63—-113, 1992.

Roger MacNicol and Blaine French. Sybase 1Q Multiplex-Designed for An-
alytics. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB), pages
1227-1230. VLDB Endowment, 2004.

Stefan Manegold, Martin L Kersten, and Peter Boncz. Database Architec-
ture Evolution: Mammals Flourished long Before Dinosaurs Became Ex-
tinct. Proc. of the Int. Conf. on Very Large Data Bases (VLDB), 2(2):1648—
1653, 2009.

Lothar F. Mackert and Guy M. Lohman. R* Optimizer Validation and Per-
formance Evaluation for Distributed Queries. In Proc. of the Int. Conf. on
Very Large Data Bases (VLDB), pages 149-159. Morgan Kaufmann Pub-
lishers Inc., 1986.

Krishna P. Mikkilineni and Stanley Y. W. Su. An evaluation of Relational
Join Algorithms in a Pipelined Query Processing Environment. I[EEE Trans-
actions on Software Engineering, 14(6):838—-848, 1988.

Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold Sjoerd Mul-
lender Martin Kersten. MonetDB: Two Decades of Research in Column-
Oriented Database Architectures. IEEE Data Eng. Bull., page 40, 2012.

119



BIBLIOGRAPHY

[OGY5]

[OV11]

[Raa07]

[Raa08]

[Royl11]

[SAB*05]

[SACT79]

[Sal04]

[SB75]

Patrick O’Neil and Goetz Graefe. Multi-table Joins Through Bitmapped Join
Indices. ACM SIGMOD Record, 24(3):8-11, 1995.

T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.
Springer, 3rd edition, 2011.

David Raab. How to Judge a Columnar Database. DM Review, 17(12):33,
2007.

David Raab. How to Judge a Columnar Database, Revisited. DM Review,
18(10):10-15, 2008.

Anil Roy. Informatica Data Archive Manage Data Growth While Control-
ling Costs and Ensuring Compliance. https://www.informatica.
com/content/dam/informatica-com/global/amer/us/
collateral/data—-sheet/data—archive_data—-sheet
6023 .pdf, August 2011.

Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Eliz-
abeth O’Neil, et al. C-store: a Column-Oriented DBMS. In Proc. of the Int.
Conf. on Very Large Data Bases (VLDB), pages 553-564. VLDB Endow-
ment, 2005.

P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Ray-
mond A Lorie, and Thomas G Price. Access Path Selection in a Relational
Database Management System. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 23-34. ACM, 1979.

D. Salomon. Data Compression: The Complete Reference. Springer, 2004.

Hans Albrecht Schmid and Philip A Bernstein. A Multi-Level Architecture
for Relational Data Base Systems. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 202-226. ACM, 1975.

120


https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6023.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6023.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6023.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/data-archive_data-sheet_6023.pdf

BIBLIOGRAPHY

[Sha86]

[SI84]

[SKS10]

[Sto86]

[Val87]

[Val93]

[Wil91]

[XH94]

[YD78]

[YJ78]

Leonard D Shapiro. Join Processing in Database Systems with Large Main
Memories. ACM Transactions on Database Systems (TODS), 11(3):239-
264, 1986.

Oded Shmueli and Alon Itai. Maintenance of Views. In ACM SIGMOD
Record, volume 14, pages 240-255. ACM, 1984.

A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts.
McGraw Hill Education, 6th edition, 2010.

Michael Stonebraker. The Case for Shared Nothing. IEEE Database Eng.
Bull., 9(1):4-9, 1986.

Patrick Valduriez. Join Indices. ACM Transactions on Database Systems
(TODS), 12(2):218-246, 1987.

Patrick Valduriez.  Parallel Database Systems: The Case for Shared-
Something. In Proc. of the IEEE Int. Conf. on Data Engineering (ICDE),
pages 460—465. IEEE, 1993.

Ross N Williams. Adaptive Data Compression, volume 110. Springer Sci-
ence & Business Media, 1991.

Zhaohui Xie and Jiawei Han. Join Index Hierarchies for Supporting Effi-
cient Navigations in Object-Oriented Databases. In Proc. of the Int. Conf.
on Very Large Data Bases (VLDB), volume 94, pages 12—15. Morgan Kauf-
mann Publishers Inc., 1994.

S Bing Yao and David DeJong. Evaluation of Database Access Paths. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 66—
77. ACM, 1978.

S Bing Yao and David De Jong. Evaluation of Access Paths in a Relational
Database System. Computer Science Technical Reports, 1978.

121



BIBLIOGRAPHY

[ZHNBO6]

[ZWL11]

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-Scalar
RAM-CPU Cache Compression. In Proc. of the IEEE Int. Conf. on Data
Engineering (ICDE), pages 59-59. IEEE, 2006.

Yansong Zhang, Shan Wang, and Jiaheng Lu. Improving Performance by
Creating a Native Join-Index for OLAP. Frontiers of Computer Science in
China, 5(2):236-249, 2011.

122



4GL
API
BAT
BI
CPU
CPU
DBMS
DDR
DSM
DSS
DFS
HDFS
IDC
IDV
ILM
10
JDBC
JI

IPC
MPP
NAS
ODBC
OID
OLTP
oS
RAID
RAM
RDBMS
RLE
RPM
RS

Fourth-Generation programming Language
Application Program Interface
Binary Assoication Table

Business Intelligence

Central Processing Unit

Central Processing Unit

Database Management System
Double Data Rate

Decomposed Storage Model
Decision Support System

Distributed File System

Hadoop Distributed File System
International Data Corporation
Informatica Data Vault

Information Lifecycle Management
Input and Output

Java Database Connectivity

Join Index

Instructions Per Cycle

Massively Parallel Processing
Network-Attached Storage

Open Database Connectivity

Object Identifier

Online Transaction Processing
Operating System

Redundant Array of Indepedent Disks
Random Access Memory

Relational Database Management System
Run Length Encoding

Rotations Per Minute

Read optimized Store

123

Acronyms



BIBLIOGRAPHY

SAN
SATA
SCT
SDRAM
SMP
SQL
TID
TPC
TSV
VLDB
WAN
WS

Storage Area Network

Serial Advanced Technology Attachment
Segment Compacted Table

Synchronous Dynamic Random-Access Memory
Symmetric Multiprocessing

Structured Query Language

Tuple Identifier

Transaction Processing Performance Council
Tuple Selection Vector

Very Large Database

Wide Area Networks

Writable Store

124



Appendices

125



A

TPC-H based SQLs used for testing

126



N - Y o

TPC-H based SQLs used for testing

select
s_acctbal,
S_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
S_comment

from
TPCHDB.part,

TPCHDB.supplier,
TPCHDB.partsupp,
TPCHDB.nation,

TPCHDB.region
where

p_partkey = ps_partkey

and s_suppkey

= ps_suppkey

and p_size = 10

and p_type like ’'\%BRASS’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey

and r_name =

"EUROPE’

Figure A.1: SQL q02_01

127



1
2
3
4
5
6
7
8
9

TPC-H based SQLs used for testing

select
1_orderkey,
1_extendedprice,
1 _discount,
o_orderdate,
o_shippriority

from
TPCHDB.customer,
TPCHDB.orders,
TPCHDB.lineitem

where
c_mktsegment = 'FURNITURE’
and c_custkey = o_custkey
and 1_orderkey = o_orderkey
and o_orderdate < 71998-04-10"
and 1_shipdate > 71996-10-09'

Figure A.2: SQL q03_01

128



1
2
3
4
5
6
7
8
9

24
25

TPC-H based SQLs used for testing

select

1_orderkey,
1_extendedprice,
1 _discount,
o_orderdate,
o_shippriority,
o_custkey,
o_orderkey,
o_orderstatus,
o_totalprice,
o_orderpriority,
o_clerk,
o_shippriority,
o_comment,
Cc_name,
c_address,
c_nationkey,
c_phone,
c_acctbal,
c_mktsegment,
c_comment

from

TPCHDB.customer,
TPCHDB.orders,
TPCHDB.lineitem

6 where

27
28
29
30
31

32

.
14

c_mktsegment = 'FURNITURE’
and c_custkey = o_custkey

and 1_orderkey = o_orderkey
and o_orderdate < 71998-04-10"
and 1_shipdate > 71996-10-09'

Figure A.3: SQL q03_02

129



TPC-H based SQLs used for testing

1 select

2 1_orderkey,

s from

4 TPCHDB.customer,
TPCHDB.orders,
TPCHDB.lineitem

where
c_mktsegment = "FURNITURE’
and c_custkey = o_custkey

10 and 1_orderkey = o_orderkey

1 and o_orderdate < 71998-04-10"

12 and 1_shipdate > 71996-10-09'

© e N o w

Figure A.4: SQL q03_03

select
n_name,
1_extendedprice
from
TPCHDB.customer,
TPCHDB.orders,
TPCHDB.lineitem,
TPCHDB. supplier,
TPCHDB.nation,
10 TPCHDB.region
11 where
12 c_custkey = o_custkey
13 and 1_orderkey = o_orderkey
14 and 1_suppkey = s_suppkey
15 and c_nationkey = s_nationkey
16 and s_nationkey = n_nationkey
17 and n_regionkey = r_regionkey
18 and r_name = ’'AFRICA’
19 and o_orderdate >= 71997-02-01"
20 and o_orderdate < 71998-02-01"

N - Y o R

Figure A.5: SQL q05_01

130



14
15
16
17
18

TPC-H based SQLs used for testing

select
1_shipmode,
o_orderpriority,
1_shipdate,
1 _commitdate,
1_receiptdate

from
TPCHDB.orders,
TPCHDB.lineitem

where
o_orderkey = 1_orderkey
and 1_shipmode in (’AIR’, ’'RAIL’)

and 1_commitdate < 1_receiptdate
and 1_shipdate < 1_commitdate
and 1_shipdate >= 71993-06-22"
and 1_receiptdate < 71994-06-22'

14

Figure A.6: SQL q12_01

select
1_shipmode,
o_orderpriority,
1_shipdate,
1 _commitdate,
1_receiptdate

from
TPCHDB.orders,
TPCHDB.lineitem

where
o_orderkey = 1_orderkey
and 1_shipmode in (’AIR’, ’'RAIL’)

and 1_commitdate < 1_receiptdate
and 1_shipdate < 1_commitdate
and 1_shipdate >= :SHIPDATE
and 1_receiptdate < :RECEIPTDATE

’

Figure A.7: SQL q12_10-q12_19

131



[ I O N

N - Y o N

=T T - ¥ T N

TPC-H based SQLs used for testing

select c_custkey, o_orderkey

from TPCHDB.customer, TPCHDB.orders
where c_custkey = o_custkey

and o_comment like ’acc%’

.
14

Figure A.8: SQL q13_02

select p_type, 1_extendedprice, 1_discount
from

TPCHDB.lineitem,

TPCHDB.part
where

1_partkey = p_partkey

and 1_shipdate >= 1997-08-01"

and 1_shipdate < 71997-09-01'

Figure A.9: SQL q14_01

select
p_brand,
p_type,
p_size,
ps_suppkey
from
TPCHDB.partsupp,
TPCHDB.part
where
p_partkey = ps_partkey
and p_brand <> ’Brand#34’
and p_type not like ’PROMO BRUSHED\%’
and p_size in (3, 5, 8, 21, 24, 27, 30,

31)

Figure A.10: SQL q16_01

132



TPC-H based SQLs used for testing

1 select

2 1_extendedprice

s from

4 TPCHDB.lineitem,

5 TPCHDB.part

¢ where

7 p_partkey = 1_partkey

8 and p_brand = ’'Brand#45’

9 and p_container = 'MED DRUM’

Figure A.11: SQL q17_01

1 select

2 1_extendedprice, 1_discount
; from

4 TPCHDB.lineitem,
5 TPCHDB.part
6

7

8

9

where
p_partkey = 1_partkey
AND
(
10 p_brand = ’'Brand#54’'
1 and p_container in (’'SM CASE’, ’'SM BOX’, ’'SM PACK’, ’'SM
PKG’)

12 and 1_qguantity >= 4 and 1_quantity <= 14
13 and p_size between 1 and 5
14 and 1_shipmode in ("AIR’, ’'AIR REG’)
15 and 1_shipinstruct = 'DELIVER IN PERSON’

Figure A.12: SQL q19_01

133



	Introduction
	Contribution
	Thesis Outline

	Background and Related Work
	Relational Model and the Concept of Joins
	Joins between Relations

	Column-Oriented Database Systems
	Distributed & Parallel Database Management Systems
	Architectural Options
	Data Partitioning

	TPC-H based Benchmark - an Overview
	IDV Overview
	IDV Database Architecture
	Physical Storage Layout

	Joins & Optimization Strategies in RDBMS
	Join Algorithms
	Nested Join
	Sort-Merge Join
	Hash Join Algorithms

	Joins using specialized Data Structures
	Links
	Materialized Views
	Join Indices

	Joins in conjunction with Predicates and Projections

	Joins in IDV
	Overview
	Applying Predicates and Performing Projections

	Related Work
	C-store
	MonetDB


	Columnar Join Index
	Overview
	Join Index Architecture
	Creating a Join Index

	Join Processing Overview: old and new
	Joins and Selection Predicates
	Limitations of current TSV approach
	Selection Predicates with Join Indices
	The need for uncompressed TSV structures

	Worker Tasks
	TSV Creation Task
	Join Index Query Task
	Resultset Generator

	Workflow Execution Summary
	Pipelined Processing

	Summary

	Experimental Results & Performance Evaluation
	Overview
	Experimental Setup
	Test Objectives Overview
	Performance Metrics
	TPC-H based Benchmark
	Test Environment Configuration

	Experimental Test Cases & Results
	Two-table single partition joins
	Multi-table single partition joins
	Two-table multi-partition joins
	Materialization
	Query selectivity
	Reduced source table lists

	Results Summary

	Final Conclusion & Future Work
	Conclusion
	Future work
	Complex Query Types
	Storage techniques for rowids
	Processing techniques for JI partitions


	Bibliography
	Acronyms
	Appendices
	TPC-H based SQLs used for testing

