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AB8TRACT

The visualization of two-dimensional and three-dimensional vascular structures is of

significant interest in image-guided surgery. This assists clinicians in pre-operation

planning, real-time operating room decision making, and post-operation monitoring.

In order to achieve this goal, vascular networks must first be segmented from intensity

data such as CT or MR angiography images. A framework for addressing this probl~m

is the use of geometric flows where a curve (in two dimensions) or a surface (in three

dimensions) is evolved under constraints from image forces so that it c1ings to features

of interest in an intensity image. Recent variations on this theme take into account

properties of enc10sed regions and textures and allow for multiple curves or surfaces to

be simultaneously represented. However, it is not c1ear how to apply these techniques

to images of low contrast elongated structures, such as blood vessels. To address

this problem we derive the gradient flow which maximizes the rate of increase of flux

of an auxiliary vector field through a curve or surface. The calculation leads to a

simple and elegant interpretation which is essentially parameter free. We illustrate

its advantages with level-set based segmentations of 2D and 3D angiography images

of blood vessels.
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RESUME

La visualisation des structures vasculaires en deux et trois dimensions est d'un intérêt

important pour la chirurgie guidée par image. Elle aide le chirurgien dans le planning

pre-opération, la prise de decision en temps réel au bloc opératoire, le contrôle post

opération.

Pour pouvoir atteindre ce but, les réseaux vasculaires doivent être segmentés à

partir d'images telles que les angiographies CT ou RM. Une méthode pour résoudre ce

problème est l'utilisation des flux géométriques où une courbe (en deux dimensions)

ou une surface (trois dimensions) évolue sous des contraintes de forces de l'image afin

qu'elle s'accroche aux structures intéressantes de cette image. Les variations récentes

sur ce thème prennent en compte des propriétés de régions closes et de textures et

permettent de représenter plusieurs surfaces et courbes simultanément.

Cependant, il est difficile d'appliquer ces techniques a des images de structures

allongées de faible contraste, tel que les vaisseaux sanguins. Pour résoudre ce prob

lème, nous dérivons le flux du gradiant maximisant le taux de croissance du flux d'un

champ vectoriel auxilliaire passant au travers d'une courbe ou d'une surface. Cette

formulation mène à une interprétation élégante qui est essentiellement libre de tout

paramètre. Nous illustrons les avantages de cette méthode avec des segmentations

d'angiographie 2D et 3D.
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CHAPTER 1

Introduction

The accurate visualization and quantification of the human vasculature is an impor

tant prerequisite for a number of clinical procedures including the diagnosis of several

diseases, surgical planning and navigation during surgery. A common approach is to

employ maximum intensity projection where three-dimensional data such as Com

puted Tomography (CT) or Magnetic Resonance Angiography (MRA) is projected

onto a 2D plane by choosing the maximal value along each projection ray. A serious

drawback in this approach is that vascular structures ma.y overlap with non-vascular

ones and thin or low contrast vessels may not be visible. Thus, it is desirable to seg

ment the vasculature before it is visualized. In the context of this thesis we shaH refer

to segmentation as the process of labeling a location in a 2D or 3D intensity image

as a "vesse!" or a "non-vessel" point., as illustrated in Figure 1.1. After the data has

been segmented, the visualization and quantification of complex human vasculature

is greatly simplified.

A naive approach to the segmentation problem is that of thresholding the original

angiography data, Le., aH voxels above a certain value are marked as vessels, while

the rest are labeled as background. However, due to image acquisition noise, partial

volume effects and patient motion between different scans, the intensity data is usuaHy

non-homogeneous, particularly for vessels of different sizes. As a result, a conservative
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(a) Input image

1.1 PROBLEM STATEMENT

(b) Segmented vessels
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•

FIGURE 1.1. Illustration of the segmentation process.

high threshold will not capture many of the thin vessels, while a low threshold will

incorrectly label many voxels.

A brute force strategy to obtain the vascular network is to employ manual seg

mentation, where an expert simply labels voxels corresponding to vessels. Several

specialized programs have also been developed to assist a neurosurgeon and facilitate

and speed up the manual segmentation process. The main drawback of this approach

is that a significant amount of expert user time is required. Furthermore, such seg

mentation is also prone to human error. This suggests a need for robust automated

methods of vascular segmentation.

1. Problem Statement

The problem that we wish to solve is that of the accurate estimation of the

positions of blood vessels given the two-dimensional or three-dimensional angiography

data. SpecificaIly, we wish to separate aIl points of the initial data into two classes, one

containing only points that belong to vessels and the other containing the remaining

points. The algorithm must be able to detect vessels of variable sizes and contrast.

It should also require minimal user interaction. This leads to the constraint that

the number of input parameters should be small. We also assume that no a priori

information about the localization of blood vessels is available. In this thesis we

2
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1.3 IMAGING MODALITIES

present a theoretical solution to this problem and illustrate its performance on a

number of 2D and 3D medical images.

2. Approach

Several approaches have been proposed to address the problem of blood vessel

segmentation. Among them are multi-scale methods that involve convolving the data

with Gaussian filters at multiple scales and analyzing the eigenvalues of the image

of a Hessian matrix at each voxel in the data to determine the local shape of struc

tures [26, 25, 16, 23, 30, 40], a multi-scale algorithm that detect vessels based on

the assumption that their centerlines appear as ridges in intensity images [3), a statis

tical method that models physical properties of blood with a mixture of probability

distributions [49), an anisotropic diffusion approach which seeks to reduce image noise

without blurring vessel boundaries [24], a morphological reconstruction method that

uses the concept of simple points [13), and geometric methods where vessels are de

tected by evolving an initial estimate represented by ID curves in a 3D space to the

true structures [31, 33, 32]. The method presented here is closest in spirit to the last

class of methods above, in that it is based on a curve/surface evolution framework.

Whereas many segmentation algorithms have been developed using this framework,

most will fail to capture thin elongated low contrast structures, such as blood vessels.

The method we propose is motivated by the observation that in the vicinity of

the boundaries of the vessels, the gradient vector field of the intensity image should

be locally orthogonal to them. Thus, a natural principle to use towards the recovery

of these boundaries is to maximize the flux of the gradient vector field through an

evolving curve (in 2D) or surface (in 3D).

3. Imaging Modalities

There are several types of imaging methods for obtaining three-dimensional data

that can later be processed for vessel segmentation. The most widely used techniques

are Computed Tomography (CT) Angiography and Magnetic Resonance Angiography

3
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1.3 IMAGING MODALITIES

(MRA). While these imaging methods attempt to allow for a safe and rapid procedure

for obtaining a high-contrast, high-resolution image of vascular structures, each has

its own limitations.

Magnetic Resonance Imaging (MRI) of the blood vessels is called Magnetic Reso

nance Angiography (MRA). MRA uses the natural magnetic properties of the hydro

gen atoms in our bodies to create stacks of parallel cross-sectional images which show

the vessels (more precisely: the flowing blood) as bright spots and lines, surrounded

by dark stationary tissue. The brightness of the vessels in MRA images is proportion

al to the speed of the blood. Renee, thick vessels where the blood flows faster tend

to appear brighter than thinner vessels. Fortunately, MRA data can be acquired on

standard MRI scanners which are available at many major hospitals. The acquisition

of MRA data is painless and typically takes less than an hour to perform. With few

exceptions, there are no known risks to an MRA examination. MRA does not involve

the use of X-rays.

The main alternative to MRA is Computed Tomography (CT) angiography. In

this examination, x-ray contrast material is injected directly into the vessel being s

tudied through a catheter. CT scanners consist of an X-ray source, an X-ray detector,

a mechanical platform to rotate the specimen at various angles and elevations, and a

computer to produce CT images from the collected data. CT scanners typically pro

duce multiple two-dimensional images each representing cross sections through the

specimen (tomographs). The tomographs are stacked to create a three-dimensional

volume. Tomographie images are generated by collecting one-dimensional X-ray sig

naIs of an object at many angles at one cross section. From these one-dimensional

X-ray signaIs, a cross sectional image is reconstructed representing the X-ray atten

uation properties of this slice. To create a 3-D volume data set of the specimen, the

process is repeated at various cross sections. In this manner, multiple tomographs

are stacked to produce volumetrie data. A similar Computed Rotational Angiography

(CRA) method produces 3-D images by acquiring projection radiographs from many

angles around the patient, followed by reconstruction using the CT algorithm. X-ray

4
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1.5 CONTRIBUTIONS

angiograms generally are more accurate and may provide detail that cannot be seen

routinely in MRA. On the other hand, MRA does not usually involve the use of nee

dIes and catheters, or the administration of X-ray contrast material or preparation,

and in many cases is sufficient for the problem at hand.

In this thesis we illustrate the advantages of the proposed blood vessel segmen

tation technique on both MRA and CRA images.

4. Applications

Three-dimensional images of blood vessels are usually visualized using volume

rendering techniques such as maximum intensity projection (Figure 1.2(a)) or simply

by showing a collection of 2D slices. The method presented here provides accurate

information on the location and size of blood vessels in 3D images. Such quantitative

information can later be used in conjunction with a surface rendering technique for

more accurate visualization of the vessel architecture (Figure 1.2(b)).

Such enhanced visualization of the vascular network of different organs (the brain,

the liver, the lungs) can help physicians in performing a number of different clinical

operations. Interventional procedures such as the placement of a prosthesis in order

to prevent aneurysm rupture or a bypass operation, require precise knowledge of the

three-dimensional vessel architecture.

In minimally invasive neurologieal surgery it is also extremely important to know

the location of the blood vessels. Typically, a small hole is drilled in the scalp of the

patient and a long needle is inserted to get access to the area being operated on, such

as a tumor. As the needle is being inserted it is crucial not to damage any vessels

since it could potentially induce a stroke. Since the surgeon is not able to see the

needle directly, aIl navigation is guided by images and the accurate visualization of

blood vessels is of utmost importance.

5. Contributions

This thesis makes the following specifie contributions:

5
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(a) Maximum Intensity Projection (MIP)
of a 256x256xl00 MRA image.

(b) Vasculature segmented using the proposed
flux maximizing flows, rendered with VTK.

FIGURE 1.2. Visualization techniques.

6
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1.6 OUTLINE

• We have derived the geometric flows that maximize the flux of an auxiliary

vector field through an evolving curve (in 2D) or surface (in 3D).

• As a corollary, we have derived the flows that maximize the circulation of an

auxiliary vector field along an evolving curve (2D).

• We have proved that the form of flux maximizing flows remains unchanged in

2D and in 3D.

• We have shown how these flux maximizing flows can be effectively applied for

segmentation of blood vessels from angiography images.

• We have demonstrated the performance of our segmentation algorithm on sev

eral 2D and 3D medical images and have compared the results with the simple

thresholding.

6. Outline

This thesis presents a novel method for the segmentation of tubular structures

from intensity images. While the method works both in two and three dimensions

for any kind of image containing bright tubular structures, the main application we

have focused on is the segmentation of blood vessels from 3D MR or CT angiography

images. Both the theoretical foundation as well as the experimental results of the

method are presented. The thesis is organized as follows. Chapter 2 presents a general

discussion of existing methods for blood vessel segmentation. The theoretical core of

our method is presented in Chapter 3. Chapter 4 describes implementational details

of our method including the level set technique. Finally, the experimental results

presented in Chapter 5 demonstrate the performance of the method in detecting

vessels of various sizes and contrast. Chapter 6 concludes with an overview of the

proposed method and a discussion of possible directions for future work.

7
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CHAPTER 2

Previous Work

This ehapter briefly covers previous work on the problem of segmentation of tubular

structures and blood vessels in particular. Several approaches have been proposed

to address the problem of blood vessel segmentation. Among them we will discuss

methods that try to estimate the local shape of a structure in the image by analyzing

the eigenvectors and associated eigenvalues of the Hessian matrix construeted at each

voxel [26, 25, 16, 23, 30, 40]. Here, to address the problem of detecting vessels of

various sizes, the image is first convolved with Gaussian filters of varying radii. In

such methods a vessel is typically assumed to be cylindrical in shape, with a Gaussian

cross-sectional profile. Next, we shall review the approach of Aylward et al. which

deteets vessels based on the assumption that their centerlines appear as ridges in

intensity images [3]. We will also discuss a statistical method that models physical

properties of blood with a Gaussian mixture model [49], an anisotropie diffusion

approach whieh smoothes along the vessel direction but not perpendicular to it [24],

a region growing technique that reconstructs the vessel system of the liver based

on the idea of simple points [13], and a curve evolution method where vessels are

approximated by one-dimensional eurves in three-dimensional space. In the latter

technique, an initial estimate obtained by thresholding the original image is evolved

towards the tru~ structures [31, 33, 32] .
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2.1 MULTI-SCALE METHODS BASED ON THE EIGENVALUE ANALYSIS

One goal of this thesis is to show how our proposed method for blood vessel

segmentation successfuIly unites the strengths of several of the approaches considered

in this chapter, while minimizing the effects of their inherent difficulties. In Chapter 5

we also point how sorne of these methods could be incorporated in our proposed flux

maximizing flow algorithm.

1. Multi-scale Methods Based on the Eigenvalue Analysis

Multi-scale filtering for estimating the local structure of an image has been a

popular technique for the segmentation of curvilinear structures such as blood ves

sels [26, 25, 16, 23, 30, 40]. The general approach of multi-scale methods is to

choose a range of scales and to compute a response of a filter at each scale. AIl the

responses are then combined to get a single multi-scale response which contains the

sought features .

We now discuss algorithms that apply this theory to the specific problem of

detecting elongated cylindrical structures. Several stages are typically involved. First,

a family of images is obtained by convolving the original image with a Gaussian filter

Gu with the standard deviation CI for x E ~3

for several CI between CImin and CImax '

TheIl, for each convolved image lu at each point x = (x, y, z), the Hessian matrix

is computed. The Hessian matrix H is a matrix composed of second partial derivatives

of the image

l xx (x) l xy (x) l xz (x)

H(l(x)) = l yx (x) l yy (x) l yz (x)

l zx (x) l zy (x) l zz (x)

9
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Next, the eigenvalues of the Hessian H are computed and used to estimate the

local structure of the image. Let ÀIl À2, À3 be the eigenvalues of H with IÀll > IÀ2 1 ~

IÀ3 1 , and VI, V2, V3 be the corresponding eigenvectors. It has been shown [16, 25]

that for a bright tubular structure on a dark background

(2.1)

•

•

To provide justification for this constraint, it is important to note that the eigen

values À3 and Àl correspond to the minimal and maximal principal curvatures of the

surface, respectively, and that for thin tubular structures, the curvature along the

structure is much smaller than that in the cross-sectional direction. Furthermore, the

eigenvector V3 associated with À3 will give the direction of the main axis of the tube,

whereas VI and V2 will give a basis in the plane orthogonal to the axis [15, 25]. It

should be clear that such an analysis of the eigenvalues can also be performed for

blob-like and plate-like structures as weIl.

After the eigenvalues have been computed, for each of the convolved images ICTl a

singe-scale response is computed, by applying a certain scalar function F(À l , À2 , À3 ) at

each point of the image. This is typically a heuristic function that uses properties of

the eigenvalues of the Hessian to try to capture how "vessel-like" the local structures

are. It is constructed to give a high response only when the structure resembles a

vessel. Several candidates for response functions have been proposed by different

resel.1rchers [26, 25, 16, 23].

One of the key difficulties with multi-scale approaches is that one has to com

pare the results of a response function at different scales while the intensity and its

derivatives are decreasing functions of scale. Renee, single response images have to

be normalized. The choice of normalization procedures varies for different approaches

and it is usually complex and non-intuitive [26, 25] .

10
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2.3 A STATISTICAL APPROACH

After the normalization step, a multi-scale response image at each point is com

puted as the maximum of the set of normalized single scale responses:

In this multi-scale image, the vessels are brightened and non-tubular structures

are darkened. This enhanced image can be visualized directly [16] or thresholded [40].

Related work includes methods [26, 25] which use the eigenvalues to estimate the

centerlines of vessels. In addition, the scale at which the response is maximal at a

particular voxel is stored. It corresponds to the radius of the vessel passing through

this voxel. The full vasculature is then reconstructed using knowledge of centerlines

and the associated radii.

2. Intensity Ridges

Another approach [3] proposes to find estimates of the centerlines of the vessels

using the observation that they appear as intensity ridges in the image. The process

presented in the paper tries to find ID loci of the local maximas. These ID loci are

used as an approximation to the medial axes of the vessels. The width of the vessels

is defined by the height of the ridges. The centerlines are detected by following

the ridge, starting from an initial point (selected manually by a user). The method

experiences problems at the branching points, where the assumption that an intensity

ridge corresponds to a centerline of a vessel does not necessarily hold. The authors

introduce certain "ridge termination" criteria to deal with this problem. While the

ridge is generated using information only at a single scale, the width estimates are

obtained using a multi-scale analysis.

3. A Statistical Approach

Wilson and Noble [49] propose a statistical approach to segmenting blood vessels.

They introduce a mixture distribution for the data based on the physical properties

of the blood to classify vessel voxels. The parameters of the distribution estimated

11
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2.3 A STATISTICAL APPROACH

using the expectation maximization (EM) algorithm define the thresholds used to

segment the data. After the thresholding step, only a number of largest connected

components are kept as a final segmentation.

From an analysis of the MRA data, the authors [49] suggest that three distribu

tions can be used to represent it. Vessel voxels are assumed to arise from a uniform

distribution, one Gaussian distribution represents tissue outside the head and a sec

ond represents brain tissue, eyes, skin, and bone. The mixture distribution is hence:

where the weights Wk determine the proportion of each class, J1.k and (Jk are the mean

and standard deviation of the Gaussian, and 1 is the total number of intensity levels.

The EM algorithm is used to estimate aIl seven unknown parameters. A voxel i arises

from a uniform distribution, Le. it belongs to a vessel if wop(xiIO) > WkP(Xklk) for

k = 1, 2 . This can be restated as:

This equation defines the high threshold. Slow blood fiow at vessel walls and turbulent

fiow within aneurysms produce lower intensities in the MRA scan. Hence, sorne vessel

voxels will not be detected by the high threshold. The authors [49] use the following

heuristic to recover such voxels: if a voxel has sufficiently high intensity, and it is close

to previously segmented vessel voxels, then it is assumed to belong to a vessel. The

calculation of the low threshold involves computing the 3D distance transform [6] of

the initial segmentation. Then for each distance value from 0 to 70, the same EM

method is used to determine the threshold for each set of voxels of the original data

at this distance. The low threshold is chosen as the minimum of these individual

thresholds. This procedure for determining the low threshold is not fully justified

12
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since the three-class distribution of the MRA data is no longer appropriate for the

voxels at sorne fixed distance away from the initially segmented bright vessels.

The authors report experimental results where it was found that over 92% of

the vessel voxels segmented by the algorithm also appear in a manual segmentation.

However, more than twice as many voxels are selected in the manual segmentation

than by their approach.

4. Anisotropie Diffusion

We now review an approach to enhancing vessel-like structures. Anisotropie

diffusion refers to the smoothing of an image to reduce noise, while preserving certain

features of interest, such as edges. Krissian et al. [24] introduce an implementation of

anisotropie diffusion which better preserves small tubular structures such as vessels.

In 2D such smoothing can be implemented using the geometric heat equation [22]

al . (VI)et = dw IVII IVII

where l is image intensity. This equation is equivalent to moving each level set of

the image by its curvature [17, 18] which will have the desired effect of preserving

elongated structures with small curvature while removing noise. In 3D, however, mean

curvature motion tends to shrink the vessels since one of the principal curvatures (in

the direction perpendicular to the vessel) will be very high. Instead, Krissian et

al. [24] propose an explicit weighting of smoothing in the directions of the gradient,

minimum and maximum curvatures.

To enhance a 3D image they use the following equation:

where the vector ç denotes the gradient direction, vectors el and e2 correspond to

the maximal and minimal curvature directions, respectively, ~l and ~2 are the values

13
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of the maximal and minimal curvatures respectively, and the coefficients Cf" Cel' Ce2

determine the amount of diffusion in each of these directions. The basic strategy is to

maximize diffusion in the direction of a vessel (minimal principal curvature direction)

and minimize diffusion in the direction perpendicular to it (maximal principal curva

ture direction). Such anisotropic filtering can be used as a preprocessing step for a

vessel segmentation algorithm. It will reduce blob-like noise while preserving tubular

structures. It should be noted, however, that the vessels will be slightly perturbed

and their exact location will change.

5. Region Growing Based on Simple Points

Dokladal et al. [13] propose a method for segmenting blood vessels of the liver

based on the topological properties of the vessel system. The algorithm relies on

the hypothesis that the vessels of the liver form an object that is simply connected,

contains no holes and no cavities, and that this object itself forms a cavity with

respect to its complement. At the heart of this method is the notion of a simple or

removable point. A simple point is defined as a point of an object whose deletion

does not change the topology of the object. Bertrand and Malandain [4] proposed

a characterization of a simple point based on determining the number of connected

components in its 3x3 neighborhood. The calculation of removable points has also

been used in research for computing skeletons [4, 7].

There are two versions of the algorithm for reconstructing the liver vessel system:

segmentation by reconstructing the object and segmentation by reconstructing the

background. When segmenting by reconstruction, a single point is manually placed

inside the object. The resulting object is reconstructed by iteratively adding simple

points to ensure that topology is preserved. During the reconstruction procedure, the

points are processed in the order of their intensities, an ordering that is essential for

the algorithm. The reconstruction stops when no simple points of intensity higher

than a certain predetermined threshold can be added.

14
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The other variation is segmentation by reconstructing the background in essen

tially the same fashion. The vessels are then obtained as the complement of the

reconstructed background. This variation has the advantage that an initial seed need

not to be placed manually; it can simply be a point on the border of the image.

Provided that strong assumptions about the topology of the vessel system holds,

this technique can be a useful segmentation too!. In practice, however, it most often

fails due to noise, partial volume effects and pathologies in the vascular network.

6. Co-dimension Two Flows

The system recently developed by Lorigo et al. [31, 33, 32] uses a variation of the

curve evolution framework to address the blood vessel segmentation problem. Vessels

are modeled as ID curves in 3D space (having co-dimension two) that can branch

arbitrarily. An initial curve estimate is obtained by thresholding the image and is

then evolved to the curves in the data (the vessels). The main idea is to regularize

the geometric flow with a force that is not based on the mean curvature of tubular

surfaces, but on the curvature of the underlying ID curves. The rationale is that

classical mean curvature based regularization tends to shrink vessels and annihilate

thin ones, since one of the principal curvatures is high.

This work has a mathematical foundation in the recent level set theory developed

for mean curvature flows in arbitrary co-dimension [2] and has the intuitive behavior

that wiggly tubular structures are "straightened" out. AIso, the approach has a

variational interpretation as the gradient flow that minimizes a weighted curvature

functiona1. This flow turns out to be [31, 33, 32] :

Here 'l/J is an embedding surface whose zero level set is the evolving 3D curve, À is

the smaller nonzero eigenvalue of a particular matrix [2], .9 is an image-dependent

weighting factor, 1 is the intensity image and H is its Hessian. For numerical simu

lations the evolution of the curve is depicted by the evolution of an €-level set. With
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a suitable choice of 9 this flow should should remain regular while being attracted to

boundaries of vessels. However, it is unclear how seeds placed within vessels, would

grow along them to recover thin elongated structures. To encourage the latter be

havior, the second term of the equation is multiplied with a factor p(\7'l/J. \71) where

p is a constant, giving rise to

2 ) )g' \71
'l/Jt = À(\7'l/J, \7 'l/J +p(\7'l/J.\71 9\7'l/J.H 1\711

Thus the flow is biased so that normals to the €-level set align themselves (locally) to

the direction of image intensity gradients (the inner product of \7'l/J and \71 is then

maximized). However, the introduction of the multiplicative term is a heuristic and

the framework loses its pure variational interpretation.

In this thesis we develop a vessel algorithm that is also based on geometric flows.

Although we employ co-dimension one flows (we evolve curves in 2D and surfaces in

3D) and use different assumptions and intuitions, the work by Lorigo et al. [31, 33,

32] is the c10sest in spirit to our method. In the following chapter we shall present an

overview of geometry-driven flows and their application to segmentation problems.

We shall then introduce and develop the notion of a flux maximizing flow in 2D and

3D, which is the central contribution of this thesis.
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CHAPTER 3

Flux Maximizing Flows

The curve and surface evolution framework has proven to be a powerful segmentation

tool, especially in application to medical images [8, 9, 34, 38, 45] where objects of

interest often have highly irregular shapes and contrast variations across boundaries

can be low. Here the essential idea is to move a curve (in 2D) or surface (in 3D) under

constraints from image-based forces so that it clings to object boundaries. Most of

these curve and surface evolution schemes are numerically implemented using level

set technology developed by Osher and Sethian [37]. Here the essential idea is to

interpret the evolving curve or surface as the zero level set of a higher dimensional

function, which is updated in time. The main advantage is that topological changes

are handled with a fixed computational complexity. These methods will be discussed

in greater detail in Chapter 4.

A theoretical advantage of curve and surface evolution schemes for shape seg

mentation is that several can be derived as gradient flows that minimize a particular

weighted length or weighted area functional [20, 46]. Recent advances in the use of

geometric flows include methods which take into account the statistics of the regions

enclosed by the evolving curves [38, 51]. Further developments include multi-phase

motions [48, 10] and the use of an external force field based on a diffused gradient

of an edge map [50] .



•

(a) A curve in a 2D vector field

3.1 GEOMETRIe FLOWS

(b) The inward flux through the
curve is maximized

•

•

FIGURE 3.1. An illustration of the flux maximizing principle.

However, in practice these models often fail when applied to images of thin e

longated structures such as blood vessels. In this chapter we shall derive geometric

flows designed specifically for this purpose. The main intuition is that in angiography

images, areas of flowing blood appear bright. This leads to the constraint that in the

vicinity of blood vessel boundaries, the gradient vector field is locally orthogonal to

them. Thus, a natural principal to use towards the recovery of these boundaries is to

maximize the inward flux of the gradient vector field through an evolving curve (in

2D) or surface (in 3D). To illustrate, Figure 3.1(a) shows an initial closed curve placed

in a dense 2D vector field. To maximize the inward flux of the vector field through

the curve, the curve must evolve so that its inward normals are locally aligned with

the vector field, Figure 3.1(b).

We begin this chapter with a brief review of related geometric flows in the lîtera

ture with an emphasis on the length and area minimizing flows. We shall then derive

the flux maximizing flows both in 2D and 3D.

1. Geometrie Flows

Consider a boundary, either a curve in two dimensions or a surface in three

dimensions, separating one region from another. Imagine that this curve/surface

moves in a direction normal to itself (where the normal direction is oriented with

18
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FIGURE 3.2. An illustration of a front propagating in time along its nor
mals. The new position of the front is shown with a dashed line. The normals
are shown only in some places to facilitate viewing.

respect to an inside and an outside) with a known speed function F (Figure 3.2).

The goal is to track the motion as it evolves. For now we will consider motions of

curves in 2D. However, the development will generalize to the case of moving surfaces.

Let 'Y he a simple, smooth, closed initial curve in R2, and let 'Y(t) he the one

parameter family of curves generated hy moving'Y along its normal vector field with

speed F. Here, Fis a scalar function. Let the position vector C(s, t) = (x(s, t), y(s, t))

parameterize 'Y at time t , where 0 < s :::; S, and assume periodic houndary conditions

C(O, t) = C(S, t). The curve evolution equation is then

ac =FNat ' (3.1)

•

where N is the unit inward normal to the curve. This is the hasic equation that we

will study and simulate.

2. Area and Length Minimizing Flows

Generally, the speed function F can he any scalar function. It can he a highly

complex function simulating sorne physical phenomena or it can he as simple as a

constant. We will now consider in sorne detail two interesting choices of F, that have

heen widely used in the literature. Both can he interpreted as gradient flows that

minimize a particular geometric functional.

19
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2.1. Curvature Flow. Consider the 2D case where F = Yi, , the Euclidean

curvature of the curve. Then Eq. (3.1) becomes:

BC-=Yi,N.
Bt

(3.2)

•

•

This equation, known as the geometric heat equation, has been studied extensively in

the literature [17, Il, 14, 18] . It has a number of properties which make it very

useful in image processing. In particular, Eq. (3.2) is the Euclidean curve shortening

flow, in the sense that under this evolution the Euclidean perimeter shrinks as quickly

as possible. Since we will need a similar argument for the flux maximizing flow

presented in this thesis, let us work out sorne details.

Define the length functional for C = C(p, t), a smooth family of closed curves

where t parameterizes the family and p the given curve:

11 BC
L(t) = 0 II Bp Il dp.

Without loss of generality we assume that 0 :5 p :5 1. Differentiating with respect to

t , and using integration by parts, one can show that

l
L (t) BC

L'(t) = - 0 ( Bt ' KN) ds ,

where ds =11 ~; Il dp denotes the arc-length parameter. Thus, the direction in which

L(t) is decreasing most rapidly is obtained when ~~ = KN. Another interesting and

fundamental property shown by Grayson, Gage and Hamilton [17, 18] is that simple

closed curves converge to "round" points in the limit when evolving accordingly to

Eq. (3.2), without developing singularities or topological changes, see Figure 3.3.

In 3D, when evolving surfaces with F = H, where H is the mean curvature of

a surface, the flow can be shown to shrink surface area at the fastest possible rate.

However, topological splits can occur, see Figure 3.4. Evans and Spruck and Chen,

Giga and Goto have independently studied mean curvature flow of any hypersurface

20
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FIGURE 3.3. An illustration of a curve evolving accordingly to the equation
i = ",N. A front propagating with speed equal to curvature must collapse
smoothly to a round point in the limit [17, 18].

as a level set problem, and have proved the existence, uniqueness, and stability of

solutions using viscosity theory [11, 14].

2.2. Constant Flow. Now consider the case where F = 1. This leads to the

constant motion fiow or Blum's "grassfire" transformation [5]

21



•
3.2 AREA AND LENGTH MINIMIZING FLOWS

•
1"'- /

• •
/ '"

1"'- /

• •
/ '"

•

FIGURE 3.4. An illustration of a dumbbell evolving under its mean curva
ture in 3D. Because one of the principal curvatures around the neck is very
high, the handle shrinks inward and disappears. This result shows that a
simply connected surface propagating under its mean curvature in 3D can
break into separate surfaces as it evolves [44].
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~c =N.
ât

In analogy with the curvature flow that minimizes length, it can be shown that this

evolution shrinks the area endosed by the curve (in 2D) or the volume enclosed by

the surface (in 3D) at the fastest possible rate. In contrast with the curvature flow

which remains regular throughout the evolution, the constant motion flow can cause

a smooth curve to evolve to a singular one and topological changes may occur, see

Figure 3.5.

The constant motion and curvature motion evolutions were introduced by Osher

and Sethian in the context of flame propagation in the early 80's [42, 37]. They were

later introduced to the computer vision community in the context of visual shape

analysis by Kimia, Tannenbaum and Zucker [21, 21]. Affine invariant versions of the

curvature flow were also studied [39] and properties of scale spaces based on these

flows were established [1]. In the following section we shall show how modifications

of these flows can be adapted to the problem of shape segmentation.

3. Active Contours

The main idea behind using curve and surface evolution for segmentation is to

introduce constraints derived from an image-based stopping force, so that they ding

to features of interest in an intensity image. This type of motion can by simulated by

the following equation, introduced independently by Casselles et al. [8] and Malladi

et al. [34]

Here a and f3 are constants, K, is the Euclidean curvature, and the scalar function 4> is

constructed to have local minima near edges. The constant term a is needed to keep

the curve moving in the desired direction and the curvature term f3 . K, regularizes
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FIGURE 3.5. An illustration of a collection of curves evolving with a con
stant speed. Notice that sharp corners are developed. AIso, one of the curves
splits into two and then three pieces.

the evolving front. The multiplicative image-based stopping term cP, ensures that the

curve halts near edges. In [8, 34] , for example, </J takes the form:

•

where l is the grayscale image and Gu is a Gaussian smoothing filter.

These active contour models have the significant advantage over classical snakes [19]

that changes in topology due to the splitting and merging of multiple contours are

handled in a natural way. AIso, the original model can be refined by deriving weight

ed length and weighted area minimizing versions, where the essential idea is to define

a conformallength or area metric and compute the corresponding gradient evolution
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equations [20, 46]. Figures 3.6 and 3.7 depict examples of shape segmentation in 2D

and 3D using these flows.

It has been recognized that a practical weakness of most geometric flows with

stopping terms based purely on local image gradients is that they may "leak" in

the presence of weak or low contrast boundaries, are not suitable for segmenting

textures and typically require the initial curve or curves to lie entirely inside or outside

the regions to be segmented. Thus, a number of researchers have sought to derive

flows which take into account the statistics of the regions enclosed by the evolving

curves [38, 51]. Further developments include multi-phase motions, which allow

triple points to be captured [48, la], as well as the incorporation of an external force

field based on a diffused gradient of an edge map [50]. However, most geometric

flows are not able to capture elongated low contrast structures well, such as blood

vessels viewed in 2D and 3D angiography images. At places where such structures are

narrow edge gradients may be weak due to partial volume effects and it is also unclear

how to robustly measure region statistics. Approaches to regularizing the flow in 3D

by introducing a term proportional to mean curvature have the unfortunate effect of

annihilating such structures. In this thesis we propose a new geometric flow to address

these problems. Our approach is motivated by the simple observation that blood flows

in the direction of vessels. Brightness in angiography images is proportional to the

magnitude of the blood flow velocity. This leads to the constraint that in the vicinity

of blood vessel boundaries, the gradient vector field of the image should be locally

orthogonal to them. Thus, a natural principle to use towards the recovery of these

boundaries is to maximize the inward flux of the gradient vector field through an

evolving curve (in 2D) or surface (in 3D), see Figure 3.1. Both in 2D and 3D, this

leads to a simple and elegant interpretation which is essentially parameter free.

4. Flux Maximizing Flows, 2D Case

Let C = C(p, t) be a smooth family of closed curves evolving in the plane. Here t

parameterizes the family and p the given curve. Without 10ss of generality we shall
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FIGURE 3.6. An illustration of shape segmentation using curve evolution
based active contours. Different stages of the evolution are shown from top
to bottom. COLUMN ONE: An inward flow for segmenting a black and white
cat. COLUMN Two: Segmentation of the brain ventricles on a 256x256 MRI
image with inward flow. COLUMN THREE: Segmentation of the inner surface
of the brain with an outward flow on the same MRI image.
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FIGURE 3.7. An illustration of shape segmentation using surface evolution
based active contours on an artificial 3D scene composed of a sphere, a prism
and a parallelepiped. The initial surface (top left corner) is a cube placed
outside the objects. Different stages of the evolution are shown from left to
right, top to bottom. Notice how three objects are captured using a single
initial surface.
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assume that °::; p ::; 1, i.e., that C(O, t) = C(I, t). We shaH also assume that the first

derivatives exist and that C'(O, t) = C'(l, t). The unit tangent 7 and the unit inward

normal N to C are given by

where L(t) is the Euclidean length of the curve. The circulation of the vector field

along the curve is defined in an analogous fashion as

where s is the arc-Iength parameterization of the curve. Now consider a vector field

V = (VI (x, y), lt2(x, y)) defined for each point (x, y) in n2• The total inward flux of

the vector field through the curve is given by the contour integral

•
fI rL(t)

Flux(t) = Jo (V,N) IICp l1 dp = Jo (V,N) ds (3.3)

•

11 lL(t)
Circ(t) = 0 (V,7) IICp l1 dp = 0 (V,7) ds.

The main theoretical result in 2D of this thesis is given by the following theorem:

THEOREM 1. The direction in which the inward flux of the vector field V through

the curve C is increasing most rapidly is given by ~~ = div(V)N.

In other words, the gradient flow which maximizes the rate of increase of the

total inward flux is obtained by moving each point of the curve in the direction of

the inward normal by an amount proportional to the divergence of the vector field.

In order to tailor the flux maximizing flow to blood vessel segmentation, we shaH

consider the gradient VI of the original intensity image 1 to be the vector field V

whose inward flux through the evolving curve is maximized. The 2D flux calculation
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FIGURE 3.8. An illustration of the gradient vector field in the vicinity of a
blood vessel. Assuming a uniform background intensity, at its centerline, at
the scale of the vessel's width, the total outward flux, which is proportional
to the divergence, is negative. Outside the vessel, at a smaller scale, the
total outward flux is positive.

is illustrated in Figure 3.8. Renee, the flux maximizing flow in Eq (3.5) has the

desirable effect that when seeds are placed within blood vessels, the sources outside

boundaries prevent the flow from leaking.

Proof: Define the perpendicular to a vector W = (a, b) as WJ. - (-b, a). The

following properties hold:

•

•

(u, WJ.) = - (UJ., W)

(UJ., WJ.) = (U, W).

We now compute the first variation of the flux functional with respect to t

Switching to parametrization by s for Il and using

we have
(L(t)

Il = Jo (Ct, X s \Tlt2 - Ys\TVl)ds.

With N = (-yp, Xp)/ IICpll, 12 works out to be

(3.4)
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Now, using integration by parts

Using the properties of scalar products in Eq. (3.4) and the fact that

we can rewrite 12 as follows

12 =[ ( ( :: ).VpL ) dp

-11 /C (- (\7112, Cp) ) ) d
- 0 \ t, (\7V

l
, Cp) p.

Switching to arc-Iength parameterization

_lL
(t) ( (- (\7112, T) ))12 - Ct, ds.

o (\7l/i, T)

Combining Il and 12 , the first variation of the flux is

l
L

(t) ( ( - (\7112 T) ))Ct, Xs \7112 - Ys \7l/i + ' ds.
o (\7l/i,T)

Thus, for the flux to increase as fast as possible, the two vectors should be made

parallel:

(
-(\7112,T»)Ct = xs\7112 - ys\7Vi + .
(\7Vi, T)

Decomposing the above three vectors in the Frenet frame {T, N}, dropping the tan

gential terms (which affect only the parameterization of the curve) and making use
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of the properties of scalar products

Expanding aIl terms in the above equation

•

Ct = (xs(-V2x·Ys + V2 y.xs) - Ys(-Vix.Ys + Viy.xs) +

/ ( -V2y.Ys - V2x'xs ) ,N))N
\ Viy·Ys + Vix'xs

= (-V2x.xs.Ys + V2y.xs2 + Vix.Ys 2
- Viy.xs.Ys

+V2y'Ys2 + V2x.xs.Ys + VIy'Xs.ys + Vix.xs2)N

= (Vix(x/ + Ys2) + V2 y(xs2+ Ys2))N

= (VIx + V2y)N = div(V)N D

As a coroIlary to Theorem 1, we have

(3.5)

Circ(t) =

•

COROLLARY 1. The direction in which the circulation of of the vector field V

along the curve C is increasing most rapidly is given by ~~ = div (Vi. )N.

Proof: Using the properties of scalar products in Eq. (3.4)

l
L (t)

o (V, T) ds

l
L(t)

o (Vl., Tl.) ds

l
L(t)

- 0 (Vl.,N) ds

Rence the circulation of the vector field V along the curve is just the inward flux of

the vector field Vl. through it and the result follows from Theorem 1.
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5. Flux maximizing fiows, 3D Case

Let S : [0,1] x [0,1] --7 n3 denote a compact embedded surface with (local)

coordinates (u, v). Let N be the inward unit normal. We set

as as
Su := au' Sv:= av'

Then the infinitesimal area on S is given by

dS (11Su11211Sv1l2 - (Su, Sv)2)1/2dudv

IIBu /\ Svlldudv .

Let V = (Vi(x,y,z), V2(x,y,z), V3(x,y,z)) be a vector field defined for each point

(x,y,z) in n3 . The total inward flux of the vector field through the surface is defined

by the surface integral

•
Flux(t) = 1111

(V,N) dS.

We shaIl now show that our result in 2D extends to 3D as weIl.

(3.6)

•

THEOREM 2. The direction in which the inward flux of the vector field V through

the surface S is increasing most rapidly is given by ~~ = div(V)N.

It should not come as a surprise that the flux maximizing flow has the same form

in 3D as in 2D, since the flux formulation is unchanged. However, the calculation is

more subtle. We also note that in fluid mechanics the circulation in 3D is defined

along a chosen closed 3D curve on the surface, but this is not a surface integral.

Hence, CoroIlary 1 does not generalize to 3D.

Proof: The essential idea is to calculate the first variation of the flux functional with

respect to t:
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With S = (x(U, v, t), y(U, v, t), z(u, v, t)), the unit normal vector is given by the nor

malized cross product of two vectors in the tangent plane:

Su 1\ Sv (NI, N2, Na)

IISu 1\ Sv Il IISu 1\ Sv Il
(Yuzv - Yvzu), (xvzu - xuzv), (xuYv - xvYu)

-
lI(yuzv - Yvzu), (xvzu - xuzv), (xuYv - xvyu)ll'

Il is then given by

where the integrand has the desired form of an inner product of St with another

vector. For 12, it would seem reasonable to express the normal in terms of the partial

derivatives Xu, Xv, Yu, Yv, zu, Zv and then proceed. However, this does not lead to an

obvious solution. In fact, it turns out to be advantageous to instead express the

normal N as II~:~~:II' In this case, the integral can be rewritten as

11 11 (V, (Su 1\ Sv)t) dudv .

The trick now is to exploit the fact that for any vectors A, Band C, the following

properties of inner products and cross products hold:

AI\B -B I\A

•

(A, (B 1\ C)) ((A 1\ B), C)

(A 1\ B)t - (At 1\ B) + (A 1\ Bt).
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Renee, 12 ean be written as

12 = 1111 (V, (Sut Â Sv + Su Â Svt)) dudv

- 11 11 (V, (Sut Â Sv)) dudv +1111
(V, (Su Â Svt)) dudv

- 1111 -(V, (Sv Â Sut)) dudv +11 11 (V, (Su Â Svt)) dudv

- 1.' [1.' -((V 1\ Sv), Su,} dU] dv +1.' [1.' ((V 1\ Sul, Sv,) dV] du
, .., ., , v '

h ~

(3.7)

Using integration hy parts, la works out to be

,- ((V Â ~v), St)]~+11(St, (V Â Sv)u)du
equals 0

Similarly, using integration hy parts, 14 works out to be

,((V Â S;), St)]~J-11 (St, (V Â Su)v)dv
equals 0

Combining la and 14 , 12 works out to he

It ean now he seen that the integrand in 12 has the desired form of the inner produet

of St with another veetor. Renee, eomhining Il and 12 , the first variation of the flux

lS

11 11 (St, NI V'Vi +N2 V'lt2 + NaV'lla + (V Â SV)u - (V Â SU)v) dudv.

Thus, for the inward flux to inerease as fast as possible, the two veetors should he

made parallel:

(3.8)
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The above equation in fact is a legitimate form of the 3D flux maximizing gradient

flow, but it looks rather complicated. It can be further simplified by noting that the

components of the flow in the tangential plane to the surface S affect only the pa

rameterization of the surface, but not its evolved shape. Renee, they can be dropped.

The normal component of the flow can be calculated by taking the inner product of

the right hand side of Eq. (3.8) with the unit normal vector

N = (Yuzv - Yvzu) , (xvzu - xuzv), (xuYv - xvYu)
II(yuzv - yvzu) , (xvzu - xuzv), (xuYv - xvyu)1I

to give

(Yuz"-y"Zu),(x,,Zu -xuz" ),(Xuy"-x,,Yu) )N
I(Yuz"-y"Zu),(X"Zu-XuZ,,),(Xuy,,-x,,yull

It is now a straightforward task to expand the terms in this expression:

St = (f1j:;:;::IÛ2) (Vix (Yuzv - yvzu) + Viy(xvzu - xuzv) + Viz(xuYv - xvYu))

+ (~~:;;"ïIÎ2) (V2x(Yuzv - Yvzu) + V2y(xvzu - xuzv)+ V2AxuYv - xvYu))

+ (~~:;;"I:f2) (V3x(Yuzv - Yvzu) + V3y(xvzu - xuzv) + V3z(xuYv - xvYu))

+ Illsu;s,,1112 ((Vu 1\ Sv), (Yuzv - YvZu, XvZu - XuZv, XuYv - xvYu))

IIISu;S" 111 2 ((Vv 1\ Su), (Yuzv - Yvzu, xvzu - xuzv, xuYv - xvYu)).

With

Vu 1\ Sv = (zv(V2xxu+ V2yYu + V2z zu) - Yv(V3xxu+ V3 yYu + V3z zu) ,

xv(V3xxu+ V3 yYu + V3z zu) - zv(Vixxu+ ViyYu + V1zzu),

Yv(Vixxu+ ViyYu + Vizzu) - xv(V2xxu + V2 yYu + V2z zu))'
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....•............'

li .
~- ;

FIGURE 3.9. An illustration of the gradient vector field of an angiography
image along a cross-section of a 3D blood vessel. Assuming a uniform back
ground intensity, at the scale of the vessel's width the total inward flux is
positive (a sink). Outside the vessel, at a smaller seale, the total inward flux
is negative (a source).

and

- Vv 1\ Su = (-zu(V2xxv+ V2 yYv + V2z Zv) +Yu ('V3x Xv+ V3yYv + V3z zv),

-xu(V3xxv + V3 yYv + V3z zv) + zu(V1xxv+ ViyYv + Vizzv),

-Yu(V1xxv +V1yYv + V1zZv) +Xu('l/2xxv+ V2 yYv + V2z Zv))

the terms can be grouped and simplified. The curious result is that most cancel,

leaving the following simple and elegant form for the 3D flux maximizing flow:

St = (Vix + V2 y+ V3z)N = div(V)N 0 (3.9)

•

In order to use the above -result for blood vessel segmentation, in analogy to the

2D case we shall consider the gradient VI of the original intensity image 1 to be the

vector field V whose inward flux through the evolving surface is to be maximized.

The 3D flux calculation is illustrated in Figure 3.9. Once again we have the desirable

effect that when seeds are placed within blood vessels, the sources outside boundaries

prevent the flow in Eq (3.9) from leaking.
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CHAPTER 4

N umerical Implementation

The numerical implementation of flux maximizing flows is based on the use of level

set methods developed by Osher and Sethian [42, 37,43, 35]. The main idea behind

level set methodology is to embed the propagating curve or surface as the zero level

set of a higher dimensional function. By evolving this function and finding its zero

crossings, one obtains the evolution of the original curve or surface. We discuss level

set methods is sorne detail and also describe sorne optimization techniques that are

used to speed up the simulations.

A second important consideration is the computation of the velocity term based

on the divergence of the gradient vector field. We shaH exploit consequences of the

divergence theorem to introduce an appropriate local scale for this calculation, while

also making the computation numericaHy more robust.

Finally, we briefly review 3D visualization techniques used to present our results.

1. Level Set Methods

This discussion draws closely from [43], to which the reader is referred for further

discussion. Another recent review on the use of level set methods is [35].

Let r be a front evolving accordingly to the equation



• af =FNat '

4.1 LEVEL SET METHODS

(4.1)

•

where F is the speed of a point on the front and N is the unit inward normal at that

point. The level set method was devised by Osher and Sethian in [37] as a simple and

versatile method for computing and analyzing the motion of the interface f in two

or three dimensions, see Figure 3.2. The explicit, Lagrangian way to evolve the front

is to compute the normals analytically and recompute the positions of every point

on the interface for the next time step. This formulation faces significant difficulties

when the front is about to change topology or develop singularities. Interpolating the

gaps between neighboring particles as they move apart in subsequent steps is another

challenge. To address these issues, Osher and Sethian [37] developed an Eulerian

formulation by introducing an implicit representation of the interface. The idea is to

define a smooth (Lipschitz continuous) function w(x, t) that represents the interface

f(t) as the set of points x where w(x, t) = O. In practice, w(x, t = 0) is typically a

signed Euclidean distance function from x to f(t = 0), i.e.

w(x,t = 0) = ±d (4.2)

•

and the plus(minus) sign is chosen if the point is outside(inside) the initial front

f(t = 0), see Figure 4.1. The goal now is to derive an equation for the evolving

function w(x, t) that embeds the motion of f(t) as the zero level set, i.e, r(t) is given

by w(x, t) = 0 for aIl t. Differentiating Eq. (4.2) with respect to t:

Wt + Vw(x(t), t) . Xt = O.

The evolution equation we want to simulate is given by ~~ = F N. Since for any

level set the unit inward normal N = -I~:I' the front Wevolves according to
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FIGURE 4.1. A Euclidean distance function as W. Each point is assigned
its Euclidean distance to the nearest point on the curve (shown in white).
Brighter values indicate larger distances. In practice, points inside the curve
are given a negative sign and those outside are given a positive sign.

\lit = FIV'\lII· (4.3)

•

•

Hence, if we want to simulate the motion of the interface r according to Eq. (4.1),

we simply pick a function \li satisfying \li (x, t = 0) = r(O) and update it according

to Eq. (4.3). ris then obtained as the zero level set of \lI(t). The evolving function

\li (x, t) always remains a function as long as F is smooth. However, the zero level

set, and hence the propagating interface r(t), may change topology and form sharp

corners as the function \li evolves. Another advantage of this implicit representation

is that intrinsic geometric properties of the front are easily determined from the level

set function \li. For example, at any point of the front, the unit outward normal

vector is given by

and the mean curvature of each level set at every point is the divergence of the normal:

For numerical simulations Eq. (4.3) is discretized. For example, on a 2D rectan

gular grid, at each grid point (i, j) an update rule for \li is:
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4.2 OPTIMIZATION

This is a first-order update rule in time, where n is the iteration number and l:::.t is the

time step. If greater accuracy is required, higher-order time integration schemes may

be used. Special care must be taken to approximate Vijwr; since F is a hyperbolic

speed function for the flux maximizing flow. Specifically, when spatial derivatives are

computed, information must propagate in the same direction as the evolving front.

Numerical methods which enforce this constraint are known as upwind schemes [28].

Furthermore, if greater spatial accuracy is required, higher-order versions of these

techniques may be used [36].

2. Optimization

The first step in implementing a level set evolution is the construction of the level

function W. The most popular choice for this function has been a signed Euclidean

distance to the front. Each point is assigned its Euclidean distance to the closest

point on the front, with interior and exterior points being given different signs. An

exact distance function is a O(mn) computation, where m is the number of points

on the front and n is the total number of points in an input array. In 3D this can

add a heavy computational burden. In practice an approximate Euclidean distance

function is often used [6], where a mask is swept through the entire array a fixed

number of times. Hence, the complexity is reduced to O(n).

By constructing an embedding hypersurface \li, a level set method adds an extra

dimension of computation to a problem. The update equation Eq. (4.3) must be

applied at each grid point, in contrast to the evolution equation of the front Eq. (4.1),

which is defined only for points at the interface. Furthermore, the notion of the

velocity term F has to be smoothly extended to allievei sets, not just the zero level

set for which F is naturally defined. One way to do this is to assign to .each grid

point the value of F from the closest point on the zero level set. This however must
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FIGURE 4.2. An illustration of the narrow band technique. AIl computa
tions are performed in a small neighborhood of the front, as opposed to over
the entire grid. When the front hits the boundary of the narrow band, the
distance function is recomputed and a new band is placed around the front.
Successive iterations are shown from left to right, top to bottom. The front
is shown in black and the boundaries of the band are in gray.

•

•

be done for aIl points in the domain and hence the operation is computationally very

expensive.

To combat these issues it was proposed [12] to perform aIl calculations only

in a small neighborhood of the zero level set. This method became known as the

narrow band approach. In the course of the evolution when the front approaches the

boundary of the band, the calculation is stopped, \li is recomputed and a new band

is built around the zero level set, as illustrated in Figure 4.2. In this case, the time

for each iteration of the front reduces to O(k) where k is the number of points in

the band. The computation speed-up in using the narrow band approach depends

entirely on the number of points on the front and the width of the band. Clearly if

the size of the band is comparable to the size of the domain and/or if we have ta

perform re-initialization very often, we may end up with a loss of speed in comparison

to updating the full grid. In practice, however, the narrow band implementation leads

to a speed-up factor of 5 to 10.
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3. Divergence and Flux

In order to tailor the flux maximizing flow to blood vessel segmentation, we con

sider the gradient VI of the original intensity image 1 to be the vector field V whose

inward flux through the evolving curve (or surface) is maximized. An important con

sideration in the implementation of Eq. (3.5) and Eq. (3.9) is that since the divergence

of the vector field needs to be calculated, implicitly second derivatives of 1 are being

used. In fact with V = 'VI, Eq. (3.5) becomes

~~ = div(V)N = div(VI)N = 6IN.

Similar calculations could be done for Eq. (3.9). In other words, each point on the

front is moved in the inward normal direction by an amount given by the Laplacian

of 1. Note, however, that second derivatives 1 are not defined at places where the

gradient vector field 'VI becomes singular, which are precisely the locations ofinterest.

In order to address this issue and also incorporate a notion of scale that cor

responds to the local width of a vessel we exploit a consequence of the divergence

theorem. The divergence at a point is defined as the net outward flux per unit area,

as the area about the point shrinks to zero. Via the divergence theorem,

1div(V)da =1< V,N > dl. (4.4)

•

Here !la is the area, L is its bounding contour and N is the outward normal at

each point on the contour. The formulation extends to 3D by replacing the contour

integral with a surface integraI.

For our numerical implementations we use this flux formulation along the bound

aries of circles (in 2D) or spheres (in 3D) of varying radii, corresponding to a range

of blood vessel widths. Thus, we integrate the divergence over an appropriate local

neighborhood. The chosen flux value at a particular location is the maximum (mag

nitude) flux over the range of radii. In contrast to other multi-scale approaches where

combining information across scales is non-trivial [26] normalization across scales is
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4.4 VISUALIZATION

straightforward in our case. One simply has to divide by the number of entries in

the discrete sum that approximates Eq. (4.4). This computation is illustrated in

Figures 3.8 and 3.9.

4. Visualization

Displaying 3D information such as input images or level sets on 2D paper leaves

a certain choice of options on which volume or surface rendering technique to use. We

visualize 3D MRA and CRA input images of blood vessels using a maximum intensity

projection (MIP) technique, Figure 1.2(a). In the MIP 3D data is projected ante a

2D plane by choosing the maximal value along the projection rays. Because intensity

in angiography images is proportional to the speed of the blood, voxels containing

blood vessels have higher values and consequently they are more likely to be seen on

the MIP.

As an output of our segmentation algorithm we have a matrix in which zero

crossings (the zero level set) corresponds to blood vessels. We use the freely available

Visualization Toolkit (VTK) [41] that uses the marching cubes technique [29] to tri

angulate voxels corresponding to the zero crossings into isosurfaces. Before rendering,

the surfaces are slightly smoothed to enhance their visualization, see Figure 1.2(b).
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CHAPTER 5

Results

In this chapter we present examples that illustrate the application of flux maximizing

flows to the segmentation of the vasculature. We demonstrate the advantages of our

method on regions of a 2D angiography retinal image, on a 3D MRA image of the

human head, as weIl as on several cropped regions of a 3D CRA image of the head. Our

segmentation results are compared against results obtained by thresholding. Whereas

this is only a crude form of segmentation it is nevertheless a first step used to initialize

several vessel segmentation techniques. In order to better observe the properties of

the flow and to illustrate the multi-scale flux calculation, we begin with a simulation

on a synthetic 2D tree-like image.

1. A Synthetic Image

We start by illustrating the flux maximizing flow on a synthetic 2D image, as

shown in Figure 5.1(a). This image was constructed as foIlows. First, a binary

image was obtained by drawing an object resembling a 2D vascular tree. Next, the

distance function was computed and displayed in the interior of this object. Hence, the

centerlines of the branches appear brightest, and then intensity graduaIly decreases

towards the boundaries. The idea is to mimic a real MRA image where intensity is

proportional to the speed of the blood and blood flows faster in the center of a vessel.
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5.1 A SYNTHETIC IMAGE

(a) A 2D synthetic image.

(b) Its multi-scale divergence.

FIGURE 5.1. A synthetic image imitating a 2D vascular tree a), and the
multi-scale outward flux (divergence) of its gradient vector field b).
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5.1 A SYNTHETIC IMAGE

FIGURE 5.2. An illustration of the evolution of a few isolated seeds fiowing
according to Eq. (3.5) on the synthetic tree-like image in Figure 5.1(a).
Consecutive evolution steps are shown from left to right, top to bottom.

Although it is trivial to segment this synthetic image, it serves as a clean illustration

of the properties of the flux maximizing flow.

The first step in simulating the flow is the computation of the image-based velocity

field that will drive the evolution. For flux maximizing flows the speed is defined by

the divergence of the auxiliary vector field. For blood vessel segmentation we choose

the gradient vector field of the original intensity image to be this auxiliary field. For

our simulations we compute the flux along the boundaries of circles in 2D and spheres

in 3D of varying radii that cover the range of expected vessel widths. The flux is then

normalized by dividing it by the length of the circle in 2D or surface area of the
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5.1 A SYNTHETIC IMAGE

(a) Retinal images.

(b) Their multi-scale divergence.

FIGURE 5.3. Portions of a retinal angiography image a) and their corre
sponding multi-scale outward flux (divergence) b). The seale corresponds to
possible vessel widths and ranges uniformly from 1 to 8 pixels.

sphere in 3D. The maximal (in magnitude) normalized flux value at each point is

then assigned to this point. The multi-scale divergence computed in such a way over

a range of radii from 1 to 6 pixels is shown in Figure 5.1(b). After the velocity field

has been computed we can proceed with simulating the actual flow. Several seeds

are placed manually inside the tree to initialize the flow, as illustrated in Figure 5.2.

As expected, the curves evolve in the direction of branches thereby maximizing the

flux of the gradient vector field through them. The algorithm has no restrictions at

branch points and hence aIl branches are captured perfectly.
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5.2 2D RETINAL IMAGES

FIGURE 5.4. An illustration of the evolution of a few isolated seeds flowing
according to Eq. (3.5). Notice that, as expected, they follow the direction
of shading in the image to maximize the inward flux of the gradient vector
field through their boundaries.

2. 2D Retinal Images

We now demonstrate the performance of our algorithm in 2D on portions of an

angiography image of the retina. The inputs are greyscale images containing blood

vessels with 256 intensity levels, as shown in Figure 5.3(a). The multi-scale outward

flux of the gradient vector field of these images is illustrated in Figure 5.3(b). Here 8

scales uniformly distributed from 1 to 8 have been used.
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5.2 2D RETINAL IMAGES

(a) A zoom-in on the top portion of the retinal image.

(b) The segmentation results for this portion.

FIGURE 5.5. An illustration of the segmentation of a low contrast elongated
structure. We zoom in on the top portion of the retinal image in Figure 5.4
and display the segmentation results obtained by the flux maximizing flow.

Figures 5.4 and 5.6 depict the flux maximizing flow generated by evolving several

isolated seeds (Figure 5.4) or a single seed (Figure 5.6), placed inside the vessels.

Although the seeds can be placed automatically in places of high inward flux (as we

will show in 3D examples), these seeds have been placed manually strictly for the

purpose of enhancing the demonstration of the effectiveness of the algorithm. Notice

how curves are elongated in the direction of vessels to reconstruct thin or low contrast

structures. The ability to recover low contrast structures is best demonstrated on the

vessellocated on the top portion of the image from Figure 5.4. A zoomed-in version

ofthis vessel is shown in Figure 5.5(a), with the segmentation shown in Figure 5.5(b).

Most other flows, particularly ones with a constant inflation term, would leak through

such boundaries. The introduction of a curvature-based regularization term may
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5.3 A ·3D MAGNETIC RESONANCE ANGIOGRAPHY IMAGE

FIGURE 5.6. An illustration of a curve evolving according to Eq. (3.5).
Notice that vessels of different width are weIl captured.

prevent leaking to an extent, but the flow would then be halted at narrow regions as

weIl, since the curvature would dominate and would push the evolving curve back.

Notice also that vessels of different radii are weIl captured due to the multi-scale

computation of the flux.

3. A 3D Magnetic Resonance Angiography Image

The proposed blood vessel segmentation algorithm has been tested on 3D Mag

netic Resonance Angiography (MRA) data. Figure 5.7 shows Maximum Intensity
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5.3 A 3D MAGNETIC RESONANCE ANGIOGRAPHY IMAGE

(a) Maximum intensity projection
(first view).

(h) Maximum intensity projection
(second view).

•

•

FIGURE 5.7. Maximum intensity projections of a 60x60x60 portion of a
3D MRA image of blood vessels. An MIP of the full 256x256xl00 dataset is
illustrate in Figure 5.9.

Projections (MIPs) of a portion of an MRA image of blood vessels in the head, seen

from two different viewing directions. This portion has dimensions 60x60x60 and has

been cropped from the full MRA data of 256x256x100 voxels, whose MIP is shown in

Figure 5.9. Figures 5.8 (for the cropped data) and 5.10 (for the full data) illustrate

the evolution of a few isolated 3D spheres flowing according to the 3D flux maximizing

equation flow (Eq. 3.9). These spheres were placed automatically by an initialization

program which sampled the data and placed seeds uniformly in regions of high flux,

which is similar to the idea of using "bubbles" [47]. Notice how the spheres elongate

in the direction of blood vessels, which is once again the evolution we expect since it

maximizes the rate of increase of inward flux through them. It is interesting to note

that the main thick vessels are reconstructed first, since they have higher inward flux,

followed by the reconstruction of thinner low contrast vesf!cls. Such a hierarchical

reconstruction can later be exploited for the classification of vessels by size.
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FIGURE 5.8. An illustration of the flux maximizing flow for a portion of
a 3D MRA image of blood vessels in the head. Two distinct views of the
same evolution are shown (top two rows and bottom two rows). The full
reconstruction is shown in Figure 5.10.
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5.4 A 3D COMPUTED ROTATIONAL ANGIOGRAPHY IMAGE

FIGURE 5.9. A maximum intensity projection of the 256x256x100 3D MRA image.

In Figure 5.11 we compare the segmentation results obtained with the flux maxi

mizing flow with simple thresholding. High (conservative) thresholding, shown in Fig

ure 5.11 (a), does not detect thin or low contrast vessels. As we decrease the threshold,

allowing more structures to be detected, most low contrast thin vessels are captured,

but also many voxels corresponding to noise are incorrectly labeled as vessels (Fig

ure 5.11 (b)). AIso, notice the effect of merging neighboring vessels as the threshold is

lowered. In general it is unclear how to recover from poor results due to thresholding,

despite this being a cornmon step in many algorithms [31, 33, 32, 49, 40].

4. A 3D Computed Rotational Angiography Image

Computed Rotational Angiography (CRA) volumetrie images are produced by

acquiring projection x-ray images from many angles around the patient, followed by

reconstruction using the Computed Tomography (CT) algorithm. For blood vessels

to be seen, x-ray contrast material is injected directly into the vessel system before

scanning.

The proposed algorithm based on flux maximizing flows has been tested for the

segmentation of blood vessels in a 360 x 420 x 310 CRA image of the head. We
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FIGURE 5.10. An illustration of the flux maximizing flow for the full 3D
MRA image, of which a portion was shown in Figure 5.8. Images from left
to right, top to bottom depict the successive evolution steps of a few isolated
blobs. The main vessels, which have higher inward flux, are the first to be
reconstructed.
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5.4 A 3D COMPUTED ROTATIONAL ANGIOGRAPHY IMAGE

(a) High Threshold

(b) Low threshold

(c) Flux maximizing flows

FIGURE 5.11. A comparison of segmentation results obtained with flux
maximizing flows c) with simple thresholding a) and b) on a portion of an
MRA image shown from two different viewing directions. A conservative
(high) threshold a) does not detect low contrast vessels, whereas a lower
threshold b) incorrectly labels noise as vessels.

55



•

•

5.4 A 3D COMPUTED ROTATIONAL ANGIOGRAPHY IMAGE

(a) High Threshold

(b) Low threshold

(c) Flux maximizing fiows

•
FIGURE 5.12. A comparison of segmentation results obtained with flux
maximizing flows c) with simple thresholding a) and b), on different regions
of a CRA image. Arrows in c) point to sorne of the thin low intensity vessels
that are not seen even in the low threshold image b), that already contains
several noise artifacts. 56
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FIGURE 5.13. An illustration of the fiux maximizing fiow for a portion of
a 360 x 420 x 310 3D CRA image of blood vessels in the head. A maximum
intensity projection of the region being viewed is shown on the top left. The
other images depict the evolution of a few isolated spheres. Notice how the
evolution follows the direction of blood fiow to reconstruct the blood vessel
boundaries.

•

illustrate the effectiveness of the method on different regions of this CRA image.

These regions were selected to contain many vessels of different sizes and intensities

in order to be able to better evaluate the performance of the proposed flow. Seg

mentations obtained by evolving several 3D spheres (placed automatically in areas
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FIGURE 5.14. An illustration of the flux maximizing flow for a portion of
a 360 x 420 x 310 3D CRA image of blood vessels in the head. A maximum
intensity projection of the region being viewed is shown on the top left. The
other images depict the evolution of a few isolated spheres. Notice how the
evolution follows the direction of blood flow to reconstruct the blood vessel
boundaries.

of high inward flux) according to the 3D flux maximizing (Eq. 3.9) are shown in

Figures 5.13, 5.14, 5.15 and 5.16. For each region, a maximum intensity projection

is shown on the top left corner of the corresponding figure. The dimensions of the

data are 79 x 161 x 66 voxels for the region in Figure 5.13, 103 x 122 x 97 voxels
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FIGURE 5.15. An illustration of the flux maximizing flow for a portion of
a 360 x 420 x 310 3D aRA image of blood vessels in the head. A maximum
intensity projection of the region being viewed is shown on the top left. The
other images depict the evolution of a few isolated spheres. Notice how the
evolution follows the direction of blood flow to reconstruct the blood vessel
boundaries.

•

for Figure 5.14, 103 x 98 x 79 voxels for Figure 5.15 and 161 x 173 x 79 voxels for

Figure 5.16.

Figure 5.12 compares segmentation results obtained by our method with segmen

tation by thresholding. Notice that as with the MRA image (Figure 5.11(b)) a high
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FIGURE 5.16. An illustration of the flux maximizing flow for a portion of
a 360 x 420 x 310 3D CRA image of blood vessels in the head. A maximum
intensity projection of the region being viewed is shown on the top left. The
other images depict the evolution of a few isolated spheres. Notice how the
evolution follows the direction of blood flow to reconstruct the blood vessel
boundaries.

•

(conservative) threshold does not capture thin low contrast vessels as illustrated in

Figure 5.12(a). AIso, with a high threshold, many thin vessels appear disconnected

or "broken" into several pie(~es. Attempts to lower the threshold value do not pro

duce good quality results, as demonstrated in Figure 5.12(b). One might think that

because the resolution of the CT angiography image is higher than that of the MRA

image (360 x 420 x 310 for CRA compared to 256 x 256 x 100 for MRA), segmentation
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by thresholding will give sllperior results for the CRA image. Rowever, this is in gen

eral not true because voxels corresponding to vessels in a CRA image exhibit a larger

range of values than those in an MRA image. This range also overlaps the intensi

ty values of anatomical structures other than vessels. Rence, attempts to coyer this

range with a global threshold operation will result in the capture of many more voxels

than those corresponding to blood vessels. In contrast, the final segmentation results

obtained with our segmentation method are very encouraging (see Figure 5.12(c)).

Vessels of variable sizes and intensities are weIl detected. Moreover, extremely thin

vessels that are not seen even in a low threshold image are captured. Several such

vessels are pointed to by the black arrows in Figure 5.12(c).

In the thresholded images, in sorne places of high vessel density (such as the

mid-bottom left portion of the second image to the left in Figure 5.12(b)) we observe

that several distinct vessels are merged. This unfortunate effect is greatly reduced

in the images segmented using flux maximizing flows (see the same portion in the

second image to the left of Figure 5.12(c)). Nevertheless, vessels may merge when

segmented by our algorithm. For example, the two long vessels in the second image

to the left in Figure 5.12(c) come together in the mid right section of the image. This

is typically the cause of partial volume effects during the scan; the resolution of the

original CRA data set is not high enough to separate vessels when they are very close

to one another.

Notice also, that since the evolution has the intuitive behavior that it follows

the direction of blood flow, the final segmentation gives vessels that appear weIl

connected.
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CHAPTER 6

Discussion and Conclusions

1. Overview

In this thesis we have studied the problem of automatic segmentation of blood

vessels in 2D and 3D angiography images. A solution to this problem will find applica

tions in a number of clinical procedures including the diagnosis of several diseases and

surgical planning and navigation during surgery. Several systems have been proposed

by researchers to address this problem. These include multi-scale methods that try to

detect line-like structures by analyzing the eigenvectors and associated eigenvalues of

the Hessian matrix constructed at each voxel ofthe image [26, 25, 16,23,30,40], an

algorithm that detects vessels based on the assumption that their centerlines appear

as ridges in intensity images [3], a statistical method [49], an anisotropie diffusion

approach which filters vessels by smoothing data only along vessels [24], a topology

based region growing technique [13], and a co-dimension two mean curvature fiow

based approach [31, 33, 32]. We choose to follow the framework of co-dimension one

geometric fiows to segment blood vessels. While many methods developed within this

framework have been applied to the segmentation problem [8, 9, 34, 38, 45], most

will fail to detect low contrast thin structures such as blood vessels. To address this

problem we derived the gradient fiow which maximizes the rate of increase of inward

fiux of an auxiliary vector field through a closed curve or surface. The calculation lead

to a simple and elegant interpretation in 2D and 3D that was essentially parameter
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free. We demonstrated the potential of the derived flux maximizing flows on several

2D and 3D images of blood vessels. AlI the geometric flows simulated in this thesis

were implemented using the level set framework [37, 43, 35].

2. Summary of the Algorithm

The proposed segmentation algorithm proceeds in several stages:

• Input a 2D or 3D intensity image l, such as an MRA or CT image containing

blood vessels.

• Compute the gradient vector field V = VI.

• Compute the multi-scale divergence image of V. Here, for stable numerical

computation we exploit the divergence theorem rather than use the standard

definition of the divergence.

• Place initial circles (in 2D) or spheres (in 3D) in the places ofhigh inward flux,

Le., places where the divergence has low negative values.

• Use the level set framework to evolve initial curves (surfaces) according to the

equation that moves the curves (surfaces) in such a way so that the rate of

increase ofinward flux of the gradient vector field through these curves/surfaces

is maximal. We have proved that this equation has the same form in 2D and

3D:

Mt = div(V)N (6.1)

•

where M is the evolving closed curve (2D) or closed surface in (3D), and V is

the gradient vector field.

• Visualize the segmentation results.

3. Future Work

There are several ways to further extend work on blood vessel segmentation us

ing flux maximizing geometric flows. The main idea of flux maximizing flows is to
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maximize the rate of increase of flux of an auxiliary vector field through a curve or

surface. In order to apply this idea to blood vessel segmentation we have used the

gradient vector field as this auxiliary field, which works weIl in practice. One other

candidate for the vector field that could be a construction based on the eigenvectors

of the Hessian matrix. Several researchers [25, 16, 23, 30, 40] have noted that for

a tubular structure, the eigenvector corresponding to the smallest eigenvalue points

in the direction of the tube, while the other two lie in the plane perpendicular to

it. This and other (2.1) properties of the eigenvectors and eigenvalues of the Hessian

have been used to construct heuristics for estimating the "probability" of each voxel

to belong to a vessel. For flux maximizing flows one can simply construct a vector

field of eigenvectors that are perpendicular to the main axes of a vessel. In this way,

the flow that maximizes the rate of increase of inward flux of this field should follow

the local direction of a vessel.

We chose not to introduce a regularization term in the variational formulation.

Whether this can be incorporated in the derivation remains to be investigated. The

flow could also be smoothed after it has converged using the anisotropie diffusion

approach of [24], or the geometric heat equation or its affine invariant version in 2D.

It would also be interesting to see whether the regularization technique based on the

co-dimension two flow in 3D [31, 33, 32] could be incorporated in the flow.

More work could be done to validate the approach against ground truth or other

blood vessel segmentation results [32, 25, 49, 3]. One difficulty with validation is

that it is unclear what to consider as the ground truth because the actual blood

vessels are ultimately hidden and cannot be measured directly. One way to avoid this

problem is to create an artificial binary vascular tree and simulate the corresponding

MRA data using an MRI simulator [27]. In this fashion, the original binary data

could be considered as the ground truth.

Finally, the multi-scale divergence computation could easily be incorporated in

the morphological reconstruction ofvessels from [13]. Instead of ordering "removable"

voxels by their intensity one could order them by their divergence values. This will
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potentially lead to a more complete reconstruction of the vascular system. A similar

ordering idea was used in [7] for creating medial surfaces.

4. Conclusion

To conclude, we have presented the novel idea of maximizing the flux of a vector

field through a closed curve or surface and have derived the corresponding gradient

flows from first principles.

We have also proposed a real-life application for these flows, the segmentation of

blood vessels. We have investigated the performance of our segmentation algorithm

on several 2D and 3D angiography images. The results demonstrate the potential of

our algorithm for recovering vessels of various widths and sizes, including thin low

contrast structures.
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