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Abstract 

The possible polar wandering of the planet Mars is investigated by modeling some of the many 

surface magnetic anomalies discovered by Mars Global Surveyor (MGS). First 1 descrihe the 

physics of polar wandering by exposing the theory developed by Ricard et al. [1993] and Spada 

et al. [1996].1 derive the linear form of the equation of polar motion in the rime domain valid for 

polar motion of up to 10 deg. The long-term polar motion of a non-rigid planet is also discussed 

via the rotational number frrst defined by Spada et al. [1996]. It is found that the theory is 

mathematically correct but that the Ricard et al. [1993] formulation used to get to the long-term 

interpretation of the rotational number is unnecessary and add to the complexity of an already 

difficult subject. The main conclusion of Spada et al. [1996] can he reached by using the simpler 

linear equation of polar motion. The physics behind polar motion hints that Mars has probably 

undergone polar motion because of the many important topographicalloads on its surface. 

The modeling of nine isolated magnetic anomalies by two different methods shows that none of 

the paleomagnetic pole positions found correspond to the actual rotation axis. Moreover, 

clustering of the poles in the Tharsis region and core field reversal are supported by the results. 

This is consistent with results obtained in other studies by using different methods. Clustering, 

however is not as tight as the one found in Arkani-Hamed [2001]. The actual pole position found 

for most anomalies changes according to the method employed and must be considered as 

preliminary until an accepted way of removing extemal and nearby sources contamination is 

found and tested on synthetic data. One anomaly, A5, yields about the same paleomagnetic pole 

position in the two studies indicating that this anomaly may be better isolated than the rest. The 

paleomagnetic pole position found for A5 indicate that Mars has probably undergone polar 

motion of up to 40 deg and that Tharsis is probably responsible. This result supports the argument 

that the actual equatorial location of Tharsis is not a coincidence but is more likely a natural 

consequence of polar wandering. 
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Résumé 

Cette thèse présente une étude du mouvement des pôles de la planète Mars obtenue par l'analyse 

et la modélisation de certaines anomalies magnétiques découvertes par Mars Global Surveyor 

(MGS). Dans un premier temps je présente la théorie de la dynamique de rotation des planètes 

non rigides développées par Ricard et al. [1993] et Spada et al. [1996]. Je dérive la forme linéaire 

de l'équation du mouvement des pôles en fonction du temps valable pour un mouvement d'au 

plus 10°. Une équation plus générale est aussi présentée à l'aide du nombre de rotation définie par 

Spada et al. [1996]. Les dérivations effectuées montrent que la théorie est mathématiquement 

correcte mais la façon dont elle est présentée par Ricard et al. [1993] introduit des complexités 

inutiles dans une théorie déjà fort complexe. Le même résultat peut être obtenu à partir de la 

forme linéaire de l'équation du mouvement. La physique derrière le phénomène du mouvement 

des pôles suggère que Mars a probablement subie ce phénomène dans le passé due à la présence 

de nombreux reliefs topographiques à la surface de la planète. 

La modélisation des anomalies magnétique isolées a été effectuée de deux façons différentes. Les 

résultats montrent qu'aucun des anciens pôles déterminés par l'analyse ne correspond au pôle de 

rotation actuel de la planète. Plus encore, les différents pôles semblent se groupés dans la région 

de Tharsis. Le regroupement n'est cependant pas aussi fermé que celui déterminé par Arkani­

Hamed [2001]. Les résultats indiquent également que l'ancien champ magnétique martien a 

probablement changé d'orientation au cours de son histoire. Les anciens pôles déterminés dans 

cette étude doivent êtres considérés comme préliminaires tant que l'on aura pas trouvé une 

méthode acceptable pour éliminer les différentes sources de contamination. Cependant l'anomalie 

A5 donne approximativement le même pôle lorsque modélisée par les deux méthodes employées 

dans cette étude. Le pôle déterminé pour cette anomalie indique que Mars a peut-être changé 

l'orientation de son axe de rotation de 40° et que Tharsis en est probablement responsable. Cette 

étude supporte la proposition à r effet que la position équatoriale actuelle de Tharsis est une 

conséquence du mouvement des pôles de Mars. 
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Preface 

This thesis examine the possibility that the planet Mars has experienced polar wandering based 

on the analysis and modeling of sorne of the numerous surface magnetic anomalies observed by 

Mars Global Surveyor (MGS) since it's orbit inception in 1997. MGS is equipped with an 

onboard magnetometer and has relayed to Earth a considerable amount of magnetic field 

measurements taken at both low (100 to 200 km) and high (average 400km) altitudes. MGS has 

demonstrated conclusively that Mars does not have a global magnetic field and we therefore have 

a much more direct access to any crustal field that is present at the surface. An ancient core field, 

now extinct, is probably responsible for the creation of the observed magnetic anomalies. 

Polar wandering or polar motion is the ability of a planetary body to move its surface relative to 

its axis of rotation in response to internal structure changes. On Earth polar wandering has 

. already been recognized as a major contributor to the overall geophysical history of the planet. 

The fundamental assumption in using magnetic in polar wandering studies is that the dipole core 

field axis (present or ancient) shows reasonable alignment with the rotational axis and that this 

alignment is maintained in any shifting of the rotation axis. This is the case for Earth and this 

fundamental assumption will be retained for Mars. Below, 1 introduce each chapter of this thesis 

and give a short description of their content. 

Chapter 1 : The physics of polar motion 

The understanding of the rotational behavior of a planetary body is a very complex subject and is 

related to rotational dynamics, the part of mechanic that study the forces that make an object 

rotate. For a geophysicist the study of rotational dynamics of planets is both a blessing and a 

curse. Acurse because of the incredible mathematicalload involved and a blessing because the 

rotational behavior of a planet is intimately related to if s internal structure. Therefore a study of 

the rotation of Mars can help in constraining the internal structure of the planet which is poorly 

known at the time of this writing. 
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Since rotational dynamics is so important the basic definitions and formulation of rotational 

dynamics as applied to non-rigid bodies will be presented in chapter 1. 1 will exp Iain how a body 

can shift ifs surface relative to a fixed axis of rotation giving the impression to an observer on 

the surface that the axis of rotation (and therefore the poles) are moving on the surface of the 

planet. First a description of the basic physics involved in polar motion is presented. The simple 

case of the rotational dynamics of a rigid body is also discussed. Although rigid body theory is 

inadequate to correctly represent polar motion of an actual non-rigid planet it can be used as a 

first order approximation to predict general polar motion patterns. Following that, the theory will 

be used to present a linear formulation of the polar motion equation for non-rigid bodies. This 

formulation will be adequate for polar motion less than 10°. However, it is likely that on Mars, as 

on Earth, polar motion has been much larger than 10° and it is highly desirable to have a theory 

that gives us a long term portrait of polar motion. In order to get a better idea of long term polar 

motion 1 will expose the theory developed by Ricard et al. [1993] and Spada et al. [1996].1 will 

present the mathematics involved in the theory, derive the most important equations, and discuss 

the weaknesses and strengths of the theory. 1 will conclude this chapter by discussing the 

influence of different internaI structure parameters on polar motion. A short description of our 

knowledge of those parameters for Mars is included. 

Chapter 2 : The magnetic field of Mars 

ln chapter 2 the use of paleomagnetism in polar wandering studies is described and sorne of the 

work done for Mars by different investigators is presented. This chapter also includes a 

discussion of our state of knowledge of the magnetic field of Mars. 1 present the most important 

spherical harmonic models of the magnetic field. The different methods used in the modeling of 

the magnetic field in general and magnetic anomalies in particular are presented and compared. 

This chapter includes an analysis of the treatment of magnetic data from MGS. This analysis 

describes the problems associated with working in a noisy magnetic environnement and examines 

the even more fundamental problem of working with anomalies that are not perfectly isolated. 
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Chapter 3 : First modeling results 

Chapter 3 will present the method and results obtained during the first round of modeling. In this 

part of the work 1 modeled 9 relatively isolated magnetic anomalies with an elliptical prism of 

varying shape, position and magnetization. Both the low and high altitude data are used. For the 

low altitude data, selected tracks are used over each anomaly of interest. The tracks are detrended 

by removing a quadratic fit of each track. High altitude data are binned and smoothed in the 

Fourier domain to reduce remaining external contribution. The goal of this modeling effort is to 

find the orientation of the ancient core field (paleomagnetic pole position) that created each 

anomaly and discuss the geophysical implication of the results. 

Chapter 4 : Second round of modeling 

Chapter 4 presents the result of a new round of modeling with high altitude data only. Again 

elliptical prisms are used. 1 calculate the paleomagnetic pole position for the same 9 anomalies of 

chapter 3 but in a very different way. The huge high altitude data set is separated into two subsets 

and anomaly data is extracted from each subsets. As in chapter 3 the data is smoothed in the 

Fourier domain. The unsmoothed and smoothed data is then modeled for each component of the 

magnetic field. The low altitude radial data is also modeled for comparison purposes. In total, for 

each anomaly, 13 data sets are modeled giving 13 paleopole positions. In theory, if we were 

working with absolutely clean and isolated anomalies all 13 paleopole positions would coincide 

perfectly. Of course, in practice, that's not what we get and how close the different paleopoles are 

is a great test of the confidence we can have in the paleopole positions found. 

Chapter 5 : Conclusion and future research 

Finally chapter 5 makes a global resume of the work done and describes areas where future 

research should concentrate. 1 will point out the enormous lack of standardization in data 

manipulation and cleaning between the different investigators and emphasize that this problem 

should he looked into before going on any further (just that would make for sorne good PhD work 
3 



here !!!). The fundamental problem of non-uniqueness is discussed in the context of the Martian 

magnetic field. A short discussion on the applicability of the results to constrain the internaI 

structure of Mars concludes the thesis. 
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Chapter 1: Rotational dynamics 

1.1 Introduction 

The rotational behavior of most objects is in appearance very simple. If one considers the Earth 

for example, our planet makes one rotation every 24 hours and for most people that' s the end of 

it. However physicists, geophysicists and astronomers have known for quite some time that there 

is a lot more to this story than a simple alternance between night and day. The Earth is subjected 

to forces that influence its rotation. The rotation period is not constant and the axis of rotation 

itself changes its alignment with respect to the stars and to the surface of the Earth. Over a long 

period of time these changes have a profound effect on the geology and climate of our planet 

[Evans, 2001]. Polar wander can also affect sea level and change it in the ten's of meters 

proportion [Mound and Mitrovica, 1998] As a consequence, changing climate and geology will 

have serious consequences on the different ecosystems that make up the Earth. It is not 

exaggerated to say that the development of life on Earth has been affected by the rotational 

behavior of our planet. 

Changes in the rotational behavior of a planet can be divided basically in two groups. First there 

are the changes in the alignment of the axis of rotation with respect to the fixed background of 

the celestial sphere. In the case of our planet these changes are mainly due to the forces exerted 

by the sun and the moon on the equatorial bulge of the Earth. The best-known rotational change 

in this group is the lunisolar precession. It corresponds to a slow circular motion of the Earth's 

rotation axis with respect to the fixed star background. The period of the lunisolar precession is 

about 26,000 years. Because of precession the seasons will be inverted and 13,000 years from 

now it will be Winter in July in the northern hemisphere and summer in the southern hemisphere, 

the exact opposite of what we have today. This is an obvious example of the effect of changing 

rotation behavior on climate. 
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The changes of the axis of rotation with respect to the stars are very interesting subjects but they 

do not represent the focus of this thesis because of their limited geophysical effects on the Earth 

and other terrestrial planets. In this thesis 1 am more concerned with a second group of rotational 

changes, that is those changes of the rotational axis alignment with respect to the body's surface. 

ln this group the axis of rotation is fixed by angular momentum conservation and it is the planet' s 

surface that move with respect to the axis of rotation. An outside observer would see the shifting 

of the Earth with respect to the axis, while an observer on the surface would see the axis move 

and therefore the poles of rotation would change position with time. These changes are the ones 

geophysicists are most interested in because they are greatly dependant on the internal structure 

of the rotating body. 

These changes are called polar motion or polar wandering. The two terms are synonymous. On a 

planet, the angular distance a given point at the surface has moved relative to the axis of rotation 

measures polar motion. Polar motion is created by internal mass anomalies and surface loads that 

affect the inertia tensor of the planet. The inertia tensor is a fundamental characteristic of the 

rotational behavior of a planet and is dependant on the internal distribution of mass. As such, 

knowing the inertia tensor of an object gives one a very good constraint on its internal structure. 

Any changes in the mass distribution inside or at the surface of a planet will change the inertia 

tensor and affect the rotation of the body. On short time scales movement of air and water masses 

will affect the rotation of the Earth. On longer time scales, the movement of plates at the surface 

and of internal mass anomalies due to mantle convection will have a durable effect on Earth' s 

rotation. The notion of inertia tensor will he discussed in the next section of this chapter. On 

Mars the atmospheric winds and the seasonal mass exchange (in the form of CO2 sublimation and 

condensation) between the ice caps and atmosphere affect the planet's rotation and the length of 

day. [Defraigne et al., 2000] 

On Earth two major elements combine to move surface objects relative to the axis of rotation: 

Polar motion and plate tectonic. These are two very different phenomena. Plate tectonic is 

produced by convection inside the mantle. If one takes into account the combined effect of the 

two phenomena we have apparent polar wander (APW). If we remove the displacement due to 
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plate tectonics and define the position of the axis of rotation with respect to a fixed position on 

the lithosphere then we are dealing with true polar wander (TPW). On Earth, hotspots in the 

mantle move very slowly and are considered good reference points. Astronomical measurements 

have indicated a polar motion rate of about 10cm/year mostly associated with postglacial rebound 

[Vermeersen and Sabadini, 1999]. On other planets a fixed reference point has not yet been 

identified. 

It is now weIl accepted that the Earth has experienced sorne polar motion episodes. This, 

combined with plate tectonics, has dramatically changed the surface aspect of the Earth. For 

example one period of Earth history, which has seen major changes, is the Cambrian period that 

went from 540 Ma to 490 Ma ago. The speed at which continents moved at that time could have 

been as high as 20 to 40 cm/y [Merl,1999]. That period also saw important changes in the 

biological mass, seawater chemistry and possibly a major change in climate going from severe 

icehouse to green house climate. One theory that has been proposed to exp Iain this high rate of 

plate motion is inertial interchange true polar wander (IITPW) . This is a special and extreme 

case of TPW where the Earth's intermediate inertial axis and maximum axis interchange 

requiring a 90 deg shift of the surface relative to the axis of rotation. This hypothesis initially 

proposed by Kirschvink el al. [1997] would require a huge variation in the earth's internaI mass 

distribution in a relatively short geological time. 

The nTPW hypothesis has been disputed by Merl [1999] on the basis of paleomagnetic studies 

that indicate that the rate of polar motion seems to change from continent to continent and that in 

most cases the amount of polar motion is weIl below the 90 deg required by the IITPW 

hypothesis. He suggested that the high rate of APW in the Cambrian period would be caused. by a 

combination of TPW and increased plate motion due to lower mantle thermal anomalies. 

However he assumed in his analysis that the rate of plate motions is lower than the nTPW rate 

therefore indicating that the low total polar motion signal observed is from nTPW only. One 

could also assume, however, that in sorne cases at least, the plate motion is opposite to the polar 

motion therefore reducing artificially the total signal. No matter how you look at it, however 

TPW seems to be part of the solution for this very tectonically active period of Earth's history. 
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1.1.1 TPW of Mars: Pa st work 

Given the physical nature of terrestrial planets it is highly unlikely that the Earth would be the 

only planet to experience TPW. Before going into the physical details of polar motion theory 1 

discuss in this section the general geology of Mars and point out the different aspects of that 

geology that makes us think that TPW might have been a very important part of Martian history. 

Although considered to be closest to Earth as far as physical characteristics are concemed, Mars 

is still a very different planet than Earth. It lacks plate tectonics and is now considered a one-plate 

planet [Wieczorek and Zuber, 2004]. Mars does not have continents but its topography is 

dominated by two very long wavelength features. The :tirst one is the crustal dichotomy between 

the northem and southem hemisphere. Most of the northem hemisphere is at a lower elevation 

than the southem hemisphere. The terrain in the north is also much smoother than the heavily 

cratered south indicating possibly a difference in age. However that difference in age has been 

disputed, sorne investigators arguing that only the top few kilometers of the northem plains are 

actually younger [Frey et al., 2001 ; Wieczorek and Zuber, 2004]. 

The second long wavelength feature is the Tharsis plateau. Tharsis is an enormous volcanic 

construct at the surface of Mars. It includes to the east the Valles Marineris canyon system and to 

the west the huge Olympus Mons volcano. Tharsis acts as an immense surface load on Mars and 

should be considered a prime suspect for the cause of TPW on Mars. As we will see in the theory, 

exposed in the next sections of this chapter, any surface load can drive polar motion. However 

the state of compensation of Tharsis must also be evaluated in order to determine it's exact 

influence on TPW. As we will see later, compensation can severely diminish the effect of a load 

on TPW. 

The Tharsis plateau is itself dominated by huge volcanoes that are now extinct. With Olympus 

Mons mentioned above there are the Tharis Montes, a string of 3 large volcanoes aligned along a 

southwest northeast line right in the middle of Tharsis. Again the se volcanoes can be considered 
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as surface loads and might drive polar motion. The mere presence of these volcanoes is indicative 

of an early Mars that is very different than what it is today. The surface of Mars shows numerous 

signs of large liquid movement . That liquid was most probably water and may even have created 

some of the observed magnetic anomalies. Very recent discoveries by the Mars exploration 

rovers Spirit and Opportunity seems to indicate that very large body of water once existed on 

Mars implying that the temperature and general atmosphere of the planet was very different early 

in Martian history than it is today. 

However, on Mars, polar wandering has been frrst suspected for geological reasons. Murray and 

Malin [1973] hypothesized polar wandering on Mars based on observation of quasi-circular, 

laminated features in the polar region that are similar to regions at the actual poles. See figure 

1.1. They proposed polar motion of up to 15 deg based on that observation and used that 

argument to propose that convection is still active inside Mars. Geological evidence for polar 

wandering has also been proposed by Schultz & Lutz [1988] who pointed out resemblances 

between the actual polar deposits and deposits near the equator. They also hypothesized that 

some special craters named 'pedestal craters' can only have been formed in polar regions. They 

predicted polar wandering ofup to 120 deg, implying major mass redistribution early in Martian 

history. 

In my view such a high value for polar motion is very unlikely in the case of Mars due to the fact 

that Tharsis is such a dominant load at the surface of Mars. One load alone, no matter how 

important, cannot drive polar motion over 90° (see section 1.4.2). To obtain polar motion higher 

than 90° one would need to invoke many similar loads acting on different time scales. Tharsis is 

so huge that the effect on polar motion of other surface loads when compared to an 

uncompensated Tharsis must be small, therefore polar motion greater than 90° is unlikely. Polar 

motion on Mars is more likely due to surface loading while polar motion on Earth is due to 

convection and movement of internalloads [Spada et al., 1996] (see section 1.7). An actively 

convecting planet, like the Earth, would, on the other hand, be more likely to experience huge 

polar motion, even one higher then 90°, because of movement on internal mass anomalies. In the 

case of Mars, geological interpretation of surface features is less constrained and the physics of 
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polar motion outlined in the next few sections, when applied to Mars, does not support extremely 

high polar motion vaIues. 

Although surface expressions ofpolar motion are likely to exist [Melosh, 1980] the interpretation 

of such surface features is very difficult and highly subjective. Any polar motion theory of Mars 

must aIso be based on much stronger geophysicaI evidence. Unfortunately such evidence is 

scarce since the internai structure of Mars is only very loosely constrained. It is however weIl 

accepted that most significant geophysicaI events like the formation of the Tharsis rise and the 

topographic dichotomy happened early in Martian history, most probably within the frrst 500 My 

to 1 Gyr in the planet's history [Spohn et al., 2001]. So major episodes of polar wandering on 

Mars, if any, are probably very ancient. The actuaI age of Tharsis, however, is still a matter of 

debate (see section 1.8.2). 

The Tharsis rise on Mars is the biggest known topography anomaly in the solar system and has 

long been suspected to he the main cause of polar wandering on Mars. Melosh [1980] predicted 

polar wandering of up to 25 deg by removing the Tharsis rise from the gravit y model. He 

removed the mass of Tharsis in 10 steps while keeping the total mass of the planet constant. Each 

time he recaIculated the new pole positions by diagonaIizing the inertia tensor. He then attempted 

to predict the tectonic pattern that would result by such reorientation of the rotation axis. Such 

pattern has yet to be recognized. Willeman [1984] challenged this interpretation by suggesting 

that compensation of the Tharsis rise would limit the amount of polar motion. He suggested a 3 to 

9 deg only reorientation by modeling the response of loads on a hydrostatic planet with an elastic 

lithosphere. 

The two very different interpretations by Melosh and Willemann bring to light a fundamental 

concept in the study of polar wandering : The non-rigidity of the rotating body. Ricard et al. 

[1992] strongly argue for taking into consideration the chemical and viscosity structure of the 

mande when modeling the effect of an internai mass anomaIy on the amount and direction of 

polar wandering. The depth and compensation state of the anomaIous mass are of prime 

importance. For example, an anomaIous mass near a chemicaI interface could have no long time 
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effect on polar wandering due to complete compensation. Since compensation is a factor, a rigid 

model is incorrect in predicting changes to the inertia tensor and polar motion due to the presence 

of an anomalous mass at depth. Ricard at al. [1992] (see also Spada et al. [1994]) go one step 

further and actually argue that the apparent polar motion path observed here on Earth would only 

be possible by assuming a viscosity stratification of the mande, the lower mantle being as much 

as 30 times more viscous than the upper mande. They point out that polar wandering could then 

constrain the viscosity structure of the mande. 

Spada et al. [1996] devised a rotational number Ro that place terrestrial bodies in two possible 

categories depending on the value of that number. This theory try to predict long term polar 

motion hehavior of terrestrial planets from the extreme values of the rotational numher. This 

rotational numher is interesting hecause it adds another internal structure parameter that can he 

adapted with improved knowledge of the planet. The following sections of this chapter are an 

introduction to, and critic of, the mathematical theory of Spada et al. [1996]. But, first, the next 

section discuss the basic physics behind polar motion and set the stage for a more elaborate 

discussion of the linear and long term formulation of polar motion theory in the remaining 

sections of this chapter. 

1.2 Basic physics of polar motion 

Rotational dynamic is the part of physics that try to understand the rotational behavior of objects 

submitted to forces and loads. It is the basic physical tool that is needed to study polar wandering 

of terrestrial planets. Rotational dynamics of non-rigid bodies is a very complex subject. This 

section introduce the most fundamental equations and parameters of rotational dynamics as they 

are used and applied to the rotation of non-rigid bodies. 1 start by explaining the concepts of 

angular momentum and inertia tensor for non-rigid bodies. This willlead to the Euler-Liouville 

equation that is fundamental in the study of polar motion of a non-rigid body. 
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1.2.1 Angular momentum of a non rigid body 

A non-rigid body is a body for which the parts move relative to one another, therefore, for such a 

body, the angular momentum and the inertia tensor will change with time. Let's consider a body 

of mass M and density distribution P(X
1
,X

2
,X

3
) rotating with rotational velocity 00 as shown in 

figure 1.2. 1 have used the notation 1,2,3 to describe the 3 coordinates axes instead of the more 

traditional x,y and z. This notation is easier to use with complex formulas and will be used 

throughout this thesis. In figure 1.2 , let point A be the origin of a sui table inertial reference 

frame and point 0 the origin of a body frame that rotates with the body. The element angular 

momentum associated with the mass element dm is given by 

1.1 

By integrating equation 1-1 we get the total angular momentum, that is 

HIOtal = JJJRxRdm 1.2 
Volume 

Where the integral is carried out over the entire volume of the body. For a non-rigid body, the 

deformational and rotational part of the total angular momentum can he written as [Morritz and 

Muller, 1987] 

H= HJrXVdefdm+ HJrx(ooxr)dm 1.3 
Volume Volume 

where the first integral is the portion of the angular momentum related to the deformation of the 

body. The second part is related the rotation of the body. The vector \idef is the average 

deformation velocity defined as 
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V -l JlIdidm def - M dt 
Volume 

1.4 

If one consider the body frame to be geocentric (that is a reference frame with the origin at the 

center ofmass of the body) then in such a frame ofreference the average deformation velocity is 

o and the body remain, on average, undeformed [Morritz and Muller, 1987]. We put 

h = JJIrxVdefdm 1.5 
Volume 

This term is 0 for a rigid body and is often neglected even in the case of a non-rigid body. We 

now express the rotationa1 part of the angular momentum in term of the inertia tensor as in 

[1 lm = JIJr x (m x r)dm 1.6 
Volwne 

ànd finally rewrite the expression of the angular momentum of a rotating non-rigid body as 

[Morritz and Muller 1987] 

1.7 

This angular momentum equation is, with equation 1.12 below, the starting point for deriving the 

polar motion equation of section 1.2.3. 

1.2.2 The inertia tensor 

The inertia tensor[I] introduced in equation 1.6 is a 3x3 matrix whose components are 
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1.8 

The diagonal elements are called the moments of inertia (Ill, 122, h3) . The off diagonal elements 

are the products of inertia. The inertia tensor is a symmetrical matrix with 112 = 121 , 123 = 132 and 

113 = 131 . So in total we have six different moments and products ofinertia, they are 

III = JI ~x~ + x~ )dm 
volume 

122 = JI~x: + x~)dm 
volwne 

133 = JI~x~ + x~)dm 
volwne 

1.9 
112 = 121 = - JIJXIX2 dm 

volwne 

113 = 131 = - JIJx]x3 dm 
vohnne 

123 = 132 = - JIJX3X2 dm 
vo]wne 

One will recall that dm = pdV where p is the density distribution inside the body and dV the 

volume element containing dm. In the most general case the density distribution is a function of 

all three coordinates. It is also generally possible, by choosing a suitable choice of coordinates 

axes, to make the products of inertia equal to 0 so that the inertia tensor can be written as 
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A o o 

[1]= 0 B o 1.10 

o o c 

Where we have put III = A, 122 = B and 133 = c. These are called the principal moments of 

inertia. This situation can arise when one aligns the coordinates axes of the local reference frame 

in such a way that the mass of the body is evenly distributed relative to the axes. The equation 

fi = [1]00 usually means that the angular momentum vector is not in the same direction as the 

angular velocity vector. If the direction of angular momentum keeps changing, it develops a 

torque, which forces the axis of rotation to move. But, if both vectors are in the same direction 

then we can replace the inertia tensor by a scalar moment of inertia l, that is 

1.11 

1 is the equivalent scalar moment of inertia of the body about the given axis of rotation. Any axis 

that verify equation 1.11 is a principal axis. This equation says that the inertia tensor can be 

replaced with a single scalar moment of inertia when the axis of rotation is a principal axis. In the 

case of the rotation of a planet in hydrostatic equilibrium we can write A = B *" C with A < C. 

1.2.3 Euler-Liouville equation 

From basic physics we know that the time derivative of angular momentum fi is equal to applied 

torque L 

H=L 1.12 
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This also holds for a deformable body. Now expressing the time derivative fI in the body fixed 

coordinate system with origin 0 (see figure 1.2) we can write 

1.13 

Where -f- is the time derivative of 11 in the body fixed frame and ro the rotational velocity. 

Replacing the value of 11 (equation 1.7) in this last equation we get [Lambeek, 1980] 

ft [[1 ]ro + h ]+ ro x [[1 ]ro + h ] = L 1.14 

This is the Euler-Liouville equation and is the starting point for the study of polar motion for a 

non-rigid body. One must also keep in mind that the inertia tensor [1] for a non-rigid body is 

itself time varying since each part of the body move relative to the body fixed reference frame. At 

this point it is also useful to mention that in the case of a rigid body (h = 0, see section 1.4) the 

preceding equation simply becomes 

1.15 

If one consider that the body is rotating along the principal axis of inertia (A,B and C) then the 

preceding equation can be written as a set of 3 equations, that is 

Arol + (C - B )ro2 ro3 = LI 

Bro2 + (A - C )ro3 roi = L2 

Cro3 + (B - A)ro2 rol = L3 

16 
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1.2.4 Stability of Cree rotation 

One important aspect of the rotational behavior of a planet is the stability of its rotation. A planet 

rotating with respect to the axis of maximum or minimum inertia will he rotationally stable. In 

the same manner a planet rotating with respect to it' s intermediate moment of inertia will he 

unstable. To illustra te this consider the Euler-Liouville equation in 1.16 for the case where A < B 

< C and 001,002«003 , Aiso assume that the planet is free of external torque (this is free rotation) so 

that L = o. We then have 

Ami + (C - B )002 003 = 0 

Bm2 + (A - C )003 001 = 0 

Cm3 = 0 

1.17 

From the last equation we immediately get 003 = constant = 0 and the tirst two equations can be 

written as 

(C-B) m +00 0=0 
1 A 2 

(A-C) m +000=0 
2 B 1 

1.18 

Let' s take the time derivative of the last equation in 1.18, we tind 

.. (A-C)r.. - 0 
002 + B uooj - 1.19 

Substituting roi from the first equation in 1.18 we get 

1.20 
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The solution is a simple harmonic motion (02 == CI co~.Jkt)+ C2 sin(.Jkt) where k is a constant 

given by 

1.21 

This constant is positive given A < B < C so that .Jk is real and the rotation is stable. A similar 

solution exists for 001 and we have exactly the same situation if the rotation is about the axis of 

lowest inertia. On the other hand if the rotation is about the axis of intermediate inertia equation 

1.16 becomes 

AmI + (C - B )002 003 = 0 

Bm2 = 0 

Cm3 + (B - A)002001 = 0 

1.22 

80 that 002 = constant = 0 and by doing a similar derivation as the one described above we get the 

following differential equation for the 003 component of the angular velocity vector 

1.23 

The constant k define by k = - (C - S;~ -A) 0 2 is always negative leading to a complex 

exponential solution that is rotationally unstable. A rotating object disturbed by a change in 

inertia will always try to reach rotational equilibrium by aligning its rotational axis with the axis 

of maximum inertia. This situation is stable because it correspond to a state of minimal energy. 
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1.3 Linear formulation of the Euler-Liouville equation 

ln this section 1 will give a linear fonnulation of the Euler-Liouville equation. This fonnulation 

simplify the mathematics invoived by assuming that one can write the time varying inertia tensor 

as a sum of two tensors. Aiso assumed in the Iinear approximation is that the variations in the 

inertia tensor and angular velocity are small. This limit the applicability of the linear 

approximation to about 10°. A rotating defonnable body subjected to centrifugal forcing alone 

will defonned and take the shape of a rotating fluid. This is hydrostatic equilibrium [Munk and 

Mcdonald, 1960]. In this situation the rotation will flatten the body at the poles and create a 

rotational bulge at the equator. In this case the two principal moments of inertia along the 

equatorial axis will be equal and called A. The principal moment of inertia along the X3 rotation 

axis is called C. The off diagonal product of inertia of the inertia tensor will be O. We will see 

later the important role played by this rotational bulge in the amount of polar wandering 

experienced by a defonnable body. With this in mind, 1 begin the linear fonnulation of the Euler 

equation by expressing the time varying inertia tensor of the defonnable body as a sum of 2 

components. They are 

1.24 

where [IJ represent the inertia tensor of a planet whose principal axis corresponds to the 

coordinate axis. For a planet in hydrostatic equilibrium the value of [IJ is 

A o o 

[1]= 0 A o 1.25 

o o C 
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The tensor [.11] in equation 1.24 is the variation of the inertia tensor due to 10ad forcing. Since 

the action of the 10ad is usually time dependant, this tensor will also he time dependant. Let' s 

again identify the 3 axes of the body frame by Xl, X2 and X3 where Xl and X2 are the equatorial 

axes and X3 is the polar axis. The value of [.11] is 

1.26 

So that 

1.27 

The rotation vector ID can likewise he expressed as a sum of two terms 

1.28 

where IDo is 

o 

ID = 0 o 1.29 

20 



and represent the constant rotation velocity of the body around the axes X3. The variation in 

rotational velocity ô,& that will produce actual polar motion is given by [Lambeck, 1980] 

1.30 

where ml and m2 expressed the deviation of the rotation axis with respect from the initial axis X3 

and m3 the variation of the rotational period. Now if we use the linear approximation and assume 

that both [M] and ô,& are small quantities whose squares, products and higher powers can he 

neglected we can build the linear version of the Euler-Liouville equations by substituting [1] and 

& in equation 1.14. After a lengthy algebra work we get [Morritz and Muller, 1987)] 

1.31 

1.32 

1.33 

Equations 1.31, 1.32 and 1.33 are the linear form of Euler-Liouville equation 1.14. We need to 

solve this system of differentials equations for the parameters ml. m2 and m3. We can combine 

equations 1.31 and 1.32 by defining the following complex variables 

m=~+im2 

L = LI +iL2 

h=hl +ih2 
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By substituting equation 1.34 into equations 1.31 and 1.32 we get [Morritz and Muller, 1987] 

1.35 

This last equation can then be solved for m (that is ml and m2) characterizing the deviation of the 

rotation axis from the original X3 axis, that is polar motion. One must keep in mind however that, 

because of the conservation of angular momentum, the rotational axis is fixed for an outside 

observer and that it is the surface that is moving with respect to rotational axis. Lambeck [1980] 

gives the linear Euler-Liouville equations 1.31 to 1.33 in term of excitation functions \}I . In his 

formalism the Euler-Liouville equation 1.31 to 1.33 becomes 

fi 
.:::2.. - m = - \P, cr 1 1 

r 

1.36 

where the term O'r is the frequency of free nutation of a rigid body (see next section). The value 

1.37 

The excitation functions are given by 

\P, _ln2 AIl 3 + nM23 + Ohl + h2 - L2J 
1 - n2(C-A) 1.38 
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\fi: = l02 M23 - oAiJ3 + nh2 + iii + LJ 
2 02(C-A} 

t 

-!i M33 - Qh3 + 0 JL 3dt 
\fi: = 0 

3 !iC 

The excitation functions include all the factors that perturb the rotational motionfrom the one 

defined from a rigid body. One can now use the Lambeck formalism (equations 1.36 and 1.38) to 

express the Euler-Liouville equations and related excitation functions in complex form. Let's 

define the following complex variables [Lambeck, 1980] 

q'(t} = q'1(t}+i\f2(t} 

M(t} = MI3(t}+iM23(t} 

m(t} = ml(t}+im2(t} 

h(t} = h)(t}+ih2(t) 

L(t}= L)(t}+iL2(t} 

1.39 

Where i is the imaginary unit. Introducing equation 1.39 into equations 1.36 and 1.38 and 

combining we get for the Euler-Liouville equation in complex form 

1.40 

where O'r is given by equation 1.37. The complex form of the excitation function is 

\f'(t)= 2[ 1 ][n2~I(t)-iM(t)+Qh(t)-ih(t)+iL(t)] n C-A 
1.41 
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1.4 Application of the Euler-Liouville equation for a rigid body 

It is interesting to apply the Euler-Liouville equation to the simple case of a rigid body. This tells 

us a lot about the fundamental behavior of planets submitted to inertia changes. A rigid body will 

exhibit as a crude first approximation the basic rotational behavior of the planets. 1 will use this 

section to illustrate sorne simple but important geophysical situations present on Mars and the 

Earth. However, one must keep in mind that there are important differences between the rotation 

of a rigid body and the actual rotation of the planets, so that, in the end a rigid body is not 

adequate to explain correctly the rotational behavior of the planets. 1 will justify this affirmation 

at the end of this section. 

1.4.1 Rigid body with no surfa~e load 

Let's tirst imagine the simple st of cases of a rigid body with equatorial moment of inertia A and 

polar moment of inertia C. In this tirst case we will consider no load at the surface. In this 

situation we have 

h=O' h=O . M=O " M=O , , 1.42 

Ifwe also assume that external torque is 0 then the Euler-Liouville equation 1.16 becomes 

Amin + (C - A)m2n 2 = 0 

A.ril2n-(C-A)mln
2 =0 

Cm3n = 0 

Let's put 

[
C-A] crr = ~ n 

1.43 

1.44 
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So that we can rewrite equation 1.43 as 

1.45 

The solution to the last equation is simply m3 = ete so that (03 = n and the period of rotation of 

the body is not affected. One can also quickly realized that in the case of a spherical rigid body 

(A = C) one have also ml =0 and m2 = 0 so that there is no polar motion at aIl in this situation. 

From the second equation in 1.45 one get 

1.46 

Replacing in the tirst equation of 1.45 we tind 

1.47 

Which is a simple harmonic motion equation. The equation for ml will be similar so that solution 

ml and m2 which give polar motion are 

ml = mo cos[crrt+y] 

m2 = mo sin [0) + y] 
1.48 

This situation is completely analog to the rotation of a top. The axis of rotation will make a 

circular motion of amplitude fia and period T = 21t/crr • On Earth this periodic polar motion is 

called Chandler Wobble. The Chandler Wobble period for a rigid Earth is 305 days much lower 

than the measured period of 435 days [Lambeek, 1980]. This is due to the non-rigidity of the 
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Earth. The Chandler Wobble period of a rigid Mars as been estimated to he 190.6 days and the 

non-rigid period to he 201.8 days [Hoolst et al., 2000]. 

1.4.2 Rigid body witb an instantaneous surface load 

A slightly more realistic situation arise when a load is put at the surface of the rotating body. 

Let' s imagine that a load is instantaneously put at the surface at time t =0 and that the load remain 

constant in time. In this situation we have 

1.49 

One must now take into account the perturbation to the inertia tensor so that M:#: o. Again 

assuming that there is no external torque the Euler-Liouville equation 1.16 becomes 

AmiO + (C - A)m20 2 
- M 230

2 = 0 

Am20-(C-A)mI0
2 +MI302 =0 

Cth30=0 

1.50 

Again the last equation in 1.50 yield the solution m3 = constant so that the period of rotation does 

not change. By using equation 1.44 in equation 1.50 we find 

. M 230 
m + 0' m =--==--

1 r 2 A 
1.51 

In the same manner as in the preceding section, the two equations in 1.51 can be combined to 

glve 
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1.52 

This is a non-homogenous harmonie equation, the solution is 

1.53 

A similar solution exist for ml. One can see that if M 23 > 0, that is ifthere is a mass excess then 

M 
( 23 »0 C-A 1.54 

since C > A and m2 is a positive value. The mass excess is brought to the equator. If the inertia 

perturbation is a mass deficit (AI23 < 0 ) then m2 is negative value and the perturbation is brought 

to the pole. If one considers a mass excess, then once it is at the equator we have 8123 = 0 and 

polar motion stop. This simple example is important because it de scribes the most fundamental 

rotational behavior of any planet, rigid or not, submitted to a surface load. It tells us that in theory 

any uncompensated load, no matter how big or small, added to the surface or removed from the 

surface of a planet will induce polar motion. This means that any mountains, volcanoes or other 

excess mass will make the axis of rotation of a planet change with time in a way that depends on 

the time evolution of the inertia perturbation. This last factor is one of the greatest unknown in 

any attempt to model polar motion of a planet. In the case of Mars the Tharsis volcanoes are 

surface loads. Tharsis itself can be considered as an immense load on the surface. Polar motion 

has likely been induced by these loads. 

However one must keep in mind the fact that planets are non-rigid bodies on geological time 

scales. Any load at the surface will try to sink into the lithosphere until compensated. This is 

especially true for long wavelength loads like Tharsis. Compensation, as we will see later, 

reduces polar motion by bringing the load closer to the axis of rotation thus reducing the effect of 
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the change in inertia due to the 10ad itself. To determine if Tharsis can he truly responsible of 

polar motion on Mars we must investigate it' s state of compensation. 

Later in this thesis 1 will make a short presentation on our state of knowledge of the 

compensation of Tharsis. If long wavelength loads are more likely to be compensated the 

opposite is true for smaller loads like mountains and volcanoes. For a planet like Mars, thought to 

have a very strong lithosphere, surface loads of small wavelength will be more difficult to 

compensate and may, in the end, contribute more to polar motion than Tharsis itself. Arkani­

Hamed [2001] has hypothesized that some mass excess must exist undemeath the Tharsis 

volcanoes based on gravity modeling. These sub surface loads would make the contribution of 

volcanoes to polar motion even more important. 

One other aspect of polar motion worth mentioning is the fact that even slow changes to the total 

moment of inertia can bring very quick polar motion. Goldreich and Tomre [1969] have 

demonstrated that by expanding the classical example of Gold [1955] who has studied the 

rotational impact of a small beetle moving at the surface of a planet. In the case of Goldreich and 

Tomre [1969], a colony of beetles moved slowly in random directions at the surface of the planet. 

The resulting changes in the inertia tensor of the planet produced rapid movement of the axis of 

rotation. 
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1.5 Long term polar motion of a deformable body rotation 

A non-rigid body will deform under stress and outside forces. The force deforming the 

body can be a surface or internal load, a tidal force or a centrifugal force. The best 

example of such deformation is the flattened shape a non-rigid planet takes due to it' s 

own rotation. In the long term the planet will take the shape of a fluid with comparable 

density stratification. The deformation of the planet, whatever the cause, will influence 

polar motion because it will change the inertia tensor of the planet. As a first 

approximation the deformation can be made to be proportional to the perturbing force. 

This is similar to the well-known Hooke law of elasticity. However the deformed object 

will change the potential around it and therefore the perturbing force will in the end 

change the gravitational potential of the body. The force acting on the body can be 

represented by a potential V pert and the deformation of the body resulting from this 

potential will give rise to a variation in the gravitational potential of the body Il V grav' The 

two potentials can be connected together by a number called the Love number that 

describe in one number the elastic properties of the body and it' s capacity to respond to a 

perturbing potential [Love, 1927]. The relationship is 

IlVgrav=kVpert 1.55 

Love numbers are expressed relative to a given harmonic degree and are dependant on 

the internal structure of the body and are also time dependant in most situations. 

1.5.1 Love number and the Laplace domain 

The time dependence of Love number is generally expressed in the Laplace domain as 

[Ricard et al., 1992] 

1.56 
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where ki are representative of each visco-elastic mode. The number of mode M depends 

on the stratification model used to describe the body. A simple model consisting of a 

mantle and a core would give 2 modes, one for the deformation of the surface, the other 

for the deformation of the core mantle boundary. The relaxation time 'ti for a given mode 

is [Ricard at al., 1992] 

1 
1:. =--

1 

Si 
1.57 

This is the time it takes a layer to reach a stress free state after the forcing has been 

applied. 1 feel it is now worth digressing a bit from our logical train of thought to better 

explain the significance of the last two equations. Love numbers are completely 

analogous to the rigidity constant of the familiar Hooke law relating stress and strain in a 

linear solid. The Hooke law is simply 

0' = kE 1.58 

where 0' is the stress, k the rigidity constant and E the resulting strain. Visco.us behavior, 

that is friction of the molecules of a given material, is expressed as a linear relationship 

between stress and strain rate, that is 

0' = TlÉ 1.59 

where Tl is the viscosity of the material. The relaxation time 't is defined as the ratio of 

viscosity over rigidity 

1.60 
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A solid that respond linearly to stress (Maxwell solid) can be modeled by a series 

connection between a linear spring representing rigidity and a dashpot representing 

viscosity. In this case the total strain on the system will be the swn of the strain of each 

element 

1.61 

Taking the time derivative of this last expression and knowing that Ëo = cr/Tl and 

Ès = à/k the last equation becomes 

1.62 

Rearranging and using the relaxation time 't we have 

1.63 

This last equation relate stress and strain in a linear viscous solid. It can be put into a 

much simpler form by making the transformation from the time domain to the Laplace 

domain. Let's take the Laplace transform of the last equation. We have 

ksE(s} = sa(s} + ~ 
't 

1.64 

where s is the Laplace variable. We can rearrange this last expression to get a relationship 

between stress and strain for a linear Maxwell solid in the Laplace domain. We get 

1.65 
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Which is similar to Hooke law in the time domain. By taking the problem into the 

Laplace domain we have transfonned a viscoelastic problem into an elastic one. This is 

the correspondence principle. Another useful property of the Laplace transfonn is its 

capacity to transfonn a differential equation into a simpler algebraic one. By taking the 

polar motion equation from the time to the Laplace domain we will then get a simpler 

equation to solve. Once the solution is found in the Laplace domain one has only to 

inverse Laplace transfonn it to obtain the solution in the time domain. 

1.5.2 Fluid and secular Love numbers 

Love numbers are glven for a glVen harmonic degree. In the case of rotational 

defonnation this is degree 2 since, as we will see later, the degree 2 expansion of the 

gravitational potential is related lo the different products of inertia of the rotating body. If 

one consider an infinite time span the Love number k( s) becomes the fluid Love number 

kr given by [Spada et al., 1996] 

1.66 

which is obtained for a body in hydrostatic equilibrium. Another Love number of interest 

is the secular Love number given by [Munk and Macdonald, 1960] 

[C-A] 
ko = 3G a5Q2 1.67 

where G is the universal gravitational constant, a is the equatorial radius and il the 

angular velocity. 1 will derive this formula in section 1.5.4. This Love number represent 

the resistance a body offer to rotational defonnation. The difference between the two 

Love numbers described above is very small and can usually be neglected. The logic 

behind the use of Love numbers is interesting because it adds a new internai structure 

parameter in the description of the rotational behavior of non-rigid bodies. A parameter 
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that can be adapted as a given model becomes more precise. So far only the equatorial 

and polar moment of inertia A and C were related to the internal structure of the body. It 

is therefore important to express the polar motion equation in term of the appropriate 

Love number. That's what we will do in this section. Essentially what this mean is that 

we have to express the changes in the product of inertia appearing in the polar motion 

equation 1.40 as a function of the appropriate Love number. 

1.5.3 Expressing polar motion in term of Love numbers 

One of the most fundamental perturbing potential cornes from the deformation imposed 

by the body's own rotation. The change in the shape of the body will create a change in 

thegravitationaI potentiaI that is directly related to the perturbing potential. In this case 

the perturbing potentiaI is the centrifugaI potential that cornes from the centrifugaI force. 

This potentiaI is responsible for the hydrostatic shape of a rotating non-rigid planet. This 

potential at a point P if given by [Lambeck, 1980] 

1 2() 2 Veent = -0) t L 
2 

1.68 

Where 0) is the rotational velocity vector and L is the distance of point P to the axis of 

rotation represented by the ID vector. This potentiai can be divided into a radiaI 

contribution, which has no consequence on the shape of the body, and a centrifugaI 

contribution that is responsible for the hydrostatic shape 

1 2() 2 Veent = 30) t x +/).Vcent 1.69 

Where the perturbing potential /). Veent can be expressed in term of the three components 

of the rotationaI velocity and the three components of the position vector of point P. We 

get [Lambeck, 1980] 
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AVcent = -kro: [x~ + x; - 2x~]+ -kro; [x~ + x; - 2x;]+ -kro; [x: + x; - 2x;] 
1.70 

- ro1ro2X1X 2 - ro1ro3X1X 3 - ro2ro3X 2X 3 

Using the appropriate associated Legendre function of degree 2 one can write the last 

equation as 

Where r, () and cp are the usual spherical coordinates. That deforming potential changes 

the gravitational potential by an amount AV grav proportional to A Veent • The 

proportionality constant being the tidal Love number kT(t) as explained in the last section. 

Therefore we have 

1.72 

1t is general practice to express the gravitational potential of a complex body by a 

spherical harmonic expansion of the form [Geodynamics: course notes, 2001] 

where a is the equatorial radius of the body. This expression is essentially the sum of the 

potential created by a sphere of mass M and radius r plus a second term which is the 

change in potential caused by body deformation and non radial density distribution. 

Taking out. from the second term to the right of the last expression, the n = 2 part that 

influence rotation we have for a point at the surface of the body (r = a) 

1.74 
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Now comparing this last expression with equations 1.71 and 1.72 for llVcent one can 

express the 5 degree 2 coefficients in term of the tidal Love number and the different 

components of the velocity vector ro. By equating the terms that are expressed with the 

same Legendre associated function we find 

C - _1 a1cT 
r .... r.' 

21 - 3 GM U11U13 

1.75 

These coefficients can also be written in term of the moments and products of inertia 

obtained from the expansion in spherical harmonies of the gravitational potential 

(equation 1.73). One obtain 

1.76 

c -_ 81\3 
21 - Ma2' 
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S M 23 
21 = - Ma2 ' 

s =_ M 12 
22 2Ma2 

Now comparing coefficient by coefficient in 1.75 and 1.76 one can get the following 

values for the important M13 and ôI23 terms of the polar motion equations 1.40 and 1.41 

1.77 

Now assuming a linear approximation for the angular velocity, similar to the one used in 

the preceding section 

~(t) 

~t)= ~(t) 0 1.78 

l+~(t) 

We can write the variation term M13( t) and M 23( t) in term of the coefficients m. We find 

1.79 
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These are the changes induced in the product of inertia tensor M I3(t) and M 23(t) by the 

rotational deformation of the body. These change will be added to any changes due to 

surface or internal loads. We can now express the excitation function 1.41 in term of the 

different Love numbers. Assuming that ii = 0 ; ii = 0 ; M = 0 and a torque free 

situation the resulting excitation function due to rotational deformation will then be 

1.80 

Where ka is the secular Love number given by 

1.81 

and m( t ) = ~(t ) + im2( t). The equation 1.40 of polar motion will then read 

1.82 

To add the effect of a surface load, one would only need to add the excitation function of 

that load \f'L( t ), so that 

1.83 

1.84 

This last equation is the polar motion equation in the time domain. Polar motion is thus a 

function of the tidal Love number, secular Love number and the excitation function of the 
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load. This form is convènient because aU that is related to the load effect on rotation is 

contained uniquely inside the excitation function 'J'L(t). The situation, for any given load, 

can then be modeled more easily. 

1.5.4 Changes in the inertia tensor due to rotation al deformation 

In this section we will look at the changes in the inertia tensor of a rotating planet due to 

rotational deformation. If we limit ourselves to degree 2 of the spherical harmonies 

expansion of the potential we can write the gravitational potential as follow [Munk and 

Macdonald, 1960] 

V= GM+~V r gr 1.85 

where ~ V gr is given by 

~ V = Gs [I)X~ + x~ - 2x~)+ 122(x~ + x~ - 2x;)+ I3ix~ + x; - 2x~)-
gr 2r 

1.86 
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The change in the gravitational potential ~ V gr is equal to the product of the tidal Love 

number by the non-radial part of the centrifugal potential. The change in gravitational 

potential due to rotational deformation expressed in the last formula is equal to 

1.87 

Let' s simplify immediately the last two formulas by placing the rotation vector along the 

X3 axis, so that (Ol = 0, (02 == 0 and (03 = Q. Let's also assume that the planet is rotating 
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along ifs principal axis, so that III = A, 122 = B and 133 = C . The off diagonal moment of 

inertias (the product of inertia) will be 0 in this situation. By taking into account the 

simplifications of the last paragraph and equating the last two equations we get 

Dividing both sides of the last equation by the factor %r5 and equating the terms of like 

coefficients in x~ we get the following system of 3 equations with 3 unknowns 

-2A+B+C=M 

A-2B+C=M 

A+B-2C=M 

where M is given by 

1.89 

1.90 

From the first two equations in 1.88 one immediately get A = B. With this information 

the third equation yield 

C-A=M 1.91 

Let's add 3A on each side of the last equation, we get 

C+2A=M+3A 1.92 

39 



Let's define 1 = A ± ~ ± C = 2At C , the isotropie inertia value. Substituting in the last 

relation yield 

31=M±3A 

M T _5n2 
A=I- =I-k.1...li..-

3 9G 

We get a similar formula for the value ofC in term of 1. We get 

1_5n 2 
C=I+kT 2u..L 

9G 

1.93 

1.94 

In the long term limit the tidal Love number will he equal to the secular Love number ko. 

If we now consider a point at the surface of the planet so that r = a, we finally get for A 

andC 

5 2 
A=I-k aQ 

o 9G 

5 2 
C=I+k ~ 

o 9G 

1.95 

From these two formulas we can extraet the value of the secular Love number ko by 

subtracting A from C. We get 

1.96 

ln the general case where the rotation vector is arbitrary, the inertia tensor of a 

rotationally deformed planet is [Munck and Macdonald, 1960] 
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il~ l 2 ] 1.. == lô .. + 30 .0>. - 30) ô,. IJ IJ 1 J IJ 1.97 

where a is the radius of the planet and l\ is the delta function which is equal to 1 if i = j 

and equal to 0 if i '* j. The expressions we have obtained for A and C ean be readily 

derived from the last expression. The isotropie inertia tensor is defined as [Lambeck , 

1980] 

1.98 

1.5.5 Change in the inertia tensor due to surface loading 

The presence of internaI or surface loads will aIso change the inertia tensor. If a mass 

load m appear suddenly at position Xt,X2,X3 the change in the inertia tensor of the planet 

will simply be the inertia tensor of the point mass. If one take compensation of the load 

into account, it ean be described by a Dirac-Delta function s{t) given by [Ricard et al., 

1993] 

+co 

Js{t)dt= 1 with s{t)= 0 if t '* 0 1.99 
-00 

The actual change in the inertia tensor will be [Ricard et al., 1993] 

1.100 

Where kL
( t) is the isostatic Love number of harmonie degree 2 and represent the effect 

of the compensation of the load. Consequently the total inertia tensor due to both 

rotationaI and load deformation will be 
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1 .. = Iô .. + - co·co· - -CO Ô.. + 'ô{t) + k (t») M .. {t) kTa
S

[ 1 2 ] L 

IJ IJ 3G 1 J 3 IJ ~ lJ 1.101 

1.6 Quasi Ouid approximation and the rotational number 

One of the main disadvantages of the linear fonn of the Euler-Liouville equation of polar 

motion is that it is valid for only a small displacement of about 10 deg. Polar motion in 

terrestrial planets is likely to be much more important. To get a better portrait of long­

tenn polar motion one must solve the non-linear Euler-Liouville equation, which is not an 

easy task. It is however possible to get a first order approximation of the long-tenn 

rotational behavior. As mentioned earlier, Spada et al. [1996] have devised a rotational 

number Ro that they claim can give a pretty good picture of long tenn polar motion 

based on the limit values (Ro» 1 or Ro « 1) ofthat number. In the following section 1 

will use sorne of the material developed above to introduce the rotational number Ro and 

discuss sorne of the implications of the value of that number for the long tenn polar 

motion of terrestrial planets. We have seen that the inertia tensor of a planet is dependant 

on the tidal and load Love numbers. In the Laplace domain the long-term values of those 

Love numbers are given by [Ricard et al., 1993] 

1.102 

and 

1.103 

Where Tl is a time constant define as 

1.104 
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Tl represent the time necessary for the equatorial bulge to readjust itself following a 

change in the rotation axis vector. See appendix B for a more detailed mathematical 

derivation of the last two expressions. This readjustment is necessary for polar motion to 

actually happen. This time is very sensitive to the viscosity stratification of the planet. On 

the other hand Tl is less sensitive to the density stratification [SteifoIHagen, 2002]. 

Substituting the long term values of the Love numbers in the Laplace transform of the 

inertia tensor and then inverse transforming the relation to get back into the time domain 

one get the long term expression of the inertia tensor [Ricard et al. , 1993] 

1.105 

Where the contribution from each term from left to right is of decreasing amplitude 

[Ricard et al., 1993]. Substituting this last expression in the Euler-Liouville equation and 

assuming no extemal torque and that second derivatives and squares of derivatives are 

small we can express the different components of the rotation vector in a convenient 

matrix form [Ricard et al., 1993] 

1.106 

Where Aij and Bij are matrices given by 

~ 2 2 

k~~a5 
00 003 - 00 002 

Aij(ro,ll=[ k~t] 2 3GI 2 
- 00 003 T 5 00 00, 1.107 kf~a 

2 2 -.illL 00 002 - 00 00, kT 5 f~a 
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1.108 

where 

1.109 

This is the Ricard matrix formulation. Now let's assume that the planet is initially 

rotating with a rotation vector aligned with the X3 axis that is ID = (o,o,n). This is 

basically a description of the situation at t = O. The last two matrices becomes 

1 (C-A~n o 

1 o 1.110 

o o 1 

Mil ~133n -M23n 

Bij = [1 + k~] -M33n ~i22 M13n 1.111 

~123n -M13n ~i33 

where (C-A) is given by equations 1.90 and 1.91. If we make the approximation that 

k~ ::::; ko and replacing equations 1.110 and 1.111 in equation 1.106 we get three 

equations that will describe polar motion at t = O. They are 
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lm) + (C - A )0~m2 + (1 + k~ ) (&))ID) + M330ID2 - M 230
2 

) = ° 
1m2 - (C - A)O~m) + (1 + k~)(- M330ID) + &22ID2 + M 13(

2 )= ° 
1m3 + (1 + k~ )(MnOID) - M130ID2 + &330) = ° 

1.112 

Now let's again consider the case where ro = (0,0,0). We define the complex number 

S = ID) + iID2 and consider the first two equations of 1.112. If we multiply the second one 

by the complex factor i and add the result to the first equation we get 

1.113 

A few more algebraic steps will transform this last equation to the following form 

1.114 

This is the polar motion equation. Now following Spada et al. [1996], we define the 

rotational number Ro as 

R =0 ~J2 
o f 1.115 

Where h is the dynamical flatness and 1* is the normalized mean moment of inertia given 

by 

J = (C-A) 
2 Ma2 1.116 

45 



Io ---L 
- 2 

Ma 

so that 

R = n ~ (C - A) ~ R I = T (C - A)n 
o I 0 1 1.117 

Now substituting this into the polar motion equation 1.113 and integrating we finally get 

1.118 

This last expression is basically equation 1 of Spada et al. [1996]. Transforming the first 

term of the last expression as to express it in the form a + ib to c1early separate the real 

and imaginary part we get 

1.119 

One can immediately see in this last equation that if the inertia perturbation is in the 

equatorial plane (X3 = 0) or at the pole (Xl =0, X2 = 0), that is on the axis of rotation, then 

no polar motion will be created by the perturbation. Note that the situation is perfectly 

symmetrical and one would only have to change ~I13 for M 23 to get identical result if the 

inertia perturbation was in the XIX3 plane instead of the X2X3 plane [L.L.A Vermeeseen, 

personal communication]. It is also quite c1ear from the last equation that if the load is 

completely compensated, that is if 1 + k~ = 0 then there is no polar motion possible. Other 

reasonable assumptions not mentioned in Ricard et al. [1993] and Spada et al. [1996] are 

needed to obtain the last result. 
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One of the main problem with the rotational number Ra is that it cannot be precisely 

evaluated because most planetary interior structures are poorly known. A more rigorous 

denvation of this last equation, bypassing the Ricard formulation used above, and using 

directly the Euler-Liouville equation will be given in appendix A. This appendix will 

show that the Ricard formulation is merely a more convenient way of presenting the 

mathematics leading to the polar motion equation and is not needed to describe the 

physics of polar motion. Appendix B will go a step further and show a much simpler 

derivation of the last equation using the linear polar motion equation in the Laplace 

domain. Appendix A and B clearly shows the overall correctness of the long-term 

behavior of the rotational number as described by Spada et al. [1996] but the complex 

mathematical derivation outlined in the previous sections and in Ricard et al. [1993] and 

SteifelHagen [2002] are simply not necessary and in many ways too complex with a 

tendency to hide sorne simple physical characteristics of the phenomenon behind a 

mountain of mathematics. 

1. 7 Long-term limits of the rotational number 

One of the main interest of the rotational number Ra is what it tell us for extreme values. 

Two cases can be considered. 

1.7.1 Ro» 1 

First let's consider a constant inertia perturbation in the X2X3 plane (the situation is 

symmetrical for the XIX3 plane) then the integral in the polar motion equation becomes 

t 

f(M 13 + iAI23 )dt = iAI23 
o 

so that the polar motion equation 1.119 becomes 
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1.121 

In the case where Ro» 1 we have 

R 
-_o_~O 

R2 +1 o 

1.122 

We see that in this case there is only a component of ID in the X2 plane, therefore the 

inertia perturbation will go directly to the pole in the case where .1.123 < 0 and to the 

equator if ~I23 > o. This result is consistent with the simple rigid body behavior example 

given earlier in this thesis. Spada [1992] has proposed the following analytical solution 

for the simple case described in this section. The change in colatitude of the axis of 

rotation for a load placed in the X2X3 plane is given by 

1.123 

where a is the initial colatitude of the load and ~ is given by 

1.124 

where m is the mass of the load, a the radius of the planet and d the depth of the load. 

Now ifwe consider a load at the surface (d = 0) and express the factor ~ in term of the 

rotational number Ro we get 
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1.125 

where M is the mass of the planet and 1* the moment of inertia factor. 

1.7.2 Ro« 1 

Now if we consider the case where Ro « 1 we have a situation that is basically the 

opposite of what we obtained above, that is 

1.126 

In this case the Xl component of ro is non-zero indicating that the inertia perturbation will 

start to move at right angle with the X2X3 plane. This will result in what Spada et al. 

[1996] calI a mega wobble. In this situation the inertia perturbation will reach the pole (or 

the equator) in a spiraling movement of decreasing amplitude. However, to verify this 

affirmation and compute a complete polar motion path one must solve the full set of 

equations 1.106 to 1.108, not the simplified version exposed in this section which 

basically represent only the situation at t = O. 

Spada et al. [1996] have evaluated approximate values for the rotational number for the 

Earth, Mars and Venus based on models of the interior structure of the three planets. 

They conc1uded that the Earth and Mars must have a high value of Ro for most 

reasonable mode1s. On the other hand, Venus with it's small angular velocity and 

flattening has a low value of Ro. Earth and Mars be10ng to the same rotational category 

where True polar wander (TPW) is possible and that Venus would belong to another 
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category where the load would go to the equator (or pole for a mass deficit) via mega 

wobble. 

Despite the fact that the Earth and Mars belong to the same category. the mechanism 

responsible for polar motion in the two planets is very different. In the case of Mars 

surface loading would be mainly responsible for polar motion. This would make Mars 

much doser to the simple rigid body model discussed earlier and would constitute an 

argument for a much more rigid Martian interior. In the case of the Earth, the changes in 

internai density distribution due to convection have a more important contribution than 

surface loading. 

1.7.3 Offset between spin axis and maximum inertia axis 

ln section 1.2 1 have shown that a body will be rotationally stable if ifs rotation axis aIign 

with the axis of maximum inertia. This will he the case if the 113 and h3 components of 

the inertia tensor are 0 in equation 1.105 [Spada et al. 1996b]. If not. there will he a non­

zero angle (offset) between the two axes. This offset can be evaIuated in term of the 

rotationaI number Ro. First by using equations 1.105 and 1.118 one can get a relationship 

between 113. h3 and Ro. We find 

1.127 

One can see from the last equation that if Ro » 1 than 113 and h3 will be small and 

therefore the axis of rotation will almost coincide with the axis of main inertia. The 

opposite is true for Ro «1. Using 1.127 Spada et al. [1996b] have proposed the 

following value for the offset between the two axes 

50 



1.128 

ln the case of Venus, a planet with low Ro vaIue, the offset between the two axes was 

first reported after preliminary anaIysis of the gravity field. However, the amplitude of 

the offset has decreased with every increase in the resolution of the gravity field. A robust 

measure of this offset would go a long way into making Spada et al., [1996] rotationaI 

number theory more acceptable, since, as shown above, a low Ro vaIue imply a non zero 

offset vaIue. 

Figure 1.3 is a diagram that summaries the different caIculations made in this chapter and 

in appendix A and B. It present graphicaIly the most important equations of this chapter. 

1.8 Influence of internai structure parameters 

ln this section 1 want to discuss the generaI influence on polar motion of sorne important 

internai structure parameters. These parameters include lithospheric thickness, rigidity 

and viscosity profiles of both the lithosphere and the mande. The generaI effect of 

compensation is also discussed. 

1.8.1 Influence ofload compensation 

For non-rigid bodies the possibility of load compensation is one of the most fundamental 

difference with rigid bodies. A load put at the surface of such non-rigid body will try to 

sink into the lithosphere until compensated. This situation is perfectly analogous to the 

one observed for an iceberg at the surface of the ocean. Compensation will reduce the 

contribution of a load to polar motion by bringing the load closer to the axis of rotation. 

This will reduce the effect of the load on the change in the inertia tensor due to the load 

itself. Ricard et al. [1992] strongly argue for taking into consideration the chemicaI and 

viscosity structure of the mande when modeling the effect of an internai mass anomaIy 
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on the amount and direction of polar motion. The depth and compensation state of the 

anomalous mass are of prime importance. For example an anomalous mass near a 

chemical interface could have no long time effect on polar wandering due to complete 

compensation. It is c1ear that to truly evaluate the influence of a load to polar motion one 

must know the state of compensation of that load. 

Since compensation plays such crucial role it is worth investigating the general state of 

compensation of Martian topography and Tharsis in particular. Any mass excess or 

deficit at the surface can, in theory, drive polar motion. Due to the fact that surface 

topography of a terrestrial planet is supported by forces in the outer layers of the body, 

short wavelength topography is less likely to be compensated than long wavelength one 

[Mackenzie et al., 2002]. Topographie features that do not correlate with geoid anomalies 

are thought to be old and compensated. This could mean that, young, short wavelength 

topography like volcanoes whieh shows big gravity anomalies have more influence on 

polar wandering than Tharsis as a whole if Tharsis is compensated. Sphon et al. [2001] 

argues that gravit Y high over the Tharsis and Elysium volcanoes indicate that these 

constructs are not compensated and would therefore continue to drive polar wandering 

even to this day. In a similar way Arkani-Hamed [2000] argue that intermediate scale 

topography is not significantly compensated. This topography would inc1ude most 

volcanoes and sorne impact basins. He also argues that significant mass anomalies must 

exist beneath the shield volcanoes of the Tharsis bulge. His argument is based on the fact 

that thin shell modeling alone cannot represent adequately the observed topography and 

gravity signal for those volcanoes. One can conclude from this that the Martian 

lithosphere must be very strong to support both topography and intemalloads. 

Large impact basins, however, are thought to be compensated [Mackenzie et al., 2002 ; 

Arkani-Hamed, 2000] and therefore would not he a major factor in polar motion. The 

same observation can be made for the northem lowlands, which do not display significant 

geoid or gravit y anomalies 
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It also seems likely that Tharsis is not fully compensated. Many models of Tharsis have 

been proposed. Willemann and Turcotte [1982] modeled the Tharsis rise as a downward 

load on an elastic lithosphere. They came to the conclusion that Tharsis is only partially 

compensated and result from surface loading by early volcanic activity. They found no 

evidence for lithospheric doming that would be the signature of a mantle plume beneath 

Tharsis. Zuber at al. [1998] argue that Tharsis cannot be fully compensated by modeling 

the COM/COF difference in the extreme cases of full compensation and no compensation 

at aIl. A fully compensated Tharsis would make a COM/COF shift minimum, much 

lower than what is actually observed. This modeling support the hypothesis that Tharsis 

is not fully compensated and therefore remain a prime contributor to polar motion on 

Mars. 

1.8.2 Influence of Iithospheric thickness 

It is widely acknowledged that most terrestrial bodies of reasonable size have an outside 

layer called lithosphere. The lithosphere is the part of the body that can withstand stress 

for time periods that are consistent with geological evolution [Arkani-Hamed, 2000]. The 

thickness of the lithosphere and its material properties can have a considerable impact on 

the total amount of polar wandering experienced by a planetary body. 

First, let's consider lithospheric thickness. A thick lithosphere will oppose more 

resistance to the tendency of any surface load to sink into it. That is, a thick lithosphere 

will be more capable to resist compensation and therefore a load on a thick lithosphere is 

less likely to be compensated. An uncompensated mass will remain farther away from the 

axis of rotation and consequently impose a bigger change to the inertia tensor of the 

planet. Therefore a planet with a thicker lithosphere will experience more polar 

wandering. 

SteifelHagen [2002] has modeled the influence of lithospheric thickness on polar wander 

by using different surface loads on a given planetary interior model. He found that for 
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short-term perturbation polar wandering increase linearly with increasing lithospheric 

thickness. For larger perturbation time a logarithmic relationship seems to be more 

appropriate and conc1uded that lithospheric thickness plays a role not only in the total 

amount of polar motion a planetary body experience but also in the way polar motion 

evolve with time. 

The removal of surface loads will also have an effect on polar motion as the lithosphere 

and mande under it are then allowed to rebound to their former position after the removal 

of the load. The 10ad removal process and the actual movement of the lithosphere are 

mass movements that influence the inertia tensor of a planet and therefore influence polar 

motion. On Earth it is thought that the actual observed polar motion is mainly due to 

postglacial rebound after the removal of the different ice sheets formed during the last ice 

age. [Ricard et al., 1992]. 

On Mars, Zuber et al. [2000] have studied the global structure of the crust and 

lithosphere by using the latest topography and gravity data from MGS. They argue that 

observed Bouguer gravity is best explained by a crust of uniform density and varying 

thickness. The crust has an average thickness of 50 km and represent 4.4% of the total 

volume of Mars. They argue that a thicker average crust would not be sustainable over 

long period of time. To tirst order, crustal thickness correlate with topography. The 

crustal structure shows a progressive thinning of the crust from south to north. In the 

Tharsis province itself the crustal and lithospheric thickness shows some variability but 

are on average much higher than the Martian average. The changes in the crustal 

thickness in the Tharsis province support a volcanic origin (surface loading) of the 

province and the thickness of the lithosphere under Tharsis, a younger age for the 

construct. aU of this is consistent with a non-compensated Tharsis that would be a major 

contributor to polar motion. The crust is unlikely to have been recyc1ed like here on Earth 

and is mosdy primary crust formed early in Martian history [Wieczorek and Zuber, 2004]. 

See Wieczorek and Zuber [2004] for a complete review and critique of the different 

techniques for crustal thickness estimation. 
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1.8.3 Influence of the internai viscosity prorde 

One fundamental property of any deformable material is his viscosity. Viscosity is the 

resistance of a material to a change in form. This can be seen as internal friction between 

the different parts of the body. The amount of compensation of a load depend on the 

viscosity. Ifviscosity is high then the body will stay closer to the surface. One would then 

expect a body to experience more polar motion if it has a highly viscous lithosphere. 

However one must also look at viscosity from another angle to get a more complete 

picture of the influence of this parameter. The way a planet deform as a whole is also 

important. When polar motion occurs the new axis of rotation is not perpendicular to the 

old equatorial bulge of the planet. In order to attain rotational equilibrium the planet will 

try to realign if s equatorial bulge so that it becomes perpendicular to the new rotation 

axis. The time it takes to make that realignment is determine by the time TI in Spada's 

notation as defined by equation 1.104. This time is greatly dependant on the viscosity of 

the mantle. The lower the viscosity, the easier it will be for the planet to realign ifs 

equatorial bulge. In the extreme case of a rigid body where the bulge cannot be realigned 

there cannot be any polar wander. 

We see that the effect of viscosity changes when we consider the effect of this parameter 

on the state of compensation of a load or when we consider it as a mande property. The 

two processes act one against the other and the exact influence of viscosity can only be 

determined through modeling ofrealistic values of the parameter. Steifelhagen [2002] has 

found that polar wandering decreases linearly with an increase in viscosity. 

1.8.4 Influence of rigidity on polar wandering 

Rigidity is another important property of deformable body. It relates stress to strain as in 

the classical Hooke law of elasticity. However, SteifelHagen [2002] has found that the 

time scale TI does not depend much on rigidity and has concluded that for most situations 
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the rigidity factor has much less influence on polar wandering than the viscosity 

parameter. 
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Figure 1.1 

A high-resolution view of the topography of the north pole of Mars. A circular, swirling 

terrain is clearly visible around the present day rotation axis. At 0° longitude there is 

another fonnation (shown by the arrow) very similar to the one at the actual pole. This 

led Murry and Malin [1973] to suggest that this fonnation is an ancient pole of Mars and 

thus that Mars experienced polar wandering of 10 to 15°. Topography data is from MGS 

MOLA instrument. 
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Figure 1.2 

Calculation of the angular momentum of a mass element dm. 
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Figure 1.3 

A summary of this chapter. Arrows indicate the logical path from one formula to the 

other. Red arrows are concemed with the linear formulation of the Euler-Liouville 

equation. Blue arrows are concemed with the long-term approximation of the polar 

motion equation. 
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Chapter 2 : The magnetic field of Mars 

2.1 Introduction 

Chapter 1 discussed the rotational dynamics of non-rigid planets. Despite the importance of the 

subject and the extensiveness of our discussion, rotational dynamics is not the main subject of 

this thesis. Now that the physical basis of polar wandering is set 1 would like to use 

paleomagnetism to verify if indeed Mars was ever subjected to polar wandering. More precisely 

1 will use the recently discovered magnetic anomalies on Mars to try to fmd the orientation of the 

ancient dipolar core field that is assumed to have created these anomalies. The modeling of the 

magnetic field will also be discussed. On Earth paleomagnetism seeks to study the intensity and 

orientation of the Earth's magnetic field throughout history. Paleomagnetic studies are typically 

used to study the movement of continents with respect to the axis of rotation. A rock can get 

magnetized either through induced magnetization or remnant magnetization. Induced 

magnetization is created when an external field acts on a rock. The rock develops a magnetization 

given by 

J=xH 

Where H is the external field and X is the magnetic susceptibility of the rock. For an isotropic 

rock X. is a scalar and the magnetization vector is parallel to the applied field. For sorne rocks, 

however, there is magnetic anisotropy and the magnetization is not in the same direction as the 

applied field. In this situation X. is a tensor ( 3 x 3 matrix). In the case of induced magnetization, 

the magnetization disappears when the applied field disappears. 

Other types of rocks have remnant magnetization. Remnant magnetization is basically a 

permanent recording of an ancient field that acted on the material. In the case of Mars, there is no 

global, Earth like, field and the observed magnetic field is crustal in origin and is created by 

remnant magnetization. When a magnetic material temperature goes below a certain point (the 
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Curie temperature) it will be magnetized by the core field of the Earth. On Mars the most likely 

candidates mineraIs to produce the observed magnetization are ferromagnetic mineraIs like 

magnetite and hematite that have a high Curie temperature of 580 and 675° C [Dunlop and 

Arkani-Hamed, 2004]. Assuming that the orientation of the dipole core field is the same as the 

rotation axis then the measured field orientation provide the orientation of the axis of rotation. 

The fundamental hypothesis of geomagnetism is the geocentric axial dipole hypothesis (GAD). It 

is mentioned numerous times in this thesis. In this hypothesis the magnetic field of the Earth is 

produced by a simple magnetic dipole at the center of the Earth. This dipole is aligned with the 

axis of rotation and produces the dipolar component of the geomagnetic field. At the present 

time, the observed geomagnetic field is not exactly aligned with the axis of rotation but is slightly 

inclined with an angle of Il.5° with respect to axis of rotation. This is the inclined geocentric 

dipole. It is also possible to model the geomagnetic field with a dipole that is not at the center of 

the Earth, this is the eccentric dipole. The fit obtained, however, is only marginally better [Butler, 

1992] and the geocentric dipole hypothesis is retained 

The geomagnetic poles produced by the inclined geocentric dipole do not correspond with the 

actual magnetic poles as would be the case if the field was uniquely dipolar in origin. This is 

caused by another component of the geomagnetic field; the non-di polar component. The total 

geomagnetic field is thus the sum of the dipolar and non-dipolar component. Modeling of the 

non-dipolar component suggests an origin in the fluid eddy current in the liquid outer core of the 

Earth. 

The geomagnetic field has not been constant during most of the history of the Earth. The field has 

changed its intensity and orientation. There is also evidence of complete polarity reversal where 

the dipole orientation has shifted 180°. During that time both components of the field have 

changed. The dipolar component changes are long period changes and the non-dipolar component 

changes more quickly. For the past 2000 years, on average, the geomagnetic pole is close to the 

axis of rotation This mean that, on geological time scale, The orientation of the dipole field has 

been, on average, the same as the axis of rotation of the Earth. Clearly the rotation of the Earth 
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must have an effect on fluid motion in the liquid outer core and it is therefore logical to assume a 

strong Hnk between rotation and geomagnetic field. This is the most fundamental element of the 

GAD and the basis of the uses of magnetic anomalies to study polar wandering on Mars. The 

alignment of the dipolar field with the rotational axis is also observed in the case of Mercury 

[Wang, 1977]. On Earth the situation is complicated by the presence of plate tectonics, which, in 

addition to polar motion move the position of a given point relative to the axis of rotation of the 

planet. On Mars the situation is much simpler (although this last comment does not mean at all 

that the situation is simple!!! !). Mars has no global field and is considered a one-plate planet 

with no plate tectonic as we know it here on Earth. 

The lack of global field is a blessing as the observed field is predominantly crustal in origin 

[Purucker, 2000]. Relatively well-isolated anomalies can be used to infer the orientation of the 

ancient core field at the time of magnetization and assuming that the field axis was aligned with 

the axis of rotation we can estimate the movement of the surface relative to the axis of rotation 

that is polar motion. Loosely defined, a magnetic anomaly is simply a portion of the magnetic 

map with values that differ significantly from the immediate surrounding. See figure 2.1 for 

examples of magnetic fields produced by different bodies. The challenges in modeling magnetic 

anomalies are many, most notably in the choosing of a suitable anomaly and the removing of 

exterior and nearby contamination. How those problems were handled will he explained in detail 

in this chapter. 

2.2 The MGS data 

The data used in the modeling done in this thesis is provided by Mars Global surveyor (MGS). 

The magnetometer onboard MGS has provided magnetic field measurements at low (from 80 km 

to about 200km) altitude during the SPOI (Science Phasing Orbit) and SP02 phases of the 

mission. Higher altitude data, at an average 400 km altitude, were provided during the MO 

(Mapping Orbit) phase of the mission. The high altitude data have very dense coverage on almost 

the entire surface of the planet but suffer from low resolution due to altitude. The data, as 

provided by NASA, are along satellite tracks. Each measurement is identified by a time stamp. In 
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this manner each track can be separated from the global data set. It is thus possible to study the 

data globally or each track individually or one can also look at a combination of both regional 

data and track data. Unfortunately the low altitude data are very sparse and one cannot expect 

more than just a few good tracks over individual anomalies. Data can also be divided into two 

groups depending if the measurement was made during the day or during the night. This is 

especially important for any study using magnetic data. See figure 2.2 for a global portrait of the 

Martian night side high altitude magnetic field. 

The major challenge for any study using MGS data is to find an acceptable way to remove noise 

and other contamination from the data. This study is no exception. The contamination can be 

globally c1assified into 2 groups. First there is contamination of the data by external sources. 

Interaction of the solar wind with the Martian ionosphere produce parasite magnetic fields that 

contaminate the data. This is especially true for the high altitude data that sits above the 

ionosphere, which has been conservatively set at 200 km altitude [Acuna et al., 1998]. At altitude 

higher than that, dayside data is especially vulnerable. Since there is no reliable model of the 

ionosphere-solar wind interaction, it is extremely difficult to assess the level of contamination of 

the high altitude dayside data. For this reason only night side data are considered in this thesis. 

This help reduce, but not eliminate, outside contamination. See figures 2.3 and 2.4 for examples 

of high altitude data contamination. 

Unfortunately low altitude data are dayside and are more likely to be contaminated even though 

the data are below the ionosphere. The effect of the external sources on low altitude data is likely 

to be less severe than on the high altitude data because of the strong nature of the crustal 

anomalies at lower altitude. Once again getting a good portrait of the contamination is extremely 

difficuIt and subjective. 

F or a given anomaly the other source of contamination is simply the presence of other sources 

nearby. The measured magnetic field is thus the vector sum of an magnetic fields from all the 

nearby sources. This contamination is by far the most difficult to remove because of the 

fundamental non-uniqueness associated with this situation. To get a precise pole position out of a 
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magnetic anomal y model one would need a perfectly isolated source body. Such anomalies 

simply do not exist. On Mars, the requirement of an isolated magnetic anomaly precludes any use 

of the southern hemisphere highly magnetic parts. AlI the anomalies in this study are at diverse 

degree affected by this contamination. See figure 4.8 and table 4.3 for an example of the effect of 

contàmination by a nearby source. Figure 2.5 gives the result of a numerical experiment where 20 

dipole sources were put on sphere and the three components of the magnetic field are calculated 

over the entire sphere. 

2.3 The Martian magnetic field 

It has been established that the observed magnetic field is crustal in origin. This is one of the rare 

observation of Mars that is very robust and has not been seriously challenged. The strongest 

anomalies are observed over Terra Cimmeria and Terra Sirenum in the southern hemisphere. The 

northern hemisphere is largely devoid of magnetic anomalies. With the topographie dichotomy 

this is another major difference between the two hemispheres of the planet. 

T 0 exp Iain such a difference one can invoke many scenarios, most of them related to the 

formation of the hemispheric dichotomy. Many investigators have assumed that the northern 

plains are younger than the southern highIands because of the almost total absence of large crater 

in the northern plains. It is then plausible to imagine that the northern plains formed after the 

cessation of the core field early in Martian history. However the différence in age has been 

disputed and it has been proposed that the base of the northern plains is about the same age as the 

southern highlands and that only the first few kilometers of volcanic layers are actually young 

[Wieczorek and Zuber, 2004]. This argument is supported by studies that indicate that the 

hemispheric dichotomy is not a fundamental feature of the planet's internaI structure [Zuber et 

al., 2000]. It has also been argued that the hemispheric dichotomy does not translate into a crustal 

thickness dichotomy even thought sorne studies predict a thinning of the crust under the northern 

hemisphere [Zuber et al., 2000]. Evolution models have also pointed out that the Martian crust 

was formed very early in Martian history and is probably primary in origin [Wieczorek and 
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Zuber, 2004]. AIl these points argue against a difference in magnetization due to a difference in 

age. 

Another plausible scenano is a very different mineralogical composition in the northem 

hemisphere. But again based on evolution models this is unlikely if one assume about the same 

age for both the southem highlands and northem plains. Most models of crustal thickness assume 

a constant density crust implying a more or less similar composition. While this is certainly a 

very crude first order approximation there is no evidence of a dramatic difference in composition 

between the northem plains and southem highlands. If the northem plains are contemporary with 

the southem highlands and the crust on average of the same composition, then they should have 

been equally magnetized by the ancient core field. Assuming this, then one is put into the 

unviable position of invoking a mechanism that would explain the demagnetization of the 

northem lowlands. Again many scenarios are possible. Thermal evolution models have hinted 

that the northem hemisphere might have been the locus of high heat loss by conduction early in 

Martian history [Sphon et al., 2001]. The hotter lithosphere would make magnetic materialloose 

their magnetization as they are heated above their curie point. It is however unlikely that any 

plausible mechanism would demagnetize the crust all the way to the surface. So sorne 

magnetization should remain. 

Another possible demagnetization scenario is the impact scenario. It has been argued that the 

topography dichotomy itself might have been formed by the giant impact that created the Utopia 

basin [Zuber et al., 2000]. Such an impact would have excavated a good portion of the 

lithosphere and easily heated the impact point and the surroundings well above the Curie point. 

Big impact basins on Mars do not show significant magnetic anomalies. However it is difficult to 

imagine how a single impact, even one of the magnitude that created Utopia, can demagnetized 

most of the northem hemisphere. Mohit and Arkani-Hamed [2004] have studied the effect of 

shock pressure and impact heating on demagnetization. They concluded that the crust is totally 

demagnetized within 0.8 basin radius of the impact site and partially demagnetized up to 1.4 

basin radius of the impact site. Assuming that this value apply to a very big impact it stillleave us 

well short of an entire demagnetized lowlands. 
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One other observation of interest is that there seems to he no correlation between topography and 

the observed magnetic anomalies. Recently, Langlais et al. [2003] have binted of a possible 

correlation between certain craters and sorne magnetic anomalies but the evidence is not 

convincing. No such correlation have been observed in this thesis even for weIl isolated 

anomalies. See appendix D for topography maps of the regions under the anomalies studied in 

tbis thesis. One must rememher that, depending on magnetization, the maximum of an anomaly 

may not appear directly over the source, thus complicating any search for a link between 

topography and magnetic source. Moreover the observed magnetic field is more likely the vector 

sum of many fields created by many sources. Add to this the lost of resolution for the high 

altitude data and the task of finding any correlation is next to impossible with the presently 

available data. Globallow altitude data coverage would help a lot in this situation. Of course, this 

correlation might not exist in the first place, indicating that source bodies are situated deep in the 

crust of Mars. 

2.4 Modeling the Martian magnetic field 

The Martian magnetic field has been extensively modeled. Many spherical harmonies models 

have been proposed. Arkani-Hamed [2001] has shown a 50 degree and order model élaborated 

by using the three components of the low altitude data from 80 km to 200 km altitude. Cain et al. 

[2003] have used both the low and high altitude data to produce a 90 degree and order model. 

Higher degree and order is always desirable in a model, however the higher harmonies are more 

susceptible to noise. Cain's model does represent weIl only the high altitude data with 

disagreement with other published models of several hundreds nT for the low altitude data. 

Moreover the noise in the higher harmonies is amplified when the model is downward continued 

to lower altitude making this operation very risky. These two models used day side data, which 

is more susceptible to contamination, especially for the horizontal components of the data. 

Purucker et al. [2000] used the equivalent source dipole technique to model the radial component 

of the low altitude data available at that time. They produced an altitude normalized map of the 
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radial component at 200 km altitude. From this model they conc1uded that the magnetic field was 

crustal in origin. However, sorne large misfit between data and model remained and were 

attributed to extemal field contributions, which were not analyzed or removed in their study. 

Assuming a 50 km thick magnetic layer they estimated a magnetization range between -12 and 

+ 17 Nm. More recently Langlais et al. [2003] used basically the same technique to model the 

three components of both the low and high altitude data. They produced a magnetic field map of 

aIl 3 components at 200 km altitude and a magnetization map at the surface of the planet. 

Downward continuation of the model field to the surface predict field intensities up to 6000 nT. 

Assuming a 40 km magnetic layer the magnetization components values found range from -12 to 

+ 12 Nm. However they did not remove extemal contributions from the data and did not provide 

any estimation of that contamination. Parker [2003] specifically calculated the minimum 

magnetization intensity that would be required for a 50 km thick magnetic layer to best fit the 

data. He found that the magnetization intensity should be at least 4.76 Nm. Most of the 

magnetization values obtained in this study are consistent with the results stated above. 

It is important to understand the pros and cons of both spherical harmonics modeling and inverse 

source modeling. Many magnetic anomalies modeling were based on spherical harmonics models 

rather than directly using observed data [Arkani-Hamed, 2001 ; Phillips, 2003]. Spherical 

harmonics modeling of a potential field works well when one hopes to get a global picture of the 

field. It requires a global, homogeneous data coverage, which is certainly what we have for the 

high altitude data. However low altitude data coverage is far from homogenous and would 

introduce errors in the model. As stated earlier spherical harmonics models are sensitive to noise 

in the higher harmonics. That noise is amplified when downward continuation is performed 

therefore limiting the value of low altitude or surface estimations of the magnetic field. One more 

important drawback of spherical harmonics models is that it does not say anything about the 

physical characteristics of the source. For example the surface magnetization, a very important 

parameter to constrain the composition and the size of the source body, can not be evaluated 

without making other assumptions. Since this thesis is concemed with finding the paleopole 

positions of Mars, magnetization of the source is needed, so spherical harmonics modeling will 

not be used. 
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The equivalent dipole technique is less sensitive to geographical data distribution and does not 

require global coverage. A very good point if low altitude data is to he used. It also pro vide 

information on the magnetization of the source but does not constrain in any way the size and 

shape of the source body. Langlais et al. [2003] have produced a magnetization map of the 

surface of Mars based on their equivalent di pole source modeling. Their map shows a 

magnetization range of -9/+ 11.5, -7.8/+ 11.3 and -6.2/+6.7 A/m for the r, theta and phi 

component respectively. These values are not, of course, absolute because of the non unique 

character of the model. If they are representative of what is actually going on at the surface then 

one can see that the horizontal magnetization component are as important as the radial 

component and should be considered to get an accurate portrait of the magnetic field. The inverse 

source technique work also better than the spherical harmonics modeling technique if one is 

interested in studying the magnetic field locally. In this thesis 1 model the local fields over 

selected isolated anomalies so the equivalent source technique is more appropriate. 

However 1 go one step further by replacing the dipole with an elliptical prism of uniform 

magnetization. The magnetic field created by an elliptical prism has fundamental differences with 

the one created by a circular prism or a dipole. An example of the magnetic field produced by the 

three source bodies currently used in equivalent source modeling is presented in figure 2.1. Most 

anomalies presented in figure 2.6 have an elliptical shape and elliptical prisms are thus more 

appropriate to model them. This method, initially used by Arkani-Hamed [2001], provides 

information on the location of the source and gives first order approximation of the size and 

shape of the magnetic source. The extra degrees of freedom provided by an elliptical prism will 

make the model fit the data better. To be accurate, one of the most fundamental requirement that 

the method need to meet is the use of magnetic anomalies that are sufficiently isolated from 

neighboring sources. In practice, however, the ideal fully isolated magnetic anomal y does not 

exist and sorne contamination from nearby sources is always present. 

Langlais et al. [2003] have estimated that contribution to a given measurement by nearby sources 

that are more than 1500 km away is negligible. Numerical experiments made for this thesis 
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support this conclusion. Applying this criteria to Mars, however, is difficult at best. To be 

isolated this would mean that an anomaly should be alone in a circle of 25° radius. Contribution 

from neighboring sources will, of course, affect the observed field depending on the location, 

geometry and magnetization of the sources. AlI these parameters show considerable non 

uniqueness. This mean that the three components of the magnetic field of the anomaly under 

study could be affected differently. If one models the three components of the observed field of a 

contaminated anomaly separately he would get a different magnetization model for each and 

therefore a different pole position. So modeling each component of the data separately gives a 

very good indication of how isolated a given anomaly is and how free of external noise the data 

reaIly is. Clustering of the poles obtained by modeling separately the three components would 

indicate that the anomaIy is sufficiently well isolated to have confidence in the pole position 

obtained from the model. If an anomaIy is perfectly isolated and the data perfectly clean the space 

domain algorithm used in this study would give the samé pole positions for aIl three components. 

1 will demonstrate in chapter 4 the effectiveness of the algorithm on synthetic data before using it 

with actual data. The same space domain aIgorithm is used in both modeling effort described in 

chapter 3 and 4. 

Using source bodies other.than dipoles have been considered in the past. Arkani-Hamed [2001] 

used elliptical prisms to model ten relatively isolated smaIl magnetic anomalies and found that 

most of them were clustering within a 30° circle centered at 25N, 230E and that both north and 

south magnetic poles are found in the cluster suggesting pole reversaIs on Mars. The anomalies 

were extracted from a sphericaI harmonics model of the magnetic field [Arkani-Hamed, 2000] 

that was generated using low altitude data alone. Although steps were taken to minimize external 

contributions to the observed field for each anomaly, this study did not address the issue of data 

quality. Hood and Zacharian [2001] used low altitude data along MGS tracks to model two 

anomalies in the northern hemisphere with both dipoles and circular prisms. The dipole models 

yielded sources at depth of about 150 km, which they argued, is unlikely because temperature at 

such a depth is probably over the Curie point. So the dipole models were discarded. They found 

paIeomagnetic poles in the region north east of Tharsis which is in general agreement with 

Arkani-Hamed [2001]. However using circular prisms alone will not give the optimal fit between 
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data and model. Hood and Zacharian [2001] and Hood and Richmond [2002] did not move the 

prism to optimize the placement of the prism with respect to the center of the anomaly. An 

horizontally magnetized prism will show it' s maximum Z or radial component away from the 

center of the source body. Therefore any model that do not take that into account will not give 

the best possible fit between model and data. 

Aiso in Hood and Zacharian [2001] as well as in Hood and Richmond [2002], certain anomalies 

were modeled with two circular prisms, which yielded a better fit between observed field and 

model. Adding sources will easily improved the fit between data and model for a given anomaly. 

However interpretation of the results, especially as far as calculating the poles of the ancient core 

field is concemed is difficult. To obtain a reliable pole position one needs a uniformly 

magnetized source. 1 have elected, in this study, to model each anomaly with only one elliptical 

prism source. This source is assumed to be uniformly magnetized and the top of the prism is 

placed at the surface of the planet. Once a model is obtained, its quality is evaluated and the 

model is rejected if the fit between data and model is poor. 

Arlcani-Hamed and Boutin [2004] (see chapter 3 and figure 2.6 in this chapter) used both the low 

and high altitude data to model 9 relatively isolated anomalies. They smoothed the low altitude 

tracks by fitting and removing a quadratic polynomial consistent with methods used in other 

studies. They smoothed high altitude data in the Fourier domain to remove time dependant field 

contributions. Paleopole positions found are in general agreement with other studies although 

clustering is not as tight as mentioned by Arlcani-Hamed [2001]. Langlais et al. [2003] also 

challenged the clustering of the poles based on their equivalent source modeling results. They 

also found different paleopole positions for most of the anomalies studied by Arlcani-Hamed 

[2001]. This difference in results based on two very different modeling technique shows the 

danger of working with models instead of actual data. Clustering of the poles, if established 

firmly, could have a great influence on our understanding of the tectonic of Mars. The Arkani­

Hamed and Boutin [2004] study has shown the much greater importance oflow altitude data over 

high altitude when both are considered simultaneously in a model. The two data sets modeled 

separately would not give the same pole position. This is an indication that the anomalies are not 
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fully isolated. None of the previous studies have modeled the three components of a given 

anomaly separately to check if the pole positions coincide, a key feature of the study in chapter 4. 

More recently Philips [2004] used the Helbig integral equations theory to estimate crustal 

magnetization, paleomagnetic pole positions and whether or not the ancient global field had 

reversed during its history. He/big [1963] has calculated 9 first order moment integrals of the 

magnetic field components. In theory 5 of them should vanish and the other 4 provide the 3 

components of the magnetization. AlI these integrals are theoretically evaluated from -00 to +00 so 

that in practice one can not fully evaluate the integrals. Phillips numerically evaluated the 

integrals on finite size windows and removed a planar surface from the data to make the 

theoretically vanishing integrals as close to 0 as possible. However Phillips did not use the 

available data directly but calculated the magnetic field at 150 km altitude using Cain [2003] 

spherical harmonic model described earlier. The results he obtained support reversal of core 

dynamo but clustering of the pole seems to be supported only for sources with a minimum 

magnetization intensity of 4A1m. Moreover, distribution of equivalent dipole sources shows a 

strong concentration in places where the measured magnetic field is low like in the northem 

plains. Sources seem also to concentrate along sorne lines of longitude. Although technically not 

impossible the presence of so many sources in the northem hemisphere is highly unlikely. This 

seems to be indicative, as pointed out by Philips himself, of an important presence of extemal 

noise in the data used for the evaluation of the Helbig integrals. One could go one step further 

and argue that the noise was probably amplified by the downward continuation of the high 

harmonics of the spherical harmonics model used in the study. Cain's model does not represent 

low altitude data very well so the altitude chosen here for the downward continuation of the 

model might be too low and may not be truly representative of the capacity of the model. 
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Figure 2.1 

A simple comparison between the X, Y and Z component of the magnetic field produced by an . 

elliptical prism (top row), a circular prism (middle row) and a dipole (bottom row). The field was 

calculated at 400 km altitude. Each source has the same magnetic dipole moment. The same color 

scale is used for all Z components and for aIl X and Y components. The general behavior of all 

fields is about the same but subtle and important differences exists. The Z component of the 

elliptical prism shows a different shape than the one produced by the circular prism while the X 

and Y components shows little difference. Aiso visible is the appearance of a small negative lobe 

in the Z component of the dipole field, which is not present in the other Z components. 
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Figure 2.2 

A global view of the Martian magnetic field at an average of 400 km altitude. The top panel is 

the radial component, the middle panel (noted phi) is the east-west component and the bottom 

panel (noted theta) is the north-south component. AH mapping phase data available from March 

1999 to April 2003 were used to build the maps. A total of 28,800,000 data points were binned in 

0.5 by 0.5 deg grid. The scale of the maps is limited to values between -60 to +60 nT to better 

show the magnetic anomalies. The global characteristics of the field are visible in those maps. 

One can see for example the relative weakness of the field in the northem hemisphere compared 

to the southem hemisphere. The absence of anomalies in and around the big basins indicates that 

those were probably demagnetized by the impact. 
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Figure 2.3 

An example of high altitude data contamination. The two top panels are radial high altitude 

magnetic data measurements taken at two different times. The data was binned in the same 

manner as in figure 2.2. If there was no external contamination the two top panels should be 

perfectly identical. Although they look very similar, the bottom panel, which represent the 

difference between panel HAl and panel HA2, shows that there are differences ofup to 20 nT . 
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Figure 2.4 

Another illustration of external contamination. 1 extracted 8 tracks from the high altitude data 

within 0.5 deg of the position lat -5, long 66. The tracks were measured at different times during 

the mapping phase (MO) portion of the mission. Each graph represent the value of the 

corresponding component versus latitude. Each track is 20 deg long. Since the tracks are so close 

to each other and virtually at the same altitude they should yield practically identical results for 

each component. This is not the case. The difference between the two extreme tracks is superior 

to the margin of error and must be attributed to external contamination. 
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Figure 2.5 

A numerical experiment in which 20 dipole sources of random dipole moment were placed at the 

surface of a planet of radius 3390 km, a Mars type planet. The total field resulting from the vector 

sum of the field of all individual sources was calculated at an altitude of 400 km. The three 

spherical coordinates components of the total field are presented. The white dots on each sphere 

represent the position of the sources bodies. Most sources are placed near longitude 180 and 

latitude 0 in order to mimic the actual situation on Mars. The goal of this simulation, however, 

was not to reproduced the observed field on Mars. In the case of the radial component one can 

clearly see that in many situations the maximum (or minimum) does not correlate with the actual 

position of the source. In the phi and theta maps sorne long wavelength influence is clearly 

visible and make for non zero field values at places very far away from any sources. The dipole 

field is calculated by using the method described in Dyment and Arkani-Hamed [1998]. 
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Figure 2.6 

The radial component of the magnetic field of the nine magnetic anomalies used in the modeling 

of chapter 3 and 4. Each anomaly is represented by a 20° by 20° eut of the high altitude radial 

data map of figure 2.2. One can see the various shapes and sizes of the anomalies. It is quite 

apparent that these anomalies are not fully isolated. Around almost all of them there are nearby 

anomalies that are interacting to sensibly modify the resultant magnetic field of the anomaly of 

interest. For a weIl isolated anomaly this influence will be minimal. Most of the anomalies show 

an elliptical shape. Although anomaly Al and A2 were treated as being produced by two 

different sources, one can not exclude the possibility that they come from a single source sinée 

the shape and size ofboth anomalies are similar. 
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Chapter 3: Paleomagnetic poles of Mars revisited 
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3.1 Abstract 

The huge amount of data acquired by Mars Global Surveyor during its mapping period 

provides a unique opportunity to re-assess the paleomagnetic pole positions of Mars 

previously determined on the basts of the limited low-altitude magnetic data. We 

identify 9 small and isolated magnetic anomalies on the basis of the global magnetic 

maps, and model each anomaly using a vertical. prism of elliptical cross section. Both 

high-altitude (360-430 km) and low-altitude (l00-200 km) magnetic data are used 

simultaneously. We calculate a paleomagnetic pole position assuming that the body is 

magnetized by a dipole core field. Although the new pole positions do not cluster as 

closely as the old ones, the new overlaps the older cluster. The clustering suggests that 

Mars' rotation axis has likely wandered by about 50-60 degrees in the last about 4 Gyr. 

The number of north and south poles in the cluster suggests at least one reversaI of the 

core field during the time the source bodies acquired magnetization. 

3.2 Introduction 

Attempts have been made to estimate the core field direction that magnetized the Martian 

crust sorne ~4 Gyr ago. Arkani-Hamed [2001a] modeled the magnetic source bodies of 

10 small and isolated magnetic anomalies using vertical prisms of elliptical cross sections 

and employing a Fourier domain algorithm. He then determined the corresponding 

paleomagnetic pole positions, assuming that the source bodies were magnetized by a 
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dipole core field, which is a standard practice in paleomagnetic investigations [e.g., 

Butler, 1992]. Seven out of the 10 poles clustered within a radius of 30 degrees centered 

at around 25N, 225E. The remaining three were also clustered to the west of the first 

cluster. Hood and Zakharian [2001] used along-track data to model the source bodies of 

two magnetic anomalies near the north pole using vertical prisms of circular cross 

sections and adopting a space domain algorithm. One of the anomalies was included in 

the 10 anomalies modeled by Arkani-Hamed, and the calculated pole positions by the 

authors are less than 5° apart. The paleomagnetic pole positions were preliminary as 

emphasized by Arkani-Hamed, because of limited data available at the time. The 10 

anomalies were extracted from a 50-degree spherical harmonic model of the magnetic 

field of Mars that had been derived on the hasis of the low-altitude (100-200 km) Mars 

Global Surveyor data [Arkani-Hamed, 2001b]. The original data had many wide gaps 

parallel to the satellite tracks, and the number of original tracks passing over an 

individual anomaly was limited. The anomalies were partIy defined through interpolation 

based on the spherical harmonic mode!. The track data used by Hood and Zakharian 

were also extracted from the low-altitude data and suffered from similar limited coverage 

and from the across-track interpolation process. If the se paleopole positions are 

confirmed by the presently available vast amount of the high-altitude (360-430 km) 

magnetic data, they will have important implications not only about the magnetization of 

the source bodies, but also about the dynamics of Mars. For example, the clustering of 

the poles will indicate no pervasive plate tectonics on Mars since the source bodies were 

magnetized. The locations of the pole positions will suggest an appreciable polar wander 

of Mars if the dipole core field axis coincided with the rotation axis of the planet at ~4 

Gyr ago, which is almost the case for Earth and Mercury at the present. The vast amount 

of high-altitude magnetic data also provides a good opportunity to identify and model 

other isolated anomalies. Hood and Richmond [2002] used earlier parts of the high­

altitude data to model two new anomalies in the low latitudes. The paleomagnetic pole 

position determined from one of the anomalies falls within the 30-degree radius circle of 

Arkani-Hamed. 
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We present the paleomagnetic pole positions of Mars determined through modeling 9 

small and isolated magnetic anomalies that include sorne of the previous 10 anomalies. 

We use vertical prisms of elliptical cross sections to model both the low- and high­

altitude data simultaneously, by adopting a new space domain algorithm. 

3.3 Paleomagnetic poles of Mars 

The paleomagnetic pole position of Earth is usually determined using m situ 

measurements of the direction of rock magnetization [e.g., Butler, 1992 ; Dunlop and 

Ozdemir, 1997]. Such measurements are not available on Mars at present. However, a 

rough estimate of the paleomagnetic pole position of Mars can be made on the basis of 

modeling magnetic anomalies. A desirable anomaly must be a) isolated enough to ensure 

no substantial contribution from nearby magnetic source bodies, b) large enough to be 

resolved by magnetic measurements at high altitudes of ~400 km, and c) small and 

simple enough to ensure that it can be modeled by a simple-shaped body of uniform 

magnetization. It is difficult to fulfill aIl of these criteria. For example, a simple looking 

magnetic anomaly at high elevations can arise from coalescing of the magnetic fields of 

many irregular but closely located bodies. The anomaly simply arises from the combined 

magnetic fields of the bodies. However, the magnetizing core field direction may not 

change appreciably over a small area, unless it reverses or undergoes significant polar 

wander, and the small bodies are likely magnetized in a single direction. The 

magnetization direction of a single source model still is a good approximation of the core 

field direction. To fulfill these stringent criteria we must deal very carefully with the 

short wavelength components of the data that are close to the resolution limit and are 

likely more susceptible to data noise and data processing errors. Therefore stringent 

constraints on the data processing and modeling must be implemented (see the 

Appendix). 
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With the above caveats in mind, we model 9 isolated magnetic anomalies. A model 

source body is a vertical prism of elliptical cross section with uniform magnetization. The 

top of the prism coincides with the local surface of an elliptical Mars that has a polar 

radius of 3380 km and an equatorial radius of 3400 km. For a given magnetic anomaly, 

the three components of the magnetic data are extracted from bath low- and high-altitude 

data sets and transferred to a local rectangular coordinate system centered on the anomaly 

with the origin at the surface of the elliptical Mars. Details of data processing and 

modeling are presented in the Appendix. The dimensions and vector magnetization 

components of the model source bodies are listed in Table 1. 

Figure 3.1a shows the global map of the radial magnetic anomalies of Mars at 390 km 

elevation derived from the high-altitude data. The locations of the magnetic anomalies 

are superimposed on the figure. A paleomagnetic pole is determined from the 

magnetization of a source body, assuming that the body is magnetized by a dipole core 

field, which is a standard procedure in paleomagnetic studies [e.g., Butler, 1992]. The 

core field is upward in the north and downward in the south, it is in the opposite direction 

to Earth's geomagnetic dipole. The paleomagnetic pole positions thus determined (Figure 

3.lb) show clustering of the poles, though not as tightly as those of Arkani-Hamed 

[2001a]. Included in Table 1 are the paleomagnetic pole positions shown in Figure 3.1 b 

as well as those obtained by Arkani-Hamed [2001a] and Richmond and Hood [2003]. 

Figure 3.1b shows two clusters, three of the poles are clustered near 180 degree longitude 

and the rest around 270 longitude. Double clustering also existed in the pole positions of 

Arkani-Hamed. A densely distributed low-altitude magnetic data is required to better 

delineate the details of the small magnetic anomalies and determine whether the double 

clustering reflects appreciable polar wander of Mars within the period the magnetic 

bodies acquired magnetization, or arises from the uncertainty of the present pole 

positions. There is a general agreement between the results of different authors (see also 

Phillips [2003]) but they are not identical because of many factors discussed below. 
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3.4 Discussion 

This section discusses sorne issues conceming the viability of the results and briefly 

addresses their main implications. 

Determination of a magnetic source body on the basis of its magnetic anomaly is doubly 

non-unique. Not only the shape and the magnetization intensity of the source body, but 

also the direction of the magnetization must be obtained. To reduce the extent of the non­

uniqueness, it is desirable to determine the shape of the body before calculating its 

magnetization. The analytic signal technique has been used to delineate sharp magnetic 

boundaries [e.g., Nabighian, 1972] and thus can he utilized to determine the shape of a 

magnetic body that is uniformly magnetized [Roest et al., 1992]. We examined the 

applicability of this technique to the small and isolated magnetic anomalies of Mars by 

calculating the magnetic anomaly of a vertical prism at altitudes ranging from 50 to 400 

km. The prism was 10 km thick and had a square cross section of 400X400 km. It was 

magnetized either vertically or horizontally paraUel to a side of the square. The simple 

shape of the prism and its uniform magnetization result in the strongest analytic signal 

compared to those of irregular-shaped magnetic bodies with varying magnetization 

encountered in practice. In both models the maxima of the analytic signal at 50 km 

elevation delineated the sides of the square, but the maxima migrated inward as the 

elevation increased. The maxima coalesced at around 150 km elevation and formed a 

flat region that covered about 50% of the entire surface of the prism. At even higher 

altitudes they formed a single maximum over the center of the prism, which was broad 

and could not be effectively used in practice to determine the center of the prism. This is 

because in practice the data noise is enhanced due to the application of the gradient 

operator in the analytic signal calculations, and the location of the maximum can be 

controlled by local noise. Therefore, we made no attempts to use the analytic signal 

technique to define either the shape or the center of the source bodies. 
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Hood and Zakharian [2001] and Hood and Richmond [2002] used circular prisms to 

model some isolated magnetic anomalies. Arkani-Hamed [2001a] adopted elliptical 

models in his work, which is also utilized in the present study. We note that the circular 

prism is one of our trial models, when the semi-minor axis of the ellipse equals to its 

semi-major axis. However, none of the final models is circular. The freedom of varying 

the length of the semi-minor axis and the orientation of the ellipse, none of which are 

required for a circular prism, allows the magnetic field of an elliptical body fit the 

observation better than that of a circular body. It is desirable to detennine as to what 

extent a paleomagnetic pole position detennined by an elliptical model differs from that 

determined by a circular model. We address this question theoretically by calculating the 

magnetic field of an elliptical prism and then modeling the field using a circular prism. 

The magnetic field is calculated at 150 km and 400 km altitudes that are the mean 

elevations of the low- and high-altitude Mars Global Surveyor data, respectively. The 

total dipole moment (magnetization integrated over the entire volume of the body) of the 

circular prism is close to that of the elliptical prism in all models we calculated. If the 

elliptical body is vertically magnetized, the pole position determined by the circular prism 

model coincides with that of the elliptical prism. Figure 3.2 shows the magnetization of 

the original elliptical prism and that of the circular model when the original prism is 

horizontally magnetized (x and y axes of the figure are the semi-major and semi-minor 

axes of the elliptical prism). If the elliptical prism is magnetized along one of its 

symmetric axes, the pole position determined by the circular model coincides with that of 

the elliptical prism. However, when the elliptical body is horizontally magnetized at some 

angle with respect to either of its symmetric axes, the two magnetization directions differ, 

by as much as -15 degrees, which can result up to -900 km error in the paleomagnetic 

pole position on Mars. The difference is large enough to favor the elliptical prism 

modeling technique. Figure 3.2 shows that the difference is more pronounced at 150 km 

altitude than at 400 km. This is because the short wavelength components of the 

magnetic field strongly attenuate with elevation, making the magnetic field of an 

elliptical body closer to that of a circular model at higher altitude. 
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The resolution of the original data has an important effect on the magnetic fields of the 

isolated bodies considered in this study. This is largely because of the stringent 

constraints imposed by the small size of the source bodies. The sparse low-altitude data 

have only a few orbit tracks over each of the anomalies. Arkani-Hamed extracted the 

anomalies from a 50-degree spherical harmonie model of the magnetic potential of Mars 

[Arkani-Hamed,2001b]. Although the 50-degree model is a viable interpolation function 

that satisfies the potential field criteria, it may not represent the local anomalies 

accurately over areas with no original data. The across-track interpolation of a few track 

data using other interpolation functions [Hood and Zakharian, 2001] would not have 

resulted in a higher accuracy either. The high-altitude data densely cover the entire globe 

(except for small polar caps), but their resolution suffers from the high altitudes. The 

crustal magnetic anomalies with wavelengths shorter than -400 km are not accurately 

reflected in the data [Connerney et al., 2001; Arkani-Hamed, 2002]. Moreover, because 

ofproximity to the ionosphere [Mitchell et al., 2001], and strong atlenuation with altitude 

of the short wavelength components of the crustal magnetic field, the signal to noise ratio 

of the high-altitude data is low over these components. For example, sorne of the 

anomalies modeled by Arkani-Hamed [2001a] on the basis of low-altitude data are not 

well-defined at high altitudes. They are not considered in this paper. Although the 

spread of the pole positions may arise from the polar wander of Mars during the 

magnetization of the source bodies, it is likely that the data noise and relatively low 

resolution of the high-altitude data have appreciable effects. Consequently, despite 

determined efforts made by several investigators, the paleomagnetic pole positions 

determined by modeling the isolated magnetic anomalies should be regarded as 

preliminary. At present, the accuracy of a given paleomagnetic pole position must be 

decided upon agreement of the results obtained by different authors using different 

methods. Low-elevation and uniformly distributed data with short across-track distances 

are required to determine the pole positions more accurately in the future. 
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For accurate modeling of a small isolated magnetic anomaly in a local rectangular 

coordinate system, it is required to take into acéount the shape of the Martian surface. 

McGovern et al. [2002] showed that ignoring the dynamic ellipticity of Mars when. 

calculating the gravit y field of surface features, such as Olympus Mons, introduces 

appreciable errors. This is because of the significant dynamic ellipticity of Mars and the 

strong decay of the short wavelength components of the gravit y field with increasing 

altitude. The error introduced by ignoring the dynamic ellipticity is expected to be even 

larger for the magnetic fields of the isolated bodies considered in this paper. Not only are 

the bodies smaller than Olympus and thus are characterized by much shorter 

wavelengths, but also the magnetic field decays with altitude faster than the gravity field. 

T 0 assess the error made by ignoring the dynamic ellipticity of Mars in calculating the 

magnetic field of a small body, we consider two vertically magnetized vertical prisms of 

400X400 km and 200X200 km cross sections and 10 km thickness. They are 

comparable to the upper and lower limits of the source bodies listed in Table 1. The 

vertical component of the magnetic field over the center of each prism is determined at 

390 km and 400 km elevations, resembling the high-altitude data elevations. The 10 km 

elevation difference represents the difference between the equatorial radius of the 

elliptical Mars and the mean radius of Mars. The magnetic fields determined at both 

altitudes differ by -7% for both prisms. We repeat the same calculations but at 140 and 

150 km elevations, resembling the mean elevation of the low-altitude data. The magnetic 

fields determined at both elevations differ by -8% for the large prism, but as much as 

14% for the small prism. The error is more pronounced at lower altitude and for smaller 

bodies. As mentioned before, we use the elliptical Mars to minimize the error. 

An important observation that there are north poles as weIl as south poles in the cluster 

confirms the earlier observation by Arkani-Hamed [2001a], that the core field of Mars 

had reversaIs within the time span that the bodies were magnetized. The Earth's core 

field in the last -160 Myr has an almost random pole reversaI pattern, ranging from a 

constant polarity interval of ~30 Myr during the Cretaceous quiet period to the most 
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frequent polarity reversaIs of less than 1 Myr in the recent past. The lack of direct 

correlation between the surface morphology and the magnetic source bodies of Mars 

makes it difficult to assess the chronology of the acquisition of magnetization of the 

source bodies, and thus the reversal pattern of the core field of Mars. Our results suggest 

at least one reversal. If the core field reversaIs occurred during the cooling of a magnetic 

source body, different parts of the body would have been magnetized in opposite 

directions, and thus create opposite magnetic fields that tend to cancel each other (see 

Shive [1989] and Arkani-Hamed and Celetti [1989] for details). The actual magnetization 

intensity of different parts of the body would then be stronger than the averaged 

magnetization determined from its magnetic anomaly. Moreover, the calculated 

magnetization direction would be the resultant of the magnetization directions of different 

parts. 

The appreciable differences of the pole positions from that of the present rotation axis 

indicate a substantial polar wander of Mars, if the paleomagnetic pole position coincided 

with the rotation axis of Mars at ~4 Gyr ago, which is almost the case for Éarth and 

Mercury at the present. Polar wander could have been induced largely by the formation 

of the Tharsis bulge [Melosh, 1980; Spada et al., 1996], and to lesser extent by the large 

shield volcanoes, such as Olympus and Tharsis montes, and giant impact basins, such as 

Hellas, Utopia, Argyre and Isidis. Detailed modeling of the polar wander is outside the 

scope of this short paper that is focused on the paleomagnetic pole positions of Mars. 

3.5 Conclusions 

Using both high-altitude and low-altitude Mars Global Surveyor magnetic data we 

modeled 9 isolated small magnetic anomalies. We used vertical prisms of elliptical cross 

sections and calculated the model source bodies of the anomalies through a space-domain 

forward modeling procedure. The directions of the magnetization vectors of the bodies 

were used to estimate the paleomagnetic pole positions, assuming that a given body is 
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magnetized in a dipole core field. The paleomagnetic pole positions estimated from 

the se 9 anomalies show general agreement with those modeled by other investigators 

[Arkani-Hamed, 2001a; Hood and Zakharian, 2001; Hood and Richmond, 2002; Phillips, 

2003], but are not identical. The differences are mainly due to the low resolution of the 

high-altitude data and large gaps in the low-altitude data. Very low elevation magnetic 

data is required to better delineate the magnetic anomalies and determine the pole 

positions with a higher accuracy. The paleopoles tend to cluster, although not as tightly 

as those determined by Arkani-Hamed [2001a]. None of the poles coincide with the 

present rotation axis of Mars, implying a wander of the rotation axis since the source 

bodies acquired their magnetization. There are both north and south poles in the cluster, 

suggesting reversaIs of the Martian core field. 
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3.6 Appendix 

The densely distributed high-altitude magnetic data that cover the entire globe of Mars 

(except for a small regions over the poles) have been (and still are being) acquired at 360 

to 430 km altitude range during the mapping phase of Mars Global Surveyor. The vast 

amount of these high-altitude data allows us divide the entire data set into two almost 

equal subsets, acquired during two different periods separated by about a year, and from 

these derive two separate sets of high-altitude magnetic maps. Each data set almost 

uniformly covers the entire surface (except for the small areas near the poles) with a 

mean track separation less than 15 km. In this study we use the nighttime data, acquired 

during March 1999 to August 2002, to minimize the effects of the external field. These 

data are then transferred from the original rectangular coordinate system, fixed to Mars 

with the origin at the center of the planet, to a spherical coordinate system, again fixed to 

the planet and with the same origin. It is easy to manipulate data in the spherical 
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coordinate, map the tracks on the planet, and compare the resulting global maps with 

surface features. This process results in 6 global maps, 2 radial components, 2 north­

south components and 2 east-west components. We note that global maps are used only 

for initial detection of the location of each anomaly, and no calculations are made on the 

basis of the global maps. 

3.6.1 Spherical coordinate 

We decimate the high-altitude data by vertically binning over 0.25XO.25 degree grid 

ceIls. The data altitude within a grid cell changes by less than +- 5 km, which is about 80 

times shorter than the mean altitude of the data. The binning introduces negligible errors 

into the magnetic field at about 400 km. The data within a gird cell were averaged after 

removing the outliers (see Arkani-Hamed, [2002] for details), and the corresponding 

mean altitude is taken to be the data altitude of the ceIl. For a given anomaly, we select 

data over a square of 128X128 grid points centered at the anomaly. Each map is tapered 

to zero near the boundaries using a Hanning function over 10 grid points. The resulting 

tapered map is Fourier transformed, and its power spectrum is determined. We also 

determine the degree correlation between two similar maps, for example between two 

radial component maps. We low-pass filter the two maps to retain aIl wavelengths with 

degree correlation coefficients greater than 0.8. The resulting filtered maps are then 

averaged to obtain the averaged high-altitude maps of the anomaly. 

Despite the high density of the data coverage, the high-altitude data resolution suffers 

from the high elevation of the spacecraft [e.g. Connerney et al., 2001; Arkani-Hamed, 

2002]. We use the low-altitude science phase and aerobreaking phase data that were 

acquired at 100-200 km altitude range to improve the resolution of the final magnetic 

source models. The elevation of the low-altitude data over a given anomaly may change 

appreciably. We bin the low-altitude data within elevation intervals of 10 km, a grid cell 
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has a 0.25XO.25 degree horizontal cross section and a 10 km height. This resulted in a 

very sparse data distribution in the 3D space. 

The two similar data sets, for example the radial components of the high- and low­

altitude binned values, are combined to obtain a single data set. The data points in a 3D 

space over a region consist of the high-altitude points that are densely distributed within a 

short altitude range and the low-altitude points that are very sparsely distributed within 

the 100-200 km altitude range. This resulted in three data sets, the radial, north-south, and 

east-west components of the magnetic field. In the following we consider anomaly 5, a 

typical anomaly, to explain the data processing we have adopted in the local rectangular 

coordinate system. 

3.6.2 Rectangular coordinate 

The modeling of an individual anomaly in terms of a vertical prism is made in a local 

rectangular coordinate system. The combined data sets over a given anomaly are 

transferred to a local rectangular coordinate system with the (x,y) plane tangent to the 

local surface of the elliptical Mars and the z axis upward. A 2D boxcar circular filter, 

centered at the anomaly, is applied to each data set in order to minimize the effects of 

nearby magnetic features that do not relate to the anomaly under consideration. The filter 

removes the data outside a given radius, which is visually selected and varies from one 

anomaly to the next. We note that, unlike in the spherical coordinate system, the z 

coordinates of the data points change significantly in the local rectangular system. Rood 

and Zakharian [2001] and Rood and Richmond [2002] adopted a rectangular coordinate 

system algorithm in their model calculations. They assumed a circular disk for a 

magnetic body with the center at the mean radius of Mars, while the edges of the disk 

were located significantly above the surface. Rather than using the actual height of a data 

point from the horizontal plane of the rectangular coordinate system for the z coordinate, 

the authors used the distance between the data point and the mean spherical surface of the 
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planet directly beneath the point. Because of the curvature of the satellite orbits, the z 

coordinates of the data points in the rectangular coordinate system decrease rapidly as the 

horizontal distance from the center of the disk increases. However, the distances between 

the data points and the mean spherical surface change very slowly. Their model 

calculation was, therefore, made at a higher altitude than the actual data point, and 

resulted in a higher magnetization for the model. The error introduced due to this mixing 

may result in an overestimate of the magnetization intensity by up to 10%. 

3.6.3 Modeling 

A given magnetic anomaly is modeled by a vertical prism of an elliptical cross section. 

The top of the prism is tangent to the local surface of the elliptical Mars and the prism is 

10 km thick. The magnetic anomaly of a uniformly magnetized prism depends on the 

vertical integration of its magnetization. Increasing the thickness of the prism results in 

the decrease of the intensity of its magnetization, and vice versa, without affecting the 

magnetization direction. Adopting an elliptical prism, rather than circular, provides an 

opportunity to change the aspect ratio (major/minor axes) as well as the orientation of the 

body and thus enhance the goodness of fit between the observed and calculated 

anomalies. We use forward modeling in space domain. The magnetization of a given 

prism is determined by least square fitting of the magnetic field of the body to the 

observed data (here by observed data we mean the binned data). Let Bi
x, Biy and Biz 

denote the x (east), y (north), and z (upward) components of the observed magnetic field 

at xi, yi, and Zi coordinates, and Fix, Fiy and Fiz be the corresponding components of the 

magnetic field of a model prism. The least squared misfit E is defined by 

where summation is over aIl data points. The semi-major axis of the prism is increased 

from 100 km to a maximum of 500 km with 20 km intervals. For a given semi-major 
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axis, the semi-minor axis is increased from 1/2 the semi-major axis to the semi-major axis 

with the same intervals, and the angle of the major axis with respect to the x axis of the 

coordinate system, a, increased from 0 to 180 degrees at 10 degree intervals. The center 

of the prism is initially decided upon visual inspection of aIl three high-altitude magnetic 

components. To avoid the adverse effects of possible initial misplacement of the center, 

we move the center within a square grid of 160X160 km at 30 km intervals, or within an 

area large enough to ensure that the absolute minimum misfit occurs somewhere inside 

the area and not at the borders. In the 4-D model parameter space, consisting of the 

semi-major axis, the semi-minor axis, the prism orientation angle a, and the location of 

the center of prism, the parameter values resulting in the absolute minimum misfit defme 

the fmal successful model. 

Figure 3.3 shows the elevation of the data points within a circle of 360 km radius 

centered on anomaly 5. The data inside this area are used to calculate the source model 

of the anomaly. The MGS altitude gently increases toward the north, with a maximum 

altitude variation of about 14 km, which is about 28 times smaller than the mean altitude 

of the satellite. For a given semi-major axis we vary other parameters, semi-minor axis, 

the angle a and the location of the center of the prism. Figure 3.4 shows the misfit 

values, normalized to the absolute minimum misfit value, versus the semi-major axis of 

the source model of anomaly 5. From over 19,000 models examined we only show the 

descending minimum misfit values. For example for the semi-major axis of 100 km the 

first normalized minimum misfit value is 14.8, the second descending minimum is 14.4, 

the third is 14, and so on. The minimum misfit value decreases with the increase of the 

semi-major axis and reaches an absolute minimum, which defines the final successful 

source model of the anomaly. However, the descending-minimum value versus semi­

major axis curve is broad, implying that the magnetization of the successful model is not 

tightly constraint. Figure 3.5 shows the three components of the observed high-altitude 

data, and those of the final model at 400 km, and figure 3.6 displays the observed low­

altitude and model vector components along an orbit track that passes almost over the 
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center of the anomaly. The figures illustrate the goodness of fit of the model to the 

observation. 

We determine the paleomagnetic pole position from the magnetization vector of a source 

body that is assumed to be magnetized by a dipole core field. Figure 3.7 shows the pole 

positions for all models of anomaly 5 with misfit values within 1.5 times the absolute 

misfit value. The slow convergence of the pole locations reflects the scale of uncertainty 

of the final pole position. The slow convergence is a direct consequence of the broad 

absolute minimum shown in Figure 3.4. 
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Table 3.1 

Major characteristics of small isolated anomalies and their soUrce bodies. Lat and Lon 

denote latitude and east longitude of the center of the model prisms. a and b are the semi­

major and semi-minor axis of the model prism, in km. The prisms are 10 km thick. ais 

the angle between the semi-major axis of the prism and the x axis (East) measured 

clockwise, in degrees. X, Y, and Z are the east, north, and upward components of the 

magnetization vector of the prism, in Nm. Reference, (1) is this paper, (2) is Arkani­

Hamed [2001a], and (3) is Richmond and Hood [2003]. Paleopoles show the south pole. 
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Anomaly Model Prism Magnetization Paleopole Ref 

Lat Lon a b a X y Z Lat Lon 

1 -6 66 280 140 160 0.47 1.33 13.15 16 241 1 

1 -5 66 315 165 160 -1.00 2.05 12.57 23 255 2 

2 -16 70 160 80 160 1.75 5.27 -25.78 7 76 1 

2 -15 69 225 165 160 0.23 0.23 -10.95 -12 72 2 

3 -28 105 240 120 40 -7.33 7.78 -10.4 20 60 1 

3 -27 103 300 225 90 -2.31 1.65 -9.49 -7 78 2 

4 -7 216 300 150 0 8.41 -12.45 11.42 -46 346 1 

4 -5 214 315 195 0 -0.82 -5.77 13.45 -35 40 2 

4 4 215 290 290 -66 47 3 

5 -2 323 260 156 50 -9.13 13.18 -9.45 51 260 1 

5 -1 322 330 180 40 2.10 -1.34 -11.68 -13 341 2 

6 0 344 280 140 40 8.28 -4.44 12.10 -24 110 1 

6 2 344 255 180 30 -0.41 0.57 10.78 4 168 2 

6 0 341 180 180 70 79 3 

7 -45 225 220 110 130 -25.54 -26.10 -21.08 -42 111 1 

8 -27 255 260 130 0 15.56 3.50 7.56 17 351 1 

9 -33 295 180 108 70 -21.67 -1.80 -18.77 8 182 1 

Table 3.1 



Figure 3.1 

The locations of the magnetic anomalies and their respective paleomagnetic pole 

positions. a) is the radial component of the high-altitude magnetic data at ~390 km 

elevation. Note that the color is saturated to better delineate the isolated small anomalies , 
considered in this paper. The small anomalies considered in this paper are shown in this 

figure. b) displays the locations of the paleomagnetic poles. The red circles denote 

north poles, blue circles denote south poles. The horizontal axes are east longitude and 

the vertical axes are latitude. 
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Figure 3.2 

The magnetization vectors of three original elliptical prisms and their equivalent circular 

models. The elliptical prisms are horizontally magnetized along the semi-major axis, x, 

the semi-minor axis, y, and 45 degree from the semi-major axis. The solid lines are the 

directions of the magnetization of the elliptical prisms, and the dashed lines are those of 

the equivalent circular models. 150 km and 400 km denote the altitude used for the 

calculations. 
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Figure 3.3 

The altitude of Mars Global Surveyor over anomaly 5. 
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Figure 3.4 

The normalized descending minimum misfit value E versus the semi-major axis of the 

source body of anomaly 5. It is normalized to the absolute minimum misfit value. 
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Figure 3.5 

The observed high-altitude magnetic data over anomaly 5 (right column) and the model 

magnetic field (left column) at 400 km elevation. X, Y, Z are the magnetic vector 

components in the east, north and upward directions, respectively. Only data inside the 

circular filter shown in the maps are modeled. 
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Figure 3.6 

The observed low-altitude magnetic data and the model magnetic field along an orbit 

track passing almost over the center of anomaly 5. The horizontal axes are the distance 

along the track line. 
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Figure 3.7 

The paleomagnetic pole positions detennined from aH models of anomaly 5 with misfit 

values within 1.5 times the absolute minimum misfit value. The numbers denote the 

misfit values nonnalized to the absolute minimum misfit value. 
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Chapter 4: High altitude data modeling 

4.1 Introduction 

ln this second modeling effort 1 modeled nine isolated magnetic anomalies by using the 

high altitude data acquired by Mars Global Surveyor (MGS) during the mapping phase 

portion of the mission between March 1999 and April 2003. From this huge data set 1 

extracted nighttime data to minimize extemal field contamination and separate the data 

into two sets of equal size, the first one incorporating data from March 1999 to February 

2001 and the second one contain data from March 2001 to April 2003. 1 calculated the 

paleomagnetic pole position by assuming that an. ancient dipolar core field magnetized 

the source. For each anomaly 1 modeled separately the 3 components of the observed 

magnetic field. 1 also modeled the radial component of the low altitude data for 

comparison purposes. 

The results support the notion of magnetic pole reversal on Mars. Aiso most poles are 

concentrated in the Tharsis region supporting polar motion of 40 deg or more. The issue 

of data quality is also addressed in this study. The extemal contamination is removed in 

the Fourier domain and the effect of contamination by nearby sources is also discussed. 

The discovery of important crustal magnetic anomalies by Mars Global Surveyor (MGS) 

has provided us with a unique opportunity to use those anomalies to study possible polar 

wandering on Mars. The lack of a global magnetic field, also established by MGS 

[Purucker et al., 2000], gives us a much direct access to the crustal field. 

The goal of this chapter is to show that polar motion on Mars is possible based on 

modeling magnetic anomalies and to make a global appreciation of the quality of the 

available data. This last point is especially important because in this study, as in all other 

studies using MGS data, how contamination is handled will have a profound influence on 

the final results. The method is discussed and the results presented. 1 show the result for 
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two well-isolated anomalies and two badly isolated anomalies. 1 will conclude by a 

general discussion of the results. The quality of the data is also address and we show how 

contamination by nearby sources can affect the calculated pole position. 

4.2 Method 

ln this study 1 have used all the nighttime high altitude data acquired between March 

1999 and April 2003. From this huge data set 1 extracted night side data for a total of 

28,800,000 measurements. The low altitude data were not directly included because they 

are dayside data and are most probably contaminated by external sources. In the high 

altitude data 1 have used aIl 3 components separately in the modeling. Extensive testing 

of the space domain algorithm used in this study has shown that it can find the correct 

pole positions by using only one component of the observed magnetic field. See table 4.1 

for sorne of the results of this testing. 

The high altitude data set is separated in almost two equal parts. The first one (HA 1 ) 

contains nighttime data acquired from March 1999 to February 2001 and the second part 

(HA2) contains data from March 2001 to April 2003. Technically those 2 data sets should 

be perfectly identical but because of time dependant external contributions and noise they 

are not. Comparing the two sets in the Fourier domain and removing any frequencies that 

do not correlate with at least a factor of 0.8 gives an opportunity to quantify and remove 

external field contamination. Both HAl and HA2 are binned on a 0.5 by 0.5 deg grid and 

the mean value of the grid is determined after removing outlier points that are more than 

two standard deviations from the mean. Removing' the outliers is the first step in 

removing external contamination. For each of the nine anomalies 1 extract data from both 

HAl and HA2. 1 then compare the two anomaly sets obtained in the Fourier domain and 

remove all the frequencies that do not show a high degree of correlation. Going back to 

the space domain gives two more anomaly data sets. They are the smoothed sets where 

external contamination have been minimize but certainly not totally removed. 
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Now for each component of the magnetic field 4 models are obtained, 2 from the original 

anomaly sets and 2 more from the smoothed anomaly data sets. This result in 12 

paleomagnetic pole positions. For comparison purposes 1 have also modeled the radial 

component of the low altitude data. In this case the data is binned in the same way as 

before and the outliers removed. However Fourier domain smoothing is not performed 

due to the lack of sufficient coverage. AlI 13 poles obtained should coincide perfectly if 

the anomalies were perfectly isolated and the data completely clean. 

The actual modeling is performed by least square fitling the data with the magnetic field 

generated by a model elliptical prism. The basic modeling method is the same that was 

used in chapter 3. Before modeling, the data is transferred from a global spherical 

coordinate reference frame with the origin at the center of mass of the planet to a local 

Cartesian frame with the origin at the position of the anomaly on the surface. The model 

prism' stop is place at the surface of the elliptical Mars and has a thickness of 10 km. The 

actual value of the prism thickness will not have any influence on the pole position found 

even though it certainly influence the intensity of the magnetization. Not placing the top 

of the prism at the surface would not change the result for the pole position either. It has 

been argued that the Martian surface and the first few kilometers of the crust might not he 

magnetic since there is no apparent correlation between magnetic anomalies and 

topography [Arkani-Hamed, 2002; Nimmo and Gilmore, 2001]. 

The position, shape and size of the model prism are changed and a new model evaluated. 

At that phase the data is circularly filtered to further minimize contribution form other 

nearby sources. Only the data inside the filter is actually used in the modeling. The model 

field is then compared to the observed field and the misfit calculated. The model with the 

smallest misfit is retained. The prism is moved inside a 320 km by 320 km square at 40 

km intervals. The semi-major axis of the ellipse is changed from 100 to 500 km at 20 km 

intervals. The semi-minor axis is changed from half the semi-major axis to the semi­

major-axis at 10% increment intervals. Finally the prism is rotated from 0 to 180 degree 

at 10 degree intervals. 
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4.3 Quality of the models 

Evaluating the quality of a model, that is how good is the fit between the model field 

obtained with the best-fit prism and the data actually modeled is subjective. The least 

square fitting parameter value is also dependent on the number of data points. In this 

study 1 define a number called the quality index QI. 

where Bdata is the component (X, Y or Z) of the data and Brnod the same component of the 

best-fit model for the same data point. In theory a model that fits the data perfectly would 

have a QI factor equal to infinity. In practice however there is no need to go this high to 

get a very good model. This study has shown that models with QI lower than 25 are 

questionable. Models with 25 ~ Q ~ 50 are usually acceptable while QI over 50 gives 

good models. QI over 100 represent very good models that fit the data very weIl. Models 

with QI over 100 can be used with confidence to find the pole positions. Not surprisingly 

models estimated with the low pass filtered data shows the highest values for QI. This 

observation helps in validating the correctness of the procedure used to low pass filter the 

data. This value is interesting in many respects. It gives an immediate appreciation of the 

quality of the fit between model and data and permits a selection of the models for pole 

positions evaluation based on less subjective criteria. This value is also independent of 

the number of data points that the model is trying to fit. A low value of QI for the filtered 

data is indicative of a non-isolated and/or very contaminated anomaly. Also how that 

number changes between the unsmoothed and smoothed data models gives an indication 

on how efficient the smoothing has been and gives us an idea of the contamination in the 

original unsmoothed data. Two examples of anomalies 1 consider well isolated and two 

anomalies that are not weIl isolated are presented. 
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4.4 Validating the method 

The space domain algorithm calculates the magnetic field of the model prism by first 

calculating the magnetic field of a pnsm of infinite depth with it' stop at the top of the 

actual prism and then repeat the calculation for an infinite prism with negative 

susceptibility and top at the bottom of the actual prism. The results of this program are 

checked with another pro gram that calculates the magnetic field by using the Talwani 

algorithm [Talwani, 1965]. a very different algorithm than the one described above. My 

supervisor Arkani-Hamed wrote the original modeling pro gram and 1 tested it myself . 1 

wrote the second program based on the Talwani method. The two programs do not share 

a single line of code. However, for all practical purposes they give identical results. See 

appendix E for more details on the calculation of magnetic fields. 

Before actually modeling the data it is important to make sure that modeling each 

component separately will give the same pole position. For this purpose 1 generated all 

three components of a magnetic field produced by an elliptical prism. The prism is 

located at position 0,0 in the local Cartesian frame (X east, Y north and Z perpendicular 

to the surface). The semi-major axis is 320 km, semi-minor axis is 210 km orientation of 

the prism is 20 deg counterclockwise from the X axis. The prism is placed at latitude 0 

deg and longitude 180 deg on a sphere. The thickness of the prism is 10 km. The 

magnetic field was calculated at 400 km altitude with the Talwani method. The three 

components of the magnetization are changed to make the test as general as possible. 

Eight models are presented in table 4.1. AlI models uses the same prism but with a 

different magnetization; The results indicate that the algorithm functions correctly. The 

method used to find the paleomagnetic pole position from the magnetization components 

is described in detail in chapter 7 of Butler [1992]. 

4.5 Results and analysis 

ln this section 1 present 2 anomalies that 1 consider well isolated and 2 others that do not 

behave as well. 1 will also discuss the general quality of the data and pole distribution for 

107 



all 9 anomalies. Figure 4.1 identify the position of aIl the modeled anomalies on a 

topographie map of Mars overlaid by the radial component of the observed magnetic field 

at 400 km altitude. From now on the letter A followed by number 1 to 9 as represented on 

figure 4.1 will identify the anomalies. Anomalies A4 and AS seems to he weIl isolated 

while anomalies A6 and A7 have very busy neighborhoods, especially A7 with it's 

location near the most intense magnetic part of Mars in the southern hemisphere. 

Appendix C shows that it is quite possible that thls anomaly may not even have been 

produced by an independent source body. It is more likely the result of the vector sum of 

the magnetic fields produced by many other source bodies in the neighborhood. 

4.5.1 A4 and A5: two weil isolated anomalies 

1 now present the modeling results for anomaly A4 and AS, which show a good fit 

between model and data. The results for the 13 models obtained for each anomaly is 

presented in table 4.2. 

One can immediately see the effect of external contamination on the data by looking at 

the big difference between the Qi factors of the smoothed and unsmoothed data. The big 

improvement in the Qi factor indicates that a lot of exterior contamination has been 

removed by the filtering process. Figure 4.2 present graphically the results given in table 

4.2 for AS. The AS figure shows that the poles obtained form the radial and theta 

component of the data are weIl clustered but the poles obtained with the phi component 

are not, indicating that external contamination is more prevalent in the phi component. 

The radial and theta poles do not however coincide which mean that the anomaly is not 

totally isolated. Another observation is the very low quality factor of the low altitude data 

model, which is probably due to a very uneven coverage at lower altitude and the fact that 

low altitude data is day side data. The AS anomaly is as close as we can hope of being 

well isolated. Figure 4.3 present maps of models versus data for the radial component 

models of anomal y AS which shows a very good fit. Scatter diagrams of the models and 

data are presented in figure 4.4. The shape and intensity of the anomaly is weIl 

represented by the model. As expected the smoothed data shows a very good 
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correspondence between data and model. This also clearly illustrated in the scatter 

diagrams of figure 4.4. 

4.5.2 A6 and A 7, two badly isolated anomalies 

Anomalies A6 and A 7 are not weIl isolated and this shows in the low quality factor 

values and generally not so good fit between data and model. Table 4.2 present the 13 

pole positions for each anomaly. In general the models presented here have low Qi values 

and show only small improvements after filtering, indicating either that the external 

contamination was low to start with or that contamination was small compared to the 

effects of nearby sources. Filtering in the Fourier domain does not remove the 

contamination due to nearby sources but only attenuate time varying external 

contamination. 1 feel that these anomalies are simply not well isolated and in the end 

these results show that the method works correctly. Figure 4.5 presents graphically the 

results of table 4.2 for anomaly A 7. Figure 4.6 presents a comparison between data and 

model for the radial component of the A7 anomaly. The anomaly is very twisted by 

nearby sources and it would take a prism with a much more complex shape than an 

elliptical prism to model it adequately. Figure 4.6 shows the scatter diagrams of the data 

and models presented in figure 4.5. It shows that the negative values which represent the 

major part of the anomaly, are not modeled correctly while the positive values are better 

represented by the model. See appendix C for more comments on anomaly isolation. 

4.6 Global analysis 

Figure 4.7 presents all of the poles obtained by modeling the high altitude radial 

component of the data. 1 choose to show the radial components poles because 1 feel that 

this component has the least external contamination. One can see that in most cases, for a 

given anomaly, the poles are clustering. This indicate that the exterior contamination was 

low for those anomalies. However sorne anomalies still show sorne differences between 

the poles of the smoothed and unsmoothed data sets. This shows that external 

contamination is still present in the data but that most of it has been removed by the 
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filtering process. This remammg external contamination could possibly have been 

eliminated by a more optimal choice of the uncorrelated frequencies that were removed 

by the filtering process. On a more global scale one can see that most of the poles are 

clustering in the Tharsis region. The clustering is not as tight as the one proposed by 

Arkani-Hamed [2001b] but this result and the one proposed by Arkani-Hamed [2001b] 

argues in favor of a rotational pole in this region. Results by Melosh [1980] and Hood 

and Zacharian [2001] generally agree with this affirmation. This would indicate that 

Tharsis originated much higher in the northem hemisphere, perhaps as much as 40 to 50 

degrees. This conclusion however does not tell us if Tharsis itself, the volcanoes on it or 

a combination of both, is responsible for the inferred polar motion. However, as has been 

pointed out by many investigators Tharsis is more likely not fully compensated and 

Tharsis as a whole remain the prime suspect for the cause of polar motion on Mars. 

It is important to note that contamination by nearby sources is not removed by the 

filtering process and is still present in the map of figure 4.8. Removing nearby 

contamination would conceivably improve the clustering shown in the figure. As pointed 

out earlier this is a very difficult task as this kind of problem is very non unique. As long 

as there is no supplementary data that would help us to put constraint on the shape, size 

and magnetization of a given anomaly the pole positions calculated, by whatever method, 

can only be considered preliminary. Unfortunately such new information is unlikely to 

come in the near future. To illustrate this important problem and try to better constraint 

what is an isolated anomaly in practice, consider the following problem. 1 have 

calculated, at many different altitudes, the radial component of the combined magnetic 

field of two elliptical prisms. The two prisms used are the model prisms obtained by 

Arkani-Hamed [2001b] for ifs M4 and M5 anomalies. The M4 anomaly is located at lat 

=-5 and long =66 and M5 is located at lat = -15, long = 69. The two prisms parameters 

are given in table 4.3. The orientation of the prisms is measured counterclockwise from 

an horizontal axis in the eastward direction. 

Figure 4.8 illustrate the combined field at 100, 200, 400 and 600 km altitude. For each 

map the scale chosen is such that it represent exactly the total data range from the 
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minimum to the maximum of each map. The models obtained by modeling each the 

positive lobe of each data sets are presented in table 4.4 • The paleopole obtained change 

with altitude, clearly indicating that the two bodies contaminate each other. Arkani­

Hamed [2001b] obtained a pole position at (23, 255) deg. If the source was not 

contaminated we would obtain the same pole position whatever the altitude as long as we 

are operating within reasonable limits. For this particular example the reason for the 

changing paleopoles can be seen in figure 4.8. As we go higher and higher one can 

clearly see the elliptical lobes of each anomaly rotate in the counterclockwise direction. 

This new orientation differ considerably from the original orientation of the prisms. 

Therefore the actual source prisms would not be correctly identified by the modeling. 

This simple example easily shows that the low altitude data has more weight in the final 

result of the modeling of the data. However, in practice, one should not use 

simultaneously the low and high altitude data in a model because they are affected 

differently by nearby sources contamination. Combining both data sets will give an 

erroneous answer. Critical steps must be taken to remove external field contamination as 

weIl as to minimize contribution by nearby sources. 1 have done so in this study by 

removing external contamination in the Fourier domain and using a circular filter in the 

space domain to minimize contamination by nearby sources. Modeling the data as is will 

introduce appreciable errors. In the case of the M4 and M5 anomalies one must also not 

discount the possibility that the two lobes actually cornes from only one source since the 

lobes are similar in shape, size and orientation. This view has been criticized by Arkani­

Hamed [Personal communication] who argue that such a unique source would be too big 

to have been uniformly magnetized by the ancient core field. However there is no known 

size limit for uniformly magnetized body. The one source argument is also not supported 

by Langlais et al. [2003] (see their figure 6, radial component) who se surface 

magnetization map clearly shows two source bodies in that region. 

Based on the modeling results 1 would suggest that an anomal y would be sufficiently 

isolated if it gives the same paleopole when modeled independently with low and high 

altitude data. As mentioned earlier modeling different components of the observed 
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magnetic field should yield the same paleopole position if the anomaly is isolated. The 

closest that 1 came to this ideal situation is for anomaly A5 which show a very good 

isolation. The paleopole obtained for the different high altitude components are 

reasonably close. Moreover the paleopole obtained generally agrees with the one 

obtained by Arkani-Hamed and Boutin [2004] who used both the low and high altitude 

data sets. For A5 1 obtained a pole position at latitude 50° and longitude 269°, supporting 

polar motion of at least 40 deg. Although sorne of the poles obtained in this study can be 

different than the one obtained by other investigators, they still show clustering around 

Tharsis. Arkani-Hamed [200Ib] ,by using a spherical harmonies model generated from 

low altitude data alone, has shown that poles cluster in that region. Considering that 

clustering was obtained separately for both low and high altitude data one can have more 

confidence in that result. If verified in the future, clustering of the poles would indicate a 

lack of major plate tectonic events on Mars. This support the arguments that Mars is, and 

probably always has been, a one plate planet. The results also make a case for magnetic 

field reversai on Mars as the cluster over Tharsis has both south and north poles. Figure 

4.7 presents the pole positions obtained with the radial components models for each 

anomaly. Poles for anomalies Al, A5 and A9 are south magnetic poles. The other 

anomalies are represented by their north magnetic poles. 

This study has also demonstrated that the use of elliptical prisms is betler than circular 

one. One must also move the prism to find the best possible model. See figure 4.9 for a 

comparison of the results obtained for different prisms with the data from the A5 

anomaly. 

4.7 Conclusion 

1 have calculated the paleopole positions of 9 magnetic anomalies by modeling in the 

space domain the 3 components of the night side observed magnetic field measured by 

MGS. For each component 1 have calculated the poles for smoothed and unsmoothed data 

sets. This gave me the opportunity to evaluate the external filed contamination of the 
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data. The results show that for most anomalies contamination is low, since for a given 

component the poles of most anomalies cluster. 

However, the filtering process used for removing external field contamination did not 

remove contamination by nearby sources. Most anomalies show different pole positions 

for different components of the data. Since external filed contamination has heen mosdy 

removed that difference must he largely related to nearby sources. Using an isolated 

anomaly is essential if the paleopole positions calculated are to mean anything. Assuming 

that the axis of rotation was truly aligned with the dipole axis of the ancient global field 

during Martian history then only one good anomaly is, in theory, sufficient to make a 

case for polar motion on Mars. In this study, anomaly A5 cornes very close to the kind of 

anomaly we need. Most of the 13 poles calculated for this anomaly cornes very close to 

each other indicating that the anomaly is weIl isolated. Although it is possible to make a 

case for polar motion on Mars based on other anomalies the A5 anomaly suggests polar 

motion of up to 40 deg. Global clustering of the poles is also supported by this study. 

Although clustering is not as good as previously reported in other studies, 1 feel that the 

results still support it. Pole reversal is also supported by the results. Better resolution 

measurements and better techniques to remove nearby contamination would go a long 

way to solve this issue. A practical and usable way to express how weIl an anomaly is 

isolated would also help a lot. An "isolation factor", similar to the quality index used to 

asses the quality of a model is, 1 feel, urgendy needed. 

The paleopole positions indicate the lack of plate tectonics on Mars or at the very least 

that plate tectonics has not been a major contributor to Martian geophysical history. The 

lack of plate tectonic is indicative of a Martian interior that did not generate enough heat 

to drive convection in the mande at a high enough rate to brake the one plate and produce 

tectonic as we know it here on Earth. If the heat production was high then the Martian 

interior must have evacuated it very quickly leading to a quick shutdown of convection in 

the mande and of the global magnetic core field. This interpretation is consistent with 

most thermal evolution models which predict that most important events on Mars 

happened very quickly, probably within the fist 500 My. 
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Table 4.1 

Test results of the space domain algorithm. The prism used for this test is described in the 

text. The magnetization is varied in the 8 quadrants. The magnetization values (in A/m) 

are indicated above the results of each test. Results in parenthesis are the expected 

latitude and longitude of the magnetic south poles. The very small differences between 

estimated and expected values is consistent with numerical approximations. 
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Component Pole latitude Pole longitude Pole latitude Pole longitude 

Jx = 4 , Jy = 9 , Jz = 5 Jx = 4 , Jy = 9 , Jz = -5 

X 62.32 (62.34) 302.01 (302.00) 62.32 (62.34) 237.98 (237.99) 

Y 62.45 (62.34) 302.17 (302.00) 62.45 (62.34) 237.82 (237.99) 

Z 62.38 (62.34) 302.00 (302.00) 62.38 (62.34) 237.91 (237.99) 

Jx = 4 , Jy = -9 , Jz = 5 Jx = 4 , Jy = -9 , Jz = -5 

X -62.33 (-62.34) 301.97 (302.00) -62.33 (-62.34) 238.02 (237.99) 

Y -62.30 (-62.34) 301.93 (302.00) -62.30 (-62.34) 238.06 (237.99) 

Z -62.35 (-62.34) 302.00 (302.00) -62.35 (-62.34) 237.99 (237.99) 

Jx = -4 , Jy = -9 , Jz = 5 Jx = -4 , Jy = -9 , Jz = -5 

X -62.32 (-62.34) 57.98 (57.99) -62.32 (-62.34) 122.01 (122.00) 

Y -62.45 (-62.34) 57.82 (57.99) -62.45 (-62.34) 122.17 (122.00) 

Z -62.38 (-62.34) 57.91 (57.99) -62.38 (-62.34) 122.00 (122.00) 

Jx = -4 , Jy = 9 , Jz = 5 Jx = -4 , Jy = 9 , Jz = -5 

X 62.33 (62.34) 58.02 (57.99) 62.33 (62.34) 121.97 (122.00) 

Y 62.30 (62.34) 58.06 (57.99) 62.30 (62.34) 121.93 (122.00) 

Z 62.35 (62.34) 57.99 (57.99) 62.35 (62.34) 122.00 (122.00) 

Table 4.1 



Table 4.2 

13 paleopoles obtained for anomalies A4 to A7. The latitude, longitude and Qi factor of 

model are presented. For each component the models are from left to right: HAl, HA2, 

HAl smooth and HA2 smooth. The last column is the low altitude data radial model. 

115 



A4 Radial Phi Theta LA 

Lat -26 -26 -26 -26 25 38 30 31 -38 -39 -39 -38 -34 

Long 77 74 76 75 75 54 75 73 52 343 53 343 84 

Qi 59 41 110 89 76 37 311 185 51 32 67 55 13 

A5 Radial Phi Theta LA 

Lat 52 50 52 50 31 18 30 51 68 67 68 68 0 

Long 269 267 268 267 269 269 269 278 287 285 288 291 254 

Qi 94 70 315 343 106 55 337 550 81 51 235 232 7 

A6 Radial Phi Theta LA 

Lat -24 -22 -24 -26 2 -12 -5 3 58 56 67 49 -62 

Long 90 91 90 97 73 73 56 53 232 232 243 238 97 

Qi 12 13 14 17 17 20 44 49 17 18 45 28 12 

A7 Radial Phi Theta LA 

Lat -19 -19 -19 -19 -13 -12 -13 -12 -29 -28 -35 -30 -7 

Long 122 123 123 122 125 125 125 126 320 320 320 315 307 

Qi 8 8 9 8 72 58 97 87 33 29 51 47 5 

Table 4.2 



Table 4.3 

Pararneters of the two test prisms. The prisms are the M4 and M5 model prisms of 

Arkani-Harned (2001b). 
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Anomaly M4 M5 

Latitude, Longitude (deg) -5,66 -15,69 

Semi-major axis (km) 320 220 

Semi-minor axis (km) 160 160 

Inclination (deg) 160 160 

Magnetization (Mx, My, Mz) (A/m) -1.00,2.05, 12.57 0.23 , 0.23 , -10.95 

Pole latitude and longitude (deg) 23,255 -12, 72 

Table 4.3 



Table 4.4 

Paleomagnetic pole positions obtained by modeling the two test prisms of table 3 at 

different altitudes. 
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Altitude 100 200 400 600 

Semi-major axis (km) 320 340 320 260 

Semi-minor axis (km) 160 170 160 130 

Inclination (deg) 160 160 160 160 

Magnetization (Jx,Jy,Jz) -0.84,1.75, -3.9,5.3, -4.0, 12.6, -5.6,21.3, 

(a/m) 12.79 11.6 10.1 11.9 

Pole latitude and longitude 20,253 41 ,282 66,291 72,300 

(deg) 

Table 4.4 



Figure 4.1 

Position of the magnetic anomalies on the surface of Mars. Anomalies A4 and A5 are 

considered well isolated on the basis of the modeling results. Anomaly A6 and A 7 with 

there low Qi factor are considered less well isolated. 
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Figure 4.2 

The 13 pole positions of table 4.2 for anomal y AS and A6. First panel represent AS 

models. In each panel squares represent phi models, Triangles represent theta models. 

Cirele is the low altitude data model. The star symbols represent the position of the 

anomaly. The squares with thick borders represent the radial models. This information is 

also available in table 4.2. 
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Figure 4.3 

Comparison between data and model for the Z models of the A5 anomaly. Only the data 

actually used for modeling is represented. 
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Figure 4.4 

Scatter diagrams of the data and models presented in figure 4.3. The black line has a 

slope of 1 and Y intercept 0 and represent a perfect model. Data is on the horizontal axis 

and model on the vertical axis. 
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Figure 4.5 

Comparison between data and mode! for the Z models of the A7 anomaly. As in figure 

4.3 only the data actually used for modeling is represented. 
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Figure 4.6 

Scatter diagrams for the Z models of the A 7 anomaly 
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Figure 4.7 

Pole positions obtained by using aU the high altitude radial models obtained in this study. 

Anomalies Al, AS and A9 are represented by their south magnetic poles. The other 

anomalies are represented by their north magnetic poles. 
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Figure 4.8 

Combined radial component magnetic field of the two test prisms of table 4.3. The scale 

is chosen such as to represent minimum to maximum of each map. 

125 



100 km 200 km 

1200 1200 

720 720 

210 
, 

210 -
-240 - -240 • -720 -720 

.-1200 -1200 
-1200 -720 -210 240 720 1200 -1200 -720 -210 210 720 1200 

400 km 600 km 
1200 1200 

720 720 

2iO • "- " 210 
. ., . 

-240 -240 

-720 -720 

-1200 -1200 
-1200 -720 -210 240 720 1200 -1200 -720 -2iO 2'i0 720 1200 

Figure 4.8 



Figure 4.9 

The 12 high altitude A5 pole positions obtained by using different prisms. In each panel 

squares represent phi models, Triangles represent theta models. Cirele is the low altitude 

data model. Open symbols represent poles obtained by using a fix circular prism. Two 

colors symbols represent poles obtained by using a moving circular prism in the same 

way the elliptical prism used in this study was moved. Poles obtained by the fix circular 

prisms are much different than the rest. 
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Chapter 5 : Conclusion and future research 

5.1 Conclusion 

This thesis has presented the theory of rotational dynamics of non-rigid planets and the result of 

modeling the observed magnetic field of Mars discovered during the current MGS mission. 1 

have examined the quasi-fluid long-term estimation of polar motion for non-rigid planets based 

on the theory described by Ricard et al. [1993] and Spada et al. [1996]. The ultimate goal was 

to make a case for polar wandering on Mars based on the result of this modeling. In chapter 3 and 

4 two different ways ofmodeling the MGS magnetic data were presented to infer the ancient core 

field dipole axis orientation and consequently the ancient rotation axis orientation. 

The theory of long-term polar motion is described in chapter 1. It is a very complex subject that 

begs for a simplified approach. 1 found that the formulation of the theory exposed in Ricard et al. 

[1993], which seems to be the basis for the formulation of the rotational number of Spada et al. 

[1996], although technically correct is simply not necessary for a better comprehension of the use 

of the rotational number. 1 have shown in appendix B that the same result can be obtained from 

the linear polar motion equation in the Laplace domain. One positive point about this matrix 

formulation is that it is easier to implement in a computer program. 

The rotational number itself is obtained only after an enormous simplification of the actual 

problem and can not be actually calculated because it depend so heaviIy on poorly known internaI 

structure parameters. As with so many other things in geophysics, it is heavily model dependant. 

For example the estimation of the readjustment time of the equatorial bulge (TJ), a key parameter 

in the calculation of the rotational number, depend on the stratification model used and the 

various values of the Love numbers. However, having such a complex phenomenon, related to 

only one number is a critical step in the right direction, even though the estimation of that number 

is difficult. One must also remember that equations obtained in section 1.7 gives us only the 

starting point of the polar motion path. One must solved the full set of Euler-Liouville equation 
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with the full expression of the inertia tensor to get the complete polar motion path. One of the 

drawbacks of the derivation in appendix B, although simpler than the Ricard formulation to 

obtain the equations of section 1.7, is that we cannot solve for the full polar motion path. 

This exploration of rotational dynamics makes it very likely that Mars experienced sorne polar 

wandering episode throughout its history. The presence of such important surface loads such as 

Tharsis and Mount Olympus and the Tharsis mountains indicates that early in history Mars was 

very geologically active. Sorne of these loads are still not compensated and must still contribute 

to this day to polar wandering on Mars. 

That impression is still true after looking at the result of the magnetic anomalies modeling. If one 

looks at the modeling result on an anomaly per anomaly basis he will notice that the 

paleomagnetic pole positions obtained in the modeling of chapter 3 are different than those 

obtained in chapter 4. Most anomalies, indeed give different pole positions. This is unfortunate, 

but can he explained rather easily. First and foremost, two different methods were used. If our 

anomalies were clean and perfectly isolated this would not matter much, but this is not the case. 

In the case of chapter 3 both the low and high altitude data were used. The low altitude coverage 

is very scarce. Only a few tracks were used over each anomaly. AlI three components of the 

magnetic field were used. In the case of the study in chapter 4 only high altitude data were used. 

High altitude coverage is good but has poor resolution. Since outside and nearby sources affect 

anomalies in different and basically unpredictable ways it is next to impossible, as explained in 

chapter 2, to completely remove this contamination. Low and high altitude data is influenced in a 

different way. If the anomaly is not perfectly isolated, modeling each data set independently or 

combining them will result in different pole positions. Many investigators using different 

methods have obtained different results. 

Given this, it is difficult to have complete confidence in any pole position for a given anomaly. 

The pole positions obtained can only be considered as preliminary. However the two modeling 

efforts made in this study have yielded sorne general results that are consistent with results 

obtained in other studies. First, absolutely none of pole positions found correspond with the 
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actual rotation axis of Mars. Assuming that our fundamental assumption is true then this is 

indicative that, indeed, Mars experienced sorne polar motion. This is truly consistent with other 

studies using different methods. However, to be on the pessimistic side of things, one cannot 

dismiss the possibility that the non-correlation between the actual rotation axis and the paleopole 

positions might be due to contamination. This issue must he resolved to have confidence in any 

result. Second, there seems to be a clustering of the poles in the Tharsis region. Although the 

clustering obtained in this study does not seem to be as tight as the one obtained in previous 

efforts it is still indicative of the role played by Tharsis in the polar motion history of Mars. Aiso 

found in this study, again consistent with other studies, is that poles of different signs are present 

in the cluster. This strongly argues for core field reversaI on Mars, in much the same way the core 

field of the Earth has reversed. 

In the ory one good anomaly is sufficient to make a case for polar motion on Mars. In my case 

that anomaly would be AS because it yield very close pole positions in the two studies. This, as 

mentioned earlier, is indicative of polar motion of at least 40 deg on Mars. Tharsis is probably 

responsible for that polar motion and the actual equatorial position of the structure does not seem 

to he a coincidence but rather the natural consequence of polar wandering. 

5.2 Suggestions for future research 

5.2.1 Rotational dynamics 

The theory exposed by Ricard et al. [1993], and Spada et al. [1996] c1early shows the 

importance of the internaI structure of rotating body in the amount and the type of polar motion 

that the body will experienced. The robustness of the interior structure models used in any 

estimation or prediction of polar motion is key to the confidence we can have in this estimation. 1 

have verified in this study that, at least on the level of mathematics, the concept of rotational 

number seems to be correct. However, the concept is verified for sorne very simple (in a relative 

sense!!) situations like placing a point mass at the surface of the planet. It would be interesting to 
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see if the predictions of the type of polar motion still hold true for a more complex load or one 

that, geologically speaking, changes quickly with time. 

The result obtained assumes that the load is very slow varying with respect to time and is small 

compare to the overall mass of the planet. While the latter point can be reasonably expected, the 

former is not as certain, especially in the case of Mars where things happened very quickly early 

in Martian history. T 0 have more confidence in the theory it should be applied in a more general 

and more realistic situation despite the heavy mathematical priee that would need to be paid to 

achieve a more general result. 

5.2.2 Magnetic anomalies modeling 

The results obtained in this thesis show clearly how any user of the MG8 magnetic data is at the 

mercy of outside and nearby sources contamination. In this thesis 1 have removed outside 

contamination by using a Fourier domain technique in which two maps taken at a different time 

are compared in the frequency domain and any frequencies that do not correlate weIl are 

removed. Assuming that non correlating frequencies have been affected by time varying outside 

sources, then this method should work. However one must understand that those frequencies have 

not been created by the outside source, they have been only affected. 80 removing them from the 

data also removes sorne of the crustal magnetic field signal contained in those frequencies. We 

need to do that because we just do not know the exact proportion of crustal and non crustal signal 

in the frequencies we remove. The safest route is thus to remove them entirely. 

It is really necessary to get a good idea of the portion of the crustal signal we remove by 

removing those non correlating frequencies. To do that it would be necessary to make a study of 

magnetic field versus time and try to identify trends if any. Such a study is possible with the 

actual high altitude data set, which spans many years of measurements. For example, one could 

divide the entire data set in 10 ,15 or more parts and do a correlation study between aU those 

maps. This would give a much better idea of the situation than separating in two huge parts as 1 

did in chapter 4. The goal of such a study would not be to get a general model of the 
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contamination, which would be very difficult at best, but to get a portrait of the external 

contamination just for the period during which data was obtained by MGS. 

The problem of nearby sources contamination is even more difficult and fundamental in the use 

of magnetic anomalies for determining ancient pole positions. As mentioned earlier, this problem 

is fundamentally non unique. It is probably hopeless to think that we will ever get a robust and 

absolute portrait of the magnetization of the Martian surface. A more practical approach has to be 

used and we have to work with magnetization models obtained by different authors. There is a 

need for a high resolution magnetization model. For example Langlais et al. [2003] have 

proposed a magnetization model of the surface based on inverse dipole source modeling. Philips 

[2003] has also proposed one based on the Helbig method. Arkani-Hamed [2002] has proposed a 

magnetization model based on a 50 degree and order spherical harmonies expansion of the 

magnetic potential. It is very important to test the robustness of the se magnetization models to 

identify which one fits the observed data best. This could be done simply by calculating the 

model field at a given altitude and compare with data. Or, maybe more interestingly, one could 

compare the caIculated field from the many available spherical harmonics model available to the 

one produced by a magnetization model. Spherical harmonics models do not say anything about 

the magnetization of the surface but they can help validate magnetization models. Once a good 

magnetization model is identified it is then possible to calculate and remove the field created by 

nearby sources over any given anomaly. Therefore, identifying (or creating) a robust, high 

resolution, magnetization model of the Martian surface seems to be an important and necessary 

step to have confidence in the pole positions obtained in any paleomagnetic study. Aiso the 

resolution of the magnetization model needs to be increased. The resolution of Lang/ais et al. 

[2003] model is 173 km. This is much too coarse to detail the shape and size of the anomalies. 

See appendix C for a numerical experiment using that model. 

There is aiso a strong need to constrain the depth and thickness of the source body. This has not 

been looked into during this study since paleomagnetic pole position is basically independent of 

those parameters . In particular the depth would constrains the magnetic layer thickness and give 

a crude evaluation of the temperature profile underneath the anomalies. If, for example, it was 
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demonstrated that the source bodies are close to the surface then the anomalies would most 

certainly be related to surface processes involving water. This could he the case for anomalies A5 

and A6, which sits right over regions where liquid water was present in a distant pasto The 

topography underneath those anomalies shows unmistakable signs of liquid water movement. For 

sorne other anomalies, like Al and A2, which are situated on oIder, more cratered terrain, then 

one would expect that deep intrusives are more likely responsible for the observed magnetic field 

and therefore model elliptical prisms situated deeper below the surface would fit the data better. 

Modeling magnetic anomalies with prisms of varying depth and thickness would constitute a 

logical next step in this research. 
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Appendix A: Derivation of the polar motion equation 

In this appendix 1 derive the long-term polar motion equation directly from the Euler-Liouville 

equation and the expression of the inertia tensor without using the Ricard formulation of 

equations 1.106 to 1.109. The Euler-Liouville equation is 

A.t 

where we have neglected relative motion of the mass elements inside the body and assume that 

external torque is O. The matrix [J] is the inertia tensor given by (see equation 1.105) 

1 will use the following variables to simplify the algebra 

kT 5 

u=L 
30 

So that the inertia tensor becomes 

with 

l33 

A.2 

A.3 

A.4 

A.5 



A.l The Euler-Liouville equation 

Let's first consider the Euler-Liouville equation. The term [J]- & can he simply expressed as 

111 

A.6 

The vector Ti is then 

A.7 

where Ê), Ê2 and Ê3 are the unit vectors along the XI, X2 and X3 axis respectively. In the Liouville 

equation the vector product & x ([J]- &) can then be written as 

~ ~ ~ 

E) E2 E3 

ffi2 ffi3 ffil ffi3 ffi) ffi2 

&x ŒJ]-&)= &x Ti = ~ ~ ~ 

ffi) ffi2 ffi3 =~ -E2 +E3 A.8 

112 113 11) 113 111 112 

11) 112 113 

After a little more algebra we get 

A.9 

The Euler-Liouville equation can now he written as 

134 



Til + ffi2113 - 112ffi3 = ° 
Ti2 + ffi3111 -113ffil = ° 
Ti3 + ffil112 -111ffi2 = ° 

A.I0 

Substituting the inertia tensor and taking the appropriate derivative in the last 3 expressions we 

get 

i llffil + J lIml + i 12(J}2 + J I2m3 + i13ffi3 + J 13m3 + ffi2 (J31ffil + J 32ffi2 + J 33ffi3) 

- ffi3 (J21ffil + J 2iffi2 + 1 23ffi3) = ° 

i 21ffil + J 21ml + i 22(02 + J 22m3 + i23ffi3 + J 23m3 + ffi3 (JlIffil + J 12ffi2 + J 13ffiJ 

- ffil (131ffil + 132ffi2 + 133ffiJ = ° 

i 31ffil + J 31ml + i 32(02 + J 32m3 + i33ffi3 + J 33m3 + ffil (J21ffil + J 22ffi2 + J 23ffiJ 

- ffi2 (Jllffil + J 12(02 + J I3ffiJ = 0 

A.lI 

Now assuming that the angular velocity vector is initially aligned with the X3 axis, that IS 

ID = (O,O,ffiJ we can immediately simplify the last 3 equations and write 

A.12 
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A.2 Replacing the inertia tensor into the Liouville equation 

Let's now consider each of the last 3 equations one by one and substitute the appropriate 

component of the inertia tensor. Again we assume ro = (O,O,coJ and that aU second order 

derivatives and squares or product of derivatives are smaU enough to be neglected. Other 

reasonable assumptions will be made to simplify the mathematics. One must remember that our 

goal is to get a long-term approximate behavior of polar motion not a precise polar motion 

history of a given planet. The equations • as derived, basically only describe the situation at time t 

= O. 1 will give a complete derivation of the tirst equation with aU the necessary approximations 

and then quickly de scribe the result for the other two equations. Let' s tirst consider the tirst 

equation in A.12. The inertia tensor components needed for this equation are 

A.13 

Now taking into account that ro = (0,0,co3 ) so that co = co3 

J - 1 - U l 2 2. . UT E - 1 - U l 2 .2. . UT E 
11 - 3 co + 3 coco 1 + Il - 3 co3 + 3 C03C03 1 + Il A.14 

For the other components we tind 

A.15 

Substituting aH ofthis in the tirst Euler-Liouville equation we get 
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(1 - v t ffi~ + 3- ffilÏl3 VI; + El! ) roi + E12ro3 + (V rolffi3 + É13 ) ffi3 + (- VI;ro\ffi3 + En) ro3 

- (- U~ro2ro3 + E23 ) ro~ = 0 

A.16 

According to our small squares and product of derivatives approximation we can write the last 

expression as 

A.17 

Now it is reasonable to assume that any inertia perturbation would be much smaller than the 

normalized inertia 1 . This would be equivalent as saying that the mass of the perturbation is 

much smaller than the mass of the entire planet. This is reasonable even in extreme cases like 

Tharsis, which has a very important mass but still much smaller than the mass of Mars. 

Consequently we can write 

A.18 

Of course if, as in the example given in section 1-7 the inertia perturbation is situated in the X2X3 

plane than EJI' El2 and E13 are identically o. So that the first Liouville equation becomes 

A.19 

Nowa case can be made for neglecting the second and third term of the last expression. In the 

case of the second term we usually have 

2. 2 3 Uro3 «1 A.20 
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This is especially true in the case of Venus where a difference in magnitude in the order of 107 is 

ca1culated by using reasonable values of the different parameters involved. In the case of the third 

term one can argue that the rate of change of the inertia perturbation will he very slow so that the 

derivative with respect to time of the inertia perturbation will be very small so that ÈI3 ~ o. With 

these supplementary approximations we finally get for the first Euler-Liouville equation 

A.2I 

Now to get the first polar motion equation of section 1-7 that was obtained using the Ricard 

formulation we use U~ = (C - A ~0)3 ' so that 

A.22 

By using a similar derivation as above and the same approximations and simplifications we can 

work out the second equation in A.12 as 

with 

J21 = E
'2 

J 22 = 1 -1 uO)~ + ~ UT,O)103 + E22 

i23 = U(20)3 + È23 

J 23 = -UT,( 20)3 + E23 

J I3 = -UTl( 10)3 + E13 

A.23 

A.24 

138 



Substituting the above values in the second Euler-Liouville equation we get the following 

expression after an the simplifications and approximations have been applied 

A.25 

F or the third equation in A.12 we have in the same manner 

A.26 

with 

A.27 

Substituting in the third Euler-Liouville equation and applying again the different approximations 

and simplifications we get simply 

A.28 

A.3 Conclusion 

We have now derived the three equations of motion that will ultimately lead us to the polar 

motion equation, they are 
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1001 + (C - A )T]ro3c02 - E23ro~ = 0 

1002 - ( C - A ~ro3cOl + El3ro~ = 0 

1003 + É33ro3 = ° 
A.29 

This derivation shows that the matrix fonnalism of Ricard et al., [1993] is correct and can he 

used to derive the equation of motion. If one puts ID = (0,0,0) in equation 1.112 the result in 

A.29 will appear. A.29 is the equation actually used to derive equation 1.113 in section 1.6. As 

stated earlier this fonnalism is not absolutely necessary to get the polar motion equation of 

section 1. 7. 
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Appendix B : More on long term polar motion 

B.l Evaluation of the equatorial bulge realignment time 

The time needed for the equatorial bulge to realign perpendicularly to the axis of rotation is an 

important parameter of polar motion of non-rigid planet. 1 feel it is necessary to explain 

clearly where this parameter cornes from. Recall that the linear form of the polar motion 

equation in the time domain is given by 

B.l 

Now let's go back into the Laplace domain where we will be able to use the different 

expressions for the tidal Love number . In the Laplace domain the last equation becomes 

B.2 

where the Laplace transform of the product of functions kT (t) x m( t) has been approximated 

by the product of their respective Laplace transform. The tidal Love number cao be expressed 

as 

B.3 

We have seen that for the long-term limit that the last Love number can be expressed as 

B.4 
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Now ifwe consider the situation where s «Si one can expand the k(s) expression in Taylor 

series and get after a simple transformation 

B.S 

If we neglect terms of higher order to keep our calculation in line with a linear approximation, 

we get 

B.6 

By using equation B.4 we can express k(s) as 

B.7 

With this information and again approximating the secular Love number by the fluid Love 

number we get 

B.8 

which becomes after simplification 

B.9 

Now isolating the polar motion function mes) we get after a few algebraic transformations 
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We now define the readjustment time TI of the equatorial bulge as 

M k 
T =_1 ,,_i 

1 k L... 2 
f i = 1 S. 

1 

8.10 

8.11 

This important parameter depend on the different relaxation times 'Ti = -~ which in tum 
Si 

depend on viscosity and rigidity, so the visco-elastic parameters of the planetary interiors play 

a crucial role in the evaluation of the time parameter and consequently on polar wander itself. 

The equation for linear polar motion B.1 0 thus become 

m() . ~LS 
S = -IO'f S 1- iO' T 

r 1 

8.12 

B.2 Long term interpretation of the rotational number from the linear 

Euler-Liouville equation 

One can obtain the polar motion equation of section 1.6 that will ultimately lead to the 

interpretation of the rotational number of section 1.7 by using the last expression. We can 

write 

8.13 

Now let's try to express the constant term in brackets in the more traditional complex form 

A+iB. Wehave 
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B.14 

This last expression can be written as 

8.15 

Transferring this in the polar motion equation in the Laplace domain and multiplying on each 

side by the Laplace variable s, we get 

8.16 

Now let's consider again the rotational number Ro (equation 1.116) we have seen that 

B.17 

And from equation 1.37 we have 

B.18 

Simple algebra yield the following relationship between Ro and cr, 

R = T(cr,A 
o 1 B.19 

If one assume a very sm aIl difference between A and I, such that 1 ~ A, we can finally write 
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B.20 

So that the ratio of the rotational number over the readjustment time of the equatorial bulge is 

equal to 21t/Tchan where Tchan is the Chandler wobble period for a rigid planet. Now let's take 

the relation Ro = 1;0' into the polar motion equation 8.16. We have 

B.21 

Now let's multiply each side by Ru and div ide by O'r to find 

B.22 

Note that the term in brackets is identical to the one in the polar motion equation 1.118 in 

section 1.6.1. Now using equation 8.20 and going back into the space domain we get 

B.23 

We have (J) = mn so that m= ID / n and 

8.24 

One must now consider the excitation function tpL(t). We have given the expression ofthis 

function in section 1.3. It is 
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'l'(t)= 2~ 1 ][Q2~I(t)-i~i(t)+nh(t)-ili(t)+iL(t)] 
Q C-A 

B.25 

Now let's make the same simplifications and approximations made in appendix A. This will 

reduce equation 8.25 to 

'l'(t) = _M(tL 
IC-A1 B.26 

To take load compensation into account one must multiply this last expression by the term 

1 + k~ . We can now replace in the polar motion equation to get 

B.27 

This formula is identical to the polar motion equation 1.119 in section 1.6.1 and would 

therefore lead to the very same conclusion when extreme limits of Ro are investigated. 
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Appendix C: Supplementary comments on anomaly 

isolation 

ln chapter 4 1 presented results of modeling 9 magnetic anomalies. The robustness of the pole 

position found for each anomaly, that is how much confidence we can have in the result, is 

gready dependant on how well isolated a given anomaly is. In chapter 4, based on the value of 

the quality index, it was argued that anomalies A4 and A5 are well isolated and that anomalies 

A6 and A 7 are not well isolated. If the pole position found is to mean anything the source body 

must be well isolated and unifonnly magnetized. As mentioned earlier, there is just no such thing 

as a perfectly isolated anomaly. 

First, one must have a clear understanding of what an isolated anomaly is, in the practical world 

where the modeled data is actually the vector sum of the magnetic field produced by many 

sources. In a simple situation one could define an isolated anomaly as an anomaly where the 

distance between the anomaly and other sources is much bigger than the size of the anomaly. 

What actually « much bigger » means is somewhat subjective. A minimum value for the distance 

of 5 to 6 times the diameter of the anomaly seems to be indicated by numerical experiments that 1 

perfonned during this study. It has also been mentioned in chapter 4 that another criteria to 

detennine if an anomaly is isolated is that such an anomaly yields the same pole position no 

matter the altitude of the data used for modeling. This last assertion has been verified many times 

in this study on synthetic data. The MGS data, unfortunately, has global coverage at high altitude 

only and it is then difficult to verify the assertion on actual data. 

However on Mars no anomaly of interest have this ideal characteristic. How do we explain then 

that sorne anomalies like AS have such high value of the quality index and therefore that the 

model fit the data so well? This is especially perplexing since a quick look at the global map of 

the radial component of the high altitude magnetic field (see figure 2.2) clearly shows that the AS 

anomaly (located at lat = -1 and long = 322) does not correspond to the ideal criteria of distance 
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mentioned above and is part of a busy neighborhood where magnetic sources are interacting 

strongly. 

However one can look at anomaly isolation from another angle. If an anomaly is dominant in a 

given neighborhood or if by sorne luck the interaction of the other source bodies close to the 

anomaly is such that their influence cancel or is very weak compared to the anomaly itself then 

we basically have an isolated anomaly. In this appendix 1 want to make the case that this is 

exactly the situation for anomaly A5. 1 will also show that anomaly A 7 is not weIl isolated 

because the influence of the nearby sources does not cancel. 

To show this at the present time we need global data coverage at different altitudes. This is just 

not possible at this time. Instead, we must rely on models to obtain global coverage at an altitude 

different than 400 km. Preferably, we need a magnetization model of the surface that will give us 

the opportunity, not only to calculate the magnetic field at any altitudes, but also to remove 

sources at a given location to see the influence of the neighboring sources. One model of interest 

is the one obtained by Langlais et al., [2003] who have modeled the magnetic field of Mars by 

using magnetic dipoles. This model has been mentioned numerous times in this the sis. Their best 

fit model uses 4840 dipoles with an average separation of 173 km and, consistent with other 

studies, they have used a magnetic layer thickness of 40 km. The dipoles themselves are at 20 km 

depth. Benoit Langlais, ofNasa's Goddard Space Flight Center, has graciously provided me with 

his magnetization map. With this information it is then relatively easy to calculate the 3 

components of the magnetic field of the model at any altitudes higher than 173 km, which is the 

resolution limit of the model. Details on the method to calculate the magnetic field are provided 

in Dyment and Arkani-Hamed [1998]. 

Of course, this is only a model of the magnetic field. 1 assume that the model represent weIl the 

magnetic field at any altitude higher than 173 km. l have used this model to calculate the 

magnetic field at 400 km altitude. The result is shown in figure C.1. Compare this figure with 

figure 2.2. Both figures used the same color scale. The model represent weIl long wavelength 

features but seems to have sorne difficulties in the mid to small wavelength characteristics of the 
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field, especially for the theta and phi components. This is probably indicative of higher 

contamination in the horizontal components. However the radial component of the model 

compare weIl with the data of figure 2.2 so that only the radial component will be used in the 

following argument. 

T 0 illustrate my point 1 have generated synthetic data for anomaly A5 and A 7 for 3 different 

altitudes: 200, 300 and 400 km. According to the argument made in chapter 4 a weIl isolated 

anomaly will give the same pole position irrespective of the altitude of the data. For each 

anomaly 1 have obtained , by using the very same least square fitting technique used in chapter 4, 

the pole position for each altitude. The results are given in table C.l below. One can see that for 

anomaly A5 the changes in the pole position are small with altitude variation and that the 

elliptical prism obtained for each altitude have identical characteristics. This consistency in the 

results is indicative of a well-isolated anomaly. In the case of A7 results in both the pole position 

and the characteristics of the elliptical prism show much greater dependence on altitude and A 7 is 

therefore considered not well isolated. In both cases the pole position obtained at 400 km altitude 

is consistent with the one obtained in chapter 4. 

To show why anomaly A5 is weIl isolated and anomaly A 7 is not, 1 have removed them from the 

global magnetization map and recalculated the total magnetic field over the area occupied by 

each anomaly. In the case of A5 1 have removed aIl dipoles within a 6 deg radius of the center of 

the anomaly. In the case of A7 1 have removed aIl dipoles within 7 deg from the center of the 

anomaly. For each anomaly the same filter value was used at aH altitudes. These values are the 

filter radii used in the modeling program. Only the data inside that radius was used for the 

modeling. It is assumed that the actual source body is situated within that radius of the center of 

the anomaly. The result ofthis little experiment are displayed in figure C.2 and C.3. 

In each figure, for each altitude, the left hand figure is the total radial component of the field at 

the given altitude. The right hand figure is the total field with the above-mentioned dipoles 

removed. One can see very clearly that in the case of A5 the anomaly practically disappear over 

the center of the anomaly at lat = -1 and long = 322. This is especially true at 300 and 400 km 
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altitude. In the case of A 7 however (figure C.3) we have a quite different situation. At 200 km 

altitude, despite the fact that aH dipole sources have been removed in a radius of 7 deg 

(appreciatively 420 km) from the center at lat = -45 and long = 225 the shape of the anomaly is 

still present. This is indicative that the anomaly is strongly influence by nearby sources and the 

shape itself of the anomaly is changed by nearby sources. This anomaly, rnight not even have 

been created by an independent source and is more likely the result of the combined effect of 

many sources outside the 7 deg radius where dipoles have been removed, basically a ghost 

anomaly. This figure also shows that at 300 km altitude there is still a significant presence of 

nearby contamination. In the end, 1 feel that the pole position obtained with this anomaly, simply 

cannot he trusted. 

Since it is unlikely that we will get global data coverage at different altitudes in the near future 

we need magnetization models of the surface to better constraint the influence of one anomaly 

over the other. The model used in this little experiment is too coarse to make good judgments on 

influence of anomalies over each other. An improvement of the resolution of the model, actually 

at 173 km would be welcome. Resolutions in the 15 to 30 km range are needed to hetter 

constraint the shape, size and position of each source bodies responsible for the observed 

anomalies. 
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Table C.l 

Pole positions obtained by modeling data generated by the Langlais et Al, 2003 surface 

magnetization model. The data was generated for anomalies A5 and A 7 of chapter 4 at altitude of 

200,300 and 400 km. The fact that the A5 anomalies give consistent result from one altitude to 

the other indicates that the anomaly is well isolated. This is not the case for A 7. 
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AS 

Altitude A B 

(km) (km) (km) 

200 300 210 

300 300 210 

400 300 210 

A7 
Altitude A B 

(km) (km) (km) 

200 300 150 

300 220 110 

400 100 50 

A : semi-major axis of elliptical prism 

B : semi-minor axis of elliptical prism 

e Pole lat 

(deg) (deg) 

60 63 

60 53 

60 51 

e Pole lat 

(deg) (deg) 

100 -32 

100 -26 

100 -33 

e : Orientation of prism (counterclokwise from east oriented x axis) 

Pole lat and long: paleopole latitude and logitude 

Table C.I 

Pole long 

(deg) 

267 

270 

268 

Pole long 

(deg) 

134 

132 
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Figure C.I 

Global magnetic field at 400 km altitude generated by the Lang/ais et al., [2003] magnetization 

model. Compare this figure to figure 2.2, which represent the binned high altitude data used to 

model the actual magnetic field. The model is more successful in representing the radial 

component of the actual field. 
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Figure C.2 

The A5 anomaly according to the Lang/ais et al., [2003] model. The left hand panel for each 

altitude is the total radial component ofmagnetic field over anomaly A5. The right hand panel is 

the radial component over the same area but with dipoles within 6 deg of the center of the 

anomaly removed. The fact that the anomaly disappears indicates that contamination by nearby 

sources is weak and that A5 is weIl isolated. 
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Figure C.3 

Figure similar to figure C.2 but for anomaly A7. Dipoles within a radius of7 deg were removed 

to calculate the radial component of the field in the right column. Clearly at 200 km altitude the 

anomaly is still very present, indicating that most of the anomaly cornes from nearby sources. A 7 

is not well isolated and may not even be created by an independent body but simply be the vector 

SUffi of the magnetic field created by nearby sources. 
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Appendix D : Magnetic anomalies and topography 

This appendix presents ni ne high-resolution topographie maps of the regions where the 

anomalies modeled in this study are. Each map is overlaid with the radial component of the 

binned magnetie field over eaeh region. On each map, the anomal y is at the center (or very 

close to) of the map. AH maps use the same color seale for easier comparison. The maps show 

no clear correlation between the anomalies and topographical features. This was to be 

expected since my modeIing found sources bodies (elliptical prisms) that have semi-major 

axis in the 200 to 300 km range. There is simply no major topographical feature of that 

dimension in the regions where the anomalies are. In sorne cases however (A5 and A6 

anomalies) the anomaly can possibly be related to surface proeesses involving water. In the 

case of A6 for example, the anomaly is at the receiving end of what seems to be a dry 

riverbed. Magnetic mineraIs may have been deposited there and formed the anomaly. 

In most eases this lack of correlation probably indicates that the sources are deeper into the 

crust. However, how deep exactly, remains to be seen. That depth does not need to be 

extreme. Most investigators favor an average magnetic thickness of 40 to 50 km. Lang/ais et 

al., [2003] magnetization model place their best fit dipoles at a 20 km depth whieh seems to 

indicate that the crust is not magnetized ail the way to the surface for many source bodies. 

155 



A 1 rad ial component 

56 60 64 68 72 76 

4 4 

o o 

-4 -4 

-8 -8 

-12 -12 

56 60 64 68 72 

~ i f ~.- .;:,_~: ; ,..,7~ ; . r~'·~ i i 1 

-200 -50 -40 -30 -20 -10 10 20 30 40 



A2 radial component 

60 64 68 72 76 80 

-8 -8 
) 

) \." .... 

< 
• < .\ } " 

-12 -12 

-16 -16 

-20 -20 

-24 -24 
~. 

60 64 68 72 76 80 

nT 
-200 -50 -40 -30 -20 -10 1 0 20 30 40 50 200 



A3 rad ial component 

96 100 104 108 112 

-20 -20 

-24 -24 

-28 -28 

-32 -32 

-36 -36 

96 1 00 1 04 1 08 112 

~'··f"i<'~ 1 1· ~ nT 
-200 -50 -40 -30 -20 -10 1 0 20 30 40 50 200 



A4 rad ial component 

208 212 216 

'. 
" 

i 

208 212 216 

~,·······t;'"·'\~ 1 1 
-200 -50 -40 -30 -20 -10 1 0 20 

220 224 
4 

o 

-4 

-8 

-12 

.. 
,- ~ .. 

-16 
220 224 

'~nT 
30 40 50 200 



312 

8 

) 

4) , 

o 

-4 

-8 

316 

) 

, . 

AS radial component 

320 324 328 332 

. \ 

) 8 

4 

o 

-4 

332 

nT 
-200 -50 -40 -30 -20 -1 0 1 0 20 30 40 50 200 

312 316 320 324 328 



A6 radial component 

336 340 344 348 352 
12;-~~~~r-~----~~~~~~~~~?Mrr 12 

.) . 

8 8 

4 4 

o o 

-4 -4 .. ' 
-8 

336 340 344 348 352 
~':Y,\~; •.. ·,t~,,:·~~~ 1 I~ i nT 

-200 -50 -40 -30 -20 -10 10 20 30 40 50 200 



A7 radial component 

216 220 224 228 232 

-36 

-40 

-44 

-48 

-52 

216 220 224 228 232 

~~ f~;;Y;·;~ l , .. ~nT 
-200 -50 -40 -30 -20 -1 0 1 0 20 30 40 50 200 



AS rad ial component 

, 
-20 -20 

-24 -24 

-28 -28 

-32 -32 

-200 -50 -40 -30 -20 -10 1 0 20 30 40 50 200 



A9 radial component 

288 292 296 300 

-24 

-28 

-32 

,') 

-36 
" ). ". 
' ... ' 

',t 

-40 
.~, . , .:) 

288 292 296 300 

304 

,) . 

~.(,i' 
')-, 

( .' 
, 
" 

304 

-24 

-28 

-32 

-36 

nT 
-200 -50 40 -30 -20 -1 0 1 0 20 30 40 50 200 



Appendix E: Magnetic field calculation 

E.l Introduction 

One of the key elements of this thesis is the calculation of the magnetic field produced by 

an elliptical prism of constant magnetization. This magnetic field is calculated for 

elliptical prisms of different configurations and then compared with the observed data. 

The Fortran routine used in this thesis to calculate the magnetic field of an elliptical 

prism was originally designed and written by my supervisor. One very important part of 

my work was to test this routine and make sure that the calculated model field is correct. 

To check this routine one can, of course, look directly at the code. However, for such 

complex routine, this is not sufficient. It is always possible, even after one has made 

many revisions, to fmd out that the code outputs incorrect results. In this work 1 have 

adopted a different way of looking at this problem. First, as stated in section 4.4, 1 have 

developed my own magnetic field calculation routine based on the Talwani numerical 

method. This method works in a very different way than the one used in the modeling 

program. For a given set of input parameters the two routines must, of course, yield very 

similar results. In the end the choice of one method over the other is only a matter of 

preference and computer performance. In this case the method provided by my supervisor 

perform the calculation much faster than the Talwani method and consequently this is the 

one 1 used in the modeling program. 

Although this testing method is robust, 1 went one step further, by calculating analytical 

expressions for simple prism configurations and comparing the result with the output of 

both numerical routines. This appendix explains in more details the inner working of both 

numerical methods used during this work. The next section also pro vides an example of 

analytical field calculations. This result will be used later to compare with the outputs 

obtained from both numerical methods. 
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E.2 Example of magnetic field calculation 

In this section 1 derive an analytical expression for the magnetic field produced by 

circular prism of constant magnetization. The situation is illustrated in figure E.l. The 

prism is basically a cylinder of radius R and height h. It is located at the origin of a 

suitable reference frame. We seek to determine the magnetic field at a point P situated on 

the cylinder axis at a distance D from the top of the prism. In this situation the 

magnetization vector is aligned in the z axis direction, so that the magnetization can be 

written as 

m=mk E.l 

The magnetic potential produced by a volume distribution of magnetization is given by 

V(r) = _! HI m-v(I_: -1)dV' 
U Volwne r r 

E.2 

Where r is the position vector of the point where we want to calculate the magnetic field. 

r' is the position vector of an infinitesimal volume element inside the prism. The gradient 

operator operates in the r domain while the integration is carried in the r' domain. The 

expression Ir - r'i is simply the distance between the two points. Finally the 

magnetization unit vector m is k in this situation. The constant u is the free space 

permeability and is given by 

E.3 

The magnetic field at point P is then calculated by taking the negative of the gradient of 

the potential field, that is 
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B=-VV E.4 

Because of the symmetry of the prism it is more convenient to work in cylindrical 

coordinates to solve the integral in equation E.2. In cylindrical coordinates the gradient 

operator is written as 

E.5 

Since the magnetization is along the z axis then the scalar product inside equation E.2 

simply becomes 

E.6 

So that the integral in equation E.2 becomes 

V(r)=-! HI ~(_ m_.Jr'dr'd9'dz' u Volwne ôz Ir - r 1 E.7 

The solution ofthis integral is 

E.8 

And correspondingly 

E.9 
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This fonnula will be used later in this appendix to compare with the outputs of both the 

Talwani numerical method and the magnetic field calculation routine that was actually 

used in the modeling program. 

E.3 The Talwani numerical method 

The Talwani method calcula tes the magnetic field produced by an arbitrary shaped body 

of constant magnetization. The advantage of this method is that two of the three integrals 

that need to he solved have analytical solutions. It is always more convenient and 

accurate to have analytical solutions. The method basically uses the same logic as 

explained in the preceding section. First we obtain the magnetic potential of an 

infinitesimal element ofmagnetization at the origin of the reference frame. It is given by 

V _deR 
- 3 

R 
E.I0 

This potential element Can he expressed in tenn of the magnetization, knowing that 

d = iii~yAz where the vector iii is the magnetization vector. We get 

m x+m y+mzz 
v= x Y3 ~yAz 

R 
E.ll 

One Can than integrate all over the volume to get the total potential. As before the 

magnetic field is calculated by taking the negative of the gradient of the potential. 

Talwani then calcula te the magnetic field at the origin of the reference frame as follow 

B =mI2+mI4+mls y x y z E.12 

B = m 13 + m Is + m 16 z x y z 
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Where lr .... .16 are the following volume integrals. 

3 2 2 
Il = HIx ~R dxdydz 

Volume R 

12 = HI 3xr dxdydz 
Volume R 

13 = HI 3Xfdxdydz 
Volume R 

3 2 R2 

14 = HI y ~ dxdydz 
Volume R 

E.13 

15 = IH~dydz 
Volmne R 

16 = IH 3Z2~R2dxdydz 
Volume R 

The body is divided into a series of horizontal layers that are approximated by polygonal 

laminas. The surface part of the last integrals is evaluated and programmed as an 

analytical formula into the computer. The calculation of each volume integral is then 

completed by numerically integrating in the z direction. 

E.4 Comparing methods 

Table E.1 shows the z component of the magnetic field of a circular prism calculated at 

different altitudes between 300 and 400 km. The prism is 10 km thick and has a radius of 

200 km. AlI 3 methods are used to calculate the field. The results obtained by the two 

numerical methods are identical to 3 decimal places and negligibly different from the 

value obtained by equation E.9. Many numerical experiments have shown the almost 

perfect correlation of the two numerical methods for more complex situations. 
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Table E.l 

Results of calculation of the magnetic field of a circular prism by using an analytical 

formula, the Talwani method and the numerical routine actually used during the 

modeling process. Results of the numerical procedures are identical within 3 decimal 

places. 
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Altitude Equation E.l 0 Talwani Modeling pro. 
(km) (nT) (nT) (nT) 
300.0 55.528 55.484 55.484 
310.0 5l.813 5l.771 5l.771 
320.0 48.390 48.350 48.350 
330.0 45.236 45.197 45.197 
340.0 42.326 42.288 42.288 
350.0 39.640 39.604 39.603 
360.0 37.160 37.124 37.125 
370.0 34.867 34.833 34.833 
380.0 32.746 32.714 32.714 
390.0 30.783 30.752 30.752 
400.0 28.964 28.934 28.934 

Table E.l 



Figure E.l 

Calculation of the z component of the magnetic field on the axis of a circular prism. 
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