

A comparison and evaluation of

approaches to the automatic

formal analysis of musical audio

Jordan B. L. Smith

Master of Arts

Music Technology Area

Department of Music Research

Schulich School of Music

McGill University

Montreal, Quebec, Canada

31 August 2010

A thesis submitted to McGill University in partial fulfillment of the requirements for the

degree of Master of Arts

© Jordan B. L. Smith

 i

Acknowledgements
Special thanks are owed to several esteemed colleagues at other institutions who

provided their algorithms or who participated in the evaluation. Luke Barrington at the

University of California, San Diego provided the code for his algorithm (Barrington et al.

2009), with assistance from Emanuele Coviello. The evaluation of Xavier Janer Mestres’

(2007) segmentation algorithm was carried out by Nicolas Wack and Emilia Gómez at

Universitat Pompeu Fabra. Ewald Peiszer has made his algorithm (2007) and many of his

previous results available online. Mark Levy has implemented his algorithm (Levy and

Sandler 2008) as a Vamp plugin for Sonic Visualiser, both of which are free to download.

Finally, Tristan Jehan and Brian Whitman, founders of Echonest, allow free public use of

their analysis tools via a developer API. I am grateful for all of the above researchers and

inspired by their willingness to share.

I am likewise indebted to those institutions who have freely shared structural

annotations for large corpora of music, including the Real World Computing project; the

Centre for Digital Music at Queen Mary, University of London; Universitat Pompeu

Fabra; and Tampere University of Technology.

This work was supported by a Joseph-Armand Bombardier Canada Graduate

Master’s Scholarship from the Social Sciences and Humanities Research Council of

Canada, and by a Master’s scholarship from the Fonds du recherche sur la société et la

culture.

This thesis is dedicated to my advisor Ichiro Fujinaga, who introduced me to

Music Information Retrieval and who has been an invaluable teacher and guide to me for

the past two years. I must also extend my sincerest thanks to my colleagues, advisors,

friends and family who have sustained me throughout the creation of this work.

 iii

Abstract
Analyzing the form or structure of pieces of music is a fundamental task for music

theorists. Several algorithms have been developed to automatically produce formal

analyses of music. However, comparing these algorithms to one another and judging their

relative merits has been very difficult, principally because the algorithms are usually

evaluated on separate data sets, consisting of different songs or representing wholly

different genres of music, and methods of evaluating the performance of these algorithms

have varied significantly. As a result, there has been little benchmarking of performance

in this area of research. This work aims to address this by directly comparing several

music structure analysis algorithms.

Five structure analysis algorithms representing a variety of approaches have been

executed on three corpora of music, one of which was newly assembled from freely

distributable music. The performance of each algorithm on each corpus has been

measured using each of an extensive list of performance metrics.

 iv

Abrégé
Faire une analyse de la structure d’un pièce de musique est une tâche de première

importance pour les théoriciens de musique. Ainsi, plusieurs algorithmes qui visent à

produire de telles analyses automatiquement ont été développés. Il est toutefois difficile

de comparer ces algorithmes parce qu’ils sont souvent évalués sur des corpus provenant

de différentes œuvres musicales ou même de différents genres de musique, et la façon

d’en faire l’évaluation a varié beaucoup. En conséquence, peu d’analyses comparatives

de la performance de ces algorithmes ont été effectuées. Ce travail vise à aborder ce

problème en comparant directement plusieurs algorithmes de l’analyse de structure

musicale.

Cinq algorithmes représentant une gamme d’approches à l’analyse de structure

musicale ont été exécutés sur trois corpus de musique, dont un créé de sources publiques

afin qu’il soit libre à partager. La performance de chaque algorithme sur chaque corpus a

été évalué à l’aide de plusieurs mesures standard.

 v

Table of Contents
Table of Contents ... v
List of Figures .. vii
List of Tables... ix
1 Introduction... 1

1.1 Motivation: Issues in evaluating structure analysis algorithms 1
1.2 Description of the present work .. 3
1.3 Scope of the present work ... 4

1.3.1 Definition of the word “form” .. 5
1.3.2 Types of music under consideration ... 6
1.3.3 Data formats under consideration ... 6
1.3.4 Summary... 7

1.4 Organization of the present work .. 7
2 Literature Review.. 8

2.1 Scope of related sub-problems .. 8
2.2 Feature extraction.. 9

2.2.1 Pre-processing .. 10
2.2.2 Pitch features .. 10
2.2.3 Timbre features... 13
2.2.4 Rhythm features.. 15

2.3 Approaches to structural analysis.. 17
2.3.1 The sequences hypothesis vs. the states hypothesis.. 17
2.3.2 Top-down approach: Self-similarity matrices .. 19
2.3.3 Bottom-up approach: Clustering... 38

2.4 Applications for structural analysis ... 42
2.4.1 Thumbnails and summaries .. 43
2.4.2 Retrieval ... 45
2.4.3 Visualization and navigation .. 46
2.4.4 Other applications... 48

2.5 Summary ... 50
3 Algorithms .. 51

3.1 Peiszer ... 51
3.1.1 Features... 51
3.1.2 Segmentation .. 52
3.1.3 Structure analysis.. 52
3.1.4 As used in this thesis .. 53

3.2 Levy and Sandler... 53
3.2.1 Features... 53
3.2.2 Structure analysis.. 54
3.2.3 As used in this thesis .. 55

3.3 Barrington et al.. 56
3.3.1 Dynamic texture mixture model ... 56
3.3.2 Structure analysis.. 57
3.3.3 As used in this thesis .. 58

3.4 The Echo Nest ... 58
3.4.1 As used in this thesis .. 59

3.5 Mestres .. 59
3.5.1 Segmentation .. 60
3.5.2 As used in this thesis .. 60

4 Annotation and Evaluation.. 62
4.1 Producing annotations ... 62
4.2 Description of data sets ... 68

4.2.1 The Beatles ... 68
4.2.2 Real World Computing... 70
4.2.3 Internet Archive.. 72

 vi

4.2.4 Summary... 74
4.3 Evaluating structural descriptions ... 75

4.3.1 Boundary evaluation... 75
4.3.2 Grouping evaluation ... 78
4.3.3 Information-theoretic metrics ... 81

4.4 Summary ... 83
5 Results and Discussion.. 84

5.1 Review of evaluation procedure.. 85
5.1.1 Summary of algorithm parameters ... 85
5.1.2 Summary of ground truth variations... 86
5.1.3 Summary of baseline estimations ... 87
5.1.4 Summary of evaluation metrics .. 89

5.2 Summary of results.. 90
5.2.1 Choice of corpus and ground truth ... 91
5.2.2 Choice of algorithm parameters.. 96
5.2.3 Comparison with previous evaluations... 100

5.3 Discussion ... 106
5.3.1 Baseline performance ... 107
5.3.2 Evaluation metrics .. 109
5.3.3 Difference between genres ... 109

6 Conclusion .. 111
Bibliography... 148

 vii

List of Figures

Figure 2.1. Example of ground truth annotations for the song “Yesterday” by The Beatles for the purposes

of five different sub-problems in music structure analysis. .. 9

Figure 2.2a (left). Ideal checkerboard kernel.. 21

Figure 2.2b (right). Gaussian-tapered, 32-pixel square checkerboard kernel. .. 21

Figure 2.3a. SSM for the first 1.5 seconds of a recording of “Layla” by Derek and the Dominoes using

Fourier transform coefficients as features. ... 21

Figure 2.3b. Corresponding score for the sound depicted in Figure 2.3... 21

Figure 2.4. SSM for the entirety of the song “Layla” using MFCCs as features.. 23

Figure 2.5. SSM for the entirety of the song “Layla” using chroma vectors as features. 23

Figure 2.6. Two novelty functions generated by convolving a Gaussian-tapered checkerboard kernel along

the diagonal of the chroma-based SSM shown in Figure 2.5. .. 24

Figure 2.7a. SSM for the song “Yesterday” using chroma vectors. ... 25

Figure 2.7b. Ideal sequence representation for SSM of “Yesterday." .. 25

Figure 2.8a. SSM for the song “Lucy in the Sky with Diamonds” using chroma vectors............................ 27

Figure 2.8b. Ideal state representation for SSM of “Lucy in the Sky with Diamonds.”.............................. 27

Figure 2.9a.Time-lag SSM of the song “Yesterday” using chroma vectors. .. 28

Figure 2.9b. Ideal sequence representation of time-lag SSM of “Yesterday.” .. 28

Figure 2.10. SmartMusicKIOSK screenshot. Piano roll-style notation shows in each row all repetitions of a

single event... 47

Figure 4.1. Example ground truth annotations for three songs... 63

Figure 4.2a. Tree diagram describing the hierarchical structure of the song “I Saw Her Standing There,” by

The Beatles. .. 65

Figure 4.2b. Ground truth annotations provided by CDM and TUT for the same song, “I Saw Her Standing

There.”.. 65

Figure 4.3. Two tree diagrams demonstrating a possible disagreement in hierarchical relationships, despite

agreement at one scale.. 65

Figure 4.4. Vocabulary breakdown for the Tampere University of Technology (TUT) corpus of 175

annotations of Beatles songs. ... 69

Figure 4.5. Vocabulary breakdown for the Center for Digital Music (CDM) corpus of 180 annotations of

Beatles songs. ... 70

Figure 4.6. Vocabulary breakdown for the Real World Computing (RWC) corpus of 100 annotations of

songs from the RWC Popular Music Database. ... 71

 viii

Figure 4.7. Venn diagram illustrating the calculation of pairwise precision and recall................................ 79

Figure 5.1. Illustration of difference between different versions of the same ground truth file: the CDM

annotation of “I Am The Walrus.” ... 88

Figure 5.2. Illustration of different versions of ground truth for “Everybody’s Trying To Be My Baby.” .. 93

Figure 5.3. Example algorithm outputs for the Beatles song “Every Little Thing.”................................... 108

Figure 5.4. Example algorithm outputs for George Handel’s Suite in D.. 109

Figure A.1, a-e. Comparison of the average pairwise f-measure earned by the best variation of each

algorithm, as a function of ground truth version. ... 114

Figure A.2, a-e. Comparison of the average cluster purity measure K earned by the best variation of each

algorithm, as a function of ground truth version. ... 117

Figure A.3, a-e. Comparison of the average Rand index earned by the best variation of each algorithm, as a

function of ground truth version. .. 120

Figure A.4, a-j. Comparison of the average boundary f-measure earned by the best variation of each

algorithm, as a function of ground truth version. ... 123

Figure A.5, a-e. Comparison of the average pairwise f-measure achieved by all input parameter

combinations for each algorithm as a function of the specified number of cluster types k. 128

Figure A.6, a-e. Comparison of the average cluster purity measure K achieved by all input parameter

combinations for each algorithm as a function of the specified number of cluster types k. 131

Figure A.7, a-e. Comparison of the average Rand index achieved by all input parameter combinations for

each algorithm as a function of the specified number of cluster types k. ... 134

Figure A.8, a-j. Comparison of the average boundary f-measure achieved by all input parameter

combinations for each algorithm as a function of the specified number of label types k. 137

Figure A.9, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand index,

achieved using each combination of parameters for Barrington et al.’s algorithm, as a function of the corpus

of annotations. .. 142

Figure A.10, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand index,

achieved using each combination of parameters for Levy and Sandler’s algorithm, as a function of the

corpus of annotations.. 144

Figure A.11, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand index,

achieved using each combination of parameters for Peiszer’s algorithm, as a function of the corpus of

annotations.. 146

 ix

List of Tables

Table 2.1: Ideal structural analysis provided by the sequences and states approaches for different true

structures. ... 18

Table 4.1. Summary of Internet Archive: Classical database. .. 73

Table 4.2. Summary of Internet Archive: Jazz database. ... 74

Table 5.1. Summary of input parameters used for each algorithm. .. 86

Table 5.2. Summary of baseline segmentation methods employed. ... 89

Table 5.3. Summary of evaluation metrics for boundary estimation.. 90

Table 5.4. Summary of evaluation metrics for label evaluation. .. 91

Table 5.5. List of the average number of sections per piece of music in each of the five sets of annotations.

.. 95

Table 5.6. List of the average length of the sections in each of the five sets of annotations. 95

Table 5.7. List of the average number of unique section labels per piece in each of the five sets of

annotations.. 95

Table 5.8. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the 14-song album “With The Beatles.”... 102

Table 5.9. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the 13-song album “Sgt. Pepper’s Lonely Hearts Club Band.”.. 102

Table 5.10. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the corpus of 175 Beatles songs annotated using the original version of the TUT annotations.

.. 103

Table 5.11. Best obtained pairwisef-measure and corresponding precision and recall, for the corpus of 175

Beatles songs with the original version of the TUT annotations. ... 103

Table 5.12. Best obtained boundary f-measure and corresponding precision and recall (using a 0.5-second

threshold), and median true-to-guess and guess-to-true values, for the RWC corpus, using the 4-label

version of the RWC annotations... 104

Table 5.13. Best obtained pairwise f-measure and corresponding precision, recall and Rand index, for the

RWC corpus, using the 4-label version of the RWC annotations... 105

Table 5.14. Best obtained boundary f-measure and corresponding precision and recall (using a 3-second

threshold) for the RWC corpus, using the original version of the RWC annotations................................. 105

Table 5.15. Best obtained pairwise f-measure and corresponding precision and recall for the RWC corpus,

using the original version of the RWC annotations. ... 106

 1

1 Introduction

1.1 Motivation: Issues in evaluating structure analysis algorithms
In recent years, there has been a surge in interest in developing algorithms to

automatically analyze the structure of pieces of music. This recent research push began

roughly ten years ago with the publication of a novel method to visualize structure using

self-similarity matrices (Foote 1999). Within years, dozens of researchers had proposed

extensions to this technique, some borrowing sophisticated filtering and thresholding

techniques from the field of image analysis (e.g., Lu et al. 2004; Eronen 2007). Others

have taken up the problem of structure analysis in new ways, employing statistical

approaches involving Hidden Markov Models, or other intelligent grouping methods

(e.g., Logan and Chu 2000; Abdallah et al. 2006; Levy and Sandler 2008). Still others

have proposed algorithms to address special musical situations, such as transpositions and

tempo changes (e.g., Goto 2003a; Müller and Clausen 2007) or hierarchical relationships

(e.g., Jehan 2005b; Rhodes and Casey 2007).

With such a diversity of approaches, it is desirable to have some means of easily

comparing them, to judge which approach is able to produce the most satisfactory results

for a particular application. Unfortunately, two important factors have made such

comparisons very difficult to make.

Firstly, few algorithms have been evaluated on the same corpora of music. This is

partly because some algorithms are designed to address vastly different genres of music

(for instance, classical vs. popular music), but a more important reason is that it is usually

illegal for researchers to share their music collections with one another. As a result, it is

common for researchers to produce their own corpora.

Secondly, studies have frequently reported different evaluation measures. This is

partly because there has been little agreement about which evaluation measures are the

most indicative of an algorithm’s ability to describe musical structure, and partly because

different studies have had different applications in mind, motivating different evaluation

methods.

These factors are both related to a third problem: that producing ground truth

annotations, against which the results of each algorithm are to be compared, is a highly

 2

subjective and time-consuming process. If two different researchers are not able to share

their music collections and must each collect their own, they may also need to produce

their own annotations for their music. If their annotations differ in a significant way (for

instance, if the vocabulary used in one set of annotations is highly restricted, whereas

another is more open-ended), then the reported results cannot be easily compared, even if

the music is very similar or identical. The result is that despite the large number of

studies about automatic structure analysis, many of these studies rely on very small test

sets, and the results of these studies are difficult to compare.

Despite these obstacles, some comparative evaluations have been published.

These are usually studies that propose one or several new algorithms and compare their

performance to each other (e.g., Levy and Sandler 2008) or to a single previous one (e.g.,

Barrington et al. 2009). However, such studies are unable to remove these obstacles for

future studies: although they provide a means to compare two existing algorithms, it

remains just as difficult as before for a researcher to determine how their new algorithm

compares against previous ones, or how it would fare according to a new evaluation

metric.

This is not an unusual situation in the field of Music Information Retrieval (MIR),

where non-uniform evaluation, a lack of readily available ground truth, and restrictions

on sharing music pose obstacles for researchers. The Music Information Retrieval

Evaluation Exchange (MIREX) was founded in part to address these shared issues. This

community-led event annually establishes benchmarks for MIR tasks by collecting

algorithms from participants, running them on standardized test sets, and using

standardized evaluation measures to analyze the results (Downie 2008). Although this

solves the copyright issue of distributing music, the need to keep the data sets private still

prevents researchers from experimenting with the data themselves. By contrast, data sets

for the Text Retrieval Conference (TREC), on which MIREX was modeled, are freely

available online at their website.1

In 2009, MIREX conducted its first comparative evaluation of structural

segmentation algorithms. This was a landmark evaluation for this MIR task, but did not

1 <http://trec.nist.gov/data.html> accessed 12 July 2010.

 3

resolve all of the issues described above: a minor issue is that the size of the evaluation

(the number of pieces totalled 297), though large in comparison to previous structure

analysis studies, remains small in comparison to evaluations for other MIR tasks. But

more importantly, the corpus of music used remains unsharable, as described above, as

well as undisclosed. It can be guessed from the MIREX webpage devoted to the

structural segmentation task, collaboratively written by the community submitting the

algorithms, that the test set at least included the full studio catalogue of the Beatles (180

songs), but the identity of the songs in the test set is not public information. (In addition,

two of the five algorithms tested at MIREX were anonymous submissions, so it is also

unknown what approaches were being compared.)

As a result, we can only learn how the submitted algorithms rated against each

other globally; we cannot learn about how successfully each algorithm handled specific

musical situations. In fact, the same is true of virtually all structure analysis studies, for

although global performance measures are always reported, only a few examples of any

algorithm’s output are shown. As an exception to the rule, all of the structural

descriptions generated by the algorithms proposed in Ewald Peiszer’s (2007) thesis are

published online. Since different algorithms approach the task of structure analysis in

different ways, it could be very interesting to examine their performance in specific

musical situations, but current reporting practices to not facilitate this.

To maintain an open, repeatable, and easily updatable benchmark system for

music structure analysis, researchers would ideally test algorithms on publicly available

and freely distributable music, with the annotations and with the full output of each

algorithm saved for future reference. This way, a future need for a new evaluation

measure could easily be accommodated, and benchmarks would be easily updated in the

case that any annotations were altered.

1.2 Description of the present work
This thesis is a comparative study of automatic structural analysis algorithms that

aims to redress some of the issues associated with previous evaluations mentioned in

Section 1.1. Firstly, this evaluation is carried out on new corpora drawn from public-

domain sources that are freely distributable online. Secondly, the full results of the

 4

evaluation are published (reporting the output of an extensive list of previously used

evaluation metrics); each algorithm’s full output is published as well, enabling future

studies to be fairly compared with this one.

Five previously developed algorithms have been collected, representing a variety

of approaches to the task of automatic structural analysis, and evaluated on three musical

corpora. The three corpora have been selected to facilitate future reference to this

benchmark evaluation: two corpora (Beatles and Real World Computing, or RWC)

consist of sets of music and accompanying annotations that, although not freely

distributable, have been subject to the most widespread testing so far in structure analysis

research. This helps establish a link between the present evaluation and previously

published evaluations. The other corpus, containing classical and jazz music, has been

assembled from collections of public-domain or uncopyrighted audio which is freely

available online. This way, other researchers may legally obtain this corpus at no cost,

maximizing the potential for future comparative analysis. Structural annotations for these

works have been generated for this thesis and are released into the public domain as well.

Together, these corpora represent a diverse set of genres, including popular, classical, and

jazz music.

The performance of each algorithm on each corpus has been measured using each

of an extensive list of performance metrics. In the absence of a consensus regarding

which evaluation measures best express the performance ability of analysis algorithms,

all measures that have been used in previous publications on this topic have been reported

for the present evaluation. In addition, the structural descriptions estimated by each

algorithm have been published as an online appendix to this thesis,2 enabling future

researchers without access to the algorithms tested here to fully update this benchmark

evaluation with new evaluation metrics.

1.3 Scope of the present work
Form and structure are fundamental concepts in music theory and analysis, so it is

no surprise that research involving these subjects is extensive and diverse. In this section,

2 <http://www.music.mcgill.ca/~jordan/structure>

 5

we narrow our definition of “form” and specify what type and format of music shall be

focused on in this thesis.

1.3.1 Definition of the word “form”
Writing a technical-minded work on a topic as complex and enigmatic as musical

form can be a treacherous endeavour, since, unlike relatively well-defined concepts such

as “pitch” or “meter,” “the definition of the word ‘form’ has been the subject of aesthetic

debate for centuries” (Arnold et al. 2010). In addition, the most useful definition of

“form” can vary significantly according to the musical genre under consideration; or, as

Arnold et al. continue: “in musical context ‘form’ cannot be separated from content.”

Those studying music composed in the Romantic era may thus have completely different

concerns from those studying 21st-century popular music—or those studying medieval

masses, for that matter.

Complicating this is the fact that within the MIR community, the concept known

as “musical form” to music theorists is usually referred to as “musical structure.” This

can cause some confusion since the general term “structure” has been used to describe

topics as diverse as melodic phrasing, patterns of rhythms or note onsets, or even

between-song similarities. As a result, much research published on the topic of “musical

structure” has little to do with the restricted notion of structure as form that will be

considered in this work.

Specifically, we will restrict the meaning of “structure” to mean how a piece is

constructed out of distinct, large-scale sections, which may repeat several times.

Analyzing structure thus means discovering what these sections are, and providing them

with labels to indicate which sections are similar to or repetitions of each other. This is a

significantly more straightforward understanding of form than those invoked in

Schenkerian analysis or in the Generative Theory of Tonal Music (Lerdahl and

Jackendoff 1983), two analytical approaches that yield information about tonal evolution

and hierarchical grouping structure, respectively. By directing our attention to large-scale

sections, this definition of form also distinguishes the current topic from the related topics

of pattern recognition and melodic segmentation, which both usually focus on small-scale

structure.

 6

1.3.2 Types of music under consideration
This simpler notion of structure is valid for many familiar types of music,

including verse-chorus form, which consists mainly of alternating repetitions of two

prominent sections, the verse and the chorus. But it applies just as well to any other

primarily sectional form: for instance, many blues pieces are constructed out of identical

repeating 12-bar harmonic progressions; dance-form pieces with a ternary structure and

strict repetitions were common in the Classical era; and constructing larger pieces out of

strictly repeating sections is a compositional procedure shared by many folk music

traditions.

However, this notion of form is perhaps too simple for many other types of music:

to divide a fugue into sections with discrete boundaries may be difficult, and an analysis

of a sonata that did not describe the tonal relationships between sections would likely be

considered incomplete. Because all of the algorithms being considered here are guided by

this simpler notion of form as a decomposition into sections, we divert our attention from

those musics for which this is ab initio a weak analytical approach, so as not to stack the

odds against the algorithms. We avoid works whose primary organizational scheme is

developmental, motivic, or contrapuntal—in short, works that are through composed—

and instead consider works of the kind described in the previous paragraph.

1.3.3 Data formats under consideration
An additional restriction to the scope of this work is that we mainly consider

automated methods of structural analysis that operate on an audio signal, rather than on a

symbolic representation of the music such as MIDI (Musical Instrument Digital

Interface). A MIDI file encodes high-level information about a piece’s pitch, rhythm, and

instrumentation, and therefore could be the preferred format from which to begin an

analysis. However, as a pragmatic concern, such files are rarely available for popular

music, and so their study does not feature prominently in the literature reviewed in the

next chapter.

Having defined and narrowed the scope of this research, it should be mentioned

that there exists a lively parallel field of research, in which specific types of structural

descriptions are sought for through-composed classical works, usually in symbolic

 7

format. For instance, efforts to automate GTTM analysis are practically as old as the

theory itself, given that it is already explicitly rule-based. (See Hirata et al. 2007 for a

detailed review.) Efforts to automate Schenkerian analysis are similarly long-standing

(see Smoliar 1980; Marsden 2007; Kirlin 2009). Cambouropoulos’ (1998) General

Computational Theory of Musical Structure describes a system for segmenting melodies

that draws from several theorists’ work, including Nattiez’s work on paradigmatic

analysis and Narmour’s work on the perception of melody. Since they address symbolic

representations of music only, all of this work falls outside the scope of this thesis.

1.3.4 Summary
In summary, the focus of this thesis is on automatic structure analysis algorithms

which: (1) treat structure as the large-scale organization of the piece into distinct, labelled

sections; (2) consider genres of music for which it is valid to presume that this type of

structure exists, most commonly verse-chorus and song-form music; (3) operate on audio

signals, rather than symbolic score-like representations.

1.4 Organization of the present work
This thesis is organized as follows. The next chapter is a literature review that

summarizes previous approaches to automatic music structure analysis. In Chapter 3, the

implementation of the three structure analysis and two segmentation algorithms that are

compared in this work is discussed in greater detail.

Chapter 4 addresses issues pertaining to the annotation and evaluation procedures.

It describes the two corpora used in this work that were developed previously, as well as

the new corpus of jazz and classical pieces that was collected and annotated for this work.

Chapter 4 also explains the many measures used to evaluate the performance of structure

analysis algorithms. The results of this evaluation are presented and discussed at length in

Chapter 5, including comparisons across different corpora, algorithms, and other

parameters. The work is concluded in Chapter 6.

 8

2 Literature Review

In the previous chapter, we defined a “structural analysis” of a piece of music as

its decomposition into large-scale sections, combined with a set of labels for these

sections indicating which are similar to or repetitions of each other. The present chapter

gives an overview of the methods that have been used to produce such analyses

algorithmically.

Although the focus of this thesis is on structural analysis as defined in the

previous chapter, this literature review includes discussion of some related sub-problems,

described in Section 2.1. Although structural analysis methods differ greatly with respect

to the techniques used, they all begin by extracting features from the audio, a step

described in Section 2.2. The structure analysis methods themselves are discussed in

Section 2.3. In Section 2.4, a variety of practical applications for structural analysis are

outlined.

2.1 Scope of related sub-problems
As stated previously, the goal of structural analysis is to discover a piece of

music’s large-scale organization into distinct, labelled sections. But while the focus of

this literature review remains on structural analysis, many of the methods summarized

here do not all have a complete structural analysis as their final goal. A variety of related

sub-problems have been addressed, including:

• segmentation, the estimation of a piece’s structural boundaries;

• chorus detection, the extraction of only the most-repeated section of a piece3;

• repetition detection, the extraction of all repeated segments of a piece;

• full structure analysis, the segmentation of a piece and the grouping of all

segments that belong together;

• semantic structure analysis, a full analysis in which the segment groups are

provided meaningful labels such as “chorus” and “verse.”

3 Note also that the application of music “thumbnailing,” or producing short audio summaries of music, is
strongly related to chorus extraction, and the two tasks are often described interchangeably. See Section
2.4.1.

 9

For each of the above tasks, an example ground truth description is shown in

Figure 2.1 for the song “Yesterday” by The Beatles. (“Ground truth” is generous wording

for something that cannot actually be estimated with objective certainty; this issue is

discussed more extensively in Section 4.1.) The information in each kind of analysis is

different, but strongly related. This work focuses primarily on systems that produce “full

structural descriptions,” without necessarily providing semantic labels. However,

oftentimes the output of a “repetition detection” system can easily be considered a full

structure analysis if each non-repeating section is simply assigned to a unique group.

Also, some algorithms that only estimate a segmentation are also evaluated in this work.

Figure 2.1. Example of ground truth annotations for the song “Yesterday” by The Beatles for the purposes

of five different sub-problems in music structure analysis.

2.2 Feature extraction
As stated in Section 1.3.3, the methods for automatic structure analysis discussed

here operate on audio data. Since audio data is very large and frequently noisy, we rarely

work with it directly, and instead we extract features. This step is an opportunity both to

reduce the dimension of the data and to isolate whatever information is considered most

important for structural analysis. For each feature, the audio is partitioned into windows,

and the data in each window are transformed into a more compact representation of some

 10

musical attribute. The result is a sequence of feature frames, where each frame is

represented by a vector of values.

In this section, after a brief word on pre-processing the signal, we describe the

calculation of commonly used features relating to the musical parameters of pitch, timbre,

and rhythm.

2.2.1 Pre-processing
Before the feature extraction methods below are applied, the audio signal is

divided into short, potentially overlapping frames, and a separate feature vector is

extracted for each frame. These frames are usually very short, on the order of 20

milliseconds long, because feature extraction can be far less efficient on larger windows.

However, this resolution may be far too high for the purposes of structural analysis,

where one seeks to segment the audio into chunks on the order of 20 seconds long. On

the other hand, taking the mean of a feature over several frames can obscure important

details. A common compromise is to estimate statistics over several frames—that is, the

mean and standard deviation of a feature.

An alternative approach to windowing is to run a beat tracking algorithm to

estimate the locations of beats in a piece (e.g., Levy and Sandler 2008, and many others),

and use the assumption that structural boundaries should be restricted to beat locations.

The spans between beats, on the order of 250–500 milliseconds long, are taken as non-

overlapping windows. Beat tracking generally works by calculating an onset detection

function that estimates the likelihood in time that a note or percussion onset occurs in the

audio. This function may be used to estimate the tempo of the piece and the beat

locations. For a review of beat tracking, see Hainsworth (2006).

2.2.2 Pitch features
The pitch of a sound is perhaps its most salient attribute in a musical context. The

perceptual quality of pitch is characterized physically by estimating the frequency content

of a sound. This may be done in a rather straightforward manner by computing the

spectrum with the Fourier transform (FT), which estimates the power at each linearly-

spaced frequency bin. The raw output of the FT was used as a feature by Foote (1999),

Chai (2003) and Van Steelant et al. (2002). However, it should be noted that for the

 11

analysis methods described in Section 2.3, it is important that audio frames that “sound

the same” have similar feature vectors. Furthermore, especially for complex learning

algorithms, having very large feature vectors can mean prohibitively long computation

times. Thus the spectrum is usually processed further to achieve a better trade-off

between concision and accuracy.

Since the perception of pitch is logarithmic, the frequency bins of the FT may be

clustered together to rescale the frequency axis; a variation of the FT called the constant-

Q transform (CQT) uses this scaling. Most music does not make arbitrary use of the

continuous frequency axis, but confines itself to a discrete set of notes, such as the 12-

tone scale used widely in Western music. Because of this, the resolution of the CQT is

often set to 12 bins per octave to mimic this scaling, so that each bin corresponds to a

single note. Finally, because the perception of pitch is cyclic, with notes an octave apart

belonging to the same pitch class, the output of the CQT may be compressed by summing

all contributions to the same pitch class. The result is a 12-bin histogram called a

chromagram or harmonic pitch class profile (HPCP). Both concise and powerful, the

chromagram has been shown to be very useful as a summary of the pitch content in a

signal, and accordingly it is the most commonly used pitch-based feature; see, for

example, Bartsch and Wakefield (2001), Goto (2003a), Shiu et al. (2006), and many

others.

Some researchers have used variations on the chromagram that include slightly

more detail: for instance, Paulus and Klapuri (2006) used a 36-bin chromagram, which

kept separate the contributions from the low, middle, and high frequency ranges of the

CQT (although this large vector was reduced to 15 dimensions using Principal

Component Analysis, described later). Lu et al. (2004) used the raw output of the CQT,

but only considered components within the main vocal range, again leading to a 36-

dimensional vector. This approach has the advantage of preserving intervallic pitch

relationships, information which is absent from the chromagram, but on the other hand it

may fail to detect the similarity between two identical harmonies spaced octaves apart.

Another variation is to calculate a CQT with a greater number of bins per octave

to provide higher pitch resolution: the 24-bin chromagram used by Gómez (2006) offers

 12

quarter-tone resolution, for instance. Gómez et al. (2006) have even used a 120-bin

chromagram with 10-cent resolution.

One potential drawback to the chromagram is that it does not account for the

presence of harmonics in sound. Notes played on instruments consist of a fundamental

frequency (corresponding to the heard pitch) as well as a number of harmonics, most of

which are in a different pitch class than the fundamental. When two feature vectors are

compared with each other, these chromagram components can lead one to misestimate

the similarity between two frames. This can be partly mitigated by normalizing each

chroma vector to have constant power.

To make chromagrams more robust, Gómez (2006) proposed not simply mapping

each frequency bin f to the pitch class to which f belongs, but adding contributions (in

decreasing amounts) to all the pitch classes which might have produced f as a harmonic,

namely f/2, f/3, f/4, and so forth. This scheme was used for structural analysis by Ong

(2007). Müller and Kurth’s (2006) version of the chromagram represents another solution

to this problem: assuming that each chroma vector should have relatively few important

components, he quantized each bin according to their relative power: a component

contributing more than 40% of the vector’s power received the value 4; a component with

at least half that power received 3; and so forth. Components contributing less than 5%

were zeroed.

Another way to account for harmonics was used by Lu et al. (2004), although it

was implemented at the similarity-estimation stage, described in Section 2.3.1. They

enhanced the estimation of whether two chroma vectors were similar by computing the

difference between chroma vectors. If there were prominent spikes in the difference

vector separated by intervals related to strong harmonics (i.e., intervals of an octave or

fifth), then the similarity estimate was boosted, since the mismatch between vectors was

likely due to timbral differences. In a similar vein, Su et al. (2009) computed a

“dissonance level” feature by estimating the prominence of minor second and tritone

intervals in the unwrapped chromagram.

All of the pitch-based features described so far provide a vector where each

component estimates the degree to which a pitch or pitch class is present in the sound. In

this way they are all effective at capturing information related to harmony. However, if

 13

one wishes to focus one’s attention on the melody, one may obtain a score-like

representation of the music using techniques that estimate the most prominent

fundamental pitch. One such technique, used by Dannenberg and Hu (2002) and Chai and

Vercoe (2003) is based on the autocorrelation function. Each value of the autocorrelation

function estimates how well the signal matches up with a version of itself delayed by a

particular duration. The best delay, selected with a peak-detection algorithm and some

heuristics, will correspond to the fundamental pitch. Other methods have been developed

for fundamental pitch estimation; de Cheveigné (2006) provides a good summary of this

field.

2.2.3 Timbre features
Timbre may be defined negatively as that attribute of sound that corresponds

neither to pitch, nor loudness, nor duration. Colloquially, it is what allows one to

distinguish the same note played on two different instruments. Physically, timbre is

usually characterized by describing the envelope of a sound’s frequency spectrum.

Several attributes of the spectrum, such as its centroid, roll-off, and flux, may be taken as

single scalar values, as did Xu et al. (2005) and Ong (2007). More frequently, a feature

vector that describes the shape of the spectrum is used.

Mel-frequency cepstrum coefficients (MFCCs) are perhaps the most commonly

used timbral feature, and are used by nearly half of the studies summarized in this

chapter. Originally proposed by language researchers for performing speech analysis

(Mermelstein 1976), they characterize periodicities in the spectral envelope of a sound

and are effective at discriminating timbres. Upon dividing the audio signal into windows,

the procedure for calculating the Mel-frequency cepstrum is as follows:

• Obtain the spectrum of the sound using the Fourier transform.

• Convert this signal to the Mel scale, which defines frequencies that are evenly

spaced according to human perception. This signal is usually reduced by summing

components into 40 equally spaced bands.4

4 Steps #1 and #2 may equivalently calculated by passing the audio signal through a special Mel-scaled
filter bank with 40 filters, and arranging the output of each filter into a vector.

 14

• Take the logarithm of the result. This essentially decouples the sound’s timbral

information from its pitch.

• Calculate the discrete cosine transform of the result to produce a signal

representing the periodicities in the log-spectrum. These values represent the Mel-

frequency cepstrum.

Usually only the first 13 coefficients are preserved at this step, since the higher-

frequency periodicities tend to correlate with the pitch of the original sound and not with

its timbre. The first coefficient estimates the overall power in the signal and is also

sometimes dropped after normalizing the rest of the vector. However, some have chosen

more than 13 coefficients: Peiszer (2007) used all 40 coefficients, whereas Abdallah et al.

(2005) reduced this set using principle component analysis (PCA) to produce a new

collection of 20 maximally uncorrelated coefficients. Roughly stated, PCA detects

correlation between vector values and eliminates these redundancies in the data by

projecting each feature vector onto a smaller set of values. These projected values for

each frame can substitute the raw spectral data in a more compact form.

Maddage et al. (2004) proposed using octave-scale cepstrum coefficients

(OSCCs), a variation of MFCCs that uses a different frequency scale: rather than separate

the entire spectrum into 40 perceptually-scaled bands, the bands are packed more densely

near the centre of the singing range (~250–1000Hz), and less densely outside that range.

They reported that OSCCs were more robust for distinguishing mixtures of instruments—

specifically, distinguishing portions with singing from portions without.

Cepstral analysis seeks to characterize the spectrum by treating it as a signal itself

and estimating its periodicities. However, the shape of the spectrum may be described in

a more direct way by partitioning the spectrum into a set number of bands and estimating

the relative power in each one. The MPEG-7 standard5 defines its

AudioSpectrumEnvelope descriptor in this way, recommending the use of 8

logarithmically-spaced bands between 62.5 Hz and 16 kHz, plus two additional bands for

frequencies outside this range, although denser spacings are included in the standard

(Wellhausen and Höynck 2003).

5 A description of the MPEG-7 standard and its purpose may be found online.
<http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm> accessed 10 August 2010.

 15

Levy et al. (2007) used a related approach, also defined in the MPEG-7 standard

as the AudioSpectrumProjection descriptor. For this feature, the spectral envelope is

calculated in the same manner as above, but with much higher resolution: Levy et al.

used bands spaced 1/8th octave apart. The very large number of values in the resulting set

of feature vectors can make further processing difficult, so PCA is used to shrink them.

2.2.4 Rhythm features
Although harmony and timbre are vital to one’s perception of which instants

sound similar to each other, our perception of music depends on these instants unfolding

in time. The way that they are arranged in time, with various accents or rhythmic

patterns, is vital to one’s perception of which passages sound similar to each other.

Capturing this information is the goal of rhythmic features. While much less commonly

used than pitch- or timbre-based features, rhythm-based features have proven useful in

some studies on structure analysis (e.g., Jensen et al. 2005; Paulus 2009). Rhythm

features are usually derived from lower-level features, such as the loudness envelope, or

perceptual spectral flux (PSF), which has been shown to correlate strongly with a

listener’s perception of note onsets.

One means of obtaining a compact view of the rhythmic content of a sound is

called a rhythmogram, which estimates the prominent inter-onset intervals in the sound

signal. Jensen (2005) produces a rhythmogram in two steps: first, he calculates the

perceptual spectral flux (PSF) function of the signal, a feature which has been shown to

correlate strongly with a listener’s perception of note onsets; second, he calculates the

autocorrelation function of the PSF function, to show how well the signal matches itself

at different lags. This is the same technique described previously for pitch estimation,

except that here a larger time scale is involved: whereas the period of the fundamental

pitch may be on the order of 1 to 10 milliseconds (100–1000 Hz), Jensen’s rhythmogram

only considers rhythmic periods larger than 100 milliseconds (0–10 Hz).

Fluctuation patterns (FPs), described by Rauber et al. (2002), are similar to the

rhythmogram, except that they use the loudness envelope instead of PSF as a mid-level

feature. To this they apply the Fourier transform, detecting component frequencies

instead of periods. Additionally, they calculate a separate fluctuation pattern for several

 16

discrete frequency bands, divided according to the Bark scale, which roughly models the

critical bands of the inner ear. Despite the very large size of the resulting feature vector (a

50-element FP is calculated for each of 24 frequency bands in each frame, producing

1200 values), it can be greatly reduced with PCA; Rauber et al. (2002) reported reducing

it to 80 principal components with minimal loss of variance. FPs were subsequently used

by Peiszer (2007) and by Su et al. (2009); Turnbull et al. (2007) used a variation with

bands divided according to the Mel scale instead of the Bark scale.

In a global sense, rhythm is related to tempo, or the speed of a piece of music,

expressed in beats per minute. Tempo is often deduced by detecting the most common

inter-onset intervals in the signal, and is calculated as a preliminary step in the beat-

tracking algorithms mentioned earlier. Kim et al. (2006) made novel use of tempo

estimates as a feature: observing that different sections of music often produce different

tempo estimates (since tempo estimation algorithms are prone to make octave errors,

misestimating the true tempo by a factor of a power of 2), they used the frame-wise

tempo estimation as an initial segmentation of the piece.

The rhythm descriptors stand apart from the pitch and timbre features because

they incorporate information about how the music unfolds in time. However, one may

easily augment features with timing information by calculating the instantaneous

derivative between neighbouring feature vectors, as in Tzanetakis and Cook (1999) and

Su et al. (2009). Higher-order derivatives may be calculated indefinitely, but the

computational cost of having feature vectors with too many dimensions discourages this;

it does not appear that anyone has gone beyond the second derivative. Turnbull et al.

(2007) used derivative features, as well as what they termed “difference” features: these

measured for each frame the dissimilarity between the average feature values for a short

period before and after.

Derivatives can show the degree to and the rate at which pitch- and timbre-based

features change in time. To capture information on the frequency with which they

change, Peeters et al. (2002) used what he termed “dynamic features.” These are

calculated in much the same way as the fluctuation patterns described above: after

producing, say, the MFCC magnitudes for each frame, he calculated the spectrum of each

component’s fluctuations over time using the Fourier transform. By varying the window

 17

over which the FT is taken, one can vary the time scale being examined: a small window

will pick up short-term fluctuations, and a large window will estimate long-term

fluctuations. In either case, the result is a large matrix for each frame, where element (i, j)

measures the degree to which MFCC band i fluctuates with frequency j. Again, the large

size of each feature vector becomes a problem: to identify the most important matrix

elements, Peeters et al. used a supervised learning technique which maximized the mutual

information between feature values and the section classes defined by annotated pieces of

music.

2.3 Approaches to structural analysis
In the previous section, a variety of mid-level representations characterizing

musical features were described. What remains is to analyze this information and produce

a structural analysis. The next section introduces some ideas that are important in

understanding the structural analysis methods summarized in this chapter. This is

followed by a review of top-down approaches and then bottom-up approaches.

2.3.1 The sequences hypothesis vs. the states hypothesis
In pursuing a structural analysis algorithmically, there are two basic assumptions

that one may make about how structure is reflected in music, which correspond to the two

basic analytic strategies. Peeters (2004) described them as the “states” and the

“sequences” approaches, and most analysis systems may be classified as taking one or the

other approach. These different approaches are discussed in this section.

In the sequences approach, the algorithm searches a series of feature vectors for

repeating sequences. The algorithm must then deduce from these repetitions what the

structure of the piece is. If the different sections of the piece each have distinct sequences

of features—for instance, if the chorus and verse have different melodies—then this

approach may succeed. In the states approach, the goal is to look for sections of the piece

which are homogeneous with respect to some feature, or which occupy a single “state.”

For instance, suppose the chorus of a song used the chords C, F and G, whereas the verse

mainly used the chords A and E; each section would thus occupy a particular harmonic

 18

state. Rather than detect a particular repetition, then, the states approach relies on

estimating what the important states are, and discovering when they reoccur.

Each approach implies an assumption about how music is structured. To

understand their respective advantages, it is helpful to consider some examples. In ideal

circumstances, both approaches should be able to correctly analyze a song with ABA

structure. However, given the structure AAB, the states approach would not recognize the

boundary between the two A sections, and would produce the analysis AB. On the other

hand, the structure ABC, containing no repetitions, would stymie the sequences

approach. The possibility of a song with structure AABCA demonstrates the need, in

theory, to consider both sequence and state information. These situations and a couple

others are summarized in Table 2.1.

True structure: Sequence analysis: State analysis:

ABA ABA ABA

AAB AAB AB

ABC A ABC

AABCA AABA ABCA

ABAB AA ABAB

ABABB ABABB ABAB

Table 2.1. Ideal structural analysis provided by the sequences and states approaches for different true

structures.

Many of the algorithms discussed in this chapter can be seen as exclusively

applying either the sequence or state approach. However, several use information from

both approaches, sometimes in separate stages (e.g., Cooper and Foote 2003), and

sometimes all at once (e.g., Paulus and Klapuri 2008b). Although the present literature

review is organized according to methodological approach, the states and sequences

perspectives will be referred to frequently.

In Section 2.3.2 we discuss the top-down approach, in which an overall view of

the piece is produced (generally in the form of a self-similarity matrix) and deconstructed

 19

into separate sections. In Section 2.3.3 we discuss the bottom-up approach, in which

some form of clustering algorithm builds an analysis of the piece from individual frames

or short sequences.

2.3.2 Top-down approach: Self-similarity matrices
The top-down approach to music structure analysis involves producing an overall

view of the piece and extracting from it information on the location of boundaries

between musical sections and the similarity of these sections to each other.

The overall view is usually computed as a self-similarity matrix (SSM),

alternatively called a self-distance matrix6, a method originally proposed by Jonathan

Foote (1999) as a means to visualize repeating patterns in music. SSMs are very similar

to recurrence plots, which Eckmann et al. (1987) proposed for better understanding the

evolution of dynamical systems. As a technique for visualizing repeating patterns

embedded in any long, complex sequence, recurrence plots have since been applied to

many research domains, including DNA sequence analysis. Foote was the first to apply

this technique to music analysis.

Given a sequence of N feature vectors, the NxN self-similarity matrix is generated

by filling the pixel at (i, j) with the similarity between vectors vi and vj. The similarity is

usually computed using either the Euclidean or cosine distance between the vectors. The

Euclidean distance dE corresponds to the geometric length between two points, while the

cosine distance dC finds the angle between two vectors. Considering two vectors vi and vj,

these distances are calculated as:

()
()

ji

ji
jiC

jijiE

vv

vv
vvd

vvvvd

⋅

⋅
=

−=

,

,

where x denotes the vector norm of x, i.e., its dot-product with itself:

∑=
i

ixx 2

6 There is no practical difference between a self-similarity and a self-distance matrix. In this thesis, all such
matrices are referred to as SSMs, and in all visualized SSMs, similar regions show up as white and
dissimilar regions as black.

 20

The Euclidean distance function is theoretically unbounded and so is sensitive to

the magnitude of the vectors. On the other hand, the cosine distance function is

normalized by the magnitude of the two vectors being compared, and outputs values

between 0 and 1. The use of a scalar distance measure is part of what distinguishes usage

of SSMs for music analysis from earlier recurrence plots, which typically used binary

output values (i.e., indicating whether elements i and j in a string were identical or not).

Note that half of the information in an SSM is redundant if the distance measure is

symmetric, although the full matrix is usually presented anyway.

When the features describe distribution statistics (e.g., the mean and variance of

MFCCs over a particular period), one may use the Mahalanobis distance metric, which

estimates the correlation between two distributions (e.g., Xu et al. 2002), or the Kullback-

Leibler (KL) divergence, which estimates how much extra information would be required

to describe one distribution based on a code provided by the other (e.g., Foote and

Cooper 2003). The KL divergence dKL(vi, vj) is not symmetric, so a symmetrized version

is usually produced by summing the distances: dKL(vi, vj) + dKL(vj, vi). Mauch et al. (2009)

used the Pearson correlation coefficient, which estimates the linear dependence between

two feature vectors from their covariance.

An SSM can vividly illustrate the internal structure of the music. In particular,

two aspects of structure are often clearly represented: boundaries between sections, and

repetitions.

2.3.2.1 Boundaries

Intuitively, we can claim that a boundary is felt in a piece of music whenever

something changes. Certainly this is part of the listening experience: perception

experiments by Bruderer et al. (2006) confirm, for instance, that many structural

boundaries may be attributed to changes in timbre. A sudden change reveals itself in an

SSM as a checkerboard pattern (see Figure 2.2a) on the main diagonal: the corners of

these patterns indicate moments at which the recent past is self-similar, the near future is

self-similar, but the past and the future are not similar to each other. On a small scale,

these corners may indicate the boundary between two different notes: in Figure 2.3a, the

SSM for the first couple seconds of a recording of “Layla” by Derek and the Dominoes,

the main diagonal (from bottom left to top right) is plainly punctuated with corners

 21

Figure 2.2a (left). Ideal checkerboard kernel.

Figure 2.2b (right). Gaussian-tapered, 32-pixel square checkerboard kernel.

Figure 2.3a. SSM for the first 1.5 seconds of a recording of “Layla” by Derek and the Dominoes using

Fourier transform coefficients as features. Time proceeds linearly from left to right and from bottom to top.

The pixel (i, j) therefore refers to the ith pixel from the left and the jth pixel from the bottom. The six short

notes of the opening riff (see Figure 2.4) are visible as white squares along the main diagonal, and the

sustained note that follows is visible as a relatively homogeneous white region in the top right of the SSM.

Figure 2.3b. Corresponding score for the sound depicted in Figure 2.3. Score obtained from Wikipedia,

<http://en.wikipedia.org/wiki/Layla> accessed 4 August 2010.

 22

marking the onset of each new note (a score transcription of the excerpt is in Figure

2.3b). Each of these corners indicates an instant where the previous short time span and

the time span to follow are both internally homogeneous, since they represent periods of

near-constant pitch, but where these time spans are very dissimilar to each other, i.e., they

are different pitches.

This same pattern may be seen at larger time scales. Figure 2.4 shows the SSM

for the entire length of the same recording of “Layla” using MFCCs as features. That

song famously consists of two starkly different halves: the first is a familiar alternation of

verses and choruses, ending in a guitar solo; the second part, beginning at around 3:10, is

an extended instrumental section that includes a prominent piano part. Since the two

halves are in different keys, the same turning point is also readily visible in Figure 2.5, an

SSM for “Layla” using chroma vectors as features. This image also reveals a second

moment of great change at around 2:20; indeed, this is when the repeating melodies of

the verses and choruses end and the non-repeating guitar solo section begins. The

difference between the two SSMs illustrates the fact that different features often capture

different aspects of musical structure.

To detect these moments of change automatically, Foote (2000b) proposed

correlating each point along the main diagonal with a checkerboard kernel tapered with a

Gaussian function (Figure 2.2b). When the kernel is centered on a moment of change, the

correlation will be high, corresponding to a peak in the resulting novelty function. By

smoothing the function and using an appropriate peak-picking function, the prominent

boundaries of the piece can be estimated.

The checkerboard kernel is usually Gaussian tapered to be less sensitive to noise,

and its size may be adjusted to pick out structural boundaries of a particular scale. Figure

2.6 shows two novelty functions produced for the same song, “Layla,” but at different

temporal scales. Both kernels detect the important midway point near 3:10, but its

relative significance is seen best when measured with the larger kernel, illustrating its

sensitivity to larger-scale structure.

 23

Figure 2.4. SSM for the entirety of the song “Layla” using MFCCs as features.

Figure 2.5. SSM for the entirety of the song “Layla” using chroma vectors as features.

 24

Figure 2.6. Two novelty functions generated by convolving a Gaussian-tapered checkerboard kernel along

the diagonal of the chroma-based SSM shown in Figure 2.5. The small kernel had a width equivalent to 2%

of the length of the song, while the large kernel had a width equivalent to 10% of the length of the song.

2.3.2.2 Repetitions

Self-similarity matrices also reveal when material is repeated in a piece, which is

very important to know when analyzing the kind of sectional music under consideration

here (discussed in Section 2.1.2). As Peeters (2004) points out, repeated sections may be

reflected in SSMs in one of two ways: as stripes parallel to the main diagonal, indicating

reoccurring “sequences” of music, or as blocks, indicating reoccurring, internally

homogeneous “states.” The presence of either feature depends on the type of music being

considered and the feature used to generate the SSM, so each are described in turn.

Consider a diagonal line segment n seconds long that is parallel to an SSM’s main

diagonal, and which begins at the point (i, j). It indicates that the n-second sequences (i,

i+1, i+2, ... i+n) and (j, j+1, j+2, ... j+n) are similar to each other; that is, the material

beginning at time i repeats at time j. Such line segments may be observed in Figure 2.7a,

an SSM based on chroma vectors for the song “Yesterday” by The Beatles. A picture of

the ideal diagonal line segments anticipated for that song, based on its structure as

annotated by a human listener, is displayed in Figure 2.7b. The sequences in this song are

prominent because while none of the sections are harmonically static, the melodies and

harmonic progressions of each part repeat closely.

 25

Figure 2.7a. SSM for the song “Yesterday” using chroma vectors.

Figure 2.7b. Ideal sequence representation for SSM of “Yesterday.” The letters I, V, C and O stand for

“intro,” “verse,” “chorus” and “outro,” respectively. Gray lines indicate annotated boundaries and diagonal

white lines indicate repetitions.

 26

In other songs, sections marked by distinct timbral textures or different harmonic

areas may reveal themselves as blocks instead of lines. Before, it was seen that blocks on

the main diagonal indicate sections of homogeneous sound: for example, the two halves

of “Layla” were each homogeneous (drawn from a single palette of chords) and different

from the other (they occupied different key areas). When a homogeneous section repeats

after some intervening material, a block will appear off the main diagonal. This may be

observed in Figure 2.8a, the SSM based on chroma vectors for “Lucy in the Sky with

Diamonds” by The Beatles. In this song, the chorus and verse occupy very different tonal

spaces, so the blocks are quite clear, despite some cross-similarity between the bridge and

chorus. The ideal block structure anticipated from the annotation is pictured in Figure

2.8b.

The choice of feature has an impact on the presence of lines or blocks in the SSM:

the “Layla” example showed how timbral and pitch-based features can emphasize

different sets of important boundaries (see Figures 2.4 and 2.5), while the two Beatles

examples show that the same feature can emphasize different kinds of musical structure,

depending on the properties of the song in question (see Figures 2.7a and 2.8a).

Fortunately, in many pieces, different sections often exhibit simultaneous changes in

timbre, harmony and rhythm, and one is likely to be able to uncover blocks or diagonal

line segments in any SSM. For instance, in Figure 2.8a, the repeating bridges and

choruses produce prominent blocks, while the repeating verses leave diagonal lines.

To simplify the process of filtering the matrix and enhancing repetition lines

(addressed in the following section), an SSM is commonly transformed into a time-lag

matrix, where each pixel (i, j) encodes the similarity between frames i and i – j. Figure

2.9a shows the time-lag SSM for the song “Yesterday” using chroma features, with the

ideal sequence structure in Figure 2.9b. These contain the same information as Figures

2.7a and 2.7b, but note how the lines of constant lag in the original SSM—i.e., the

diagonals—are converted into straight horizontal lines in the time-lag matrix.

Clearly, knowledge of boundaries alone is not sufficient to infer all structure: after

segmentation, one needs to assess the similarity of the segments. However, repetition

detection alone provides insufficient information too: some pieces have non-repeating

sections that are nevertheless distinct from each other, such as the Beatles’ “Happiness Is

 27

Figure 2.8a. SSM for the song “Lucy in the Sky with Diamonds” using chroma vectors.

Figure 2.8b. Ideal state representation for SSM of “Lucy in the Sky with Diamonds.” The letters I, V, B, C

and O stand for “intro,” “verse,” “bridge,” “chorus” and “outro,” respectively. Gray lines indicate annotated

boundaries and white blocks indicate repetitions.

 28

Figure 2.9a.Time-lag SSM of the song “Yesterday” using chroma vectors.

Figure 2.9b. Ideal sequence representation of time-lag SSM of “Yesterday.” The letters I, V, C and O stand

for “intro,” “verse,” “chorus” and “outro,” respectively. Vertical gray lines indicate annotated boundaries

and horizontal white lines indicate repetitions.

 29

A Warm Gun,” which has overall structure ABCD. The challenge in the top-down

method lies in mediating these two important sources of information—points of novelty

and knowledge of similar sequences or states—to construct a structural description.

2.3.2.3 Manipulating the SSM

The SSM is very tantalizing: with the human eye one can easily detect the lines

and blocks, and from them, with just a few simple constraining assumptions and

knowledge of musical structure, one may deduce an analysis. In practice, unfortunately,

directing or training a computer to perform these steps is very difficult. Researchers have

experimented with countless filtering techniques and borrowed many ideas from the field

of image processing to accomplish this task. These efforts are summarized here in this

section.

 Image processing

In its initial state, the SSM is often too large to deal with easily, and the lines and

blocks indicating repetitions may be obscured by noise. In addition, repetitions may not

be exact, and the lines which indicate them may have small gaps. These issues may be

partly addressed by low-pass filtering the SSM in the diagonal direction, which

emphasizes lines, and by downsampling the matrix.7 Each pixel (i, j) in the resulting SSM

represents the average similarity between the two sequences of equal length beginning at

points i and j.

Foote (1999) did this with a running-average filter, replacing each pixel by the

sum of a set of w pixels on the same diagonal line, and then downsampling by the same

factor w, on the order of 5 or 10. Some, including Zhang and Samadini (2007) and Paulus

and Klapuri (2008a), have chosen to low-pass filter the features themselves, smearing

them in time before generating the SSM. Müller and Kurth (2006) used both approaches:

their chroma vectors were low-pass filtered and downsampled in time, and further low-

pass filtering was applied to the SSM in the diagonal direction. Noting that relatively

silent portions of the audio could introduce noise to the SSM (in particular if the

Euclidean distance is used as a similarity measure), Marolt (2006) added a small amount

7 Downsampling is usually preceded by low-pass filtering to avoid distorting the data.

 30

of random noise to the feature vectors to reduce spurious matches. The length of the

diagonal filter applied affects the time scale over which matching melodies may be

sought. Marolt (2006) calculated three SSMs using different filter lengths and combined

them by element-wise multiplication to achieve a striking reduction in noise.

Working with a time-lag SSM, Goto (2006a) used an elaborate local-mean

estimation technique to reduce noise. For each point, he first calculated the maximum and

minimum local mean values in the horizontal, vertical, and diagonal directions. If the

maximum among these belonged to the horizontal neighbourhood, then the point was

considered part of a repetition line and emphasized by only subtracting the minimum

local mean. Otherwise, it was considered noise and suppressed by subtracting the

maximum local mean. In a later repetition line extraction stage, Goto also high-pass

filtered the SSM in the vertical direction, further enhancing the sequences.

The choice of features used to generate an SSM and the filtering applied to it will

affect how strongly the state or sequence structure appears in it: timbral features probably

reflect states in the music, while pitch features are perhaps more apt to reflect sequences.

Recognizing this, Eronen (2007) created two SSMs from MFCC and chroma features,

applying Goto’s sequence-enhancing directional-mean filtering technique only to the

chroma SSM. The two SSMs were then summed.

Lu et al. (2004) and Ong (2005) both borrowed from the field of image processing

a set of techniques known as erosion and dilation, which are used to smooth out isolated

pixels while retaining edges. Erosion works by replacing each pixel with the minimum

value that occurs in a defined neighbourhood around it; dilation does the opposite,

replacing each pixel with its neighbourhood maximum. Applying these operations in turn

will reduce the impact of isolated minima and maxima, enhancing the appearance of

blocks in an SSM. The operation can be applied in one dimension, for instance, to

enhance repetition lines in a time-lag SSM (Lu et al. 2004), or in two dimensions, to

enhance an SSM’s block structure (Ong 2005). Wellhausen and Höynck (2003) shrank

their SSM and performed erosion at the same time, subdividing the SSM into square

blocks and replacing each with its maximum value. To reduce noise and enhance

diagonal lines, each pixel was divided by the mean of a square region around it, and

multiplied by the mean along the region’s diagonal.

 31

Finally, Peeters (2007) proposed making “higher order” SSMs that take into

account the transitive relationships between frames. An important problem with SSMs is

that although frame k may be detected as similar to frames i and j, these two frames may

not be detected as similar to each other. Peeters applies a transitivity operation to the

SSM which boosts the value at (i, j) if pixels (k, i) and (k, j) have similar values;

effectively, each pixel (i, j) is replaced with the correlation between row i and row j. A

still higher-order SSM could take into account twice-removed transitive relationships.

The technique appeared to greatly enhance the SSM’s repetition lines.

 Beat indexing

The size of the matrix can be reduced mechanically by downsampling, as above,

but an alternative approach is to segment the audio in a musically meaningful way: this

way one may use larger window sizes without worrying about obscuring detail. For

instance, one may use a beat-tracking algorithm to estimate beat locations in a piece and

produce a beat-indexed SSM; this was already mentioned in Section 2.1.1, and was used

by Levy and Sandler (2008), Eronen (2007), Marolt (2006), Bartsch and Wakefield

(2001), and others. Going a step further, Shiu et al. (2006) assumed that each measure is

four beats long, and compared four-beat sequences to create a measure-indexed SSM.

Jehan (2005b) presented a method of constructing hierarchically-related SSMs

that could be applied to structure analysis. Each SSM is indexed at a different time scale:

starting with a standard frame-level SSM, the second SSM is indexed by short segments

determined by note onsets, the third by beat, and the fourth by short, automatically

detected patterns. The criteria used at each level differ as well: the frame-indexed SSM is

built with timbral features; the second is produced by comparing the segments’

envelopes; pitch is included as a feature only at the beat level. The length of prominent,

short, repeated patterns is estimated from the beat-level SSM, and beats are merged into

groups at this scale; the dynamic programming distance between each group of beats is

used to fill the pattern-level SSM.

 Boosting with string matching

Lines of repetition are unlikely to exist as perfectly straight lines at 45 degrees in

the SSM (perfectly horizontal in the time-lag version), due to natural timing deviations in

performance, as well as the arbitrary window size. This can be partly accommodated by

 32

adding a Gaussian-tapered width to the diagonal filter, the approach chosen by

Aucouturier (2001). However, this can blur the SSM significantly. Chai (2005) proposed

using dynamic programming (DP) sequence alignment to reduce the size of the SSM and

detect partial matches more robustly. DP sequence alignment, often referred to as

dynamic time warping (DTW), is a technique that estimates the minimum edit distance

between two strings. Chai considered a short string of feature frames beginning at frame i

and exhaustively computed the DTW distance between it and the rest of the piece at

every future frame j; the minima of this function indicated repetitions and were used to

sparsely populate a time-lag SSM. A similarly sparse SSM was effectively produced by

Zhang and Samadani (2007), although they did not use DTW.

Maddage et al. (2004) used the same approach, but incorporated automatically

estimated measure information to reduce the number of alignments that needed to be

computed. Shiu et al. (2006) produced an SSM indexed at the half-beat level; assuming a

4/4 time signature, this SSM was then subdivided into 8x8-pixel subregions representing

measures. The DTW distance between each pair of measures was used to populate a

smaller, segment-indexed SSM. Peiszer (2007) and Paulus and Klapuri (2008a) would

later use the DTW distance to estimate the similarity between large-scale sections.

Dannenberg and Hu (2002), working with a rough symbolic score that had been

automatically created with fundamental pitch estimation, created an SSM with built-in

sequence information: in it, the pixel (i, j) indicates the length, in seconds, of the longest

match between the substrings beginning at notes i and j, found using a heuristic string-

matching algorithm. However, this was then treated more as a record-keeping device than

as a visual representation: their subsequent analysis approach involved deleting redundant

pixels until a very small number remained, each one indicating a repeating pair of

segments.

Müller and Kurth (2006) presented a method to emphasize repetition lines even in

the face of gross tempo deviations, which are possibly more common in classical music

repertoire than in modern popular music. Recall that with diagonal filtering, each pixel (i,

j) represented the average similarity between the two sequences of equal length beginning

at points i and j. To make this filtering robust to variations in tempo within a single piece,

Müller and Kurth also compared the sequence beginning at point i to a variety of tempo-

 33

shifted versions of the sequence beginning at point j; the pixel (i, j) was taken as the

maximum found similarity value.

 Modulation detection

While tempo deviations are probably rare in popular music, modulations are

relatively common: it is a trope in popular music to modulate near the end of the song to

add dramatic emphasis. Using chroma vectors as features, Goto (2003a) could account

for such cases by generating 12 different modulated SSMs: in each one, the pixel (i, j)

indicates the similarity between the original chroma vector at moment i with the chroma

vector at moment j pitch-shifted by some number of semitones between 0 and 11. The

resulting SSMs, which are no longer symmetric, are searched for repetition lines that

match segments extracted from the unmodulated SSM.

This procedure was later adopted by Ong (2007). To make analysis more

straightforward, Müller and Clausen (2007) condensed the information in Goto’s 12

modulated SSMs by filling the pixel (i, j) with its maximum value (indicating highest

similarity) over the 12 SSMs. The originating SSM of each pixel is remembered to ensure

that the detected repetition lines are not generated spuriously from several SSMs, and

occupy a non-modulating portion of the piece.

Two other options were investigated by Chai (2005): in one case, she estimated

the key of each region of the piece, and used this knowledge to transpose each region’s

feature vector to the home key, creating a key-adjusted SSM. She also created an

interval-based SSM from chroma derivative features.

2.3.2.4 Interpreting the SSM

Having emphasized the state or sequence structure of the SSM, these elements

must be detected in the SSM. This process is rarely straightforward, and a variety of

approaches to this problem have been pursued.

 Estimating states

Foote and Cooper (2003) used a large checkerboard kernel to calculate a novelty

function from the SSM, the peaks of which were taken as a final segmentation for the

piece. Supposing N segments were obtained, a new NxN SSM was calculated to display

the similarity between pairs of entire segments. Adhering to a states interpretation, they

 34

treated the segments as probability distributions and estimated the symmetrized

Kullback-Leibler (KL) divergence between them to populate the segment-indexed SSM.

Singular-value decomposition (SVD) was then applied to cluster the N segments into a

pre-set number of groups, resulting in a full structural description. Put briefly, SVD

attempts to decompose the SSM into a small number of column vectors, and is effective

in this application since all columns corresponding to repetitions of the same segment

should ideally be equal.

Peiszer (2007) also used novelty functions to create an initial segmentation, and

experimented with several k-means clustering algorithms to obtain an analysis. In this

clustering technique, a set of k group centroids are estimated, with each data point being

assigned to that cluster with the nearest centroid. The algorithm accepts a set number k of

centroids as inputs (which may be random), and iteratively adjusts them to reduce the

distance between each cluster’s centroid and the data points that belong to it. Peiszer’s

experiments included: applying k-means clustering to the means of each segment’s

feature vectors; applying k-means clustering to the feature frames and then assigning

segments to clusters with a voting scheme; and estimating the DTW alignment cost

between segments, and incorporating that information into a k-means clustering scheme.

Because k-means is highly sensitive to the initialization of the centroids, Peiszer executed

each algorithm several times, keeping the results with the tightest clusters.

 Detecting repetitions

Goto (2003a), having emphasized the repetition lines in his SSM, searched for

these through several applications of an automatic threshold technique devised by Otsu

(1979), which chooses a threshold by maximizing the between-class difference of the

elements below and above the threshold. Goto found the sum of each row in the time-lag

SSM and used Otsu’s threshold method to select the rows that contained repetition lines.

Each row was smoothed and its repetition lines were extracted by applying Otsu’s

method again. The result was a set of horizontal line segments, each specifying two

regions of a song that are similar.

Consolidating these segments into related groups is a difficult task, since the

detected boundaries of the repetition lines are inexact and may not reflect the true

structure exactly. Furthermore, transitive relationships are not always consistently

 35

detected: that is, if segment B is a repeat of A, and C is a repeat of B, then C is also a

repeat of A and three repetition lines should be detected, but one is often missed. To

overcome these hurdles, Goto developed an elaborate processing chain, including some

heuristically-set parameters defined in Goto (2006a): related segments were first grouped

together if their beginning and end times disagreed by less than 20% of their length, or a

maximum of 3.6 seconds; a search for those repetition lines that were transitively inferred

but not detected was conducted based on the detected segment groups; equally-spaced

segments that repeated too often, and overlapping segments, were removed; and finally,

modulated SSMs were consulted to detect transposed repetitions. Goto dubbed his system

RefraiD, and its general framework has been adopted and modified by many other

researchers.

For instance, Lu et al. (2004) used a similar approach, with some simplifications.

Rather than detect the best rows in the SSM, they used Otsu’s method to set a threshold

and binarized the entire SSM. To avoid too many spurious segments, they also greatly

restricted the range of the automatically set threshold to retain only 0.2–1% of the pixels,

and applied erosion and dilation operations to preserve only segments with a minimum

length of 16–32 beats. The remaining segments were iteratively grouped together,

providing a fairly accurate structural analysis. Finally, the boundaries were refined using

an optimization algorithm that adjusted the boundaries to maximize within-group

similarity and to force repeated segments to have the same size.

Eronen (2007) combined elements of both approaches: Otsu’s method was used to

choose diagonals above a dynamic threshold (although he retained at least the best 10),

the best 20% of points in each diagonal were retained, and a dilation operation was used

to fill in the gaps. The subsequent analysis worked much the same as in RefraiD.

Ong et al. (2006) also followed the RefraiD approach, with a novel addition: after

consolidating segments into groups, they correlated the earliest occurring segment in each

group with the rest of the song to locate additional repetitions that may have been missed.

All peaks within a fixed threshold of the maximum peak were taken to indicate

repetitions. Ong (2007) extended this algorithm to fine-tune the boundaries (the

adjustments were less than 2 seconds), using candidate boundaries produced according to

Ong (2005). In the latter method, novelty functions were calculated from several SSMs

 36

created using various features and filtered to emphasize their block structure. In this way,

Ong combined both the sequences approach (to locate repetitions) and the states approach

(to fine-tune boundaries).

Peeters’ (2007) replaced the segment consolidation phase of the RefraiD method

with a new algorithm that searched among the detected segments to establish which

“mother” segments best explain each detected set of repetitions.

Zhu et al. (2005) incorporated data from karaoke videos into their method, but the

SSM interpretation step was nevertheless very similar to Goto’s method. An SSM based

on chroma features was analyzed using RefraiD to locate repetitions in the music, and an

SSM based on lyrics data8 was analyzed to locate repetitions in the lyrics. The detected

repetitions from each feature were combined afterwards.

Chai (2005), working from a very sparse SSM, took a simpler approach: she

iteratively assembled segments by beginning with the most-frequently repeating

segments (i.e., the columns in the time-lag SSM with the greatest number of pixels) and

extending them according to the lines in the SSM. Müller and Kurth’s (2007) line

detection method involved a greedy, iterative path generation procedure that first used a

fixed threshold to ignore most of the SSM, and then traced the optimal paths among the

remaining pixels. In their algorithm, once a strong path was found, its neighbourhood was

removed from consideration, to avoid detecting redundant segments. A structure analysis

algorithm then grouped transitively related segments and discarded unnecessary ones.

 Hybrid approaches

Shiu et al.’s (2006) approach took advantage of both states and sequences

information. First, to obtain repetition lines, they interpreted the pixel magnitudes as

transition probabilities in a path through the SSM, and then applied the Viterbi algorithm

to uncover the likeliest path through the matrix. The algorithm was able to locate

diagonal paths where they occurred, while being robust to inexact repetitions and slight

timing deviations. To help steer the Viterbi in the correct direction, an additional

8 As a feature, Zhu et al. simply extracted a small image of each character in the lyrics that appear in the
video, and estimated two characters as being the same if more than 75% of the pixels in each image
matched up. By avoiding the complexities of character recognition, they produced a system that was both
language- and script-independent.

 37

constraint was applied, based on a states interpretation of the piece: the main diagonal of

the SSM was correlated with kernels designed to detect a tendency to immediately repeat

every 2 or 4 measures. If a strong correlation was detected, a region was tagged with an

appropriate label. The similarity between any two regions that had a different label were

effectively zeroed, and transitions between them ignored in the Viterbi step.

Paulus and Klapuri (2008b) developed a unique “cost-based” approach that began

with a definition of what is desirable in a structural description, rather than with a method

of extracting the anticipated lines or blocks from an SSM. The space of potential

solutions was then searched to maximize the fitness of the description. Their proposed

cost function penalized dissimilarity between segments with the same labels, the presence

of long unexplained regions, and the use of too many labels.

To maximize such a function over the space of all possible descriptions would be

an intractable problem, so familiar methods were used to reduce the search space. Peaks

in a novelty function were detected and used as a limited set of possible boundaries. The

average dissimilarity between the resulting segments was taken as the “block distance,”

and the DTW distance between each segment’s sequence of vectors was taken as the

“stripe distance.” Likely segment groupings were detected and combined to form a

proposed description. The space of possible solutions was iteratively searched, but by

aggressively pruning the search space, a globally optimal solution was obtained in a

reasonable amount of time.

2.3.2.5 Applying semantic labels

The analysis at this stage is a segmentation of the audio and a grouping of related

or repeated sections, which is conventionally transcribed as a string such as

ABCBCCDC. While this is sufficient for many purposes, one may also wish to apply

semantic labels: for example, one may want to know which letter in the previous example

corresponds to the chorus, which to the verse, and so forth, assuming that these semantic

labels are appropriate for a given piece. Most commonly, chorus sections are assumed to

be the most frequently repeated segment, or the segment that is repeated most closely; in

the case of a tie, the louder group may be chosen, and the other identified as the set of

verses. Other means of identifying a chorus are discussed in the “thumbnailing”

 38

discussion under Applications in Section 2.4.1. Methods that seek to apply semantic

labels to each section are described here.

Maddage et al. (2004) made use of particularly strong assumptions about structure

to generate a description, restricting the output to one of three possibilities. Abbreviating

intro, verse, chorus, bridge, and outro as I, V, C, B, and O, respectively, they were

IVCVCCO, IVVCVCBCCO, IVVCVBCCO. All sections other than the intro and outro

were also assumed to be either 8 or 16 measures long. Shiu (2007) assigned all repeating

parts the labels V and C, reserving the labels I, B, and O for non-repeating segments

occurring at the beginning, middle, and end, respectively.

Zhu et al. (2005), who applied Goto’s RefraiD method separately on SSMs based

on melody and lyric features, assumed that the most common section with the same

melody and lyrics was the chorus, while the most common section with the same melody

but different lyrics was the verse.

Paulus and Klapuri (2010) have proposed arguably the most advanced semantic

labelling system, involving supervised learning. They trained a hidden Markov model

(described in Section 2.3.3) to learn the most likely sequences of semantic labels, and

used this model to generate semantic labels for the estimated analysis. They also

experimented with incorporating the semantic labelling step into the cost-based search for

the optimal analysis, with slightly improved results.

2.3.3 Bottom-up approach: Clustering
In the bottom-up approach to music structure analysis, feature frames are

compared to one another and clustered into groups, sometimes in a hierarchical fashion,

eventually building up the final sections and their grouping. Besides straightforward

agglomerative and k-means clustering techniques, the most important analysis tool in the

bottom-up approach is the hidden Markov model, defined below. In this section we

describe the various ways these techniques have been used to build structural analyses.

2.3.3.1 Simple clustering

As part of their work on generating audio thumbnails, Logan and Chu (2000)

presented two clustering methods for structure analysis. In their first approach, they

initially merged the short feature frames into one second-long groups, taking the mean

 39

and covariance of each feature value. Agglomerative clustering was then performed

directly on these groups: the groups were exhaustively compared to each other (using the

symmetrized KL distance), and if two groups were more similar than a predetermined

threshold, they were combined into a single cluster. Note that there was no requirement

for these clusters to be contiguous in time. This process repeated until none of the

remaining clusters were judged to be similar to each other. The end result was a set of

clusters and a mapping from each feature frame to a cluster. Neighbouring frames

assigned to different clusters were regarded as segment boundaries, and the cluster

assignments as the segment labels.

For their second approach they employed a hidden Markov model. A Markov

model is defined by a set of states which a time-evolving process may occupy, and by the

probability of switching between any two states, called the transitions probabilities. For

instance, in Logan and Chu’s approach, the states could be the section labels, and the

transition probabilities the likelihood of switching between two sections at any time. In a

hidden Markov model (HMM), the states are not directly knowable, but are assumed to

probabilistically generate observations at each point in time. The Baum-Welch algorithm

is a means of estimating these output probabilities, as well as the likely transition

probabilities of the model, and its output may be used to “decode” the hidden state

structure from the observation sequence. In Logan and Chu’s example, the HMM would

estimate a set of probability distribution functions, each associated with a section label

and each generating feature vectors with some degree of variation; decoding the HMM

would require assigning each feature frame to a state, resulting in a structural analysis.

Note that the number of states must be specified as an input to the model.

Aucouturier (2001) used an HMM to cluster feature frames, but this was done

explicitly to obtain a mid-level representation of timbre rather than a structural analysis.

This is because, while, inasmuch as each section in a piece is defined by its unique

instrumentation, the above methods could produce a structural analysis directly, the result

is more likely to be highly fragmented. Aucouturier trained an HMM on timbral feature

to associate each state with a timbral mixture. In his experiments, this produced some

musically meaningful results: in one example using a three-state HMM, the estimated

frame labels successfully grouped the frames into three distinct classes: one featuring

 40

vocals with instrumental accompaniment, another featuring the accompaniment alone,

and the third containing frames of silence. By labelling each frame according to its

estimated state, one obtains a “texture score” which may be searched for patterns; for

instance, one could produce an SSM, from which repeated patterns could be extracted

according to familiar techniques.

One shortcoming of the clustering methods presented so far is that they do not

account for the sequential nature of musical signals. Peeters et al. (2002) formulated an

approach that addresses this in two ways: first, they devised “dynamic features,”

described in Section 2.2.4, which reflect the periodicities with which feature values

evolve in time; second, they used a multi-pass clustering method that is able to enforce

stronger transition costs in an HMM while providing a good clustering. The first pass

segments the piece into regions of relative homogeneity with respect to the dynamic

features derived earlier. The average values for each of these regions are used to seed a k-

means clustering algorithm (described in Section 2.3.1.4), which is adept at merging

redundant clusters. The estimated number of clusters as well as their means are in turn

used to seed an HMM, which is able to smooth out the description because of the penalty

on state transitions.

Kim et al. (2006) took an unusual approach: they conducted an initial

segmentation of the piece by applying a tempo-estimation algorithm. Such algorithms are

notoriously prone to making octave errors, but Kim et al. treated these errors as

informative labels, treating the blocks with different estimated tempi as initial segments.

These segments were then iteratively clustered, using a DTW estimate of segment

similarity, until a predefined number of segments was obtained.

2.3.3.2 HMM decomposition with many states

Also seeking to address the potential for over-fragmentation when using HMMs,

Abdallah et al. (2005 and 2006) presented a sophisticated extension to Aucouturier’s

work that has formed the basis for many subsequent approaches. They also used an

HMM to devise a texture score-like mid-level representation, but theirs contained on the

order of 40 or 80 states, rather than 3 or 4 as Aucouturier had suggested. In this way,

there is a sufficient variety of states to produce a texture score that can reflect the subtle

organization of timbres within a piece.

 41

The HMM states were combined to form state histograms for small

neighbourhoods, and these histograms were treated as feature vectors in two subsequent

clustering algorithms. One was similar to agglomerative clustering: the KL divergence

was calculated between each pair of histograms, with similar pairs iteratively assigned to

the same cluster. As a second method, they used a version of k-means clustering that

interprets the feature vectors as probability distributions over the space of histograms,

rather than as feature values.

Several authors have adopted the approach described by Abdallah et al. (2005),

using different clustering algorithms, incorporating extra constraints, and so forth. Levy

et al. (2006), having obtained HMM state histograms, applied a version of k-means

clustering that seeks to produce clusters that are coherent, with well-defined reference

histograms, and that lead to a temporally contiguous segmentation, where relatively few

neighbouring histograms belong to different clusters. While their algorithm also required

specifying the number of clusters M, it was capable of discarding unnecessary clusters, so

that only a sufficiently high value for M is required; in one published example, a single

piece, whether analyzed using 8, 10, or 12 clusters, consistently led to analyses with only

6 clusters occupied.

One particular focus has been on constraining the length of estimated sections.

Rhodes et al. (2006) incorporated a preference for sections with lengths near 20 seconds.

Levy and Sandler (2006), on the other hand, observed that they could improve results by

assuming that phrases were multiples of 8 measures long. In a post-processing step, they

modified the positions of the estimated boundaries to conform to this assumption while

minimizing the amount of adjustment required. In a separate publication, Levy and

Sandler (2006) used a hidden semi-Markov model (HSMM), which is capable of

modelling the state durations implicitly (whereas the HMM transition probabilities model

the state durations only implicitly). They also calculated the autocorrelation of the HMM

histograms over the entire piece, interpreting the first peak in the graph as the most

prominent phrase length; this value was used as an input parameter for the HSMM.

HMM states are usually estimated from timbral features, but Levy et al. (2007)

derived a second sequence of states using an HMM-based chord-transcription system.

The sequence of timbre and pitch HMM states defined a joint sequence of histograms that

 42

was subsequently clustered. Cheng et al. (2009) developed a variation of the HMM

histogram method which made novel use of lyrics data. The stanzas of a song’s lyrics

were compared to each by finding the longest common subsequence (LCS) of each pair

of stanzas; if the LCS of a pair was greater than 60% of the length of each stanza, they

were assumed to have the same label. They then applied Levy and Sandler’s (2008)

method of analysis, but then only retained the segmentation: the labels were discarded in

favour of the labels estimated from the lyrics, with simple heuristics to handle cases

where the number of segments obtained from each procedure did not match.

2.3.3.3 Other approaches

Although Rhodes and Casey (2007) began by estimating HMM states, they

treated this mid-level representation as a string, in a manner similar to Dannenberg and

Hu (2002). The HMM state sequence was estimated using 5 states, instead of the usual

40, and the state assigned to each frame was treated as a single character in the string

which describes the song. The algorithm searched for the longest approximate pair-wise

matches, and then methodically dissected the transitive relationships implied by the

detected matches to generate a structural description.

Barrington et al. (2009) applied a technique developed for video analysis as a way

to take advantage of both the states and sequences interpretations of musical structure. In

their approach, music is seen as a dynamic texture mixture (DTM). A DTM learns from

the signal a set of underlying states that produce the feature frames—that is, it estimates

the sections in the music that are composed of different musical ideas which comprise the

musical surface. However, rather than doing so by clustering the feature frames

themselves, the DTM learns to cluster sequences of frames. In this way, it learns both the

absolute nature of the feature frames (to distinguish different instrumentation mixtures)

as well as the repetitive sequential nature of the sequences (to distinguish different

rhythmic patterns).

2.4 Applications for structural analysis
A structural analysis is abstract, high-level information about a piece that

describes or implies much about its content. Because of this, structure analysis has

diverse practical applications, which are described in this section. These applications

 43

include automatically producing summaries of audio files, retrieving pieces with similar

structure to a given query piece, visualizing structural information, and many more.

2.4.1 Thumbnails and summaries
One of the most important applications of automatic structure analysis is the

production of audio thumbnails or summaries, short excerpts that can be auditioned to

quickly get a sense of a piece. Online music retailers such as the iTunes and Zune music

stores often provide such summaries for their customers. By always choosing summaries

that contain, say, part of the chorus, retailers can hope to better promote their products

and have more satisfied customers. Ultimately, the factors that make a thumbnail most

appealing are subjective, and would have to be discovered with a user study, but as

Peeters et al. (2002) point out, with an accurate structural description of a piece, one

could ostensibly generate a thumbnail to any specification. For instance, consider a piece

with structure ABCBCCD: if choruses make the best previews, the most frequently

repeated part of the song may be used (C); on the other hand, the summary could consist

of examples of all the transitions between sections (AB, BC, CB, and CD), or of one

example of each section (ABCD), and so forth. Considering applications beyond music

stores, the latter representation may be useful in a music similarity retrieval task in which

songs similar to a query song are requested from a collection. In such a task, audio

summaries may be used instead of full songs to speed up the feature extraction and

similarity computations (Sandler and Levy 2007).

Identifying the chorus section or the most important section9 can be done in many

ways. Chai (2003) simply chooses the most frequently repeated section as a thumbnail.

Levy et al. (2006) identify the most frequently repeated section as the chorus; in the case

of a tie, the chorus is the section with higher acoustic energy (i.e., the section that is

louder on average). The second instance of the chorus is selected as the thumbnail, based

on the observation that the first instance of a chorus may often be an altered version.

Goto (2003a), after detecting all repeated sections, identifies as the chorus that section

9 Although the definition of “chorus” and “thumbnail” clearly differ, in practice, as an application of
automatic structural analysis, they are treated as synonymous.

 44

which is of an appropriate length (roughly 8–40 seconds), which occurs preferably near

the end of the piece, and which is itself composed of two repeating subsections.

Thumbnails may be extracted without estimating a structural analysis first.

Bartsch and Wakefield (2001) extracted a thumbnail by simply selecting the brightest

element in their SSM, subject to two constraints: that the element represent a repetition at

a lag of at least one tenth the length of the song, and that the element not occur in the last

quarter of the song. Van Steelant et al. (2002) independently proposed a similar

technique. Cooper and Foote (2002) summed each column of an SSM; the maximum of

the result, which indicated the segment that was the most similar to the rest of the song,

was selected as the beginning of their thumbnail.

Without estimating a full structural analysis, Wellhausen and Höynck (2003)

located the chorus by searching an SSM for three transitively related sections that were at

least 5 seconds long. (Recall that when a chorus occurs three times in a piece, three lines

will appear in the SSM, reflecting the three pairs of choruses.) Eronen (2007) used a

method similar to Goto’s (2006a) to extract repetitions, and a method similar to

Wellhausen and Höynck to identify the chorus. However, he also considered the

proximity of the repeated section to the one-quarter mark of the piece, which he theorized

as a likely time for a chorus to occur. Once the chorus was identified, its estimated

position was fine-tuned with the assumption that the chorus constitutes two repeating

halves; Eronen correlated the relevant portion of the SSM with a kernel that was 32 beats

long and had sub-diagonal stripes at a lag of 16 beats.

Logan and Chu (2000) clustered all frames within a piece into groups, and chose

the largest cluster as the best group for the summary; the longest contiguous region

belonging to that cluster (and occurring in the first half of the piece) was chosen as the

thumbnail. Xu et al. (2002) presented a similar approach, and later presented a more

elaborate thumbnail selection method which returned multiple sub-summaries

representing the different groups created at the clustering stage (Xu et al. 2004, 2005).

Each sub-summary was restricted to a particular length, and extended or trimmed

depending on which neighbouring frames were more commonly repeated. Lu and Zhang

(2003) used a clustering algorithm and searched for the loudest and most frequently

repeated sections, deeming these to be the most salient for musical summaries.

 45

Extra steps may be taken to make the extracted thumbnail more pleasant to listen

to. For instance, Lu and Zhang (2003) estimated likely boundary locations to ensure that

the extracted summary did not cross a structural boundary. To merge a series of short

excerpts into a pleasant summary, Peeters (2004) applied a beat-tracking algorithm to

match them rhythmically, cross-fading them over 4 beats. Zhang and Samadani (2007)

developed a system that would generate thumbnails for songs in a user’s collection and

present them to the user, who could reject the song or add it to their playlist. Thumbnails

were extracted by computing a structural analysis and choosing the first 8 seconds from

each section.

2.4.2 Retrieval
Music structure has been used in several cases for music retrieval tasks: for

example, retrieving pieces from a collection that are similar to or the same as some query

piece. A piece’s structure is in some respects a generic feature: many pieces have ABA

form, and according to the UPF Beatles data set (see Chapter 4), seventeen songs out of

the Beatles 180-song studio catalogue have the structure “intro, verse, verse, bridge,

verse, bridge, verse, outro” (Paulus and Klapuri 2010). Nevertheless, the long-term

structure of a piece can still be exploited to retrieve pieces of music that are versions of or

similar to some target piece in large collections.

To compare two pieces, Foote (2000a) calculated the average acoustic energy

over time for each, and compared the two with dynamic programming. The alignment

cost between a query piece and each piece in the collection was used to rank the results.

Because it seeks an optimal alignment, this method is robust to tempo deviations between

pieces. Aucouturier and Sandler (2001) proposed using Aucouturier’s (2001) “texture

score” as a mid-level representation for retrieval applications. The texture score identifies

frames with timbres, and parameterizes each piece as a string; the edit distance between

pairs of pieces could thus be used to rank similar pieces.

Gómez et al. (2006) proposed a technique similar to Foote’s, but used chroma

features that were normalized by the detected key of the piece so that their method could

detect cover songs in a different key. They also experimented with only aligning

automatically extracted summaries: they performed a structural analysis in the manner of

 46

Ong et al. (2006), chose summary segments for each song according to simple heuristics,

and then used the alignment cost between them to rank the similarity of pieces to a query

piece. Marolt (2006) used a representation of melody to isolate repeated patterns in a

piece; two pieces were then evaluated by comparing all the constituent patterns and

recording the two best matches. Potential transpositions were accounted for by finding

that transposition that maximized the between-song similarity.

Bello (2009) sought to cluster pieces in a corpus into groups of similar pieces. He

generated an SSM for each piece in a corpus, and compared them to one another using

the normalized compression distance metric, which measures how much information is

shared between them.

Retrieval at a sub-song scale involves locating where in a given piece a short

snippet of music, the query, occurs. Izumitani and Kashino (2008) used dynamic

programming to discover where the SSM of a query snippet matched the SSM of the

target piece. Martin et al. (2009) compared Izumitani and Kashino’s algorithm with

another image-alignment algorithm, and adapted them to process symbolic queries such

as “ABAC,” with and without information about the relative duration of these sections.

2.4.3 Visualization and navigation
Visualizing a piece’s structure may be helpful to a music theorist conducting an

analysis; Foote’s (1999) original article on SSMs recommended them as a visualization

tool for just this purpose. Wolkowicz et al. (2009) presented a system called Midivis,

which uses several colour-coded SSMs to visualize the similarity between different parts

of a piece encoded in MIDI format. Once musical structure has been estimated from an

SSM (or other representations), the piece may be visualized in a more concise way. Goto

(2003b) created a system called SmartMusicKIOSK, based on his RefraiD method, that

shows separate, repeated sections in a piano roll-style notation (see Figure 2.10). Zhang

and Samadani (2007) demonstrated an interface that would show the computed structure

of a piece and present the user with a thumbnail for each section. A plug-in to the Sonic

Visualiser analysis environment will analyze the structure of the audio and display the

result as colour-coded regions (Sandler and Levy 2007).

 47

Figure 2.10. SmartMusicKIOSK screenshot. Piano roll-style notation shows in each row all repetitions of a

single event. <http://staff.aist.go.jp/m.goto/SmartMusicKIOSK/index.html>, accessed 10 August 2010.

Structural information can also be used to streamline a user’s audition of a sound

file. For instance, if a media player had knowledge of an audio file’s important large-

scale structure, the fast-forward function could be replaced by a function that skipped to

the next section, allowing a swift perusal of the track. SmartMusicKIOSK includes this

functionality, as well as SyncPlayer, a multi-modal music navigation software developed

by Fremerey (2006). Fazekas and Sandler (2007) developed an add-on to the Audacity

audio editing environment that uses a version of Levy and Sandler’s structure analysis

system to analyze structure in a multi-track recording environment, estimating important

breakpoints. In this case, structural analysis facilitates the user’s own editing of a sound

file. Eronen (2009) presented a prototype application that allows similar advanced

navigation, as well as a visualization of an SSM which may assist the user in editing an

automatically extracted thumbnail to be used as a ring-tone.

 48

2.4.4 Other applications

2.4.4.1 Alignment

Structure analysis can be used to constrain or improve the alignment between

different files. For instance, to time-align two different versions of the same piece, Müller

and Appelt (2008) generated an SSM from the concatenation of each piece’s feature

vectors. The structure of the pieces was then jointly determined using the same structural

analysis method as Müller and Ewert (2008). Since the two versions were potentially

quite different from each other, the method they had developed for enhancing and

detecting line segments in the SSM in the face of tempo variations was especially useful

for this task. The estimated structure analysis was then used to constrain the alignment

between different versions.

In a similar vein, Lee and Cremer (2008) proposed a system for aligning lyrics

with an audio file. They applied the structure analysis method put forth by Cooper and

Foote (2003) to divide the audio into labelled segments, and used dynamic programming

to choose the best alignment between these segments and the paragraphs in the lyrics.

2.4.4.2 Compression

Signal compression can be achieved by encoding two regions of an audio file with

the same signal. To do so, Cunningham and Grout (2009) searched a piece exhaustively

for similar regions that could be identically encoded. They described using an SSM and

beat information to improve the efficiency of their compression algorithm by greatly

reducing the search space for potentially matching signals. Jehan (2004), after

segmenting a piece with a note onset detection method and generating an SSM, grouped

the resulting segments using k-means clustering. Each group was represented only once

in the compressed audio file, and the parameter k was chosen depending on the desired

accuracy and compactness: lower values of k would lead to smaller file sizes at the

expense of fidelity.

2.4.4.3 Boot-strapping other MIR tasks

Chord labelling, beat-tracking, and tempo estimation have been incorporated into

structure analysis techniques. Conversely, structure analysis has been used to improve the

 49

robustness of these other techniques. For beat tracking, Dannenberg (2005) detected

similar segments with an SSM and used these to constrain an algorithmic search for a

globally optimal solution to the beat-tracking problem that gives structurally similar

regions similar beat structures. Foote and Uchihashi (2001) developed a method for

estimating tempo from an SSM by producing a beat spectrum: a function was created by

summing along the diagonals of the SSM, and the autocorrelation of this function was

used to provide a tempo estimate. In that study, they also demonstrated the use of a

novelty function to detect note onsets. Mauch et al. (2009) obtained a structural analysis

and then, considering each instance of a particular part (e.g., all the verses), averaged

together the features used to estimate a chord analysis. The chord labels estimated from

the average were used to label each part.

2.4.4.4 Video applications

Foote and Cooper (2003) have demonstrated the use of SSM techniques for

automatic video analysis. In the same manner that Foote (2000b) analyzed music, Cooper

and Foote (2001) implemented a scene boundary-detection algorithm in which a novelty

function was computed from an SSM created using video frame intensity histograms as a

feature. Later, Foote et al. (2002) developed a system that detected well-shot portions of

home videos and synchronized them to audio, automatically aligning scene changes with

musical boundaries.

2.4.4.5 Speech/music and vocal/instrumental discrimination

Another field related to structure analysis is speech/music or vocal/instrumental

discrimination. For example, one may wish to automatically divide a field recording into

sections and provide labels such as “speech,” “solo singing,” “instrumental,” and so forth

(e.g., Marolt 2009), or divide a radio broadcast into music and non-music sections (e.g.,

Goodwin and Laroche 2004). We will not consider such research in this thesis, but

vocal/instrumental section discrimination is sometimes considered relevant to structure

analysis, since verse and chorus sections are usually sung while intro, bridge, and outro

sections may be instrumental. As noted already, it has been used to help detect

boundaries (e.g., Su et al. 2009) and produce full structural analyses (e.g., Maddage et al.

2004; Xu et al. 2004).

 50

2.4.4.6 Watermarking

Xu et al. (2007) made use of structural information to improve an audio

watermarking algorithm. Like a watermark in a piece of paper, an audio watermark is

supposed to embed information into an audio stream that is robust to simple audio

manipulations (so that it cannot be easily removed) but will not disrupt a listener’s

experience. Their system performs a note-level segmentation and classifies each segment

as being a vocal or instrumental section, embedding bits of the watermark differently for

each type.

2.4.4.7 Pattern recognition

Ong and Streich (2008) presented a technique for extracting short repeating

“loops” from recordings. The technique is similar to using a checkerboard kernel to

locate boundaries: after generating a time-lag SSM and estimating the probable loop

period, they correlate the SSM with a two-dimensional filter that will match regions

based on a loop with that period.

Although this application is directed at composers and remixers who may wish to

efficiently extract reusable snippets from recordings, it relates to the field of pattern

recognition, which is more generally useful for musicological analysis. For example, see

the analysis of the song “C’était bien” in Aucouturier (2001), and of “Naima” in

Dannenberg (2002). Recognizing large-scale structure is important for algorithmic

composition, a point made by Eck and Schmidhuber (2002) and Jehan (2005a).

2.5 Summary
This chapter began with a brief discussion of the state and sequence approaches to

structural analysis. The literature on this topic was then surveyed in two parts: the first

dealt with the broad category of top-down approaches, which usually involve computing

a self-similarity matrix in order to locate repeating states of sequences. The various

exploitable properties of these matrices were discussed, as well as the myriad techniques

used to process it. The second part dealt with bottom-up approaches in which clustering

techniques are used to build a model of the representative states of the piece. Finally,

practical applications for structural analysis were discussed, including audio

thumbnailing, music retrieval, and intelligent audio navigation.

 51

3 Algorithms

Five algorithms were evaluated in this experiment. Three of these, Peiszer (2007),

Levy and Sandler (2008) and Barrington et al. (2009), produce full structural analyses,

segmenting the piece into large-scale sections and providing group labels. The other two,

Mestres (2007) and the Echo Nest API, perform only the segmentation step, producing a

list of boundaries between the sections of a piece. In this chapter, the analysis techniques

used by each algorithm are described in greater detail than in the previous chapter,

although these descriptions assume a familiarity with the feature extraction methods

described fully in Section 2.2 and the basic analysis techniques described in Section 2.3.

An account of how the algorithm was implemented in this thesis, including the parameter

settings used, appears at the end of each section.

3.1 Peiszer
The system created by Ewald Peiszer, described in detail in his thesis (Peiszer

2007) and summarized by Peiszer et al. (2008), combines the top-down and bottom-up

approaches. Like Cooper and Foote (2003), it operates in two steps: first, candidate

segment boundaries are estimated using a novelty function derived from a SSM. Second,

these segments are grouped according to information obtained by a clustering algorithm

that operates on low-level frames.

3.1.1 Features
Peiszer experimented with several feature sets, including MFCCs, chroma

vectors, rhythmic features, and raw spectrogram coefficients. In each case, the full, raw

output was used: all 40 MFCCs were kept; the unwrapped chromagram vector was used

(i.e., contributions from each octave were not binned together); and the raw output of the

Fourier transform was used for the spectrogram coefficients. The rhythmic features

included Rauber et al.’s (2002) fluctuation patterns (which consist of a matrix of Fourier

coefficients of each of 24 critical bands), Peiszer used a set 7 spectral descriptors for each

of these bands as another feature set. Each feature was calculated over beat-aligned

windows using the beat locations estimated by Simon Dixon’s (2001) BeatRoot software.

 52

3.1.2 Segmentation
Each feature set was used to generate a SSM using the Euclidean distance

function, from which a novelty function was calculated using the standard Gaussian-

tapered checkerboard kernel as described in Section 2.3.2.1. Again, Peiszer experimented

with his analysis parameters: he varied the size of the checkerboard kernel and applied

various filters to smooth the novelty function. He also applied a variety of heuristics to

pick peaks from the result, including a minimum threshold, a minimum inter-peak

distance, and a requirement that boundaries be located at the downbeats of measures. He

found that segmentation performance did not vary significantly with the analysis

parameters, and that the essayed heuristics did not improve overall performance.

3.1.3 Structure analysis
Having obtained a set of boundaries, the second part of the algorithm sought to

label these sections with some clustering method. Several clustering methods were used,

including means-of-frames clustering, hierarchical agglomerative clustering, a voting

method, and a dynamic time warping (DTW)-based method.

In the means-of-frames approach, each segment was represented by the means of

its feature values, and these values were then grouped using k-means clustering. All of

the segment means that were nearest to the same centroid were given the same label. In

the agglomerative clustering method, the segments’ mean values were iteratively grouped

together, beginning with the most similar segments, until the desired number of clusters

had been obtained; complete linkage was used, meaning that the maximum dissimilarity

between any two component frames from two segments was taken as the dissimilarity

between these segments. The voting approach began with the means-of-frames procedure

described above to define the cluster centroids, except that segment labels were assigned

by estimating the group to which each segment’s constituent frame belonged, and having

them vote on a final label. Finally, the DTW approach recalled Cooper and Foote’s

(2003) approach: a segment-indexed SSM was generated using the DTW alignment cost

of each pair of segments; k-means clustering was then used to assign segment labels.

Each of these methods required the presumed number of segment types as an

input parameter. Attempts to automatically estimate the correct number of distinct labels

 53

using cluster validity indices, as well as experiments involving user input for this step

(simulated by choosing the number of labels in the song’s ground truth), did not

significantly improve results. The different clustering methods all had similar success,

except that the voting method performed significantly worse.

3.1.4 As used in this thesis
The code for Peiszer’s analysis system, implemented in MATLAB, was obtained

from Peiszer’s website10. The updated version of BeatRoot (Dixon 2007), also freely

available online, was used to obtain the required beat locations. Peiszer’s algorithm was

executed using both MFCC and chroma features, and using all clustering methods except

for voting, which had performed the least well. Values for the expected number of

clusters k ranged from 3 to 10. The segmentation step and the clustering algorithms were

always executed with the same parameters: the novelty functions were generated from a

96-pixel wide Gaussian checkerboard kernel and smoothed using an 8-sample long

moving average filter, the SSM was calculated using the Euclidean distance metric.

These parameters had led to good results in Peiszer’s evaluation. I elected not to repeat

Peiszer’s full exploration of the large parameter space, since his experiments suggested

that little advantage could be had from tuning the parameters.

3.2 Levy and Sandler
Levy and Sandler’s (2008) algorithm follows the general state-based approach

proposed by Abdallah et al. (2005) and developed by others at Queen Mary, University of

London. A hidden Markov model (HMM) is used to recast the audio as a sequence of

labelled timbre-types, and local histograms of these types are clustered to achieve a

structural analysis.

3.2.1 Features
Levy and Sandler used the MPEG-7-defined AudioSpectrumEnvelope descriptor

as a timbral feature, from which they derived AudioSpectrumProjection feature vectors.

For each audio frame, the envelope was represented by the power level in each of several

10 <http://www.ifs.tuwien.ac.at/mir/audiosegmentation.html> accessed 20 February 2010.

 54

logarithmically-spaced frequency bands. They used a one-eighth octave spacing for

frequencies between 62.5 Hz and 16 kHz (along with two more bands for frequencies

outside this range), giving a 66-dimensional feature vector. Principal component analysis

was used over the full piece to reduce this to 20 dimensions, giving the

AudioSpectrumProjection vector. The spectral envelope of each frame was normalized

by its overall power, which was preserved as a 21st dimension. The relatively high

frequency resolution in this procedure preserved both timbre and pitch information, so

this feature is referred to by the software as a “hybrid” CQT feature. Levy and Sandler

also experimented with MFCCs and with 12-dimensional chroma vectors, although they

found that the chroma led to poorer results.

3.2.2 Structure analysis
Their algorithm proceeds in two steps. The first achieves a low-level labelling,

and the second applies a clustering algorithm to estimate a set of k section types. To

produce the low-level labels (or, seen another way, a high-level feature extraction), a 40-

state HMM is applied to the beat-aligned feature frames to estimate a set of 40 “timbre

types.” The piece is then decoded with the Viterbi algorithm so that each frame is

labelled with one of these types. Finally, local histograms of state labels are obtained by

tallying how often each state label occurs within neighbourhoods of 7 frames (i.e., within

7 beat lengths). Although different sections of a piece almost certainly contain some

frames with the same label, the relative frequency of each state label, revealed by the

histograms, can be characteristic of each section.

These histograms are treated as high-level feature vectors in the clustering

analysis that follows. Following the notation in Levy and Sandler (2008), the goal is to

associate each histogram xn in the sequence of N histograms with its section-type label yn.

The cluster centroids mk must also be estimated as part of the analysis, and the number of

centroids k is a required input parameter. Levy and Sandler introduced a constraint to

favour contiguous sections of a minimum length: a function measuring the likelihood of a

particular sequence of histogram labels included a penalty term for whenever two nearby

frames within some neighbourhood dML were given differing labels.

 55

This problem may be solved with an expectation-maximization (EM) algorithm.

EM is an approach that iteratively improves upon an estimate for the unknown model

parameters mk (collectively indicated by Θ) and the hidden state labels yn by alternately

applying two steps: in the expectation step, the current best-guess set of centroid

parameters Θ are used to predict the likelihood of the sequence yn; in the maximization

step, these values for yn are used to revise the estimate of Θ. Since EM is sensitive to the

initial estimates of the unknown parameters, Levy and Sandler initialized Θ with the

output of a conventional k-means clustering algorithm. Because the additional constraint

on the segment length makes the execution of the standard EM method impractical, Levy

and Sandler modified the algorithm to obtain an approximate solution. The output of the

modified EM algorithm is a label for each frame, and the structural analysis is completed

by taking contiguous sequences with the same label as the piece’s labelled sections.

3.2.3 As used in this thesis
Mark Levy implemented the algorithm described above as a Vamp plugin11 that

may be accessed by Sonic Annotator12 (Cannam et al. 2010). Created at Queen Mary,

University of London, Sonic Annotator is a publicly available command-line tool that can

extract low-level features from audio files, such as chroma vectors and MFCCs, and

automatically annotate files with beat locations, polyphonic transcriptions, and other

information.

The version of Levy and Sandler (2008) implemented as a plugin can accept three

feature sets: MFCCs, chroma, and CQT. They remarked that informal testing showed that

chroma were less effective features than the others, so only the CQT and MFCC options

were used in this evaluation.

Two other parameters accepted by the plugin are the number of clusters, k, which

was set to values between 3 and 10, and the minimum segment length dML. Whereas this

parameter was set as either 8 or 16 beats by Levy and Sandler (2008), it must be specified

11 <http://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-segmenter> accessed 27 July
2010.
12 <http://omras2.org/SonicAnnotator> accessed 27 July 2010.

 56

as a length in seconds in the plugin, since the beat-alignment step was not implemented.

For this evaluation, values of 4 and 10 seconds were used.

3.3 Barrington et al.
Aucouturier (2001) noted that a central weakness in his HMM-based clustering

approach to music structure analysis (similar to the first step of Levy and Sandler’s

algorithm, described above) was that it did not account for the sequential nature of music,

so that important melodic motifs or bold changes in rhythm may be ignored by this

approach. This, in a nutshell, is the gap between the states and sequences views of music

structure. Barrington et al. (2009) attempted to close this gap, applying a technique

developed for video analysis called dynamic texture mixture (DTM) modelling.

3.3.1 Dynamic texture mixture model
Described briefly in Section 2.3.3, a DTM is a way to model a piece of music as a

series of regular but time-evolving sound textures. While this approach retains the ability

to distinguish sections of a song based on which timbres are present, it is designed to also

distinguish two sections composed from the same palette of timbres but arranged in a

different order. In this way, one may identify a section based on its distinct drum pattern,

even if the individual drum sounds occur elsewhere in the song; similarly, with a

different feature input, this method may distinguish two sections that have the same

chords but differing harmonic rhythms. Barrington et al. used both MFCCs and chroma

vectors as features.

Following Barrington et al.’s (2009) notation, we may define a DTM as a model

for generating feature vectors based on the following system of equations:

ttzt vxAx +⋅=+1

ttzt wxCy +⋅=

The observed variable yt is given by the feature vector at time t, while the hidden-

state variable xt encodes higher-level information about the sound’s timbre and how it

changes in time. The evolution of xt is controlled by the state transition matrix Az, which

is different for each dynamic texture zt, and the observation matrix Cz translates these into

 57

the observations yt. The two functions wt and vt represent the Gaussian noise present in

these processes. Whereas in an HMM each frame is assigned to a state i, the assignment

of each frame to a dynamic texture is given as a vector z where each element indicates the

probability that the segment originates from a particular dynamic texture.

The goal is to estimate a sequence of hidden-state variables xt, to learn a set of k

dynamic textures that control the evolution of xt, and to estimate the dynamic texture

being sampled at each instant. The dynamic textures are each defined by a parameter set

Θz that includes Az and Cz, as well as other parameters defining the texture’s initial state

and noise properties. All of this information must be learned from the observed variables

yt.

This problem may be solved with a version of the EM algorithm described

previously (see Section 3.2.2). In this case, the hidden variables are xt and zt, which are

revised iteratively to obtain an estimate of the texture parameter sets Θ. Note that the

method is sensitive to the initial estimate of Θ, and is only guaranteed to find a local

maximum.

3.3.2 Structure analysis
The DTM model approach can accomplish a full analysis in a single step:

Barrington et al. divided the song into long, 5-second audio sequences with 90% overlap,

and input these sequences into a DTM model to estimate a series of dynamic textures

using EM. The labelling was provided by choosing the most likely label zi at each time t,

which, as with Levy and Sandler, implicitly determines a segmentation.

Such coarse windowing is necessary to model long-scale musical patterns, but can

lead to poor boundary estimation. Barrington et al. therefore implemented a fine-grain

analysis to refine the boundary positions. The previously estimated DTM was used to

assign shorter sequences (1.75 seconds long with 97% overlap) to dynamic textures, and

the boundaries found in the coarse analysis were updated by simply shifting them to the

nearest boundary in the fine-grain analysis.

Barrington et al. (2010) extended their previous work by introducing constraints

on the length of the estimated segments. Like Levy and Sandler (2008), they imposed a

 58

preference for segments of roughly 16–20 seconds, or roughly 4–8 measures. However,

this step was not implemented in the version evaluated in this thesis.

3.3.3 As used in this thesis
The MATLAB code for this structure analysis system, along with the DTM

modelling algorithm developed by Chan and Vasconcelos (2008) upon which it is

founded, was generously loaned to me by Luke Barrington. The algorithm was executed

using both MFCCs and chroma vectors as features. However, since the system took

significantly longer than the others to process, values for the expected number of clusters

k were only varied between 3 and 6. Both the coarse and the fine-grain segmentation

output were kept for evaluation.

3.4 The Echo Nest
The Echo Nest is a company that analyzes music and amasses music-related

information from online sources. Some of this information is sold to music marketers, but

much of it is provided freely via a developer application programming interface (API).

The developer API includes methods for uploading audio files and downloading

sophisticated analyses, including the estimated location of beat and measure onsets and

the estimated key and tempo of the piece. The get_sections method, which is accessed

through the analyze method, estimates the boundaries (and not the labels) of those

sections which are “the largest chunks in the track and usually correspond to structural

units (verse, bridge, solo).” 13

Although the audio analysis algorithms used by the Echo Nest are not publicly

documented, a post on the Echo Nest developer forum from Tristan Jehan, one of the

founders of the Echo Nest, reveals that the get_sections method is based partly on the

results of the get_segments method.14 The latter method divides the piece into short

segments (each typically less than a second) described by pitch and timbre features.

One might speculate that these short segments are obtained in the same manner as

the low-level segmentation described in Jehan (2005b). In that article, Jehan described

13 <http://developer.echonest.com/docs/v3/track.html#get-sections> accessed 27 July 2010.
14 <http://developer.echonest.com/forums/thread/70> accessed 27 July 2010.

 59

the use of dynamic programming to construct several hierarchically-related SSMs: peaks

in an onset detection function were used to create a segment-indexed SSM; this pattern of

onsets provided the basis for estimating a beat-indexed SSM; and this in turn was

analyzed to create a pattern-indexed SSM (i.e., where each pixel represents the similarity

between two short 2–16 beat sequences). Although Jehan did not describe how to extend

this procedure and obtain a section-indexed SSM, he noted that the significant and

sophisticated reduction in the size of the SSM that he achieved could lead to improved

performance in a structural segmentation algorithm such as Cooper and Foote (2003) or

Chai and Vercoe (2003). However, the ultimate method used by the Echo Nest to produce

its structural segmentation remains private to the company.

3.4.1 As used in this thesis
Despite only producing segmentations and being a figurative black box, the

analyses provided by the Echo Nest remain a useful point of comparison for this study.

Using their developer API, each audio file was uploaded to the site as an MP3, and the

segmentation returned using the get_sections portion of the analyze method. While the

other algorithms used all used higher-quality WAV files, the slight reduction in quality to

MP3 was necessary to keep the file size manageable for uploading to the Echo Nest.

3.5 Mestres
Xavier Mestres (2007) described in his thesis, on the topic of singer identification,

a segmentation algorithm that the author noted was surprisingly effective at reproducing a

piece of music’s structural boundaries. The algorithm made use of the Bayesian

Information Criterion (BIC), which is a way to rate the quality of a model by weighing

the likelihood of the data given the model, against the number of parameters in the model

and the number of data points used to estimate it. In his case, every model being

compared was a Gaussian distribution, the classic bell-curve distribution model which is

defined by its mean (i.e., the average feature values of the vectors included in the

distribution) and its variance (a measure of how spread out these feature vectors are).

 60

3.5.1 Segmentation
The BIC can be used to decide if there should be a boundary at some point n in a

short sequence of N feature vectors by considering two models. The first model supposes

that the entire sequence of feature vectors originates from a single Gaussian distribution,

whereas the second supposes that the two parts (divided by the point n) come from

different Gaussian distributions. Mestres uses the following equation to determine

whether the point n is likely to be a boundary:

() PNNNnBIC λ−Σ−Σ−Σ= 2211 logloglog

where N1 and N2 refer to the number of frames in the first and second part of the sequence

of N frames, and each |Σ| term refers to the variance of the Gaussian distribution used to

model each part. The final term penalizes the BIC score according to the number of extra

dimensions in the two-Gaussian model. If BIC(n) is greater than 0, then the two-Gaussian

model has succeeded at reducing the variance even at the cost of the extra dimensions,

and it is estimated that a boundary exists at time n.

3.5.2 As used in this thesis
Mestres’ segmentation algorithm operates in three passes: the first achieves a

coarse segmentation, the second fine-tunes the placement of the detected boundaries, and

the third eliminates unnecessary boundaries for a better global solution.

In the first pass, each sequence of N feature vectors is taken in turn, and the BIC

test used to determine whether the vectors from 1 to n and those from n+1 to N are better

explained by one or two Gaussian distributions. Several values of n are tried for each

sequence. In the second pass, the region around each detected boundary in the first pass is

retested using values of n that are closer together. The previous steps use relatively small

windows, so the resulting segmentation may contain boundaries that are too close

together, or spurious boundaries between segments that are actually very similar on the

whole. The third pass attempts to eliminate these by applying the BIC test to every pair of

adjacent segments and only keeping those which pass it.

The various hop sizes and window sizes were the same as those used in Mestres

(2007, page 33): the window size N in the first pass was 10 seconds, with a hop size of 3

seconds; the window and hop sizes were 6 and 0.5 seconds, respectively, in the second

 61

pass; and the minimum segment size was 10 seconds. I did not use the system directly;

rather, the execution of this algorithm was kindly carried out by Nicolas Wack at

Universitat Pompeu Fabra, and the results were sent to me for evaluation.

 62

4 Annotation and Evaluation

As stated in Chapter 1, the goal of automatic music structure analysis is to

decompose a piece into its large-scale sections, and to provide labels indicating which

sections are similar to or repeated instances of each other. The algorithms described in

the previous two chapters all attempt to produce such an analysis (or some component of

it, be it a segmentation, or an extraction of only the chorus sections). The performance of

these algorithms should be quantitatively evaluated by comparing the analyses they

produce to human-created reference annotations. The production of these “ground truth”

reference annotations, as well as the evaluation of automatically-generated descriptions,

are the topic of this chapter.

In this section we first discuss important problems related to the production of

ground truth structural descriptions, and recent efforts that some have undertaken to

counteract these problems. Following this is a brief description of the musical corpora

and accompanying annotations that were used in the present study. Finally, the various

evaluation metrics used to compare the estimated structure descriptions to the annotations

are described.

4.1 Producing annotations
The algorithms described in Chapter 2 all seek to produce concrete, unambiguous

structural descriptions, and in order to evaluate their validity one ought to compare these

to the true descriptions. However, music structure is a musicological abstraction that may

only be subjectively perceived, and so the “true” structure of a piece, if it exists, can

never be unequivocally determined. This is a problem for those who would produce

ground truth descriptions, such as those illustrated in Figure 4.1, which are single,

absolute descriptions of a piece. Two especially important reasons for this problem are:

first, that music theory itself lacks an adequate means to describe musical similarity; and

second, that music typically features hierarchical musical relationships.

 63

Figure 4.1. Example ground truth annotations for three songs. From top to bottom, the pieces used and the

sources of each annotation are: “Drive My Car,” by The Beatles; “Moving Round and Round,” by Yuuichi

Nagayama; and the third movement of Beethoven’s 8th Symphony. Two versions of the ground truth are

presented for the first and third songs; see Section 4.2 for a description of these data sets. For the Beatles

annotations, “int.” stands for “introduction,” and in the RWC annotation, “v_a” stands for “verse_a,” “b_b”

for “bridge_b,” and so forth. The labels in the Beethoven annotation are not semantically meaningful.

A structural description, regardless of how it was obtained, constitutes a

segmentation of the piece into different sections, and a set of labels to indicate which

sections are similar to each other. Theories of music may be called upon to assess the

similarity of two passages of music, perhaps comparing them on the basis of their

melodic, harmonic, rhythmic, or dynamic content. However, judgements of musical

“similarity” are not quantitative, and there is no method to categorically ascertain

whether one passage is a repeat of another, or merely similar, or dissimilar. Consider, for

instance, a section of a song in which an instrumental soloist replaces the singer for a

 64

verse: should the section use the same label as the verse, due to their harmonic-sequential

similarity, or does it merit a new label due to its different instrumentation, and, perhaps,

melody? While either answer may seem reductive, one must be chosen in order to

quantitatively evaluate a particular algorithm’s output. Because of the complexity of

musical relationships, ambiguous situations like this arise very frequently.

Another problem with obtaining a single, absolute description of a piece’s

structure is that it cannot account for the rich hierarchical relationships that music

expresses. Long sections of music are usually composed from shorter musical ideas,

which can be repeated or varied, and which in turn may be derived from a limited palette

of shorter motives. Consequently, a piece of music may be pictured as having a tree-like

structure; a potential analysis for the song “I Saw Her Standing There,” by The Beatles, is

pictured in this fashion in Figure 4.2a.

To choose a single description of a piece’s structure amounts to taking a

horizontal cut through this hierarchical tree structure. However, at what level this cut

should be made is a choice that is usually made intuitively by the analyst, and different

analysts may disagree: any single cut will omit the more detailed structure contained in

the branches below, and ignore the more abstract view presented in the branches above.

Figure 4.2b shows an example of such a disagreement. The annotation offered by the

Center for Digital Music (CDM) segments the piece at a finer scale than that offered by

Tampere University of Technology (TUT), and it is justify a claim that one is better than

the other. (See Section 4.2 for information on these data sets.) Recognizing this, Peiszer

(2007) created annotations where some sections included optional subdivisions, creating

multi-dimensional structure annotations. In theory, an annotator could extend this process

and create a full hierarchical tree for each annotation. However, the hierarchical

connections themselves can be subjective. To give one example, two listeners may agree

on the same fine-scale structural description (in Figure 4.3, the description “aabbc”), but

disagree on how these smaller sections ought to be grouped together (one treats “c” as

balancing the two “b” sections at the middle hierarchical level; the other treats “c” as

merging with the “b” sections).

 65

Figure 4.2a. Tree diagram describing the hierarchical structure of the song “I Saw Her Standing There,” by

The Beatles. Boxes in the same row with the same letter indicate sections of the song with the same or

similar music; lines indicate which sections are grouped together at some level in the hierarchy.Boxes with

the same letter in different rows are not necessarily related. The upper and lower gray dotted outlines

correspond to different analysis of the song provided by two different ground truth sources, CDM and

TUT, respectively. See Section 4.2 for information on these data sets.

Figure 4.2b. Ground truth annotations provided by CDM and TUT for the same song, “I Saw Her Standing

There.” Each corresponds to a dotted line in Figure 4.2a

Figure 4.3. Two tree diagrams demonstrating a possible disagreement in hierarchical relationships, despite

agreement at one scale. The two versions both describe the same low-level and high-level structure, but

disagree on how the small sections are grouped

 66

One way to circumvent these issues is to introduce semantic labels that have

musical meaning, such as “verse” and “chorus.” The properties of these sections may

help establish criteria for making similarity judgements. Furthermore, by defining

meaningful sections of music, we may define a specific hierarchical level that is

meaningful to us. Five widely-recognized labels are briefly defined below:

• verse: a section that repeats with the same music but different lyrics

• chorus: a section that repeats with the same music and lyrics, often regarded as

being more intense or more energetic than the verse

• intro: a non-repeating introductory section, usually without vocals

• outro: a non-repeating concluding section

• bridge: a non-repeating section of contrasting material that occurs in the middle of

a song

However, semantic labels introduce problems of their own. As Peeters and Deruty

(2009) point out, the fact that semantic labels conflate the notion of musical similarity

(embodied in ABAC-style notation) with musical function may result in curious

annotation decisions: for example, two sections that sound exactly the same may be given

the differing labels “intro” and “outro” depending on their position in the piece. Also, the

above list is hardly comprehensive enough to describe all the types of sections that one

encounters in popular music; and yet, as one includes more vocabulary terms—

”instrumental,” “solo,” “pre-chorus,” “coda,” and so forth—the distinctions between

them blur, and the absence of precise definitions grows more regrettable. Relying on a

vocabulary also requires one to devise a new vocabulary for new genres of music: the

above terms would not clarify one’s analysis of, say, Bach’s Prelude no. 1 in C major.

Another way to overcome the subjectivity of structural analysis could be to collect

analyses from a number of listeners and derive from their responses a most agreed-upon

structural description. Bruderer et al. (2006) pointed in this direction in their study of

boundary perception, in which they had listeners annotate a song by indicating where

they felt there were phrase or section boundaries. Their results suggested that while there

may be broad disagreement about where most boundaries lie, there was also significant

agreement on a small number of boundaries. When asked in a second experiment to rate

the salience of candidate boundaries, these agreed-upon boundaries also scored the

 67

highest. Although this research was limited to boundary estimation, the promising results

could inspire research to extend this work towards segment labelling.

Perceptual studies aside, the problems described above—the fuzziness of our

perception of musical similarity, the presence of hierarchical musical relationships, and

the ambiguity of our vocabulary—seem to be fundamentally irresolvable. The sliding

perceptual scale between exact repetitions, approximate repetitions, variations, and

simply dissimilar sections of music may always resist quantitative description; different

listeners may always attune to different levels of a piece’s hierarchical structure; and our

vocabulary, no matter how refined, may always fail to account for all musical situations.

Perhaps because of this, not all regard the subjective nature of ground truth annotations to

be an important problem, and in practice, ground truth seems simply to be taken as the

judgement of one or two annotators who have listened to a song carefully. Rather than

attempt to develop more trustworthy annotations, the response is to simply acknowledge

the subjectivity of the ground truth, and to treat the subsequent empirical evaluation with

a small amount of skepticism.

However, some very recent research efforts have bucked this trend by seeking to

devise structure analysis procedures that are repeatable; that is, where different annotators

who apply the same method will reliably generate the same annotations. The boundary-

estimation procedure proposed by Bimbot et al. (2010) specifies which layers of musical

information are to be considered (e.g., harmony, tempo, timbre, and lyrics), establishes

specific criteria for making similarity judgements (e.g., “Could these two segments be

swapped while retaining the larger section’s musicality?”), and heavily constrains the

placement of segment boundaries by setting a preferred segment length and allowing

deviations only in specific situations. Their research is ongoing, and again limited to

segmentation, but they reported high agreement between annotators in a small evaluation.

Peeters and Deruty (2009), meanwhile, have developed a method for full

structural analysis that seeks to clarify the annotation process by separating different

layers of musical information: labels referring to function (such as “intro” or “chorus”),

to instrumentation, and to the musical ideas themselves are kept in separate layers to

avoid conflating these notions. This way, there is no conflict for the annotator when an

instrumental solo uses the same music as the verse, or when the music from the

 68

introduction is repeated in the bridge, or when two choruses feature vastly different

instrumentation. Again, research is ongoing, but they have used this method to annotate

300 songs already, with high inter-annotator agreement, and a variation of their method

has been adopted by the SALAMI (Structural Analysis of Large Amounts of Music

Information) project at McGill University, which aims to annotate over 1,000 pieces.

Like Peiszer, the SALAMI annotations also include descriptions at two hierarchical

levels.

To summarize: there are significant problems with annotating structure, stemming

from the fuzzy nature of listener’s perception of similarity and from the hierarchical

nature of musical structure. Having a vocabulary of semantic section labels can guide a

listener towards a narrower space of descriptions, but annotating structure remains a

subjective process. However, recent research on novel annotation methods may lead to

significantly more robust annotation practices and, hopefully, more meaningful

evaluation.

4.2 Description of data sets
The algorithms described in Chapter 3 were used to analyze three collections of

music, each with matching sets of annotations. These collections are described in this

section. Two, Beatles and RWC, are large and have been widely used in the literature; the

other is based on music collected from the Internet Archive and was created as part of the

present work.

4.2.1 The Beatles
Between 1989 and 2000, musicologist Allan Pollack undertook the task of

analyzing all the songs in the Beatles catalogue15 (Pollack 2000). His analyses were

comprehensive and included discussions of each song’s style, form, melody, harmony,

and arrangement, and all of his research was released for free on the Internet. A set of

annotations for this corpus was created at the Universitat Pompeu Fabra (UPF) by adding

timing information to Pollack’s analyses; these annotations were in turn edited by

15 < http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-notes_on.shtml> accessed 10 August
2010.

 69

researchers at Tampere University of Technology (TUT). Both versions include 175

annotations and were released freely online under a Creative Commons license, although

anyone wishing to use the corpus must naturally purchase the Beatles records themselves.

A third set of annotations for the Beatles catalogue, also distributed for free

online, has been created at Queen Mary’s Centre for Digital Music (CDM). These are

also based on Pollack’s research, but were created independently of the UPF and TUT

sets and include all 180 songs on the Beatles’ twelve studio albums. This includes five

songs that were omitted from the UPF and TUT versions, presumably because each’s

formal structure was regarded as too idiosyncratic or ambiguous: the omitted songs

include “Happiness is a Warm Gun,” with ABCD structure, and the infamous

“Revolution 9.”

A breakdown of the vocabulary of both of these corpora of annotations are shown

in Figure 4.4 and 4.5. The chart shows that over 80% of the section labels in each corpus

are one of the basic five terms: “intro,” “verse,” “chorus,” “bridge” and “outro.” Most of

the other labels are variations of these five, such as “verseA” and “chorusB,” or

Figure 4.4. Vocabulary breakdown for the Tampere University of Technology (TUT) corpus of 175

annotations of Beatles songs. Each of the five most common labels is divided into two sections: the first

tallies all verbatim appearances of the label, and the “other” one tallies instances where the label occurs in

some varied form.

 70

Figure 4.5. Vocabulary breakdown for the Center for Digital Music (CDM) corpus of 180 annotations of

Beatles songs. Each of the five most common labels is divided into two sections: the first tallies all

verbatim appearances of the label, and the “other” one tallies instances where the label occurs in some

varied form.

“bridge_solo,” and the remaining few belong to no obvious category at all, including

“MR” and “break.”

All 180 Beatles songs are studied in this thesis, and they are evaluated using both

the TUT and the CDM sets of annotations. Due to the popularity of the Beatles and the

availability of these annotations, this is one of the most widely used corpora for the

evaluation of structural analysis algorithms, including the 2009 MIREX event. By

including it in the present evaluation, these results will be directly comparable to many

previous results.

4.2.2 Real World Computing
In 2001, the Real World Computing (RWC) Partnership of Japan released a set of

five music databases that were specifically designed for use in research (Goto et al.

2002). All of the music in these databases was recorded for RWC, and although the

copyright for the music is retained by Japan’s National Institute of Advanced Industrial

Science and Technology (AIST), the music is made available at cost to research

institutions. One subset of the RWC database is used in this thesis: the Popular Music

 71

Database (PMD), comprising 80 songs in the style of Japanese popular music, and 20

songs in the style of Western popular music, by 35 artists in total. Note that none of the

songs were actually released for public consumption as singles: they were commissioned

exclusively for RWC.

RWC later released a set of annotations for each database, including structural

annotations, which are freely available online (Goto 2006b). These annotations were

created by a graduate student studying music. Although RWC includes jazz and classical

corpora, their Popular Music Database has been used most frequently among structure

analysis researchers. To be able to directly compare the results of the present evaluation

with these previous ones, the PMD and its accompanying annotations were used in this

thesis.

The RWC vocabulary is far more constrained than the TUT and CDM

annotations, containing a total of just 14 unique labels. As with TUT and CDM, these

consist of variations on five basic terms.

Figure 4.6. Vocabulary breakdown for the Real World Computing (RWC) corpus of 100 annotations of

songs from the RWC Popular Music Database. Each of the fourteen different labels is tallied separately.

 72

4.2.3 Internet Archive
Two factors have motivated the development of a new corpus of music for this

thesis: the general focus of available corpora on popular music, and the unfortunate

expense of obtaining the music for which annotations are made. After outlining these

factors in greater detail, this section describes the new corpus.

4.2.3.1 Motivation for new corpus

Like the above collections, most other corpora of structural annotations that have

been created focus on popular music, and likewise most of the algorithms discussed in

Chapters 2 and 3 are designed to address popular music as well. This may be because

popular music is regarded as generally having simpler and more obvious structure than

classical, jazz, and other genres. Another reason may be that potential applications, such

as retrieval and thumbnailing (discussed in Section 2.4), could perhaps be most

lucratively applied to popular music collections. However, to more fully understand the

robustness and applicability of these algorithms, one ought to evaluate them on corpora

that include other genres of music.

In addition, it is desirable that musical corpora used for evaluation are shared

between researchers so that algorithm performance may be more accurately compared.

However, sharing music data is often illegal due to copyright restrictions. While

annotations for the above two datasets are public, the collections of music they

accompany are expensive to obtain. While this is the case for most popular music, there

is a wealth of music legally available on the Internet that could form the basis of new,

open musical corpora. One particularly large source of music is the Internet Archive, a

huge online library that as of July 13th, 2010, contains over 577,000 items, including

over 80,000 recordings of full concerts, and over 11,000 recordings from 78 RPM records

and cylinders. Almost all of this audio is freely downloadable and redistributable, either

because it has been released under a Creative Commons license, or because it is in the

public domain.

4.2.3.2 Description of new corpus

For this thesis, I have assembled a new collection of pieces of music and

annotated their structure. The set contains 15 each of classical and jazz pieces

 73

downloaded from the Internet Archive. The contents of each set, including

instrumentation and, where known, composers and performers, are summarized in Tables

4.1 and 4.2.

In order to simplify the annotation process, and because the algorithms being

evaluated in this thesis had never been tested on classical or jazz music before, the pieces

in these corpora were selected because their large-scale structure was deemed to be

especially unambiguous. The classical set thus consists mainly of minuets and middle

movements from sonatas and symphonies, which are often modelled after traditional and

straightforward dance forms. Likewise, the jazz set is drawn principally from early

genres, such as ragtime and Dixieland, in which exact repetition was more common than

in later styles.

Title Composer Instrumentation

Piano Sonata no. 8 op. 13 (“Pathétique”),
second movement Ludwig van Beethoven Piano

Sonata no. 14 (“Moonlight”), op. 27 no. 2,
second movement Ludwig van Beethoven Piano

Symphony no. 8, op. 93, third movement Ludwig van Beethoven Symphony
String Trio in E-flat major, op. 34 no. 3, G
103 Luigi Boccherini String trio

Suite in D George Handel String quartet
String quartet no. 41 in D major (“The Frog”),
op. 50 no. 6, third movement Joseph Haydn String quartet

Symphony no. 92 (“Oxford”), third movement Joseph Haydn Symphony

Symphony no. 40 in G minor, K. 550, third
movement Wolfgang Amadeus Mozart Symphony

Minuet in G major, op. 14 no. 1 Ignacy Jan Paderewski Piano
Minuet in G minor Christian Petzold Horns
Gigue en Rondeau Jean-Phillippe Rameau Synthesized guitar
Symphony no. 1, third movement Robert Schumann Symphony
Symphony in E-flat major, op. 13 no. 3, third
movement Johann Stamitz Chamber orchestra

Nutcracker Suite no. 2, “Marche” Pyotr Tchaikovsky Orchestra
Minuet Unknown Mandolin ensemble

Table 4.1. Summary of Internet Archive: Classical database.

 74

Title Composer or Performer Instrumentation
Frankie & Johnny Louis Armstrong Singer and piano
Perfidia Benny Goodman Singer and full band
Hungarian Rag Edison Military Band Full band
Henpecked Blues Isham Jones and His Orchestra Full band
Joseph Lamb Scott Joplin Piano
Pine Apple Rag Scott Joplin Piano
The Ragtime Dance Scott Joplin Piano
Piano Roll Blues Scott Joplin Piano
Dixieland One-Step Lopez and Hamilton’s Kings of

Harmony
Jazz combo

Maple Leaf Rag Tom McDermott Piano trio
Four Or Five Times King Oliver Singer and full band
Sensation Rag Original Dixieland Jazz Band Jazz combo
Eccentric Rag Oriole Orchestra Full band
Alexander, Where’s That
Band?

Parham-Pickett Apollo Syncopators Full band

Say It With Music Red Nichols & His Five Pennies Singer and full band

Table 4.2. Summary of Internet Archive: Jazz database.

The annotations were created using the Sonic Visualiser environment by the

author, a graduate student with extensive musical training and a prior degree in music.

Although the annotations must be taken as subjective as warned in Section 4.1.1, some

important steps have been taken to mitigate this caveat: first, each annotation contains at

least two hierarchical layers, maximizing the chance that an analysis that is correct at one

level will be fairly evaluated; second, semantic labels (e.g., “minuet,” “trio,” and “da

capo”) were set aside in favour of neutral labels (i.e., “A,” “B,” “C,” etc.) so that the

annotations would reflect the organization of musical ideas rather than of musical

functions.

4.2.4 Summary
Three musical corpora including 310 pieces are studied in the present thesis: the

Beatles catalogue of studio albums (180 pieces), the RWC Popular Music Database (100

pieces), and a new corpus of freely available classical and jazz pieces downloaded from

the Internet Archive (30 pieces). The latter corpus was created to investigate how well the

 75

algorithms of Chapter 3 perform on novel genres of music, and to establish a public and

shareable database for structural analysis. Corresponding structural annotations for all

corpora are publicly available.

4.3 Evaluating structural descriptions
The performance of an algorithm is evaluated by comparing the output of the

algorithm to the ground truth annotation, produced as described in the previous section.

However, structural descriptions are complex data and comparing two descriptions is not

straightforward. Several evaluation metrics have been used and reported by various

researchers, and this multitude of metrics is another reason why comparing the

performance of different algorithms can be difficult. Since this situation was publicized

within the community by Lukashevich (2008), greater awareness has in some cases led to

more thorough reporting of evaluation metrics; however, disparities in evaluation

reporting persist. To maximize the potential of the present evaluation to be cross-

referenced with previous ones, most of the previously used metrics are also reported in

this work. The meaning and derivation of these metrics are described in this section.

A structural analysis consists of two layers of information: a segmentation, and a

grouping of the resulting sections. Evaluation metrics tend to consider each layer

separately: some metrics consider only the accuracy of the boundaries, and other metrics

consider only the accuracy of the labelling. Many metrics come in pairs in which one

indicates if the piece has been under-segmented or if the estimation includes too little

detail, and the other indicates if the piece has been over-segmented or if the estimation is

over-detailed; often, a third measure will combine the two. The next section describes

methods of evaluating an estimated segmentation, and the section afterward describes

methods of evaluating an estimated labelling.

4.3.1 Boundary evaluation

 Precision and Recall

The annotated boundaries are a set of time points that analysis methods aim to

recover precisely. Equivalently, this can be thought of as a classification task, where each

audio frame is classified as a boundary or as a non-boundary. In either view, the quality

 76

of the set of estimated boundaries can be evaluated using the familiar pair of evaluation

metrics known as precision and recall. Recall is the percentage of the total number of

annotated boundaries that were recovered, and precision is the percentage of estimated

boundaries that were correct.

Given a set of estimated boundaries E and a set of annotated boundaries A, the set

of correctly retrieved boundaries is indicated by their intersection EAI . The precision p

and recall r may thus be calculated as:

E
EA

p
I

=

A
EA

r
I

=

Over-segmentation tends to decrease the precision, while under-segmentation will

decrease the recall. The two are usually combined as an f-measure statistic, which is the

harmonic mean of the two:

()rp
prf
+

= 2

Each of the above three metrics takes a value between 0 and 1, with 1 representing

perfect performance.

One aspect of the above definition that was left unspecified is how to decide if a

boundary is correct. This amounts to setting the proximity in seconds that an estimated

boundary must have to the nearest annotated boundary. The selection here is somewhat

arbitrary, but the community has settled on two values: a 0.5-second margin and a 3-

second margin, corresponding to windows with widths of 1 and 6 seconds around each

boundary.

 Median boundary distance

Because the above method relies on a fixed threshold, it does not distinguish a

perfectly estimated boundary from a boundary that was just barely within the window —

nor does it distinguish a boundary that was just outside the window from one that was 20

seconds away from the nearest annotated boundary. Two median boundary distance

measures help paint a fuller picture by measuring how far each boundary was from the

 77

nearest annotated boundary. The median true-to-guess distance finds the minimum

distance from each annotated boundary to any estimated boundary, and returns the

median of these values. This value is analogous to recall, since if the estimated

description is highly under-segmented, then the median true-to-guess distance will be

high. The median guess-to-true distance finds the median of the minimum distance from

each estimated boundary to any annotated one. It is analogous to precision, and suffers in

the case of an over-segmented description.

 Directional Hamming distance

The directional Hamming distance dAE used by Abdallah et al. (2005) also

evaluates the quality of the segmentation without explicit regard to the labelling.

Effectively, it considers each segment of the estimation in turn and measures how well

the single best-matching segment in the annotation matches. It is calculated by first

identifying, for each estimated segment ej, the annotated segment amax that maximally

overlaps ej. The spans of ej which overlap any segment ai other than amax is kept, and the

sum of these spans over the set of estimated segments gives dAE. Expressed

mathematically, this gives:

∑ ∑
≠

=
j ie aa

ijAE aed
max

I

Thus, dAE is a measure of under-segmentation, since its value will be high if

boundaries have been missed and the estimated segments are longer than the annotated

ones. The inverse directional Hamming distance dEA, calculated by swapping the role of

the annotation and estimation in the above calculation, likewise gives a measure of over-

segmentation.

In the worst case scenario, dAE will tend toward the length of the whole piece, so

Abdallah et al. (2005) normalized it by this length to produce a “missing rate” score

denoted by m. This takes a value between 0 and 1, with 0 indicating perfect

segmentation; so that perfect segmentation would give the value 1, Lukashevich (2008)

reported the inverse score 1 – m. In a similar manner, the inverse directional Hamming

distance dEA can be normalized to give a “false alarm” or “fragmentation” score 1 – f.

 78

4.3.2 Grouping evaluation
Evaluating the quality of a labelling scheme is more complex than evaluating the

retrieved section boundaries: rather than to retrieve a set of items, the goal is to retrieve a

set of relationships between items. Different perspectives on this problem have inspired

different metrics to be used: some, such as the Rand index and pairwise precision and

recall, spring from a clustering interpretation, asking, “Are the items that were clustered

together in the annotation also clustered in the estimation?” Others, such as conditional

entropy, originate from the perspective of information theory, and ask, “Is the

information encoded in the annotation effectively restated in the estimation?”

4.3.2.1 Clustering metrics

The task of music structure analysis has been frequently approached as a

clustering problem (see Section 2.3), in which the task is to group together those portions

of the piece of music which were grouped together in the ground truth. If the algorithm

produces semantic labels, then evaluating the result is straightforward: as in Paulus and

Klapuri (2009), one may simply compare the label estimated for each frame to that

provided in the ground truth, and calculate the percentage of correctly labelled frames.

However, most algorithms produce non-semantic output such as “AABBA,” which

should be compared to the ground truth in a permutation-invariant manner. That is, if the

ground truth is “ABCBC,” then the estimated description “ACBCB” should be given a

perfect score. Rather than evaluate specific labels, then, the task is to evaluate the

relationships between the labels. Three methods of doing so are described in this section:

pairwise precision and recall, the Rand index, and the purity metric.

 Pairwise precision and recall

Proposed by Levy and Sandler (2008), pairwise precision and recall consider the

pairwise matches between frames in the annotation and the estimation. The set of all pairs

of frames (i, j) in the annotation whose labels Li and Lj are a match is a set of grouping

relationships that can be seen as a set of items to be retrieved, so that we may apply the

familiar precision and recall metrics discussed in Section 4.3.1. Taking MA to be the set

of all pairwise matches in the annotation and ME to be the set of pairwise matches in the

estimation, we have again:

 79

E

EA

M
MM

p
I

=

A

EA

M
MM

r
I

=

where |x| counts the number of elements in the set x. The origin of these measures is

depicted in Figure 4.7 as a Venn diagram: the ratio |a|/(|a|+|c|) gives precision, while

|a|/(|a|+|b|) gives recall. The set of matching pairs could also be visualized as a binarized

SSM where a white pixel at position (i, j) corresponds to a pairwise match; viewed this

way, pairwise precision and recall would rate how well these white pixels were retrieved.

High pairwise recall and low precision indicates that the estimation was not conservative

enough in judging the similarity of different regions; conversely, low recall and high

precision indicate that the estimation was too fine, distinguishing as separate regions that

ought to have been considered a whole.

Figure 4.7. Venn diagram illustrating the calculation of pairwise precision and recall. MA represents the set

of pairwise matches in the annotation, ME the pairwise matches in the estimation. The set a indicates the

overlap between these sets, b the set of matches that are found in the annotation but not the estimation, c

the set of matches in the estimation that are missing from the annotation, and d the set of pairs that do not

match in either set. Precision may be calculated as the ratio |a|/(|a| + |c|), recall as |a|/(|a| + |b|), and the Rand

index as (|a| + |d|) / (|a| + |b| + |c| + |d|)

 80

 Rand index

The Rand index was proposed as a structure evaluation metric for the 2009

MIREX event. It is related to the pairwise precision and retrieval, with a subtle

adjustment: in addition to appraising pairwise matches, it appraises pairwise anti-matches

as well. In other words, the Rand index counts as agreements pairs of frames that do not

have matching labels in either the annotation or estimation. With respect to Figure 4.7,

the formula for the Rand index can be expressed as:

dcba
da

R
+++

+
=

Like the f-measure, the Rand index considers precision and recall together.

 Purity

The speaker purity and cluster purity metrics were developed to evaluate a

clustering task in which the goal was to group together utterances from the same speaker,

as noted by Lukashevich (2008). Analogously, the goal in structural analysis is to group

together those audio frames that originate from the same section-types in the annotation.

We may thus borrow the average cluster purity (ACP) score, which measures how well

regions that were grouped in the annotation have been grouped in the estimation, and its

opposite, the average speaker purity (ASP), which assesses how well the distinctness of

each label has been preserved. ACP and ASP are similar to pairwise precision and recall,

respectively, except that the purity scores are penalized even more when a set of frames

that should be all assigned to the same label (according to the annotation) are divided

among several labels.

The steps for calculating the ACP are provided by Lukashevich (2008) and are

outlined below. To calculate ASP, simply swap the role of the annotated and estimated

values.

1. Consider all the audio frames associated with a particular label j in the annotation.

2. Consider the parallel audio frames in the estimation. They may be associated with

a number of labels; tally up separately the number of frames associated with each

label.

3. Calculate the sum of the squares of these tallies, and normalize by the total

number of frames in the annotation with label j.

 81

4. This gives the cluster purity of the label j. The average cluster purity is taken as

the weighed sum of each label’s purity.

The result will have a maximum when all of the estimated frames have been given

the same label, and will reach a minimum when the frames in the estimation are evenly

distributed among all the segment labels. Note that unlike pairwise precision, the lowest

possible score for ACP is not 0, but 1 divided by the number of labels, a result achieved

when the frames annotated with a particular label are uniformly scattered among all the

labels in the estimation.

As with precision and recall, the ACP and ASP may be combined into a measure

K, which is the square root of the product of the two purity scores.

4.3.2.2 Information-theoretic metrics

One may ask abstractly, “How much of the information contained in the

annotation is conveyed by the estimation?” The answer can be characterized using

several related information-theoretic measures, including conditional entropy, mutual

information, and Lukashevich’s (2008) proposed over- and under-segmentation scores.

In information theory, the “quantity” of information in a set of values is estimated

as the minimum number of bits it would take to encode the data, according to some

encoding scheme. (Technically, the number of bits required to encode some set of data

will change depending on the encoding scheme, and the optimal encoding scheme is not

normally discoverable.) This number will increase whenever there is greater uncertainty,

or entropy, in the data: for instance, the string s1 = “AAABBB” would require fewer bits

to encode than the string s2 = “ABBABA,” since the former is organized more simply. Its

entropy H(s1) would likewise be smaller than H(s2).

 Conditional entropy

The conditional entropy H(s2|s1) between two sets of data is the amount of extra

information required to encode the data set s2 based on the set s1. For example, if the data

sets were strings, then the conditional entropies would be analogous to the string edit

distance discussed in Section 2.3.2.3. H(A|E) expresses the amount of information

missing from the estimation, while H(E|A) expresses the amount of spurious information

contained in the estimation.

 82

Conditional entropy may be calculated by treating the data sets as probability

distribution functions and calculating the conditional probabilities between each pair of

labels. For each label ai in the annotation that occurs with probability p(ai) (i.e., that

accounts for a proportion p(ai) of the annotation) we calculate the conditional probability

p(ej|ai) that an audio frame with label ai was given the label ej in the estimation. The

following equation gives the conditional entropy H(E|A) in terms of these values:

() () () ()ij
j

ij
i

i aepaepapAEH 2log⋅−= ∑∑

 Over- and under-segmentation scores

The minimum conditional entropy is 0, but because the amount of information in

each piece of music’s annotation is different, the maximum value is also different in each

case. Lukashevich (2008) proposed normalizing the conditional entropy H(E|A) by its

estimated maximum value. As with the purity metric, this maximum occurs when all

frames in the annotation are equally likely to be assigned to any label used in the

estimation. By substituting the value p(ej|ai) = 1/Ne, Lukashevich obtains a maximum

conditional entropy, and uses these to create an over-segmentation score So. Normalizing

by Na, the number of labels in the annotation, gives an under-segmentation score Su.

()
e

o N
AEH

S
2log

1−=

()
a

u N
EAH

S
2log

1−=

Each of these scores takes values between 0 and 1, with perfect annotations

garnering a 1. Lower over-segmentation scores indicate the presence of spurious

information in the estimation, while lower under-segmentation scores suggest that the

estimation is missing information from the annotation.

 Mutual information

The mutual information I(X, Y) between two data sets is the amount of

information they have in common, and may be derived intuitively from the conditional

entropy. If the conditional entropy H(A|E) expresses the amount of annotated information

that is not contained in the estimation, and the entropy H(A) expresses how much

 83

information is in the annotation to begin with, then their difference gives the amount of

information shared by the annotation and the estimation. Put simply:

() () ()EAHAHEAI −=,

Mutual information may also be calculated from the similarity of the probability

distributions that define the two descriptions, using the following equation:

() () () ()
()∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

i j i

ji
jji ap

eap
epeapEAI log,

When the distribution of two labels ai and ej are similar, the argument of the above sum

will be large and the mutual information greater. However, like the conditional entropy,

the magnitude of I is not normalized and depends on the amount of information contained

in the annotation.

4.4 Summary
This chapter began with a discussion of important issues relating to the production

of structural annotations. Fuzzy notions of musical similarity and the hierarchical

organization of music were noted as fundamental obstacles that some researchers are

nevertheless beginning to overcome. The three corpora of music and accompanying

annotations to be analyzed in the present work were described; they include one new

corpus that consists of publicly available music and that may therefore be shared by

researchers in the future. Finally, the many metrics used to perform the present evaluation

were defined. These include most of those used in previous evaluations, including all of

those used at MIREX 2009.

 84

5 Results and Discussion

An evaluation was performed using the three corpora of music described in

Section 4.2: the Beatles catalogue, the Real World Computing (RWC) Popular Music

Database, and the set of pieces from the Internet Archive. Each song in each corpus was

analyzed by the three structure analysis algorithms (Barrington et al. 2009, Levy and

Sandler 2008, and Peiszer 2007) and by the two segmentation algorithms (the Echo Nest

and Mestres 2007) described in Chapter 3. The output of each algorithm was compared to

the corresponding annotated descriptions in each of the various ground truth sources

described in Section 4.2: the Beatles annotations provided by the Centre for Digital

Music (CDM) and by the Tampere University of Technology (TUT); the RWC

annotations provided by RWC; and the hierarchical Internet Archive annotations created

for this thesis, including one larger-scale and one smaller-scale description of each piece.

The performance of each algorithm on each song was measured using the evaluation

metrics defined in Section 4.3, which appraise the estimated boundaries and the estimated

labels of each description.

This chapter summarizes the methodology and the results of this evaluation. The

first section describes how the evaluation was implemented. It includes a summary of the

input parameters and of the performance metrics used in the evaluation, as well as

discussions on how the ground truth files were handled and on which performance

baselines were used.

The second section presents the results of this evaluation. Because there are so

many tunable parameters in the algorithms and different versions of the ground truth, the

resulting collection of evaluation data is quite large: over 2 million metrics were

calculated. Section 5.2 presents an overview of these results, presenting and discussing

several views on the data. The full results and raw output of each algorithm are available

online.16

16 <http://www.music.mcgill.ca/~jordan/structure>

 85

5.1 Review of evaluation procedure
The algorithm parameters and evaluation metrics used in this thesis are described

in detail in Chapters 3 and 4, respectively, but are briefly recalled in this section, with the

relevant information summarized in tables. This section also discusses a handful of ways

in which the ground truth data may be manipulated before being used for evaluation, and

a description of some naïve structure analysis strategies that are implemented as baselines

for this evaluation.

5.1.1 Summary of algorithm parameters
Five analysis algorithms were tested: Barrington et al. (2009), Levy and Sandler

(2008), Peiszer (2007), the Echo Nest, and Mestres (2007). Of these, the latter two

provided only segmentation data and did not require any input parameters to be specified.

The input parameters specified for the first three included the feature set to be used and k,

the number of clusters (i.e., section label types) that each algorithm would attempt to

model. Levy and Sandler’s algorithm also required one to choose a value for N, the

minimum segment length. As well, three different versions of the clustering stage of

Peiszer’s algorithm were implemented, although each version’s segmentation of a

particular song were identical to each other.

Although Barrington et al.’s algorithm did not require setting any parameters

beside the choice of feature and the value for k, this evaluation did consider both the

coarse and the fine-grain output of the algorithm. The fine-grain description is the final

output of the algorithm, but usually does not differ substantially from the coarse

description that the algorithm creates partway through. Since Barrington et al.’s

algorithm takes quite a long time to operate, sometimes taking several hours to compute a

single description, it would be valuable to know if the quickly-found coarse descriptions

are just as good as the fine-grain ones.

The parameters used in this experiment are summarized in Table 5.1.

 86

Algorithm Features Number of cluster
types k Other parameters

Number of
parameter
combinations

Barrington et al. chroma,
MFCC 3, 4, 6 fine or coarse output 6

Levy and Sandler CQT,
MFCC 3, 4, 5, 6, 8, 10 minimum section length:

4, 10 seconds 24

Peiszer CQT,
MFCC 3, 4, 5, 6, 8, 10

clustering approach: k-
means, agglomerative,
DTW

36

Table 5.1. Summary of input parameters used for each algorithm. Note that fewer values for k were used

with Barrington et al.’s algorithm since it required substantially longer to run.

5.1.2 Summary of ground truth variations
Each algorithm, after analyzing a piece of music, provides a segmentation of the

piece and a grouping of these segments. This grouping is symbolic, rather than semantic;

that is, the estimated section labels are simply “1,” “2,” “3,” and so forth, rather than

“verse,” “chorus,” or “bridge,” as used in most of the ground truth. The semantic content

of these ground truth labels is typically ignored in evaluation—certainly it must be when

none of the algorithms estimate semantic labels—but the process of reducing semantic

labels to simple groupings demands certain choices.

For instance, in the RWC ground truth files, individual sections are normally split

up into several parts, provided with labels such as “verse_a” and “verse_b.” In the

evaluation step, one may either wish to group these sections together, since they are all

part of the “verse,” or to consider them as distinct labels. The CDM and TUT ground

truth sets also include labels such as “verseS” or “verse_(guitar_solo),” both of which

indicate a version of the verse featuring a solo. Similarly, some of the annotations

provided in this thesis for the Internet Archive corpus include prime markers to

distinguish variations: e.g., A' indicates a variation on the section A. Deciding whether or

not sections with related labels should be grouped together is a subjective one, as both

interpretations have musicological merit. Thus, in the present evaluation, both

interpretations were used: new versions of the ground truth files were produced that

 87

conflated and grouped together similar terms, and the output of the algorithms was

evaluated against both versions.

In their evaluation using RWC data, Barrington et al. (2009) went further in

constraining their label vocabulary: they mapped each section to one of four labels,

“verse,” “chorus,” “bridge,” and “other,” and merged neighbouring sections with the

same label. For the present evaluation, a third version of the ground truth for the RWC,

CDM, and TUT corpora was produced according to this procedure. Since the Internet

Archive annotations do not include any semantic information, there is no obvious way to

produce a four-label version of this corpus, so only the segment-merging aspect of

Barrington’s procedure was applied to this corpus. Note that this procedure potentially

misrepresents the data, since it may be unlikely that the “intro,” “pre-chorus,” and

“ending” sections of a song actually sound alike, although they are all given the label

“other.” Secondly, it is usually considered important to detect boundaries even between

similar segments, although these are not part of this ground truth.

In total, then, three versions of the ground truth were included. The first was the

original version, treating each distinct label as distinct. The second conflated similar

terms, discarding the label prefixes and suffixes that the annotators used to indicate

nuanced differences between sections. The third was a four-label version in which all

sections not belonging to one of the three main song functions (verse, chorus, and bridge)

were grouped together, and where neighbouring segments with the same label were

merged; for the Internet Archive corpus, only this merging step was applied. To illustrate

the difference between these versions, the original, conflated, and four-label versions of

the ground truth for the Beatles song “I Am The Walrus” is shown in Figure 5.1.

5.1.3 Summary of baseline estimations
When evaluating the performance of an algorithm, it is essential not only to

compare different algorithms’ performance to each other, but also to the performance of a

random or naïve baseline procedure. Ensuring that algorithms perform significantly better

than chance is important both to validate the algorithm and the evaluation procedure.

Different authors have used different baseline analysis methods. In their

evaluation of segmentation algorithms, Turnbull et al. (2007) used two baselines, both of

 88

Figure 5.1. Illustration of difference between different versions of the same ground truth file: the CDM

annotation of “I Am The Walrus.”

which estimated 10 boundaries per song: the first baseline spaced these boundaries

uniformly throughout the piece, and the second placed them randomly. Peiszer (2007)

used a baseline segmentation method where each segment was the same length L, with

the first segment being placed L/2 seconds from the beginning of the track. He used

values of L of 10, 15, 20, and 30 seconds.

To evaluate how well the segment-labelling step of his algorithm had performed,

independent of its success at the segmentation step, Peiszer used a baseline in which

segments determined by the ground truth boundaries were labelled randomly. The

maximum possible number of segment types or different labels used was determined by

whatever value for k was chosen for the algorithm. Chai (2005) used a constant baseline

in which the entire song was labelled as a single section. Barrington et al. (2009) did the

same, and included a random baseline in which each window of audio was given a

random label.

All of these methods were appropriated for this thesis, a total of eight approaches

to boundary estimation and two approaches to labelling. The boundary estimation

methods are summarized in Table 5.2. For each one, two baseline descriptions were

created: in the first, each segment was given the same label; in the second, each segment

was given one of k random labels. This parameter k was varied in the same manner as for

the analysis algorithms.

 89

Baseline segmentation Description

Constant No segment boundaries

10E 10 evenly-spaced boundaries

10R 10 randomly-placed boundaries

L10

L15

L20

L30

Boundaries spaced L seconds apart, beginning at time L/2

Framewise Segment boundaries placed every second

Table 5.2. Summary of baseline segmentation methods employed. For each method, two labellings were

provided: one giving each section the same label, the other giving each section a random label.

5.1.4 Summary of evaluation metrics
Several evaluation metrics have been used to assess the accuracy of the

boundaries and segment labels of an estimated structural description. They are described

in detail in Section 4.3, and are summarized in Tables 5.3 and 5.4. Each metric is listed

along with its best and worst values. In addition, it is noted what type of errors the metric

is sensitive to: boundary-related metrics may reflect over-segmentation errors, under-

segmentation errors, or both; likewise, labelling-related metrics may punish spurious

information, or missing information, or either.

In general, the discussion in this chapter will focus mainly on the metrics that are

normalized and that reflect both types of errors. These include: the two boundary f-

measures with different thresholds, which balances the precision and recall with which

the correct boundaries were retrieved; the pairwise f-measure, which describes how well

the set of pairs of frames with the same label in the ground truth were retrieved; the

combined cluster and speaker purity measure K, which estimates how well the section

types in the ground truth were preserved by the estimated sections, and how efficiently

the estimated sections accounted for them; and the Rand index, which measures the rate

of agreement between all pairs of frames in each description.

 90

Evaluation metric Best value Worst value Poor values indicate

Boundary precision with 1-second
window B_P1 1 0 Over-segmentation

Boundary recall with 1-second window
B_R1 1 0 Under-segmentation

Boundary f-measure with 1-second
window B_F1 1 0 Either

Boundary precision with 6-second
window B_P6 1 0 Over-segmentation

Boundary recall with 6-second window
B_R6 1 0 Under-segmentation

Boundary f-measure with 6-second
window B_F6 1 0 Either

Median true-to-guess distance MTG 0 - Over-segmentation

Median guess-to-true distance MGT 0 - Under-segmentation

Fragmentation rate 1-f (based on inverse
directional Hamming distance) 1 > 0 Over-segmentation

Missed boundaries rate 1-m (based on
directional Hamming distance) 1 > 0 Under-segmentation

Table 5.3. Summary of evaluation metrics for boundary estimation.

5.2 Summary of results
As stated before, the volume of evaluation data collected for this work is great,

and it would be unhelpful to display them in full here, although they are available in their

entirety online.17 Because of the high number of varying dimensions in this evaluation

(including the choice of corpus, of ground truth, and of algorithm parameters), the data

also elude immediate summary: it would be hasty, for instance, to average the results

across the different corpora. This section therefore proceeds by examining and discussing

different narrow views of the data. The following section examines how each algorithm’s

17 <http://www.music.mcgill.ca/~jordan/structure>

 91

Evaluation metric Best value Worst value Poor values indicate

Pairwise precision PWP 1 0 Spurious information

Pairwise recall PWR 1 0 Missing information

Pairwise f-measure PWF 1 0 Either

Rand index 1 0 Either

Average cluster purity ACP 1 1/k Spurious information

Average speaker purity ASP 1 1/k Missing information

Combined cluster and speaker purity
measure K 1 1/k Either

Conditional entropy H(E|A) 0 H(E) Spurious information

Conditional entropy H(A|E) 0 H(A) Missing information

Over-segmentation SO 1 0 Spurious information

Under-segmentation SU 1 0 Missing information

Mutual information I(A, E) max(H(A),
H(E)) 0 Either

Table 5.4. Summary of evaluation metrics for label evaluation.

performance depended on the choice of corpus and ground truth; the section afterward

considers the choice of the number of cluster labels k and other parameters. Because of

the high number of data plots, all are found in the Appendix.

5.2.1 Choice of corpus and ground truth
This first view on the evaluation data will illustrate how the performance of each

algorithm depended on the choice of corpus and on what processing has been applied to

the ground truth annotations. Figure A.1 contains five subfigures, one for each corpus of

annotations, and displays for each type of ground truth the results the pairwise f-measure.

 92

Each mean represents a number of data points equal to the size of the corpus. Figures A.2

and A.3 similarly display the results for the two labelling metrics, the purity metric K,

and the Rand index, and Figure A.4 shows the results for two versions of the boundary-

estimation f-measure: one with a 0.5-second tolerance and the other with a 3-second

tolerance. All of these metrics assess the overall quality of the estimated analysis rather

than just the over- or under-segmentation.

Each figure displays the best average result achieved by any baseline and any

version of each algorithm: that is, given a particular author’s algorithm, every

combination of parameters was tried and the most successful parameter set for a

particular metric was used to generate the result seen in the figure. Note that individual

figures often report results from different versions of a single algorithm: for instance, on

the original version of the CDM ground truth, the version of Peiszer’s algorithm with the

best pairwise f-measure had the number of clusters k set to 4 and used k-means clustering

(see Figure A.2a), whereas on the conflated version of the ground truth, Peiszer’s best

result used three cluster labels and agglomerative clustering. The error bars in all figures

indicate the standard error, so the visual observations that follow may not carry statistical

significance.

5.2.1.1 Labelling performance

In most cases, the best baseline method performed worse at labelling than the

evaluated algorithms. This is in line with previous evaluations, such as Peiszer (2007)

and Barrington et al. (2009). However, when considering the Beatles annotations (either

the CDM or the TUT versions) and the 4-label versions of the ground truth files, some

baseline methods performed as well as or even better than the best algorithms (e.g., see

Figure A.3a, where one baseline method earned a K measure that was substantially higher

than for any version of any algorithm). The reason for this may be that restricting the

CDM and TUT ground truth files to 4 labels eliminates too much detail in certain songs,

to the point that a degenerate approach that labels all regions as identical becomes a more

reliable method than any algorithm. (Indeed, this was the best-performing baseline on

both Beatles corpora.) This is certainly true of a few songs with unconventional

annotations that do not use the base terms “verse,” “bridge,” or “refrain.” For instance,

 93

the song “Revolution 9” is annotated in CDM simply as “beginning,” “middle,” and

“end,” so that the 4-label version is simply one long “other” section.

The surprising success of the baseline on Beatles songs is also apparent with the

conflated version of the ground truth. In this version, sections such as “verse_(solo)” are

grouped with other verses, and this leads to a similar degeneracy for many of the Beatles’

blues pieces, where each section is annotated as some variation of the same 12-bar

pattern. See for instance the ground truth versions for the piece “Everybody’s Trying To

Be My Baby” in Figure 5.2, devoid of detail. In cases like this, a baseline estimate will

wind up being more reliably accurate than any analysis.

Figure 5.2. Illustration of different versions of ground truth for “Everybody’s Trying To Be My Baby.”

Note that the 4-label ground truth contains virtually no information and no longer resembles a valuable

analysis.

It is worth noting that the success of these naïve baselines seems mainly restricted

to the Beatles annotations. As seen in Figures A.1–A.3, the baselines generally scored

much lower with the Internet Archive corpus (subfigures c-d) and with the RWC corpus

(subfigure e), which is composed almost entirely of variations on the base terms “verse,”

“chorus,” and “bridge,” and for which Barrington et al. originally proposed using a 4-

label version of the ground truth.

One exception to this observation is that the baseline performed just as well as

Barrington et al.’s algorithm when evaluated with the Rand index. In all corpora and with

all versions of the ground truth, the baseline with the highest Rand index always used

 94

random labelling with the maximum number of clusters, using either the 15-second or the

random segmentation method.

5.2.1.2 Segmentation performance

As seen in Figure A.4a-j, the boundary estimation f-measure of most algorithms

was generally poorer when the 4-label ground truth was used instead of the original

ground truth, although this had little effect on the relative ranking between algorithms.

(Note that the original and conflated ground truth had identical segment boundaries.) This

could indicate that reducing the ground truth to four labels eliminates more true

boundaries than spurious ones. Interestingly, the relative ranking of the algorithms,

including the baseline, did not appear to depend on which ground truth version was used

for any particular corpus. By contrast, the relative ranking did often change when the

boundary detection threshold was changed; for instance, Barrington et al. was the most

accurate on the CDM corpus with a 0.5-second threshold (Figure A.4a), but Peiszer was

best with a 3-second threshold (Figure A.4b).

In all cases, the best performing baseline was the one that estimated one boundary

per second. The only case where this baseline greatly outperformed the algorithms was

with the small-scale annotations for the Internet Archive corpus (Figure A.4g-h). This

makes sense, since it is the set of annotations with the highest number of segments: its

average segment length is roughly 8 seconds, compared to roughly 20 seconds for each

other set of annotations. (See Tables 5.5–5.7 for a comparison of the average number of

sections, average section length, and average number of unique section labels in both

versions of the ground truth.) Since the three-second tolerance for correct boundaries

corresponds to a window around each boundary of 6 seconds, as many as three quarters

(6 seconds out of 8 seconds) of randomly guessed boundaries may be judged correct.

This points to a flaw in the boundary evaluation process, since several estimated

boundaries should not all be judged correct if they all target the same boundary in the

ground truth. In future evaluations, a different procedure could be used where for each

annotated boundary, only the nearest estimated boundary is counted as correct, with all

extra nearby ones being counted as misses. With this procedure, a baseline that estimates

 95

Average number of sections Original ground truth
4-label ground truth

CDM 10.16 7.33

TUT 9.21 7.34

RWC 17.11 11.03

IA large-scale 11.73 9.47

IA small-scale 31.87 28.80

Table 5.5. List of the average number of sections per piece of music in each of the five sets of annotations.

Average length of sections Original ground truth 4-label ground truth

CDM 16.31 19.65

TUT 15.09 19.33

RWC 13.54 20.87

IA large-scale 19.16 23.84

IA small-scale 7.26 8.33

Table 5.6. List of the average length of the sections in each of the five sets of annotations.

Average number of
section types Original ground truth Conflated ground truth 4-label ground truth

CDM 5.57 5.58 3.93

TUT 5.28 4.68 3.97

RWC 9.13 4.94 4.93

IA large-scale 5.47 6.23 6.23

IA small-scale 11.90 11.50 11.50

Table 5.7. List of the average number of unique section labels per piece in each of the five sets of

annotations.

 96

one boundary per second would still have a high recall rate, but its precision would drop

sharply, appropriately reducing its f-measure.

The preceding analysis of the best achieved results for each algorithm as a

function of which corpus and which ground truth version were used suggests that

considering the conflated and 4-label versions of the annotations may be unnecessary, for

several reasons. First, for the Beatles corpora, the conflated and 4-label versions of the

ground truth appear to be sufficiently degraded versions of the original ground truth such

that a naïve baseline labelling all regions as identical was evaluated positively. Second,

for the RWC and Internet Archive corpora, the choice of which ground truth version was

used did not appear to affect the measured success of the estimated labels. Finally, while

most algorithms’ success at estimating boundaries was affected by the choice of ground

truth, the relative ranking of algorithms by their boundary estimation f-measure was not.

Therefore, in the analysis and discussion of the results that follows, only the original

version of the ground truth is considered.

5.2.2 Choice of algorithm parameters
The next important result to examine is how the choice of input parameters

affected each algorithm’s performance. Aside from the Echo Nest and Mestres’ systems,

each author’s system (as well as the baseline) required one to pick from a handful of

input parameters. These parameters, summarized earlier in Table 5.1, included the choice

of features, the number of cluster label types k, and others particular to each system.

5.2.2.1 Number of cluster label types

We first consider the effect of the input parameter k on the success of each

system. Figures A.5–A.8 show, for each corpus, how well each author’s system

performed on average, according to the same set of metrics considered earlier. Only the

original version of the ground truth is considered here, but each data point in the figure is

obtained by averaging together the results from every set of input parameters; for

instance, the displayed values for Peiszer’s algorithm average together the results

obtained using both features (CQT and MFCCs) and all three clustering methods (k-

means, agglomerative, and DTW). While this view therefore obscures the fact that one

 97

system may have one parameter set that outperforms the others, it does give a fair

impression of how the performance of each system varies with the input parameter k.

Again, the results paint a different picture for each corpus. With RWC and the

small-scale version of the Internet Archive corpus, using a higher value for k nearly

always led to improvements in performance in all metrics: witness the rising lines in

Figures A.5d-e, A.6d-e, and A.7d-e. For Barrington et al. and Levy and Sandler, where

the number of clusters k affected the segmentation, the boundary f-measure also

improved slightly with greater values for k (see Figure A.8d-e). This conclusion is of

course tentative for Barrington et al.’s system, since it was executed with only three

values for k, due to its substantially longer runtime.

The same could not be said for the large-scale Internet Archive annotations or the

Beatles annotations, where changing k did not have a consistent effect on the results:

performance was static over each k for both boundary f-measures (Figure A.8a-c), while

the Rand index rose for each algorithm with increasing k (Figure A.7a-c). The

performance of Peiszer’s algorithms fell sharply with increasing k for the pairwise f-

measure (Figure A.5a-c) and purity metric K (Figure A.6a-c), although this trend was less

pronounced with the other algorithms.

These disparate results make better sense when one considers the average number

of segment types in each set of annotations (see Table 5.7). With RWC and the small-

scale Internet Archive annotations, the true value for k was roughly 10, and setting k

closer to 10 led to improved performance. On the other hand, the true value for k was

roughly 5.5 for the Beatles and the large-scale Internet Archive annotations, so none of

the tested values of k (which ranged from 3 to 10) were all that far from the correct value.

Unsurprisingly, it appears to be true that setting k very far from the average number of

segment labels in each corpus will hinder performance on that corpus.

It is interesting to note that among the four metrics plotted in Figures A.5–A.8,

the Rand index obtained by each algorithm appears to increase monotonically with

increasing k (see Figure A.7a-e). This was even true for the Beatles corpora (Figure A.7a-

b), where the pairwise f-measure tended to fall with increasing k (see Figure A.5a-b). If

the Rand index favours a higher number of cluster types, even more than are in the

ground truth, it could be that the Rand index penalizes missing information more severely

 98

than it penalizes spurious information. This certainly seems to be the case when

compared to the pairwise f-measure: recall from Section 4.3.2.1 that both of these metrics

consider how many pairs of frames with matching labels were correctly estimated, but

only the Rand index measures how many pairs of frames with different labels were

correctly estimated.

Among the structure analysis systems, Levy and Sandler’s stands out, consistently

outperforming the others, including the baseline; this was true in all corpora and for each

evaluation metric (Figures A.5–A.7). However, recall that these figures plot the average

performance over all sets of algorithm parameters; Figures A.1–A.3 showed that there

was usually little or no difference in performance between the best-performing version of

Levy and Sandler’s and Peiszer’s algorithms.

5.2.2.2 Algorithm parameters

Finally, the effect of each algorithm’s input parameters is investigated. Figures

A.9–A.11 show, for each algorithm, the effect of applying different combinations of input

parameters when evaluated on different corpora. These results were obtained using the

original version of the ground truth with k set to 6 cluster labels. While this was not the

best possible value for k to choose for each algorithm and each corpus, it represents a

happy medium which, based on Figures A.5–A.8, did not lead to especially poor

performance in any case.

 Barrington et al.

As seen in Figure A.9a-c, Barrington et al.’s algorithm performed best using

MFCCs as features when analyzing either the Beatles or the RWC corpora, and

performed best using chroma as features when analyzing the Internet Archive corpus.

This reflects what one might have expected based on some broad differences between

popular music and classical or jazz music. The songs in the Beatles and RWC collections

are mostly in the popular genre, where sections tend to stay in a single key area, and

where different sections may feature different combinations of singers, different drum

beats, or different instruments appearing in the foreground. On the other hand, the

majority of the pieces in the Internet Archive corpus are mono-timbral, including several

string quartets, piano rags, and Dixieland blues pieces. At the same time, tonal

 99

relationships and melodic motifs can be more highly varied and structurally significant in

classical music than in popular music, where it is not uncommon for a single song to use

fewer than five chords.

There was not generally an important difference between the algorithm’s coarse-

and fine-scale outputs when using chroma features, but with MFCCs, the pairwise f-

measure and the purity score K were both a small amount higher for the fine output (see

Figure A.9a–b). It should be noted that the section label information estimated by

Barrington et al.’s algorithm derives principally from its coarse analysis step, which

estimates clusters of long-term audio sequences, and the time-consuming fine-scale

analysis is only used to update the boundary locations. Since the coarse analysis is quite

accurate on its own, one may consider applying a different boundary estimation

technique; indeed, most of the other algorithms evaluated in this work would suffice,

based on their higher boundary f-measures shown in Figure A.8.

 Levy and Sandler

In contrast to Barrington et al.’s algorithm, the most important parameter for Levy

and Sandler’s appears to be the minimum segment length N (see Figure A.10a-c). For all

corpora and for all the reported metrics, the difference between using the constant Q-

transform (CQT) or MFCCs as features was small or non-existent. On the other hand, for

nearly all corpora, using N = 10 seconds compared to N = 4 seconds led to greater

pairwise f-measure and purity score K (the Rand index appears not to have differentiated

between the quality of any of the used parameter sets; see Figure A.10c). This makes

sense, since the average length of segments in most corpora was greater than 10 seconds

(see Table 5.6). The single exception to this rule, where there was no difference in

performance when using either value of N, was for the small-scale version of the Internet

Archive corpus, which is the corpus of annotations with the smallest average segment

length of 7.26 seconds.

 Peiszer

Although the variation in performance was quite high between different parameter

sets, the better feature to use for Peiszer’s algorithm was always MFCCs, no matter

which clustering algorithm was used (see Figure A.11a-c). Unlike Barrington et al. and

Levy and Sandler, Peiszer uses all 40 Mel-frequency cepstrum coefficients. Normally

 100

only the first 13 are kept, since these correlate most strongly with timbre, and the higher

coefficients exhibit some dependence on the frequency content of the signal. However, in

this application it is not necessary to avoid pitch information, so Peiszer’s use of MFCCs

may thus efficiently capture some information about both features, leading it to

consistently outperform the CQT features. Peiszer (2007) does note that his system

performed better when using all 40 MFCCs rather than 30 or the usual 13. Incidentally,

Peiszer’s pitch feature consists of an unwrapped chromogram, which itself indirectly

provides a modicum of information about the spectral envelope.

Among the various clustering approaches, it appears that simpler is better: the k-

means approach was most often the best, while the dynamic time warping (DTW)-based

clustering method quite consistently underperformed compared to the others. However,

the importance of the clustering method used was less important than the choice of

feature: using the DTW approach and MFCC features led to greater pairwise f-measure

and purity score K than using k-means clustering and CQT features.

One notable aspect of Peiszer’s algorithm was that the best choice of features did

not depend on the corpus under consideration. With Barrington et al., the best feature

depended on the genre of music, and with Levy and Sandler, it seems that the average

segment duration in the ground truth is important to know before setting the minimum

segment duration N. On the other hand, no matter which corpus is being considered, the

best choice of parameters for Peiszer’s algorithm are MFCCs and k-means clustering.

5.2.3 Comparison with previous evaluations
Most previous evaluations, including Abdallah et al. (2005 and 2006), Chai

(2005), Lu et al. (2004), Peiszer (2007), and many others, are incompatible with the

present evaluation either because they used different corpora of music or different

evaluation schemes. The MIREX 2009 Structural Analysis task results are also unable to

be compared to these, for although they include the 180 Beatles songs, additional songs

were also tested and the Beatles results are not separable from them. Still, a fair number

of recent evaluations have used the Beatles corpus (Paulus and Klapuri 2009) or subsets

of it (Levy et al. 2007), or the RWC corpus (Paulus and Klapuri 2009; Turnbull et al.

2007; Barrington et al. 2009 and 2010).

 101

In Tables 5.8–5.15, results from these studies are presented with comparable data

from the present evaluation. In each case, the results obtained by the best-performing

algorithm on the relevant corpus are presented, and the specific algorithm parameters are

noted for each algorithm. Note that several groups of these tables (including 5.8–5.10;

5.12 and 5.14; 5.13 and 5.15) could have been combined if not for the fact that the studies

considered included a different corpus, a different version of the ground truth, or a

different metric. The resulting confusion is a reminder of why it is important to agree on

standardized collections, annotations, and performance metrics.

The results generally show that the algorithms evaluated currently are competitive

with those that were evaluated previously. On the RWC corpus, Peiszer obtained the best

boundary f-measure of 0.680 (Table 5.14), and Paulus and Klapuri obtaining the best

pairwise f-measure of 0.637 (Table 5.15). The same ranking was obtained on the Beatles

corpus, where Paulus and Klapuri’s (2009) algorithm obtained the best pairwise f-

measure (Table 5.11), although Barrington et al. (2009), Levy and Sandler (2008), and

Peiszer (2007) were all within 3% of this score. Peiszer’s algorithm obtained the best

boundary estimation f-measure by a somewhat wider margin (Table 5.10), even though

Levy and Sandler’s algorithm had a higher precision and recall, on average. This unlikely

outcome is possibly due to the fact that the average f-measure is not equal to the average

precision and recall scores. Incidentally, this is the reason that the f-measure for Levy and

Sandler (2007) was not estimated from the published precision and recall scores (see

Tables 5.8–5.9).

Table 5.12 shows that Turnbull et al. (2007) still top the other algorithms in

boundary estimation quite impressively, with a boundary f-measure (0.38) nearly double

that of the next-best algorithm (0.22, from Barrington 2010). Unlike the algorithms

evaluated here, Turnbull et al. used supervised learning. They viewed boundary

estimation as a classification problem: based on labelled RWC data, an algorithm was

trained to learn which features (from an assortment of over 800) best distinguished short

audio frames that contained annotated boundaries from those that did not. That none of

the other algorithms come close to matching the result achieved by Turnbull et al.

suggests that improving performance may require other algorithms to use supervised

learning as well.

 102

Segmentation results for “With the Beatles” using original TUT ground truth

Algorithm and parameters f-measure precision recall

Levy et al. 2007 (timbre features) N.A. 0.670 0.640

Barrington et al. (MFCCs, k=6, fine) 0.586 0.544 0.692

Levy and Sandler (CQT, k=4, N=4) 0.634 0.523 0.835

Peiszer (MFCC, k=3, k-means) 0.595 0.508 0.734

The Echo Nest 0.452 0.55 0.401

Mestres 0.367 0.789 0.264

Baseline (one boundary per second) 0.577 0.409 1.000

Table 5.8. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the 14-song album “With the Beatles.” Results include those published in Levy et al. (2007),

although average f-measure was not available. The highest values are in boldface. The original version of

the TUT ground truth was used.

Segmentation results for “Sgt. Pepper’s Lonely Hearts Club Band” using original TUT ground
truth

Algorithm and parameters f-measure precision recall

Levy et al. 2007 (timbre features) N.A. 0.610 0.720

Barrington et al. (MFCCs, k=6, coarse) 0.518 0.489 0.603

Levy and Sandler (CQT, k=10, N=4) 0.602 0.456 0.924

Peiszer (MFCC, k=3, k-means) 0.634 0.506 0.900

The Echo Nest 0.462 0.422 0.562

Mestres 0.504 0.4911 0.555

Baseline (one boundary per second) 0.439 0.2854 1.000

Table 5.9. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the 13-song album “Sgt. Pepper’s Lonely Hearts Club Band.” Results include those published

in Levy et al. (2007), although average f-measure was not available. The highest values are in boldface. The

original version of the TUT ground truth was used.

 103

Segmentation results for Beatles corpus using original TUT ground truth

Algorithm and parameters f-measure precision recall

Barrington et al. (MFCCs, k=6, fine) 0.555 0.5473 0.7228

Levy and Sandler (MFCCs, k=5, N=4) 0.5811 0.586 0.8324

Peiszer (MFCCs, k = 3, k-means) 0.6165 0.5145 0.8237

The Echo Nest 0.494 0.517 0.5162

Mestres 0.428 0.6458 0.3803

Paulus and Klapuri 2009 0.55 0.521 0.612

Baseline (one boundary per second) 0.4977 0.3369 1.000

Table 5.10. Best obtained boundary f-measure and corresponding precision and recall using a threshold of 3

seconds, for the corpus of 175 Beatles songs annotated using the original version of the TUT annotations.

Results include those published in Paulus and Klapuri’s (2009). The highest values are in boldface.

Labelling results for Beatles corpus using original TUT ground truth

Algorithm and parameters f-measure precision recall

Paulus and Klapuri 2009 0.599 0.729 0.546

Barrington et al. (MFCCs, k=3, fine) 0.5726 0.5329 0.6632

Levy and Sandler (CQT, k=5, N=10) 0.5968 0.5995 0.6272

Peiszer (MFCCs, k=4, k-means) 0.5965 0.6107 0.6228

Baseline (one per second, constant labelling) 0.5068 0.35 0.9976

Table 5.11. Best obtained pairwise f-measure and corresponding precision and recall, for the corpus of 175

Beatles songs with the original version of the TUT annotations. Results include those published in Paulus

and Klapuri (2009). The highest values are in boldface.

 104

Segmentation results for RWC using 4-label ground truth

Algorithm and parameters MT2G MG2T f-measure precision recall

The Echo Nest 2.969 4.206 0.110 0.113 0.119

Mestres 5.147 3.375 0.204 0.227 0.200

Barrington (MFCCs, k=3,
fine) 3.233 3.514 0.193 0.202 0.217

Levy and Sandler (CQT,
k=4, N=10) 4.637 3.908 0.183 0.190 0.255

Peiszer (MFCCs, k=3,
DTW) 1.179 6.189 0.177 0.131 0.323

Barrington 2009 (MFCCs,
k=5, fine) 1.76 4.06 - - -

Barrington 2010 (MFCCs,
k=5, fine) 2.96 3.21 0.22 0.22 0.22

Barrington 2010 (chroma,
k=5, fine) 4.46 5.69 0.11 0.1 0.12

Turnbull et al. 2007 1.82 4.29 0.38 0.33 0.46

Baseline (one boundary
per second) 0.2433 7.135 0.0697 0.0697 0.0362

Table 5.12. Best obtained boundary f-measure and corresponding precision and recall (using a 0.5-second

threshold), and median true-to-guess and guess-to-true values, for the RWC corpus, using the 4-label

version of the RWC annotations. Results include those published in Barrington et al. (2009 and 2010) and

Turnbull et al. (2007). The best values are in boldface.

 105

Labelling results for RWC using 4-label ground truth

Algorithm and parameters f-measure precision recall Rand

Barrington et al. 2009 (MFCCs, k=4,
fine) - - - 0.79

Barrington et al. 2010 (MFCCs, k=6,
fine) 0.62 - - 0.75

Barrington et al. (MFCCs, k=4, fine) 0.6219 0.5978 0.6642 0.7615

Levy and Sandler (CQT, k=4, N=10) 0.6283 0.6392 0.6332 0.7867

Peiszer (MFCCs, k=5, k-means) 0.6291 0.6666 0.6085 0.7817

Baseline (one boundary per second,
constant labels) 0.483 0.3197 1 0.6847

Table 5.13. Best obtained pairwise f-measure and corresponding precision, recall and Rand index, for the

RWC corpus, using the 4-label version of the RWC annotations. Results include those published in

Barrington et al. (2009 and 2010), although not all values were available from these sources. The best

values are in boldface.

Segmentation results for RWC using original ground truth

Algorithm and parameters f-measure precision recall

Barrington et al. (MFCCs, k=6, coarse) 0.6106 0.7013 0.6513

Levy and Sandler (MFCCs, k=10, N=4) 0.6606 0.7746 0.7546

Peiszer (MFCCs, k=3, k-means) 0.6799 0.613 0.8067

The Echo Nest 0.5356 0.6785 0.4572

Mestres 0.4775 0.6857 0.3834

Paulus and Klapuri 2009 0.63 0.717 0.578

Baseline (one boundary per second) 0.5705 0.4057 1.000

Table 5.14. Best obtained boundary f-measure and corresponding precision and recall (using a 3-second

threshold) for the RWC corpus, using the original version of the RWC annotations. Results include those

published in Paulus and Klapuri (2009). The best values are in boldface.

 106

Labelling results for RWC using original ground truth

Algorithm and parameters f-measure precision recall

Paulus and Klapuri 2009 0.637 0.603 0.721

Barrington et al. (MFCCs, k=6, fine) 0.5182 0.411 0.754

Levy and Sandler (CQT, k=10, N=10) 0.6147 0.5627 0.7078

Peiszer (MFCCs, k=10, k-means) 0.5938 0.5942 0.6171

Baseline (10 random boundaries, k=10, random
labelling) 0.3788 0.3658 0.4077

Table 5.15. Best obtained pairwise f-measure and corresponding precision and recall for the RWC corpus,

using the original version of the RWC annotations. Results include those published in Paulus and Klapuri

(2009). The best values are in boldface.

5.3 Discussion
Although further analysis is certainly warranted on this large set of evaluation

data, some interesting conclusions may already be drawn from it. First, it was noted that

the random baseline was evaluated very favourably on the condensed versions of the

ground truth in certain corpora, suggesting that the effort to generate these ground truth

variations was misguided. That is, it is a misreading of the Beatles annotations to collect

sections with related labels, such as “refrain” and “refrain_solo,” and conflate them as

being the same. Since on the other corpora most algorithms performed about equally well

using any version of the ground truth, the condensed and the four-label versions of the

ground truth were set aside.

Second, an analysis of the importance of setting the parameter k confirmed that

performance improved when a value for k was chosen that was nearer the actual value for

a particular corpus. For instance, high values of k led to better performance on the RWC

and the small-scale Internet Archive annotations, and both collections had a high number

of section types per song; the Beatles annotations generally had far fewer section types

per song, and increasing k either had no effect or tended to hinder performance. However,

the Rand index scores did not reflect this trend and seemed in all cases to favour setting a

 107

higher value for k. This suggests that this metric does not weigh over-segmentation and

under-segmentation errors equally, and tends to disregard over-segmentation errors.

Thirdly, with various simplifications afforded by these observations, the

importance of each algorithm’s input parameters was assessed. Barrington et al.’s

algorithm was found to perform better on popular music using MFCCs, and better on

classical and jazz music using chroma, whereas the choice of feature had little impact on

the performance of Levy and Sandler’s algorithm, and Peiszer’s algorithm always

performed best using MFCCs. The coarse and fine-grain output of Barrington’s algorithm

were found to be very similar, meaning that a good deal of time may be saved by

ignoring or modifying that system’s fine-grain analysis step. The most important input

parameter for Levy and Sandler’s algorithm was found to be the minimum segment

length, which should be tuned to the attributes of the ground truth collection being used

for optimal performance. And finally, the simplest clustering algorithm was found to

work best for Peiszer’s algorithm, with k-means clustering always outperforming the

more complex DTW-based clustering.

5.3.1 Baseline performance
An important issue raised by this evaluation is the surprising success of the

baselines. The use of the conflated and the four-label versions of the ground truth was

halted as a result of the baselines matching or surpassing the performance of the

algorithms. On the other hand, the baselines still frequently performed very well on the

original ground truth (see Figure A.2a-c and A.3d-e), and it is hard to explain the success

of the baselines in these cases. The baselines benefit from a strong prior on the length of

sections, but neither the constant nor the random labelling seems like they should lead to

good results.

One possible conclusion is that certain evaluation metrics are poor gauges of the

quality of an analysis. The Rand index in particular seemed to rank the baseline highly

(see Figure A.3). Although it is ostensibly a balanced metric, the Rand index was

observed not to punish over-segmentation errors as harshly as under-segmentation errors.

Indeed, the best-performing baseline for the Rand index was always one that used up to

10 section labels and a random labelling procedure. By contrast, the pairwise f-measure

 108

appeared to be robust, with the best-performing algorithms always outperforming the best

baselines (see Figure A.1a-e).

It could also simply be that there remains great room for improvement for the

algorithms evaluated here. In all of the results displayed in the appendix, the error bars

represent standard error; the standard deviation, indicating the variance of the data, was

usually far greater, obscuring the small differences in performance that this discussion

has focused on so far. The great variance in performance could suggest that the

algorithms are struggling to adapt to different musical situations, performing well in

certain cases, and less successfully in others. Two example results are shown in Figure

5.3 and 5.4: the first is an example of a song that most algorithms performed well on, and

the second is an example that most algorithms performed poorly on. Figure 5.4 shows the

output of each algorithm when analyzing George Handel’s Suite in D, a piece for string

quartet that, as the annotations show, consists of a sequence of different themes, each

repeated twice. None of the algorithms were able to reproduce this analysis.

Figure 5.3. Example algorithm outputs for the Beatles song “Every Little Thing.” Each algorithm output is

taken from the parameter set that had the highest overall pairwise f-measure for the CDM annotations. For

instance, the Peiszer row represents the output using k = 4, with MFCC features and k-means clustering.

 109

Figure 5.4. Example algorithm outputs for George Handel’s Suite in D. Each algorithm output is taken from

the parameter set that had the highest overall pairwise f-measure for the large-scale Internet Archive

annotations.

5.3.2 Evaluation metrics
The results presented in this chapter also suggest that it may be unnecessary to

continue to employ such a variety of evaluation metrics. Anecdotally, it appears that

pairwise f-measure and the purity metric K are strongly correlated: note the similarity

between Figure A.1a and A.2a, between Figure A.1b and A.2b, and so forth; the same

holds between Figure A.5a and A.5b, between Figure A.5c and A.5d, and so forth. This

suggests that pairwise precision and recall, and average speaker and cluster purity, which

are used to calculate the pairwise f-measure and purity metric K, may also be correlated.

Investigating the covariance among the evaluation metrics merits further investigation

using more rigorous statistical tools to determine which, if any, are redundant.

5.3.3 Difference between genres
One of the goals of the present analysis was to establish a direct connection

between these algorithms’ performance on different genres of music. Encouragingly,

performance appeared to be just as high on the Internet Archive corpus as it was on the

Beatles and RWC corpora—indeed, it was often higher. See for instance Figures A.5a,

 110

A.5c and A.5e, which show that the best pairwise f-measure for the Beatles, RWC, and

large-scale Internet Archive annotations were nearly equal; note also the relative

achievement on each corpus in Figures A.9a, A.10a, and A.11a, which show that Levy

and Sandler in particular excelled on the large-scale Internet Archive annotations,

whereas Barrington et al. and Peiszer scored comparatively higher on the Beatles corpus.

These results are reassuring in two respects: first, they suggest that the algorithms

presently being designed for music structure analysis are widely applicable, despite

perhaps being originally tailored to popular music. Secondly, they show that the methods

that are used to compare annotated and estimated structural descriptions are not

necessarily specific to a popular music context. Of course, the pieces of music in the

Internet Archive corpus were explicitly chosen for their general structural coherence and

simplicity, so this result may be unsurprising. Nevertheless, the result is encouraging

enough to warrant expanding our test corpora further to include other challenging genres.

 111

6 Conclusion

This thesis has investigated the performance of several previously published

music structure analysis algorithms on a common set of three corpora, with a consistent

evaluation methodology.

Chapter 2 described the principal methods that have been used to analyze audio

signals and create structural descriptions algorithmically, and noted a number of practical

applications that have been conceived for such algorithms.

The five analysis algorithms evaluated in this work were described in detail in

Chapter 3. They included two systems—the Echo Nest audio analysis API and an

algorithm described in Mestres (2009)—that estimate the location of structural

boundaries, and three algorithms—Peiszer (2007), Levy and Sandler (2008) and

Barrington et al. (2009)—that estimate a full structural analysis.

The evaluation framework, including the music, annotations, and evaluation

metrics used here, was discussed in Chapter 4. The corpora used were mainly restricted to

music that was section-based, and included two collections of popular music (the Beatles

catalogue and the RWC Popular Music Database) that have been frequently studied in the

past, and for which there exist freely shareable annotations. A third was created from

classical and jazz music, which is freely available on the Internet Archive, and provided

with two sets of annotations describing the large- and small-scale structure of these

pieces. With this choice of corpora, it is hoped that future evaluations may be easily

compared to the present one.

The performance metrics considered here, whose derivation and attributes were

described in Section 4.3, included most of those used in previous evaluations of structure

analysis algorithms.

The algorithms described in Chapter 3 were executed on the three corpora

described in Chapter 4, and their performance was evaluated using the metrics described

in Section 4.3. The evaluation included several naïve baseline analysis approaches drawn

from previous studies. The full results of this evaluation are available online, and Chapter

5 presented and examined some of this data from a number of perspectives.

 112

First, a view of how each algorithm’s performance varied with the different

versions of the ground truth (Figures A.1–A.4) showed that two proposed manipulations

of the annotations appeared to be oversimplifications. This was evidenced by the fact that

the naïve baseline performance was much higher with the simplified versions, while the

performance of the algorithms changed comparatively little.

Second, examining how performance varied with the input parameter k specifying

the maximum number of section types showed that, as expected, algorithms performed

better when the input parameter k was nearer to the actual average k for each corpus

(Figures A.5–A.8). The fact that this trend was not reflected by the Rand index led to the

unexpected suggestion that the Rand index may be an unreliable evaluation metric, prone

to forgiving errors of over-segmentation.

Third, the effect of choosing different input parameters was investigated for each

algorithm (Figures A.9–A.11). It was observed that different algorithms had different

dependencies on comparable parameters: for instance, while Levy and Sandler’s

algorithm performed the same whether the CQT or MFCCs were used as features,

Peiszer’s algorithm consistently performed better using MFCCs, and Barrington et al.’s

algorithm performed better using MFCCs on popular music, but performed better using

chroma on the Internet Archive corpus.

The present evaluation raises some interesting questions that warrant further

analysis. Anecdotally, it appears that some of the evaluation metrics (most prominently,

pairwise f-measure and purity measure K) are correlated; an investigation of how all of

the evaluation metrics covary could provide a motivation to discount certain metrics in

the future, or perhaps to combine them into a single, overall quality measure. Information

on this subject may be welcomed by a community that has already made note of the lack

of unified reporting practice (see, e.g., Lukashevich 2008).

Also, while comparisons with previously published evaluations showed that the

algorithms investigated here performed on par with others, one special exception is

Turnbull et al.’s (2007) supervised segmentation algorithm, which performed

substantially better on the RWC database (Table 5.12). Supervised learning techniques

have rarely been employed in structure analysis algorithms, but Paulus and Klapuri

(2009) is one among those that have done so and it too fared as well as (Tables 5.10–

 113

5.11) or a fair amount better (Tables 5.14–5.15) than the algorithms investigated here.

Given that the state of the art in structure analysis is still sometimes outperformed by a

random baseline, it is tempting to suggest that exploiting supervised methods may be

necessary for the current generation of algorithms to realize substantial improvements.

 114

Appendix: Plots of Results

Figure A.1, a-e. Comparison of the best average pairwise f-measure earned by any variation of each

algorithm, as a function of ground truth version. Algorithms include Barrington et al., Levy and Sandler,

Peiszer, and the baselines. The results are presented for each corpus of annotations. Error bars represent

standard error.

(a)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ai

rw
is

e
f−

m
ea

su
re

Best achieved pairwise f−measure on
Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 115

(b)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ai

rw
is

e
f−

m
ea

su
re

Best achieved pairwise f−measure on
Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(c)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ai

rw
is

e
f−

m
ea

su
re

Best achieved pairwise f−measure on
IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 116

(d)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ai

rw
is

e
f−

m
ea

su
re

Best achieved pairwise f−measure on
IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(e)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ai

rw
is

e
f−

m
ea

su
re

Best achieved pairwise f−measure on
RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 117

Figure A.2, a-e. Comparison of the best average cluster purity measure K earned by any variation of each

algorithm, as a function of ground truth version. Algorithms include Barrington et al., Levy and Sandler,

Peiszer, and the baselines. The results are presented for each corpus of annotations. Error bars represent

standard error.

(a)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Best achieved K (cluster purity measure) on
Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(b)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Best achieved K (cluster purity measure) on
Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 118

(c)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Best achieved K (cluster purity measure) on
IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(d)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Best achieved K (cluster purity measure) on
IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 119

(e)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Best achieved K (cluster purity measure) on
RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 120

Figure A.3, a-e. Comparison of the best average Rand index earned by any variation of each algorithm, as

a function of ground truth version. Algorithms include Barrington et al., Levy and Sandler, Peiszer, and the

baselines. The results are presented for each corpus of annotations. Error bars represent standard error.

(a)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
an

d
in

de
x

Best achieved Rand index on
Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(b)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
an

d
in

de
x

Best achieved Rand index on
Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 121

(c)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
an

d
in

de
x

Best achieved Rand index on
IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(d)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
an

d
in

de
x

Best achieved Rand index on
IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 122

(e)

Original Conflated 4−Label
0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
an

d
in

de
x

Best achieved Rand index on
RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 123

Figure A.4, a-j. Comparison of the best average boundary f-measure earned by any variation of each

algorithm, as a function of ground truth version. (Note that the boundaries in the “original” and “conflated”

versions of the ground truth are identical.) The results are presented for two levels of tolerance, 0.5 and 3

seconds. Algorithms include Barrington et al., Levy and Sandler, Peiszer, The Echo Nest, Mestres, and the

baselines. The results are presented for each corpus of annotations. Error bars represent standard error.

(a)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 0.5−second threshold on
Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(b)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 3−second threshold on
Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 124

(c)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 0.5−second threshold on
Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(d)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 3−second threshold on
Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 125

(e)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 0.5−second threshold on
IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(f)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 3−second threshold on
IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 126

(g)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 0.5−second threshold on
IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(h)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 3−second threshold on
IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 127

(i)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 0.5−second threshold on
RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(j)

Original 4−Label
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
f−

m
ea

su
re

Best achieved boundary f−measure with 3−second threshold on
RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 128

Figure A.5, a-e. Comparison of the average pairwise f-measure achieved by all input parameter

combinations for each algorithm as a function of the specified number of cluster types k. Algorithms

include Barrington et al., Levy and Sandler, Peiszer, and the baselines. The results are presented for each

corpus using the original versions of the annotations. Error bars represent standard error.

(a)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure
over all combinations of input parameters
for Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(b)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure
over all combinations of input parameters
for Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 129

(c)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure
over all combinations of input parameters

for IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(d)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure
over all combinations of input parameters

for IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 130

(e)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure
over all combinations of input parameters
for RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 131

Figure A.6, a-e. Comparison of the average cluster purity measure K achieved by all input parameter

combinations for each algorithm as a function of the specified number of cluster types k. Algorithms

include Barrington et al., Levy and Sandler, Peiszer, and the baselines. The results are presented for each

corpus using the original versions of the annotations. Error bars represent standard error.

(a)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure)
over all combinations of input parameters
for Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(b)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure)
over all combinations of input parameters
for Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 132

(c)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure)
over all combinations of input parameters

for IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(d)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure)
over all combinations of input parameters

for IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 133

(e)

3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of label types k

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure)
over all combinations of input parameters
for RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 134

Figure A.7, a-e. Comparison of the average Rand index achieved by all input parameter combinations for

each algorithm as a function of the specified number of cluster types k. Algorithms include Barrington et

al., Levy and Sandler, Peiszer, and the baselines. The results are presented for each corpus using the

original versions of the annotations. Error bars represent standard error.

(a)

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of label types k

R
an

d
in

de
x

Average achieved Rand index
over all combinations of input parameters
for Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(b)

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of label types k

R
an

d
in

de
x

Average achieved Rand index
over all combinations of input parameters
for Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 135

(c)

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of label types k

R
an

d
in

de
x

Average achieved Rand index
over all combinations of input parameters

for IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

(d)

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of label types k

R
an

d
in

de
x

Average achieved Rand index
over all combinations of input parameters

for IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 136

(e)

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of label types k

R
an

d
in

de
x

Average achieved Rand index
over all combinations of input parameters
for RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
Baseline

 137

Figure A.8, a-j. Comparison of the average boundary f-measure achieved by all input parameter

combinations for each algorithm as a function of the specified number of label types k. The results are

presented for two levels of tolerance, 0.5 and 3 seconds. Algorithms include Barrington et al., Levy and

Sandler, Peiszer, The Echo Nest, Mestres, and the baselines. (Note that The Echo Nest and Mestres’

algorithm do not accept an input parameter k and therefore their scores are constant over k.) The results are

presented for each corpus using the original versions of the annotations. Error bars represent standard error.

(a)

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 0.5−second threshold
over all combinations of input parameters for

Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(b)

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 3−second threshold
over all combinations of input parameters for

Beatles corpus using CDM annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 138

(c)

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 0.5−second threshold
over all combinations of input parameters for

Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(d)

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 3−second threshold
over all combinations of input parameters for

Beatles corpus using TUT annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 139

(e)

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 0.5−second threshold
over all combinations of input parameters for

IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(f)

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 3−second threshold
over all combinations of input parameters for

IA corpus using large−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 140

(g)

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 0.5−second threshold
over all combinations of input parameters for

IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(h)

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 3−second threshold
over all combinations of input parameters for

IA corpus using small−scale annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 141

(i)

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 0.5−second threshold
over all combinations of input parameters for

RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

(j)

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of label types k

B
ou

nd
ar

y
f−

m
ea

su
re

Average achieved boundary f−measure with 3−second threshold
over all combinations of input parameters for

RWC corpus using RWC annotations

Barrington et al.
Levy and Sandler
Peiszer
The Echo Nest
Mestres
Baseline

 142

Figure A.9, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand

index, achieved using each combination of parameters for Barrington et al.’s algorithm, as a function of the

corpus of annotations. The original versions of the annotations were used. Error bars represent standard

error.

(a)

CDM TUT RWC IA Large IA Small
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure for versions of
Barrington et al.’s algorithm on each corpus

Chroma, fine output
Chroma, coarse output
MFCC, fine output
MFCC, coarse output

(b)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure) for versions of
Barrington et al.’s algorithm on each corpus

Chroma, fine output
Chroma, coarse output
MFCC, fine output
MFCC, coarse output

 143

(c)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
an

d
in

de
x

Average achieved Rand index for versions of
Barrington et al.’s algorithm on each corpus

Chroma, fine output
Chroma, coarse output
MFCC, fine output
MFCC, coarse output

 144

Figure A.10, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand

index, achieved using each combination of parameters for Levy and Sandler’s algorithm, as a function of

the corpus of annotations. The original versions of the annotations were used. Error bars represent standard

error.

(a)

CDM TUT RWC IA Large IA Small
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure for versions of
Levy and Sandler’s algorithm on each corpus

CQT, 4 seconds
CQT, 10 seconds
MFCC, 4 seconds
MFCC, 10 seconds

(b)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure) for versions of
Levy and Sandler’s algorithm on each corpus

CQT, 4 seconds
CQT, 10 seconds
MFCC, 4 seconds
MFCC, 10 seconds

 145

(c)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
an

d
in

de
x

Average achieved Rand index for versions of
Levy and Sandler’s algorithm on each corpus

CQT, 4 seconds
CQT, 10 seconds
MFCC, 4 seconds
MFCC, 10 seconds

 146

Figure A.11, a-c. Comparison of the average pairwise f-measure, cluster purity measure K and Rand

index, achieved using each combination of parameters for Peiszer’s algorithm, as a function of the corpus

of annotations. The original versions of the annotations were used. Error bars represent standard error.

(a)

CDM TUT RWC IA Large IA Small
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ai

rw
is

e
f−

m
ea

su
re

Average achieved pairwise f−measure for versions of
Peiszer’s algorithm on each corpus

CQT, k−means
CQT, agglomerative
CQT, DTW
MFCC, k−means
MFCC, agglomerative
MFCC, DTW

(b)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
 (

cl
us

te
r

pu
rit

y
m

ea
su

re
)

Average achieved K (cluster purity measure) for versions of
Peiszer’s algorithm on each corpus

CQT, k−means
CQT, agglomerative
CQT, DTW
MFCC, k−means
MFCC, agglomerative
MFCC, DTW

 147

(c)

CDM TUT RWC IA Large IA Small
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
an

d
in

de
x

Average achieved Rand index for versions of
Peiszer’s algorithm on each corpus

CQT, k−means
CQT, agglomerative
CQT, DTW
MFCC, k−means
MFCC, agglomerative
MFCC, DTW

 148

Bibliography
Abdallah, S., K. Noland, M. Sandler, M. Casey, and C. Rhodes. 2005. Theory and

evaluation of a Bayesian music structure extractor. In Proceedings of the

International Conference on Music Information Retrieval (ISMIR), London, UK,

420–5.

Abdallah, S., M. Sandler, C. Rhodes, and M. Casey. 2006. Using duration models to

reduce fragmentation in audio segmentation. Machine Learning 65 (2–3): 485–515.

Arnold, D., A. Latham, and J. Dunsby. “Form.” In The Oxford Companion to Music,

edited by A. Latham. Oxford Music Online, <http://www.oxfordmusiconline.com/

subscriber/article/opr/t114/e2624> (accessed 25 May 2010).

Aucouturier, J.-J. 2001. Segmentation of musical signals, and applications to the analysis

of musical structure. Master’s thesis, Kings College, University of London,

London, United Kingdom.

Aucouturier, J.-J., and M. Sandler. 2001. Using long-term structure to retrieve music:

Representation and matching. In Proceedings of the International Symposium on

Music Information Retrieval (ISMIR), Bloomington, IN, United States.

Barrington, L., A. Chan, and G. Lanckriet. 2009. Dynamic texture models of music. In

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Washington, DC, United States, 1589–92. IEEE Computer

Society.

Barrington, L., A. Chan, and G. Lanckriet. 2010. Modeling music as a dynamic texture.

IEEE Transactions on Audio, Speech, and Language Processing 18 (3): 602–12.

Bartsch, M., and G. Wakefield. 2001. To catch a chorus: Using chroma-based

representations for audio thumbnailing. In IEEE Workshop on the Applications of

Signal Processing to Audio and Acoustics (WASPAA), 15–8.

Bello, J. P. 2009. Grouping recorded music by structural similarity. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR),

Philadelphia, PA, United States, 531–6.

 149

Bimbot, F., O. Le Blouch, G. Sargent, and E. Vincent. 2010. Decomposition into

autonomous and comparable blocks: A structural description of music pieces.

Technical report, Institut national de recherche en informatique et en automatique

(INRIA).

Bruderer, M., M. McKinney, and A. Kohlrausch. 2006. Structural boundary perception in

popular music. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), Victoria, Canada, 198–201.

Cambouropoulos, E. 1998. Towards a general computational theory of musical structure.

Ph. D. thesis, University of Edinburgh, Edinburgh, United Kingdom.

Chai, W. 2003. Structural analysis of musical signals via pattern matching. In

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Volume 5, 437–40.

Chai, W. 2005. Automated analysis of musical structure. Ph. D. thesis, Massachusetts

Institute of Technology, Cambridge, MA, United States.

Chai, W., and B. Vercoe. 2003. Structural analysis of musical signals for indexing and

thumbnailing. In Proceedings of the ACM/IEEE-CS Joint Conference on Digital

Libraries (JCDL), Washington, DC, United States, 27–34. IEEE Computer Society.

Chan, A., and N. Vasconcelos. 2008. Modeling, clustering, and segmenting video with

mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) 30 (5): 909–26.

Cheng, H.-T., Y.-H. Yang, Y.-C. Lin, and H. Chen. 2009. Multimodal structure

segmentation and analysis of music using audio and textual information. In

Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS), Taipei, Taiwan, 1677–80.

de Cheveigné, A. 2006. Multiple F0 estimation. In D. Wang and G. Brown (Eds.),

Computational Auditory Scene Analysis: Principles, Algorithms, and Applications,

45–80. IEEE Press.

Cooper, M., and J. Foote. 2001. Scene boundary detection via video self-similarity

analysis. In Proceedings of the International Conference on Image Processing

(ICIP), 3: 378–81.

 150

Cooper, M., and J. Foote. 2002. Automatic music summarization via similarity analysis.

In Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Paris, France, 81–5.

Cooper, M., and J. Foote. 2003. Summarizing popular music via structural similarity

analysis. In Proceedings of the IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), New Paltz, NY, United States, 127–

30.

Cunningham, S., and V. Grout. 2009. Audio compression exploiting repetition (ACER):

Challenges and solutions. In Proceedings of the International Conference on

Internet Technologies and Applications (ITA), Wrexham, North Wales, UK.

Dannenberg, R. 2002. Listening to “Naima”: An automated structural analysis of music

from recorded audio. In Proceedings of the International Computer Music

Conference (ICMC), San Francisco, CA, United States, 28–34.

Dannenberg, R. 2005. Toward automated holistic beat tracking, music analysis, and

understanding. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), London, UK, 366–73.

Dannenberg, R., and N. Hu. 2002. Discovering music structure in audio recordings. In

C. Anagnostopoulou, M. Ferrand, and A. Smaill (Eds.), Music and Artificial

Intelligence 2445: 43–57. Springer Berlin / Heidelberg.

Dixon, S. 2001. Automatic extraction of tempo and beat from expressive performances.

Journal of New Music Research 30 (1): 39–58.

Dixon, S. 2007. Evaluation of the audio beat tracking system BeatRoot. Journal of New

Music Research 36 (1): 39–50.

Downie, J. 2008. The music information retrieval evaluation exchange (2005–2007): A

window into music information retrieval research. Acoustical Science and

Technology 29 (4): 247–55.

Eck, D., and J. Schmidhuber. 2002. Learning the long-term structure of the blues. Lecture

Notes in Computer Science 2415: 796–801.

Eckmann, J.-P., S. Kamphorst, and D. Ruelle. 1987, November. Recurrence plots of

dynamical systems. Europhysics Letters 4 (9): 973–7.

 151

Eronen, A. 2007. Chorus detection with combined use of MFCC and chroma features and

image processing filters. In Proceedings of the International Conference on Digital

Audio Effects (DAFx), Bordeaux, France, 229–36.

Eronen, A. 2009. Signal processing methods for audio classification and music content

analysis. Ph. D. thesis, Tampere University of Technology, Tampere, Finland.

Fazekas, G., and M. Sandler. 2007. Intelligent editing of studio recordings with the help

of automatic music structure extraction. In Proceedings of the Audio Engineering

Society Convention (AES), Vienna, Austria.

Foote, J. 1999. Visualizing music and audio using self-similarity. In Proceedings of the

ACM International Conference on Multimedia, New York, NY, United States, 77–

80.

Foote, J. 2000a. ARTHUR: Retrieving orchestral music by long-term structure. In

Proceedings of the International Symposium on Music Information Retrieval

(ISMIR), Plymouth, MA, United States.

Foote, J. 2000b. Automatic audio segmentation using a measure of audio novelty. In

Proceedings of the IEEE International Conference on Multimedia & Expo (ICME),

452–5.

Foote, J., and M. Cooper. 2003. Media segmentation using self-similarity decomposition.

In M. Yeung, R. Lienhart, and C.-S. Li (Eds.), Proceedings of the SPIE: Storage

and Retrieval for Media Databases, Volume 5021, Santa Clara, CA, United States,

167–75.

Foote, J., M. Cooper, and A. Girgensohn. 2002. Creating music videos using automatic

media analysis. In Proceedings of the ACM International Conference on

Multimedia, New York, NY, United States, 553–60.

Foote, J., and S. Uchihashi. 2001. The beat spectrum: A new approach to rhythm

analysis. In Proceedings of the IEEE International Conference on Multimedia &

Expo (ICME), Los Alamitos, CA, United States, 224–7.

Fremerey, C. 2006. SyncPlayer: a framework for content-based music navigation.

Master’s thesis, University of Bonn, Bonn, Germany.

Gómez, E. 2006. Tonal description of music audio signals. Ph. D. thesis, Universitat

Pompeu Fabra, Barcelona, Spain.

 152

Gómez, E., B. Ong, and P. Herrera. 2006. Automatic tonal analysis from music

summaries for version identification. In Proceedings of the Audio Engineering

Society Convention (AES), San Francisco, CA, United States.

Goodwin, M., and J. Laroche. 2004. A dynamic programming approach to audio

segmentation and speech/music discrimination. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

Montreal, QC, Canada, 309–12.

Goto, M., H. Hashiguchi, T. Nishimura, and R. Oka. 2002. RWC Music Database:

Popular, classical, and jazz music databases. In Proceedings of the International

Conference on Music Information Retrieval (ISMIR), 287–8.

Goto, M. 2003a. A chorus-section detecting method for musical audio signals. In

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 5: 437–40.

Goto, M. 2003b. SmartMusicKIOSK: Music listening station with chorus-search

function. In Proceedings of the ACM Symposium on User Interface Software and

Technology (UIST), 31–40.

Goto, M. 2006a. A chorus section detection method for musical audio signals and its

application to a music listening station. IEEE Transactions on Audio, Speech &

Language Processing 14 (5): 1783–94.

Goto, M. 2006b. AIST annotation for the RWC Music Database. In Proceedings of the

7th International Conference on Music Information Retrieval (ISMIR), 359–60.

Hainsworth, S. 2006. Beat tracking and musical metre analysis. In A. Klapuri and

M. Davy (Eds.), Signal Processing Methods for Music Transcription, 101–29. New

York, NY: Springer.

Hirata, K., S. Tojo, and M. Hamanaka. 2007. Techniques for implementing the

Generative Theory of Tonal Music (tutorial session). In Proceedings of the

International Conference on Music Information Retrieval (ISMIR), Vienna,

Austria.

 153

Izumitani, T., and K. Kashino. 2008. A robust musical audio search method based on

diagonal dynamic programming matching of self-similarity matrices. In

Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Philadelphia, PA, United States, 609–13.

Jehan, T. 2004. Perceptual segment clustering for music description and time-axis

redundancy cancellation. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), Barcelona, Spain, 124–7.

Jehan, T. 2005a. Creating music by listening. Ph. D. thesis, Massachusetts Institute of

Technology, Cambridge, MA, United States.

Jehan, T. 2005b. Hierarchical multi-class self similarities. In Proceedings of the IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),

New Paltz, NY, United States, 311–4.

Jensen, K. 2005. A causal rhythm grouping. In U. Wiil (Ed.), Computer Music Modeling

and Retrieval, Volume 3310 of Lecture Notes in Computer Science, 83–95.

Springer Berlin / Heidelberg.

Jensen, K., J. Xu, and M. Zachariasen. 2005. Rhythm-based segmentation of popular

Chinese music. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), London, UK, 374–80.

Kim, S., S. Kim, S. Bong Kwon, and H. Kim. 2006. A music summarization scheme

using tempo tracking and two stage clustering. Poster presented at the IEEE

International Workshop on Multimedia Signal Processing (MMSP).

Kirlin, P. 2009. Using harmonic and melodic analyses to automate the initial stages of

Schenkerian analysis. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Kobe, Japan, 423–8.

Lee, K., and M. Cremer. 2008. Segmentation-based lyrics-audio alignment using

dynamic programming. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), Philadelphia, PA, United States, 395–400.

Lerdahl, F., and R. Jackendoff. 1983. A generative theory of tonal music. Cambridge,

MA: MIT Press.

 154

Levy, M., K. Noland, and M. Sandler. 2007. A comparison of timbral and harmonic

music segmentation algorithms. In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, HI,

United States.

Levy, M., and M. Sandler. 2006. New methods in structural segmentation of musical

audio. In Proceedings of the European Signal Processing Conference (EUSIPCO),

Florence, Italy.

Levy, M., and M. Sandler. 2008. Structural segmentation of musical audio by constrained

clustering. IEEE Transactions on Audio, Speech, and Language Processing 16 (2):

318–26.

Levy, M., M. Sandler, and M. Casey. 2006. Extraction of high-level musical structure

from audio data and its application to thumbnail generation. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Volume 5.

Logan, B., and S. Chu. 2000. Music summarization using key phrases. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Washington DC, United States, 2: 749–52.

Lu, L., M. Wang, and H.-J. Zhang. 2004. Repeating pattern discovery and structure

analysis from acoustic music data. In Proceedings of the ACM SIGMM

International Workshop on Multimedia Information Retrieval (MIR), New York,

NY, United States, 275–82.

Lu, L., and H.-J. Zhang. 2003. Automated extraction of music snippets. In Proceedings of

the ACM International Conference on Multimedia, New York, NY, United States,

140–7.

Lukashevich, H. 2008. Towards quantitative measures of evaluating song segmentation.

In Proceedings of the International Conference on Music Information Retrieval

(ISMIR), 375–80.

Maddage, N., C. Xu, M. Kankanhalli, and X. Shao. 2004. Content-based music structure

analysis with applications to music semantics understanding. In Proceedings of the

ACM International Conference on Multimedia, New York, NY, United States,

112–9.

 155

Marolt, M. 2006. A mid-level melody-based representation for calculating audio

similarity. In Proceedings of the International Conference on Music Information

Retrieval (ISMIR), Victoria, Canada, 280–5.

Marolt, M. 2009. Probabilistic segmentation and labeling of ethnomusicological field

recordings. In Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Kobe, Japan, 75–80.

Marsden, A. 2007. Automatic derivation of musical structure: A tool for research on

Schenkerian analysis. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), Vienna, Austria, 55–8.

Martin, B., M. Robine, and P. Hanna. 2009. Musical structure retrieval by aligning self-

similarity matrices. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Kobe, Japan, 483–8.

Mauch, M., K. Noland, and S. Dixon. 2009. Using musical structure to enhance

automatic chord transcription. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), Kobe, Japan, 231–6.

Mermelstein, P. 1976. Distance measures for speech recognition: Psychological and

instrumental. In Proceedings of the Joint Workshop on Pattern Recognition and

Artificial Intelligence, Hyannis, MA, United States, 91–103.

Mestres, X. 2007. A BIC-based approach to singer identification. Master’s thesis,

Universitat Pompeu Fabra, Barcelona, Spain.

Müller, M., and D. Appelt. 2008. Path-constrained partial music synchronization. In

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Las Vegas, NV, United States, 65–8.

Müller, M., and M. Clausen. 2007. Transposition-invariant self-similarity matrices. In

Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Vienna, Austria, 47–50.

Müller, M., and S. Ewert. 2008. Joint structure analysis with applications to music

annotation and synchronization. In Proceedings of the International Conference on

Music Information Retrieval (ISMIR), Philadelphia, PA, United States, 389–94.

 156

Müller, M., and F. Kurth. 2006. Enhancing similarity matrices for music audio analysis.

In Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Toulouse, France, 9–12.

Müller, M., and F. Kurth. 2007. Towards structural analysis of audio recordings in the

presence of musical variations. EURASIP Journal of Applied Signal Processing (1):

163.

Ong, B. 2005. Towards automatic music structural analysis identifying characteristic

within-song excerpts in popular music. Master’s thesis, Universitat Pompeu Fabra,

Barcelona, Spain.

Ong, B. 2007. Structural analysis and segmentation of music signals. Ph. D. thesis,

Universitat Pompeu Fabra, Barcelona, Spain.

Ong, B., E. Gómez, and S. Streich. 2006. Automatic extraction of musical structure using

pitch class distribution features. In Proceedings of the International Workshop on

Learning the Semantics of Audio Signals (LSAS), Thessaloniki, Greece, 53–65.

Ong, B., and S. Streich. 2008. Music loop extraction from digital audio signals. In

Proceedings of the IEEE International Conference on Multimedia & Expo (ICME),

Hannover, Germany, 681–4.

Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man and Cybernetics 9 (1): 62–6.

Paulus, J. 2009. Signal processing methods for drum transcription and music structure

analysis. Ph. D. thesis, Tampere University of Technology, Tampere, Finland.

Paulus, J., and A. Klapuri. 2006. Music structure analysis by finding repeated parts. In

Proceedings of the ACM Workshop on Audio and Music Computing Multimedia

(AMCMM), New York, NY, United States, 59–68.

Paulus, J., and A. Klapuri. 2008a. Acoustic features for music piece structure analysis. In

Proceedings of the International Conference on Digital Audio Effects (DAFx),

Espoo, Finland, 309–12.

Paulus, J., and A. Klapuri. 2008b. Music structure analysis using a probabilistic fitness

measure and an integrated musicological model. In Proceedings of the

International Conference on Music Information Retrieval (ISMIR), Philadelphia,

PA, United States, 369–74.

 157

Paulus, J., and A. Klapuri. 2010. Labelling the structural parts of a music piece with

Markov models. In S. Ystad, R. Kronland-Martinet, and K. Jensen (Eds.),

Computer Music Modeling and Retrieval: Genesis of Meaning in Sound and Music,

5493: 166–76. Berlin, Heidelberg: Springer-Verlag.

Peeters, G. 2004. Deriving musical structures from signal analysis for music audio

summary generation: “sequence” and “state” approach. In G. Goos, J. Hartmanis,

and J. van Leeuwen (Eds.), Computer Music Modeling and Retrieval, 2771: 169–

85. Springer Berlin / Heidelberg.

Peeters, G. 2007. Sequence representation of music structure using higher-order

similarity matrix and maximum-likelihood approach. In Proceedings of the

International Conference on Music Information Retrieval (ISMIR), Vienna,

Austria, 35–40.

Peeters, G., and E. Deruty. 2009. Is music structure annotation multi-dimensional? A

proposal for robust local music annotation. In Proceedings of the International

Workshop on Learning the Semantics of Audio Signals (LSAS), Graz, Austria, 75–

90.

Peeters, G., A. La Burthe, and X. Rodet. 2002. Toward automatic music audio summary

generation from signal analysis. In Proceedings of the International Conference on

Music Information Retrieval (ISMIR), 94–100.

Peiszer, E. 2007. Automatic audio segmentation: Segment boundary and structure

detection in popular music. Master’s thesis, Technische Universität Wien, Vienna,

Austria.

Peiszer, E., T. Lidy, and A. Rauber. 2008. Automatic audio segmentation: Segment

boundary and structure detection in popular music. In Proceedings of the

International Workshop on Learning the Semantics of Audio Signals (LSAS),

Paris, France, 45–59.

Pollack, A. 2000. Allan W. Pollack’s “Notes ... On” series. The “official”

rec.music.beatles homepage. <http://www.recmusicbeatles.com/public/files/awp/

awp.html> (accessed 10 August 2010).

 158

Rauber, A., E. Pampalk, and D. Merkl. 2002. Using psycho-acoustic models and self-

organizing maps to create a hierarchical structuring of music by sound similarity. In

Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Paris, France, 71–80.

Rhodes, C., and M. Casey. 2007. Algorithms for determining and labelling approximate

hierarchical self-similarity. In Proceedings of the International Conference on

Music Information Retrieval (ISMIR), Vienna, Austria, 41–6.

Rhodes, C., M. Casey, S. Abdallah, and M. Sandler. 2006. A Markov-chain Monte-Carlo

approach to musical audio segmentation. In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse,

France, 797–800.

Sandler, M., and M. Levy. 2007. Signal-based music searching and browsing. In

Proceedings of the IEEE International Conference on Consumer Electronics

(ICCE), Las Vegas, NV, United States, 1–2.

Shiu, Y. 2007. Digital signal processing techniques for music structure analysis. Ph. D.

thesis, University of Southern California, Los Angeles, CA, United States.

Shiu, Y., H. Jeong, and C.-C. J. Kuo. 2006. Similarity matrix processing for music

structure analysis. In Proceedings of the ACM Workshop on Audio and Music

Computing Multimedia (AMCMM), New York, NY, United States, 69–76.

Smoliar, S. 1980. A computer aid for Schenkerian analysis. Computer Music Journal 4

(2): 41–59.

Stammen, D., and B. Pennycook. 1994. Real-time segmentation of music using an

adaptation of Lerdahl and Jackendoff’s grouping principles. In Proceedings of the

International Conference on Music Perception and Cognition (ICMPC), Liege,

Belgium, 269–70.

Su, M.-Y., Y.-H. Yang, Y.-C. Lin, and H. Chen. 2009. An integrated approach to music

boundary detection. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Kobe, Japan, 705–10.

 159

Turnbull, D., G. Lanckriet, E. Pampalk, and M. Goto. 2007. A supervised approach for

detecting boundaries in music using difference features and boosting. In

Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Vienna, Austria, 51–4.

Tzanetakis, G., and P. Cook. 1999. Multifeature audio segmentation for browsing and

annotation. In Proceedings of the IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), New Paltz, NY, United States, 103–

6.

Van Steelant, D., B. De Baets, H. De Meyer, M. Leman, J. Martens, L. Clarisse, and

M. Lesaffre. 2002. Discovering structure and repetition in musical audio. In

Proceedings of the EUROFUSE Workshop on Information Systems, Verona, Italy,

43–8.

Wellhausen, J., and M. Höynck. 2003. Audio thumbnailing using MPEG-7 low level

audio. In J. Smith, S. Panchanathan, and T. Zhang (Eds.), Proceedings of the SPIE:

Internet Multimedia Management Systems, 5242: 65–73.

Wolkowicz, J., S. Brooks, and V. Keselj. 2009. Midivis: Visualizing music structure via

similarity matrices. In Proceedings of the International Computer Music

Conference (ICMC), Montreal, QC, Canada, 53–6.

Xu, C., N. Maddage, and X. Shao. 2005. Automatic music classification and

summarization. IEEE Transactions on Speech and Audio Processing 13 (3): 441–

50.

Xu, C., N. Maddage, X. Shao, and Q. Tian. 2007. Content-adaptive digital music

watermarking based on music structure analysis. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMCCAP) 3 (1).

Xu, C., X. Shao, N. Maddage, M. Kankanhalli, and Q. Tian. 2004. Automatically

summarize musical audio using adaptive clustering. In Proceedings of the IEEE

International Conference on Multimedia & Expo (ICME), Taipei, Taiwan, 2063–6.

Xu, C., Y. Zhu, and Q. Tian. 2002. Automatic music summarization based on temporal,

spectral and cepstral features. In Proceedings of the IEEE International Conference

on Multimedia & Expo (ICME), 117–20.

 160

Zhang, T., and R. Samadani. 2007. Automatic generation of music thumbnails. In

Proceedings of the IEEE International Conference on Multimedia & Expo (ICME),

Beijing, China, 228–31.

Zhu, Y., K. Chen, and Q. Sun. 2005. Multimodal content-based structure analysis of

karaoke music. In Proceedings of the ACM International Conference on

Multimedia, Singapore, 638–47.

