
Implementing and Evaluating Network
Positioning in the Resource Addressable

Network

Gao Yuanyuan

School of Computer Science, McGill University

Montréal, Québec, Canada

January, 2006

A thesis submitted to

McGill University in partial fulfilment of

the requirements of the degree of

Master of Science

Copyright © Gao Yuan yuan 2006

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page cou nt,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24673-3
Our file Notre référence
ISBN: 978-0-494-24673-3

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis focuses on the design, implementation and evaluation of a coordinates-based

mechanism to compute network positions of Internet hosts in the resource addressable

network. This mechanism is based on absolute coordinates calculated from modelling

the Internet as a D-dimensional Cartesian space. A small distributed set of infrastructure

hosts called landmarks is chosen to first compute their coordinates and serves as a frame

of reference for other hosts. I study two algorithms for landmark positioning: distributed

spring algorithm and spring equilibrium algorithm. The position of the non-Iandmark host

is calculated using a centralized algorithm. 1 also evaluate a schema to adjust a host's

position based on the positions of its nearby peers.

A location-based RAN prototype is implemented by integrating network positioning

with naming and discovery modules. The prototype distribution is installed on 127 Plan

etLab machines for evaluation. By performing real-time experiments on the distributed

testbed, 1 show that the spring equilibrium algorithm outperforms the distributed spring

algorithm in the aspects of efficiency and stability. Furthermore, the adjustment schema

based on nearby peers is beneficial to stablize host's position under normal network vari

ance.

11

Sommaire

Ce mémoire porte sur la conception, l'implémentation et 1'évaluation d'un mécanisme

faisant appel à un système de coordonnées pour déterminer la position des ordinateurs

hôtes sur un réseau de type RAN (Resource Addressable Network). Ce mécanisme est

basé sur des coordonnées absolues, calculées à partir d'une modélisation de 1'Internet en

tant qu'espace cartésien D-dimensionnel. Un ensemble restreint et distribué d'ordinateurs

hôtes, appelés points de repères, est choisi et les coordonnées de ceux-ci sont calculées

afin de servir de cadre de référence pour les autres ordinateurs hôtes. l'ai étudié deux algo

rithmes pour le positionnement des points de repères: 1'algorithme ressort de distribution et

l'algorithme ressort à l'équilibre. La position de tout ordinateur hôte, autre qu'un point de

repères, est calculée en utilisant un algorithme centralisé. l'ai également évalué un schéma

selon lequel la position d'un ordinateur hôte est ajustée en se basant sur la position de ces

voisins immédiats.

Un prototype de réseau RAN a été implanté en intégrant le positionnement réseau

avec des modules de nommage et de découverte. Le prototype de réseau a été installé sur

127 ordinateurs au PlanetLab pour en faire l'évaluation. En effectuant des expériences en

temps réel sur un banc d'essai, je démontre que l'algorithme ressort à l'équilibre surpasse

l'algorithme ressort de distribution en terme d'efficacité et de stabilité. De plus, le schéma

d'ajustement basé sur les ordinateurs voisins est bénéfique pour stabiliser la position de

l'ordinateur hôte sous des conditions observées de variations normales de réseau.

III

Acknowledgments

1 would like to express my gratitude to aU those who gave me the possibility to complete

this thesis. First, 1 want to thank my thesis supervisor Professor Muthucumaru Maheswaran

for his guidance, advice, encouragement and financial support throughout the research and

the preparation of this thesis. 1 have benefited enormously from his valuable insights and

tutoring on a great number of occasions.

Many thanks to my colleagues in ANRL who have provided consultation and comments

on my research. My coUeague of the RAN project Balasubramaneyam Maniymaran kindly

answered many of my questions with extreme patience and made countless suggestion for

improving the accuracy and quality of this thesis. Arindam Mitra, our system administrator,

was always available to help with system problems, which made my life much easier. 1

would also like to thank the other members in our lab: Asad, Grant, Luke, and Samuel.

You gave me the feeling of being at home while at work.

1 wish to thank the School of Computer Science for the graduate courses and the re

search environ ment. Thanks to Diti Anastasopoulos, Vicki Keirl, Lise Minogue, and Lucy

St-James, for easing the official procedures.

Last but not least, 1 owe special thanks to my loving fiance Yaokang Li, for his uncon

ditional and unwavering support, understanding and sacrifice during my study.

iv

Contents

Abstract

Sommaire

Acknowledgments

1 Introduction and Motivation
1.1 Overview of the Galaxy Project.
1.2 System Design Issues for Network Positioning .
1.3 Thesis Contribution

2 Background on Network Positioning
2.1 Pros and Cons of Existing Solutions

2.1.1 Global Network Positioning (GNP)
2.1.2 Network Positioning System (NPS)
2.1.3 Vivaldi: Pracical Distributed Network Coordinates
2.1,4 Practical Internet Coordinates
2.1.5 PCoord: Network Position Estimation

3 Architectural Design
3.1 Landmark Positioning

3.1.1 Distributed Spring Aigorithm
3.1.2 Spring Equilibrium Aigorithm

3.2 Ordinary Node Positioning
3.3 Cluster-based adjustment of coordinates
3.4 Creation of Location-based Names .
3.5
3.6

RAN Routing Mechanism
Self-organizing Activities .

4 Implementation Description
4.1 Application Architecture
4.2 External Interface . . .
4.3 System Requirements .
4,4 Network Layer

v

ii

iii

iv

1
1
3
4

6
7
7
9

10
10
11

13
13
14
14
18
19
19
21
22

24
24
25
26
26

CONTENTS

4.5 Message Layer . .
4.6 Application Layer .

4.6.1 Main Class
4.6.2 CommandLineParser Class .
4.6.3 SystemParameters Class . .
4.6.4 Message Handlers
4.6.5 RouteTable and Router Class .
4.6.6 Landmark Class
4.6.7 LocationUpdate Class
4.6.8 JoinProcess, LeaveProcess and ExitProcess
4.6.9 CLI Class
4.6.10 NodeStartupException and StateTracker Class

vi

27
30
30
31
31
32
34
35
36
38
38
38

5 System Tests and Results 40
5.1 Testbed Description. 40
5.2 Node Selection . . . 41
5.3 E~periments..... 42

5.3.1 RAN Positioning Performance . 42
5.3.2 Distributed Spring Algorithm vs. Spring Equilibrium Algorithm 47
5.3.3 Ordinary Node Positioning . 53
5.3.4 Cluster-based Adjustment . 53

6 Conclusion 57

Bibliography 58

List of Figures

1.1 Galaxy architecture

2.1 Coordinate-based Network Positioning .
2.2 Landmark-aided Positioning

3.1 Cluster-based Adjustment .
3.2 Hilbert Curve
3.3 RAN Joining Process ...

4.1 Package Structure
4.2 Message Object Definition
4.3 Class Landmark
4.4 Class LocationUpdate ...

5.1 Positioning Evaluation: Landmark Convergence Time .
5.2 Positioning Evaluation: Correlation
5.3 Positioning Evaluation: Relative Error
5.4 Positioning Evaluation: Average Occupancy Diameter
5.5 Positioning Evaluation: Average Occupancy Diameter (Error Bar)
5.6 DSA vs. SEA (Number of Landmarks): Correlation Comparison
5.7 DSA vs. SEA (NumberofLandmarks): Relative Error ...
5.8 DSA vs. SEA (Number of Landmarks): Convergence Time .
5.9 DSA vs. SEA (Number of Landmarks): Message Overhead .
5.10 DSA vs. SEA (Long-time Running): Correlation
5.11 DSA vs. SEA (Long-time Running): Relative Error .. .
5.12 DSA vs. SEA (Long-time Running): Message Overhead
5.13 DSA vs. SEA (Long-time Running): Convergence Time
5.14 Ordinary Node Positioning: Correlation ..
5.15 Ordinary Node Positioning:Relative Error
5.16 Cluster-based Adjustment: Correlation
5.17 Cluster-based Adjustment: Average Occupancy Diameter .

vii

3

7
8

20
21
22

25
28
36
37

43
44
45
46
47
48
49
50
50
51
52
52
53
54
54
55
56

List of Tables

2.1 Properties of Network Positioning Systems 12

viii

Chapter 1

Introduction and Motivation

This thesis describes the building of a network positîoning service and its integration with

the prototype design of a public computing utility called "Galaxy," now being developed at

the Advanced Networking Research Lab at McGill University. To explain the motivation

of my research topic, firstly, 1 introduce the Galaxy project in Section 1.1, focusing on the

major research issues and the prototype architecture. Secondly, in Section 1.2, 1 analyze

the design issues of a network positioning service, inc1uding general characteristics and

specific properties studied by the Galaxy research. Lastly, in Section 1.3, 1 describe the

contribution of this thesis to the Galaxy project.

1.1 Overview of the Galaxy Project

The Galaxy project [1] is concerned with studying issues related to public computing util

ities. It proposes a novel way to organize and distribute computational services, ensuring

both scalability and high quality of service (QoS).

Utility computing [2, 3, 4, 5, 6] is a service provisioning model, much like Grid com

puting [7, 8], to maximize the use of a large number of resources from multiple sites,

while minimizing the associated costs. The difference between utility computing and grid

computing lies on that the utility computing facilitates the commoditization of its services

such as storage, processing power, applications and security. The word commoditization

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

refers to the activity that provider makes computing resources available to customers as

needed, and charges them for specifie usage. This process makes computing a true utility,

like electricity and water. To construct such computing utilities, it's necessary to virtual

ize computing resources according to unified standards to make provisioning easier [2].

In Galaxy, the process that changes traditional computing resQurces to metered services

is done by c1assifying the computing resources into virtual resources types that provide

predefined sets of services.

The idea of utility computing first emerged as a business solution for big companies to

organize their computational power [9, 10]. In this context, the scalability of the comput

ing utility is naturally limited. Inspired by the success of peer-to-peer (P2P) file sharing

systems [11, 12, 3, 13], the Galaxy project extends the research scope to both public and

dedicated resources. Public resources refer to the network resources hosted in a public

network like the Internet.

This extended research topic is named public computing utility (PCU). PCU is an open

system to encourage the contribution of public resources. One of the biggest challenges

of such open systems is to ensure a predictable quality of service, which is a very crucial

feature to achieve direct business goals. To obtain the QoS as needed, solely depending

on public resources is not practical. When public resources cannot meet the expected per

formance, the approach of Galaxy is to supplement the resultant deficiency with dedicated

resources to meet the expectation of the resource user.

The prototype of Galaxy PCU fully refiects the design objectives described ab ove. It is

a middleware that functions between physical resources and user applications. It adopts a

layered architecture that consists of a resource virtualization system, a management infras

tructure and a stack of services as shown in Figure 1.1.

The lowest layer of the architecture is a P2P overlay called resource addressable net

work (RAN) [14]. The RAN pro vides uniform resource naming and discovery services

[15, 16] to the upper layer, the galaxy resource management system (GRMS). GRMS man

ages the behaviors of resources, such as trust [17] and QoS. The next upper layer is the

Galaxy services. Example services inc1ude application-Ievel QoS management and shell

CHAPT ER 1. INTRODUCTION AND MOTIVATION 3

Resource Pool (RP)

Figure 1.1: Galaxy architecture

interfaces. Other than these major functionallayers, a security layer plays a monitoring

role to protect these three layers from malicious activities through the Internet.

Galaxy project aims at designing a resilient, flexible, scalable, and QoS-aware provi

sioning mechanism of computer-based services, especially large-scale services. This paper

focuses on implementing a network positioning service, which is part of the prototype de

sign of the RAN. In the next section, I analyze the design issues related to the network

positioning service.

1.2 System Design Issues for Network Positioning

Network positioning is concerned with representing the network distance relationships

among network hosts. It can be very useful for wide-area network applications [18, 19,20,

21, 22]. For instance, large scale interactive online games, such as massively multi-player

online games (MMOG) can use network positions to direct the game client to connect to

the closest game server to reduce real-time delay [23]. Sorne characteristics for network

positioning are discussed below. These features shed light on the objectives of constructing

a network positioning service.

• Accuracy: network positioning explores algorithms to compute network positions

based on limited amount of real network measurements. Accuracy refers to the quan-

CHAPT ER 1. INTRODUCTION AND MOTIVATION 4

titative measure of the magnitude of error in representing the distance relationships

using these positions. It is a crucial metric to judge the viability of a network po si

tioning service.

• Adaptivity: the network environment is highly dynamic. The network position

ing service needs to update hosts' positions to reflect the intrinsic network distance

changes caused by network topology change.

• Stability: the positions in the adaptive system may fluctuate even when there is no

change in the network topology change. This problem can cause unnecessary drifting

of the positions, even affecting the positioning accuracy. The stability of a network

positioning refers to properly reacting to topology changes and reducing unnecessary

fluctuations.

In addition to these general issues, sorne properties are considered to be necessary for

integrating the network positioning service with the Galaxy system:

• Decentralized Design: Galaxy nodes are organized in P2P manner. Public resources

may join and leave frequently. It is not practical to have a central authority to assign

positions to those resources every time they join. The ideal solution is to let resources

compute and update their own positions according to a systematic mechanism.

• Efficiency: Galaxy is a middleware. It can be integrated with many applications,

especially utility-like applications. The building and running of Galaxy services

should not add much overhead to the application systems. It is aIso essential to

deliver the services in a timely fashion.

1.3 Thesis Contribution

Galaxy uses two metrics to c1assify resources: resource types and location. The RAN

generates profile-based names and location-based names for resources. Profile-based name

is created by profiling resource according to different resource types. Location-based name

CHAPTER 1. INTRODUCTION AND MOTIVATION 5

is generated based on resource's geographic location. Resources are organized into type

rings and neighborhood rings. The order of resources on the ring is decided by applying an

indexing method to the profile-based names and location-based names respectively. RAN

disco very mechanism makes use of these ring structures to search for resources that meet

specifie conditions of resource types and/or location. A detailed explanation is given in

Chapter 3.

This thesis contributes to the research of the RAN in two aspects. First, this thesis is

concerned with the design of a network positioning service, which is an indispensable com

ponent for generating location-based names in the RAN. It provides viable solution to rep

resent distance relationship among hosts such that RAN discovery mechanism can build on

top of it to realize location-based resource discovery. Second, a prototype location-based

RAN is implemented and its positioning functionality is evaluated on 127 PlanetLab [24]

nodes. It consists of machines spanning over 25 countries. Experiments are conducted to

evaluate different metrics concerning the network positioning service and the performance

of different positioning algorithms.

Chapter 2

Background on Network Positioning

Large distributed applications, such as a PCU like Galaxy and P2P file sharing systems

like Napster and GnuteHa [25], have much ftexibility in choosing the peers for service. For

ex ample, in a PCU, a job allocation pro gram wants to know the available latency between

itself and aH the peers that have the wanted resources. Although these network performance

characteristics can be accurately measured on-demand, for a system with large number of

nodes spanning a wide area, this process becomes very time-consuming, generating huge

number of probing messages. The ideal solution is to predict network distance in an

accurate, scalable and timely fashion and use the prediction as a metric to minimize the

need for network measurements.

Basically there are two kinds of approaches in predicting network distance. The first

kind proposed in IDMaps [26], models the Internet as a simple topology. The network dis

tance information is represented using individual path distances. The second kind, called

coordinates-based approach, was first proposed in GNP [27]. Figure 2.1 illustrates the

basic idea of coordinates-based approach. It models the Internet as a Cartesian space. The

network distance information is represented using coordinates. Compared with the first

approach, coordinates-based approach have several advantages. First of aH, a distance pre

diction in the Cartesian space is simply an evaluation of the distance function which is both

straight-forward to implement and fast to compute compared to a shortest path search in the

topology model. Secondly, the distances of aH paths between K hosts can be represented

6

CHAPT BR 2. BACKGROUND ON NBTWORK POSITIONING 7

by K sets of coordinates of size D each (i.e. O(K· D) of data), where D is the dimen

sion of the Cartesian space, as opposed to K(K - 1)/2 inter-host distances (i.e. O(K2) of

data). Thirdly, ho st coordinates have relatively fixed local properties that can be exchanged

easily among hosts when they discover each other, allowing network distance predictions

to be computed in a timely fashion. For these advantages, 1 consider the coordinates-based

approach to be a better choice in devising my positioning methods.

h2

h3

Internet

Mapping

v2(15,23)
y

v1 (5,3)

Figure 2.1: Coordinate-based Network Positioning

v3(85,3)
x

ln the following sections, 1 introduce a few research projects studying the coordinates

based approach. These projects propose different mechanisms to generate node coordi

nates. Analyzing their pros and cons wi11lead to a c1ear and proper solution to my design.

2.1 Pros and Cons of Existing Solutions

2.1.1 Global Network Positioning (GNP)

GNP [27] is the first network positioning method that uses the coordinates-based approach.

It models the Internet as a D-dimensional Euclidean space and represents hosts as points in

this space. Their positioning strategy uses a small distributed set of hosts called landmarks

to serve as a frame of reference. As shown in Figure 2.2, at the system initialization, land-

CHAPTER 2. BACKGROUND ON NETWORK POSITIONING 8

o 1 L: Landmark 1

o :;;:fii.><>.""
•••• l'"~ ell)e/} o (0·························0 t

y

7° (x2,y2)

<0 e
(x1,y1) (x3,y3) o o x

Figure 2.2: Landmark-aided Positioning

marks LI, L 2 and L3 first compute their coordinates in the Euc1idean space. Any other host

that wants to participate computes its own coordinates relative to these landmarks. This

type of positioning is named as landmark-aided positioning (LAP). The computation of

coordinates is done by minimizing the error between measured network latencies and pre

dicted distances computed using the distance function in the Euc1idean space. To formulate

the objective function, let CH den ote the coordinates of host H, and dHLi , i = 1,2, ... ,N

den ote the measured distance between host H and landmark Li, where N is the total num

ber of landmarks. The predicted distance between host H and landmark Li is denoted

as dHLi . The coordinates of ordinary host H is computed by minimizing the following

objective function:
N

f(C H) = Lc(dHLi , dHLJ (2.1)
i=i

(2.2)

where cO is an error measurement function defined as:

(2.3)

The computation of landmark coordinates is slightly different from that of an ordinary

host. The goal of landmark positioning is to find a set of coordinates, CLl , ... ,CLN , for

the N landmarks such that the overall prediction error among landmarks is minimized.

Formular 2.4 defines the objective function to be minimized to obtain the coordinates of

the landmarks:
N N

f(C Ll1 ... , C LN) = L L C(dLiLj , d LiLj) (2.4)
i=1 j=1

CHAPT ER 2. BACKGROUND ON NETWORK POSITIONING 9

With the above functions, the computation of coordinates can be formulated as a multi

dimensional global minimization problem that can be approximately solved by simplex

downhill method [28].

GNP follows a peer-to-peer architecture such that its positioning service can be inte

grated with most of the existing P2P applications. The information of a host's coordinates

can be piggy-backed to application messages to disseminate. Moreover, GNP does not add

much overhead to set up and maintain (it requires network measurements only to a smaIl

set of nodes at the system initialization step, and during periodical updates).

There are sorne key issues that affects GNP's performance. First of aIl, how to choose

the locations and the number of landmarks remains an open question. The authors propose

and evaluate three heuristics to choose the locations of landmarks: N-cluster-medians, N

medians and Maximum separation. AlI of them are used to choose weIl-distributed infras

tructure nodes. Their experiments also showed that the accuracy of GNP only improved

from 6 to 9 landmarks. Furthermore, the computation of landmark coordinates is processed

centralized. This schema increases the risk of single-point failure and security problems.

2.1.2 Network Positioning System (NPS)

NPS [29] is a version of GNP which addresses the system building issues involved in

deploying a coordinate system. NPS includes a hierarchical reference system for reducing

the load on the landmark nodes. The ordinary hosts that derive their coordinates from

the initial set of landmarks can be selected also as reference points. NPS distributes the

computation of landmark positions to aIl the landmarks, such that the single-point failure

problem is avoided. Other design issues include a congestion control mechanism and a

work-around for NATs. The NPS implementation is tested on 127 PlanetLab nodes using

system parameters such as accuracy and convergence time for positioning.

The construction of NPS provides practical experience in building the network posi

tioning system. The design issues discussed in this paper and their experimental results are

useful guidelines for the design and testing of my network positioning service.

CHAPTER 2. BACKGROUND ON NETWORK POSITIONING 10

2.1.3 Vivaldi: Pracical Distributed Network Coordinates

Vivaldi[30, 31] is a fully distributed network positioning algorithm. It proposes a novel

way to compute node coordinates: it models the network as a collection of springs, each of

which pulls on the coordinates of a pair of nodes. The initiallength of the spring is set to

the measured network latency, and the current length of the spring is considered to be the

distance between nodes in the coordinate space. The energy of the spring is proportional

to the displacement from its rest length squared. So minimizing the sum of energy over aIl

the springs is identical to minimizing the prediction error in the coordinate system. Node

adjusts its coordinates by simulating the movement un der the spring force. Coordinates

bec orne more accurate and stable with each successive adjustment. This process stops

when a local minimization has reached. Chapter 3 explains this algorithm in detail.

Sorne important issues addressed by Vivaldi are: convergence time, accuracy, probing

traffic, and responsiveness to network changes. The length of the step by which anode

adjusts itself to the next optimal position affects the convergence time and accuracy. Big

steps may result in oscillation or even failure to converge, while small steps co st unneces

sary time. In Vivaldi, an gradually decreasing step size is used. It enforces big movement

at the beginning of the algorithm to help nodes move to reasonable positions quickly and

tiny steps at the end to avoid oscillation.

Vivaldi data can be piggy-backed on the packets of distributed applications to reduce

probing traffic. Nodes in Vivaldi recompute their coordinates when new nodes come in.

The advantage of Vivaldi is that it is fully decentralized. Without the construction of refer

en ce infrastructure as in GNP, Vivaldi is much simpler to implement.

2.1.4 Practical Internet Coordinates

In this paper [32], the multi-dimensional optimization method is adopted to compute host's

coordinates. It is different from GNP in that the landmark framework is eliminated. Every

node that has computed its coordinates can become the reference node for others. The

authors mainly study different strategies to choose reference nodes for a given ho st. Three

CHAPTER 2. BACKGROUND ON NETWORK POSITIONING 11

methods are discussed: random selection, closest selection and a hybrid of the two. Sim

ulation results reveal that the hybrid selection outperforms the other two methods. It is

advantageous by positioning a new node based on both distant and close references. To

pick the close st elements, anode first computes its coordinates only based on random ref

erences. With the computed coordinates, it estimates the distances to a few references,

selects the closest ones and recomputes its coordinates based on newly selected references.

PIC is a possible extension of GNP. The major difference is that it does not rely on

infrastructure nodes and spreads load evenly over aIl nodes in the system. A heuristic

approach for rating the references is included in PIC to protect its performance from mali

cious nodes.

2.1.5 PCoord: Network Position Estimation

PCoord [33] uses the simplex downhill method to compute the coordinates. It also elim

inates the landmark framework to operate in a full y decentralized fashion. It differs from

PIC in the strategies of selecting reference nodes. The three strategies it proposes are:

RandPCoord, ClusterPCoord and ActivePCoord.

RandPCoord is random selection, similar to the one proposed by PIC. ClusterPCoord

is based on cluster information (cluster refers to a set of nodes located in a bounded ge

ographic area). Every node stores a database containing the positions of the nodes it has

interacted with. A newly joining node contacts with sorne existing nodes to collect this

position information, divide them into clusters, and then pick up nodes from each clusters

to obtain well-distributed reference points. Well-distributed references can maximize the

useful information provided in the reference frame. ClusterPCoord requires extra storage

space for each node to store topology informatioQ. Moreover the position data needs pe

riodically updating to adapt to network changes. ActivePCoord selects well-distributed

references based on triangulated distances to other peers. It is assumed that each node ini

tially knows of sorne other peers in the overlay. Nodes discover other peers by exchanging

the list of peers they know. The communication cost of ActivePCoord is a major problem.

CHAPT ER 2. BACKGROUND ON NETWORK POSITIONING 12

The simulation shows, within a network system of 3400 nodes, 93% of the peers can pre

dict their nearest nodes by probing around 3.7% of the total population. But the authors did

not give any hint about how this communication cost increases as the system size grows.

Above 1 have described five coordinates-based network positioning systems. Cons id

ering the computational methods, there are two dominant methods for computing net

work positions: Ca) multi-dimensional optimization method, such as the simplex downhill

method; and Cb) heuristics such as the spring algorithm used in Vivaldi. Compared with the

simplex downhill method, the spring algorithm has lower computation complexity and is

simpler to implement without sacrificing accuracy. Considering the strategies of selecting

reference nodes, these positioning systems also div ide into two categories: Ca) use a fixed

set of reference nodes, as landmark-aided positioning proposed in GNP; and Cb) dynam

ically choose reference nodes through some heuristics. Fixed set of references ensures a

more stable system performance, but may cause system bottleneck when a large amount

of nodes compute coordinates at the same time. Dynamic selection of references spreads

load evenly over aIl nodes in the system. By applying the heuristic metrics such as clus

ter information or triangulated distance, dynamic reference selection can adapt to the real

topological distribution of the nodes. A summary table is shown below.

Table 2.1: Properties of Network Positioning Systems

. infrastrqst.yx~. node" landmark

algodffi!#:' "simplex downhill

selection of,·v
;;d('~> "t:'d:i~f~~i,:,C,. .,;>:::'"
i.:ré~~~~pce well-distributed

nôtlesl.,

serV!pe pottle lleck yes

simplex downhill

hybrid of

random and

close heuristics

no

Chapter 3

Architectural Design

Galaxy is a public computing utility. Public resources are highly dynamic because they are

likely to join and leave the Galaxy overlay frequently. To ensure positioning consistency

and availability of reference points, 1 choose to use infrastructure nodes like in GNP. These

nodes are still named as landmarks. Landmarks are supposed to be quite stable nodes, i.e.

they have low variance in network conditions and are available to provide service for long

period of time. My positioning solution follows the two-part architecture: a small set of

landmarks first compute their coordinates to serve as a frame of reference. Other end hosts

refer to the coordinates of the landmarks to compute their own coordinates. Aiso a novel

mechanism is used to adjust host's position within its nearby region.

ln the following sections, the solution 1 to the network positioning problem is explained

in detail. The positioning functions are integrated with RAN indexing method, routing

mechanisms and ring organizing procedures to set up the location-based RAN.

3.1 Landmark Positioning

1 model the Galaxy overlay as a D-dimensional Cartesian coordinate space. Network delays

are mapped to the distances in the space. Considering the dimensions, more dimensions

provide better accuracy. But the improvement is tiny after two dimensions. ThIs observa

tion is pointed out by principle component analysis on the matrix of latencies [34] and by

similar conclusion in GNP [27]. In my design, 1 assume a space of dimension 2. Land-

1 B. Maniymaran designed the positioning algorithms used for sequential simulations. 1 implemented

them with decentralized strategies.

13

CHAPT ER 3. ARCHITECTURAL DESIGN 14

marks are randomly selected. Regarding the number of landmarks, 1 conduct a series of

tests to study its effect on the positioning performance in Chapter 5.

1 study two decentralized methods to compute landmark positions: distributed spring

algorithm (DSA) and spring equilibrium algorithm, (SEA). Both methods model the net

work as a collection of springs, each of which pulls on the coordinates of a pair of nodes.

Solution is achieved by minimizing the energy in the spring system, which is proportional

to the spring's displacement from its rest length squared. This is analogous to minimize

the prediction errors in the network system. DSA uses the same mechanism as Vivaldi

to adjust node's coordinates. It moves the no de by simulating the movement under spring

force. SEA formulates the force minimization problem as a linear system of equations, and

creates a decentralized algorithm to solve the equations.

3.1.1 Distributed Spring Aigorithm

The DSA is outlined in Aigorithm 1. Each landmark node in the DSA calculates its own

movel1).ent in the spring system. The input to the algorithm is a list of landmark addresses.

The starting coordinates are set randomly or using a previous value if there exists one. In

each iteration of the inner loop, the current node communicates with one of the landmarks

on the list to measure the network latency to it, and to obtain the landmark's CUITent po

sition. In response to the landmark's coordinates, this node moves for a short step along

the corresponding spring to reduce the CUITent node's prediction error with respect to the

landmark node. The length of the step is a fraction (J of the prediction error. As the node

continually communicate with other landmarks, it converges to coordinates that predict dis

tance well. The algorithm stops wh en the heuristic threshold is reached for 5 consecutive

iterations. The node's new coordinate is retumed as result.

The rate of convergence is govemed by (J. 1 use a gradually decreasing (J value, as

proposed in Vivaldi [30, 31]. (J is initialized to 1.0 when the algorithm starts. It is deducted

by 0.025 in each iteration, and will not go below 0.05.

3.1.2 Spring Equilibriurn Aigorithrn

Spring equilibrium algorithm [35] also models the network as a physical spring system.

But it explores a different principle for convergingnodes to proper positions.

According to the Hooke's law [36],

CHAPTER 3. ARCHITECTURAL DESIGN 15

Algorithm 1 Distributed Spring Aigorithm

Input: L = {h, l2, ... ,lN}: li is the address oflandmark i, N is the number oflandmarks
Output: coords: new coordinates of this node

1: coords = random coordinates
2: a = 1.0
3: change = conv_limit + 1
4: iter = 0

{Heuristic metrics based on experiments: conv_limit = 5(ms), conv_iter = 5}
5: while change> convJimit or iter < conv_iter do
6: old_coords = coords
7:

8:
9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

for every i in L do
Ci = getRemoteC oords(i) {Ci is the coordinates of landmark i}
di = getMinDistSample(i) {di is the distance to landmark i}
u = (ci-coords) {u is the directional unit distance}

ICi-coordsl

disLdif f =1 Ci - coords 1 -di
displacement = u . disLdif f . a
coords = coords - displacement

end for
a- = 0.025
a = max(a, 0.05)
change = 1 old_coords - coords 1

if change ~ conv_limit then
iter = iter + 1

else
21: iter=O
22: end if
23: end while

CHAPTER 3. ARCHITECTURAL DESIGN 16

the force pt of the spring connected is proportional to the deformation 1' from its rest

length. k is the spring constant. Using the displacement of the two ends of the spring to

replace the deformation vector 1', 1 get the following formula:

where i, j denote the two ends of the spring. As described above, the prediction errors in

the positioning system are mapped to the spring deformation in the spring network. The

spring equilibrium algorithm aims at finding a set of positions of nodes so that the spring

system is in equilibrium, i.e. the force acting upon each node is zero. In the spring network,

the resultant force on the landmark node i is:

L [kij (67 - r)J
JEVi

where Vi is the list of nodes that locate on the other end of the springs pulling on landmark

i. J; is the displacement of the end i of the spring. 1 want to find the solution of vector r
to satisfy the linear system of equations::

-"t

A6 = °
where,

To solve this linear system of equations, 1 use the successive overrelaxation method (SOR)

[37]. This is an extrapolation method that takes the form of a weighted average between

the previous iteration and the computed Gauss-Seidel iteration successively for each com

ponent,
pDX(i) = -(1 - p)Dx(i-l) - UX(i-l) - LX(i-l) (3.1)

where the matrices D, U, and L represent the diagonal, strictly lower-triangular, and strictly

upper-triangular parts of A, respectively. If p = 1, the SOR method simplifies to the Gauss

Seidel method. A theorem due to Kahan (Kahan, 1958) shows that SOR fails to converge

if pis outside the interval [0, 2J. 1 choose a p value of 0.85 based on simulation results.

The pseudo code for spring equilibrium algorithm is shown as Algorithm 2. 6 denotes

the node's displacement. It is also the solution that the SOR method produces.

CHAPTER 3. ARCHITECTURAL DESIGN 17

Aigorithm 2 Spring Equilibrium Algorithm
Input: L = {h, l2, ... , lN}: li is the address oflandmark i, N is the number oflandmarks
Output: coords: new coordinates of this node

1: coords = random coordinates
2: 0 is initialized as a vector (the same length as coords) of O's
3: relaxFactor = 0.85
4: change = conv_limit + 1
5: iter = 0

{Default system parameters: convJimit = 5(ms), conv_iter = 5}
6: white change> convJimit or iter < conv_iter do
7: old_coords = coords
8:
9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

sum_j is initialized as a vector (the same length as coords) of O's
for every i in L do

Ci = getRemoteCoords(i) {Ci is the coordinates oflandmark i}
di = getMinDistSample(i) {di is the distance to landmark i}
u = \ci-coor~81 {u is the directional distance unit} Ci-coor 8

disLdif f =1 Ci - coords 1 -di
sum_j = sum_j - disLdif f· u {_UX;k-l) - LX;k-l)}

end for
0= 0 - (1 - relaxFactor) . N . 0 {-(1 - p)Dx~k-l)}
0= (0 + sum_j)j(relaxFactor * N))
coords = coords - 0
change = 1 old_coords - coords 1

if change::; conv_limit then
iter = iter + 1

el se
iter = 0

end if
25: end while

CHAPTER 3. ARCHITECTURAL DESIGN 18

3.2 Ordinary Node Positioning

Ordinary no de uses the coordinates of Iandmarks to derive its own coordinates. The de

tailed method is outlined in Algorithm 3. Since Iandmarks are passive during this process

and do not change their positions, ordinary host communicates once with each landmark

to measure the network latency to it and obtain its coordinates. Based on the coordinates

of the landmarks, the node adjusts its position to reduce prediction error to the landmarks.

The algorithm is pretty much similar to the distributed spring algorithm except two points:

first, the coordinate samples and distance samples are collected outside the outer Ioop (the

2nd and 3rd steps in the pseudo code); second, the criterion of convergence aiso changed.

Once the node has not moved by more than 5 milliseconds, the aigorithm is declared to be

converged. This is because the positions of reference nodes are fixed. After the node has

reaches the heuristic metric, the position of the node will not change by bigger steps.

Aigorithm 3 Ordinary Node Positioning Algorithm

Input: L = {h, l2, ... , lN}: li is the address of landmark i, N is the number of Iandmarks
Output: coords: new coordinates of this node

1: coords = random coordinates
2: Ci = getRemoteCoords(i) {Ci is the coordinates of landmark i}
3: di = getMinDistSample(i) {di is the distance to Iandmark i}
4: a = 1.0
5: change = conv_limit + 1

{Default system parameters: convJimit = 5(millisecond)}
6: while change> convJimit do
7: old_coords = coords
8: for every i in L do
9: u = \Ci-coor~sl {u is the direction al distance unit} Ci-coor s

10: disLdif f =1 Ci - coords 1 -di
Il: displacement = u . disLdif f . a
12: coords = coords - displacement
13: end for
14: a- = 0.025
15: a = max(a, 0.05)
16: change =1 old_coords - coords 1
17: end while

CHAPTER 3. ARCHITECTURAL DESIGN 19

3.3 Cluster-based adjustment of coordinates

ln PIC paper[32], it is proposed a "closest" strategy for choosing reference nodes to en

hance the distance estimation in the nearby region. Compared with long distance esti

mation, predicting distances among close nodes are more sensitive to the accuracy of the

no de positions. In order to provide reasonable distance estimation, for both large and small

range, 1 compensate the random landmark selection with the following cluster-based posi

tion adjusting method [35]. 1 define a cluster as a set of nodes located in a bounded region

in the coordinate space.

Before adjusting its position, each node in the cluster probes an other hosts in the

cluster, divides the largest measurements by half, and uses the value as the radius of the

cluster. It then disseminates the radius and its position to aIl other cluster hosts. Upon

receiving another node's position and radius measurement, this node saves the position for

the other node, compares the radius with its own, and the larger value is accepted as the

radius. As the adjusting process starts, the node first uses the coordinates of aIl other hosts

in the cluster to compute a center point in the Cartesian space. The second step, it computes

its distance to the center point using the distance function. This value should not be bigger

than the cluster radius. If its coordinates fall out of the radius circle around the center, it

needs to adjust its position.

The adjustment is to move its coordinates along the line between itself and the center

point until it goes within the circle. After the adjustment, the node sends its new coordi

nates to other cluster peers. Since this adjustment also affects the center of the cluster, the

node re-computes the center point and repeats the adjustment until no further movement is

needed. Figure 3.1 shows the flow of the adjustment process.

3.4 Creation of Location-based Names

Based on the positioning functions, the locations of RAN nodes are ca1culated and repre

sented as coordinates. These values are utilized by the RAN to generate location-based

names [35].

Coordinates are multidimensional data. Efficient query processing in coordinate space

such as discovery and route selection is often based on range search or nearest neighbor

search. Multidimensional index structures can be applied in order to achieve a satisfactory

performance. It's proposed in [38] a solution to solve the multidimensional indexing prob

lem. It's called space filling curve (SFC) method [39, 40]. SFC is a one dimensional curve

CHAPT ER 3. ARCHITECTURAL DESIGN

Start

Yes

No

No

End

Wait
(period)

>---Yes

Figure 3.1: Cluster-based Adjustment

which visits every point within a bounded multi-dimensional space.

20

There are many derivatives of SFC. The design of the RAN uses one of them called

Hilbert curve (HC). Hilbert index is derived from Hilbert curve. The index number can

be single numbered as shown in Figure 3.2. Hilbert curve can be recursively constructed.

Figure 3.2 shows the different levels of approximation of the Hilbert curve. The index

number can also be represented in a hierarchical way. For instance, the point indexed "5"

in Figure(b) can also be indexed as "2.2". The single numbered index is easy for comparing

and ordering the points, so it performs better in nearest neighbor search. The hierarchical

index indicates the approximation level of the node, which is good for range search. In the

RAN implementation, 1 define the data structure for node index to include both features of

the Hilbert index. 1 summarize the advantages of using Hilbert curve in RAN as follows:

1. It introduces a natural order as the curve goes through every node in the space.

2. It compresses the multi-dimensional space to a single dimensional curve.

3. The points that are close to each other in the multi-dimensional space are also close

on He. This is very important to conserve the proximity information.

CHAPTER 3. ARCHITECTURAL DESIGN 21

o 2 3 012 15

11111111111111111 11111 1

._._._1Fi=-I:-···-
01 3

5 10

4 11

3 12

o 15
t

(a) First level (b) Second level (c) Third level

Figure 3.2: Hilbert Curve

4. HC enables a hierarchical naming of the resources. This feature is useful to define

range in routing and discovery mechanisms.

3.5 RAN Routing Mechanism

RAN node has three sections in its routing table [35]. The first section is called "self',

keeping the pointer to itself. Every node has a left and right ring pointers in the "ring"

section pointing to its two neighbor nodes on the ring. Ring is the basic topology that the

RAN uses to manage profile-based narries and location-based names. The two neighbors

of the node on the ring are also the two neighbor nodes on the Hilbert curve. Anode may

have sorne otherjump pointers that point to other non-neighbor nodes in its ')ump" section.

Based on the data in the routing table, RAN performs two kinds of application-level

routing:

1. lump Routing: the message is sent directly to the destination, or to a nearest node

of the destination from the list of jump pointers. In practice, 1 apply longest prefix

match to the destination node and one of the nodes in the jump pointer section. If the

length of the longest common prefix is beyond sorne threshold (1 set the threshold to

the number of digits of the destination index minus 1), the jump pointer is a nearest

node of the destination. For example, index number "2.3.0.1.2" and "2.3.0.1.3" are

the nearest node of each other, while "2.3.0.1.2" and "2.3.2.2.0" are not. If neither

CHAPT ER 3. ARCHITECTURAL DESIGN 22

exact match nor nearest match is found, routing is delegated to the ring routing.

2. Ring Routing: the message is sent along the ring structure to the destination. This

routing mechanism is chosen when the node cannot route the message through jump

routing. The operation is to compare the destination's Hilbert index with that of the

right and left neighbors. The side doser to the destination is selected as the next hop.

3.6 Self-organizing Activities

RAN is a self-organizing P2P network [35]. RAN nodes can discover their neighbors and

distribute information to others automatically. These nodes forms a ring configuration.

Sorne procedures are designed for individual no de to manage this configuration. The basic

[gr.
1 •. :::;:",":...:":::.;)

New Node

RAN Node

Figure 3.3: RAN Joining Process

scenarios are shown as follows:

Registration

Code Transfer

Join Request

Destination Discovery

Join Reply

• Joining Process: when anode newly joins the P2P network, it first contacts a list

of landmarks to compute its coordinates and calculates its Hilbert index. After posi

tioning itself, it contacts anode from a list of existing nodes, called its entry node, to

request for inserting itself into the ring configuration. The entry node will forward

the request to a destination with the most similar Hilbert index to the new node from

the list of nodes it knows. The destination node of the joining request decides on

which side the new node should be inserted according to index order, changes the

ring pointer at that side, and sends the new node with the information of itself and

its previous neighbor so that the new node can link itself between them. The list

of landmark addresses and existing nodes can be obtained from the Galaxy service

CHAPT ER 3. ARCHITECTURAL DESIGN 23

provider (OSP) through a secure web registration interface. After registration, GSP

provides the new corner with the information of landmarks and existing nodes from

its database. This service only functions at the node initialization stage. Figure 3.3

shows the steps of joining to the RAN.

• Updating Process: the positions of RAN nodes are updated periodicalIy. For the

landmarks, the update process is not often because changing landmark framework

will result in changes to the location-based names of most nodes in the system.

Nodes may need to rejoin the system as a result, which causes much overhead. So

landmarks are configured to have an long update period. The updating process can

be triggered by any of the landmarks. AlI the landmarks recompute their coordinates

simultaneously. The update completes until aIl the landmarks have agreed distribut

edly on their new positions. The updating frequency of ordinary hosts is configured

according to user's specification. The updating process includes rerunning the posi

tioning algorithm and adjusting the new coordinates according to cluster information.

After the update, it sends its new position to aIl the cluster neighbors.

• Leaving Process: the major task in the leaving process is to maintain the consistency

of the ring configuration. This is done by informing left and right neighbors to

connect themselves together.

• Rejoining Process: as a result of position updates, anode may change its coordi

nates and index number. If its new index requires a new place on the ring, it needs

to rejoin the ring configuration. The rejoining process is first performing the leaving

process, and then going through the same steps as joining.

Chapter 4

Implementation Description

This chapter describes the detailed implementation of the location-based RAN. A previ

ous version of RAN [41] was implemented by Wadih Maalouf and Hasan Mirza. Their

work was used to set up an emulation of the RAN overlay on one machine. 1 ex tend their

software to be able to execute under a real distributed environ ment. The RAN prototype

is implemented using Java and XML Schema. Section 4.1 provides an overview of the

package hierarchy of the application. Section 4.2 defines the external service interface for

the GRMS layer. Section 4.3 introduces the necessary libraries. The last three sections

de scribe the classes of each package in detail.

4.1 Application Architecture

This section describes the package hierarchy of the RAN application. 1 follow the same

package structure as that of the previous version RAN implementation. It uses a layered

architecture, in which the system is divided into three layers. Each layer uses only the ser

vices of the layer immediately next to it. This layered structure provides clear modularity,

shown in Figure 4.1

The network layer, defined in package ran. net, performs aIl the network access,like

opening the socket, writing out the messages, and reading in the replies. It provides ser

vices of sending, exchanging messages, and notification of incoming messages. The mes

sage layer is defined in package ran. mes sage. Message layer translates the message

strings to message objects. The message objects are defined as part of the application logic

using XML. Another functionality of this layer is to notify the application layer of receiv-

24

CHAPT ER 4. IMPLEMENTATION DESCRIPTION 25

package ran

ran.app ran.message ran.net
cli

class class
conf

class

ran.lib
1 structures 1 concurrent

hilbert landmark

Figure 4.1: Package Structure

ing particular messages. The message notification is delivered by having the listeners reg

istered to hear for different incoming messages. The application layer, defined in package

ran. app, implements the application logic, induding the positioning algorithms, index

ing methods, routing mechanisms and the ring organizing procedures. Package ran .lib

consists of supporting libraries for the other three layers in defining complex data types

and operations.

4.2 External Interface

RAN provides a service interface to the GRMS. It is defined in Program 1.

Program 1 RAN External Interface
interface ran_discovery {

boolean discoveLexecute(HilbertNumber id, String command)
}

This interface is devised for discovering particular resources through the RAN. It con

tains one method discover _execute. The method takes two input parameters, an id

in HilbertNumber type and a command in String type. The return value is typed boolean.

CHAPTER 4. IMPLEMENTATION DESCRIPTION 26

This method can be implemented to search for a resource matching the desired Hilbert

index number over RAN and execute the command string on it. The result of command

execution, "success" or "failure", is returned to the object that calls the method. This inter

face can be implemented by any application that wishes to realize location-based resource

discovery through the RAN.

4.3 System Requirements

The RAN application is implemented in Java. To run the application programs, a standard

Java 2 Runtime Environment is needed. This would typically be using a Sun Microsystems

J2SE. Except for this main environment, sorne externallibraries are used:

• Java Architecture for XML Binding (JAXB): JAXB is part of the Java Web Ser

vices Developer pack (Java WSDP). It contains all of J2EE's XML technologies for

building, testing and deploying XML applications. l use the following JAXB com

piler and runtime libraries included in this package: jax-qname. jar, jaxb-q

name.jar, jaxb-api.jar, jaxb-impl.jar, jaxb-lib.jar,names p

ace. jar, relaxngDatatype. jar and xsdlib. jar.

• EDU.oswego.cs.dI.util.concurrent: written by Doug Lea, this package provides

standardized, efficient versions of utility classes commonly encountered in concur

rent Java programming.

• java-getopt-l.O.9: a Java port of GNU getopt, a class for parsing command line

arguments passed to programs. It is based on the C getopt () functions in glibc

2.0.6.

4.4 N etwork Layer

The functions of network layer are encapsulated in package ran. net. They are util

ity classes necessary for physical network access. Messages are transferred over TCP

connections. Each message is a UTF-8 character string terminated by a single blank

line. The Doug Lea concurrency utilities are used here to construct an extensive thread

pool for incoming socket connections. There are two types of connections, one-way and

two-way communication. The one-way connection carries only one request from source

CHAPTER 4. IMPLEMENTATION DESCRIPTION 27

host to destination, and closes after sending. This type of operation is implemented as

sendMessage method. The two-way connection is opened when the host wants a reply.

In this case, the connection will not be closed until a reply is returned or sorne timeout

exception is catched. The exchangeMessage method is implemented according to this

type.

Another important service in this package is the MessageListerner interface. It

can be implemented by any class that wishes to be notified of sorne incoming messages.

The instances of the implemented class are registered with this layer so that the method of

messageRecei ved will be called each time an incoming message is received.

4.5 Message Layer

The class MessageLayer implements the service methods provided to the application

layer. This class is going to be instantiated as a singleton (only one instance of a class). It

provides the listener registration functions for the application layer to register their imple

mented procedures for dealing with different incoming messages.

The classes related to message types in package r an . me s s age are generated by the

JAXB schema compiler. Their definitions extend from the general definition of "message"

object. The message structure is defined as Figure 4.2:

A "message" object is composed of two parts: header and body. The header has four

elements: "to", "from", "type" and "subtype". "to" and "from" are the addresses of the

message sen der and receiver, respectively. "type" is the type of function of this message,

such as "ping", "landmark", etc .. "subtype" is to mark the message whether it is a request

or reply. Body is extended into two types: "Request" and "Reply". They are further

extended by different message definitions.

The following list explains the functions of each message:

• PingRequest and PingReply: these types of messages are used to measure the round

trip time between nodes. Both request and reply contain a single timestamp that is

the time when this message has been sent by the sen der. The sender may use this

value to measure the round-trip latency .

• JoinRequest and JoinAck: this request message is sent when anode wishes to

connect itself to the ring configuration. It is sent to an entry node for processing

and does not require a reply. The join request message contains a route entry (the

CHAPT ER 4. IMPLEMENTATION DESCRIPTION 28

Message

9:kl&~tWn*ill.t6

1

Header Body

1

To l-I- From Request Reply

1

Type Subtype
land markRequest r- landmarkReply

~

r- Ping DiscoverRequest r- DiscoverReply

r- landmark r- InsertRequest InsertReply

Join r- DeleteRequest r- DeleteReply

Lo- - '--...

Figure 4.2: Message Object Definition

CHAPTER 4. IMPLEMENTATION DESCRIPTION 29

structure of a route entry is described in Section 4.6.5) of itself, plus a list of route

entries of aIl nodes this message has passed through since the entry node, caIled

"transit nodes". The join acknowledgement is not retumed over the same route the

request took, so the communication channel is closed after the request message has

been received. The JoinAck message is sent after the joining request has been

processed. It contains the route entries of the two RAN nodes the new node will

insert between.

• InsertRequest and InsertReply: this request is used to inform the insertion of a

new node between the destination node and its neighbor. An InsertRequest

contains the route entry of the new node and the side on which the new node should

be inserted (left or right) An InsertReply contains an acknowledgement status

specifying whether or not the insertion was successful.

• LandmarkRequest and LandmarkReply: LandmarkRequest is sent to request

for coordinates from a landmark. It con tains a field called "operation" to specify the

purpose of this request, whether it is sent by another landmark who is ca1culating

its position or by an ordinary host asking for reference. The reply message contains

the coordinates of the landmark and the network latency between sender and receiver

measured by the reply sender. This latency value is used to unify the delays measured

by the two ends of a network path wh en running the landmark positioning algorithm.

The request and reply messages also contain a timestampelement for the request

sender to measure the round-trip latency.

• DeleteRequest and DeleteReply: when anode wishes to leave the network, it sends

DeleteRequest to its two ring neighbors. The message contains the route entry

of the new neighbor to replace the sender, and the direction to which side the new

neighbor should be connected. The Delete reply is an empty message just to force

the leaving node waiting for the process finishing.

• LocUpdateRequest: this type of message is sent whenever anode wants to send its

updated position to other nodes in the cluster. The message contains the coordinates

of the sender and its measurement of the cluster radius. No reply is needed.

• DiscoverRequest and DiscoverReply: these type of messages are used in the re

source discovery process in support of the ran_discovery interface. The disc

overRequest message contains the Hilbert index of the desired resource, the

CHAPT ER 4. IMPLEMENTATION DESCRIPTION 30

route entry of the sender, a hop counter that counts how many nodes the message

passes through, a time-to-live (TIL) value that specifies the maximum hops the

message can take and a command string to be executed on the destination. The

discoverReply message is retumed directly to the request sen der after the com

mand execution has fini shed. It contains the route entry of the reply sen der, the

hop number that equals to the hop co un ter caITied by cOITesponding request, and the

result of command execution in boolean type.

4.6 Application Layer

The classes in this layer are contained in the package ran. app. They realize the posi

tioning algorithms, indexing methods, as weIl as the the functions that maintain the ring

configuration. 1 de scribe the major classes using the flow of the main method as a clue,

which is showed in the following section.

4.6.1 Main Class

This class is the entry point for the RAN application. The main method goes through the

following steps:

1. Parse the command-line arguments.

2. Parse the configuration file.

3. Test the network availability.

4. Register appropriate message handlers.

5. Initialize routing table.

6. Start the network layer.

7. Start the landmarking service, if the CUITent node is landmark.

8. Run ordinary node positioning process if the CUITent node is not landmark.

9. Run the command-line interface

1 O. Perform the RAN exit process if an "exit" command is encountered on command

line.

CHAPT ER 4. IMPLEMENTATION DESCRIPTION 31

4.6.2 CommandLineParser Class

CommandLineParser uses the getopt library for parsing command-line arguments. The

three options available now are:

• - s: specifies the directory where to search for the configuration file. By default is

the current user's home directory.

• -c: specifies the name of the configuration file. By default is "config.xml".

• -h: prints out the usage of command line options.

4.6.3 SystemParameters Class

The system parameters are initialized by reading in a configuration file in XML format.

Configuration file syntax is defined in the XML schema file "conf.xsd". The root element

is bound to the namespace http://www.ece.mcgill.ca/wmaalo/ conf, named

as conf. configuration. The configuration elements includes the parameters needed

to set up the network service, to initialize the routing table and to initialize the positioning

algorithm. A brief description is shown as follows:

• serverPort (optional): contains an integer specifying the port on which the node

listens for incoming TCP connections. By defaults 4050 is used.

• hilbertDimension (optional): contains an integer defining the dimension of the co

ordinate space to use. The default is 2.

• entryNodes (optional): contains a series of zero or more node subelements, each

one containing the address (IP and port number) of an entry node. IP addresses must

be in numerical form. If no entry nodes are specified, this node will be set up as a

"lone" node, with left and right ring pointers pointing to itself.

• c1usterNodes (optional): contains a series of zero or more node subelements, with

the same data type as defined in entryNodes.

• functionType (required): contains a value in NodeFunction type defining the

type of the node. NodeFunction is defined in enumerate values of "landmark"

and "standard", standing for landmark node and ordinary node respectively.

CHAPTER 4. IMPLEMENTATION DESCRIPTION 32

• algType (optional): if anode is landmark, the value in this tag is processed to choose

which computational algorithm to use for ca1culating landmark position. It contains a

value in AIgTypes type, which is defined as enumerate values: "spring" stands for

distributed spring algorithm, and "springEq" stands for spring equilibrium algorithm.

By default, "springEq" is used. If this node is not a landmark, any specification in

this tag will not have any effect.

• One of landmarkCoords, landmarks, or forcedHilbert. (required). The Iandm

arkCoords tag is used to assign a particular position to a landmark node. It con

tains two subelements, position and range, each of which contains a space

separated list of integers indicating, respectively, the node's position and the size of

the coordinate space; The Iandmarks tag is used for specifying landmark nodes to

be referred , either for landmark positioning or ordinary node positioning. It con tains

one or more node subelements that are the addresses (IP and port number) of land

marks; The for c e dR il be r t tag is used to force a particular Hilbert index for this

node. It contains two subelements, hierarchical and fIat; hierarchical

contains a space-separated list of numbers forrning the hierarchical index, and fla t

contains a single integer specifying the fiat index.

4.6.4 Message Handlers

The message handler classes implement different types of listener interfaces defined in the

message layer. One handler interface is provided for each message type. After an instance

of the se handler classes is registered with the message layer, the contained _Recei ved

method will be called whenever a message of the corresponding type is received. The

handler classes are introduced below:

• PingHandler: handles incoming P ingRequest messages. It is to reply to the

sender with the same timestamp as of the request.

• LandmarkHandler: handles incoming LandmarkRequest messages. Only land

mark node replies to this type of messages. If the value of the "operation" element

in the request is "query" (a request from an ordinary host asking for reference), the

handler checks if the landmark has fini shed running positioning algorithm. If so, it

retrieves the coordinates and retums that with the reply message. Otherwise it sends

back a null value in the reply. If the "operation" is assigned as "alg" (a request from

CHAPTER 4. IMPLEMENTATION DESCRIPTION 33

another landmark when running the positioning algorithm), the handler first checks

if a landmark positioning algorithm is running. Since landmarks may not reach the

convergence at the same time, 1 define a wait-for-end time (in my experience, 10

minutes is adequate for 30 landmarks to finish their computation). A landmark just

finishing its computation will not be triggered by other landmarks' request messages

for the wait-for-end time. If the wait-for-end time has passed since last update, the

handler triggers a new round of algorithm running. Then the handler returns in the

reply with the CUITent coordinates and the delay it measured between itself and the

request sen der .

• LocUpdateHandler: handles incoming LocUpdate messages. The handler uses

the coordinate value in the request to update sender's position. If the radius value in

the message is bigger than the local measurement, it is accepted as the new c1uster

radius. No reply message is returned for this message .

• JoinRequestHandler: handles incoming JoinRequest messages. The routing

method is called to determine the next hop of this request. If the CUITent node is

not the destination, it is added to the list of "transit nodes" in the request, and the

request is forwarded to the next hop. Otherwise, the joining request is processed

at the CUITent node. If CUITent node's status is "leaving" (see c1ass description of

StateTracker in Section 4.6.10), the handler waits for the exit process to com

plete and forwards the request to its left neighbor (without adding itself to the "transit

nodes" list.) Otherwise, the handler chooses the side for the new node to insert ac

cording to the Hilbert index order, then attempts to acquire the lock of the ring pointer

for that side (see c1ass description of RouteTable in Section 4.6.5). If unsuccess

fuI, the message is re-routed after a short, arbitrarily chosen delay (cuITently 750 ms)

for the network topology may be changing. If the lock is successfully acquired, an

InsertRequest is sent to the neighbor to the side on which the new node is to

be inserted. This request may pro duce a "positive" or "negative" reply. If "positive",

the CUITent node's ring pointers are updated, and a join acknowledgment is sent to

the new node, instructing it to set its ring pointers. If "negative", the message is

re-routed .

• InsertHandler: handles incoming InsertRequest messages. If the node's status

is "leaving", a "negative" reply is immediately returned. Otherwise, the handler tries

to acquire the lock on the side where the new node is to be inserted. If acquired, the

CHAPTER 4. IMPLEMENTATION DESCRIPTION 34

appropriate ring pointer is updated and a "positive" reply is retumed. It also adds the

new node to its jump pointer table for use. If not, the possibility is that two adjacent

nodes send insertion requests to each other. In this case, to avoid deadlock, only

insertion on the right side waits until the lock is free. The insertion to the left side

will result in a "negative" reply.

• JoinAckHandler: handles incoming JoinAck messages. The node replies to the

first such message if there are multiple ones. The handler sets its two ring pointers

to the values specified in the message and adds the jump pointers in the request into

localjump table. Another operation is to set the node's state to "active" so that main

method may proceed to run the command-line interface.

• DeleteHandler: handles incoming DeleteRequest. The handler acquires the

ring lock on the appropriate side, then updates the corresponding ring pointer and

retums an empty reply

• DiscoverRequestHandler: handles incoming DiscoverRequest. The handler

employs the routing algorithm to determine the next hop for the Hilbert index speci

fied in the request. If the destination is itself, the node executes the command string

and generates a DiscoverReply to the request source; otherwise it increases the

hop number by 1 and routes the request to next hop.

• DiscoverReplyHandler: handles incoming Dis cove r Rep l y. It prints out sender's

address, Hilbert index and the total number of hops as in the message.

4.6.5 RouteTable and Router Class

The routing table has three sections: "self", "ring", and "jump". The "self" section contains

only one route entry of itself. It is accessed with the set Self and getSelf methods.

The data type RouteEntry is defined in XML schema file "structures.xsd". It contains

two elements: node's Hilbert index and IP address.

The "ring" section contains two entries, one pointing to each immediate ring neighbor.

It is implemented using a hashtable, with the "direction" as the key. Ring pointers are

accessed with the getRingPointer method. Since multiple insertions andlor deletions

may be attempted on one side of anode, each ring pointer is protected by a lock. A thread

may only update a ring pointer if it holds the corresponding lock, and each lock may be

held by only one thread at a time. The acquireRingLock and tryRingLock methods

CHAPTER 4. IMPLEMENTATION DESCRIPTION 35

allow threads to attempt to acquire locks in both blocking and non-blocking fashions. Once

a lock is acquired, the corresponding ring pointer may be set using setRingPointer,

and then the lock released using releaseRingLock.

The ''jump'' section contains route entries pointing to nodes at arbitrary locations in the

network. It is implemented using a two-dimensional array. Row number corresponds to the

approximation level of a Hilbert number, and column number equals to the digits on that

level. The getJumpPointer method retums the jump pointer at a specific column and

row, or null if none exists there. The addJumpPointer method adds ajump pointer to

the table, automatically ca1culating the correct row and column from the pointer's Hilbert

index. The addAllJumpPointers method adds a collection of jump pointers to the

table; the getAllJumpPointers method retrieves aIl jump pointers currently in the

table.

Router class implements the RAN routing algorithm. The routing algorithm is imple

mented in methods route, jumpRoute and ringRoute. The route method is the

entry point that triggers the algorithm to be applied. The getDest and destIsSelf

methods retum the results of the algorithm. The routing process can be controlled using

the "exactJumpsAllowed" ftag. If it is set, the algorithm will not select a jump pointer that

exactly matches the target Hilbert index. This avoids the problem of the nodes that has left

the network already, which causes the pointers to be obsolete.

4.6.6 Landmark CIass

Implements the landmarking service at this node. This class is implemented as the sin

gleton pattern. Only landmark node initializes the unique instance of this class. The

unique instance can be accessed using the static method getLandmark. There are two

ini tialize methods. The ini tialize method with one parameter in "Coords" type

is used to assign the parameter as landmark coordinates. The ini tialize method with

out parameters is used to assign a random coordinates to the CUITent landmark node.

The method compLanmdark is the entry point that triggers the positioning algorithm.

The DSAlg and SEAlg methods compute the landmark position according to distributed

spring algorithm and spring equilibrium algorithm respectively. Inter-Iandmark latencies

are stored in a hashtable called "distsTable" with landmark addresses as the keys, and can

be accessed using getDelays method. The coordinates of the landmark can be retrieved

by getCoords method.

A nested private class UpdateLandmark extends the Java class TimerTask. This

CHAPTER 4. IMPLEMENTATION DESCRIPTION 36

Java class is used to create a timer task. It has a run method that defines the action to be

performed by the timer task. 1 extends the run method to realize the updating process of

landmark position. The instance of UpdateLandmark class is registered with a private

timer in the Landmark class using registerLMUpdate method, and is triggered to

execute periodically by the main method. The run method calls the positioning method

to compute landmark coordinates, generates the Hilbert index, and triggers the joining or

rejoining process if applicable. It may also sends the new position to aIl cluster neighbors

if cluster nodes are known. Figure 4.3 shows the methods in the Landmark class.

ran.lib.structures.Arrays java.util.Timer

Landmark

+ initialize(coods:Coords package ran.message
+ initialize{) LandmarkReply
+ DSAlg(landmarks:List) LandmarkRequest
+ findDiffVector(lm:double[], reaIDist:double) :double[] MessageExceptlon
+ getLandmark():Landmark

~
MessageFactory

+ getCoords():Coords MessaaeLaver
+ isCoordsReady():boolean
+ getDelays(addr:lnetAddress):long
+ timerExit()
+ getRemoteCoords(lm:lnetSocketAddress):Coords
+ compLandmark(landmark:List)
+ reglsterLMUpdate(perlod:long)
+ SEAlg(landmarks:List)

Landmark$UpdateLandmark SystemParameters

Figure 4.3: Class Landmark

4.6.7 LocationUpdate Class

Implements ordinary node positioning. It is designed as a singleton. Ordinary node initial

izes the unique instance of this class. This unique instance can be accessed using the static

method getLocationUpdate.

A nested private class UpdateLocation extends the Java class TimerTask. It

realizes the position updating process of the ordinary node. An instance of this class is reg

istered with the private timer of the LocationUpdate class using registerLocati-

CHAPTER 4. IMPLEMENTATION DESCRIPTION 37

onUpda te method and is triggered to execute periodically by the main method. The run

method first caUs the doLandmarking method to compute node's coordinates, generates

the node's Hilbert index and performs ajoining or rejoining process if applicable. If c1uster

nodes are known, the updateRadius method is caUed to find the radius of the c1uster.

The node's new position and c1uster radius are sent to aU c1uster neighbors. The final step,

it triggers the c1uster-based adjustment described below to start. The data of c1uster radius

can be accessed through setRadius and getRadius methods.

The c1uster-based adjustment is implemented in another nested private c1ass Cl u ste r

Ad jus t. It is also a timer task, and registers its instance with the private timer us

ing registerClusterAdjust method. This task is triggered to execute by the run

method in c1ass UpdateLocation. This timer task inc1udes calculating the c1uster cen

ter using the findCentroid method, and adjusting the node's position to be within the

radius circ1e around the center using the adjustSelfCoords method. If the node's po

sition do es not change after the adjustment, the adjusting process is finished by cancelling

itself with the timer. This adjusting task is configured to run in much shorter period than

the position updating task so that the adjustment can finish before next position update

starts.

ran.lib.landmark.CoordsCalculator java.util. Timer

LocationUpdate
SystemParameters

+ initializeO
+ registerLocationUpdate(period:long)
+ registerClusterAdjust(period:long)
+ getLocationUpdate:LocationUpdate
+ setRadius(radius:double)

package ran.message + getRadiusO:double
+ doLandmarkingO LandmarkReply

+ updateRadiusO LandmarkRequest

+ updateCoords(addr:lnetAddress, coords:Coords) LocUpdate

+ lookupCoords(addr:lnetAddress):Coords
L.. MessageException

+ findCentroid(self:Coords):Coords
MessageFactory

+ findRadius():double
MessageLayer

+ islnCluster(addr:lnetSocketAddress):boolean
+ timerExit()
+ adjustSelfCoords(center:Coords, seif:Coords):Coords -1

LocationUpdate$ClusterAdjust LocationUpdate$UpdateLocation

Figure 4.4: Class LocationUpdate

CHAPTER 4. IMPLEMENTATION DESCRIPTION 38

4.6.8 JoinProcess, LeaveProcess and ExitProcess

The doJoining method in the JoinProcess c1ass implements the RAN joining pro

cess. The constructor takes the node's Hilbert index as parameter. The doJoining

method first sets the self pointer in the routing table using setMyRouteEntry method.

If no entry nodes were specified, the node set the two ring pointers pointing to itself using

setupLoneNode method; otherwise it calls the sendJoinRequest method to send

joining requests until one is successfully reached or until all nodes are exhausted.

The doleaveProcess method in LeaveProcess c1ass implements the node's

leaving process. It first checks if the node's state has changed to "active", which means

the node has successfully joined the RAN. Only as ajoined node, it sends delete messages

to its two ring neighbors and waits for the replies. The doExitProcess method in

the Exi tProce s s c1ass caUs the leaving process to function, and cancels the timer for

updating position. The RAN process ends.

4.6.9 CLI Class

CU implements a simple command-line interface. Commands inc1ude:

• debug: shows the items now in the routing table.

• help: shows the available commands and its abbreviated forms.

• time: shows the current system time in milliseconds.

• ping: pings other hosts using IP addresses.

• exit: terminates the RAN program.

4.6.10 NodeStartupException and StateTracker Class

This exception c1ass represents a wide range of errors when setting up the RAN node, from

the failure to parse command line arguments to the failure in initializing node's position.

These errors are handled in the same way: print out an error message and terminate the

pro gram running.

The StateTracker c1ass defines the phases RAN node may go through as: "startup",

"waiting for join ack", "active", "leaving" and "fini shed" . The reason to have those phases

is that sorne actions may happen depending on the satisfaction of node's current state. Such

CHAPT ER 4. IMPLEMENTATION DESCRIPTION 39

as in the leaving process, the deletion of ring pointers is based on whether this no de has

joined the ring configuration. Methods are provided for setting, retrieving and waiting for

states. The state is represented by a nested public type-safe enumeration class State.

Chapter 5

System Tests and Results

5.1 Testbed Description

1 performed an experimental evaluation of the positioning schemas based on the PlanetLab

[24], which is an ideal testbed for overlay networks. It provides distributed virtualization,

the ability to allocate PlanetLab's Intemet-wide hardware resources to different applica

tions in the form of "slice." Organizations or institutes may register for creating a site on

PlanetLab. A site usually consists of 3 to 10 machines. PlanetLab presently consists of

583 machines, spanning over 25 countries. AIl those machines run a cornmon software

distribution that includes a Linux-based operating system. The advantage of using Plan

etLab is that 1 am able to do experiments with new services under real-world conditions,

and at large scale. Moreover, as a realistic network testbed, experiments are going through

complex conditions like congestion, failures, diverse link behaviors, even the potential for

a realistic client workload.

To control large collections of nodes in the wide-area, 1 use the user service package

called pssh[42] , developed by Intel Research Berkeley. It contains parallel openssh tools

pssh (parallel ssh), pscp (parallei scp), prsync (parallei rsync), pnuke (parallei nuke), and

pslurp (parallel slurp). They are Python scripts implemented in a multi-threaded fashion.

1 use these tools to configure and execute programs on more than one hundred PlanetLab

machines.

The installation of RAN distribution on PlanetLab includes the following two steps:

1. Install Java software and change the profile to include Java executables. In the orig

inal PlanetLab slice assigned for RAN experiments, there was no Java environment.

40

CHAPTER 5. SYSTEM TESTS AND RESULTS 41

So 1 wrote a Shell Script to install Java to "/usr/sharel" directory and change the

profile to inc1ude the Java path.

2. Transfer the RAN distribution to PlanetLab machines. Untar the package to the

home directory of the RAN executable. The package contains the JAR file to run

RAN service and a subdirectory called "lib" containing the required libraries. The

libraries inc1ude the following 10 JAR files:

• concurrent.jar

• java-getopt-1.0.9,jar

• jax-qname.jar

• jaxb-qname.jar

• jaxb-api.jar -

• jaxb-imp1.jar

• jaxb-lib,jar

• namespacejar

• relaxngDatatypejar

• xsdlib.jar

5.2 Node Selection

1 use a script to probe all the machines hosted in PlanetLab sites and obtain responses from

machines in 127 different sites. Most of these machines are hosted by research institutes,

mainly located in North America, Europe and Asia. 1 chose one machine from each site

and installed the RAN prototype on them. Then 1 gather the inter-host RTTs by using

a script to send out ICMP ping packets (10 RIT samples per path). The data collection

lasted for one week. 1 run the script for ten times at different time of the day. The data is

processed by always choosing the minimum sample as the real network delay [43]. 1 note

that not every node pair has a packet route. The absence of network delay is denoted as

"-}",

The landmark nodes are randomly selected. Note that PlanetLab is a shared testbed.

Furthermore, PlanetLab machines reboot periodically (unknown period) for maintenance

and upgrade purposes. In the experiments, 1 filter out those landmarks that are frequently

CHAPT ER 5. SYSTEM TESTS AND RBSULTS 42

out-of-service (i.e. machine is down or refuses connection to port 22) by practical obser

vation.

ln order to test the cluster-based adjustment schema, 1 define the diameter of a cluster

area as 30 milliseconds. By filtering the 127 nodes, 1 obtain 3 groups with 24, 14 and 11

nodes respectively. These groups are located in different regions in North America.

5.3 Experiments

1 study four issues in the experiments:

1. The accuracy of the distance estimation, convergence time, and position stability of

the RAN positioning.

2. The performance of distributed spring algorithm and spring equilibrium algorithm

for landmark positioning. Performance in the following aspects: accuracy, conver

gence time and message overhead.

3. The influence of different number of landmarks on ordinary node positioning.

4. The improvement of accuracy on distance estimation and position stability using the

cluster-based adjustment schema.

5.3.1 RAN Positioning Performance

Two metrics are used to measure the accuracy of distance prediction. The first one is

called "correlation." Correlation is the degree to which two or more quantities are linearly

associated. The correlation Pxy between two sets X and Y is defined as:

cov(X, Y) E((X - !Lx) (Y - !LY))
Pxy = = (Jx(Jy (Jx(Jy

(5.1)

where (JX, (Jy are standard deviations, and !Lx, !Ly are mean values. If the variables are

independent then the correlation is 0, while the correlation approaches 1 with increasing

linear relationship. In my experiment, X and Y are the predicted and measured distances,

respectively.

Another concept is called the relative error. It is defined as:

Ipredicted distance - measured distancel

max(measured distance, predicted distance)
(5.2)

CHAPT ER 5. SYSTEM TESTS AND RESULTS 43

The relative error value ranges from 0 to 1. A value close to zero indicates a perfect

prediction; on the other hand, a value close to 1 is considered to be a weak estimation.

1 randomly select 30 nodes as landmarks. The remaining 97 nodes act as ordinary

hosts. The Cartesian space is configured to have 2 dimensions. The landmarks are started

10 minutes prior to the starts of ordinary hosts. Landmarks update their positions once

every 3 hours. The experiment lasted for 5 landmark updating periods. Ordinary hosts

update their positions once every hour.

The convergence time is measured starting from the first probe to any landmark is sent

until the node's position has not changed by more than 5 milliseconds over 5 consecutive

computation iterations. The convergence time of ordinary node positioning is determinable

because the algorithm is centralized. In the experiments, 1 mainly study the convergence

time of landmark positioning which is undeterminable since landmarks simultaneously up

date their positions and need to agree on-their positions distributedly. Figure 5.1 shows the

average algorithm convergence time for 30 landmark during 5 landmark updating periods.

Spring equilibrium algorithm is used to compute landmark positions. Error bars indicate

400

350

Û 300
<1>
.e.
~ 250

1
E
i=
<1> 200
0
c:
<1>
~ 150
<1>
> c:
0
Ü 100

50 r 1

0
0 2 3 4 5 6

Updating Period / (per 3 hours)

Figure 5.1: Positioning Evaluation: Landmark Convergence Time

the time difference among landmarks in finishing the positioning algorithm at each update.

1 observe that in the first update, alllandmarks finish the algorithm in around 260 seconds.

There are two factors that affect the convergence time of landmarks: the probing latencies

to other landmarks and the number of iterations it repeats the probing until reaching the

CHAPTER 5. SYSTEM TESTS AND RESULTS 44

heuristic criterion. The bigger time difference at the initial update can be the result of more

iterations each landmarks made to converge than the latter updates. A significant drop of

average convergence time occurs from the second update. The average algorithm time for

the latter 4 updates maintains at less than 1 minute. This performance is much better than

the experimental results reported by the NPS which used 15landmarks (also on PlanetLab)

and obtained average convergence time as 160 seconds [29]. l notice that a jitter happens at

the third update in the value of maximum convergence time. Since the average convergence

time does not change much, the most possible reason for this jitter is network congestion

or heavy workload on one landmark.

The Figu~e 5.2 shows the correlation results of the landmarks and the whole system

of 127 nodes during 5 landmark updating periods. The correlation of landmarks stays at

0.95

0.9

0.85

c: 0.8
0

~
<ii 0.75

5
Ü 0.7

0.65

0.6

0.55

0.5
0

_ ..c - -If- - -te - -II- - .. - -x- - .. - -«- -
- -I(--lf'"

2 4 6
Time / (hour)

- .. - Landmarks
___ Whole System

8 10

Figure 5.2: Positioning Evaluation: Correlation

a very stable level, all achieving above 0.96, which indicates high association between

the predicted distances and the measured ones among them. The correlation of the whole

system fluctuates in a small range around 0.85. There is no degradation to this metric

from the beginning to the end. This is an important validation of the system's ability to

maintain position accuracy over time in a dynamic environment. The reason why land

marks achieve higher correlation is that they adjust their positions directly according to

their inter-Iandmark latencies, while the network latencies among ordinary hosts are not

used in computing their positions. The result of another accuracy metric, relative error, is

CHAPTER 5. SYSTEM TESTS AND RESULTS 45

shown in Figure 5.3. In the figure 1 compare the distance prediction accuracy at the test

0.9

0.8

~ 0.7

~
~ 0.6

0-
C]) 0.5
>
~
:; 0.4
E
8 0.3

.... <.~.'. ~::-:: .-::~-:-.-::.,...""7 ... ,-".-... -.

..... '

--Among Landmarks, alter tirs! update
- - - Among Landmarks, alter last upda!e
....... Among ail nodes, alter tirs! upda!e
. - . - . Among ail nodes, alter las! upda!e

oL-----~--~~====~====~==~ o 0.2 0.4 0.6 0.8
Relative Error

Figure 5.3: Positioning Evaluation: Relative Error

beginning and end phases, among landmarks and the whole system of 127 machines. The

50 and 90 percentile relative error for landmarks are 0.08 and 0.41 respectively after the

first update. These figures decrease to 0.05 and 0.34 at the end of the test, showing that

the level of accuracy for landmark positions has improved. For the whole system at the

test beginning time, the 50 and 90 percentile relative error are 0.13 and 0.55, respectively.

The whole system also has a better level of accuracy at the end of the test, showing relative

error 0.11 and 0.48 for the two percentiles.

1 also study the drifting of node's coordinates after each update. Big movement of

node's position cause the node's Hilbert index to change, and a rejoining process may be

needed for this node to find a new ring location. To avoid unnecessary rejoining workload,

it's very useful to learn the range of position drifting under normal fluctuation of network

latencies. 1 assume the changes of inter-host latencies among PlanetLab nodes to be nor

mal fluctuations. To analyze this issue, 1 introduce a concept called average occupancy

diameter. Occupancy diameter of anode at time t is the minimum diameter of the area in

which all of its T past coordinates are found. In the experiments, 1 use T value of 4. As

shown in Figure 5.4, the average diameter values for landmarks saturated as the test con

tinues, while the line which shows the average diameter values for the whole system can

be seen to increase like stairs. Each stage indicates a relative big movement of the nodes'

CHAPT ER 5. SYSTEM TESTS AND RESULTS 46

positions, and the time for each stage is coincident with each landmark update. Figure

5.5 shows the average occupancy diameter of the whole system with minimum and max

imum data samples. While the maximum diameters are abnormally high, the majority of

nodes should have diameters equaling to or below the averages. The variance in network

latencies could be a reason of this phenomenon. 1 use previous data of inter-Iandmark

distances to smooth latencies used to compute landmark positions. But this strategy will

make landmarks in sensitive to the topology change by always using the minimallatencies

[27, 34]. For ordinary nodes, 1 assume them to be less stable than landmarks. So 1 do

not apply the same method to their distance measurements. As a result, the positioning of

ordinary nodes are much more sensitive to network latency changes. Since only few nodes

are affected by big network variance, the dominant reason for node drifting is the change

of the landmark framework. To minimize unnecessary changes of landmark positions, one

possible solution is to define a changing threshold. If the distance from landmark's new

position to the old one is smaller than the threshold, the landmark keeps its old position.

This schema can help landmarks to stick to their positions under normal network variance,

and therefore keep the who le system from big shifting.

200~----'-----'------'r===~====~--1
- .. - Landmarks

Ô 180
Q)
rn

== 160 'Ë
:::::- 140
Qi
Q) 120
E
Ô 100

g 80
III
C.
::l 60

8 40
Q)

~ 20

~ - -te - -X'
'" '"

_____ Whole System

.-1(- -)fo _ -te- _lf- - -t(-
,. - -fC- -)to -

-20~----~----~-----L----~----~--~
o 2 4 6 8 10

Time / (hour)

Figure 5.4: Positioning Evaluation: Average Occupancy Diameter

CHAPT ER 5. SYSTEM TESTS AND RESULTS

550

Û 500
Q)
en

== 450
'Ë
::::- 400
Qi
ID 350
E
Ô 300
>.
g 250
rd
g. 200
8
o 150
Q)
0>
l!! 100

~ 50

o o
- 1""""""

2 4 6 8
Time / (hour)

10 12

Figure 5.5: Positioning Evaluation: Average Occupancy Diameter (Error Bar)

47

5.3.2 Distributed Spring Aigorithm vs. Spring Equilibrium Aigorithm

1 present in this section the experimental results of two different landmark positioning

algorithms. The experiments include tests of accuracy, convergence time, and number of

messages sent out from each landmark. 1 perform two sets of experiments:

1. Evaluation of the two algorithms with different number of landmark participants.

2. Evaluation of the two algorithms during 5 landmark updating periods

The convergence time uses the same definition as above. The number of messages sent

out from each landmark is measured during the convergence time. Correlation and relative

error are used to measure the accuracy.

1 select landmark sets of 10, 15, 20, 25, and 30 nodes respectively. In order to reduce

the impact of node selection on the results, for each number set 1 run the experiments for 5

times, and use different combination of nodes at each time.

Figure 5.6 shows the average correlation results for the different number of landmarks

with maximum and minimum data. (1 increases the x values for SEA data by 1 to avoid

overlapping of the two curves.) Both algorithms achieve very high correlation in the tests,

all of which are above 0.96. A slight drop (less than 3 percents) shows for both algo

rithms when the number of participants increases. Since Landmark adjusts its position

according to all other landmarks, more participants means less percentage of the effect for

CHAPTER 5. SYSTEM TESTS AND RESULTS

0.99

0.98

c:
.Q 0.97
êii
~ 8 0.96

0.95

0.94

I·_',I_,~~:I
0.93,k..5 ---1'-0 ---'15-----'-20---2-'-5-----==3:1:

0
====-.1

35
Number of Landmarks

Figure 5.6: DSA vs. SEA (Number of Landmarks): Correlation Comparison

48

each landmark enforcing on the final adjustment. Cornparing the two algorithms, spring

equilibrium algorithm has more stable accuracy performance than distributed spring al

gorithm. l choose the groups with correlation results closest to the average values, and

display their results of relative error as Figure 5.7. There is no significant difference be

tween the two algorithms in this performance. However, l observed that distributed spring

algorithm occasionally failed to converge after 25 landmarks. It has bigger dependence on

node selection than spring equilibrium algorithm.

Another aspect of interest is the convergence time. Figure 5.8 shows the average con

vergence time of two algorithms with different number of landrnarks. l find that, the con

vergence time for both algorithms increases quickly when more nodes participate in. Since

landmark probes aIl other landmarks before tuning to the next position in the algorithm,

more landmarks to contact cause more network delays. Moreover, large number of land

marks increase the difficulty for aIl the landmarks in the system to agree distributedly on

their positions. Comparing the two landmark positioning algorithms, the convergence time

of OSA increases more quickly than SEA. Besides, the time performance of DSA is less

stable compared with SEA.

Figure 5.9 shows the result of another metric, the average number of messages sent out

from each landmark. The message traffic for both algorithms increase as the number of

landmark adds. This result confirms my analysis in the part of convergence time that the

CHAPTER 5. SYSTEM TESTS AND RESULTS

Comparison for 10 landmarks
8 1r---:-~~~~~~~-'-1
:0
(Ij 0.8
..0
o
cl: 0.6
(1)

~ 0.4

~ 0.2
:::J
o o~--~--~----~--~--~

o 0.2 0.4 0.6 0.8
Relative Error

Comparison for 20 land marks

- * -Spring Aig
. -e- SpringEq Aig

0.2 0.4 0.6 0.8
Relative Error

Comparison for 30 landmarks
8 1r---~--~~~~~~-&-1
:0
(Ij 0.8
..0
o
cl: 0.6 ...
(])

~ 0.4

. - * -Spring Aig

-e- SpringEq Aig

E 0.2
:::J o 01""------'-------'-----'-------'------1

o 0.2 0.4 0.6
Relative Error

0.8

49

Comparison for 15 landmarks
8 1r---~--~~~'-~~-&~
:0
CIl 0.8
..0
o
cl: 0.6 .. - * -Spring Aig
(])

> 04 ..
N'

-e- SpringEq Aig .

E 0.2 ...
:::J
o O~---'----~--~----~--~

o 0.2 0.4 0.6 0.8
Relative Error

Comparison for 25 landmarks
8 1r---~--~-.~~~~~~
:0
CIl 0.8
..0
o
cl: 0.6
(])

j 0.4

E 0.2
:::J

. - * -Spring Aig
. -e- SpringEq Aig .

o Ol~----'-------'~---'----~--~

o 0.2 0.4 0.6 0.8
Relative Errer

Figure 5.7: OSA vs. SEA (Number of Landmarks): Relative Error

CHAPTER 5. SYSTEM TESTS AND RESULTS

250r---..----..----..----..-----.----

û
Q)
en

:::::- 200
Q)

E
F
~
c:
Q) 150 e>
~
c:
o
Ü
Q)

~ 100

~

10 15 20 25
Number of Landmarks

30 35

Figure 5.8: DSA vs. SEA (Number of Landmarks): Convergence Time

50

increase of messages is one of the major reasons for longer convergence time. The message

overhead of DSA increases a little bit quicker than SEA. Considering the results of both the

convergence time and message overhead, spring equilibrium algorithm is a better choice

for landmark positioning for landmark number above 20.

500,----,----,----,----,----..-----,

450

gl 400 g
en
gl 350
~

'0 300

~
5 250
Z
Q) 200
~
Q)

~ 150

100

I~~~:I
501~--~~--~----~----~--~~==~

5 10 15 20 25 30 35
Number of Landmarks

Figure 5.9: DSA vs. SEA (Number of Landmarks): Message Overhead

CHAPTER 5. SYSTEM TESTS AND RESULTS 51

Next set of experiments 1 conducted is the evaluation the two algorithms for long-time

execution, 1 ran the two algorithms on 30 landmarks for 5 updating periods. The updating

period is 3 hours for both algorithms. Note that both algorithms use the previous measured

distances to smooth the current probing latencies to other nodes. Firstly considering the

level of accuracy, Figure 5.10 shows the correlation results of the two algorithms for 5

updates. The correlation for both algorithms maintains at high values, with slight improve

ment (less than 1 percent). There is no significant difference between the two algorithms

conceming these results. Figure 5.11 shows the results of relative error after the first and

last updates. The level of accuracy for both algorithms improves at the end, and SEA

outperforms DSA to limited extend.

0.95

0.9

c: 0,85
o
~
Qi 0.8

~
() 0.75

0.7

0.65

-- -- ... - ---

0.6 '--_.1...-_-'--_--'--_-'-_----'-_---'-_---'-_---'
1 1.5 2 2S 3 3S 4

Updating Period / (per 3 hours)
4.5 5

Figure 5.10: DSA vs. SEA (Long-time Running): Correlation

The performance of convergence time and message overhead show big difference be

tween the two algorithms. Figure 5.13 and Figure 5.12 display the results ofthese metrics.

For SEA, there is a big drop in the values of convergence time and number of messages

sent out from each node starting from the second update. While for DSA, these two values

main tain around the same level for aIl the updates. The result reveals significant advantage

of SEA over DSA: less message overhead and quicker convergence during updates. Sum

marizing the performance of two landmark positioning algorithms, 1 consider SEA to be a

better choice for landmark positioning.

CHAPTER 5. SYSTEM TESTS AND RESULTS

0.9

0.8

~ 0.7
:0
ca
~ 0.6

c..
<Il 0.5
>
~
"S 0.4
E

<3 0.3

0.1

- - "'7,., .. -.

--SEA,begln
- - -SEA,end
·······OSA,begin
. _. _. OSA,end

oL-----~----~~--~~==~==~
o 0.2 0.4 0.6 0.8

Relative Error

Figure 5.11: DSA vs. SEA (Long-time Running): Relative Error

500r---'---~----r---~--~----.---~--~

450

lB 400
g>
~ 350
w ---
~ ---*--
0;250 '1(--- I- .. -DSAI
~ . --e-SEA.

'0
30°1\ ---~---

~ 200
<Il

~ 150

~
<{ 100

50

1.5 2 2.5 3 3.5 4
Updating Period / (per 3 hours)

4.5 5

Figure 5.12: DSA vs. SEA (Long-time Running): Message Overhead

52

CHAPT ER 5. SYSTEM TESTS AND RESULTS

200r---~--,---~---.---'----r---~--,

180

Û r-
; 160

--
~ 140(........
i=)1--

Q) 120
u r:::
Q) 100 e>
~
r::: 80 o

Ü
Q) 60

~
Q) 40
~

20

--_N-------lf----

OL---~--~--~--~--~~--~--~--~
1 1.5 2 2.5 3 3.5 4 4.5 5

Updating Period / (per 3 hours)

Figure 5.13: DSA vs. SEA (Long-time Running): Convergence Time

5.3.3 Ordinary Node Positioning

53

In this section, 1 mainly test the performance of ordinary node positioning under different

numbers of landmark references in the system. 1 select 5 groups of ordinary nodes, each

of which consists of around 20 nodes. 1 change the number of landmarks in the system

to be 10, 15, 20, 25, 30, and let otdinary nodes compute their coordinates based on these

different landmark frameworks. Figure 5.14 shows the average correlation results for the

5 groups of ordinary node. The level of accuracy improves as the number of landmarks in

the system increases. But the improvement is not much after 20 landmarks. Figure 5.15

shows the relative error resuIts for the group of nodes with the lowest correlation. As the

group with lowest accuracy, it shows an average 50 percentile relative error 0.15 and 90

percentile relative error 0.52.

5.3.4 Cluster-based Adjustment

The experiments in this section focus on the performance of the cluster-based adjustment

schema. 1 study the experimental results in two aspects: first, will this adjustment improve

the accuracy of the whole system? This adjustment move node's location in reference to

a small number of close nodes. 1 would like to find out if this adjustment is correct when

the whole system is concerned. Second, will this adjustment move the node dramatically?

CHAPTER 5. SYSTEM TESTS AND RESULTS

c: o
~

0.95

0.9

~ 0.85

8
0.8

0.75

v

0.7L----'------'----'-----'----.1..---...J
5 10 15 20 25

Number of Landmarks
30 35

Figure 5.14: Ordinary Node Positioning: Correlation

0.9

0.8

~ 0.7

~
~ 0.6
C-
Cl> 0.5
>
~ :; 0.4
E
c3 0.3

0.1

0.2

-- 10 landmarks per node
- - - 15 landmarks per node
....... 20 landmarks per node
. - . - . 25 landmarks per node
- 30 landmarks per node

0.4 0.6
Relative Error

0.8

Figure 5.15: Ordinary Node Positioning: Relative Error

54

CHAPTER 5. SYSTEM TESTS AND RBSULTS 55

1 run the RAN application twice on 127 nodes during 5 landmark updating periods, with

and without position adjustment, to compare the results.

Figure 5.16 shows the correlation results. 1 can see that c1uster-based adjustment does

not decrease the level of accuracy for the whole system, but does not increase much either.

The possible explanations can be that, only 40 percent of the 127 nodes have performed the

c1uster-based adjustment (as described in Section 5.2, 1 define 3 c1usters of 24, 14, and Il

nodes respectively), so the influence may not be so significant because the other 60-percent

nodes did not participate.

0.95

c: 0.8
.Q
~
Qi 0.75
0

Ü 0.7

0.65

0.6

0.55 - * - Without Cluster-based Adjustment
-e- With Cluster-based Adjustment

0.5
2 4 6 8 10

Time / (hour)

Figure 5.16: Cluster-based Adjustment: Correlation

Figure 5.17 displays the average occupancy diameter results. The system running

c1uster-based adjustment shows much lower movement of nodes' positions (average de

crease of 8 milliseconds). And also, the adjustment does not increase nodes' movement

between every two landmark updates. In a word, c1uster-based adjustment can help fix

nodes to their positions without decreasing the level of accuracy for the whole system. It

is useful for stablizing the positioning performance under normal network variance.

CHAPTER 5. SYSTEM TESTS AND RESULTS

50

Û
<Il

~ 40

I --

*
30

E
CCI
ëi
>. 20
u
c:
CCI
C.
::J
U
U
0
<Il
Cl
~
<Il
> «

-10
0

,--
1

2

_)lf---I(-..,x--.-....:-
_X" .-

- * - Without Cluster-based Adjustment
-&- With Cluster-based Adjustment

4 6 8 10
Time / (Hour)

Figure 5.17: Cluster-based Adjustment: Average Occupancy Diameter

56

Chapter 6

Conclusion

In this thesis, 1 studied the problem of designing and building a network positioning mech

anism in the RAN, which is the naming and discovery module of the Galaxy PCU. The

network positioning scheme provides the functionality of defining network positions for

the Internet machines that can be used to find proper resources through geographic local

ity.

To position the Internet hosts, 1 model the Internet delay space as a D-dimensional

Cartesian coordinate space, and a host's position is denoted using coordinates in the space.

1 use a landmark-aided positioning method to compute host's coordinates. In this method,

a basic idea is to have a small set of landmarks and first ca1culate their coordinates that

serve as a frame of reference. Other machines can derive their coordinates in reference

to this frame. 1 studied two algorithms to ca1culate landmark positions, distributed spring

algorithm and spring equilibrium algorithm. Both algorithms are decentralized and simul

taneously fUn on aIl the Jandmarks. The two algorithms apply different methodology to

generatc coordinates to attain thc goal of minimizing inter-Jandmark distance prediction

ClTOr. The coordinates of ordinary hosts arc computed in a centralized way, using a princi

pie similar to the distributed spring algorithm. In addition to these positioning mechanisms,

1 use the positions of a host's ncarby pecrs also as references to adjust the host's position.

After positioning the hosts, 1 utilize a multi-dimensional indexing method called space

filling curve to generate location-based resource names.

Hosts running the location-based RAN distribution form a peer-to-peer overlay net

work. They can discover thcir neighbors and distribute information to others automatically.

To facilitatc resource discovery in the overlay, the se hosts are connected in a ring config

uration. The two ring neighbors of a host are the two peers with closest index numbers to

57

CHAPTER 6. CONCLUSION 58

it. Except for the pointers to the ring neighbors, a host may have a few random pointers

pointing to resources with arbitrary indexes. The discovery message for a specific resource

can be routed along the ring or directly to a matching machine.

The location-based RAN prototype is implemented using Java and XML. 1 set up a

testbed with 127 machines spanning over the world on PlanetLab. The experimental re

sults reveal that RAN positioning methods can main tain the level of accuracy in predicting

network latencies during long-time system running. A significant improvement on the con

vergence time is observed for landmark positioning using spring equilibrium algorithm, in

contrast to the results of distributed spring algorithm under similar experimental condi

tions. And also, the mechanism of adjusting host's position referring to close peers helps

to stablize host's position under normal variance of network conditions.

The testing results prove the efficiency, consistency and stability of my positioning

solution. Sorne practical issues such as adaptivity and fault tolerance are not fully studied in

this thesis. Insight to these issues depends on conditioned system running or simulations.

Bibliography

[1] M. Maheswaran, B. Maniymaran, S. Asaduzzaman, and A. Mitra, "Towards a quality of ser
vice aware public computing utility," 1 st lEEE NCA Workshop on Adaptive Grid Computing,
August 2004. Cambridge, Massachusetts, USA.

[2] 1. Wikes, J. Mogul, and 1. Suermondt, "Utilification," Ilth ACM SIGOPS European Workshop,
pp. 19-22, September 2004. HP Laboratories, CA, USA.

[3] 1. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, "Dynamic virtual cluster
in a grid site manager," 12th lEEE International Symposium on High Performance Distributed
Computing, p. 90, 2003.

[4] C. Sapuntzakis and M. S. Lam, "Virtual appliances in the collective: A road to hassle-free
computing," 9th Workshop on Hot Topics in Operating Systems, 2003. Stanford University,
CA, USA.

[5] Hewlett-Packard, "Transforming data center economics," Tech. Rep. part 5982-3291EN, HP
Utility Data Center, March 2004.

[6] IBM, "Utility computing," IBM Systems Journal special issue, no. 43(1), 2004.

[7] 1. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, July 1998.

[8] 1. Foster, C. Kesselman, and S. Tuecke, "The anatomy of the grid: Enabling scalable virtual
organizations," International J. Supercomputer Applications, no. 15(3), 2001.

[9] VFrame Server Virtualization Software. http://www.topspin.comlsolutions/vframe.html.

[10] FlexFrame for mySAP Business Suite. http://www.netapp.comlftp/FlexFrame-Brochure.pdf.

[11] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems," Middleware, 2001.

[12] S. Saroiu and S. G. P. K. Gummadi, "A measurement study of peer-to-peer file sharing sys
tems," MMCN02, January 2002.

[13] C. Shirky, K. Truelove, R. Dornfest, and L. Gonze, 2001 P2P Networking Overview: The
Emergent P2P Platform of Presence, Identity, and Edge Resources. O'Reilly, 1 ed., October
2001.

59

BIBLIOGRAPHY 60

[14] B. Maniymaran and M. Maheswaran, "On the benefits of profile-based naming for large net
work computing systems," I6th International Conference on ParaUel and Distributed Com
puting and Systems (PDCS 2004), November 2004.

[15] S.Ratnasamy, P.Francis, M.Handley, RKarp, and S.Shenker, "A scalable content-addressable
network," ACM SiGCOMM'OI, Aug. 2001.

[16] LStoica, RMorris, D.Karger, F.Kaashoek, and H.Balakrishnan, "Chord: A scalable peer-to
peer lookup service for internet applications," ACM SiGCOMM'OI, Aug. 2001.

[17] F. Azzedin and M. Maheswaran, "A trust brokering system and its application to resource
management in public-resource grids," IPDPS, 2004.

[18] S. Banerjee, Z. Xu, S.-J. Lee, and C. Tang, "Service multicast for media distribution net
works," IEEE Workshop on Internet Applications (WIAPP), June 2003.

[19] A.-C. Huang and P. Steenkiste, "Network-sensitive service discovery," Proceedings of
USENIX - USITS, 2003.

[20] Z.Xu, C. Tang, S. Banerjee, and SA. Lee, "Receiver initiated justin-time tree adaptation for
rich media distribution," Proceedings of NOSSDAV, June 2003.

[21] Y.Chu, S.Rao, and H.Zhang, ''A case for end system multicast," ACM Sigmetrics, June 2000.

[22] J.Liebeherr, M.Nabas, and W.Si, "Application-layer multicast with delaunay triangulations,"
Tech. Rep. Tech. Rep, University of Virginia, Nov. 2001.

[23] K.-W. Lee, B.-J. Ko, and S. B. Calo, "Adaptive server selection for large scale interactive
online games.," Computer Networks, vol. 49, no. 1, pp. 84-102,2005.

[24] http://www.planet-lab.org.

[25] S. Saroiu, K. P. Gummadi, and S. D. Gribble, Multimedia Systems: Measuring and analyzing
the characteristics of Napster and GnuteUa hosts. Springer-Verlag,2003.

[26] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewiez, and Y. Jin, ''An architecture for a
global internet host distance estimation service," IEEE INFOCOM '99, March 1999.

[27] T. Ng and H.Zhang, "Predicting internet network distance with coordinates-based ap
proaches," IEEE Info-com02, June 2002.

[28] J. A. Nelder and R Mead, "A simplex method for function minimization," Computer Journal,
vol. 7, pp. 308-313, 1965.

[29] T. Ng and H.Zhang, "A network positioning system for the internet," USENIX Conference,
June 2004.

[30] R Cox, F. Dabek, F. Kaashoek, J. Li, and R Morris, "Practical, distributed network coordi
nates," SIGCOMM Comput. Commun. Rev., June 2004.

[31] F.Dabek, RCox, F.Kaashoek, and RMorris, "Vivaldi: A decentralized network coordinate
system," Sigcomm '04, August 2004.

BIBLIOGRAPHY 61

[32] M. Costa, M. Castro, A. Rowstron, and P. Key, "Pic: Practical internet coordinates for distance
estimation," Tech. Rep. Technical Report MSR-TR-2003-53, Microsoft Research, September
2003.

[33] L.Lehman and S.Lerman, "Pcoord: Network position estimation using peer-to-peer measure
ments," Inti. Symposium on Network Computing and Applications, August 2004.

[34] RCox and EDabek, "Leaming euclidean coordinates for internet hosts,"
http://pdos.lcs.mit.edu/ rsc/6867.pdj, December 2002.

[35] B. Maniymaran, Resource Addressable Network: An Adaptive Peer-to-Peer Discovery Sub
strate for In ternet-Scale Service Platforms. Ph.d. proposai report, McGill Unviersity, July
2005.

[36] G. Mavko, T. Mukerji, and J. Dvorkin, The rock physics handbook : tools for seismic analysis
in porous. media Cambridge; New York: Cambridge University Press, July 1998.

[37] J. L. Buchanan and P. R Turner, Numerical methods and analysis. New York: McGraw-Hill,
1992.

[38] H.Sagan, Space-filling curves. New York: Springer-Verlag, 1994.

[39] A.RButz, "Alternative aIgorithm for hilbert's space filling curve," IEEE Transactions on Com-
puters, April 1971.

[40] S.Shekhar and S.Chawla, Spatial Databases: A Tour; 1 Edition. 2002.

[41] W. Maalouf and H. Mirza, "Ran report," 2004.

[42] Intel Research Berkeley. http://www.theether.orglpssh/.

[43] A. Acharya and J.Saltz, "A study of internet round-trip delay," Tech. Rep. Technical Report
CS-TR-3736, University of Maryland,College Park, 1996.

