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ABSTRACT 

Magnetic Resonance Imaging (MRI) is extensively used in brain imaging research 

and clinic"al diagnostics. Increasingly, automated image processing algorithms are used 

for identification of tissue types within the image, such as gray matter, white matter and 

cerebro-spinal fluid. There is a wide range of algorithms, which vary in speed and 

accuracy, and it is often difficult to compare their performance in any objective and 

controlled fashion. The goal of this research was to design an automatic, generic, 

standard, extensible pipeline for objective and quantitative validation of MRI tissue 

classification algorithms and their processing pipelines. The main issues and 

requirements, for objective validation of different algorithms, are the use of common 

terminology, methodology, standard validation data sets, corresponding ground truth, 

validation metrics and statistical foundation. Based on those requirements, an automatic 

Brain Analysis Testbed (BAT) was developed to determine an objective evaluation score 

for MRI processing method. BAT supports Montreal Neurological Institute on-site or 

off-site processing of MRI data, accessible by a web interface 

(http://www.bic.mni.mcgill.ca/validationl). Validation results are stored in the BAT 

database permanently, allowing the comparison of newly developed processing methods 

with existing ones. Furthermore, BAT can be used to determine the optimal classification 

parameters, or the best classifier algorithm for a specific MRI classification purpose, 

simply by searching the BAT database. The main purposes and principles of BAT are 

demonstrated with sorne practical MRI processing examples. 

11 



· . 
RESUME 

L'Imagerie par Résonance Magnétique (IRM) est largement utilisée à des fins de 

recherche en imagerie cérébrale ou de diagnostiques cliniques. Les algorithmes 

automatisés de traitement d'images sont de plus en plus utilisés pour l'identification de 

différents types de tissus dans les images, tels que la matière grise, la matière blanche et 

le liquide cérébrospinal. Il y a une grande variété d'algorithmes qui varient dans la vitesse 

et la précision et il est souvent difficile de comparer leur performance d'une façon 

objective et contrôlée. Le but de cette recherche était de concevoir un pipeline 

automatique, générique, standard et extensible afin de permettre une validation 

quantitative d'algorithmes de classification de tissu d'IRM et leurs pipelines de 

traitement. Les conditions principales pour la validation objective d'algorithmes 

différents sont: l'usage d'une terminologie et méthodologie commune; les validations des 

données standards; la vérification des algorithmes avec des données simulées, des 

métriques de validation et des appuis statistiques. A partir de ces conditions, un « Brain 

Analysis Testbed» (BAT) a été développé pour obtenir un résultat d'évaluation objectif 

pour chacune des méthodes de traitement d'IRM. BAT permet le traitement des données 

d'IRM ou sur place à l'Institut Neurologique de Montréal ou sur l'interface en ligne 

(http://www.bic.mni.mcgill.ca/validationl). Les résultats de validation sont enregistrés 

dans la base de données de BAT, permettant d'une façon permanente la comparaison des 

méthodes récemment développées avec les méthodes déjà validées. De plus, BAT peut 

être utilisé pour déterminer les paramètres de classification optimaux, ou le meilleur 

algorithme de classificateur pour un but spécifique de classification d'IRM, et ce, 

seulement en cherchant dans la base de données de BAT. Les objectifs généraux et 

spécifiques de BAT ont été testés avec quelques exemples de traitement d'IRM. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) has revolutionized the modem practice of medicine. 

MRI is an imaging method applied in vivo and post mortem to reveal anatomical, 

diagnostic and functional information using combinations of radio waves and magnetic 

fields. The technique is applied in medicine as weIl as in biological and pharmaceutical 

research to create nondestructive, three-dimensional, internaI images of the soft tissues of 

the body, including the brain, spinal cord and muscle. There are numerous applications 

where the MRI data must be converted into quantitative measurements or brain anatomy 

using image processing algorithms. Both raw data and analysis algorithm introduce errors 

into the measurement. It is therefore essential to characterize the performance of these 

algorithms across a range of error sources and algorithm parameters. 

The objective of this thesis is to design an automatic, generic, standard, extensible 

pipeline for objective and quantitative validation of MRI classification algorithms. The 

sc ope ofthis project will be limited by the following constraint: 

• Use of only 3 discrete and fuzzy tissue classifications: gray matter, white matter, 

cerebro-spinal fluid. 

This introductory chapter revises the basic elements of MRI acquisition and analysis. 

Chapter 2 introduces the general validation theory in medical imaging and reviews 

previous work. Chapter 3 de scribes the BAT validation methodology, datasets and 

metrics. Chapter 4 de scribes the BAT design and interface. Chapter 5 presents the BAT 

results for sorne practical issues of using MRI tissue classification techniques. Conclusion 

and description of future work are presented in Chapter 6. 

1.1 Basic Principles of Magnetic Resonance Imaging 

This chapter will give a brief review of MRI principles. Other classical sources should be 

consulted for more details [Ni shimura, 1993; Sprawls, 1992; Plewes and Bishop, 1992; 

Allen, 1992]. 
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The human body primarily consists of fat and water: the major hydrogen 

containing components that make the human body approximately 63% hydrogen atoms. 

The hydrogen atom, as part of water molecule, has a single proton and hence possesses 

nuclear momentum. These charged nuclei, which are also called spins, have small 

magnetic moments and can be viewed as magnetic dipoles. Under normal conditions, 

when there is no external magnetic field present, the hydrogen atoms are oriented 

randomly with zero net magnetic moment. When an external magnetic field Bo (main 

magnetic field) is applied, two groups of orientations appear: aligned and unaligned with 

external magnetic field (Figure 1.1). The ratio between the first and second group are 

described by Boltzmann statistics, and in equilibrium and at normal temperature are equal 

to 0.999993. The excess of nuclei in the first group produces a net magnetization vector 

(NMV) M oriented along the external magnetic field. Moreover, in the presence of an 

external magnetic field, the spins precess at Larmor frequency defined as ro=yB, where y, 

the gyro-magnetic ratio, is dependent on the type of nuclei. For hydrogen, y = 63.9 

MhzlT at 1.5 Tesla external magnetic field. 

N ;; • .. $_. 
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.r "<. .... N t., ~:N 
t .. • " ~ 
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•• " 
Figure 1.1 Nuclei spins and orientations: a) single spin with magnetic moment b) random orientation 
of spins in the absence of a magnetic field c) parallel and anti-parallel orientation of spins in an 
external magnetic field and net magnetization vector M in the orientation as B. 

Resonance is referred to as the property of an atom to absorb energy only at the 

Lannor frequency. This is the basis of MR. An atom will only absorb external energy if 

that energy is delivered at precisely its resonant frequency. Excitation occurs when the 

proton absorbs the applied energy or resonates. This energy is delivered by a radio­

frequency (RF) impulse, or BI excitation magnetic field, perpendicular to the main 

magnetic field. As resonance occurs, the NMV moves out of alignment with Bo to a pre-
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specified angle. The deflection of the magnetization or total angle created after the end of 

the RF pulse is referred to as the flip angle. The stronger the RF energy applied, the 

greater the angle of deflection for the magnetization. The two most common flip angles 

in MR are 90° and 180°. A 90° pulse will flip the magnetization into the x-y plane (Mxy). 

A 180° pulse will flip the magnetization through the x-y plane and into the opposite 

direction of Bo. 

At the termination of the RF impulse, the freely precessing protons in the 

transverse plane (Mxy) give up energy (RF) at the same frequency that it was absorbed, 

in order to try to realign with Bo. As the transverse magnetization starts to decay due to 

the loss of phase coherence, the protons eventually realign with Bo. This signal produced 

by the decay (evolution) of transverse magnetization is called free induction decay (FID). 

The amplitude of the FID signal becomes smaller over time as net magnetization retums 

to equilibrium. Simultaneously, the longitudinal magnetization (Mz) begins to recover 

and retum to an equilibrium position along Bo. Measuring this signal, during relaxation, at 

each space location and reconstructing the data using Fourier transform into an image is 

the basic MRI principle. 

The relaxation properties m MR scannmg are controlled by the biological 

parameters: spin-Iattice relaxation time TI, spin-spin relaxation time T2 and proton 

densities PD. These parameters are tissue dependent, introducing the possibility to 

separate different tissue types in the human body. Figure 1.2 demonstrates excitation and 

evolution of the NMV. Figure 1.3 demonstrates an example pulse sequence and the 

formation of the longitudinal and transverse relaxations that pro duce Tl, T2 and PD 

Images. 
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Figure 1.2 Diagram of the longitudinal and transverse components of M: Excitation - a rotating 

magnetic field (RF), perpendicular to 80, with frequency mo can rota te M into the x-y plane; 

Evolution - M will th en precess freely and decay back to its equilibrium position along the z-axis. The 
rotation frame of the reference rotates around the z axis at the Larmor frequency ro to compensate 
for the spin precession and facilitate visualization and calculation. 
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Figure 1.3 Example pulse sequence and corresponding Mz recovery time Tl and Mx} recovery time 
T2. These components form Tl, T2 and Proton Density (pD or p) images. TR is the repetition time of 
the RF excitation pulse which tlips the NMV by 90°. 

Each spectrum gives different tissues contrast; for example T1-weighted image has good 

tissue contrast and the cerebro-spinal fluid (CSF) fluid in the ventricles and sulci appears 

dark. It is used for anatomical information, providing also high sensitivity for 

paramagnetic contrast media, fat, and fluids with high protein. By contrast, the T2-

weighted image has less tissue contrast and the fluid appears bright. In brief terms, T1-

weighted images give exquisite anatomical detail while T2-weighted images are 

generally sensitive to tissue abnormalities. Images are displayed on a grey scale format. 

Figure 1.4 shows T1-weighted, T2-weighted and PD MR images. 
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Figure 1.4 Transverse plane of Tl-, T2- and PD-weighted images. The Tl-weighted image has good 
tissue contrast and the CSF in the ventricles and sulci appears dark. The T2- and PD-weighted 
images have less tissue contrast and the CSF appears bright. 

1.2 Sources of MR image degradation 

An image artifact is any image attribute which is not present or not desired in the original 

imaged object. Artifacts in MRI are typically classified as to their source, such as: 

• Physiological: motion, flow ofblood or other fluids in the body, partial volume. 

• Hardware: noise, RF and Bo inhomogeneity, abnormal gradients, wrap around, 

electromagnetic spikes, receiver bandwidth limitation, sampling, averaging, vox el 

slze. 

• Inherent physics: chemical shi ft, susceptibility, metal. 

The most important sources of MR image degradation which cause the greatest effect, 

from the above artifacts, on tissue classification are image noise, radio-frequency 

inhomogeneity, and the partial volume effect: 

(i) MR image noise cornes from thermal fluctuation of electronic circuits of the 

imaging hardware. Also, thermal variation in tissue causes generation of random RF 

energy contributing to the signal, producing variation in voxels intensities. 

(ii) Radio-freguency inhomogeneity is due to imperfection of the RF coil. RF impulse 

might be not uniform across the entire field ofview of the imaging object. Also, RF non-
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uniformity might be caused by induced fields in imaged object. The result is intensity 

variation of similar tissue across field of view, so-called intensity or RF inhomogeneity. 

(iii) The partial volume effect occurs due to the finite size of voxel and therefore 

finite resolution when one voxel represents mixed types of tissues. Most popular clinical 

MRI sequences produce voxel size of 1mm x 1mm x Imm. However, transitions of tissue 

types at the microscopie level are smooth and graduaI, rather than discrete, at 1 mm voxel 

size level. 

Simulated examples of noise and RF inhomogeneity are shown in Figure 1.5. 

Figure 1.5 Simulated volumes with noise equal to 0%, 7% and RF inhomogeneity equal to 0%, 40%. 
Note that the volume with 40% RF inhomogeneity is brighter in the upper part compared to the 
lower. [BrainWeb, Cocosco et al. 1997]. 

1.3 MRI Brain Tissue Classification 

Numerous tissue classification methods and their aspects are described in the literature 

and particularly in the project on performance analysis of automatic techniques for tissue 

classification by V. Kollokian [Kollokian, 1996]. Only the essential elements will be 

restated here. 

1.3.1 Main Human Brain Tissue Types of Inferesf 

A magnetic resonance image is a three dimensional (3D) volumetrie data set, consisting 

of two dimensional (2D) slices where underlying anatomical information is represented 

by the image intensity. Each 2D slice is an array of single points or picture elements 

(pixels); in turn, each 3D volume is a set of volume pixels (voxels). The term "tissue 
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classification", in this paper, is the process of assigning each voxel in the brain image 

volume to one of the three major tissue types: gray matter (GM), white matter (WM), and 

cerebro-spinal fluid (CSF) (Figure 1.6). Although CSF is not a brain tissue, it is 

considered a constituent of the brain, and is presumed to be a tissue type in MRI. Other 

non-brain tissue types such as skin, fat, muscle, skull and other connective tissues are 

generally ignored. 

Figure 1.6 One 2D slice of a three tissue c1assified MRI volume: Gray Matter (GM), White Matter 
(WM) and Cerebro-Spinal Fluid (CSF). 

1.3.2 Common Classification Techniques 

There are large numbers of MRI classification techniques for normal and pathological 

cases. Common classification methods can be broken down in two broad subdivisions: 

supervised and unsupervised classifications. In a supervised classification, the analyst 

predicts output attributes given the values of the input attributes or training data. 

Unsupervised classification does not require any prior information and is based only on 

numerical information of the input volume. Figure 1.7 demonstrates the different type of 

classification techniques. 
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Figure 1.7 Common classification methods (Collins L. course notes on classification) 

In multi-spectral imaging systems like MRI, a certain number of features 

representing the underlying anatomy can be used to construct 2D or 3D multi­

dimensional histograms (scatter plot), where each axis represents an intensity feature_ 

These features can be supplied by the multispectral data (e_g. Tl-,T2- and PD-weighted 

images), where several different gray scale images of the same anatomy are obtained by 

different pulse sequences which yield different frequency images at each spatial location 

[Vannier et aL, 1985; Vannier et aL, 1987; Vannier et aL, 1988; Vannier et aL, 1991; 

Cline et aL, 1990; Gerig et aL, 1992; Hall et aL, 1992; Clarke et aL, 1993]_ These 

frequencies can be grouped together in D-dimensional feature vector or multi­

dimensional feature space and supplied to a classification algorithm to partition this 

feature space into distinct classes of interest [Schalkoff, 19921- Clusters in the scatter 

plot, representing the similar tissue types, can be used to mark boundaries that allow 

algorithms to classify the multi-spectral data (Figure 1_8). Ideally, the clusters on the 

scatter plot would be weIl separated, but in practice, the image artifacts cause overlapping 

and create challenges for the classifier algorithm to make the correct decision. 
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Figure 1.8 Example of c1uster plot constructed from two features of MRI. Clusters in the scatter plot, 
representing the similar tissue types, can be used to mark boundaries that allow algorithms to 
c1assify the multi-spectral data. 

An important role in supervised classification is the extraction of training data 

points. Training points can be manually chosen by an expert who picks the voxels or 

draws the regions in a brain image from an area representing a specific tissue class of 

interest. However, an expert tends to choose only unquestionable points, ignoring parts of 

the brain with uncertain regions caused by image artifacts. Therefore, a classification 

algorithm is provided only with the most certain points and there is no information on 

how to deal with ambiguous regions of the brain. Moreover, manual selection is a very 

tedious task with poor reproducibility. To overcome these limitations and use a full 

automatic classification process, the Tissue Probability Map (TPM) concept has been 

created that provides the prior knowledge on spatial tissue distribution [Evans et al., 

1994; Kamber et al., 1995]. This concept includes the stereotaxie space (Talairach space), 

developed by Talairach and Toumoux [Talairach et al., 1967; Talairach and Toumoux, 

1988] and tissue specific probability values denoting the level of certainty with which a 

particular voxel in 3D stereotaxic space belongs to one of the tissue classes, such as GM, 

WM or CSF. Such TPMs can be used to select training data points for fully automatic 

supervised classification procedures. 

1.3.3 Applications of Tissue Classification Methods 

MRI tissue classification is the basic step for many applications, such as the quantitative 

analysis of tissue volume in healthy and diseased populations [Collins et al., 2001; 
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Rapoport et al., 1999; Zijdenbos et al., 1998, 2002], cortical thickness measurements 

[Fischl and Dale, 2000; Jones et al., 2000; MacDonald et al., 2000], morphological 

analysis and voxel-based morphometry [Paus et al., 1999; Wright et al., 1995], as a tool 

for evaluation of certain diseases like Multiple Sclerosis [Kamber et al., 1992; Kamber et 

al., 1995], schizophrenia [McCarley et al., 1999], and Alzheimer's Disease [Tanabe et al., 

1997], to evaluate effect of drug therapy on lesion or tumor load [Cline et al., 1987], 

build tissue probability maps [Evans et al., 1994; Kamber et al., 1995], generate 

phantoms for MRI and Positron Emission Tomography (PET) simulation studies [Ma et 

al., 1993; K wan et al., 1996] and visualization. For aIl the se applications, it is essential 

that the tissue classification method provides accurate, reliable, robust and reproducible 

results. However, to find the optimal classification method a thorough evaluation and 

validation is required. 

1.4 Importance of Objective Validation of MRI Classification 

Aigorithms 

There are many different types of MRI tissue classification algorithms, based on different 

methodology and techniques. Over the years, many variations of these algorithms have 

been developed in order to improve or adapt the methods for particular needs. Given the 

variety of MR image classification processing methods, choosing an appropriate 

algorithm for an existing or a new problem can be quite a chaIlenging task. Therefore, a 

method of objective validation is necessary to provide the intrinsic characteristics of the 

methods, evaluate their performances and limitations. Moreover, while developing a new 

method, validation is essential in order to compare new and existing methods and 

estimate the optimal processing parameters. However, since MR imaging, like many 

other medical modalities, is an in vivo method, validation becomes even more 

chaIlenging and its complicating issues are often overlooked. For example, Prechelt 

[Prechelt, 1996] in his study of nearly 200 articles on neural network leaming algorithms, 

published in 1993 and 1994 in weIl-known joumals, observes a general lack of 

comparison with other algorithms, noting that most of them have serious experimental 
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deficiencies. His survey found that a high percentage of the new algorithms (29%) were 

not evaluated on any real problem at aIl, and that very few (8%) were compared to more 

than one set of alternative real data. One third of them did not present any quantitative 

comparison with previously .known algorithms at aIl. Furthermore, Buvat and others 

[Buvat et al., 1999] emphasized that method evaluation is not enough; validation must be 

performed according to a specified evaluation protocol. Without aIl the requirements of 

objective validation such as standardization, statistical foundation, quantitative 

evaluation, validation data set and metrics, it remains difficult to compare the 

performance of different methods or systems and even occasionally to really understand 

the results of the validation process [Jannin et al., 2002; Yoo et al., 2000; Bowyer et al., 

2001; Salzberg, 1997]. 
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2. Review of Validation Theory 

According to the definition by www.answers.com a validation is "a process of 

determining the degree to which a model is an accurate representation of the real world 

from the perspectives of the intended uses of the model". 

2.1 Validation Theory in Medical Imaging 

Significant progress in validation methodology has been made in medical image 

processing and Image Guided Therapy (IGT) [Goodman 1998; Shtem et al., 1999; Cleary 

et al., 1999; Shahidi et al., 2001; Jannin et al., 2002]. This experience can be adapted to 

develop an assessment methodology of MRI tissue classification methods and pipelines. 

Fryback and Thombury [Fryback et al., 1991] proposed a six levels hierarchical model to 

appraise the efficacy of diagnostic imaging: technical capacity, diagnostic accuracy, 

diagnostic impact, therapeutic impact, patient outcome, societal impact. This thesis will 

focus primarily on the first two validation levels; the other levels apply to IGT systems 

and are beyond the scope of an engineering approach. 

Basic validation requirements can be drawn from Quality Function Deployment 

(QFD), a management tool designed to capture the needs and priorities of the primary 

users of segmentation and registration algorithms [Y 00 et al., 2000]. These us ers 

answered a series of questions such as, "What do you like about validation software as 

exists today?" and "If cost were not an issue, what capability would you ask for and why 

would you want it?". Figure 2.1 shows the results of the QFD analysis ranked from 

highest to lower priority. 
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Category Score 
1. Software Issue 144 

2. Consensus Acceptability 123 

3. Statistical Foundation 120 

4. Ground Trulli 110 

5. Quantitative Evaluation 107 

6. Robulltness 101 

7. Extensible Databases 1 data quality 68 

8. R.egislration 65 

9. Automation 61 

10. Efficiency 57 

11. Application 43 

12. Multimodality 36 

13. Resolution 26 

Figure 2.1 Results from QFD voting process, Insight Subcommittee meeting on Validation. IYoo et 
al.,20001 

The results in Figure 2.1 might be a suitable guideline for basic components, constraints 

and minimum set of requirements for designing MRI classification validation testbed. 

Similarly, many researchers [Shtem et al., 1999; Cleary et al., 1999; Shahidi et al., 2001; 

Buvat et al., 1999; Bowyer et al. 2001; Jannin et al., 2002] specify more generic 

categories of requirements conceming validation such as: 

1) Standardization of validation methodology 

2) Design of validation data sets and definition of corresponding ground truth 

3) Design of validation metrics based on statistical foundation 

2.2 Literature Review 

Previous work on validation was concentrated on two different aspects. The first aspect 

covered only technical aspects of MRI tissue classification validation, such as the type of 

validation data and validation metrics. The second aspect described standardized 
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validation methodologies for medical Imagmg and appropriate statistical analysis for 

objective validation. 

Numerous validation techniques have been used by several researches, each 

having its own advantages and disadvantages. Most of the. validation methods, given 

below, are summarized in V. Kollokian's thesis [Kollokian, 1996] using existing papers 

describing various techniques of validation found in the MR imaging literature 

[Zijdenbos and Dawant. 1994; Clarke et al., 1995]. These works described the common 

quantitative validation methods including (i) physical phantoms, (ii) manual labeling, (iii) 

gross anatomy and histo-pathology, (iv) test sets, and (v) MRI simulation. 

(i) Similarly to synthetic images in classical image processing assessment, physical 

phantoms can be used in validation of MRI classification methods. Physical phantoms are 

imitations of human brains and represent the cylindrical structures with compartments of 

known volumes, sometimes roughly shaped with different paramagnetic substances to 

imitate various tissue relaxation parameters [Cline et al., 1991; Gerig et al., 1992; 

Jackson et al., 1993; Mitchell et al., 1994]. However, it is impossible to imitate the 

complex spatial tissue distribution with high geometry complexity, multiple class 

distribution, and fuzzy volume effects of the real brain. Furthermore, physical phantoms, 

when placed in the MRI scanner, affect the main magnetic field differently than real 

human subjects and pro duce different RF non-uniformity. The physical phantoms have 

the best ground truth availability but the worst realism. Hence, physical phantoms have 

limited complexity and produce low realism images which make them po or choices for 

validation. 

(ii) Another way to validate the results of MRI classifiers is to compare them with a 

manually labeled image, as a gold standard, produced by a human expert. However, this 

method has its own drawback. A human inter-operator variation is very high, as much as 

40% in sorne cases [Zijdenbos et al., 1994] which makes the determination of a gold 

standard difficult. This method of validation is acceptable when a sufficient number of 

expert opinions determine the ground truth with statistically significant results. 

Unfortunately, this labor-intense process is difficult to implement for large amounts of 

the various data necessary for objective validation. 
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(iii) Gross anatomy and histo-pathology is another source of ground truth for 

comparing with the results of classifier. Sorne researchers [Taxt et al., 1992] have applied 

the histo-pathology of surgically removed tumors to validate the volume produced by a 

classifier on MRI acquired prior to the excision. However, this method is limited to 

pathological tissues that are marked for excision during the surgery and cannot confirm 

the shape and location of region of interest. Being highly labor-intensive and difficult for 

post-mortem analysis such as feasibility and proper excision, this method is highly 

impractical especially for normal brain tissues. 

(iv) Test set (cross-validation, holdout method, k-fold cross-validation, leave-one-out 

validation etc.) is a traditional method of validation in image processing and pattern 

recognition. This method is based on the precondition that the data with a ground truth is 

separated in two disjoints parts: one part is a training data set and the second part is a 

testing data set. In brain imaging the training data and test data have to be provided 

manually by an expert which makes this method highly dependent on an expert, who 

tends to choose only typical intensity voxels and ignore partial volume voxels. Therefore, 

the test set is often underrepresented. 

(v) Computer simulations traditionally provide a notion of ground truth in numerous 

research studies involving computer modeling. The MRI simulator developed at the BIC 

is based on the digital phantom [Collins et al., 1998] which represents a ground truth and 

MRI simulator software [K wan et al., 1996]. MRI simulation allows the conduction of 

research on pulse sequence developing, noise and RF inhomogeneous modeling. 

Kollokian used this method in his thesis research to analyze the performance of automatic 

classification techniques [Kollokian, 1996]. Since aIl image parameters and artifacts, 

such as noise, resolution, RF inhomogeneity, modality, and lesion availability can be 

controlled by a simulator, this method is an excellent candidate for MRI validation. The 

disadvantage of this system is that sorne subtle non-linearity in MR images such as 

gradient field inhomogeneity cannot be mathematically described [Peterson et al., 1993], 

only approximated. 

AIl above methods are based on the use of a ground truth against which a 

classified image will be compared for computation of the quantitative validation metrics. 
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However, the real MRI clinical datasets, with the highest realism, do not have any ground 

truth. Therefore, such data requires that a ground truth has to be constructed by labor­

intensive, manuallabeling or automatically, by computing a probabilistic estimate of the 

true classification from a collection of classifications results and a measure of the 

performance level represented by each classification [Warfield et al., 2004]. Another way 

is to use latent class analysis, that is a statistical method that estimates the accuracy, 

sensitivity and specificity (as latent variables) with or without a ground truth [Siu and 

Zhou, 1998]. This complex model requires at the least several tests to be applied to the 

same data in order to yield enough degrees of freedom to estimate aIl the parameters. 

These methods, for data with absence of ground truth, have advantages that can be 

applied to the various real clinical data and do not require laborious manual labeling of 

the real data, as in (ii) above. However, the produced ground truth is not objective due to 

its probabilistic nature and introduces ground truth's error in the final validation result. 

Most of quantitative validation metrics, used in MR imaging classification 

methods, are based on measurements of similarity between a classification result and a 

gold standard on categorical data. They are based on a confusion matrix whose elements 

represent counts of overlap between classification results and a gold standard. This is a 

popular way to assess the agreement between two experts in psychiatry [Cohen 1960; 

Fleiss, 1975; Bartko and Carpenter, 1976]. The confusion tables can produce numerous 

quantitative metrics such as Jaccard, Tanimoto, Simple matching, Russel and Rao, Dice, 

Ku1czynski [Lourenco et al., 2004; Zhang and Srihari, 2003] and Cohen kappa [Cohen, 

1960; Bishop et al., 1975] metrics. However, only the kappa metric was recommended as 

the measure of similarity between a classification result and gold standard due to it 

chance correction nature [Fleiss, 1975; Bartko and Carpenter, 1976; Kollokian, 1996; 

Zijdenbos et al., 1994]. 

Several papers describe general validation methodology in medical imaging 

techniques [Jannin et al., 2002; Hripcsaka et al., 2002; Shtem et al., 1999; Emam 2002; 

Buvat et al., 1999; Styner et al., 2002; Udupa et al. 2002; Y 00 et al., 2000; Bowyer et al., 

2001, Cleary et al., 1999; Shahidi et al., 2001] and statistical issues of assessment 
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[Salzberg 1997; Flexer, 1996; Yoo et al., 2000; Feelders and Verkooijen, 1996; Gonen et 

al., 2001; Dietterich, 1998]. 

Very few papers specifically provide a validation methodology in medical 

imaging for comparison of classification methods. This lack emphasizes the need for a 

common methodology, an appropriate validation dataset and statistical analysis of the 

results. Attempts have been made to develop a common validation methodology for 

segmentation algorithms [Y 00 et al., 2000] and to make recommendations for appropriate 

comparison of classifiers [Salzberg 1997]. However, no research has been performed 

towards rigorous, quantitative and objective validation methodology with statistical 

foundation, specifically designed for MRI tissue classification techniques. 

Prior methods of validation of MRI classification techniques contain one or more of the 

following deficiencies: 

• Limited data set 

• Lack of statistical foundation 

• No common methodology, data sets and metrics. 

1hese limitations have to be overcome in order to create an objective, quantitative and 

rigorous validation procedure for MRI tissue classification methods with the standardized 

and widely accepted validation protocol. This work attempts to develop such a validation 

testbed, presented through the graphical user interface (GUI), based on the combination 

of validation techniques specifically developed for MRI tissue classification, general 

validation methodology for medical imaging, and comprehensive statistical tools. 

2.3 Concluding Remarks 

This chapter has reviewed the validation of the MR image classification literature. It has 

introduced the theoretical aspect and limitations of the previous work. The next chapter 

will describe the BAT validation methodology, datasets and metrics. 
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3. Methods 

The Brain Analysis Testbed (BAT) consists of three main parts: validation 

methodology, validation data set and validation metrics. While the validation 

methodology and metrics should not change over time, new validation data can be added 

to increase evaluation objectivity, and to retIect the real world in aIl practical aspects, 

such as acquisition, age, and natural anatomical, and morphological variability of the 

human brain. 

3.1 Validation Methodology 

In order to be objective and rigorous, a validation must be performed according to 

a speciaIly specified framework or methodology. In BAT, a reference-based methodology 

[West et al., 1997; Jannin 2002; Jannin 2003] is used that consists of performance 

evaluation and analysis of evaluation resuIts (Figure 3.1). First, the validation objective 

or hypothesis is defined depending upon the researcher's needs. For example, one can be 

interested to find out which classification pipeline is more robust with regard to noise 

variation or has higher accuracy. According to this validation objective, an appropriate 

validation data set is chosen and fed into the classification pipeline, represented as a 

black box. For BAT aIl analysis is carried out within the stereotaxic space used at the 

MNI (Talairach space) [Talairach et al., 1967; Talairach and Toumoux, 1988] to define a 

standard anatomicaIly-based frame of reference, where brains of different sizes and 

shapes can be directly compared after removal of size and orientation differences. The 

Gold Standard (GS) is pre-computed from ground truth, a manuaIly classified volume or 

simulation phantom, by linear registration to Talairach space and masking procedure to 

keep only the tissues of interest (see "Validation Data Set" section 3.2). The classified 

volume is linearly transformed into the same stereotaxic space with the GS (co­

registered) and relabeled according to the tissue labels of the GS for appropriate 

comparison. The resuIts of the comparison are the "primary validation metrics": kappa, 
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accuracy, sensitivity, specificity, volumetry and partial volume effect metric. Then, the se 

primary metrics are used to produce "secondary validation metrics": robustness and 

precision. This process of performance evaluation is repeated for each tested classifier or 

processing parameter. Next, the chosen primary and secondary metrics (i.e. kappa and 

robustness) of interest are statisticaUy compared to draw the validation result. 

Comparison using 
primary validation 

melries 

Computation of 
secondary 

validation melries 

Pcrfonnanc:c Evaluation Validation 

Figure 3.1. BAT design based on reference-based methodology [Jannin 2003[. The validation dataset 
and classification parameters are set according to the validation hypothesis. The raw image data are 
processed by a classification pipeline (black box). The c1assified volume and corresponding pre­
computed ground truth are transformed into the same spa ce, and their voxels are re-Iabeled using 
the same tissue type-label mapping for both volumes. Obtained go Id standard and classified volumes 
are compared to produce the primary and secondary validation metrics. The process of performance 
evaluation is repeated for each tested classification pipeline. The validation result is attained by 
statistical analysis of the validation metrics for different tested methods (i.e. classifier A has a 
statistically higher degree of similarity with a go Id standard than classifier B). 

3.1.1 StatisticaI Issues on Comparison of CIassifiers 

Statistics offers many tests for measuring the significant difference hetween the 

two treatments. These tests can he adapted for comparison of two or more c1assifiers but 
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this adaptation must be done carefully, keeping in mind that these statistical tests were 

not specifically designed for computational methods [Salzberg 1997]. 

(i) Confidence intervals estimate the range of values likely to include an estimated 

parameter value. For sample size N» 100, the sampling distribution is assumed to be 

approximately normal and confidence intervals were represented by x ± zal2â x. With a 

probability of95%, the true value X of the observed mean x will be within x±1.96â x ' 

where the standard error â x = S /.JN is estimated from the sample standard deviation S 

and the sample size N. If the sample size N is small, for example N«100, it is no longer 

justified to assume the normality of the distribution of performance measurements and t­

distribution has to be employed. Confidence intervals are stricter than the statistical test 

of comparison of two means: if two confidence intervals do not overlap, a comparable 

statistical test would always indicate a statistically significant difference. 

(ii) The binominal test measures whether the proportion of two categorical dependent 

variables significantly differs from a hypothesized proportion and requires a classified 

volume for each compared classifier. A binominal test provides information if the two 

classified 3D volumes are statistically different but it does not pro vide quantitative results 

or tell which classifier is better. Another, nearly identical form of binominal test is known 

as McNemar's test [Everitt, 1977] that, instead of using an exact computation using a 

binominal test, employs a chi-square distribution and is simpler to compute. 

(iii) The McNemar test [McNemar, 1945; Sheskin, 2000] is an extremely simple way 

to test marginal homogeneity in KxK tables but, as a binominal test, requires two fully­

classified 3D volumes representing two different treatments. It is important to notice that 

according to Dietterich [Dietterich 1998], only this test has acceptable type 1 error (0.05 

probability of incorrectly detecting a difference when no difference exists). The basic 

McNemar test can be demonstrated (described in http://ourworld.compuserve.com) by a 

2x2 table, summarizing agreement between two raters on a dichotomous trait in Table 

3.1. 
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Table 3.1 Sample dichotomous confusion matrix 

Classification 

Gold Standard + - Row Totals 

+ a b a+b 

- c d c+d 

Column Totals a+c b+d N 

Marginal homogeneity implies that row totals are equal to the corresponding column 

totals, or 

(a+b)=(a+c) 

(c+d)=(b+d) 

(3.1) 

Since a and d on both sides of the equations cancel, this implies that b = c; this is the 

basis of the McNemar test calculated as 

2 _ (b_C)2 

X - (b+c) 
(3.2) 

The value 1'2 can be viewed as a chi-squared statistic with 1 degree of freedom. 

Statistical significance is determined by evaluating the probability of 1'2 with reference 

to a table of cumulative probabilities of the chi-squared distribution or a comparable 

computer function. A significant result implies that marginal frequencies (or proportions) 

are not homogeneous. 

(iv) Multiple comparisons. If more than two means of performances are compared by 

repeated pair-wise comparison a higher probability will be created of finding one or more 

"significant" differences when in fact there are none. The simplest approach to deal with 

this multiplicity effect is to use the Bonferroni adjustment of significance level. With K 

categories, there are exist K - 1 independent tests. For an "experiment-wise" alpha of 

0.05. the Bonferroni method would make 0.05/(K - 1) the significance criterion for each 

test: 

• a 
a 

K -1 
(3.3) 
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(v) Another, very substantial problem with reporting significance results is the 

repeated tuning of the algorithms in order to make them perform optimally on at least 

sorne datasets [Salzberg 1997]. Every adjustment should be considered as a separate 

experiment; if one is testing 10 different parameters then the significance level would 

have to be 0.005 in order to obtain a comparable single experiment level of 0.05. This 

problem can be overcome by using a larger testing data set, use separate tuning and 

testing data, or use of cross validation [Salzberg 1997; Flexer 1996]. On the other hand, 

the algorithms may perform differently on different data sets. In these cases it might be 

necessary to find a set of parameters to optimize the algorithm to sorne particular data set. 

T 0 summarize the statistical issues, the minimum general requirements for the 

proper statistical classifier comparison are: 

• Confidence intervals, the McNemar test for comparison of performance. 

• Different training and test sets. 

• Independent data set in the case of parameter tuning. 

• Bonferroni adjustment to correct for multiple comparisons. 

In this study, the ranking was determined with the mean value of validation metric, and 

statistical difference between two classifiers was insured by the use of confidence 

intervals. The stricter McNemar test of significance difference can be used; however, this 

requires full 3D classified volume for each classification pipeline to be stored in BAT. 

3.2 Validation Data Set 

The validation dataset can be separated into four groups, according to availability of 

corresponding ground truth and data realism (Figure 3.2): physical phantom, numerical 

simulation, manually segmented real data, and real clinical data. Physical phantoms have 

limited complexity and produce low realism images, which make them po or choices for 

validation. Conversely, a real clinical dataset has the best realism and provides a large 

choice of different brain types; however, it does not have ground truth definition, which 

makes it inappropriate for reference-based methodology used in this research. 
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Numerically simulated and manually segmented real datasets provide satisfactory trade­

off between realism and ground truth availability, and therefore were deemed adequate 

for practical use in this validation research. 

Groun!! Truth 
Availability 

Validation Input Data Set 

Phpicll Ph~ms 

-}-

N_iclI Sinallation 

Ifanua/ly Segmented 
RelllDar.; 

-}-
ReIIII Clinielll Dar.; 

Reallsm 

Figure 3.2 Validation dataset. There is a trade off between the realism of the data and corresponding 
ground truth availability. 

The datasets that can be used in this project are described in the details below. 

3.2.1 Physical Phantoms 

The internet Brain Segmentation Repository (IBSR) 

(http://www.cma.mgh.harvard.edu/ibsr), provides MR images of the physical phantoms. 

IBSR has 3 circle shaped software phantoms (Figure 3.3) varying in signal-to-noise ratio, 

contrast-to-noise, and complexity. 

Also, the IBSR provides the brain shaped software phantoms: 1) with noise, no 

gradient; 2) with noise, small gradient; 3) with noise, larger gradient; 4) with noise, large 

gradient: 5) no noise, small gradient. Figure 3.4 shows the original scan, phantom with 

gradient, and the phantom with gradient and noise. 
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Since the physical phantoms have limited complexity and produce low realism 

Images, it makes them poor choice for validation; they are not used in the validation 

testbed. 

Figure 3.3 Geometrie software phantoms: a) varying signal-to-noise 

b) varying eontrast-to-noise e) varying shape eomplexity 

(IBSR, http://www.ema.mgh.harvard.edu/ibsrl) 

Figure 3.4 Brain shaped software phantom (Ieft to right): original scan, phan tom with gradient, and 
the phantom with gradient and noise (IBSR, http://www.ema.mgh.harvard.edu/ibsrl). 

24 



3.2.2 MRI Simulated Data 

An MR simulator [Kwan et al., 1996] developed at the McConnell Brain Imaging Centre 

allows the user to control various acquisition parameters and obtain realistic MR images 

of the brain. Ground truth is presented by a digital phantom that is the source for the MRI 

simulator. The digital phantom is a set of fuzzy volumes, in Talairach space, for the 

following tissue types: GM, WM, CSF, fat, muscle, skin, glial matter and connective 

tissue [Collins et al., 1998]. The discrete version of this digital phantom can be obtained 

by assigning each voxel to the most probable tissue class from the fuzzy volume. The 

following image parameters and artifacts were used to create MRI simulated dataset 

[Cocosco et. al. 1997]: 

• Digital Phantom: normal adult 

• MS lesions: no lesions 

• Noise (%): 0, 1,3,5, 7, 9 

• Radio Frequency (RF) inhomogeneity (%): 0, 5, 10,20,30,40 

• Resolution or slice thickness (mm): 1,3,5, 7, 9 

• Modality: Tl, T2, PD 

The gold standard for simulated dataset was computed in the following manner: 

1) GM, WM, and CSF fuzzy phantoms with Imm isotropie voxels were 

discretized into one crisp digital volume. 

2) Glial Matter was labeled as WM, since this project considers only 3-type 

tissue classification ofGM, WM, and CSF. 

3) AlI other tissue except GM, WM, and CSF were labeled as background. 

4) Cerebellum was masked out with the mask constructed by the cortical 

surface extraction procedure [MacDonald et al., 2000], since the cerebellum 

structure is a mix of GM and WM. 

The resulting gold standard for the young adult, shown in Figure 3.5, is a MINC (Medical 

Image NetCDF) format 1mm isotropie voxels size volume in Talairach space consisting 

only of four intensities: O-Background, 1-CSF, 2-GM and 3-WM. Similarly, an MRI 

simulated dataset and ground truth is available for three types of multiple sclerosis 

lesions: moderate, mild and severe. 
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Figure 3.5 lmm Ground truth for simulated dataset consisting of GM, WM and CSF. Glial matter 
labeled as white matter and ail other tissues except GM, WM and CSF as the background. The 
cerebellum was masked out because this tissue type does not belong to the three tissue classes of 
interest. 

MRI volumes of validation input dataset with a thickness other than hrun have to be re­

sampled to hnm to be compatible with the Imm ground truth. The MRI simulated data 

was used to study the impact of different parameters of MR imaging on behavior of tissue 

classification techniques. Each parameter was systematically varied while keeping aIl 

others at normal, typicallevel: noise 3%, RF inhomogeneity 20%, slice thickness lmm 

[Kollokian, 1996]. Figure 3.6 demonstrates simulated images of a normal adult with 

different levels ofnoise, RF inhomogeneity, and modality. 

Figure 3.6. Simulated lmm Tl, T2, PD images (left to right) from BrainWeb data set [Cocosco et al. 

1997]. Top: noise 0%, RF 0%; Middle (typical): noise 3%, RF 20%; Bottom: noise 9%, RF 40%. 
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The disadvantage of this data is that sorne subtle non-linearity in the MR images, 

such as gradient field inhomogeneity, are not properly modeled. Furthermore, phantoms 

idealized tissue type distribution makes the simulated images not completely realistic 

(Figure 3.7). 
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Figure 3.7 Intensity histograms of real (top) and simulated (bottom) MRI volumes. It is easy to 

recognize that the intensity distributions are different and much sharper for a simulated volume. 

Despite these disadvantages, the simulated dataset is the mam part of the 

validation dataset because it provides great flexibility with image parameters, as weIl as 

artifacts, and has the adequate realism-ground truth relationship. EventuaIly, these 

simulations provide necessary, but not sufficient conditions for declaring the 

classification method "valid", thus, real data is still needed. 
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3.2.3 Real Data with Ground Truth 

This type of validation data is real MRI data with manually c1assified volumes as ground 

truth. A multi-spectral lm~ isotropie voxel MRI scan of a 36 year old normal male was 

manually labeled by a human expert [Kabani et al., 1997; Kabani et al., 1998; Kabani and 

Evans, 2001]. Aiso T2 and PD scans were acquired with 2mm sagittal slice thickness. 

Both acquisitions were repeated a second time, with a Imm offset; the two paired scans 

were co-registered and averaged together in order to improve the image resolution. The 

gold standard for this data set is the discrete manually c1assified volume consisting of 

GM, WM and CSF tissues. 

An additional real MRI data set is available from the Internet Brain Segmentation 

Repository (lBSR), Massachusetts General Hospital: 

• Adult Male: Tl-weighted MR Image data with complete (GM/WM/CSF) expert 

segmentations 

• 5 year old Child: Tl-weighted MR Image data with complete (GM/WM/CSF) 

expert segmentations 

• 20 Normal Subjects: Tl-weighted MR Image data with GM/WM/other expert 

segmentations (3.1mm slice thickness) 

• 2 Tumor patients: various scans over time 

• 18 Scans: Tl-weighted MR Image data with expert segmentations of 43 

individual structures (1.5mm slice thickness) 

The real MRI data set presents an additional challenge for automatic classification since 

it is more realistic than the simulated data set. However, the imperfection in construction 

of the gold standard introduces a bias in the validation result. Furthermore, this data set 

can not be used for evaluation of fuzzy classification since the gold standard is a discrete 

volume. Despite aH these disadvantages, the real data has the best realism, thus additional 

real data with ground truth should be added in the future to the validation data set thus 

improving the overall objectivity of the evaluation. 
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3.2.4 Real Data without Ground Truth 

It is possible to use the real MRI data without ground truth for precision measurements. 

This dataset can be constructed by repeatedly scanning the same normal subject in a short 

period of time to minimize natural aging and pathological brain changes. When these 

MRI volumes are classified, the variation in volumes of different brain tissues is due only 

to acquisition and the classification pipeline and can be transformed to a precision metric. 

Presently, the "Colin27" dataset [Holmes, 1998] is used, consisting of 18 T1-weghted, 

1mm isotropic sc ans of the young adult, scanned on the same scanner at the MN!. 

Additional real MRI multi-scan data can be used in BAT to measure the precision in the 

future: 

• A single subject was scanned two times within a 24 hour time window each at 

five different MR sites over a period of six weeks using GE and Phillips 1.5 T 

scanners [Styner et al., 2002]. T1-weighted image - SPGR, 0.9375mm x 

0.9375mm x 1.5mm, axial slicing direction. T2-weghted, PD - FSE, 0.9375mm x 

0.9375mm x 3.0mm, axial slicing direction. 

• 20 scans of the same subject [Clark et al., 2005]. Day 1: 5 SPGRs & 5 MPRAGEs 

(interleaved), Day 2: 5 SPGRs & 5 MPRAGEs (interleaved). 

3.3 Validation Metrics 

AlI validation metrics used in this project must quantitatively measure the folIowing 

basic intrinsic properties of classified MRI volume: 

• Similarity measurements between a gold standard and classified volume (discrete 

and fuzzy) based on the spatial distribution information. 

• Volumetry measure of GM, WM, and CSF tissues in the classified volume and/or 

the gold standard. 

These primary measurements can be used to compute more complex or secondary 

validation metrics: Robustness, Precision, and Receiver Operating Characteristic (ROC) 

and Area Under ROC (AUC). 
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AlI metrics must be scaled to have a minimum value of zero and maximum value 

of one in order to be compatible and have adequate interaction and interpretation between 

each other. The weighting coefficients, to scale the volumetry, partial volume effect 

metrics, robustness and precision metrics to the middle of their dynamic range (0.5 level) 

increasing sensitivity, are chosen individuaIly for each metric by processing the typical 

simulated MR image using the default processing pipeline. Moreover, aIl validation 

metrics should have Confidence Intervals (CI) in order to demonstrate statistical 

significance in comparison. The primary metrics in this testbed have a=0.05 or 100%(1-

a)=95% confidence interval. 

3.3.1 Kappa, Accuracy, Sensitivity, Specificity Metrics 

Comparison of classified volume against the gold standard can be viewed as agreement 

measurements between two raters, employing the weIl known confusion matrix 

techniques [Cohen 1960; Fleiss, 1975; Bartko and Carpenter, 1976]. Dichotomous matrix 

(Table 3.1) considers only a one-class case (e.g. GM/not GM), where matrix indexes can 

be described as foIlows: a - number of true positive (TP) voxels, d - number of true 

negative (TN) voxels, b - number of false negative (FN) voxels, c - number of false 

positive (FP) voxels. Similarly, in case of more than one class, the dichotomous matrix 

can be extended to a polychotomous matrix. Table 3.2 shows a sample polychotomous 

confusion matrix. In this case, N number of voxels, representing the entire volume, is 

separated by T number of classes designated by CI'C2,.,Cr where each ceIl nij indicates 

the count of voxels that the gold standard labeled this voxel as the i 1h class, while the 

classifier labeled this voxel as the /" class. Agreement is represented by diagonal 

elements n
ll 

• 
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Table 3.2. Sample polychotomous confusion matrix. 

Classification 

Gold Standard C, C2 ... CT Row Totals 

C, nll n l2 ... nIT n,+ 

C2 n2, n22 ... n2T n2+ 

-

CT nT! nn ... nIT nT+ 

Column Totals n+, n+2 ... n+T n++(= N) 

Any polychotomous confusion matrix can be represented as a set of T dichotomous 

confusion matrices by collapsing the matrix on each class of interest. Table 3.3 shows a 

sample polychotomous confusion matrix collapsed on class C,. The elements of 

respective dichotomous matrix can be calculated as follows: 

b = n,+-a c = n+,-a d = N -(a+b+c) (3.4) 

Coefficients of agreement can be calculated for each individual class from the respective 

dichotomous confusion matrix as follows [Williams, 1987]: 

TP 
Sensitivity = -

S 
.. TN 

Specificlty = -
H 

TP+TN 
Accuracy = ---

S+H 
(3.5) 

where, S=TP+FN and H=FP+TN. Sensitivity is the proportion oftrue positives identified 

voxels, specificity is the proportion of true negatives identified voxels. Note that the 

accuracy can be represented as 

Accuracy = sensitivity( S ) + specificity( H ) = 
S+H S+H 

TP+TN TP+TN 
(3.6) 

TP+FN+FP+TN N 
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Table 3.3 Sample polychotomous confusion matrix collapsed on class Cl 

Classification 

Gold Standard Cl C2 ••• Cr RowTotals 

Cl a b a+b 

C2 

c d c+d 

Cr 

Column Totals a+c b+d N 

These metrics do not take account of the agreement between GS and classifier due to 

chance. Therefore, Cohen [Cohen, 1960] developed a chance-corrected percent 

agreement coefficient called kappa. This metric [Bartko, 1991] has been used by 

numerous researchers as a similarity measurement between two labeled volumes [Fleiss, 

1975; Bartko and Carpenter, 1976; Zijdenbos et al., 1994; Kollokian, 1996; Cocosco, 

2002]. Kappa can be computed from the same dichotomous confusion matrix as follows: 

p -p TnT n n . 
k = () C where P = L-" and P = L -1±......±!... 

1-~ () i=l N C ,=1 N 2 
(3.7) 

P" is a percent agreement and p,. is the proportion of agreement due to chance. 

The numerator and denominator of the overall Kappa, for several classes, can be 

ca1culated by summing the respective numerators and denominators from classes of 

interest in the confusion matrix defined as follows [Bishop et al., 1975]: 

k = Nnu - ni+n+, 

, Nn,+ - ni+n+i 
(3.8) 

where k, is the maximum likelihood estimate of the conditional agreement between 

observers for a given category. Therefore, kappa per class or several classes can be 

calculated. For example, the overall Kappa for GM (class 2) and WM (class 3) is: 

1\ 
LNn ii -n,+n+i 

K -, .... == -:;'==2:-,3 __ _ 

-" LNni+ - ni+ n+i 
;=2,3 
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The Kappa asymptotic variance that is used for CI ca1culation can be approximated 

[Bishop et al., 1975]: 

0-2[K] =_1 {O,(1-0,) + 2(1-0,)(20\02 -OJ + (1-0J(B4 - 4Bn} 
- N ~-~y 0-~r ~-~r 

(3.1 0) 

1,./ 

nit 
where ki is maximum likelihood of kappa and PI} = N' Since K is asymptotically 

/\ 

normal, we can use 0-': [K] to construct confidence intervals of kappa metric: 

(3.11 ) 

where Za/2 is the a/2-level normal deviate and equal to 1.96 for a=0.05 or 100%(1-

a)=95% confidence interval. Kappa equal to one indicates perfect agreement, and kappa 

equal to zero indicates agreement due to chance alone. In rare situations, kappa can be 

negative; this is a sign that the two observers agreed less than would be expected by 

chance. 

3.3.1.1 Kappa issues 

Kappa statistics are appropriate for testing whether agreement exceeds chance levels for 

binary and nominal ratings. However, there are sorne problems and issues regarding the 

appropriate use of kappa statistic (http://ourworld.compuserve.com): 

• Kappa is not really a chance-corrected measure of agreement due to the fact that 

the raters are not statistically independent, which is required for a proper 

ca1culation of proportion of chance agreement. 

• Kappa is an omnibus index of agreement: it does not make distinctions among 

various types and sources of disagreement. Kappa treats the voxels similarly, 

regardless of where in the image the voxels are. 

• Kappa is influenced by trait prevalence (distribution) and base-rates [Hripcsak 

and Heitjan, 2002]. As a result, kappas are sel dom comparable across studies, 

procedures, or populations. Kappa value can only be interpreted in a proper 

33 



fashion when both prevalence and overall agreements are mentioned III a 

reproducibility study report. 

Prevalence and bias indexes can be ca1culated as: 

Pr evalence = ....;.( a_-_d-,-) 
N 

B
. (b-c) 
lQS=---

N 

(3.12) 

Prevalence is the difference between probability of 'Yes' and 'No' (cells a and d in Table 

3.1). Generally, when there is a large prevalence index, kappa is lower than when the 

prevalence index is low or zero. The efiect of prevalence on kappa is greater for large 

values of kappa than for small values [Sim and Wright, 2005]. 

Bias is the difference in proportions of 'Y es' for two raters (cells band c in Table 

3.1). When there is a large bias, kappa is higher than when bias is low or absent. In 

contrast to prevalence, the effect of bias is greater when kappa is small than when it is 

large [Sim and Wright, 2005]. 

In the BAT, only the same type of kappa metric, representing the same tissue 

type, can be compared across the pipelines, processing the same dataset (e.g. valid: GM 

kappa of pipeline A is higher than GM kappa of pipeline B based on the processing of the 

simulated Imm, 20% RF, 3% noise Tl-weighted MR image; invalid: GM kappa of 

pipeline A is higher than WM kappa of pipeline A or B). 

3.3.2 Volumetry 

The volumetry metric is based on the volumetry measurements such as tissue class 

volume, number of tissue voxels (GM, WM, CSF) or GM/WM ratio. The ratio ofnumber 

of GM to WM voxels gives a relative metric, which is independent on voxel size. 

Moreover, GM/WM ratio does not depend on CSF tissues that introduce the most errors 

after skull striping and masking out of the cerebellum. 

In the case of the validation of data with a gold standard, the volumetry metric V 

can be ca1culated as follows: 
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1 
V=--­

l+d /w 
(3.13) 

where d is Euclidian distance between the volumetry measurement in gold standard 

Image gs and classified image x. The normalization volumes or weighting 

normalization coefficients w, represented by number of voxels (same as mm3 for Imm 

isotropie size voxels), are calculated from the typical simulated MRI classified volume: 

GM/WM=1.34, BCK=3001960, CSF = 371945, GM = 902912, WM = 674777. 

Unfortunately, the volumetry measure for a single MRI volume is a single value and can 

not have confidence intervals; thus, it can not be statistically compared by indicating the 

significant difference between the two volumetrie measures or metrics. 

3.3.3 Partial Volume Effect (PVE) 

Partial volume effect can be measured for classifiers that support continuous or fuzzy 

classification. PVE evaluation is possible only with simulated datasets, since they provide 

fuzzy ground truth; an other datasets usually only have discrete ground truth. The voxel 

intensity, in the fuzzy volume, represents the probability of this voxel belonging to this 

particular tissue type. PVE metric can be derived by computing average distance between 

the probabilities of fuzzy gold standard volume gs" and classified fuzzy volume x,; for 

each th voxel and each t lh tissue type: 

1 
PVEmetric, =--=-

1 dl +­
w 

(3.14) 

where dl IS an average distance between probabilities, w=0.78 is the weighting 

coefficient, T = {GM, WM, CSF}, and N number of voxels that corresponds to the 

condition d,; +- 0 . Confidence interval CI -, for distance ~ , its sample standard deviation 
" 

S, and confidence interval for PVE metric for class t can be computed: 

C'I -d+ ~ 
d, - , - Za/2 .JN: 1 

CIl'l'''"me/r;c, = CI 
1+_d_, 

(3.15) 

w 
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The overaH PVE metric and confidence intervals can be ca1culated by counting 

probability distance in aH voxels and in aH fuzzy volumes simultaneously: 

1 
PVEmetricall = ---=--

1+ dall 

w 

_ 1 T N, 

where dall = -T--L L dli 
LN//=I ,=1 
/=1 

Sali = 

CI _ 1 
PVFmetrn'all - CI 

1 + ----.!ill... 
w 

CI -d + Sali 
011 - ""-

z
al2 ~tN, 

(3.16) 

(3.17) 

Again as in the case for kappa metric, zaO, is the a/2-level normal deviate and is equal to 

1.96 for a=O.05 or lOO%(1-a)=95% confidence interval. 

3.3.4 Robustness 

Robustness is the measure or extent of the ability of a system to continue to function 

despite the existence of input degradation, represented by the simulated dataset with 

variations in noise, RF and slice thickness, varying one parameter in time and keeping 

others at default values. As a result, the system response can be plotted as the set of 

primary kappa metrics for each volume. Robustness metric is based on the slopes of the 

system response and distance of each primary metric on the system response from its 

maximum value. Figure 3.8 demonstrates the subset of system response consisting of 

three output data points. 
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Kmax = 1 

d1 Kmax-K1 

K1 --~-k~------r-----~------+-----T---

K2 
d3=Kmax- 3 

K3 ____ ~--------------~------L-----~-

V1 V2 V3 

Figure 3.8 Subset of 3 output data points demonstrating the slopes of the system response and the 
distance from the maximum value. KI, K2, K3 are the primary kappa metrics (Kmax =1) for 
respective degradation of input MRI volumes VI, V2, V3. The slope characterizes the degradation of 
system functionality, represented by changes in kappa, due to one step in the input degradation. 

Absolute value of average slope of the system response curve: 

(3.18) 

where !::..k, and !::..v, are changes in the primary metrics and the input degradation between 

two points respectively. The average distance J between the primary metrics of the 

response and their maximum value is given by the equation: 

Using (3.18) and (3.19) robustness metric can be computed: 

1 
Robustness = -----=-

1+ sj2 + d 

w 

(3.19) 

(3.20) 

where w=0.132 is the weighting normalized coefficient. Value s is decreased by halfto 

balance it with higher value d . 

To unify aH input degradation for different robustness metrics such as noise, RF 

inhomogeneity and slice thickness, the amount of degradation is normalized for aH 

degradation types. The degradation steps are represented by relative values equal to the 
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relationship of the amount of degradation to its maximum (9% for noise, 40% for RF and 

9mm for slice thickness). For example, 1mm slice thickness becomes (lmm / 9mm) = 

0.11, 3% noise become (3% / 9%) = 0.33, 20% RF becomes (20% / 40%) = 0.5. 

Normalization of input degradation provides possibilities to compare different types of 

robustness metrics such as noise, RF and thickness. Confidence interval provides 

statistical difference between two robustness metrics and can be computed by using 

maximum and minimum confidence values of corresponding primary kappa metrics. 

3.3.5 Precision 

Precision is a degree of mutual agreement among the series of individual measurements, 

often, but not necessarily, expressed by the standard deviation. By definition, in order to 

measure the precision, it is required to have a series of similar measurements N as an 

input. Then, these N MRI scans are classified in the same way producing N classification 

results represented by N volumetry measurements V. The standard deviation S, of the se 

N volumetry measurements V, reflects the precision metric: 

1 1 ~ -7 - 1 ~ 
Pr ecision = ----s ' where S = -_-L.." (~ - V)- , V = - L.." ~ 

1 + - N 1 i~l N ,~l 
(3.21 ) 

W 

The value of w=0.042 is used for GM/WM ratio, which is equal to the standard deviation 

of the GM/WM ratio for the Colin27 dataset processed by the default processing pipeline. 

Note that the precise result is not always accurate (Figure 3.9 top). Figure 3.9 

(bottom) demonstrates classification results, presented by GM/WM ratio, for the Colin27 

dataset classified by over 100 variation classification techniques used in MN!. 
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Figure 3.9 Top: A schematic i1Iustrating the distinction between precision and accuracy among a set 
of independent measurements (A) Precise but not accu rate - mean is far from ground truth but 
variability 1 is small (B) Accurate but not precise - mean is near ground truth but variability is large. 
Bottom: Illustration of variability of classification results with choice of technique, as i1Iustrated by 
consistency in GM/WM ratio across repeat scans from the same brain (Colin27 database). 
Permutations of the classifier parameter settings and process order (BAT design section) were used 
to create over 100 separate classifier pipelines. Most approaches yielded a plausible ratio of -1.4 but 
sorne yielded c1early erroneous ratios. The most precise classifier has the lowest inter-scan variance 
in GMIWM ratio regardless of accuracy. Therefore, the assessment of classifier quality based solely 
on precision could incorrectly favor an inaccurate technique. 

Most of the results in Figure 3.9 (bottom) yielded a plausible ratio of 1.4, which is close 

to 1.26, the average value for men [Allen et al., 2002], however, sorne provided clearly 

erroneous ratios. According to the precision metric, the most precise classifier has the 

lowest inter-scan variance in GM/WM ratio regardless of accuracy. Therefore, the 

assessment of classifier quality, based solely on precision, could incorrectly favor an 

inaccurate technique. If the precision metric, based on the real MRI data without ground 

truth, and sorne other metrics based on the data with ground truth (i.e. kappa) were well­

correlated for different types of classification techniques, th en it would be possible to use 

the precision as a validation metric with the notion of accuracy. This would give an 

opportunity for objective and quantitative validation using only real MRI without the 

ground truth. 
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3.3.6 Area under Receiver Operating Characteristic 

The Receiver Operator Characteristic (ROC) curve is used to assess the quality of the 

discriminatory power of a test using sensitivity and specificity data. This reflects the 

ability to distinguish between positive and negative results, and to identify the best trade­

off between sensitivity and specificity. The ROC can be obtained by consistently 

modifying one classifier parameter or arbitrary threshold. The set of the se parameters 

provides a set of sensitivities and specificities of the classification algorithms. In Figure 

3.10, the curve A, constructed by plotting sensitivity versus l-specificity for each output 

data point of system A, provides betier sensitivity and specificity than systems B or C . 

sensîtivity 

.. --41~-"""":'~+- sens. 90%, spec. 50% 

tt----r----:r---+ sens. 80%, spec. 80% 

0.5 sens. 50%, spec. 95% 

o 0.5 
1 • speciflCity 

Figure 3.10 Receiving Operator Characteristic Curve examples. Classifier A has a larger area under 
the ROC curve than classifier B, thus classifier A outperforms classifier B. No-discrimination line 
represents classification by random guessing (figure from Medicopedia.com). 

Each point on this curve A has higher values of sensitivity and specificity than curves B 

or C. The no-discrimination line represents classification by random guessing. The 

quantitative measure of this fact is represented by the area under ROC (AUC). 

Statistically speaking, the AUC of a classifier is the probability that a classifier will rank 

a randomly chosen positive instance higher than a randomly chosen negative instance. 

Since AUC is a probability, its value varies between 0 and 1, where 1 represents aIl 

positives being ranked higher than aIl negatives and 0.5 represents guessing. Larger AUC 

values indicate better classifier performance across the full range of possible thresholds. 

Even though it is possible that a classifier with high AUC can be outperformed by a 
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lower Aue classifier at sorne region of the ROe, in general the high Aue classifier is 

better. 

Two methods are commonly used to compute Aue: a non-parametric method 

based on constructing trapezoids under the curve as an approximation of area and a 

parametric method using a maximum likelihood estimator to fit a smooth curve to the 

data points. Both methods are available as computer programs and give an estimate of 

area and standard error that can be used to compare different tests or the same test in 

different patient populations [Metz, 1978]. 

AUe can also be represented as the ratio of the number of correct pairwise 

rankings vs. the number of all possible pairs [Hand, 1997]. This quantity is called the 

Wilcoxon-Mann-Whitney statistic [Wilcoxon, 1945; Mann and Whitney, 1947]: 

p-II1-1 

III(x;,y;) 
W = ;=0 pO 

pn 

J(x"y,l = {~ 
otherwise 

(3.22) 

where p is the number of positive points, n is the number of negative points, x; is the (h 

positive point and Yj is the /" negative point. Generally, Aue is increased by 

interdependence between gold standard and test data, and diminished by noise or 

classification errors. 

Unfortunately, ROe analysis requires a specific set of classification parameters 

that might be unique for each classification technique and depend on its intrinsic 

characteristics. Thus, there is no way to provide the uniform set of such parameters for all 

algorithms. This limitation makes the ROe analysis inappropriate for including in an 

objective and rigorous validation testbed. However, this method can serve as a 

visualization and optimization tool for classification performance. 

3.3.7 Ove rail Quality Metric 

Different quality metrics such as kappa, robustness and precision are produced for each 

brain type T, representing different populations, and averaged providing the "Global 

41 



Quality Metric for brain type T". In tum, these global metrics are averaged producing the 

"Overall Quality Metric" for tested classifier (Figure 3.11). The results can be stored into 

a database and the researcher can retrieve the best overall classifier. However, this 

approach has three problems and is not used presently. First of aIl, the validation dataset 

does not at the moment include aIl brain types equaIly. The second problem may arise 

from non-orthogonality of the validation metrics. The third problem is that ranking the 

classifier according to overall validation metric might be ambiguous and even 

meaningless, since one classifier can not provide the best performance for aIl data types, 

and no classifier is always better than any other [Wolpert, 1992]. 

: Brai 11 ~ ;~i+-I -+r .... :::~~~~~:~~:ç::::~~~~:::·-l-·:~~~~~:~~:~::--· .................... _ ....... . 
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................. ___ ................... ! 1 

,~J~~~!y!)~_.t-j -+--o!i QM 1, QM 2 ... QM n ! i : Global QM 3 

,.....-_____ ----,1 
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Figure 3.11 Overall Quality Metric (QM). N quality metrics (kappa, robustness, precision) are 
averaged producing Global QM for each brain type T. Similarly, these global QM are averaged 
generating Overall QM. 

3.4 Concluding Remarks 

The BAT validation methodology, datasets and metrics have been described. 

The validation methodology is based on the reference-based approach. The validation 

dataset constitutes the simulated and real datasets. The validation metrics are: kappa, 

volumetry, pve, robustness and precision. The following chapter discusses the BAT 

design and interface. 

42 



4 MRI Brain Analysis Testbed (BAT) Design 

Validation methodology, design of dataset, and metrics described in previous 

methodologies section, were implemented in the Brain Analysis Testbed (BAT) allowing 

the us ers to test the existing and new classification techniques and compare them. This 

testbed was created to use with the web interface 

(http://www.bic.mni.mcgill.ca/validation). pennitting worldwide accessibility for MNI 

classification pipelines to produce and share the results based on the common 

methodology, validation dataset, and metrics. 

Since, the validation datasets has to be processed or classified by the tested 

classification technique, two types of classification are possible depending on the location 

of this processing software: on-site processing and off-site processing. On-site processing 

is based on Montreal Neurological Institute (MN!) automated MRI processing tools 

(Figure 4.1) such as registration (REG), Non-Unifonnity Correction (NUC), training tags 

extraction and cleaning, masking and partial volume estimation, supervised (Minimum 

Distance (MIN), Bayesian (BAYES), k Nearest-Neighbor (KNN)), and unsupervised 

classifications (Hard C-means (HCM), Fuzzy C-Means (FCM)). 

!lCM 

: ISup~Vjsed 
............. ,: 1 c1asstfi et 

:::':-=:'::':.:.:~L::~····::'T:':a-=:gs:':'~:"'·, ............................. , i: i ANN 

Cle.ning :-_Masbn.~:7i KNN 
'--_. - .. -.. _-~ ;, i MIN 

Pre·Classification Stages :: 1 BAYES 1 

•·· .. ·· .. c±.······················ .. ··········, '.............. 1 

E~:Slf'::':U.9~~!~~ 

Pllst-Classificatlon Sta~s 
--- --------------------------, 

Figure 4.1. Typical MRI tissue classification pipeline configuration using at the MNI. NUC stands for 
non-uniformity correction stage. The Tissue Probability Map (TPM) is required for the automatic 
extraction of the training set used in supervised classification methods. The Partial Volume Effect 
(PVE) stage improves fuzzy tissue estimation and is optional. FCM, HCM, ANN, KNN, MIN, and 
BA YES refer to the available classification algorithms. 
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Off-site processing is based on the processing and classification software located on the 

user's site. For off-site processing, the user has to download the validation data, classify 

it and upload the classification result back to BAT. Then, in both cases, the processing 

results are validated by BAT. The validation results are stored in the BAT database, and 

can be displayed and compared with other classification techniques. 

4.1 BAT Organization and Operation 

The BAT is implemented according to the block design shown in Figure 4.2. The 

presentation layer is implemented on the web server and the logic layer is implemented 

on the BIC NFS system. 

Gill Weil Ba ... d Interface 
Choiee of validation data set. processing stages and parameters; 

BAT downl validation data for off-site 

oValidation data information 
·Processing stages and parameters 

oSe arch query to display results 
oUpload of classified data (off-site) 

oDisplay results 
oPip eline information 

IOU()wrutoaQ of validation data (off-site) 

Figure 4.2. Block design of Brain Analysis Testbed (BAT): GUI web interface, presentation layer, 
and processing logic layer. 

User web based interface allows the user to choose validation dataset of interest, 

process it according to the tested classification pipeline, compare, search and display the 

results. Information about the validation dataset and constructed processing pipeline are 
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coded in the text file by the presentation layer, and passes to the processing logic layer. 

The processing logic layer constructs the classification pipelines and selects the specified 

validation dataset according to this text file. When the classification pipeline is fini shed 

and validation metrics are computed, these metrics and MRI slice samples are passed 

back up to the presentation layer and stored in the database. 

The BAT interface consists of three parts: validation dataset, processing stages, 

and controls. First, the user has to select the validation data that interests him or to use the 

preset default dataset. Then, the user has to specify on-site processing stages, or to 

download the validation dataset for off-site processing. On-site processing stages have 

stage order number, parameter field, and preset stage parameters. The value in the "stage 

order number" field can modify the order of the stages, or remove the stage from the 

processing pipeline by setting it to zero. 

The parameter field accepts the valid stage parameter string to pass directly to this 

stage. If the parameter is not specified, then at this stage the default internaI parameters 

are used. Comma separated parameters will be treated by a pipeline in an independent 

manner splitting the pipeline to execute each parameter independently. This creates the 

tree of pipelines where each volume will be processed separately by each branch. The 

format for entering the parameters is as follows: "-parameterName parameterOption". 

For example the set of different parameters (parla, parI b without options; par2 with 

options 0.8 and 0.9) of sorne stage 2 in the form "-parIa,-parI b -par2 0.8,0.9" causes the 

splitting of the pipeline into four branches as shown in Figure 4.3. 

~ stlge1 

511g82 
-plr1a,-plr1b -par2 D.8,D.9 

Figure 4.3 Example of stage parameters format. As the result of parameter string '-parla,-parl b -
par2 0.8,0.9' (parla, pari b without options; par2 with options 0.8 and 0.9), stage 2 splits the input 
into four branches and processes the input volume separately at stage 2 with different parameters 
producing four outputs. 
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The stage parameter field should be used only by advanced users familiar with the valid 

set of parameters. 

The custom stage allows using any other stage that exists as a script in the BIC 

NFS system. The stage name with a full path should be specified in the "stage name" 

field and the parameters of the custom stage in the "parameters" field. By clicking the 

"Update" button, the information from the validation dataset and processing pipeline is 

written to a BAT command text file. For more details on each processing stage refer to 

the BIC brain imaging software toolbox: http://www.bic.mni.mcgill.calsoftware/. Figure 

4.4 shows BAT validation dataset and processing web interface . 
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Figure 4.4. Validation input dataset form (top) and default setting of typical MNI processing stages 
as MRI classification pipeline (bottom). 

Validation metrics are computed for each classified volume according to the provided 

user's tissue labels used in the classification. The final step is to specify the pipeline 

name and click on the "Create Pipeline'· button to create a pipeline ID. Then, the user can 

view pipeline characteristics and decide if the created pipeline should be deleted or run. 
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4.2 Conclusion Remarks 

This chapter has discussed the BAT design and interface. More details on the BAT 

organization, user instructions and updates can be found on the BAT website 

http://www.bic.rnni.rncgill.ca/validation/. The next chapter will present sorne practical 

issues of using MRI tissue classification techniques. 
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5 Results Representation 

When the processmg pipeline is finished, the validation metrics, processmg 

pipeline configuration, and volume slices of each processed stage for each volume are 

stored in the BAT database. Figure 5.1 demonstrates the visualization of one middle 

transverse slice of processed MRI volume for each stage. 

Non-Uniformity 
Correction (1·t pass) 

"volumet:y= 14241 

8te re otaxi c 
Registration 

Non-Uniformity 
Correction (2'1 pass) Classification Masking 

Figure 5.1. Example of progression of one Tl-weighted MRI (Colin27 dataset) through the 
processing pipeline, displayed by the "View stages" button within BAT. The resulting metric, 
GM!WM volumetry in this case, is shown as the output of the validation pipeline. In this particular 
version of the pipeline, the non-uniformity correction (nue) algorithm (N3, Sied et al., 1998) was run 
twice, once in native space and once again after the image was registered into stereotaxie spa ce. 

If processed volume has an appropriate ground truth then kappa, PVE and volumetry 

metrics are displayed in ascending order. If the dataset does not have a ground truth, then 

volumetry measure of total number of voxels of the particular tissue type or GM/WM 

ratio is shown for each volume. If the validation pipeline was created with robustness or a 

precision dataset, the secondary validation metrics obtained by this validation pipeline are 

presented as well. Each secondary metric is displayed together with the metric name and 

input volume names involved in this secondary validation metric calculation (Figure 5.2). 
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Figure 5.2. Representation of secondary validation metrics. 

Left: robustness plots obtained by a sample validation pipeline. The legend shows the metric value 
with confidence intervals in ascending order, robustness metric name (Le. 
rob_sim_noise_multimod3mm corresponds to T2/PD 3mm, Tt is always tmm) and robustness 
variation parameters (here noise) and their values (here 0%, t %,3%,5%,7%,9%). 

Right: precision plot. The blue !ine represents validation measurements for each volume in precision 
dataset and the straight black line represents their average. The legend shows the metric value with 

corresponding precision metric name and average value. 

The metric names, shown in the legend. provide information about validation dataset and 

degradation parameter in the case of a robustness test. AIso, the user can perform detailed 

validation analysis and comparison based on the validation data already stored in the 

BAT database. 

5.1 Result Search Options 

The user can perform detailed validation analysis and comparison based on the validation 

data stored in the BAT database. This is done through the search function to display the 

ordered list of chosen validation metrics. The search can be performed according to 

validation data parameters selected in the select boxes shown in Figure 5.3. 
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Figure 5.3 BAT search con trois of validation data set parameters. After specifying desired validation 
data parameters, the results from the BAT data base are displayed for the selected validation metric. 

In the modality box, the "only specified" option indicates that only results with specified 

modalities should be displayed. For example, if option "modality tl" is selected only, 

then aIl results obtained by the validation data with Tl volume will be shown, even 

though Tl volume was a part of multimodality input together with T2 and PD. If options 

"modality tl" and "only specified" are selected, then only results with Tl as a single 

modality input will be displayed. Each box has an "aIl" option to select aIl validation data 

parameters described by this box. The search with "Show aIl", displays aIl validation 

metrics stored in the BAT database. Metrics are presented in ordered bar graph form. 

Each bar in this graph has an "info" link, the pipeline ID that produced this metric, and 

rank. The info link provides information about input volume and pipeline configuration 

corresponding to this metric. The significant difference between two ranks has to be 

verified by their confidence intervals. If the confidence intervals of compared metrics do 

not overlap then the metrics are significantly different with 95% probability. 

When the search is performed specifying a pipeline ID then aIl results for this particular 

pipeline are highlighted by a blue color. 
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5.2 Practical Results Examples and Discussion 

To demonstrate the validation functionality of the BAT, let us consider sorne practical 

questions regarding the use of MRI tissue classification techniques. 

5.2.1 High Resolution Single-Modality versus High Resolution Mutli­

Modality 

It is common in MRI acquisition practice, to pro duce a high resolution T1-weighted 

image with 1mm isotropie slice thickness and low resolution T2, PD -weighted images 

with 3mm axial slice thickness. These simulated validation datasets, with typical values 

for noise of 3% and for RF of 20%, were processed by the default MNI classification 

pipeline using an artificial neural network classifier. The results represented as overall 

(GM, WM, CSF) kappa metric with confidence intervals (min, max) in the brackets: 

• Single modality (Tl 1mm only): kappa = 0.9021 ( 0.9017, 0.9024 ) 

• Multi modality (Tl 1mm, T2/PD 3mm): kappa = 0.9014 ( 0.9010, 0.9017) 

These results demonstrate that with 95% confidence it would be betler to use the single 

modality high resolution input rather than multi modality low resolution input data. 

Similarly, Figure 5.4 has been plotted by changing slice thickness of T2 and PD from 

1 mm to 9mm while keeping Tl at 1 mm. 

Penormance degradation with T2IPO- slîce thü;.kness incf8asing, T1 is 1mnt 
0.92 r--,----,.-,..-......,-----,---.----,.-'--.,.--, 

091 

0.9 

~ 0.89 
E 
it 
~083 

'" 
0.87 

oas 

o.es :-1 ---:---::----::---:---------;' -------;;------:;----::-' -----;'.1 o 589 
T21PD slice thlckness. 0 - single modaltty; 12/PO IS no1 used 

Figure 5.4. Performance degradation with T2/PD slice thickness increasing in multimodality volume 
with fixed TI at Imm. T2/PD zero thickness point corresponds to the input with TI volume only. 
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The results in Figure 5.4 may suggest the best input dataset configuration in case of 

multimodality input dataset. For example, one can conclude that a high resolution single 

Tl input is preferable over a low resolution multimodality input, even though, T2 and PD 

volumes provide extra but nevertheless low resolution information about underlying 

anatomy. 

5.2.2 Improving the Configuration of Processing Stages 

Now let us investigate the effect of the non-uniformity correction stage (N3 algorithm) 

[SIed et. al., 1998] in the MNI classification pipeline. Single modality Tl-weighted Imm 

slice thickness volume with typical MRI artifact such as 3% noise and 20% RF 

inhomogeneity was classified by the default MNI processing pipeline using the ANN 

classification algorithm with different non-uniformity correction (NUC) stage 

configuration (Table 5.1). 

Table 5.t. Different NUe stage modifications and corresponding kappa results (sorted by kappa). 
Symbol * indicates default pipeline configuration with the default NUe parameters. 

Configuration NUC parameters Kappa 

1) NUC=>REG =>NUC -iteration 150 -stop 0.0001 0.9079 (0.9076, 0.9083) 

2) NUC=>NUC=>REG -iteration 50 -stop 0.001 0.9047 (0.9044, 0.9051) 

3) NUC=>REG=>NUC* -iteration 50 -stop 0.001 0.9037 (0.9034, 0.9041) 

4)NUC => REG -iteration 50 -stop 0.001 0.9023 (0.9019,0.9026) 

The default MNI classification pipeline has two NUC stages, one before and one after the 

stereotaxic registration (REG) stage (Figure 4.1, 5.1). The kappa metric shows that two 

NUC stages in a row (Table 5.1, line 2) provide better classification results than the 

default classification pipeline (Table 5.1, line 3). This result suggests that the non­

uniformity correction method, used by NUC stage, does not have optimal default settings. 

For this input volume with 20% non-uniformity inhomogeneity, the non-uniformity 

correction method reaches its iteration limit before the algorithm has converged. In this 

instance, running the algorithm a second time before registration improves the result. It is 
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also possible to adjust the Nue stage parameters to change the stopping criteria and 

increase number of iterations by providing a new parameter string to the Nue stage in 

the BAT interface. Table 5.1 demonstrates that the highest kappa was obtained by using 

the NUe parameters "-iteration 150 -stop 0.0001". This is an illustration of configuring 

and finding the optimal tissue classification pipeline for sorne specific MRI data and 

processing issues. A thorough investigation of the parameter space would of course 

require a set of such BAT runs covering the entire range of parameter values to find the 

optimal setting. 

5.3 Concluding Remarks 

Main purposes and principles of the BAT have been demonstrated with sorne practical 

processing examples; however, the methodology presented in this research can be used to 

validate any other stages of an MRI processing pipeline, such as registration, masking, 

extraction and cleaning of the training data, partial volume estimation, and so on. The 

next chapter summarizes the work produced by this thesis, pointing the areas that could 

potentially be improved in the future. 
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6 Conclusion and Future Work 

6.1 Conclusion 

An automatic, genenc, standard, extensible pipeline for objective and quantitative 

validation of MRI classification algorithms was designed with standardized validation 

protocols and associated guidelines. Validation requirements and statistical foundation 

for objective validation were defined. 

Primary validation metrics and secondary validation metrics were designed for 

different degrees of evaluation. Primary validation metrics are based on the direct 

volumetry and similarity measurements between classified volume and ground truth. 

Secondary validation metrics are based on the primary validation metrics to determine a 

higher degree of evaluation. 

Validation datasets were characterized according to the ground truth availability 

and data realism. Appropriate simulated and real datasets and their ground truths were 

selected. BAT design aUows adding more validation data to reflect the real MRI data in 

aU practical appearances and to test the MRI processing techniques in aU aspects of 

evaluation. 

Validation methodology, design of dataset and metrics were implemented in the 

BAT aUowing the researchers to test the existing and new tissue classification techniques 

and to compare them. This testbed was created to be used with the web interface 

providing worldwide accessibility to produce and share the results based on the common 

methodology, validation dataset and metrics. An MRI classification was considered in the 

BAT as a black box, accepting two types of processing: on-site and off-site processing. 

On-site processing is based on Montreal Neurological Institute (MNI) automated MRI 

processing tools. The off-site processing is based on the user' s processing and 

classification techniques. The tissue classification results from the black box are validated 

by the BAT. The validation results, stored in the BAT database, can be displayed and 

compared with other classification techniques. 
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Main purposes and principles of the BAT have been demonstrated with sorne 

practical processing examples; however, the methodology presented in this research can 

be used to validate any other stages of an MRI processing pipeline, such as registration, 

masking, extraction and cleaning of the training data, partial volume estimation, and so 

on. 

6.2 Future Work 

Several directions which may be taken to improve the existing methodology are the 

following: 

• Introduce new validation data sets. A pediatrie data set is not present in this time. 

It is difficult to obtain corresponding ground truth for a pediatrie data set due to 

its high irregularity and variability of gray and white matter. The choice of old 

adult data is also limited by the difficulty of constructing the appropriate ground 

truth. Real, high resolution MRI data with ground truth obtained by post-mortem 

analysis will provide the best trade-off between realism and ground truth 

availability. An example of this real data might be the ongoing project at the 

luelich Institute of Medicine Research Center. GeneraIly, the validation data set 

should be as large as possible to reflect aIl aspects of real world MRI data and to 

provide a better degree of evaluation. 

• Increase realism of MRI simulator. Simulated data is the best source for testing 

the processing methods on the data with various artifacts. However, the realism of 

the MRI simulator should be improved. 

• Define statistical foundation for volumetry validation metrics. As described, the 

nature of volumetry metrics does not permit the derivation of their confidence 

intervals. This prevents the volumetry and precision metrics from being 

statistically eligible. 
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• Investigate the possibility of using real MRI data sets in objective validation 

without ground truth. Latent class analysis to estimate the accuracy, sensitivity 

and specificity as latent variables and an expectation-maximization algorithm for 

simultaneous truth and performance level estimation can be envisioned. 

• Investigate and improve validation methodology. Randomization testing permits 

the determination and removal of optimistic statistical and methodology bias. 

New validation methods might reveal the hidden issues in processing pipelines 

and evaluate intrinsic eITors associated with each processing step. 

• Introduce region of interest masks to evaluate processing methods on one specific 

region of the brain only. 

• Improve web interface to make it user friendly and facilitate the validation and 

comparison tasks. Continuing testing and fixing bags will improve BAT 

reliability. 
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Appendix A 

Glossary and Abbreviations 

acquisition The process of measuring a signal and storing it into an image file. 

ANN Artificial Neural Network. 

cerebellum A large structure at the lower back of the human brain. It has fine 

structures of intertwined gray and white matter. 

cerebro-spinal fluid (CSF) Substance found surrounding the brain and within 

the ventricular system of the brain and spinal cord. 

BAT Brain Analysis Testbed. 

BIC McConnell Brain Imaging Center (MNI, McGill). 

classification The process of assigning meaningfullabels to different brain tissue types. 

feature space A coordinate system, typically used by a classifier, where the 

coordinate along each axis is given by the value of a feature (a measurement). 

FCM Fuzzy C-means. 

ground truth A model of excellence; the reference assumed to be the "absolute true" 

against which a segmentation or classification result is evaluated. 

gold standard Computed from the ground truth volume which is used for comparison 

with classified volume. 

GM Gray matter: a brain tissue type that is predominantly made of neuronal dendrites. 
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intensity non-uniformity (INU) An artifact inherent to the MR imaging process. 

It is usually observed as a smooth, low spatial frequency variation in the 

image intensity. 

KNN k Nearest-Neighbor. 

kappa A chance-corrected similarity measure between two c1assified images. 

magnetic resonance imaging (MRI) Non-invasive medical imaging technique 

that can produce high-resolution images with good contrast of the different 

biological soft tissue types. 

MNI Montreal Neurological Institute (McGill University). 

multi-spectral The condition denoting the nature of MR data, where underlying 

anatomy of the imaged organ is represented by multi-contrast images ofvarying 

characteristics. 

Nue non-uniformity correction. 

partial volume effect (PVE) Whenever signaIs from more than one tissue type are 

mixed in the same voxel. 

phantom A digital brain model that is used both as an input to an MRI simulator, 

and also as a gold standard 

proton density (PD) image The image acquired mostly due to proton density in the 

scanned region. 
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proeessing pipeline A pipeline that produce classified image from the native, original 

MRI image. 

pipeline A set of processing stages for automatic processing of MRI images. 

registration Linear spatial registration is the procedure that determines 

a linear (affine) transformation between two brain-based coordinate 

systems. If the registration is performed between an individual brain image 

and a standard atlas (such as Talairach's), the resulting transformation can 

be used to resample the individual image to the stereotaxie space defined by 

the atlas. 

resampling The technique of changing the sampling grid of a digital image. 

RF Radio-frequency pulse. 

segmentation See classification. 

spins The momentum of atomic nuclei with an odd number of protons and neutrons. 

stereotaxie spaee A standard frame of reference (coordinate system) defined 

by anatomicallandmarks of the human brain. It allows the removal of affine 

(translation, rotation, scale) differences between individual brains. The particular 

stereotaxie space used at the MNI (and in this work) is the one defined 

by the Talairach atlas. 

supervised classification A type of classifier, where the algorithm is trained on 

specimen ofknown classes, to later classify specimen ofunknown classes. 

Tl-weighted image (Tl) An MR image in which the contrast between tissues is 

largely due to the longitudinal relaxation time Tl. 
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T2-weighted image (T2) An MR image in which the contrast between tissues is 

largely due to transverse relaxation time T2. 

tissue classification The procedure of labeling each image voxel with a tissue type GM, 

WM or CSF. Also called as tissue segmentation. 

tissue probability map (TPM) A stereotaxie space TPM of a given tissue is 

a spatial probability distribution representing a certain subject population. 

training tags The set of correctly labeled samples (tags) used to train a supervised 

classifier. 

unsupervised classifier A classifier that does not required the training tags. 

voxel A 3-dimensional (3D) digital image consisted oftwo-dimentional 2D 

pixel element, i.e. an image element; A 3D pixel. 

validation The process of verifying if a particular classifier performed acceptable. 

WM White matter: a type ofbrain tissue that is predominantly made of neuronal axons. 
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