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Abstract

The Gaia space observatory has shown unprecedented ability to perform astrometric and

photometric measurements of the luminous objects in the Milky Way. Benefiting from the

amount and precision of measurements and the number of accurately measured features

present in the Gaia dataset, looking for anomalies in the dataset may lead to the discovery of

unexplored physics. Recent rapid development in deep learning allows the capture of complex

patterns across multiple applications. In particular, generative modelling has proven to be a

powerful method to detect high-order anomalies that the human eye cannot detect. In this

thesis, we employ a state-of-the-art diffusion model, Diffusion Time Estimation, on Gaia’s

second data release to look for point anomalies. Then, we will explore the nature of the

anomalies and look at why they are classified as anomalies.
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Abrégé

Le télescope spatial Gaia a démontré une capacité sans précédent à effectuer des mesures

astrométriques et photométriques des objets lumineux dans la Voie lactée. Grâce à la

quantité et à la précision de leur mesure, ainsi que du nombre de caractéristiques

précisément mesurées dans l’ensemble de données Gaia, la détection d’anomalies dans cette

population d’objects pourrait conduire à la découverte de nouvelle physique. Le

développement rapide de l’apprentissage profond au cours des dernières année permet la

capture de correlations complexes à travers de multiples applications. En particulier, les

modèles génératifs se sont avérées être une méthode puissante pour détecter des anomalies

de haut niveau qui ne peuvent pas être détectées par l’œil humain. Dans ce mémoire, nous

utilisons un modèle de diffusion à la pointe de la technologie, l’Estimation du Temps de

Diffusion, sur la deuxième publication des données de Gaia pour rechercher des anomalies

ponctuelles dans les données. Ensuite, nous explorerons la nature des anomalies et

examinerons pourquoi elles sont classées comme telles.
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Chapter 1

Introduction

1.1 Thesis objective

Astrometry is a branch of science that measures the positions and kinematics of celestial

objects (1). It is essential to understanding the Milky Way (MW) since we can know the

structure and evolution of the MW from the measurement of the 6D phase space of the

luminous objects.

Gaia is a space observatory designed to measure the full 6D astrometry (3D spatial and 3D

velocity) of the objects in the MW (2; 3). The volume of data generated by this observatory is

unprecedented due to its ability to measure down to a magnitude of 20. Besides, compared

to its predecessors, the improvement in accuracy of Gaia is substantial: it is expected to

measure more than 1 billion objects with a precision of 10 µas, mapping 1% of stars in the
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MW. With its ability, the measurements of Gaia can improve our current understanding of

the MW. In particular, since Gaia can measure a significant amount of objects in the MW,

this sampling provides an opportunity to find any object that deviates from the majority,

known as point anomaly detection.

The detection of point anomaly is usually performed by machine learning (ML) algorithms

such as K-nearest neighbours and clustering (4). However, with advances in deep learning

(DL) in recent years, we can now make use of DL algorithms to detect complex anomalies.

With more layers than traditional ML algorithms, DL algorithms possess a much larger

number of parameters, from which they can learn expressive representations from complex

data (5; 6). In particular, diffusion models (7) add noise to the input data, then learn to

generate samples that are as close to the original data as possible. Anomalies can be found

if the generated sample and original data have a large distance in the input space.

In this thesis, we employ a state-of-the-art diffusion model called diffusion time estimation

(DTE) (8) to detect point anomalies in Gaia data. DTE adds noise to the data at each

time step, but instead of learning to generate data and calculate the distance between the

generated and input sample, we treat the anomalies as noise, so the model can simply learn

the diffusion time step, which we can think of as learning the noisiness of each data. The

authors show that DTE maintains high accuracy in identifying anomalies compared to other

models while achieving high efficiency in terms of training time. From the result of the

model, we analyse why the model considers the anomalies as anomalous.
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1.2 Thesis organization

The thesis is organised as follows. In Chapter 2, we provide a review on Gaia and its dataset.

In particular, we give an overview of astrometry, the improvement of Gaia and its objective,

as well as describe the dataset and how we preprocess it. Chapter 3 reviews the methodology

of the thesis. We review the current effort to detect anomalies in the Gaia dataset, motivate

the application of the diffusion model to the Gaia dataset, and then test the algorithm

by planting artificial anomalies. In Chapter 4, we present the results. We describe how we

classify anomalies from the result of the model, and then analyse the nature of the anomalies.

Finally, we conclude in Chapter 5.
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Chapter 2

Gaia and dataset

2.1 Gaia

Gaia is a space observatory of the European Space Agency, surveying the MW since its launch

in 2013 (3). It is designed to make unprecedentedly accurate astrometric measurements of

point-like luminous objects down to a magnitude of 20, mostly stars in the MW. However, in

addition to astrometry, high-quality multicolour photometry and spectroscopy measurements

can also be obtained. The primary objective of the mission is to understand the evolution

and structure of the MW.
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2.1.1 A brief review of astrometry

Astrometry involves the accurate measurement of the positions and motions of celestial

objects. The position of a large subset of celestial bodies can provide insight into the content

and distribution of matter in the wider physical system. Meanwhile, analyzing the kinematics

gives information about the gravitational field and the orbits of the bodies. These combine

to provide a model-independent way to understand the structure and evolution of the wider

system that these celestial bodies belong to.

Observing and recording the positions of astrophysical objects is accessible even to ancient

people, thus astrometry naturally has a long history (1). Ancient Greek Hipparchus compiled

the first star catalogue with 1000 stars at 1-degree accuracy in the second century BCE.

Ever since then, astrometric accuracy roughly follows a logarithmic improvement (1) until

the twentieth century, when ground-based astrometry hit its limit (1).

The Earth’s turbulent atmosphere produces flickering effects, which make the

measurements error-prone. Besides, under Earth’s gravity, the telescope’s weight will cause

distortion, introducing additional noise. In addition, the ground-based telescope can only

observe a part of the sky at a time. The proposal of space-based astrometric measurement

in the 1960s solved all these problems by bringing the telescope above the atmosphere and

beyond Earth’s gravity.

Before Gaia, Hipparcos was the first and only space astrometry experiment, operating

between 1989 and 1993. It produced two catalogues of stars that differ in accuracy. The
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Hipparcos Catalogue (9) is higher in astrometric accuracy, it contains positions, proper

motions and photometry in two bands for 120,000 stars brighter than magnitude 9 at an

accuracy of O(1) milliarcsec (mas). The Tycho Catalogue (10; 11) is less precise and hence it

allows more stars to be included in the catalogue. The Tycho Catalogue contains positions,

proper motions and photometric data in two bands for 2.5 million stars down to magnitude

11.5 at an accuracy of O(10) mas.

2.1.2 Gaia

As the successor to the Hipparcos mission, Gaia shows substantial improvements in terms of

both the number of measurements and their accuracy. Gaia is expected to measure 1 billion

objects (∼ 1% of the stars in the MW) down to magnitude 20 at a precision of O(10) µas

throughout the MW (3). Two identical telescopes separated by 106.5◦ measure light within

a wavelength of 330 - 1050 nm (G band; G stands for Gaia).

RA and Dec can be measured simply by recording the position of the point source in

the sky. However, the measurement of parallax and proper motion is more complicated,

since a single measurement is a combined effect of parallax and proper motion. Parallax

is the change of apparent position of nearby stars compared to far away background stars

that appear motionless, due to Earth’s orbit around the Sun. We can measure the distance

of nearby stars by simple trigonometry. On the other hand, proper motion is due to the

motion of the stars, also compared against background stars. Since parallax motion repeats
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annually, while proper motion is a continuous linear effect, years of repeated observation

allow for resolving their degeneracy.

Besides matter distribution and kinematics, the photometry of Gaia also plays a

significant role in advancing our understanding of the MW by providing measurements in

different colour bands. In addition to measuring light flux in the G band, Gaia is also

equipped with low-resolution spectrophotometers in the BP-band (blue photometer, 330 -

680 nm) and RP-band (red photometer, 640 - 1050 nm).

Lastly, Gaia is also equipped with a medium-resolution radial-velocity spectrometer

(RVS) in the wavelength of 845 - 872 nm, which, as the name suggests, measures the radial

velocity of the objects by their spectrum. Due to the Doppler effect, the radial motion of

objects will lead to a blueshift or redshift of their spectrum. By comparing with known

spectral lines, radial velocity can be obtained. This is the first time a space astrometry

experiment is able to measure radial velocity.

From Gaia’s astrometry, photometry, and spectrometry, the Gaia astrophysical

parameters inference system (Apsis) (12) can then infer astrophysical parameters essential

to characterize celestial objects, including effective temperature Teff , extinction AG, colour

excess E(GBP − GRP ), radius, luminosity and metallicity. Apsis uses supervised machine

learning to infer the parameters, meaning that a machine learning model is trained on a set

of data where the parameters are known, and then applied to infer the parameters of the

actual observation data.
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2.1.3 Objectives of Gaia

Despite the long history of astrometry, a large part of our Galaxy remains unknown to us.

In the following, we summarize the most important scientific case of Gaia (2; 3), followed by

the major discoveries of Gaia since its launch.

1. Structure, dynamics and evolution of the Galaxy: Gaia is specifically designed

to study these aspects of our Galaxy. By studying the 6D phase space of the stars,

meaning the 3-dimension position and 3-dimension velocity, we can study the dynamics

and structure of the MW. The observation of the 3D position of the brightest light

sources can give rise to the distribution of luminous objects in the Galaxy. Moreover,

by tracking the motions of stars, we can model the gravitational potential and thus

access the matter distribution of the Galaxy. This is important since most of the

matter in the Galaxy is not luminous. The matter content in our Galaxy is made

up of mostly dark matter and a small amount of luminous baryonic matter. Since

dark matter cannot be directly probed by telescopes, studying luminous objects in the

Galaxy is the only way we can understand the structure of the Galaxy.

Historically, one of the evidence for the discovery of dark matter is the galaxy

rotation curve (13), which is obtained by combining the position and kinematics of

stars, plotting the velocity against the distance to the GC. By postulating the

existence of dark matter, the discrepancy between the observation and theoretical

rotation curve with just the luminous objects is explained. With the ability to
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measure the 6D phase space of dimmer stars, Gaia data can be used to perform more

detailed analyses for the luminous and dark matter distribution of the MW.

Also, with the kinematics and distribution of the luminous matter and dark matter, we

can understand more about the formation and evolution of our Galaxy. The paradigm

of galaxy formation is the hierarchical formation model (14), where the galaxies are

formed through mergers of smaller galaxies. Under this formation process, different

stages are likely to leave imprints in the structure of MW, which we can observe with

the large number of measurements by Gaia. For example, stellar streams are thin

ribbon-like arcs of stars orbiting the galactic centre, caused by the gravitational tidal

disruption of dwarf galaxies and globular clusters by the host (15; 16). As a result, the

discovery of stellar streams using Gaia data can provide information on the merging

history of the MW. Moreover, the density fluctuation of stellar streams, resulting from

the encounters between streams and dark matter subhalos, can also help probe the dark

matter mass (17), due to the fact that if dark matter is less massive, there will be fewer

subhalos. Understanding the nature of dark matter will also help in understanding the

formation of galaxies since dark matter constitutes a large portion of galaxies.

2. Star formation history of the MW: Stellar luminosity, obtained by measured

flux and parallax distance, and metallicity, estimated using RVS spectra by Apsis, can

provide an accurate estimation of the age of stars. Older stars are more metallic due to

the longer fusion time, while also becoming brighter and redder. Combining the stellar
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age with the information on the structure and dynamics of the MW, Gaia makes it

possible to deduce the star formation history of the Galaxy.

3. Stellar physics and evolution: One of the strengths of Gaia will be its parallax

measurements. Along with Gaia’s photometry, it is possible to derive a high-quality

colour-magnitude diagram (H-R diagram). This can make us better understand stellar

evolution (see Section 3.4 for more details of the H-R diagram) since the number of

objects measured will cover most phases of stellar evolution. For example, Gaia will

provide parallax for the faintest white dwarf for the first time.

Since the launch of Gaia, the data has enabled researchers to make groundbreaking

discoveries. Here we review some of the most important ones.

Regarding the evolution of the MW, with Gaia DR2, (18) discover that the MW merged

with another galaxy, referred to as Gaia-Enceladus, during its early stage. The stars that

originated from Gaia-Enceladus cover the full sky, with motions very different from most stars

in the MW. (19) shows that there are two phases in the MW history. The older phase started

just 0.8 billion years after the Big Bang when the thick disk, which is a galactic structure

filled with metal-poor stars, was formed. Two billion years later, the Gaia-Enceladus merger

triggered the second phase of galactic formation when the thin disk with metal-rich stars

was formed.

For the galactic structure, using Gaia DR2 data, (20) show that the warp of the MW

is caused by a recent or ongoing encounter with a satellite galaxy. (21) argue that the
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encounter with the Sagittarius dwarf galaxy triggered the star formation in the MW. (22)

identify for the first time a snail-shell-like substructure in the phase space, further confirming

the perturbation from the collision with a satellite galaxy.

For stellar physics, (23) report that the H-R diagram obtained from Gaia data shows for

the first time there is a split of the white dwarf sequence into hydrogen white dwarfs and

helium white dwarfs. (24) observes a gap near magnitude 10 in the main sequence on the

H-R diagram with Gaia DR2 data.

These discoveries show that the high-quality Gaia data enables the astrophysics

community to make a lot of progress in understanding the Galaxy in terms of its evolution,

structure and composition.

2.2 Dataset

2.2.1 Description of data

The latest Gaia data release is the third data release (DR3), which contains the full

astrometric solution for ∼1.5 billion sources at magnitude 3>G>21 (25). In this thesis, we

use the data from Gaia Data Release 2 (DR2) (26) which contains the full astrometric

solution for 1.3 billion sources. Although DR3 contains more objects, in particular, radial

velocity data is more complete, a primitive study using DR2 data is beneficial to prove the

effectiveness of the method, and also to focus on a few anomalies to investigate. The
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astrometric parameters include the celestial coordinate right ascension (RA) α and

declination (Dec) δ, parallax, and proper motion along the direction of the two celestial

coordinates. It also contains radial velocities for 7.2 million sources, G-band photometry G

for 1.7 billion sources, and BP-band GBP and RP-band GRP photometry for 1.3 billion

sources. BP and RP spectra and RVS spectra are not released in DR2 but are released in

DR3. Photometric time series and radial velocity time series are also not present until

DR3.

2.2.2 Data preprocessing

The full dataset has 94 columns of features, in addition to the above 9 features, it also includes

errors of the above measurements and correlation between pairs of the above measurements.

5 astrophysics parameters inferred using only photometry and parallax by Apsis are also

present, including stellar effective temperature, stellar radius, stellar luminosity, line-of-sight

extinction, and line-of-sight reddening.

To select only the most precise data, we filter the data following Section 2.1 in (23):

1. parallax over error>10

2. phot g mean flux over error>50

3. phot rp mean flux over error>20

4. phot bp mean flux over error>20
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5. phot bp rp excess factor<1.3+0.06*power(phot bp mean mag-phot rp mean mag,2)

6. phot bp rp excess factor>1.0+0.015*power(phot bp mean mag-phot rp mean mag,2)

7. visibility periods used>8

8. astrometric chi2 al/(astrometric n good obs al-5)<1.44*greatest(1,exp(-

0.4*(phot g mean mag-19.5)))

To remove strong outliers, we keep data with at least 8 visibility periods. We also only

keep data with 10% relative precision in parallax since parallax error would reduce the

accuracy in magnitude estimation. We also filter data with 50% precision in G and 20%

precision in GBP and GRP to remove variable stars, which would not be our interest in this

thesis as anomalies since they are studied in (27). The fifth and sixth filters are applied to

remove stars whose BP and RP fluxes are heavily impacted by nearby sources. The last

filter is to remove observations that do not fit the single-star parallax model well, possibly

due to two stars separated by a very small angle being mistaken for a single object (28).

After applying these filters, 29,952,901 objects remain in the dataset. Since parallax

is more accurate for nearby foreground stars, the remaining dataset is biased towards the

neighbourhood of the Sun. In fact, all the objects in the remaining dataset are within 1000

kpc of the Sun. However, this bias would not cause a problem for us, and in fact, can be an

advantage since we can first focus on stars that are anomalous in a more local setting.

Of the 94 columns of data, many of them are errors of measurements, and correlations
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between pairs of measurements, for both of which are not included as input features. Since

the errors are not intrinsic features of the sources, but instead come from the instrument,

feeding errors into the model would introduce external biases. We are applying a state-of-

the-art DL algorithm to detect anomalies (see Sec. 3), which we would expect to model

important relationships between features. Hence, if the correlation between pairs of features

is important to classify anomalies, the algorithm will be able to learn such correlations

directly from the measurements. As a result, we also exclude correlations as input features.

For the same reason, we also remove the 5 astrophysics parameters inferred using Apsis,

since in DR2 they are inferred using just photometry and parallax measurements and do

not provide additional information to the algorithm. As a result, only 9 features are fed

into the anomaly detection algorithm, which are 3 positional features (RA, Dec, parallax),

3 velocity features (proper motion along RA, proper motion along Dec, radial velocity), and

photometry of 3 bands (G, BP, RP). Since not every object contains data on all 9 features,

we drop the objects with missing data and only keep those with 9 features as input data

to the algorithm. Dropping missing data would not introduce bias for us since we are not

focusing on the whole population of stars, but instead on point anomalies which individually

deviate from other input data.

To further process the data, we apply quantile transform to scale the input data, where

original data are transformed to a normal distribution. We argue in Sec. 3.4 the reason we

apply quantile transformation instead of standardization as feature scaling.
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Chapter 3

Anomaly detection

Anomaly detection, also known as novelty detection or outlier detection, is an active

research area to detect data instances that deviate from the majority of the dataset. This

means that the anomalies are the data instances that do not conform to the behaviour of

the underlying distribution of the whole dataset. It has applications in a wide range of

domains from medicine to finance to security. In physics, it has particular importance in

the experimental particle physics community to differentiate signals from background

(29; 30). Similar to particle accelerators, telescopes also output high-dimensional data from

which astrophysicists need to separate signals from a background, which can be done by

employing anomaly detection algorithms. Hence, anomaly detection is also important in

the astrophysics community to look for signatures in the sky

(31; 32; 33; 34; 35; 36; 37; 38; 39; 40).
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3.1 Background

Below we review some basics of anomaly detection (4; 5; 6). Anomaly detection algorithms

can be broadly categorized into 4 types: supervised anomaly detection, unsupervised

anomaly detection, semi-supervised anomaly detection, and weakly-supervised anomaly

detection. Supervised anomaly detection algorithms are trained with a dataset which has

fully labelled instances for both normal and anomalous classes; unsupervised anomaly

detection algorithms are trained without prior knowledge of the anomaly label;

semi-supervised anomaly detection assumes the availability of labelled normal data;

weakly-supervised anomaly detection assumes the availability of partially labelled

anomalous data. We apply an unsupervised technique (see Sec. 3.3) for the Gaia data since

we are keeping our target anomalies general, meaning that we do not aim for any specific

anomaly. By using the unsupervised algorithm, we expect the model to return any

anomalies no matter the reason for not confining to the majority, and then we investigate

the reason individually.

Meanwhile, anomalies can also be categorized into 3 types: point anomaly, contextual

anomaly, and group anomaly. Point anomalies are individual data instances that are

considered anomalous compared to other data instances; contextual anomalies are

individual data instances that are only anomalous if considered in a certain context; group

anomalies, also known as collective anomalies, are a subset of data instances that are

anomalous as a whole compared to other data instances, meanwhile, none of the members
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of the group are anomalous. Among them, point anomalies are the most researched ones.

In this manuscript, we only focus on point anomalies.

The most basic and common algorithms for point anomaly detection are K-nearest

neighbours (KNN) and clustering (4). KNN algorithm finds k nearest neighbours for each

sample, where k is an arbitrary integer. From the mean distances to the neighbours, we

can classify the samples as anomalous if the distance is significantly higher than the

distance of other samples. Meanwhile, the clustering algorithm groups data instances into

clusters. Anomalies are detected by finding data instances that do not belong to any

cluster, or are far away from the centroid of the nearest cluster. Many subsequent

algorithms are either KNN-based or clustering-based.

However, with the advanced development of DL algorithms since the 2010s, it is now

possible to exploit deep algorithms to perform the task. Classical machine learning models,

such as KNN, clustering or regression, have a simple structure and resemble more closely with

traditional statistics methods. DL, on the other hand, has a multi-layered architecture which

involves orders of magnitude more parameters than classical machine learning algorithms.

Due to this expressiveness, DL models are expected to learn much more complex structures in

the data, and as a result, perform better on large-scale data. Hence, deep anomaly detection

can be more effective and accurate in identifying anomalies than their classical counterpart

for data in scale and dimension like Gaia’s (5; 6).

One significant breakthrough recently in DL is generative artificial intelligence. The
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underlying principle relies on the deep generative model (DGM), which estimates the

likelihood of observations and creates new samples from the underlying distribution.

Interestingly, since DGM learns the data distribution, it can also be applied to find

anomalies that do not conform to the underlying distribution.

In particular, generative adversarial network (GAN) has been a major approach for

anomaly detection since its early use by (41) (AnoGAN) in 2017. The intuition is that

since the generative network is optimized to generate instances that are as close to the

original data instances as possible, the normal data which form the majority of the whole

dataset would have a small difference between the generated data and original data.

Meanwhile, the anomalous data instances which have different distributions from normal

data, will have a large difference to the generated data.

3.2 Review of anomaly detection on Gaia dataset

There are multiple efforts to identify anomalies within the massive Gaia data, in this section

we review the motivation, method and results of other anomaly detection methods on Gaia.

We show that among existing research on finding Gaia data anomalies, a gap exists in

finding general point anomalies. Finding general points anomalies is important since we do

not limit the nature of the anomalies. As a result, we can consider a wider possibility during

the investigation. However, the downside is that it can be hard to retrieve the reason for the

points to be anomalous.
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(35; 36) use ANODE (ANOmaly detection with Density Estimation), an unsupervised

machine learning algorithm to specifically look for stellar streams. ANODE (30) is based on

normalising flows (42; 43) to estimate the localised probability density of the signal compared

to the background. Normalising flows are a generative class of models that learns to transform

a simple probability distribution, usually a Gaussian distribution, into a more complex one by

a series of invertible and differentiable transformations. The authors transform the angular

position into Euclidean coordinates, and also use proper motions along these two directions,

colour, and magnitude, to identify overdense regions with respect to the background non-

stream stars. They identified 102 stellar streams with high significance with DR2 data, where

only 10 had been previously identified.

(39) also target stellar streams particularly. They use CWoLA (Classification Without

Labels) (44) to identify stellar streams in a weakly-supervised setting. Originally designed

for identifying particles in high-energy physics experiments, CWoLA is a weakly-supervised

algorithm that is trained to distinguish sky regions M1 with a higher proportion of signal

and a lower proportion of background, versus sky regions M2 with a lower proportion of

signal and a higher proportion of background. Due to the fact that a classifier trained to

distinguish M1 and M2 is the same as a classifier for distinguishing signal from background,

the model can be directly applied to identify a localised anomaly from the background. As

in (35; 36), they also consider Euclidean sky position, proper motions along the direction of

the two sky positions, colour and magnitude. They identified ∼ 2000 stars likely to belong
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to the GD-1 stellar stream.

(40) make use of autoencoder to search for dark matter subhalo-associated stars.

Autoencoders have a bottleneck structure and can be separated into two parts: encoder

and decoder. The encoder network performs dimensionality reduction, mapping the

original input into a lower dimensional latent space, and then the decoder network

reconstructs data from the compressed representation. For an ideal model, the

reconstructed and the actual inputs should be identical. When stars are near dark matter

subhalos, gravitational perturbations will leave imprints on stellar positions and velocities.

The encoder first maps the 6D phase space to the lower dimension latent space, and then

the decoder decodes them back to the original 6 dimensions. Since background-like samples

constitute the majority of the sample, the trained encoder-decoder network will be

optimized for reconstructing background-like samples. Meanwhile, for signals which are not

distributed like background, the model will find large reconstruction errors The authors use

synthetic Gaia DR2 data of 3 MW-like galaxies from FIRE simulations (45), and show 80%

true positive rate and 15% false positive rate.

Despite the effort to detect anomalies in Gaia data, all of the above literature assumes

a particular nature of the anomalies to detect. This thesis aims to address this gap by

looking for general point anomalies that may be anomalous due to any reason, or even due

to unknown physics.
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3.3 Diffusion Time Estimation

A more recent DGM is score-based diffusion models, which become popular since the proposal

of denoising diffusion probabilistic models (DDPM) by (7) in 2020. A diffusion process is

a stochastic process with a probability distribution that evolves with time following the

diffusion equation, inspired by non-equilibrium statistical physics. The idea of the diffusion

model is to systematically destroy the structure in a data distribution through an iterative

forward diffusion process (46). Then the model learns a reverse diffusion process that restores

structure in data, resulting in a model that is capable of generating samples matching the

original data distribution even in high-dimensional spaces (7).

To mathematically describe DDPM, we denote the data as x0 and the corresponding

distribution as q
(
x0

)
. The forward diffusion process is a Markov chain, meaning its

distribution at time t only depends on its distribution at time t-1 but not at other times. It

gradually adds Gaussian noise to the data, with subsequent latent variable xt for

t = 1, ..., T defined by

xt =
√

1 − βtxt−1 +
√

βtϵt (3.1)

where ϵt ∼ N (ϵt; 0, I) is Gaussian noise with mean 0 and variance 1, and βt ∈ (0, 1) is the

variance schedule. This equation means that at each time t = 1, ..., T we keep adding noise

with mean 0 and a predetermined variance βt, in order to destroy information in the data

gradually. The drift
√

1 − βt is added so that the variance of each latent variable is kept at
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1. Hence, writing Eq. 3.1 in terms of the distribution of latent variable x1, ..., xT is

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI), (3.2)

meaning that the distribution of xt at t conditioned on its lagged value at t − 1, xt−1, is

normal distributed with mean being its lagged value xt−1 multiplied by
√

1 − βt, and the

variance being βt. Over time when T → ∞, xT has an isotropic Gaussian distribution.

We can express xt at any arbitrary time t in terms of input data x0 only, by

reparametrization of βt into α̃t = ∏t
τ=1 ατ = ∏t

τ=1(1 − βτ ):

xt = √
αtxt−1 +

√
1 − αtϵt

= √
αtαt−1xt−2 +

√
αt(1 − αt−1)ϵt−1 +

√
1 − αtϵt

= √
αtαt−1xt−2 +

√
1 − αtαt−1ϵt

= · · ·

=
√

α̃tx0 +
√

1 − α̃tϵt

(3.3)

where the third line is due to the fact that adding two normal distributions with variance

σ2
1 = αt(1 − αt−1) and σ2

2 = 1 − αt results in a normal distribution with variance σ2 =

σ2
1 + σ2

2 = αt(1 − αt−1) + 1 − αt = 1 − αtαt−1. Hence, we can express the distribution of xt
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conditioned on the input data x0 as

q(xt|x0) = N (xt;
√

α̃tx0, (1 − α̃t)I). (3.4)

The goal of DDPM is to recreate a sample from the original distribution from Gaussian

noise, by learning the approximation of the distribution of reverse process p(xt−1|xt, w)

governed by deep neural network µ(xt, w, t) with parameters w:

p(xt−1|xt, w) = N (xt−1|µ(xt, w, t), βtI). (3.5)

A common approach for training a diffusion model to detect anomalies is to treat the

anomalies as the noise from forward diffusion, such that we can reverse diffuse the input

samples and thus use the reconstruction distance to identify anomalies (47; 48; 49).

However, (8) proposed a much simpler yet powerful approach called Diffusion Time

Estimation (DTE). DTE use forward diffusion to create noisy samples as a way to simulate

anomalous samples. Since noisy samples are expected to cover the entire feature space,

they should cover potential anomalies as well. Then, a neural network is trained to predict

the diffusion time corresponding to the noisy samples. Thus, an anomalous sample would

look ”noisy” to the model, and it would estimate a high diffusion time step, hence

predicting a high anomaly score.

Since DTE does not model the reverse diffusion process like DDPM does, (8) shows
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that DTE inference time is shorter than DDPM by 3 orders of magnitude. It is essential

to apply an efficient algorithm like DTE to apply on data on the scale of Gaia, since it

would be extremely computationally expensive to run slower algorithms such as KNN, on

30 million objects in the processed Gaia data across multiple features. Meanwhile, both

models achieve high accuracy with similar AUC ROC (∼ 0.8) evaluated with 57 anomaly

detection benchmark datasets ADBench (Anomaly Detection Benchmark) (50). AUC ROC,

the Area Under the Curve of the Receiver Operating Characteristics curve, is a commonly

used metric to illustrate the accuracy of classification models. The ROC curve is a plot of

false positive rates versus true positive rates at different thresholds. An ideal model with

perfect prediction will have an AUC ROC of 1 while an AUC ROC of 0 shows the model is

predicting everything wrong. Therefore, DTE is much more efficient and accurate compared

to other anomaly detection models.

The application of an ML algorithm on a data type that the algorithm is not typically

used for could lead to varying performance. Since the diffusion model is typically used for

image data, it is important to prove the model is robust on general data like Gaia data,

which may not have strong neighbouring pixel relationships like image data do, before we

apply it to Gaia data. While (47; 48; 49) focus on the application of diffusion model on

image data anomalies, (8) does not assume any data type or the nature of the anomaly

during their analysis. Hence, given the data type, dimensionality and number of sources in

the Gaia data, combined with the accuracy and efficiency of DTE, we expect DTE would be
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a robust choice for identifying anomalies in Gaia data.

We add noise to each input sample until a random timestep between 0 and 300, according

to the noise schedule β = 0.0001, · · ·, 0.01. A multilayer perceptron, with a hidden size of

[512,512], is then trained to classify the timesteps of each noisy sample with a batch size of

512. We choose Adam as the optimizer with a learning rate of 0.003 and a weight decay

of 0.0005. The model is then applied to the original input sample to classify the timesteps

which is then normalized to a score between 0 and 6.

3.4 Experiments

To check if DTE is able to catch potential anomalies in the Gaia data, we have planted

artificial anomalies, making use of the Hertzsprung-Russell diagram (H-R diagram). The H-

R diagram illustrates the empirical relationship between stellar temperature and luminosity.

It has the stellar temperature on the x-axis and log luminosity (or magnitude) on the y-

axis. 3.1 shows the H-R diagram for 50000 randomly sampled objects from Gaia DR2,

with luminosity expressed in absolute G-band magnitude and colour expressed in BP-band

magnitude minus RP-band magnitude (BP-RP). A higher BP-RP value means the object is

redder due to the fact that a higher magnitude corresponds to lower luminosity.

Plotting magnitude and colour of observations on H-R diagrams shows that the stars are

not randomly distributed in the colour-luminosity space, but instead are confined to certain

regions, where each region corresponds to an evolutionary stage of stars.
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Figure 3.1: H-R diagram for 50000 randomly sampled objects from Gaia DR2.
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Most of the stars are main-sequence stars, which occupy a diagonal band from the top

left (high luminosity and blue) to the bottom right (low luminosity and red). Stars spend

most of their lifetime being main sequence stars. During this time, they contract under self-

gravity and heat themselves up, and start to fuse hydrogen into helium, generating energy

to provide pressure against the self-gravity, thus would be in a hydrostatic equilibrium. The

resulting equation of hydrostatic equilibrium combined with the equation of state and the

equation of radiative transport gives temperature scaled as the square of radius. Meanwhile,

Stefan-Boltzmann law, L = σ4πR2T 4, states the luminosity T is proportional to the star’s

surface area 4πR2 and the fourth power of effective temperature T 4 which is determined by

the blackbody spectrum, up to a constant σ called Stefan-Boltzmann constant. Hence, we

obtain a scale relationship between luminosity and temperature, that luminosity scaled as

the eighth power of temperature, which explains the diagonal band in the H-R diagram.

Therefore, from the laws of physics, we know where in the colour-luminosity space we

would not expect main-sequence stars. This would be a robust check for the algorithm

because if we plant anomalies that violate this result, we would expect the model to catch

these anomalies. To plant anomalies, we randomly pick sources and change their brightness

in order the bring them to a position where they are not expected to exist in the H-R

diagram.

Since different features may have substantially different ranges and orders of magnitude,

it is always beneficial to rescale the data to avoid placing importance on some particular
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features simply because they have large values. The best practice in data preprocessing

before feeding the data into a machine learning model is to standardize the data, which

essentially means calculating the standard score, or to normalize the data, where each data

is divided by the maximum of each feature, hence each data has a value between 0 and 1

after normalization.

However, we find in fig.3.2 that when we standardize the data, the model does not find

the planted anomalies with low luminosity anomalous. Meanwhile, for planted anomalies

with high luminosity, the model indeed finds them to be anomalous. This is because, as seen

in the H-R diagram, important information regarding luminosity is extracted in log space,

since the difference in luminosity for the brightest and dimmest stars can span multiple

orders of magnitude. Besides, we show in fig. 3.3 that the standardized luminosity is highly

skewed to the low luminosity end. Hence, the O(10−1) difference in the linear space between

the planted anomalies and the normal main sequence stars does not seem anomalous to the

model, but instead are considered normal since they are inside the strongly peaked range of

values.

As a remedy, we apply quantile transform instead of standardization for feature scaling.

Quantile transform is also known as inverse cdf (cumulative distribution function) transform,

as the name suggests, is obtained by inverting the cdf. This means that the value after the

transform is the corresponding y-axis value, the cumulative probability in the cdf. The

resulting distribution is a uniform distribution in the range (0,1), which is then transformed
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Figure 3.2: Above: H-R diagram with artificial anomalies planted, with standardization
as data preprocessing. Below: The same as above, but with quantile transform as data
preprocessing.
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Figure 3.3: Distribution of scaled luminosity using standardization versus quantile
transform as feature scaling.
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to a normal distribution. Hence, the transformation spreads out dense regions while bringing

data in the sparse region closer together. Thus, it places importance on the relative rank

rather than the actual distance between data. This would increase the robustness of the

model, especially for skewed data. Also, since the data is redistributed to a Gaussian, it

can reduce the impact of extreme anomalies in the data. Therefore, it can avoid anomalies

being caught simply because they are extreme outliers in one feature, which is not the most

interesting target in our study, since we are applying DL algorithm which we expect to find

more complex anomalies. As a result, we expect the model will focus on data that are

anomalous in higher dimensional space. No additional standardisation is necessary since the

data are already in a standardised form after the quantile transformation.

As seen in fig. 3.3, after applying quantile transform, the data smooth out and are no

longer closely packed at low luminosity, which would help the model extract features that are

interesting in the log space. Our experiment shows that by applying the quantile transform,

both planted high-luminosity stars and low-luminosity stars are found to be anomalous.
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Chapter 4

Results and discussion

4.1 Classifying anomalies

DTE model is not a categorical model that returns whether each data is an anomaly. Instead,

it gives an anomaly score in the range of 0 to 6, with 0 being the least probability to be

anomalous and 6 being very probably to be anomalous. As a result, we have to apply an

arbitrary threshold for determining whether each input data is anomalous.

Fig. 4.1 shows the distribution of the anomaly score determined by DTE. We choose

a cutoff at 5.3 so that about 0.1% of the data is anomalous. It is a conservative choice

considering the proximity to the maximum anomaly score. We run DTE twice to avoid the

model picking the anomalies randomly, or only because they are added noise first. There

is about 80% of overlapping anomalies found by the two runs of DTE. The consistency
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Figure 4.1: Distribution of anomaly score of the input data determined by the 2 runs of
the DTE model.
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Figure 4.2: Distribution of anomaly score of the input data determined by KNN.

shows we can rule out the model finding random anomalies, or significantly influenced by

initialization. For robustness, we only consider anomalies picked by both runs of DTE in the

following analysis. Fig. 4.1 also shows the distribution of the anomaly score of the second

run of DTE.

We also run the K-nearest neighbours (KNN) anomaly detection from PyOD (51) for

comparison. KNN is a classical machine learning algorithm that classifies input data based

on the class of its K nearest neighbours. To detect anomalies, an anomaly score is calculated

by finding its average distance to its K nearest neighbours (52). We show in Fig 4.2 the

distribution of anomaly score determined by KNN on the same Gaia dataset.
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As in the case of DTE, we apply a cutoff arbitrarily at 2.2 for the anomaly score

determined by KNN such that roughly 0.1% of the data is anomalies. Only 25% of the

anomalies picked by DTE are also picked by KNN. This is expected because of the nature

of the two algorithms. KNN is a classical algorithm while DTE is a deep algorithm, hence

we would expect KNN to catch only low-level anomalies that are anomalous distance-wise.

If there is a more abstract underlying structure in the input data, we would expect a deep

model to capture the structure and as a result, pick different anomalies.

4.2 Analysis

Fig. 4.3 shows a pairwise scatter plot of the anomalies in each of the input features. We do

not include the position in RA and Dec in the pairwise plot since they do not provide useful

information. We show the G-band flux in log scale to resemble the y-axis of the H-R diagram.

We also show only the difference between RP-band log flux and BP-band log flux instead of

the flux of these two bands separately, since they just grow linearly with G-band flux and

do not possess much information. This difference resembles colour in the H-R diagram since

the higher the difference the redder the object is.

For normal input data, we show the contour in grey in the background for comparison.

We also separate the anomalies into two groups: those only picked by DTE are shown in

orange; while those picked jointly by DTE and KNN are shown in blue.

As discussed in 4.1, DL methods can pick anomalies that are anomalous in a higher-level
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Figure 4.3: Pairwise plot for the input parameters.
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latent space. This is reflected in the H-R diagram in Fig. 4.3 (the log10ΦG vs log10ΦRP -

log10ΦBP plot). The anomalies caught solely by DTE mainly deviate from the normal data in

the colour space, which is high-order since it is not part of the input features. Meanwhile, for

the other features that are present in the input data, the anomalies picked only by DTE have

a similar distribution to the normal data instances. On the other hand, the anomalies picked

jointly by KNN and DTE are mostly outliers that deviate significantly from the normal data

distribution in velocity, distance and flux.

4.2.1 Unbound stars

Since the KNN-DTE-overlapped anomalies are mostly outliers in terms of velocity, we

consider the possibility that they can be unbound from the Galaxy. There are three classes

of objects that sit at the high tail of the velocity distribution. Halo stars (53) are stars that

do not follow orbits around the Galactic Centre (GC) within the disk, they can be

unbound if they are the debris of tidally disrupted satellites. Runaway stars (RSs) (54) are

O or B-type stars ejected from the disk, formed either by encounters between stars in dense

systems, such as young star clusters, or supernova explosions in binary systems.

Hypervelocity stars (HVSs) (55) are the result of the three-body interaction between a

binary system and the supermassive black hole in the GC. Due to this close encounter,

they can reach a velocity of ∼ 1000 km s−1, high enough to escape from the gravitational

field of the Galaxy.
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Source ID vtot/vesc DTE score DTE2 score KNN score
5231593594752514304 1.634498 5.209758 5.322006 2.907877
2251311188142608000 1.683953 5.551567 5.689544 4.564000
5878409248569969792 1.575172 0.167402 1.709670 2.418901
5956359499060605824 1.131206 0.124300 1.264231 2.168586
4065480978657619968 1.161136 5.157624 5.713779 3.825398
4296894160078561280 1.625867 5.653924 5.733806 4.016321
5412495010218365568 1.248013 5.740820 5.730458 3.444774

Table 4.1: Gaia DR2 source ID, total velocity to escape velocity ratio, and anomaly scores
found by the 3 algorithms for the unbound stars.

We convert the proper motion and radial velocity to total velocity vtot. To do this,

we first convert the proper motion to radial velocity to velocity galactocentric Euclidean

coordinate using galpy (56), with the x-axis pointing towards the GC, the y-axis being the

tangential direction, and the z-axis being perpendicular to the disk. We assume that the

distance between the Sun and the GC is d⊙ = 8.2kpc, the Sun’s height above the disk is

z⊙ = 25pc, and the Sun’s tangential velocity about the GC is vg,⊙ = 248km s−1 (14). We also

transform their position from RA, Dec and parallax to galactocentric Euclidean coordinate

using galpy. From the galactocentric coordinate, we obtain the escape velocity vesc using

again galpy with MWPotential2014 as the model for the Milky Way gravitation potential.

We found 7 objects with total velocity vtot larger than escape velocity vesp. We report

the Gaia DR2 source ID, total velocity to escape velocity ratio, and the anomaly scores in

Table 4.1. There are 5 objects with very high anomaly scores and 2 with very low scores.

Although only 3 objects pass the anomaly threshold stated in sec. 4.1, in the following we

consider all 5 objects with high scores as anomalies. In fig. 4.4 we show the 3-dimension
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Figure 4.4: 3-dimensional quiver plot for the unbound stars.
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quiver plot for the unbound stars. It shows that two of the unbound stars actually are going

against the direction of rotation of the galactic disk.

4.2.2 Extinction

Another observation from the pairwise plot is that anomalies have another peak at a redder

colour. Hence, we also consider the possibility that the anomalies have high red colour

excess. Due to the presence of dust between the sources and the observatory, light will be

absorbed and scattered by the dust, thus reducing light flux. The effect of this extinction on

shorter wavelengths is higher than that of longer wavelengths, hence it will lead to reddening

of light.

In fig. 4.5, we plot the histogram of colour excess of anomalies compared with normal

data. We use the e bp min rp val parameter, the BP band magnitude and RP band

magnitude difference, inferred by Apsis in Gaia DR2. We also use dustmap (57) to find the

ebv, excess blue band minus visible band parameter, using the spatial coordinate

determined by Gaia. With both ways of finding the reddening, we show that the

anomalous data have high reddening compared to normal data.

Although further analysis is needed to confirm if this lead to any new discovery, the fact

that the anomalies have a different distribution on reddening, which is not an input feature,

confirms again the ability of our method to detect complex point anomalies in the enormous

Gaia data. This would be significant when anomaly detection is performed on data releases
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Figure 4.5: The colour excess of anomalous data compared to normal data. Above: the
colour excess found by Apsis in Gaia DR2. Below: the colour excess found using dustmap.
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after DR2 which contains more objects but also more features. The efficient yet powerful

algorithm can be used to quickly identify anomalous data in newer data releases.
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Chapter 5

Conclusion

In this thesis, we detect point anomalies in Gaia space telescope’s data, in order to search

for stars in the MW that deviate from the underlying distribution of the whole dataset. We

apply a state-of-the-art deep learning algorithm, Diffusion Time Estimation, on Gaia’s second

data release to perform anomaly detection in an unsupervised manner. Our experiment with

artificial anomalies on the H-R diagram shows that the efficient yet accurate algorithm is

a robust method to detect point anomalies in the Gaia data, if we perform feature scaling

by quantile transform instead of standardization. We then apply the model without the

artificial anomalies to calculate the anomaly score, and apply an arbitrary threshold on the

anomaly score to isolate 0.1 of anomalous data. We also apply a more traditional algorithm,

KNN, to compare the results. Using a pairwise plot of the input features, we observe that the

anomalies have different distributions in velocity and colour compared to the normal data.



5. Conclusion 44

Our analysis demonstrates that 7 objects in our filtered data have a velocity higher than the

escape velocity, meaning they are unbound from the galactic potential. We also show that

the normal and anomalous data have a different distribution in reddening, a quantity not

present as an input, further confirming the power of the model in finding complex anomalies.

Thus, further analysis of the nature of the anomalies, and application on newer data releases,

may lead to more discovery in addition to those investigated in this thesis.
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[22] T. Antoja, A. Helmi, M. Romero-Gómez, D. Katz, C. Babusiaux, C. Babusiaux et al.,

A dynamically young and perturbed milky way disk, Nature 561 (2018) 360 – 362.

http://dx.doi.org/10.1088/1475-7516/2018/07/061
http://arxiv.org/abs/1804.04384


Bibliography 48

[23] Gaia collaboration, C. Babusiaux et al., Gaia Data Release 2: Observational

Hertzsprung-Russell diagrams, Astron. Astrophys. 616 (2018) A10, [1804.09378].

[24] W.-C. J. , T. J. Henry, D. R. Gies and N. C. Hambly, A gap in the lower main

sequence revealed by gaia data release 2, The Astrophysical Journal Letters 861 (2018)

.

[25] Gaia collaboration, A. Vallenari et al., Gaia Data Release 3 - Summary of the content

and survey properties, Astron. Astrophys. 674 (2023) A1, [2208.00211].

[26] Gaia collaboration, A. G. A. Brown et al., Gaia Data Release 2: Summary of the

contents and survey properties, Astron. Astrophys. 616 (2018) A1, [1804.09365].
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