
Variable Selection for Dynamic Treatment

Regimens

Zeyu Bian

Doctor of Philosophy

Department of Epidemiology and Biostatistics

McGill University
Montréal, Québec

May 2022

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy
c○ Copyright Zeyu Bian, 2022



Dedication

This thesis is dedicated to my parents, Mei Gao and Maoyun Bian.

ii



Acknowledgements

I am incredibly grateful for the guidance and enthusiasm that I have received in my research

over the past two years from my devoted supervisors, Dr. Sahir Bhatnagar and Dr. Erica

Moodie. I want to thank them for leading me to the areas of variable selection and dynamic

treatment regimens and guiding me in identifying my own research interests. I really appre-

ciate all the time that Sahir spent teaching me academic writing, coding, and how to create

an R package. When I first met him, he was a PhD student in the department, and after a

year, he became my PhD supervisor, so he was really able to view things from a student’s

perspective. Sahir’s personality is contagious, and I am grateful for his support and encour-

agement, especially when I was entering the job market. I am also forever indebted to Erica,

who introduced me to adaptive treatment strategies and taught me academic integrity, and

more importantly, shared her enthusiasm for research with me. When I first entered the pro-

gram, I never thought that I would one day want to pursue a career in academia. However,

with two amazing years of work with Sahir and Erica, I changed my mind—thanks for their

passion and inspiration for research. Currently, I have found what I really want to pursue

for my career, and I hope to someday teach and inspire my own students like the way they

have instructed me.

I would also like to thank my PhD committee member, Dr. Susan Shortreed for providing

guidance and input on the three manuscripts in this thesis. I would like to express my

deepest gratitude to my uncle Professor Yisheng Li for his influence and guidance during

my doctoral studies. I am also grateful to my friend Larry, who helped me revise the French

abstract of this thesis; I will always remember all the good old days that we spent together in

Burnside Hall and Purvis Hall, sharing our research and dreams with each other. A special

thanks to my friends Yikou Yiming Zheng, Xiaohui Zhao, Leo, Gaibian Wei Hu, Xiying Sun,

Fan Yang, and Jiaxi, for always being there for me.

iii



Finally, I would like to thank my parents—for everything, I could not have completed all

this without them.

iv



Preface

This manuscript-based PhD thesis contains new research in the area of variable selection

for dynamic treatment regimens, the elements of the thesis that are considered original

scholarship and distinct contributions to knowledge. This document consists of six chapters.

Chapter 1 gives a general overview of this thesis, and Chapter 2 provides a comprehensive

review of the relevant literature. They were written entirely by Zeyu Bian (ZB) and edited

by Sahir Rai Bhatnagar (SRB) and Erica E. M. Moodie (EEMM).

Chapter 3 was conceptualized by EEMM, SRB and ZB. The methodological work, theoretical

proofs, writing, programming, and the real data analysis were done by ZB under the guidance

of EEMM, SRB, and Susan M Shortreed (SMS). EEMM, SRB and SMS corrected and edited

this chapter.

The methodological work in Chapter 4 was conceptualized by EEMM, ZB, SRB and SMS.

Sylvie D Lambert (SDL) provided assistance for analyzing the web-based, stress management

intervention data. ZB designed and conducted the numerical studies, performed the data

analysis, and wrote the draft of the manuscript. The chapter has also been edited by EEMM,

SRB, SMS and SDL.

The idea in Chapter 5 was conceptualized by ZB, EEMM, and SRB. The methodology,

algorithms, theoretical proof, writing, simulation studies, and the data analysis were carried

out by ZB. EEMM, SRB and SMS advised and edited this Chapter; the web-based data were

provided by SDL. Chapter 6, the conclusion and summary, was written by ZB and edited

by SRB, EEMM, SMS, and SDL.

v



Abstract

In the precision medicine paradigm, treatment decisions are tailored to each individual,

instead of a “one-size-fits-all” approach, which is beneficial in the presence of heterogeneous

treatment effects. With the aim of improving individual patients’ health outcomes, dynamic

treatment regimens (DTRs) recommend effective treatments for individual patients based

on their characteristics. However, collected data often contain many irrelevant variables for

tailoring treatment. Including all the covariates in an analysis could yield a loss of statistical

efficiency and an unnecessarily complicated treatment decision rule, which is difficult for

physicians to assess or implement. Thus, variable selection with the objective of optimizing

patients’ outcome by identifying useful tailoring variables is important. The topic of variable

selection in a general context has been well studied, however, it has been less investigated

in the area of DTRs. Applying existing variable selection techniques to DTRs estimation

methods directly can be challenging: first, the goal of variable selection in DTRs differs

from variable selection in a general context. Variable selection for DTRs aims to improve

the estimated decision rules instead of predictive performance. Second, in DTRs, we are

most interested in selecting variables that may be effect modifiers-a scenario that is rarely

considered in the prediction setting. Last, DTRs are often estimated using semi-parametric

methods that provide robustness against model misspecification. Many existing methods are

complicated and hard to implement (especially for count and binary outcomes), thus it is

difficult to extend these to a regularization framework. In such a case, we might want to use

a simpler regression-based method.

The overarching goal of this thesis is to develop new variable selection techniques in the

DTRs setting. This thesis consists of three manuscripts. In the first manuscript, I extend

the estimation approach of dynamic weighted ordinary least squares to a penalized frame-

work, where estimation and variable selection for DTRs can be performed simultaneously. I

show that this extension has the double robustness and oracle properties under some con-
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ditions. The newly proposed method is applied to data from the Sequenced Treatment

Alternatives to Relieve Depression study. The second manuscript considers two practical

issues that frequently arise in causal inference and variable selection approaches: confounder

selection and tuning parameter selection. The approach from the first paper is combined

with a confounder selection method, and this is illustrated on data from a pilot sequential

multiple assignment randomized trial of a web-based stress management study. In these

first two works, I only considered the case in which the outcome is continuous, while in the

third manuscript, I extend the doubly robust penalized weighted regression approach to the

discrete outcomes setting.

In this thesis, I show that with a suitable choice of weights, a weighted penalized regres-

sion model still enjoys the desired double robustness property, and yet is straightforward to

implement. The advantage of the newly proposed approach compared to alternative regu-

larized DTRs estimation methods lies in the fact that it can be viewed from a minimization

perspective. Hence, the implementation is simpler, various penalty functions can be used,

and the solution can be found using existing computationally efficient tools.

vii



Abrégé

Dans le cadre de la médecine de précision, les décisions quant aux traitements sont adaptées

à chaque personne, au lieu d’une approche « taille unique», et celles-ci seront plus bénéfiques

en présence de traitement avec des effets hétérogènes. Dans le but d’améliorer les résultats

de santé de chaque patient, les régimes de traitement dynamiques (RTD) recommandent

des traitements efficaces pour chaque patient en fonction de ses caractéristiques. Toutefois,

les données amassées contiennent souvent de nombreuses variables et beaucoup d’entre elles

peuvent être impertinentes dans le choix du meilleur traitement. L’inclusion de toutes les

covariables dans une analyse pourrait entraîner une perte d’efficacité statistique et une règle

de décision de traitement inutilement compliquée qui sera difficile à évaluer ou à mettre en

œuvre par les médecins. Ainsi, la sélection de variables dans le but d’optimiser les résultats

des patients en identifiant des variables importantes pour le choix du traitement optimal est

importante. Le sujet de la sélection de variables dans un contexte général a été bien étudié,

mais il a été moins étudié dans le contexte des RTD. L’application directe des techniques

de sélection de variables existantes aux méthodes d’estimation des RTD peut être difficile

: premièrement, l’objectif de la sélection des variables dans les RTD diffère de la sélection

des variables dans un contexte général, c’est-à-dire que la sélection de variables pour les

RTD vise à améliorer les règles de décision estimées au lieu des performances prédictives.

Deuxièmement, dans les RTD, on s’intéresse plus à la sélection de variables qui peuvent être

des modificateurs d’effet - un scénario qui est rarement pris en compte dans le cadre de la

prédiction. Enfin, les RTD sont souvent estimés à l’aide de méthodes semi-paramétriques

qui offrent une robustesse contre les erreurs de spécification du modèle statistique. De nom-

breuses méthodes existantes sont compliquées et difficiles à mettre en œuvre (en particulier

pour les variables dépendantes discrètes), il est donc difficile de les incorporer dans un cadre

de régularisation. Dans ce cas-ci, nous allons utiliser une méthode plus simple et basée sur

la régression.
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L’objectif principal de cette thèse est de développer de nouvelles techniques de sélection de

variables dans le cadre des RTD. Cette thèse se compose de trois manuscrits. Dans le premier

manuscrit, je propose une approche d’estimation des moindres carrés ordinaires pondérés dy-

namiques dans un cadre pénalisé, où l’estimation et la sélection de variables pour les RTD

peuvent être effectuées simultanément. Je montre que cette extension possède la double

propriété de robustesse et d’oracle sous certaines conditions. La nouvelle méthode proposée

est appliquée aux données de l’étude Sequenced Treatment Alternatives to Relieve Depres-

sion. Le deuxième manuscrit examine deux problèmes pratiques qui arrivent fréquemment

dans les approches d’inférence causale et de sélection de variables : la sélection des facteurs

de confusion et la sélection des paramètres de réglage. L’approche du premier article est

combinée avec une méthode de sélection des facteurs de confusion, et ceci est illustré à l’aide

de données provenant d’un essai randomisé pilote séquentiel d’une étude sur la gestion du

stress basée sur le Web. Dans ces deux premiers travaux, je n’ai considéré que le cas où le

résultat est continu, tandis que dans le troisième manuscrit, j’étends l’approche de régression

pondérée pénalisée doublement robuste au cadre du résultat discret.

Dans cette thèse, je montre qu’avec un choix approprié de poids, un modèle de régression

pénalisé pondéré bénéficie toujours de la propriété de double robustesse, tout en étant sim-

ple à mettre en œuvre. L’avantage de cette approche-ci par rapport aux autres méthodes

d’estimation des RTD régularisés est qu’elle peut être considérée dans une perspective de

minimisation. Par conséquent, la mise en œuvre est plus simple, plusieurs fonctions de pé-

nalité peuvent être utilisées et la solution peut être trouvée à l’aide d’outils de calcul efficaces

qui existent déjà.
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Chapter 1

Introduction

This PhD thesis aims to develop new statistical methods to select important tailoring vari-

ables for optimal treatment decision-making. In the area of personalized medicine (also

known as precision medicine), treatment strategies are tailored to each individual, rather

than a “one-size-fits-all” approach, which is believed to be beneficial in the presence of het-

erogeneous treatment effects. In order to optimize individual patient’s health, dynamic

treatment regimens (DTRs), or adaptive treatment strategies find optimal treatment deci-

sions for individual patients according to their specific history (Murphy, 2003; Robins, 2004;

Chakraborty and Moodie, 2013; Kosorok and Moodie, 2015; Tsiatis et al., 2019). However,

with many collected covariates as well as a complex disease process, it is extremely challeng-

ing to determine which tailoring variables might be relevant for making treatment decisions.

Including all the potential variables at hand in the statistical analysis could result in a loss of

statistical efficiency (i.e., the resulting estimator has large variance), a superfluously compli-

cated model, and a needlessly intricate treatment decision rule, which is difficult for medical

researchers to assess or use.

Thus, it is important to consider a data-driven approach of selecting relevant tailoring vari-

ables in order to optimize patients’ outcome, meanwhile, to simplify models to improve
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tractability (Lu et al., 2013; Shi et al., 2018; Jeng et al., 2018; Bian et al., 2021). Although

the field of variable selection has been well studied in a general statistical context (Tibshi-

rani, 1996; Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006; Zhang, 2010), it has been less

explored in DTRs. Directly applying well-established variable selection approaches to DTRs

can be challenging: first, the purpose of applying variable selection for DTRs is to improve

the estimated decision rules and further improve patients’ outcome, which differs from the

goal of variable selection in a general context, where the goal is to enhance predictive perfor-

mance. Second, the types of variables that are of most of interest also differs: in DTRs, we

are mainly interested in selecting variables that may be effect modifiers, which is seldomly

studied in the general statistical setting. Last but not least, in order to provide robustness

against possible model misspecification, DTRs are often estimated using semi-parametric

statistical methods (Murphy, 2003; Robins, 2004). Many well-developed methods are com-

plicated and hard to implement (especially for discrete outcomes), hence, it is challenging to

extend these to a penalized framework, where important variables can be selected and the

model can be estimated simultaneously.

In this thesis, I focus on the use of penalized regression methods for variable selection that

possess the desired double robustness property. This thesis consists of six chapters. In

Chapter 2, I provide a critical review of the literature on causal inference, DTRs, and variable

selection. In Chapter 3, I extend the estimation approach of dynamic weighted ordinary least

squares (Wallace and Moodie, 2015) to a penalized framework, where estimation and variable

selection for DTRs can be performed simultaneously. In Chapter 4, two practical issues

that frequently arise in causal inference and variable selection approaches are considered:

confounder selection and tuning parameter selection. The approach developed in Chapter 3

is combined with a confounder selection method. In Chapter 5, I extend the doubly robust

penalized weighted regression in Chapter 3 to the discrete outcome setting.

My PhD thesis is in a thesis-by-manuscript format: Chapters 3, 4 and 5 were originally
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written as stand-alone papers and therefore, there is some inconsistency in notation and

overlap with Chapter 2. Chapter 3 has been published in Biometrics (Bian et al., 2021).

Chapter 4 is a book chapter accepted as a contribution to Handbook of Statistical Methods for

Precision Medicine. Chapter 5 will be submitted for publication shortly after the submission

of the PhD thesis. In Chapter 6, I conclude with an overview of the three manuscripts, a

discussion of limitations, and some directions for future work.
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Chapter 2

Literature Review

The literature review consists of seven sections. The first summarizes well-established basic

concepts and assumptions in causal inference. The second and third sections describe some

estimation methods in observational studies for causal inference and DTRs. We then describe

some penalized variable selection methods for main effects and interaction models in the

fourth and fifth sections, respectively. This is followed by a brief introduction to variable

selection in the context of DTRs.

2.1 Causal Inference

Throughout this thesis, I use upper case letters to denote random variables and lower case

letters to denote observed variables. For now, I focus on a point-treatment (cross-sectional)

setting; a longitudinal setting will be introduced later in this chapter. Let Y denote the

outcome of interest (discrete or continuous), X as the covariates, and A as the binary treat-

ment indicator. We begin this section with an important concept in causal inference: the

potential outcome framework (Rubin, 1978). Denote the potential outcome under the binary

treatment a as Y a; the potential outcome Y a of a subject is the outcome of the patient if
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treatment a has been taken.

In causal inference, there are several popular quantities that are used to measure causal

effects:

1. Average treatment effect (ATE): E(Y 1 − Y 0).

2. Average treatment effect on the treated: E(Y 1 − Y 0|A = 1).

3. Conditional average treatment effect (CATE): E(Y 1 − Y 0|X = x).

The ATE is the most popular target of inference to assess causality in many fields. The

CATE is often the interest when the aim is estimating heterogeneous treatment effects (see

more about the heterogeneous treatment effects in Section 2.3).

In this section, we focus on estimation methods of the ATE and CATE. To estimate the

ATE, the ideal dataset should be in the form of (a, ya, y1−a), which is inaccessible, as we

can only have the access to the data (a, y), i.e., only one outcome can be observed for a

subject. However, with some assumptions, we can still estimate the causal effect E(Y 1−Y 0)

correctly. For now, we assume the following assumptions hold:

1. Stable unit treatment value assumption (SUTVA) (Rubin, 1980): a patient’s potential

outcome is not affected by other patients’ treatment assignments.

2. Consistency: Y = AY 1 + (1− A)Y 0.

3. Exchangeability (Hernán and Robins, 2020): Y a ⊥⊥ A.

4. Positivity: P (A = a) > 0 almost surely.

The consistency assumption states that, given the observed treatment a, the subject’s ob-

served outcome y is equal to the potential outcome ya. Exchangeability (also known as

ignorability) means that the actual treatment allocation A is independent of the counterfac-

tual outcome for Y 0 and Y 1.
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In an ideal randomized study, we always have Y a ⊥⊥ A, hence

E(Y 1 − Y 0) = E(Y 1)− E(Y 0)

= E(Y 1|A = 1)− E(Y 0|A = 0)

= E(Y |A = 1)− E(Y |A = 0),

which is identifiable from the observational data.

While randomization is highly valued in causal inference, it has some limitations. First, it is

highly costly since the randomized trial has to recruit, allocate subjects and follow them up

for the duration of the experiment. The second limitation is ethical consideration, e.g., in a

research that studies the relationship between smoking and lung cancer, it is not ethical to

randomly allocate a subject to the smoking group. Randomized trials may also have a highly

selected population (low generalizability), and could suffer from attrition or non-compliance.

As such, it is also important to study statistical methods for causal inference in observational

studies.

2.2 Estimation Methods for ATE in Observational Study

In observational studies, the condition Y a ⊥⊥ A does not hold in general because of the

existence of confounders. An analysis that does not take account the effect of the confounder

would induce a bias to the estimator ˆ︁E(Y 1 − Y 0) (Hernán and Robins, 2020).

In observational studies, the exchangeability assumption needs to be relaxed to conditional

exchangeability: Y a ⊥⊥ A |X. This assumes that the potential outcome Y a is independent

of the treatment A within levels of the covariates X. Moreover, the positivity condition in

previous section also needs some modification: P (A = a|X) > 0 almost surely for a = 0, 1

and every level of X. Here I review three types of estimation methods: propensity score-

based methods, outcome regression, and doubly robust estimation methods (which typically
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are a fusion of the former two approaches). Note that there are some other estimation

methods such as stratification and matching, which are not covered in this section, as the

methodological work in this thesis will not rely on these methods.

2.2.1 Propensity Score-based Methods

A function b(·) of x is called a balancing score if it satisfies A ⊥⊥ X | b(x) (Dawid, 1979;

Rosenbaum and Rubin, 1983). The propensity score (Rosenbaum and Rubin, 1983) is the

coarsest balancing score b(x) such that b(x) = P (A = 1|X = x), which is the probability

of treatment received conditional on confounders. Note that the emphasis is on modelling

treatment as a function of confounding variables, rather than as a function of all variables that

predict treatment. In observational studies, this probability is unknown and hence needs to

be modeled. I use ˆ︁π to denote the estimated propensity score model ˆ︁P (A = 1|X = x).

Inverse Probability of Treatment Weighting (IPTW) (Hernán and Robins, 2020) is one of

the most popular propensity score-based estimation methods. The value of E(Y a) can be

estimated by

1

n

n∑︂
i=1

I(Ai = a)Yi
Aiˆ︁πi + (1− Ai)(1− ˆ︁πi) (2.1)

for i = 1, 2, . . . , n, which is a weighted average estimator. That is, if the observed treatment

is A = 1, then we assign weights 1/ˆ︁πi to the outcome of the corresponding subject; as

for subjects who do not received the treatment, we give weights (1 − ˆ︁πi)−1. The IPTW

estimator is a consistent estimator of the value E(Y a) given that the propensity score model

π is correctly specified. The ATE can be estimated by ˆ︁E(Y 1)− ˆ︁E(Y 0), which is

1

n

n∑︂
i=1

[︃
AiYiˆ︁πi − (1− Ai)Yi

1− ˆ︁πi
]︃
.
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2.2.2 Outcome Regression

Another approach to estimate the causal effect is outcome regression. The expected value

of the potential outcome under the treatment a can be written as

E(Y a) = EX E(Y a|X) = EX E(Y a|A = a,X) = EX E(Y |A = a,X). (2.2)

Expression (2.2) suggests that we could first estimate the value of E(Y |A = a,X), then

marginalize it with respect to X to obtain estimator of E(Y a). The quantity E(Y |A = a,X)

could be estimated by regressing Y on A and X. Given that outcome model E(Y |A = a,X)

is correctly specified, the causal effect could be estimated consistently by

1

n

n∑︂
i=1

[︂ˆ︁E(Yi|Ai = 1, Xi)− ˆ︁E(Yi|Ai = 0, Xi)
]︂
.

2.2.3 A Doubly Robust Estimation Method

So far, I have introduced how to use IPTW and outcome regression to estimate causal

effect. In this subsection, I briefly discuss an approach that combines the IPTW method

and the outcome regression method: augmented inverse probability of treatment weighting

(AIPTW).

The advantage of using IPTW is that the propensity score is often easier to model than

the outcome model. For example, in a randomized study where treatment A is allocated

at random with known probabilities that depend on baseline covariates X, the propensity

score is known to the researchers. Nonetheless, the disadvantage of using IPTW is related

to efficiency, since the estimator of E(Y a) only uses the sample points whose observed treat-

ments are A = a, and significant residual variability may remain since there is no attempt

to explain variability in the outcome that relates to other covariates. On the other hand,

additional efficiency can be gained using the outcome regression approach that utilizes all

9



the observations in the given dataset and reduces residual errors. However, the proposed

outcome model often suffers from model misspecification.

AIPTW could also gain additional efficiency compare to IPTW, in addition, it provides

protection to potential model misspecification of the propensity score or the outcome mean

model. The value of E(Y a) can be estimated by

1

n

n∑︂
i=1

{︃
I(Ai = a)Yi

Aiˆ︁πi + (1− Ai)(1− ˆ︁πi) +
[︃
1− I(Ai = a)

Aiˆ︁πi + (1− Ai)(1− ˆ︁πi)
]︃ ˆ︁E(Yi|Xi, Ai)

}︃
.

It can be shown that the AIPTW estimator is consistent (Tsiatis, 2006), given that either one

of two nuisance models (π and E(Y |A,X)) is correct (not necessarily both). This property is

referred to as the double robust property (Robins et al., 1994; Scharfstein et al., 1999; Bang

and Robins, 2005). Double robustness property is a highly desirable property, as it can

protect against model misspecification of either the propensity score model or the outcome

model. Moreover, in the case that both models are correctly specified, the AIPTW estimator

is always more efficient than the IPTW estimator (Tsiatis, 2006).

2.3 Dynamic Treatment Regimens

In the precision medicine paradigm, treatment decisions are tailored to each patient based

on their characteristics, instead of a “one-size-fits-all” approach. With the aim of improving

individual patients’ health outcomes, dynamic treatment regimens (DTRs) (Murphy, 2003;

Robins, 2004; Chakraborty and Moodie, 2013; Kosorok and Moodie, 2015; Tsiatis et al.,

2019) recommend the most promising treatments for individual patients according to their

information. In general, DTRs estimation method can be categorized into value search

methods and regression-based methods. Some popular value search methods include dynamic

marginal structural models (van der Laan and Petersen, 2007; Orellana et al., 2010), robust

learning (Zhang et al., 2012), outcome weighted learning (Zhao et al., 2012), and concordance
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learning (Fan et al., 2017). As for regression-based methods, Q-learning (Watkins, 1989)

and A-learning (Murphy, 2003; Robins, 2004) are widely used in DTRs. In this Section, I

briefly review the background of regression-based methods, as this thesis builds upon such

framework.

2.3.1 Single-stage DTR

In a single stage DTR, the tuple V = (X,A, Y ) consists of the data for an individual

patient, where X is the patient’s baseline variables (information or covariates), A is the

binary treatment, and Y is the patient’s continuous outcome (usually a larger value of Y is

more desirable). The objective is to find the optimal treatment decision ˆ︁aopt such that the

quantity E(Y a) is maximized at ˆ︁aopt.
Assume that the observations Vi, i = 1, . . . , n are independent and identically distributed

with probability density h(V ) with respect to a measure ν. Moreover, we assume the re-

lationship between Y and (X,A) can be captured by a semi-parametric regression model:

E(Y |X = x,A = a) = f0(x;β0) + γ (x, a;ψ0), where f0 is an unknown baseline mean

function, β0 and ψ0 are underlying true parameters, and γ is a known function that sat-

isfies γ (x, 0;ψ) = 0. This latter function is referred to as the blip function in (Robins,

2004), and taken together, the two functions are referred to as a structural mean model.

A blip function can written as: γ (x, a) = E(Y a|X = x,A = a) − E(Y 0|X = x,A = a).

In this semi-parametric model, f0 is irrelevant for making decisions (a nuisance model).

Hence, our parameter of interest is ψ, and the optimal treatment decision is given by

ˆ︁aopt = argmaxa γ
(︂
x, a; ˆ︁ψ)︂. From now on, we use f to denote the posited baseline model,

which is not necessarily identical to the true baseline mean function f0.

Example : In a simple one-stage setting, we could assume that both f and γ are linear in

form, e.g., f(x;β) = β0+β1x and γ(x, a;ψ) = a(ψ0+ψ1x), and hence the estimated optimal

treatment is ˆ︁aopt = I( ˆ︁ψ0 + ˆ︁ψ1x > 0), where I(·) is the indicator function.
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Similar to the estimation methods for the ATE that I have described in the previous section,

the estimation methods for DTRs can also be categorized into three types of approaches:

propensity score-based methods, outcome regression and doubly robust methods.

Propensity Score-based Methods : assume that the blip function is linear: γ (x, a;ψ) =

axTψ, and the propensity score model π is correctly specified, then the blip parameter can

be consistently estimated by solving the following estimating equation:

n∑︂
i=1

(yi − aiψTxi)(ai − ˆ︁π) = 0.

The corresponding estimator is called the E-estimator in Robins et al. (1994) and Robins

(2004). The optimal treatment decision is given by ˆ︁aopt = argmaxa γ
(︂
x, a; ˆ︁ψ)︂.

Outcome Regression : if the posited baseline mean model f is correctly specified, the blip

parameters can be obtained using least squares:

(ˆ︁β, ˆ︁ψ) = argmin
β,ψ

{∥Y − f(x;β)−A ◦Xψ∥2},

where ◦ is the element-wise product. The optimal treatment decision is given by ˆ︁aopt =

argmaxa γ
(︂
x, a; ˆ︁ψ)︂. Note that this outcome modelling approach, in one interval, cor-

responds to Q-learning (Watkins, 1989). The modelling can also be accomplished non-

parametrically using more flexible regressions, see, for instance, Moodie et al. (2014); Murray

et al. (2018); Wager and Athey (2018); Logan et al. (2019) and Hill et al. (2020).

Doubly Robust Methods : A-learning (or G-estimation) (Murphy, 2003; Robins, 2004) can

yield consistent estimators of ψ while only requiring one of two nuisance models, either the

baseline mean model f(x;β) or the propensity score model, to be correctly specified. The

blip parameter can be obtained by solving the following A-learning estimating equation:

XT diag(A− ˆ︁π)(Y − f(x; ˆ︁β)− γ(x, a;ψ)) = 0,
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where the plug-in estimators ˆ︁π and f(x; ˆ︁β) can be estimated using linear regression or

other machine learning approaches. The optimal treatment decision is given by ˆ︁aopt =

argmaxa γ
(︂
x, a; ˆ︁ψ)︂. See Moodie et al. (2007) for a detailed comparison between Murphy

(2003) and Robins (2004).

Dynamic weighted ordinary least squares (dWOLS) (Wallace and Moodie, 2015) is another

approach that can be used to estimate DTRs. It uses a regression approach, achieving

double robustness through weighting by a function of the propensity score such that the

weights satisfy π(x)w(1,x) = (1 − π(x))w(0,x), where w(a,x) is the weight for a subject

with treatment a and covariates x. Wallace and Moodie (2015) suggested to use “absolute

value” weights of the form w(a,x) = |a − E[A|X = x]|, as these offered better efficiency

than other alternatives considered, while yielding consistent estimators of blip parameters if

either the treatment or baseline mean model is correctly specified. The main assumption of

the dWOLS is that the main effects for all covariates in the blip function are included in the

baseline mean model. Violation of this assumption, known as the strong heredity property

(Chipman, 1996), can lead to biased estimators of blip parameters. Estimation of the blip

parameter using dWOLS is accomplished using the weighted squared-error loss:

ˆ︁θ = argmin
θ

⃦⃦⃦⃦
⃦√W

(︄
Y − ψ0A−

p∑︂
j=1

Xjβj −
p∑︂
j=1

ψj(A ◦Xj)

)︄⃦⃦⃦⃦
⃦
2

2

,

where θ = (β1, . . . , βp, ψ0, . . . , ψp), and W = diag {w1(a,x), w2(a,x), . . . , wn(a,x)} is a n×n

diagonal balancing weights matrix. Unlike A-learning, the parameter β in the baseline mean

model is estimated simultaneously with the blip parameter.

So far we have focused on continuous outcomes such that the relationship between Y and

(X,A) is in the form of E(Y |X = x,A = a) = f0(x;β0) + γ (x, a;ψ0). A generalization of

this additive model is g
(︁
E(Y |X = x,A = a)

)︁
= f0(x;β) + γ (x, a;ψ), where g is a known

link function. Doubly robust A-learning estimating function based on this model can be

found in Robins (2004) and Tchetgen Tchetgen et al. (2010), where the link function is the

13



log and logit link, respectively.

2.3.2 Multi-stage DTRs

Now we move to a more complicated scenario, the multi-stage DTRs, where the treatment

decisions are made in each stage according to previous patient history. For a K-stage DTR,

(x1, a1, x2, a2, . . . , xK , aK , y) consists of the observed data for an individual patient, where

xk, ak are pre-treatment patient covariates and the binary treatment received at stage k, and

y is the patient outcome measured at one point in time (usually a larger value of y is more

desirable), although y could represent some cumulation or function of previous information

or patient outcomes. Denote the patient covariates and treatments up to time k as xk =

(x1, x2, . . . , xk) and ak = (a1, a2, . . . , ak), respectively, and define the vector of treatment

decisions from stage k+1 onward as ak+1 = (ak+1, ak+2, . . . , aK). The patient history prior to

the kth treatment decision is denoted hk = (xk,ak−1). Finally, denote the potential outcome

under the treatment a as Y a, where a is shorthand for the entire treatment decisions aK .

The objective is to find the optimal treatment regimens d ≡ dK = (d1, d2, . . . , dK) such that

the expected potential outcome E(Y d) is maximized, where dk ≡ dk(hk) is the treatment

rule (a function) at time point k. To estimate an optimal DTR that maximizes the expected

outcome (value function) if it were applied to the whole population, we assume the following

assumptions hold:

1. SUTVA (Rubin, 1980).

2. Consistency: Y = Y a if the observed treatments are a.

3. Positivity:
∏︁K

k=1 P{dk(hk) |hk} > 0 almost surely.

4. Sequential exchangeability (Robins, 1997): for any possible treatment regimes dk =

(d1, d2, . . . , dk), the stage k treatment is independent of future potential covariates or
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outcome conditional on current patient history, i.e.,

(xdkk+1,x
dk+1

k+2 , . . . ,x
dK−1

K , yd) ⊥⊥ Ak |Hk = hk,

where d is any treatment regimen that satisfies the positivity condition.

In a K-stage DTR, the aim is to find the optimal treatment regimen d such that the value

E(Y d) is maximized, i.e., dopt = argmaxd E(Y d). The value E(Y d) can be estimated using

the following Lemma.

Lemma 2.3.1 (Robins’s G-computation (Robins, 1986)). For any treatment regimen

d ≡ dK = (d1, d2, . . . , dK) satisfies Assumptions 1-4, then E(Y d) can be written as

E(Y d) = E{E{. . .E{E{Y |hK , dK}|hK−1, dK−1} . . . |x1, d1}}.

Note, though, that to actually implement g-computation typically requires correct (paramet-

ric) specification of the mean model for Y , and all sorts of intermediate expectations.

Knowing how to estimate the value function under a given regimen d, now I illustrate how

to estimate the optimal treatment regimen. Define the blip function at stage k as the

causal effect between those with treatment ak at stage k and those who received a reference

treatment, with the same history hk and assuming they receive optimal treatment after kth

stage:

γk (hk, ak) = E(Y ak,a
opt
k+1 |Hk = hk)− E(Y ak−1,ak=0,aopt

k+1|Hk = hk),

where ak = 0 is a reference treatment; in fact, this is referred to as the “optimal blip-to-

zero function” (Robins, 2004). The following Theorem states that to maximize E(Y d), it is

sufficient to maximize the blip function at each stage.

Theorem 2.3.1 (Murphy (2003)). Assume that E(|Y | |HK , AK) is bounded almost surely.

15



Then

E(Y dopt) = max
d

E(Y d)

= max
d

E{E{. . .E{E{Y |hK , dK}|hK−1, dK−1} . . . |x1, d1}}

= E{E{. . .E{E{Y |hK , doptK }|hK−1, d
opt
K−1} . . . |x1, d

opt
1 }},

where doptk at each stage is computed as

doptk = argmax
ak

E{. . .E{E{Y |hK , doptK }|hK−1, d
opt
K−1} . . . |hk, ak}

= argmax
ak

E(Y ak−1,ak,d
opt
k+1|hk) (2.3)

= argmax
ak

γk(hk, ak).

By Theorem 2.3.1, to obtain the optimal treatment regimen, it is sufficient to compute

expression (2.3) at each stage (recursively). Moreover, by the definition of the blip function,

we have doptk = argmaxak γk(hk, ak). That is, it suffices to estimate the blip function in each

stage to find the optimal treatment regimen. The following Theorem 2.3.2 can be used to

estimate the blip parameter.

Theorem 2.3.2 (Robins (2004)). For treatment regimen d
opt

satisfies Assumptions 3 and 4,

E(Y ak,d
opt
k+1|hk, ak) = E(˜︁Yk|hk, ak), where ˜︁Yk = Y +

∑︁K
m=k+1 µm(hm, am) and µm(hm, am) =

γm (hm, d
opt
m )− γm (hm, am) .

By Theorem 2.3.2, E(˜︁Yk|hk, ak) = E(Y ak−1,0,d
opt
k+1|hk, ak) + γk (hk, ak) = fk(hk) + γk (hk, ak),

where fk(hk) ≡ E(Y ak−1,0,d
opt
k+1|hk, ak) is the baseline mean model at stage k, which is irrel-

evant for making treatment decisions (nuisance model). Hence our parameter of interest is

the blip parameter at each stage. The blip parameter ψk at stage k can be obtained using
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A-learning estimating equation:

n∑︂
i=1

hik(aik − ˆ︁πik)(︂˜︁yik − fk(hik; ˆ︁βk)− γk(hik, aik;ψk))︂ = 0,

where ˜︁yk is the “pseudo” outcome defined in Theorem 2.3.2 and can be estimated using

˜︁yk = y +
K∑︂

m=k+1

ˆ︁µm(hm, am) = y +
K∑︂

m=k+1

{︂
γm

(︂
hm, ˆ︁doptm ; ˆ︁ψm)︂− γm (︂hm, am; ˆ︁ψm)︂}︂ ,

where ˆ︁doptm = argmaxam γm(hm, am;
ˆ︁ψm).

2.4 Variable Selection in Regression: Regularization

In this section, I briefly introduce some methods of variable selection in the regression setting.

Throughout this section, we assume that the outcome Y ∈ Rn and each predictor Xj ∈ Rn

is centered, for j = 1, 2, . . . , p, so that the intercept can be eliminated; and we consider the

following model: Y = Xβ + ε, where β ∈ Rp and ε ∈ Rn is the standard Gaussian error

term.

In the regression setting, when the number of predictors is less then the number of observa-

tions, i.e., n > p, the regression coefficients can be estimated using least squares:

ˆ︁β = argmin
β
∥Y −Xβ∥22 = (XTX)−1XTY ,

where ∥·∥2 is the ℓ2 norm. However, when p > n or there exists multicollinearity in the design

matrix, the matrix XTX is singular, hence the solution ˆ︁β is not unique. To overcome this

kind of situation, and moreover, to simplify the model and enhance the predictability, as

well as to select significant variables to improve the interpretability, statisticians use the

idea of regularization (or penalization) by adding a penalty term to the loss function. Now
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the resulting estimator can be found by solving the following task:

ˆ︁β = argmin
β
{∥Y −Xβ∥22 + nλρ(|β|)}, (2.4)

where λ is the tuning parameter used to control sparsity, and ρ(| · |) is some penalty function.

A larger value of λ tends to shrink the coefficients to zero. In what follows we provide several

different examples of penalty functions and briefly describe their properties.

2.4.1 Variable Selection Consistency and Oracle Property

Let s be the number of non-zero components of the underlying true parameter β and denote

S as the set of indices of non-zero components for β, i.e., S = supp(β) = {j : βj ̸= 0}.

In the variable selection literature, the performance of the variable selection procedures are

usually measured by the false negative rate (the proportion of times a method wrongly

removed a truly important variable) and the false positive rate (the proportion of times a

method wrongly included a non-important variable). A variable selection technique is said

to have variable selection consistency if it has no false exclusion and no false inclusion, i.e.,

limn→∞ P (supp(ˆ︁β) = S) = 1.

Another property closely related to variable consistency is the oracle property (Fan and Li,

2001). Define the oracle estimator as ˆ︁βora = argminβS
∥Y −XSβS∥2, that is, assume that

the true support of the β was known in advance. Note that the oracle estimator is just

a conceptual idea that is used to help develop theoretical properties for variable selection

methods. An estimator is said to have the oracle property if it performs as well as the

oracle estimator. By the definition, oracle property implies the variable selection consistency

property.

2.4.2 Commonly Used Penalty Functions

I now introduce several commonly used penalty functions ρ(| · |) in Expression (2.4).
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Ridge Penalty (Tikhonov regularization) (Hoerl and Kennard, 1970): ρ(|β|) = ∥β∥22.

In the regression setting, the ridge estimator has an analytical solution: ˆ︁β = (XTX +

λIp)
−1XTY , where Ip is the identity matrix of size p. Because of the extra term λIp, the

expression (XTX+λIp) is invertible even in the scenario that n is smaller than p. However,

the solution of ridge regression cannot yield sparsity, i.e., estimators cannot be shrunk to 0,

thus it cannot perform variable selection.

The Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)

uses the ℓ1 penalty: ρ(|β|) = ∥β∥1. Because ℓ1 norm is non-differentiable at the origin,

LASSO can produce sparse solutions (Fan and Li, 2001). The LASSO can be solved by

efficient algorithms such as coordinate descent (Hastie et al., 2010), and Nesterov accelerated

gradient-based method (Beck and Teboulle, 2009). However, LASSO has some limitations:

first, it cannot handle highly correlated variables well (Zou and Hastie, 2005); second, the

LASSO estimator has a bias: in the case that the design matrix are orthonormal, the resulting

estimator will be shifted by a constant λ (Fan and Li, 2001).

The asymptotic theory for the LASSO has been studied in Fu and Knight (2000) when

the dimension p is fixed, where they showed that the LASSO estimator is consistent under

some assumptions. The non-asymptotic property of LASSO has been studied in Bickel

et al. (2009), where they showed that under the restricted eigenvalue (or restricted strong

convexity) condition, the LASSO error bound satisfies ∥ˆ︁β−β∥2 ≤ 3λ
√
ns/γ for some γ > 0,

given that the tuning parameter satisfies λ ≥ 2∥XTε/n∥∞; the prediction error ∥X(ˆ︁β −
β)∥22/n is bounded by the quantity 9sλ2/γ (Hastie et al., 2019). As for variable selection

performance, Zhao and Yu (2006) and Meinshausen and Bühlmann (2006) showed that under

the mutual incoherence (or irrepresentable) condition, LASSO achieved variable selection

consistency; however, due to the bias induced by the tuning parameter λ, LASSO does not

have the desired oracle property.
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The Elastic Net (Zou and Hastie, 2005) combines the ℓ1 and ℓ2 penalties:

ρ(|β|) = α∥β∥1 + (1− α)∥β∥22,

where α ∈ [0, 1] is a tuning parameter used to control the balance between the ℓ1 and ℓ2

norm, and thus can produce sparsity while offering good performance even when the features

are highly correlated. By the definition, the LASSO is the special case of the elastic net when

α = 1. When α = 0, the elastic net reduces to the ridge penalty.

The Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001) is a

non-convex penalty : ρ′(β) = λ{I(β ≤ λ) + (zλ−β)+
(z−1)λ

I(β > λ)}, for some β > 0 and z > 2,

which can produce sparse solutions and nearly unbiased estimators. However, the objective

function is now non-convex, which makes the optimization problem more challenging than

the ℓ1-based penalty. Fan and Li (2001) showed that the SCAD estimator has the oracle

property: as n→∞, ˆ︁βSc = 0 and
√
n(ˆ︁βS−βS)→d N (0, I S(β)), where the matrix I S ∈ Rs×s

is the fisher information matrix for βS.

The Adaptive LASSO (Zou, 2006): ρ(|β|) =
∑︁p

j=1 ˆ︁wj|βj|, where ˆ︁wj is the estimated

adaptive weights constructed using some initial estimator, e.g., ˆ︁wj = 1/|ˆ︁βolsj |, where the ˆ︁βolsj
is the ordinary least square (OLS) estimators. In this way, the coefficients are not forced

to be equally penalized in the ℓ1 penalty. As n goes to infinity, the weights corresponding

to unimportant variables go to infinity, which puts a large penalty on those variables, and

the weights corresponding to important variables converge to a finite constant. Thus, small

coefficients are removed, and large coefficients are unbiasedly estimated.

Zou (2006) proved that under the fixed p scenario, the adaptive LASSO also has the oracle

property. In the setting that the number of predictors are larger than the number of obser-

vations, the ordinary least squares estimators are not unique; Zou (2006) proposed to use

the ridge penalty to obtain the initial estimator. An alternate approach to obtain the initial

estimator is to use the marginal regression, i.e., the outcome Y is regressed separately on
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each predictor Xj. Huang et al. (2008) showed that under some conditions, the adaptive

LASSO still enjoys the oracle property even if the number of predictors p is much larger

than the sample size.

2.4.3 Tuning Parameter Selection

The choice of tuning parameter λ in Expression (2.4) plays a key role in the performance of

regularized regression: an inappropriately large or small value of λ will greatly weaken the

performance of the resulting estimator with respect to the estimation error, variable selection

results and prediction error. In this subsection, we briefly discuss different techniques to

select the tuning parameter in regularized regression.

K-fold Cross-validation : Cross-validation is argued to be the most widely used tuning pa-

rameter/model selection technique in modern statistics (Hastie et al., 2009). The procedure

is described as follows:

1. Split the dataset into K subsets randomly, such that in each subsample, the sample

size is n/K.

2. Choose one from the K subsample and use it as the test set. The other (K − 1)

subsets are used as training data. Compute the test error for each candidate model

(equivalently, for each λ).

3. Repeat the last step (K − 1) times such that each subsample has been used once as

the test set.

4. Average the test error over all the subsamples for all the models, and choose the model

that has the smallest average test error.

In practice, the typical choices of K is 5 or 10. An interesting special case is the n-fold

cross-validation, which is also known as the leave-one-out cross-validation. The average

test error is calculated as n−1
∑︁n

i=1(yi − ˆ︁y−i)2, where ˆ︁y−i is the fitted value of observation
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i using training data without the ith observation. Golub et al. (1979) showed that the

leave-one-out cross-validation error can be approximated using the formula n−1
∑︁n

i=1(yi −ˆ︁yi)2(1− p/n)−2, which can greatly reduce the burden of the computation of cross-validation.

This approximation formula is called the generalized cross-validation, and the best model is

selected in a way such that its corresponding generalized cross-validation error is the lowest

among the candidate models. Next I introduce two popular information-based approaches

to select the tuning parameter, which do not require the resampling procedure and hence

can reduce the computational burden substantially.

Akaike information criterion (AIC) (Akaike, 1974) is defined as AIC = −2l(ˆ︁θ) + 2p, where

l(ˆ︁θ) is the maximum log-likelihood of the model. In the linear regression setting, the AIC can

be written as log(∥Y −Xβ∥2/n)+2p/n. Stone (1977) showed that the AIC is asymptotically

equivalent to the leave-one-out cross-validation.

Similar to AIC, the Bayesian information criterion (BIC) (Schwarz, 1978) is defined as

−2l(ˆ︁θ) + p log n. A comparison of AIC and BIC can be found in Anderson and Burn-

ham (2004) and Yang (2005). In summary, if the true model is contained in the candidate

models, then using BIC will select the true model almost surely when the sample size goes

to infinity, which is a property that AIC does not have. On the other hand, in the case that

the true model is not contained in the candidate models, AIC outperforms BIC with respect

to model selection. Other examples of information criterion include Mallows’s Cp (Mallows,

2000) and risk inflation criterion (Foster and George, 1994).

2.5 Variable Selection for Interaction Models

As discussed in Section 2.3, DTRs are often estimated from models which include interactions

between treatment and a number of tailoring variables. In this section, I briefly discuss

penalized regression methods for interaction models.
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Consider the following model:

Y = ψ0A+

p∑︂
j=1

Xjβj +

p∑︂
j=1

ψj(A ◦Xj) + ε,

where “◦” is the element-wise vector multiplication. A straightforward way to perform vari-

able selection in this interaction model is to add one of the penalty functions discussed in

Section 2.4 to the loss function. However, this may yield a model in which the estimated

interaction term is nonzero while the corresponding main effects are zero, i.e., ψj ̸= 0 while

βj is shrunk to zero. Although there may be situations in which this could happen, Cox

(1984) argued that in an interaction model, the main effect term should always be selected

into the model before its corresponding interaction term; this is the so-called strong heredity

assumption (Chipman, 1996). Later we will see that the strong heredity assumption plays

a key role of developed methodological works in Chapters 3-5. As such, variable selection

with hierarchical structure is also important to consider. Indeed, this area is quite active

and well developed, see, for example, Zhao et al. (2009); Radchenko and James (2010); Bien

et al. (2013); Lim and Hastie (2015); Haris et al. (2016); Bhatnagar et al. (2020). Many

of the authors listed here induced hierarchical sparsity based on the group LASSO penalty,

but there were exceptions. Below I review a technique proposed in Choi et al. (2010), where

they use a simple reparametrization to achieve the strong heredity property.

The idea is to first introduce a new set of parameters τ = (τ1, τ2, ...τp) and reparametrize the

coefficients for the interaction terms ψj as a function of τj and the main effect parameters

βj and ψ0 such that ψj = ψ0τjβj. In this way, strong heredity can be met, and the following

loss function can be considered:

L(Y ;θ) =

⃦⃦⃦⃦
⃦⃦⃦
⎛⎜⎝Y − ψ0A−

p∑︂
j=1

Xjβj −
p∑︂
j=1

ψ0τjβj⏞ ⏟⏟ ⏞
ψj

(A ◦Xj)

⎞⎟⎠
⃦⃦⃦⃦
⃦⃦⃦
2

2

,

where θ = (β1, . . . , βp, ψ0, τ1, . . . , τp). The penalized estimator can be obtained by solving
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the minimization task ˆ︁θ = minθ L(Y ;θ) + λ(∥β∥1 + ∥τ∥1).

2.6 Variable Selection in DTRs

The study of DTRs, often characterized by situations in which there are many covariates and

a complex disease process for which competing treatment choices may have heterogeneous

effects, it is difficult to know which prognostic factors might be relevant to tailoring treat-

ment. Tailoring medications based on patients’ characteristics could improve symptoms.

However, tailoring treatment may result in an overly complex treatment rule making it diffi-

cult for treating physicians to assess or implement. Therefore, a more data-driven approach

of selecting these covariates might simplify and improve the estimated decision rules, and

variable selection with the objective of optimizing patients’ outcome by identifying useful

tailoring variables is important (Lu et al., 2013; Shi et al., 2018; Jeng et al., 2018).

Among the earliest work on selecting tailoring variables in DTRs, Lu et al. (2013) adopted

an adaptive LASSO (Zou, 2006) approach within the A-learning framework. The blip pa-

rameters can be estimated by minimizing the objective function

∥Y − f(x;β)− diag(A− ˆ︁π)Xψ∥2 + λ

p∑︂
j=1

ρ(|ψj|).

They showed that with a suitable choice of tuning parameter, the blip parameter estimators

are approximately unbiased in the penalized framework. Jeng et al. (2018) extended the

work of Lu et al. (2013) to the case where p is allowed to grow with the sample size n, and

Shi et al. (2016) generalized it to the situation where p is of the non-polynomial order of the

n, i.e., log p = O(nq) for some q < 1.

In singly-robust settings, Song et al. (2015) added the SCAD penalty to the value search

method of outcome weighted learning to incorporate sparsity and estimate the optimal treat-

ment decision, where the treatment rule can be viewed as a classification problem. Liang
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et al. (2017) added LASSO penalty into their proposed convex surrogate loss function to

select the variables. Shi et al. (2018) used the Dantzig selector (Candes and Tao, 2007)

to directly penalize the estimating equations of A-learning. Zhu et al. (2019) combined

Q-learning with SCAD penalty and conducted the hard-thresholding method proposed in

(Moodie and Richardson, 2010) to tackle the challenge of nonregularity. Wu et al. (2021b)

proposed a penalized single-index model in a high-dimensional semiparametric framework to

select the useful tailoring variables.

All the variable selection methods outlined above are designed for use in DTR estimation.

The differences between these approaches and the variable selection methods in prediction

setting are twofold. First, the goal differs: variable selection for DTRs aims to improve the

estimated decision rules rather than enhance the predictive power of the outcome (of course,

both emphasize the interpretability of the model). Second, in DTRs, interest is primarily

in effect modification, and hence the selection tends to be focused on the terms in the blip

model. In contrast, variable selection approaches in prediction setting usually seek to choose

from among all variables with no special status given to effect modifiers.

2.7 Summary

In this literature review, I first discussed some of the key components and assumptions for

causal inference. Then I described some estimation methods in observational studies for

causal inference and how to generalize them to a DTR setting. Finally, some penalized vari-

able selection methods for main effects, interaction models, and DTRs were reviewed.
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Chapter 3

Variable Selection in Regression-based

Estimation of Dynamic Treatment

Regimes

Preamble to Manuscript 1.

Doubly robust variable selection method for optimal treatment decision-making has been

studied in (Shi et al., 2018), where the authors used the Dantzig selector (Candes and

Tao, 2007) to penalize the A-learning estimating function. Motivated by this work, we

extend the doubly robust DTRs estimation method dynamic weighted ordinary least squares

regression (Wallace and Moodie, 2015) to a penalized framework, where estimation and

variable selection for DTRs can be conducted simultaneously, and the the double robustness

property is inherited from dynamic weighted ordinary least squares regression.

The corresponding manuscript was published in Biometrics (Bian et al., 2021), please see

https://doi.org/10.1111/biom.13608.
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Abstract

Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of

intervention, that aim to recommend effective treatments for individual patients according to

patient information history. DTRs can be estimated from models which include interactions

between treatment and a (typically small) number of covariates which are often chosen a

priori. However, with increasingly large and complex data being collected, it can be difficult

to know which prognostic factors might be relevant in the treatment rule. Therefore, a

more data-driven approach to select these covariates might improve the estimated decision

rules and simplify models to make them easier to interpret. We propose a variable selection

method for DTR estimation using penalized dynamic weighted least squares. Our method

has the strong heredity property, that is, an interaction term can be included in the model

only if the corresponding main terms have also been selected. We show our method has

both the double robustness property and the oracle property theoretically; and the newly

proposed method compares favorably with other variable selection approaches in numerical

studies. We further illustrate the proposed method on data from the Sequenced Treatment

Alternatives to Relieve Depression study.

28



3.1 Introduction

Dynamic treatment regimes (DTRs) (Chakraborty and Moodie, 2013), or adaptive treatment

strategies, consist of a sequence of decision rules that aim to improve individual patients’

health outcomes by tailoring medical treatment to each patient’s information. Statistical

methods can be used to identify optimal DTRs, constructing treatment rules tailored over

time to individual’s information that can optimize the expected patient outcome.

DTRs can be estimated from models that include interactions between treatment and covari-

ates, which are often chosen a priori. However, with many covariates and a complex disease

process, for which competing treatment choices have heterogeneous effects, it is difficult to

know which prognostic factors might be considered relevant in the treatment rule. A more

data-driven approach of selecting these covariates might improve the estimated decision rules

and simplify models to improve tractability. We are motivated by the Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) study (Fava et al., 2003), a randomized mul-

tistage trial that aimed to determine optimal treatments for patients with major depressive

disorder. With many of covariates such as demographic and clinical characteristics collected

throughout the study, it is challenging to select covariates useful for tailoring treatment from

among so many based on expert knowledge only. Thus, variable selection with the objective

of optimizing individualized treatment decisions becomes important.

Much of the DTR literature focuses on estimation; variable selection with the objective of

optimizing treatment decisions has been considered only occasionally. Gunter et al. (2011)

proposed a ranking method for variable selection in DTRs. Based on this approach, Fan et al.

(2016) developed the sequential advantage selection approach, which considers variables

already in the model when deciding whether to include a new variable by the additional

improvement provided by this variable. Lu et al. (2013) adopted adaptive LASSO (Zou,

2006) in the context of A-learning (Murphy, 2003), Shi et al. (2018) proposed a method

which used the Dantzig selector directly to penalize the estimating equations of A-learning
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and has the double robust property, that is, the estimators are consistent if either one of two

nuisance models is correct. The topic of variable selection in a general (not DTR) context has

seen many innovations (e.g., Tibshirani, 1996; Fan and Li, 2001). Gunter et al. (2011) noted

that most variable selection approaches focus on predictive performance, and thus may not

perform well in DTRs as these techniques may underestimate the importance of variables

that have small predictive ability but that play a significant role in decision making.

In this article, we follow the DTR estimation approach of dynamic ordinary least squares

regression (dWOLS) introduced by Wallace and Moodie (2015), an approach which requires

only some minor pre-computation and the implementation of standard weighted regression.

While having similarities to both Q-learning (Watkins, 1989) and G-estimation (Robins,

2004), it provides simplicity and intuitiveness similar to the former and benefits from the

double robustness of the latter although it is suitable only for linear decision rules. By adding

two penalty terms in the dWOLS model, we perform estimation and variable selection for

DTRs simultaneously. The rest of this article is organized as follows. In Section 2, we

introduce the proposed penalized dWOLS (pdWOLS) approach, followed by algorithmic

details and theoretical properties. Three simulation studies are given in Section 3. Finally,

we apply our method to the STAR*D trial data in Section 4.

3.2 Methodology

3.2.1 Introductory Concepts and Notation

We make assumptions to proceed with estimation of DTRs: (1) Stable unit treatment value

assumption (SUTVA) (Rubin, 1980): a patient’s potential outcome is not affected by other

patients’ treatment assignments. (2) Ignorability: ignorability or no unmeasured confound-

ing (Robins, 1997) specifies that for any possible treatment regimes, the stage k treatment

is independent of future potential covariates or outcome conditional on current patient his-

tory. (3) No interference, no measurement error, and all the individuals have complete
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follow-up.

We adopt the setup of Wallace and Moodie (2015). For a K-stages DTR, the following

notation is used, with lowercase being used for observed variables and uppercase for their

random counterparts: y denotes patient outcome (continuous) which is measured at one

point in time. The goal of DTRs is to make treatment decisions that can optimize (typically,

maximize) the outcome. The kth binary treatment decision is, e.g., ak = 1 for treatment,

ak = 0 for standard care. Patient information available at time k and prior to kth treatment

decision is denoted xk. The covariate matrix containing patient history prior to the kth

treatment decision is denoted hk; this history can include previous treatments a1, . . . , ak−1.

Finally, ak = (a1, a2, . . . , ak) is the vector of the first k treatment decisions, and ak =

(ak+1, ak+2, . . . , aK) is the vector of treatment decisions from stage k + 1 onward.

The blip (or contrast) function is defined as the difference in expected potential outcome

between patients who received treatment ak at stage k and patients who received a reference

treatment denoted, say ak = 0, with the same history and assuming they receive optimal

treatment after kth stage:

γk (hk, ak) = E
[︂
Y ak,a

opt
k+1 − Y ak−1,ak=0,aopt

k+1|Hk = hk

]︂
.

The regret function (Murphy, 2003) is the expected loss resulting from giving treatment ak

at stage k instead of the optimal treatment aoptk , assuming optimal treatment is received after

k-th stage: µk (hk, ak) = E
[︂
Y ak−1,a

opt
k − Y ak,a

opt
k+1|Hk = hk

]︂
. The blip and regret functions

correspond directly: µk (hk, ak) = γk
(︁
hk, a

opt
k

)︁
−γk (hk, ak). This can be leveraged to simplify

some expressions in later sections. Finally, we decompose the expected mean outcome into

two components: E [Y a|H = h;β,ψ] = f (h0;β) +
∑︁K

k=1 γk (hk, ak;ψk) , where f (h0;β)

and γk (hk, ak;ψk) are the so-called treatment-free and blip models, respectively, and h0 are

baseline covariates. The function f , being free of any terms relating to the active treatment

(ak = 1), is irrelevant for making decisions about optimal treatment selection. For instance,
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in a simple one-stage setting, we could assume that both f and γ are linear in form: f(x;β) =

β0 + β1x and γ(x, a;ψ) = a(ψ0 + ψ1x), and hence the estimated optimal treatment is ˆ︁aopt =
I( ˆ︁ψ0 + ˆ︁ψ1x > 0) where I(·) is the indicator function.

3.2.2 Dynamic weighted ordinary least squares

Dynamic weighted ordinary least squares uses a sequential regression approach, similar

to estimate the blip parameter ψk in the model for E [Y a|H = h;β,ψ], achieving dou-

ble robustness through weighting by a function of the propensity score (Rosenbaum and

Rubin, 1983). The weights must satisfy π(x)w(1,x) = (1 − π(x))w(0,x), where π(x) is

the propensity score and w(a,x) is the weight for a subject with treatment a and covari-

ates x. Wallace and Moodie (2015) suggested to use “absolute value” weights of the form

w(a,x) = |a − E[A|X = x]|, as these offered better efficiency than other alternatives con-

sidered, while yielding consistent estimators of blip parameters if either the treatment or

treatment-free model is correctly specified. Another assumption required by dWOLS is that

the treatment-free model must include the main effects for all covariates in the blip model

(unlike G-estimation, which can use an intercept-only treatment-free model). Violation of

this assumption, known as the strong heredity principle (Chipman, 1996), can lead to biased

estimators of blip parameters.

3.2.3 Penalized dWOLS

We first introduce our approach in a one-stage setting with a continuous outcome, let-

ting

Y = β01+ ψ0A+

p∑︂
j=1

Xjβj +

p∑︂
j=1

ψj(A ◦Xj) + ε, (3.1)

where 1 is the vector of 1’s, Y ∈ Rn is a continuous response measured on n individuals,

Xj ∈ Rn are the j-th covariates, Xi ∈ Rp are covariates of i-th individual, βj ∈ R are the
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corresponding parameters for the main effects of covariates, ψj ∈ R are the blip parameters

for j = 0, 1, . . . , p, A is the binary treatment indicator, “◦” is the element wise vector

multiplication, and ε is an error term. This model is a simplification of (Bhatnagar et al.,

2020), which considers an additive interaction regression model. In this posited model, the

treatment-free model is β0 +
∑︁p

j=1Xjβj and the blip model is ψ0A+
∑︁p

j=1 ψj(A ◦Xj). To

eliminate the intercept β0, throughout this section, we center the response variable and each

input variable in a weighted way, e.g., using Y −
∑︁n

i=1 wiYi∑︁n
i=1 wi

instead of Y as the outcome.

For a continuous response we use the weighted squared-error loss:

L(Y ;θ) =
1

2n

⃦⃦⃦⃦
⃦√W

(︄
Y − ψ0A−

p∑︂
j=1

Xjβj −
p∑︂
j=1

ψj(A ◦Xj)

)︄⃦⃦⃦⃦
⃦
2

2

,

where θ = (β1, . . . , βp, ψ0, . . . , ψp), and W = diag {w1(a,x), w2(a,x), . . . , wn(a,x)} is a

known n×n diagonal matrix with wi(a,x) the “absolute value” weight for the ith individual.

Similar to LASSO, we consider the following objective function that includes the ℓ1 penalty

for variable selection:

Q (θ) = L(Y ;θ) + λ(1− α)∥β∥1 + λα∥ψ∥1, (3.2)

where β = (β1, ..., βp) and ψ = (ψ1, ..., ψp), λ > 0 and α ∈ (0, 1) are tuning parameters, and

the solution is given by ˆ︁θ = argminθQ(θ). The parameter α controls the relative penalties

for the main effects and the interaction effects. Other choices of the penalty term include

the ℓ2 penalty, the elastic net (Zou and Hastie, 2005) and the SCAD penalty. The ℓ2 penalty

yields ridge regression and hence cannot produce a sparse solution, and the ℓ1 penalty cannot

handle highly correlated variables very well (Zou and Hastie, 2005); the elastic net combines

the ℓ1 and ℓ2 penalties, and thus can produce sparsity while offering good performance even

when the features are highly correlated. The SCAD is a non-convex penalty that can produce

sparse solutions and nearly unbiased estimators.

33



An issue with Equation (3.2) is that since no constraint is placed on the structure of the

model, it is possible that an estimated interaction term is nonzero while the corresponding

main effects are zero, which violates the strong heredity assumption. To remedy this, our

work is built on the strong heredity assumption, a constraint that is often used in practice

when estimating interaction effects. Under the strong heredity assumption, an interaction

term can be estimated to be non-zero if its corresponding main effects are estimated to be

non-zero, whereas a non-zero main effect does not necessarily imply a non-zero interaction

term. In DTR analysis, it is most common that there are more confounders than there

are potential tailoring variables. Following Choi et al. (2010), we introduce a new set of

parameters τ = (τ1, τ2, ...τp) and reparametrize the coefficients for the interaction terms ψj

as a function of τj and the main effect parameters βj and ψ0: ψj = ψ0τjβj. In this way,

strong heredity can be met, and we consider the following model:

L∗(Y ;θ) =
1

2n

⃦⃦⃦⃦
⃦⃦⃦√W

⎛⎜⎝Y − ψ0A−
p∑︂
j=1

Xjβj −
p∑︂
j=1

ψ0τjβj⏞ ⏟⏟ ⏞
ψj

(A ◦Xj)

⎞⎟⎠
⃦⃦⃦⃦
⃦⃦⃦
2

2

,

where now θ = (β1, . . . , βp, ψ0, τ1, . . . , τp). This reparametrized model is nonlinear as it

involves products of parameters, and the objective function is expressed as:

Q (θ) = L∗(Y ;θ) + λ(1− α)∥β∥1 + λα∥τ∥1. (3.3)

3.2.4 Algorithm Details

In this section, we describe a blockwise coordinate descent algorithm (Friedman et al., 2007)

for fitting the weighted least-squares version of the model in Equation (3.3). “Blockwise”

means we breakdown the optimization problem into sub-problems, i.e., we fix the interaction

terms τ and solve for the main effects ψ0 and β and vice versa. Following (Hastie et al.,

2010), we fix the value for the tuning parameter α and minimize the objective function over
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a decreasing sequence of λ values (λmax > . . . > λmin).

Denote the n-dimensional residual column vector R = Y − ˆ︁Y , where ˆ︁Y is the current fitted

value of E(Y ) under the posited model. The subgradient equations are given by

∂Q

∂ψ0

= − 1

n
(A+

p∑︂
j=1

τjβjA ◦Xj)
⊤WR = 0 (3.4)

∂Q

∂βj
= − 1

n
(Xj + τjψ0A ◦Xj)

⊤ WR+ λ(1− α)s1 = 0 (3.5)

∂Q

∂τj
= − 1

n
(ψ0βjA ◦Xj)

⊤ WR+ λαs2 = 0 (3.6)

where s1 and s2 are subgradients of the ℓ1-norm, i.e., s1 ∈ sign (βj) if βj ̸= 0, s1 ∈ [−1, 1] if

βj = 0; s2 ∈ sign (τj) if τj ̸= 0, s2 ∈ [−1, 1] if τj = 0.

Define the partial residuals, without the jth predictor for j = 1, . . . , p, as

R(−j) = Y −
∑︂
ℓ̸=j

Xℓβℓ − ψ0A−
∑︂
ℓ̸=j

τℓψ0βℓ (A ◦Xℓ) ,

the partial residual without A as R(−A) = Y −
∑︁p

j=1Xjβj and the partial residual without

the jth interaction for j = 1, . . . , p, as

R(−jA) = Y −
p∑︂
j=1

Xjβj − ψ0A−
∑︂
ℓ̸=j

τℓψ0βℓ (A ◦Xℓ) .

From the subgradient Equations (3.4)–(3.6) we see that

ˆ︁ψ0 =

(︂
A+

∑︁p
j=1 τjβj (A ◦Xj)

)︂⊤
WR(−A)(︂

A+
∑︁p

j=1 τjβj (A ◦Xj)
)︂⊤

W
(︂
A+

∑︁p
j=1 τjβj (A ◦Xj)

)︂

ˆ︁βj = S
(︂
(Xj + τjψ0 (A ◦Xj))

⊤ WR−j, n · λ(1− α)
)︂

(Xj + τjψ0 (A ◦Xj))
⊤ W (Xj + τjψ0 (A ◦Xj))
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ˆ︁τj = S
(︂
(ψ0βj (A ◦Xj))

⊤ WR(−jA), n · λα
)︂

(ψ0βj (A ◦Xj))
⊤ W (ψ0βj (A ◦Xj))

where S(x, u) is the soft-thresholding operator defined as S(x, u) = sign(x)(|x| − u)+ (x+ is

the maximum value of x and 0).

The strong heredity assumption means that finding the λ which shrinks all coefficients to

0, is reduced to finding the smallest λ such that all main effect coefficients are shrunk to 0.

From the subgradient Equation (3.5), we see that βj = 0 is a solution if

⃓⃓⃓⃓
1

n
(Xj + τjψ0 (A ◦Xj))

⊤R(−j)

⃓⃓⃓⃓
≤ λ(1− α).

From the subgradient Equation (3.6), we see that τj = 0 is a solution if

⃓⃓⃓⃓
1

n
(ψ0 (A ◦Xj) βj)

⊤R(−jA)

⃓⃓⃓⃓
≤ λα.

Thus the strong heredity assumption implies that the parameter vector (β1, . . . , βp, ψ1,

. . . , ψp) will be entirely equal to 0 if (β1, . . . , βp) = 0. Therefore, the smallest value of λ

for which the entire parameter vector reduces to λmax = 1
n(1−α) maxj

{︂⃓⃓⃓
(Xj)

⊤R(−j)

⃓⃓⃓}︂
. The

computational algorithm to fit all the parameters in a sequence of loops is further detailed

in the Supplementary Material (Algorithm 1).

3.2.5 Multiple Intervals Estimation

Knowing how to estimate the blip parameters in a one-stage setting, we now describe how the

pdWOLS approach works in a K-stages setting. Starting from the last stage, the estimation

procedure is applied to the K-th stage observed outcome yK , treatment aK , and covariates

xK . The estimated blip parameters are obtained by maximizing the objective function in

Equation (3.3) and the estimated rules ˆ︁aoptK = I( ˆ︁ψ0K +xK ˆ︁ψK > 0), where I is the indicator

function. The (K-1)-th stage outcome is based on “optimal responses”, that is, the estimation
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procedure is applied to the pseudo-outcome ˜︁yk−1 = yK + µK(xK , aK ; ˆ︁ψK), treatment aK−1

and covariates xK−1, where µK(xK , aK ; ˆ︁ψK) = γK(xK ,ˆ︁aoptK ; ˆ︁ψK) − γK(xK , aK ; ˆ︁ψK) is the

regret function at stage K. The pseudo-outcome, ˜︁yK−1, is optimal since the regret is added

to the observed outcome yK . The same procedure continues, recursively working backwards,

until stage 1 estimation, such that the blip parameters across all the stages are obtained and

all treatment decisions can be made.

3.2.6 Asymptotic Properties of the pdWOLS estimator

We now show that when the number of predictors, p, is fixed and the sample size n approaches

infinity, the pdWOLS estimator has both the double robustness and oracle properties (Fan

and Li, 2001) under several assumptions. Following the adaptive LASSO (Zou, 2006), we

add adaptive weights (or penalty factors) to the objective function (3.3) to obtain

L∗(Y ;θ) + λ(1− α)
p∑︂
j=1

wmainj |βj|+ λα

p∑︂
j=1

wintj |τj|, (3.7)

where wmainj and wintj are adaptive weights of main effect and interaction terms respectively,

in this way, the coefficients are not forced to be equally penalized in the ℓ1 penalty. For

instance, we can choose wmainj =
⃓⃓⃓ ˆ︁βwlsj

⃓⃓⃓−1

and wintj =

⃓⃓⃓⃓ ˆ︁βwls
j

ˆ︁ψwls
0ˆ︁ψwls

j

⃓⃓⃓⃓
for penalty factors, whereˆ︁βwlsj and ˆ︁ψwlsj are unpenalized weighted least square estimates of the pdWOLS model. As

n goes to infinity, the weights corresponding to unimportant variables go to infinity, which

puts a large penalty on those variables, and the weights corresponding to important variables

converge to a finite constant. Thus, small coefficients are removed, and large coefficients

are unbiasedly estimated. Without loss of generality, we can rewrite Equation (3.7) as

L∗(Y ;θ) +
∑︁p

j=1 λ
β
j |βj|+

∑︁p
j=1 λ

τ
j |τj|, where λβj = λ(1− α)wmainj and λτj = λαwintj .

We assume that the true model follows the strong heredity assumption described above

and regularity conditions detailed in the Supplemental Material hold. Note that the regu-

larity conditions of pdWOLS are for quasi-likelihood since the loss function contains data-
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dependent weights and the treatment-free model may be misspecified. We describe the

asymptotic properties of pdWOLS in the following theorems; proofs are given in the Sup-

plemental Material. Assume that the observations V i, i = 1, . . . , n are independent and

identically distributed with probability density g(V ) with respect to a measure ν. Denote

the negative quasi-log-likelihood as L∗
n(V ;θ) = −

∑︁n
i=1 log h(V i,θ) (i.e., the dWOLS loss

function), where h is the posited family of densities. Let θ∗ be the underlying true parame-

ters, and θ∗ the minimizer of the Kullback–Leibler divergence between h and g (i.e., θ∗ is the

closest point to θ∗ in the posited family of densities). Define B1 as the indices of non-zero

components for main effects and B2 as the indices of non-zero components for interaction

terms such that

B1 = {j : β∗j ̸= 0}, B2 = {j + p+ 1 : τ∗j ̸= 0}, B = B1 ∪B2,

where we define τ∗ in a way such that τ∗j =
ψ∗j

ψ∗0β∗j
if β∗j ̸= 0 and 0 otherwise, since we assume

the strong heredity property holds. Let nan be the maximum value of the tuning parameters

(λβ, λτ ) such that the corresponding coefficients are non-zero and nbn be the minimum value

of the tuning parameters such that the corresponding coefficients are zero. For λτ we only

consider the index m such that β∗m ̸= 0 and ψ∗m = 0 (i.e., m ∈ B1):

an =
1

n
max{λβj , λτm : j ∈ B1,m+ p+ 1 ∈ B2}

bn =
1

n
min{λβj , λτm : j ∈ Bc

1,m+ p+ 1 ∈ Bc
2 such that β∗m ̸= 0}.

Theorem 3.2.1. Correct Sparsity: Assume that
√
nan = O(1) and

√
nbn → ∞, then there

exists a local minimizer ˆ︁θn of Equation (3.7) such that ∥ˆ︁θn−θ∗∥ = Op(n
− 1

2 +an). Moreover,

we have P (ˆ︁θBc = 0)→ 1.
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Theorem 3.2.2. Asymptotic Normality: Assume that
√
nan → 0 and

√
nbn →∞, then

√
n(ˆ︁θB − θ∗B)→d N

(︁
0,J−1(θ∗B)I(θ∗B)J

−1(θ∗B)
)︁

where J(θ) = −Eθ
[︂
∂2log h(V;θ)

∂θ∂θT

]︂
and I(θ) = Eθ

[︃(︂
∂log h(V;θ)

∂θ

)︂(︂
∂log h(V;θ)

∂θ

)︂T]︃
.

Remark 3.2.1. Oracle properties of ˆ︁θn are established such that the estimator converges to

some population parameter instead of the underlying true parameter θ∗. Also, the asymptotic

covariance matrix no longer equals the inverse of the Fisher’s information matrix. If the

treatment-free model is correctly specified, then ˆ︁θn will converge to θ∗. To mimic the oracle,

we further assume that all the observational weights are 1 (e.g., as in a randomized study).

Corollary 3.2.1. Double Robustness: Assume that the blip function is correctly specified

and SUTVA and ignorability described in Section 3.2.1 hold, then the resulting blip parame-

ter estimators of pdWOLS are doubly-robust; the estimators are consistent (i.e., ψ∗ = ψ∗)

if either the treatment model or the treatment-free model is correct. Note that correct spec-

ification of the blip model permits over-specification - that is, the true blip model may be

contained within the analyst-specified model. From Theorems 3.2.1 and 3.2.2, pdWOLS has

the same performance as dWOLS, and hence it has the double robustness property.

Remark 3.2.2. There are no consistency guarantees for the first-stage estimator if an im-

portant confounder is missing in the second-stage model, as this violates an assumption at

the second stage such that the estimator of second-stage parameters (subsequently plugged

into the first-stage estimating function) may be biased. However, if estimation at the second

stage is consistent (no unmeasured confounding, at least one of the nuisance models correct,

etc), then double-robustness at the first stage can be assured under key assumptions.
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3.3 Simulation Studies

In this section, we first illustrate the double robustness of pdWOLS and compare its perfor-

mance to competing approaches through a number of simulations; then we implement the

proposed method in a high dimensional setting where p > n. Lastly, we present simulation

results for a two-stage setting. The tuning parameter α was set to 0.5 for all simulations, and

λ was selected using four-fold cross-validation to reduce the computational burden.

In addition to assuming that there are no unmeasured confounders, we assume that the

number of confounders is relatively small, so that the propensity score model can be fitted

using logistic regression with the entire vector X. The propensity score is used to ensure

balance between treatment groups. If model misspecification is a concern, one can use

data-adaptive techniques, however, care must be taken in using data-adaptive approaches to

estimating the propensity score to avoid the risk of selecting instruments, i.e., variables that

only predict treatment (Shortreed and Ertefaie, 2017). To consider a general framework,

main effects are penalized in Equation (3.3). However, in a low dimensional setting, we may

want to retain all available covariates in the outcome model to ensure no weak confounders

are erroneously omitted. In such cases, we can choose to not penalize the main effects,

setting the corresponding penalty factors in Equation (3.7) to zero.

3.3.1 Competing Methods

We compare the variable selection results, error rate (in terms of the estimated rules as

compared to the true optimal treatment), and out-of-sample value (i.e., expected outcome)

under the estimated rules of pdWOLS with Q-learning combined with LASSO (Blatt et al.,

2004) and penalized A-Learning (PAL) (Shi et al., 2018). Q-learning is a sequential regression

approach to DTR estimation; relying only on outcome models; it is not doubly robust.

PAL first estimates the treatment-free and propensity score models, then uses the Dantzig

selector (Candes and Tao, 2007) to penalize the estimating equations of A-learning: ˆ︁ψ =
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argminψ ∥ψ∥1 subject to ∥XTdiag(A− ˆ︁π)(Y −f(x; ˆ︁β)−γ(x, a;ψ))∥∞ ≤ nλpal, where λpal

is the tuning parameter and ˆ︁π is the estimated propensity score.

LASSO was implemented using the R package glmnet (Hastie et al., 2010) with λLASSO

selected via four-fold cross-validation. PAL was implemented using the R package ITRSelect

(Shi et al., 2018) with the tuning parameter λpal selected via the Bayesian Information

Criteria (BIC) (Schwarz, 1978). The main effect of treatment A is not penalized in any of

the three methods. We also present unpenalized estimates of the blip parameters from a

two-step approach: that is, after variable selection, the blip parameters are re-calculated by

solving the unpenalized weighted least squares via Q-learning, dWOLS, and A-learning with

the selected variables, which we term refitted procedure.

3.3.2 Experiments Examining Double Robustness Property

We begin with a simple one-stage example with the following data generation procedure:

Step 1: Generate 10 covariates (X1−X10) whereX are multivariate normal with zero mean,

unit variance, and correlation Corr(Xj, Xk) = 0.25|j−k| for j, k = 1, 2, . . . , 10.

Step 2: Generate treatment according to the model:

P (A = 1|X1, X2) =
exp(1 + x1 + x2)

1 + exp(1 + x1 + x2)
.

Step 3: Set the blip function, and hence the optimal treatment strategy, to depend only on

X1: γ(x, a;ψ) = a(ψ0 + ψ1x1) for ψ0 = 1, ψ1 = −1.5.

Step 4: Set the treatment-free model to f(x;β) = 0.5− 0.6ex1 − 2x1 − 2x2.

Step 5: Generate the outcome Y ∼ N(f(x;β) + γ(x, a;ψ), 1).

We apply estimation and variable selection approaches with a variety of sample sizes (100,

500, and 2000) in four scenarios, where neither, one, or both of the treatment and treatment-
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free models is correctly specified. Specifically, the scenarios are: Scenario 1 (neither treat-

ment nor treatment-free is correct): Regress Y on (1,X,A,AX), and set all observational

weights to 1 (similar to assuming a null propensity score model). As this scenario fails to meet

the assumptions of correct model specification, consistency is not assured for any approach.

Scenario 2 (treatment correct, treatment-free incorrect): Regress Y on (1,X,A,AX), but

fit a correctly specified propensity score model whose parameters are estimated via lo-

gistic regression. Scenario 3 (treatment incorrect, treatment-free correct): Regress Y on

(1, eX1 ,X,A,AeX1 ,AX), so that the treatment-free model is correctly specified but - as in

scenario 1 - set all observational weights to 1. Scenario 4 (both treatment and treatment-free

are correct): Regress Y on (1, eX1 ,X,A,AeX1 ,AX), and estimate the parameters using a

correctly specified propensity score.

Since Q-learning does not incorporate any propensity score adjustments, scenarios 1 and

2 yield identical estimates, as do scenarios 3 and scenario 4. All the three methods have

the same treatment-free models and the same blip functions to be estimated in the four

scenarios. Across all scenarios where at least one nuisance model was correctly specified,

refitted estimators performed better than their penalized counterparts in terms of bias (see

Figure S1 in the Supplementary Material). When at least one of the treatment or treatment-

free models was correctly specified, the blip parameter estimators were consistent for refitted

pdWOLS. When the treatment-free model was correct (Scenarios 3 and 4), the refitted Q-

learning (LASSO) estimators were consistent, as expected. Surprisingly, PAL failed when

the treatment model was incorrect (Scenario 3). This result was not anticipated since PAL is

a double robust method, although previous simulations have not considered its performance

in terms of parameter estimates (Shi et al., 2018).

The variable selection results for optimal treatment decisions are presented in Table 3.1.

In Scenarios 2-4, the important tailoring variable was correctly selected by both pdWOLS

and Q-learning (LASSO). PAL failed in scenario 3. However, the false positive rates of
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pdWOLS and Q-learning (LASSO) were higher than that of PAL in all scenarios: for exam-

ple, in Scenario 3, both LASSO and pdWOLS falsely selected the variable AeX1 72% of the

time.

Table 3.1 also summarizes the error rates (i.e., 1
n

∑︁n
i=1 I(a

opt
i ̸= ˆ︁ai)) of the estimated optimal

treatment regimes for treatment decision making and value functions. The average value

function and the error rates were computed over a testing set of size 10,000 (i.e., a dataset

generated according to the process described above in all respects except that treatment was

allocated according to the estimated rule). Both the error rate and the value of pdWOLS and

Q-learning with LASSO were very close; pdWOLS outperformed other methods in Scenario

2, while Q-learning with LASSO had the best performance in Scenarios 3 and 4. The per-

formance of the refitted versions of pdWOLS and Q-learning were similar; the performance

of PAL was uniformly worse than the other methods performed without refitting, however

refitting PAL substantially improved its performance.
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Table 3.1: Variable selection rate (%) of the blip parameters, error rate (ER, %) and value
function over a testing set of size 10,000 under the estimated decision rules using pdWOLS,
Q-learning with LASSO (QL), PAL and their refitted versions (n = 500, 400 simulations).
The main effect of treatment is not penalized (and hence is always selected).

Scenario 2 Scenario 3 Scenario 4

pdWOLS QL PAL pdWOLS QL PAL pdWOLS QL PAL

AeX1 - - - 72 14 72 42 14 0
AX∗

1 100 100 99 100 100 33 100 100 100
AX2 53 51 2 73 44 3 52 44 1
AX3 2 26 2 6 23 0 2 23 1
AX4 4 28 2 5 24 1 3 24 1
AX5 4 29 4 4 26 2 2 26 2
AX6 2 26 2 4 21 1 1 21 1
AX7 3 25 2 5 22 1 2 22 0
AX8 3 27 3 6 23 1 2 23 0
AX9 2 27 3 6 24 1 2 24 1
AX10 2 28 2 5 22 1 1 22 1
ER 3.9 9.8 22.9 5.5 3.4 12.0 4.2 3.4 23.4
ER (Refitted) 4.5 8.5 4.9 3.4 3.6 8.7 3.6 3.6 3.8
Value 0.6 0.6 0.5 0.6 0.7 0.6 0.6 0.7 0.5
Value (Refitted) 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.7 0.6

* Term with a non-zero coefficient in the data-generating model
Note that AeX1 was not included in the blip model for scenario 2

3.3.3 Simulations Evaluating Performance in a High-dimensional

Setting

Here we present the performance of the new procedure in a high dimensional setting with

p = 400 and n = 200. The data generation procedure is the same as in Section 3.2, except

that we now set P (A = 1) to 0.5 for everyone such that no confounding is present. The

blip function is γ(x, a;ψ) = a(1 − 1.5x1) where ψ0 = 1, ψ1 = −1.5 and the treatment-free

model is f(x;β) = 0.5 − 0.6ex1 − 2x1 − 2x2. We regress Y on (1,X,A,AX) where the

treatment-free model is misspecified.

Figure 3.1 summarizes the blip parameter estimates in the high dimensional setting. Like

before, for all the methods, refitted estimators improved the performance of their penalized
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counterparts. For ψ0, Q-learning with LASSO and its refitted estimator had the smallest

bias; as for ψ1, pdWOLS and its refitted version had the smallest bias.

Figure 3.1: Estimates of blip parameters using pdWOLS, Q-learning (LASSO), PAL and
their refitted versions with sample size 200 (400 simulations) in a high dimensional (p = 400)
setting. The true value is represented by the dotted line.

Table 3.2 shows false negative rates (the proportion of times a method wrongly removed

a truly important variable), false positive rates (the proportion of times a method wrongly

included a non-important variable), error rates, and the value under the estimated rules of the

three methods. The average value function and the error rates were computed over a testing

set of size 10,000. Q-learning with LASSO achieved a zero false negative rate; pdWOLS and

refitted pdWOLS had the lowest false positive rate, error rate, and the highest value, which

indicates favorable performance of the newly proposed method. However, unlike before, even

the refitted PAL estimator had a smaller bias than the PAL estimator; refitted PAL did not

improve the performance of PAL with respect to value and error rate, which shows that
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smaller bias in estimation of blip parameters does not necessarily translate into a better

performance of the estimated regime.

Table 3.2: False negative (FN, %) rate and false positive (FP, %) rate of variable selection
results of the blip parameters, error rate (ER, %) and value using pdWOLS, Q-learning with
LASSO (QL), PAL and their refitted versions with sample size 200 (400 simulations) in a
high dimensional (p = 400) setting. The main effect of treatment is not penalized (and hence
is always selected).

FN FP ER Value

pdWOLS 0.3 0.2 12.8 0.7
QL (LASSO) 0.0 1.4 11.3 0.7
PAL 2.6 0.4 24.6 0.6
RpdWOLS 0.3 0.2 9.9 0.7
RQL (LASSO) 0.0 1.4 16.8 0.6
RPAL 2.6 0.4 25.1 0.5

3.3.4 Simulations Evaluating Performance in Multi-stage Setting

In this subsection, we demonstrate the performance of the proposed pdWOLS approach when

treatment decisions are made at multiple stages. We consider two different data generation

procedures in order to follow previous literature. Setting 1, in which the true treatment-

free model does not have an analytical closed-form (misspecified treatment-free model) is

presented here. Setting 2, in which the treatment-free models can be computed analytically,

is available in the Supplemental Material.

We follow the data generation procedure in (Wallace and Moodie, 2015) with a sample size

of 1000:

Step 1: Generate 10 covariates at stage 1: Xj1 ∼ N(0, 1) for j = 1, 2, ...10.

Step 2: Generate treatment at stage k according to

P (Ak = 1|X1k, X2k) =
exp(x1k − x2k)

1 + exp(x1k − x2k)
,
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for k = 1, 2.

Step 3: Generate covariates at stage 2, such that X12 ∼ N(0.5A1 + 0.8X11, 1) and Xj2 ∼

N(0.8Xj1, 1), for j = 2, 3, ...10.

Step 4: Set the blip functions to be γ1(x1, a1;ψ1) = a1(0.8 − 2x11) and γ2(x2, a2;ψ2) =

a2(1− 1.5x12), so that ψ01 = 0.8, ψ11 = −2, ψ02 = 1 and ψ12 = −1.5.

Step 5: Generate the outcome under optimal treatment according to yopt = 0.5+2x11+2x12.

The observed outcome is generated such that Y ∼ N(yopt − µ1 − µ2, 1) where µ1 and µ2 are

regret function at stages 1 and 2, defined through the blip functions in step 4.

Recall, that a backward recursive approach can be used to make the treatment decision.

Starting from the last stage, the estimation procedure is applied to the observed outcome

y. The estimated blip parameters and the estimated rules, ˆ︁aopt2 , are obtained. Estimation

then proceeds to stage 1, where again the estimation procedure is applied to a pseudo-

outcome which represents the expected effect of the observed stage 2 treatment with the

optimal stage 2 treatment. In pdWOLS, the pseudo-outcome is ˜︁y1 = y + γ2(x2,ˆ︁aopt2 ; ˆ︁ψ2) −

γ2(x2, a2; ˆ︁ψ2), where as for Q-learning with LASSO, the pseudo-outcome is ˜︁yQ1 = f(x2; ˆ︁β2)+

γ2(x2,ˆ︁aopt2 ; ˆ︁ψ2).

In this setting, the treatment free model in the second stage of estimation aims to represent

yopt − µ1 − aopt2 (1 − 1.5x12) which depends on aopt2 , which in turn is a function of second

stage parameters ψ2 and covariate x2. The treatment free model in this setting cannot

be computed analytically. We nevertheless assumed that the treatment-free models were

linear in the covariates measured at their respective stages, and thus in these simulations,

it is always the case that the treatment-free models were misspecified. For those methods

relying on a propensity score, the treatment models were fit using correctly-specified logistic

regression models at each stage using all covariates measured at that stage.

Figure 3.2 summarizes the estimates of blip parameters using the three methods in the two-
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stage Setting 1. As expected, pdWOLS and PAL work when at least one of the treatment

or treatment-free models is correctly specified (in this case, the treatment model is correctly

specified), and Q-learning with LASSO failed, since the treatment free model at both stages

are misspecified. For pdWOLS and PAL, refitted estimators were nearly unbiased, and they

performed better than their penalized counterparts. At stage 1, the bias of PAL estimators

decreased to almost zero after refitting. Thus, PAL exhibits excellent performance in variable

selection but requires the additional step of refitting for accurate estimation. Unlike PAL,

pdWOLS can have small bias even without the refitting procedure.

Figure 3.2: Estimates of blip parameters using pdWOLS, Q-learning with LASSO (QL),
PAL and their refitted versions with sample size 1000 (400 simulations) in two-stage Setting
1. The true value is represented by the dotted line.

Table 3.3 presents the variable selection results for optimal treatment decisions. The im-

portant tailoring variables were selected by all methods at both stages. At stage 2, the

false positive rate of pdWOLS was much smaller than other two methods. For instance, the
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selection frequency of AX2 − AX10 were all less than 5%. Note that at stage 1, because

the pseudo-outcomes were different for refitted version and their penalized counterparts, the

variables selected by the procedures may differ between penalized and unpenalized imple-

mentations.

Table 3.3: Variable selection rate (%) of the blip parameters using pdWOLS, Q-learning
with LASSO (QL), PAL and their refitted versions with sample size 1000 (400 simulations)
in two-stage Setting 1. The main effect of treatment is not penalized (and hence is always
selected).

Stage 1 Stage 2

pdWOLS QL PAL RpdWOLS RQL RPAL pdWOLS QL PAL

AX1 * 100 100 100 100 100 100 100 100 100
AX2 49 32 1 45 33 2 22 44 33
AX3 4 28 2 2 34 2 2 41 38
AX4 3 30 0 2 34 2 3 45 37
AX5 3 25 1 2 29 2 2 40 40
AX6 4 25 1 2 29 1 3 40 40
AX7 4 27 0 2 33 2 3 40 38
AX8 4 28 0 2 30 1 2 42 38
AX9 4 26 1 2 32 4 2 41 36
AX10 3 29 2 2 32 2 2 44 38

* Term with a non-zero coefficient in the data-generating model

Table 3.4 summarizes the error rates of the estimated optimal treatment decisions and value

functions, computed over a testing set of size 10,000. As before, refitted methods had lower

error rate and higher value functions than their penalized counterparts. Penalized dynamic

ordinary least squares outperformed other methods at both stages with respect to the error

rate and value function; refitting greatly improved the performance of PAL.
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Table 3.4: Error Rate (%) and value function using pdWOLS, Q-learning with LASSO (QL),
PAL and their refitted versions with sample size 1000 (400 simulations) in two-stage Setting
1. The total error rate (TER, %) in the estimated optimal treatment across both stages as
well as the stage-wise error rates are shown.

TER ER (Stage 1) ER (Stage 2) Value

pdWOLS 9.2 2.2 7.2 0.4
QL (LASSO) 52.8 50.4 4.6 -0.6
PAL 22.4 14.5 9.8 0.4
RpdWOLS 6.5 2.0 4.6 0.5
RQL (LASSO) 58.0 54.8 6.1 -0.7
RPAL 11.3 2.1 9.5 0.4

Additionally, we compared the choice of tuning parameter α, in order to assess sensitivity

of the results to this choice; we considered values of 0.2, 0.5 (as in the analyses above), and

0.8. The results are presented in the Supplemental Material (Figure S4, Tables S3 and S4).

To briefly summarize, among all the α’s, the bias and the variance of the estimators, the

error rate and the estimated value were virtually identical. However, for variable selection,

as α increased, the false positive rate decreased notably (See Table S3 in the Supplemental

Material), as a larger α will put more penalty on the interaction terms.

3.4 Application to STAR*D Study

In this section, we apply pdWOLS to STAR*D (Fava et al., 2003), a multistage randomized

trial that aimed to determine effective treatments for patients with major depressive disor-

der, where severity was measured using the Quick Inventory of Depressive Symptomatology

(QIDS) score (Rush et al., 2003). The study was divided into four levels (one of which had

two sub-levels); patients had different treatments at each level and would exit the study

upon achieving remission. See the Supplemental Materials for details.

We follow Wallace et al. (2019) and Chakraborty et al. (2013) to perform two-stage analysis

based on the use of a selective serotonin reuptake inhibitor (SSRI), with negative QIDS score
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as the outcome. Three tailoring variables were considered: (1) the QIDS score measured at

the beginning of each level (denoted by qk at stage k); (2) change in QIDS score divided

by the time in the previous level (QIDS slope, denoted by sk at stage k); and (3) patient

preference measured prior to receiving treatment, which is a binary variable (denoted by pk

at stage k). We also generated d iid noise variables at each stage: noise variables at stage 1

were generated using Xj1 ∼ N(0, 1) and at stage 2, Xj2 ∼ N(log|Xj1|, 1) for j = 1, 2, . . . , d.

We consider three scenarios for the analysis where d = 5, 10, 20 respectively.

Logistic regression was used to estimate the treatment model adjusting for patient preference

only, following the trial design, and weights w = |A− E(A|X)| were used in the analysis.

As in Wallace et al. (2019), the treatment-free models were linear in (q1, s1, p1) at stage 1

and (a1, q2, s2, p2) at stage 2. Linear blip models with covariates (q1, s1, p1) at stage 1 and

(a1, q2, s2, p2) at stage 2 were considered. Note in Wallace et al. (2019), a1 and p2 were not

included in the blip models to avoid the multicollinearity; this is not necessary in pdWOLS,

and hence our model specifications differ.

As in our simulations, the main effect of treatment was not penalized. In all three scenarios

and both stages, pdWOLS returned the intercept-only blip model, suggesting that the opti-

mal treatments are treat with SSRI (A1 = 1) and treat with a non-SSRI (A2 = 0) at stage

1 and 2, respectively, for all patients. Penalized A-learning, in contrast, was sensitive to the

number of noise variables: when d = 5, PAL selected aj, qj, sj, pj for both stages j = 1, 2.

When d = 10, PAL selected a2 at stage 2 and a1, q1, s1, p1 at stage 1, and when d = 20, PAL

selected a2 at stage 2 and a1, p1 at stage 1. Chakraborty et al. (2013) and Wallace et al.

(2019) found that no stage 2 blip covariates were statistically significant (consistent with

pdWOLS), while at stage 1, they found only treatment preference was significant.

The false positive rates of PAL at stage 2 and 1 were 100%, 40% (d = 5), 10%, 50% (d = 10),

and 10%, 45% (d = 20), respectively; for pdWOLS, the rate was 0% for all d.
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3.5 Discussion

In this article, we extended dWOLS to a penalized estimation framework for variable selection

and estimating the optimal treatment regimes simultaneously. The proposed method inherits

the double robustness property from dWOLS. Our simulations indicated that pdWOLS

compares favorably with other variable selection approaches in the context of DTRs.

Our method automatically enforces strong heredity through a simple reparametrization,

which guarantees an assumption required by dWOLS. The idea of reparametrization is sim-

ple, however, one limitation is that the objective function is non-convex. Hence, it may be

of interest, in future work, to investigate approaches that use convex constraints to achieve

strong heredity. See, e.g., Bien et al. (2013); Zhao et al. (2009) and Haris et al. (2016).

The standard errors for the estimated blip parameters can be obtained directly; a sandwich

formula for computing the covariance of the estimates of the non-zero components can be

derived (Fan and Li, 2001). How to derive the standard errors for the estimated blip pa-

rameters under the use of refitted pdWOLS requires further investigation. Post selection

inference (Lee et al., 2016) should also be addressed.

The proposed method is, fundamentally, based on prediction, selecting any variables that

can improve predictive ability. As such, in finite samples, pdWOLS may underestimate the

importance of variables that have small predictive ability but that play a significant role in

DTRs. Besides, the application of predictive methods directly to causal models may result in

inflated variances and self-inflicted bias (Hernán and Robins, 2020). The importance of the

distinction between DTRs (causal inference) and prediction must be kept in mind. Variable

selection in causal inference is a tough problem: on the one hand, we want to adjust for

enough covariates in the analysis to achieve ignorability; on the other hand, adjustment for

some other irrelevant variables could induce bias and losses of statistical efficiency (Rotnitzky

et al., 2010). Hence, a thoughtful selection of confounders is needed, using expert knowledge

to guide variable selection is encouraged. Other discussions about confounder selection can
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be found in Shortreed and Ertefaie (2017); Robins and Greenland (1986); Schneeweiss et al.

(2009). For pdWOLS, if we are worried about confounding and our focus is on building

simple rules, we may want to do minimal selection on main effects but lots of selection on

interaction effects, which can be implemented by setting small adaptive weights wj for the

main effects or setting α to a large value. How to choose the tuning parameter λ and α in a

DTR framework is an open and intriguing problem worthy of further investigation.
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Chapter 4

Tailoring Variable Selection and Ranking

for Optimal Treatment Decisions

Preamble to Manuscript 2. In Manuscript 1, we assumed that the number of confounders

is relatively small, so that the propensity score model could be estimated using the entire

set of covariates. However, this method would fail when the number of variables is really

large. Hence, a data-driven method to select the confounders for the propensity score should

be considered. Another topic in Manuscript 1 that requires further investigation is tun-

ing parameter selection. Previously, we used cross-validation and BIC to select the tuning

parameter λ. These two approaches are widely used in the penalized likelihood framework,

where the goal is prediction. In contrast, DTRs are not usually estimated by likelihood-based

methods. How to choose the tuning parameter in a DTRs framework is very important. In

Manuscript 2, we incorporate a confounder selection method and an information criterion

into the implementation of penalized dynamic weighted ordinary least squares. The corre-

sponding manuscript is a book chapter accepted as a contribution to Handbook of Statistical

Methods for Precision Medicine edited by Tianxi Cai, Bibhas Chakraborty, Eric B. Laber,

Erica E.M. Moodie, and Mark J. van der Laan.
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Abstract

Dynamic treatment regimes (DTRs) are often estimated from data sources where many

covariates are measured, and yet not all may be useful for tailoring treatment. This is par-

ticularly the case when DTRs are estimated from observational or non-experimental sources,

as the data may have been collected for purposes other than the DTR analysis – however

this may also arise in a randomized study where researchers have been thorough and erred

on the side of collecting more rather than fewer potentially relevant variables. In such cases,

including all the covariates in the model could possibly yield a complex and inappropriate

treatment decision. Hence, it may be critical to apply variable selection techniques to a

DTR analysis. Currently, most existing literature on DTRs focuses on estimation; variable

selection with the objective of optimizing treatment decisions has been less studied. In this

Chapter, we review existing tailoring variable selection techniques, with a particular focus

on a regression-based variable selection method which can incorporate sparsity and estimate

the optimal treatment regimes simultaneously. We also present a value search method that

aims to rank the tailoring variables according to the estimated value function, and draw

inspiration from this approach to assess the ability of the penalization approach to rank the

potential candidate tailoring variables. In simulation studies, we demonstrate how the choice

of tuning parameter selection as well as confounder selection affects the performance of the

penalization approach. Finally, we apply the penalized approach and the ranking method to

a pilot sequential multiple assignment randomized trial of a web-based, stress management

intervention using a stepped-care method for cardiovascular diseases patients to determine

useful tailoring variables.
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4.1 Introduction

Regression-based methods and value search (policy search or classification-based approaches)

methods are two popular estimation approaches in the field of dynamic treatment regimes

(DTRs). Consider, for instance, the one-interval setting of an individualized treatment rule

(ITR). In regression-based methods such as A-learning (Murphy, 2003; Robins, 2004) and

Q-learning (Watkins, 1989), the expected mean outcome model is decomposed into baseline

mean model and the blip function (throughout, we denote observed variables with lower case

and their random counterparts with uppercase):

E [Y a|X = x;β,ψ] = f (x;β)⏞ ⏟⏟ ⏞
baseline mean model

+ γ (x, a;ψ)⏞ ⏟⏟ ⏞
blip function

where Y is the observed outcome, Y a is the potential outcome under the binary treatment a,

x are baseline covariates, f is the baseline mean model with parameter β, which is irrelevant

for making optimal treatment decisions (i.e., it can be considered a nuisance model), and γ

is the blip function with parameter ψ. The blip function (or contrast function) is defined as

the difference in expected potential outcome between a population of patients when treated

with a and that same population of patients when treated with a reference treatment, a =

0, modelled as a function of some covariates x: γ (x, a) = E [Y a − Y a=0|X = x] . Since f

does not involve the treatment variable and hence will not affect treatment decisions, the

parameter of interest is the blip parameter ψ, and the optimal decision rule implied by this

model is given by ˆ︁aopt = argmaxa γ
(︂
x, a; ˆ︁ψ)︂. For example, if the blip function is linear

(implying that we assume a linear decision rule), then γ(x, a;ψ) = a(ψ0+
∑︁p

j=1 ψjxj) and so

the estimated optimal treatment is ˆ︁aopt = I( ˆ︁ψ0 +
∑︁p

j=1
ˆ︁ψjxj > 0) where I(·) is the indicator

function.

In contrast, value search methods first specify a finite class of candidate regimes, and then

estimate the value function (i.e., expectation) of every possible treatment regime in the class
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of candidates. The optimal treatment regime is then chosen to be that which maximizes the

estimated value function. Some examples of value search methods include dynamic marginal

structural models (van der Laan and Petersen, 2007; Orellana et al., 2010), outcome weighted

learning (Zhao et al., 2012), residual weighted learning (Zhou et al., 2017) and the inverse

probability weighted estimator proposed in Zhang et al. (2012). The value function V (ξ) can

be modelled as a function of ξ non-parametrically, semi-parametrically, e.g., via restricted

cubic splines (Cain et al., 2010), or parametrically e.g., via a quadratic function (van der

Laan and Petersen, 2007; Shortreed and Moodie, 2012). The optimal treatment regimeˆ︁dopt(x; ˆ︁ξopt) and the estimator ˆ︁ξopt are selected such that the corresponding value ˆ︁V (ˆ︁ξopt) is

maximized.

However, in the current era of high computer memory and computational power, more and

more patient information is collected in medical studies or electronic health records. This

recording of many covariates brings challenges for the analytic approaches described above.

First, the existing methods often suffer from the curse of dimensionality. For example,

regression-based methods fail in the case where the number of variables exceeds the sample

size (p > n). Second, even in the n > p setting, in the presence of many covariates, it is

difficult to know which prognostic factors are relevant for treatment decision. Including all

covariates in the analytic model can result in a loss of statistical efficiency and needlessly com-

plex treatment decisions. Thus, applying variable selection to precision medicine becomes

critical as the number of available covariates increases, since this can improve the treatment

decision rules and simplify models to enhance interpretability and ease of implementation in

clinical practice.

In this Chapter, we review a penalization approach to variable selection embedded within

a regression-based method to ITR estimation–penalized dynamic ordinary least squares

(pdWOLS) (Bian et al., 2021) and a variable ranking method which ranks tailoring vari-

ables based on the estimated value function associated with an ITR based on each variable
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alone. A confounder selection method, outcome adaptive LASSO (Shortreed and Ertefaie,

2017), will be incorporated into the implementation of pdWOLS. The rest of this chapter is

organized as follows. In Section 4.2, we provide background on commonly used estimation,

variable selection, and ranking methods for DTRs. We present the extension of dynamic or-

dinary least squares to its penalized counterpart–pdWOLS in Section 4.3. We then provide

some numerical results in the form of a simulation study in Section 4.4 and a case study in

Section 4.5, applying tailoring variable selection and ranking to a pilot sequential multiple

assignment randomized trial of a web-based stress management approach.

4.2 Background

In Section 4.2.1, we first review two regression-based methods and a value search method,

then in Sections 4.2.2 and 4.2.3 we discuss how to select and rank the tailoring variables

based on these methods.

4.2.1 Some DTRs Estimation Methods

A-learning

We begin this Section with a regression-based method A-learning (or G-estimation) (Murphy,

2003; Robins, 2004), a method which is doubly robust. That is, the approach can yield

consistent estimators of ψ while only requiring one of two nuisance models, either the baseline

mean model f(x;β) or the propensity score model P (A = 1|X = x;α) = π(x;α), to be

correctly specified. The blip parameter can be obtained by solving the following A-learning

estimating equation:

XT diag(A− ˆ︁π)(Y − f(x; ˆ︁β)− γ(x, a;ψ)) = 0
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where the plug-in estimators ˆ︁π and f(x; ˆ︁β) can be estimated using (generalized) linear

regression or other machine learning approaches, and α parameterizes the treatment model.

When π or f is correctly specified,

E{(A− ˆ︁π)XT (Y − f(x; ˆ︁β)− γ(x, a;ψ))}
= EXE{(A− ˆ︁π)XT (Y − f(x; ˆ︁β)− γ(x, a;ψ))|X} = 0,

hence ψ is consistently estimated.

While A-learning’s robustness against model misspecification is appealing, its implementa-

tion can be somewhat complex. In the next subsection, we introduce a method offering easier

implementation, while retaining the the double robustness property.

Dynamic Weighted Ordinary Least Squares

Dynamic weighted ordinary least squares (dWOLS) employs a weighted regression approach

(Wallace and Moodie, 2015). If we assume that the blip function is correctly specified, stable

unit treatment value assumption (Rubin, 1980) and ignorability (Robins, 1997) hold, and

the main effects for all covariates in the blip model are included in the baseline mean model,

then the resulting blip parameter estimators of dWOLS are consistent if either the treatment

model or the baseline mean model is correct and so dWOLS enjoys the attractive double

robustness property. The requirement that the baseline mean model include the main effects

for covariates in the blip model is essential for dWOLS to consistently estimate ψ, unlike

A-learning which imposes no restrictions on the nuisance model and can even simply assume

an intercept-only baseline mean model.

Consider the following model with both linear baseline mean model and linear blip function
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in a simple one-stage setting:

Y = ψ0A+

p∑︂
j=1

Xjβj +

p∑︂
j=1

ψj(A ◦Xj) + ε

where Y ∈ Rn is a continuous response; A is the binary treatment; Xj ∈ Rn×1 are the j-th

covariates; βj ∈ R are the corresponding parameters for the main effects of covariates; ψj ∈ R

are the blip parameters for j = 0, 1, . . . , p, “◦” is the element wise vector multiplication, and ε

is an error term with standard normal distribution. Estimation for dWOLS is accomplished

using the weighted squared-error loss:

L(Y ;θ) =
1

2n
∥
√

W

(︄
Y − ψ0A−

p∑︂
j=1

Xjβj −
p∑︂
j=1

ψj(A ◦Xj)

)︄
∥22 (4.1)

where θ = (β1, . . . , βp, ψ0, . . . , ψp), and W = diag {w1(a,x), w2(a,x), . . . , wn(a,x)} is a n×n

diagonal balancing weights matrix used to address confounding, which are a function of the

propensity score.

We now discuss the double robustness property of dWOLS. Consider the scenario that the

propensity score is correctly specified, thus the weights are all consistently estimated. In

this case, estimating the blip parameters from model f(x; β) + ψ0a + aψTx is equivalent to

estimating the causal effect from a conditional structural model E(Y ∗(a)) = β̃
T
x+ψ0a+aψ

Tx

where β̃ is the coefficient of the baseline covariates in the structural model (not necessarily

identical to the underlying true parameter β∗). Wallace and Moodie (2015) showed that a

weighted least square estimator of model β̃
T
x + aψTx with weights satisfied π(x)w(1,x) =

(1− π(x))w(0,x) would yield consistent estimates of the blip parameters ψ.

Now assume that the baseline mean model is correct and the estimated weights converge

to w̃, dWOLS yields ˆ︁θ = (ˆ︁β, ˆ︁ψ) = (︁ϕ(x, a)T w̃ϕ(x, a))︁−1
ϕ(x, a)T w̃y where ϕ is the Jacobian

matrix of the design matrix Φ(x, a). Let θ∗ = (β∗, ψ∗)T , where θ∗ is the true parameter

of the model; by some simple algebra, it can be shown that E(ˆ︁θ) = θ∗. Moreover, we have
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V ar(ˆ︁θ) = σ2C
(︁
ϕ(x, a)T w̃−1w∗w̃−1ϕ(x, a)

)︁−1
C which is O(n−1) under mild conditions, where

C =
(︁
ϕ(x, a)T w̃−1ϕ(x, a)

)︁−1. Hence, P (|ˆ︁θ− θ∗| > ϵ)→ 0 and thus the blip parameters ψ are

consistently estimated.

The choice of weights for dWOLS is an open but intriguing problem. Wallace and Moodie

(2015) proposed to use the weights, w(a,x) = |a− E[A|X = x]|, as they empirically found

it to offer better efficiency than other alternatives such as inverse probability weights in the

simulations.

A Simple Value Search Method

We conclude this subsection by introducing a value search method that can be employed in

settings where the decision rule is a simple threshold rule: for a tailoring variable Xj, we

aim to find the optimal threshold value ηoptj such that the decision rule is of the form ˆ︁aopt =
I(Xj < ηoptj ) or I(Xj > ηoptj ). In such value search methods, constructing an augmented data

set is often a critical step in the estimation procedure. The augmented data set is created

such that for each treatment regime d(x; ξ) in the set of candidate regimes A, and each

observation i is repeated. If individual i’s observed treatment ai equals the recommended

treatment under d(xi; ξ), then this subject i’s information is copied into the augmented

data set, which also contains an extra column which represents the value of ξ. Once the

augmented data set is created, it is used to model the value function V (ξ) as a function of

ξ. The optimal treatment regime ˆ︁dopt(x; ˆ︁ξopt) and the estimator ˆ︁ξopt are selected such that

the corresponding value ˆ︁V (ˆ︁ξopt) is maximized. In this chapter, we only consider decision

rules of the type, ˆ︁aopt = I(Xj < ηoptj ) for convenience. Considering both directions does

not involve any extra difficulty, and should be done in real data settings whenever there is

any uncertainty about the direction of the threshold rule. In Section 4.2.3, we give a more

detailed description of how to rank the tailoring variables based on this framework.
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4.2.2 Review of Tailoring Variable Selection Techniques

Among the earliest work on selecting tailoring variables in the context of a regression-based

method of DTR estimation, Lu et al. (2013) adopted an adaptive LASSO (Zou, 2006) ap-

proach within the A-learning framework. These authors thus adopted a method that allowed

the misspecification of the baseline mean model f , but only considered the approach in a

randomized design case such that the propensity score is correctly specified and the number

of predictors p is fixed. Lu et al. (2013) proposed that the blip parameter vector be estimated

by minimizing the objective function

∥Y − f(x;β)− diag(A− ˆ︁π)Xψ∥2 + λn

p∑︂
j=1

ρ(|ψj|)

where λn is the tuning parameter and ρ(| · |) is a penalty function. To see how this approach

allows the misspecification of the baseline mean model f , taking the derivative of the loss

function (the first term in the above equation) with respect to ψ and set it to zero yields

XT diag(A− ˆ︁π){Y − f(x; ˆ︁β)− diag(A− ˆ︁π)Xψ} = 0,

which is an unbiased estimating equation under the assumption that the propensity score

is known. Hence, with a suitable choice of tuning parameter, the blip parameter estimators

are approximately unbiased in the penalized framework.

Jeng et al. (2018) extended the work of Lu et al. (2013) to the case where p is allowed to

grow with the sample size n using debiased LASSO (Zhang and Zhang, 2014), and Shi et al.

(2016) generalized it to the situation where p is of the non-polynomial order of the n, i.e.,

log p = O(nq) for some q < 1.

Bian et al. (2021) proposed penalized dynamic ordinary least squares, a doubly robustness

method which can conduct estimation and selection of the tailoring variables simultaneously;

we will review this method in detail in Section 4.3.
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In singly-robust settings, Song et al. (2015) added the smoothly clipped absolute deviation

(SCAD) (Fan and Li, 2001) penalty to the value search method of outcome weighted learning

to incorporate sparsity and estimate the optimal treatment decision, where the treatment

rule can be viewed as a classification problem. Zhu et al. (2019) combined Q-learning with

smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) penalty to select the impor-

tant tailoring variables and conducted the hard-thresholding method proposed in (Moodie

and Richardson, 2010) to tackle the challenge of nonregularity.

With the exception of the outcome weighted learning approach, the loss functions of the

methods described above were all likelihood-based. In contrast to these methods, Shi et al.

(2018) used the Dantzig selector (Candes and Tao, 2007) to directly penalize the estimating

equations of A-learning instead of penalizing the likelihood: ˆ︁ψ = argminψ ∥ψ∥1, subject to

∥XT diag(A− ˆ︁π){Y − f(x; ˆ︁β)− γ(x, a;ψ)}∥∞ ≤ nλpal where λpal is the tuning parameter.

In this way, the double-robustness property of A-learning was inherited, and sparsity can

also be introduced to the model through the use of the Dantzig selector.

All the variable selection methods outlined above are designed for use in DTR estimation.

The differences between these approaches and the variable selection methods in prediction

setting are twofold. First, the goal differs: variable selection for DTRs aims to improve the

estimated decision rules rather than enhance the predictive power of the outcome (of course,

both emphasize the interpretability of the model). Second, in DTRs, interest is primarily

in effect modification, and hence the selection tends to be focused on the terms in the blip

model. In contrast, variable selection approaches in prediction setting usually seek to choose

from among all variables with no special status given to effect modifiers.

4.2.3 Tailoring Variable Ranking

Ranking variables can be viewed as an indirect method of choosing among covariates, or

selecting among several potentially useful tailoring variables to focus on a simpler, low-
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dimensional treatment rule. The earliest work in this domain is that of Gunter et al. (2011),

who proposed a score-based method that can rank the tailoring variables based on the

expected increase of the estimated value due to the inclusion of a variable, calling this

the “S-score”. This approach was primarily used to rank each potential tailoring variable

individually, but was also extended to account for multiple tailoring variables in an iterative

variable selection process. Fan et al. (2016) extended this work to take into account variables

already in the model and determine whether to include a new variable by the additional

improvement of the score.

Wu et al. (2021a) considered ranking variables for their tailoring ability in single-variable

decision rules of the form aopt(Xj) = I(Xj < ηoptj ) or I(Xj > ηoptj ). They used linear splines to

flexibly model the value function and potential tailoring variables were then ranked according

to their estimated value. The approach considers the effect of each variable individually,

focusing on simple and interpretable rules. While the approach could, in principle, be used

repeatedly to consider a “value added” rank (e.g. select the most useful variable, then rank

the remaining variables to see which - if any - improve the value in a two-variable rule, and

so on), however this has not yet been explored numerically. We now give a brief overview of

variable ranking approach in Wu et al. (2021a).

Wu et al. (2021a) consider a decision rule such that aopt = I(Xj < ηoptj ). Instead of modeling

an outcome-covariates relationship, the value function V (ηj) = m(ηj; ν) can be modeled,

where m(·) is some function with parameter ν. We omit the subscript j from here for

notational convenience when there is no confusion. Recall from Section 4.1, that value

search estimators often rely on the construction of an augmented data set. Denote by N the

number of rows in the augmented data, and by r the number of threshold candidate. Wu

et al. (2021a) used linear splines to flexibly model V (η), with each candidate for η in the

augmented data chosen as a potential knot in the linear spline, then employed penalization

to shrink some of the coefficients to zero so that only the important thresholds (knots) were
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selected.

For a potential tailoring variable with the candidate threshold sequence (η1, . . . , ηr), the

coefficients were obtained by minimizing the following function:

N∑︂
l=1

wl{Yl − ν0 − ν ′ηl −
r∑︂
s=1

νs(η
l − ηs)+}2 +

r∑︂
s=1

λs|νs|,

where wl is the corresponding inverse probability of treatment weight for i-th observations),

ν0 is the intercept, ν ′ is the coefficient of η, νs is the coefficient of the s-th knot and λs

is the tuning parameter (not necessarily the same for all s). After variable selection, the

coefficients are re-calculated by solving the unpenalized weighted least squares with the

selected variables. Then we could use inverse probability weighting to estimate the value

function of a particular regime I(X < ηs): ˆ︁V (ηs) =
∑︁N

l=1 I(η
l=ηs)ˆ︁Ylwl∑︁N

l=1 I(η
l=ηs)wl

, where ˆ︁Yl is the fit-

ted outcome from the linear spline model. The optimal threshold ηopt is chosen such thatˆ︁V (ηopt) = max1≤s≤rV (ηs). This procedure is carried out for each potential tailoring variable,

and we rank all the variables by their fitted optimal value function ˆ︁V (ηoptj ) for j = 1, . . . p. A

limitation of this ranking method is that it only considered single variable at a time.

As we shall detail in the next section, we posit that the penalized method that we outlined

in Section 4.2.2 can also be used to rank the tailoring variables. This could be accomplished

in a variety of ways. For example, we could rank them by the magnitude of the absolute

value of the coefficient, or by the selected frequency among a sequence of tuning parameters.

In the simulation studies, we will show how to rank the tailoring variables using the latter

strategy.

4.3 Variable Selection and Ranking in DTRs

In this section, we review the tailoring variable selection method penalized dynamic weighted

ordinary least squares, based on the dWOLS approach discussed in Section 4.2.1. We then
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discuss how to incorporate confounder selection into pdWOLS, and conclude this section

with a proposal for using pdWOLS as a means of ranking variables in terms of their utility

for tailoring.

4.3.1 Penalized Dynamic Weighted Ordinary Least Squares

We can extend dWOLS to penalized estimation for variable selection and estimating the

optimal treatment regimes simultaneously (Bian et al., 2021). One can consider the following

objective function that includes the ℓ1 penalty for variable selection:

Q (θ) = L(Y ;θ) + λ(1− δ)(∥β∥1 + |ψ0|) + λδ∥ψ∥1 (4.2)

where L(Y ;θ) is the dWOLS loss function shown in equation (4.1), β = (β1, ..., βp), ψ =

(ψ1, ..., ψp), and λ > 0, δ ∈ (0, 1) are tuning parameters. In a slightly similar manner to

elastic net regularization (Zou and Hastie, 2005), δ controls the relative penalties between

the main effects and the interaction effects; for example, a δ that is less than 0.5 would tend

to penalize the main effects more than the interaction effects. However, there is an issue with

(4.2) in its current form: recall that an important assumption required by dWOLS is that

the baseline mean model includes the main effects for all covariates in the blip function. In a

penalized model such as equation (4.2), this assumption can be violated: it is possible that

an estimated interaction term is nonzero while the corresponding main effects are shrunk

to zero by the penalization. This can lead to a bias induced by the violation of dWOLS

assumptions (rather than bias induced by the penalization itself).

To remedy this, pdWOLS added a constraint to (4.2), requiring the strong heredity assump-

tion in the penalized model: an interaction term can be estimated to be non-zero if and

only if its corresponding main effects are estimated to be non-zero, whereas a non-zero main

effect does not necessarily imply a non-zero interaction term. This can be achieved by in-

troducing a new set of parameters τ = (τ1, τ2, ...τp) and reparametrizing the coefficients for
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the interaction terms ψj as the product of τj, βj and ψ0 such that ψj = ψ0τjβj. In this way,

strong heredity is assured and the following model is considered instead:

L∗(Y ;θ) =
1

2n
∥
√

W

⎛⎜⎝Y − ψ0A−
p∑︂
j=1

Xjβj −
p∑︂
j=1

ψ0τjβj⏞ ⏟⏟ ⏞
ψj

(A ◦Xj)

⎞⎟⎠∥22
where now the objective function is:

Q (θ) = L∗(Y ;θ) + λ(1− δ)(∥β∥1 + |ψ0|) + λδ∥τ∥1. (4.3)

It has been shown that pdWOLS inherits the double robustness property from dWOLS;

the method relies on a model that includes adaptive weights, an efficient algorithm using

cyclic coordinate descent to minimize the Equation (4.3), and can be generalized from the

one-stage setting to a multi-stage setting (Bian et al., 2021).

4.3.2 Incorporating Confounder Selection into pdWOLS

Here we introduce a variable selection method for confounders in the propensity score model,

called outcome-adaptive LASSO (OAL), which was proposed by Shortreed and Ertefaie

(2017). This method considers both the treatment-covariate relationship and the outcome-

covariates association, and hence avoids prioritizing possibly instrumental variables. The

key to the approach is to apply data-adaptive weights to a penalized propensity score model,

where the adaptive weights are estimates from a fit of an unpenalized outcome model. For

example, we could posit a logit model π(x;α) for the PS, and ˆ︁α is obtained by solving the

adaptive penalized logistic regression:

ˆ︁αoal = n∑︂
i=1

{log(1 + xTi α)− AixTi α}+ λoal

p∑︂
j=1

w̃jαj
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where λoal is the tuning parameter, w̃j = |ˆ︁βj|−γ for some γ ≥ 1, and the ˆ︁β is the estimated

parameter of the baseline mean model f(x;β). Shortreed and Ertefaie (2017) proposed to

select the tuning parameter λoal such that the weighted absolute mean difference between

the exposure groups

p∑︂
j=1

|ˆ︁βj|
⃓⃓⃓⃓
⃓
∑︁n

i=1
ˆ︁ζiXijAi∑︁n

i=1
ˆ︁ζiAi −

∑︁n
i=1
ˆ︁ζiXij(1− Ai)∑︁n

i=1
ˆ︁ζi(1− Ai)

⃓⃓⃓⃓
⃓

is minimized, where ˆ︁ζi = Aiˆ︁π(Xi; ˆ︁αoal)−1 + (1 − Ai)(1 − ˆ︁π(Xi; ˆ︁αoal))−1. This approach to

confounder selection for inclusion in the propensity score can be incorporated into pdWOLS

in a straightforward manner.

4.3.3 Tailoring Variables Ranking Using pdWOLS

As mentioned in Section 4.2.3, we could rank the tailoring variables by the selected fre-

quency among a sequence of tuning parameters λ1, . . . , λk, using pdWOLS, as the solution

is calculated over this sequence, we have k different solutions in total. For each variable

Xj, the selected frequency is calculated as
∑︁k

t=1 I(
ˆ︁ψjt ̸= 0)/k, and we can rank the tailoring

variables accordingly.

With these new additions (confounder selection and variable ranking) into the pdWOLS

approach, the method can be made even more parsimonious while offering additional insights

into the importance of the tailoring variables when used jointly in a multivariate linear

decision rule.

4.4 Numerical Studies

We now evaluate the performance of pdWOLS using two different tuning parameter selection

approaches for the variable selection rate, and the resulting error rate in the estimated

treatment decision as well as the value function of the estimated decision rules. We also
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demonstrate its use as a method of ranking tailoring variables. All simulations use sample

sizes of 200 and 500 respectively. Further, we consider pdWOLS both with and without the

use of confounder selection in the propensity score.

Step 1: Generate 10 covariates (X1−X10) where X1 and X10 are Bernoulli random variables

which take the value 1 with probability 0.5, and X2 −X9 are multivariate normal with zero

mean, unit variance and correlation Corr(Xj, Xj′) = 0.15|j−j
′| for j, j′ = 2, . . . , 9.

Step 2: Generate treatment such that P (Ai = 1|x1, x2, x3, x4, x5) = expit(1+
∑︁5

j=1 xj).

Step 3: Set the blip function as γ(x, a;ψ) = a(ψ0+
∑︁3

j=1
ˆ︁ψjxj) for ψ0 = 0.5, ψ1 = −0.8, ψ2 =

−0.5 and ψ3 = −0.5, and hence the optimal treatment strategy, to depend only on X1 −

X3.

Step 4: Set the baseline mean model to f(x;β) = 0.5− 0.6ex1 − 2x1 − 2x2 + x3 + 2x6.

Step 5: Generate the outcome Y ∼ N(f(x;β) + γ(x, a;ψ), 1).

In the data generating process, X1 −X3 are confounders, and X4 and X5 are instrumental

variables. As argued in (De Luna et al., 2011; Greenland, 2008), the ideal propensity score

model should include all the confounders and the predictors of outcome while excluding

predictors of exposure not associated with outcome as well as all noise variables (covariates

that are unrelated to both exposure and outcome). In our case, X4 and X5 were only used

to generate the treatment, while X6 is a predictor only of the outcome, hence we hope our

propensity score model does not include X4 and X5 but does select X6.

The estimation procedure proceeds as follows:

(a) Use OLS to regress y on (1, x, ax) to obtain ˆ︁β.

(b) Construct the penalty factors (adaptive weights): w̃j = |ˆ︁βj|−χ for some χ > 0; solve the

adaptive penalized logistic regression to select the confounders to include in the propensity

score. The choice of χ can be arbitrary, and in this simulation we set it to be 3.

(c) Refit the propensity score model using the selected variables; this will yield the balancing
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weights in the pdWOLS. Here, we used weights of the form w(a,x) = |a − ˆ︁E[A|X = x]|

proposed in Wallace and Moodie (2015).

(d) Apply pdWOLS: regress Y on (1,X,A,AX) using the absolute weights obtained in

step (c). Even though the baseline mean model is misspecified, the blip parameters can still

be consistently estimated due to the double robustness property of pdWOLS.

The choices of tuning parameters in step (b) and step (d) are important. We adopt the

ideas of Shortreed and Ertefaie (2017) to select the tuning parameter for outcome-adaptive

LASSO such that the weighted absolute mean difference between the exposure groups is

minimized. For pdWOLS, we set δ to be 0.5, and evaluate two different approaches, the

value information criterion (VIC) (Shi et al., 2021) and the Bayesian information criterion

(BIC) (Schwarz, 1978) to choose the λ such that either the VIC or the BIC is maximized.

Analogous to the likelihood-based information criteria, V IC = nˆ︁V (ψ)−κn∥ψ∥0 where

ˆ︁V (ψ) =
1

n

n∑︂
i=1

Yi
Aiˆ︁aopt(xi;ψ) + (1− Ai)(1− ˆ︁aopt(xi;ψ))

Aiˆ︁π(xi) + (1− Ai)(1− ˆ︁π(xi))
and κn is a positive sequence. Here we choose κn = n1/3log(p)2/3log log(n) as this can achieve

model selection consistency under certain conditions (Shi et al., 2021).

Figure 4.1 summarizes the estimates of blip parameters using pdWOLS. When n = 500,

all the four blip parameters were nearly unbiased, regardless of the method to select the

tuning parameter and whether we use OAL, which showed that pdWOLS is robust to the

misspecification of the baseline mean model. Nevertheless, using OAL can reduce the vari-

ance of the estimators. Table 4.3 presents the standard error of the pdWOLS estimators

using VIC and BIC with and without applying OAL when sample size is 200, we can see

that the standard errors of the estimators obtained with OAL are uniformly smaller than

these obtained without applying OAL, regardless using BIC or VIC to select the tuning

parameter. When n = 200, the median of the estimator of ψ3 obtained by BIC+OAL is

about 0 as the coefficient is often shrunk to 0, while other estimators were similar to the
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case when n = 500.

Figure 4.1: Estimates of blip parameters using pdWOLS with and without applying OAL
to select the propensity score model with n =200 and 500; 500 simulations. The tuning
parameter of pdWOLS was selected by BIC and VIC. The true value is represented by the
dotted line.
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Table 4.1: Variable selection rate (%) for pdWOLS using VIC and BIC with and without
applying OAL (n =200 and 500; 500 simulations). The main effect of treatment is not
penalized in the pdWOLS procedure. Variables with ∗ are the truly important variables, the
rest are noise variables (AX3 − AX10).

n = 200 n = 500

VIC+OAL BIC+OAL VIC BIC VIC+OAL BIC+OAL VIC BIC

AX1∗ 97 85 95 86 100 98 99 98
AX2∗ 97 86 95 86 100 98 99 99
AX3∗ 75 46 71 55 93 84 91 86
AX4 8 2 10 6 8 1 14 2
AX5 10 3 8 4 8 1 10 3
AX6 78 54 72 60 85 64 83 68
AX7 9 3 11 6 9 2 10 2
AX8 10 3 10 5 8 1 10 3
AX9 10 1 8 4 8 1 10 3
AX10 11 2 11 5 7 1 11 2

Table 4.1 shows the variable selection results of pdWOLS with sample sizes of 200 and

500. In general, VIC has a lower false negative rate (i.e. excluding variables that are truly

important) and a higher false positive rate (i.e. including variables that should be excluded)

compared to BIC; OAL appears to improve the variable selection rate slightly. The irrelevant

interaction AX6 was frequently selected by all the methods, possibly due to the large main

effect of X6. When n = 200, the selection rate of the truly important interaction AX3 was

only 46% using BIC+OAL. Table 4.2 presents the error rate and the value function under

the estimated rules of pdWOLS computed over a testing set of size 10,000. Despite a small

difference for all the four methods, VIC+OAL has the smallest error rate as well as the

largest and most accurate (smallest SE) value function.

Table 4.4 shows the variable selection rate for the propensity score using OAL. Note that

the OAL selection is the same for both the BIC and VIC-selected penalty in pdWOLS since

the confounder selection is a first step in a multi-step estimation procedure. All the truly

important variables were correctly picked with a high selection rate, even in the smaller

sample size of n = 200.
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Our simulations suggest that pdWOLS achieves the best performance when combined with

VIC and OAL, as it had lowest false negative rate, lowest error rate, and the highest value

function. Moreover, applying OAL can improve the efficiency of the estimators.

Table 4.2: Error rate (ER) and value (standard error in parentheses) for pdWOLS using
VIC and BIC with and without applying OAL (sample size 500 and 200, 500 simulations
and test size 10,000). For comparison, the value function of the true optimal regime, always
treated and never treated group are -1.15, -1.45 and -1.56, respectively.

VIC+OAL BIC+OAL VIC BIC

ER (n = 200) 0.18 0.23 0.20 0.23
ER (n = 500) 0.10 0.11 0.12 0.12
Value (n = 200) -1.22 (0.07) -1.25 (0.10) -1.23 (0.08) -1.25 (0.09)
Value (n = 500) -1.17 (0.02) -1.18 (0.05) -1.18 (0.03) -1.18 (0.04)

Table 4.3: Standard error of the pdWOLS estimators using BIC and VIC with and without
applying OAL (sample size 200, 500 simulations).

VIC+OAL BIC+OAL VIC BIC

ψ0 0.33 0.31 0.35 0.34
ψ1 0.40 0.47 0.47 0.51
ψ2 0.21 0.25 0.25 0.28
ψ3 0.30 0.35 0.33 0.36

Table 4.4: Confounder selection rate using OAL. The variables with ∗ are the truly important
variables for the propensity score model.

n = 200 n = 500

X1∗ 100 100
X2∗ 100 100
X3∗ 99 100
X4 7 1
X5 8 1
X6∗ 97 98
X7 3 0
X8 1 0
X9 2 0
X10 13 0
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The second focus of our simulations was to investigate pdWOLS as a tool for ranking tai-

loring variables. We do so according to the selected frequency among a sequence of tuning

parameters, although as noted above, other approaches to ranking could also be used. Tables

4.5 and 4.6 summarize the proportion of times that tailoring variables are ranked over 500

replications using pdWOLS for n =200 and 500, respectively. From Tables 4.5 and 4.6, we

see that pdWOLS ranked the three truly important tailoring variables in the top three with

high frequency, however, the variable X6 – which predicts the outcome but is not a tailoring

variable (i.e., does not interact with treatment) was also ranked as third 49% of the time

when sample size was equal to 500. This result follows the same pattern as Table 4.1, where

X6 was incorrectly selected into the model with high probability.

Table 4.5: The proportion of times that tailoring variables are ranked over 500 replications
using pdWOLS (n =200), which is based on the selected frequency among a sequence of
tuning parameters.

Ranking 1 2 3 4 5 6 7 8 9 10

X1 88.2 9.8 1.2 0.6 0.2 0.0 0.0 0.0 0.0 0.0

X2 11.2 87.2 0.6 0.8 0.0 0.2 0.0 0.0 0.0 0.0

X3 0.0 1.0 38.0 59.0 1.2 0.4 0.0 0.0 0.2 0.2

X4 0.0 0.0 0.0 2.0 19.6 18.8 16.6 12.0 17.4 13.6

X5 0.0 0.0 0.0 1.8 15.2 16.8 14.6 16.6 17.0 18.0

X6 0.6 2.0 60.2 32.4 2.4 1.8 0.4 0.0 0.0 0.2

X7 0.0 0.0 0.0 0.6 17.0 15.8 15.2 17.4 17.4 16.6

X8 0.0 0.0 0.0 1.2 15.0 17.0 18.0 15.0 18.6 15.2

X9 0.0 0.0 0.0 0.4 14.8 14.8 19.4 19.0 15.0 16.6

X10 0.0 0.0 0.0 1.2 14.6 14.4 15.8 20.0 14.4 19.6
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Table 4.6: The proportion of times that tailoring variables are ranked over 500 replications
using pdWOLS (n =500), which is based on the selected frequency among a sequence of
tuning parameters.

Ranking 1 2 3 4 5 6 7 8 9 10

X1 94.4 5.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

X2 5.4 94.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

X3 0.0 0.0 50.2 49.8 0.0 0.0 0.0 0.0 0.0 0.0

X4 0.0 0.0 0.0 1.2 21.4 20.8 16.0 13.8 12.8 14.0

X5 0.0 0.0 0.0 0.2 17.2 15.4 16.8 15.0 17.6 17.8

X6 0.2 0.2 49.4 48.0 1.8 0.4 0.0 0.0 0.0 0.0

X7 0.0 0.0 0.0 0.0 15.6 15.8 17.8 19.6 17.8 13.4

X8 0.0 0.0 0.0 0.2 15.6 17.8 17.2 17.6 16.2 15.4

X9 0.0 0.0 0.0 0.6 16.6 13.8 15.4 16.4 20.8 16.4

X10 0.0 0.0 0.0 0.0 11.8 16.0 16.8 17.6 14.8 23.0

4.5 Application to the Study of an Adaptive Web-based

Stress Management

In this section, we apply pdWOLS to data from a study of an adaptive web-based stress

management tool. In this study, a pilot sequential multiple assignment randomized trial

(SMART) was undertaken to assess the feasibility and potential effect size of a web-based,

stress management intervention adapted over time based on a stepped-care approach for

patients with a cardiovascular disease (CVD) patients (Lambert et al., 2021).

A two-stage SMART was piloted: at the first stage, 50 patients with CVD were random-

ized into two treatment groups with randomization stratified by recruitment source (clinical

setting or community organization) and stress level (low or high). The randomization arms

at the first stage were a website only group, and a website plus weekly telephone coaching

group, each with probability 0.5. Stage two then followed after six weeks: patients who did
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not derive the anticipated benefits (non-responders) were re-randomized to either continue

with their first stage intervention or to switch to the use of the website plus motivational

interviewing (MI) for another six weeks (again, randomization with probability 0.5 to each

option); responders maintained their initial intervention from stage one. Responders were

those participants whose stress scores improved by at least 50% or who were below the thresh-

old of 16 on the stress subscale of the Depression Anxiety Stress Scales (DASS) (Lovibond

and Lovibond, 1996).

We restrict our analysis to the first stage only, and hence a binary treatment is considered:

A = 0 for the website only group and A = 1 for the website plus weekly telephone coaching

group. The outcome of interest is the negative of the DASS measured at 6 weeks after stage

1 randomization; we target an individualized treatment rule that minimizes the DASS (con-

versely, maximizes the negative DASS) since this suggests the presence of fewer symptoms

of stress. The aims of our analysis are to determine the potential tailoring variables that

can improve the decision rule, and to then estimate the optimal treatment regime of the

adaptive web-based stress management study based on these tailoring variables.

78



Table 4.7: Characteristics of the adaptive web-based stress management study population
stratified by stage 1 treatment

Website-only Website+coach SMD

n 25 25
Age (mean (SD)) 61.0 (13.4) 61.3 (10.7) 0.03
DASS Score at baseline (mean (SD)) 19.2 (6.7) 18.9 (7.7) 0.03
Physical Component Score (mean (SD)) 42.9 (12.2) 45.4 (11.6) 0.20
Mental Component Score (mean (SD)) 40.4 (8.6) 40.9 (10.9) 0.04
Sex = Male (%) 13 (52.0) 9 (36.0) 0.33
Marital = Married / Common law (%) 14 (56.0) 15 (60.0) 0.08
Education = University degree (%) 13 (52.0) 16 (64.0) 0.25
Employment = Full time (%) 4 (16.0) 9 (36.0) 0.47
Chronic cardiac condition = Yes (%) 18 (72.0) 16 (64.0) 0.17
Chronic hypertension = Yes (%) 12 (48.0) 10 (40.0) 0.16
Chronic stomach condition = Yes (%) 10 (40.0) 12 (48.0) 0.16
Chronic vision condition = Yes (%) 11 (44.0) 7 (28.0) 0.34
Chronic backpain = Yes (%) 10 (40.0) 14 (56.0) 0.32
Chronic cholesterol condition = Yes (%) 9 (36.0) 11 (44.0) 0.16
Chronic obesity = Yes (%) 7 (28.0) 13 (52.0) 0.50
Chronic osteoarthritis = Yes (%) 9 (36.0) 8 (32.0) 0.09

Table 4.7 summarizes the baseline covariates of the 50 participants, including the standard-

ized mean difference (SMD). Study groups were for the most part comparable with the

exceptions of for sex, employment, having a chronic vision condition, chronic back pain and

chronic obesity, where SMDs all exceeded 0.25. These differences in baseline characteristics

are likely a reflection of the relatively small sample size. For this stratified randomization,

a logistic regression model was used to estimate the treatment model (adjusting for recruit-

ment source and stress level), as estimation and use of a parametric propensity score model

can improve the efficiency of the estimator compared with using the known propensity score

(Henmi and Eguchi, 2004); further, covariate adjustment can remove any potential bias due

to chance imbalances between randomization groups. The minimum, median, mean and

maximum value of the estimated propensity score are 0.42, 0.48, 0.49 and 0.58 respectively.

There are 16 potential tailoring variables: DASS at baseline, age, sex as well as several

other measures of physical health (see Table 4.7). We also include three sociodemographic
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variables – education, employment, and marital status – which could potentially alter the

impact of treatment.

Applying pdWOLS with tuning parameter selected using VIC to this study, we find that

eight variables are useful for tailoring treatment (listed in decreasing order according to

the pdWOLS variable ranking approach outlined in Section 4.3.3: mental component score

(MCS), age, DASS at baseline, sex, marital status, stomach condition, physical component

score (PCS), and vision. The estimated treatment rule is ˆ︁aopt1 = I{38.3+0.2age−4.5I(male)−

15.4I(unmarried)−1.0DASS+0.2PCS−0.7MCS−9.9I(stomach=yes)+2.5I(vision=yes) >

0}. The estimated value of DASS and the 95% confidence interval (CI) is 13.8(10.6, 17.0)

where the CI is calculated using 4,000 nonparametric bootstrap (Efron, 1979) resamples. For

comparison, the estimated value of DASS for only web-coach and only website group are 15.0

and 18.5, respectively. No minimally important clinical difference has been established for

the DASS, however a value of 18.5 is well above our targeted threshold of 16 points, which

would suggest a meaningful difference between the tailored strategy and offering website

only to all. The difference of 1.2 points on the DASS between the tailored strategy and the

website with coaching is less striking, however it is worth noting that the tailored strategy

is less resource intensive, offering the coaching to only a subset of the population while still

potentially leading to reduced symptoms on average as compared to offering it to all under

the untailored, web+coach strategy.

Since the sample size is relatively small, there can still be imbalances even if it is a randomized

study. Thus we also apply OAL+pdWOLS to the study, with recruitment source, stress

level and all the variables in Table 4.7 contained in the initial PS model. We find that

seven variables are useful for tailoring treatment (listed in decreasing order according to

the pdWOLS ranking): age, DASS at baseline, PCS, MCS, vision, sex, and employment

status. Compare to the pdWOLS without applying OAL, it removes marital status and

stomach condition and includes an extra tailoring variable employment status. The estimated
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treatment rule is ˆ︁aopt2 = I{16.7+0.4age−0.6DASS−0.1PCS−0.5MCS−4.7I(vision=yes)−

5.2I(male) − 7.1I(employed) > 0}. The estimated value of DASS and the 95% confidence

interval (CI) is 14.8(11.8, 17.9). This yields a larger DASS score than the pdWOLS without

applying OAL approach.

The results above suggested that a linear decision rule of eight tailoring variables (pdWOLS)

is better than a “one size fits all” approach. Due to the large CI’s of these estimated values

and the small size of the pilot study, we cannot make any definitive conclusions regarding the

benefit of tailoring compare with the only web+coach strategy, nevertheless, these estimated

values hint at clinically meaningful benefit and the potential for cost-savings since not all

patients need a more costly or intensive treatment.

4.6 Discussion

In this chapter, we reviewed a penalized likelihood-based variable selection method-pdWOLS,

which inherits the double robustness property from the regression-based dWOLS. Numerical

studies indicated that VIC is a better tuning parameter selection method than the BIC

for pdWOLS. Additionally, it was demonstrated that a data-driven confounder selection

approach for propensity score model construction can reduce the variance of the pdWOLS

estimator. Further, pdWOLS functions well as a means of variable ranking, even with modest

sample sizes.

Our analysis of adaptive web-based stress management pilot study data suggests that up to

eight tailoring variables may be useful for the optimal treatment decisions, yielding a better

clinical outcome than the “only web+coach” and the “only web” approaches (a DASS score of

13.4, 15.0 and 18.5 respectively). While the confidence intervals surrounding these estimated

value functions were large and the pilot’s size precludes making any definitive conclusions of

benefit, these estimated values imply clinically meaningful benefits and provide cost savings,

as not all individuals need more expensive treatment options, including non-professional
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guidance. These results also underline the importance of considering comorbidities and

social support in treating CVD patients’ stress, and in collecting detailed information on

these and related conditions in any subsequent full-scale SMART.

As shown here, OAL in combination with pdWOLS selects confounders for the propensity

score model in a way that is decoupled from the selection of the tailoring variables, and

ensures that instruments are unlikely to be included in the propensity score. Lastly, many

of the variable selection methods for DTRs are based on penalized likelihood to screen

out unneeded tailoring variables. However, DTRs are often estimated using estimating

equations, and hence a quasi-likelihood framework is needed. Variable selection techniques

in the context of estimating equation should be further studied, see, for example, Fu (2003)

and Candes and Tao (2007).

There are several limitations and future directions for the methods discussed in this chapter.

The pdWOLS method implemented in this chapter has been implemented only in the con-

tinuous outcome case; how to extend it to a more general setting such that the outcome is

discrete is an interesting topic requiring further exploration. Post-selection inference should

also be addressed; Zhao et al. (2022) proposed a valid tool to study the selective inference for

effect modification using LASSO, which may be able to shed some light on how to combine

the selection inferential tools with pdWOLS, and indeed with pdWOLS used in combination

with OAL confounder selection.
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Chapter 5

Variable Selection for Individualized

Treatment Rules with Discrete

Outcomes

Preamble to Manuscript 3.

In the first two manuscripts, I only considered the case in which the outcome is contin-

uous. However, often the interest of outcome is discrete, for example, the STAR*D data

and the adaptive web-based stress management data that we studied in Chapters 3 and 4,

respectively. There is a growing literature for selecting variables in individualized treatment

rules with continuous outcomes, but the topic has been little studied with discrete outcomes.

In Manuscript 3, we propose a doubly robust variable selection method for individualized

treatment rules with discrete outcomes. To our knowledge, doubly robust variable selection

methods in ITR estimation for discrete outcomes has not been studied in the literature.
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Abstract

An individualized treatment rule (ITR) is a decision rule that aims to improve individual pa-

tients’ health outcomes by recommending optimal treatments according to patients’ specific

information. In observational studies, collected data may contain many variables that are

irrelevant for making treatment decisions. Including all available variables in the statistical

model for the ITR could yield a loss of efficiency and an unnecessarily complicated treat-

ment rule, which is difficult for physicians to interpret or implement. Thus, a data-driven

approach to select important tailoring variables with the aim of improving the estimated

decision rules is crucial. While there is a growing body of literature on selecting variables in

ITRs with continuous outcomes, relatively few methods exist for discrete outcomes, which

pose additional computational challenges even in the absence of variable selection. In this

paper, we propose a variable selection method for ITRs with discrete outcomes. We show

theoretically and empirically that our approach has the double robustness property, and that

it compares favorably with other competing approaches. We illustrate the proposed method

on data from a study of an adaptive web-based stress management tool to identify which

variables are relevant for tailoring treatment.

Key Words: Double robustness; Individualized treatment rules; Penalization; Precision

medicine; Variable selection; Weighted generalized linear model.
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5.1 Introduction

In the precision medicine paradigm, treatment decisions are tailored to each individual rather

than relying on a “one-size-fits-all” approach; this approach to treatment is beneficial in the

presence of heterogeneous treatment effects. With the aim of improving individual pa-

tients’ health outcomes, individualized treatment rules (ITRs) (Murphy, 2003; Robins, 2004;

Chakraborty and Moodie, 2013; Kosorok and Moodie, 2015; Tsiatis et al., 2019) recommend

effective treatments for each patient based on their specific characteristics. However, col-

lected data often contain many variables that are irrelevant for tailoring treatment. Including

all the variables as the tailoring variables in an analysis could reduce statistical efficiency

(Hastie et al., 2009) due to the estimation of redundant variables that are not useful for

tailoring treatment and yield an unnecessarily complicated treatment decision rule, which is

difficult for physicians to interpret or implement. It is therefore important to develop vari-

able selection methods with the objective of optimizing patients’ outcomes by identifying

useful tailoring variables. Variable selection for ITRs has been studied in Lu et al. (2013);

Jeng et al. (2018); Shi et al. (2018); Bian et al. (2021); all of these works focus on penalized

regression-based estimation methods. Lu et al. (2013) and Jeng et al. (2018) only considered

a singly robust method in which the propensity score must be correctly specified. Shi et al.

(2018) used the Dantzig selector directly to penalize the A-learning (Robins, 2004; Murphy,

2003) estimating equation; Bian et al. (2021) used penalized dynamic weighted ordinary

least squares regression to perform variable selection. Both methods considered in Shi et al.

(2018) and Bian et al. (2021) are doubly robust, i.e., they can yield consistent estimators

while only requiring one of two nuisance models to be correct.

All the methods described above focused solely on cases in which the outcome is continuous.

Discrete outcomes introduce additional computational challenges to the estimation of ITR

and the variable selection procedure, due to the use of the non-identity link function. Existing

literature focusing on discrete outcomes ITR estimation includes Q-learning (Chakraborty
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and Moodie, 2013; Linn et al., 2017), Bayesian additive regression trees (Logan et al., 2019),

and A-learning (Robins et al., 1992; Tchetgen Tchetgen et al., 2010). However, none of these

previous works have been extended to include variable selection. In this article, we focus on

developing doubly robust ITR estimation with variable selection for discrete outcomes.

To provide robustness against model misspecification, ITRs are often estimated using es-

timating equations (Murphy, 2003; Robins, 2004). There are at least two ways to achieve

sparsity in the use of estimating equations: via a Dantzig selector (Candes and Tao, 2007)

or by a regularized estimating equation (REE). Denote by U (θ) ∈ Rp an estimating equa-

tion, where θ ∈ Rp. The Dantzig estimator ˆ︁θdan can be found by solving the constrained

optimization problem: ˆ︁θdan = argminθ ∥θ∥1, subject to ∥U (θ)∥∞ ≤ nλ, where λ is a tuning

parameter used to control sparsity, and n is the sample size. Another way to induce sparsity

is to solve the REE: U (θ) = nλq(|θ|), where q(| · |) is the subgradient of a penalty function

ρ(| · |), i.e., q(| · |) = ∂ρ(| · |). For example, LASSO (Tibshirani, 1996) regression defined

by minβ{∥Y − Xθ∥22 + nλ∥θ∥1} is a special case of the REE U (θ) = nλ∂∥θ∥1, where

U (θ) =XT (Y −Xθ), X ∈ Rn×p is the design matrix, and Y ∈ Rn is the response.

While the Dantzig selector and REE work well for continuous outcomes (Shi et al., 2018),

their implementation in ITRs can be difficult for discrete outcomes, which are usually mod-

elled with non-identity link functions. Indeed, the existing doubly robust estimating equa-

tions to estimate ITRs for discrete outcomes are non-linear (Robins et al., 1992; Tchet-

gen Tchetgen et al., 2010, see later in Section 5.2.2), and hence the Dantzig selector cannot

be solved using linear programming (James and Radchenko, 2009). As for REE, it has been

studied in Johnson et al. (2008) and Wang et al. (2012), where local quadratic approximation

(Fan and Li, 2001) was used to solve the REE, which is computationally burdensome since it

requires the calculation of the inverse of the Hessian matrix. Finally, even if the solution of

the Dantzig selector or the REE can be found, it is challenging to select the tuning parameter

in an ITR context since interest lies in inference about treatment effects rather than just
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predictive performance. This means that we cannot simply select the tuning parameter that

has the lowest prediction error as in the more classical prediction setting.

In this work, we propose two new doubly robust estimating functions to estimate the ITR for

count and binary outcomes, respectively. The benefit of our proposed estimating function

is that it can be easily generalized to a penalized framework, which permits estimating the

optimal treatment regimes and selecting the important variables simultaneously. We show

that with a suitable choice of weights, a simple penalized regression model for estimating an

ITR enjoys the desired double robustness property, and yet is straightforward to implement.

The advantage of the newly proposed approach compared to alternative regularized ITRs

estimation methods lies in the fact that it can be viewed from a minimization perspective.

Hence, the implementation is simple, various penalty functions can be used, and the solution

can be found using existing computationally efficient tools in standard software. A tuning

parameter selection procedure is proposed to select the tuning parameter that addresses the

fact that the goal of an ITR analysis is estimation of a decision rule rather than prediction.

To our knowledge, doubly robust variable selection in ITR estimation for discrete outcomes

has not been studied in the existing literature.

The rest of this article is organized as follows. In Section 2, we present some introductory

concepts and review some existing doubly robust estimation methods for discrete outcomes.

In Section 3, we introduce our proposed estimation methods, and we extend them to a

penalized framework in Section 4, followed by statements of theoretical properties. A number

of simulation studies are given in Section 5. Finally, we apply our method to data from an

adaptive web-based stress management study in Section 6.
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5.2 Background

5.2.1 Notations, Assumptions and Introductory Concepts

Throughout, we use upper case letters to denote random variables and lower case letters to

denote observed values. We use non-bold letters to denote individual-level data and bold

letters to denote all observations in the data, e.g., Xi ∈ Rp are the covariates for subject

i, while X ∈ Rn×p are covariates for all subjects. In a single stage ITR, Vi = (Xi, Ai, Yi)

consists of the data for ith individual patient, where Xi is the patient’s baseline covariates,

Ai is the binary treatment received, and Yi is the patient’s outcome. In the sequel, we

will suppress subscript i where it is clear. We denote the potential outcome (Rubin, 1978)

under the treatment a as Y a. The potential outcome Y a of a subject is the outcome of

the patient if treatment a has been taken, which may be counter to fact. The objective

of an ITR analysis is to find the optimal treatment aopt such that the expected potential

outcome E(Y a) is maximized across the population of individuals. To estimate ITRs, we

assume the following standard causal assumptions hold: (1) the stable unit treatment value

assumption (SUTVA) (Rubin, 1980): a patient’s potential outcome is not affected by other

patients’ treatment assignments; (2) consistency: Y = AY 1 + (1 − A)Y 0; (3) conditional

exchangeability (Robins, 1997): Y a ⊥⊥ A|X = x; and (4) positivity: P (A = a|X = x) > 0

almost surely for all x and a = 0, 1.

Finally, we assume that the observations Vi, i = 1, . . . , n are independent and identically

distributed with probability density h(V ) with respect to a measure ν. Moreover, we assume

the relationship between Y and (X,A) can be captured by a semi-parametric regression

model: g
(︁
E(Y a|X = x)

)︁
= g

(︁
E(Y |X = x,A = a)

)︁
= f0(x;β) + γ (x, a;ψ), where g is a

known link function, f0 is an unknown baseline function, and γ is a known function that

satisfies γ (x, 0;ψ) = 0, which is referred to as the blip function (Robins, 2004). A blip

function can be interpreted as the difference on the linear predictor scale of the transformed
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mean potential outcomes

γ (x, a) = g
(︁
E(Y a|X = x)

)︁
− g
(︁
E(Y 0|X = x)

)︁
= g
(︁
E(Y a|X = x,A = a)

)︁
− g
(︁
E(Y 0|X = x,A = a)

)︁
.

In this model, f0 is irrelevant for making treatment decisions (a nuisance model). Hence,

our parameter of interest is ψ, and the optimal ITR is given by

aopt = argmax
a

E(Y a) = argmax
a

EX
[︁
g−1(f0(x;β) + γ (x, a;ψ))

]︁
= EX

[︃
argmax

a
g−1(f0(x;β) + γ (x, a;ψ))

]︃
= argmax

a
γ (x, a;ψ) ,

given an increasing link function. In the sequel, we only consider a log link for count outcomes

and a logit link for binary outcomes.

5.2.2 Existing Estimation Methods for Discrete Outcomes

A-learning for Count Outcomes

Denote by xψ the covariates in the blip model and by xβ the covariates in the baseline

model; in what follows, the superscript is omitted if they are identical. Suppose that the

blip function is known: γ(xψ, a;ψ) = aψTxψ, and the link function is the log link. Then the

A-learning estimating equation (Robins et al., 1992) for a count outcome is

U 1(ψ) =
1

n

n∑︂
i=1

xψi (ai − ˆ︁πi) exp{−γ(xψi , ai;ψ)}(︂yi − exp(f(xβi ;
ˆ︁β) + γ(xψi , ai;ψ))

)︂
,

where f is the posited baseline model (not necessarily identical to f0), ˆ︁β is a plug-in es-

timator, and ˆ︁π is the estimated propensity score (Rosenbaum and Rubin, 1983). It can

be shown that U 1(ψ) is an unbiased estimating equation (Robins et al., 1992), provided

that at least one nuisance model (propensity score model or the baseline model) is correctly
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specified.

A-learning for Binary Outcomes

Estimation is more complicated when the outcome is binary; the blip parameter is estimated

by solving the following estimating equation when the link function is the logit link:

U 2(ψ) =
1

n

n∑︂
i=1

xψi (ai − ˆ︁π∗)
(︂
yi − expit(f(xβi ; ˆ︁β) + γ(xψi , ai;ψ))

)︂
,

where

ˆ︁π∗ =

(︄
1 +

(1− expit(u(x; ˆ︁τ ))expit(f(x; ˆ︁β))
expit(u(x; ˆ︁τ ))expit(f(x; ˆ︁β) + γ(x, a;ψ))

)︄−1

,

expit(t) = exp(t)
1+exp(t)

, and u(x; τ ) is the nuisance treatment model of E(A|Y = 0, X). Tchet-

gen Tchetgen et al. (2010) showed that U 2(ψ) is an unbiased estimating equation when at

least one of E(Y |X,A = 0) or E(A|X, Y = 0) is correctly specified. Note that for logit link,

the quantity E(A|Y = 0, X) is modeled instead of the propensity score to assure the double

robustness property, because of the symmetry property of the odds ratio:

eX
⊤ψ =

P (Y = 1|A = 1, X)P (Y = 0|A = 0, X)

P (Y = 0|A = 1, X)P (Y = 1|A = 0, X)
=
P (A = 1|Y = 1, X)P (A = 0|Y = 0, X)

P (A = 0|Y = 1, X)P (A = 1|Y = 0, X)
.

Chen (2007) showed that there are at least two ways to study the association parameter

(in our case, the blip parameter): through the density of Y given X and A or through the

density of A given X and Y . This provides an intuitive explanation of why E(Y |X,A = 0)

and E(A|X, Y = 0) are modeled to assure the double robustness property.

As noted above, the implementation of the Dantzig selector or the REE can be difficult for

the A-learning estimating function. In the next section, we propose an alternative estimation

method that is also doubly robust and, unlike A-learning, can easily accommodate variable

selection.
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5.3 Doubly Robust Weighted Generalized Linear Model

In this section, we propose two new estimating equations for count and binary outcomes,

respectively, and we show that solving these two estimating equations can be reformulated as

an iteratively reweighted generalized linear model (IRGLM). Moreover, the obtained estima-

tors are doubly robust, and the newly proposed estimating equation can be easily generalized

to a penalized framework for variable selection.

5.3.1 Count Outcomes

From now on, we posit a linear model for the baseline function, i.e., f(x;β) = xTβ. For

count outcomes, we present the following estimating function:

U 3(β,ψ) =
n∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁πi| exp{−γ(xψi , a;ψ)}(︂yi − exp(f(xβi ;β) + γ(xψi , a;ψ))
)︂
.

This equation takes a similar form to U 1(ψ) with the leading term exp{−γ(xψi , a;ψ)}, and

also shared a similar form to Wallace and Moodie (2015) using overlap weights, but is not

identical to either.

Assumption 1. When at least one of the two nuisance models π or f is correctly specified,

there exists a unique population parameter θ∗ = (β∗,ψ∗) such that E[U3(β
∗,ψ∗)] = 0.

Theorem 5.3.1. Assume that the SUTVA, ignorability, consistency, and positivity condi-

tions described in the previous section and Assumption 1 hold. If the posited baseline model

satisfies xψ ⊆ xβ, then ψ∗ = ψ0, where ψ0 is the underlying true blip parameter.

Theorem 5.3.1 states that under standard causal assumptions, the population parameter ψ∗

is equivalent to the true data-generating value of the blip (and corresponding ITR) parameter

ψ0 if one of two nuisance models π or f is correctly specified. This implies that the blip

estimator ˆ︁ψ obtained by solving U 3(β,ψ) is a doubly robust estimator.
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Remark 5.3.1. The condition of the existence of a unique population parameter is similar

to the condition of the existence of the quasi-maximum likelihood estimate when the likelihood

is misspecified (White, 1982). The assumption that xψ ⊆ xβ in the posited model is referred

to as the strong heredity assumption (Chipman, 1996): the corresponding main effects of an

interaction term must be included in the model.

Now we demonstrate that U 3(β,ψ) can be specified as an IRGLM for which efficient compu-

tational solutions exist, and thus a penalized estimator can be constructed from the penalized

generalized weighted linear model accordingly. We propose Algorithm 1 to solve U 3(β,ψ).

The key is to treat the |ai − ˆ︁πi| exp{−γ(xψi , a;ψ)} term in U 3(β,ψ) as a constant in each

iteration t. In this way, Step 7 in Algorithm 1 is equivalent to a weighted generalized linear

model with weights |ai − ˆ︁πi| exp{−γ(xψi , a; ˜︁ψt)}, where ˆ︁π is the estimated propensity score

which does not change across iterations and ˜︁ψ is the current value of the blip parameter

estimate from the most recent iteration update. This can be solved efficiently using, for

example, the glm function in R and specifying the weights argument.

Algorithm 1
1: function (xi, ai, yi, ˆ︁πi, ε)
2: Set iteration counter t← 0
3: Initialize ˜︁ψ0

4: wi0 ← |ai − ˆ︁πi| exp{−γ(xψi , ai; ˜︁ψ0)} for i = 1, . . . , n
5: repeat
6: Solve βt and ψt such that

7:
∑︁n

i=1

(︄
aix

ψ
i

xβi

)︄
wit

(︂
yi − exp(f(xβi ;βt) + γ(xψi , ai;ψt))

)︂
= 0

8: ˜︁ψt+1 ← ψt
9: wi(t+1) ← |ai − ˆ︁πi| exp{−γ(xψi , ai; ˜︁ψt+1)}

10: t← t+ 1
11: until ∥ψt −ψt−1∥ < ε
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5.3.2 Binary Outcomes

A similar framework can be built for binary outcomes using the logit link function. We

present estimating equation U 4(β,ψ) for binary outcomes:

U 4(β,ψ) =
n∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁π∗
i |
(︂
yi − expit(f(xβi ;β) + γ(xψi , a;ψ))

)︂
,

where

ˆ︁π∗ =

(︄
1 +

(1− expit(u(x; ˆ︁ξ))expit(f(x; ˆ︁β∗))

expit(u(x; ˆ︁ξ))expit(f(x; ˆ︁β∗) + γ(x, 1;ψ))

)︄−1

,

and u(x; ξ) is the nuisance treatment model for E(A|Y = 0, X). Under mild conditions, the

solution of U 4(β,ψ) is a doubly robust estimator. Note that all theoretical properties for

count outcomes can be applied equally to binary outcomes; for convenience and space, we

include the results of binary outcomes in the Appendix. Algorithm 2 can be used to solve

U 4(β,ψ), once again treating the term |ai − ˆ︁π∗
i | as a constant in each iteration.

Algorithm 2
1: function (xi, ai, yi, ˆ︁πi, ε)
2: Set iteration counter t← 0
3: Initialize: ˜︁ψ0

4: wi0 ← |ai − ˆ︁π∗i ( ˜︁ψ0)| for i = 1, . . . , n
5: repeat
6: Solve βt and ψt such that

7:
∑︁n

i=1

(︄
aix

ψ
i

xβi

)︄
wit

(︂
yi − expit(f(xβi ;βt) + γ(xψi , ai;ψt))

)︂
= 0

8: ˜︁ψt+1 ← ψt
9: wi(t+1) ← |ai − ˆ︁π∗i ( ˜︁ψt+1)|

10: t← t+ 1
11: until ∥ψt −ψt−1∥ < ε

5.4 Tailoring Variable Selection

In this section, we introduce sparsity to our proposed estimating function using the for-

mulation of a REE, and show that this REE is asymptotically equivalent to a penalized
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weighted generalized linear model given an appropriate initial estimator. Throughout, the

main effect of the treatment A is not penalized as our goal is to select the important tailoring

variables.

5.4.1 Penalized Doubly Robust Method

Due to the non-linear part (log or logit link) of the estimating equation for discrete outcomes,

a Dantzig selector with A-learning estimating equation U 1(ψ) or U 2(ψ) cannot be solved

using linear programming (James and Radchenko, 2009). Hence, we pursue an REE approach

to introduce sparsity to the proposed estimating equations U 3(β,ψ) and U 4(β,ψ), and

once again, reformulate the REE as a penalized weighted GLM. We call this approach the

penalized doubly robust (PDR) method, as it will be shown later, the penalized estimator

obtained by solving the ITR REE is a doubly robust estimator.

For count outcomes and binary outcomes, respectively, the ITR REE require finding the

solution of

∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁πi| exp{−γ(xψi , a;ψ)}(︂yi − exp(f(xβi ;β) + γ(xψi , a;ψ))
)︂
= nλq(|θ|),

(5.1)

and

∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁π∗
i |
(︂
yi − expit(f(xβi ;β) + γ(xψi , a;ψ))

)︂
= nλq(|θ|). (5.2)

To estimate the blip parameters ψ consistently, we require that the penalized model satisfies

the following properties: (a) no false exclusion of tailoring variables, and (b) the selected

model has the strong heredity property, i.e., ˆ︁ψj ̸= 0 =⇒ ˆ︁βj ̸= 0 (without loss of generality,

assume that xψ has the same “ordering” as xβ). Many penalty functions can yield a model
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that has variable selection consistency, i.e., no false inclusion and no false exclusion, for

example, LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and adaptive LASSO (Zou,

2006). However, these methods all fail to achieve the strong heredity property, thus, further

work is required to implement them in this setting. Bian et al. (2021), borrowing on the

work in Choi et al. (2010) and Bhatnagar et al. (2020) used the reparametrization to ensure

strong heredity when using penalization in the context of ITR. Here, we modify the adaptive

LASSO penalty, and show that by using these modified adaptive weights, not only can

the blip parameters be unbiasedly estimated (asymptotically), but also the strong heredity

constraint can be met.

We omit the subscript for the estimating functions U 3(β,ψ) and U 4(β,ψ) for now, as the

properties for both count and binary outcomes can be developed using a general notation

U (β,ψ). Let θ0 = (β0,ψ0) denote the underlying true parameters and recall that θ∗ =

(β∗,ψ∗) is the unique population parameter such that E[U (β∗,ψ∗)] = 0. Let s be the

number of non-zero components of ψ0 (or equivalently, ψ∗) and denote by S the set of indices

of non-zero components for ψ0. Denote by S ′ the set of indices of non-zero components for

β∗; in order to satisfy the strong heredity property, we want the estimated baseline model

to satisfy ˆ︁β˜︁S ̸= 0 as n goes to infinity, where ˜︁S = S ∪ S ′ (as such, S ⊆ ˜︁S and hence strong

heredity holds). The goal is to obtain a targeted indices set S∗ such that ˆ︁θS∗ ̸= 0 and ˆ︁θS∗
c
= 0

with probability tending to 1, where S∗
c is the complement of S∗. We note that this targeted

set S∗ can be written as θ∗S∗ = (β∗˜︁S,ψ∗
S).

Suppose that we have an initial estimator ˆ︁θini = (ˆ︁βini, ˆ︁ψini) such that
√
n∥ˆ︁βini−β∗∥ = Op(1)

and
√
n∥ ˆ︁ψini − ψ∗∥ = Op(1). Following the adaptive LASSO (Zou, 2006) principle, we

construct our adaptive weights for the corresponding coefficients β and ψ as follows:

ˆ︁wβj =
{︂
max

(︂
|ˆ︁βinij |, | ˆ︁ψinij |

)︂}︂−1

and ˆ︁wψj =
⃓⃓⃓ ˆ︁ψinij

⃓⃓⃓−1

. (5.3)
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We then use the penalty function ρ(|θ|) = ρ(|β|) + ρ(|ψ|), where

ρ(|β|) =
p∑︂
j=1

ˆ︁wβj |βj| and ρ(|ψ|) =
p∑︂
j=1

ˆ︁wψj |ψj|.
In this way, for non-zero coefficients of blip variables, the associated weights and those of

their corresponding main effects both converge to finite constants, and thus always remain

in the model. We refer to our proposed weights in Expression (5.3) as modified adaptive

weights, since these build on the adaptive LASSO framework but differ from it in the choice

of ˆ︁wβj . Theorem 5.4.1 establishes the existence of a
√
n-consistent solution to the ITR REE

(5.1) and (5.2).

Theorem 5.4.1 (Existence and Selection Consistency). Assume that conditions in

Theorem 5.3.1 hold, penalty functions are constructed using the modified adaptive weights

described in Expression (5.3), and the tuning parameter satisfies
√
nλ = o(1) and nλ→∞,

then there exists a
√
n−consistent solution ˆ︁θ = (ˆ︁β, ˆ︁ψ) of the ITR REE such that ˆ︁ψS ̸= 0

and ˆ︁ψSc = 0.

By Lemma B.1.1 in the Appendix, to establish the existence of the REE solution, it suffices to

show that for sufficiently large n, there exists a constant r such that on the boundary of a ball

around θ∗ with radius n−1/2r, the variational inequality holds for function U (θ)− nλq(|θ|)

with high probability; that is, for any ε > 0,

P
(︃

inf
∥θ−θ∗∥=n−1/2r

(θ − θ∗)T [U (θ)− nλq(|θ|)] > 0

)︃
> 1− ε.

This technique has been adopted in Portnoy (1984) and Wang (2011) to prove the existence of

the M -estimator and GEE estimator when the number of predictors is large. Theorem 5.4.2

establishes the asymptotic normality of the ITR REE estimators under standard regularity

conditions (see Appendix for the details).

Theorem 5.4.2 (Asymptotic Normality). For any
√
n−consistent solution ˆ︁θ of ITR
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REE,
√
nJ(ψ∗

S){ ˆ︁ψS −ψ∗
S + J(ψ

∗
S)

−1λ q(|ψ∗
S|)} →d N

(︁
0, I(ψ∗

S)
)︁
,

where I(θ) is the variance of the estimating equation U(V,θ), J(θ) is the quantity Eθ
[︂
−∂U3(V,θ)

∂θ

]︂
,

and I(ψ∗
S) and J(ψ∗

S) are the corresponding s× s sub-matrices of I and J evaluated at the

truth.

A detailed proof of Theorem 5.4.1 and Theorem 5.4.2 can be found in the Appendix. In

order to illustrate the double robustness property of our proposed estimators, we borrow the

idea of the oracle estimator (Fan and Li, 2001). Define the oracle estimator ˆ︁ψora ∈ Rs as

the solution of U (β,ψ) using f(x˜︁S) and γ(xS, a) (i.e., assume that the zero and non-zero of

the coefficients are known in advance). Since we do not know the truly important variables

in the application, the oracle estimator is just a conceptual idea to help us establish the

theoretical properties in variable selection. Due to the double robustness of U (β,ψ), ˆ︁ψora
is a consistent asymptotically normal estimator of ψ∗

S under standard regularity conditions

(see Appendix for the details) for M -estimators. The properties of ˆ︁ψ in Theorems 5.4.1 and

5.4.2 are referred to as the oracle property (Fan and Li, 2001), i.e., ˆ︁ψ performs as well as

the oracle estimator ˆ︁ψora.
Corollary 5.4.1 (Double Robustness). It can be seen that the oracle estimator ˆ︁ψora
constructed above is a doubly robust estimator of ψ0. Since the resulting estimator ˆ︁ψ mimics

the oracle estimator ˆ︁ψora, ˆ︁ψ is also a doubly robust estimator. That is to say, the resulting

estimator ˆ︁ψ is a consistent estimator of ψ0 if either one of two nuisance models is correct.

5.4.2 A One-step Estimator

In the setting where the number of variables p is fixed, we present an approximation to solve

the ITR REE (5.1) in one-step. Suppose that we can find an initial estimator ˆ︁ψini of the blip

parameter, such that
√
n∥ ˆ︁ψini − ψ∗∥2 = Op(1). Then we could plug in ˆ︁ψini to the weight

term of Expression (5.1) and solve it directly, which is equivalent to maximizing a weighted
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penalized likelihood. Taking the count outcomes for example, we could use the solution of

the unpenalized estimating equation U 1(θ) or U 3(β,θ) as the initial estimator. Then under

mild conditions, using ˆ︁ψini as a plug-in estimator will have a negligible effect on the resulting

estimator ˆ︁ψ. That is, the solution of

∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁πi| exp{−γ(xψi , ai; ˆ︁ψini)}(︂yi − exp(f(xβi ;β) + γ(xψi , ai;ψ))
)︂
= nλ∂ρ(|θ|)

is asymptotically equivalent to the solution of (5.1). In the high dimensional setting where

an unpenalized initial estimator cannot easily be computed, the ridge penalty can be used

to obtain the initial estimator.

5.4.3 Tuning Parameter Selection

The choice of the tuning parameter λ in Expressions (5.1) and (5.2) plays an important role

in the performance of the REE: an inappropriately large or small value of λ will greatly

weaken the performance of the resulting estimator with respect to the estimation error and

variable selection results. In penalized likelihood, where the goal is prediction, the optimal

λ is often chosen in a way such that the corresponding model has the lowest information

criterion, usually estimated by a measure of model fit (e.g., negative log-likelihood) with

an extra penalty term, eg., the Akaike information criterion (AIC) (Akaike, 1974) or the

Bayesian information criterion (BIC) (Schwarz, 1978). However, using AIC or BIC to select

the tuning parameter would fail if the likelihood is misspecified (i.e., outcome model is

misspecified). An alternative approach is to replace the negative log-likelihood part in the

information criterion with the negative estimated value function (Qian and Murphy, 2011;

Zhao et al., 2012; Shi et al., 2021):

− 1

n

n∑︂
i=1

YiI(Ai = ˆ︁aopti )

Aiˆ︁πi + (1− Ai)(1− ˆ︁πi) ,

99



where I(·) is the indicator function; note that the term value function refers to the marginal

or population average outcome under a particular treatment strategy–in this case, under

the strategy defined by the estimated optimal ITR, ˆ︁aopt. However, this requires that the

propensity score model is correctly specified. Here we propose an approach to select the

tuning parameter while only requiring one of the nuisance models to be correctly specified.

We refer to this approach as being a doubly robust criterion.

Recall that our proposed method can be viewed from a minimization perspective, i.e., ˆ︁θ =

argminθ{Ln(θ;y) + nλ ρ(|θ|)}. Following the idea used in classical information criteria

(Schwarz, 1978; Akaike, 1974; Nishii, 1984), we propose to select the tuning parameter by

choosing the model that has the smallest value of n−1[Dλ(ˆ︁θ,y) + κnsλ], where Dλ(ˆ︁θ,y) =
2[Lsatn (ˆ︁θ;y)−Ln(ˆ︁θ;y)] is the quasi-deviance, Lsatn is the quasi-log-likelihood of the saturated

model, κn is some positive sequence, and sλ is the number of non-zero components in the

model, for a given λ. We suggest to set κn as log(log n) log p following (Fan and Tang, 2013),

as this can achieve model selection consistency in a penalized likelihood setting. In practice,

we could also use cross-validation to choose the tuning parameter that corresponds to the

lowest average loss Lcvn (ˆ︁θ;y).
5.5 Numerical Studies

In this section, we first illustrate the double robustness of our proposed method as well as

how the choice of the initial estimator can impact the resulting estimators, in the presence of

a small number of predictors; then we demonstrate the proposed method in a large dimension

setting.
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5.5.1 Experiments Examining the Double Robustness Property in

Low Dimension

Recall that in Section 5.4.2, the initial estimator can be obtained from A-learning or our

proposed IRGLM. We now evaluate the performance of our proposed PDR method using two

different initial estimators, with respect to the variable selection rate, and the resulting error

rate in the estimated treatment decision as well as the value function (expected outcome) of

the estimated decision rules. The error rates and the average value function were calculated

over a testing set of size 10,000.

The data generation procedure for count outcomes is as follows: Step 1: Generate 15 in-

dependent multivariate normal covariates (X1, . . . , X15) with mean equal to 0.5 and unit

variance. Step 2: Generate treatment such that P (A = 1|x1, x2) = expit(−0.2 +
∑︁2

j=1 xj).

Step 3: Set the blip function as γ(x, a;ψ) = a(ψ0 + ψ1x1) for ψ0 = 1 and ψ1 = −2. Step 4:

Set the baseline model to f(x;β) = exp(−x21− x22 + x3− x4) + x1− 0.2x2. Step 5: Generate

the outcome Y ∼ Poisson(exp (f(x;β) + γ(x, a;ψ))). Under this data generation procedure,

the optimal treatment is I(1−2x1 > 0) which corresponds to treatment A = 1 for about 50%

of subjects; and the marginal mean of the outcome under observed (rather than optimal)

treatment is 1.21.

The data generation procedure for binary outcomes is the same for steps 1-3 above, ex-

cept now we set the nuisance treatment model as E(A|Y = 0, X = x) = exp(−x21 −

x22 + x3 − x4) + x1 − 0.2x2, and marginalize the conditional expectation over the distri-

bution of Y to obtain the propensity score model E(A|X = x). Generate the outcome

Y ∼ Bernoulli(expit (f(x;β) + γ(x, a;ψ))). Under this data generation procedure, the opti-

mal treatment corresponds to treatment A = 1 for about 50% of subjects; and the marginal

mean of the outcome under observed (rather than optimal) treatment is 0.47.

For both count outcomes and binary outcomes, we consider three scenarios with two sample

sizes (500 and 1000), where the baseline model is misspecified in scenario 1, and the treatment
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model is misspecified in scenario 2. In scenario 3, both models are correctly specified.

As the number of predictors is small in this experiment, we compare our proposed PDR

with unpenalized doubly robust A-learning. For PDR, we consider two alternative initial

estimators: in the first case, referred to as PDR1, it is obtained from A-learning; and in the

second, PDR2, from our proposed IRGLM approach. The R package drgee (Zetterqvist and

Sjölander, 2015) is implemented to obtain the A-learning estimates.

Tables 5.1 and 5.2 present the error rate (proportion of times the estimated optimal ITR

fails to coincide with the true optimal ITR), value, false negative rate (i.e., setting a tailoring

variable’s coefficient to 0 when it should be non-zero), false positive rate (i.e., selecting a

tailoring variable, when the coefficient should be in fact be zero), mean absolute error (MAE):

∥ψ0 − ˆ︁ψ∥1 and mean squared error (MSE): ∥ψ0 − ˆ︁ψ∥2 of the blip parameter estimates of the

three methods for binary and count outcomes respectively. In summary, all three methods

have good performance (as they are all doubly robust methods), however, our proposed

PDR1 and PDR2 outperform the unpenalized method with respect to the error rate, value,

and estimation error for both types of outcomes in all three scenarios regardless of the sample

size. No obvious difference in the error rate, value, and variable selection performance were

observed between PDR1 and PDR2 in the simulations. Nonetheless, in scenario 2 for binary

outcomes, the estimation error (MAE and MSE) is slightly smaller for PDR1 than PDR2,

but this difference in estimation error does not translate into a noticeable difference with

respect to the error rate or the value function.
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Table 5.1: Error rate (ER), value, false negative (FN) rate, and false positive (FP) rate of
variable selection results, mean absolute error (MAE) and mean squared error (MSE) using
unpenalized estimation (UE) and penalized doubly robust methods (PDR1 and PDR2), with
n = 500 and 1000, for 400 simulations and a test size 10,000 in three scenarios for a count
outcome. For comparison, the value function of the true optimal regime, and the strategies
of always treat and never treat are 3.36, 1.82, and 2.08, respectively.

Scenario 1 Scenario 2 Scenario 3

UE PDR1 PDR2 UE PDR1 PDR2 UE PDR1 PDR2

n=500
ER 0.13 0.07 0.08 0.09 0.03 0.03 0.12 0.07 0.07
Value 3.28 3.34 3.33 3.33 3.36 3.36 3.29 3.34 3.34
FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1.00 0.16 0.19 1.00 0.04 0.01 1.00 0.19 0.18
MAE 3.60 1.50 1.50 2.40 0.30 0.30 3.30 1.35 1.35
MSE 1.80 0.75 0.75 0.75 0.06 0.06 1.35 0.75 0.60

n=1000
ER 0.09 0.04 0.04 0.06 0.03 0.03 0.08 0.04 0.04
Value 3.33 3.36 3.35 3.35 3.36 3.36 3.33 3.35 3.35
FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1.00 0.07 0.08 1.00 0.01 0.00 1.00 0.13 0.13
MAE 2.54 0.82 0.85 1.66 0.18 0.18 2.32 0.91 0.89
MSE 0.91 0.39 0.39 0.33 0.03 0.03 0.70 0.35 0.33
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Table 5.2: Error rate (ER), value, false negative (FN) rate, and false positive (FP) rate of
variable selection results, mean absolute error (MAE) and mean squared error (MSE) using
unpenalized estimation (UE) and penalized doubly robust methods (PDR1 and PDR2), with
n = 500 and 1000, for 400 simulations and a test size 10,000 in three scenarios for a binary
outcome. For comparison, the value function of the true optimal regime, and the strategies
of always treat and never treat are 0.64, 0.48, and 0.48, respectively.

Scenario 1 Scenario 2 Scenario 3

UE PDR1 PDR2 UE PDR1 PDR2 UE PDR1 PDR2

n=500
ER 0.18 0.07 0.07 0.18 0.07 0.08 0.18 0.07 0.07
Value 0.61 0.64 0.64 0.61 0.64 0.64 0.61 0.64 0.64
FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1.00 0.05 0.05 1.00 0.04 0.08 1.00 0.06 0.06
MAE 6.09 1.07 1.10 6.00 0.86 1.31 6.29 1.14 1.15
MSE 4.20 0.66 0.69 3.97 0.41 0.81 4.43 0.69 0.69

n=1000
ER 0.13 0.05 0.05 0.13 0.04 0.05 0.13 0.04 0.04
Value 0.63 0.64 0.64 0.63 0.64 0.64 0.63 0.64 0.64
FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1.00 0.03 0.02 1.00 0.03 0.05 1.00 0.03 0.03
MAE 3.81 0.67 0.66 3.85 0.56 0.76 3.89 0.66 0.67
MSE 1.59 0.28 0.29 1.61 0.19 0.31 1.65 0.27 0.27

5.5.2 Large Dimension Setting

In this section, we decrease the sample size to n = 300 and increase the number of covariates

p to 30, 60, and 100 (note that the dimension of the model is 2p + 2, since β and ψ are

estimated simultaneously in the model). Since the number of predictors is now large, we

compare our doubly robust method with outcome regression using the LASSO (Tibshirani,

1996) penalty. The LASSO is implemented using the R package glmnet (Friedman et al.,

2007), with the tuning parameter is selected using the information criterion discussed in

Section 5.4.3. Finally, we obtain our initial estimator using the ridge penalty; see Algorithm

A1 in the Appendix for implementation details.

The data generation procedures for both types of outcomes are similar to the previous low
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dimensional setting, except for some changes in the values of the parameters (see Appendix

for more details). For both count and binary outcomes, we consider the challenging scenario

in which the baseline model is misspecified and the treatment model is correctly specified.

Tables 5.3 and 5.4 present the error rate, value, false negative rate, false positive rate,

MAE, and MSE of the two methods for the count and binary outcomes, respectively. Our

proposed penalized doubly robust method (using the ridge estimator as the initial estimate)

outperforms the LASSO with respect to the error rate, value, and MSE for both types of

outcomes, regardless of the number of predictors. However, for binary outcomes, the MAE

is slightly smaller for LASSO than PDR.

Table 5.3: Error rate (ER), value, false negative (FN) rate, and false positive (FP) rate of
variable selection results, mean absolute error (MAE) and mean squared error (MSE) using
LASSO and PDR with n = 300, for 400 simulations and a test size 10,000 for count outcome.
For comparison, the value function of the true optimal regime, and the strategies of always
treat and never treat are 2.01, 0.79, and 1.36, respectively.

p = 30 p = 60 p = 100

LASSO PDR LASSO PDR LASSO PDR

ER 0.15 0.09 0.17 0.11 0.18 0.11
Value 1.98 2.00 1.97 1.99 1.95 1.99
FN 0.06 0.00 0.07 0.01 0.06 0.00
FP 0.23 0.18 0.11 0.10 0.07 0.07
MAE 3.04 2.09 3.46 2.42 3.67 2.58
MSE 2.62 0.94 3.32 1.39 3.73 1.49
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Table 5.4: Error rate (ER), value, false negative (FN) rate, and false positive (FP) rate
of variable selection results, mean absolute error (MAE) and mean squared error (MSE)
using LASSO and PDR with n = 300, for 400 simulations and a test size 10,000 for binary
outcome. For comparison, the value function of the true optimal regime, and the strategies
of always treat and never treat are 0.57, 0.42, and 0.29, respectively.

p = 30 p = 60 p = 100

LASSO PDR LASSO PDR LASSO PDR

ER 0.30 0.21 0.34 0.23 0.37 0.27
Value 0.47 0.52 0.44 0.50 0.43 0.48
FN 0.34 0.07 0.47 0.09 0.51 0.12
FP 0.02 0.21 0.00 0.12 0.00 0.09
MAE 8.33 8.73 8.79 9.70 8.85 12.41
MSE 27.55 16.98 30.82 19.92 31.36 29.42

5.6 Application to an Adaptive Web-based Stress Man-

agement Study

We illustrate the newly proposed approach on a dataset from a two-stage pilot sequential

multiple assignment randomized trial (Lambert et al., 2021) that aimed to assess a web-

based, stress management intervention adapted across time using a stepped-care approach

for people with cardiovascular disease (CVD). We focus our analysis on the first stage only,

where 50 participants were randomized into two treatment groups each with probability 0.5,

stratified by recruitment sources and stress level. The two treatment groups are the website

only group (A = 0) and the website plus weekly telephone coaching group (A = 1).

The primary outcome in this analysis was the stress subscale from the Depression Anxiety

Stress Scales (DASS) (Lovibond and Lovibond, 1996), which is a count outcome measured at

6 weeks after stage 1 randomized allocation. As a lower DASS-stress subscale score suggests

the presence of fewer symptoms of stress, the optimal treatment decision is made such that

one minimizes the DASS-stress subscale score. The aims of our analysis are to determine

the tailoring variables related to the decision rule and to obtain the estimated individualized
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treatment rule for CVD patients. We restrict our analysis to eight variables: mental compo-

nent score (MCS), age, DASS-stress subscale score at baseline, sex, marital status, stomach

condition, physical component score (PCS), and vision, as they were previously found to be

useful for tailoring treatment using Bian et al. (2021).

A logistic regression model is posited to estimate the propensity score adjusted for the

recruitment source and stress level. We apply PDR to this study with A-learning as the

initial estimator (this approach was referred to as PDR1 in Section 5.5); both the baseline

model and the blip model are posited to be linear. We found that five variables are relevant

for tailoring treatment: DASS at baseline, sex, marital status, stomach condition, and vision.

The estimated treatment rule is

ˆ︁aopt = I{ − 0.78 + 0.09I(male) + 0.45I(unmarried) + 0.01DASS+

0.45I(stomach=yes)− 0.08I(vision=yes) < 0}.

For example, a married woman who does not have either a vision problem nor a stomach

ailment, and who has a DASS greater than 13, would be recommended for website plus weekly

telephone coaching (A = 1). We compared our estimated treatment rule with the results

using the approach in Bian et al. (2021), wherein the DASS was treated as a continuous

measure, and we found that 74% of the subjects’ recommended treatments were the same

under the two strategies. Moreover, all five non-zero estimated blip parameters had the same

signs as the estimated blip parameters using Bian et al. (2021).

We also considered, for illustrative purposes, an analysis dichotomizes the outcome Y by its

median, and used our proposed binary outcome approach. However, due to the small sample

size, neither A-learning nor a standard logistic regression yielded a solution due to lack of

convergence.

Finally, we illustrate our newly proposed approach on data from the sequenced treatment
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alternatives to relieve depression (STAR*D) (Fava et al., 2003). The STAR*D data are

considered a benchmark dataset for ITR analyses and have been analyzed in Chakraborty

et al. (2013); Shi et al. (2018); Wallace et al. (2019); Bian et al. (2021), among others. While

these data are less novel, we considered the comparison relevant and provide results in the

Appendix. In summary, the findings in the current analysis using the methods proposed

here for both count and binary outcomes align well with the results found in Chakraborty

et al. (2013); Wallace et al. (2019); Bian et al. (2021).

5.7 Discussion

In this article, we propose new doubly robust estimating functions to determine an individ-

ualized treatment rule when the outcome is discrete and the log or logit link functions are

used to model the outcome. The newly proposed approach can be solved using a weighted

GLM iteratively given a suitable choice of observational weights. The benefit of our pro-

posed estimating function is that it can be easily generalized to a penalized framework, which

permits estimating a parsimonious ITR and selecting the important tailoring variables si-

multaneously. Based on this, we also present a doubly robust criterion to select the tuning

parameter. Numerical studies indicated that the newly proposed penalized doubly robust

method compares favorably with other competing approaches in the context of ITRs. To

our knowledge, doubly robust variable selection approach for ITRs has not previously been

studied.

To obtain a doubly robust estimator, we need a well-behaved initial estimator, which can

be found using an unpenalized doubly robust approach. In the setting where the number

of predictors is larger than the sample size, we recommend using the ridge estimator to

acquire the initial estimate. In future work, we could also build on idea in Huang et al.

(2008), who used the marginal regression approach to obtain the initial estimator for the

adaptive LASSO, i.e, the outcome is regressed separately on each variable. However, this
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technique is more challenging in our setting, as it violates the assumption that the blip

model is correctly specified. This is a partial identification problem, and it has been studied

in van der Laan et al. (2003), which may be able to shed some light on how to use marginal

regression to obtain a valid initial estimator. It also may be of interest, in future work, to

investigate the algorithm to directly solve the REE instead of using the approximation. As

this alternative does not require an initial estimator, it might perform better in a large p,

small n scenario.

The extension of the single stage estimation approach to a multi-stage setting also requires

further investigation. In a multi-stage setting, the estimation procedure is conducted recur-

sively using backward induction, and the “outcome” at each stage is set to be a predicted or

estimated optimal response. For discrete outcomes, the optimal outcome is usually modeled

by multiplicative effects, e.g., the optimal outcome at the (k−1)th stage for a count outcome

is computed by ˆ︁yoptk−1 = y ×
∏︁K

k exp{γk(xψk ,ˆ︁aoptk ;ψk) − γk(xψk , ak;ψk)}, where K is the total

number of stages. A challenge under the multi-stage scenario is that the estimated optimal

outcome at any stage for subjects with zero-valued outcome will always remain zero, unless

adjustments are made (Wallace et al., 2019), which may lead to a loss of efficiency. Another

challenge is that ˆ︁yoptk−1 will typically not be discrete anymore; how to apply our proposed

method to this setting is an open and intriguing problem.
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Chapter 6

Conclusion

6.1 Summary

The three manuscripts (Chapters 3, 4 and 5) presented in this thesis describe a body of work

in the context of variable selection methods for optimal treatment decision-making. The first

contribution (Chapter 3) generalizes the methodology in (Wallace and Moodie, 2015) to a

penalized framework, where variable selection and the estimation of the optimal treatment

decision can be conducted simultaneously. Through a simple re-parametrization and the use

of adaptive LASSO weights, the newly proposed method possesses the double robustness

property. The simulation studies have shown that this extended approach performs well

both in single stage and multi-stage settings, with respect to estimation error, variable

selection performance (false negative and false positive rate), error rate, and value function

estimation. I further illustrated the newly proposed method using the benchmark STAR*D

study (Fava et al., 2003). My analysis suggests that the optimal treatments for patients are

treat with SSRI at stage 1 and treat with a non-SSRI at stage 2, for all patients. That is,

my results suggest that tailoring is not beneficial in the context of choosing an optimal class

of antidepressant among patients first treated with and not responding to citalopram.
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In the second manuscript (Chapter 4), a confounder selection method and a tuning param-

eter selection technique are combined with the approach from the first paper (Chapter 3).

Simulation studies indicated that the newly proposed method achieves the best performance

when combined with the use of the value information criterion to choose the tuning parameter

for tailoring variable selection, and outcome adaptive LASSO to choose confounders. More-

over, it was demonstrated that a data-driven confounder selection approach for treatment

model construction can improve the efficiency of the resulting estimators. This approach

is further illustrated on data from a pilot sequential multiple assignment randomized trial

of a web-based stress management study. Our analysis suggests that up to eight variables

may be relevant for the individual treatment rules, yielding a better clinical outcome than

the “one-size-fits all” approach. This result implies clinically meaningful benefits and cost

savings, since only some patients require the more expensive treatment strategy. These

results also attach importance to collecting detailed information on selected variables and

related information in any subsequent full-scale sequential multiple assignment randomized

trial.

The final manuscript (Chapter 5) extended the approach from Chapter 3 to a setting in which

the outcomes are discrete. I showed that a simple penalized weighted regression approach can

have the desired double robustness property, given a suitable choice of weights. The benefit of

the newly proposed approach compared to alternative regularized ITRs estimation methods

(in particular, the Dantzig selector or a regularized estimating equation) lies in the fact that

it can be viewed from a minimization perspective so that the implementation is simpler, and

the solution can be found using existing computationally efficient tools. Simulation studies

suggested that my proposed penalized doubly robust method compares favorably with other

competing approaches in the context of ITRs. This approach was again illustrated on data

from the STAR*D study (the same data as in Chapter 3) and the adaptive web-based stress

management tool pilot study (the same data as in Chapter 4). The findings in this work

aligned well with the results found in Chapters 3 and 4.
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6.2 Limitations and Future Work

While the idea of reparametrization in Chapters 3 and 4 is simple, one limitation is that the

objective function is non-convex. Hence, it may be of interest, in future work, to investigate

approaches that use convex constraints to achieve strong heredity. See, e.g., Zhao et al.

(2009); Bien et al. (2013) and Haris et al. (2016). In Chapter 5, we developed another

strategy to achieve the strong heredity using modified adaptive weights, which is also simple

and straightforward. Nevertheless, unlike other approaches mentioned above, it can only

assure the strong heredity asymptotically, i.e., in finite samples, the resulting estimators

may violate the strong heredity.

Post selection inference (Lee et al., 2016) should also be addressed, i.e., inferential meth-

ods that can compensate for the fact that the model was picked in a data-dependent way.

Zhao et al. (2022) proposed a valid tool to study selective inference for effect modifica-

tion using LASSO, which may be able to shed some light on how to combine the selection

inferential tools with pdWOLS, and pdWOLS used in combination with OAL confounder

selection.

In Chapter 5, to obtain a doubly robust estimator, a well-behaved initial estimator is re-

quired, which can be estimated using an unpenalized approach. In the case that p > n, we

could also build on the idea in Huang et al. (2008), who used a marginal regression approach

to obtain the initial estimator for the adaptive LASSO, i.e, the outcome is regressed sep-

arately on each variable. However, this technique is more challenging in our setting, as it

violates the assumption that the blip model is correctly specified. This is a partial identifi-

cation problem, and it has been studied in van der Laan et al. (2003), which may be able to

shed some light on how to use marginal regression to obtain a valid initial estimator. It also

may be of interest, in future work, to investigate the algorithm to directly solve the REE

problem instead of using the approximation. As this alternative does not require an initial

estimator, it might perform better in a large p, small n scenario.
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The extension of the single stage ITRs estimation approach proposed in Chapter 5 to a multi-

stage scenario also requires further investigation. The estimation procedure is conducted

recursively using backward induction in a multi-stage setting, and the “outcome” at each

stage is set to be a predicted or estimated optimal response. For discrete outcomes, the

optimal outcome is usually modeled by multiplicative effects, e.g., given a K-stage DTR

in which the outcome is a count, the optimal outcome at the (k − 1)th stage is computed

by ˆ︁yoptk−1 = y ×
∏︁K

k exp{γk(xψk ,ˆ︁aoptk ;ψk)− γk(xψk , ak;ψk)}. A challenge under this scenario is

that the estimated optimal outcome at any stage for subjects with zero-valued outcome will

remain zero, unless adjustments are made (Wallace et al., 2019), which may lead to a bias

and a loss of efficiency.

6.3 Concluding Remarks

My PhD thesis aims to fill relevant gaps in the precision medicine literature: doubly robust

variable selection has been seldom investigated in the area of DTRs for continuous outcomes,

and it has not been studied for discrete outcomes at all. Many existing DTRs methods are

complicated and hard to implement, thus it is difficult to extend these to a regularization

framework. My proposed methods are straightforward to implement while still possessing

the desired double robustness property. I hope my thesis can result in further investigation

for selecting important tailoring variables for optimal treatment decision-making.
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APPENDIX A

Appendix to Manuscript 1

In this supplement, we provide the algorithm for estimation, the required regularity condi-

tions and proofs of the main paper, followed by additional simulation results and details of

the STAR*D analysis.

115



Algorithm 3 Blockwise Coordinate Descent with Strong Heredity
1: function (X,Y ,W ,A, λ, α, ϵ)
2: ˜︂Xj ← A ◦Xj for j = 1, . . . , p

3: Initialize: ψ(0)
0 = β

(0)
j = τ

(0)
j ← 0 for j = 1, . . . , p.

4: Set iteration counter t← 0
5: R∗ ← Y − ψ(t)

0 A−
∑︁

j(Xj + τ
(t)
j ψ

(t)
0
˜︂Xj)β

(t)
j

6: repeat
7: • To update τ = (τ1, . . . , τp)

8: ˜︂Xj ← β
(t)
j ψ

(t)
0
˜︂Xj for j = 1, . . . , p

9: R← R∗ +
∑︁p

j=1 τ
(t)
j
˜︂Xj

10:
τ (t)(new) ← argmin

τ

1

2n
∥
√

W (R−
∑︂
j

τj˜︂Xj)∥22 + λα|τj |1

11: ∆ =
∑︁

j(τ
(t)
j − τ

(t)(new)
j )˜︂Xj

12: R∗ ← R∗ +∆

13: • To update β = (β1, . . . , βp)

14: ˜︂Xj ←Xj + τ
(t)
j ψ

(t)
0 Xj for j = 1, . . . , p

15: R← R∗ + ˜︂Xjβ
(t)
j

16:
β
(t)(new)
j ← argmin

βj

1

2n
∥
√

W (R− ˜︂Xjβj)∥22 + λ(1− α)|βj |1

17: ∆ = ˜︂Xj(β
(t)
j − β

(t)(new)
j )

18: R∗ ← R∗ +∆

19: • To update ψ0

20: ˜︂XA ← A+
∑︁

j τ
(t)
j
˜︂Xjβ

(t)
j

21: R← R∗ + ψ
(t)
0
˜︂XA

22:

ψ
(t)(new)
0 ←

˜︂X⊤
AWR˜︂X⊤
AW˜︂XA

23: ∆ = (ψ
(t)
0 − ψ

(t)(new)
0 )˜︂XA

24: R∗ ← R∗ +∆

25: t← t+ 1
26:
27: until convergence criterion is satisfied
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A.1 Regularity Conditions

A(1): Define V = (Y,X, A). The observations V i, i = 1, . . . , n are independent and iden-

tically distributed with probability density g(V ) with respect to a measure ν. Denote the

quasi-log-likelihood (i.e., the negative dWOLS loss function) as: −
∑︁n

i=1 log h(V i,θ) , where

h is the posited density. In addition, h is identifiable and satisfies

Eg

[︃
∂log h(V ;θ)

∂θj

]︃
=

∫︂
∂log h(V ;θ)

∂θj
g(V ) = 0.

A(2): The matrix J(θ) is finite and positive definite at θ = θ∗, where the elements of the

matrix J(θ) are

Jjl(θ) = −Eθ
[︃
∂2log h(V ;θ)

∂θj∂θl

]︃
and θ∗ is the minimizer of the Kullback–Leibler divergence between h and g.

The following matrix exists at θ = θ∗:

I (θ) = Eθ

[︄(︃
∂log h(V ;θ)

∂θ

)︃(︃
∂log h(V ;θ)

∂θ

)︃T]︄
.

A(3): There exists an integrable function G such that
⃓⃓⃓
∂3log h(V ;θ)
∂θj∂θl∂θm

⃓⃓⃓
≤ G(V ) for all j, l,m

and θ in a neighborhood of θ∗.

These assumptions guarantee the asymptotic normality of the quasi-maximum likelihood

estimators (White, 1982).
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A.2 Proof of Theorem 3.2.1

Theorem 3.2.1. Correct Sparsity: Assume that
√
nan = O(1) and

√
nbn →∞, then there

exists a local minimizer ˆ︁θn of Equation (7) such that ∥ˆ︁θn − θ∗∥ = Op(n
− 1

2 + an). Moreover,

we have P (ˆ︁θBc = 0)→ 1.

Proof: Denote the objective function as

Q(θ) = L∗(θ) +

p∑︂
j=1

λβj |βj|+
p∑︂
j=1

λτj |τj|.

Let αn = an + n−1/2. It suffices to show that for any ϵ > 0, there exists a constant C such

that inf
∥δ=C∥

Q(θ∗ + αnδ) > Q(θ∗) with probability at least 1 − ϵ, where δ = (u,v). Letting

Dn(δ) = Q(θ∗ + αnδ)−Q(θ∗), we have

Dn(δ) = L∗(θ∗ + αnδ)− L∗(θ∗) +

p∑︂
j=1

λβj (|β∗j + αnuj| − |β∗j|) +
p∑︂
j=1

λτj (|τ∗j + αnvj| − |τ∗j|)

≥ L∗(θ∗ + αnδ)− L∗(θ∗) +
∑︂
j∈B1

λβj (|β∗j + αnuj| − |β∗j|) +
∑︂
j∈B2

λτj (|τ∗j + αnvj| − |τ∗j|)

≥ L∗(θ∗ + αnδ)− L∗(θ∗)− (
∑︂
j∈B1

λβj αn|uj|+
∑︂
j∈B2

λτjαn|vj|)

≥ L∗(θ∗ + αnδ)− L∗(θ∗)− α2
n (card(B1) + card(B2))C

= αn∇L∗(θ∗)δ − 1/2α2
nδ

T∇2L∗(θ∗)δ(1 + op(1))− Cα2
n (card(B1) + card(B2)) ,

where card(·) is the cardinality of a set. The first term αn∇L∗(θ∗)δ is of order Op(nα
2
n)

using the fact that ∇L∗(θ∗) = Op(
√
n) and Op(

√
nαn) = Op(1) = Op(nα

2
n). The second term

α2
nδ

T∇2L∗(θ∗)δ(1+op(1)) = nα2
nδ

TJ(θ∗)δ(1+op(1)). Since J(θ∗) is positive definite, clearly

the second term can be made to dominate the other two terms by choosing a sufficiently

large constant C. Hence, the desired inequality holds:

P

(︄
inf

∥δ=C∥
Q(θ∗ + αnδ) > Q(θ∗)

)︄
≥ 1− ϵ,
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and there exists a local minimizer ˆ︁θn such that ∥ˆ︁θn − θ∗∥ = Op(n
− 1

2 + an).

Now we prove the correct sparsity property, and we first show that P (ˆ︁βBc
1
= 0) → 1. It

suffices to show that for any j ∈ Bc
1, ∥ˆ︁θn − θ∗∥ = Op(n

−1/2) and ϵn = Cn−1/2,

∂Q(ˆ︁θn)
∂βj

> 0 for 0 < ˆ︁βj < ϵn and
∂Q(θn)

∂βj
> 0 for 0 > ˆ︁βj > −ϵn.

When 0 < ˆ︁βj < ϵn, by Taylor’s expansion,

∂Q(ˆ︁θn)
∂βj

=
∂L∗(θ∗)

∂βj
+

2p+1∑︂
k=1

∂2L∗(θ∗)

∂βj∂θl
(ˆ︁θl − θ∗l)

+

2p+1∑︂
l=1

2p+1∑︂
m=1

∂3L∗(θ̃)

∂βj∂θl∂θm
(ˆ︁θl − θ∗l)(ˆ︁θm − θ∗m) + λβj

where θ̃ lies between ˆ︁θn and θ∗. By the regularity conditions, ∂Q(ˆ︁θn)
∂βj

=
√
n
(︂
Op(1) + n−1/2λβj

)︂
,

which is greater than 0 by the assumption that
√
nbn → ∞. The case that 0 > ˆ︁βj > −ϵn

can be shown in the same way.

Now we show that P (ˆ︁θBc
2
= 0) → 1. In the case that β∗j ̸= 0 and τ∗j = 0, ˆ︁τj = 0 can be

proven in a similar manner. On the other hand, when ˆ︁βj = 0, ˆ︁τj is also zero by construction.

Thus, we have P (ˆ︁θBc = 0)→ 1. This completes the proof.
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A.3 Proof of Theorem 3.2.2

Theorem 3.2.2. Asymptotic Normality: Assume that
√
nan → 0 and

√
nbn →∞, then

√
n(ˆ︁θB − θ∗B)→d N

(︁
0,J−1(θ∗B)I(θ∗B)J

−1(θ∗B)
)︁

where J(θ) = −Eθ
[︂
∂2log h(V;θ)

∂θ∂θT

]︂
and I(θ) = Eθ

[︃(︂
∂log h(V;θ)

∂θ

)︂(︂
∂log h(V;θ)

∂θ

)︂T]︃
.

Proof: By Theorem 3.2.1, we have ∂Q(ˆ︁θB)
∂θj

= 0 for any j ∈ B with probability tending to 1.

Denote the penalty term as ρλ(θ), we have ∂Q(ˆ︁θB)
∂θj

= ∇L∗(ˆ︁θB) +∇ρλ(ˆ︁θB) = 0. By Taylor’s

expansion, the first term can be written as

∇L∗(ˆ︁θB) = √n{ 1√
n
∇L∗(θ∗B) +

√
nJ(θ∗B)(ˆ︁θB − θ∗B) + op(1)} = 0,

while the second term ∇ρλ(ˆ︁θ) = op(
√
n) using the assumption that

√
nan → 0. By the weak

law of large numbers, Slutsky’s theorem and the central limit theorem, we have

√
n(ˆ︁θB − θ∗B)→d N

(︁
0,J−1(θ∗B)I(θ∗B)J

−1(θ∗B)
)︁

which is the desired asymptotic normality property. This completes the proof.

A.4 Simulation Studies

A.4.1 Double Robustness

Figures S1-S2 correspond to results from Section 3.2 in the main paper and demonstrate

the double robustness of pdWOLS, comparing its performance to competitor approaches.

Figure S1 shows the results under Scenario 2-4 with sample size 100 and 500, while Figure

S2 is the full simulations result, which summarizes the estimates of blip parameters using

the three methods under four scenarios of model specification. In Scenario 1, all the methods
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failed since it fails to meet the assumptions of correct model specification required by them.

Specifically, pdWOLS has a larger variance than the other two methods when the sample

size is relatively small (n = 100). Across all the scenarios and methods, there is very little

difference when the sample size was increased from n = 500 to n = 2000.

Figure S1: Estimates of blip parameters using pdWOLS, Q-learning with LASSO (QL),
PAL and their refitted counterparts (RpdWOLS, RQL and RPAL) when one (Scenarios 2
and 3) or both (Scenario 4) the treatment and treatment-free outcome models are correctly
specified with sample size 100 and 500 (400 simulations). The true value is represented by
the dotted line.
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Figure S2: Estimates of blip parameters using pdWOLS, Q-learning with LASSO (QL), PAL
and their refitted counterparts (RpdWOLS, RQL and RPAL) when neither (Scenario 1), one
(Scenarios 2 and 3) or both (Scenario 4) the treatment and treatment-free outcome models
are correctly specified with sample size 100, 500 and 2000 (400 simulations). The true value
is represented by the dotted line.

A.4.2 Multi-stage Setting 2

We follow the general approach to data generation procedure in (Simoneau et al., 2018):

Step 1: Generate 10 binary covariates at stage 1 with sample size 1000: P (Xj1 = 1) =

P (Xj1 = −1) = 0.5 for j = 1, 2, ...10.

Step 2: Generate randomized treatment at stage k according to P (Ak = 1) = P (Ak = 0) =

0.5 for k=1, 2.

Step 3: Generate 10 covariates at stage 2 such that P (X12 = 1|X11, A1) = expit(θ0x11 +

θ1(2A1− 1)), and the remaining nine covariates such that P (Xj2 = 1) = P (Xj2 = −1) = 0.5
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for j = 2, 3, ...10.

Step 4: Generate the outcome according to the model Y = β0 + β11x11 + γ0A1 + γ1A1x11 +

β12x12 + ψ02A2 + ψ12A2x12 + ϵ where ϵ ∼ N(0, 1).

Under this setting, it can be shown that the true blip parameters (Simoneau et al., 2018;

Chakraborty et al., 2010) in stage 1 are given by:

ψ01 = γ0 + (q1 − q2)(2β12 + f1I(f1 > 0)− f2I(f2 > 0)),

ψ11 = γ1 + (q′1 − q′2)(2β12 + f1I(f1 > 0)− f2I(f2 > 0)),

where

f1 = ψ02 + ψ12, f2 = ψ02 − ψ12,

q1 = 0.5(expit(θ0 + θ1) + expit(−θ0 + θ1)), q2 = 0.5(expit(θ0 − θ1) + expit(−θ0 − θ1)),

q′1 = 0.5(expit(θ0 + θ1)− expit(−θ0 + θ1)), q′2 = 0.5(expit(θ0 − θ1)− expit(−θ0 − θ1)).

Now set θ0 = θ1 = 1, β0 = −1, β11 = 2, γ0 = −1, γ1 = 1.5, ψ02 = 1, and ψ12 = −1.5. The true

blip parameters at stage 2 are ψ02 = 1 and ψ12 = −1.5; at stage 1, they are ψ01 = −1.195

and ψ11 = 1.5.

At the estimation stage, we assume an outcome model (i.e., treatment-free plus blip model)

for y that is linear in terms (1, x2, A2, A2x2), and at stage 1, a model for the pseudo-outcome

that is linear in terms (1, x1, A1, A1x1). In this manner, the treatment-free outcome is cor-

rectly specified at the first stage but not the second.
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Figure S3: Estimates of blip parameters using pdWOLS, Q-learning (LASSO), PAL and
their refitted versions with sample size 1000 (400 simulations) in two-stage Setting 2. The
true value is represented by the dotted line.
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Table S1: Variable selection rate (%) of the blip parameters using pdWOLS, Q-learning
with LASSO (QL), PAL and their refitted versions with sample size 1000 (400 simulations)
in two-stage Setting 2. The main effect of treatment is not penalized (and hence is always
selected).

Stage 1 Stage 2

pdWOLS QL PAL RpdWOLS RQL RPAL pdWOLS QL PAL

AX1 * 100 34 100 100 38 100 100 100 100
AX2 1 12 27 1 12 28 1 38 46
AX3 1 12 26 0 11 29 1 37 40
AX4 1 14 24 1 12 25 2 39 49
AX5 2 10 25 0 10 25 2 42 50
AX6 1 16 25 1 14 26 0 33 44
AX7 1 15 25 0 13 28 2 36 43
AX8 1 14 30 1 12 32 1 37 45
AX9 1 13 22 1 13 24 1 36 42
AX10 1 14 24 1 15 28 1 40 42

* Term with a non-zero coefficient in the data-generating model

Table S2: Error Rate (ER, %) and value function using pdWOLS, Q-learning with LASSO
(QL), PAL and their refitted versions with sample size 1000 (400 simulations) in two-stage
Setting 2. Total error rate (TER, %) and stage-wise error rate in estimated optimal treatment
recommendation across both stages are shown.

TER ER (Stage 1) ER (Stage 2) Value Function

pdWOLS 19.8 1.7 18.6 0.4
QL 62.6 50.8 17.5 -0.9
PAL 5.8 0.2 5.5 0.4
RpdWOLS 2.5 0.4 2.1 0.5
RQL 56.2 50.8 7.9 -0.8
RPAL 12.8 2.9 10.3 0.4

Figure S3 summarizes the estimates of blip parameters using the three methods in the two-

stage Setting 2. As expected, pdWOLS and PAL work when at least one of the treatment

or treatment-free models is correctly specified (in this case, the treatment model is correctly

specified); Q-learning with LASSO failed at stage 1, since the treatment-free model at both

stages are misspecified. For pdWOLS and PAL, refitted estimators are nearly unbiased, and

they perform better than their penalized counterparts.
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Table S1 presents the variable selection results for optimal treatment decisions. The im-

portant tailoring variable was selected by pdWOLS and PAL at both stages, while the

performance of (refitted) Q-learning with LASSO at stage 1 was poor. At stage 2, the false

positive rate of pdWOLS is much smaller than other two methods: for instance, the selection

frequency of AX2 − AX10 are all less than 3%, as in stage 1. Note that at stage 1, because

the pseudo-outcomes are different for refitted version and their penalized counterparts, the

variable selection result varies too.

Table S2 summarizes the error rates of the estimated optimal treatment regimes for treatment

decision making and value functions. The average value function and the error rates were

computed over a testing set of size 10,000. Refitted methods for pdWOLS and Q-learning

have a lower error rate and higher value than their penalized counterparts. However, unlike

before where even the refitted PAL estimator has a smaller bias than the PAL estimator,

here the refitted PAL did not improve the performance of PAL with respect to the value and

error rate.

Sensitivity of Results to Choice of α

The data generation procedure is the same as in the high-dimensional setting, except that p

is now 10.

126



Figure S4: Estimates of blip parameters using pdWOLS with α = 0.2, 0.5, 0.8, respectively
(sample size 400, 400 simulations). The true value is represented by the dotted line.

Table S3: Variable Selection Rate (%) for pdWOLS with α = 0.2, 0.5, 0.8 (sample size
400, 400 simulations). The main effect of treatment using pdWOLS is not penalized. The
variables with ∗ are the truly important variables, and others are noise variables (AX2 −
AX10).

α = 0.2 α = 0.5 α = 0.8

AX1 * 100 100 100
AX2 87 58 20
AX3 3 3 1
AX4 3 3 2
AX5 2 2 2
AX6 2 2 2
AX7 2 3 1
AX8 3 3 2
AX9 3 2 2
AX10 2 2 1
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Table S4: Error rate (ER) and value for pdWOLS with α = 0.2, 0.5, 0.8 (sample size 400,
400 simulations). For comparison, the value of the true optimal treatment decision, treat
all, and treat none are 0.651, 0.419, and -0.569, respectively.

α = 0.2 α = 0.5 α = 0.8

ER 0.05 0.05 0.04
Value 0.64 0.64 0.64

A.5 Additional STAR*D Details

The STAR*D (Fava et al., 2003) study was divided into four levels. At the beginning of the

study (level 1), all patients were prescribed citalopram and followed up regularly. Those who

did not enter a state of remission of depression – defined as a Quick Inventory of Depressive

Symptomatology (QIDS) score (Rush et al., 2003) less than or equal to 5, could then enter

level 2 of the study where seven treatment options were accessible. In level 2, the treatment

was shifted from citalopram to one of four different treatments or individuals continued to

receive citalopram and received one of three additional treatments. Patients were allowed to

enter the sub-level 2A where they received one of the pharmacological treatments available at

level 2 if they received cognitive therapy at level 2 (either alone or combined with citalopram).

Patients who did not experience a remission of depressive symptoms could then proceed to

level 3, where their previous treatment was either switched to a new treatment or combined

with another treatment. If the depression persisted after treatment in stage 3, they could

enter level 4, where again their previous treatment was either switched to a new treatment

or combined with another treatment. Following (Wallace et al., 2019) and (Chakraborty

et al., 2013), we take level 2 (including 2A) in the trial as stage 1 in our analysis (the first

treatment decision) and STAR*D level 3 as stage 2 in the analysis.

Our analytic sample consists of 1027 total participants who entered what we define as the

first stage of our analysis (i.e., 273 participants entered level 2/2A of the original trial);

of those, 273 moved on to the second stage of analysis. For this analysis, we focus on
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treatment with a selective serotonin reuptake inhibitor or a different treatment options,

coding treatment without a selective serotonin reuptake inhibitor as A=0 (and 1 otherwise).

We define outcome as negative QIDS score at end of treatment. Because participants made

a choice to remain in the study after each stage, while all individuals have the outcome Y1,

only those who chose to continue on into the study and enter stage 2 have Y2 observed. For

further details, see (Fava et al., 2003; Chakraborty et al., 2013).
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APPENDIX B

Appendix to Manuscript 3

Regularity Conditions for M Estimator

In order to prove the consistency and asymptotic normality of regularized m-estimators, we

need the following regularity conditions (Tsiatis, 2006) holds.

A(1): E
(︁∂U(V, θ∗)

∂θ

)︁
is non-singular.

A(2): n−1
∑︁n

i=1
∂U(Vi, θ)

∂θ
→ E

(︁∂U(V, θ∗)
∂θ

)︁
uniformly in a neighborhood of θ∗

A(3): The second moment of U(V,θ∗) exists.

B.1 Fixed Point Problems and Variational Inequality

Lemma B.1.1 (Fixed Point Problems and Variational Inequality (Dafermos, 1980)).

Suppose C is a closed convex set, then the variational inequality problem of finding a x0 ∈ C

such that F (x0)T (x0 − x) ≤ 0 has a solution if and only if x0 is a fixed point of the function

Π(x− F (x)|C), where Π(· |C) is the projection operator.

Lemma B.1.1 suggests that solving the fixed point problem Π(x−F (x)|C) = x is equivalent

to solving a variational inequality problem. This Lemma will be helpful to prove the existence
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of the ITR REE solution.

B.2 Proof of Theorem 5.3.1

Theorem 5.3.1 Assume that the SUTVA, ignorability, consistency, and positivity conditions

described in previous section and Assumption 1 hold, if the posited baseline model satisfies

xψ ⊆ xβ, then ψ∗ = ψ0, where ψ0 is the underlying true blip parameter.

Proof: We first consider the case where the baseline model is misspecified, and the treat-

ment model is correctly specified. For count outcomes, we can rewrite the A-learning esti-

mating equation

U 1(ψ) =
1

n

n∑︂
i=1

xψi (ai − ˆ︁π) exp{−γ(xψi , a;ψ)}(︂yi − exp(f(xβi ;
ˆ︁β) + γ(xψi , ai;ψ))

)︂
,

as

U 1(ψ) = −I(a = 0)xψˆ︁π (︂y − exp(f(xβ; ˆ︁β))︂ (B.1)

+ I(a = 1)xψ(1− ˆ︁π) exp{−γ(xψ, 1;ψ)}(︂y − exp(f(xβ; ˆ︁β) + γ(xψ, 1;ψ))
)︂
. (B.2)

Recall that

U 3(β,ψ) =

⎛⎜⎝axψ
xβ

⎞⎟⎠ |a− ˆ︁π| exp{−γ(xψ, a;ψ)} (︁y − exp(f(xβ; β) + γ(xψ, a;ψ))
)︁
.

U 3(β,ψ) can be split into

I(a = 1)xψ(1− ˆ︁π) exp{−γ(xψ, 1;ψ)} (︁y − exp(f(xβ; β) + γ(xψ, 1;ψ))
)︁

(B.3)
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and

I(a = 0)xβˆ︁π (︁y − exp(f(xβ; β))
)︁

+ I(a = 1)xβ(1− ˆ︁π) exp{−γ(xψ, 1;ψ)} (︁y − exp(f(xβ; β) + γ(xψ, 1;ψ))
)︁

(B.4)

Now let xβ = xψ 1 and without loss of generality let the plug-in estimator ˆ︁β in the A-learning

estimating equation equal the baseline estimator obtained from U 3(β,ψ). Subtracting (B.4)

from (B.3), we have

−I(a = 0)xψˆ︁π (︁y − exp(f(xβ; β))
)︁
. (B.5)

It is clear that now (B.1)=(B.5) and (B.2)=(B.3), which implies that E[U 1(ψ
∗)] = 0. Hence

the solution of U 3(β,ψ) is a solution of the A-learning estimating function, but not vice

versa. Since the A-learning estimator is doubly robust, the solution of U 3 is also doubly

robust.

Now consider the case where the baseline model is correctly specified, and the treatment

model is misspecified. By iterated expectation, E[U 3(β,ψ)] = E[E(U 3| a, x)].

E(U 3| a, x) =

⎛⎜⎝axψ
xβ

⎞⎟⎠ |a− ˆ︁π| exp{−γ(xψ, a;ψ)}
×
{︁
E(y|a, x)− exp(f(xβ; β) + γ(xψ, a;ψ))

}︁
=

⎛⎜⎝axψ
xβ

⎞⎟⎠ |a− ˆ︁π| exp{−γ(xψ, a;ψ)}
×
{︁
exp(f(xβ; β0) + γ(xψ, a;ψ0))− exp(f(xβ; β) + γ(xψ, a;ψ))

}︁
.

1To simplify the proof and save the space, here we use a special case of the strong heredity assumption:
xβ ⊆ xψ. The rigorous proof using the strong heredity assumption does not involve any extra difficulty
except more tedious sentences.
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Clearly, θ0 is a solution of E(U 3) = 0, by the uniqueness assumption, ψ0 = ψ
∗.

B.3 Proof of Theorem 5.4.1

Theorem 5.4.1 Assume that conditions in Theorem 5.3.1 hold, penalty functions are con-

structed using the modified adaptive weights, the tuning parameter satisfies
√
nλ = o(1) and

nλ → ∞, then there exists a
√
n-consistent solution ˆ︁θ = (ˆ︁β, ˆ︁ψ) of the ITR REE such thatˆ︁ψS ̸= 0 and ˆ︁ψSc = 0.

Proof: Denote S ′ as the set of indices of non-zero components for β∗, by the strong

heredity constraint, we want our selected variables for baseline model satisfy ˆ︁β˜︁S ̸= 0, where˜︁S = S ∪ S ′. Now let S∗ be the set such that θ∗S∗ = (β∗˜︁S,ψ∗
S), it suffices to show that there

exists θ = θ∗ + n−1/2u for ∥u∥ = r such that U (θ)− nλq(|θ|) = 0.

We first show that for θ = θ∗ + n−1/2u, θS∗
c
= 0 with probability tending to 1, where S∗

c is

the complement of S∗. It suffices to show that

U S∗
c
(θ)− nλq(|θS∗

c
|) = 0, (B.6)

which is equivalent to show that ∥U S∗
c
(θ)∥∞ ≤ nλ ˆ︁wS∗

c
. By Taylor’s expansion, U S∗

c
(θ) =

U S∗
c
(θ∗) + U ′

S∗
c
(˜︁θ)(θS∗

c
− θ∗S∗

c
), where ˜︁θ lies between θ∗ and θ. Using standard arguments

that ∥U S∗
c
(θ∗)∥ = Op(

√
n) and U ′

S∗
c
(˜︁θ) →p −J(θ∗), hence ∥U S∗

c
(θ)∥ = Op(

√
n) for θ =

θ∗ + n−1/2u. Since the penalty function satisfies inf∥θ∥≤Mn−1/2

√
nλ ˆ︁wS∗

c
= Op(nλ) → ∞.

Expression (B.6) holds with probability tending to 1.

It now remains to show that U S∗(θS∗ ,0)− nλq(|θS∗|) = 0, which is equivalent to the fixed

point problem: find θS∗ such that Π(θS∗ − FS∗(θ)|C) = θS∗ with FS∗(θ) = U S∗(θS∗) −

nλq(|θS∗|) and C = Bθ∗
S∗ (n

−1/2r), where Bθ∗
S∗ (n

−1/2r) is the Euclidean ball around θ∗S∗ with

radius n−1/2r. To see this, note that the projection operator Π(x− F (x)|C) can be written

as argminx0∈C∥x0 − (x− F (x))∥22.
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By Lemma B.1.1, to establish the existence of the ITR REE solution, it suffices to show that

for sufficiently large n, there exists a constant r such that on the boundary of a ball around

θ∗S∗ with radius n−1/2r, the variational inequality holds for function U S∗(θS∗ ,0)−nλq(|θS∗|)

with high probability, i.e., for any ε > 0,

P

(︄
sup

∥θS∗−θ∗
S∗∥=n−1/2r

(θS∗ − θ∗S∗)T [U S∗(θS∗ ,0)− nλq(|θS∗|)] < 0

)︄
> 1− ε.

Then we have

(θS∗ − θ∗S∗)T [U S∗(θS∗ ,0)− nλq(|θS∗|)]

=(θS∗ − θ∗S∗)T [U S∗(θ∗) +U ′
S∗(˜︁θ)(θS∗ − θ∗S∗)− nλq(|θ∗S∗ |)]

=(θS∗ − θ∗S∗)T [Op(
√
n)c− nJ(θ∗S∗)(θS∗ − θ∗S∗)− nλq(|θ∗S∗|)]

=(θS∗ − θ∗S∗)T [Op(
√
n)c− nJ(θ∗S∗)(θS∗ − θ∗S∗)−Op(nλ)c]

=Op(r)−Op(r
2)−Op(n

1/2λ)

=−Op(r
2) < 0 (by choosing a sufficiently large r).

The first equation uses Taylor’s expansion; in the second equation, c is any vector such

that ∥c∥ = 1, and we use the fact that ∥U S∗(θ∗)∥ is of order Op(
√
n), and the law of large

numbers, i.e., U ′
S∗(˜︁θ)→p −nJ(θ∗S∗); the third equation follows because the penalty function

is constructed using the modified adaptive weights, i.e., nλq(|θS∗|) = nλ ˆ︁wS∗ = Op(nλ);

the fourth equation holds since ∥θS∗ − θ∗S∗∥ = n−1/2r. Thus, we have proved that there

exists a
√
n-consistent solution ˆ︁θ = (ˆ︁β, ˆ︁ψ) of ITR REE solution such that ˆ︁ψS ̸= 0 andˆ︁ψSc = 0.
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B.4 Proof of Theorem 5.4.2

Theorem 5.4.2 For any
√
n−consistent solution ˆ︁θ of ITR REE,

√
nJ(ψ∗

S){ ˆ︁ψS −ψ∗
S + J(ψ

∗
S)

−1λ q(|ψ∗
S|)} →d N

(︁
0, I(ψ∗

S)
)︁
,

where I(θ) ∈ R2p×2p is the variance of the estimating equation U(Vi,θ), and J(θ) ∈ R2p×2p

is the quantity Eθ
[︂
−∂U(Vi,θ)

∂θ

]︂
, I(ψ∗

S) and J(ψ∗
S) are the corresponding s× s sub-matrices of

I and J evaluated at the truth.

Proof: By Theorem 5.4.1, we have U S∗(ˆ︁θS∗ ,0)− nλq(|ˆ︁θS∗|) = 0 with probability tending

to 1. By Taylor’s expansion, the first term can be written as

U S∗(θ∗) +U ′
S∗(˜︁θ)(ˆ︁θS∗ − θ∗S∗) = nλq(|θS∗ |),

where ˜︁θ lies between θ∗ and ˆ︁θ. Now we have

√
nJ(θ∗S∗){ˆ︁θS∗ − θ∗S∗ + J(θ∗S∗)−1λq(|θS∗|)} = U S∗(θ∗)→d N

(︁
0, I (θ∗S)

)︁
by the weak law of large numbers and the central limit theorem, which is the desired asymp-

totic normality property. It follows that

√
nJ(ψ∗

S){ ˆ︁ψS −ψ∗
S + J(ψ

∗
S)

−1λ q(|ψ∗
S|)} →d N

(︁
0, I (ψ∗

S)
)︁
.
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B.5 Main Results for Binary Outcomes

We posit a linear model for the baseline model, i.e., f(x;β) = xTβ. For binary outcomes,

we present estimating function U 4(β,ψ),

U 4(β,ψ) =
∑︂
i=1

⎛⎜⎝aixψi
xβi

⎞⎟⎠ |ai − ˆ︁π∗
i |
(︂
yi − expit(f(xβi ; β) + γ(xψi , a;ψ))

)︂
,

where

ˆ︁π∗ =

(︄
1 +

(1− expit(g(x; ˆ︁ξ))expit(f(x; ˆ︁β∗))

expit(g(x; ˆ︁ξ)expit(f(x; ˆ︁β∗) + γ(x, 1;ψ))

)︄−1

,

and g(x; ξ) is the nuisance treatment model of E(A|Y = 0, X).

Assumption 2. When at least one of two nuisance models π or f is correctly specified, there

exists a unique population parameter θ∗ = (β∗,ψ∗) such that E[U4(β
∗,ψ∗)] = 0.

Theorem B.5.1. Assume that the SUTVA, ignorability, consistency, and positivity condi-

tions described in previous section and Assumption 2 hold, if the posited baseline model

satisfies xψ ⊆ xβ, then ψ∗ = ψ0, where ψ0 is the underlying true blip parameter.

Theorem B.5.1 states that ψ∗ = ψ0 under mild conditions, which implies that the blip

estimators ˆ︁ψ obtained by solving U 4(β,ψ) is a doubly robust estimator.
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B.6 Algorithm to Obtain the Initial Estimator using Ridge

Penalty (Count Outcomes)

Algorithm A1
1: function (xi, ai, yi, ε)
2: Set iteration counter t← 0
3: Initialize ˜︁ψ0

4: wi0 ← |ai − ˆ︁πi| exp{−γ(xψi , ai; ˜︁ψ0)} for i = 1, . . . , n
5: repeat
6: • Update ψt such that

7:
∑︁n

i=1

(︄
aix

ψ
i

xβi

)︄
wit

(︂
yi − exp(f(xβi ;β) + γ(xψi , ai;ψt))

)︂
= 2nλθt

8: ˜︁ψt+1 ← ψt
9: wi(t+1) ← |ai − ˆ︁πi| exp{−γ(xψi , ai; ˜︁ψt+1)}

10: t← t+ 1
11: until ∥ψt − ψt−1∥ < ε

B.7 Data Generation Procedure in the Large Dimension

Setting

The data generation procedure for count outcomes is described as follows: Step 1: Generate p

independent multivariate normal covariates (X1−Xp) with mean -0.2 and unit variance. Step

2: Generate treatment such that P (Ai = 1|x1, x2, x3) = expit(
∑︁3

j=1 xj). Step 3: Set the blip

function as γ(x, a;ψ) = a(ψ0+ψ1x1+ψ2x2+ψ3x3) for ψ0 = −0.8, ψ1 = −2, ψ2 = 2, and ψ3 =

1. Step 4: Set the baseline model to f(x;β) = −0.3−0.8 |x1+x2+x3|+0.8x1−0.8x2+0.8x3.

Step 5: Generate the outcome Y ∼ Poisson(f(x;β)+γ(x, a;ψ)). Under this data generation

procedure, about 38% of the subjects would receive an optimal treatment with A = 1; and

the marginal mean of the outcome Y is 1.33.

The data generation procedure for binary outcomes is: Step 1: Generate p multivariate

normal covariates (X1 − Xp) with mean 0.5 and unit variance. Step 2: Set the baseline

model to f(x;β) = − exp(x1) + 4x1 − 4x2. Step 3: Set the blip function as γ(x, a;ψ) =
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a(ψ0 + ψ1x1 + ψ2x2) for ψ0 = 1.5, ψ1 = −4, and ψ2 = 4. Step 4: Set the nuisance treatment

model as E(A|Y = 0, X = x) = − exp(x1)+4x1−4x2, and marginalize it over Y to obtain the

propensity score model E(A|X = x); generate the treatment according to E(A|X = x). Step

5: Generate the outcome Y ∼ Bernoulli(f(x;β) + γ(x, a;ψ)). Under this data generation

procedure, about 62% of the subjects would receive an optimal treatment with A = 1; and

the marginal mean of the outcome Y is 0.24.

B.8 Application to STAR*D Study

In this section, we apply the proposed penalized doubly robust method to the Sequenced

Treatment Alternatives to Relieve Depression (STAR*D) data (Fava et al., 2003). STAR*D is

a multistage randomized trial whose goal was to find effective treatments for major depressive

disorder patients, whose Quick Inventory of Depressive Symptomatology (QIDS) score are

greater than 5 (Rush et al., 2003). STAR*D data have been analyzed in Wallace et al. (2019);

Chakraborty et al. (2013); Bian et al. (2021), where each of the authors listed conducted

a two-stage analysis according to the use of a selective serotonin reuptake inhibitor (SSRI)

compared to a different treatment options, with QIDS score as the primary outcome (count)

and three tailoring variables: the QIDS score measured at the beginning of each stage,

change in QIDS score divided by the time in the previous level (QIDS slope), and patient

preference measured prior to receiving treatment. For more information, see Fava et al.

(2003); Chakraborty et al. (2013).

In this analysis, we follow the strategy in Wallace et al. (2019); Chakraborty et al. (2013);

Bian et al. (2021) but only focus on the first stage. We also follow the strategy in Bian

et al. (2021) to generate d noise variables for d = 5, 10, 20 respectively to conduct variable

selection. The sample size in first stage is 1159, and we denote treatment with a SSRI with

A = 1, and A = 0 for other treatment options. The propensity score was estimated using a

logistic regression adjusting for patient preference only. We apply penalized doubly robust
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method to this study with A-learning as the initial estimator, both the baseline model and

the blip model are posited to be linear.

In all three scenarios (d = 5, 10, 20), our method found that only treatment preference is

useful for tailoring treatment at stage 1. This result is consistent with the results found in

Wallace et al. (2019); Chakraborty et al. (2013), while Bian et al. (2021) found that no blip

covariates were useful for tailoring. The false positive rates of our method for the simulated

noise variables are 0% (d = 5), 10% (d = 10), and 5% (d = 20), respectively.

Another analysis is performed with the outcome dichotomized by its median. The results

are different from the above analysis where the outcome is count: in all three scenarios

(d = 5, 10, 20), our binary penalized doubly robust method found that no blip variable is

useful for tailoring treatment at stage 1, suggesting that the optimal treatments are treat

with SSRI (A = 1) at stage 1 for all the patients. The false positive rates of our method

for the simulated noise variables are 0 for all choices of d. This result is consistent with the

result found in Bian et al. (2021).
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